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The appearance of digital computers and the development of modern theories
of learning and neural processing both occurred at about the same time, during
the late 1940s. Since that time, the digital computer has been used as a tool
to model individual neurons as well as clusters of neurons, which are called
neural networks. A large body of neurophysiological research has accumulated
since then. For a good review of this research, see Neural and Brain Modeling
by Ronald J. MacGregor [21]. The study of artificial neural systems (ANS) on
computers remains an active field of biomedical research.

Our interest in this text is not primarily neurological research. Rather, we
wish to borrow concepts and ideas from the neuroscience field and to apply them
to the solution of problems in other areas of science and engineering. The ANS
models that are developed here may or may not have neurological relevance.
Therefore, we have broadened the scope of the definition of ANS to include
models that have been inspired by our current understanding of the brain, but
that do not necessarily conform strictly to that understanding.

The first examples of these new systems appeared in the late 1950s. The
most common historical reference is to the work done by Frank Rosenblatt on
a device called the perceptron. There are other examples, however, such as the
development of the Adaline by Professor Bernard Widrow.

Unfortunately, ANS technology has not always enjoyed the status in the
fields of engineering or computer science that it has gained in the neuroscience
community. Early pessimism concerning the limited capability of the perceptron
effectively curtailed most research that might have paralleled the neurological
research into ANS. From 1969 until the early 1980s, the field languished. The
appearance, in 1969, of the book, Perceptrons, by Marvin Minsky and Sey-
mour Papert [26], is often credited with causing the demise of this technology.
Whether this causal connection actually holds continues to be a subject for de-
bate. Still, during those years, isolated pockets of research continued. Many of
the network architectures discussed in this book were developed by researchers
who remained active through the lean years. We owe the modern renaissance of
neural-net work technology to the successful efforts of those persistent workers.

Today, we are witnessing substantial growth in funding for neural-network
research and development. Conferences dedicated to neural networks and a
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new professional society have appeared, and many new educational programs
at colleges and universities are beginning to train students in neural-network
technology.

In 1986, another book appeared that has had a significant positive effect
on the field. Parallel Distributed Processing (PDF), Vols. I and II, by David
Rumelhart and James McClelland [23], and the accompanying handbook [22]
are the place most often recommended to begin a study of neural networks.
Although biased toward physiological and cognitive-psychology issues, it is
highly readable and contains a large amount of basic background material.

POP is certainly not the only book in the field, although many others tend to
be compilations of individual papers from professional journals and conferences.
That statement is not a criticism of these texts. Researchers in the field publish
in a wide variety of journals, making accessibility a problem. Collecting a series
of related papers in a single volume can overcome that problem. Nevertheless,
there is a continuing need for books that survey the field and are more suitable
to be used as textbooks. In this book, we attempt to address that need.

The material from which this book was written was originally developed
for a series of short courses and seminars for practicing engineers. For many
of our students, the courses provided a first exposure to the technology. Some
were computer-science majors with specialties in artificial intelligence, but many
came from a variety of engineering backgrounds. Some were recent graduates;
others held Ph.Ds. Since it was impossible to prepare separate courses tailored to
individual backgrounds, we were faced with the challenge of designing material
that would meet the needs of the entire spectrum of our student population. We
retain that ambition for the material presented in this book.

This text contains a survey of neural-network architectures that we believe
represents a core of knowledge that all practitioners should have. We have
attempted, in this text, to supply readers with solid background information,
rather than to present the latest research results; the latter task is left to the
proceedings and compendia, as described later. Our choice of topics was based
on this philosophy.

It is significant that we refer to the readers of this book as practitioners.
We expect that most of the people who use this book will be using neural
networks to solve real problems. For that reason, we have included material on
the application of neural networks to engineering problems. Moreover, we have
included sections that describe suitable methodologies for simulating neural-
network architectures on traditional digital computing systems. We have done
so because we believe that the bulk of ANS research and applications will
be developed on traditional computers, even though analog VLSI and optical
implementations will play key roles in the future.

The book is suitable both for self-study and as a classroom text. The level
is appropriate for an advanced undergraduate or beginning graduate course in
neural networks. The material should be accessible to students and profession-
als in a variety of technical disciplines. The mathematical prerequisites are the
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standard set of courses in calculus, differential equations, and advanced engi-
neering mathematics normally taken during the first 3 years in an engineering
curriculum. These prerequisites may make computer-science students uneasy,
but the material can easily be tailored by an instructor to suit students' back-
grounds. There are mathematical derivations and exercises in the text; however,
our approach is to give an understanding of how the networks operate, rather
that to concentrate on pure theory.

There is a sufficient amount of material in the text to support a two-semester
course. Because each chapter is virtually self-contained, there is considerable
flexibility in the choice of topics that could be presented in a single semester.
Chapter 1 provides necessary background material for all the remaining chapters;
it should be the first chapter studied in any course. The first part of Chapter 6
(Section 6.1) contains background material that is necessary for a complete
understanding of Chapters 7 (Self-Organizing Maps) and 8 (Adaptive Resonance
Theory). Other than these two dependencies, you are free to move around at
will without being concerned about missing required background material.

Chapter 3 (Backpropagation) naturally follows Chapter 2 (Adaline and
Madaline) because of the relationship between the delta rule, derived in Chapter
2, and the generalized delta rule, derived in Chapter 3. Nevertheless, these two
chapters are sufficiently self-contained that there is no need to treat them in
order.

To achieve full benefit from the material, you must do programming of
neural-net work simulation software and must carry out experiments training the
networks to solve problems. For this reason, you should have the ability to
program in a high-level language, such as Ada or C. Prior familiarity with the
concepts of pointers, arrays, linked lists, and dynamic memory management will
be of value. Furthermore, because our simulators emphasize efficiency in order
to reduce the amount of time needed to simulate large neural networks, you
will find it helpful to have a basic understanding of computer architecture, data
structures, and assembly language concepts.

In view of the availability of comercial hardware and software that comes
with a development environment for building and experimenting with ANS
models, our emphasis on the need to program from scratch requires explana-
tion. Our experience has been that large-scale ANS applications require highly
optimized software due to the extreme computational load that neural networks
place on computing systems. Specialized environments often place a significant
overhead on the system, resulting in decreased performance. Moreover, certain
issues—such as design flexibility, portability, and the ability to embed neural-
network software into an application—become much less of a concern when
programming is done directly in a language such as C.

Chapter 1, Introduction to ANS Technology, provides background material
that is common to many of the discussions in following chapters. The two major
topics in this chapter are a description of a general neural-network processing
model and an overview of simulation techniques. In the description of the
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processing model, we have adhered, as much as possible, to the notation in
the PDF series. The simulation overview presents a general framework for the
simulations discussed in subsequent chapters.

Following this introductory chapter is a series of chapters, each devoted to
a specific network or class of networks. There are nine such chapters:

Chapter 2, Adaline and Madaline
Chapter 3, Backpropagation
Chapter 4, The BAM and the Hopfield Memory
Chapter 5, Simulated Annealing: Networks discussed include the Boltz-
mann completion and input-output networks
Chapter 6, The Counterpropagation Network
Chapter 7, Self-Organizing Maps: includes the Kohonen topology-preserving
map and the feature-map classifier

Chapter 8, Adaptive Resonance Theory: Networks discussed include both
ART1 and ART2
Chapter 9, Spatiotemporal Pattern Classification: discusses Hecht-Nielsen's
spatiotemporal network
Chapter 10, The Neocognitron

Each of these nine chapters contains a general description of the network
architecture and a detailed discussion of the theory of operation of the network.
Most chapters contain examples of applications that use the particular network.
Chapters 2 through 9 include detailed instructions on how to build software
simulations of the networks within the general framework given in Chapter 1.
Exercises based on the material are interspersed throughout the text. A list
of suggested programming exercises and projects appears at the end of each
chapter.

We have chosen not to include the usual pseudocode for the neocognitron
network described in Chapter 10. We believe that the complexity of this network
makes the neocognitron inappropriate as a programming exercise for students.

To compile this survey, we had to borrow ideas from many different sources.
We have attempted to give credit to the original developers of these networks,
but it was impossible to define a source for every idea in the text. To help
alleviate this deficiency, we have included a list of suggested readings after each
chapter. We have not, however, attempted to provide anything approaching an
exhaustive bibliography for each of the topics that we discuss.

Each chapter bibliography contains a few references to key sources and sup-
plementary material in support of the chapter. Often, the sources we quote are
older references, rather than the newest research on a particular topic. Many of
the later research results are easy to find: Since 1987, the majority of technical
papers on ANS-related topics has congregated in a few journals and conference
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proceedings. In particular, the journals Neural Networks, published by the Inter-
national Neural Network Society (INNS), and Neural Computation, published
by MIT Press, are two important periodicals. A newcomer at the time of this
writing is the IEEE special-interest group on neural networks, which has its own
periodical.

The primary conference in the United States is the International Joint Con-
ference on Neural Networks, sponsored by the IEEE and INNS. This conference
series was inaugurated in June of 1987, sponsored by the IEEE. The confer-
ences have produced a number of large proceedings, which should be the primary
source for anyone interested in the field. The proceedings of the annual confer-
ence on Neural Information Processing Systems (NIPS), published by Morgan-
Kaufmann, is another good source. There are other conferences as well, both in
the United States and in Europe. As a comprehensive bibliography of the field,
Casey Klimausauskas has compiled The 1989 Neuro-Computing Bibliography,
published by MIT Press [17].

Finally, we believe this book will be successful if our readers gain

• A firm understanding of the operation of the specific networks presented
• The ability to program simulations of those networks successfully
• The ability to apply neural networks to real engineering and scientific prob-

lems
• A sufficient background to permit access to the professional literature
• The enthusiasm that we feel for this relatively new technology and the

respect we have for its ability to solve problems that have eluded other
approaches
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Introduction to
ANS Technology

When the only tool you have is a hammer, every problem you en-
counter tends to resemble a nail.

—Source unknown

Why can't we build a computer that thinks? Why can't we expect machines
that can perform 100 million floating-point calculations per second to be able
to comprehend the meaning of shapes in visual images, or even to distinguish
between different kinds of similar objects? Why can't that same machine learn
from experience, rather than repeating forever an explicit set of instructions
generated by a human programmer?

These are only a few of the many questions facing computer designers,
engineers, and programmers, all of whom are striving to create more "intelli-
gent" computer systems. The inability of the current generation of computer
systems to interpret the world at large does not, however, indicate that these ma-
chines are completely inadequate. There are many tasks that are ideally suited
to solution by conventional computers: scientific and mathematical problem
solving; database creation, manipulation, and maintenance; electronic commu-
nication; word processing, graphics, and desktop publication; even the simple
control functions that add intelligence to and simplify our household tools and
appliances are handled quite effectively by today's computers.

In contrast, there are many applications that we would like to automate,
but have not automated due to the complexities associated with programming a
computer to perform the tasks. To a large extent, the problems are not unsolv-
able; rather, they are difficult to solve using sequential computer systems. This
distinction is important. If the only tool we have is a sequential computer, then
we will naturally try to cast every problem in terms of sequential algorithms.
Many problems are not suited to this approach, however, causing us to expend
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a great deal of effort on the development of sophisticated algorithms, perhaps
even failing to find an acceptable solution.

In the remainder of this text, we will examine many parallel-processing
architectures that provide us with new tools that can be used in a variety of
applications. Perhaps, with these tools, we will be able to solve more easily
currently difficult-to-solve, or unsolved, problems. Of course, our proverbial
hammer will still be extremely useful, but with a full toolbox we should be able
to accomplish much more.

As an example of the difficulties we encounter when we try to make a
sequential computer system perform an inherently parallel task, consider the
problem of visual pattern recognition. Complex patterns consisting of numer-
ous elements that, individually, reveal little of the total pattern, yet collectively
represent easily recognizable (by humans) objects, are typical of the kinds of
patterns that have proven most difficult for computers to recognize. For exam-
ple, examine the illustration presented in Figure 1.1. If we focus strictly on the
black splotches, the picture is devoid of meaning. Yet, if we allow our perspec-
tive to encompass all the components, we can see the image of a commonly
recognizable object in the picture. Furthermore, once we see the image, it is
difficult for us not to see it whenever we again see this picture.

Now, let's consider the techniques we would apply were we to program a
conventional computer to recognize the object in that picture. The first thing our
program would attempt to do is to locate the primary area or areas of interest
in the picture. That is, we would try to segment or cluster the splotches into
groups, such that each group could be uniquely associated with one object. We
might then attempt to find edges in the image by completing line segments. We
could continue by examining the resulting set of edges for consistency, trying to
determine whether or not the edges found made sense in the context of the other
line segments. Lines that did not abide by some predefined rules describing the
way lines and edges appear in the real world would then be attributed to noise
in the image and thus would be eliminated. Finally, we would attempt to isolate
regions that indicated common textures, thus filling in the holes and completing
the image.

The illustration of Figure 1.1 is one of a dalmatian seen in profile, facing left,
with head lowered to sniff at the ground. The image indicates the complexity
of the type of problem we have been discussing. Since the dog is illustrated as
a series of black spots on a white background, how can we write a computer
program to determine accurately which spots form the outline of the dog, which
spots can be attributed to the spots on his coat, and which spots are simply
distractions?

An even better question is this: How is it that we can see the dog in.
the image quickly, yet a computer cannot perform this discrimination? This
question is especially poignant when we consider that the switching time of
the components in modern electronic computers are more than seven orders of
magnitude faster than the cells that comprise our neurobiological systems. This
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Figure 1.1 The picture is an example of a complex pattern. Notice how
the image of the object in the foreground blends with the
background clutter. Yet, there is enough information in this
picture to enable us to perceive the image of a commonly
recognizable object. Source: Photo courtesy of Ron James.

question is partially answered by the fact that the architecture of the human
brain is significantly different from the architecture of a conventional computer.
Whereas the response time of the individual neural cells is typically on the order
of a few tens of milliseconds, the massive parallelism and interconnectivity
observed in the biological systems evidently account for the ability of the brain
to perform complex pattern recognition in a few hundred milliseconds.

In many real-world applications, we want our computers to perform com-
plex pattern recognition problems, such as the one just described. Since our
conventional computers are obviously not suited to this type of problem, we
therefore borrow features from the physiology of the brain as the basis for our
new processing models. Hence, the technology has come to be known as arti-
ficial neural systems (ANS) technology, or simply neural networks. Perhaps
the models we discuss here will enable us eventually to produce machines that
can interpret complex patterns such as the one in Figure 1.1.

In the next section, we will discuss aspects of neurophysiology that con-
tribute to the ANS models we will examine. Before we do that, let's first
consider how an ANS might be used to formulate a computer solution to a
pattern-matching problem similar to, but much simpler than, the problem of
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recognizing the dalmation in Figure 1.1. Specifically, the problem we will ad-
dress is recognition of hand-drawn alphanumeric characters. This example is
particularly interesting for two reasons:

• Even though a character set can be defined rigorously, people tend to per-
sonalize the manner in which they write the characters. This subtle variation
in style is difficult to deal with when an algorithmic pattern-matching ap-
proach is used, because it combinatorially increases the size of the legal
input space to be examined.

• As we will see in later chapters, the neural-network approach to solving the
problem not only can provide a feasible solution, but also can be used to
gain insight into the nature of the problem.

We begin by defining a neural-network structure as a collection of parallel
processors connected together in the form of a directed graph, organized such
that the network structure lends itself to the problem being considered. Referring
to Figure 1.2 as a typical network diagram, we can schematically represent each
processing element (or unit) in the network as a node, with connections be-
tween units indicated by the arcs. We shall indicate the direction of information
flow in the network through the use of the arrowheads on the connections.

To simplify our example, we will restrict the number of characters the
neural network must recognize to the 10 decimal digits, 0 ,1 , . . . , 9, rather than
using the full ASCII character set. We adopt this constraint only to clarify the
example; there is no reason why an ANS could not be used to recognize all
characters, regardless of case or style.

Since our objective is to have the neural network determine which of the
10 digits a particular hand-drawn character is, we can create a network structure
that has 10 discrete output units (or processors), one for each character to be
identified. This strategy simplifies the character-discrimination function of the
network, as it allows us to use a network that contains binary units on the output
layer (e.g., for any given input pattern, our network should activate one and
only one of the 10 output units, representing which of the 10 digits that we are
attempting to recognize the input most resembles). Furthermore, if we insist
that the output units behave according to a simple on-off strategy, the process
of converting an input signal to an output signal becomes a simple majority
function.

Based on these considerations, we now know that our network should con-
tain 10 binary units as its output structure. Similarly, we must determine how
we will model the character input for the network. Keeping in mind that we
have already indicated a preference for binary output units, we can again sim-
plify our task if we model the input data as a vector containing binary elements,
which will allow us to use a network with only one type of processing unit. To
create this type of input, we borrow an idea from the video world and pixelize
the character. We will arbitrarily size the pixel image as a 10 x 8 matrix, using
a 1 to represent a pixel that is "on," and a 0 to represent a pixel that is "off."
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Outputs

Hiddens

Inputs

Figure 1.2 This schematic represents the character-recognition problem
described in the text. In this example, application of an input
pattern on the bottom layer of processors can cause many of the
second-layer, or hidden-layer, units to activate. The activity on
the hidden layer should then cause exactly one of the output-
' layer units to activate—the one associated with the pattern
being identified. You should also note the large number of
connections needed for this relatively small network.

Furthermore, we can dissect this matrix into a set of row vectors, which can then
be concatenated into a single row vector of dimension 80. Thus, we have now
defined the dimension and characteristics of the input pattern for our network.

At this point, all that remains is to size the number of processing units
(called hidden units) that must be used internally, to connect them to the input
and output units already defined using weighted connections, and to train the
network with example data pairs.' This concept of learning by example is ex-
tremely important. As we shall see, a significant advantage of an ANS approach
to solving a problem is that we need not have a well-defined process for algo-
rimmically converting an input to an output. Rather, all that we need for most

1 Details of how this training is accomplished will occupy much of the remainder of the text.
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networks is a collection of representative examples of the desired translation.
The ANS then adapts itself to reproduce the desired outputs when presented
with the example inputs.

In addition, as our example network illustrates, an ANS is robust in the
sense that it will respond with an output even when presented with inputs that it
has never seen before, such as patterns containing noise. If the input noise has
not obliterated the image of the character, the network will produce a good guess
using those portions of the image that were not obscured and the information
that it has stored about how the characters are supposed to look. The inherent
ability to deal with noisy or obscured patterns is a significant advantage of
an ANS approach over a traditional algorithmic solution. It also illustrates a
neural-network maxim: The power of an ANS approach lies not necessarily
in the elegance of the particular solution, but rather in the generality of the
network to find its own solution to particular problems, given only examples of
the desired behavior.

Once our network is trained adequately, we can show it images of numerals
written by people whose writing was not used to train the network. If the training
has been adequate, the information propagating through the network will result
in a single element at the output having a binary 1 value, and that unit will be
the one that corresponds to the numeral that was written. Figure 1.3 illustrates
characters that the trained network can recognize, as well as several it cannot.

In the previous discussion, we alluded to two different types of network
operation: training mode and production mode. The distinct nature of these
two modes of operation is another useful feature of ANS technology. If we
note that the process of training the network is simply a means of encoding
information about the problem to be solved, and that the network spends most
of its productive time being exercised after the training has completed, we
will have uncovered a means of allowing automated systems to evolve without
explicit reprogramming.

As an example of how we might benefit from this separation, consider a
system that utilizes a software simulation of a neural network as part of its
programming. In this case, the network would be modeled in the host computer
system as a set of data structures that represents the current state of the network.
The process of training the network is simply a matter of altering the connection
weights systematically to encode the desired input-output relationships. If we
code the network simulator such that the data structures used by the network are
allocated dynamically, and are initialized by reading of connection-weight data
from a disk file, we can also create a network simulator with a similar structure
in another, off-line computer system. When the on-line system must change
to satisfy new operational requirements, we can develop the new connection
weights off-line by training the network simulator in the remote system. Later,
we can update the operational system by simply changing the connection-weight
initialization file from the previous version to the new version produced by the
off-line system.
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(b)

Figure 1.3 Handwritten characters vary greatly, (a) These characters were
recognized by the network in Figure 1.2; (b) these characters
were not recognized.

These examples hint at the ability of neural networks to deal with complex
pattern-recognition problems, but they are by no means indicative of the limits
of the technology. In later chapters, we will describe networks that can be used
to diagnose problems from symptoms, networks that can adapt themselves to
model a topological mapping accurately, and even networks that can learn to
recognize and reproduce a temporal sequence of patterns. All these networks
are based on the simple building blocks discussed previously, and derived from
the topics we shall discuss in the next two sections.

Finally, the distinction made between the artificial and natural systems is
intentional. We cannot overemphasize the fact that the ANS models we will
examine bear only a perfunctory resemblance to their biological counterparts.
What is important about these models is that they all exhibit the useful behaviors
of learning, recognizing, and applying relationships between objects and patterns
of objects in the real world. In this regard, they provide us with a whole new
set of tools that we can use to solve "difficult" problems.
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1.1 ELEMENTARY NEUROPHYSIOLOGY
From time to time throughout this text, we shall cite specific results from neu-
robiology that pertain to a particular ANS architecture. There are also basic
concepts that have a more universal significance. In this regard, we look first at
individual neurons, then at the synaptic junctions between neurons. We describe
the McCulloch-Pitts model of neural computation, and examine its specific re-
lationship to our neural-network models. We finish the section with a look at
Hebb's theory of learning. Bear in mind that the following discussion is a
simplified overview; the subject of neurophysiology is vastly more complicated
than is the picture we paint here.

1.1.1 Single-Neuron Physiology
Figure 1.4 depicts the major components of a typical nerve cell in the central
nervous system. The membrane of a neuron separates the intracellular plasma
from the interstitial fluid external to the cell. The membrane is permeable to
certain ionic species, and acts to maintain a potential difference between the

Myelin sheath

Axon hillock

Nucleus

Dendrites

Figure 1.4 The major structures of a typical nerve cell include dendrites,
the cell body, and a single axon. The axon of many neurons is
surrounded by a membrane called the myelin sheath. Nodes
of Ranvier interrupt the myelin sheath periodically along the
length of the axon. Synapses connect the axons of one neuron
to various parts of other neurons.
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Figure 1.5 This figure illustrates the resting potential developed across the
cell membrane of a neuron. The relative sizes of the labels for
the ionic species indicate roughly the relative concentration of
each species in the regions internal and external to the cell.

intracellular fluid and the extracellular fluid. It accomplishes this task primarily
by the action of a sodium-potassium pump. This mechanism transports sodium
ions out of the cell and potassium ions into the cell. Other ionic species present
are chloride ions and negative organic ions.

All the ionic species can diffuse across the cell membrane, with the ex-
ception of the organic ions, which are too large. Since the organic ions cannot
diffuse out of the cell, their net negative charge makes chloride diffusion into the
cell unfavorable; thus, there will be a higher concentration of chloride ions out-
side of the cell. The sodium-potassium pump forces a higher concentration of
potassium inside the cell and a higher concentration of sodium outside the cell.

The cell membrane is selectively more permeable to potassium ions than
to sodium ions. The chemical gradient of potassium tends to cause potassium
ions to diffuse out of the cell, but the strong attraction of the negative organic
ions tends to keep the potassium inside. The result of these opposing forces is
that an equilibrium is reached where there are significantly more sodium and
chloride ions outside the cell, and more potassium and organic ions inside the
cell. Moreover, the resulting equilibrium leaves a potential difference across the
cell membrane of about 70 to 100 millivolts (mV), with the intracellular fluid
being more negative. This potential, called the resting potential of the cell, is
depicted schematically in Figure 1.5.

Figure 1.6 illustrates a neuron with several incoming connections, and the
potentials that occur at various locations. The figure shows the axon with a
covering called a myelin sheath. This insulating layer is interrupted at various
points by the nodes of Ranvier.

Excitatory inputs to the cell reduce the potential difference across the cell
membrane. The resulting depolarization at the axon hillock alters the perme-
ability of the cell membrane to sodium ions. As a result, there is a large influx
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Figure 1.6 Connections to the neuron from other neurons occur at various
locations on the cell that are known as synapses. Nerve
impulses through these connecting neurons can result in local
changes in the potential in the cell body of the receiving
neuron. These potentials, called graded potentials or input
potentials, can spread through the main body of the cell. They
can be either excitatory (decreasing the polarization of the cell)
or inhibitory (increasing the polarization of the cell). The input
potentials are summed at the axon hillock. If the amount
of depolarization at the axon hillock is sufficient, an action
potential is generated; it travels down the axon away from the
main cell body.

of positive sodium ions into the cell, contributing further to the depolarization.
This self-generating effect results in the action potential.

Nerve fibers themselves are poor conductors. The transmission of the action
potential down the axon is a result of a sequence of depolarizations that occur
at the nodes of Ranvier. As one node depolarizes, it triggers the depolarization
of the next node. The action potential travels down the fiber in a discontinuous
fashion, from node to node. Once an action potential has passed a given point,
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Figure 1.7 Neurotransmitters are held in vesicles near the presynaptic
membrane. These chemicals are released into the synaptic
cleft and diffuse to the postsynaptic membrane, where they
are subsequently absorbed.

that point is incapable of being reexcited for about 1 millisecond, while it is
restored to its resting potential. This refractory period limits the frequency of
nerve-pulse transmission to about 1000 per second.

1.1.2 The Synaptic junction
Let's take a brief look at the activity that occurs at the connection between
two neurons called the synaptic junction or synapse. Communication between
neurons occurs as a result of the release by the presynaptic cell of substances
called neurotransmitters, and of the subsequent absorption of these substances
by the postsynaptic cell. Figure 1.7 shows this activity. When the action
potential arrives as the presynaptic membrane, changes in the permeability of
the membrane cause an influx of calcium ions. These ions cause the vesicles
containing the neurotransmitters to fuse with the presynaptic membrane and to
release their neurotransmitters into the synaptic cleft.
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The neurotransmitters diffuse across the junction and join to the postsynaptic
membrane at certain receptor sites. The chemical action at the receptor sites
results in changes in the permeability of the postsynaptic membrane to certain
ionic species. An influx of positive species into the cell will tend to depo-
larize the resting potential; this effect is excitatory. If negative ions enter, a
hyperpolarization effect occurs; this effect is inhibitory. Both effects are local
effects that spread a short distance into the cell body and are summed at the
axon hillock. If the sum is greater than a certain threshold, an action potential
is generated.

1.1.3 Neural Circuits and Computation
Figure 1.8 illustrates several basic neural circuits that are found in the central
nervous system. Figures 1.8(a) and (b) illustrate the principles of divergence
and convergence in neural circuitry. Each neuron sends impulses to many other
neurons (divergence), and receives impulses from many neurons (convergence).
This simple idea appears to be the foundation for all activity in the central
nervous system, and forms the basis for most neural-network models that we
shall discuss in later chapters.

Notice the feedback paths in the circuits of Figure 1.8(b), (c), and (d). Since
synaptic connections can be either excitatory or inhibitory, these circuits facili-
tate control systems having either positive or negative feedback. Of course, these
simple circuits do not adequately portray the vast complexity of neuroanatomy.

Now that we have an idea of how individual neurons operate and of how
they are put together, we can pose a fundamental question: How do these
relatively simple concepts combine to give the brain its enormous abilities?
The first significant attempt to answer this question was made in 1943, through
the seminal work by McCulloch and Pitts [24]. This work is important for many
reasons, not the least of which is that the investigators were the first people to
treat the brain as a computational organism.

The McCulloch-Pitts theory is founded on five assumptions:

1. The activity of a neuron is an all-or-none process.
2. A certain fixed number of synapses (> 1) must be excited within a period

of latent addition for a neuron to be excited.
3. The only significant delay within the nervous system is synaptic delay.
4. The activity of any inhibitory synapse absolutely prevents excitation of the

neuron at that time.
5. The structure of the interconnection network does not change with time.

Assumption 1 identifies the neurons as being binary: They are either on
or off. We can therefore define a predicate, Nt(t), which denotes the assertion
that the ith neuron fires at time t. The notation, -iATj(t), denotes the assertion
that the ith neuron did not fire at time t. Using this notation, we can describe
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Figure 1.8 These schematics show examples of neural circuits in the
central nervous system. The cell bodies (including the
dendrites) are represented by the large circles. Small circles
appear at the ends of the axons. Illustrated in (a) and (b) are
the concepts of divergence and convergence. Shown in (b),
(c), and (d) are examples of circuits with feedback paths.

the action of certain networks using propositional logic. Figure 1.9 shows five
simple networks. We can write simple propositional expressions to describe the
behavior of the first four (the fifth one appears in Exercise 1.1). Figure 1.9(a)
describes precession: neuron 2 fires after neuron 1. The expression is N2(t) =
Ni(t — 1). Similarly, the expressions for parts (b) through (d) of this figure are

• AT3(i) = N^t - 1) V N2(t - 1) (disjunction),

• N3(t) = Ni(t - {)&N2(t - 1) (conjunction), and

• N3(t) = Ni(t- l)&^N2(t - 1) (conjoined negation).

One of the powerful proofs in this theory was that any network that does not have
feedback connections can be described in terms of combinations of these four
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(a)

(e)

Figure 1.9 These drawings are examples of simple McCulloch-Pitts
networks that can be defined in terms of the notation
of prepositional logic. Large circles with labels represent
cell bodies. The small, filled circles represent excitatory
connections; the small, open circles represent inhibitory
connections. The networks illustrate (a) precession, (b)
disjunction, (c) conjunction, and (d) conjoined negation.
Shown in (e) is a combination of networks (a)-(d).

simple expressions, and vice versa. Figure 1.9(e) is an example of a network
made from a combination of the networks in parts (a) through (d).

Although the McCulloch-Pitts theory has turned out not to be an accurate
model of brain activity, the importance of the work cannot be overstated. The
theory helped to shape the thinking of many people who were influential in
the development of modern computer science. As Anderson and Rosenfeld
point out, one critical idea was left unstated in the McCulloch-Pitts paper:
Although neurons are simple devices, great computational power can be realized
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when these neurons are suitably connected and are embedded within the nervous
system [2].
Exercise 1.1: Write the prepositional expression for JV3(i) and JV4(i), of Fig-
ure 1.9(e).
Exercise 1.2: Construct McCulloch-Pitts networks for the following expres-
sions:

1. N)(t) = N2(t - 2)&^Ni(t - 3)
2. N4(t) = [N2(t - l)&->JV,(t - 1)] V [JV3(i - 1)&-.JV,(< - 1)]

V[N2(t- \)&N3(t- 1)]

1.1.4 Hebbian Learning
Biological neural systems are not born preprogrammed with all the knowledge
and abilities that they will eventually have. A learning process that takes place
over a period of time somehow modifies the network to incorporate new infor-
mation.

In the previous section, we began to see how a relatively simple neuron
might result in a sophisticated computational device. In this section, we shall
explore a relatively simple learning theory that suggests an elegant answer to
this question: How do we learn?

The basic theory comes from a 1949 book by Hebb, Organization of Be-
havior. The main idea was stated in the form of an assumption, which we
reproduce here for historical interest:

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one
or both cells such that A's efficiency, as one of the cells firing B, is increased. [10,
p. 50]

As with the McCulloch-Pitts model, this learning law does not tell the
whole story. Nevertheless, it appears in one form or another in many of the
neural-network models that exist today.

To illustrate the basic idea, we consider the example of classical condition-
ing, using the familiar experiment of Pavlov. Figure 1.10 shows three idealized
neurons that participate in the process.

Suppose that the excitation of C, caused by the sight of food, is sufficient
to excite B, causing salivation. Furthermore, suppose that, in the absence of
additional stimulation, the excitation of A, resulting from hearing a bell, is not
sufficient to cause the firing of B.

Let's allow C to cause B to fire by showing food to the subject, and while
B is still firing, stimulate A by ringing a bell. Because B is still firing, A is
now participating in the excitation of B, even though by itself A would be
insufficient to cause B to fire. In this situation, Hebb's assumption dictates that
some change occur between A and B, so that A's influence on B is increased.
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Salivation
signal

Sight input

Figure 1.10 Two neurons, A and C, are stimulated by the sensory inputs
of sound and sight, respectively. The third neuron, B,
causes salivation. The two synaptic junctions are labeled
SB A anc'

If the experiment is repeated often enough, A will eventually be able to cause
B to fire even in the absence of the visual stimulation from C. Then, if the bell
is rung, but no food is shown, salivation will still occur, because the excitation
due to A alone is now sufficient to cause B to fire.

Because the connection between neurons is through the synapse, it is rea-
sonable to guess that whatever changes occur during learning take place there.
Hebb theorized that the area of the synaptic junction increased. More recent
theories assert that an increase in the rate of neurotransmitter release by the
presynaptic cell is responsible. In any event, changes certainly occur at the
synapse. If either the pre- or postsynaptic cell were altered as a whole, other
responses could be reinforced that are unrelated to the conditioning experiment.

Thus we conclude our brief look at neurophysiology. Before moving on,
however, we reiterate a caution and issue a challenge to you. On the one hand,
although there are many analogies between the basic concepts of neurophysiol-
ogy and the neural-network models described in this book, we caution you not to
portray these systems as actually modeling the brain. We prefer to say that these
networks have been inspired by our current understanding of neurophysiology.
On the other hand, it is often too easy for engineers, in their pursuit of solutions
to specific problems, to ignore completely the neurophysiological foundations
of the technology. We believe that this tendency is unfortunate. Therefore, we
challenge ANS practitioners to keep abreast of the developments in neurobiol-
ogy so as to be able to incorporate significant results into their systems. After
all, what better model is there than the one example of a neural network with
existing capabilities that far surpass any of our artificial systems?
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Exercise 1.3: The analysis of high-dimensional data sets is often a complex
task. One way to simplify the task is to use the Karhunen-Loeve (KL) matrix,
which is defined as

where N is the number of vectors, and //' is the ith component of the /xth vector.
The KL matrix extracts the principal components, or directions of maximum
information (correlation) from a data set. Determine the relationship between the
KL formulation and the popular version of the Hebb rule known as the Oja rule:

at

where O(t) is the output of a simple, linear processing element; /;(£) are the
inputs; and <j>i(t) are the synaptic strengths. (This exercise was suggested by
Dr. Daniel Kammen, California Institute of Technology.)

1.2 FROM NEURONS TO ANS
In this section, we make a transition from some of the ideas gleaned from
neurobiology to the idealized structures that form the basis of most ANS models.
We first describe a general artificial neuron that incorporates most features we
shall need for future discussions of specific models. Later in the section, we
take a brief look at a particular example of an ANS called the perceptron. The
perceptron was the result of an early attempt to simulate neural computation in
order to perform complex tasks. We shall examine in particular what several
limitations of this approach are and how they might be overcome.

1.2.1 The General Processing Element
The individual computational elements that make up most artificial neural-
system models are rarely called artificial neurons; they are more often referred
to as nodes, units, or processing elements (PEs). All these terms are used
interchangeably throughout this book.

Another point to bear in mind is that it is not always appropriate to think
of the processing elements in a neural network as being in a one-to-one re-
lationship with actual biological neurons. It is sometimes better to imagine a
single processing element as representative of the collective activity of a group
of neurons. Not only will this interpretation help us to avoid the trap of speak-
ing as though our systems were actual brain models, but also it will make the
problem more tractable when we are attempting to model the behavior of some
biological structure.

Figure 1.11 shows our general PE model. Each PE is numbered, the one in
the figure being the zth. Having cautioned you not to make too many biological
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This structure represents a single PE in a network. The input
connections are modeled as arrows from other processing
elements. Each input connection has associated with it a
quantity, w.tj, called a weight. There is a single output value,
which can fan out to other units.

analogies, we shall now ignore our own advice and make a few ourselves. For
example, like a real neuron, the PE has many inputs, but has only a single
output, which can fan out to many other PEs in the network. The input the zth
receives from the jth PE is indicated as Xj (note that this value is also the output
of the jth node, just as the output generated by the ith node is labeled x^). Each
connection to the ith PE has associated with it a quantity called a weight or
connection strength. The weight on the connection from the jth node to the ilh
node is denoted wtj. All these quantities have analogues in the standard neuron
model: The output of the PE corresponds to the firing frequency of the neuron,
and the weight corresponds to the strength of the synaptic connection between
neurons. In our models, these quantities will be represented as real numbers.
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Notice that the inputs to the PE are segregated into various types. This
segregation acknowledges that a particular input connection may have one of
several effects. An input connection may be excitatory or inhibitory, for exam-
ple. In our models, excitatory connections have positive weights, and inhibitory
connections have negative weights. Other types are possible. The terms gain,
quenching, and nonspecific arousal describe other, special-purpose connec-
tions; the characteristics of these other connections will be described later in
the book. Excitatory and inhibitory connections are usually considered together,
and constitute the most common forms of input to a PE.

Each PE determines a net-input value based on all its input connections.
In the absence of special connections, we typically calculate the net input by
summing the input values, gated (multiplied) by their corresponding weights.
In other words, the net input to the ith unit can be written as

neti = "^XjWij (1.1)
j

where the index, j, runs over all connections to the PE. Note that excitation
and inhibition are accounted for automatically by the sign of the weights. This
sum-of-products calculation plays an important role in the network simulations
that we will be describing later. Because there is often a very large number of
interconnects in a network, the speed at which this calculation can be performed
usually determines the performance of any given network simulation.

Once the net input is calculated, it is converted to an activation value, or
simply activation, for the PE. We can write this activation value as

ai(t) = F,{a,(t - l),net,-(t)) (1.2)

to denote that the activation is an explicit function of the net input. Notice
that the current activation may depend on the previous value of the activation,
a(t - I).2 We include this dependence in the definition for generality. In the
majority of cases, the activation and net input are identical, and the terms often
are used interchangeably. Sometimes, activation and net input are not the same,
and we must pay attention to the difference. For the most part, however, we
will be able to use activation to mean net input, and vice versa.

Once the activation of the PE is calculated, we can determine the output
value by applying an output function:

x, = /i(ai) (1.3)

Since, usually, a, = net,, this function is normally written as

xt = /,(net,) (1.4)

One reason for belaboring the issue of activation versus net input is that
the term activation function is sometimes used to refer to the function, /,, that

ecause of the emphasis on digital simulations in this text, we generally consider time to be
measured in discrete steps. The notation t — 1 indicates one timestep prior to time t.
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converts the net input value, net;, to the node's output value, Xj. In this text, we
shall consistently use the term output function for /,() of Eqs. (1.3) and (1.4).
Be aware, however, that the literature is not always consistent in this respect.

When we are describing the mathematical basis for network models, it will
often be useful to think of the network as a dynamical system—that is, as
a system that evolves over time. To describe such a network, we shall write
differential equations that describe the time rate of change of the outputs of the
various PEs. For example, ±, — gi(xt, net,) represents a general differential
equation for the output of the ith PE, where the dot above the x refers to
differentiation with respect to time. Since netj depends on the outputs of many
other units, we actually have a system of coupled differential equations.

As an example, let's look at the equation

±i = -Xi + /j(neti)

for the output of the itii processing element. We apply some input values to the
PE so that net; > 0. If the inputs remain for a sufficiently long time, the output
value will reach an equilibrium value, when x, = 0, given by

which is identical to Eq. (1.4). We can often assume that input values remain
until equilibrium has been achieved.

Once the unit has a nonzero output value, removal of the inputs will cause
the output to return to zero. If net; = 0, then

which means that x —> 0.
It is also useful to view the collection of weight values as a dynamical

system. Recall the discussion in the previous section, where we asserted that
learning is a result of the modification of the strength of synaptic junctions be-
tween neurons. In an ANS, learning usually is accomplished by modification of
the weight values. We can write a system of differential equations for the weight
values, Wij = GZ(WJJ, z ; ,Xj , . . . ) , where G, represents the learning law. The
learning process consists of finding weights that encode the knowledge that we
want the system to learn. For most realistic systems, it is not easy to determine
a closed-form solution for this system of equations. Techniques exist, however,
that result in an acceptable approximation to a solution. Proving the existence
of stable solutions to such systems of equations is an active area of research in
neural networks today, and probably will continue to be so for some time.

1.2.2 Vector Formulation
In many of the network models that we shall discuss, it is useful to describe
certain quantities in terms of vectors. Think of a neural network composed of
several layers of identical processing elements. If a particular layer contains n
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units, the outputs of that layer can be thought of as an n-dimensional vector,
X = (x\ , X2, • • • , xnY, where the t superscript means transpose. In our notation,
vectors written in boldface type, such as x, will be assumed to be column vectors.
When they are written row form, the transpose symbol will be added to indicate
that the vector is actually to be thought of as a column vector. Conversely, the
notation \f indicates a row vector.

Suppose the n-dimensional output vector of the previous paragraph provides
the input values to each unit in an m-dimensional layer (a layer with m units).
Each unit on the m-dimensional layer will have n weights associated with the
connections from the previous layer. Thus, there are m n-dimensional weight
vectors associated with this layer; there is one n-dimensional weight vector
for each of the m units. The weight vector of the ith unit can be written as
Y/I = (wi\ , Wi2, • • • , Winf. A superscript can be added to the weight notation to
distinguish between weights on different layers.

The net input to the ith unit can be written in terms of the inner product,
or dot product, of the input vector and the weight vector. For vectors of equal
dimensions, the inner product is denned as the sum of the products of the
corresponding components of the two vectors. In the notation of the previous
section,

where n is the number of connections to the ith unit. This equation can be
written succinctly in vector notation as

neti = x • wz

or
neti = x*w,

Also note that, because of the rules of multiplication of vectors,

We shall often speak of input vectors and output vectors and weight vectors,
but we tend to reserve the vector notation for cases where it is particularly
appropriate. Additional vector concepts will be introduced later as needed. In
the next section, we shall use the notation presented here to describe a neural-
network model that has an important place in history: the perceptron.

T-2.3 The Perceptron: Part 1
The device known as the perceptron was invented by psychologist Frank Rosen-
blatt m the late 1950s. It represented his attempt to "illustrate some of the
undamental properties of intelligent systems in general, without becoming too
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A simple photoperceptron has a sensory area, an association
area, and a response area. The connections shown between
units in the various areas are illustrative, and are not meant
to be an exhaustive representation.

deeply enmeshed in the special, and frequently unknown, conditions which hold
for particular biological organisms" [29, p. 387]. Rosenblatt believed that the
connectivity that develops in biological networks contains a large random ele-
ment. Thus, he took exception to previous analyses, such as the McCulloch-Pitts
model, where symbolic logic was employed to analyze rather idealized struc-
tures. Rather, Rosenblatt believed that the most appropriate analysis tool was
probability theory. He developed a theory of statistical separability that he used
to characterize the gross properties of these somewhat randomly interconnected
networks.

The photoperceptron is a device that responds to optical patterns. We show
an example in Figure 1.12. In this device, light impinges on the sensory (S)
points of the retina structure. Each S point responds in an all-or-nothing manner
to the incoming light. Impulses generated by the S points are transmitted to the
associator (A) units in the association layer. Each A unit is connected to a
random set of S points, called the A unit's source set, and the connections may
be either excitatory or inhibitory. The connections have the possible values, +1,
— 1, and 0. When a stimulus pattern appears on the retina, an A unit becomes
active if the sum of its inputs exceeds some threshold value. If active, the A
unit produces an output, which is sent to the next layer of units.

In a similar manner, A units are connected to response (R) units in the
response layer. The pattern of connectivity is again random between the layers,
but there is the addition of inhibitory feedback connections from the response
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Figure 1.13 This Venn diagram shows the connectivity scheme for
a simple perceptron. Each R unit receives excitatory
connections from a group of units in the association area that
is called the source set of the R unit. Notice that some A units
are in the source set for both R units.

layer to the association layer, and of inhibitory connections between R units.
The entire connectivity scheme is depicted in the form of a Venn diagram in
Figure 1.13 for a simple perceptron with two R units.

This drawing shows that each R unit inhibits the A units in the complement
to its own source set. Furthermore, each R unit inhibits the other. These factors
aid in the establishment of a single, winning R unit for each stimulus pattern
appearing on the retina. The R units respond in much the same way as do the
A units. If the sum of their inputs exceeds a threshold, they give an output
value of +1; otherwise, the output is —1. An alternative feedback mechanism
would connect excitatory feedback connections from each R unit to that R unit's
respective source set in the association layer.

A system such as the one just described can be used to classify patterns
appearing on the retina into categories, according to the number of response
units in the system. Patterns that are sufficiently similar should excite the same
R unit. Thus, the problem is one of separability: Is it possible to construct
a perceptron such that it can successfully distinguish between different pattern
classes? The answer is "yes," but with certain conditions that we shall explore
later.

The perceptron was a learning device. In its initial configuration, the percep-
tron was incapable of distinguishing the patterns of interest; through a training
process, however, it could learn this capability. In essence, training involved
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a reinforcement process whereby the output of A units was either increased or
decreased depending on whether or not the A units contributed to the correct
response of the perceptron for a given pattern. A pattern was applied to the
retina, and the stimulus was propagated through the layers until a response unit
was activated. If the correct response unit was active, the output of the con-
tributing A units was increased. If the incorrect R unit was active, the output
of the contributing A units was decreased.

Using such a scheme, Rosenblatt was able to show that the perceptron
could classify patterns successfully in what he termed a differentiated environ-
ment, where each class consisted of patterns that were in some sense similar to
one another. The perceptron was also able to respond consistently to random
patterns, but its accuracy diminished as the number of patterns that it attempted
to learn increased.

Rosenblatt' s work resulted in the proof of an important result known as
the perceptron convergence theorem. The theorem is proved for a perceptron
with one R unit that is learning to differentiate patterns of two distinct classes.
It states, in essence, that, if the classification can be learned by the perceptron,
then the procedure we have described guarantees that it will be learned in a
finite number of training cycles.

Unfortunately, perceptrons caused a fair amount of controversy at the time
they were described. Unrealistic expectations and exaggerated claims no doubt
played a part in this controversy. The end result was that the field of artificial
neural networks was almost entirely abandoned, except by a few die-hard re-
searchers. We hinted at one of the major problems with perceptrons when we
suggested that there were conditions attached to the successful operation of the
perceptron. In the next section, we explore and evaluate these considerations.
Exercise 1.4: Consider a perceptron with one R unit and Na association units,
a/i, which is attempting to learn to differentiate i patterns, Sj, each of which
falls into one of two categories. For one category, the R unit gives an output
of +1; for the other, it gives an output of —1. Let WM be the output of the
p,th A unit. Further, let pt be ±1, depending on the class of 5*;, and let eM; be
1 if aM is in the source set for 5;, and 0 otherwise. Show that the successful
classification of patterns Si requires that the following condition be satisfied:

where 0 is the threshold value of the R unit.

1.2.4 The Perceptron: Part 2
In 1969, a book appeared that some people consider to have sounded the death
knell for neural networks. The book was aptly entitled Perceptrons: An In-
troduction to Computational Geometry and was written by Marvin Minsky and
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Retina

Figure 1.14

e
Threshold
condition

The simple perceptron structure is similar in structure to the
general processing element shown in Figure 1.11. Note the
addition of a threshold condition on the output. If the net
input is greater than the threshold value, the output of the
device is +1; otherwise, the output is 0.

Seymour Papert, both of MIT [26]. They presented an astute and detailed anal-
ysis of the perceptron in terms of its capabilities and limitations. Whether their
intention was to defuse popular support for neural-network research remains a
matter for debate. Nevertheless, the analysis is as timely today as it was in
1969, and many of the conclusions and concerns raised continue to be valid.

In particular, one of the points made in the previous section—a point treated
in detail in Minsky and Papert's book—is the idea that there are certain restric-
tions on the class of problems for which the perceptron is suitable. Perceptrons
can differentiate patterns only if the patterns are linearly separable. The mean-
ing of the term linearly separable should become clear shortly. Because many
classification problems do not possess linearly separable classes, this condition
places a severe restriction on the applicability of the perceptron.

Minsky and Papert departed from the probabilistic approach championed
by Rosenblatt, and returned to the ideas of predicate calculus in their analysis
of the perceptron. Their idealized perceptron appears in Figure 1.14.

The set $ = { l P \ , V 2 , - - - , V n } is a set of predicates. In the predicates'
simplest form, tpt = 1 if the zth point of the retina is on, and (pi — 0 oth-
erwise. Each of the input predicates is weighted by a number from the set
\a<f,, 0^2j • • • , QW }• The output, 'f, is 1 if and only if ̂ n aVn(fn > 0, where
© is the threshold value.

One of the simplest examples of a problem that cannot be solved by a
perceptron is the XOR problem. This problem is illustrated in Figure 1.15.

In the network of Figure 1.15, the output function of the output unit is a
threshold function

/(net)
1°

net > 0
net < 0
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Figure 1.15 This two-layer network has two nodes on the input layer with
input values x\ and x2 that can take on values of 0 or 1. We
would like the network to be able to respond to the inputs
such that the output o is the XOR function of the inputs, as
indicated in the table.

where 0 is the threshold value. This type of node is called a linear threshold
unit.

The output-node activation is

net = w\x\ + W2X2

and the output value o is

o = /(net) = 1 W\X\ + W2X2 > 0

0 W\X\ + W2X2 < 0

The problem is to select values of the weights such that each pair of input
values results in the proper output value. This task cannot be done.

Let's look at the equation

6 = W\X\ + W2X2 (1.5)
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Figure 1.16 This figure shows the x\,x2 plane with the four points,
(0,0), (1,0), (0, 1), and (1. 1), which make up the four input
vectors for the XOR problem. The line 9 — w\x\ + 1112x2
divides the plane into two regions but cannot successfully
isolate the set of points (0,0) and (1, 1) from the points (0.1)
and (1,0).

This equation is the equation of a line in the x\,xi plane. That plane is illus-
trated in Figure 1.16, along with the four points that are the possible inputs to the
network. We can think of the problem as one of subdividing this space into re-
gions and then attaching labels to the regions that correspond to the right answer
for points in that region. We plot Eq. (1.5) for some values of 0, w\, and w2, as
in Figure 1.16. The line can separate the plane into at most two distinct regions.
We can then classify points in one region as belonging to the class having an
output of 1, and those in the other region as belonging to the class having an
output of 0; however, there is no way to arrange the position of the line so that
the correct two points for each class both lie in the same region. (Try it.) The
simple linear threshold unit cannot correctly perform the XOR function.

Exercise 1.5: A linear node is one whose output is equal to its activation. Show
that a network such as the one in Figure 1.15, but with a linear output node,
also is incapable of solving the XOR problem.

Before showing a way to overcome this difficulty, we digress for a moment
to introduce the concept of hyperplanes. This idea shows up occasionally in the
literature and can be useful in the evaluation of the performance of certain neural
networks. We have already used the concept to analyze the XOR problem.
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In familiar three-dimensional space, a plane is an object of two dimensions.
A single plane can separate three-dimensional space into two distinct regions;
two planes can result in three or four distinct regions, depending on their relative
orientation, and so on. By extension, in an n-dimensional space, hyperplanes
are objects of n — 1 dimensions. (An n-dimensional space is usually referred to
as a hyperspace.) Suitable arrangement of hyperplanes allows an n-dimensional
space to be partitioned into various distinct regions.

Many real problems involve the separation of regions of points in a hyper-
space into individual categories, or classes, which must be distinguished from
other classes. One way to make these distinctions is to select hyperplanes that
separate the hyperspace into the proper regions. This task might appear difficult
to perform in a high-dimensional space (higher than two, that is) — and it is.
Fortunately, as we shall see later, certain neural networks can learn the proper
partitioning, so we don't have to figure it out in advance.

In a general n-dimensional space, the equation of a hyperplane can be
written as

n

,x, = C

where the a;s and C are constants, with at least one a,; / 0, and the x,s are the
coordinates of the space.

Exercise 1.6: What are the general equations for the hyperplanes in two- and
three-dimensional spaces? What geometric figures do these equations describe?

Let's return to the XOR problem to see how we might approach a solution.
The graph in Figure 1.16 suggests that we could partition the space correctly
if we had three regions. One region would belong to one output class, and the
other two would belong to the second output class. There is no reason why
disjoint regions cannot belong to the same class. Figure 1.17 shows a network
of linear threshold units that performs the proper partitioning, along with the
corresponding hyperspace diagram. You should verify that the network does
indeed give the correct results.

The addition of the two hidden-layer, or middle-layer, units gave the net-
work the needed flexibility to solve the problem. In fact, the existence of this
hidden layer gives us the ability to construct networks that can solve complex
problems.

This simple example is not intended to imply that all criticisms of the
perceptron could be answered by the addition of hidden layers in the structure.
It is intended to suggest that the technology continues to evolve toward systems
with increasingly powerful computational abilities. Nevertheless, many concerns
raised by Minsky and Papert should not be dismissed lightly. You can refer to
the epilog of the 1988 reprinting of their book for a synopsis [27]. We briefly
describe a second concern here.
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(1.1)

Output = 0

Output = 0

Figure 1.17 This network successfully solves the XOR problem. The
hidden layer provides for two lines that can be used to
separate the plane into three regions. The two regions
containing the points (0,0) and (1,1) are associated with a
network output of 0. The central region is associated with a
network output of 1.

The subject of that concern is scaling. Many demonstrations of neural
networks rely on the solution of what Minsky and Papert call toy problems—
that is, problems that are only shadows of real-world items. Moving from these
toy problems to real-world problems is often thought to be only a matter of
time; we need only to wait until bigger, faster networks can be constructed.
Several of the examples used in this text fall into the category of toy problems.
Minsky and Papert claim that many networks suffer undesirable effects when
scaled up to a large size. We raise this particular issue here, not because we
necessarily believe that scale-up problems will defeat us, but because we wish to
call attention to scaling as an issue that still must be resolved. We suspect that
scaling problems do exist, but that there is a solution—perhaps one suggested
by the architecture of the brain itself.

It seems plausible to us (and to Minsky and Papert) that the brain is com-
posed of many different parallel, distributed systems, performing well-defined
functions, but under the control of a serial-processing system at one or more
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levels. To address the issue of scaling, we may need to learn how to combine
small networks and to place them under the control of other networks.

Of course, a "small" network in the brain challenges our current simulation
capabilities, so we do not know exactly what the limitations are. The technology,
although over 30 years old at this writing, is still emerging and deserves close
scrutiny. We should always be aware of both the strengths and the limitations
of our tools.

1.3 ANS SIMULATION
We will now consider several techniques for simulating ANS processing models
using conventional programming methodologies. After presenting the design
guidelines and goals that you should consider when implementing your own
neural-net work simulators, we will discuss the data structures that will be used
throughout the remainder of this text as the basis for the network-simulation
algorithms presented as a part of each chapter.

1.3.1 The Need for ANS Simulation
Most of the ANS models that we will examine in subsequent chapters share
the basic concepts of distributed and highly interconnected PEs. Each network
model will build on these simple concepts, implementing a unique learning law,
an interconnection scheme (e.g., fully interconnected, sparsely interconnected,
unidirectional, and bidirectional), and a structure, to provide systems that are
tailored to specific kinds of problems.

If we are to explore the possibilities of ANS technology, and to determine
what its practical benefits and limitations are, we must develop a means of
testing as many as possible of these different network models. Only then will
we be able to determine accurately whether or not an ANS can be used to
solve a particular problem. Unfortunately, we do not have access to a computer
system designed specifically to perform massively parallel processing, such as
is found in all the ANS models we will study. However, we do have access
to a tool that can be programmed rapidly to perform any type of algorithmic
process, including simulation of a parallel-processing system. This tool is the
familiar sequential computer.

Because we will study several different neural-network architectures, it is
important for us to consider the aspects of code portability and reusability early
in the implementation of our simulator. Let us therefore focus our attention on
the characteristics common to most of the ANS models, and implement those
characteristics as data structures that will allow our simulator to migrate to the
widest variety of network models possible. The processing that is unique to
the different neural-network models can then be implemented to use the data
structures we will develop here. In this manner, we reduce to a minimum the
amount of reprogramming needed to implement other network models.
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1.3.2 Design Guidelines for Simulators
As we begin simulating neural networks, one of the first observations we will
usually make is that it is necessary to design the simulation software such that
the network can be sized dynamically. Even when we use only one of the
network models described in this text, the ability to specify the number of PEs
needed "on the fly," and in what organization, is paramount. The justification for
this observation is based on the idea that it is not desirable to have to reprogram
and recompile an ANS application simply because you want to change the
network size. Since dynamic memory-allocation tools exist in most of the
current generation of programming languages, we will use them to implement
the network data structures.

The next observation you will probably make when designing your own
simulator is that, at run time, the computer's central processing unit (CPU) will
spend most of its time in the computation of the net,, the input-activation term
described earlier. To understand why this is so, consider how a uniprocessor
computer will simulate a neural network. A program will have to be written to
allow the CPU to time multiplex between units in the network; that is, each unit
in the ANS model will share the CPU for some period. As the computer visits
each node, it will perform the input computation and output translation function
before moving on to the next unit. As we have already seen, the computation that
produces the net, value at each unit is normally a sum-of-products calculation—a
very tirne-consuming operation if there is a large number of inputs at each node.

Compounding the problem, the sum-of-products calculation is done using
floating-point numbers, since the network simulation is essentially a digital rep-
resentation of analog signals. Thus, the CPU will have to perform two floating-
point operations (a multiply and an add) for every input to each unit in the
network. Given the large number of nodes in some networks, each with po-
tentially hundreds or thousands of inputs, it is easy to see that the computer
must be capable of performing several million floating-point operations per sec-
ond (MFLOPS) to simulate an ANS of moderate size in a reasonable amount
of time. Even assuming the computer has the floating-point hardware needed
to improve the performance of the simulator, we, as programmers, must opti-
mize the computer's ability to perform this computation by designing our data
structures appropriately.

We now offer a final guideline for those readers who will attempt to imple-
ment many different network models using the data structures and processing
concepts presented here. To a large extent, our simulator design philosophy is
based on networks that have a uniform interconnection strategy; that is, units
in one layer have all been fully connected to units in another layer. However,
many of the networks we present in this text will rely on different interconnection
schemes. Units may be only sparsely interconnected, or may have connections
to units outside of the next sequential layer. We must take these notions into
account as we define our data structures, or we may well end up with a unique
set of data structures for each network we implement.
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Figure 1.18 A two-layer network illustrating signal propagation is
illustrated here. Each unit on the input layer generates a
single output signal that is propagated through the connecting
weights to each unit on the subsequent layer. Note that for
each second-layer unit, the connection weights to the input
layer can be modeled as a sequential array (or list) of values.

1.3.3 Array-Based ANS Data Structures
The observation made earlier that data will be processed as a sum of products (or
as the inner product between two vectors) implies that the network data ought
to be arranged in groups of linearly sequential arrays, each containing homoge-
neous data. The rationale behind this arrangement is that it is much faster to step
through an array of data sequentially than it is to have to look up the address
of every new value, as would be done if a linked-list approach were used. This
grouping also is much more memory efficient than is a linked-list data structure,
since there is no need to store pointers in the arrays. However, this efficiency
is bought at the expense of algorithm generality, as we shall show later.

As an illustration of why arrays are more efficient than are linked records,
consider the neural-network model shown in Figure 1.18. The input value
present at the ith node in the upper layer is the sum of the modulated outputs
received from every unit in the lower layer. To simulate this structure using data
organized in arrays, we can model the connections and node outputs as values
in two arrays, which we will call weights and outputs respectively.3 The
data in these arrays will be sequentially arranged so as to correspond one to one
with the item being modeled, as shown in Figure 1.19. Specifically, the output
from the first input unit will be stored in the first location in the outputs array,
the second in the second, and so on. Similarly, the weight associated with the
connection between the first input unit and the unit of interest, w-,\, will be

3Symbols that refer to variables, arrays, or code are identified in the text by the use of the typewriter
typeface.
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Figure 1.19 An array data structure is illustrated for the computation of the
net, term. Here, we have organized the connection-weight
values as a sequential array of values that map one to one to
the array containing unit output values.

located as the first value in the zth weights array, weights [i]. Notice the
index we now associate with the weights array. This index indicates that there
will be many such arrays in the network, each containing a set of connection
weights. The index here indicates that this array is one of these connection
arrays—specifically, the one associated with the inputs to the ith network unit.
We will expand on this notion later, as we extend the data structures to model
a complete network.

The process needed to compute the aggregate input at the zth unit in the
upper layer, net;, is as follows. We begin by setting two pointers to the first
location of the outputs and weights [i] arrays, and setting a local accu-
mulator to zero. We then perform the computation by multiplying the values
located in memory at each of the two array pointers, adding the resulting prod-
uct to the local accumulator, incrementing both of the pointers, and repeating
this sequence for all values in the arrays.

In most modern computer systems, this sequence of operations will compile
into a two-instruction loop at the machine-code level (four instructions, if we
count the compare and branch instructions needed to implement the loop), be-
cause the process of incrementing the array pointers can be done automatically
as a part of the instruction-addressing mode. Notice that, if either of the arrays
contains a structure of data as its elements, rather than a single value, the com-
putation needed to access the next element in the array is no longer an increment
pointer operation. Thus, the computer must execute additional instructions to
compute the location of the next array value, as opposed to simply incrementing
a register pointer as part of the instruction addressing mode. For small network
applications, the overhead associated with these extra instructions is trivial. For
applications that use very large neural networks, however, the overhead time
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needed for each connection, repeated hundreds of thousands (or perhaps mil-
lions) of times, can quickly overwhelm even a dedicated supercomputer. We
therefore choose to emphasize efficiency in our simulator design; that is why
we indicated earlier that the arrays ought to be constructed with homogeneous
data.

This structure will do nicely for the general case of a fully interconnected
network, but how can we adapt it to account for networks where the units are
not fully interconnected? There are two strategies that can be employed to solve
this dilemma:

• Implementation of a parallel index array to specify connectivity
• Use of a universal "zero" value to act as a placeholder connection

In the first case, an array with the same length as the weights [i] array
is constructed and coexists with the weights [i] array. This array contains
an integer index specifying the offset into the outputs array where the output
from the transmitting unit is located. Such a structure, along with the network
it describes, is illustrated in Figure 1.20. You should examine the diagram

weights

Wi2

indices outputs

Il
I2
13

14

^
^

x-

Ol

02

03

O4

05

06

Figure 1.20 This sparse network is implemented using an index array.
In this example, we calculate the input value at unit i by
multiplying each value in the weights array with the value
found in the output array at the offset indicated by the value
in the indices array.
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carefully to convince yourself that the data structure does implement the network
structure shown.

In the second case, if we could specify to the network that a connection
had a zero weight, the contribution to the total input of the node that it feeds
would be zero. Therefore, the only reason for the existence of this connection
would be that it acts as a placeholder, allowing the weights [i] array to
maintain its one-to-one correspondence of location to connection. The cost
of this implementation is the amount of time consumed performing a useless
multiply-accumulate operation, and, in very sparsely connected networks, the
large amount of wasted memory space. In addition, as we write the code needed
to implement the learning law associated with the different network models, our
algorithms must take a universal zero value into account and must not allow it to
participate in the adaptation process; otherwise, the placeholder connection will
be changed as the network adapts and eventually become an active participant
in the signal-propagation process.

When is one approach preferable to the other? There is no absolute rule
that will cover the wide variety of computers that will be the target machines for
many ANS applications. In our experience, though, the break-even point is when
the network is missing one-half of its interconnections. The desired approach
therefore depends largely on how completely interconnected is the network that
is being simulated. Whereas the "placeholder" approach consumes less memory
and CPU time when only a relatively few connections are missing, the index
array approach is much more efficient in very sparsely connected networks.

1.3.4 Linked-List ANS Data Structures
Many computer languages, such as Ada, LISP, and Modula-2, are designed to
implement dynamic memory structures primarily as lists of records containing
many different types of data. One type of data common to all records is the
pointer type. Each record in the linked list will contain a pointer to the next
record in the chain, thereby creating a threaded list of records. Each list is
then completely described as a set of records that each contain pointers to
other similar records, or contain null pointers. Linked lists offer a processing
advantage in the algorithm generality they allow for neural-network simulation
over the dynamic array structures described previously. Unfortunately, they
also suffer from two disadvantages serious enough to limit their applicability
to our simulator: excessive memory consumption and a significantly reduced
processing rate for signal propagation.

To illustrate the disadvantages in the linked-list approach, we consider the
two-layer network model and associated data structure depicted in Figure 1.21.
In this example, each network unit is represented by an 7V; record, and each
connection is modeled as a Cij record. Since each connection is simultaneously
part of two unique lists (the input list to a unit on the upper layer and the output
hst from a unit on the lower layer), each connection record must contain at least
two separate pointers to maintain the lists. Obviously, just the memory needed

fcLEMSON UNIVERSITY LIBRARY
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Figure 1.21 A linked-list implementation of a two-layer network is
shown here. In this model, each network unit accesses
its connections by following pointers from one connection
record to the next. Here, the set of connection records
modeling the input connections to unit AT, are shown, with
links from all input-layer units.

to store those pointers will consume twice as much memory space as is needed
to store the connection weight values. This need for extra memory results in
roughly a three-fold reduction in the size of the network simulation that can be
implemented when compared to the array-based model.4 Similarly, the need to
store pointers is not restricted to this particular structure; it is common to any
linked-list data structure.

The linked-list approach is also less efficient than is the array model at run
time. The CPU must perform many more data fetches in the linked-list approach
(to fetch pointers), whereas in the array structure, the auto-postincrement ad-
dressing mode can be used to access the next connection implicitly. For very
sparsely connected networks (or a very small network), this overhead is not
significant. For a large network, however, the number of extra memory cycles
required due to the large number of connections in the network will quickly
overwhelm the host computer system for most ANS simulations.

On the bright side, the linked-list data structure is much more tolerant of
"nonstandard" network connectivity schemes; that is, once the code has been
written to enable the CPU to step through a standard list of input connections,
no code modification is required to step through a nonstandard list. In this case,
all the overhead is imposed on the software that constructs the original data
structure for the network to be simulated. Once it is constructed, the CPU does

4This description is an obvious oversimplification, since it does not consider potential differences
in the amount of memory used by pointers and floating-point numbers, virtual-memory systems, or
other techniques for extending physical memory.
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not know (or care) whether the connection list implements a fully interconnected
network or a sparsely connected network. It simply follows the list to the end,
then moves on to the next unit and repeats the process.

1.3.5 Extension of ANS Data Structures
Now that we have defined two possible structures for performing the input
computations at each node in the network, we can extend these basic structures
to implement an entire network. Since the array structure tends to be more
efficient for computing input values at run time on most computers, we will
implement the connection weights and node outputs as dynamically allocated
arrays. Similarly, any additional parameters required by the different networks
and associated with individual connections will also be modeled as arrays that
coexist with the connection-weights arrays.

Now we must provide a higher-level structure to enable us to access the
various instances of these arrays in a logical and efficient manner. We can easily
create an adequate model for our integrated network structure if we adopt a few
assumptions about how information is processed in a "standard" neural network:

• Units in the network can always be coerced into layers of units having
similar characteristics, even if there is only one unit in some layers.

• All units in any layer must be processed completely before the CPU can
begin simulating units in any other layer.

• The number of layers that our network simulator will support is indefinite,
limited only by the amount of memory available.

• The processing done at each layer will usually involve the input connections
to a node, and will only rarely involve output connections from a node (see
Chapter 3 for an exception to this assumption).

Based on these assumptions, let us presume that the layer will be the net-
work structure that binds the units together. Then, a layer will consist of a
record that contains pointers to the various arrays that store the information
about the nodes on that layer. Such a layer model is presented in Figure 1.22.
Notice that, whereas the layer record will locate the node output array directly,
the connection arrays are accessed indirectly through an intermediate array of
pointers. The reason for this intermediate structure is again related to our desire
to optimize the data structures for efficient computation of the net4 value for
each node. Since each node on the layer will produce exactly one output, the
outputs for all the nodes on any layer can be stored in a single array. However,
each node will also have many input connections, each with weights unique to
that node. We must therefore construct our data structures to allow input-weight
arrays to be identified uniquely with specific nodes on the layer. The intermedi-
ate weight-pointer array satisfies the need to associate input weights with
the appropriate node (via the position of the pointer in the intermediate array),



38 Introduction to ANS Technology

outputs

weights

Figure 1.22 The layer structure is used to model a collection of nodes
with similar function. In this example, the weight values
of all input connections to the first processing unit (o,)
are stored sequentially in the w\j array, connections to the
second unit (o2) in the w2j array, and so on, enabling
rapid sequential access to these values during the input
computation operation.

while allowing the input weights for each node to be modeled as sequential
arrays, thus maintaining the desired efficiency in the network data structures.

Finally, let us consider how we might model an entire network. Since
we have decided that any network can be constructed from a set of layers, we
will model the network as a record that contains both global data, and pointers
to locate the first and last elements in a dynamically allocated array of layer
records. This approach allows us to create a network of arbitrary depth while
providing us with a means of immediate access to the two most commonly
accessed layers in the network—the input and output layers.

Such a data structure, along with the network structure it represents, is
depicted in Figure 1.23. By modeling the data in this way, we will allow for
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Figure 1.23 The figure shows a neural network (a) as implemented by our
data structures, and (b) as represented schematically.

networks of arbitrary size and complexity, while optimizing the data structures
for efficient run-time operation in the inner loop, the computation of the net,
term for each node in the network.

1.3.6 A Final Note on ANS Simulation
Before we move on to examine specific ANS models, we must mention that
the earlier discussion of the ANS simulator data structures is meant to provide
you with only an insight into how to go about simulating neural networks on
conventional computers. We have specifically avoided any detailed discussion
of the data structures needed to implement a simulator (such as might be found
in a conventional computer-science textbook). Likewise, we have avoided any
analysis of how much more efficient one technique may be over another. We
have taken this approach because we believe that it is more important to convey
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Syntax Intended Meaning
Atype a pointer to an object type
Atype [ ] a pointer to the first object in an array
record, slot access a field "slot" in a record
pointerA .name access a field "name" through a pointer
length (Atype [ ] ) get number of items in the array
{ text } curly braces enclose comments

Table 1.1 Pseudocode language definitions.

the ideas of what must be done to simulate an ANS model, than to advocate
how to implement that model.

This philosophy carries through the remainder of the text as well, specifi-
cally in the sections in each chapter that describe how to implement the learning
algorithms for the network being discussed. Rather than presenting algorithms
that might indicate a preference for a specific computer language, we have opted
to develop our own pseudocode descriptions for the algorithms.5 We hope that
you will have little difficulty translating our simulator algorithms to your own
preferrred data structures and programming languages.

Part of the purpose of this text, however, is to illustrate the design of
the algorithms needed to construct simulators for the various neural-network
models we shall present. For that reason, the algorithms developed in this
text will be rather detailed, perhaps more so than some people prefer. We
have elected to use detailed algorithms so that we can illustrate, wherever
possible, algorithmic enhancements that should be made to improve the per-
formance of the simulator. However, with this detail comes a responsibility.
Since we have elected to present pseudocode algorithms, we are obligated to
develop a syntax that precisely describes the actions we intend the computer
to perform. For that reason, you should become comfortable with the nota-
tions described in Table 1.1, as we will adhere to this syntax in the description
of the various algorithms and data structures throughout the remainder of this
text.

One final note for programmers who prefer the C language. You should
be aware of the fundamental differences between the mathematical summations
that will be described in the ANS-specific chapters that follow, and the C for(;;)
construct. Although it is mathematically correct to describe a summation with
an index, i, starting at 1 and running through n, in C it is preferable to use arrays
that start at index 0 and run through n - 1. Those readers that will be writing
simulators in C must account for this difference in their code, and should be
alert to this difference as they read the theoretical sections of this text.

5We have thus ensured that we have offended everyone equally.
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Suggested Readings
There are many books appearing that cover various aspects of ANS technology
from widely differing perspectives. We shall not attempt to give an exhaustive
bibliography here; rather, we shall indicate sources that we have found to be
useful, for one reason or another.

Neurocomputing: Foundations of Research is an excellent source of papers
having an historical interest, as well as of more modern works [2]. Perhaps
the most widely read books are the PDF series, edited by Rumelhart and Mc-
Clelland [23, 22]. Volume III of that series contains a disk with software that
can be used for experiments with the technology. An earlier work, Paral-
lel Models of Associative Memory, contains papers of the same type as those
found in the POP series [13]. We have also included in the bibliography other
books, some that are collections and some that are monographs, on the general
topic of ANS [1, 7, 6, 8, 12, 16, 25, 27, 28, 31]. On a less technical level
is the recent work by Caudill and Butler, which provides an excellent review
of the subject [5]. An excellent introduction to neurophysiology is given by
Lavine [19]. This book presents the basic terminology and technical details of
neurophysiology without the excruciating detail of a medical text. A more com-
prehensive review of neural modeling is given in the book by McGregor [21].
For a cognitive-psychology viewpoint, the works by Anderson and Baron are
both well written and thought provoking [3, 4].

An excellent review article is that by Richard Lippmann [20]. This article
gives an overview of several of the algorithms presented in later chapters of
this text. You might also want to read the Scientific American article by David
Tank and John Hopfield [30]. Two other well-written and informative review
articles appear in the first edition of the journal Neural Networks [9, 18]. For
a comparison between traditional classification techniques and neural-network
classifiers, see the papers by Huang and Lippmann [15, 14]. You can get an
idea of the types of applications to which neural-network technology may apply
from the paper by Hecht-Nielsen [11].
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C H A P T E R

Adaline and Madaline

Signal processing developed as an engineering discipline with the advent of
electronic communication. Initially, analog filters using resistor-inductor-capac-
itor (RLC) circuits were designed to remove noise from the communication
signals. Today, signal processing has evolved into a many-faceted technology,
with the emphasis having shifted from tuned circuit implementation to digital
signal processors (DSPs) that can perform the same types of filtering applica-
tions by executing convolution filters implemented in software. The basis for
the industry remains the design and implementation of filters to perform noise
removal from information-bearing signals.

In this chapter, we will focus on a specific type of filter, called the Ada-
line (and the multiple-Adaline, or Madaline) developed by Bernard Widrow of
Stanford University. As we will see, the Adaline model is similar to that of a
single PE in an ANS.

2.1 REVIEW OF SIGNAL PROCESSING
We begin our discussion of the Adaline and Madaline networks with a review
of basic signal-processing theory. An understanding of this material is essen-
tial if we are to appreciate the operation and applications of these networks.
However, this material is also typically covered as part of an undergraduate
curriculum in information coding and data communication. Therefore, readers
already comfortable with signal-processing concepts may skip this first section
without fear of missing material relevant to the Adaline and Madaline topics.
For those readers who are not familiar with the techniques commonly used
to implement electronic communications and signal processing, we shall be-
gin by describing briefly the data-encoding and modulation schemes used in an
amplitude-modulation (AM) radio transmission. As part of this discussion, we
shall illustrate the need for filters in the communications industry. We will then
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46 Adaline and Madaline

review the concepts of the frequency domain, the four basic filter types, and
Fourier analysis. This preliminary section concludes with a brief overview of
digital signal processing, because many of the concepts realized in digital filters
are directly applicable to the Adaline and Madaline (and many other) neural
networks.

2.1.1 Signal Processing and Filters
Signal processing is an engineering discipline that deals primarily with the im-
plementation of filters to remove or reduce unwanted frequency components
from an information-bearing signal. Let's consider, for example, an AM ra-
dio broadcast. Electronic communication techniques, whether for audio signals
or other data, consist of signal encoding and modulation. Information to be
transmitted—in this case, audible sounds, such as voice or music—can be en-
coded electronically by an analog signal that exactly reproduces the frequencies
and amplitudes of the original sounds. Since the sounds being encoded represent
a continuum from silence through voice to music, the instantaneous frequency
of the encoded signal will vary with time, ranging from 0 to approximately
10,000 hertz (Hz).

Rather than attempt to transmit this encoded signal directly, we transform
the signal into a form more suitable for radio transmission. We accomplish this
transformation by modulating the amplitude of a high-frequency carrier signal
with the analog information signal. This process is illustrated in Figure 2.1.
Here, the carrier is nothing more than a sine wave with a frequency much
greater than the information signal. For AM radio, the carrier frequency will be
in the range of 550 to 1600 kilohertz (KHz). Since the frequency of the carrier
is significantly greater than is the maximum frequency of the information signal,
little information is lost by this modulation. The modulated signal can then be
transmitted to a receiving station (or broadcast to anyone with a radio receiver),
where the signal is demodulated and is reproduced as sound.

The most obvious reason for a filter in AM radio is that different people have
different preferences in music and entertainment. Therefore, the government and
the communication industry have allowed many different radio stations to op-
erate in the same geographical area, so that everyone's tastes in entertainment
can be accommodated. With so many different radio stations all broadcasting
in close proximity, how is it that we can listen to only one station at a time?
The answer is to allow each receiver to be tuned by the user to a selectable fre-
quency. In tuning the radio, we are essentially changing the frequency-response
characteristics of a bandpass filter inside the radio. This filter allows only the
signals from the station in which we are interested to pass, while eliminating
all the other signals being broadcast within the spectrum of the AM radio.

To illustrate how the bandpass filter operates, we will change our reference
from the time domain to the frequency domain. We begin by constructing a
two-axis graph, where the x axis represents increasing frequencies and the y
axis represents decreasing attenuation in a unit called the decibel (dB). Such a
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carrier wave has a frequency much higher than that of (b) the
information-bearing signal, (c) The carrier wave is modulated
by the information-bearing signal.
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graph is illustrated in Figure 2.2(a). For the AM radio example, let us imagine
that there are seven AM radio stations, labeled A through G, operating in the
area where we are listening. The frequencies at which these stations transmit
are graphed as vertical lines located on the frequency axis at the point corre-
sponding to their transmitting, or carrier, frequency. The amplitude of the lines,
as illustrated in Figure 2.2(a), is almost 0 dB, indicating that each station is
transmitting at full power, and each can be received equally well.

Now we will tune a bandpass filter to select one of the seven stations. The
frequency response of a typical bandpass filter is illustrated in Figure 2.2(b).
Notice that the frequency-response curve is such that all frequencies that fall
outside the inverted notch are attenuated to very small magnitudes, whereas
frequencies within the passband are allowed to pass with very little attenuation—
hence the name "bandpass filter." To tune our radio receiver to any one of
the seven broadcasting stations, we simply adjust the frequency response of
the filter such that the carrier frequency of the desired station is within the
passband.
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As another example of the use of filters in the communication industry,
consider the problem of echo suppression in long-distance telephone commu-
nication. As indicated in Figure 2.3, the problem is caused by the interaction
between the amplifiers and series coupling used on both ends of the line, and
the delay time required to transmit the voice information between the switch-
ing office and the communications satellite in geostationary orbit, 23,000 miles
above the earth. Specifically, you hear an echo of your own voice in the tele-
phone when you speak. The signal carrying your voice arrives at the receiving
telephone approximately 270 milliseconds after you speak. This delay is the
amount of time required by the microwave signal to travel the 46,000 miles
between the transmitting station, the satellite, and the receiving station on the
ground. Once received and routed to the destination telephone, the signal is
again amplified and reproduced as sound on the receiving handset. Unfortu-
nately, it is also often picked up by the transmitter at the receiving end, due
to imperfections in the devices used to decouple the incoming signals. It can
then be reamplified and fed back to you approximately 1/2 second after you
spoke. The result is echo. Obviously, a simple bandpass filter cannot be used
to remove the echo, because there is no way to distinguish the echoed signal
from valid signals.

To solve problems such as these, the communications industry has devel-
oped many different types of filters. These filters not only are used in elec-

23,300 miles
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retransmitted due

to coupling leakage

Returning signal is original
delayed by 500 milliseconds,
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S^e 2.3 Echo can occur in long-distance telecommunications.
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tronic communications, but also have an application base that includes radar
and sonar imaging, electronic warfare, and medical technology. However, all
the application-specific filter implementations can be grouped into four gen-
eral filter types: lowpass, highpass, bandpass, and bandstop. The characteristic
frequency response of these filters is depicted in Figure 2.4. The adaptive
filter, which is the subject of the remainder of the chapter, has characteris-
tics unique to the application it serves. It can reproduce the characteristics of
any of the four basic filter types, alone or in combination. As we shall show
later, the adaptive filter is ideally suited to the telephone-echo problem just
discussed.

Lowpass filter

Highpass filter

Bandpass filter

Bandstop filter

OdB

c
're
O

OdB

t

OdB

OdB

t
c
're
CD

Frequency (KHz)-

Frequency (KHz)-

Frequency (KHz)-

Frequency (KHz

Figure 2.4 Frequency-response characteristics of the four basic filter types
are shown.
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2.1.2 Fourier Analysis and the Frequency Domain
To analyze a signal-processing problem that requires a filter, we must leave the
time domain and find a tool for translating our filter models into the frequency
domain, because most of the signals we will analyze cannot be completely
understood in the time domain. For example, most signals consist not only of
a fundamental frequency, but also harmonics that must be considered, or they
consist of many discrete frequency components that must be accounted for by
the filters we design. There are many tools that we can use to help understand
the frequency-domain nature of signals. One of the most commonly used is the
Fourier series. It has been shown that any periodic signal can be modeled as
an infinite series of sines and cosines. The Fourier series, which describes the
frequency-domain nature of periodic signals, is given by the equation

30 3C

x(t) = ̂  an cos(27rn/0<) + ̂  bn sin(27rn/0£)
n=0 n=l

where /o is the fundamental frequency of the signal in the time domain, and the
coefficients, an and bn, are needed to modulate the amplitude of the individual
terms of the series.

This series is useful for describing the discrete frequency components that
comprise a nontrivial periodic signal. As an illustration, a square wave can be
decomposed into a summation of frequency elements containing nothing more
than sine waves of different amplitude and frequency, as is illustrated in Fig-
ure 2.5. Since a square wave is useful for representing binary information in data
transmission, it is important that we understand the frequency-domain nature of
such a signal. From inspection in the time domain, we can observe that the
square wave is ideally suited to binary data representation because there are two
distinct states (a 1 and a 0), and the transition time between states is negligible.

It is difficult, however, to obtain a perfect square wave in any practical
electronic circuit, due in part to the effects of the transmitting media on the
signal. To illustrate why this is so, consider the Fourier series expansion

x(t) = sin(27T/0t) + - sin(67T/0i) + - sin(107r/0<) + ...

which describes a typical square wave.
As illustrated in Figure 2.5, if we algebraically add together the first three

sinusoidal components of this Fourier series, we produce a signal that already
strongly resembles the square wave. However, we should notice that the resul-
tant signal also exhibits ripples in both active regions. These ripples will remain
to some extent, unless we complete the infinite series. Since that is obviously
not practical, we must eventually truncate the series and settle for some amount
of ripple in the resulting signal.

It turns out that this truncation exactly corresponds to the behavior we
observed when transmitting a square wave across an electromagnetic media. As
|t is impossible to have a medium of infinite bandwidth, it follows that it is
mipossible to transmit all the frequency components of a square wave. Thus,

L
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Figure 2.5 The first three frequency-domain components of a square wave
are shown. Notice that the sine waves each have different
magnitudes, as indicated by the coordinates on the /axis, even
though they are graphed to the same height.

when we transmit a periodic square wave, we can observe the frequency-domain
effects in the time-domain signal as overshoot, undershoot, and ripple.

This example shows that the Fourier series can be a powerful tool in helping
us to understand the frequency-domain nature of any periodic signal, and to
predict ahead of time what transmission effects we must consider as we design
filters for our signal-processing applications.

We can also apply Fourier analysis to aperiodic signals, by evaluating the
Fourier integral, which is given by
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We will not, however, belabor this point. Our purpose here is merely to under-
stand the frequency-domain nature of signals. Readers interested in investigating
Fourier analysis further are referred to Kaplan [4].

2.1.3 Filter Implementation and Digital Signal Processing
Early implementations of the four basic filters were predominantly tuned RLC
circuits. This approach had a basic limitation, however, in that the filters had
only a very small range of adjustability. Aside from our being able to change
the resonant frequency of the filter by adjusting a variable capacitor or inductor,
the filters were pretty much fixed once implemented, leaving little room for
change as applications became more sophisticated.

The next step in the evolution of filter design came about with the advent of
digital computer systems, and, just recently, with the availability of microcom-
puter chips with architectures custom-tailored for signal-processing applications.
The basic concept underlying digital filter implementation is the idea that a con-
tinuous analog signal can be sampled periodically, quantized, and processed
by a fairly standard computer system. This approach, illustrated in Figure 2.6,
overcame the limitation of fixed implementation, because changing the filter was
simply a matter of rewriting the software for the computer. We will therefore
concentrate on what goes on within the software simulation of the analog filter.

We assume that the computer implementation of the filter is a discrete-
time, linear, time-invariant system. Systems that satisfy these constraints can
perform a transformation on an input signal, based on some predefined criteria,

Original signal
o>

CLO

Time

t
CD-o

Discrete samples "3-15
""

Time
Figure 2.6 Discrete-time sampling of a continuous signal is shown.
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to produce an output that corresponds to the input as though it had passed
through an analog filter. Thus, a computer, executing a program that applies
a given transformation operation, R, to discrete, digitized approximations of a
continuous input signal, x(n), can produce an output value y(n) for each input
sample, where n is the discrete timestep variable. In its role in performing this
transformation, the computer can be thought of as a digital filter. Moreover, any
filter can be completely characterized by its response, h(n), to the unit impulse
function, represented as 6(ri). More precisely,

h(n) = R[6(n)]

The benefit of this formulation is that, once the system response to the unit
impulse is known, the system output for any input is given by

y(n) = R[x(n)]

h(i)x(n —

where x(n) is the system input.
This equation is meaningful to us in that it describes a convolution sum

between the input signal and the unit impulse response of the system. The pro-
cess can be pictured as a window sliding past a scene of interest. As illustrated
in Figure 2.7, for each time step, the system output is produced by transposing
and shifting h(ri) one position to the right. The summation is then performed
over all nonzero values of x(ri) for the finite length of the filter. In this manner,
we can realize the filter by repetitively performing floating-point multiplications
and additions, coupled with sample time delays and shift operations. Repetitive,
mathematical operations are what computers do best; therefore, the convolution
sum provides us with a mechanism for building the digital equivalent of analog
filters. Readers interested in learning more about digital signal processing are
referred to Oppenheim and Schafer [5] or Hamming [3].

It is sufficient for our purposes to note that the convolution sum is a sum-of-
products operation similar to the type of operation an ANS PE performs when
computing its input activation signal. Specifically, the Adaline uses exactly this
sum-of-products calculation, without the sample time delays and shift operations,
to determine how much input stimulation it receives from an instantaneous input
signal. As we shall see in the next section, the Adaline extends the basic filter
operation one step further, in that it has implemented within itself a means
of adapting the weighting coefficients to allow it to increase or decrease the
stimulation it receives the next time it is presented with the same signal.

The ability of the Adaline to adapt its weighting coefficients is extremely
useful. When writing a digital filter program on a computer, the programmer
must know exactly how to specify the filtering algorithm and what the details of
the signal characteristics are. If modifications are desired, or if the signal charac-
teristics change, reprogramming is required. When the programmer uses an Ada-
line, the problem shifts to one of being able to specify the desired output signal,
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Figure 2.7 Convolution sum calculation is shown, (a) The process begins
by determining the desired response of the filter to the unit
impulse function at eight discrete timesteps. (b) The input
signal is sampled and quantized eight times, (c) The output
of the filter is produced for each timestep by multiplication of
each term in (a) with the corresponding value of (b) for all valid
timesteps.

given a particular input signal. The Adaline takes the input and the desired out-
put, and adjusts itself so that it can perform the desired transformation. Further-
more, if the signal characteristics change, the Adaline can adapt automatically.
We shall now expand these ideas, and begin our investigation of the Adaline.

2.2 ADALINE AND THE ADAPTIVE
LINEAR COMBINER
'he Adaline is a device consisting of a single processing element; as such, it is
not technically a neural network. Nevertheless, it is a very important structure
that deserves close study. Moreover, we will show how it can form the basis
°f a network in a later section.
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The term Adaline is an acronym; however, its meaning has changed some-
what over the years. Initially called the ADAptive Linear NEuron, it became
the ADAptive LINear Element, when neural networks fell out of favor in the
late 1960s. It is almost identical in structure to the general PE described in
Chapter 1. Figure 2.8 shows the Adaline structure. There are two basic mod-
ifications required to make the general PE structure into an Adaline. The first
modification is the addition of a connection with weight, WQ, which we refer
to as the bias term. This term is a weight on a connection that has its input
value always equal to 1. The inclusion of such a term is largely a matter of
experience. We show it here for completeness, but it will not appear in the
discussion of the next sections. We shall resurrect the idea of a bias term in
Chapter 3, on the backpropagation network.

The second modification is the addition of a bipolar condition on the output.
The dashed box in Figure 2.8 encloses a part of the Adaline called the adaptive
linear combiner (ALC). If the output of the ALC is positive, the Adaline output
is +1. If the ALC output is negative, the Adaline output is —1. Because much
of the interesting processing takes place in the ALC portion of the Adaline,
we shall concentrate on the ALC. Later, we shall add back the binary output
condition.

The processing done by the ALC is that of the typical processing element
described in the previous chapter. The ALC performs a sum-of-products calcu-

Threshold

—— ̂ -
y -1 ——

—— +1
Bipolar^
output
- sign(y)

Adaptive linear combiner I

Figure 2.8 The complete Adaline consists of the adaptive linear combiner,
in the dashed box, and a bipolar output function. The
adaptive linear combiner resembles the general PE described
in Chapter 1.
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lation using the input and weight vectors, and applies an output function to get
a single output value. Using the notation in Figure 2.8,

y =

where w0 is the bias weight. If we make the identification, x0 = 1, we can
rewrite the preceding equation as

j=o

or, in vector notation,
y = w'x (2.1)

The output function in this case is the identity function, as is the activation
function. The use of the identity function as both output and activation functions
means that the output is the same as the activation, which is the same as the net
input to the unit.

The Adaline (or the ALC) is ADAptive in the sense that there exists a
well-defined procedure for modifying the weights in order to allow the device
to give the correct output value for the given input. What output value is
correct depends on the particular processing function being performed by the
device. The Adaline (or the ALC) is Linear because the output is a simple linear
function of the input values. It is a NEuron only in the very limited sense of the
PEs described in the previous chapter. The Adaline could also be said to be a
LINear Element, avoiding the NEuron issue altogether. In the next section, we
look at a method to train the Adaline to perform a given processing function.

2.2.1 The LMS Learning Rule
Given an input vector, x, it is straightforward to determine a set of weights,
w, which will result in a particular output value, y. Suppose we have a set
of input vectors, {x\ , \2, . . . . XL }, each having its own, perhaps unique, correct
or desired output value, d/, •, k = \.L. The problem of finding a single weight
vector that can successfully associate each input vector with its desired output
value is no longer simple. In this section, we develop a method called the least-
mean-square (LMS) learning rule, which is one method of finding the desired
weight vector. We refer to this process of finding the weight vector as training
the ALC. The learning rule can be embedded in the device itself, which can then
self-adapt as inputs and desired outputs are presented to it. Small adjustments
are made to the weight values as each input-output combination is processed
until the ALC gives correct outputs. In a sense, this procedure is a true training
procedure, because we do not need to calculate the value of the weight vector
explicitly. Before describing the training process in detail, let's perform the
calculation manually.
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Calculation of w*. To begin, let's state the problem a little differently: Given
examples, (\i, di), (x2, d2) , . . . , (X/^^L), of some processing function that asso-
ciates input vectors, x/t, with (or maps to) the desired output values, d/f, what
is the best weight vector, w*, for an ALC that performs this mapping?

To answer this question, we must first define what it is that constitutes the
best weight vector. Clearly, once the best weight vector is found, we would
like the application of each input vector to result in the precise, corresponding
output value. Thus, we want to eliminate, or at least to minimize, the difference
between the desired output and the actual output for each input vector. The
approach we select here is to minimize the mean squared error for the set of
input vectors.

If the actual output value is y^ for the fcth input vector, then the corre-
sponding error term is e^. = dk — y^. The mean squared error, or expectation
value of the error, is defined by

(2.2)
k=\

where L is the number of input vectors in the training set.1
Using Eq. (2.1), we can expand the mean squared error as follows:

(4) =
= (4)

• w'x,)2) (2.3)
(2.4)

In going from Eq. (2.3) to Eq. (2.4), we have made the assumption that the
training set is statistically stationary, meaning that any expectation values vary
slowly with respect to time. This assumption allows us to factor out the weight
vectors from the expectation value terms in Eq. (2.4).

Exercise 2.1: Give the details of the derivation that leads from Eq. (2.3), to
Eq. (2.4) along with the justification for each step. Why are the factors dk and
x[. left together in the last term in Eq. (2.4), rather than shown as the product
of the two separate expectation values?

Define a matrix R = (xfexj.), called the input correlation matrix, and a
vector p = (dfrX/t). Further, make the identification £ = (e|). Using these
definitions, we can rewrite Eq. (2.4) as

+w'Rw-2p'w (2.5)

This equation shows £ as an explicit function of the weight vector, w. In other
words, £ =

'Widrow and Stearns use the notation, E[e2
k ], for the expectation value; also, the term exemplars

will sometimes be seen as a synonym for training set.
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To find the weight vector corresponding to the minimum mean squared
error, we differentiate Eq. (2.5), evaluate the result at w*, and set the result
equal to zero:

= 2Rw - 2p

2Rw* - 2p = 0
Rw* = p

w* = R-'p

(2.6)

(2.7)
(2.8)

Notice that, although £ is a scalar, |̂̂  is a vector. Equation (2.6) is an
expression of the gradient of £, V£, which is the vector

(2.9)_ _
dw\' dw2

All that we have done by the procedure is to show that we can find a point
where the slope of the function, £(w), is zero. In general, that point may be a
minimum or a maximum point. In the example that follows, we show a simple
case where the ALC has only two weights. In that situation, the graph of £(w)
is a paraboloid. Furthermore, it must be concave upward, since all combinations
of weights must result in a nonnegative value for the mean squared error, £.
This result is general and is obtained regardless of the dimension of the weight
vector. In the case of dimensions higher than two, the paraboloid is known as
a hyperparaboloid.

Suppose we have an ALC with two inputs and various other quantities
defined as follows:

R = 3 1
1 4] p = [ s ] (4) = 10

Rather than inverting R, we use Eq. (2.7) to find the optimum weight vector:

3 1
1 4

This equation results in two equations for w* and w*:

w* + 4u,'2* = 5

The solution is w* = (1, 1)'. The graph of £ as a function of the two weights
is shown in Figure 2.9.
txercise 2.2: Show that the minimum value of the mean squared error can be
written as

L
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Figure 2.9 For an ALC with only two weights, the error surface is a
paraboloid. The weights that minimize the error occur at the
bottom of the paraboloidal surface.

Exercise 2.3: Determine an explicit equation for £ as a function of w\ and wi
using the example in the text. Use it to find V£, the optimum weight vector,
w*, the minimum mean squared error, £min, and prove that the paraboloid is
concave upward.

In the next section, we shall examine a method for finding the optimum
weight vector by an iterative procedure. This procedure allows us to avoid the
often-difficult calculations necessary to determine the weights manually.

Finding w* by the Method of Steepest Descent. As you might imagine, the
analytical calculation to determine the optimum weights for a problem is rather
difficult in general. Not only does the matrix manipulation get cumbersome for
large dimensions, but also each component of R and p is itself an expectation
value. Thus, explicit calculations of R and p require knowledge of the statistics
of the input signals. A better approach would be to let the ALC find the optimum
weights itself by having it search over the weight surface to find the minimum.
A purely random search might not be productive or efficient, so we shall add
some intelligence to the procedure.
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Begin by assigning arbitrary values to the weights. From that point on the
weight surface, determine the direction of the steepest slope in the downward
direction. Change the weights slightly so that the new weight vector lies farther
down the surface. Repeat the process until the minimum has been reached. This
procedure is illustrated in Figure 2.10. Implicit in this method is the assumption
that we know what the weight surface looks like in advance. We do not know,
but we will see shortly how to get around this problem.

Typically, the weight vector does not initially move directly toward the
minimum point. The cross-section of the paraboloidal weight surface is usually
elliptical, so the negative gradient may not point directly at the minimum point,
at least initially. The situation is illustrated more clearly in the contour plot of
the weight surface in Figure 2.11.

Figure 2.10 We can use this diagram to visualize the steepest-descent
method. An initial selection for the weight vector results
in an error, £start. The steepest-descent method consists of
sliding this point down the surface toward the bottom, always
moving in the direction of the steepest downward slope.
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Figure 2.11 In the contour plot of the weight surface of Figure 2.10, the
direction of steepest descent is perpendicular to the contour
lines at each point, and this direction does not always point
to the minimum point.

Because the weight vector is variable in this procedure, we write it as an
explicit function of the timestep, t. The initial weight vector is denoted w(0),
and the weight vector at timestep t is w(t). At each step, the next weight vector
is calculated according to

1) = w(i) + Aw(t) (2.10)

where Aw(£) is the change in w at the tt\\ timestep.
We are looking for the direction of the steepest descent at each point on

the surface, so we need to calculate the gradient of the surface (which gives the
direction of the steepest upward slope). The negative of the gradient is in the
direction of steepest descent. To get the magnitude of the change, multiply the
gradient by a suitable constant, /i. The appropriate value for \i will be discussed
later. This procedure results in the following expression:

(2.11)
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All that is necessary to complete the discussion is to determine the value of
V£(w(0) at each successive iteration step.

The value of V£(w(£)) was determined analytically in the previous section.
Equation (2.6) or Eq. (2.9) could be used here to determine V£(w(t)), but we
would have the same problem that we had with the analytical determination
of w*: We would need to know both R and p in advance. This knowledge
is equivalent to knowing what the weight surface looks like in advance. To
circumvent this difficulty, we use an approximation for the gradient that can be
determined from information that is known explicitly at each iteration.

For each step in the iteration process, we perform the following:

1. Apply an input vector, xk, to the Adaline inputs.

2. Determine the value of the error squared, £2
k(t), using the current value of

the weight vector
(2.12)

3. Calculate an approximation to V£(t), by using £\(t) as an approximation
for (4):

V4(i) « V<4) (2.13)
Vejtf) = -2ek(t)xk (2.14)

where we have used Eq. (2.12) to calculate the gradient explicitly.

4. Update the weight vector according to Eq. (2.11) using Eq. (2.14) as the
approximation for the gradient:

W(t + 1) = w(i) + 2^ekxk (2.15)

5. Repeat steps 1 through 4 with the next input vector, until the error has been
reduced to an acceptable value.

Equation (2.15) is an expression of the LMS algorithm. The parameter \j,
determines the stability and speed of convergence of the weight vector toward
the minimum-error value.

Because an approximation of the gradient has been used in Eq. (2.15), the
path that the weight vector takes as it moves down the weight surface toward
the minimum will not be as smooth as that indicated in Figure 2.1 1. Figure 2.12
shows an example of how a search path might look with the LMS algorithm of
Eq. (2.15). Changes in the weight vector must be kept relatively small on each
iteration. If changes are too large, the weight vector could wander about the
surface, never finding the minimum, or finding it only by accident rather than
as a result of a steady convergence toward it. The function of the parameter fj,
is to prevent this aimless searching. In the next section, we shall discuss the
parameter, p., and other practical considerations.



64 Adaline and Madaline

4.T'

3.-'

Figure 2.12 The hypothetical path taken by a weight vector as it searches
for the minimum error using the IMS algorithm is not a
smooth curve because the gradient is being approximated
at each point. Note also that step sizes get smaller as the
minimum-error solution is approached.

2.2.2 Practical Considerations
There are several questions to consider when we are attempting to use the ALC
to solve a particular problem:

• How many training vectors are required to solve a particular problem?

• How is the expected output generated for each training vector?

• What is the appropriate dimension of the weight vector?

• What should be the initial values for the weights?

• Is a bias weight required?

• What happens if the signal statistics vary with time?
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• What is the appropriate value for /x?
• How do we determine when to stop training?

The answers to these questions depend on the specific problem being addressed,
so it is difficult to give well-defined responses that apply in all cases. Moreover,
for a specific case, the answers are not necessarily independent.

Consider the dimension of the weight vector. If there are a well-defined
number of inputs—say, from multiple sensors—then there would be one weight
for each input. The question would be whether to add a bias weight. Figure 2.13
depicts this case, with the bias term added, in a somewhat standard form that
shows the variability of the weights, the error term, and the feedback from
the output to the weights. As for the bias term itself, including it sometimes
helps convergence of the weights to an acceptable solution. It is perhaps best
thought of as an extra degree of freedom, and its use is largely a matter of
experimentation with the specific application.

A situation different from the previous paragraph arises if there is only a
single input signal, say from a single electrocardiograph (EKG) sensor. For

x0 = 1 (bias input)

+d, desired
output

Figure 2.13 This figure shows a standard diagram of the ALC with multiple
inputs and a bias term. Weights are indicated as variable
resistors to emphasize the adaptive nature of the device.
Calculation of the error, e, is shown explicitly as the addition
of a negative of the output signal to the desired output value.
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example, an ALC can be used to remove noise from the input signal in order to
give a cleaner signal at the output. In a case such as this one, the ALC is arranged
in a configuration known as a transverse filter. In this configuration, the input
signal is sampled at several points in time, rather than from several sensors at
a single time. Figure 2.14 shows the ALC arranged as a transverse filter.

For the transverse filter, each additional sample in time represents another
degree of freedom that can be used to fit the input signal to the desired output
signal. Thus, if you cannot get a good fit with a small number of samples, try
a few more. On the other hand, if you get good convergence with your first

Figure 2.14 In an ALC arranged as a transverse filter, the individual
samples are provided by n— 1, presumably equal, time delays,
to- The ALC sees the signal at the current time, as well as
its value at the previous n - 1 sample times. When data is
initially applied, remember to wait at least ntD for data to be
present at all of the ALC's inputs.
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choice, try one with fewer samples to see whether you get a significant speedup
in convergence and still have satisfactory results (you may be surprised to find
that the results are better in some cases). Moreover, the bias weight is probably
superfluous in this case.

Earlier, we alluded to a relationship between training time and the dimension
of the weight vector, especially for the software simulations that we consider
in this text: More weights generally mean longer training times. This equation
must be constantly balanced against other factors, such as the acceptability of
the solution. As stated in the previous paragraph, using more weights does not
always result in a better solution. Furthermore, there are other factors that affect
both the training time and the acceptability of the solution.

The parameter fj. is one factor that has a significant effect on training. If
/i is too large, convergence will never take place, no matter how long is the
training period. If the statistics of the input signal are known, it is possible to
show that the value of fj, is restricted to the range

n> 0

L

''max

where Amax is the largest eigenvalue of the matrix R, the input correlation matrix
discussed in Section 2.4.1. [9]. Although it is not always reasonable to expect
these statistics to be known, there are cases where they can be estimated. The
text by Widrow and Stearns contains many examples. In this text, we propose a
more heuristic approach: Pick a value for // such that a weight does not change
by more than a small fraction of its current value. This rule is admittedly vague,
but experience appears to be the best teacher for selecting an appropriate value
for /;.

As training proceeds, the error value e^. will diminish (hopefully), resulting
in smaller and smaller weight changes, and, hence, in a slower convergence
toward the minimum of the weight surface. It is sometimes useful to increase the
value of fj, during these periods to speed convergence. Bear in mind, however,
that a larger n may mean that the weights might bounce around the bottom of
the weight surface, giving an overall error that is unacceptable. Here again,
experience is necessary to enable us to judge effectively.

One method of compensating for differences in problems is to use normal-
ized input vectors. Instead of XA.., use \k/\*k • Another tactic is to scale the
desired output value. These methods help particularly when we are selecting
initial weight values or a value for /j,. In most cases, weights can be initialized to
random values of small real numbers—say, between -1.0 and 1.0. The value of
fj. is usually best kept significantly less than 1; a value of 0.1 or even 0.05 may
be reasonable for some problems, but values considerably less may be required.

The question of when to stop training is largely a matter of the requirements
on the output of the system. You determine the amount of error that you can
tolerate on the output signal, and train until the observed error is consistently
less than the required value. Since the mean squared error is the value used to
derive the training algorithm, that is the quantity that usually determines when
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a system has converged to its minimum error solution. Alternatively, observing
individual errors is often necessary, since the system performance may have
a requirement that no error exceed a certain amount. Nevertheless, a mean
squared error that falls as the iteration number increases is probably your best
indication that the system is converging toward a solution.

We usually assume that the input signals are statistically stationary, and,
therefore, (ejr.) is essentially a constant after the optimum weight values have
been determined. During training, (e\} will hopefully decrease toward a stable
solution. Suppose, however, that the input signal statistics change somewhat
over time, or undergo some discontinuity: Additional training would be required
to compensate.

One way to deal with this situation is to cease or resume training con-
ditionally, based on the current value of (e\). If the signal statistics change,
training can be reinitiated until (ej.) is again reduced to an acceptable value.
This method presumes that a method of error measurement is available.

Provided that the input signals are statistically stationary, choosing the num-
ber of input vectors to use during training may be relatively simple. You can
use real, time-sequenced inputs as training vectors, provided that you know the
desired output for each input vector. If it is possible to identify a sample of
input vectors that adequately reproduces the statistical distribution of the actual
inputs, it may be possible to train on this set in a shorter time. The accuracy
of the training depends on how well the selected set of training vectors models
the distribution of the entire input signal space.

The other, related question is how to go about determining the desired
output for a given input vector. As with many questions discussed in this
section, this depends on the specific details of the problem. Fortunately, for
some problems, knowing the desired result is easy compared to finding an
algorithm for transforming the inputs into the desired result. The ALC will
often solve the difficult part. The "easy" part is left to the engineer.
Exercise 2.4: A lowpass filter can be constructed with an Adaline having two
weights. Consider a simple case of the removal of a random noise from a
constant signal. The constant signal level is C = 3, and the random noise
signal has a constant power, (r2) — n — 0.025. Assume that the random noise
is completely uncorrelated with the constant input signal. Calculate the optimum
weight vector and the mean squared error in the output after the optimum weight
vector has been found. By finding the eigenvalues of the matrix, R, determine
the maximum value of the constant /z for use in the LMS algorithm.

2.3 APPLICATIONS OF ADAPTIVE
SIGNAL PROCESSING
Up to now, we have been concerned with the Adaline minus the threshold
condition on the output. In Section 2.4, on the Madaline, we will replace the
threshold condition and examine networks of Adalines. In this section, we will



L

2.3 Applications of Adaptive Signal Processing 69

look at a few examples of adaptive signal processing using only the ALC portion
of the Adaline.

2.3.1 Echo Cancellation in Telephone Circuits
You may have experienced the phenomenon of echo in telephone conversations:
you hear the words you speak into the mouthpiece a fraction of a second later
in the earphone of the telephone. The echo tends to be most noticeable on long-
distance calls, especially those over satellite links where transmission delays can
be a significant fraction of a second.

Telephone circuits contain devices called hybrids that are intended to
isolate incoming signals from outgoing signals, thus avoiding the echo effect.
Unfortunately, these circuits do not always perform perfectly, due to causes such
as impedance mismatches, resulting in some echo back to the speaker. Even
when the echo signal has been attenuated by a substantial amount, it still may
be audible, and hence an annoyance to the speaker.

Certain echo-suppression devices rely on relays that open and close circuits
in the outgoing lines so that incoming voice signals are not sent back to the
speaker. When transmission delays are long, as with satellite communications,
these echo suppressors can result in a loss of parts of words. This choppy-
speech effect is perhaps more familiar than the echo effect. An adaptive filter
can be used to remove the echo effect without the choppiness of the relays used
in other echo suppression circuits [9, 7J.

Figure 2.15 is a block diagram of a telephone circuit with an adaptive
filter used as an echo-suppression device. The echo is caused by a leakage of
the incoming voice signal to the output line through the hybrid circuit. This
leakage adds to the output signal coming from the microphone. The output of
the adaptive filter, y, is subtracted from the outgoing signal, s + n', where s is
the outgoing pure voice signal and n' is the noise, or echo caused by leakage of
the incoming voice signal through the hybrid circuit. The success of the echo
cancellation depends on how well the adaptive filter can mimic the leakage
through the hybrid circuit.

Notice that the input to the filter is a copy of the incoming signal, n, and
that the error is a copy of the outgoing signal,

E = s + n' - y (2.16)

We assume that y is correlated with the noise, n', but not with the pure voice
signal, s. If the quantity, n' - y, is nonzero, some echo still remains in the out-
going signal. Squaring and taking expectation values of both sides of Eq. (2.16)
gives

(e2) = (s2} + {(n' - y)2} + 2(s(ri - y)} (2.17)
= {s2} + {(n' - y ) 2 ) (2.18)

Equation (2.18) follows, since s is not correlated with either y or n', resulting
in the last term in Eq. (2.17) being equal to zero.
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This figure is a schematic of a telephone circuit using an
adaptive filter to cancel echo. The adaptive filter is depicted
as a box; the slanted arrow represents the adjustable weights.

The signal power, {.s2}, is determined by the source of the voice signal—
say, some amplifier at the telephone switching station local to the sender. Thus,
(s2) is not directly affected by changes in (e2). The adaptive filter attempts
to minimize {t2}, and, in doing so, minimizes ((n' - y ) 2 ) , the power of the
uncanceled noise on the outgoing line.

Since there is only one input to the adaptive filter, the device would be
configured as a transverse filter. Widrow and Stearns [9] suggest sampling the
incoming signal at a rate of 8 KHz and using 128 weight values.

2.3.2 Other Applications
Rather than go into the details of the many applications that can be addressed by
these adaptive filters, we refer you once again to the excellent text by Widrow
and Stearns. In this section, we shall simply suggest a few broad areas where
adaptive filters can be used in addition to the echo-cancellation application we
have discussed.

Figure 2.16 shows an adaptive filter that is used to predict the future value of
a signal based on its present value. A second example is shown in Figure 2.17.
In this example, the adaptive filter learns to reproduce the output from some
plant based on inputs to the system. This configuration has many uses as an
adaptive control system. The plant could represent many things, including a
human operator. In that case, the adaptive filter could learn how to respond to
changing conditions by watching the human operator. Eventually, such a device
might result in an automated control system, leaving the human free for more
important tasks.2

Another useful application of these devices is in adaptive beam-forming
antenna arrays. Although the term antenna is usually associated with electro-

2Such as training another adaptive filter with the Standard & Poors 500.
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Figure 2.16 This schematic shows an adaptive filter used to predict signal
values. The input signal used to train the network is a delayed
value of the actual signal; that is, it is the signal at some past
time. The expected output is the current value of the signal.
The adaptive filter attempts to minimize the error between its
output and the current signal, based on an input of the signal
value from some time in the past. Once the filter is correctly
predicting the current signal based on the past signal, the
current signal can be used directly as an input without the
delay. The filter will then make a prediction of the future
signal value.

Input signals

Prediction of

plant output

Figure 2.17 This example shows an adaptive filter used to model the
output from a system, called the plant. Inputs to the filter are
the same as those to the plant. The filter adjusts its weights
based on the difference between its output and the output of
the plant.

L
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magnetic radiation, we broaden the definition here to include any spatial array
of sensors. The basic task here is to learn to steer the array. At any given time,
a signal may be arriving from any given direction, but antennae usually are
directional in their reception characteristics: They respond to signals in some
directions, but not in others. The antenna array with adaptive filters learns to
adjust its directional characteristics in order to respond to the incoming signal
no matter what the direction is, while reducing its response to unwanted noise
signals coming in from other directions.

Of course, we have only touched on the number of applications for these
devices. Unlike many other neural-network architectures, this is a relatively
mature device with a long history of success. In the next section, we replace
the binary output condition on the ALC circuit so that the latter becomes, once
again, the complete Adaline.

2.4 THE MADALINE
As you can see from the discussion in Chapter 1, the Adaline resembles the
perceptron closely; it also has some of the same limitations as the perceptron.
For example, a two-input Adaline cannot compute the XOR function. Com-
bining Adalines in a layered structure can overcome this difficulty, as we did in
Chapter 1 with the perceptron. Such a structure is illustrated in Figure 2.18.
Exercise 2.5: What logic function is being computed by the single Adaline in
the output layer of Figure 2.18? Construct a three-input Adaline that computes
the majority function.

2.4.1 Madaline Architecture
Madaline is the acronym for Many Adalines. Arranged in a multilayered archi-
tecture as illustrated in Figure 2.19, the Madaline resembles the general neural-
network structure shown in Chapter 1. In this configuration, the Madaline could
be presented with a large-dimensional input vector—say, the pixel values from
a raster scan. With suitable training, the network could be taught to respond
with a binary +1 on one of several output nodes, each of which corresponds to
a different category of input image. Examples of such categorization are {cat,
dog, armadillo, javelina} and {Flogger, Tom Cat, Eagle, Fulcrum}. In such a
network, each of four nodes in the output layer corresponds to a single class.
For a given input pattern, a node would have a +1 output if the input pattern
corresponded to the class represented by that particular node. The other three
nodes would have a -1 output. If the input pattern were not a member of any
known class, the results from the network could be ambiguous.

To train such a network, we might be tempted to begin with the LMS
algorithm at the output layer. Since the network is presumably trained with
previously identified input patterns, the desired output vector is known. What
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= -1.5

Figure 2.18 Many Adalines (the Madaline) can compute the XOR
function of two inputs. Note the addition of the bias terms to
each Adaline. A positive analog output from an ALC results
in a +1 output from the associated Adaline; a negative analog
output results in a -1. Likewise, any inputs to the device that
are binary in nature must use ±1 rather than 1 and 0.

we do not know is the desired output for a given node on one of the hidden
layers. Furthermore, the LMS algorithm would operate on the analog outputs
of the ALC, not on the bipolar output values of the Adaline. For these reasons,
a different training strategy has been developed for the Madaline.

2.4.2 The MRII Training Algorithm
It is possible to devise a method of training a Madaline-like structure based on
the LMS algorithm; however, the method relies on replacing the linear threshold
output function with a continuously differentiable function (the threshold func-
tion is discontinuous at 0; hence, it is not differentiable there). We will take up
the study of this method in the next chapter. For now, we consider a method
known as Madaline rule II (MRII). The original Madaline rule was an earlier
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of Madalines

Hidden layer
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Figure 2.19 Many Adalines can be joined in a layered neural network
such as this one.

method that we shall not discuss here. Details can be found in references given
at the end of this chapter.

MRII resembles a trial-and-error procedure with added intelligence in the
form of a minimum disturbance principle. Since the output of the network
is a series of bipolar units, training amounts to reducing the number of incor-
rect output nodes for each training input pattern. The minimum disturbance
principle enforces the notion that those nodes that can affect the output error
while incurring the least change in their weights should have precedence in the
learning procedure. This principle is embodied in the following algorithm:

1. Apply a training vector to the inputs of the Madaline and propagate it
through to the output units.

2. Count the number of incorrect values in the output layer; call this number
the error.

3. For all units on the output layer,
a. Select the first previously unselected node whose analog output is clos-

est to zero. (This node is the node that can reverse its bipolar output
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with the least change in its weights—hence the term minimum distur-
bance.)

b. Change the weights on the selected unit such that the bipolar output of
the unit changes.

c. Propagate the input vector forward from the inputs to the outputs once
again.

d. If the weight change results in a reduction in the number of errors,
accept the weight change; otherwise, restore the original weights-.

4. Repeat step 3 for all layers except the input layer.
5. For all units on the output layer,

a. Select the previously unselected pair of units whose analog outputs are
closest to zero.

b. Apply a weight correction to both units, in order to change the bipolar
output of each.

c. Propagate the input vector forward from the inputs to the outputs.
d. If the weight change results in a reduction in the number of errors,

accept the weight change; otherwise, restore the original weights.
6. Repeat step 5 for all layers except the input layer.

If necessary, the sequence in steps 5 and 6 can be repeated with triplets
of units, or quadruplets of units, or even larger combinations, until satisfactory
results are obtained. Preliminary indications are that pairs are adequate for
modest-sized networks with up to 25 units per layer [8].

At the time of this writing, the MRII was still undergoing experimentation
to determine its convergence characteristics and other properties. Moreover, a
new learning algorithm, MRIII, has been developed. MRIII is similar to MRII,
but the individual units have a continuous output function, rather than the bipolar
threshold function [2]. In the next section, we shall use a Madaline architecture
to examine a specific problem in pattern recognition.

2.4.3 A Madaline for Translation-Invariant
Pattern Recognition
Various Madaline structures have been used recently to demonstrate the appli-
cability of this architecture to adaptive pattern recognition having the properties
of translation invariance, rotation invariance, and scale invariance. These three
properties are essential to any robust system that would be called on to rec-
ognize objects in the field of view of optical or infrared sensors, for example.
Remember, however, that even humans do not always instantly recognize ob-
jects that have been rotated to unfamiliar orientations, or that have been scaled
significantly smaller or larger than their everyday size. The point is that there
may be alternatives to training in instantaneous recognition at all angles and
scale factors. Be that as it may, it is possible to build neural-network devices
that exhibit these characteristics to some degree.
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Figure 2.20 shows a portion of a network that is used to implement transla-
tion-invariant recognition of a pattern [7]. The retina is a 5-by-5-pixel array on
which bit-mapped representation of patterns, such as the letters of the alphabet,
can be placed. The portion of the network shown is called a slab. Unlike a
layer, a slab does not communicate with other slabs in the network, as will be
seen shortly. Each Adaline in the slab receives the identical 25 inputs from the
retina, and computes a bipolar output in the usual fashion; however, the weights
on the 25 Adalines share a unique relationship.

Consider the weights on the top-left Adaline as being arranged in a square
matrix duplicating the pixel array on the retina. The Adaline to the immediate

Madaline slab

Retina

Figure 2.20 This single slab of Adalines will give the same output (either
+ 1 or -1) for a particular pattern on the retina, regardless
of the horizontal or vertical alignment of that pattern on
the retina. All 25 individual Adalines are connected to a
single Adaline that computes the majority function: If most
of the inputs are +1, the majority element responds with a
+ 1 output. The network derives its translation-invariance
properties from the particular configuration of the weights.
See the text for details.
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right of the top-left pixel has the identical set of weight values, but translated
one pixel to the right: The rightmost column of weights on the first unit wraps
around to the left to become the leftmost column on the second unit. Similarly,
the unit below the top-left unit also has the identical weights, but translated
one pixel down. The bottom row of weights on the first unit becomes the top
row of the unit under it. This translation continues across each row and down
each column in a similar manner. Figure 2.21 illustrates some of these weight
matrices. Because of this relationship among the weight matrices, a single
pattern on the retina will elicit identical responses from the slab, independent

Key weight matrix: top row, left column Weight matrix: top row, 2nd column
w w w w

12 13 14 15

"22 ^23 ^24 W25

W32 ^33 ^34 ^35

^42 W43 W44 W45
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W W W W51 52 53 45 5J

W W W W22 23 24 25
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Figure 2.21 The weight matrix in the upper left is the key weight matrix.
All other weight matrices on the slab are derived from this
matrix. The matrix to the right of the key weight matrix
represents the matrix on the Adaline directly to the right of the
one with the key weight matrix. Notice that the fifth column
of the key weight matrix has wrapped around to become the
first column, with the other columns shifting one space to
the right. The matrix below the key weight matrix is the
one on the Adaline directly below the Adaline with the key
weight matrix. The matrix diagonal to the key weight matrix
represents the matrix on the Adaline at the lower right of the
slab.
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of the pattern's translational position on the retina. We encourage you to reflect
on this result for a moment (perhaps several moments), to convince yourself of
its validity.

The majority node is a single Adaline that computes a binary output based
on the outputs of the majority of the Adalines connecting to it. Because of the
translational relationship among the weight vectors, the placement of a particular
pattern at any location on the retina will result in the identical output from the
majority element (we impose the restriction that patterns that extend beyond
the retina boundaries will wrap around to the opposite side, just as the various
weight matrices are derived from the key weight matrix.). Of course, a pattern
different from the first may elicit a different response from the majority element.
Because only two responses are possible, the slab can differentiate two classes on
input patterns. In terms of hyperspace, a slab is capable of dividing hyperspace
into two regions.

To overcome the limitation of only two possible classes, the retina can be
connected to multiple slabs, each having different key weight matrices (Widrow
and Winter's term for the weight matrix on the top-left element of each slab).
Given the binary nature of the output of each slab, a system of n slabs could
differentiate 2" different pattern classes. Figure 2.22 shows four such slabs
producing a four-dimensional output capable of distinguishing 16 different input-
pattern classes with translational invariance.

Let's review the basic operation of the translation invariance network in
terms of a specific example. Consider the 16 letters A —> P, as the input patterns
we would like to identify regardless of their up-down or left-right translation
on the 5-by-5-pixel retina. These translated retina patterns are the inputs to the
slabs of the network. Each retina pattern results in an output pattern from the
invariance network that maps to one of the 16 input classes (in this case, each
class represents a letter). By using a lookup table, or other method, we can
associate the 16 possible outputs from the invariance network with one of the
16 possible letters that can be identified by the network.

So far, nothing has been said concerning the values of the weights on the
Adalines of the various slabs in the system. That is because it is not actually
necessary to train those nodes in the usual sense. In fact, each key weight
matrix can be chosen at random, provided that each input-pattern class result in
a unique output vector from the invariance network. Using the example of the
previous paragraph, any translation of one of the letters should result in the same
output from the invariance network. Furthermore, any pattern from a different
class (i.e., a different letter) must result in a different output vector from the
network. This requirement means that, if you pick a random key weight matrix
for a particular slab and find that two letters give the same output pattern, you
can simply pick a different weight matrix.

As an alternative to random selection of key weight matrices, it may be
possible to optimize selection by employing a training procedure based on the
MRII. Investigations in this area are ongoing at the time of this writing [7].
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Retina

°4

Figure 2.22 Each of the four slabs in the system depicted here will produce
a +1 or a — 1 output value for every pattern that appears on
the retina. The output vector is a four-digit binary number,
so the system can potentially differentiate up to 16 different
classes of input patterns.

L

2.5 SIMULATING THE ADALINE
As we shall for the implementation of all other network simulators we will
present, we shall begin this section by describing how the general data struc-
tures are used to model the Adaline unit and Madaline network. Once the basic
architecture has been presented, we will describe the algorithmic process needed
to propagate signals through the Adaline. The section concludes with a discus-
sion of the algorithms needed to cause the Adaline to self-adapt according to
the learning laws described previously.

2.5.1 Adaline Data Structures
It is appropriate that the Adaline is the first test of the simulator data structures
we presented in Chapter 1 for two reasons:

1. Since the forward propagation of signals through the single Adaline is vir-
tually identical to the forward propagation process in most of the other
networks we will study, it is beneficial for us to observe the Adaline to
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gain a better understanding of what is happening in each unit of a larger
network.

2. Because the Adaline is not a network, its implementation exercises the
versatility of the network structures we have defined.

As we have already seen, the Adaline is only a single processing unit.
Therefore, some of the generality we built into our network structures will not
be required. Specifically, there will be no real need to handle multiple units and
layers of units for the Adaline. Nevertheless, we will include the use of those
structures, because we would like to be able to extend the Adaline easily into
the Madaline.

We begin by defining our network record as a structure that will contain
all the parameters that will be used globally, as well as pointers to locate the
dynamic arrays that will contain the network data. In the case of the Adaline,
a good candidate structure for this record will take the form

record Adaline =
mu : float;
input: "layer;
output : "layer;

end record

{Storage for stability term}
{Pointer to input layer}
{Pointer to output layer}

Note that, even though there is only one unit in the Adaline, we will use
two layers to model the network. Thus, the input and output pointers will
point to different layer records. We do this because we will use the input
layer as storage for holding the input signal vector to the Adaline. There will be
no connections associated with this layer, as the input will be provided by some
other process in the system (e.g., a time-multiplexed analog-to-digital converter,
or an array of sensors).

Conversely, the output layer will contain one weight array to model the
connections between the input and the output (recall that our data structures
presume that PEs process input connections primarily). Keeping in mind that
we would like to extend this structure easily to handle the Madaline network,
we will retain the indirection to the connection weight array provided by the
weight_ptr array described in Chapter 1. Notice that, in the case of the
Adaline, however, the weight_ptr array will contain only one value, the
pointer to the input connection array.

There is one other thing to consider that may vary between Adaline units.
As we have seen previously, there are two parts to the Adaline structure: the
linear ALC and the bipolar Adaline units. To distinguish between them, we
define an enumerated type to classify each Adaline neuron:

type NODE_TYPE : {linear, binary};

We now have everything we need to define the layer record structure for
the Adaline. A prototype structure for this record is as follows.
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record layer =
activation : NODE_TYPE {kind of Adaline node}
outs: ~float[]; {pointer to unit output array}
weights : ""float[]; {indirect access to weight arrays}

end record

Finally, three dynamically allocated arrays are needed to contain the output
of the Adaline unit, the weight_ptrs and the connection weights values.
We will not specify the structure of these arrays, other than to indicate that the
outs and weights arrays will both contain floating-point values, whereas the
weight_ptr array will store memory addresses and must therefore contain
memory pointer types. The entire data structure for the Adaline simulator is
depicted in Figure 2.23.

2.5.2 Signal Propagation Through the Adaline
If signals are to be propagated through the Adaline successfully, two activities
must occur: We must obtain the input signal vector to stimulate the Adaline,
and the Adaline must perform its input-summation and output-transformation
functions. Since the origin of the input signal vector is somewhat application
specific, we will presume that the user will provide the code necessary to keep
the data located in the outs array in the Adaline. inputs layer current.

We shall now concentrate on the matter of computing the input stimulation
value and transforming it to the appropriate output. We can accomplish this
task through the application of two algorithmic functions, which we will name
sunuinputs and compute_output. The algorithms for these functions are
as follows:

outputs weights

Figure 2.23 The Adaline simulator data structure is shown.
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function sum_inputs (INPUTS
WEIGHTS

return float
var sum : float;

temp : float;
ins : "float[];
wts : 'float[];
i : integer;

begin
sum = 0;
ins = INPUTS;
wts = WEIGHTS'

float[])

{local accumulator}
{scratch memory}
{local pointer}
{local pointer}
{iteration counter}

{initialize accumulator}
{locate input array}
{locate connection array}

for i = 1 to length(wts) do
{for all weights in array}

temp = ins[i] * wts[i]; {modulate input}
sum = sum + temp; {sum modulated inputs}

end do

return(sum);
end function;

{return the modulated sum}

function compute_output (INPUT : float;
ACT : NODE TYPE) return float

begin
if (ACT = linear)
then return (INPUT)
else

if (INPUT >= 0.0)
then return (1.0)
else return (-1.0)

end function;

{if the Adaline is a linear unit}
{then just return the input}
{otherwise}
{if the input is positive}
{then return a binary true}

; {else return a binary false}

2.5.3 Adapting the Adaline
Now that our simulator can forward propagate signal information, we turn our at-
tention to the implementation of the learning algorithms. Here again we assume
that the input signal pattern is placed in the appropriate array by an application-
specific process. During training, however, we will need to know what the
target output d^ is for every input vector, so that we can compute the error term
for the Adaline.

Recall that, during training, the LMS algorithm requires that the Adaline
update its weights after every forward propagation for a new input pattern.
We must also consider that the Adaline application may need to adapt the
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Adaline while it is running. Based on these observations, there is no need
to store or accumulate errors across all patterns within the training algorithm.
Thus, we can design the training algorithm merely to adapt the weights for a
single pattern. However, this design decision places on the application pro-
gram the responsibility for determining when the Adaline has trained suffi-
ciently.

This approach is usually acceptable because of the advantages it offers over
the implementation of a self-contained training loop. Specifically, it means that
we can use the same training function to adapt the Adaline initially or while
it is on-line. The generality of the algorithm is a particularly useful feature,
in that the application program merely needs to detect a condition requiring
adaptation. It can then sample the input that caused the error and generate the
correct response "on the fly," provided we have some way of knowing that
the error is increasing and can generate the correct desired values to accom-
modate retraining. These values, in turn, can then be input to the Adaline
training algorithm, thus allowing adaptation at run time. Finally, it also re-
duces the housekeeping chores that must be performed by the simulator, since
we will not need to maintain a list of expected outputs for all training pat-
terns.

We must now define algorithms to compute the squared error term (£2(t)),
the approximation of the gradient of the error surface, and to update the con-
nection weights to the Adaline. We can again simplify matters by combin-
ing the computation of the error and the update of the connection weights
into one function, as there is no need to compute the former without
performing the latter. We now present the algorithms to accomplish these
functions:

function compute_error (A : Adaline; TARGET : float)
return float
var tempi : float; {scratch memory}

temp2 : float; {scratch memory}
err : float; {error term for unit}

begin
tempi = sum_inputs (A.input.outs, A.output.weights);
temp2 = compute_output (tempi, A.output~.activation) ;
err = absolute (TARGET - temp2); {fast error}
return (err); {return error}

end function;

function update_weights (A : Adaline; ERR : float)
return void
var grad : float; {the gradient of the error}

ins : "float[]; {pointer to inputs array}
wts : "float[]; {pointer to weights array}
i : integer; {iteration counter}
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begin
ins = A.input.outs; {locate start of input vector}

= A. output.weights";
{locate start of connections)

for i = 1 to length(wts) do {for all connections, do}
grad = -2 * err * ins[i]; {approximate gradient}
wts[i] = wts[i] - grad * A.mu;

{update connection}
end do;

end function;

2.5.4 Completing the Adaline Simulator
The algorithms we have just defined are sufficient to implement an Adaline
simulator in both learning and operational modes. To offer a clean interface
to any external program that must call our simulator to perform an Adaline
function, we can combine the modules we have described into two higher-level
functions. These functions will perform the two types of activities the Adaline
must perform: f orwarcLpropagate and adapt-Adaline.

function forward_jaropagate
var tempi : float;

(A : Adaline) return void
{scratch memory}

begin
tempi = sum_inputs (A.inputs.outs,
A. outputs.weights);
A.outputs.outs[1] = compute_output
A.node_type);

end function;

(tempi.

function adapt_Adaline
return float
var err : float;

(A : Adaline; TARGET : float)

{train until small}

begin
forward_propagate (A); {Apply input signal}
err = compute_error (A, TARGET); {Compute error}
update_weights (A, err); {Adapt Adaline}
return(err);

end function;

2.5.5 Madaline Simulator Implementation
As we have discussed earlier, the Madaline network is simply a collection of
binary Adaline units, connected together in a layered structure. However, even
though they share the same type of processing unit, the learning strategies imple-
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mented for the Madaline are significantly different, as described in Section 2.5.2.
Providing that as a guide, along with the discussion of the data structures needed,
we leave the algorithm development for the Madaline network to you as an ex-
ercise.

In this regard, you should note that the layered structure of the Madaline
lends itself directly to our simulator data structures. As illustrated in Figure 2.24,
we can implement a layer of Adaline units as easily as we created a single
Adaline. The major differences here will be the length of the cuts arrays in
the layer records (since there will be more than one Adaline output per layer),
and the length and number of connection arrays (there will be one weights
array for each Adaline in the layer, and the weight.ptr array will be
extended by one slot for each new weights array).

Similarly, there will be more layer records as the depth of the Madaline
increases, and, for each layer, there will be a corresponding increase in the
number of cuts, weights, and weight.ptr arrays. Based on these ob-
servations, one fact that becomes immediately perceptible is the combinatorial
growth of both memory consumed and computer time required to support a lin-
ear growth in network size. This relationship between computer resources and
model sizing is true not only for the Madaline, but for all ANS models we will
study. It is for these reasons that we have stressed optimization in data structures.
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Figure 2.24 Madaline data structures are shown.



86 Adaline and Madaline

Programming Exercises
2.1. Extend the Adaline simulator to include the bias unit, 0, as described in the

text.

2.2. Extend the simulator to implement a three-layer Madaline using the algo-
rithms discussed in Section 2.3.2. Be sure to use the binary Adaline type.
Test the operation of your simulator by training it to solve the XOR problem
described in the text.

2.3. We have indicated that the network stability term, it, can greatly affect the
ability of the Adaline to converge on a solution. Using four different values
for /z of your own choosing, train an Adaline to eliminate noise from an
input sinusoid ranging from 0 to 2-n (one way to do this is to use a scaled
random-number generator to provide the noise). Graph the curve of training
iterations versus /z.

Suggested Readings
The authoritative text by Widrow and Stearns is the standard reference to the
material contained in this chapter [9]. The original delta-rule derivation is
contained in a 1960 paper by Widrow and Hoff [6], which is also reprinted in
the collection edited by Anderson and Rosenfeld [1].

Bibliography
[1] James A. Anderson and Edward Rosenfeld, editors. Neurocomputing: Foun-

dations of Research. MIT Press, Cambridge, MA, 1988.
[2] David Andes, Bernard Widrow, Michael Lehr, and Eric Wan. MRIII: A

robust algorithm for training analog neural networks. In Proceedings of
the International Joint Conference on Neural Networks, pages I-533-I-
536, January 1990.

[3] Richard W. Hamming. Digital Filters. Prentice-Hall, Englewood Cliffs,
NJ, 1983.

[4] Wilfred Kaplan. Advanced Calculus, 3rd edition. Addison-Wesley, Reading,
MA, 1984.

[5] Alan V. Oppenheim arid Ronald W. Schafer. Digital Signal Processing.
Prentice-Hall, Englewood Cliffs, NJ, 1975.

[6] Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In 7960
IRE WESCON Convention Record, New York, pages 96-104, 1960. IRE.

[7] Bernard Widrow and Rodney Winter. Neural nets for adaptive filtering and
adaptive pattern recognition. Computer, 21(3):25-39, March 1988.



Bibliography 87

[8] Rodney Winter and Bernard Widrow. MADALINE RULE II: A training
algorithm for neural networks. In Proceedings of the IEEE Second In-
ternational Conference on Neural Networks, San Diego, CA, 1:401-408,
July 1988.

[9] Bernard Widrow and Samuel D. Stearns. Adaptive Signal Processing. Signal
Processing Series. Prentice-Hall, Englewood Cliffs, NJ, 1985.





H R

Backpropagation

There are many potential computer applications that are difficult to implement
because there are many problems unsuited to solution by a sequential process.
Applications that must perform some complex data translation, yet have no
predefined mapping function to describe the translation process, or those that
must provide a "best guess" as output when presented with noisy input data are
but two examples of problems of this type.

An ANS that we have found to be useful in addressing problems requiring
recognition of complex patterns and performing nontrivial mapping functions is
the backpropagation network (BPN), formalized first by Werbos [11], and later
by Parker [8] and by Rummelhart and McClelland [7]. This network, illustrated
genetically in Figure 3.1, is designed to operate as a multilayer, feedforward
network, using the supervised mode of learning.

The chapter begins with a discussion of an example of a problem mapping
character image to ASCII, which appears simple, but can quickly overwhelm
traditional approaches. Then, we look at how the backpropagation network op-
erates to solve such a problem. Following that discussion is a detailed derivation
of the equations that govern the learning process in the backpropagation network.
From there, we describe some practical applications of the BPN as described in
the literature. The chapter concludes with details of the BPN software simulator
within the context of the general design given in Chapter 1.

3.1 THE BACKPROPAGATION NETWORK
To illustrate some problems that often arise when we are attempting to automate
complex pattern-recognition applications, let us consider the design of a com-
puter program that must translate a 5 x 7 matrix of binary numbers representing
the bit-mapped pixel image of an alphanumeric character to its equivalent eight-
bit ASCII code. This basic problem, pictured in Figure 3.2, appears to be
relatively trivial at first glance. Since there is no obvious mathematical function

89
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Output read in parallel

Always 1

Always 1
Input applied in parallel

Figure 3.1 The general backpropagation network architecture is shown.

that will perform the desired translation, and because it would undoubtedly take
too much time (both human and computer time) to perform a pixel-by-pixel
correlation, the best algorithmic solution would be to use a lookup table.

The lookup table needed to solve this problem would be a one-dimensional
linear array of ordered pairs, each taking the form:

record AELEMENT =
pattern : long integer;
ascii : byte;

end record;

= 0010010101000111111100011000110001

= 0951FC63116

= 6510 ASCII

Figure 3.2 Each character image is mapped to its corresponding ASCII
code.
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The first is the numeric equivalent of the bit-pattern code, which we generate
by moving the seven rows of the matrix to a single row and considering the
result to be a 35-bit binary number. The second is the ASCII code associated
with the character. The array would contain exactly the same number of ordered-
pairs as there were characters to convert. The algorithm needed to perform the
conversion process would take the following form:

function TRANSLATE(INPUT : long integer;
LUT : "AELEMENT[]> return ascii;

{performs pixel-matrix to ASCII character conversion}

var TABLE : "AELEMENT[];
found : boolean;
i : integer;

begin
TABLE = LUT; {locate translation table}
found = false; {translation not found yet}

for i = 1 to length(TABLE) do {for all items in table)
if TABLE[i].pattern = INPUT
then Found = True; Exit;

{translation found, quit loop}
end;

If Found
Then return TABLE[i].ascii {return ascii}
Else return 0

end;

Although the lookup-table approach is reasonably fast and easy to maintain,
there are many situations that occur in real systems that cannot be handled by
this method. For example, consider the same pixel-image-to-ASCII conversion
process in a more realistic environment. Let's suppose that our character image
scanner alters a random pixel in the input image matrix due to noise when the
image was read. This single pixel error would cause the lookup algorithm to
return either a null or the wrong ASCII code, since the match between the input
pattern and the target pattern must be exact.

Now consider the amount of additional software (and, hence, CPU time)
that must be added to the lookup-table algorithm to improve the ability of the
computer to "guess" at which character the noisy image should have been.
Single-bit errors are fairly easy to find and correct. Multibit errors become
increasingly difficult as the number of bit errors grows. To complicate matters
even further, how could our software compensate for noise on the image if that
noise happened to make an "O" look like a "Q", or an "E" look like an "F"? If
our character-conversion system had to produce an accurate output all the time,
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an inordinate amount of CPU time would be spent eliminating noise from the
input pattern prior to attempting to translate it to ASCII.

One solution to this dilemma is to take advantage of the parallel nature of
neural networks to reduce the time required by a sequential processor to perform
the mapping. In addition, system-development time can be reduced because the
network can learn the proper algorithm without having someone deduce that
algorithm in advance.

3.1.1 The Backpropagation Approach
Problems such as the noisy image-to-ASCII example are difficult to solve by
computer due to the basic incompatibility between the machine and the problem.
Most of today's computer systems have been designed to perform mathemati-
cal and logic functions at speeds that are incomprehensible to humans. Even
the relatively unsophisticated desktop microcomputers commonplace today can
perform hundreds of thousands of numeric comparisons or combinations every
second.

However, as our previous example illustrated, mathematical prowess is not
what is needed to recognize complex patterns in noisy environments. In fact,
an algorithmic search of even a relatively small input space can prove to be
time-consuming. The problem is the sequential nature of the computer itself;
the "fetch-execute" cycle of the von Neumann architecture allows the machine
to perform only one operation at a time. In most cases, the time required
by the computer to perform each instruction is so short (typically about one-
millionth of a second) that the aggregate time required for even a large program
is insignificant to the human users. However, for applications that must search
through a large input space, or attempt to correlate all possible permutations of
a complex pattern, the time required by even a very fast machine can quickly
become intolerable.

What we need is a new processing system that can examine all the pixels in
the image in parallel. Ideally, such a system would not have to be programmed
explicitly; rather, it would adapt itself to "learn" the relationship between a set of
example patterns, and would be able to apply the same relationship to new input
patterns. This system would be able to focus on the features of an arbitrary input
that resemble other patterns seen previously, such as those pixels in the noisy
image that "look" like a known character, and to ignore the noise. Fortunately,
such a system exists; we call this system the backpropagation network (BPN).

3.1.2 BPN Operation
In Section 3.2, we will cover the details of the mechanics of backpropagation.
A summary description of the network operation is appropriate here, to illustrate
how the BPN can be used to solve complex pattern-matching problems. To begin
with, the network learns a predefined set of input-output example pairs by using
a two-phase propagate-adapt cycle. After an input pattern has been applied as
a stimulus to the first layer of network units, it is propagated through each upper
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layer until an output is generated. This output pattern is then compared to the
desired output, and an error signal is computed for each output unit.

The error signals are then transmitted backward from the output layer to
each node in the intermediate layer that contributes directly to the output. How-
ever, each unit in the intermediate layer receives only a portion of the total error
signal, based roughly on the relative contribution the unit made to the original
output. This process repeats, layer by layer, until each node in the network has
received an error signal that describes its relative contribution to the total error.
Based on the error signal received, connection weights are then updated by each
unit to cause the network to converge toward a state that allows all the training
patterns to be encoded.

The significance of this process is that, as the network trains, the nodes
in the intermediate layers organize themselves such that different nodes learn
to recognize different features of the total input space. After training, when
presented with an arbitrary input pattern that is noisy or incomplete, the units in
the hidden layers of the network will respond with an active output if the new
input contains a pattern that resembles the feature the individual units learned
to recognize during training. Conversely, hidden-layer units have a tendency to
inhibit their outputs if the input pattern does not contain the feature that they
were trained to recognize.

As the signals propagate through the different layers in the network, the
activity pattern present at each upper layer can be thought of as a pattern with
features that can be recognized by units in the subsequent layer. The output
pattern generated can be thought of as a feature map that provides an indication
of the presence or absence of many different feature combinations at the input.
The total effect of this behavior is that the BPN provides an effective means of
allowing a computer system to examine data patterns that may be incomplete
or noisy, and to recognize subtle patterns from the partial input.

Several researchers have shown that during training, BPNs tend to develop
internal relationships between nodes so as to organize the training data into
classes of patterns [5]. This tendency can be extrapolated to the hypothesis
that all hidden-layer units in the BPN are somehow associated with specific
features of the input pattern as a result of training. Exactly what the association
is may or may not be evident to the human observer. What is important is that
the network has found an internal representation that enables it to generate the
desired outputs when given the training inputs. This same internal representation
can be applied to inputs that were not used during training. The BPN will
classify these previously unseen inputs according to the features they share with
the training examples.

3.2 THE GENERALIZED DELTA RULE
In this section, we present the formal mathematical description of BPN op-
eration. We shall present a detailed derivation of the generalized delta rule
(GDR), which is the learning algorithm for the network.
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Figure 3.3 serves as the reference for most of the discussion. The BPN is a
layered, feedforward network that is fully interconnected by layers. Thus, there
are no feedback connections and no connections that bypass one layer to go
directly to a later layer. Although only three layers are used in the discussion,
more than one hidden layer is permissible.

A neural network is called a mapping network if it is able to compute
some functional relationship between its input and its output. For example, if
the input to a network is the value of an angle, and the output is the cosine of
that angle, the network performs the mapping 9 —> cos(#). For such a simple
function, we do not need a neural network; however, we might want to perform
a complicated mapping where we do not know how to describe the functional
relationship in advance, but we do know of examples of the correct mapping.

'PN

Figure 3.3 The three-layer BPN architecture follows closely the general
network description given in Chapter 1. The bias weights, 0^ ,
and Q°k, and the bias units are optional. The bias units provide
a fictitious input value of 1 on a connection to the bias weight.
We can then treat the bias weight (or simply, bias) like any
other weight: It contributes to the net-input value to the unit,
and it participates in the learning process like any other weight.
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In this situation, the power of a neural network to discover its own algorithms
is extremely useful.

Suppose we have a set of P vector-pairs, (xi ,yj) , ( x 2 , y 2 ) , - - - > (xp,yp),
which are examples of a functional mapping y = 0(x) : x € R^y 6 RM-
We want to train the network so that it will learn an approximation o = y' =
</>'(x). We shall derive a method of doing this training that usually works,
provided the training-vector pairs have been chosen properly and there is a suf-
ficient number of them. (Definitions of properly and sufficient will be given
in Section 3.3.) Remember that learning in a neural network means finding an
appropriate set of weights. The learning technique that we describe here re-
sembles the problem of finding the equation of a line that best fits a num-
ber of known points. Moreover, it is a generalization of the LMS rule that
we discussed in Chapter 2. For a line-fitting problem, we would probably
use a least-squares approximation. Because the relationship we are trying to
map is likely to be nonlinear, as well as multidimensional, we employ an it-
erative version of the simple least-squares method, called a steepest-descent
technique.

To begin, let's review the equations for information processing in the three-
layer network in Figure 3.3. An input vector, xp = (xp\,xp2,...,xpN)t, is
applied to the input layer of the network. The input units distribute the values
to the hidden-layer units. The net input to the jth hidden unit is

(3.1)

where wft is the weight on the connection from the ith input unit, and 6^ is
the bias term discussed in Chapter 2. The "h" superscript refers to quantities
on the hidden layer. Assume that the activation of this node is equal to the net
input; then, the output of this node is

) (3.2)

The equations for the output nodes are

L

°kjipj + 8°k (3.3)

opk = />e&) (3.4)

where the "o" superscript refers to quantities on the output layer.
The initial set of weight values represents a first guess as to the proper

weights for the problem. Unlike some methods, the technique we employ here
does not depend on making a good first guess. There are guidelines for selecting
the initial weights, however, and we shall discuss them in Section 3.3. The basic
procedure for training the network is embodied in the following description:
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1. Apply an input vector to the network and calculate the corresponding output
values.

2. Compare the actual outputs with the correct outputs and determine a mea-
sure of the error.

3. Determine in which direction (+ or —) to change each weight in order to
reduce the error.

4. Determine the amount by which to change each weight.
5. Apply the corrections to the weights.
6. Repeat items 1 through 5 with all the training vectors until the error for all

vectors in the training set is reduced to an acceptable value.

In Chapter 2, we described an iterative weight-change law for network with
no hidden units and linear output units, called the LMS rule or delta rule:

w(t = w(t)t (3.5)

where /z is a positive constant, xkl is the ith component of the fcth training
vector, and ek is the difference between the actual output and the correct value,
£k — (dk — yk)- Equation 3.5 is just the component form of Eq. (2.15).

A similar equation results when the network has more than two layers, or
when the output functions are nonlinear. We shall derive the results explicitly
in the next sections.

3.2.1 Update of Output-Layer Weights
In the derivation of the delta rule, the error for the fcth input vector is Ek =
(dk- — yk), where the desired output is dk and the actual output is yk. In this
chapter, we adopt a slightly different notation that is somewhat inconsistent with
the notation we used in Chapter 2. Because there are multiple units in a layer,
a single error value, such as ek, will not suffice for the BPN. We shall define
the error at a single output unit to be 8pk = (ypk — opk), where the subscript
"p" refers to the pth training vector, and "fc" refers to the fcth output unit. In
this case, ypk is the desired output value, and opk is the actual output from the
fcth unit. The error that is minimized by the GDR is the sum of the squares of
the errors for all output units:

(3.6)

The factor of | in Eq. (3.6) is there for convenience in calculating deriva-
tives later. Since an arbitrary constant will appear in the final result, the presence
of this factor does not invalidate the derivation.

To determine the direction in which to change the weights, we calculate the
negative of the gradient of Ep, VEP, with respect to the weights, Wkj. Then,
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we can adjust the values of the weights such that the total error is reduced. It
is often useful to think of Ep as a surface in weight space. Figure 3.4 shows a
simple example where the network has only two weights.

To keep things simple, we consider each component of VEP separately.
From Eq. (3.6) and the definition of <*>,,*.,

(3.7)

and
3(net;A.)

—— (3.8)

Figure 3.4 This hypothetical surface in weight space hints at the
complexity of these surfaces in comparison with the relatively
simple hyperparaboloid of the Adaline (see Chapter 2). The
gradient, VE/lt at point z appears along with the negative of the
gradient. Weight changes should occur in the direction of the
negative gradient, which is the direction of the steepest descent
of the surface at the point z. Furthermore, weight changes
should be made iteratively until E,, reaches the minimum point
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where we have used Eq. (3.4) for the output value, o;,/,., and the chain rule for
partial derivatives. For the moment, we shall not try to evaluate the derivative
of fl

k', but instead will write it simply as /A"'(net")A.). The last factor in Eq. (3.8)
is

(3.9)

Combining Eqs. (3.8) and (3.9), we have for the negative gradient

dE
- - (3.10)

As far as the magnitude of the weight change is concerned, we take it to
be proportional to the negative gradient. Thus, the weights on the output layer
are updated according to

where

(3.11)

(3.12)

The factor rj is called the learning-rate parameter. We shall discuss the value
of /i in Section 3.3. For now, it is sufficient to note that it is positive and is
usually less than 1.

Let's go back to look at the function /[". First, notice the requirement that
the function /£ be differentiable. This requirement eliminates the possibility of
using a linear threshold unit such as we described in Chapter 2, since the output
function for such a unit is not differentiable at the threshold value.

There are two forms of the output function that are of interest here:

= net°,

The first function defines the linear output unit. The latter function is called a
sigmoid, or logistic function; it is illustrated in Figure 3.5. The choice of output
function depends on how you choose to represent the output data. For example,
if you want the output units to be binary, you use a sigmoid output function,
since the sigmoid is output-limiting and quasi-bistable but is also differentiable.
In other cases, either a linear or a sigmoid output function is appropriate.

In the first case, /£' = 1; in the second case, /£' = /A°(l - /£) = o,)A-(l -
ot,i,.). For these two cases, we have

(3.13)
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1.0 -

Figure 3.5 This graph shows the characteristic S-shape of the sigmoid
function.

for the linear output, and

w'kj(t + 1) = wkj(t) + T](ypk - opk)opk(\ - opk)ipj (3.14)

for the sigmoidal output.
We want to summarize the weight-update equations by defining a quantity

(3.15)

(3. 16)

= 6pt/f(net°fc)

We can then write the weight-update equation as

w°kj ( = w°k (t)

regardless of the functional form of the output function, /£.
We wish to make a comment regarding the relationship between the gradient-

descent method described here and the least-squares technique. If we were trying
to make the generalized delta rule entirely analogous to a least-squares method,
we would not actually change any of the weight values until all of the training
patterns had been presented to the network once. We would simply accumulate
the changes as each pattern was processed, sum them, and make one update to
the weights. We would then repeat the process until the error was acceptably
low. The error that this process minimizes is

(3.17)

where P is the number of patterns in the training set. In practice, we have
found little advantage to this strict adherence to analogy with the least-squares
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method. Moreover, you must store a large amount of information to use this
method. We recommend that you perform weight updates as each training
pattern is processed.
Exercise 3.1: A certain network has output nodes called quadratic neurons.
The net input to such a neuron is

net*. = ^wkj(ij -vkj)2

j

The output function is sigmoidal. Both Wkj and vkj are weights, and ij is the
jth input value. Assume that the w weights and v weights are independent.

a. Determine the weight-update equations for both types of weights.
b. What is the significance of this type of node? Hint: Consider a single unit of

the type described here, having two inputs and a linear-threshold function
output. With what geometric figure does this unit partition the input space?

(This exercise was suggested by Gary Mclntire, Loral Space Information Sys-
tems, who derived and implemented this network.)

3.2.2 Updates of Hidden-Layer Weights
We would like to repeat for the hidden layer the same type of calculation as we
did for the output layer. A problem arises when we try to determine a measure
of the error of the outputs of the hidden-layer units. We know what the actual
output is, but we have no way of knowing in advance what the correct output
should be for these units. Intuitively, the total error, Ep, must somehow be
related to the output values on the hidden layer. We can verify our intuition by
going back to Eq. (3.7):

P
k

5£(%>fr-
k J

We know that zw depends on the weights on the hidden layer through Eqs. (3.1)
and (3.2). We can exploit this fact to calculate the gradient of Ep with respect
to the hidden-layer weights.

dEp \ ̂  d , ,2
'

,, „ , p p= — > (j/pfc - 0,,k)-^-. —— — — - —— 7T. ——— — ——— J— „ ., —— (3.18)p 'k) divj 9(net^) dw^
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Each of the factors in Eq. (3. 1 8) can be calculated explicitly from previous
equations. The result is

O 77"

- - ' (3.19)

Exercise 3.2: Verify the steps between Eqs. (3.18) and (3.19).

We update the hidden-layer weights in proportion to the negative of
Eq. (3.19):

AX'; = '//j"(n<).7V, „* - opl{)f?(net0
pll)w'lj (3.20)

A1

where 77 is once again the learning rate.
We can use the definition of 6"^. given in the previous section to write

6°pkw°kj (3.21)
A'

Notice that every weight update on the hidden layer depends on all the
error terms, 6">k, on the output layer. This result is where the notion of back-
propagation arises. The known errors on the output layer are propagated back
to the hidden layer to determine the appropriate weight changes on that layer.
By defining a hidden-layer error term

^=/><)^;;,<, (3-22)
A-

we cause the weight update equations to become analogous to those for the
output layer:

wbj,(t + 1) = wj',.(0 + n6h
pjii (3.23)

Finally, so that we close the circle on the GDR, notice that both Eq. (3.16)
in the previous section and Eq. (3.23) in this section have the same form as
Eq. (3.5), the delta rule.
Exercise 3.3: Refer to the description of the quadratic neuron given in Exer-
cise 3.1. Determine the weight-update equations for hidden-layer units for both
w and v weights.
Exercise 3.4: Consider a network with two hidden layers instead of one. De-
termine the weight-update equations for units on the first hidden layer (the one
between the input units and the second hidden layer).

3.2.3 BPN Summary
To reduce the need to flip pages to find the appropriate equations, we collect all
of the relevant equations for the BPN here. They are presented in the order in
which they would be used during training for a single training-vector pair.
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1. Apply the input vector, x;, = (xp\ . x /)2, . . . . x;,,v)' to the input units.
2. Calculate the net-input values to the hidden layer units:

3. Calculate the outputs from the hidden layer:

4. Move to the output layer. Calculate the net-input values to each unit:

i
net'/-A- = 5D Wkjipj + °l

5. Calculate the outputs:

opk = /i'(net°fc)

6. Calculate the error terms for the output units:

7. Calculate the error terms for the hidden units:

Notice that the error terms on the hidden units are calculated before the
connection weights to the output-layer units have been updated.

8. Update weights on the output layer:

9. Update weights on the hidden layer:

Wjj(t -4- 1) = whj[(t) + rjSpjXj

The order of the weight updates on an individual layer is not important.

Be sure to calculate the error term

1 A
P ~ 2 ' -1 p*'

since this quantity is the measure of how well the network is learning. When
the error is acceptably small for each of the training-vector pairs, training can
be discontinued.
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3.3 PRACTICAL CONSIDERATIONS
There are some topics that we omitted from previous sections so as not to divert
your attention from the main ideas. Before moving on to the discussion of
applications and the simulator, let's pick up these loose ends.

3.3.1 Training Data
We promised a definition of the terms sufficient and properly regarding the
selection of training-vector pairs for the BPN. Unfortunately, there is no single
definition that applies to all cases. As with many aspects of neural-network
systems, experience is often the best teacher. As you gain facility with using
networks, you will also gain an appreciation for how to select and prepare
training sets. Thus, we shall give only a few guidelines here.

In general, you can use as many data as you have available to train the
network, although you may not need to use them all. From the available training
data, a small subset is often all that you need to train a network successfully.
The remaining data can be used to test the network to verify that the network can
perform the desired mapping on input vectors it has never encountered during
training.

If you are training a network to perform in a noisy environment, such as the
pixel-image-to-ASCII example, then include some noisy input vectors in the
data set. Sometimes the addition of noise to the input vectors during training
helps the network to converge even if no noise is expected on the inputs.

The BPN is good at generalization. What we mean by generalization here is
that, given several different input vectors, all belonging to the same'class, a BPN
will learn to key off of significant similarities in the input vectors. Irrelevant
data will be ignored. As an example, suppose we want to train a network to
determine whether a bipolar number of length 5 is even or odd. With only
a small set of examples used for training, the BPN will adjust its weights so
that a classification will be made solely on the basis of the value of the least
significant bit in the number: The network learns to ignore the irrelevant data
in the other bits.

In contrast to generalization, the BPN will not extrapolate well. If a BPN
is inadequately or insufficiently trained on a particular class of input vectors,
subsequent identification of members of that class may be unreliable. Make sure
that the training data cover the entire expected input space. During the training
process, select training-vector pairs randomly from the set, if the problem lends
itself to this strategy. In any event, do not train the network completely with
input vectors of one class, and then switch to another class: The network will
forget the original training.

If the output function is sigmoidal, then you will have to scale the output
values. Because of the form of the sigmoid function, the network outputs can
never reach 0 or 1. Therefore, use values such as 0.1 and 0.9 to represent the
smallest and largest output values. You can also shift the sigmoid so that, for
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example, the limiting values become ±0.4. Moreover, you can change the slope
of the linear portion of the sigmoid curve by including a multiplicative constant
in the exponential. There are many such possibilities that depend largely on the
problem being solved.

3.3.2 Network Sizing
Just how many nodes are needed to solve a particular problem? Are three layers
always sufficient? As with the questions concerning proper training data, there
are no strict answers to questions such as these. Generally, three layers are
sufficient. Sometimes, however, a problem seems to be easier to solve with
more than one hidden layer. In this case, easier means that the network learns
faster.

The size of the input layer is usually dictated by the nature of the application.
You can often determine the number of output nodes by deciding whether you
want analog values or binary values on the output units. Section 3.4 contains
two examples that illustrate both of these situations.

Determining the number of units to use in the hidden layer is not usually as
straightforward as it is for the input and output layers. The main idea is to use
as few hidden-layer units as possible, because each unit adds to the load on the
CPU during simulations. Of course, in a system that is fully implemented in
hardware (one processor per processing element), additional CPU loading is not
as much of a consideration (interprocessor communication may be a problem,
however). We hesitate to offer specific guidelines except to say that, in our
experience, for networks of reasonable size (hundreds or thousands of inputs),
the size of the hidden layer needs to be only a relatively small fraction of that
of the input layer. If the network fails to converge to a solution it may be that
more hidden nodes are required. If it does converge, you might try fewer hidden
nodes and settle on a size on the basis of overall system performance.

It is also possible to remove hidden units that are superfluous. If you
examine the weight values on the hidden nodes periodically as the network
trains, you will see that weights on certain nodes change very little from their
starting values. These nodes may not be participating in the learning process, and
fewer hidden units may suffice. There is also an automatic method, developed
by Rumelhart, for pruning unneeded nodes from the network.1

3.3.3 Weights and Learning Parameters
Weights should be initialized to small, random values—say between ±0.5—as
should the bias terms, #,,, that appear in the equations for the net input to a
unit. It is common practice to treat this bias value as another weight, which is

'Unscheduled talk given at the Second International Conference on Neural Networks, San Diego,
June 1988.
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connected to a fictitious unit that always has an output of I . To see how this
scheme works, recall Eq. (3.3):

net£fe = f>,Vw+**
j=i

By making the definitions, Oc
k = w%(L+t} and ip(L+\) = 1, we can write

L + l

So 9°k is treated just like a weight, and it participates in the learning process
as a weight. Another possibility is simply to remove the bias terms altogether;
their use is optional.

Selection of a value for the learning rate parameter, 77, has a significant
effect on the network performance. Usually, 77 must be a small number—on
the order of 0.05 to 0.25—to ensure that the network will settle to a solution.
A small value of r; means that the network will have to make a large number
of iterations, but that is the price to be paid. It is often possible to increase
the size of i) as learning proceeds. Increasing 77 as the network error decreases
will often help to speed convergence by increasing the step size as the error
reaches a minimum, but the network may bounce around too far from the actual
minimum value if 77 gets too large.

Another way to increase the speed of convergence is to use a technique
called momentum. When calculating the weight-change value, Apw, we add a
fraction of the previous change. This additional term tends to keep the weight
changes going in the same direction—hence the term momentum. The weight-
change equations on the output layer then become

w'kj(t + 1) = w?.j(t) + r,6';kipj + a&pw°kj(t - 1) (3.24)

with a similar equation on the hidden layer. In Eq. (3.24), a is the momentum
parameter, and it is usually set to a positive value less than 1. The use of the
momentum term is also optional.

A final topic concerns the possibility of converging to a local minimum in
weight space. Figure 3.6 illustrates the idea. Once a network settles on a min-
imum, whether local or global, learning ceases. If a local minimum is reached,
the error at the network outputs may still be unacceptably high. Fortunately,
this problem does not appear to cause much difficulty in practice. If a network
stops learning before reaching an acceptable solution, a change in the number of
hidden nodes or in the learning parameters will often fix the problem; or we can
simply start over with a different set of initial weights. When a network reaches
an acceptable solution, there is no guarantee that it has reached the global min-
imum rather than a local one. If the solution is acceptable from an error stand-
point, it does not matter whether the minimum is global or local, or even whether
the training was halted at some point before a true minimum was reached.
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Figure 3.6 This graph shows a cross-section of a hypothetical error surface
in weight space. The point, zmin, is called the global minimum.
Notice, however, that there are other minimum points, z\ and
z2. A gradient-descent search for the global min imum might
accidentally find one of these local minima instead of the
global m i n i m u m .

Exercise 3.5: Consider a three-layer BPN with all weights initialized to the
same value on every unit. Prove that this network will never be able to learn
anything. Interpret this result in terms of the error surface in weight space.

3.4 BPN APPLICATIONS
The BPN is a versatile tool that is readily applied to a number of diverse
problems. To a large extent, its versatility is due to the general nature of the
network learning process. As we discussed in the previous section, there are
only two equations needed to backpropagate error signals within the network;
which of the two is used depends on whether the processing unit receiving the
error signal contributes directly to the output. Those units that do not connect
directly to the output use the same error-propagation mechanism regardless of
where they are in the network structure.

The generality offered by this common process allows arrangement and
connectivity of individual units within the network that can vary dramatically.
Similarly, due to the variety of network structures that can be created and
trained successfully using the backpropagation algorithms, this network-learning
technique can be applied to many different kinds of problems. In the remainder
of this section, we will describe two such applications, selected to illustrate the
diversity of the BPN network architecture.
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3.4.1 Data Compression
As our first example, let's consider the common problem of data compression.
Specifically, we would like to try to find a way to reduce the data needed to en-
code and reproduce accurately a moderately high-resolution video image, so that
we might transmit these images over low- to medium-bandwidth communica-
tion equipment. Although there are many algorithmic approaches to performing
data compression, most of these are designed to deal with static data, such as
ASCII text, or with display images that are fairly consistent, such as computer
graphics. Because video data rarely contain regular, well-defined forms (and
even less frequently contain empty space), video data compression is a difficult
problem from an algorithmic viewpoint.

Conversely, as originally described in [1], a neural-network approach is
ideal for a video data-reduction application, because a BPN can be trained easily
to map a set of patterns from an n-dimensional space to an m-dimensional space.
Since any video image can be thought of as a matrix of picture elements (pixels),
it naturally follows that the image can also be conceptualized as a vector in n-
space. If we limit the video to be encoded to monochromatic, images can be
represented as vectors of elements, each representing the gray-scale value of a
single pixel (0 through 255).

Network Architecture for Data Compression. The first step in solving this
problem is to try to find a way to structure our network so that it will perform
the desired data compression. We would like to select a network architecture
that provides a reasonable data-reduction factor (say, four-to-one), while still
enabling us to recover a close approximation of the original image from the
encoded form. The network illustrated in Figure 3.7 will satisfy both of these
requirements.

At first glance, it may seem unusual that the proposed network will have
a one-to-one correspondence between input and output units. After all, did
we not indicate that data compression was the desired objective? On further
investigation, the strategy implied by the network architecture becomes appar-
ent; since there are fewer hidden units than input units, the hidden layer must
represent the compressed form of the data. This is exactly the plan of at-
tack.

By providing an image vector as the input stimulation pattern, the network
will propagate the input through the hidden units to the output. Since the
hidden layer contains only one-quarter of the number of processing units as the
input layer, the output values produced by the hidden-layer units can be thought
°f as the encoded form of the input. Furthermore, by propagating the output
of the hidden-layer units forward to the output layer, we have implemented a
mechanism for reconstructing the original image from the encoded form, as well
as for training the network.

During training, the network will be shown examples of random pixel vec-
tors taken from representative video images. Each vector will be used as both
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Figure 3.7 This BPN will do four-to-one data compression.

the input to the network and the target output. Using the backpropagation
process, the network will develop the internal weight coding so that the im-
age is compressed into one-quarter of its original size at the outputs of the
hidden units. If we then read out the values produced by the hidden-layer
units in our network and transmit those values to our receiving station, we
can reconstruct the original image by propagating the compressed image to
the output units in an identical network. Such a system is depicted in Fig-
ure 3.8.

Network Sizing. There are two problems remaining to be solved for this ap-
plication: the first is the network-sizing problem, and the second is the gener-
ation of the sample data sets needed to train the network. We will address the
network-sizing aspect first.

It is unrealistic to expect to create a network that will contain an input
unit for every pixel in a single video image. Even if we restricted ourselves to
the relatively low resolution of the 525-line scan rate specified by the National
Television Standard Code (NTSC) for commercial television, our network would
have to have 336,000 input units (525 lines x 640 pixels). Moreover, the entire
network would contain roughly 750,000 processing units (336000 + 336000/4 +
336000) and 50 billion connections. As we have mentioned in earlier chapters,
simulating a network containing a large number of units and a vast number
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Transmission medium (cable)

Figure 3.8 In this example, the output activity pattern from the second
layer of units is transferred to a receiving station, where it is
applied as the output of another layer of units that forms the
top half of the three-layer network. The receiving network
then reconstructs the transmitted image from the compressed
form, using the inverse mapping function contained in the
connection weights to the top half of the network.

of connections on anything less than a dedicated supercomputer is much too
time-consuming to be considered practical.

Our sizing strategy is therefore somewhat less ambitious; we will restrict
the size of our input and output spaces to 64 pixels. Thus, the hidden layer will
contain 16 units. Although this might appear to be a significant compromise
over the full image network, the smaller network offers two practical benefits
over its larger counterpart:

* It is easy to simulate on small computers.

* It makes obtaining training data for the smaller network easier.
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Training the Network. By now, it is probably evident why the smaller net-
work is easier to simulate. Why obtaining training data for the smaller network
is easier is probably not as obvious. If we consider the nature of the application
the network is attempting to address, we can see that the network is trying to
learn a mapping from ri-space to n/4-space and the inverse mapping back to
n-space. Since the number of possible permutations of the input pattern is sig-
nificantly smaller in 64 dimensions than it is in 336,000 dimensions, it follows
that far fewer random training patterns are needed for the network to learn to
reproduce the input in 64-space.2 It is also easier to generate random images
for training the network by using 64 inputs, because a single complete video
image can be subdivided into about 5000 8 x 8 pixel matrices, each of which
can be used to train the network.

Based on these observations, our approach of downsizing the network has
solved both of the remaining issues. We now have a network that is easy to
manage and that offers a means of acquiring the training data sets from readily
obtainable sources.

Exercise 3.6: Assume that the system described in this section has been built
using a BPN simulator on a single-processor computer. What are the processing
requirements to allow entire video images to be sent at standard frame rates
(30 Hz interlaced, 60 Hz noninterlaced)?

3.4.2 Paint-Quality Inspection
Visual inspection of painted surfaces, such as automobile body panels, is cur-
rently a very time-consuming and labor-intensive process. To reduce the amount
of time required to perform this inspection, one of the major U.S. automobile
manufacturers reflects a laser beam off the painted panel and on to a projection
screen. Since the light source is a coherent beam, the amount of scatter ob-
served in the reflected image of the laser provides an indication of the quality of
the paint finish on the car. A poor paint job is one that contains ripples, looks
like "orange peel," or lacks shine. A laser beam reflected off a panel with a
poor finish will therefore be relatively diffuse. Conversely, a good-quality paint
finish will be relatively smooth and will exhibit a bright luster. A laser light
reflected off a high-quality paint finish will appear to an observer as very close
to uniform throughout its image. Figure 3.9 illustrates the kind of differences
typically observed as a result of performing this test.

We have now seen how it might be possible to automate the quality in-
spection of a painted surface. However, our system design has presumed that

-Encoding all of the patterns in 64-space is obviously not feasible. Practically, the best encoding
we can hope for using an ANS is an output mapping that resembles the desired output within some
margin of error.
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(a)

(b)

Figure 3.9 The scatter typically observed when a laser beam is reflected
off painted sheet-metal surfaces, (a) A poor-quality paint finish,
(b) A better-quality paint finish.

there is an "observer" present to assess the paint quality by performing a visual
inspection of the reflected laser image. In the past, this part of the inspection
process would have been performed primarily by humans, because conventional
computer-programming techniques that could be used to automate the "obser-
vation" and scoring process suffered from a lack of flexibility and were not
particularly robust.3 To illustrate why an algorithmic analysis of the reflected
laser image might be considered inflexible, consider that such a program would
have to examine every pixel in the input image, correlate features of each pixel
(such as brightness) with those observed in a multitude of neighboring pixels,
and assess the coherency of the image as a whole. Small, localized perturbations
in the image might represent relatively minor problems, such as a fingerprint
on the paint panel. The complexity of such a program makes it difficult to
modify.

By using a BPN to perform the quality-scoring application, we have con-
structed a system that captures the expertise of the human inspectors, and is
relatively easy to maintain and update. To improve the performance of the
system, we have coupled algorithmic techniques to simplify the problem, il-
lustrating once again that difficult problems are much easier to solve when we
can work with a complete set of tools. We shall now describe the system we
developed to address this application.

An algorithmic solution to this problem does exist, and has been successfully applied to the problem
described. However, the amount of time (and hence money) needed to maintain and update that
system, should the need arise, probably would be prohibitive.
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Automatic Paint QA System Concept. To automate the paint inspection pro-
cess, a video system was easily substituted for the human visual system. How-
ever, we were then faced with the problem of trying to create a BPN to examine
and score the paint quality given the video input. To accomplish the examina-
tion, we constructed the system illustrated in Figure 3.10. The input video image
was run through a video frame-grabber to record a snapshot of the reflected laser
image. This snapshot contained an image 400-by-75 pixels in size, each pixel
stored as one of 256 values representing its intensity. To keep the size of the
network needed to solve the problem manageable, we elected to take 10 sample
images from the snapshot, each sample consisting of a 30-by-30-pixel square
centered on a region of the image with the brightest intensity. This approach
allowed us to reduce the input size of the BPN to 900 units (down from the
30,000 units that would have been required to process the entire image). The
desired output was to be a numerical score in the range of 1 through 20 (a
1 represented the best possible paint finish; a 20 represented the worst). To
produce that type of score, we constructed the BPN with one output unit—that
unit producing a linear output that was interpreted as the scaled paint score.
Internally, 50 sigmoidal units were used on a single hidden layer. In addition,
the input and hidden layers each contained threshold ([9]) units used to bias the
units on the hidden and output layers, respectively.

Once the network was constructed (and trained), 10 sample images were
taken from the snapshot using two different sampling techniques. In the first
test, the samples were selected randomly from the image (in the sense that their
position on the beam image was random); in the second test, 10 sequential
samples were taken, so as to ensure that the entire beam was examined.4 In
both cases, the input sample was propagated through the trained BPN, and the
score produced as output by the network was averaged across the 10 trials. The
average score, as well as the range of scores produced, were then provided to
the user for comparison and interpretation.

Training the Paint QA Network. At the time of the development of this appli-
cation, this network was significantly larger than any other network we had yet
trained. Consider the size of the network used: 901 inputs, 51 hiddens, 1 output,
producing a network with 45,101 connections, each modeled as a floating-point
number. Similarly, the unit output values were modeled as floating-point num-
bers, since each element in the input vector represented a pixel intensity value
(scaled between 0 and 1), and the network output unit was linear.

The number of training patterns with which we had to work was a function
of the number of control paint panels to which we had access (18), as well as of
the number of sample images we needed from each panel to acquire a relatively
complete training set (approximately 6600 images per panel). During training,

4Results of the tests were consistent with scores assessed for the same paint panels by the human
experts, within a relatively minor error range, regardless of the sample-selection technique used.
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Figure 3.10 The BPN system is constructed to perform paint-quality
assessment. In this example, the BPN was merely a software
simulation of the network described in the text. Inputs were
provided to the network through an array structure located in
system memory by a pointer argument supplied as input to
the simulation routine.

the samples were presented to the network randomly to ensure that no single
paint panel dominated the training.

From these numbers, we can see that there was a great deal of computer
time consumed during the training process. For example, one training epoch (a
single training pass through all training patterns) required the host computer to
perform approximately 13.5 million connection updates, which translates into
roughly 360,000 floating-point operations (FLOPS) per pattern (2 FLOPS per
connection during forward propagation, 6 FLOPS during error propagation),
or 108 million FLOPS per epoch. You can now understand why we have
emphasized efficiency in our simulator design.

Exercise 3.7: Estimate the number of floating-point operations required to sim-
ulate a BPN that used the entire 400-by-75-pixel image as input. Assume 50
hidden-layer units and one output unit, with threshold units on the input and
hidden layers as described previously.

We performed the network training for this application on a dedicated LISP
computer workstation. It required almost 2 weeks of uninterrupted computation
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for the network to converge on that machine. However, once the network was
trained, we ported the paint QA application to an 80386-based desktop computer
by simply transferring the network connection weights to a disk file and copying
the file onto the disk on the desktop machine. Then, for demonstration and later
paint QA applications, the network was utilized in a production mode only. The
dual-phased nature of the BPN allowed the latter to be employed in a relatively
low-cost delivery system, without loss of any of the benefits associated with a
neural-network solution as compared to traditional software techniques.

3.5 THE BACKPROPAGATION SIMULATOR
In this section, we shall describe the adaptations to the general-purpose neu-
ral simulator presented in Chapter 1, and shall present the detailed algorithms
needed to implement a BPN simulator. We shall begin with a brief review of
the general signal- and error-propagation process through the BPN, then shall
relate that process to the design of the simulator program.

3.5.1 Review of Signal Propagation
In a BPN, signals flow bidirectionally, but in only one direction at a time.
During training, there are two types of signals present in the network: during
the first half-cycle, modulated output signals flow from input to output; during
the second half-cycle, error signals flow from output layer to input layer. In the
production mode, only the feedforward, modulated output signal is utilized.

Several assumptions have been incorporated into the design of this simula-
tor. First, the output function on all hidden- and output-layer units is assumed
to be the sigmoid function. This assumption is also implicit in the pseudocode
for calculating error terms for each unit. In addition, we have included the
momentum term in the weight-update calculations. These assumptions imply
the need to store weight updates at one iteration, for use on the next iteration.
Finally, bias values have not been included in the calculations. The addition of
these is left as an exercise at the end of the chapter.

In this network model, the input units are fan-out processors only. That is,
the units in the input layer perform no data conversion on the network input
pattern. They simply act to hold the components of the input vector within
the network structure. Thus, the training process begins when an externally
provided input pattern is applied to the input layer of units. Forward signal
propagation then occurs according to the following sequence of activities:

1. Locate the first processing unit in the layer immediately above the current
layer.

2. Set the current input total to zero.
3. Compute the product of the first input connection weight and the output

from the transmitting unit.
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4. Add that product to the cumulative total.
5. Repeat steps 3 and 4 for each input connection.
6. Compute the output value for this unit by applying the output function

f ( x ) = 1/(1 + e~x), where x — input total.

7. Repeat steps 2 through 6 for each unit in this layer.
8. Repeat steps 1 through 7 for each layer in the network.

Once an output value has been calculated for every unit in the network, the
values computed for the units in the output layer are compared to the desired
output pattern, element by element. At each output unit, an error value is
calculated. These error terms are then fed back to all other units in the network
structure through the following sequence of steps:

1. Locate the first processing unit in the layer immediately below the output
layer.

2. Set the current error total to zero.
3. Compute the product of the first output connection weight and the error

provided by the unit in the upper layer.

4. Add that product to the cumulative error.

5. Repeat steps 3 and 4 for each output connection.
6. Multiply the cumulative error by o(l — o), where o is the output value of

the hidden layer unit produced during the feedforward operation.

7. Repeat steps 2 through 6 for each unit on this layer.
8. Repeat steps 1 through 7 for each layer.

9. Locate the first processing unit in the layer above the input layer.

10. Compute the weight change value for the first input connection to this unit
by adding a fraction of the cumulative error at this unit to the input value
to this unit.

H. Modify the weight change term by adding a momentum term equal to a
fraction of the weight change value from the previous iteration.

12. Save the new weight change value as the old weight change value for this
connection.

13. Change the connection weight by adding the new connection weight change
value to the old connection weight.

14. Repeat steps 10 through 13 for each input connection to this unit.

15. Repeat steps 10 through 14 for each unit in this layer.
16. Repeat steps 10 through 15 for each layer in the network.



116 Backpropagation

3.5.2 BPN Special Considerations
In Chapter 1, we emphasized that our simulator was designed to optimize the
signal-propagation process through the network by organizing the input con-
nections to each unit as linear sequential arrays. Thus, it becomes possible
to perform the input sum-of-products calculation in a relatively straightforward
manner. We simply step through the appropriate connection and unit output
arrays, summing products as we go. Unfortunately, this structure does not lend
itself easily to the backpropagation of errors that must be performed by this
network.

To understand why there is a problem, consider that the output connections
from each unit are being used to sum the error products during the learning
process. Thus, we must jump between arrays to access output connection val-
ues that are contained in input connection arrays to the units above, rather
than stepping through arrays as we did during the forward-propagation phase.
Because the computer must now explicitly compute where to find the next con-
nection value, error propagation is much less efficient, and, hence, training is
significantly slower than is production-mode operation.

3.5.3 BPN Data Structures
We begin our discussion of the BPN simulator with a presentation of the back-
propagation network data structures that we will require. Although the BPN is
similar in structure to the Madaline network described in Chapter 2, it is also
different in that it requires the use of several additional parameters that must be
stored on a connection or network unit basis. Based on our knowledge of how
the BPN operates, we shall now propose a record of data that will define the
top-level structure of the BPN simulator:

record BPN =
INUNITS : "layer; {locate input layer}
OUTUNITS : "layer; {locate output units}
LAYERS : "layerf]; {dynamically sized network}
alpha, {the momentum term}
eta : float; {the learning rate}

end record;

Figure 3.11 illustrates the relationship between the network record and all
subordinate structures, which we shall now discuss. As we complete our dis-
cussion of the data structures, you should refer to Figure 3.11 to clarify some
of the more subtle points.

Inspection of the BPN record structure reveals that this structure is designed
to allow us to create networks containing more than just three layers of units.
In practice, BPNs that require more than three layers to solve a problem are
not prevalent. However, there are several examples cited in the literature ref-
erenced at the end of this chapter where multilayer BPNs were utilized, so we
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Figure 3.11 The BPN data structure is shown without the arrays for
the error and last^delta terms for clarity. As before,
the network is defined by a record containing pointers
to the subordinate structures, as well as network-specific
parameters. In this diagram, only three layers are illustrated,
although many more hidden layers could be added by simple
extension of the layer_ptr array.

have included the capability to construct networks of this type in our simulator
design.

It is obvious that the BPN record contains the information that is of global
interest to the units in the network—specifically, the alpha (a) and eta (77) terms.
However, we must now define the layer structure that we will use to construct
the remainder of the network, since it is the basis for locating all information
used to define the units on each layer. To define the layer structure, we must
remember that the BPN has two different types of operation, and that different
information is needed in each phase. Thus, the layer structure contains pointers
to two different sets of arrays: one set used during forward propagation, and
one set used during error propagation. Armed with this understanding, we can
now define the layer structure for the BPN:

record layer =
outputs : " f loa t [ ] ;
weights : "" f loa t [ ] ;
errors : "float[];
last_delta : " " f l o a t f ]

end record;

{locate output array}
{locate connection ar ray(s)}
{locate error terms for layer}
{locate previous delta terms}

During the forward-propagation phase, the network will use the information
contained in the outputs and weights arrays, just as we saw in the design
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of the Adaline simulator. However, during the backpropagation phase, the BPN
requires access to an array of error terms (one for each of the units on the
layer) and to the list of change parameters used during the previous learning
pass (stored on a connection basis). By combining the access mechanisms to all
these terms in the layer structure, we can continue to keep processing efficient, at
least during the forward-propagation phase, as our data structures will be exactly
as described in Chapter 1. Unfortunately, activity during the backpropagation
phase will be inefficient, because we will be accessing different arrays rather
than accessing sequential locations within the arrays. However, we will have
to live with the inefficiency incurred here since we have elected to model the
network as a set of arrays.

3.5.4 Forward Signal-Propagation Algorithms
The following four algorithms will implement the feedforward signal-propagation
process in our network simulator model. They are presented in a bottom-up
fashion, meaning that each is defined before it is used.

The first procedure will serve as the interface routine between the host
computer and the BPN simulation. It assumes that the user has defined an array
of floating-point numbers that indicate the pattern to be applied to the network
as inputs.

procedure set_inputs (INPUTS, NET_IN : "float[])
{copy the input values into the net input layer}

var
tempi:"float[];
temp2:- float[];
i : integer;

begin
tempi = NET_IN;
temp2 = INPUTS;

for i

{a local pointer}
{a local pointer}
{iteration counter}

{locate net input layer}
{locate input values}

1 to length(NET_IN) do
{for all input values, do}

tempi[i] = temp2[i]; {copy input to net input}
end do;

end;

The next routine performs the forward signal propagation between any two
layers, located by the pointer values passed into the routine. This routine em-
bodies the calculations done in Eqs. (3.1) and (3.2) for the hidden layer, and in
Eqs. (3.3) and (3.4) for the output layer.
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procedure propagate_layer (LOWER, UPPER: "layer)
{propagate signals from the lower to the upper layer}
var
inputs : "float[]; (size input layer}
current : "float[]; {size current layer}
connects : "float[]; {step through inputs}
sum : real; {accumulate products}
i, j : integer; {iteration counters}

begin
inputs = LOWER".outputs; {locate lower layer}
current = UPPER".outputs; {locate upper layer}

for i = 1 to length(current) do
{for all units in layer}

sum = 0; {reset accumulator}
connects = UPPER".weights"[i];

{find start of wt. array}

for j = 1 to length(inputs) do
{for all inputs to unit}

sum = sum + inputs[j] * connects[j];
{accumulate products}

end do;

current [i] = 1.0 / (1.0 + exp(-sum));
{generate output}

end do;
end;

The next procedure performs the forward signal propagation for the entire
network. It assumes the input layer contains a valid input pattern, placed there
by a higher-level call to set-inputs.

procedure propagate_forward (NET: BPN)
{perform the forward signal propagation for net}

var
upper : "layer; {pointer to upper layer}
lower : "layer; {pointer to lower layer}
i : integer; {layer counter}

begin
for i = 1 to length(NET.layers) do {for all layers}

lower = NET.layers[i]; {get pointer to input layer}
upper = NET.layers[i+1]; {get pointer to next layer}
propagate_layer (lower, upper); {propagate forward}

end do;
end;
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The final routine needed for forward propagation will extract the output
values generated by the network and copy them into an external array specified
by the calling program. This routine is the complement of the set-input
routine described earlier.

procedure get_outputs (NETJDUTS, OUTPUTS : "float[])
{copy the net out values into the outputs specified.)

var
tempi:"float[];
temp2:"float[];

begin
tempi = NETJDUTS;
temp2 = OUTPUTS;

{a local pointer}
{a local pointer}

{locate net output layer}
{locate output values array}

for i = 1 to length(NET_OUTS)
temp2[i] = tempi[i];

end do;
end;

do {for all outputs, do}
{copy net output}
{to output array}

3.5.5 Error-Propagation Routines
The backward propagation of error terms is similar to the forward propagation
of signals. The major difference here is that error signals, once computed,
are being backpropagated through output connections from a unit, rather than
through input connections.

If we allow an extra array to contain error terms associated with each unit
within a layer, similar to our data structure for unit outputs, the error-propagation
procedure can be accomplished in three routines. The first will compute the error
term for each unit on the output layer. The second will backpropagate errors
from a layer with known errors to the layer immediately below. The third will
use the error term at any unit to update the output connection values from that
unit.

The pseudocode designs for these routines are as follows. The first calcu-
lates the values of 6°k on the output layer, according to Eq. (3.15).

procedure compute_output_error (NET : BPN;
TARGET: "float[])

{compare output to target, update errors accordingly}

var
errors :
outputs

•float; {used to store error values}
"float; {access to network outputs}

begin
errors = NET .OUT/UNITS' .errors; {find error array}
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outputs = NET.OUTUNITS".outputs;
{get pointer to unit outputs}

for i = 1 to length(outputs) do {for all output units}
errors[i] = outputs[i]*(1-outputs[i])

*(TARGET[i]-outputs[i]) ;
end do;

end;

In the backpropagation network, the terms 77 and a will be used globally to
govern the update of all connections. For that reason, we have extended the net-
work record to include these parameters. We will refer to these values as "eta"
and "alpha" respectively. We now provide an algorithm for backpropagating
the error term to any unit below the output layer in the network structure. This
routine calculates 8^ for hidden-layer units according to Eq. (3.22).

procedure backpropagate_error (UPPER,LOWER: "layer)
{backpropagate errors from an upper to a lower layer}

var
senders : "float[]; {source errors}
receivers : ~float[]; {receiving errors}
connects : "float[]; {pointer to connection arrays}
unit : float; {unit output value}
i, j : integer; {indices}

begin
senders = UPPER".errors; {known errors}
receivers = LOWER".errors; {errors to be computed}

for i = 1 to length(receivers) do
{for all receiving units}

receivers[i] = 0; {init error accumulator}

for j = 1 to length(senders) do
{for all sending units}

connects = UPPER".weights"[j};
{locate connection array}

receivers[i] = receivers[i] + senders[j]
* connects[i] ;

end do;
unit = LOWER".outputs[i]; {get unit output}
receivers[i] = receivers[i] * unit * (1-unit);

end do;
end;

Finally, we must now step through the network structure once more to ad-
just connection weights. We move from the input layer to the output layer.
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Here again, to improve performance, we process only input connections, so our
simulator can once more step through sequential arrays, rather than jumping
from array to array as we had to do in the backpropagate.error proce-
dure. This routine incorporates the momentum term discussed in Section 3.4.3.
Specifically, alpha is the momentum parameter, and delta refers to the
weight change values; see Eq. (3.24).

procedure adjust_weights (NET:BPN)
{update all connection weights based on new error values)

var
current
inputs :
units :
weights
delta :
error :

: "layer;
"float[];
-floatf];
: -float[]
~ float[];
"float [] ;

i, j, k : integer;

{access layer data record}
{array of input values}
{access units in layer}
{connections to unit}
{pointer to delta arrays}
{pointer to error arrays}
{iteration indices}

begin
for i = 2 to length(NET.layers) do

{starting at first computed layer}
current = NET.layers[i];

{get pointer to layer}
units = NET.layers[i]".outputs;

{step through units}

inputs = NET.layers[i-1]".outputs;
{access input array}

for j = 1 to length(units) do
{for all units in layer}

weights = current.weights[j];
{find input connections }

delta = current.deltas[j]; {locate last delta}
error = NET.layers[i]".errors;

{access unit errors}
for k = 1 to length(weights) do

{for all connections}
weightsfk] =weights[k] + (inputs[k]*NET.eta

*error[k]) +
(NET.alpha * delta[k]);

end do;
end do;

end do;
end;
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3.5.6 The Complete BPN Simulator
We have now implemented the algorithms needed to perform the backpropaga-
tion function. All that remains is to implement a top-level routine that calls our
signal-propagation procedures in the correct sequence to allow the simulator to
be used. For production-mode operation after training, this routine would take
the following general form:

begin
call set_inputs to stimulate the network with an input.
call propagate_forward to generate an output.
call get_outputs to examine the output generated,

end

During training, the routine would be extended to this form:

begin
while network error is larger than some predefined limit

do
call set_inputs to apply a training input.
call propagate_forward to generate an output.
call compute_output_error to determine errors.
call backpropagate_error to update error values,
call adjust_weights to modify the network,

end do
end.

Programming Exercises
3.1. Implement the backpropagation network simulator using the pseudocode

examples provided. Test the network by training it to solve the character-
recognition problem described in Section 3.1. Use a 5-by-7-character matrix
as input, and train the network to recognize all 36 alphanumeric characters
(uppercase letters and 10 digits). Describe the network's tolerance to noisy
inputs after training is complete.

3.2. Modify the BPN simulator developed in Programming Exercise 3.1 to
implement linear units in the output layer only. Rerun the character-
recognition example, and compare the network response with the results
obtained in Programming Exercise 3.1. Be sure to compare both the train-
ing and the production behaviors of the networks.

3.3. Using the XOR problem described in Chapter 1, determine how many hid-
den units are needed by a sigmoidal, three-layer BPN to learn the four
conditions completely.

3.4. The BPN simulator adjusts its internal connection status after every training
pattern. Modify the simulator design to implement true steepest descent by
adjusting weights only after all training patterns have been examined. Test
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your modifications on the XOR problem set from Chapter 1, and on the
character-identification problem described in this chapter.

3.5. Modify your BPN simulator to incorporate the bias terms. Follow the sug-
gestion in Section 3.4.3 and consider the bias terms to be weights connected
to a fictitious unit that always has an output of 1. Train the network using
the character-recognition example. Note any differences in the training or
performance of the network when compared to those of earlier implemen-
tations.

Suggested Readings
Both Chapter 8 of PDF [7] and Chapter 5 of the PDF Handbook [6] contain
discussions of backpropagation and of the generalized delta rule. They are
good supplements to the material in this chapter. The books by Wasserman [10]
and Hecht-Nielsen [4] also contain treatments of the backpropagation algorithm.
Early accounts of the algorithm can be found in the report by Parker [8] and
the thesis by Werbos [11].

Cottrell and colleagues [1] describe the image-compression technique dis-
cussed in Section 4 of this chapter. Gorman and Sejnowski [3] have used
backpropagation to classify SONAR signals. This article is particularly interest-
ing for its analysis of the weights on the hidden units in their network. A famous
demonstration system that uses a backpropagation network is Terry Sejnowski's
NETtalk [9]. In this system, a neural network replaces a conventional system
that translates ASCII text into phonemes for eventual speech production. Audio
tapes of the system while it is learning are mindful of the behavior patterns seen
in human children while they are learning to talk. An example of a commercial
visual-inspection system is given in the paper by Glover [2].

Because the backpropagation algorithm is so expensive computationally,
people have made numerous attempts to speed convergence. Many of these
attempts are documented in the various proceedings of IEEE/INNS conferences.
We hesitate to recommend any particular method, since we have not yet found
one that results in a network as capable as the original.
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The BAM and the
Hopfield Memory

The subject of this chapter is a type of ANS called an associative memory.
When you read a bit further, you may wonder why the backpropagation network
discussed in the previous chapter was not included in this category. In fact, the
definition of an associative memory, which we shall present shortly, does apply
to the backpropagation network in certain circumstances. Nevertheless, we have
chosen to delay the formal discussion of associative memories until now. Our
definitions and discussion will be slanted toward the two varieties of memories
treated in this chapter: the bidirectional associative memory (BAM), and the
Hopfield memory. You should be able to generalize the discussion to cover
other network models.

The concept of an associative memory is a fairly intuitive one: Associative
memory appears to be one of the primary functions of the brain. We easil>
associate the face of a friend with that friend's name, or a name with a telephone
number.

Many devices exhibit associative-memory characteristics. For example, the
memory bank in a computer is a type of associative memory: it associates
addresses with data. An object-oriented program (OOP) with inheritance can
exhibit another type of associative memory. Given a datum, the OOP asso-
ciates other data with it, through the OOP's inheritance network. This type of
memory is called a content-addressable memory (CAM). The CAM associates
data with addresses of other data; it does the opposite of the computer memory
bank.

The Hopfield memory, in particular, played an important role in the current
resurgence of interest in the field of ANS. Probably as much as any other single
factor, the efforts of John Hopfield, of the California Institute of Technology,
have had a profound, stimulating effect on the scientific community in the area
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of ANS. Before describing the BAM and the Hopfield memory, we shall present
a few definitions in the next section.

4.1 ASSOCIATIVE-MEMORY DEFINITIONS
In this section, we review some basic definitions and concepts related to as-
sociative memories. We shall begin with a discussion of Hamming distance,
not because the concept is likely to be new to you, but because we want to
relate it to the more familiar Euclidean distance, in order to make the notion of
Hamming distance more plausible. Then we shall discuss a simple associative
memory called the linear associator.

4.1.1 Hamming Distance
Figure 4.1 shows a set of points which form the three-dimensional Hamming
cube. In general, Hamming space can be defined by the expression

Hn = {* = (xi,x2,...,xn)tERn:xi 6 (±1)} (4.1)

In words, n-dimensional Hamming space is the set of n-dimensional vectors,
with each component an element of the real numbers, R, subject to the condition
that each component is restricted to the values ±1. This space has 2" points,
all equidistant from the origin of Euclidean space.

Many neural-network models use the concept of the distance between two
vectors. There are, however, many different measures of distance. In this
section, we shall define the distance measure known as Hamming distance and
shall show its relationship to the familiar Euclidean distance between points. In
later chapters, we shall explore other distance measures.

Let x = ( x i , x 2 , . . . ,£„)* and y = (y],y2, ••• ,J/n) f be two vectors in n-
dimensional Euclidean space, subject to the restriction that X i , y i e {±1}, so
that x and y are also vectors in n-dimensional Hamming space. The Euclidean
distance between the two vector endpoints is

d= V(xi - y\)2 + fe - 2/2)2 + • • •

Since xt,yt e {±1}, then (x, - yrf e {0,4}:

Thus, the Euclidean distance can be written as

d = \/4(# mismatched components of x and y)
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H.1,1)

(-1,1-1)

Figure 4.1

(1-1,1)

(1-1-1)

(1,1-1)

This figure shows the Hamming cube in three-dimensional
space. The entire three-dimensional Hamming space, H3,
comprises the eight points having coordinate values of either
— 1 or +1. In this three-dimensional space, no other points
exist.

We define the Hamming distance as

h = # mismatched components of x and y (4.2)

or the number of bits that are different between x and y.'
The Hamming distance is related to the Euclidean distance by the equation

(4.3)

or

(4.4)

Even though the components of the vectors are ± 1, rather than 0 and 1, we shall use the term bits
to represent one of the vector components. We shall refer to vectors having components of ± 1 as
being bipolar, rather than binary. We shall reserve the term binary for vectors whose components
are 0 and 1.

L
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We shall use the concept of Hamming distance a little later in our discussion
of the BAM. In the next section, we shall take a look at the formal definition
of the associative memory and the details of the linear-associator model,

Exercise 4.1: Determine the Euclidean distance between (1,1,1,1,1)* and
(-1,—1,1,-1,1)*. Use this result to determine the Hamming distance with
Eq. (4.4).

4.1.2 The Linear Associator
Suppose we have L pairs of vectors, {(xi, yO, (x2, y2) , . . . , (xj,, yL)}, with x» £
Rn, and y; e Rm. We call these vectors exemplars, because we will use
them as examples of correct associations. We can distinguish three types of
associative memories:

1. Heteroassociative memory: Implements a mapping, $, of x to y such
that $(Xj) = y;, and, if an arbitrary x is closer to Xj than to any other
Xj, j = 1 , . . . ,L, then <3>(x) = y^. In this and the following definitions,
closer means with respect to Hamming distance.

2. Interpolate associative memory: Implements a mapping, $, of x to
y such that $(Xj) — y,, but, if the input vector differs from one of the
exemplars by the vector d, such that x = Xj + d, then the output of the
memory also differs from one of the exemplars by some vector e: $(x) =
$(Xj + d) = y; + e.

3. Autoassociative memory: Assumes y{ = xz and implements a mapping,
$, of x to x such that <J>(Xj) = Xj, and, if some arbitrary x is closer to x,
than to any other Xj, j — 1, . . . , L, then $(x) = Xj.

Building such a memory is not such a difficult task mathematically if we
make the further restriction that the vectors, Xj, form an orthonormal set.2 To
build an interpolative associative memory, we define the function

y2x*, yLx*L)x (4-5)

If Xj is the input vector, then <&(xj) = yi? since the set of x vectors is
orthonormal. This result can be seen from the following example. Let x2 be
the input vector. Then, from Eq. (4.5),

y2x2

= yix*x2

L2

2Such a set is defined by the relationship, \l\j = Sij, where f>ij = 1 if i = j, and 6ij = 0 if
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All the 6ij terms in the preceding expression vanish, except for 622, which is
equal to 1. The result is perfect recall of $2'.

If the input vector is different from one of the exemplars, such that x —
\, + d, then the output is

= $(Xi + d) = yt + e

where
e =

Note that there is nothing in the discussion of the linear associator that
requires that the input or output vectors be members of Hamming space: The
only requirement is that they be orthonormal. Furthermore, notice that there
was no training involved in the definition of the linear associator. The function
that mapped x into y was defined by the mathematical expression in Eq. (4.5).
Most of the models we discuss in this chapter share this characteristic; that is,
they are not trained in the sense that an Adaline or backpropagation network is
trained.

In the next section, we take up the discussion of BAM. This model uti-
lizes the distributed processing approach, discussed in the previous chapters, to
implement an associative memory.

4.2 THE BAM
The BAM consists of two layers of processing elements that are fully intercon-
nected between the layers. The units may, or may not, have feedback connec-
tions to themselves. The general case is illustrated in Figure 4.2.

4.2.1 BAM Architecture
As in other neural network architectures, in the BAM architecture there are
weights associated with the connections between processing elements. Unlike
in many other architectures, these weights can be determined in advance if all
of the training vectors can be identified.

We can borrow the procedure from the linear-associator model to construct
the weight matrix. Given L vector pairs that constitute the set of exemplars that
we would like to store, we can construct the matrix:

w = y,x j+y2x£ + - - - + y L x £ (4.6)

This equation gives the weights on the connections from the x layer to the y
layer. For example, the value w2i is the weight on the connection from the
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x layer

y layer

Figure 4.2 The BAM shown here has n units on the x layer, and m units
on the y layer. For convenience, we shall call the x vector
the input vector, and call the y vector the output vector. In
this network, x e H", and y e Hm. All connections between
units are bidirectional, with weights at each end. Information
passes back and forth from one layer to the other, through these
connections. Feedback connections at each unit may not be
present in all BAM architectures.

third unit on the x layer to the second unit on the y layer. To construct the
weights for the x layer units, we simply take the transpose of the weight ma-
trix, w'.

We can make the BAM into an autoassociative memory by constructing the
weight matrix as

W = XiX, + X2Xj + • • • + XLx'L

In this case, the weight matrix is square and symmetric.

4.2.2 BAM Processing
Once the weight matrix has been constructed, the BAM can be used to recall
information (e.g., a telephone number), when presented with some key infor-
mation (a name corresponding to a particular telephone number). If the desired
information is only partially known in advance or is noisy (a misspelled name
such as "Simth"), the BAM may be able to complete the information (giving
the proper spelling, "Smith," and the correct telephone number).
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To recall information using the BAM, we perform the following steps:

1. Apply an initial vector pair, (x0, yo), to the processing elements of the BAM.
2. Propagate the information from the x layer to the y layer, and update the

values on the y-layer units. We shall see how this propagation is done
shortly.3

3. Propagate the updated y information back to the x layer and update the
units there.

4. Repeat steps 2 and 3 until there is no further change in the units on each
layer.

This algorithm is what gives the BAM its bidirectional nature. The terms input
and output refer to different quantities, depending on the current direction of
the propagation. For example, in going from y to x, the y vector is considered
as the input to the network, and the x vector is the output. The opposite is true
when propagating from x to y.

If all goes well, the final, stable state will recall one of the exemplars
used to construct the weight matrix. Since, in this example, we assume we
know something about the desired x vector, but perhaps know nothing about
the associated y vector, we hope that the final output is the exemplar whose
x, vector is closest in Hamming distance to the original input vector, x0. This
scenario works well provided we have not overloaded the BAM with exemplars.
If we try to put too much information in a given BAM, a phenomenon known as
crosstalk occurs between exemplar patterns. Crosstalk occurs when exemplar
patterns are too close to each other. The interaction between these patterns can
result in the creation of spurious stable states. In that case, the BAM could
stabilize on meaningless vectors. If we think in terms of a surface in weight
space, as we did in Chapters 2 and 3, the spurious stable states correspond to
minima that appear between the minima that correspond to the exemplars.

4.2.3 BAM Mathematics
The basic processing done by each unit of the BAM is similar to that done by
the general processing element discussed in the first chapter. The units compute
sums of products of the inputs and weights to determine a net-input value, net.
On the y layer,

net*' = wx (4.7)

where net;i/ is the vector of net-input values on the y layer. In terms of the
individual units, yt,

.
^Although we consistently begin with the X-to-y propagation, you could begin in the other direction.
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On the x layer,

w*y (4.9)

(4.10)

The quantities n and m are the dimensions of the x and y layers, respectively.
The output value for each processing element depends on the net input

value, and on the current output value on the layer. The new value of y at
timestep t + 1, y(t + 1), is related to the value of y at timestep t, y(t), by

net? > 0
net*' = 0
net? < 0

(4.11)

Similarly, x(t + 1) is related to x(t) by

+ 1 netf > 0
Xi(t) netf = 0
-1 netf < 0

(4.12)

Let's illustrate BAM processing with a specific example. Let

l =(!,-!, -1,1, -1,1,!,-!,-!, 1)' and y, = (1, -1, -1, -1, -1,1)'

2 =(l , l , l , - l , - l , - l , l , l , - l , - l )* and y2 = (l,1,1,1,-!,-!)*

We have purposely made these vectors rather long to minimize the possibility
of crosstalk. Hand calculation of the weight matrix is tedious when the vectors
are long, but the weight matrix is fairly sparse.

The weight matrix is calculated from Eq. (4.6). The result is

w

/ 2 0 0 0 - 2 0 2 0 - 2 0 \
0 2 2 -2 0-2 0 2 0-2
0 2 2-2 0-2 0 2 0-2
0 2 2-2 0-2 0 2 0-2
- 2 0 0 0 2 0 - 2 0 2 0
0-2-2 2 0 2 0-2 0 2
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For our first trial, we choose an x vector with a Hamming distance of 1 from
X i : XQ = ( — 1 , — 1 , — 1 , 1 , — 1 , 1 , 1 , -1, -1, 1)*. This situation could represent
noise on the input vector. The starting yo vector is one of the training vectors,
y2; y0 = ( 1 , 1 , 1 , 1 , — ! , — ! ) * . (Note that in a realistic problem, you may not
have prior knowledge of the output vector. Use a random bipolar vector if
necessary.)

We will propagate first from x to y. The net inputs to the y units are nety —
(4,-12,-12,-12,-4,12)*. The new y vector is ynew = (1,-1,-1,-1,-1, 1)',
which is also one of the training vectors. Propagating back to the x layer we get
xnew = (1, — 1, — 1 , 1 , — 1 , 1 , 1 , — 1, —1,1)* . Further passes result in no change,
so we are finished. The BAM successfully recalled the first training set.

Exercise 4.2: Repeat the calculation just shown, but begin with the y-to-x prop-
agation. Is the result what you expected?

For our second example, we choose the following initial vectors:

x0 = (-1,1,1, -1,1,1,1, -1,1,-1)'
yo = (-1,1,-!, 1,-1,-1)*

The Hamming distances of the XQ vector from the training vectors are /I(XQ, xj) =
7 and /i(xo,X2) = 5. For the yo vector, the values are /i(yo,yi) = 4 and
h(yo,y2) = 2. Based on these results, we might expect that the BAM would
settle on the second exemplar as a final solution.

We start again by propagating from x to y, and the new y vector is
ynew = (-1,1,1,1,1,-!)*. Propagating back from y to x, we get xnew =
( — 1 . 1, 1. — 1 , 1 , — 1 , — 1 , 1 , 1, —1)'. Further propagation does not change the re-
sults. If you examine these output vectors, you will notice that they do not
match any of the exemplars. Furthermore, they are actually the complement of
the first training set, (xnew,ynew) = (xf ,yf) , where the "c" superscript refers to
the complement. This example illustrates a basic property of the BAM: If you
encode an exemplar, (x,y), you also encode its complement, (xc,yc).

The best way to familiarize yourself with the properties of a BAM is to
work through many examples. Thus, we recommend the following exercises.

Exercise 4.3: Using the same weight matrix as in Exercise 4.2, experiment with
several different input vectors to investigate the characteristics of the BAM. In
particular, evaluate the difference between starting with x-to-y propagation, and
y-to-x propagation. Pick starting vectors that have various Hamming distances
from the exemplar vectors. In addition, try adding more exemplars to the weight
matrix. You can add more exemplars to the weight matrix by a simple addi-
tive process. How many exemplars can you add before crosstalk becomes a
significant problem?
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Exercise 4.4: Construct an autoassociative BAM using the following training
vectors:

xj =(!,-!,-1,1,-1,1)* and x2 = (1,1,1, -1, -1, -1)*

Determine the output using XQ = (1 ,1 ,1 ,1 ,—1,1)*, which is a Hamming dis-
tance of two from each training vector. Try XQ = ( — 1 , 1 , 1 , — 1 , 1 , — 1 ) ' , which
is a complement of one of the training vectors. Experiment with this network
in accordance with the instructions in Exercise 4.3. In addition, try setting the
diagonal elements of the weight matrix equal to zero. Does doing so have any
effect on the operation of the BAM?

4.2.4 BAM Energy Function
In the previous two chapters, we discussed an iterative process for finding weight
values that are appropriate for a particular application. During those discussions,
each point in weight space had associated with it a certain error value. The
learning process was an iterative attempt to find the weights which minimized
the error. To gain an understanding of the process, we examined simple cases
having two weights so that each weight vector corresponded to a point on an
error surface in three dimensions. The height of the surface at each point
determined the error associated with that weight vector. To minimize the error,
we began at some given starting point and moved along the surface until we
reached the deepest valley on the surface. This minimum point corresponded to
the weights that resulted in the smallest error value. Once these weights were
found, no further changes were permitted and training was complete.

During the training process, the weights form a dynamical system. That is,
the weights change as a function of time, and those changes can be represented
as a set of coupled differential equations.

For the BAM that we have been discussing in the last few sections, a slightly
different situation occurs. The weights are calculated in advance, and are not
part of a dynamical system. On the other hand, an unknown pattern presented
to the BAM may require several passes before the network stabilizes on a final
result. In this situation, the x and y vectors change as a function of time, and
they form a dynamical system.

In both of the dynamical systems described, we are interested in several
aspects of system behavior: Does a solution exist? If it does, will the system
converge to it in a finite time? What is the solution? Up to now we have been
primarily concerned with the last of those three questions. We shall now look
at the first two.

For the simple examples discussed so far, the question of the existence
of a solution is academic. We found solutions; therefore, they must exist.
Nevertheless, we may have been simply lucky in our choice of problems. It
is still a valid question to ask whether a BAM, or for that matter, any other
network, will always converge to a stable solution. The technique discussed here
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is fairly easy to apply to the BAM. Unfortunately, many network architectures
do not have convergence proofs. The lack of such a proof does not mean that
the network will not function properly, but there is no guarantee that it will
converge for any given problem.

In the theory of dynamical systems, a theorem can be proved concerning the
existence of stable states that uses the concept of a function called a Lyapunov
function, or energy function. We shall present a nonrigorous version here,
which is useful for our purposes. If a bounded function of the state variables
of a dynamical system can be found, such that all state changes result in a
decrease in the value of the function, then the system has a stable solution.4
This function is called a Lyapunov function, or energy function. In the case of
the BAM, such a function exists. We shall call it the BAM energy function;
it has the form

£(x,y) = -y'wx (4.13)

or, in terms of components,

We shall now state an important theorem about the BAM energy function
that will help to answer our questions about the existence of stable solutions of
the BAM processing equations. The theorem has three parts:

1. Any change in x or y during BAM processing results in a decrease in E.

2. E is bounded below by Em\n = — ̂ - Wij .
3. When E changes, it must change by a finite amount.

Items 1 and 2 prove that E is a Lyapunov function, and that the dynamical
system has a stable state. In particular, item 2 shows that E can decrease only
to a certain value; it can't continue down to negative infinity, so that eventually
the x and y vectors must stop changing. Item 3 prevents the possibility that
changes in E might be infinitesimally small, resulting in an infinite amount of
time spent before the minimum E is reached.

In essence, the weight matrix determines the contour of a surface, or land-
scape, with hills and valleys, much like the ones we have discussed in previous
chapters. Figure 4.3 illustrates a cross-sectional view of such a surface. The
analogy of the E function as an energy function results from an analysis of how
the BAM operates. The initial state of the BAM is determined by the choice of
the starting vectors, (x and y). As the BAM processes the data, x and y change,
resulting in movement of the energy over the landscape, which is guaranteed by
the BAM energy theorem to be downward.

4See Hirsch and Smale [3] or Beltrami [1J for a more rigorous version of the theorem.
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Figure 4.3 This figure shows a cross-section of a BAM energy landscape
in two dimensions. The particular topography results from
the choice of exemplar vectors that go into making up the
weight matrix. During processing, the BAM energy value will
move from its starting point down the energy hill to the nearest
minimum, while the BAM outputs move from state a to state
b. Notice that the minima reached need not be the global, or
lowest, minima on the landscape.

Initially, the changes in the calculated values of E(x, y) are large. As the
x and y vectors reach their stable state, the value of E changes by smaller
amounts, and eventually stops changing when the minimum point is reached.
This situation corresponds to a physical system such as a ball rolling down a
hill into a valley, but with enough friction that, by the time the ball reaches
the bottom, it has no more energy and therefore it stops. Thus, the BAM
resembles a dissipative dynamic system in which the E function corresponds to
the energy of the physical system. Remember that the weight matrix determines
the contour of this energy landscape; that is, it determines how many energy
valleys there are, how far apart they are, how deep they are, and whether there
are any unexpected valleys (i.e., spurious states).

We need to clarify one point. We have been illustrating these concepts using
a two-dimensional cross-section of an energy landscape, and using the familiar
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term valley to refer to the locations of the minima. A more precise term would
be basin. In fact, the literature on dynamical systems refers to these locations
as basins of attraction.

To solidify the concept of BAM energy, we return to the examples of
the previous section. First, notice that according to part two of the BAM en-
ergy theorem, the minimum value of E is —64, found by summing the neg-
atives of all the magnitudes of the components of the matrix. A calculation
of E for each of the two training vectors shows that both pairs sit at the
bottom of basins having this same value of E. Our first trial vectors were
x0 = (-I,-!,-!,!,-},!,!,-!,-],!)* and y0 = (1,1,1,1,-1,-1)'. The
energy of this system is E = -y^wxc = -8.

The first propagation results in ynew = (! ,-! ,—!,-! ,—1, 1)*, and a new
energy value E = -y£ewwx0 — -24. Propagation back to the x layer re-
sulted in xnew = (1, — 1 , — 1 , 1 , — 1 , 1 , 1 , —1, —1,1)* . The energy is now E =
-y^ewwxnew = -64. At this point, no further passes through the system are
necessary, since —64 is the lowest possible energy. Since any further change in
x or y would lower the energy, according to the theorem, no such changes are
possible.

Exercise 4.5: Perform the BAM energy calculation on the second example from
Section 4.2.3.

Proof of the BAM Energy Theorem. In this section, we prove the first part
of the BAM energy theorem. We present this proof because it is both clever
and easy to understand. The proof is not essential to your understanding of the
remaining material, so you may skip it if you wish.

We begin with Eq. (4.14), which is reproduced here:

According to the theorem, any change in x or y must result in a decrease in the
value of E. For simplicity, we first consider a change in a single component of
y, specifically yf..

We can rewrite Eq. (4. 14) showing the term with yk explicitly:

Now, make the change y/. — > y"ew. The new energy value is

£new = - E vrvj - E E vwi
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Since only yj has changed, the second terms on the right sides of Eqs. (4.15)
and (4.16) are identical. In that case we can write the change in energy as

n
A F — I Fnew — F} — (in — ?inew^ V^ i / i , T • (A 17s!L±I-J — \n* n/) — \yk y^ ) 7 u / ^ i X y \I.LI)

For convenience, we recall the state-change equations that determine the
new value of y<,:

k ZLl wkjXj = 0

There are two possible changes of y^ to consider. Suppose y/. = +1, and it
changes to — 1; in this case, (y/,, — y£ew) > 0. But, according to the procedure for
calculating y"ew, this transition can occur only if Y^]=\ wkjxj < 0- Therefore,
the value of AE is the product of one factor that is greater than zero and one
that is less than zero. The result is that AE < 0.

The second possibility is that yk = -1 and y"ew — +1. Then, (yk -y"ew) <
0, but this transition occurs only if 5Z?=i w^jxi > 0- Again, AE 's tne product
of one factor less than zero and one greater than zero. In both cases where y^
changes, AE decreases. Note that, for the case where y/,. does not change, both
factors in the equation for AE are zero, so the energy does not change unless
one of the vectors changes.

Equation (4.17) can be extended to cover the situation where more than
one component of the y vector changes. If we write Ay, — (y; - y"ew), then
the equation that replaces Eq. (4.17) for the general case where any or all
components of y can change is

ni n

AE = (Enew - E) - ̂  Ay, >T wijXj (4.18)

This equation is a sum of m terms, one for each possible Ay;, which are either
negative or zero depending on whether or not y; changed. Thus, in the general
case, E must decrease if y changes.

| Exercise 4.6: Prove part 2 of the BAM energy theorem.

| Exercise 4.7: Prove part 3 of the BAM energy theorem.

Exercise 4.8: Suppose we have denned an autoassociative BAM whose weight
matrix is calculated according to

W = XiX* + X2Xj + • • • + XLX*L

where the x, are not necessarily orthonormal. Show that the weight matrix can
be written as

w = al + S
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where a is a constant, I is the identity matrix, and S is identical to the weight
matrix, but with zeros on the diagonal. For an arbitrary input vector, x, show
that the value of the BAM energy function is

E=-(3- x'Sx

where /3 is a constant. From this result, deduce that the change in energy, AE,
during a state change, is independent of the diagonal elements on the weight
matrix.

4.3 THE HOPFIELD MEMORY
In this section we describe two versions of an ANS, which we call the Hopfield
memory. We shall show that you can consider the Hopfield memory as a
derivative of the BAM, although we doubt that that was the way the Hopfield
memory originated. The two versions are the discrete Hopfield memory, and
the continuous Hopfield memory, depending on whether the unit outputs are
a discrete or a continuous function of the inputs respectively.

4.3.1 Discrete Hopfield Memory
In the discussion of the previous sections, we defined an autoassociative BAM as
one which stored and recalled a set of vectors {\i, x 2 , . . . , XL }• The prescription
for determining the weights was to calculate the correlation matrix:

w =

Figure 4.4 illustrates a BAM that performs this autoassociative function.
We pointed out in the previous section that the weight matrix for an au-

toassociative memory is square and symmetric, which means, for example, that
the weights w\2 and wi\ are equal. Since each of the two layers has the same
number of units, and the connection weight from the nth unit on layer 1 to the
nth unit on layer 2 is the same as the connection weight from the nth unit on
layer 2 back to the nth unit on layer 1, it is possible to reduce the autoassocia-
tive BAM structure to one having only a single layer. Figure 4.5 illustrates this
structure. A somewhat different rendering appears in Figure 4.6. The figure
shows a fully connected network, without the feedback from each unit to itself.

The major difference between the architecture of Figure 4.5 and that of
Figure 4.6 is the existence of the external input signals, /,. This addition
modifies the calculation of the net input to a given unit by the inclusion of
the /,; term. In this case,

net,; = (4.19)
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x layer

x layer

Figure 4.4 The autoassociative BAM architecture has an equal number of
units on each layer. Note that we have omitted the feedback
terms to each unit.

x layer

Figure 4.5 The autoassociative BAM can be reduced to a single-layer
structure. Notice that, when the reduction is carried out, the
feedback connections to each unit reappear.
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Figure 4.6 This figure shows the Hopfield-memory architecture without
the feedback connections to each unit. Eliminating these
connections explicitly forces the weight matrix to have zeros
on the diagonal. We have also added external input signals,
/,:, to each unit.

Moreover, we can allow the threshold condition on the output value to take on
a value other than zero. Then, instead of Eq. (4.12), we would have

+ 1 netj >
Xi(t) netz —
-1 net; <

(4.20)

where Ui is the threshold condition for the ith unit.
A final point concerns the use of binary (0, +1) vectors rather than bipolar

(-!,+!) vectors. Hopfield's original papers used binary (0, 1) vectors, whereas
we have used the bipolar form up to now. To facilitate the reading of the
original papers, we want to be able to shift to binary vectors, v;. All that is
required is that we modify a few equations slightly. To calculate the weight
matrix, we use

w = (2Vl - f)(2v, - I)' +(2v, - f)(2v2 -!)* + • • • + (2vL - F)(2vL - I)' (4.21)

where 1 is the vector with all 1's as components. The expression (2vj - F)
converts the binary vector, v, into the equivalent bipolar vector, so the weight
matrix is the same as that calculated with the original bipolar vectors. The
second change occurs when we apply the threshold: If net* < Ui then vt = 0
rather than -1.

The energy equation is modified by the addition of the /, and U, terms.
Furthermore, we now explicitly define the diagonal elements of the weight
matrix to be zero. The energy equation for the network is

E=-- (4.22)
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The factor of i did not appear in the energy equation of the BAM. In the BAM,
both forward and backward passes contributed equally to the total energy of the
system. In the Hopfield memory, there is only a single layer, hence, half the
energy that there is in the BAM.
Exercise 4.9: Beginning with Eq. (4.22), show that the Hopfield network will
always converge to a stable state by proving a theorem similar to the BAM
energy theorem of the previous section. This exercise assumes that you have
read the section on the proof of the BAM energy theorem.

4.3.2 Continuous Hopfield Model
Hopfield's intent was to extend his discrete-memory model by incorporating
some results from neurobiology that make his PEs more closely resemble ac-
tual neurons. For example, it is known that real neurons have a continuous,
graded output response as a function of their inputs, rather than the two-state,
on-or-off binary output. By using this modification and others, Hopfield con-
structed a new, continuous-memory model that had the same useful properties
of an associative memory that the discrete model showed. Moreover, there is an
analogous electronic circuit using nonlinear amplifiers and resistors, which sug-
gests the possibility of building these associative memory circuits using VLSI
technology.

To develop the continuous model, we shall define ui to be the net input to
the ith PE. One possible biological analog of ut is the summed action potentials
at the axon hillock of a neuron. In the case of the neuron, the output of the cell
would be a series of potential spikes whose mean frequency versus total action
potential resembles the sigmoid curve in Figure 4.7(a). For use in the Hopfield
model, the PE output function is

vt - gt(Xu,,) = - (1 + tanh(AiO) (4.23)

where A is a constant called the gain parameter. This relationship is illustrated
in Figure 4.7(b) for several values of the gain parameter, A.

In real neurons, there will be a time delay between the appearance of the
outputs, Vj, of other cells, and the resulting net input, ut, to a cell. This delay
is caused by the resistance and capacitance of the cell membrane and the finite
conductance of the synapse between the jth and ith cells. These ideas are
incorporated into the circuit shown in Figure 4.8.

Each amplifier has an input resistance, p, and an input capacitance, C, as
shown. Also shown are the external signals, /,-. In the case of an actual circuit,
the external signals would supply a constant current to each amplifier.

The net-input current to each amplifier is the sum of the individual current
contributions from other units, plus the external-input current, minus leakage
across the input resistor, p. The contribution from each connecting unit is the
voltage value across the resistor at the connection, divided by the connection
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A =50

(a)

Figure 4.7 (a) This sigmoid curve approximates the output of a neuron in
response to the total action potential, (b) This series of graphs
has been drawn using Eq. (4.23), for three different values of
the gain parameter, X. Note that, for large values of the gain,
the function approaches the step function used in the discrete
model.

resistance. For the connection from the j'th unit to the z'th, this contribution
would be (vj - u,}/Rt} = (v, - u,)T,j. The leakage current is Ui/p. Thus, the
total contribution from all connecting units and the external input is

IT, = —

Rearranging slightly gives

where -J- — ^ , 7^7 is tne parallel combination of the input resistor and the
connection-matrix resistors. We can treat the circuit as a transient RC circuit,
and can find the value of w, from the equation that describes the charging of
the capacitor as a result of the net-input current. That equation is

(4.24)

These equations, one for each unit in the memory circuit, completely de-
scribe the time evolution of the system. If each PE is given an initial value,
«,(0), these equations can be solved on a digital computer using the numerical
techniques for initial value problems. Do not forget to apply the output function,
Eq. (4.23), to each u, to obtain the corresponding amplifier output, v-,.
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Detail of
connection

To other units

Nonlinear amplifiers

Inverting
amplifiers

From other units

Figure 4.8 In this circuit diagram for the continuous Hopfield memory,
amplifiers with a sigmoid output characteristic are used as the
PEs. The black circles at the intersection points of the lines
represent connections between PEs. At each connection, we
place a resistor having a value Rtj — l/|Tjj|, where we have
used Hopfield's notation T;, to represent the weight matrix.
Since all real resistor values are positive, inverting amplifiers
are used to simulate inhibitory signals. Thus, a PE consists of
two amplifiers. If the output of a particular element excites
some other element, then the connection is made with the
signal from the noninverting amplifier. If the connection is
inhibitory, it is made from the inverting amplifier.

Continuous-Model Energy Function. Like the BAM, the discrete Hopfield
memory always converges to a stable point in Hamming space: one of the 2"
vertices of the Hamming hypercube.5 The energy function that allows us to
analyze the continuous model is

= ~ £ £ 1 £ Ji. £ (4.25)

5As we are now working with binary vectors, rather than bipolar, we must think of the Hamming
hypercube as being made up of points whose values are {0, + 1} rather than ±1.
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In Eq. (4.25), g~l(v) = u is the inverse of the function v — g(u). It is graphed
in Figure 4.9, along with the integral of g~^v), as a function of v.

To show that Eq. (4.25) is an appropriate Lyapunov function for the system,
we shall take the time derivative of Eq. (4.25) assuming 7^ is symmetric:

dE_
~dt

Notice that the quantity in parentheses in Eq. (4.26) is identical to the right-hand
side of Eq. (4.24). Then,

dE r—* dvi dui
dt ^—* dt dti

Because uz = g~l(v{), we can use the chain rule to write

duj _ dg~l(vj)dvt
dt dvi dt

and Eq. (4.26) becomes

dE ^d9t
dt

(4.27)

Figure 4.9(a) shows that g~\Vi) is a monotonically increasing function of vl and
therefore its derivative is positive everywhere. All the factors in the summation
of Eq. (4.27) are positive, so dE/dt must decrease as the system evolves. The

-1

Figure 4.9 (a) The graph shows the inverse of the nonlinear output
function, (b) The graph shows the integral of the nonlinear
output function.
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system eventually reaches a stable configuration, where dE/dt — dvi/dt = 0.
We have assumed, for this argument, that E is bounded. It would be necessary
to establish this fact to ensure that E will eventually stop changing.

Effects of the Nonlinear Output Function. If we make the assumption that
the external inputs /, are all zero, then the energy equation for the continuous
model, Eq. (4.25), is identical to that of the discrete model, Eq. (4.22), except
for the contribution

1

R, L 9i (v)dv. (4.28)

This term alters the energy landscape such that the stable points of the system
no longer lie exactly at the corners of the Hamming hypercube. The value of the
gain parameter determines how close the stable points come to the hypercube
corners. In the limit of very high gain, A —> oo, Eq. (4.28) is driven to zero,
and the continuous model becomes identical to the discrete model. For finite
gain, the stable points move toward the interior of the hypercube. As the gain
becomes smaller, these stable points may coalesce. Ultimately, as A —> 0, only
a single stable point exists for the system. Thus, prudent choice of the gain
parameter is necessary for successful operation.

4.3.3 The Traveling-Salesperson Problem
In this section, we shall examine the application of the continuous Hopfield
memory to a class of problems known as optimization problems. Simply put,
these problems are typically posed in terms of finding the best way to do some-
thing, subject to certain constraints. The best solution is generally defined by
a specific criterion. For example, there might be a cost associated with each
potential solution, and the best solution is the one that minimizes the cost while
still fulfilling all the requirements for an acceptable solution. In fact, in many
cases optimization problems are described in terms of a cost function.

One such optimization problem is the traveling-salesperson problem (TSP).
In its simplest form, a salesperson must make a circuit through a certain number
of cities, visiting each only once, while minimizing the total distance traveled.
The problem is to find the right sequence of cities to visit. The constraints are
that all cities are visited, each is visited only once, and the salesperson returns
to the starting point at the end of the trip. The cost function to be minimized is
the total distance traveled in the course of the trip.

Notice that minimum distance is not a constraint in this problem. Constraints
must be satisfied, whereas minimum distance is only a desirable end. We can
include minimum distance as a constraint if we distinguish between two types of
constraints: weak and strong. Weak constraints, such as minimum distance for
the TSP, are conditions that we desire, but may not achieve. Strong constraints
are conditions that must be satisfied, or the solution we obtain will be invalid.
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The TSP is computationally intensive if an exhaustive search is to be per-
formed comparing all possible routes to find the best one. For an n-city tour,
there are n\ possible paths. Due to degeneracies, the number of distinct solu-
tions is less than n\. The term distinct in this case refers to tours with different
total distances. For a given tour, it does not matter which of the n cities is the
starting point, in terms of the total distance traveled. This degeneracy reduces
the number of distinct tours by a factor of n. Similarly, for a given circuit, it
does not matter in which of two directions the salesperson travels. This fact
further reduces the number of distinct tours by a factor of two. Thus, for an
n-city tour, there are nl/2n distinct circuits to consider.

For a five-city tour, there would be 120/10 = 12 distinct tours—hardly
a problem worthy of solution by a computer! A 10-city tour, however, has
3628800/20 = 181440 distinct tours; a 30-city tour has over 4 x 1030 possi-
bilities. Adding a single city to a tour results in an increase in the number of
distinct tours by a factor of

(n+ l)!/2(n+ 1)
n!/2n ~ "

Thus, a 31-city tour requires that we examine 31 times as many tours as we
must for a 30-city tour. The amount of computation time required by a digital
computer to solve this problem grows exponentially with the number of cities.
The problem belongs to a class of problems known as NP-complete [2]. Because
of the computational burden, it is often the case with optimization problems that
a good solution found quickly is more desirable than the best solution found too
late to be of use.

The Hopfield memory is well suited for this type of problem. The charac-
teristic of interest is the rapid minimization of an energy function, E. Although
the network is guaranteed to converge to a minimum of the energy function,
there is no guarantee that it will converge to the lowest energy minimum: The
solution will likely be a good one, but not necessarily the best. Because the PEs
in the memory operate in parallel (in the actual circuit), computation time is
minimized. In fact, adding another city would not significantly affect the time
required to determine a solution, assuming the existence of the actual circuits
with parallel PEs (the simulation of this system on a digital computer may still
require a considerable amount of time).

To use the Hopfield memory for this application, we must find a way to
map the problem onto the network architecture. This task is not a simple one.
For example, there is no longer a set of well-defined vectors whose correlation
matrix determines the connection weights for the network.

The first item is to develop a representation of the problem solutions that
fits an architecture having a single array of PEs. We develop it by allowing
a set of n PEs (for an n-city tour) to represent the n possible positions for a
given city in the sequence of the tour. For a five-city tour, the outputs of five
PEs could convey this information. For example, the five elements: 0 0 0 1 0
would indicate that the city in question was the fourth to be visited on the tour
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(we assume the high-gain limit for this discussion). There would be five such
groups, each having information about the position of one city. Figure 4.10
illustrates this representation.

We shall follow the matrix format of Figure 4.10(b) henceforth, so the
outputs will be labeled vXi, where the "X" subscript refers to the city, and the
"i" subscript refers to a position on the tour. To account for the constraint that
the tour begin and end at the same city, we must define vx(n+\) — vx\ and
vxo = vxn- The need for these definitions will become clear shortly.

To define the connection weight matrix, we shall begin with the energy
function. Once it is defined, a suitable connection-weight matrix can be deduced.

An energy function must be constructed that satisfies the following criteria:

1. Energy minima must favor states that have each city only once on the tour.

B

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0

(a)

1 2345
01000 A

10000 B

00010 C

00001 D
00100 E

(b)

Figure 4.10 (a) In this representation scheme for the output vectors in a
five-city TSP problem, five units are associated with each of
the five cities. The cities are labeled A through E. The position
of the 1 within any group of five represents the location
of that particular city in the sequence of the tour. For this
example, the sequence is B-A-E-C-D, with the return to B
assumed. Notice that N = n2 PEs are required to represent
the information for an n-city tour, (b) This matrix provides an
alternative way of looking at the units. The PEs are arranged
in a two-dimensional matrix configuration, with each row
representing a city and each column representing a position
on the sequence of the tour.
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2. Energy minima must favor states that have each position on the tour only
once. For example, two different cities cannot be the second city on the
tour.

3. Energy minima must favor states that include all n cities.
4. Energy minima must favor states with the shortest total distances.

The energy function that satisfies these conditions is not easy to construct.
We shall state the entire function, then analyze each term to show its contribu-
tion. The energy equation is

A » « " B "
Cj — / / / *JXi *JX i ~~r~ A/ ' -^ * ^ ' -^ •> *• " * • j rj

L X = li = \ i = >. i=l

C

P.

In the last term of this equation, if i = 1, then the quantity VYO appears. If
i = n, then the quantity vy,n+i appears. These results establish the need for
the definitions, vX(n+\) = vxi and vxo = vXn, discussed previously.

Before we dissect this rather formidable energy equation, first note that
dxy represents the distance between city X and city Y, and that dxy =
dYx. Furthermore, if the parameters, A,B,C, and D, are positive, then E is
nonnegative.6

Let's take the first term in Eq. (4.29) and consider the five-city tour proposed
in Figure 4.10. The product terms, vXivXj, refer to a single city, X. The inner
two sums result in a sum of products, v\iVxj, for all combinations of i and
j as long as i / j. After the network has stabilized on a solution, and in the
high-gain limit where v € {0, 1}, all such terms will be zero if and only if there
is a single vxi — 1 and all other vxi = 0. That is, the contribution of the first
term in Eq. (4.29) will be zero if and only if a single city appears in each row
of the PE matrix. This condition corresponds to the constraint that each city
appear only once on the tour. Any other situation results in a positive value for
this term in the energy equation.

Using a similar analysis, we can show that the second term in Eq. (4.29)
can be shown to be zero, if and only if each column of the PE matrix contains
a single value of 1. This condition corresponds to the second constraint on the
problem; that each position on the tour has a unique city associated with it.

In the third term, ^x ^V vXi is a simple summation of all n2 output
values. There should be only n of these terms that have a value of 1; all others

The parameters. A, B, C, and D, in Eq. (4.29) have nothing to do with the cities labeled A, B,
C, and D.
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should be zero. Then the third term will be zero, since ^x J^ vxt = n.
If more or less than n terms are equal to 1, then the sum will be greater or
less than n, and the contribution of the third term in Eq. (4.29) will be greater
than zero.

The final term in Eq. (4.29) computes a value proportional to the distance
traveled on the tour. Thus, a minimum distance tour results in a minimum
contribution of this term to the energy function.
Exercise 4.10: For the five-city example in Figure 4.10(b), show that the third
term in Eq. (4.29) is

D(dBA dDB)

The result of this analysis is that the energy function of Eq. (4.29) will be
minimized only when a solution satisfies all four of the constraints (three strong,
one weak) listed previously. Now we wish to construct a weight matrix that
corresponds to this energy function so that the network will compute solutions
properly.

As is often the case, it is easier to specify what the network should not
do than to say what it should do. Therefore, the connection weight matrix
is defined solely in terms of inhibitions between PEs. Instead of the double
index that has been used up to now to describe the weight matrix, we adopt a
four-index scheme that corresponds to the double-index scheme on the output
vectors. The connection-matrix elements are the n2 by n2 quantities, TXI.YJ,
where X and Y refer to the cities, and i and j refer to the positions on the tour.

The first term of the energy function is zero if and only if a single element
in each row of the output-unit matrix is 1. This situation is favored if, when
one unit in a row is on (i.e., it has a large output value relative to the others),
then it inhibits the other units in the same row. This situation is essentially
a winner-take-all competition, where the rich get richer at the expense of the
poor. Consider the quantity

where 6.,,,, = 1 if u = v, and 6UV = 0 if u / v. The first delta is zero except on
a single row where X = Y. The quantity in parentheses is 1 unless i = j. That
factor ensures that a unit inhibits all other units on its row but does not inhibit
itself. Therefore, if this quantity represented a connection weight between units,
all units on a particular row would have an inhibitory connection of strength —A
to all other units on the same row. As the network evolved toward a solution, if
one unit on a row began to show a larger output value than the others, it would
tend to inhibit the other units on the same row. This situation is called lateral
inhibition.

The second term in the energy function is zero if and only if a single unit
in each column of the output-unit matrix is 1 . The quantity
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causes a lateral inhibition between units on each column. The first delta ensures
that this inhibition is confined to each column, where i = j. The second delta
ensures that each unit does not inhibit itself.

The contribution of the third term in the energy equation is perhaps not so
intuitive as the first two. Because it involves a sum of all of the outputs, it has a
rather global character, unlike the first two terms, which were localized to rows
and columns. Thus, we include a global inhibition, — C, such that each unit in
the network is inhibited by this constant amount.

Finally, recall that the last term in the energy function contains information
about the distance traveled on the tour. The desire to minimize this term can be
translated into connections between units that inhibit the selection of adjacent
cities in proportion to the distance between those cities. Consider the term

For a given column, j (i.e., for a given position on the tour), the two delta terms
ensure that inhibitory connections are made only to units on adjacent columns.
Units on adjacent columns represent cities that might come either before or after
the cities on column j. The factor -DdXy ensures that the units representing
cities farther apart will receive the largest inhibitory signal.

We can now define the entire connection matrix by adding the contributions
of the previous four paragraphs:

TXi,Yj = -A6xY(l-Sij)-B6ij(l-SxY)-C-DdXY(6j.i+i+6j.i-i) (4.30)

The inhibitory connections between units are illustrated graphically in Fig-
ure 4.11.

To find a solution to the TSP, we must return to the equations that describe
the time evolution of the network. Equation (4.24) is the one we want:

Here, we have used N as the summation limit to avoid confusion with the n
previously defined. Because all of the terms in Ttj contain arbitrary constants,
and Ii can be adjusted to any desired values, we can divide this equation by C
and write

dt ^ l} J r

where r = RC, the system time constant, and we have assumed that Rj = R
for all i.
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Position on tour
3 4

Figure 4.11 This schematic illustrates the pattern of inhibitory connections
between PEs for the TSP problem: Unit a illustrates the
inhibition between units on a single row, unit b shows
the inhibition within a single column, and unit c shows the
inhibition of units in adjacent columns. The global inhibition
is not shown.

A digital simulation of this system requires that we integrate the above set
of equations numerically. For a sufficiently small value of A£, we can write

N

A
(4.31)

Then, we can iteratively update the Uj values according to

(4.32)
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where Aw^ is given by Eq. (4.31). The final output values are then calculated
using the output function

Notice that, in these equations, we have returned to the subscript notation used
in the discussion of the general system: v^ rather than VYJ-

In the double-subscript notation, we have

uXi(t + 1) = uxitt) + &uxt (4.33)

and

vxt = 9Xr(uXi) = ^(l + tanh(Awxi)) (4.34)

If we substitute TXI.YJ from Eq. (4.30) into Eq. (4.31), and define the external
inputs as Ixi = Cri , with n' a constant, and C equal to the C in Eq. (4.30),
the result takes on an interesting form (see Exercise 4.11):

(4.35)
n -

- D d

Exercise 4.11: Assume that n' = n in Eq. (4.35). Then, the sum of terms,
~A(...) - B(...) - C(...) - D(...), has a simple relationship to the TSP energy
function in Eq. (4.29). What is that relationship?
Exercise 4.12: Using the double-subscript notation on the outputs of the PEs,
«C3 refers to the output of the unit that represents city C in position 3 of the
tour. This unit is also element v^ of the output-unit matrix. What is the general
equation that converts the dual subscripts of the matrix notation, Vjk into the
proper single subscript of the vector notation, i>,:?
Exercise 4.13: There are 25 possible connections to unit vC3 — ^33 from other
units in the five-city tour problem. Determine the values of the resistors, Rij =
l/\Tij\, that form those connections.

To complete the solution of the TSP, suitable values for the constants must
be chosen, along with the initial values of the uxi- Hopfield [6] provides
parameters suitable for a 10-city problem: A = B = 500, C = 200, D = 500,
T — 1, A = 50, and n' = 15. Notice that it is not necessary to choose n' = n.
Because n' enters the equations through the external inputs, 7j = Cn', it can
be used as another adjustable parameter. These parameters must be empirically
chosen, and those for a 10-city tour will not necessarily work for tours of
different sizes.
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We might be tempted to make all of the initial values of the uxi equal to
a constant UQO such that, at t = 0,

because that is what we expect that particular sum to be when the network has
stabilized on a solution. Assigning initial values in that manner, however, has
the effect of placing the system on an unstable equilibrium point, much like a
ball placed at the exact top of a hill. Without at least a slight nudge,the ball
would remain there forever. Given that nudge, however, the ball would roll
down the hill. We can give our TSP system a nudge by adding a random noise
term to the UQO values, so that uxi = "oo + 6uxi, where Suxt is the random
noise term, which may be different for each unit.

In the ball-on-the-hill analogy, the direction of the nudge determines the
direction in which the ball rolls off the hill. Likewise, different random-noise
selections for the initial uxi values may result in different final stable states.
Refer back to the discussion of optimization problems earlier in this section,
where we said that a good solution now may be better than the best solution
later. Hopfield's solution to the TSP may not always find the best solution
(the one with the shortest distance possible), but repeated trials have shown
that the network generally settles on tours at or near the minimum distance.
Figure 4.12 shows a graphical representation of how a network would evolve
toward a solution.

We have discussed this example at great length to show both the power and
the complexity of the Hopfield network. The example also illustrates a general
principle about neural networks: For a given problem, finding an appropriate
representation of the data or constraints is often the most difficult part of the
solution.

4.4 SIMULATING THE BAM
As you may already suspect, the implementation of the BAM network simulator
will be straightforward. The only difficulty is the implementation of bidirec-
tional connections between the layers, and, with a little finesse, this is a relatively
easy problem to overcome. We shall begin by describing the general nature of
the problems associated with modeling bidirectional connections in a sequential
memory array. From there, we will present the data structures needed to over-
come these problems while remaining compatible with our basic simulator. We
conclude this section with a presentation of the algorithms needed to implement
the BAM.

4.4.1 Bidirectional-Connection Considerations
Let us first consider the basic data structures we have defined for our simula-
tor. We have assumed that all network PEs will be organized into layers, with
connections primarily between the layers. Further, we have decided that the
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1 2 3 4 5 6 7 8 9 10
A . . . . - • • . . .

B

C
D
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H

(a) (b)

(c) (d)

Figure 4.12 This sequence of diagrams illustrates the convergence of the
Hopfield network for a 10-city TSP tour. The output values,
vxi, are represented as squares at each location in the output-
unit matrix. The size of the square is proportional to the
magnitude of the output value, (a, b, c) At the intermediate
steps, the system has not yet settled on a valid tour. The
magnitude of the output values for these intermediate steps
can be thought of as the current estimate of the confidence
that a particular city will end up in a particular position on
the tour, (d) The network has stabilized on the valid tour,
DHIFGEAJCB. Source: Reprinted with permission of Springer-
Verlag, Heidelberg, from J. J. Hopfield and D. W. Tank, "Neural
computation of decisions in optimization problems." Biological
Cybernetics, 52:141-152, 1985.

L
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individual PEs within any layer will be simulated by processing inputs, with no
provision for processing output connections. With respect to modeling bidirec-
tional connections, we are faced with the dilemma of using a single connection
as input to two different PEs. Thus, our parallel array structures for modeling
network connections are no longer valid.

As an example, consider the weight matrix illustrated on page 136 as part
of the discussion in Section 4.2. For clarity, we will consider this matrix as
being an R x C array, where

R = rows = 6

and

C — columns — 10.

Next, consider the implementation of this matrix in computer memory, as
depicted in Figure 4.13. Since memory is organized as a one-dimensional lin-
ear array of cells (or bytes, words, etc.), most modern computer languages will
allocate and maintain this matrix as a one-dimensional array of R vectors, each
C cells long, arranged sequentially in the computer memory.7 In this imple-
mentation, access to each row vector requires at least one multiplication (row
index x number of columns per row) and an addition (to determine the memory
address of the row, offset from the base address of the array). However, once
the beginning of the row has been located, access to the individual components
within the vector is simply an increment operation.

In the column-vector case, access to the data is not quite as easy. Simply
put, each component of the column vector must be accessed by performance
of a multiplication (as before, to access the appropriate row), plus an addition
to locate the appropriate cell. The penalty imposed by this approach is such
that, for the entire column vector to be accessed, R multiplications must be
performed. To access each element in the matrix as a component of a column
vector, we must do R x C multiplications, or one for each element—a time-
consuming process.

4.4.2 BAM Simulator Data Structures
Since we have chosen to use the array-based model for our basic network data
structure, we are faced with the complicated (and CPU-time-consuming) prob-
lem of accessing the network weight matrix first as a set of row vectors for
the propagation from layer x to layer y, then accessing weights as a set of col-
umn vectors for the propagation in the other direction. Further complicating
the situation is the fact that we have chosen to isolate the weight vectors in our
network data structure, accessing each array indirectly through the intermediate

7FORTRAN, which uses a column-major array organization, is the notable exception.
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weight_ptr array. If we hold strictly to this scheme, we must significantly
modify the design of our simulator to allow access to the connections from
both layers of PEs, a situation illustrated in Figure 4.14. As shown in this
diagram, all the connection weights will be contained in a set of arrays associ-
ated with one layer of PEs. The connections back to the other layer must then
be individually accessed by indexing into each array to extract the appropriate
element.

To solve this dilemma, let's now consider a slight modification to the con-
ceptual model of the BAM. Until now, we have considered the connections
between the layers as one set of bidirectional paths; that is, signals can pass

High memory

Row 5

Row 4

Row 3

Row 2

Row 1

RowO

Y////////A BA + 6(10)

BA + 5(10)

BA + 4(10)

BA + 3(10)

BA + 2(10)

BA+1(10)

10 Columns

Base address (BA)

Low memory

Figure 4.13 The row-major structure used to implement a matrix is shown.
In this technique, memory is allocated sequentially so that
column values within the same row are adjacent. This
structure allows the computer to step through all values in
a single row by simply incrementing a memory pointer.
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outputs weight matrix
yl weights

y weights

y weights

Figure 4.14 This bidirectional connection implementation uses our
standard data structures. Here, the connection arrays located
by the layer y structure are identical to those previously
described for the backpropagation simulator. However, the
pointers associated with the layer x structure locate the
connection in the first weights array that is associated
with the column weight vector. Hence, stepping through
connections to layer x requires locating the connection in
each weights array at the same offset from the beginning of
array as the first connection.

from layer x to layer y as well as from layer y to layer x. If we instead consider
the connections as two sets of unidirectional paths, we can logically implement
the same network if we simply connect the outputs of the x layer to the inputs
on the y layer, and, similarly, connect the outputs of the y layer to the inputs
on the x layer. To complete this model, we must initialize the connections from
x to y with the predetermined weight matrix, while the connections from y to
x must contain the transpose of the weight matrix. This strategy allows us to
process only inputs at each PE, and, since the connections are always accessed
in the desired row-major form, allows efficient signal propagation through the
simulator, regardless of direction.
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The disadvantage to this approach is that it consumes twice as much mem-
ory as does the single-matrix implementation. There is not much that we can
do to solve this problem other than reverting to the single-matrix model. Even
a linked-list implementation will not solve the problem, as it will require ap-
proximately three times the memory of the single-matrix model. Thus, in terms
of memory consumption, the single-matrix model is the most efficient imple-
mentation. However, as we have already seen, there are performance issues
that must be considered when we use the single matrix. We therefore choose
to implement the double matrix, because run-time performance, especially in a
large network application, must be good enough to prevent long periods of dead
time while the human operator waits for the computer to arrive at a solution.

The remainder of the network is completely compatible with our generic
network data structures. For the BAM, we begin by defining a network with
two layers:

record BAM =
X : "layer; {pointer to first layer record}
Y : "layer; {pointer to second layer record}

end record;

As before, we now consider the implementation of the layers themselves.
In the case of the BAM, a layer structure is simply a record used to contain
pointers to the outputs and weight_ptr arrays. Such a record is defined
by the structure

record LAYER =
OUTS : ~integer[]; {pointer to node outputs array}
WEIGHTS : ~"integer[]; {pointer to weight_ptr array}

end record;

Notice that we have specified integer values for the outputs and weights
in the network. This is a benefit derived from the binary nature of the network,
and from the fact that the individual connection weights are given by the dot
product between two integer vectors, resulting in an integer value. We use inte-
gers in this model, since most computers can process integer values much faster
than they can floating-point values. Hence, the performance improvement of
the simulator for large BAM applications justifies the use of integers.

We now define the three arrays needed to store the node outputs, the
connection weights, and the intermediate weight-ptr. These arrays will
be sized dynamically to conform to the desired BAM network structure. In the
case of the outputs arrays, one will contain x integer values, whereas the
other must be sized to contain y integers. The weight_ptr array will contain
a memory pointer for each PE on the layer; that is, x pointers will be required
to locate the connection arrays for each node on the x layer, and y pointers for
the connections to the y layer.

Conversely, each of the weights arrays must be sized to accommodate an
integer value for each connection to the layer from the input layer. Thus, each
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weights array on the x layer will contain y values, whereas the weights
arrays on the y layer will each contain x values. The complete BAM data
structure is illustrated in Figure 4.15.

4.4.3 BAM Initialization Algorithms
As we have noted earlier, the BAM is different from most of the other ANS
networks discussed in this text, in that it is not trained; rather, it is initialized.
Specifically, it is initialized from the set of training vectors that it will be required
to recall. To develop this algorithm, we use the formula used previously to
generate the weight matrix for the BAM, given by Eq. (4.6), and repeated here

outputs y1 weights

Figure 4.15 The data structures for the BAM simulator are shown. Notice
the difference in the implementation of the connection arrays
in this model and in the single-matrix model described earlier.
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for reference:

We can translate this general formula into one that can be used to determine
any specific connection weight, given L training pairs to be encoded in the BAM.
This new equation, which will form the basis of the routine that we will use to
initialize the connection weights in the BAM simulation, is given by

WRC = \i[c] (4.36)

where the variables r and c denote the row and column position of the weight
value of interest. We assume that, for purposes of computer simulation, each
of the training vectors x and y are one-dimensional arrays of length C and R,
respectively. We also presume that the calculation will be performed only to
determine the weights for the connections from layer x to layer y. Once the
values for these connections are determined, the connections from y to x are
simply the transpose of this weight matrix.

Using this equation, we can now write a routine to determine any weight
value for the BAM. The following algorithm presumes that all the training pairs
to be encoded are contained in two external, two-dimensional matrices named
XT and YT. These arrays will contain the patterns to be encoded in the BAM,
organized as L instances of either x or y vectors. Thus, the dimensions of the
XT and YT initialization matrices are L x C and L x R respectively.

function weight (r,c,L:integer; XT,YT:"integer[][])
return integer;

{determine and return weight value for position r,c}

var i : integer;
x,y : "integer[] [] ;
sum : integer;

begin
sum = 0;
x = XT;
y = YT;

{loop iteration counter}
{local array pointers}
{local accumulator}

{initialize accumulator}
{initialize x pointer}
{initialize y pointer}

for i = 1 to L do {for all training pairs}
sum = sum + y[i][r] * x[i] [c];

end do;

return (sum);
end function;

{return the result}

The weight function allows us to compute the value to be associated
with any particular connection. We will now extend that basic function into a
general routine to initialize all the weights arrays for all the input connections
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to the PEs in layer y. This algorithm uses two functions, called rows-in and
cols-in, that return the number of rows and columns in a given matrix. The
implementation of these two algorithms is left to the reader as an exercise.

procedure initialize (Y:~layer; XT,YT:"integer[][]);
{initialize all input connections to a layer, Y}

var connects: "integer[]
units: ~integer[];
L,R,C : integer;
i, j: integer;

begin
units = Y".WEIGHTS;
L = rows_in (XT);
R = cols_in (YT);
C = cols in (XT);

(connection pointer)
{pointers into weight_ptrs}
{size-of variables}
{iteration counters}

{locate weight_ptr array}
{number of training patterns}
{dimension of Y vector}
{dimension of X vector}

for i = 1 to length(units) do {for all units on layer}
connects = unit[i]; {get pointer to weight array}

for j = 1 to length(connects) do
{for all connections to unit}

connects[j] = weight (R, C, L, XT, YT) ;
{initialize weight}

end do;
end do;

end procedure;

We indicated earlier that the connections from layer y to layer x could be
initialized by use of the transpose of the weight matrix computed for the inputs
to layer y. We could develop another routine to copy data from one set of
arrays to another, but inspection of the initialize algorithm just described
indicates that another algorithm will not be needed. By substituting the x layer
record for the y, and swapping the order of the two input training arrays, we can
use initialize to initialize the input connections to the x layer as well, and
we will have reduced the amount of code needed to implement the simulator.
On the other hand, the transpose operation is a relatively easy algorithm to write,
and, since it involves only copying data from one array to another, it is also
extremely fast. We therefore leave to you the choice of which of these two
approaches to use to complete the BAM initialization.

4.4.4 BAM Signal Propagation
Now that we have created and initialized the BAM, we need only to implement
an algorithm to perform the signal propagation through the network. Here again,
we would like this routine to be general enough to propagate signals to either
layer of the BAM. We will therefore design the routine such that the direction
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of signal propagation will be determined by the order of the input arguments
to the routine. For simplicity, we also assume that the layer outputs arrays
have been initialized to contain the patterns to be propagated.

Before we proceed, however, note that the desired algorithm generality
implies that this routine will not be sufficient to implement completely the
iterated signal-propagation function needed to allow the BAM to stabilize. This
iteration must be performed by a higher-level routine. We will therefore design
the unidirectional BAM propagation routine as a function that returns the number
of patterns changed in the receiving layer, so that the iterated propagation routine
can easily determine when to stop.

With these concerns in mind, we can now design the unidirectional signal-
propagation routine. Such a routine will take this general form:

function propagate (X,Y:"layer) return integer;
{propagate signals from layer X to layer Y}

var changes, i, j: integer; {local counters}
ins, outs : "integer[]; {local pointers}
connects : ~integer[]; {locate connections}
sum : integer; {sum of products}

begin
outs = Y'.OUTS; {locate start of Y array}

changes = 0; {initialize counter}

for i = 1 to length (outs) do {for all output units}
ins = X'.OUTS; {locate X outputs}
connects= Y".WEIGHTS[i]; {find connections}
sum =0; {initial sum}

for j = 1 to length(ins) do {for all inputs}
sum = sum + ins[j] * connects[j];

end do;

if (sum < 0) {if negative sum}
then sum = -1 {use -1 as output}
else if (sum > 0) {if positive sum}

then sum = 1 {use 1 as output}
else sum = outs[i]; {else use old output}

if (sum != outs[i]) {if unit changed}
then changes = changes + 1;

outs[i] = sum; {store new output}
end do;

return (changes); {number of changes}
end function;
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To complete the BAM simulator, we will need a top-level routine to per-
form the bidirectional signal propagation. We will use the propagate routine
described previously to perform the signal propagation between layers, and we
will iterate until no units change state on two successive passes, as that will
indicate that the BAM has stabilized. Here again, we assume that the input
vectors have been initialized by an external process prior to calling recall.

procedure recall (net:BAM);
{propagate signals in the BAM until stabilized}

var delta : integer; {how many units change}

begin
delta = 100; {arbitrary non-zero value}

while (delta != 0) {until two successive passes}
do
delta =0; {reset to zero}
delta = delta + propagate (net'.X, net'.Y);
delta = delta + propagate (net'.Y, net~.X);

end do;
end procedure;

Programming Exercises
4.1. Define the pseudocode algorithms for the functions rows.in and cols_in

as described in the text.
4.2. Implement the BAM simulator described in Section 4.4, adding a routine to

initialize the input vectors from patterns read from a data file. Test the BAM
with the two training vectors described in Exercise 4.4 in Section 4.2.3.

4.3. Modify the BAM simulator so that the initial direction of signal propagation
can be specified by the user at run time. Repeat Exercise 4.2, starting signal
propagation first from x to y, then from y to x. Describe the results for each
case.

4.4. Develop an encoding scheme to represent the following training pairs for
a BAM application. Initialize your simulator with the training data, and
then apply a "noisy" input pattern to the input (Hint: One way to do this
exercise is to encode each character as a seven-bit ASCII code, letting —1
represent a logic 0 and +1 represent a logic 1). Does your BAM return the
correct results?

x Y
CAT TABBY
DOG ROVER
FLY PESKY
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Suggested Readings
Introductory articles on the BAM, by Bart Kosko, appear in the IEEE ICNN
proceedings and Byte magazine [9, 10]. Two of Kosko's papers discuss how to
make the BAM weights adaptive [8, 11].

The Scientific American article by Tank and Hopfield provides a good in-
troduction to the Hopfield network as we have discussed the latter in this chap-
ter [13]. It is also worthwhile to review some of the earlier papers that discuss
the development of the network and the use of the network for optimization
problems such as the TSP [4, 5, 6, 7].

The issue of the information storage capacity of associative memories is
treated in detail in the paper by Kuh and Dickinson [12].

The paper by Tagliarini and Page, on "solving constraint satisfaction prob-
lems with neural networks," is a good complement to the discussion of the TSP
in this chapter [14].
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C H A P T E R

Simulated Annealing

The neural networks discussed in Chapters 2, 3, and 4 relied on the minimiza-
tion of some function during either the learning process (Adaline and back-
propagation) or the recall process (BAM and Hopfield network). The technique
employed to perform this minimization is essentially the opposite of a standard
heuristic used to find the maximum of a function. That technique is known as
hill climbing.

The term hill climbing derives from a simple analogy. Imagine that you are
standing at some unknown location in an area of hilly terrain, with the goal of
walking up to the highest peak. The problem is that it is foggy and you cannot
see more than a few feet in any direction. Barring obvious solutions, such as
waiting for the fog to lift, a logical way to proceed would be to begin walking
in the steepest upward direction possible. If you walk only upward at each step,
you will eventually reach a spot where the only possible way to go is down. At
this point, you are at the top of a hill. The question that remains is whether this
hill is indeed the highest hill possible. Unfortunately, without further extensive
exploration, that question cannot be answered.

The methods we have used to minimize energy or error functions in pre-
vious chapters often suffer from a similar problem: If only downward steps
are allowed, when the minimum is reached it may not be the lowest minimum
possible. The lowest minimum is referred to as the global minimum, and any
other minimum that exists is called a local minimum.

It is not always necessary, or even desirable, to reach the global mini-
mum during a search. In one instance, it is impossible to reach any but the
global minimum. In the case of the Adaline, the error surface was shown to
be a hyperparaboloid with a single minimum. Thus, finding a local minimum
is impossible. In the BAM and discrete Hopfield model, we store items at
the vertices of the Hamming hypercube, each of which occupies a minimum
of the energy surface. When recalling an item, we begin with some partial
information and seek the local minimum nearest to the starting point. Hope-

169
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fully, the item stored at that local minimum will represent the complete item
of interest. The point we reach may or may not lie at the global minimum
of the energy function. Thus, we do not care whether the minimum that we
reach is global; we desire only that it correspond to the data in which we are
interested.

The generalized delta rule, used as the learning algorithm for the back-
propagation network, performs gradient descent down an error surface with a
topology that is not well understood. It is possible, as is seen occasionally in
practice, that the system will end up in a local minimum. The effect is that
the network appears to stop learning; that is, the error does not continue to
decrease with additional training. Whether or not this situation is acceptable
depends on the value of the error when the minimum is reached. If the error
is acceptable, then it does not matter whether or not the minimum is global.
If the error is unacceptable, the problem often can be remedied by retraining
of the network with different learning parameters, or with a different random
weight initialization. In the case of backpropagation, we see that finding the
global minimum is desirable, but we can live with a local minimum in many
cases.

A further example of local-minima effects is found in the continuous Hop-
field memory as the latter is used to perform an optimization calculation. The
traveling-salesperson problem is a well-defined problem subject to certain con-
straints. The salesperson must visit each city once and only once on the tour.
This restriction is known as a strong constraint. A violation of this constraint
is not permitted in any real solution. An additional constraint is that the to-
tal distance traveled must be minimized. Failure to find the solution with the
absolute minimum distance does not invalidate the solution completely. Any
solution that does not have the minimum distance results in a penalty or cost
increase. It is up to the individual to decide how much cost is acceptable in
return for a relatively quick solution. The minimum-distance requirement is
an example of a weak constraint; it is desirable, but not absolutely necessary.
Finding the absolute shortest route corresponds to finding the global minimum
of the energy function. As with backpropagation, we would like to find the
global minimum, but will settle for a local minimum, provided the cost is not
too high.

In the following sections, we shall present one method for reducing the
possibility of falling into a local minimum. That method is called simulated
annealing because of its strong analogy to the physical annealing process done
to metals and other substances. Along the way, we shall briefly explore a few
concepts in information theory, and discuss the relationship between information
theory and a branch of physics known as statistical mechanics. Because we do
not expect that you are an information theorist or a physicist, the discussion
is somewhat brief. However, we do assume a knowledge of basic probability
theory, a discussion of which can be found in many fundamental texts.
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5.1 INFORMATION THEORY AND
STATISTICAL MECHANICS
In this section we shall present a few topics from the fields of information
theory and statistical mechanics. We choose to discuss only those topics that
have relevance to the discussion of simulated annealing, so that the treatment is
brief.

5.1.1 Information-Theory Concepts
Every computer scientist understands what a bit is. It is a binary digit, a thing
that has a value of either 1 or 0. Memory in a digital computer is implemented
as a series of bits joined together logically to form bytes, or words. In the
mathematical discipline of information theory, however, a bit is something else.
Suppose some event, e, occurs with some probability, P(e). If we observe that
e has occurred, then, according to information theory, we have received

= log2

bits of information, where Iog2 refers to the log to the base 2.
You may need to get used to this notion. For example, suppose that P(e) =

1/2, so there is a 50-percent chance that the event occurs. In that case, I(e) =
Iog2 2 = 1 bit. We can, therefore, define a bit as the amount of information
received when one of two equally probable alternatives is specified. If we know
for sure that an event will occur, its occurrence provides us with no information:
Iog2 1 = 0. Some reflection on these ideas will help you to understand the intent
of Eq. (5.1). The most information is received when we have absolutely no clue
regarding whether the event will occur. Notice also that bits can occur in
fractional quantities.

Suppose we have an information source, which has a sequential output of
symbols from the set, 5 = {s\,S2,...,sq}, with each symbol occurring with
a fixed probability, {P(s\), P(S2), • • - , P(sq)}. A simple example would be an
automatic character generator that types letters according to a certain probability
distribution. If the probability of sending each symbol is independent of symbols
previously sent, then we have what is called a zero-memory source. For such
an information source, the amount of information received from each symbol is

/(«> = log2 (5-2)
The average amount of information received per symbol is

9

(5.3)
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Equation (5.3) is the definition of the entropy, H(S), of the source, S:

(5.4)

In a physical system, entropy is associated with a measure of disorder in the
system. It is the same in information theory. The most disorderly system is
the one where all symbols occur with equal probability. Thus, the maximum
information (maximum entropy) is received from such a system.
Exercise 5.1: Show that the average amount of information received from a
zero-memory source having q symbols occurring with equal probabilities, \/q,
is

H = -\og2q (5.5)

Exercise 5.2: Consider two sources, each of which sends a sequence of sym-
bols whose possible values are the 26 letters of the English alphabet and the
"space" character. The first source, Si , sends the letters with equal probability.
The second source, 52, sends letters with the probabilities equal to their relative
frequency of occurrence in English text. Which source transmits the most in-
formation? How many bits of information per symbol are transmitted by each
source on the average?

We can demonstrate explicitly that the maximum entropy occurs for a source
whose symbol probabilities are all equal. Suppose we have two sources, Si and
52, each containing q symbols, where the symbol probabilities are {Pu} and
{P2;}, i = l , . . . ,q , and the probabilities are normalized so that J^-Pii =
J^j P2, = 1. The difference in entropy between these two sources is

By using the trick of adding and subtracting the same quantity from the
right side of the equation, we can write

Hi-H2 = - i Iog2 P,,; + Pi,; Iog2 P2z - Pu Iog2 P2i - P2i Iog2 P2i]

^ !°g2 51 + (PH - P28) Iog2 P«] (5.6)

i-P2i)log2P«
9 p 9v—^ -* it x~= - > PH log, —- - >

If we identify S2 as a source with equiprobable symbols, then H2 = H =
— Iog2 q, as in Eq. (5.5). Since Iog2 P2i = Iog2 - is independent of i, and



5.1 Information Theory and Statistical Mechanics 173

£;(.PH - PU) = Ej P\i - £/ p2<• = 1 - 1 = 0, the second sum in Eq. (5.6) is
zero. We are left with

1 n
Hi - (- 10g2 <?) = -'

or
<i p

Hi-(- Iog2 q) = Y P,, Iog2 -^ (5.7)

We shall now employ the inequality, Iog2 x < x — 1. Using this inequality, we
know that the right side of Eq. (5.7) obeys the inequality

< o
Then

Hi - (- Iog2 q)<0 (5.8)

The only way the equality can hold in Eq. (5.8) is if S\ is also an equiprobable
source, so that H\ = — Iog2 q. Otherwise, the entropy of S\ is always going to
be less than the source with equiprobable symbols.

The right side of Eq. (5.7) has a meaning independent of whether 82 is a
source with equiprobable symbols. Given any two arbitrary sources, S\ and £2,
we can define the quantity

(5.9)

which is the negative of the right side of Eq. (5.7). The quantity G is called
the information gain or asymmetric divergence between two sources. If we
expand Eq. (5.9), G almost looks like the difference in entropies between two
sources:

The second term on the right side of Eq. (5.10), however, is not the entropy of
a source. The Iog2 P2i terms are weighted by the 5] probabilities, P\t, rather
than by the S^ probabilities, P2j.

G can be thought of as a measure of the distance, in bits, from source S^ to
source 5| . That distance calculation has the symbol probabilities of S2 weighted
according to their relative importance in matching the symbol probabilities in
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Si. In other words, the calculation of the effective distance from 82 to Si places
more emphasis on those symbols that have a higher probability of occurrence
in Si, which is why the term asymmetric was used in the definition of G. If the
identities of PH and P2; were reversed in Eqs. (5.9) and (5.10), the calculated
value of G would be different. In that case, we would be finding the distance
from Si to 82, instead of the other way around.

We now conclude our brief introduction to information theory. In the next
section, we discuss some elementary concepts in statistical mechanics. You
should be alert to similarities between the discussion in the present section and
that in the next.

5.1.2 Statistical-Mechanics Concepts
Statistical mechanics is a branch of physics that deals with systems containing
a large number of particles, usually so large that the gross properties of the
system cannot be determined by evaluation of the contributions of each particle
individually. Instead, overall properties are determined by the average behavior
of a number of identical systems. A collection of identical systems is called an
ensemble, and is characterized by the average of its constituent systems, along
with the statistical fluctuations about the average. For example, the average
energy of an ensemble is the statistical average of the energies of the ensemble's
constituent systems, each weighted by the probability that the system has a
particular energy. If Pr is the probability that a system has an energy, ET, then
the average energy of the ensemble of such systems is

(5.11)

An important class of systems are those that are in thermal contact with a
much larger system called a heat reservoir. A heat reservoir is characterized by
the fact that any thermal interaction with the smaller system in question results
in only infinitesimal changes in the properties of the reservoir, whereas the
smaller system may undergo substantial change, until an equilibrium condition
is reached. An example would be a warm bottle of wine submersed in a large,
cold lake. As an equilibrium is reached, the temperature of the wine might
change considerably, whereas the overall temperature of the lake probably would
change by only an immeasurable amount.1

If we were to examine a large number of identical wine bottles, immersed
in identical cold lakes (or the same lake if it were very big compared to the total
volume of wine), we would find some variation in the total energy contained in
the wine of different bottles. Furthermore, we would find that the probability,

1 We have been using terms such as energy, equilibrium, and temperature without supplying precise
definitions. We are relying on your intuitive understanding of these concepts, and of others that will
appear later, so that we can avoid a lengthy treatment of the subject at hand.
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Pr, that a wine bottle was at a certain energy, Er, was proportional to an
exponential factor:

Pr = Ce~0Er

where (3 is a parameter that depends on the temperature of the lake. Since the
sum of all such probabilities must be 1, Y^r Pr = 1, the proportionality constant
must be

so

(5.12)

The quantity, C~{, has a special name and symbol in statistical mechanics: It
is called the partition function, and the usual symbol for it is Z:

(5.13)

We can write the average energy of our wine bottle as

(E) = ^r£
 z

 r£r (5-14)

The exponential factor, e~^Er, is called the Boltzmann factor, and the
probability distribution in Eq. (5.12) is called the Boltzmann distribution. En-
sembles whose properties follow the Boltzmann distribution are called canonical
ensembles. The factor /? is related to the absolute temperature (temperature in
Kelvins) by

(5.15)

where ks is a constant known as the Boltzmann constant.
In a physical system, entropy is defined by essentially the same relationship

that we saw in the section on information theory:

(5.16)

Although we discussed information theory first, the development of statistical
mechanics preceded that of information theory. The development of informa-
tion theory began essentially with the recognition of the relationship between
statistical mechanics and information through the concept of entropy [7]. Equa-
tion (5.16) differs from the information-theory definition of entropy in Eq. (5.4)
by only a constant multiplier. Note that the conversion between the natural log
and the base-2 log is given by

, , Io82x
In x = log. x = -——Iog2 e
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In the previous section, we showed that the maximum entropy (information)
is obtained from a source with equiprobable symbols. We can make a similar
argument for physical systems. Suppose we have two systems with entropies
5[ = ~kB ̂ r P\r In P\T and S2 = -kB Ylr PIT In Par, such that both systems
have the same average energy:

r = (E2

Furthermore, assume that the P2r probabilities follow the canonical distribution
in Eq. (5.12). By performing an analysis identical to that of the previous section,
we can show that the difference in entropies of the two systems is given by

(5.17)

Using the inequality, Inx < x — 1, we can show that Si will always be less
than 82 unless P\T also follows the canonical distribution.
Exercise 5.3: Derive Eq. (5.17) assuming that P2r is the canonical distribution.
Using the inequality, Ini < x - 1, show that the maximum entropy for the
system, Si, with a given average energy, occurs when the probability distribution
of that system is the canonical distribution.

In previous chapters, we have exploited the analogy of an energy function
associated with various neural networks, and we have seen in this chapter that the
concept of entropy applies to both physical and information systems. We wish to
extend the analogy along the following lines: If our neural networks have energy
and entropy, is it possible to define a temperature parameter that has meaning
for neural networks? If so, what is the benefit to be gained by defining such a
parameter? Can we place our neural network in contact with a fictitious heat
reservoir, and again, is there some advantage to this analogy? These questions,
and their answers, form the basis of the discussion in the next section.

5.1.3 Annealing: Real and Simulated
Our intuition should tell us that a lump of material at a high temperature has a
higher energy state than an identical lump at a lower temperature. Suppose we
wish to reduce the energy of the material to its lowest possible value. Simply
lowering the temperature to absolute zero will not necessarily ensure that the
material is in its lowest possible energy configuration. Let's consider the ex-
ample of a silicon boule being grown in a furnace to be used as a substrate for
integrated-circuit devices. It is highly desirable that the crystal structure be a
perfect, regular crystal lattice at ambient temperature. Once the silicon boule is
formed, it must be properly cooled to ensure that the crystal lattice will form
properly. Rapid cooling can result in many imperfections within the crystal
structure, or in a substance that is glasslike, with no regular crystalline structure
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at all. Both of these configurations have a higher energy than does the crystal
with the perfect lattice structure: They represent local energy minima.

An annealing process must be used to find the global energy minimum.
The temperature of the boule must be lowered gradually, giving atoms within
the structure time to rearrange themselves into the proper configuration. At
each temperature, sufficient time must be allowed so that the material reaches
an equilibrium. In equilibrium, the material follows the canonical probability
distribution:

P(Er) <x e-Er/kBT (5.18)

To understand how this annealing process helps the crystal to avoid a local
minimum, we shall employ an intuitive argument used by Hinton and Sejnowski
in their discussion of simulated annealing [3]. Consider the simple energy
landscape shown in Figure 5.1. The ball bearing described in the figure caption
has insufficient energy initially to roll up the other side of the hill and down
into the global minimum. If we shake the whole system, we might give the ball
enough of a push to get it up the hill. The harder we shake, the more likely it
is that the ball will be given enough energy to get over that hill. On the other
hand, vigorous shaking might also push the ball from the valley with the global
minimum back over to the local minimum side.

Figure 5.1 A simple energy landscape with two minima, a local minimum,
Ea, and a global minimum, Eb, is shown. The system begins
with some energy, Eg. We can draw an analogy to a ball
bearing rolling down a hill. The bearing rolls down the hill
toward the local minimum, Ea, but has insufficient energy to
roll up the other side and down into the global minimum.
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If we give the system a gentle shaking, then, once the ball gets to the global
minimum side, it is less likely to acquire sufficient energy to get back across
to the local minimum side. However, because of the gentle shaking, it might
take a very long time before the ball gets just the right push to get it over to
the global minimum side in the first place.

Annealing represents a compromise between vigorous shaking and gentle
shaking. At high temperatures, the large thermal energy corresponds to vigorous
shaking; low temperatures correspond to gentle shaking. To anneal an object,
we raise the temperature, then gradually lower it back to ambient temperature,
allowing the object to reach equilibrium at each stop along the way. The tech-
nique of gradually lowering the temperature is the best way to ensure that a
local minimum can be avoided without having to spend an infinite amount of
time waiting for a transition out of a local minimum.
Exercise 5.4: Beginning with Eq. (5.18), find an equation that expresses the
relative probability of the system being in the energy states, Ea or Eb, at some
given temperature, T. Use this result to prove that, as T — *• 0, the lower energy
state is highly favored over the higher energy state.

We can postulate that it is possible to extend the analogy between infor-
mation theory and statistical mechanics to allow us to place our neural network
(information system) in contact with a heat reservoir at some, as yet undefined,
temperature. If so, then we can perform a simulated annealing process whereby
we gradually lower the system temperature while processing takes place in the
network, in the hopes of avoiding a local minimum on the energy landscape.

To perform this process, we must simulate the effects of temperature on
our system. In a physical system, molecules have an average kinetic energy
proportional to the temperature of the system. Individual molecules may have
more or less kinetic energy than the average, and random collisions may cause
a molecule either to gain or to lose energy. We can simulate this behavior in a
neural network by adding a stochastic element to the processing.

Let's look at an example from Chapter 4. Suppose we had a Hopfield
network with binary outputs and we were seeking the network output with the
lowest possible energy. According to the recipe in Chapter 4, each output node
would be updated deterministically, depending on the sign of the net input to
that unit and its current value. As we saw, this procedure usually leads to a
solution at the nearest local minimum of energy. Instead of this deterministic
procedure, let's heat the system to a temperature, T, and let the output value of
each unit be determined stochastically according to the Boltzmann distribution.

For a single unit, Xi, if the energy of the network is Ea when Xj = 1, and
Eb when xt = 0, then, regardless of the previous state of Xj, let Xi = 1 with a
probability of

-Ea/kBT
(5.1")Pi = „-!

Pi =

a/kBT

1

e~Eb/kB

(5.20)
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where AE1, = Eb — Ea, and T is a parameter that is the analog of temperature.
This operation ensures that, every so often, a unit will update so as to increase the
energy of the system, thus helping the system get out of local-minimum valleys.
Equation (5.19) results directly from the canonical distribution. Because only
one unit is changing, there are only two potential states open to the system,
which explains the two-term sum in the denominator.

As processing continues, the temperature is reduced gradually. In the
end, there will be a high probability that the system is in a global energy
minimum. The actual mechanics of this process will be discussed in the
next section. Rather than continue using the Hopfield memory, we switch
our attention to the particular network architecture known as the Boltzmann
machine.

5.2 THE BOLTZMANN MACHINE
There are many similarities between the architecture and PEs of the Boltz-
mann machine, and those of other neural networks that we have discussed
previously. However, there is a fundamental difference in the way we must
think of the Boltzmann machine. The output of individual PEs in the Boltz-
mann machine is a stochastic function of the inputs, rather than a deterministic
function: The output of a given node is calculated using probabilities, rather
than a threshold or sigmoid output function. Moreover, we shall see that the
training procedure does not depend solely on finding an energy minimum on
an energy landscape. Rather, the learning algorithm will combine an energy
minimization with an entropy maximization consistent with the use of the Boltz-
mann distribution to describe energy-state probabilities. These differences are
a direct result of applying analogies from statistical mechanics to the neural
network.

5.2.1 Basic Architecture and Processing
There are two different Boltzmann machine architectures of interest here. One
we shall call the Boltzmann completion network, and the other we shall call
the Boltzmann input-output network. For the moment, we shall concentrate
on the Boltzmann completion architecture, which appears in Figure 5.2.

The function of the Boltzmann completion network is to learn a set of
input patterns, and then to be able to supply missing parts of the patterns when
a partial, or noisy, input pattern is processed. The input vectors are binary, with
each component an element of {0, 1}.

As with the discrete Hopfield memory, the system energy can be calculated
from

1=1 J=lj**
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Hidden layer

Visible layer

Figure 5.2 In the Boltzmann completion architecture, there are two
layers of units: visible and hidden. The network is fully
interconnected between layers and among units on each
layer. The connections are bidirectional and the weights are
symmetric, wi} = Wji.

where n is the total number of units in the network, and Xk is the output of the
fcth unit. The energy difference between the system with x^ = 0 and x^ — 1 is
given by

fe = (EXk=0 - (5.22)

Notice that the summation in Eq. (5.22) is identical to the usual definition of
the net-input value to unit k, so that

= netfc (5.23)

We shall assume for the moment that we already have an appropriate set
of weights that encodes a set of binary vectors into the Boltzmann completion
network. Suppose that the vector, x = (0,1,1,0,0,1,0)*, is one of the vectors
learned by the network. We would like to be able to recall this vector given
only partial knowledge, for example, the vector, x' = (0. u, 1,0, u, 1,0)*, where
u represents an unknown component. The recall procedure will be performed
using a simulated-annealing technique with x' as the starting vector on the visible
units. The procedure is described by the following algorithm:
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1. Force the outputs of all known visible units to the values specified by the
initial input vector, x'.

2. Assign all unknown visible units, and all hidden units, random output values
from the set {1,0}.

3. Select a unit, Xk, at random and calculate its net-input value, net^.

4. Regardless of the current value of the unit, assign the output value, Xk = 1,
with probability p/. = I/ (l +e~neu/T). This stochastic choice can be
implemented by comparison of the value of p^ to that of a number, z,
selected randomly from a uniform distribution between zero and one. If
z < pk, then set x^ — 1. The parameter, T, acts as the temperature of the
system. More will be said about the temperature in Section 5.2.3.

5. Repeat steps 3 and 4 until all units have had some probability of being
selected for update. This number of unit-updates defines a processing cycle.
For example, in a 10-unit network, 10 random unit selections would be a
processing cycle. Completing a single processing cycle does not guarantee
that every unit has been updated.

6. Repeat step 5 for several processing cycles, until thermal equilibrium has
been reached at the given temperature, T. The number of processing cycles
required to reach equilibrium is not easy to specify. Usually, we guess the
number of processing cycles required to reach equilibrium.

7. Lower the temperature, T, and repeat steps 3 through 7.

Once the temperature has been reduced to a small value, the network will
stabilize. The final result will be the outputs of the visible units.

The set of temperatures, along with the corresponding number of process-
ing cycles at each temperature, constitute the annealing schedule for the net-
work. For example, {2 processing cycles at a temperature of 10, 2 processing
cycles at 8, 4 processing cycles at 6, 4 processing cycles at 4, 8 processing
cycles at 2}, may be an appropriate annealing schedule for a certain prob-
lem.

By performing an annealing during pattern recall, we hope to avoid shallow,
local minima. The final result should be a deeper, local minimum consistent
with the known components of the initial input vector, x'. We expect the final
result to be the original vector, x.

An alternative formulation of the Boltzmann machine is the Boltzmann
input—output network shown in Figure 5.3. This network functions as a het-
eroassociative memory. During the recall process, the input-vector units are
clamped permanently and are not updated during the annealing process. All
hidden units and output units are updated according to the simulated-annealing
procedure described previously for the Boltzmann completion network.
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Hidden layer

Input units
Visible layer

Output units

Figure 5.3 For the Boltzmann input-output network, the visible units
are separated into input and output units. There are no
connections among input units, and the connections from input
units to other units in the network are unidirectional. All other
connections are bidirectional, as in the Boltzmann completion
network.

5.2.2 Learning in Boltzmann Machines
Now that we have investigated the processing done to recall previously stored
patterns in Boltzmann-machine architectures, let's return to the problem of stor-
ing the patterns in the network. As was the case with pattern recall, learning
in Boltzmann machines is accomplished using a simulated-annealing technique.
This technique has fundamental differences from learning techniques investi-
gated in previous chapters because of its stochastic nature. The learning algo-
rithm for Boltzmann machines employs a gradient-descent technique, similar to
previous learning methods, although the function being minimized is no longer
identified with the energy of the network as described by Eq. (5.21).

Throughout this chapter, we have emphasized that the output values of
the processing elements have a probabilistic character. Thus, the output of
the network as a whole also has a probabilistic character. When training the
Boltzmann machine, we supply examples that are representative of the entire
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population of possible input vectors. The learning algorithm that we employ
must cause the network to form a model of the entire population of input patterns
based on these examples. Unfortunately, there are often many different models
that are consistent with the examples. The question is how to choose from
among the various models.

One method of choosing among different models is to insist that the model
of the population produced by the network will result in the most homogeneous
distribution of input patterns consistent with the examples supplied. We can
illustrate this concept with an example.

Suppose that we know that the first component of a three-component input
vector will have a value of +1 in 40 percent of all vectors in the population.
Out of eight possible three-component vectors, four have their first component
as +1. There are an infinite number of ways that the probabilities of occurrence
of those four vectors can combine to yield a total probability of 40 percent
for the occurrence of +1 in the first position. One example is P{ 1,0,0} =
10%, P{1,0,1} = 4%, P{1,1,0} = 8%, P{1,1,1} = 18%. The most
homogeneous distribution would be to assign equal probabilities to each of the
four vectors, such that P{1,0,0} = 10%, P{1,0,1} = 10%, P{1,1,0} =
10%, P{1,1,1} = 10%. The rationale for this choice is that the information
available gives us no reason to assign a higher probability of occurrence to any
one of the vectors.

If a Boltzmann completion network learns the most homogeneous distribu-
tion, then repeated trials with an input vector of P{u, 0,0}, where u is unknown,
should result in a final output of P{ 1,0,0} in approximately 10 trials out of
every 100 (the more trials, the closer the results will be to 10 out of 100).

Recall from Section 5.1.1 that the asymmetric divergence,

measures the difference between an information source, Si, with symbol prob-
abilities, PH, and a source, 82, with symbol probabilities, PH. Suppose the
probabilities, PI;, represent our knowledge of the probability distribution of a
source. If the probabilities, PH, represent the most homogeneous distribution,
then a learning algorithm that discovered a set of weights, Wij, that minimized
G would satisfy our desire to have the network learn the most homogeneous
distribution consistent with what is known about the distribution. Such a learn-
ing algorithm would maximize the entropy of the system; so far, however, we
have not said anything about the energy of the system. The following exercise
is a prelude to that discussion.

Exercise 5.5: In the discussion of information theory in Section 5.1.1, we
showed that the distribution with the maximum possible entropy was the one
with equal symbol probabilities, P-n = l/q, where q is the number of sym-
bols. Consider a physical system in equilibrium, at some finite temperature, T.
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The distribution function for that physical system is the canonical distribution
function given by Eq. (5.12). Show that, in the limit as T —> oo, the physical
system has equiprobable states, Pr = \/q, where q is the number of possible
states of the system.

As demonstrated in Exercise 5.5, an information system with equiprobable
symbols is analogous to a physical system in equilibrium at an infinite tem-
perature. If the temperature of the physical system is finite, the distribution
with the maximum entropy (most homogeneous) is the canonical distribution.
Furthermore, if the temperature is reduced gradually, lower-energy states will
be favored (recall the discussion in Section 5.1.2). A reasonable approach to
training the Boltzmann machine can now be constructed:

1. Artificially raise the temperature of the neural network to some finite value.
2. Anneal the system until equilibrium is reached at some low temperature

value. (This minimum temperature should not be zero.)
3. Adjust the weights of the network so that the difference between the ob-

served probability distribution and the canonical distribution is reduced (i.e.,
change the weights to reduce G).

4. Repeat steps 1 through 3 until the weights no longer change.

This procedure is a combination of gradient descent in the function, G, and
simulated annealing as described in Section 5.2.1.

To perform a gradient descent in G, we must learn how changes in the
weight values affect that function. Suppose we have a set of vectors, {V0}, that
we would like a Boltzmann completion network to learn. These vectors would
appear as the outputs of the visible units in the network. Define {H/,} as the
set of vectors appearing on the hidden units.

We can impose our knowledge about the Va vectors by clamping the outputs
of the visible units to each Vre according to our knowledge of the probability
of occurrence of VQ . By clamping, we mean that the output values are fixed
and do not change, even though other units may be changing according to the
stochastic model presented earlier. Thus, the probability that the visible units
will be clamped to the vector Va is P+(V0), where the "+" superscript indicates
that the visible units have been clamped. Units on the hidden layer may undergo
change while a single vector is clamped to the visible units. The probability
that vector Va is clamped to the visible units, and that vector H;, appears on the
hidden units, is P+(Va A H;,), and

The reason that we must account for the hidden-layer vector is that the
energy of the system depends on all of the units in the network, not just on the
visible units. The total energy of the system with Va on the visible units and
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Hf, on the hidden units is

F L — — V^ ii' .Tabrab (5 24~>06 ~ 2-*i *3 * 3 l3"^*/
i<j

where xab can refer to either a visible unit or a hidden unit.
With none of the visible units clamped, the probability that V0 will appear

on the visible units is given by

where the "— " superscript indicates that the visible units are not clamped. Since
this distribution represents a free-running (undamped) system in equilibrium at
some temperature, we can explicitly identify the probabilities as the canonical
probabilities:

e-Eab/T

(5.25)
e-Eab/T

~~ ~z
Then -Eab/T

—- (5.26)
—

The explicit functional form of G now becomes

where we have used the natural log rather than the base-2 log, for convenience.
Differentiating G gives

d G a 0

P-(VJ dwij

Notice that the P+(Va) are independent of w1} because the visible units are
clamped to V0 and do not vary with changes in the wtj .

From Eq. (5.26),

aP-(Va) _ 1 v- e~E«b/T dEah ^ e-E**/T dZ
———— -~ - ~ ——- (5'28)

The derivative of the energy function is

= -xfx'f (5.29)
''
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and the derivative of the partition function is

dEmn _E IT\
'^Te )

(5.30)
_ j_^xmna.mn -£mn/T

y / -• l J
m.n

Substituting Eqs. (5.29) and (5.30) into Eq. (5.28) yields

(5.31)

where we have made use of the definition of P~(Va A Hf)) and the definition
ofP-(VJ.

Equation (5.31) can now be substituted into Eq. (5.27) to give

dw - T^P-(Va
J a,.()

(5.32)
V P+(V )
^a V °;

To simplify this equation, we first note that £]n -P+(Vn) = 1. Next, we shall
use a result from probability theory:

P+(Va A H6) = P+(Hb|Va)P+(Va)

Stated in words, this equation means that the probability of having Va on the
visible layer and H^ on the hidden layer is equal to the probability of having Hf,
on the hidden layer given that Va was on the visible layer, times the probability
that Va is on the visible layer. An analogous definition and statement can be
made for P~(VJ:

P-(V0 A Hfc) = P-(H6|Va)P-(V0)

If Va is on the visible layer, then the probability that Hb will occur on the
hidden layer should not depend on whether Va got there by being clamped to
that state or by free-running to that state. Therefore, it must be true that

P+(H6|Va) = P-(H6|Va)
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Then
P~(\a A H6) P-(Vg)

Q A H6) P+(Va)
and

P+rv \
P-(V0 A H6) ° = P+(VQ A H6)

* ( ' a/

Using these results, we can write

dG 1 ,

where

PT = p~ ( v« A H")a-fc x (5-33)

and

z (5.34)

,

a.b

The interpretation of Eqs. (5.33) and (5.34) will be given shortly. For now,
recall that weight changes occur in the direction of the negative gradient of G.
Weight updates are calculated according to

AU;,,=e(p+ -Pr.) (5.35)

where e is a constant.
The quantities, p~ and p^ are called co-occurrence probabilities because

they compute the frequency that xf' and x"-'' are both active (an output value
of 1) averaged over all possible combinations of the patterns, Va and H/,. Thus,
pfj is the co-occurrence probability when the VQ patterns are being clamped on
the visible units, and p~. is the co-occurrence probability when the network is
free-running. As seen in Eq. (5.35), the weights will continue to change as long
as the two co-occurrence probabilities differ.

Several paragraphs ago, we described a simple algorithm for training a
Boltzmann machine. We shall now expand that algorithm to include the method
for determining the weight-update values as specified by Eq. (5.35):

1. Clamp one training vector to the visible units of the network.
2. Anneal the network according to the annealing schedule until equilibrium

is reached at the desired minimum temperature.
3. Continue to run the network for several more processing cycles. After

each processing cycle, determine which pairs of connected units are on
simultaneously.

4. Average the co-occurrence results from step 3.
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5. Repeat steps 1 through 4 for all training vectors, and average the co-
occurrence results to get an estimate of pj for each pair of connected
units.

6. Unclamp the visible units, and anneal the network until equilibrium is
reached at the desired minimum temperature.

7. Continue to run the network for several more processing cycles. After
each processing cycle, determine which pairs of connected units are on
simultaneously.

8. Average the co-occurrence results from step 7.
9. Repeat steps 6 through 8 for the same number of times as was done in step

5, and average the co-occurrence results to get an estimate of p~ for each
pair of connected units.

10. Calculate and apply the appropriate weight changes. (The entire sequence
from step 1 to step 10 defines a sweep.)

11. Repeat steps 1 through 10 until p+ -p~ is sufficiently small.

An alternative way to decide when to halt training is to perform a test procedure
after each sweep. Clamp partial or noisy input vectors to the visible units, anneal
the network, and see how well the network reproduces the correct vector. When
the performance is adequate, training can be stopped.

Although it is not possible to give an exact procedure for determining the
annealing schedule, it is possible to provide guidelines and suggestions. The
next section provides these guidelines, with other practical information about
the simulation of the Boltzmann machine.
Exercise 5.6: Modify the Boltzmann learning algorithm to accommodate the
Boltzmann input-output network described in Section 5.2.1.

5.2.3 Practical Considerations
If there is a single word that describes the learning process in a Boltzmann ma-
chine simulation, that word is slow. Even relatively small networks may require
thousands of processing cycles to learn a set of input patterns adequately. This
situation is exacerbated by the fact that the annealing schedule must incorporate
a very slow reduction in temperature if the global minimum is to be found. Stud-
ies performed on simulated annealing by Geman and Geman showed that the
temperature must be reduced in proportion to the inverse log of the temperature:

T1

T(tn) = In tn

where TO is the starting temperature, and the discrete-time variable, tn, rep-
resents the nth processing cycle [2]. Annealing a single input pattern from a
temperature of 40 to a temperature of 0.5 requires an impractical e80 process-
ing cycles to ensure that the global minimum has been found (at T = 0.5).
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Fortunately, we do not need to follow this prescription to obtain good results,
but, other than the results of Geman and Geman, annealing schedules must be
determined ad hoc.

Examples of annealing schedules used to solve a few small problems are
given in a paper by Ackley, Hinton, and Sejnowski [1]. In a problem called the
8-3-8 encoder problem, they used a Boltzmann input-output network with 16
visible units and three hidden units. They clamped an eight-bit binary number to
the input nodes. Only one of the bits in the input vector was allowed to be on at
any given time. The problem was to train the network to reproduce the identical
vector on the output nodes. Thus, the three hidden nodes learned a three-digit
binary code for the eight possible input vectors. The annealing schedule was
{2 processing cycles at a temperature of 20, 2 at 15, 2 at 12, 4 at 10}. Several
thousand sweeps were required to train the network to perform the encoding task.

The annealing technique that we have described is not the only possible
method. The bibliography at the end of this chapter contains references that
describe other methods. One method in particular that we wish to note here is
described by Szu [8], Szu's method is based on the Cauchy distribution, rather
than the Boltzmann distribution. The Cauchy distribution has the same general
shape as the Boltzmann distribution, but does not fall off as sharply at large
energies. The implication is that the Cauchy machine may occasionally take a
rather large jump out of a local minimum. The advantage of this approach is
that the global minimum can be reached with a much shorter annealing schedule.
For the Cauchy machine, the annealing temperature should follow the inverse
of the time:

TL
T(tn) =

.

l+t,,

This annealing schedule is much faster than is the one for the corresponding
Boltzmann machine.

5.3 THE BOLTZMANN SIMULATOR
As you may have inferred from the previous discussion, simulating the Boltz-
mann network on a conventional computer will consume enormous amounts of
both system memory and CPU time. For these reasons (as well as for brevity),
we will limit our discussion of the simulator to only the most important data
structures and algorithms needed to implement the Boltzmann network. The
development of the less difficult or application-specific algorithms is left to you.
We begin by defining the data structures that we must add to our generic sim-
ulator to implement the Boltzmann network. We then develop the algorithms
that will be used to run the network simulator, and conclude the chapter with
a presentation of an example problem that the Boltzmann network can be used
to solve.
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5.3.1 The Modified Boltzmann Network
The Boltzmann network, as we have discussed throughout this chapter, is sim-
ilar in structure to the BAM and Hopfield networks described in Chapter 4. In
particular, the Boltzmann network consists of a set of PEs, each completely
interconnected with every other unit in the network.2 This type of network
arrangement is usually diagrammed as a set of units with bidirectional connec-
tions to every other unit, as illustrated earlier in Figure 5.2. For purposes of
simulation, however, we will instead create the network structure with a single
layer of PEs, each having a unidirectional input connection from every other
unit. We adopt this convention because it offers us many insights into how
to go about implementing the Boltzmann simulator program. However, you
should note that this alternative model is functionally identical to the network
containing bidirectional connections.

As an example, consider the two different views of the same Boltzmann
network illustrated in Figure 5.4. Notice that, in the modified view shown in
Figure 5.4(b), the network structure is much busier (and more confusing) than
it is in the standard arrangement. If we look beneath the surface though, and
consider only the processing going on at the level of each network unit, the
modified view reveals that each PE behaves in a familiar manner; an aggregate
input stimulation provided by many modulated input signals is converted to
a single output that is, in turn, modulated to provide an input to every other
network unit. This type of processing is exactly what our simulator is designed
to model efficiently.

Based on this observation, our basic data structures for the network sim-
ulator will not require modification. We need only to introduce some new
structures to account for how the network learns, and to incorporate them into
the algorithms that we must develop to propagate signals through the network.

5.3.2 Boltzmann Data Structures
There are two significant differences between the structure of the Boltzmann
network and that of other ANS networks we have discussed previously. The
Boltzmann model is trained by using an annealing schedule to determine how
many training passes to complete at every temperature interval, and the Boltz-
mann network is not a layered network. We will account for these differences
separately as we modify our simulator data structures to implement the Boltz-
mann network. We begin by implementing a mechanism that will allow the
simulator to follow an annealing schedule during signal propagation and train-
ing.

Since it is impractical for us, as program designers, to try to accommodate
every possible application by implementing a universal annealing schedule, we

2The Boltzmann input-output model is an exception, due to its lack of interconnection between
input units.
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(b)

Figure 5.4 A Boltzmann network is shown, (a) from the traditional view,
and (b) modified to conform to the unidirectional connection
format.

will instead require the user to provide the annealing schedule for each appli-
cation. The implementation of the schedule is relatively simple if we observe
that the latter is nothing more than a variable length set of ordered pairs of
temperature and training passes. Thus, we can construct an annealing sched-
ule of indefinite size if we define a record structure to store each ordered pair,
and dynamically allocate an array of these records to create the schedule. Our
structure for the annealing pair is given by the declaration:

record ANNEAL =
TEMPERATURE : float;
PASSES : integer;

end record;

{temperature}
{training passes}
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We complete the annealing schedule by denning an array of ANNEAL
records, each specified by the user. As in the case of other dynamically allocated
arrays discussed in this text, we do not presuppose the use of any particular com-
puter language; therefore, the actual specification and mechanism for initializa-
tion of the SCHEDULE array is left to you. For purposes of discussion, however,
the declaration of a typical annealing schedule array might take the form

record SCHEDULE (SIZE)=
LENGTH : integer = SIZE;
STEP : array[1..SIZE] of ANNEAL;

end record;

where SIZE is the user-provided length of the array.
Before we can define the remaining data structures needed to implement the

Boltzmann network, we must take into account the second difference between
the Boltzmann and other ANS network models we have discussed previously.
Specifically, the Boltzmann machine is a nonlayered network, and has dedicated
input and output units that are subsets of units within the same layer. Moreover,
the inputs and outputs may overlap, as in the case of the Boltzmann completion
network, in which the input units are the output units. An example of this type
of network is the one that will simply fill in missing data elements from an
incomplete input. On the other hand, the network may have two discrete sets
of units, one acting as dedicated input units, the other as dedicated output units.

To account for these differences, we can make use of the fact that the outputs
from all of the units in the network will be modeled as a linearly sequential array
of data values in the computer memory, arranged from first to last, going from
low memory toward high memory. This fact holds true because, as we have ob-
served, the Boltzmann network can be thought of as containing a single layer of
units. Furthermore, this sequential structure holds for all of the intermediate net-
work structures that we must use (e.g., the unit weights array). If we therefore
adopt the convention that all units in the network must be arranged sequentially,
with the visible units occurring first, we can simply locate the first unit of the net-
work input by using an integer index. Once the first unit is found, all other input
units will follow in sequence. The same technique can be used to locate the net-
work outputs as well. An additional benefit derived from the use of this method
is the ability to provide either discrete or overlapping network inputs and outputs.

Unfortunately, our convention will introduce some other difficulties, be-
cause the number of units dedicated to input and output is no longer defined
explicitly by the number of elements in an array, as it is in other network mod-
els. We must therefore compensate for the loss of layer identity by constructing
one additional record that will be used to locate and size the network input and
output units. This record will take the form

record DEDICATED =
FIRST : integer; {index to first dedicated unit}
LENGTH : integer; {number of units needed}

end record;
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We will also need another structure to help us determine the required weight
changes for the network during training. Since this network adapts its connec-
tions as a function of the probability that any two units are on simultaneously,
we must have a means of collecting the statistics about how often that situation
occurs for every two units in the network. The most straightforward approach to
collecting these statistics is to construct an array that will be used to store and
calculate the co-occurrence parameters, p^- and p~. For purposes of simula-
tion, we must maintain a count value for every combination of two units in the
network. Thus, we must be able to store information about the relationships be-
tween TV units taken two at a time. The storage required for all this information
will consume an array of dimension N(N - l)/2, with each element a floating-
point number that will be used as both a count and an average. We will elaborate
on this dual functionality as part of the discussion of the Boltzmann learning
algorithms (see Section 5.3.3). For now, the declaration for this structure will
again be dependent on the language of implementation; for that reason, it will
not be presented here. For clarity, we will name the array CO-OCCURRENCE;
the declaration of the SCHEDULE. STEP array provided earlier is an example
of how this array might be constructed.

Having created an array to collect the CO-OCCURRENCE statistics about
our Boltzmann machine, we now observe that it alone will not be sufficient for
our simulation. A single array will allow us to accumulate the frequency with
which any two network units are on together; however, these statistics must be
gathered and averaged for every training pattern, as well as for the aggregate.
Furthermore, we must collect network statistics during different runs (clamped
to compute p^ and undamped for p~). Fortunately, all these statistics can be
combined, thus minimizing the amount of storage needed to preserve the data.
However, the information from each run must be isolated so that the appropriate
A?« can be computed, according to Eq. (5.35). We shall therefore allocate two
such arrays, and shall create another record to locate each at run time. Such a
record is given by

record COOCCURRENCE =
CLAMPED : "float[];

{locate array for p+ calculation}
UNCLAMPED : "float[];

{locate array for p- calculation}
end record;

Before pressing on, let us consider how to utilize effectively the arrays
we have just created. To organize each array such that it is both meaningful
and efficient, we must determine a means of associating array locations, and
therefore computer memory, with network connections. This association is best
accomplished implicitly, by allocating the first N — 1 locations in the array to
the connections between the first and all other network units. The next N — 2
slots will be given to the second unit, and so on. As an example, consider a
network with five units, labeled A through E; such a network is depicted in
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Co-occurence

A-B
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Low memory

High memory
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Figure 5.5 The CO-OCCURRENCE array is shown (a) depicted as a
sequential memory array, and (b) with its mapping to the
connections in the Boltzmann network.

Figure 5.5(a). The first four entries in the CO-OCCURRENCE array for this
network would be mapped to the connections between units A-B, A-C, A-
D, and A-E, as shown in Figure 5.5(b). Likewise, the next three slots would
be mapped to the connections between units B-C, B-D, and B-E; the next
two to C-D, and C- E; and the last one to D-E. By using the arrays in this
manner, we can collect co-occurrence statistics about the network by starting
at the first input unit and sequentially scanning all other units in the network.
After completing this initial pass, we can complete the network scan by merely
incrementing our array pointer to access the second unit, then the third, fourth,
. . . , nth units.

We can now specify the remaining data structures needed to implement
the Boltzmann network simulator. We begin by defining the top-level record
structure used to define the Boltzmann network:

record BOLTZMANN =
UNITS : integer;
CLAMPED : boolean;
INPUTS : DEDICATED;
OUTPUTS : DEDICATED;
NODES : "layer;
TEMPERATURE : float;
CURRENT : integer;

{number of units in network}
{true=clamped; false=unclamped}
{locate and size network input}
(locate and size network output}

{pointer to layer structure)
{current network temperature}
{step in annealing schedule)
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ANNEALING : ~SCHEDULE[];
{pointer to user-defined schedule}

STATISTICS : COOCCURRENCE;
{pointers to statistics arrays}

end record;

Figure 5.6 provides an illustration of how the values in the BOLTZMANN
structure interact to specify a Boltzmann network. Here, as in other network
models, the layer structure is the gateway to the network specific data struc-
tures. All that is needed to gain access to the layer-specific data are point-
ers to the appropriate arrays. Thus, the structure for the layer record is
given by

cuts weights 1

Boltzmann

Nodes

Annealing

Current

.
Figure 5.6 Organization of the Boltzmann network using the defined data

structure is shown. In this example, the input and output
units are the same, and the network is in the third step of
its annealing schedule.
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record LAYER =
outs : ~float[]; {pointer to unit outputs array}
weights : ~"float[]; {pointers in weight _ptr array}

end record;

where out s is a pointer used to locate the beginning of the unit outputs array
in memory, and weights is a pointer to the intermediate weight-ptr ar-
ray, which is used in turn to locate each of the input connection arrays in the
system. Since the Boltzmann network requires only one layer of PEs, we will
need only one layer pointer in the BOLTZMANN record. All these low-level
data structures are exactly the same as those specified in the generic simulator
discussed in Chapter 1.

5.3.3 Boltzmann Algorithms
Let us assume, for now, that our network data structures contain valid weights
for all the connections, and that the user has initialized the annealing schedule
to contain the information given in Table 5.1; in other words, the network data
structures represent a trained network. We must now create the programs that
the host computer will execute to simulate the network in production mode. We
shall start by developing the information-recall routines.

Boltzmann Production Algorithms. Remember that information recall in the
Boltzmann network consists of a sequence of steps where we first apply an
input to the network, raise the temperature to some predefined level, and anneal
the network while slowly lowering the temperature. In this example, we would
initially raise the temperature to 5 and would perform four stochastic signal
propagations; we would then lower the temperature to 4 and would perform
six signal propagations, and so on. After completing the four required signal
propagations when the temperature of the network is 1, we can consider the
network annealed. At this point, we simply read the output values from the
visible units.

If, however, we think about the process we just described, we can decom-
pose the information-recall problem into three lower-level subroutines:

Temperature

5
4
3
2
1

Passes

4
6
7
6
4

Table 5.1 The annealing schedule for the simulator example.
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apply_input A routine used to take a user-provided or training input and
apply it to the network, and to initialize the output from all unknown units
to a random state,

anneal A routine used to stimulate the Boltzmann network according to the
previously initialized annealing schedule,

get-output A function used to locate the start of the output array in the
computer memory, so that the network response can be accessed.

Since the anneal routine is the place where most of the processing is
accomplished, we shall concentrate on the development of just that routine,
leaving the design of the other two algorithms to you. The mathematics of
the Boltzmann network tells us that the annealing process, in production mode,
consists of two major functions that are repeated until the network has stabilized
at a low temperature. These functions, described next, can each be implemented
as subroutines that are called by the parent anneal process.

set_temp A procedure used to set the current network temperature and an-
nealing schedule pass count to values specified in the overall annealing
schedule.

propagate A function used to perform one signal propagation through the
entire network, using the current temperature and probabilistic unit se-
lection. This routine should be capable of performing the signal propagation
regardless of the network state (clamped or undamped).

Signal Propagation in the Boltzmann Network. We shall now define the
most basic of the needed subroutines, the propagate procedure. The al-
gorithm for this procedure, which follows, presumes that the user-provided
apply-input and not-yet-defined set-temp functions have been executed
to initialize the outputs of the network's units and temperature parameter
to the desired states.

procedure propagate (NET:BOLTZMANN)
{perform one signal propagation pass through network.}

var unit : integer; {randomly selected unit}
p : float; {probability of unit being on}
neti : float; {net input to unit}
threshold : integer; {point at which unit turns on}
i, j : integer; {iteration counters}
inputs : "float[]; {pointer to unit outputs array}
connects : ~float[]; {pointer to unit weights array}
undamped : integer; {index to first undamped unit}
firstc : integer; (index to first connection}

begin
{locate the first nonvisible unit, assuming first

index = 1}
undamped = NET .OUTPUT. FIRST + NET . OUTPUT . LENGTH - 1;
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if (NET.INPUTS.FIRST = NET.OUTPUTS.FIRST)
then firstc = NET.INPUTS.FIRST {Boltzmann completion}

else firstc = NET.INPUTS.LENGTH + 1;
{Boltzmann input-output}

end if;

for i = 1 to NET.UNITS {for as many units in network}
do
if (NET.CLAMPED) {if network is clamped}
then {select an undamped unit}

unit = random (NET. UNITS - undamped)
+ undamped;

else {select any unit}
unit = random(NET.UNITS);

end if;

neti =0; {initialize input}
inputs = NET.NODES".CUTS; {locate inputs}
connects = NET.NODES".WEIGHTS[i]';

{and connections}

for j = firstc to NET.UNITS
{all connections to unit}

do {compute sum of products}
neti = neti + inputs[j] * connects[j];

end do;

{this next statement is used to improve
performance, as described in the text}

if (NET.INPUTS.FIRST = NET.OUTPUTS.FIRST)
or (i >= firstc)
then
neti = neti - inputs[i] * connects[i];

{no connection}
end if;

p = 1.0 / (1.0+ exp(-neti / NET.TEMPERATURE));
threshold = round (p * 10000); {convert to integer}

if (random(lOOOO) <= threshold))
{should unit be on?}

then
inputs[unit] =1; {if so, set to 1}

else
inputs[unit] = 0; {otherwise, set to 0}

end if;
end do;

end procedure;
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Before we move on to the next routine, there are three aspects of the
propagate procedure that bear further discussion: the selection mechanism
for unit update, the computation of the neti term, and the method we have
chosen for determining when a unit is or is not active.

In the first case, the Boltzmann network must be able to run with its in-
puts either clamped or free-running. So that we do not need to have different
propagate routines for each mode, we simply use a Boolean variable in
the network record to indicate the current mode of operation, and enable the
propagate routine to select a unit for update accordingly. If the network
is clamped, we cannot select an input or output unit for update. We account
for these differences by assuming that the visible units to the network are the
first TV units in the layer. We thus can be assured that the visible units will
not change if we simply select a random unit from the set of units that do not
include the first N units. We accomplish this selection by decreasing the range
of the random-number generator to the number of network units minus N, and
then adding TV to the result. Since we have decided that all our arrays will use
the first TV indices to locate the visible units, generating a random index greater
than TV will always select a random unit beyond the range of the visible units.
However, if the network is undamped, any unit must be available for update.
Inspection of the algorithm for propagate will reveal that these two cases
are handled by the if-then-else clause at the beginning of the routine.

Second, there are two salient points regarding the computation of the neti
term with respect to the propagate routine. The first point is that connec-
tions between input units are processed only when the network is configured
as a Boltzmann completion network. In the Boltzmann input-output mode,
connections between input units do not exist. This structure conforms to the
mathematical model described earlier. The second point about the calculation
of the neti term is that we have obviously wasted computer time by process-
ing a connection from each unit to itself twice, once as part of the summation
loop during the calculation of the neti value, and once to subtract it out after
the total neti has been calculated. The reason we have chosen to implement
the algorithm in this manner is, again, to improve performance. Even though
we have consumed computer time by processing a nonexistent connection for
every unit in the network, we have used far less time than would be required
to disallow the computation of the missing connection selectively during every
iteration of the summation loop. Furthermore, we can easily eliminate the error
introduced in the input summation by processing the nonexistent connection by
subtracting out just that term after completing the loop, prior to updating the
output of the unit. You might also observe that we have wasted memory by
allocating space for the connections between each unit and itself. We have cho-
sen to implement the network in this fashion to simplify processing, and thus
to improve performance as described.

As an example of why it is desirable to optimize the code at the expense
of wasted memory, consider the alternative case where only valid connections
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are modeled. Since no unit has a connection to itself, but all units have outputs
maintained in the same array, the code to process all input connections to a unit
would have to be written as two different loops: one for those input PEs that
precede the current unit, where the array indices for outputs and connections
correspond one-to-one, and one loop for inputs from units that follow, where
unit outputs are displaced by one array entry from the corresponding connection.
This situation occurs because we have organized the unit outputs and connec-
tions as linearly sequential arrays in memory. Such a situation is illustrated in
Figure 5.7.

( a )

outputs weights ( input)

w ( i - l ) j

outputs x weights ( input)

(b)

w (i+2)j

Figure 5.7 The illustration shows array processing (a) when memory is
allocated for all possible connections, and (b) when memory
is not allocated for intra-unit connections. In (a), the code
necessary to perform this input summation simply computes
the input value for all connections, then eliminates the error
introduced by processing the nonexistent connection to itself.
In (b), the code must be more selective about accessing
connections, since the one-to-one mapping of connections to
units is lost. Obviously, approach (a) is our preferred method,
since it will execute much faster than approach (b).



5.3 The Boltzmann Simulator 201

Finally, with respect to deciding when to activate the output of a unit, recall
that the Boltzmann network differs from the other networks that we have studied
in that PEs are activated stochastically rather than deterministically. Recall that
the equation

defines how we calculate the probability that a unit x/t is active with respect
to its input stimulation (net,t). However, simply knowing the probability that
a unit will generate an output does not guarantee that the unit will generate an
output. We must therefore implement a mechanism that allows the computer to
translate the calculated probability into a unit output that occurs with the same
probability; in effect, we must let the computer roll the dice to determine when
an output is active and when it is not.

One method for doing this is to make use of the pseudorandom-number gen-
erator available in most high-level computer languages. Here, we take advantage
of the fact that the computed probability, p^, will always be a fractional number
ranging between zero and one, as illustrated by the graph depicted in Figure 5.8.
We can map p/, to an integer threshold value between zero and some arbitrarily
large number by simply multiplying the ceiling value by the computed probabil-
ity and rounding the result into an integer. We then generate a random number
between zero and the selected ceiling, and, if the probability does not exceed
the threshold value just computed, the output of the unit is set to one. Assuming
that the pseudorandom-number generator has a uniform probability distribution
across the interval of interest, the random number produced will not exceed the
threshold value with a probability equal to the specified value, pk. Thus, we
now have a means of stochastically activating unit outputs in the network.

-20 -15 -10 0
Net input

Figure 5.8 Shown here is a graph of the probability, pk, that the /cth unit
is on at five different temperatures, T.
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Boltzmann Learning Algorithms. There are five additional functions that
must be defined to train the Boltzmann network:

set_temp A function used to update the parameters in the BOLTZMANN record
to reflect the network temperature at the current step, as specified in the
annealing schedule.

pplus A function used to compute and average the co-occurrence probabilities
for a network with clamped inputs after it has reached equilibrium at the
minimum temperature.

pminus A function similar to pplus, but used when the network is free-
running.

update_connections The procedure that modifies the connection weights
in the network to train the Boltzmann simulator.

The implementation of the set-temp function is straightforward, as de-
fined here:

procedure set_temp (NET:BOLTZMANN; N:integer)
{set the temperature and schedule step}

begin
NET.CURRENT = N; {set current step}
NET.TEMPERATURE = NET.ANNEALING".STEP[N].TEMPERATURE;

end procedure;

On the other hand, the estimation of the pj and p~ terms is complex,
and each must be accomplished in two steps: in the first, statistics about the
co-occurrence between network units must be gathered and averaged for each
training pattern; in the second, the statistics across all training patterns are
collected. This separation provides a natural breakpoint for algorithm devel-
opment. We can therefore define two algorithms, sum_cooccurrence and
pplus, that respectively address the two steps identified.

We shall now turn our attention to the computation of the co-occurrence
probability, pj, when the input to the network is clamped to an arbitrary input
vector, Va. As we did with propagate, we will assume that the input pattern
has been placed on the input units by an earlier call to set-inputs. Fur-
thermore, we shall assume that the statistics arrays have been initialized by an
earlier call to a user-supplied routine that we refer to as zero-Statistics.

procedure sum_cooccurrence (NET:BOLTZMANN)
{accumulate co-occurence statistics for the

specified network}

var i,j,k : integer; {loop counters}
connect : integer; {co-occurence index}
stats : "float[]; {pointer to statistics array}
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begin
if (NET.CLAMPED) {if network is clamped}
then stats = NET.STATISTICS.CLAMPED
else stats = NET.STATISTICS.UNCLAMPED;
end if;

for i = 1 to 5 {arbitrary number of cycles}
do
propagate (NET); {run the network once}

connect = 1; {start at first pair}
for j = 1 to NET.UNITS

{for all units in network}

do
if (NET.NODES.OUTS"[j] = 1) {if unit is on}
then
for k = j to NET.UNITS {for rest of units}
do
if (NET.NODES.OUTS~[k] = 1)
then
stats"[connect] = stats"[connect] + 1;

end if;

connect = next (connect);
end do;

else {skip to next unit connect}
connect = connect + (NET.UNITS - j);

end if;

end do;
end do;

end procedure;

Notice that the sum_cooccurrence routine does not average the accu-
mulated results after completing the examination. We delay this computation
to the pplus routine so that we can continue to use the clamped array to
collect statistics across all patterns. If we averaged the results after each cycle,
we would be forced to maintain different arrays for each pattern, thus increasing
the need for storage at a near-exponential rate. In addition, note that, by using
a pointer to the appropriate statistics array, we have generalized the routine so
that it may be used to collect statistics for the network in either the clamped or
undamped modes of operation.

Before we define the algorithm needed to estimate the pt. term for the
Boltzmann network, we will make a few assumptions. Since the total number of
training patterns that the network must learn will depend on the application, we



204 Simulated Annealing

must write the code so that the computer will calculate the co-occurrence statis-
tics for a variable number of training patterns. We must therefore assume that
the training data are available to the simulator from some external source (such
as a global array or disk file) that we will refer to as PATTERNS, and that the
total number of training patterns contained in this source is obtainable through
a call to an application-defined function that we will call how_many. We also
presume that you will provide the routines to initialize the co-occurrence
arrays to zero, and set the outputs of the input network units to the state spec-
ified by the Uh pattern in the PATTERNS data source. We will refer to these
procedures as initialize_arrays and set-inputs, respectively. Based
on these assumptions, we shall now define our algorithm for computing pplus:

procedure pplus (NET:BOLTZMANN)

var trials : integer;
i : integer;

{average over trials}
{loop counter}

begin
trials = how_many (PATTERNS) * 5;

{five sums per pattern}
for i = 1 to trials {for all trials}

do
NET.STATISTICS.CLAMPED"[i] = {average results}

NET.STATISTICS.CLAMPED'[i] / trials;
end do;

end procedure;

The implementation of pminus is similar to the pplus algorithm, and is
left to you as an exercise.

5.3.4 The Complete Boltzmann Simulator
Now that we have defined all the lower-level functions needed to implement the
Boltzmann network, we shall describe the algorithms needed to tie everything
together. As previously stated, the two user-provided routines (set-inputs
and get .outputs) are assumed to initialize and recover input and output data
to or from the simulator for an external process. However, we have yet to
define the two intermediate routines that will be used to perform the network
simulation given the externally provided inputs. We now begin to correct that
deficiency by describing the algorithm for the anneal process.

procedure anneal (NET:BOLTZMANN)
{perform one pass through annealing schedule for

current input}
var passes : integer; {passes at current temperature}

steps : integer; {number of steps in schedule}
i, j : integer; {loop counters}
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begin
steps = NET.ANNEALING".LENGTH; {steps in schedule}

for i = 1 to steps {for all steps in schedule}
do
passes = NET.ANNEALING".STEP[i].PASSES;
set_temp (NET, i); {set current annealing step}

for j = 1 to passes {for all passes in step}
do
propagate (NET);

{perform required processing cycles}
end do;

end do;
end procedure;

All that remains to complete the learning-mode algorithms is a routine to
update the connection weights in the network according to the statistics collected
during the annealing process. This routine will compute and apply the Aw term
for each connection in the network. To simplify the program, we assume that
the e constant contained in Eq. (5.35) will always be 0.3.

procedure update_connections (NET:BOLTZMANN)
{update all connections based on cooccurence statistics}

var connect : "float []; {pointer to connection array}
pp, pm : float[]; {statistics arrays}
dupconnect : "float[];

{pointer to duplicate connection}
i, j, stat : integer; {iteration indices}

begin
pp = NET.STATISTICS.CLAMPED";

{locate pplus statistics}
pm = NET.STATISTICS.UNCLAMPED";

{locate pminus statistics}
stat = 1; {start at first statistic}

for i = 1 to NET.UNITS {for all units in network}
do
connect = NET.NODES.WEIGHTS"[i];

{locate connections}

for j = (i + 1) to NET.UNITS
{for all connections}

do
connect"[j] = 0.3 * (pptstat] - pm[stat]);
stat = stat + 1; {next statistic}
dupconnect = NET.NODES.WEIGHTS"[j] ;

{locate twin}
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dupconnect'[i] = connect"[j];
{copy to twin}

end do;
end do;

end procedure;

Notice that the update_connections routine modifies two connection
values during every iteration, because we are modeling bidirectional connections
as two unidirectional connections, and each must always contain the same value.
Given the data structures we have defined for our simulator, we must preserve the
bidirectional nature of the network connections by always modifying the values
in two different arrays, such that these arrays always contain the same data. The
algorithm for update_connections satisfies this requirement by locating the
associated twin connection during every update cycle, and copying the new value
from the current connection to the twin connection, as illustrated in Figure 5.9.

We shall now describe the algorithm used to train the Boltzmann simulator.
Here, as before, we assume that the training patterns to be learned are contained
in a globally accessible storage array named PATTERNS, and that the number
of patterns in this array is obtainable through a call to an application-defined
routine, howjnany. Notice that in this function, we call the user-supplied
routine, zero-Statistics, to initialize the statistics arrays.

outs

/ Twin connections

Twin connections

Figure 5.9 Updating of the connections in the Boltzmann simulator is
shown. The weights in the arrays highlighted by the darkened
boxes represent connections modified by one pass through the
update_connections procedure. i
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function learn (NET:BOLTZMANN)
{cause network to learn input PATTERNS}

var i : integer; {iteration counters}

begin
NET.CLAMPED = true; {clamp visible units)
zero_statistics (NET); {init statistics arrays}

for i = 1 to how_many (PATTERNS)
do
set_inputs (NET, PATTERNS, i);
anneal (NET); {apply annealing schedule)
sum_cooccurrence (NET); {collect statistics)

end do;

pplus (NET); {estimate p+)
NET.CLAMPED = false; {unclamp visible units}
for i = 1 to how_many (PATTERNS)
do
set_inputs (NET, PATTERNS, i);
anneal (NET); {apply annealing schedule}
sum_cooccurrence (NET); {collect statistics)

end do;

pminus (NET); {estimate p-}
update_connections (NET); {modify connections}

end procedure;

The algorithm necessary to have the network recall a pattern given an input
pattern (production mode) is straightforward, and now depends on only the
routines defined by the user to apply the new input pattern to the network and to
read the resulting output. These routines, apply_inputs and get.outputs,
respectively, are combined with anneal to generate the desired output, as
shown next:

procedure recall (NET:BOLTZMANN; INVEC,OUTVEC:"float[])
{stimulate the network to generate an output from input)

begin
apply_inputs (NET, INVEC); {set the input)
anneal (NET); {generate output)
get_output (NET, OUTVEC); {return output)

end procedure;

5.4 USING THE BOLTZMANN SIMULATOR
With the exception of the backpropagation network described in Chapter 3,
the Boltzmann network is probably the most general-purpose network of those
discussed in this text. It can be used either as an associative memory or as



208 Simulated Annealing

a mapping network, depending only on whether the output units overlap the
input units. These two operating modes encompass most of the common prob-
lems to which ANS systems have been successfully applied. Unfortunately,
the Boltzman network also has the distinction of being the slowest of all the
simulators. Nevertheless, there are several applications that can be addressed
using the Boltzmann network; in this section, we describe one.

This application uses the Boltzmann input-output model to associate pat-
terns from "symptom" space with patterns in "diagnosis" space.

5.4.1 Boltzmann Symptom-Diagnosis Application
Let's consider a specific example of a symptom-diagnosis application. We will
use an automobile diagnostic application as the basis for our example. Specif-
ically, we will focus on an application that will diagnose why a car will not
start. We first define the various symptoms to be considered:

• Does nothing: Nothing happens when the key is turned in the ignition
switch.

• Clicks: A loud clicking noise is generated when the key is turned.
• Grinds: A loud grinding noise is generated when the key is turned.
• Cranks: The engine cranks as though trying to start, but the engine does

not run on its own.

• No spark: Removing one of the spark-plug wires and holding the terminal
near the block while cranking the engine produces no spark.

• Cable hot: After the engine has been cranked, the cable running from the
battery to the starter solenoid is hot.

• No gas: Removing the fuel line from the carburetor (fuel injector) and
cranking the engine produces no gas flow out of the fuel line.

Next, we consider the possible causes of the problem, based on the
symptoms:

• Battery: The battery is dead.
• Solenoid: The starter solenoid is defective.
• Starter: The starter motor is defective.
• Wires: The ignition wires are defective.
• Distributor: The distributor rotor or cap is corroded.
• Fuel pump: The fuel pump is defective.

Although our list is not a complete representation of all possible problems,
any one or a combination of these problems could be indicated by the symp-
toms. To complete our example, we shall construct a matrix indicating the
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Figure 5.10 For the automobile diagnostic problem, we map symptoms
to causes.

mapping of the symptoms to the probable causes. This matrix is illustrated in
Figure 5.10.

An examination of this matrix indicates the variety of problems that can
be indicated by any one symptom. The matrix also illustrates the problem
we encounter when we attempt to program a system to perform the diagnostic
function: There rarely is a one-to-one correspondence between symptoms and
causes. To be successful, our automated diagnostic system must be able to
correlate many different symptoms, and, in the event that some symptoms may
be overlooked or absent, must be able to "fill in the blanks" of the problem
based on just the indicated symptoms.

5.4.2 The Boltzmann Solution
We will now examine how a Boltzmann network can be applied to the symptom-
diagnosis example we have created. The first step is to construct the network
architecture that will solve the problem for us. Since we would like to be able
to provide the network with observed symptoms, and to have it respond with
probable cause, a good candidate architecture would be to map each symptom
directly to an individual input PE, and each probable causes to an individ-
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ual output PE. Since our application requires outputs that are different from
the inputs, we select the Boltzmann input-output network as the best candi-
date.

Using the data from our example, we will need a network with seven input
units and six output units. That leaves only the number of internal units unde-
termined. In this case, there is nothing to indicate how many hidden units will
be required to solve the problem, and no external interface considerations that
will limit the number of hidden units (as there were in the data-compression
example described in Chapter 3). We therefore arbitrarily size the Boltzmann
network such that it contains 14 internal units. If training indicates that we need
more units in order to converge, they can be added at a later time. If we need
fewer units, the extras can be eliminated later, although there is no overwhelm-
ing reason to remove them in such a small network other than improving the
performance of the simulator.

Next, we must define the data sets to be used to train the network. Referring
again to our example matrix, we can consider the data in the row vectors of
the matrix as seven-dimensional input patterns; that is, for each probable-cause
output that we would like the network to learn, there are seven possible symp-
toms that indicate the problem by their existence or absence. This approach will
provide six training-vector pairs, each consisting of a seven-element symptom
pattern and a six-element problem-indication pattern.

We let the existence of a symptom be indicated by a 1, and the absence of a
symptom be represented by a 0. For any given input vector, the correct cause (or
causes) is indicated by a logic 1 in the proper position of the output vector. The
training-vector pairs produced by the mapping in the symptom-problem matrix
for this example are illustrated in Figure 5.11. If you compare Figures 5.11 and
5.10, you will notice slight differences. You should convince yourself that the
differences are justified.

Symptoms Likely causes
inputs outputs

0 1 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 1 0 0 0 0
0 1 1 0 0 1 0 0 0 1 0 0 0
0 0 1 1 1 0 0 0 0 0 1 1 0
0 0 1 1 0 0 1 0 0 0 0 0 1

Figure 5. 11 These training-vector pairs are used for the automobile
diagnostic problem.
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All that remains from this point is to train the network on these data pairs
using the Boltzmann algorithms. Once trained, the network will produce an
output identifying the probable cause indicated by the input symptom map.
The network will do this when the input is equivalent to one of the training
inputs, as expected, and it will produce an output indicating the likely cause
of the problem when the input is similar to, but different from, any training
input. This application illustrates the "best-guess" capability of the network and
highlights the network's ability to deal with noisy or incomplete data inputs.

Programming Exercises
5.1. Develop the pseudocode design for the set-inputs, apply.inputs,

and
get_outputs routines.

5.2. Develop the pseudocode design for the pminus routine.
5.3. The pplus and pminus as described are largely redundant and can be

combined into a single routine. Develop the pseudocode design for such a
routine.

5.4. Implement the Boltzmann simulator and test it with the automotive diag-
nostic data described in Section 5.4. Compare your results with ours, and
discuss reasons for any differences.

5.5. Implement the Boltzmann simulator and test it on an application of your
own choosing. Describe the application and your choice of training data,
and discuss reasons why the test did or did not succeed.

5.6. Modify the simulator to contain two additional variable parameters,
epsilon (c) and cycles, as part of the network record structure.
Epsilon will be used to calculate the connection-weight change, in-
stead of the hard-coded 0.3 constant described in the text, and cycles
should be used to specify the number of iterations performed during the
sum-cooccurrence routine (instead of the five we specified). Retrain
the network using the automotive diagnostic data with a different value
for epsilon, then change cycles, and then change both parameters.
Describe any performance variations that you observed.

Suggested Readings
The origin of modern information theory is described in a paper by Shannon,
which is itself reprinted in a collection of papers on the mathematical theory
of communications [7]. A good textbook on statistical mechanics is the one by
Reif [6]. A detailed development of the learning algorithm for the Boltzmann
machine is given in the paper by Hinton and Sejnowski in the PDF series [3].
Another worthwhile paper is the one by Ackley, Hinton, and Sejnowski [1].
An early account of using simulated annealing to solve optimization problems
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is given in a paper by Kirkpatrick, Gelatt, and Vecchi [5]. The concept of
using the Cauchy distribution to speed the annealing process is discussed in a
paper by Szu [8]. A Byte magazine article by Hinton contains an algorithm for
the Boltzmann machine that is slightly different from the one presented in this
chapter [4].
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C H A P T E R

The Counterpropagation
Network

The Counterpropagation network (CPN) is the most recently developed of the
models that we have discussed so far in this text. The CPN is not so much a
new discovery as it is a novel combination of previously existing network types.
Hecht-Nielsen synthesized the architecture from a combination of a structure
known as a competitive network and Grossberg's outstar structure [5, 6]. Al-
though the network architecture, as it appears in its originally published form
in Figure 6.1, seems rather formidable, we shall see that the operation of the
network is quite straightforward.

Given a set of vector pairs, (xi ,yi) , (^2^2), • • • , (xz,,yt), the CPN can learn
to associate an x vector on the input layer with a y vector at the output layer.
If the relationship between x and y can be described by a continuous function,
<J>, such that y = ^(x), the CPN will learn to approximate this mapping for any
value of x in the range specified by the set of training vectors. Furthermore, if
the inverse of $ exists, such that x is a function of y, then the CPN will also learn
the inverse mapping, x = 3>~'(y).' For a great many cases of practical interest,
the inverse function does not exist. In these situations, we can simplify the
discussion of the CPN by considering only the forward-mapping case, y = $(x).

In Figure 6.2, we have reorganized the CPN diagram and have restricted
our consideration to the forward-mapping case. The network now appears as

'We are using the term function in its strict mathematical sense. If y is a function of x. then every
value of x corresponds to one and only one value of y. Conversely, if x is a function of y, then
every value of y corresponds to one and only one value of x. An example of a function whose
inverse is not a function is, y = x2, — oo < x < oo. A somewhat more abstract, but perhaps
more interesting, situation is a function that maps images of animals to the name of the animal. For
example, "CAT" = 3>("picture of cat"). Each picture represents only one animal, but each animal
corresponds to many different pictures.

213
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" O-t,

Layers

Figure 6.1 This spiderlike diagram of the CRN architecture has five layers:
two input layers (1 and 5), one hidden layer (3), and two
output layers (2 and 4). The CRN gets its name from the fact
that the input vectors on layers 1 and 2 appear to propagate
through the network in opposite directions. Source: Reprinted
with permission from Robert Hecht-Nielsen, ' 'Counterpropagation
networks." In Proceedings of the IEEE First International
Conference on Neural Networks. San Diego, CA, June 1987.
©1987 IEEE.

a three-layer architecture, similar to, but not exactly like, the backpropagation
network discussed in Chapter 3. An input vector is applied to the units on
layer 1. Each unit on layer 2 calculates its net-input value, and a competition
is held to determine which unit has the largest net-input value. That unit is
the only unit that sends a value to the units in the output layer. We shall
postpone a detailed discussion of the processing until we have examined the
various components of the network.

CPNs are interesting for a number of reasons. By combining existing net-
work types into a new architecture, the CPN hints at the possibility of forming
other, useful networks from bits and pieces of existing structures. Moreover,
instead of employing a single learning algorithm throughout the network, the
CPN uses a different learning procedure on each layer. The learning algorithms
allow the CPN to train quite rapidly with respect to other networks that we have
studied so far. The tradeoff is that the CPN may not always yield sufficient
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y' Output vector

Layer 3

Layer 2

Layer 1

x Input vector y Input vector

Figure 6.2 The forward-mapping CPN is shown. Vector pairs from
the training set are applied to layer 1. After training is
complete, applying the vectors (x, 0) to layer 1 will result in an
approximation, y', to the corresponding y vector, at the output
layer, layer 3. See Section 6.2 for more details of the training
procedure.

accuracy for some applications. Nevertheless, the CPN remains a good choice
for some classes of problems, and it provides an excellent vehicle for rapid pro-
totyping of other applications. In the next section, we shall examine the various
building blocks from which the CPN is constructed.

6.1 CPN BUILDING BLOCKS
The PEs and network structures that we shall study in this section play an
important role in many of the subsequent chapters in this text. For that reason,
we present this introductory material in some detail. There are four major
components: an input layer that performs some processing on the input data, a
processing element called an instar, a layer of instars known as a competitive
network, and a structure known as an outstar. In Section 6.2, we shall return
to the discussion of the CPN.
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6.1.1 The Input Layer
Discussions of neural networks often ignore the input-layer processing elements,
or consider them simply as pass-through units, responsible only for distribut-
ing input data to other processing elements. Computer simulations of networks
usually arrange for all input data to be scaled or normalized to accommodate
calculations by the computer's CPU. For example, input-value magnitudes may
have to be scaled to prevent overflow error during the sum-of-product calcula-
tions that dominate most network simulations. Biological systems do not have
the benefits of such preprocessing; they must rely on internal mechanisms to
prevent saturation of neural activities by large input signals. In this section,
we shall examine a mechanism of interaction among processing elements that
overcomes this noise-saturation dilemma [2]. Although the mechanism has
some neurophysiological plausibility, we shall not examine any of the biologi-
cal implications of the model.

Examine the layer of processing elements shown in Figure 6.3. There is
one input value, /;, for each of the n units on the layer. The total input pattern
intensity is given by 7 = 5^/j. Corresponding to each Ij, we shall define a
quantity

(6.1)

Figure 6.3 This layer of input units has n processing elements,
{v\, V2,..., vn}. Each input value, Iu is connected with
an excitatory connection (arrow with a plus sign) to its
corresponding processing element, v-t. Each Ii is connected
also to every other processing element, Vk, k ^ i, with
an inhibitory connection (arrow with a minus sign). This
arrangement is known as on-center, off-surround. The output
of the layer is proportional to the normalized reflectance
pattern.
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The vector, (0i, 02, . . . , ©„)*, is called a reflectance pattern. Notice that this
pattern is normalized in the sense that J^ 0; = 1 .

The reflectance pattern is independent of the total intensity of the corre-
sponding input pattern. For example, the reflectance pattern corresponding to
the image of a person's face would be independent of whether the person were
being viewed in bright sunlight or in shade. We can usually recognize a familiar
person in a wide variety of lighting conditions, even if we have not seen her
previously in the identical situation. This experience suggests that our memory
stores and recalls reflectance patterns.

The outputs of the processing elements in Figure 6.3 are governed by the
set of differential equations,

(6.2)

where 0 < x,;(0) < B, and A,B > 0. Each processing element receives a
net excitation (on-center) of (B - xz)/,; from its corresponding input value, l%.
The addition of inhibitory connections (off-surround), -xJk, from other units
is responsible for preventing the activity of the processing element from rising
in proportion to the absolute pattern intensity, /j.

Once an input pattern is applied, the processing elements quickly reach an
equilibrium state (x/ = 0) with

(6.3)

where we have used the definition of 0, in Eq. (6.1). The output pattern is
normalized, since

BI

which is always less than B. Thus, the pattern of activity that develops across
the input units is proportional to the reflectance pattern, rather than to the original
input pattern.

After the input pattern is removed, the activities of the units do not remain
at their equilibrium values, nor do they return immediately to zero. The activ-
ity pattern persists for some time while the term —Axi reduces the activities
gradually back to a value of zero.

An input layer of the type discussed in this section is used for both the x-
vector and y-vector portions of the CPN input layer shown in Figure 6. 1 . When
performing a digital simulation of the CPN, we can simplify the program by
normalizing the input vectors in software. Whether the input-pattern normal-
ization is accomplished using Eq. (6.2), or by some preprocessing in software,
depends on the particular implementation of the network.
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Exercise 6.1:

1. Solve Eq. (6.2) to find Xi(t) explicitly, assuming x;(0) = 0 and a constant
input pattern, I.

2. Assume that the input pattern is removed at t = t', and find x,(i) for t > t'.
3. Draw the graph of xt(i) from t = 0 to some £ » £'. What determines how

quickly xt(t) (a) reaches its equilibrium value, and (b) decays back to zero
after the input pattern is removed?

Exercise 6.2: Investigate the equations

x, = -Axi + (B - Xi)Ii

as a possible alternative to Eq. (6.2) for the input-layer processing elements. For
a constant reflectance pattern, what happens to the activation of each processing
element as the total pattern intensity, /, increases?

Exercise 6.3: Consider the equations

±i = -Ax, +(B- Xi)Ii - (x, + C)^2 Ik
k^,.

which differ from Eq. (6.2) by an additional inhibition term, C^fc_^ Ik'.

1. Suppose /, = 0, but X!fr/i Ik > 0- Show that x/ can assume a negative
value. Does this result make sense? (Consider what it means for a real
neuron to have zero activation in terms of the neuron's resting potential.)

2. Show that the system suppresses noise by requiring that the reflectance
values, 9,;, be greater than some minimum value before they will excite a
positive activity in the processing element.

6.1.2 The Instar
The hidden layer of the CPN comprises a set of processing elements known as
instars. In this section, we shall discuss the instar individually. In the following
section, we shall examine the set of instars that operate together to form the
CPN hidden layer.

The instar is a single processing element that shares its general structure
and processing functions with many other processing elements described in this
text. We distinguish it by the specific way in which it is trained to respond to
input data.

Let's begin with a general processing element, such as the one in Fig-
ure 6.4(a). If the arrow representing the output is ignored, the processing
element can be redrawn in the starlike configuration of Figure 6.4(b). The
inward-pointing arrows identify the instar structure, but we restrict the use of
the term instar to those units whose processing and learning are governed by the
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(a) (b)

Figure 6.4 This figure shows (a) the general form of the processing element
with input vector I, weight vector w, and output value y; and
(b) the instar form of the processing element in (a). Notice that
the arrow representing the output is missing, although it is still
presumed to exist.

equations in this section. The net-input value is calculated, as usual, by the dot
product of the input and weight vectors, net = I • w. We shall assume that the
input vector, I, and the weight vector, w, have been normalized to a length of 1.

The output of the instar is governed by the equation

y = —ay + b net (6.4)

where a, b > 0. The dynamic behavior of y is illustrated in Figure 6.5.
We can solve Eq. (6.4) to get the output as a function of time. Assuming

the initial output is zero, and that a nonzero input vector is present from time
t = 0 until time t,

y(t)=-net(l~e~"t} (6.5)
a \ /

The equilibrium value of y(t) is

if* = -net (6.6)

If the input vector is removed at time t1, after equilibrium has been reached,
then

y(t) = ye<>e-a(t-t"> (6.7)

for t > t'.
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f(net)
a

Q.

O

Time

Input vector applied Input vector removed

Figure 6.5 This graph illustrates the output response of an instar. When
the input vector is nonzero, the output rises to an equilibrium
value of (b/a)net. If the input vector is removed, the output
falls exponentially with a time constant of I/a.

Notice that, for a given a and b, the output at equilibrium will be larger
when the net-input value is larger. Figure 6.6 shows a diagram of the weight
vector, w, of an instar, and an input vector, I. The net-input value determines
how close to each other the two vectors are as measured by the angle between
them, 6. The largest equilibrium output will occur when the input and weight
vectors are perfectly aligned (8 = 0).

If we want the instar to respond maximally to a particular input vector,
we must arrange that the weight vector be made identical to the desired input
vector. The instar can learn to respond maximally to a particular input vector
if the initial weight vector is allowed to change according to the equation

\V — — CW • d l y (6.8)

where y is the output of the instar, and c, d > 0. Notice the relationship between
Eq. (6.8) and the Hebbian learning rule discussed in Chapter 1. The second term
on the right side of Eq. (6.8) contains the product of the input and the output
of a processing element. Thus, when both are large, the weight on the input
connection is reinforced, as predicted by Hebb's theory.

Equation 6.8 is difficult to integrate because y is a complex function of
time through Eq. (6.5). We can try to simplify the problem by assuming that y
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Initial w

(a) (b)

Figure 6.6 This figure shows an example of an input vector and a weight
vector on an instar. (a) This figure illustrates the relationship
between the input and weight vectors of an instar. Since the
vectors are normalized, net = I • w = ||I||||w||cosd — cosd. (b)
The instar learns an input vector by rotating its weight vector
toward the input vector until both vectors are aligned.

reaches its equilibrium value much faster than changes in w can occur. Then,
y = y"> — (a/6)net. Because net = w • I, Eq. (6.8) becomes

w == —cw dl (w-I ) (6.9)

where we have absorbed the factor a/6 into the constant d. Although Eq. (6.9)
is still not directly solvable, the assumption that changes to weights occur more
slowly than do changes to other parameters is important. We shall see more of
the utility of such an assumption in Chapter 8. Figure 6.7 illustrates the solution
to Eq. (6.9) for a simple two-dimensional case.

An alternative approach to Eq. (6.8) begins with the observation that, in the
absence of an input vector, I, the weight vector will continuously decay away
toward zero (w = —cw). This effect can be considered as a forgetfulness on
the part of the processing element. To avoid this forgetfulness, we can modify
Eq. (6.8) such that any change to the weight vector depends on whether there is
an input vector there to be learned. If an input vector is present, then net = w • I
will be nonzero. Instead of Eq. (6.8), we can use as the learning law,

w = (-cw + dl)[/(net) (6.10)

where

[/(net) = 1 net > 0
0 net = 0
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0.866

' Initial w =
/ (0.5,0.866)

/ 0.5

Time step, t

Figure 6.7 Given an input vector I = (0,1) and an in i t ia l weight vector,
w(0) = (0.5,0.866), the components, w\ and wi, of the weight
vector evolve in time according to Eq. (6.9), as shown in the
graph. The weight vector eventually aligns itself to the input
vector such that w = (0.1) = I. For this example, c = d — 1.

Equation (6.10) can be integrated directly for t/(net) = 1. Notice that
wf'q = (d/c)l, making c = d a condition that must be satisfied for w to evolve
toward an exact match with I. Using this fact, we can rewrite Eq. (6.10) in a
form more suitable for later digital simulations:

Aw = a(I — w) (6.H)

In Eq. (6.11), we have used the approximation dvi/dt « Aw/At, and have let
a = cAt. An approximate solution to Eq. (6.10) would be

vr(t+ l) = (6.12)

for a < 1; see Figure 6.8.
A single instar learning a single input vector does not provide an interesting

case. Let's consider the situation where we have a number of input vectors,
all relatively close together in what we shall call a cluster. A cluster might
represent items of a single class. We would like the instar to learn some form
of representative vector of the class: the average, for example. Figure 6.9
illustrates the idea.

Learning takes place in an iterative fashion:

1. Select an input vector, /,, at random, according to the probability distribu-
tion of the cluster. (If the cluster is not uniformly distributed, you should
select input vectors more frequently from regions where there is a higher
density of vectors.)

2. Calculate a(I — w), and update the weight vector according to Eq. (6.12).
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Aw = cc(I - w)

Figure 6.8 The quantity (I - w) is a vector that points from w toward I.
In Eq. (6.12), w moves in discrete timesteps toward I. Notice
that w does not remain normalized.

3. Repeat steps 1 and 2 for a number of times equal to the number of input
vectors in the cluster.

4. Repeat step 3 several times.

The last item in this list is admittedly vague. There is a way to calculate an
average error as learning proceeds, which can be used as a criterion for halting
the learning process (see Exercise 6.4). In practice, error values are rarely
used, since the instar is never used as a stand-alone unit, and other criteria will
determine when to stop the training.

It is also a good idea to reduce the value of a as training proceeds. Once
the weight vector has reached the middle of the cluster, outlying input vectors
might pull w out of the area if a is very large.

When the weight vector has reached an average position within the cluster,
it should stay generally within a small region around that average position. In
other words, the average change in the weight vector, (Aw), should become
very small. Movements of w in one direction should generally be offset by
movements in the opposite direction. If we assume (Aw) = 0, then Eq. (6.11)
shows that

(w) = (I)

which is what we wanted.
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(a) (b)

Figure 6.9 This figure illustrates how an instar learns to respond to a
cluster of input vectors, (a) To learn a cluster of input vectors,
we select the initial weight vector to be equal to some member
of the cluster. This initialization ensures that the weight vector
is in the right region of space, (b) As learning proceeds, the
weight vector wil l eventually settle down to some small region
that represents an average, (w), of all the input vectors.

Now that we have seen how an instar can learn the average of a cluster of
input vectors, we can talk about layers of instars. Instars can be grouped together
into what is known as a competitive network. The competitive network forms
the middle layer of the CPN and is the subject of the next section.

Exercise 6.4: For a given input vector, we can define the instar error as the
magnitude of the difference between the input vector and the weight vector:
£2 = ||I, — w||. Show that the mean squared error can be written as

(e2} =2(1- (cos9,))

where 9, is the angle between I; and w.

6.1.3 Competitive Networks
In the previous section, we saw how an individual instar could learn to respond
to a certain group of input vectors clustered together in a region of space.
Suppose we have several instars grouped in a layer, as shown in Figure 6.10,
each of which responds maximally to a group of input vectors in a different
region of space. We can say that this layer of instars classifies any input vector,
because the instar with the strongest response for any given input identifies the
region of space in which the input vector lies.
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'! '2 ' n

Input vector, I

Figure 6.10 A layer of instars arranged in a competitive network. Each
unit receives the input vector I = (/i,/2,...,/n)' and the
ith unit has associated with it the weight vector, w, =
(u>i\,Wi2, •.., win)1. Net-input values are calculated in the
usual way: net^ = I-w,. The winner of the competition is the
unit with the largest net input.

Rather than our examining the response of each instar to determine which
is the largest, our task would be simpler if the instar with the largest response
were the only unit to have a nonzero output. This effect can be accomplished
if the instars compete with one another for the privilege of turning on. Since
there is no external judge to decide which instar has the largest net input, the
units must decide among themselves who is the winner. This decision process
requires communication among all the units on the layer; it also complicates
the analysis, since there are more inputs to each unit than just the input from
the previous layer. In the following discussion, we shall be focusing on unit
activities, rather than on unit output values.

Figure 6.11 illustrates the interconnections that implement competition
among the instars. The unit activations are determined by differential equa-
tions. There is a variety of forms that these differential equations can take; one
of the simplest is

±i = -Ax, + (B - Xi)[f(xt) + net,-] - x,: (6.13)

where A, B > 0 and /(£/) is an output function that we shall specify shortly [2].
This equation should be compared to Eq. (6.2). We can convert Eq. (6.2) to
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Figure 6.11 An on-center off-surround system for implementing
competition among a group of instars. Each unit receives a
positive feedback signal to itself and sends an inhibitory signal
to all other units on the layer. The unit whose weight vector
most closely matches the input vector sends the strongest
inhibitory signals to the other units and receives the largest
positive feedback from itself.

Eq. (6.13) by replacing every occurrence of Ij in Eq. (6.2) with f ( x j ) + net,,
for all j. The relationship between the constants A and B, and the form of the
function, f ( x j ) , determine how the solutions to Eq. (6.13) evolve in time. We
shall now look at specific cases.

Equation (6.13) is somewhat easier to analyze if we convert it to a pair
of equations: one that describes the reflectance variables, X-t — Xi/^,kxk,
and one that describes the total pattern intensity, x = ^^Xk- First, rearrange
Eq. (6.13) as follows:

net;] - x%

Next, sum over i to get

x = -Ax + (B - x) (6.14)

Now substitute xXi into Eq. (6.13) and use Eq. (6.14) to simplify the result. If
we make the definition g(w) = w~] f ( w ) , then we get

xXi = BxXi^2xlc[3(xXi)-g(xXk)]+B(l-Xiynsti-BXiJ2nestk (6.15)

We can now evaluate the asymptotic behavior of Eqs. (6.14) and (6.15).
Let's begin with the simple, linear case of f ( w ) = w. Since g(w) = w~l f ( w ) ,
g(w) = I and the first term on the right of Eq. (6.15) is zero. The reflectance
variables stabilize at

v
 net<

so the activities become net;
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where x''q comes from setting Eq. (6.14) equal to zero. This equation shows
that the units will accurately register any pattern presented as an input. Now
let's look at what happens after the input pattern is removed.

Let net, = 0 for all i. Then, X{ is identically zero for all time and the
reflectance variables remain constant. The unit activations now depend only on
x, since x, — xXt. Equation (6.14) reduces to

x = (B - A - x)x

If B < A, then x < 0 and x —> 0. However, if B > A, then x -* B - A and
the activity pattern becomes stored permanently on the units. This behavior is
unlike the behavior of the input units described by Eq. (6.2), where removal
of the input pattern always resulted in a decay of the activities. We shall call
this storage effect short-term memory (STM). Even though the effect appears
to be permanent, we can assume the existence of a reset mechanism that will
remove the current pattern so that another can be stored. Figure 6.12 illustrates
a simple example for the linear output function.

For our second example, we assume a faster-than-linear output function,
/((/;) = w2. In this case g(w) = w. Notice that the first term on the right
of Eq. (6.15) contains the factor [g(xXj) — g(xX\,)\. For the quadratic output
function, this expression reduces to x[X; — Xk]. If X, > X^ for all values of
A- / ?', then the first term in Eq. (6.14) is an excitatory term. If Xi < X^ for
A- ^ ?', then the first term in Eq. (6.14) becomes an inhibitory term. Thus, this
network tends to enhance the activity of the unit with the largest value of Xi.
This effect is illustrated in Figure 6.13. After the input pattern is removed, Xf
will be greater than zero for only the unit with the largest value of Xi.
Exercise 6.5: Use Eq. (6.14) to show that, after the input pattern has been
removed, the total activity of the network, x, is bounded by the value of B.

We now have an output function that can be used to implement a winner-
take-all competitive network. The quadratic output function (or, for that matter,
any function f(w) = w", where n > 1) can be used in off-surround, inhibitory
connections to suppress all inputs except the largest. This effect is the ultimate
in noise suppression: The network assumes that everything except the largest
signal is noise.

It is possible to combine the qualities of noise suppression with the ability
to store an accurate representation of an input vector: Simply arrange for the
output function to be faster than linear for small activities, and linear for larger
activities. If we add the additional constraint that the unit output must be
bounded at all times, we must have the output function increase at a less-than-
linear rate for large values of activity. This combination results in a sigmoid
output function, as illustrated in Figure 6.14.

The mathematical analysis of Eqs. (6.14) and (6.15) with a sigmoid output
function is considerably more complicated than it was for the other twocases.
All the cases considered here, as well as many others, are treated in depth by
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Figure 6.12 This series of figures shows the result of applying a certain
input vector to units having a linear output function, (a) The
graph of the output function, f(w) = w. (b) This figure shows
the result of the sustained application of the input vector. The
units reach equilibrium activities as shown, (c) After removal
of the input vector, the units reach an equilibrium such that
the pattern is stored in STM.

Grossberg [4]. Use of the sigmoid results in the existence of a quenching
threshold (QT). Units whose net inputs are above the QT will have their ac-
tivities enhanced. The effect is one of contrast enhancement. An extreme
example is illustrated in Figure 6.14.

Reference back to Figure 6.1 or 6.2 will reveal that there are no obvious
interconnections among the units on the competitive middle layer. In a digital
simulation of a competitive network, the actual interconnections are unnecessary.
The CPU can act as an external judge to determine which unit has the largest net-
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Figure 6.13 This series of figures is analogous to those in Figure 6.12, bul
with units having a quadratic output function, (a) The graph
of the quadratic output function, (b) While the input vector is
present, the network tends to enhance the activity of the unit
with the largest activity. For the given input pattern, the unit
activities reach the equilibrium values shown, (c) After the
input pattern is removed, all activities but the largest decay
to zero.

input value. The winning unit would then be assigned an output value of 1. The
situation is similar for the input layer. In a software simulation, we do not need
on-center off-surround interactions to normalize the input vector; that can also be
done easily by the CPU. These considerations aside, attention to the underlying
theory is essential to understanding. When digital simulations give way to
neural-network integrated circuitry, such an understanding will be required.
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Figure 6.14 This figure is analogous to Figures 6.12 and 6.13, but with
units having a sigmoid output function, (a) The sigmoid
output function combines noise suppression at low activities,
linear pattern storage at intermediate values, and a bounded
output at large activity values, (b) When the input vector
is present, the unit activities reach an equilibrium value, as
shown, (c) After removal of the input vector, the activities
above a certain threshold are enhanced, whereas those below
the threshold are suppressed.

6.1.4 The Outstar
The final leg of our journey through CPN components brings us to Grossberg's
outstar structure. As Figure 6.15 shows, an outstar is composed of all of the
units in the CPN outer layer and a single hidden-layer unit. Thus, the outer-layer
units participate in several different outstars: one for each unit in the middle
layer.
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Figure 6.15 This figure illustrates the outstar and its relationship to the
CPN architecture, (a) The dotted line encompasses one of
the outstar structures in the CPN. The line is intentionally
drawn through the middle-layer unit to indicate the dual
functionality of that unit. Each middle-layer unit combines
with the outer layer to form an individual outstar. (b) A single
outstar unit is shown. The output units of the outstar have two
inputs: z, from the connecting unit of the previous layer, and
yit which is the training input. The training input is present
during only the learning period. The output of the outstar is
the vector y' = (y(, y'2,..., y'n)f. (c) The outstar is redrawn in a
suggestive configuration. Note that the arrows point outward
in a configuration that is complementary to the instar.
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In Chapter 1, we gave a brief description of Pavlovian conditioning in terms
of Hebbian learning. Grossberg argues that the outstar is the minimal neural
architecture capable of classical conditioning [3]. Consider the outstar shown
in Figure 6.16. Initially, the conditioned stimulus (CS) (e.g., a ringing bell)
is assumed to be unable to elicit a response from any of the units to which it
is connected. An unconditioned stimulus (UCS) (the sight of food) can cause
an unconditioned response (UCR) (salivation). If the CS is present while the
UCS is causing the UCR, then the strength of the connection from the CS unit
to the UCR unit will also be increased, in keeping with Hebb's theory (see
Chapter 1). Later, the CS will be able to cause a conditioned response (CR)
(the same as the UCR), even if the UCS is absent.

The behavior of the outstars in the CPN resembles this classical condition-
ing. During the training period, the winner of the competition on the hidden
layer turns on, providing a single CS to the output units. The UCS is supplied
by the y-vector portion of the input layer. Because we want the network to
learn the actual y vector, the UCR will be the same as the y vector, within a
constant multiplicative factor. After training is complete, the appearance of the
CS will cause the CR value (the y' vector) to appear at the output units, even
though the UCS values will be all zero.

In the CPN, the hidden layer participates in both the instar and outstar
structures of the network. The function of the competitive instars is to recognize
an input pattern through a winner-take-all competition. Once a winner has been
declared, that unit becomes the CS for an outstar. The outstar associates some
value or identity with the input pattern. The instar and outstar complement each
other in this fashion: The instar recognizes an input pattern and classifies it; the
outstar identifies or names the selected class. This behavior led one researcher
to note that the instar is dumb, whereas the outstar is blind [9].

The equations that govern the processing and learning of the outstar are
similar in form to those for the instar. During the training process, the output
values of the outstar can be calculated from

y- = -ay\ + byt +cnet,:

which is similar to Eq. (6.4) for the instar except for the additional term due to
the training input, j/,:. The parameters a, b, and c, are all assumed to be positive.
The value of net, is calculated in the usual way as the sum of products of weights
and input values from the connecting units. For the outstar and the CPN, only
a single connecting unit has a nonzero output at any given time. Even though
each output unit of the outstar has an entire weight vector associated with it, the
net input reduces to a single term, WijZ, where z is the output of the connecting
unit. In the case of the CPN, 2 = 1 . Therefore, we can write

y\ = -ay't + byi + cwvj (6.16)

where the jth unit on the hidden layer is the connecting unit. In its most general
form, the parameters a, 6, and c in Eq. (6.16) are functions of time. Here, we
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Figure 6.16 This figure shows an implied classical-conditioning scenario.
(a) During the conditioning period, the CS and the UCS excite
one of the output units simultaneously, (b) After conditioning,
the presence of the CS alone can excite the CR without
exciting any of the other output units.
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shall consider them to be constants for simplicity. For the remainder of this
discussion, we shall drop the j subscript from the weight.

After training is complete, no further changes in wt take place and the
training inputs, yt, are absent. Then, the output of the outstar is

y't = -ay1, + cw? (6.17)

where w^ is the fixed weight value found during training.
The weights evolve according to an equation almost identical to Eq. (6.10)

for the instar:
Wi = (-dwi + eyiz)U(z) (6.18)

Notice that the second term in Eq. (6.18) contains the training input, yit not the
unit output, y(. The U(z) function ensures that no unlearning takes place when
there is no training input present, or when the connecting unit is off (z — 0).
Since both z and U(z) are 1 for the middle-layer unit that wins the competition,
Eq. (6.18) becomes

Wi = -dwi + eyt (6.19)

for the connections from the winning, middle-layer unit. Connections from other
middle-layer units do not participate in the learning.

Recall that a given instar can learn to recognize a cluster of input vectors.
If the desired CPN outputs (the y?:s) corresponding to each vector in the cluster
are all identical, then the weights eventually reach the equilibrium values:

c>eq c

w* =dvi

If, on the other hand, each input vector in the cluster has a slightly different
output value associated with it, then the outstar will learn the average of all of
the associated output values:

Using the latter value for the equilibrium weight, Eq. (6.17) shows that the
output after training reaches a steady state value of

Since we presumably want y'^9 = (j/,), we can require that a = c in Eq. (6.17)
and that d = e in Eq. (6.18). Then,

(6.20)

For the purpose of digital simulation, we can approximate the solution to
Eq. (6.19) by

wM + 1) = Wi(t) + 0(yi - Wi(t)) (6.21)
following the same procedure that led to Eq. (6.12) for the instar.
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6.2 CPN DATA PROCESSING
We are now in a position to combine the component structures from the previous
section into the complete CPN. We shall still consider only the forward-mapping
CPN for the moment. Moreover, we shall assume that we are performing a dig-
ital simulation, so it will not be necessary to model explicitly the interconnects
for the input layer or the competitive layer.

6.2.1 Forward Mapping
Assume that all training has occurred and that the network is now in a production
mode. We have an input vector, I, and we would like to find the corresponding
y vector. The processing is depicted in Figure 6.17 and proceeds according to
the following algorithm:

1. Normalize the input vector, x-t =

2. Apply the input vector to the x-vector portion of layer 1. Apply a zero
vector to the y-vector portion of layer 1.

3. Since the input vector is already normalized, the input layer only distributes
it to the units on layer 2.

4. Layer 2 is a winner-take-all competitive layer. The unit whose weight
vector most closely matches the input vector wins and has an output value
of 1. All other units have outputs of 0. The output of each unit can be
calculated according to

1 ||net;|| > ||netj|| for all j ^ i
0 otherwise

5. The single winner on layer 2 excites an outstar.

Each unit in the outstar quickly reaches an equilibrium value equal to the
value of the weight on the connection from the winning layer 2 unit [see
Eq. (6.20)]. If the zth unit wins on the middle layer, then the output layer
produces an output vector y' = (wu,W2i,...,wn,i)t, where m represents the
number of units on the output layer. A simple way to view this processing is
to realize that the equilibrium output of the outstar is equal to the outstar's net
input,

~ '*,•*,• (6.23)

Since Zj = 0 unless j = i, then y'£q = WkiZi = Wki, which is consistent with
the results obtained in Section 6.1.

This simple algorithm uses equilibrium, or asymptotic, values of node ac-
tivities and outputs. We thus avoid the need to solve numerically all the corre-
sponding differential equations.
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Figure 6.17 This figure shows a summary of the processing done on an
input vector by the CRN. The input vector, (xi,X2,...,xn)t

is distributed to all units on the competitive layer. The ith
unit wins the competition and has an output of 1; all other
competitive units have an output of 0. This competition
effectively selects the proper output vector by exciting a single
connection to each of the outstar units on the output layer.

6.2.2 Training the CRN
Here again, we assume that we are performing a digital simulation of the
CPN. Although this assumption does not eliminate the need to find numerical
solutions to the differential equations, we can still take advantage of prenor-
malized input vectors and an external judge to determine winners on the com-
petitive layer. We shall also assume that a set of training vectors has been
defined adequately. We shall have more to say on that subject in a later sec-
tion.

Because there are two different learning algorithms in use in the CPN, we
shall look at each one independently. In fact, it is a good idea to train the
competitive layer completely before beginning to train the output layer.
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The competitive-layer units train according to the instar learning algorithm
described in Section 6.1. Since there will typically be many instars on the com-
petitive layer, the iterative training process described earlier must be amended
slightly. Here, as in Section 6.1, we assume that a cluster of input vectors forms
a single class. Now, however, we have the situation where we may have sev-
eral clusters of vectors, each cluster representing a different class. Our learning
procedure must be such that each instar learns (wins the competition) for all
the vectors in a single cluster. To accomplish the correct classification for each
class of input vectors, we must proceed as follows:

1. Select an input vector from among all the input vectors to be used for
training. The selection should be random according to the probability dis-
tribution of the vectors.

2. Normalize the input vector and apply it to the CPN competitive layer.
3. Determine which unit wins the competition by calculating the net-input

value for each unit and selecting the unit with the largest (the unit whose
weight vector is closest to the input vector in an inner-product sense).

4. Calculate a(x — w) for the winning unit only, and update that unit's weight
vector according to Eq. (6.12):

w(t + \) = vf(t) + a(x - w)

5. Repeat steps 1 through 4 until all input vectors have been processed once.
6. Repeat step 5 until all input vectors have been classified properly. When

this situation exists, one instar unit will win the competition for all input
vectors in a certain cluster. Note that there might be more that one cluster
corresponding to a single class of input vectors.

7. Test the effectiveness of the training by applying input vectors from the
various classes that were not used during the training process itself. If any
misclassifications occur, additional training passes through step 6 may be
required, even though all the training vectors are being classified correctly.
If training ends too abruptly, the win region of a particular unit may be
offset too much from the center of the cluster, and outlying vectors may be
misclassified. We define an instar's win region as the region of vector space
containing vectors for which that particular instar will win the competition.
(See Figure 6.18.)

An issue that we have overlooked in our discussion is the question of
initialization of the weight vectors. For all but the simplest problems, random
initial weight vectors will not be adequate. We already hinted at an initialization
method earlier: Set each weight vector equal to a representative of one of the
clusters. We shall have more to say on this issue in the next section.

Once satisfactory results have been obtained on the competitive layer, train-
ing of the outstar layer can occur. There are several ways to proceed based on
the nature of the problem.
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Figure 6.18 In this drawing, three clusters of vectors represent three
distinct classes: A, B, and C. Normalized, these vectors end
on the unit hypersphere. After training, the weight vectors on
the competitive layer have settled near the centroid of each
cluster. Each weight vector has a win region represented,
although not accurately, by the circles drawn on the surface of
the sphere around each cluster. Note that one of the B vectors
encroaches into C's win region indicating that erroneous
classification is possible in some cases.

Suppose that each cluster of input vectors represents a class, and all of the
vectors in a cluster map to the identical output vector. In this case, no iterative
training algorithm is necessary. We need only to determine which hidden unit
wins for a particular class. Then, we simply assign the weight vector on the
appropriate connections to the output layer to be equal to the desired output
vector. That is, if the ith hidden unit wins for all input vectors of the class
for which A is the desired output vector, then we set WM = Ak, where Wki
is the weight on the connection from the ith hidden unit to the kth output
unit.

If each input vector in a cluster maps to a different output vector, then the
outstar learning procedure will enable the outstar to reproduce the average of
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those output vectors when any member of the class is presented to the inputs
of the CPN. If the average output vector for each class is known or can be
calculated in advance, then a simple assignment can be made as in the previous
paragraph: Let wki = (Ak).

If the average of the output vectors is not known, then an iterative procedure
can be used based on Eq. (6.21).

1. Apply a normalized input vector, x^, and its corresponding output vector,
yt, to the x and y inputs of the CPN, respectively.

2. Determine the winning competitive-layer unit.
3. Update the weights on the connections from the winning competitive unit

to the output units according to Eq. (6.21):

Wi(t+l) = Wi(t) + 0(yki - Wi(t))

4. Repeat steps 1 through 3 until all vectors of all classes map to satisfactory
outputs.

6.2.3 Practical Considerations
In this section, we shall examine several aspects of CPN design and operation
that will influence the results obtained using this network. The CPN is decep-
tively simple in its operation and there are several pitfalls. Most of these pitfalls
can be avoided through a careful analysis of the problem being solved before an
attempt is made to model the problem with the CPN. We cannot cover all even-
tualities in this section. Instead, we shall attempt to illustrate the possibilities
in order to raise your awareness of the need for careful analysis.

The first consideration is actually a combination of two: the number of hid-
den units required, and the number of exemplars, or training vectors, needed for
each class. It stands to reason that there must be at least as many hidden nodes
as there are classes to be learned. We have been assuming that each class of
input vectors can be identified with a cluster of vectors. It is possible, however,
that two completely disjoint regions of space contain vectors of the same class.
In such a situation, more than one competitive node would be required to iden-
tify the input vectors of a single class. Unfortunately, for problems with large
dimensions, it may not always be possible to determine that such is the case in
advance. This possibility is one reason why more than one representative for
each class should be used during training, and also why the training should be
verified with other representative input vectors.

Suppose that a misclassification of a test vector does occur after all
of the training vectors are classified correctly. There are several possible
reasons for this error. One possibility is that the set of exemplars did not
adequately represent the class, so the hidden-layer weight vector did not find
the true centroid. Equivalently, training may not have continued for a suffi-
cient time to center the weight vector properly; this situation is illustrated in
Figure 6.19.
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Figure 6.19 In this example, weight vector wi learns class 1 and W2 learns
class 2. The input vectors of each class extend over the
regions shown. Since w2 has not learned the true centroid
of class 2, an outlying vector, x2, is actually closer to wi and
is classified erroneously as a member of class 1.

One solution to these situations is to add more units on the competitive layer.
Caution must be used, however, since the problem may be exacerbated. A unit
added whose weight vector appears at the intersection between two classes may
cause misclassification of many input vectors of the original two classes. If a
threshold condition is added to the competitive units, a greater amount of control
exists over the partitioning of the space into classes. A threshold prevents a unit
from winning if the input vector is not within a certain minimum angle, which
may be different for each unit. Such a condition has the effect of limiting the
size of the win region of each unit.

There are also problems that can occur during the training period itself. For
example, if the distribution of the vectors of each class changes with time, then
competitive units that were coded originally for one class may get receded to
represent another. Moreover, after training, moving distributions will result in
serious classification errors. Another situation is illustrated in Figure 6.20. The
problem there manifests itself in the form of a stuck vector; that is, one unit
that never seems to win the competition for any input vector.

The stuck-vector problem leads us to an issue that we touched on earlier: the
initialization of the competitive-unit weight vectors. We stated in the previous
section that a good strategy for initialization is to assign each weight vector to be
identical to one of the prototype vectors for each class. The primary motivation
for using this strategy is to avoid the stuck-vector problem.

The extreme case of the stuck-vector problem can occur if the weight vectors
are initialized to random values. Training with weight vectors initialized in this
manner could result in all but one of the weight vectors becoming stuck. A
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Figure 6.20 This figure illustrates the stuck-vector problem, (a) In this
example, we would like W) to learn the class represented by
\i, and w2 to learn x2. (b) Initial training with \i has brought
Wi closer to x2 than w2 is. Thus, W| will win for either X] or
x2, and w2 will never win.

single weight vector would win for every input vector, and the network would
not learn to distinguish between any of the classes on input vectors.

This rather peculiar occurrence arises due to a combination of two factors:
(1) in a high-dimensional space, random vectors are all nearly orthogonal to one
another (their dot products are near 0), and (2) it is not unlikely that all input
vectors for a particular problem are clustered within a single region of space. If
these conditions prevail, then it is possible that only one of the random weight
vectors lies within the same region as the input vectors. Any input vector would
have a large dot product with that one weight vector only, since all other weight
vectors would be in orthogonal regions.
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Another approach to dealing with a stuck vector is to endow the competitive
units with a conscience. Suppose that the probability that a particular unit wins
the competition was inversely proportional to the number of times that unit won
in the past. If a unit wins too often, it simply shuts down, allowing others to
win for a change. Incorporating this feature can unstick a stuck vector resulting
from a situation such as the one shown in Figure 6.20.

In contrast to the competitive layer, the layer of outstars on the output layer
has few potential problems. Weight vectors can be randomized initially, or set
equal to 0 or to some other convenient value. In fact, the only real concern is
the value of the parameter, (3, in the learning law, Eq. (6.21). Since Eq. (6.21) is
a numerical approximation to the solution of a differential equation, 0 should be
kept suitably small, (0 < (3 <C 1), to keep the solution well-behaved. As learning
proceeds, /3 can be increased somewhat as the difference term, (yi — Wi(t)),
becomes smaller.

The parameter a in the competitive-layer learning law can start out some-
what larger than (3. A larger initial a will bring weight vectors into alignment
with exemplars more quickly. After a few passes, a should be reduced rather
than increased. A smaller a will prevent outlying input vectors from pulling
the weight vector very far from the centroid region.

A final caveat concerns the types of problems suitable for the CPN. We
stated at the beginning of the chapter that the CPN is useful in many situations
where other networks, especially backpropagation, are also useful. There is,
however, one class of problems that can be solved readily by the BPN that
cannot be solved at all by the CPN. This class is characterized by the need
to perform a generalization on the input vectors in order to discover certain
features of the input vectors that correlate to certain output values. The parity
problem discussed in the next paragraph illustrates the point.

A backpropagation network with an input vector having, say, eight bits can
learn easily to distinguish between vectors that have an even or odd number
of Is. A BPN with eight input units, eight hidden units, and one output unit
suffices to solve the problem [10]. Using a representative sample of the 256
possible input vectors as a training set, the network learns essentially to count
the number of Is in the input vector. This problem is particularly difficult for
the CPN because the network must separate vectors that differ by only a single
bit. If your problem requires this kind of generalization, use a BPN.

6.2.4 The Complete CPN
Our discussion to this point has focused on the forward-mapping CPN. We wish
to revisit the complete, forward- and reverse-mapping CPN described in the
introduction to this chapter. In Figure 6.21, the full CPN (see Figure 6.1) is
redrawn in a manner similar to Figure 6.2. Describing in detail the processing
done by the full CPN would be largely repetitive. Therefore, we present a
summary of the equations that govern the processing and learning.
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x' Output vector y' Output vector

Layer 3

Layer 2

Layer 1
x Input vector y Input vector

Figure 6.21 The full CRN architecture is redrawn from Figure 6.1. Both
x and y input vectors are fully connected to the competitive
layer. The x inputs are connected to the x' output units, and
the y inputs are connected to the y' outputs.

Both x and y input vectors must be normalized for the full CPN. As in
the forward-mapping CPN, both x and y are applied to the input units during
the training process. After training, inputs of (x, 0) will result in an output of
y' = $(x), and an input of (0,y) will result in an output of x'.

Because both x and y vectors are connected to the hidden layer, there are
two weight vectors associated with each unit. One weight vector, r, is on the
connections from the x inputs; another weight vector, s, is on the connections
from the y inputs.

Each unit on the competitive layer calculates its net input according to
net, = r • x + s • y

The output of the competitive layer units is
_ f 1 net, = maxjneU}

0 otherwise
During the training process

r, = ax(\ - T
s, = ay(y - Si)
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As with the forward-mapping network, only the winning unit is allowed to learn
for a given input vector.

Like the input layer, the output layer is split into two distinct parts. The
y' units have weight vectors w,, and the x' units have weight vectors v,. The
learning laws are

and

Once again, only weights for which Zj ^ 0 are allowed to learn.

Exercise 6.6: What will be the result, after training, of an input of (x0,y;,),
where x,, = ^'(yj and yft =

6.3 AN IMAGE-CLASSIFICATION EXAMPLE
In this section, we shall look at an example of how the CPN can be used
to classify images into categories. In addition, we shall see how a simple
modification of the CPN will allow the network to perform some interpolation
at the output layer.

The problem is to determine the angle of rotation of the principal axis of an
object in two dimensions, directly from the raw video image of the object [1].
In this case, the object is a model of the Space Shuttle that can be rotated 360
degrees about a single axis of rotation. Numerical algorithms as well as pattern-
matching techniques exist that will solve this problem. The neural-network
solution possesses some interesting advantages, however, that may recommend
it over these traditional approaches.

Figure 6.22 shows a diagram of the system architecture for the spacecraft
orientation system. The video camera, television monitor, and robot all interface
to a desktop computer that simulates the neural network and houses a video
frame-grabber board. The architecture is an example of how a neural network
can be embedded as a part of an overall system.

The system uses a CPN having 1026 input units (1024 for the image and
2 for the training inputs), 12 hidden units, and 2 output units. The units on
the middle layer learn to divide the input vectors into different classes. There
are 12 units in this layer, and 12 different input vectors are used to train the
network. These 12 vectors represent images of the shuttle at 30-degree incre-
ments (0°, 30°,.. . , 330°). Since there are 12 categories and 12 training vectors,
training of the competitive layer consists of setting each unit's weight equal to
one of the (normalized) input vectors. The output layer units learn to associate
the correct sine and cosine values with each of the classes represented on the
middle layer.
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Figure 6.22 The system architecture for the spacecraft orientation system
is shown. The video camera and frame-grabber capture a
256-by-256-pixel image of the model. That image is reduced
to 32-by-32 pixels by a pixel-averaging technique, and is
then thresholded to produce a binary image. The resulting
1024-component vector is used as the input to the neural
network, which responds by giving the sine and cosine of
the rotation angle of the principal axis of the model. These
output values are converted to an angle that is sent as part
of a command string to a mechanical robot assembly. The
command sequence causes the robot to reach out and pick
up the model. The angle is used to roll the robot's wrist
to the proper orientation, so that the robot can grasp the
model perpendicular to the long axis. Source: Reprinted
with permission from James A. Freeman, "Neural networks
for machine vision: the spacecraft orientation demonstration."
exponent: Ford Aerospace Technical Journal, Fall 1988.

,
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It would seem that this network is limited to classifying all input patterns
into only one of 12 categories. An input pattern representing a rotation of 32
degrees, for example, probably would be classified as a 30-degree pattern by
this network. One way to remedy this deficiency would be to add more units
on the middle layer, allowing for a finer categorization of the input images.
An alternative approach is to allow the output units to perform an interpola-
tion for patterns that do not match one of the training patterns to within a
certain tolerance. For this interpolative scheme to be accomplished, more than
one unit on the competitive layer must share in winning for each input vec-
tor.

Recall that the output-layer units calculate their output values according to
Eq. (6.23): y'k = ^ 2 - w k j Z j . In the normal case, where the zth hidden unit
wins, y'k = Wki, since Zj = 1 for j — i and Zj = 0 otherwise. Suppose two
competitive units shared in winning—the ones with the two closest matching
patterns. Further, let the output of those units be proportional to how close the
input pattern is; that is, Zj oc cos Oj for the two winning units. If we restrict
the total outputfrom the middle layer to unity, then the output values from the
output layer would be

y'k = wk,Zi + wkjzj

where the zth and jth units on the middle layer were the winners, and

The network output is a linear interpolation of the outputs that would be obtained
from the two patterns that exactly matched the two hidden units that shared the
victory.

Using this technique, the network will classify successfully input patterns
representing rotation angles it had never seen during the training period. In
our experiments, the average error was approximately ±3°. However, since a
simple linear interpolation scheme is used, the error varied from almost 0 to as
much as 10 degrees. Other interpolation schemes could result in considerably
higher accuracy over the entire range of input patterns.

One of the benefits of using the neural-network approach to pattern matching
is robustness in the presence of noise or of contradictory data. An example is
shown in Figure 6.23, where the network was able to respond correctly, even
though a substantial portion of the image was obscured.

It is unlikely that someone would use a neural network for a simple orien-
tation determination. The methodology can be extended to more realistic cases,
however, where the object can be rotated in three dimensions. In such cases, the
time required to construct and train a neural network may be significantly less
than the time required for development of algorithms that perform the identical
tasks.
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(a) (b)

Figure 6.23 These figures show 32-by-32-pixel arrays of two different
input vectors for the spacecraft-orientation system, (a) This
is a bit-mapped image of the space-shuttle model at an
angle of 150° as measured clockwise from the vertical.
(b) The obscured image was used as an input vector to
the spacecraft-orientation system. The CPN responded with
an angle of 149°. Source: Reprinted with permission from
James A. Freeman, "Neural networks for machine vision:
the spacecraft orientation demonstration." e"ponent: Ford
Aerospace Technical Journal, Fall 1988.

6.4 THE CPN SIMULATOR
Even though it utilizes two different learning rules, the CPN is perhaps the least
complex of the layered networks we will simulate, primarily because of the
aspect of competition implemented on the single hidden layer. Furthermore, if
we assume that the host computer system ensures that all input pattern vectors are
normalized prior to presentation to the network, it is only the hidden layer that
contains any special processing considerations: the input layer is simply a fan-
out layer, and each unit on the output layer merely performs a linear summation
of its active inputs. The only complication in the simulation is the determination
of the winning unit(s), and the generation of the appropriate output for each of
the hidden-layer units. In the remainder of this section, we will describe the
algorithms necessary to construct the restricted CPN simulator. Then, we shall
describe the extensions that must be made to implement the complete CPN. We
conclude the chapter with thoughts on alternative methods of initializing and
training the network.
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6.4.1 The CRN Data Structures
Due to the similarity of the CPN simulator to the BPN discussed in Chapter 3,
we will use those data structures as the basis for the CPN simulator. The only
modification we will require is to the top-level network record specification.
The reason for this modification should be obvious by now; since we have
consistently used the network record as the repository for all network specific
parameters, we must include the CPN-specific data in the CPN's top level dec-
laration. Thus, the CPN can be defined by the following record structure:

record CPN =
INPUTS : "layer; {pointer to input layer record}
HIDDENS : "layer; {pointer to hidden layer record}
OUTPUTS : "layer; {pointer to output layer record}
ALPHA : float; {Kohonen learning parameter}
BETA : float; {Grossberg learning parameters}
N : integer; {number of winning units allowed}

end record;

where the layer record and all lower-level structures are identical to those defined
in Chapter 3. A diagram illustrating the complete structure defined for this
network is shown in Figure 6.24.

6.4.2 CPN Algorithms
Since forward signal propagation through the CPN is easiest to describe, we
shall begin with that aspect of our simulator. Throughout this discussion, we
will assume that

• The network simulator has been initialized so that the internal data structures
have been allocated and contain valid information

• The user has set the outputs of the network input units to a normalized
vector to be propagated through the network

• Once the network generates its output, the user application reads the output
vector from the appropriate array and uses that output accordingly

Recall from our discussion in Section 6.2.1 that processing in the CPN es-
sentially starts in the hidden layer. Since we have assumed that the input vector
is both normalized and available in the network data structures, signal propaga-
tion begins by having the computer calculate the total input stimulation received
by each unit on the hidden layer. The unit (or units, in the case where N > 1)
with the largest aggregate input is declared the winner, and the output from that
unit is set to 1. The outputs from all losing units are simultaneously set to 0.

Once processing on the hidden layer is complete, the network output is
calculated by performance of another sum-of-products at each unit on the output
layer. In this case, the dot product between the connection weight vector to the
unit in question and the output vector formed by all the hidden-layer units is
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outs

weights

Figure 6.24 The complete data structure for the CPN is shown. These
structures are representative of all the layered networks that
we simulate in this text.

computed and used directly as the output for that unit. Since the hidden layer in
the CPN is a competitive layer, the input computation at the output layer takes
on a significance not usually found in an ANS; rather than combining feature
indications from many units, which may be either excitatory or inhibitory (as in
the BPN), the output units in the CPN are merely recalling features as stored in
the connections between the winning hidden unit(s) and themselves. This aspect
of memory recall is further illustrated in Figure 6.25.

Armed with this knowledge of network operation, there are a number of
things we can do to make our simulation more efficient. For example, since
we know that only a limited number of units (normally only one) in the hidden
layer will be allowed to win the competition, there is really no point in forc-
ing the computer to calculate the total input to every unit in the output layer.
A much more efficient approach would be simply to allow the computer to
remember which hidden layer unit(s) won the competition, and to restrict the
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Figure 6.25 This figure shows the process of information recall in the
output layer of the CRN. Each unit on the output layer receives
an active input only from the winning unit(s) on the hidden
layer. Since the connections between the winning hidden
unit and each unit on the output layer contain the output
value that was associated with the input pattern that won
the competition during training, the process of computing the
input at each unit on the output layer is nothing more than
a selection of the appropriate output pattern from the set of
available patterns stored in the input connections.

input calculation at each output unit to that unit's connections to the winning
unit(s).

Also, we can consider the process of determining the winning hidden unit(s).
In the case where only one unit is allowed to win (TV = 1), determining the
winner can be done easily as part of calculating the input to each hidden-layer
unit; we simply need to compare the input just calculated to the value saved
as the previously largest input. If the current input exceeds the older value,
the current input replaces the older value, and processing continues with the
next unit. After we have completed the input calculation for all hidden-layer
units, the unit whose output matches the largest value saved can be declared the
winner.2

On the other hand, if we allow more than one unit to win the competition
(N > 1), the problem of determining the winning hidden units is more compli-
cated. One problem we will encounter is the determination of how many units
will be allowed to win simultaneously. Obviously, we will never have to allow
all hidden units to win, but for how many possible winners must we account in

2This approach ignores the case where ties between hidden-layer units confuse the determination of
the winner. In such an event, other criteria must be used to select the winner.
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our simulator design? Also, we must address the issue of ranking the hidden-
layer units so that we may determine which unit(s) had a greater response to the
input; specifically, should we simply process all the hidden-layer units first, and
sort them afterward, or should we attempt to rank the units as we process them?

The answer to these questions is truly application dependent; for our pur-
poses, however, we will assume that we must account for no more than three
winning units (0 < TV < 4) in our simulator design. This being the case, we
can also assume that it is more efficient to keep track of up to three winning
units as we go, rather than trying to sort through all hidden units afterward.

CPN Production Algorithms. Using the assumptions described, we are now
ready to construct the algorithms for performing the forward signal propagation
in the CPN. Since the processing on each of the two active layers is different
(recall that the input layer is fan-out only), we will develop two different signal-
propagation algorithms: prop-to-hidden and prop-to-output.

procedure prop_to_hidden
(NET:CPN; FIRST,SECOND,THIRD:INTEGER)
{propagate to hidden layer, returning indices to

3 winners}

var units : ~float[]; {pointer to unit outputs}
invec : "floatf]; {pointer to input units}
connects : "float[]; {pointer to connection array}
best : float; {the current best match}
i, j : integer; {iteration counters}

begin
best = -100; {initialize best choice}
units = NET.HIDDENS".CUTS; {locate output array}

for i = 1 to length (units)
do {for all hidden units}
units [i] = 0; {initialize accumulator}
invec = NET.INPUTS".OUTS; {locate input array}
connects = NET.HIDDENS".WEIGHTS[i] ~;

{locate inputs}

for j = 1 to length (connects) do
units [i] = units [i] + connects[j] * invec[j];

end do;

rank (units[i], FIRST, SECOND, THIRD);
end do;

compete (NET.HIDDENS".CUTS, FIRST, SECOND, THIRD);
end procedure;



252 The Counterpropagation Network

This procedure makes calls to two as-yet-undefined routines, rank and
compete. The purpose of these routines is to sort the current input with the
current best three choices, and to generate the appropriate output for all units
in the specified layer, respectively. Because the design of the rank procedure
is fairly straightforward, it is left to you as an exercise. On the other hand,
the compete process must do the right thing no matter how many winners
are allowed, making it somewhat involved. We therefore present the design for
compete in its entirety.

procedure compete
(UNITS:"float[]; FIRST,SECOND,THIRD:INTEGER)
{generate outputs for all UNITS using competitive

function}

var outputs : "float[]; {step through output array}
sum : float; {local accumulator}
win, place, show : float; {store outputs}

{iteration counter}i : integer;

begin
outputs = UNITS;
sum = outputs[FIRST]
win = outputs[FIRST]

if (SECOND != 0)
then

{locate output array}
{initialize accumulator}

{save winning value}

{if a second winner}
{add its contribution}

sum = sum + outputs[SECOND];
place = outputs[SECOND]; {save second place value}

if (THIRD != 0) {if a third place winner}
then {add its contribution}

sum = sum + outputs[THIRD];
show = outputs[THIRD]; {save third place value}

end if;
end if;

for i = 1 to length (units)
do
outputs[i] = 0;

end do;

outputs[FIRST] = win / sum;

[for all hidden units}

{set outputs to zero}

{set winners output}

if (SECOND != 0)
then
outputs[SECOND] = place / sum;

if (THIRD != 0)
then
outputs[THIRD] = show / sum;

end if;
end if;

end procedure;

{now update second winner}

{and third place}
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Before we move on to the prop_to_output routine, you should note
that the compete procedure relies on the fact that the values of SECOND and
THIRD are nonzero if and only if more than one unit wins the competition.
Since it is assumed that these values are set as part of the rank procedure, you
should take care to ensure that these variables are manipulated according to the
number of winning units indicated by the value in the NET.N variable.

Let us now consider the process of propagating information to the output
layer in the CPN. Once we have completed the signal propagation to the hidden
layer, the outputs on the hidden layer will be nonzero only from the winning
units. As we have discussed before, we could now proceed to perform a com-
plete input summation at every unit on the output layer, but that would prove to
be needlessly time-consuming. Since we have designed the prop_to.hidden
procedure to return the index of the winning unit(s), we can assume that the
top-level routine to propagate information through the network completely will
have access to that information prior to calling the procedure to propagate in-
formation to the output layer. We can therefore code the prop-to-output
procedure so that only those connections between the winning units and the out-
put units are processed. Also, notice that the successful use of this procedure
relies on the values of the SECOND and THIRD variables being nonzero only if
more than one winner was allowed.

procedure prop_to_output
(NET:CPN; FIRST,SECOND,THIRD:INTEGER)
{generate outputs for units on the output layer}

var units : "float[]; {locate output units)
hidvec : "float[]; {locate hidden units}
connects : "float[]; {locate connections}
i : integer; {iteration counter}

begin
units = NET.OUTPUTS".OUTS; {start of output array}
hidvec = NET.HIDDENS".OUTS; {start of hidden array}

for i = 1 to length (units) {for all output units}
do

connects = NET.OUTPUTS".WEIGHTS[i]";
units [i] = hidvec[FIRST] * connects[FIRST];

if (SECOND !=0)
{if there is a second winning unit}

then
units[i] = units[i] + hidvec[SECOND]

* connects[SECOND];

if (THIRD != 0)
{if there is a third winning unit}
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then
units [i] = units[i] + hidvec[THIRD]

* connects[THIRD];
end if;

end if;
end do;

end procedure;

You may now be asking yourself how we can be assured that the hidden-
layer units will be using the appropriate output values for any number of winning
units. To answer this question, we recall that we specified that at least one unit
is guaranteed to win, and that at most, three will share in the victory. Inspection
of the compete and prop-to-output routines shows that, with only one
winning unit, the output of all non-winning units will be 0, whereas the winning
unit will generate a 1. As we increase the number of units that we allow to
win, the strength of the output from each of the winning units is proportionally
decreased, so that the relative contribution from all winning units will linearly
interpolate between output patterns the network was trained to produce.

Now we are prepared to define the top-level algorithm for forward signal
propagation in the CPN. As before, we assume that the input vector has been
set previously by an application-specific input routine.

procedure propagate (NET:CPN)
{perform a forward signal propagation in the CPN}

var first,
second
third : integer; {indices for winning units}

begin
prop_to_hidden (NET, first,
prop_to_output (NET, first,

end procedure;

second,
second,

third);
third);

CPN Learning Algorithms. There are two significant differences between
forward signal propagation and learning in the CPN: during learning, only one
unit on the hidden layer can win the competition, and, quite obviously, the
network connection weights are updated. Yet, even though they are different,
much of the activity that must be performed during learning is identical to the
forward signal propagation. As you will see, we will be able to reuse the
production-mode algorithms to a large extent as we develop our learning-mode
procedures.

We shall begin by training the hidden-layer units to recognize our input
patterns. Having completed that activity, we will proceed to train the output
layer to reproduce the target outputs from the specified inputs. Let us first
consider the process of training the hidden layer in the CPN. Assuming the
input layer units have been initialized to contain a normalized vector to be
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learned, we can define the learning algorithm for the hidden-layer units in the
following manner.

procedure learn_input (NET:CPN)
{update the connections to the winning hidden unit}

var winner : integer; {used to locate winning unit}
dummy1, dummy2 : integer;

{dummy variables for second and third}
connects : "floatf]; {locate connection array}
units : 'float[]; {locate input array}
i : integer; {iteration counter}

begin
dummyl =0; {no need for second or)
dummy2 =0; {third winning unit}
prop_to_hidden (NET, winner, dummyl, dummy2);
units = NET.INPUTS".OUTS; {locate input array}
connects = NET.HIDDENS".WEIGHTS[winner]";

{locate connections}

for i = 1 to length (connects)
{for all connections to winner}

do
connects[i] = connects[i] +

NET.ALPHA * (units[i] - connects[i]);
end do;

end procedure;

Notice that this algorithm has no access to information that would indicate
when the competitive layer has been trained sufficiently. Unlike in many of
the other networks we have studied, there is no error measure to indicate con-
vergence. For that reason, we have chosen to design this training algorithm so
that it performs only one training pass in the competitive layer. A higher-level
routine to train the entire network must therefore be coded such that it can
reasonably determine when the competitive layer has completed its training.

Moving on to the output layer, we will construct our training algorithm
for this part of the network such that only those connections from the winning
hidden unit to the output layer are adapted. This approach will allow us to
complete the training of the competitive layer before starting the training on
the accretive layer. Hopefully, the use of this approach will enable the CPN to
classify inputs correctly as it is training outputs, to avoid confusing the network.

procedure learn_output (NET:CPN; TARGET:"float[])
{train the output layer to reproduce the specified

vector)

var winner : integer; {used to locate winning unit}
dummyl, dummy2 : integer;

{dummy variables for second & third)
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connects : "float[]; {locate connection array}
units : "float!]; {locate output array}
i : integer; {iteration counter}

begin
dummyl =0; {no need for second or}
dummy2 = 0; {third winning unit}

prop_to_hidden (NET, winner, dummyl, dummy2);
units = NET.OUTPUTS".CUTS; {locate output array}

for i = 1 to length (units) {for all output units}
do

connects = NET.OUTPUTS".WEIGHTS"[i];
{locate connections}

connects[winner] = connects[winner] +
NET.BETA * (TARGET[i] -

connects[winner]) ;
end do;

end procedure;

As with learn_input, learruoutput performs only one training pass
and makes no assessment of error. When the CPN is used, it is the application
that makes the determination as to when training is complete. As an example,
consider the spacecraft-orientation system described in Section 6.3. This net-
work was constructed to learn the image of the space shuttle at 12 different
orientations, producing the scaled sine and cosine of the angle between the ref-
erence position and the image position as output. Using our CPN algorithms,
the training process for this application might have taken the following form:

procedure learn (NET:CPN; IMAGEFILE:disk file)
{teach the NET using data in the IMAGEFILE}

var iopairs : array [1. . 12,1. . 1026] of float;
target : array [1..2] of float;
status : array [1..12] of boolean;
done : boolean;
i, j : integer;

begin
NET.N = 1; {force only one winner}
READ_INPUT_FILE (IMAGEFILE, iopairs[1,1]);

{init array}

done = false; {train at least once}
SET_FALSE (status); {initialize status array}

while (not done) {until training complete}
do

for i = 1 to 12 {for each training pair}
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do
j = random (12);

{select a pattern at random}
SET_INPUT (CPN, iopairstj, 1] ;
learn_input (CPN); {train competitive layer}

end do;

TEST_IF_INPUT_LEARNED (status, done);
end do;

done = false; {train output at least once}
SET_FALSE (status); {initialize status array}

while (not done) {until training complete}
do

for i = 1 to 12 {for each training pair}
do {train accretive layer}
SET_INPUT (CPN, iopairsfi, 1];
GET_TARGET (target, iopairsfi, 1025]);
learn_output (CPN, target);

end do;

TEST_IF_OUTPUT_LEARNED (Status, done);
end do;

end procedure;

where the application provided routines test-if_input_learned and
test-if-output_learned perform the function of deciding when the CPN
has been trained sufficiently. In the case of testing the competitive layer,
this determination was accomplished by verifying that all 12 input patterns
caused different hidden-layer units to win the competition. Similarly, the output
test indicated success when no output unit generated an actual output differ-
ent by more than 0.001 from the desired output for each of the 12 patterns.
The other routines used in the application, READ-INPUT_JFILE, SET _FALSE,
SET-INPUT, and GET-TARGET, merely perform housekeeping functions for
the system. The point is, however, that there is no general heuristic that we
can use to determine when to stop training the CPN simulator. If we had had
many more training pairs than hidden-layer units, the functions performed by
TEST_IF_INPUT_LEARNED and TEST_IF_OUTPUT_LEARNED might have
been altogether different.

6.4.3 Simulating the Complete CPN
Now that we have completed our discussion of the restricted CPN, let us turn
our attention for a moment to the full CPN. In terms of simulating the complete
network, there are only two differences between the restricted and complete
network implementations:
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1. The size of the network, in terms of number of units and connections
2. The use of the network from the applications perspective

Quite obviously, the number of units in the network has grown from N +
H + M, where N and M specify the number of units in the input and output
layers, respectively, to 2(N+M) + H. Similarly, the number of connections that
must be maintained has doubled, expanding from H(N + M) to 2H(N + M).
Therefore, the extension from the restricted to the complete CPN has slightly less
than doubled the amount of computer memory needed to simulate the network.
In addition, the extra units and connections place an enormous overhead on the
amount of computer time needed to perform the simulation, in that there are
now N + M extra connections to be processed at every hidden unit.

As illustrated in Figure 6.26, the complete CPN requires no modification
to the algorithms we have just developed, other than to present both the input
and output patterns as target vectors for the output layer. This assertion holds
true assuming the user abides by the observation that, when going from input
to output, the extra M units on the input layer are zeroed prior to performing
the signal propagation. This being the case, the inputs from the extra units
contribute nothing to the dot-product calculation at each hidden unit, effectively
eliminating them from consideration in determining the winning unit. By the
same token, the original N units must be zeroed prior to performance of the
Counterpropagation from the M new units to recover the original input.

6.4.4 Practical Considerations for the CPN Simulator
We earlier promised a discussion of the practical considerations of which we
might take advantage when simulating the CPN. We shall now live up to that
promise by offering insights into improving the performance of the CPN simu-
lator.

Many times, a CPN application will require the network to function as an
associative memory; that is, we expect the network to recall a specific output
when presented with an input that is similar to a training input. Such an input
could be the original input with noise added, or with part of the input missing.
When constructing a CPN to act in this capacity, we usually create it with as
many hidden units as there are items to store. In doing so, and in allowing only
one unit to win the competition, we ensure that the network will always generate
the exact output that was associated with the training input that most closely
resembles the current input.

Having made this observation, we can now see how it is possible to reduce
the amount of time needed to train the CPN by eliminating the need to train
the competitive layer. We can do this reduction by initializing the connections
to each hidden unit such that each input training pattern is mapped onto the
connections of only one hidden unit. In essence, we will have trained'the
competitive layer by initializing the connections, in a manner similar to the
process of initializing the BAM, described in Chapter 4. All that remains from
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V

Figure 6.26 The complete CRN processing model is shown. Using the
algorithms developed for the limited CPN, processing begins
with the application of an input pattern on the Xn units and
by zeroing of the extra Ym units, which we use to represent
the output. In this case, the output units (Y,'n) will produce the
output pattern associated with the given input pattern during
training. Now, to produce the counterpropagation effect, the
opposite situation occurs. The given output pattern is applied
to the input units previously zeroed (Ym), while the Xn units
are zeroed. The output of the network, on the X'n units,
represent the input pattern associated with the given output
pattern during training.

this point is the training of the output layer, which ought to conclude in fairly
short order. An example of this type of training is shown in Figure 6.27.

Another observation about the operation of the CPN can provide us with
insight into improving the ability of the network to discriminate between similar
vectors. As we have discussed, the competitive layer acts to select between
one of the many input patterns the network was trained to recognize. It does
this selection by computing the dot product between the input vector, I, and
the connection weight vector, w. Since these two vectors are normalized, the
resulting value represents the cosine of the angle between them in n-space.
However, this approach can lead to problems if we allow the use of the null
vector, 0, as a valid input. Since 0 cannot be normalized, another method of
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Figure 6.27 A restricted CPN initialized to eliminate the training of the
competitive layer is shown. Note that the number of hidden
units is exactly equal to the number of training patterns to be
learned.

propagating signals to the hidden layer must be found. One alternative method
that has shown promising results is to use the magnitude of the difference vector
between the unnormalized I and w vectors as the input computation for each
hidden unit. Specifically, let

ml,, =

be the input activation calculation performed at each hidden unit, rather than
the traditional sum-of-products.

Use of this method prevents the CPN from creating duplicate internal map-
pings for similar, but different, input vectors. It also allows use of the null vector
as a valid training input, something that we have found to be quite useful. Fi-
nally, at least one other researcher has indicated that this alternative method can
improve the ability of the network to learn by reducing the number of training
presentations needed to have the network classify input patterns properly [11].

Programming Exercises
6.1. Implement the CPN simulator described in the text and test it by training it

to recognize the 36 uppercase ASCII characters from a pixel matrix repre-
senting the image of the character. For example, the 6 x 5 matrix illustrated
next represents the pixel image of the character A. The equivalent ASCII
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code for that character is 4116. Thus, the ordered pair (Q8A8FE3\ | f t ,41i6)
represent one training pair for the network. Complete this example by train-
ing the network to recognize the other 35 alphanumeric characters from their
pixel image. How many hidden-layer units are needed to precisely recall
all 36 characters'?

. .x. .

. x.x.
X. . .X

xxxxx = 00100 01010 10001 11111 10001 10001
X. . .X

X. . .X

6.2. Without resizing the network, retrain the CPN described in Programming
Exercise 6.1 to recognize both the upper- and lowercase ASCII alphabetic
characters. Describe how accurately the CPN identifies all characters after
training. Include in your discussion any reasons you might have to explain
why the CPN misclassifies some characters.

6.3. Repeat Programming Exercise 6.1, but allow two hidden units to win the
competition during production. Explain the network's behavior under these
circumstances.

6.4. Recreate the spacecraft-orientation example in Section 6.3 using your CPN
simulator. You may simplify the problem by using a smaller matrix to
represent the video image. For example, the 5 x 5 matrix shown next might
be used to represent the shuttle image in the vertical position. Train the
network to recognize your image at 45-degree rotational increments around
the circle. Let two units win the competition, as in the example, and let
the two output units produce the scaled sine and cosine of the image angle.
Test your network by obscuring the image (enter a vector with Os in place
of Is), and describe the results.

. .x. .

. . x. .

. .x. .

.xxx. = 00100 00100 00100 OHIO 11111
xxxxx

6.5. Describe what would happen in Programming Exercise 6.4 if you only
allowed one unit to win the competition. Describe what would happen if
three units were allowed to win.

6.6. Implement the complete CPN simulator using the guidelines provided in
the text. Train the network using the spacecraft-orientation data, and exer-
cise the simulator in both the forward-propagation and counterpropagation
modes. How well does the simulator produce the desired input pattern when
given sine and cosine values that are not on a 45 degree angle?
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Suggested Readings
The papers and book by Hecht-Nielsen are good companions to the material in
this chapter on the CPN [5, 6, 8]. Hecht-Nielsen also has a paper that discusses
some applications areas appropriate to the CPN [7].

The instar, outstar, and avalanche networks are discussed in detail in the
papers by Grossberg in the collection Studies of Mind and Brain [4]. Individual
papers from this collection are listed in the bibliography.
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C H A P T E R

Self-Organizing Maps

The cerebral cortex is arguably the most fascinating structure in all of human
physiology. Although vastly complex on a microscopic level, the cortex reveals
a consistently uniform structure on a macroscopic scale, from one brain to
another. Centers for such diverse activities as thought, speech, vision, hearing,
and motor functions lie in specific areas of the cortex, and these areas are
located consistently relative to one another. Moreover, individual areas exhibit
a logical ordering of their functionality. An example is the so-called tonotopic
map of the auditory regions, where neighboring neurons respond to similar
sound frequencies in an orderly sequence from high pitch to low pitch. Another
example is the somatotopic map of motor nerves, represented artistically by the
homunculus illustrated in Figure 7.1. Regions such as the tonotopic map and
the somatotopic map can be referred to as ordered feature maps. The purpose
of this chapter is to investigate a mechanism by which these ordered feature
maps might develop naturally.

It appears likely that our genetic makeup predestines our neural development
to a large extent. Whether the mechanisms that we shall describe here play a
major or a minor role in the organization of neural tissue is not an issue for us.
It was, however, an interest in discovering how such an organization might be
learned that led Kohonen to develop many of the ideas that we present in this
chapter [2].

The cortex is essentially a large (approximately 1-meter-square, in adult
humans) thin (2-to-4-millimeter thick) sheet consisting of six layers of neurons
of varying type and density. It is folded into its familiar shape to maximize
packing density in the cranium. Since we are not so much concerned with the
details of anatomy here, we shall consider an adequate model of the cortex to
be a two-dimensional sheet of processing elements.

We saw in the previous chapter how on-center off-surround interactions
among competitive processing elements could be used to construct a network
that could classify clusters of input vectors. If you have not done so, please
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Figure 7.1 The homunculus depicts the relationship between regions of
the somatotopic area of the cortex and the parts of the body that
they control. Although somewhat distorted, the basic structure
of the body is reflected in the organization of the cortex in this
region. Source: Reprinted with permission of McGraw-Hill, Inc.
from Charles R. Noback and Robert J. Demarest, The Human
Nervous System: Basic Principles of Neurobiology, ©1981 by
McGraw-Hill, Inc.

read Sections 6.1.1 through 6.1.3, as they are prerequisites to the material in
this chapter.

In the simple competitive layer of the counterpropagation network, units
learn by a process of self-organization. Learning was accomplished by the
application of input data alone; no expected-output data was used as a teacher
to signal the network that it had made an error. We call this type of learning
unsupervised learning, and the input data are called unlabeled data. In the
CPN, there was also no indication that the physical position of units in the
competitive layer reflected any special relationship among the classes of data
being learned. Thus, we say that there was a random map of input classes to
competitive units.

In contrast to our discussion of random mapping, here we shall see how
a simple extension of the competitive algorithms from Chapter 6 result in a
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topology-preserving map of the input data to the competitive units.' Because
of Kohonen's work in the development of the theory of competition, competitive
processing elements are often referred to as Kohonen units.

As a simplified definition, we can say that, in a topology-preserving map,
units located physically next to each other will respond to classes of input vec-
tors that are likewise next to each other. Although it is easy to visualize units
next to each other in a two-dimensional array, it is not so easy to determine
which classes of vectors are next to each other in a high-dimensional space.
Large-dimensional input vectors are, in a sense, projected down on the two-
dimensional map in a way that maintains the natural order of the input vectors.
This dimensional reduction could allow us to visualize easily important rela-
tionships among the data that otherwise might go unnoticed.

In the next section, we shall formalize some of the definitions presented in
this section, and shall look at the mathematics of the topology-preserving map.
Henceforth, we shall refer to the topology-preserving map as a self-organizing
map (SOM).

7.1 SOM DATA PROCESSING
Lateral interactions among processing elements in the on-center off-surround
scheme were modeled in Chapter 6 as a single positive-feedback connection to
a central unit, and negative-feedback connections to all other units in the layer.
In this chapter, we shall modify that model such that, during the learning process,
the positive feedback will extend from the central (winning) unit to other units
in some finite neighborhood around the central unit. In the competitive layer
of the CPN, only the winning unit (the one whose weight vector most closely
matched the input vector) was allowed to learn; in the SOM, all the units in the
neighborhood that receive positive feedback from the winning unit participate
in the learning process. Even if a neighboring unit's weight is orthogonal to the
input vector, its weight vector will still change in response to the input vector.
This simple addition to the competitive process is sufficient to account for the
ordered mapping discussed in the previous section.

e

7.1.1 Unit Activations
The activations of the processing elements are defined by the set of equations

y, = ~r,(y,) + net, + ̂  2,7</, (7.1)
j

The function r,(y,) is a general form of a loss term. In previous equations
describing competitive interactions we have typically used r/(?/,) = Ay/ with A
constant (cf. Eq. 6.13), but r,(y,) could be a more complicated function of y,.

1 In fact, the development of the theory of competition among processing elements, and the theory
of the topology-preserving map, predates the CPN by many years.
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The term net, is the net input to unit i calculated in the usual manner as the dot
product of the input vector and the weight vector of the unit. The final term in
Eq. (7.1) models the lateral interactions between units. The sum extends over
all units in the system. If z^ takes the form of the Mexican-hat function, as
shown in Figure 7.2(a), then the network will exhibit a bubble of activity around
the unit with the largest value of net input. Although the unit with the largest
net-input value is technically the winner in the competitive system, neighboring
units share in that victory.

7.1.2 The SOM Learning Algorithm
During the training period, each unit with a positive activity within the neigh-
borhood of the winning unit participates in the learning process in a manner
identical to the instar discussed in Chapter 6. We can describe the learning
process by the equations

wz = a(t)(x - w,)[%,) (7.2)

where w, is the weight vector of the ith unit and x is the input vector. The
function U(yi) is zero unless y, > 0 in which case t/(y,) = 1, ensuring that
only those units with positive activity participate in the learning process. The
factor a(t) is written as a function of time to anticipate our desire to change it
as learning progresses (see the discussion in Section 6.2.3).

In the remainder of the discussion, we shall not explicitly show the in-
hibitory connections between units, and we shall ignore the far-reaching excita-
tory interactions as a first approximation. The resultant interaction function is
shown in Figure 7.2(b).

To demonstrate the formation of an ordered feature map, we shall use
an example in which units are trained to recognize their relative positions in
two-dimensional space. The scenario is illustrated in the sequence in Fig-
ure 7.3. Each processing element is identified by its coordinates, (u,v), in
two-dimensional space. Weight vectors for this example are also two dimen-
sional and are initially assigned to the processing elements randomly.

As with other competitive structures, a winning processing element is de-
termined for each input vector based on the similarity between the input vector
and the weight vector. For an input vector x, the winning unit can be determined
by

| |x-w r | |=min{| |x-Wj| |} (7.3)?
where the index c refers to the winning unit. To keep subscripts to a minimum,
we identify each unit in the two-dimensional array by a single subscript, as in
Eq. (7.3).

Instead of updating the weights of the winning unit only, we define a phys-
ical neighborhood around the unit, and all units within this neighborhood par-
ticipate in the weight-update process. As learning proceeds, the size of the
neighborhood is diminished until it encompasses only a single unit. If c is the
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(a)

(b)

Figure 7.2 These graphics illustrate two different models of lateral
interactions among network units, (a) This curve, characteristic
of the lateral interactions between certain neurons in the
cortex, is referred to as the Mexican-hat function. A centrally
excited processing element excites a small neighborhood
around it with positive feedback connections. As the lateral
distance from the central node increases, the degree of
excitation falls until it becomes an inhibition. This inhibition
continues for a significantly longer distance. Finally, a weak
positive feedback extends a considerable distance away from
the central node, (b) We shall use this simple function as a
first approximation to the Mexican-hat function. The distance,
a, defines a neighborhood of units around the central unit that
participate in learning along with the central unit.
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Figure 7.3 This series of figures shows how the SOM develops as training

takes place, (a) Processing elements on the SOM are arranged
in a two-dimensional array at discrete points, (u, v)p within the

winning unit, and N,. is the list of unit indices that make up the neighborhood,
then the weight-update equations are

+ 1) =
a(t)(\ -

0
i e N,.
otherwise (7.4)

Each weight vector participating in the update process rotates slightly toward
the input vector, x. Once training has progressed sufficiently, the weight vector
on each unit will converge to a value that is representative of the coordinates
of the points near the physical location of the unit.
Exercise 7.1: In Eq. (7.3), the winning unit is determined by the minimum of
the quantity ||x — w,||. In Chapter 6, the winning unit was determined by the
maximum of the quantity net, = x • W;. Under what circumstances are these
two conditions equivalent?
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Figure 7.3 (continued) continuous space. A two-dimensional weight
vector (w,,,wl.),l, is assigned to each unit. The weight values
correspond to physical locations within the space occupied by
the processing elements, but they are assigned at random to the
units. Thus, neighboring units in physical space may occupy
unrelated locations in weight space, (b) During training, a
point (u, v) is selected at random to be the input vector. A
winning unit is determined by a simple Euclidean distance
measure between the selected point and the unit's weight
vector, and a neighborhood, Nc, is defined around the winning
unit in physical space. The weight vectors in all units within
the neighborhood change slightly toward the value of the
input, (u,v). As training continues with different input points,
the size of the neighborhood is decreased gradually until it
encompasses only a single unit, (c) At the completion of
training, the weight vector for each unit will be approximately
equal to the physical coordinates of the unit.

Exercise 7.2: Is it acceptable to initialize the weight vectors on an SOM unit
to random, unnormalized values? Explain your answer.

t>

Kohonen has developed a clever way to illustrate the dynamics of the learn-
ing process for examples of the type described in Figure 7.3. Instead of plotting
the position of the processing elements according to their physical location, we
can plot them according to their location in weight space. We then draw connect-
ing lines between units that are neighbors in physical space; Figure 7.4 illustrates
this idea. As training progresses, the map evolves, as shown in Figure 7.5.

We have assumed throughout this discussion that the input points are se-
lected at random from a uniformly distributed set within the rectangular area
occupied by the processing elements. Suppose that the input points were se-
lected from a different distribution, as illustrated in Figure 7.6. In this example,
input points are selected from a uniform, triangular distribution. The process-
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(0,1)

(0,0)

(1.0)

Figure 7.4 Each unit is identified by two sets of coordinates: fixed,
physical-space coordinates in (u,v)p space and modifiable
weight-space coordinates in (w,,,w,,)w space. A plot is made
of points according to their position in weight space. Units
are joined by lines according to their position in physical
space. Neighboring units (0,0)p,(0,1);), and (l,0)p would be
connected as shown with the thick lines.

ing elements themselves are still in a two-dimensional physical array, but the
weights form a map of the triangular region. Remember that the units do not
change their physical location during training.

In the introduction to this chapter, we spoke of using the SOM to perform
a dimensional reduction on the input data by mapping high-dimensional input
vectors onto the two-dimensional map. We can illustrate this idea graphically
by mapping a two-dimensional region of points onto a one-dimensional array of
processing elements. Figure 7.7 illustrates the case for two different distributions
of input points. Remember that the input and weight vectors are both two
dimensional, whereas the physical location of each processing element is on a
one-dimensional array.

All our examples to this point have used input points that are uniformly
distributed within some region. There is nothing sacred about the uniform dis-
tribution. Input points can be distributed according to any distribution function.
Once the SOM has been trained, the weight vectors will be organized into an
approximation of the distribution function of the input vectors. Stated in more
formal terms,

The point density function of the weight vectors tends to approximate the probability
density function p(x) of the input vectors, x, and the weight vectors tend to be
ordered according to their mutual similarity. [2]
We shall not attempt to prove that the prescription described here will result

in a topology-preserving map. Even for the simple one-dimensional case, such a
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(a) (b)

Figure 7.5

(c) (d)

In this series of figures, a two-dimensional SOM develops from
a space of input points selected randomly from a uniform-
rectangular distribution, (a) In the initial map, weight vectors
have random values near the center of the map coordinates.
(b) As the map begins to evolve, weights spread out from
the center, (c) Eventually, the final structure of the map
begins to emerge, (d) In the end, the relationship between the
weight vectors mimics the relationship between the physical
coordinates of the processing elements.

proof is extremely long and complex. You should consult Kohonen's excellent
book on SOMs for details [2].

7.1.3 The Feature Map Classifier
An advantage of the SOM is that large numbers of unlabeled data can be or-
ganized quickly into a configuration that may illuminate underlying structure
within the data. Following the self-organization process, it may be desirable
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Figure 7.6 This sequence of diagrams illustrates the evolution of the map
for a uniform, triangular distribution of input points. Notice
that, in the final map, neighboring points in physical space
end up with neighboring weights in weight space. This feature
is the essence of the topology-preserving map.

/> \\

Figure 7.7 These figures illustrate one-dimensional maps for two different
input probability distributions. (a) This sequence shows
the evolution of the one-dimensional SOM for a uniform
distribution of points in a triangular region. Notice how
processing elements that are physical neighbors (indicated by
connecting lines) form weight vectors that are distributed in
an orderly fashion throughout the input space, (b) For this
sequence, input points are uniformly distributed within the K-
shaped region. Because of the concavities, weight vectors can
have values that are outside of the actual space of input points.
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to associate certain inputs with certain output values, such as is done with the
backpropagation and counterpropagation networks.

The architecture of the SOM can be extended by the addition of an as-
sociation layer, as shown in Figure 7.8. We refer to this structure as a fea-
ture map classifier (FMC). Units on the output layer can be trained by any
of several methods including the delta rule, described in Chapter 2, or by the
outstar procedure described in Chapter 6. An alternate training method, called
maximum-likelihood training is described by Huang and Lippmann [1].

Output layer

Self-organizing map layer

Figure 7.8 In this representation of the feature map classifier, a layer
of output units has been added to a two-dimensional SOM.
The output units associate desired output values with certain
input vectors. The SOM acts as a competitive network that
classifies input vectors. The processing done by the FMC is
virtually identical to that done by the forward-mapping CRN
(see Chapter 6). Unlike in the CRN, it is not necessary to have
the units on the competitive layer fully connected to the units
on the output layer.
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7.2 APPLICATIONS OF SELF-ORGANIZING MAPS
In this section, we discuss two applications that employ the SOM network.
Each application illustrates a significantly different way in which the SOM can
be used effectively.

7.2.1 The Neural Phonetic Typewriter
It has long been a goal of computer scientists to endow a machine with the ability
to recognize and understand human speech. The possibilities for such a machine
seem endless. Some progress has been made, yet the goal has been elusive.
Despite many years of research, currently available commercial products are
limited by their small vocabularies, by dependence on extensive training by a
particular speaker, or by both.

The neural phonetic typewriter demonstrates the potential for neural net-
works to aid in the endeavor to build speaker-independent speech recognition
into a computer. Moreover, it shows how neural-network technology can be
merged with traditional signal processing and standard techniques in artificial
intelligence to solve a particular problem. This device can transcribe speech into
written text from an unlimited vocabulary, in real time, and with an accuracy
of 92 to 97 percent [3]. It is therefore correctly called a typewriter; it does not
purport to understand the meaning of the speech. Nevertheless, the neural pho-
netic typewriter should have a significant effect in the modern office. Training
for an individual speaker requires the dictation of only about 100 words, and
requires about 10 minutes of time on a personal computer.2

For this device, a two-dimensional array of nodes is trained using, as inputs,
15-component spectral analyses of spoken words sampled every 9.83 millisec-
onds. These input vectors are produced from a series of preprocessing steps
performed on the audible sound. This preprocessing includes the use of a noise-
canceling microphone, a 12-bit analog-to-digital conversion, a 256-point fast
Fourier transform performed every 9.83 milliseconds, grouping of the spectral
channels into 15 groups, and additional filtering and normalization of the resul-
tant 15-component input vector.

Using Kohonen's clustering algorithm, nodes in a two-dimensional array
were allowed to organize themselves in response to the input vectors. After
training, the resulting map was calibrated by using the spectra of phonemes
as input vectors. Even though phonemes were not used explicitly to train the
network, most nodes responded to a single phoneme, as shown in Figure 7.9.
This response to phonemes is all the more striking since the phonemes last
from 40 milliseconds to 400 milliseconds, in contrast to the 9.83-millisecond
sampling frequency used to train the network.

-Unfortunately for those of us whose native language is English, the only languages supported at
present are Finnish and Japanese.
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Figure 7.9 This figure is a phonotopic map with the neurons, shown
as circles, and the phonemes to which they learned to
respond. A double label means that the node responds to
more than one phoneme. Some phonemes—such as the
plosives represented by k, p, and f—are difficult for the
network to distinguish and are most prone to misclassification
by the network. Source: Reprinted with permission from Teuvo
Kohonen, ''The neural phonetic typewriter." IEEE Computer,
March 1988. ©1988 IEEE.

As a word is spoken, it is sampled, analyzed, and submitted to the net-
work as a sequence of input vectors. As the nodes in the network respond,
a path is traced on the map that corresponds to the sequence of input pat-
terns. See Figure 7.10 for an example; the arrows in the figure correspond to
the sampling time of 9.83 milliseconds. This path results in a phonetic tran-
scription of the word, which can then be compared with known words or used
as input to a rule-based system. The analysis can be carried out quickly and
efficiently using a variety of techniques, including neural-network associative
memories.

As words are spoken into the microphone, their transcription appears on the
computer screen. We eagerly await the English-language version.

7.2.2 Learning Ballistic Arm Movements
In our second example, we describe a method developed by Ritter and Schulten
that uses an SOM that learns how to perform ballistic movements of a simple
robot arm [4, 5, 6]. Ballistic movements are initiated by short-duration torques
applied at the joints of the arm. Once the torques have been applied, motion of
the arm proceeds freely (hence the term ballistic movement). Since the torques
are of such short duration, there is no control of the motion by way of a feedback



276 Self-Organizing Maps

PP

Figure 7.10 This i l lus t ra t ion shows the sequence of responses from the
phonotopic map result ing from the spoken F i n n i s h word
humppila. (Do not bother to look up the meaning of this word
in your F inn i sh -Eng l i sh dictionary: humppila is the name of a
place.) Source: Reprinted with permission from Teuvo Kohonen,
' 'The neural phonetic typewriter." IEEE Computer, March 1988.
©1988 IEEE.

mechanism; thus, the torques that cause a particular motion must be known in
advance. Figure 7.11 illustrates the simple, two-dimensional robot-arm model
used in this example.

For a particular starting position, x, and a particular, desired end-effector
velocity, Udesired, the required torques can be found from

T = A(x)Udes,r,•ed (7.5)

where T is the vector ("n^)'.3 The tensor quantity, A (here, simply a two-
dimensional matrix) is determined by the details of the arm and its configuration.
Ritter and Schulten use Kohonen's SOM algorithm to learn the A(x) quantities.
A mechanism for learning the A tensors would be useful in a real environment
where aging effects and wear might alter the dynamics of the arm over time.

The first part of the method is virtually identical to the two-dimensional
mapping example discussed in Section 7.1. Recall that, in that example, units

- Torque itself is a vector quantity, defined as the time-rate of change of the angular momentum
vector. Our vector T is a composite of the magnitudes of two torque vectors, T\ and r*. The
directions of r\ and r^ can be accounted for by their signs: r > 0 implies a counterclockwise
rotation of the joint, and r < 0 implies a clockwise rotation.
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Figure 7.11 This figure shows a schematic of a simple robot arm and
its space of permitted movement. The arm consists of two
massless segments of length 1.0 and 0.9, with unit, point
masses at its distal joint, d, and its end effector, e. The end
effector begins at some randomly selected location, x, within
the region R. The joint angles are Q\ and 6*2- The desired
movement of the arm is to have the end effector move at
some randomly selected velocity, udesired- For this movement
to be accomplished, torques r\ and r^ must be applied at the
joints.

learned to organize themselves such that their two-dimensional weight vectors
corresponded to the physical coordinates of the associated unit. An input vector
of (x\.X2) would then cause the largest response from the unit whose physical
coordinates were closest to (x\,X2).

Ritter and Schulten begin with a two-dimensional array of units identi-
fied by their integer coordinates, (i,j), within the region R of Figure 7.11.
Instead of using the coordinates of a selected point as inputs, they use the
corresponding values of the joint angles. Given suitable restrictions on the
values of 9\ and #2> there will be a one-to-one correspondence between the
joint-angle vector, 6 — (&i,02)', and the coordinate vector, x = (xj,.^)'.
Other than this change of variables, and the use of a different model for the
Mexican-hat function, the development of the map proceeds as described in
Section 7.1:

1. Select a point x within R according to a uniform random distribution.

2. Determine the corresponding 0* =
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3. Select the winning unit, y*, such that

| |0(y*)-01=min.||0(y)-01
y

4. Update the theta vector for all units according to

0(y, t+l) = 0(y,«) + /i,(y - y*, t)(0* - 0(y,*))

The function h\(y — y*,i) defines the model of the Mexican-hat function:
It is a Gaussian function centered on the winning unit. Therefore, the
neighborhood around the winning unit that gets to share in the victory
encompasses all of the units. Unlike in the example in Section 7.1, however,
the magnitude of the weight updates for the neighboring units decreases as a
function of distance from the winning unit. Also, the width of the Gaussian
is decreased as learning proceeds.

So far, we have not said anything about how the A(x) matrices are
learned. That task is facilitated by association of one A tensor with each
unit of the SOM network. Then, as winning units are selected according to
the procedure given, A matrices are updated right along with the 0 vectors.

We can determine how to adjust the A matrices by using the difference
between the desired motion, laired* and the actual motion, v, to determine
successive approximations to A. In principle, we do not need a SOM to
accomplish this adjustment. We could pick a starting location, then inves-
tigate all possible velocities starting from that point, and iterate A until it
converges to give the expected movements. Then, we would select another
starting point and repeat the exercise. We could continue this process until
all starting locations have been visited and all As have been determined.

The advantage of using a SOM is that all A matrices are updated
simultaneously, based on the corrections determined for only one start-
ing location. Moreover, the magnitude of the corrections for neighboring
units ensures that their A matrices are brought close to their correct values
quickly, perhaps even before their associated units have been selected via
the 6 competition. So, to pick up the algorithm where we left off,

5. Select a desired velocity, u, with random direction and unit magnitude,
||u|| = 1. Execute an arm movement with torques computed from T =
A(x)u, and observe the actual end-effector velocity, v.

6. Calculate an improved estimate of the A tensor for the winning unit:

A(y*, t + 1) = A(y*, t) + eA(y*, t)(u - v)v'

where e is a positive constant less than 1.
7. Finally, update the A tensor for all units according to

A(y, t+l) = A(y, t) + My - y*, *)(A(y*, t + 1) - A(y, t))

where hi is a Gaussian function whose width decreases with time.
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The result of using a SOM in this manner is a significant decrease in the
convergence time for the A tensors. Moreover, the investigators reported that
the system was more robust in the sense of being less sensitive to the initial
values of the A tensors.

7.3 SIMULATING THE SOM
As we have seen, the SOM is a relatively uncomplicated network in that it has
only two layers of units. Therefore, the simulation of this network will not
tax the capacity of the general network data structures with which we have, by
now, become familiar. The SOM, however, adds at least one interesting twist
to the notion of the layer structure used by most other networks; this is the first
time we have dealt with a layer of units that is organized as a two-dimensional
matrix, rather than as a simple one-dimensional vector. To accommodate this
new dimension, we will decompose the matrix conceptually into a single vector
containing all the row vectors from the original matrix. As you will see in
the following discussion, this matrix decomposition allows the SOM simulator
to be implemented with minimal modifications to the general data structures
described in Chapter 1.

7.3.1 The SOM Data Structures
From our theoretical discussion earlier in this chapter, we know that the SOM
is structured as a two-layer network, with a single vector of input units pro-
viding stimulation to a rectangular array of output units. Furthermore, units
in the output layer are interconnected to allow lateral inhibition and excitation,
as illustrated in Figure 7.12(a). This network structure will be rather cumber-
some to simulate if we attempt to model the network precisely as illustrated,
because we will have to iterate on the row and column offsets of the output
units. Since we have chosen to organize our network connection structures as
discrete, single-dimension arrays accessed through an intermediate array, there
is no straightforward means of defining a matrix of connection arrays without
modifying most of the general network structures. We can, however, reduce
the complexity of the simulation task by conceptually unpacking the matrix of
units in the output layer, reforming them as a single layer of units organized as
a long vector composed of the concatenation of the original row vectors.

In so doing, we will have essentially restructured the network such that it
resembles the more familiar two-layer structure, as shown in Figure 7.12(b). As
we shall see, the benefit of restructuring the network in this manner is that it
will enable us to efficiently locate, and update, the neighborhood surrounding
the winning unit in the competition.

If we also observe that the connections between the units in the output layer
can be simulated on the host computer system as an algorithmic determination of
the winning unit (and its associated neighborhood), we can reduce the processing
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Figure 7.12 The conceptual model of the SOM is shown, (a) as described
by the theoretical model, and (b) restructured to ease the
simulation task.
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model of the SOM network to a simple two-layer, feedforward structure. This
reduction allows us to simulate the SOM by using exactly the data structures
described in Chapter I. The only network-specific structure needed to implement
the simulator is then the top-level network-specification record. For the SOM,
such a record takes the following form:

record SOM =
ROWS : integer; {number of rows in output layer)
COLS : integer; {ditto for columns}
INPUTS : "layer; {pointer to input layer structure}
OUTPUTS : "layer; {pointer to output layer structure}
WINNER : integer; {index to winning unit}
deltaR : integer; {neighborhood row offset}
deltaC : integer; {neighborhood column offset}
TIME : integer; {discrete timestep}
end record;

7.3.2 SOM Algorithms
Let us now turn our attention to the process of implementing the SOM simulator.
As in previous chapters, we shall begin by describing the algorithms needed to
propagate information through the network, and shall conclude this section by
describing the training algorithms. Throughout the remainder of this section,
we presume that you are by now familiar with the data structures we use to
simulate a layered network. Anyone not comfortable with these structures is
referred to Section 1.4.

SOM Signal Propagation. In Section 6.4.4, we described a modification to
the counterpropagation network that used the magnitude of the difference vector
between the unnormalized input and weight vectors as the basis for determining
the activation of a unit on the competitive layer. We shall now see that this
approach is a viable means of implementing competition, since it is the basic
method of stimulating output units in the SOM.

In the SOM, the input layer is provided only to store the input vector.
For that reason, we can consider the process of forward signal propagation
to be a matter of allowing the computer to visit all units in the output layer
sequentially. At each output-layer unit, the computer calculates the magnitude of
the difference vector between the output of the input layer and the weight vector
formed by the connections between the input layer and the current unit. After
completion of this calculation, the magnitude will be stored, and the computer
will move on to the next unit on the layer. Once all the output-layer units have
been processed, the forward signal propagation is finished, and the output of the
network will be the matrix containing the magnitude of the difference vector for
each unit in the output layer.

If we also consider the training process, we can allow the computer to
store locally an index (or pointer) to locate the output unit that had the smallest
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difference-vector magnitude during the initial pass. That index can then be
used to identify the winner of the competition. By adopting this approach, we
can also use the routine used to forward propagate signals in the SOM during
training with no modifications.

Based on this strategy, we shall define the forward signal-propagation al-
gorithm to be the combination of two routines: one to compute the difference-
vector magnitude for a specified unit on the output layer, and one to call the first
routine for every unit on the output layer. We shall call these routines prop
and propagate, respectively. We begin with the definition of prop.

function prop (NET:SOM; UNIT:integer) return float
{compute the magnitude of the difference vector for UNIT}

var invec, connects
sum, mag : float;
i : integer;

'float[]; {locate arrays}
{temporary variables}

{iteration counter}

begin
invec = NET.INPUTS".CUTS"; {locate input vector}
connects = NET.OUTPUTS".WEIGHTS"[UNIT]; {connections}
sum = 0; {initialize sum}

for i = 1 to length(invec) {for all inputs}
do . {square of difference}
sum = sum + sqr(invec[i] - connect[i]);

end do;

mag = sqrt(sum)
return (mag);

end function;

{compute magnitude}
{return magnitude}

Now that we can compute the output value for any unit on the output
layer, let us consider the routine to generate the output for the entire network.
Since we have defined our SOM network as a standard, two-layer network, the
pseudocode definition for propagate is straightforward.

function propagate (NET:SOM) return integer
{propagate forward through the SOM, return the index to

winner}

var outvec : "float [];
winner : integer;
smallest, mag : float
i. : integer;

begin
outvec = NET.OUTPUTS"
winner = 0;
smallest = 10000;

.CUTS'

{locate output array}
{winning unit index}
{temporary storage}
{iteration counter}

{locate output array}
{initialize winner}
{arbitrarily high}

for i = 1 to length(outvec) {for all outputs}
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do
mag = prop(NET, i) ; {activate unit}
outvecfi] = mag; {save output}

if (mag < smallest) {if new winner is found}
then
winner = i; {mark new winner}
smallest = mag; {save winning value)

end if;
end do;

NET. WINNER = winner; {store winning unit id}
return (winner) ; {identify winner}
end function;

SOM Learning Algorithms. Now that we have developed a means for per-
forming the forward signal propagation in the SOM, we have also solved the
largest part of the problem of training the network. As described by Eq. (7.4),
learning in the SOM takes place by updating of the connections to the set of out-
put units that fall within the neighborhood of the winning unit. We have already
provided the means for determining the winner as part of the forward signal
propagation; all that remains to be done to train the network is to develop the
processes that define the neighborhood (7VC) and update the connection weights.

Unfortunately, the process of determining the neighborhood surrounding the
winning unit is likely to be application dependent. For example, consider the
two applications described earlier, the neural phonetic typewriter and the ballistic
arm movement systems. Each implemented an SOM as the basic mechanism
for solving their respective problems, but each also utilized a neighborhood-
selection mechanism that was best suited to the application being addressed.
It is likely that other problems would also require alternative methods better
suited to determining the size of the neighborhood needed for each application.
Therefore, we will not presuppose that we can define a universally acceptable
function for Nc.

We will, however, develop the code necessary to describe a typical
neighborhood-selection function, trusting that you will learn enough from the
example to construct a function suitable for your applications. For simplicity,
we will design the process as two functions: the first will return a true-false
flag to indicate whether a certain unit is within the neighborhood of the winning
unit at the current timestep, and the second will update the connection values at
an output unit, if the unit falls within the neighborhood of the winning unit.

The first of these routines, which we call neighbor, will return a true
flag if the row and column coordinates of the unit given as input fall within the
range of units to be updated. This process proves to be relatively easy, in that
the routine needs to perform only the following two tests:

(Rw - AR) <R<(RW

(Cw - AC1) < C < (Cw + AC)
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Figure 7.13 A simple scheme is shown for dynamically altering the size
of the neighborhood surrounding the winning unit. In this
diagram, W denotes the winning unit for a given input vector.
The neighborhood surrounding the winning unit is then given
by the values contained in the variables deltaR and-deltaC
contained in the SOM record. As the values in deltaR and
deltaC approach zero, the neighborhood surrounding the
winning unit shrinks, until the neighborhood is precisely the
winning unit.

where (Rw, Cw) are the row and column coordinates of the winning unit, (A-R,
AC) are the row and column offsets from the winning unit that define the
neighborhood, and (R, C) the row and column coordinates of the unit being
tested.

For example, consider the situation illustrated in Figure 7.13. Notice that
the boundary surrounding the winner's neighborhood shrinks with successively
smaller values for (A/?, AC), until the neighborhood is limited to the winner
when (A.R, AC) = (0,0). Thus, we need only to alter the values for (A/?, AC)
in order to change the size of the winner's neighborhood.

So that we can implement this mechanism of neighborhood determination,
we have incorporated two variables in the SOM record, which we have named
deltaR and deltaC, which allow the network record to keep the current
values for the &.R and AC terms. Having made this observation, we can now
define the algorithm needed to implement the neighbor function.

function neighbor (NET:SOM; R,C,W:integer) return boolean
{return true if ( R , C ) is in the neighborhood of W}

var row, col, {coordinates of winner}
dRl, dCl, {coordinates of lower boundary}
dR2, dC2 : integer; {coordinates of upper boundary}

begin
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row = (W-l) / NET.COLS;
{convert index of winner to row}

col = (W-l) % NET.COLS;
{modulus finds column of winner}

dRl = max(l, (row - NET.deltaR));
dR2 = min(NET.ROWS, (row + NET.deltaR));
dCl = max(l, (col - NET.deltaC));
dC2 = min(NET.COLS, (col + NET.deltaC));

return (((dRl <= R) and (R <= dR2)) and
((dCl <= C) and (C <= dC2)));

end function;

Note that the algorithm for neighbor relies on the fact that the array
indices for the winning unit (W) and the number of rows and columns in the
SOM output layer are presumed to start at 1 and to run through n. If the first
index is presumed to be zero, the determination of the row and col values
described must be adjusted, since zero divided by anything is zero. Similarly,
the min and max functions utilized in the algorithm are needed to protect against
the case where the winning unit is located on an "edge" of the network output.

Now that we can determine whether or not a unit is in the neighborhood of
the winning unit in the SOM, all that remains to complete the implementation
of the training algorithms is the function needed to update the weights to all the
units that require updating. We shall design this algorithm to return the number
of units updated in the SOM, so that the calling process can determine when the
neighborhood around the winning unit has shrunk to just the winning unit (i.e.,
when the number of units updated is equal to 1). Also, to simplify things, we
shall assume that the a(t) term given in the weight-update equation (Eq. 7.2) is
simply a small constant value, rather than a function of time. In this example
algorithm, we define the a(t) parameter as the value A.

function update (NET:SOM) return integer
{update the weights to all winning units,

returning the number of winners updated}

constant A : float = 0.3; {simple activation constant}

var winner, unit, upd : integer;
{indices to output units}

invec : "float[];
{locate unit output arrays}

connect : "float []; {locate connection array}
i, j, k : integer; {iteration counters}

begin
winner = propagate (NET); {propagate and find winner}
unit =1; {start at first output unit}
upd =0; {no updates yet}
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for i = 1 to NET.ROWS {for all rows}
do

for j = 1 to NET.COLS {and all columns}
do
if (neighbor (NET,i,j,winner))
then
{first locate the appropriate connection array}
connect = NET.OUTPUTS".WEIGHTS"[unit];
{then locate the input layer output array}

invec = NET.INPUTS".OUTS";
upd = upd + 1; {count another update}

for k = 1 to length(connect)
{for all connections}

do
connect[k] = connect[k]

+ (A*(invec[k]-connect[k]));
end do;

end if;
unit = unit + 1; {access next unit}

end do;
end do;

return (upd); {return update count}
end function;

7.3.3 Training the SOM
Like most other networks, the SOM will be constructed so that it initially con-
tains random information. The network will then be allowed to self-adapt by
being shown example inputs that are representative of the desired topology. Our
computer simulation ought to mimic the desired network behavior if we simply
follow these same guidelines when constructing and training the simulator.

There are two aspects of the training process that are relatively simple to
implement, and we assume that you will provide them as part of the implemen-
tation of the simulator. These functions are the ones needed to initialize the
SOM (initialize) and to apply an input vector (set-input) to the input
layer of the network.

Most of the work to be done in the simulator will be accomplished by the
previously defined routines, and we need to concern ourselves now with only
the notion of deciding how and when to collapse the winning neighborhood as
we train the network. Here again, this aspect of the design probably will be
influenced by the specific application, so, for instructional purposes, we will
restrict ourselves to a fairly easy application that allows each of the output layer
units to be uniquely associated with a specific input vector.

For this example, let us assume that the SOM to be simulated has four rows
of five columns of units in the output layer, and two units providing input. Such
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Figure 7.14 This SOM network can be used to capture organization of
a two-dimensional image, such as a triangle, circle, or any
regular polygon. In the programming exercises, we ask you
to simulate this network structure to test the operation of your
simulator program.

a network structure is depicted in Figure 7.14. We will code the SOM simulator
so that the entire output layer is initially contained in the neighborhood, and
we shall shrink the neighborhood by two rows and two columns after every 10
training patterns.

For the SOM, there are two distinct training sessions that must occur. In the
first, we will train the network until the neighborhood has shrunk to the point
that only one unit wins the competition. During the second phase, which occurs
after all the training patterns have been allocated to a winning unit (although
not necessarily different units), we will simply continue to run the training
algorithm for an arbitrarily large number of additional cycles. We do this to try
to ensure that the network has stabilized, although there is no absolute guarantee
that it has. With this strategy in mind, we can now complete the simulator by
constructing the routine to initialize and train the network.

procedure train (NET:SOM; NP:integer)
{train the network for each of NP patterns}

begin
initialize(NET);

for i = 1 to NP
do

{reader-provided routine}

{for all training patterns}
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NET.deltaR = NET.ROWS / 2;
{initialize the row offset}

NET.deltaC = NET.COLS 7 2; {ditto for columns}
NET.TIME = 0; {reset time counter}
set_inputs(NET,i); {get training pattern}

while (update(NET) > 1) {loop until one winner}
do
NET.TIME = NET.TIME + 1;

{advance training counter}

if (NET.TIME % 10 = 0) {if shrink time}
then
{shrink the neighborhood, with a floor

of (0,0)}
NET.deltaR = max (0, NET.deltaR - 1);
NET.deltaC = max (0, NET.deltaC - 1);

end if;
end do;

end do;

{now that all patterns have one winner, train
some more}

for i = 1 to 1000 {for arbitrary passes}
do
for j = 1 to NP {for all patterns}

do
set_inputs(NET, j); {set training pattern}
dummy = update(NET); {train network}

end do;
end do;

end procedure;

Programming Exercises
7.1. Implement the SOM simulator. Test it by constructing a network similar

to the one depicted in Figure 7.14. Train the network using the Cartesian
coordinates of each unit in the output layer as training data. Experiment with
different time periods to determine how many training passes are optimal
before reducing the size of the neighborhood.

7.2. Repeat Programming Exercise 7.1, but this time extend the simulator to
plot the network dynamics using Kohonen's method, as described in Sec-
tion 7.1. If you do not have access to a graphics terminal, simply list out
the connection-weight values to each unit in the output layer as a set of
ordered pairs at various timesteps.

7.3. The converge algorithm given in the text is not very general, in that it
will work only if the number of output units in the SOM is exactly equal



Bibliography 289

to the number of training patterns to be encoded. Redesign the routine to
handle the case where the number of training patterns greatly outnumbers
the number of output layer units. Test the algorithm by repeating Program-
ming Exercise 7.1 and reducing the number of output units used to three
rows of four units.

7.4. Repeat Programming Exercise 7.2, this time using three input units. Con-
figure the output layer appropriately, and train the network to learn to map
a three-dimensional cube in the first quadrant (all vertices should contain
positive coordinates). Do not put the vertices of the cube at integer co-
ordinates. Does the network do as well as the network in Programming
Exercise 7.2?

Suggested Readings
The best supplement to the material in this chapter is Kohonen's text on self-
organization [2]. Now in its second edition, that text also contains general
background material regarding various learning methods for neural networks, as
well as a review of the necessary mathematics.
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Adaptive
Resonance Theory

One of the nice features of human memory is its ability to learn many new
things without necessarily forgetting things learned in the past. A frequently
cited example is the ability to recognize your parents even if you have not seen
them for some time and have learned many new faces in the interim. It would
be highly desirable if we could impart this same capability to an ANS. Most
networks that we have discussed in previous chapters will tend to forget old
information if we attempt to add new information incrementally.

When developing an ANS to perform a particular pattern-classification oper-
ation, we typically proceed by gathering a set of exemplars, or training patterns,
then using these exemplars to train the system. During the training, information
is encoded in the system by the adjustment of weight values. Once the training
is deemed to be adequate, the system is ready to be put into production, and no
additional weight modification is permitted.

This operational scenario is acceptable provided the problem domain has
well-defined boundaries and is stable. Under such conditions, it is usually
possible to define an adequate set of training inputs for whatever problem is
being solved. Unfortunately, in many realistic situations, the environment is
neither bounded nor stable.

Consider a simple example. Suppose you intend to train a BPN to recognize
the silhouettes of a certain class of aircraft. The appropriate images can be
collected and used to train the network, which is potentially a time-consuming
task depending on the size of the network required. After the network has
learned successfully to recognize all of the aircraft, the training period is ended
and no further modification of the weights is allowed.

If, at some future time, another aircraft in the same class becomes oper-
ational, you may wish to add its silhouette to the store of knowledge in your
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network. To do this, you would have to retrain the network with the new pattern
plus all of the previous patterns. Training on only the new silhouette could result
in the network learning that pattern quite well, but forgetting previously learned
patterns. Although retraining may not take as long as the initial training, it still
could require a significant investment.

Moreover, if an ANS is presented with a previously unseen input pattern,
there is generally no built-in mechanism for the network to be able to recognize
the novelty of the input. The ANS doesn't know that it doesn't know the input
pattern.

We have been describing what Stephen Grossberg calls the stability-
plasticity dilemma [5]. This dilemma can be stated as a series of questions [6]:
How can a learning system remain adaptive (plastic) in response to significant
input, yet remain stable in response to irrelevant input? How does the system
know to switch between its plastic and its stable modes? How can the system
retain previously learned information while continuing to learn new things?

In response to such questions, Grossberg, Carpenter, and numerous col-
leagues developed adaptive resonance theory (ART), which seeks to provide
answers. ART is an extension of the competitive-learning schemes that have
been discussed in Chapters 6 and 7. The material in Section 6.1 especially,
should be considered a prerequisite to the current chapter. We will draw heav-
ily from those results, so you should review the material, if necessary, before
proceeding.

In the competitive systems discussed in Chapter 6, nodes compete with
one another, based on some specified criteria, and the winner is said to classify
the input pattern. Certain instabilities can arise in these networks such that
different nodes might respond to the same input pattern on different occasions.
Moreover, later learning can wash away earlier learning if the environment is
not statistically stationary or if novel inputs arise [9].

A key to solving the stability-plasticity dilemma is to add a feedback mech-
anism between the competitive layer and the input layer of a network. This feed-
back mechanism facilitates the learning of new information without destroying
old information, automatic switching between stable and plastic modes, and sta-
bilization of the encoding of the classes done by the nodes. The results from
this approach are two neural-network architectures that are particularly suited for
pattern-classification problems in realistic environments. These network archi-
tectures are referred to as ART1 and ART2. ART1 and ART2 differ in the nature
of their input patterns. ART1 networks require that the input vectors be binary.
ART2 networks are suitable for processing analog, or gray-scale, patterns.

ART gets its name from the particular way in which learning and recall
interplay in the network. In physics, resonance occurs when a small-amplitude
vibration of the proper frequency causes a large-amplitude vibration in an elec-
trical or mechanical system. In an ART network, information in the form of
processing-element outputs reverberates back and forth between layers. If the
proper patterns develop, a stable oscillation ensues, which is the neural-network
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equivalent of resonance. During this resonant period, learning, or adaptation,
can occur. Before the network has achieved a resonant state, no learning takes
place, because the time required for changes in the processing-element weights
is much longer than the time that it takes the network to achieve resonance.

A resonant state can be attained in one of two ways. If the network has
learned previously to recognize an input vector, then a resonant state will be
achieved quickly when that input vector is presented. During resonance, the
adaptation process will reinforce the memory of the stored pattern. If the input
vector is not immediately recognized, the network will rapidly search through
its stored patterns looking for a match. If no match is found, the network will
enter a resonant state whereupon the new pattern will be stored for the first time.
Thus, the network responds quickly to previously learned data, yet remains able
to learn when novel data are presented.

Much of Grossberg's work has been concerned with modeling actual macro-
scopic processes that occur within the brain in terms of the average properties
of collections of the microscopic components of the brain (neurons). Thus, a
Grossberg processing element may represent one or more actual neurons. In
keeping with our practice, we shall not dwell on the neurological implications
of the theory. There exists a vast body of literature available concerning this
work. Work with these theories has led to predictions about neurophysiological
processes, even down to the chemical-ion level, which have subsequently been
proven true through research by neurophysiologists [6]. Numerous references
are listed at the end of this chapter.

The equations that govern the operation of the ART networks are quite
complicated. It is easy to lose sight of the forest while examining the trees
closely. For that reason, we first present a qualitative description of the pro-
cessing in ART networks. Once that foundation is laid, we shall return to a
detailed discussion of the equations.

8.1 ART NETWORK DESCRIPTION
The basic features of the ART architecture are shown in Figure 8.1. Patterns of
activity that develop over the nodes in the two layers of the attentional subsystem
are called short-term memory (STM) traces because they exist only in association
with a single application of an input vector. The weights associated with the
bottom-up and top-down connections between F\ and F2 are called long-term
memory (LTM) traces because they encode information that remains a part of
the network for an extended period.

8.1.1 Pattern Matching in ART
To illustrate the processing that takes place, we shall describe a hypothetical
sequence of events that might occur in an ART network. The scenario is a simple
pattern-matching operation during which an ART network tries to determine
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Gain Attentional subsystem ' Orienting "^
control F2 Layer I subsystem

Reset
signal

Input vector

Figure 8.1 The ART system is diagrammed. The two major subsystems are
the attentional subsystem and the orienting subsystem. F\ and
F2 represent two layers of nodes in the attentional subsystem.
Nodes on each layer are fully interconnected to the nodes on
the other layer. Not shown are interconnects among the nodes
on each layer. Other connections between components are
indicated by the arrows. A plus sign indicates an excitatory
connection; a minus sign indicates an inhibitory connection.
The function of the gain control and orienting subsystem is
discussed in the text.

whether an input pattern is among the patterns previously stored in the network.
Figure 8.2 illustrates the operation.

In Figure 8.2(a), an input pattern, I, is presented to the units on F\ in the
same manner as in other networks: one vector component goes to each node.
A pattern of activation, X, is produced across F\. The processing done by the
units on this layer is a somewhat more complicated form of that done by the
input layer of the CPN (see Section 6.1). The same input pattern excites both the
orienting subsystem, A, and the gain control, G (the connections to G are not
shown on the drawings). The output pattern, S, results in an inhibitory signal
that is also sent to A. The network is structured such that this inhibitory signal
exactly cancels the excitatory effect of the signal from I, so that A remains
inactive. Notice that G supplies an excitatory signal to F\. The same signal
is applied to each node on the layer and is therefore known as a nonspecific
signal. The need for this signal will be made clear later.

The appearance of X on F\ results in an output pattern, S, which is sent
through connections to F2. Each FI unit receives the entire output vector, S,
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1 0 1 0 =1 1 0 1 0 =1
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Figure 8.2 A pattern-matching cycle in an ART network is shown. The
process evolves from the initial presentation of the input pattern
in (a) to a pattern-matching attempt in (b), to reset in (c), to the
final recognition in (d). Details of the cycle are discussed in
the text.

from F]. F2 units calculate their net-input values in the usual manner by sum-
ming the products of the input values and the connection weights. In response
to inputs from F\, a pattern of activity, Y, develops across the nodes of F2. F2
is a competitive layer that performs a contrast enhancement on the input signal
like the competitive layer described in Section 6.1. The gain control signals to
F2 are omitted here for simplicity.

In Figure 8.2(b), the pattern of activity, Y, results in an output pattern, U,
from F2. This output pattern is sent as an inhibitory signal to the gain control
system. The gain control is configured such that if it receives any inhibitory
signal from F2, it ceases activity. U also becomes a second input pattern for the
F\ units. U is transformed by LTM traces on the top-down connections from
F2 to F\. We shall call this transformed pattern V.

Notice that there are three possible sources of input to F\, but that only
two appear to be used at any one time. The units on F\ (and F2 as well)
are constructed so that they can become active only if two out of the possible
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three sources of input are active. This feature is called the 2/3 rule and it
plays an important role in ART, which we shall discuss more fully later in this
section.

Because of the 2/3 rule, only those F\ nodes receiving signals from both I
and V will remain active. The pattern that remains on F\ is InV, the intersection
of I and V. In Figure 8.2(b), the patterns mismatch and a new activity pattern,
X*, develops on FI. Since the new output pattern, S*, is different from the
original pattern, S, the inhibitory signal to A no longer cancels the excitation
coming from I.

In Figure 8.2(c), A has become active in response to the mismatch of
patterns on FI. A sends a nonspecific reset signal to all of the nodes on F2.
These nodes respond according to their present state. If they are inactive, they
do not respond. If they are active, they become inactive and they stay that way
for an extended period of time. This sustained inhibition is necessary to prevent
the same node from winning the competition during the next matching cycle.
Since Y no longer appears, the top-down output and the inhibitory signal to the
gain control also disappear.

In Figure 8.2(d), the original pattern, X, is reinstated on FI, and a new
cycle of pattern matching begins. This time a new pattern, Y*, appears on F2.
The nodes participating in the original pattern, Y, remain inactive due to the
long term effects of the reset signal from A.

This cycle of pattern matching will continue until a match is found, or until
F2 runs out of previously stored patterns. If no match is found, the network
will assign some uncommitted node or nodes on F2 and will begin to learn the
new pattern.' Learning takes place through the modification of the weights, or
the LTM traces. It is important to understand that this learning process does not
start or stop, but rather continues even while the pattern matching process takes
place. Anytime signals are sent over connections, the weights associated with
those connections are subject to modification. Why then do the mismatches
not result in loss of knowledge or the learning of incorrect associations? The
reason is that the time required for significant changes to occur in the weights is
very long with respect to the time required for a complete matching cycle. The
connections participating in mismatches are not active long enough to affect the
associated weights seriously.

When a match does occur, there is no reset signal and the network set-
tles down into a resonant state as described earlier. During this stable state,
connections remain active for a sufficiently long time so that the weights are
strengthened. This resonant state can arise only when a pattern match occurs, or
during the enlistment of new units on F2 in order to store a previously unknown
pattern.

1 In an actual ART network, the pattern-matching cycle may not visit all previously stored patterns
before an uncommitted F-> node is chosen.
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8.1.2 Gain Control in ART
Before continuing with a look at the dynamics of ART networks, we want to
examine more closely the need for the gain-control mechanism. In the simple
example discussed in the previous section, the existence of a gain control and the
2/3 rule appear to be superfluous. They are, however, quite important features
of the system, as the following example illustrates.

Suppose the ART network of the previous section was only one in a hier-
archy of networks in a much larger system. The ¥2 layer might be receiving
inputs from a layer above it as well as from the F\ layer below. This hierar-
chical structure is thought to be a common one in biological neural systems. If
the F2 layer were stimulated by an upper layer, it could produce a top-down
output and send signals back to the Fj layer. It is possible that this top-down
signal would arrive at F\ before an input signal, I, arrived at F\ from below.
A premature signal from F2 could be the result of an expectation arising from
a higher level in the hierarchy. In other words, F2 is indicating what it expects
the next input pattern to be, before the pattern actually arrives at F\. Biologi-
cal examples of this expectation phenomenon abound. For example, how often
have you anticipated the next word that a person was going to say during a
conversation?

The appearance of an early top-down signal from F2 presents us with a
small dilemma. Suppose FI produced an output in response to any single input
vector, no matter what the source. Then, the expectation signal arriving from
F2 would elicit an output from FI and the pattern-matching cycle would ensue
without ever having an input vector to FI from below. Now let's add in the
gain control and the 2/3 rule.

According to the discussion in the previous section, if G exists, any signal
coming from F2 results in an inhibition of G. Recall that G nonspecifically
arouses every FI unit. With the 2/3 rule in effect, inhibition of G means
that a top-down signal from F2 cannot, by itself, elicit an output from F\.
Instead, the Fj units become preconditioned, or sensitized, by the top-down
pattern. In the biological language of Grossberg, the FI units have received a
subliminal stimulation from F2. If now the expected input pattern is received
on FI from below, this preconditioning results in an immediate resonance in the
network. Even if the input pattern is not the expected one, F\ will still provide
an output, since it is receiving inputs from two out of the three possible sources,
I, G, and F2.

If there is nc expectation signal from F2, then F\ remains completely quies-
cent until it receives an input vector from below. Then, since G is not inhibited,
FI units are again receiving inputs from two sources and FI will send an output
up to F2 to begin the matching cycle.

G and the 2/3 rule combine to permit the FI layer to distinguish between
an expectation signal from above, and an input signal from below. In the former
case, FI 's response is subliminal; in the latter case, it is supraliminal—that is,
it generates a nonzero output.
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In the next section, we shall examine the equations that govern the operation
of the ARTl network. We shall see explicitly how the gain control and 2/3 rule
influence the processing-element activities. In Section 8.3, we shall extend the
result to encompass the ART2 architecture.
Exercise 8.1: Based on the discussion in this section, describe how the gain
control signal on the FI layer would function.

8.2 ART1
The ARTl architecture shares the same overall structure as that shown in Fig-
ure 8.1. Recall that all inputs to ARTl must be binary vectors; that is, they must
have components that are elements of the set {0,1}. This restriction may appear
to limit the utility of the network, but there are many problems having data that
can be cast into binary format. The principles of operation of ARTl are similar
to those of ART2, where analog inputs are allowed. Moreover, the restrictions
and assumptions that we make for ARTl will simplify the mathematics a bit.
We shall examine the attentional subsystem first, including the STM layers F\
and F2, and the gain-control mechanism, G.

8.2.1 The Attentional Subsystem
The dynamic equations for the activities of the processing elements on layers
FI and F> both have the form

exk = -xk + (1 - Axk)J+ ~(B + Cxk)J^ (8.1)

JA
+ is an excitatory input to the fcth unit and J^ is an inhibitory input. The pre-

cise definitions of these terms, as well as those of the parameters A, B, and C,
depend on which layer is being discussed, but all terms are assumed to be greater
than zero. Henceforth we shall use x\j to refer to activities on the FI layer,
and X2j for activities on the F2 layer. Similarly, we shall add numbers to the
parameter names to identify the layer to which they refer: for example, B\, A.2-
For convenience, we shall label the nodes on FI with the symbol v\ and those
on FI with Vj. The subscripts i and j will be used exclusively to refer to the
layers FI and FI, respectively.

The factor e requires some explanation. Recall from the previous section
that pattern-matching activities between layers FI and F2 must occur much faster
than the time required for the connection weights to change significantly. The
e factor in Eq. (8.1) embodies that requirement. If we insist that 0 < e <C 1,
then ij. will be a fairly large value; that is, x/,. will reach its equilibrium value
quickly. Since x^ spends most of its time near its equilibrium value, we shall
not have to concern ourselves with the time evolution of the activity values:
We shall automatically set the activities equal to the asymptotic values. Under
these conditions, the e factor becomes superfluous, and we shall drop it from
the equations that follow.



8.2 ART1 299

Exercise 8.2: Show that the activities of the processing elements described by
Eq. (8.1) have their values bounded within the interval [-BC.A], no matter
how large the excitatory or inhibitory inputs may become.

Processing on FI. Figure 8.3 illustrates an F, processing element with its
various inputs and weight vectors. The units calculate a net-input value coming
from p2 in the usual way:2

Vi = ^UjZij (8.2)
j

We assume the unit output function quickly rises to 1 for nonzero activities.
Thus, we can approximate the unit output, s,, with a binary step function:

The total excitatory input, J(
+, is given by

J+ = /,. + DiVi+BiG (8.4)

where D\ and B\ are constants.3 The inhibitory term, J(~, we shall set iden-
tically equal to 1 . With these definitions, the equations for the FI processing
elements are

±\i = -xu + d-A{ xii)di + DiVt + B{ G) - (B, + Ci xu) (8.5)

The output, G, of the gain-control system depends on the activities on other
parts of the network. We can describe G succinctly with the equation

J l i f I ^ O a n d U = 0G = < » , . (8.6)(_ 0 otherwise

In other words, if there is an input vector, and F2 is not actively producing
an output vector, then G = 1 . Any other combination of activity on I and FT
effectively inhibits the gain control from producing its nonspecific excitation to
the units on F\*

The convention on weight indices that we have utilized consistently throughout this text is opposite
to that used by Carpenter and Grossberg. In our notation, ztj refers to the weight on the connection
from the jth unit to the ith unit. In Carpenter and Grossberg's notation, ztj would refer to the
weight on the connection from the ith node to the jth.

'Carpenter and Grossberg include the parameter, D\, in their calculation of V-,. In their notation:
V, = D\ y~] - UjZij. You should bear this difference in mind when reading their papers.
4In the original paper by Carpenter and Grossberg, the authors described four different ways of
implementing the gain control system. The method that we have shown here was chosen to be
consistent with the general description of ART given in the previous sections. [5]
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ToF,,
From F.

To A

Figure 8.3 This diagram shows a processing element, vit on the FI layer
of an ART1 network. The activity of the unit is x\l. It receives
a binary input value, /;, from below, and an excitatory signal,
G, from the gain control. In addition, the top-down signals,
Uj, from F2 are gated (multiplied by) weights, Zjj. Outputs,
Si, from the processing element go up to F2 and across to the
orienting subsystem, A.

Let's examine Eq. (8.5) for the four possible combinations of activity on
I and p2. First, consider the case where there is no input vector and F^ is
inactive. Equation (8.5) reduces to

C\

In equilibrium x\i — 0,

x\; — (8.7)

Thus, units with no inputs are held in a negative activity state.
Now apply an input vector, I, but keep F^ inactive for the moment. In this

case, both F\ and the gain control receive input signals from below. Since Ft
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is inactive, G is not inhibited. The equations for the F\ units become

x\i = -XH + (\ - A{ 1,,-X/i + 5, G) - (Bi + C\ x } i )

When the units reach their equilibrium activities,

(8'8)

where we have used G = 1 . In this case, units that receive a nonzero input value
from below also generate an activity value greater than zero and have a nonzero
output value according to Eq. (8.3). Units that do not receive a nonzero input
nevertheless have their activities raised to the zero level through the nonspecific
excitation signal from G.

For the third scenario, we examine the case where an input pattern, I, and
a top-down pattern, V, from F2 are coincident on the F\ layer. The equations
for the unit activities are

x\i = -xu + (1 - AI x l t ) ( I , + D\ Vi) - (£, + Ci xu)

Here, the equilibrium value

_ li + DiVj-B,
Xli~ ( '

requires a little effort to interpret. Whether x\i is greater than, equal to, or less
than zero depends on the relative values of the quantities in the numerator in
Eq. (8.9). We can distinguish three cases of interest, which are determined by
application of the 2/3 rule.

If a unit has a positive input value, /,, and a large positive net input from
above, Vt, then the 2/3 rule says that the unit activity should be greater than zero.
For this to be the case, it must be true that 7, +D\Vi-B\ > 0 in Eq. (8.9). To
analyze this relation further, we shall anticipate some results from the discussion
of processing on the F2 layer. Specifically, we shall assume that only a single
node on F2 has a nonzero output at any given time, the maximum output of an
F2 node is 1, and the maximum weight on any top-down connection is also 1.
Since Vj = ̂  ujzij ar>d oniv one uj IS nonzero, then V, < 1. Then, in the
most extreme case with V, • = 1, and /,; = 1, we must have 1 + D\ - B\ > 0, or

B} < DI + 1 (8.10)

Any unit that does not receive a top-down signal from F2 must have a
negative activity, even if it receives an input from below. In this case, we must
have, /, - Bt < 0, or

B\ > 1 (8.11)

Suppose F2 is producing a top-down output (perhaps as a result of inputs
from higher levels), but there is not yet an input vector I. G is still inhibited in
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this case. The equilibrium state is

If a unit receives no net input from FI (VJ = 0), then it remains at its most
negative activity level, as in Eq. (8.7). If Vj > 0, then the unit's activity rises
to some value above that of Eq. (8.7), but it must remain negative because we
do not want the unit to have a nonzero output based on top-down inputs alone.
Then, from the numerator of Eq. (8.12), we must have D\ - B\ < 0, or

Bl > Dl (8.13)

Equations (8.10), (8.11), and (8.13) combine to give the overall condition,

max{D,,l} < B\ < D} + 1 (8.14)

The ART1 parameters must satisfy the constraint of Eq. (8.14) to implement the
2/3 rule successfully and to distinguish between top-down and bottom-up input
patterns.

Satisfying the constraints of Eq. (8.14) does not guarantee that a unit that
receives both an input from below, J^, and one from above, Vt, will have a
positive value of activation. We must consider the case where Vf is less than
its maximum value of 1 (even though Uj = 1, Zjj may be less than 1, resulting
in V, < 1). In such a case, the condition that Eq. (8.9) gives a positive value is

Ii + £>, Vi - BI > 0

Since 7j = 1, this relation defines a condition on V^.

V,t > *LILl (8.15)
D\

Equation (8.15) tells us that the input to unit Vi due to a top-down signal from
FI must meet a certain threshold condition to ensure a positive activation of v^,
even if vt receives a strong input, It, from below. We shall return to this result
when we discuss the weights, or LTM traces, from FI to F\.

Processing on FI. Figure 8.4 shows a typical processing element on the FT.
layer. The gain-control input and the connection from the orienting subsystem
are shown but we shall not include them explicitly in the following analysis.

The unit activations are described by an equation of the form of Eq. (8.1).
We can specify the various terms as follows.

The net input received from the F\ layer is calculated as usual:

Tj = net., - SiZji (8.16)
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To all F2 units

From F,

Figure 8.4 A processing element, vj, is shown on the F2 layer of an ART1
network. The activity of the unit is x2l. The unit Vj receives
inputs from the FI layer, the gain-control system, G, and the
orienting subsystem, A. Bottom-up signals, su from FI are
gated by the weights, z]t. Outputs, u]r are sent back down to
FI. In addition, each unit receives a positive-feedback term
from itself, g(x2j) and sends an identical signal through an
inhibitory connection to all other units on the layer.

The total excitatory input to Vj is

,/+ = D2Tj+g(x2j)

The inhibitory input to each unit is

(8.17)

(8.18)

Substituting these values into Eq. (8.1) yields

±2j = -x2j + (1 - A2x2J)(D2Tj + g(x2j)) - (B2 (8.19)
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Note the similarity between Eq. (8.19) and Eq. (6.13) from Section 6.1.3.
Both equations describe a competitive layer with on-center off-surround inter-
actions. In Section 6.1.3, we showed how the choice of the functional form of
g(x) influenced the evolution of the activities of the units on the layer.5 Without
repeating the analysis, we assume that the values of the various parameters in
Eq. (8.19), and the functional form of g(x) have been chosen to enhance the
activity of the single F2 node with the largest net-input value from F\ according
to Eq. (8.16). The activities of all other nodes are suppressed to zero. The
output of this winning node is given a value of one. We can therefore express
the output values of F2 nodes as

f 1 T, =max{TA,}VA:
uj = f ( x 2 ] ) = { *• \ (8.20)

[ 0 otherwise

We need to clarify one final point concerning Figure 8.4. The processing
element in that figure appears to violate our standard of a single output per node:
The node sends an output of g(x2j) to the F2 units, and an output of f(x2j)
to the FI units. We can reconcile this discrepancy by allowing Figure 8.4
to represent a composite structure. We can arrange for unit Vj to have the
single output value x2j. This output can then be sent to two other processing
elements; one that gives an output of g(x2j), and one that gives an output of
f ( x 2 j ) . By assuming the existence of these intermediate nodes, or interneurons,
we can avoid violating the single-output standard. The node in Figure 8.4 then
represents a composite of the Vj nodes and the two intermediate nodes.

Top-Down LTM Traces. The equations that describe the top-down LTM traces
(weights on connections from F2 units to F\ units) should be somewhat familiar
from the study of Chapter 6:

^j = (-ztj + h(xu))f(x2j) (8.21)

Since f ( x 2 j } is nonzero for only one value of j (one F2 node, Vj), Eq. (8.21) is
nonzero only for connections leading down from that winning unit. If the jth
F2 node is active and the zth FI node is also active, then Zj, = — z,j + 1 and £,;_/
asymptotically approaches one. If the jth F2 node is active and the zth F, node
is not active, then Zjj = —z.-,j and ztj decays toward zero. We can summarize
the behavior of z,, as follows:

{ —Zij + 1 Vj active and v, active
—Zij Vj active and ?;,- inactive (8.22)
0 Vj and v\ both inactive

Recall from Eq. (8.15) that, if F> is active, then v, can be active only if
it is receiving an input, /,, from below and a sufficiently large net input, Vj,

5Caulion! The function t;(.r) in this section is the analog of f(j-) in Section 6.1.3. In Section 6.1,3,
g(.r) was used to mean j-~'/(.r). In this section, </(-r) does not mean the same as .r~'/(.r).



8.2 ART1 305

from the F2 layer. Since only one ^2 unit is active at a time, Vj — UjZ-l} — Zjj.
Equation (8.15) now becomes a condition on the weight on the connection from
Vj to Vj:

Zij > ̂ ^- (8.23)i->\
Unless z^ has a minimum value given by Eq. (8.23), it will decay toward zero
even if Vj is active and v, is receiving an input, /,, from below.

From a practical standpoint, all top-down connection weights must be ini-
tialized to a value greater than the minimum given by Eq. (8.23) in order for
any learning to take place on the network. Otherwise, any time a Vj is active on
F2, all connections from it to any unit on F\ will decay toward zero; eventually,
all the connection weights will be zero and the system will be useless.

If a resonant condition is allowed to continue for an extended period, top-
down weights will approach their asymptotic values of 1 or 0, according to
Eq. (8.22). For the purpose of our digital simulations, we shall assume that
input patterns are maintained on F\ for a sufficient time to permit top-down
weights to equilibrate. Thus, as soon as a resonant state is detected, we can
immediately set the appropriate top-down weights to their asymptotic values. If
vj is the winning F2 node, then

' 1 v, active
0 otherwise

Weights on connections from other nodes, i'; . j ^ ,/, are not changed. We refer
to this model as fast learning. Weights on bottom-up connections also have a
fast-learning model, which we shall discuss next.

Bottom-Up LTM Traces. The equations that describe the bottom-up LTM
traces are slightly more complicated than were those for the top-down LTM
traces. The weight on the connection from i>, on F\ to Vj on F2 is determined by

zji = Kf(x2j)((\ - Zji)Lh(xu) - zji h(xik)] (8.25)

where K and L are constants, f(x2i) is the output of Vj, and h(x\,} is the
output of Vj. As was the case with the top-down LTM traces, the factor f ( x 2 j )
ensures that only weights on the winning node are allowed to change. Other
than that, Eq. (8.25) is an equation for a competitive system with on-center
off-surround interactions. In this case, however, it is the individual weights that
are competing among one another, rather than individual units.

Let's assume Vj is the winning unit on F2. There are two cases to consider.
If Vj is active on F\, then h(x\j) = 1; otherwise, h(xu) = 0. Weights on
connections to other F2 units do not change since, for them, f(x.2k) = 0, k ^ j.

Before going further with Eq. (8.25), we wish to introduce a new notation.
If the input pattern is I, then we shall define the magnitude of I as |I| = £V /,.
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Since /z is either 0 or 1, the magnitude of I is equal to the number of nonzero
inputs. The output of F\ is the pattern S: Its magnitude is |S| = £^ /I(XH),
which is also just the number of nonzero outputs on F\. The actual output
pattern, S, depends on conditions in the network:

/ I F2 is inactive
S - \ I n VJ F2 is active (8'26)

where the superscript on VJ means that vj was the winning node on F2. We can
interpret VJ as meaning the binary pattern with a 1 at those positions where the
input, V, , from above is large enough to support the activation of Vi whenever
vt receives an input Ii from below.

Since |S| = £V h(xu), then £)fc_^ h(x\k) = E/t h ( x ] k ) - h(xu) which will
be equal to either |S| - 1 or |S|, depending on whether vt is active. We can now
summarize the three cases of Eq. (8.25) as follows:

{ K[(\ - Zji)L — Zji(\S\ - 1)] if Vi and Vj are active
— AT[zjj|S|] if vt is inactive and v} is active
0 if Vj is inactive (8.27)

Remember, Vi can remain active only if it receives an input /; from below and
a sufficiently large input Vi from above. In the fast-learning case, weights on
the winning F2 node, vj, take on the asymptotic values given by

0 if Vi is inactive

where we have L > 1 in order to keep L — 1 > 0.
By defining the bottom-up weights as we have in this section, we impart

to the ART1 network an important characteristic that we can elucidate with
the following scenario. Suppose one F2 node, vj\, wins and learns during the
presentation of an input pattern, I], and another node, vJ2, wins and learns input
pattern I2. Further, let input pattern I| be a subset of pattern I2; that is, Ii C I2.
When next we present either I, or I2, we would like the appropriate node on
F2 to win. Equation (8.28) ensures that the proper node will win by keeping
the weights on the node that learned the subset pattern sufficiently larger than
the weights on the node that learned the superset pattern.

For the subset pattern, I1; weights on connections from active F\ nodes all
take on the value

L
ZJIA = L-\+

where we have used the result |S| = |It n VJ| = Ii . We have not yet shown
that this result holds, but we will see shortly that it is true because of the way
that we initialize the top-down weights on the F\ layer.

For the superset pattern,
L
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on connections from those active F\ nodes. Now let's calculate the net input
to the two nodes for each of the input patterns to verify that node vj\ wins for
pattern I\ and node i>,/2 wins for pattern I2.

The net inputs to vj\ and w./2 for input pattern |I] are

T — V -,i ./i.i — / -zji.
i

= __i|Ii

and

T,,l=X>.
l

L\li
L-\+\I2\

respectively, where the extra subscript on T and h(x\i) refers to the number of
the pattern being presented. Since Ii C \2, \l\ < h , and T./2,i < Tj\,\, so
v,j\ wins as desired. When I2 is presented, the net inputs are

Tj\,2 = / _,

L - 1 + I,
and

T V^ -,1,12.2 — / Zj;

L- 1+ I2|

Notice that \\\ appears in the numerator in the expression for Tj\_2 instead of
|I2|. Recall that v.j\ has learned only the subset pattern. Therefore, bottom-up
weights on that node are nonzero only for F\ units that represent the subset.
This time, since I j | < |I2|, we have T/2.2 > T/i,2 so vJ2 wins.
Exercise 8.3: The expression for the net-input values to the winning F2 units
has the form:

where a and b are both positive. Show that this function, called a Weber
function, is an increasing function of |I| for |I| > 1.

On a network with uncommitted nodes in F2 (i.e., nodes that have not yet
participated in any learning), we must also ensure that their weights due to the
initialization scheme are not so great that they accidentally win over a node that
has learned the pattern. Therefore, we must keep all initial weights below a
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certain value. Since all patterns are a subset of the pattern containing all Is, we
should keep all initial weight values within the range

0 < 2j,-(0) < -——*~— (8.29)
LJ 1 -\- -iV7

where A/ is the number of nodes on F\, and hence is the number of bottom-up
connections to each p2 node. This condition ensures that some uncommitted
node does not accidentally win over a node that has learned a particular input
pattern.
Exercise 8.4: Let F^ node vj learn an input pattern I according to Eq. (8.28).
Assume that all other nodes have their weights initialized according to Eq. (8.29).
Prove that presentation of I will activate v.j, rather than any other uncommitted
node, Vj. j ^ J.

8.2.2 The Orienting Subsystem
The orienting subsystem in an ART network is responsible for sensing mis-
matches between bottom-up and top-down patterns on the F\ layer. Its operation
can be modeled by the addition of terms to the dynamic equations that describe
the activities of the F2 processing element. Since our discussion has evolved
from the dynamic equations to their asymptotic solutions and the fast-learning
case, we shall not return to the dynamic equations at this point.

There are many ways to model the dynamics of the orienting subsystem.
One example is the development by Ryan and Winter, and by Ryan, Winter, and
Turner, listed in the Suggested Readings section at the end of this chapter. Our
approach here will be to describe the details of the matching and reset process
and the effects on the F2 units.

We can model the orienting subsystem as a single processing element, A,
with an output to each unit on the F> layer. The inputs to A are the outputs of
the FI units, S, and the input vector, I. The weights on the connections from
the input vector are all equal to a value P; those on the connections from FI
are all equal to a value —Q. The net input to A is then P\l\ - Q\S\. The output
of A switches on if the net input becomes nonzero:

P|I |-Q|S|>0
or

P\I\ > Q\s\
P > £i
Q i

The quantity P/Q is given the name vigilance parameter and is usually identi-
fied by the symbol, p. Thus, activation of the orienting subsystem is prevented
if

-Ir > P («-3ftl
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Recall that |S| = |I| when p2 is inactive. The orienting subsystem must not
send a reset signal to FI at that time. From Eq. (8.30), we get a condition on
the vigilance parameter:

P< 1
We also obtain a subsequent condition on P and Q:

P<Q

The value of the vigilance parameter measures the degree to which the
system discriminates between different classes of input patterns. Because of the
way p is defined, it implements a self-scaling pattern match. By self-scaling,
we mean that the presence or absence of a certain feature in two patterns may
or may not cause a reset depending on the overall importance of that feature in
defining the pattern class. Figure 8.5 illustrates an example of this self-scaling.

Stated another way, the value of p determines the granularity with which
input patterns are classified by the network. For a given set of patterns to be
classified, a large value of p will result in finer discrimination between classes
than will a smaller value of p.

Input pattern Top-down template

Input pattern Top-down template

(b)

Figure 8.5 These figures illustrate the self-scaling property of the ART
networks, (a) For a value of p = 0.8, the existence of the
extra feature in the center of the top-down pattern on the right
is ignored by the orienting subsystem, which considers both
patterns to be of the same class, (b) For the same value of p,
these bottom-up and top-down patterns will cause the orienting
subsystem to send a reset to FT.
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Having a value of p that is less than one also permits the possibility that the
top-down pattern that is coded by FI to represent a particular class may change
as new input vectors are presented to the network. We can see this by reference
back to Figure 8.5(a). We implicitly assumed that the top-down pattern on the
right (with the extra dot) had been previously encoded (learned) by one of the
F2 nodes. The appearance of the bottom-up pattern on the left (without the extra
dot) does not cause a reset, so a resonance is established between the F\ layer
and the winning node on F2 that produced the top-down pattern. During this
resonance, weights can be changed. The FI node corresponding to the feature of
the center dot is not active, since that feature is missing from the input vector.
According to Eq. (8.22), the top-down weight on that connection will decay
away; in the fast-learning mode, we simply set it equal to zero. Similarly, the
bottom-up weight on the F2 node will decay according to Eq. (8.27).

The receding of top-down template patterns described in the previous para-
graph could lead to instabilities in the learning process. These instabilities could
manifest themselves as a continual change in the class of input vectors recog-
nized, or encoded, by each F-^ unit. Fortunately, ART was developed to combat
this instability. We shall not prove it here, but it can be shown that category
learning will stabilize in an ART1 network, after at most a few recodings. We
shall demonstrate this result in the next section, where we look at a numerical
example of ART1 processing. The stability of the learning is a direct result of
the use of the 2/3 rule described earlier in this chapter.

To complete the model of the orienting subsystem, we must consider its
effects on the ¥2 units. When a pattern mismatch occurs, the orienting subsystem
should inhibit the F^ unit that resulted in the nonmatching pattern, and should
maintain that inhibition throughout the remainder of the matching cycle.

We have now concluded our presentation of the ART1 network. Before
proceeding on to ART2, we shall summarize the entire ART1 model for the
asymptotic and fast-learning case.
Exercise 8.5: Assume that an input pattern has resulted in an unsuccessful
search for a match through all previously encoded FI templates. On the next
matching cycle, one of the previously uncommitted FI nodes will win by default.
Show that this situation will not result in a reset signal from A. This proof
demonstrates that ART1 will automatically enlist a new FI node if the input
pattern cannot be categorized with previously learned patterns.

8.2.3 ART1 Processing Summary
For this summary we shall employ the asymptotic solutions to the dynamic
equations and the fast-learning case for the weights. We shall also present
a step-by-step calculation showing how the ART1 network learns and recalls
patterns.

To begin with, we must determine the size of the FI and F> layers, and the
values of the various parameters in the system. Let M be the number of units
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on FI and N be the number of units on FI. Other parameters must be chosen
according to the following constraints:

A\ > 0
C, > 0
D\ > 0

max{£>,,l} < BI <D, + 1
L > 1

0< p < 1

Top-down weights v{) are initialized according to

and bottom-up weights

0 <

Vj) are initialized according to

0)<rr^
The activities on FT_ are initialized to zero, but, according to our chosen model,
FI activities are initialized to

'" ' 1+C7,

All input patterns must be binary: /,; € {0,1}. The magnitude of a vector is
equal to the sum of the components: for example, |I| = ]T^W /;. Since we will
be interested in the magnitude of only binary vectors, this sum will be equal to
the number of nonzero components of the vector.

We are now ready to process data on the network. We proceed according
to the following algorithm:

1. Apply an input vector I to F,. F\ activities are calculated according to

h
X ] l I + At(Ii + Bi) + Ci

2. Calculate the output vector for F\,

Si = h(x\ ( I xn > 0
'; 1 0 xn < 0

3. Propagate S forward to F^ and calculate the activities according to

M

Tj = > SiZji
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4. Only the winning F2 node has a nonzero output:

f 1 Tj = max{Tk}Vk
Uj = < k

[ 0 otherwise

e shall assume that the winning node is vj.
5. Propagate the output from F2 back to F\ . Calculate the net inputs from F2

to the FI units:

6. Calculate the new activities according to

Ii + DlVi-Bl

7. Determine the new output values, Sj, as in step 2.
8. Determine the degree of match between the input pattern and the top-down

template:

9. If |S|/|I| < p mark vj as inactive, zero the outputs of F2, and return to
step 1 using the original input pattern. If |S|/|I| > p, continue.

10. Update bottom-up weights on vj only

if Vi is active
if Vi is inactive

11. Update the top-down weights coming from vj only to all FI units:

_ J 1 if Vi is active
'J [0 if Vi is inactive

12. Remove the input pattern. Restore all inactive F2 units. Return to step 1
with a new input pattern.

To see this algorithm in operation, let's perform a step-by-step calculation
for a small example problem. We will use this example to see how subset and
superset patterns are handled by the network.

We shall choose the dimensions of FI and F2 as M = 5 and N = 6,
respectively. Other parameters in the system are A\ — \,B\ — \.5,C\ =
5,Di = 0.9, L = 3, ,3 = 0.9.

We initialize weights on FI units by adding a small, positive value (0.2, in
this case) to (B\ — \)/D\. Each unit on FI then has the weight vector

z, = (0.756,0.756,0.756,0.756,0.756,0.756)'
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Since L = 3 and M = 5, weights on F2 units are all initialized to slightly less
than L/(L - 1 + M). Each weight is given the value 0.429 -0.1= 0.329. Each
weight vector is then

Zj = (0.329,0.329,0.329,0.329,0.329)'

All F2 units are initialized to zero activity. FI activities are initialized to
-5,7(1 +Ci) = -0.25:

X(0) = (-0.25, -0.25, -0.25, -0.25, -0.25)'

We can now begin actual processing. We shall start with the simple input
vector,

I, =(0,0,0,1,0)*

Now, we follow the sequence of the algorithm:

1. After the input vector is applied, the Fj activities become

X, =(0,0,0,0.118,0)*

2. The output vector is S = (0,0,0,1,0)'.

3. Propagating this output vector to F2, the net inputs to all F2 units will be
identical:

Then, T = (0.329,0.329,0.329,0.329,0.329,0.329)'.

4. Since all unit activities are equal, simply take the first unit as our winner.
Then, the output from F2 is U = (1,0,0,0,0,0)*.

5. Propagate back to FI :
Vi = zz - U

Then, V = (0.756,0.756,0.756,0.756,0.756)'.

6. Calculate the new activity values on F\ according to Eq. (8.9):

X = (-0.123, -0.123, -0.123,0.023, -0.123)'

7. Only unit 4 has a positive activity, so the new outputs are S = (0,0,0, 1,0)*.

8. |S|/|I| =\>p.
9. There is no reset: Resonance has been reached.

10. Update bottom-up weights on F2 unit v\ according to the fast-learning rule.
Since L_[L

+|Si = 1, z, on F2 becomes (0,0,0, 1,0)*. Thus, unit v\ encodes
the input vector exactly. It is actually in the pattern of nonzero weights that
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we are interested here. The fact that the single nonzero weight matches the
input value is purely coincidental, as we shall see shortly.

11. Update weights on top-down connections. Only the first weight on each
FI unit changes. If each row describes the weights on one unit, then the
weight matrix for F\ units is

0 0.756 0.756 0.756 0.756 0.756
0 0.756 0.756 0.756 0.756 0.756
0 0.756 0.756 0.756 0.756 0.756
1 0.756 0.756 0.756 0.756 0.756
0 0.756 0.756 0.756 0.756 0.756

That completes the cycle for the first input pattern. Now let's apply a
second pattern that is orthogonal to the first—namely, \2 = (0,0,1,0,1)'. We
shall abbreviate the calculation somewhat.

When the input pattern is propagated to F2, the resultant activities are
T = (0.000,0.657,0.657,0.657,0.657,0.657)*. Unit 1 definitely loses. We
select unit 2 as the winner. The output of F2 is U = (0,1,0,0,0,0)'. Prop-
agating back to Fi we get V = (0.756,0.756,0.756,0.756,0.756)' and X =
(-0.123,-0.123,0.0234,-0.123,0.0234)'. The resulting output matches the
input vector, (0,0, 1,0, 1)* so there is no reset.

Weights on the winning F2 unit are set to (0,0,0.75,0,0.75)'. The second
weight on each FI unit is adjusted such that the new weight matrix on FI is

0 0 0.756 0.756 0.756 0.756
0 0 0.756 0.756 0.756 0.756
0 1 0.756 0.756 0.756 0.756
1 0 0.756 0.756 0.756 0.756
0 1 0.756 0.756 0.756 0.756

For reference, the weight matrix on FI looks like

0 0 0 1 0
0 0 0.75 0 0.75
0.329 0.329 0.329 0.329 0.329
0.329 0.329 0.329 0.329 0.329
0.329 0.329 0.329 0.329 0.329
0.329 0.329 0.329 0.329 0.329

Now let's see what happens when we apply a vector that is a subset of I?—
namely, I3 = (0,0,0,0, l) f . When this pattern is propagated forward, the activ-
ities on F2 become (0,0.75,0.329,0.329,0.329,0.329)'. Notice that the second
unit wins the competition in this case so F2 output is (0, 1,0,0,0,0)'. Going
back to FI, the net inputs from the top-down pattern are V = (0,0, 1,0, })'.
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In this case, the equilibrium activities are X = (-0.25, -0.25, -0.087. -0.25,
0.051)' with only one positive activity. The new output pattern is (0,0,0,0, 1)',
which exactly matches the input pattern, so no reset occurs.

Even though unit 2 on F2 had previously encoded an input pattern, it gets
receded now to match the new input pattern that is a subset of the original
pattern. The new weight matrices appear as follows. For F\,

0 0 0.756 0.756 0.756 0.756
0 0 0.756 0.756 0.756 0.756
0 0 0.756 0.756 0.756 0.756
1 0 0.756 0.756 0.756 0.756
0 1 0.756 0.756 0.756 0.756

For F2,
0 0 0 1 0
0 0 0 0 1
0.329 0.329 0.329 0.329 0.329
0.329 0.329 0.329 0.329 0.329
0.329 0.329 0.329 0.329 0.329
0.329 0.329 0.329 0.329 0.329

If we return to the superset vector, (0,0,1,0,1)', the initial forward prop-
agation to F2 yields activities of (0.000, 1.000,0.657,0.657,0.657,0.657)*, so
unit 2 wins again. Going back to F\, V = (0,0,0,0,1)*, and the equilib-
rium activities are (-0.25, -0.25, -0.071, -0.25,0.051)'. The new outputs are
(0,0,0,0,1)'. This time, we get a reset signal, since |S|/|I2 = 0.5 < p. Thus,
unit 2 on F2 is removed from competition, and the matching cycle is repeated
with the original input vector restored on F\.

Propagating forward a second time results in activities on F2 of (0.000,
0.000,0.657, 0.657,0.657,0.657)*, where we have forced unit 2's activity to
zero as a result of sustained inhibition from the orienting subsystem. We choose
unit 3 as the winner this time, and it codes the input vector. On subsequent
presentations of subset and superset vectors, each will access the appropriate F2
unit directly without the need of a search. This result can be verified by direct
calculation with the example presented in this section.
Exercise 8.6: Verify the statement made in the previous paragraph that the
presentation of (0,0,1,0, 1)' and (0,0,0,0,1)' result in immediate access to
the corresponding nodes on F2 without reset by performing the appropriate
calculations.
Exercise 8.7: What does the weight matrix on F2 look like after unit 3 encodes
the superset vector given in the example in this section?

Exercise 8.8: What do you expect will happen if we apply (0, 1, 1,0, 1)' to the
example network? Note that the pattern is a superset to one already encoded.
Verify your hypothesis by direct calculation.
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8.3 ART2
On the surface, ART2 differs from ART1 only in the nature of the input pat-
terns: ART2 accepts analog (or gray-scale) vector components as well as binary
components. This capability represents a significant enhancement to the system.

Beyond the surface difference between ART1 and ART2 lie architectural
differences that give ART2 its ability to deal with analog patterns. These dif-
ferences are sometimes more complex, and sometimes less complex, than the
corresponding ART1 structures.

Aside from the obvious fact that binary and analog patterns differ in the
nature of their respective components, ART2 must deal with additional compli-
cations. For example, ART2 must be able to recognize the underlying similarity
of identical patterns superimposed on constant backgrounds having different
levels. Compared in an absolute sense, two such patterns may appear entirely
different when, in fact, they should be classified as the same pattern.

The price for this additional capability is primarily an increase in complexity
on the F\ processing level. The ART2 F\ level consists of several sublevels
and several gain-control systems. Processing on p2 is the same for ART2 as
it was for ART1. As partial compensation for the added complexity on the F\
layer, the LTM equations are a bit simpler for ART2 than they were for ART1.

The developers of the architecture, Carpenter and Grossberg, have experi-
mented with several variations of the architecture for ART2. At the time of this
writing, that work is continuing. The architecture we shall describe here is one
of several variations reported by Carpenter and Grossberg [2].

8.3.1 ART2 Architecture
As we mentioned in the introduction to this section, ART2 bears a superficial
resemblance to ART1. Both have an attentional subsystem and an orienting sub-
system. The attentional subsystem of each architecture consists of two layers
of processing elements, F\ and F2, and a gain-control system. The orienting
subsystem of each network performs the identical function. Moreover, the ba-
sic differential equations that govern the activities of the individual processing
elements are the same in both cases. To deal successfully with analog patterns
in ART2, Carpenter and Grossberg have had to split the F\ layer into a number
of sublayers containing both feedforward and feedback connections. Figure 8.6
shows the resulting structure.

8.3.2 Processing on Fj
The activity of each unit on each sublayer of F\ is governed by an equation of
the form

exk = -Axk + (1 - Bxk)J+ -(C + Dxk)J- (8.31)
where A,B,C, and D are constants. Equation (8.31) is almost identical to
Eq. (8.1) from the ART1 discussion in Section 8.2.1. The only difference is
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Orienting , Attentional subsystem
subsystem p2 Layer

•ic xx xx XXI y
Fi Layer

Input vector

Figure 8.6 The overall structure of the ART2 network is the same as that
of ART1. The FI layer has been divided into six sublayers,
w, x, u,v,p, and q. Each node labeled G is a gain-control unit
that sends a nonspecific inhibitory signal to each unit on the
layer it feeds. All sublayers on F\, as well as the r layer of the
orienting subsystem, have the same number of units. Individual
sublayers on FI are connected unit to unit; that is, the layers
are not fully interconnected, with the exception of the bottom-
up connections to FI and the top-down connections from F2.

the appearance of the multiplicative factor in the first term on the right-hand
side in Eq. (8.31). For the ART2 model presented here, we shall set B and C
identically equal to zero. As with ART1, j£ and J^ represent net excitatory
and inhibitory factors, respectively. Likewise, we shall be interested in only the
asymptotic solution, so

I A +
(8.32)
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The values of the individual quantities in Eq. (8.32) vary according to the sub-
layer being considered. For convenience, we have assembled Table 8.1, which
shows all of the appropriate quantities for each F\ sublayer, as well as the r
layer of the orienting subsystem. Based on the table, the activities on each of
the six sublayers on F\ can be summarized by the following equations:

w, = Ii+ aui (8.33)

Xl = e +L\\ (8'34)

vt = /(I*) + bf(qt) (8.35)

(8.36)

(yi)zn (8.37)

qt = — p - 7 7 (8.38)
e + I I P l I

We shall discuss the orienting subsystem r layer shortly. The parameter e
is typically set to a positive number considerably less than 1. It has the effect

Quantity

Layer A D 7+ /r

w 1 1 I i + au,

x e 1 w,

u e 1 vt
v 1 1 f ( x i ) + bf(qi)

3

q e i PI
r c 1 u-' -f- CD '

0

HI
IMI
0

0

IP

Table 8.1 Factors in Eq. (8.32) for each FI sublayer and the r layer. /; is the
ith component of the input vector. The parameters a, b, c, and e
are constants whose values will be discussed in the text, yj is
the activity of the jth unit on the F2 layer and g(y) is the output
function on F2. The function f(x) is described in the text.
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of keeping the activations finite when no input is present in the system. We do
not require the presence of e for this discussion so we shall set e — 0 for the
remainder of the chapter.

The three gain control units in FI nonspecifically inhibit the x, u, and q
sublayers. The inhibitory signal is equal to the magnitude of the input vector to
those layers. The effect is that the activities of these three layers are normalized
to unity by the gain control signals. This method is an alternative to the on-
center off-surround interaction scheme presented in Chapter 6 for normalizing
activities.

The form of the function, f ( x ) , determines the nature of the contrast en-
hancement that takes place on FI (see Chapter 6). A sigmoid might be the
logical choice for this function, but we shall stay with Carpenter's choice of

°>SS '
where 6 is a positive constant less than one. We shall use 9 = 0.2 in our
subsequent examples.

It will be easier to see what happens on FI during the processing of an
input vector if we actually carry through a couple of examples, as we did with
ART1. We shall set up a five-unit F\ layer. The constants are chosen as follows:
a= 10; 6 = 10; c = 0.1. The first input vector is

I, =(0.2,0.7,0.1,0.5,0.4)'

We propagate this vector through the sublayers in the order of the equations
given.

As there is currently no feedback from u, w becomes a copy of the input
vector:

w = (0.2,0.7,0.1,0.5,0.4)'

x is a normalized version of the same vector:

x = (0.205,0.718,0.103,0.513,0.410)'

In the absence of feedback from q, v is equal to /(x):

v = (0.205,0.718.0, 0.513,0.410)'

Note that the third component is now zero, since its value fell below the thresh-
old, 0. Because F2 is currently inactive, there is no top-down signal to FI . In
that case, all the remaining three sublayers on F, become copies of v:

u = (0.205,0.718,0,0.513,0.410)*
p = (0.205,0.718,0,0.513,0.410)'
q = (0.205,0.718,0,0.513,0.410)'
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We cannot stop here, however, as both u, and q are now nonzero. Beginning
again at w, we find:

w = (2.263,7.920,0.100,5.657,4.526)'
x = (0.206,0.722,0.009,0.516,0.413)*
v = (2.269,7.942,0.000,5.673,4.538)'

where v now has contributions from the current x vector and the u vector from
the previous time step. As before, the remaining three layers will be identical:

u = (0.206,0.723,0.000,0.516,0.413)'
p = (0.206,0.723,0.000,0.516,0.413)'
q = (0.206,0.723,0.000,0.516,0.413)'

Now we can stop because further iterations through the sublayers will not
change the results. Two iterations are generally adequate to stabilize the outputs
of the units on the sublayers.

During the first iteration through F\, we assumed that there was no top-
down signal from F2 that would contribute to the activation on the p sublayer of
F\. This assumption may not hold for the second iteration. We shall see later
from our study of the orienting subsystem that, by initializing the top-down
weights to zero, Zjj(O) = 0, we prevent reset during the initial encoding by
a new F2 unit. We shall assume that we are considering such a case in this
example, so that the net input from any top-down connections sum to zero.

As a second example, we shall look at an input pattern that is a simple
multiple of the first input pattern—namely,

I2 = (0.8,2.8,0.4,2.0,1.6)'

which is each element of Ii times four. Calculating through the F\ sublayers
results in

w = (0.800,2.800,0.400,2.000,1.600)'
x = (0.205,0.718,0.103,0.513,0.410)'
v = (0.205,0.718,0.000,0.513,0.410)'
u = (0.206,0.722,0.000,0.516,0.413)'
p = (0.206,0.722,0.000,0.516,0.413)'
q = (0.206,0.722,0.000,0.516,0.413)'

The second time through gives
w = (2.863,10.020,0.400,7.160,5.726)'
x = (0.206,0.722,0.0288,0.515,0.412)*
v = (2.269,7.942,0.000,5.672,4.538)'
u = (0.206,0.722,0.000,0.516,0.413)'
p = (0.206,0.722,0.000,0.516,0.413)'
q = (0.206,0.722,0.000,0.516,0.413)'
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Notice that, after the v layer, the results are identical to the first example.
Thus, it appears that ART2 treats patterns that are simple multiples of each
other as belonging to the same class. For analog patterns, this would appear to
be a useful feature. Patterns that differ only in amplitude probably should be
classified together.

We can conclude from our analysis that FI performs a straightforward nor-
malization and contrast-enhancement function before pattern matching is at-
tempted. To see what happens during the matching process itself, we must
consider the details of the remainder of the system.

8.3.3 Processing on F2

Processing on FI of ART2 is identical to that performed on ART1. Bottom-up
inputs are calculated as in ART1:

~~ iZji (8.40)

Competition on Fa results in contrast enhancement where a single winning node
is chosen, again in keeping with ART1.

The output function of Fa is given by

( d T} = max{Tk}Vk
9(Vj) = < n , .k (8-41)I 0 otherwise

This equation presumes that the set {Tk} includes only those nodes that have
not been reset recently by the orienting subsystem.

We can now rewrite the equation for processing on the p sublayer of FI as
(see Eq. 8.37)

_ / Ui if Fa is inactive „ ..
I Ui + dzij if the Jth node on Fa is active

8.3.4 LTM Equations
The LTM equations on ART2 are significantly less complex than are those on
ART1. Both bottom-up and top-down equations have the same form:

Zji = 9(y,} (Pi ~ zn} (8.43)

for the bottom-up weights from Vi on FI to Vj on Fa, and

zn = g(y}) (Pi - zij) (8.44)
for top-down weights from Vj on Fa to vt on F,. If vj is the winning Fa node,
then we can use Eq. (8.42) in Eqs. (8.43) and (8.44) to show that

zji = d(Ui + dzij — zji)
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and similarly
zu = d(ui + dzij - Zij)

with all other Zij = Zjt = 0 for j ^ J. We shall be interested in the fast-learning
case, so we can solve for the equilibrium values of the weights:

U '
zji = zu = - — '— (8.45)

1 - a

where we assume that 0 < d < 1.
We shall postpone the discussion of initial values for the weights until after

the discussion of the orienting subsystem.

8.3.5 ART2 Orienting Subsystem
From Table 8.1 and Eq. (8.32), we can construct the equation for the activities
of the nodes on the r layer of the orienting subsystem:

r, = ± (8.46)

where we once again have assumed that e — 0. The condition for reset is

H =• ' *47)

where p is the vigilance parameter as in ART1.
Notice that two F\ sublayers, p, and u, participate in the matching process.

As top-down weights change on the p layer during learning, the activity of
the units on the p layer also changes. The u layer remains stable during this
process, so including it in the matching process prevents reset from occurring
while learning of a new pattern is taking place.

We can rewrite Eq. (8.46) in vector form as

u + cp

Then, from ||r|| — (r • r)1/2, we can write

, , „ [l+2||CP | |cos(u,P)+||Cp||2] l /2
I* —— ——————————————————————————————————————————— ^O."TO^

where cos(u, p) is the cosine of the angle between u and p. First, note that, if
u and p are parallel, then Eq. (8.48) reduces to ||r|| — 1, and there will be no
reset. As long as there is no output from F2, Eq. (8.37) shows that u = p, and
there will be no reset in this case.

Suppose now that F2 does have an output from some winning unit, and that
the input pattern needs to be learned, or encoded, by the F2 unit. We also do
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not want a reset in this case. From Eq. (8.37), we see that p = u + dz./, where
the Jth unit on /•? is the winner and z,/ = ( z \ j . Z2j, . . . . ZA/J)'. If we initialize
all the top-down weights, z,-_,-, to zero, then the initial output from FI will have
no effect on the value of p; that is, p will remain equal to u.

During the learning process itself, z./ becomes parallel to u according to
Eq. (8.45). Thus, p also becomes parallel to u, and again ||r|| = 1 and there is
no reset.

As with ART1, a sufficient mismatch between the bottom-up input vector
and the top-down template results in a reset. In ART2, the bottom-up pattern is
taken at the u sublevel of F\ and the top-down template is taken at p.

Before returning to our numerical example, we must finish the discussion
of weight initialization. We have already seen that top-down weights must be
initialized to zero. Bottom-up weight initialization is the subject of the next
section.

8.3.6 Bottom-Up LTM Initialization
We have been discussing the modification of LTM traces, or weights, in the
case of fast-learning. Let's examine the dynamic behavior of the bottom-up
weights during a learning trial. Assume that a particular FI node has previously
encoded an input vector such that ZJ-L = uj(\ — d), and, therefore, ||zj|| =
j|u||/(l - d) — 1/0 - d), where zj is the vector of bottom-up weights on the
Jth, F2 node. Suppose the same node wins for a slightly different input pattern,
one for which the degree of mismatch is not sufficient to cause a reset. Then,
the bottom-up weights will be receded to match the new input vector. During
this dynamic receding process, ||zj|| can decrease before returning to the value
1/0 - d). During this decreasing period, ||r|| will also be decreasing. If other
nodes have had their weight values initialized such that ||zj(0)|| > I/O - d),
then the network might switch winners in the middle of the learning trial.

We must, therefore, initialize the bottom-up weight vectors such that

l|z|| 1 -d

We can accomplish such an initialization by setting the weights to small random
numbers. Alternatively, we could use the initialization

Zji(0) < —————j= (8.49)
(1 - d)VM

This latter scheme has the appeal of a uniform initialization. Moreover, if we use
the equality, then the initial values are as large as possible. Making the initial
values as large as possible biases the network toward uncommitted nodes. Even
if the vigilance parameter is too low to cause a reset otherwise, the network will
choose an uncommitted node over a badly mismatched node. This mechanism
helps stabilize the network against constant receding.
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Similar arguments lead to a constraint on the parameters c and d; namely,

C<1 < 1 (8.50)
1 -d

As the ratio approaches 1, the network becomes more sensitive to mismatches
because the value of ||r|| decreases to a smaller value, all other things being
equal.

8.3.7 ART2 Processing Summary
In this section, we assemble a summary of the processing equations and con-
straints for the ART2 network. Following this brief list, we shall return to the
numerical example that we began two sections ago.

As we did with ART1, we shall consider only the asymptotic solutions to
the dynamic equations, and the fast-learning mode. Also, as with ART1, we let
M be the number of units in each F\ sublayer, and N be the number of units
on FT. Parameters are chosen according to the following constraints:

a, b > 0
0 < d < 1
cd < 11 -d
0< 0 < 1
0 < p < 1

e <C 1

Top-down weights are all initialized to zero:

Zij(0) = 0

Bottom-up weights are initialized according to

1
(1 -

Now we are ready to process data.

1. Initialize all layer and sublayer outputs to zero vectors, and establish a cycle «
counter initialized to a value of one.

2. Apply an input pattern, I to the w layer of FI . The output of this layer is

Wi = I, + auj

3. Propagate forward to the x sublayer.
Wl
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4. Propagate forward to the v sublayer.

Vi = f(Xi) + bf(qi)

Note that the second term is zero on the first pass through, as q is zero at
that time.

5. Propagate to the u sublayer.

Ui =
e + \\v\\

6. Propagate forward to the p sublayer.

Pi = Ui + dzu

where the Jth node on F2 is the winner of the competition on that layer.
If FI is inactive, p-t = u,j. Similarly, if the network is still in its initial
configuration, pi = Ui because -z,-j(0) = 0.

7. Propagate to the q sublayer.

8. Repeat steps 2 through 7 as necessary to stabilize the values on F\.
9. Calculate the output of the r layer.

Uj + C.p,

e + \\u\\ + \\cp\\

10. Determine whether a reset condition is indicated. If p/(e + \\r\\) > 1,
then send a reset signal to F2. Mark any active F2 node as ineligible for
competition, reset the cycle counter to one, and return to step 2. If there
is no reset, and the cycle counter is one, increment the cycle counter and
continue with step 11. If there is no reset, and the cycle counter is greater
than one, then skip to step 14, as resonance has been established.

11. Propagate the output of the p sublayer to the F2 layer. Calculate the net
inputs to FI.

M
^r—>

12. Only the winning F2 node has nonzero output.

0 otherwise

Any nodes marked as ineligible by previous reset signals do not participate
in the competition.
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13. Repeat steps 6 through 10.
14. Modify bottom-up weights on the winning F2 unit.

z.i, = ,1 - d
15. Modify top-down weights coming from the winning F2 unit.

u,
Z,J = 1 -d

16. Remove the input vector. Restore all inactive F2 units. Return to step 1
with a new input pattern.

8.3.8 ART2 Processing Example
We shall be using the same parameters and input vector for this example that
we used in Section 8.3.2. For that reason, we shall begin with the propagation
of the p vector up to FI. Before showing the results of that calculation, we
shall summarize the network parameters and show the initialized weights.

We established the following parameters earlier: a = 10; b = 10; c =
0.1,0 = 0.2. To that list we add the additional parameter, d = 0.9. We shall
use N = 6 units on the F2 layer.

The top-down weights are all initialized to zero, so Zjj(0) = 0 as discussed
in Section 8.3.5. The bottom-up weights are initialized according to Eq. (8.49):
Zji = 0.5/(1 - d)\/M = 2.236, since M = 5.

Using I = (0.2,0.7,0.1,0.5,0.4)* as the input vector, before propagation
to F2 we have p = (0.206,0.722,0,0.516,0.413)'. Propagating this vector
forward to F2 yields a vector of activities across the F2 units of

T = (4.151,4.151,4.151,4.151,4.151,4.151)'

Because all of the activities are the same, the first unit becomes the winner and
the activity vector becomes

T = (4.151,0,0,0,0,0)'

and the output of the F2 layer is the vector, (0.9,0,0,0,0,0)'.
We now propagate this output vector back to FI and cycle through the

layers again. Since the top-down weights are all initialized to zero, there is no
change on the sublayers of FI . We showed earlier that this condition will not
result in a reset from the orienting subsystem; in other words, we have reached a
resonant state. The weight vectors will now update according to the appropriate
equations given previously. We find that the bottom-up weight matrix is

/ 2.063 7.220 0.000 5.157 4.126 \
2.236 2.236 2.236 2.236 2.236
2.236 2.236 2.236 2.236 2.236
2.236 2.236 2.236 2.236 2.236
2.236 2.236 2.236 2.236 2.236

\ 2.236 2.236 2.236 2.236 2.236 /



8.4 The ART1 Simulator 327

and the top-down matrix is
/ 2.06284 0 0 0 0 0 \

7.21995 0 0 0 0 0
0.00000 0 0 0 0 0
5.15711 0 0 0 0 0
4.12568 0 0 0 0 O/

Notice the expected similarity between the first row of the bottom-up matrix
and the first column of the top-down matrix.

We shall not continue this example further. You are encouraged to build an
ART2 simulator and experiment on your own.

8.4 THE ART1 SIMULATOR
In this section, we shall present the design for the ART network simulator.
For clarity, we will focus on only the ART1 network in our discussion. The
development of the ART2 simulator is left to you as an exercise. However, due
to the similarities between the two networks, much of the material presented in
this section will be applicable to the ART2 simulator. As in previous chapters,
we begin this section with the development of the data structures needed to
implement the simulator, and proceed to describe the pertinent algorithms. We
conclude this section with a discussion of how the simulator might be adapted
to implement the ART2 network.

8.4.1 ART1 Data Structures
The ART1 network is very much like the BAM network described in Chapter 4
of this text. Both networks process only binary input vectors. Both networks
use connections that are initialized by performance of a calculation based on
parameters unique to the network, rather than a random distribution of values.
Also, both networks have two layers of processing elements that are completely
interconnected between layers (the ART network augments the layers with the
gain control and reset units).

However, unlike in the BAM, the connections between layers in the ART
network are not bidirectional. Rather, the network units here are interconnected
by means of two sets of (/w'directional connections. As shown in Figure 8.7,
one set ties all the outputs of the elements on layer Ft to all the inputs on p2,
and the other set connects all F-^ unit outputs to inputs on layer F\. Thus, for
reasons completely different from those used to justify the BAM data structures,
it turns out that the interconnection scheme used to model the BAM is identical
to the scheme needed to model the ART1 network.

As we saw in the case of the BAM, the data structures needed to implement
this view of network processing fit nicely with the processing model provided by
the generic simulator described in Chapter 1. To understand why this is so, recall
the discussion in Section 4.5.2 where, in the case of the BAM, we claimed it was
desirable to split the bidirectional connections between layers into two sets of
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F2 Layer

F1 Layer

Figure 8.7 The diagram shows the interconnection strategy needed to
simulate the ART1 network. Notice that only the connections
between units on the F\ and F2 layers are needed. The host
computer can perform the function of the gain control and
reset units directly, thus eliminating the need to model these
structures in the simulator.

unidirectional connections, and to process each individually. By organizing the
network data structures in this manner, we were able to simplify the calculations
performed at each network unit, in that the computer had only input values to
process. In the case of the BAM, splitting the connections was done to improve
performance at the expense of additional memory consumption. We can now
see that there was another benefit to organizing the BAM simulator as we did:
The data structures used to model the modified BAM network can be ported
directly to the ART1 simulator.

By using the interconnection data structures developed for the BAM as the
basis of the ART1 network, we eliminate the need to develop a new set of data
structures, and now need only to define the top-level network structure used to
tie all the ART1 specific parameters together. To do this, we simply construct a
record containing the pointers to the appropriate layer structures and the learning
parameters unique to the ART1 network. A good candidate structure is given
by the following declaration:

record ART1 =
begin

Fl
F2
Al
Bl
Cl
Dl

"layer;
"layer;
float;
float;
float;
float;
float;

{the network declaration}

{locate Fl layer structure}
{locate F2 layer structure}
{A parameters for layer Fl}
{B parameters for layer Fl}
{C parameters for layer Fl}
{D parameters for layer Fl}
{L parameter for network}
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rho : float; {vigilance parameter}
F2W : integer; {index of winner on F2 layer}
INK : "float[]; {F2 inhibited vector}
magX : float; {magnitude of vector on Fl}

end record;

where A, B, C, D, and L are network parameters as described in Section 8.2. You
should also note that we have incorporated three items in the network structure
that will be used to simplify the simulation process. These values—F2W, INK,
and magX—are used to provide immediate access to the winning unit on FZ,
to implement the inhibition mechanism from the attentional subsystem (A), and
to store the computed magnitude of the template on layer F\, respectively.
Furthermore, we have not specified the dimension of the INK array directly, so
you should be aware that we assume that this array contains as many values as
there are units on layer F^. We will use the INK array to selectively eliminate
the input stimulation to each FI layer unit, thus performing the reset function.
We will elaborate on the use of this array in the following section.

As illustrated in Figure 8.8, this structure for the ART1 network provides us
with access to all the network-specific data that we will require to complete our
simulator, we shall now proceed to the development of the algorithms necessary
to simulate the ART1 network.

8.4.2 ART1 Algorithms
As discussed in Section 8.2, it is desirable to simplify (as much as possible)
the calculation of the unit activity within the network during digital simulation.
For that reason, we will restrict our discussion of the ART1 algorithms to the
asymptotic solution for the dynamic equations, and will implement the fast-
learning case for the network weights.

Further, to clarify the implementation of the simulator, we will focus on
the processing described in Section 8.2.3, and will use the data provided in that
example as the basis for the algorithm design provided here. If you have not
done so already, please review Section 8.2.3.

We begin by presuming that the network simulator has been constructed
in memory and initialized according to the example data. We can define the
algorithm necessary to perform the processing of the input vector on layer F\
as follows:

procedure prop_to_Fl (net:ARTl; invec:"float[]);
{compute outputs for layer Fl for a given input vector}

var i : integer; {iteration counter}
unit : "float[]; {pointer to unit outputs}

begin
unit = net.Fl".OUTS; {locate unit outputs)
for i = 1 to length(unit) {for all Fl units}
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do
unit[i] = invec[i] /

(1 + net.Al * (invec[i] + net.Bl) + net.Cl);

if (unit[i] > 0) {convert activation to output}
then unit[i] = 1
else unit[i] = 0;
end if;

end do;
end procedure;

outputs weights

ART1

Figure 8.8 The complete data structure for the ART1 simulator is shown.
Notice that we have added an additional array to contain
the INHibit data that will be used to suppress invalid pattern
matches on the F^ layer. Compare this diagram with the
declaration in the text for the ART1 record, and be sure you
understand how this model implements the interconnection
scheme for the ART1 network.
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Notice that the computation for the output of each unit on FI requires no
modulating connection weights. This calculation is consistent with the pro-
cessing model for the ART1 network, but it also is of benefit since we must use
the input connection arrays to each unit on F\ to hold the values associated with
the connections from layer F2. This makes the simulation process efficient, in
that we can model two different kinds of connections (the inputs from the exter-
nal world, and the top-down connections from FT) in the memory space required
for one set of connections (the standard input connections for a unit on a layer).

The next step in the simulation process is to propagate the signals from
the FI layer to the F2 layer. This signal propagation is the familiar sum-
of-products operation, and each unit in the F2 layer will generate a nonzero
output only if it had the highest activation level on the layer. For the ART1
simulation, however, we must also consider the effect of the inhibit signal to
each unit on F2 from the attentional subsystem. We assume this inhibition status
is represented by the values in the INH array, as initialized by a reader-provided
routine to be discussed later, and further modified by network operation. We
will use the values {0, 1} to represent the inhibition status for the network,
with a zero indicating the F2 unit is inhibited, and a one indicating the unit is
actively participating in the competition. Furthermore, as in the discussion of the
counterpropagation network simulator, we will find it desirable to know, after
the signal propagation to the competitive layer has completed, which unit won
the competition so that it may be quickly accessed again during later processing.

To accomplish all of these operations, we can define the algorithm for the
signal propagation to all units on layer F2 as follows:

procedure prop_to_F2 (net:ARTl);
{propagate signals from layer Fl to F2}

var i,j : integer; {iteration counters}
unit : ~float[]; {pointer to F2 unit outputs}
inputs : "float[]; {pointer to Fl unit outputs}
connects : "float []; {pointer to unit connections}
largest : float; {largest activation}
winner : integer; {index to winner}
sum : float; {accumulator}

begin
unit = net.F2".OUTS; {locate F2 output array}
inputs = net.Fl".OUTS; {locate Fl output array}
largest = -100; {initial largest activation}

for i = 1 to length(unit) {for all F2 units}
do
unit[i] = 0; {deactivate unit output}

end do;

for i = 1 to length(unit) {for all F2 units)
do



332 Adaptive Resonance Theory

sum = 0; {reset accumulator}
connects = net. F 2 ~ . W E I G H T S [ i ] ;

{locate connection array}

for j = 1 to length(inputs)
{for all inputs to unit}

do {compute activation}
sum = sum + inputs[j] * connects[j];

end do;

sum = sum * net.INH[i]; {inhibit if necessary}

if (sum > largest) {if current winner}
then
winner = i; {remember this unit}
largest = sum; {mark largest activation}

end if;
end do;

unit[winner] = 1; {mark winner}
net.F2W = winner; {remember winner}

end procedure;

Now we have to propagate from the winning unit on F2 back to all the units
on FI . In theory, we perform this step by computing the inner product between
the connection weight vector and the vector formed by the outputs from all the
units on FT. For our digital simulation, however, we can reduce the amount
of time needed to perform this propagation by limiting the calculation to only
those connections between the units on FI and the single winning unit on F2-
Further, since the output of the winning unit on Fi was set to one, we can again
improve performance by eliminating the multiplication and using the connection
weight directly. This new input from F2 is then used to calculate a new output
value for the FI units. The sequence of operations just described is captured in
the following algorithm.

procedure prop_back_to_Fl (net:ARTl; invec:"float[]);
{propagate signals from F2 winner back to FI layer}

var i : integer; {iteration counter}
winner : integer; {index of winning F2 unit}
unit : ~float[]; {locate FI units}
connects : "float[]; {locate connections}
X : float; {new input activation}
Vi : float; {connection weight}

begin
unit = net.FI".OUTS;

{locate beginning of FI outputs}
winner = net.F2W; {get index of winning unit}
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for i = 1 to length (unit) {for all Fl units}
do

connects = net.Fl".WEIGHTS;
{locate connection arrays}

Vi = connects[i]"[winner];
{get connection weight}

X = (invecfi] + net.Dl * Vi - net.Bl) /
(1 + net.Al * (invec[i] + net.Dl * Vi) + net.Cl);

if (X > 0) {is activation sufficient}
then unit[i] = 1 {to turn on unit output?}
else unit[i] = 0 ; {if not, turn off}

end do;
end procedure;

Now all that remains is to compare the output vector on F\ to the original
input vector, and to update the network accordingly. Rather than trying to
accomplish both of these operations in one function, we shall construct two
functions (named match and update) that will determine whether a match
has occurred between bottom-up and top-down patterns, and will update the
network accordingly. These routines will both be constructed so that they can
be called from a higher-level routine, which we call propagate. We first
compute the degree to which the two vectors resemble each other. We shall
accomplish this comparison as follows:

function match (net:ARTl; invec:"float[]) return float;
{compare input vector to activation values on Fl}

var i : integer; {iteration counter}
unit : "float[]; {locate outputs of Fl units}
magX : float; {the magnitude of template}
magi : float; {the magnitude of the input}

begin
unit = net.Fl".OUTS; {access unit outputs}
magX = 0; {initialize magnitude}
magi = 0; {ditto}

for i = 1 to length (unit) - - - -
{for all component of input}

do
magX = magX + unit[i];

{compute magnitude of template}
magi = magi + invec[i]; {same for input vector}

end do;

net.magX = magX; {save magnitude for later use}
return (magX / magi); {return the match value}

end function;



334 Adaptive Resonance Theory

Once resonance has been established (as indicated by the degree of the
match found between the template vector and the input vector), we must update
the connection weights in order to reinforce the memory of this pattern. This
update is accomplished in the following manner.

procedure update (net:ARTl);
{update the connection weights to remember a pattern)

var i : integer; {iteration counter}
winner : integer; {index of winning F2 unit}
unit : ~float[]; {access to unit outputs}

connects : ~float[]; {access to connection values}
inputs : "float[]; {pointer to outputs of Fl}

begin
unit = net.F2~.OUTS; {update winning F2 unit first}
winner = net.F2W; {index to winning unit}
connects = net. F2".WEIGHTS[winner];

{locate winners connections}
inputs = net.Fl".OUTS; {locate outputs of Fl units}

for i = 1 to length(connects)
{for all connections to F2 winner}

do
{update the connections to the unit according to
Eq. (8.28)}
connects [i] = (net.L / (net.L - 1 + net.magX))

* inputs [i];
end do;

for i = 1 to length(unit) {now do connections to Fl}
do
connects = net.Fl".WEIGHTS[i];

{access connections)
connects[winner] = inputs[i]; {update connections)

end do;
end procedure;

You should note from inspection of the update algorithm that we have
taken advantage of some characteristics of the ART1 network to enhance sim-
ulator performance in two ways:

• We update the connection weights to the winner on F2 by multiplying the
computed value for each connection by the output of the F\ unit associated
with the connection being updated. This operation makes use of the fact
that the output from every FI unit is always binary. Thus, connections are
updated correctly regardless of whether they are connected to an active or
inactive F\ unit.
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• We update the top-down connections from the winning FI unit to the units
on F\ to contain the output value of the F\ unit to which they are connected.
Again, this takes advantage of the binary nature of the unit outputs on F\
and allows us to eliminate a conditional test-and-branch operation in the
algorithm.

With the addition of a top-level routine to tie them all together, the collection
of algorithms just defined are sufficient to implement the ART1 network. We
shall now complete the simulator design by presenting the implementation of the
propagate routine. So that it remains consistent with our example, the top-
level routine is designed to place an input vector on the network, and perform
the signal propagation according to the algorithm described in Section 8.2.3.
Note that this routine uses a reader-provided routine (remove-inhibit) to
set all the values in the ART1. INK array to one. This routine is necessary in
order to guarantee that all FI units participate in the signal-propagation activity
for every new pattern presented to the network.

procedure propagate (net:ARTl; invec:"float[]);
{perform a signal propagation with learning in the

network}

var done : boolean; {true when template found}

begin
done = false; {start loop}
remove_inhibit (net); {enable all F2 units}

while (not done)
do
prop_to_Fl (net, invec); {update Fl layer}
prop_to_F2 (net); {determine F2 winner}
prop_back_to_Fl (net, invec);

{send template back to Fl}

if (match(net, invec) < net.rho)
{if pattern does not match}

then net.INH[net.F2W] = 0 {inhibit winner}
else done = true; {else exit loop}

end do; ,--"'"

update (net); {reinforce template}
end procedure;

Note that the propagate algorithm does not take into account the case
where all F-^ units have been encoded and none of them match the current input
pattern. In that event, one of two things should occur: Either the algorithm
should attempt to combine two already encoded patterns that exhibit some degree
of similarity in order to free an FI unit (difficult to implement), or the simulator
should allow for growth in the number of network units. This second option
can be accomplished as follows:
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1. When the condition exists that requires an additional p2 unit, first allocate
a new array of floats that contains enough room for all existing FI units,
plus some number of extra units.

2. Copy the current contents of the output array to the newly created array so
that the existing n values occupy the first n values in the new array.

3. Change the pointer in the ART1 record structure^o locate the new array as
the output array for the F2 units.

4. Deallocate the old F^ output array (optional).

The design and implementation of such an algorithm is left to you as an
exercise.

8.5 ART2 SIMULATION
As we discussed earlier in this chapter, the ART2 model varies from the ART1
network primarily in the implementation of the F\ layer. Rather than a single-
layer structure of units, the F\ layer contains a number of sublayers that serve to
remove noise, to enhance contrast, and to normalize an analog input pattern. We
shall not find this structure difficult to model, as the F\ layer can be reduced to a
superlayer containing many intermediate layer structures. In this case, we need
only to be aware of the differences in the network structure as we implement
the ART2 processing algorithms.

In addition, signals propagating through the ART2 network are primarily
analog in nature, and hence must be modeled as floating-point numbers in our
digital simulation. This condition creates a situation of which you must be aware
when attempting to adapt the algorithms developed for the ART1 simulator to the
ART2 model. Recall that, in several ART1 algorithms, we relied on the fact that
network units were generating binary outputs in order to simplify processing.
For example, consider the case where the input connection weights to layer FI
are being modified during learning (algorithm update). In that algorithm, we
multiplied the corrected connection weight by the output of the unit from the
F\ layer. We did this multiplication to ensure that the ART1 connections were
updated to contain either the corrected connection value (if the F\ unit was on)
or to zero (if the FI unit was off). This approach will not work in the ART2
model, because FI layer units can now produce analog outputs.

Other than these two minor variations, the implementation of the ART2
simulator should be straightforward. Using the ART1 simulator and ART2
discussion as a guide, we leave it as an exercise for you to develop the algorithms
and data structures needed to create an ART2 simulator.
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Programming Exercises
8.1. Implement the ART1 simulator. Test it using the example data presented in

Section 8.2.3. Does the simulator generate the same data values described
in the example? Explain your answer.

8.2. Design and implement a function that can be incorporated in the propagate
routine to account for the situation where all F2 units have been used and
a new input pattern does not match any of the encoded patterns. Use the
guidelines presented in the text for this algorithm. Show the new algorithm,
and indicate where it should be called from inside the propagate routine.

8.3. Implement the ART2 simulator. Test it using the example data presented
in Section 8.3.2. Does the simulator behave as expected? Describe the
activity levels at each sublayer on F\ at different periods during the signal-
propagation process.

8.4. Using the ART2 simulator constructed in Programming Exercise 8.3, de-
scribe what happens when all the inputs in a training pattern are scaled by
a random noise function and are presented to the network after training.
Does your ART2 network correctly classify the new input into the same
category as it classifies the original pattern? How can you tell whether it
does?

Suggested Readings
The most prolific writers of the neural-network community appear to be Stephen
Grossberg, Gail Carpenter, and their colleagues. Starting with Grossberg's work
in the 1970s, and continuing today, a steady stream of papers has evolved from
Grossberg's early ideas. Many such papers have been collected into books. The
two that we have found to be the most useful are Studies of Mind and Brain [10]
and Neural Networks and Natural Intelligence [13]. Another collection is The
Adaptive Brain, Volumes I and II [11, 12]. This two-volume compendium con-
tains papers on the application of Grossberg's theories to models of vision,
speech and language recognition and recall, cognitive self-organization, condi-
tioning, reinforcement, motivation, attention, circadian rhythms, motor control,
and even certain mental disorders such as amnesia. Many of the papers that
deal directly with the adaptive resonance networks were coauthored by Gail
Carpenter [1, 5, 2, 3, 4, 6].

A highly mathematical paper by Cohen and Grossberg proved a conver-
gence theorem regarding networks and the latter's ability to learn patterns [8].
Although important from a theoretical standpoint, this paper is recommended
for only the hardy mathematician.

Applications using ART networks often combine the basic ART structures
with other, related structures also developed by Grossberg and colleagues. This
fact is one reason why specific application examples are missing from this
chapter. Examples of these applications can be found in the papers by Carpenter
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et al. [7], Kolodzy [15], and Kolodzy and van Alien [14]. An alternate method
for modeling the orienting subsystem can be found in the papers by Ryan and
Winter [16] and by Ryan, Winter, and Turner [17].
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H A P T E R

Spatiotemporal
Pattern Classification

Many ANS architectures, such as backpropagation, adaptive resonance, and oth-
ers discussed in previous chapters of this text, are applicable to the recognition
of spatial information patterns: a two-dimensional, bit-mapped image of a hand-
written character, for example. Input vectors presented to such a network were
not necessarily time correlated in any way; if they were, that time correlation
was incidental to the pattern-classification process. Individual patterns were
classified on the basis of information contained within the pattern itself. The
previous or subsequent pattern had no effect on the classification of the current
input vector.

We presented an example in Chapter 7 where a sequence of spatial pat-
terns could be encoded as a path across a two-dimensional layer of process-
ing elements (see Section 7.2.1, on the neural phonetic typewriter). Never-
theless, the self-organizing map used in that example was not conditioned to
respond to any particular sequence of input patterns; it just reported what the
sequence was. /

In this chapter, we shall describe ANS architectures that can deal directly
with both the spatial and the temporal aspects /of input signals. These networks
encode information relating to the time correlation of spatial patterns, as well
as the spatial pattern information itself. We define a spatiotemporal pattern
(STP) as a time-correlated sequence of spatial patterns.

There are several application domains where STP recognition is important.
One that comes to mind immediately is speech recognition, for which the STP
could be the time-varying power spectrum produced by a multichannel audio
spectrum analyzer. A coarse example of such an analyzer is represented by
the bar-graph display of a typical graphic equalizer used in many home stereo
systems. Each channel of the graphic equalizer responds to the sound inten-
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Figure 9.1 This figure is a digitized acoustic waveform of a male speaker
making the utterance "zero" in ambient conditions. The
sampling rate is 10 kHz. Source: Courtesy of Kami I Grajski,
Loral Western Development Laboratories.

sity within a certain frequency interval. Other applications, with characteristics
similar to the speech example, include radar and sonar echoes.

Figures 9.1 and 9.2 illustrate an example of an STP from a spoken word.
The waveform shown in Figure 9.1 has been converted into a sequence of
power spectra in Figure 9.2. Each individual spectrum is a spatial pattern. The
sequence of spatial patterns, one at each time slice, makes up the STP.

Much of the following discussion requires an understanding of the material
contained in Chapter 6. If you have not already studied that material, you should
do so before attempting to read this chapter.

9.1 THE FORMAL AVALANCHE
The foundation for the development of the network architectures in this chapter
is the formal avalanche structure developed by Grossberg [2]. The network is
shown in Figure 9.3. The structure of the network resembles the top two layers
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Figure 9.2 This figure shows the spectrogram made from the waveform
in Figure 9.1. The horizontal axis represents frequency, and
the vertical axis represents the power level of the signal at
each frequency. Time extends backward into the figure.
Source: Courtesy of Kamil Grajski, Loral Western Development
Laboratories.

of the CPN described in Chapter 6. This resemblance is not coincidental: Both
networks use multiple outstars.1

The CPN and the avalanche use their outstars in a slightly different manner.
In the CPN, individual spatial patterns were presented to the input layer, a
winning hidden-layer unit was found, and the corresponding outstar was excited.
The outputs of the outstar were the previously learned mapping for the class of
input pattern presented.

Instead of performing a recognition function, the avalanche demonstrates
how a complex spatiotemporal pattern might be learned and recalled. An ex-
ample would be the sequence of muscle contractions and extensions that result
in the ability to play a particular piece on the piano. The pattern can be learned
as follows (refer to Figure 9.3).

1 We hasten to add that the development of the avalanche preceded that of the CPN by many years,
even though we discussed the CPN first in this text.
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MO y,(0

Figure 9.3 This figure shows Grossberg's formal avalanche structure. The
network consists of multiple outstars, all sharing their output
units. The network learns y(t) « \(t). Once it is trained, the
avalanche can replay y(t) in the proper sequence by exciting
the outstars sequentially.

Assume \(t) = ( x \ ( t ) . x 2 ( t ) , . . . , x n ( t ) ) f is the set of muscle commands
required at time t, t0 < t < t\. Activate the node labeled t0 and apply
x(<()) to be learned by the outstar's output units. The second set of com-
mands, x(to + Ai) is applied while activating the second outstar, labeled to +
At. Continue this process by activating successive outstars until all of the
muscle commands have been learned in sequence. Once learned, the en-
tire series of commands can be recalled by activation of the outstars in the
proper sequence, to, to + At, to + 2At,... ,t\, while a zero vector is applied
to the x inputs.2 Replay of the learned sequence can be initiated by stim-
ulating the to node. The t0 node then stimulates the t0 + At node, and
so forth.

For our purposes it does not matter whether the formal avalanche architec-
ture bears much resemblance to actual biological systems; the mere fact that
it represents a minimal architecture capable of learning and reproducing STPs
makes this network structure interesting in its own right. In the next section, we

-See Section 6.1 for the details on the outstar training procedure.
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shall return to a consideration of the pattern-recognition problem. We shall show
how avalanche structures can be constructed that can identify complex STPs.
Exercise 9.1: The Moonlight Sonata requires approximately 13.5 minutes to
perform. Assume that a formal avalanche structure is responsible for actuating
the muscles that enable someone to perform this piece on the piano. Assume that
the outstars are stimulated at a rate of one every 25 milliseconds. Estimate how
many outstars would be required in the avalanche. Speculate on the likelihood
that the formal avalanche is actually used in the brain for this purpose.

9.2 ARCHITECTURES OF SPATIOTEMPORAL
NETWORKS (STNS)
We shall anchor the following discussion in familiar waters by using the example
of speech recognition as the source for our STPs.

Figure 9.4 shows a simple experimental arrangement that generates STPs
from spoken words. At each instant of time, the output of the spectrum analyzer
consists of a vector whose components are the powers in the various channels.
For example, at t = t\,

is the power spectrum for the ith word at time t\. The STP for each word
consists of a sequence of vectors of the form Pt(tj). If P, is the STP for the
zth word, then

Differences in volume can be accounted for by normalization of the individual
power spectra: ||P,;(£j)|| = 1.

To complete the picture, we must specify the number of vectors in the set,
Pi. To represent a time-varying signal accurately, we must sample the power
spectrum at a frequency at least two times the bandwidth of the original signal.
Although we have restricted ourselves to speech, we can accommodate other
time-varying signals in a similar manner. /

9.2.1 STN for Speech Recognition
We shall first construct a network that is tuned to recognize a single word.
Then, we shall show how to expand the network to accommodate other words.
Figure 9.5 shows the basic structure.

To tune the network for a specific word, we must first perform a spectral
analysis while someone actually speaks the word. To tune it more generally, we
might take the average of the spectra produced by several different speakers. If
the time required to say the word is t and we must sample at a rate of v per
second, then we need m — vt spectra to represent the word, and m PEs in our
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Figure 9.4 This diagram shows the generation of power spectra from
speech. The microphone acts as a transducer producing the
electrical signal, st(t), from the sound-pressure waves. The
subscript i identifies a single word. The spectrum analyzer
measures the power contained in each of n frequency bins.
Pi\(t) is the power in frequency bin 1 for the zth spoken word.

network. Let
Pi =

be the STP for the word. Assign weight vectors to the network units according to
zi = P,(f , ) ,z2 =Pi(< 2 ) , . . . ,zm = PI (£,„), where ||Pi(t/)|| = 1. The dimension
of the weight vectors and, therefore, the number of inputs to each processing
element, is defined by the number of channels in the spectrum analyzer.

Now let's have someone repeat the word into the microphone as we apply
the resultant STP to the network to verify its response. We have not as yet
specified the processing performed by each unit, so we shall do that as we
proceed. Let Q, = {Qi(ii),Qi(£2), - - • ,Qi(*m)} be the STP from the output
of the spectrum analyzer. Assume that each Qi(^) is normalized to one. To
simplify the notation, we make the definition QH = Qi(t,)-

Each QH is applied to the inputs of every PE and is allowed to remain
there for a time t equal to the sampling interval for the spectra. After that
time, the next input vector, Qu+i is applied, and so on. During the time that a
particular input vector is present on the unit inputs, each PE dynamically adjusts
its activation and output value according to the prescription that we shall now
describe.
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Figure 9.5 The avalanche network for single-word recognition is shown.
The output of each unit is connected to each successive unit,
from left to right, with a connection strength of d, where 0 <
d < I. The dimension of the input vector is equal to the
number of channels in the spectrum analyzer, and the number
of units is equal to the number of times the power spectrum is
sampled. Weight vectors associated with each unit are denoted
by the z vectors. The network output is the single value, y. See
the text for details of the operation of this network.

Like typical PEs in other networks, the units receive a net-input value from
the dot product of the input vector and the i/nit's weight vector: in this case,
Qi, • z,, for the zth unit. In addition, each uriit receives an input signal from the
outputs of all units preceding it. By preceding, we mean those units to the left
of a given unit, as depicted in Figure 9.5. Since the weights associated with the
latter connections are all set to a constant, d < 1, the total input to the zth unit
is given by

Qu Zj + d Z^ x><
k=\

(9.1)

where x/.- is the output of the kth unit. The output of the zth unit is modeled
by a differential equation of the form

(9.2)
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In Eq. (10.2), a and b are both positive constants. The function [u]+ is defined by

u if u > 0
0 if u < 0 (9.3)

F takes on the role of a threshold value. For now, we will consider F to be some
predefined constant value. The function A(u) is called an attack function. It
is defined by the equation

A(u) = u if u > 0
cu if u < 0 (9.4)

where 0 < c < \. The attack function has the effect of causing rise and fall
times for the PE output values to differ from each other. The response of a PE
to a finite input value exceeding the threshold is illustrated in Figure 9.6.

The output of the last unit, xni, is defined as the network output value; that
is, y = xm. The equations for the network are defined such that the value of
y(t) at any time t provides a measure of how closely the STP being presented
to the network matches the one previously stored in the network.

Unlike what we assumed for typical PEs in other networks, we shall not
assume here that unit outputs can be approximated by the asymptotic values. In
fact, we shall rely heavily on the dynamic nature of the output values for the
successful operation of the network. Let's consider the case where Q\ = P\,
by which we mean that Qi, = PI(£,) for all i. We shall analyze the network's
response as we apply the input vectors of Qi in succession. Assume that F is
sufficiently large (say, 0.9) such that a fairly close match between Qi , and z, is
required before a PE produces a nonzero output.

ir=1/a
Tf=Mac

Figure 9.6 This graph shows the output of an STN PE in response to a
net-input value above threshold. The total input, /,, exceeds
the threshold value for the duration At. The time constant
for the rise is T,. = I/a, but the time constant for the fall is
Tf = 1/ac, which is longer than the rise time since c < 1. PEs
are arbitrarily made to saturate at an output value of one.
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The first input vector, Qn, matches Zi exactly, so x\ begins to rise quickly.
We shall assume that all other units remain quiescent. If Qn remains long
enough, x\ will saturate. In any case, as soon as Qn is removed and Q i 2 is
applied, x\ will begin to decay. At the same time, xi will begin to rise because
Qi2 matches the weight vector, 22. Moreover, since x\ will not have decayed
away completely, it will contribute to the positive input value to unit 2. When
Qi3 is applied, both x\ and XT_ will contribute to the input to unit 3.

This cascade continues while all input vectors are applied to the network.
Since the input vectors have been applied in the proper sequence, unit input
values tend to be reinforced by the outputs of preceding units. By the time the
final input vector is applied, the network output, represented by y — x,,,, may
already have reached saturation, even though contributions from units very early
in the network may have decayed away.

To illustrate the effects of a pattern mismatch, let's examine the situation
where the patterns of Q\ are applied in reverse order. Since Qi,,, matches z,,,,
xm will begin a quick rise toward saturation, although its output is not being
reinforced by any other units in the network. When Qi.,,,_i is applied, xn,-\
turns on and sends its output value to contribute to xm. The total input to
the mth unit is dxm-\, which, because d < 1, is unlikely to overcome the
threshold F. Therefore, x,,, will continue to decay away. By the time the last
input vector is applied, x,,, may have decayed away entirely, indicating that
the network has not recognized the STP. Note that we have assumed here that
Qi.m-i is orthogonal to the weight vector zni, and thus there is no contribution
to the input to the mth unit from the dot product of these two vectors. This
assumption is acceptable for this discussion to illustrate the concepts behind the
network operation. In practice, these vectors will not necessarily be orthogonal.

Figure 9.7 shows a graphic example of unit outputs for a pattern recognition
by a simple, four-unit STN. Results from applying the identical input vectors,
but in a random order, are shown in Figure 9.8. Notice how the activity pattern
appears to flow smoothly from left to right in the first figure.

Because of the relatively rapid rise time/ of the unit activity, followed by
a longer decay time, the STN has the property of being somewhat insensitive
to the speed at which the STP is presented. We know that different speakers
pronounce the same word at slightly different rates; thus, tolerance of time
variation is a desirable characteristic of STNs. Figure 9.9 shows the results of
presenting an STP at two different rates to the same network.

Recall that the network we have been describing is capable of recognizing
only a single STP. To distinguish words in some specified vocabulary, we would
have to replicate the network for each word that we want the system to recognize.
Figure 9.10 illustrates a system that can distinguish TV words.

There are many aspects of the speech-recognition problem that we have
overlooked in our discussion. For example, how do we account for both small
words and large words? Moreover, some words are subsets of other words;
will the system distinguish between a subset word spoken slowly and a superset
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t t t

X4 = x

Figure 9.7 This sequence (from top to bottom) shows the results from a
small STN when the input patterns are presented in the order
that matches the order of the weight vectors. Unit activities
are represented by the bar graphs above each unit. Notice
that, by the time the last input pattern is presented, the network
output, represented by the output of the rightmost unit, is high,
indicating that the STP is a close match to that pattern encoded
by the sequence of weights in the network.
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*4 = y

Figure 9.8 In this sequence, the network is the same as that shown in
Figure 9.7, as are the input patterns. In this case, however, the
input patterns are presented to the network out of sequence.
By the time the last input pattern is presented, the network
output is low, indicating that the network has not recognized
the sequence.
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t t t
}

*4 = y

Figure 9.9 This sequence shows the results from the presentation of an
STP at two different rates. The activities represented by the
unshaded bar graphs are for the case where each spatial pattern
is presented and held for a certain time, t, before the next
pattern is presented. The activities represented by the shaded
bar graphs are for the case where each spatial pattern is
presented for a time, t/2. Note that, in both cases, the network
output is high.
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Figure 9.10 A layered STN for word recognition is shown. Each layer is
tuned to recognize a single word. Each unit in each layer
receives the identical series of input vectors as a word is
spoken and analyzed by the spectrum analyzer. After each
word is presented, the largest y value indicates the layer that
most closely matched the STP.

word spoken quickly? Different words with the same ending could result in
ambiguous results. The layered architecture that we have described represents
only a conceptual foundation for a realistic speech-recognition system.

Exercise 9.2: With the system described in this section, two different STPs
having the same final pattern vector could result in a large output from the
same layer (since the rightmost unit is stimulated last in each case). Suggest
modifications to the network that could alleviate this error.
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Exercise 9.3: Define a set of specific requirements that you think should be
met by any realistic speech-recognition system. Estimate the amount of com-
putational resources that would be required by such a system, based on the
architecture described in this section. Provide your answer in terms of oper-
ations per second, where an operation can be an add or a multiply. List all
assumptions that you made to arrive at your estimate.

If we reflect on the architecture of our proposed speech-recognition sys-
tem, it may appear somewhat inefficient to assign an entire layer of PEs to
a single word. In the previous paragraph, we called attention to the fact that
some words are subsets of others, so there is bound to be some redundancy
in our system. Even at the level of individual PEs, there is likely to be a fair
amount of repetition. By taking advantage of this fact, we might be able to
reduce the computational load on our system. Figure 9.11 illustrates a simple
example. Eliminating redundant units, as shown in the figure, will increase the
efficiency of our network but may complicate the interpretation of the outputs
from individual layers. For example, in the case of a subset word, the output of
one entire layer may feed into the first unit of a layer representing the superset
word.

Rather than continue this piecemeal analysis, we shall simply conclude that,
ultimately, the most efficient network may be one in which many (or most, or
all) units are connected to many (or most, or all) other units. In the next section,
we shall describe such an architecture, and shall show a learning algorithm that
allows a time sequence to be learned by the network.

Figure 9.11 This figure shows how to eliminate a redundant unit in a
layered STN. Unit 2 on layers 1 and 2 have the same weight
vector. By reconnecting the units as shown, we can eliminate
one unit from the network.
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9.3 THE SEQUENTIAL COMPETITIVE
AVALANCHE FIELD
The network in Figure 9.12 represents the logical extrapolation from eliminating
redundant elements in the layered STN described in the previous section. The
structure is called a sequential, competitive avalanche field (SCAF) [3]. It is
illustrated here as a one-dimensional array of PEs, although it could be con-
structed as a two-dimensional array. In a two-dimensional configuration, the
SCAF resembles Kohonen's SOM described in Chapter 7. Both the SCAF and
the SOM are made up of competing units, but the mechanism for mediating that
competition differs in each case.

You should note from the architecture diagram that there are no outputs
corresponding to the y values in the layered architecture described in the pre-
vious section. This fact complicates the interpretation of the network response
to any particular STP. We shall first examine how the network responds to an
STP, then shall discuss how the weight vectors are determined.

Figure 9.12 The sequential, competitive avalanche-field architecture. The
output of each unit is connected to all other units through
the weight vectors w;. The z, are the weight vectors on
the input connections. The global parameter F mediates the
competition in the network as described in the text.
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The equations that govern the response of individual processing elements
on the SCAF are almost identical to those for the units on the layered STN. The
input to the ith node has three components, lf\ lf\ and F where

I\l) = *t Q (9.5)
/z(2) = Wi • x (9.6)

where wa = 0. F is called the system activity threshold; its value and function
shall be described shortly. The total input to a node is calculated as

/i,net - Ii ~ r (9.7)

where
Ii=ll" + dl?) (9.8)

and d represents a gain term on the contribution from other units. Typically, we
shall want 0 < d < 1.

The equation for the output of the node is given by the same attack function
that we used on the single-layer STN in the previous section:

±i = A(-ax + b[Ii - F]+)

where a and b are positive constants.
Note that the output of each unit is dependent on the current input vector,

and on the recent history of the input vectors. The parameters of the attack
function are adjusted such that the output quickly saturates in response to a
matching input vector. Furthermore, the extended decay time of node outputs
means that the network retains some knowledge of the input vectors that were
presented within some recent time interval. This feature gives the network the
ability to encode the time correlation of the input vectors. Instead of a pattern
of activity that marches across a layer, as in the case of the layered STN, a
constellation of activity develops over selected nodes in the SCAF. Figure 9.13
illustrates the response of a two-dimensional SCAF.

Once again, we shall point out the similarity between the SCAF response
and the response of the SOM from Chapter 7, the primary difference being that,
in the SOM, each unit fires and turns off before the next unit in the sequence
fires, whereas, in the SCAF, units that have previously fired decay away slowly,
so the entire pattern lingers on the network for a time.

The parameter F plays an important part in the network operation. F is
not a simple constant as in the case of the layered STN, but it varies directly
according to the total amount of output across all nodes of the network. F is
therefore a variable threshold that mediates the competition among nodes. If
recent input vectors find near matches, F rises quickly to keep the threshold
high. If recent input vectors do not find matches, F decreases. In this way,
F acts as an indicator of how closely incoming patterns match something the
network has learned to recognize. A low value of F indicates that recent input
pattern sequences are unknown to the network.
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Figure 9.13 The response of a SCAF to a series of input vectors is
shown. The vertical bars represent the output value of the
associated node. Nodes with no bars have zero output. The
constellation of activity that results can be associated with the
identity of the most recent STP input.

F is calculated from the differential equation

F = a(S-T) + /3S

where T is a positive constant, called the power-level target, and

(9.9)

is the total activity in the network. In practice, the choices of the parameters T,
a, and /? have a significant effect on the performance of the SCAF. You must
adjust these parameters experimentally to tune the network.

9.3.1 Two-Node SCAF Example
To see how the behavior of the SCAF permits the network to distinguish between
different time-sequences of patterns, we consider the simple case of a two-node
system illustrated in Figure 9.14. We desire the system to distinguish between
the two STPs, Q] = {Qn,Qi2} and Q2 = {Qi2,Qn}, where the position of
the input vector in the list indicates the order of presentation.

Let us assume that the weights on unit 1, ^\, are an exact match to the
input pattern Qn, and that those on unit 2, 22, match Qi2. This match can be
arranged through training exactly like that done for the CPN, which this part
of the SCAF resembles. Furthermore, we assume that Zi,z2 ,Qn, and Q12 are
normalized to unity, and that Z[ and Qn are orthogonal to z2 and Qi2. We will
also assume that the weight connecting the output of unit 1 to unit 2 is one, as
indicated in the figure, and the weight connecting the output of unit 2 to unit 1
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Figure 9.14 A simple two-node SCAF is shown.

is zero. The mechanism for training these weights will be described later. The
final assumption is that the initial value for F is zero.

Consider what happens when Qn is applied first. The net input to unit 1 is

-fl.net = Zi • Qn + U'12X2 - T(t)

= i + o - r«)

where we have explicitly shown gamma as a function of time. According to
Eqs. (9.2) through (9.4), x\ — ~ax\ + b(l - F), so x\ begins to increase, since
F and x\ are initially zero.

The net input to unit 2 is

/2,net = Z2 • Qn + W2\X\ ~

= 0 + Zi - T(t)

Thus, ±2 also begins to rise due to the positive contribution from x\. Since
both x\ and x2 are increasing from the start, the total activity in the network,
x\ + X2, increases quickly. Under these conditions, F(t) will begin to increase,
according to Eq. (9.9).
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After a short time, we remove Qn and present Qi2- x\ will begin to decay,
but slowly with respect to its rise time. Now, we calculate I\ nei and /2.net again:

I\ .net = Z, • Q,2

= 0 + 0 - T(t)

h.nel = Z2 ' Ql2 + W2\Xi ~ T(t)

Using Eqs. (9.2) through (9.4) again, x\ = —cax\ and ±2 = 6(1 + x\ — F),
so x\ continues to decay, but x2 will continue to rise until 1 + x\ < r(t).
Figure 9. 15(a) shows how x\ and x2 evolve as a function of time.

A similar analysis can be used to evaluate the network output for the oppo-
site sequence of input vectors. When Q|2 is presented first, x2 will increase. x\
remains at zero since /i.net = -T(t) and, thus, x\ = -cax\. The total activity
in the system is not sufficient to cause T(t) to rise.

When Qn is presented, the input to unit 1 is I\ = 1. Even though x2 is
nonzero, the connection weight is zero, so x2 does not contribute to the input
to unit 1. x\ begins to rise and T(t) begins to rise in response to the increasing
total activity. In this case, F does not increase as much as it did in the first
example. Figure 9.15(b) shows the behavior of x\ and x2 for this example. The
values of F(t) for both cases are shown in Figure 9.15(c). Since T(t) is the
measure of recognition, we can conclude that Qn — > Qi2 was recognized, but
Qi2 — * Qn was not.

9.3.2 Training the SCAF
As mentioned earlier, we accomplish training the weights on the connections
from the inputs by methods already described for other networks. These weights
encode the spatial part of the STP. We have drawn the analogy between the SOM
and the spatial portion of the STN. In fact, a feood method for training the spatial
weights on the SCAF is with Kohonen's clustering algorithm (see Chapter 7).
We shall not repeat the discussion of that trailing method here. We shall instead
concentrate on the training of the temporal part of the SCAF.

Encoding the proper temporal order of the spatial patterns requires training
the weights on the connections between the various nodes. This training uses the
differential Hebbian learning law (also referred to as the Kosko-Klopf learning
law):

Wij = (-cwij + dxiXj)U(±i)U(-Xj) (9.10)

where c and d are positive constants, and

_ (
~ [

1 s >0
0 s < 0
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Figure 9.15 These figures illustrate the output response of a 2-node SCAF.
(a) This graph shows the results of a numerical simulation of
the two output values during the presentation of the sequence
Qn —* Qi2- The input pattern changes at t = 17. (b) This
graph shows the results for the presentation of the sequence
Qi2 —> Qn- (c) This figure shows how the value of F evolves
in each case. FI is for the case shown in (a), and F2 is for
the case shown in (b).

Without the U factors, Eq. (9.10) resembles the Grossberg outstar law. The
U factors ensure that learning can occur (wjj is nonzero) only under certain
conditions. These conditions are that x, is increasing (x, > 0) at the same time
that Xj is decreasing (-±j > 0). When these conditions are met, both U factors
will be equal to one. Any other combination of ±j and Xj will cause one, or
both, of the Us to be zero.

The effect of the differential Hebbian learning law is illustrated in Fig-
ure 9.16, which refers back to the two-node SCAF in Figure 9.14. We want
to train the network to recognize that pattern Qn precedes pattern Qi2- In the
example that we did, we saw that the proper response from the network was
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z, • Q11

x. > 0'

Figure 9.16 This figure shows the results of a sequential presentation of
Qn followed by Qi2- The net-input values of the two units are
shown, along with the activity of each unit. Notice that we
still consider that x\ > 0 and ±2 > 0 throughout the periods
indicated, even though the activity value is hard-limited to a
maximum value of one. The region R indicates the time for
which x\ < 0 and ±2 > 0 simultaneously. During this time
period, the differential Hebbian learning law causes w2\ to
increase.

achieved if w\2 = 0 while w2\ = 1. Thus, our learning law must be able to
increase w2\ without increasing w\2. Referring to Figure 9.16, you will see that
the proper conditions will occur if we present the input vectors in their proper
sequence during training. If we train the network by presenting Qu followed
by Qi2, then x2 will be increasing while x\ is decreasing, as indicated by the
region, R, in Figure 9.16. The weight, w\2, remains at zero since the conditions
are never right for it to learn. The weight, w2\, does learn, resulting in the
configuration shown in Figure 9.14.

9.3.3 Time-Dilation Effects
The output values of nodes in the SCAF network decay slowly in time with
respect to the rate at which new patterns are presented to the network. Viewed
as a whole, the pattern of output activity across all of the nodes varies on a time
scale somewhat longer than the one for the input patterns. This is a time-dilation
effect, which can be put to good use.
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Node output values

SCAF layer

Figure 9.17 This representation of a SCAF layer shows the output values
as vertical lines.

Figure 9.17 shows a representation of a SCAF with circles as the nodes. The
vertical lines represent hypothetical output values for the nodes. As the input
vectors change, the output of the SCAF will change: New units may saturate
while others decay, although this decay will occur at a rate slightly slower than
the rate at which new input vectors are presented. For STPs that are sampled
frequently—say, every few milliseconds—the variation of the output values
may still be too quick to be followed by a human observer. Suppose, however,
that the output values from the SCAF were themselves used as input vectors
to another SCAF. Since these outputs vary at a slower rate than the original
input vectors, they can be sampled at a lower frequency. The output values of
this second SCAF would decay even more slowly than those of the previous
layer. Conceptually, this process can be continued until a layer is reached
where the output patterns vary on a time scale that is equal to the total time
necessary to present a complete sequence of patterns to the original network.
The last output values would be essentially stationary. A single set of output
values from the last slab would represent an entire series of patterns making up
one complete STP. Figure 9.18 shows such a system based on a hierarchy of
SCAF layers.

The stationary output vector can be used as the input vector to one of the
spatial pattern-classification networks. The spatial network can learn to classify
the stationary input vectors by the methods discussed previously. A complete
spatiotemporal pattern-recognition and pattern-classification system can be con-
structed in this manner.

Exercise 9.4: No matter how fast input vectors are presented to a SCAF, the
outputs can be made to linger if the parameters of the attack function are ad-
justed such that, once saturated, a node output decays very slowly. Such an
arrangement would appear to eliminate the need for the layered SCAF architec-
ture proposed in the previous paragraphs. Analyze the response of a SCAF to
an arbitrary STP in the limiting case where saturated nodes never decay.
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Figure 9.18 This hierarchy of SCAF fayers is used for spatiotemporal
pattern classification. The outputs from each layer are
sampled at a rate slower man the rate at which inputs to
that layer change. The output from the top layer, essentially
a spatial pattern, can be used as an input to an associative
network that classifies the original STP.

9.4 APPLICATIONS OF STNS
We suggested earlier in this chapter that STNs would be useful in areas such as
speech recognition, radar analysis, and sonar-echo classification. To date, the
dearth of literature indicates that little work has been done with this promising
architecture.
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A prototype sonar-echo classification system was built by General Dynamics
Corporation using the layered STN architecture described in Section 9.2 [8]. In
that study, time slices of the incoming sonar signals were converted to power
spectra, which were then presented to the network in the proper time sequence.
After being trained on seven civilian boats, the network was able to identify
correctly each of these vessels from the latter's passive sonar signature.

The developers of the SCAF architecture experimented with a 30 by 30
SCAF, where outputs from individual units are connected randomly to other
units. Apparently, the network performance was encouraging, as the developers
are reportedly working on new applications. Details of those applications are
not available at the time of this writing.

9.5 STN SIMULATION
In this section, we shall describe the design of the simulator for the spatiotem-
poral network. We shall focus on the implementation of a one-layer STN. and
shall show how that STN can be extended to encompass multilayer (and multi-
network) STN architectures. The implementation of the SCAF architecture is
left to you as an exercise.

We begin this section, as we have all previous simulation discussions, with
a presentation of the data structures used to construct the STN simulator. From
there, we proceed with the development of the algorithms used to perform signal
processing within the simulator. We close this section with a discussion of how
a multiple STN structure might be created to record a temporal sequence of
related patterns.

9.5.1 STN Data Structures
The design of the STN simulator is reminiscent of the design we used for the
CPN in Chapter 6. We therefore recommend that you review Section 6.4 prior to
continuing here. The reason for the similarity between these two networks is that
both networks fit precisely the processing structure we defined for performing
competitive processing within a layer of units.3 The units in both the STN
and the competitive layer of the CPN operate by processing normalized input
vectors, and even though competition in the CPN suppresses the output from
all but the winning unit(s), all network units generate an output signal that is
distributed to other PEs.

The major difference between the competitive layer in the CPN and the
STN structure is related to the fact that the output from each unit in the STN
becomes an input to all subsequent network units on the layer, whereas the
lateral connections in the CPN simulation were handled by the host computer

'Although the STN is not competitive in the same sense that the hidden layer in the CPN is. we
shall see that STN units respond actively to inputs in much the same way that CPN hidden-layer
units respond.
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system, and never were actually modeled. Similarly, the interconnections be-
tween units on the layer in the STN can be accounted for by the processing
algorithms performed in the host computer, so we do not need to account for
those connections in the simulator design.

Let us now consider the top-level data structure needed to model an STN.
As before, we will construct the network as a record containing pointers to
the appropriate lower-level structures, and containing any network specific data
parameters that are used globally within the network. Therefore, we can create
an STN structure through the following record declaration:

record STN =
begin
UNITS : "layer;
a, b, c, d : float;
gamma : float;
upper : "STN;
lower : "STN;
y : float;

end record;

{pointer to network units}
{network parameters}
{constant value for gamma}
{pointer to next STN}
{pointer to previous STN}
{output of last STN element}

Notice that, as illustrated in Figure 9.19, this record definition differs from
all previous network record declarations in that we have included a means for

outputs weights
To higher-level
STN networks

To lower-level
STN networks

Figure 9.19 The data structure of the STN simulator is shown. Notice that,
in this network structure, there are pointers to other network
records above and below to accommodate multiple STNs. In
this manner, the same input data can be propagated efficiently
through multiple STN structures.
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stacking multiple networks through the use of a doubly linked list of network
record pointers. We include this capability for two reasons:

1. As described previously, a network that recognizes only one pattern is not
of much use. We must therefore consider how to integrate multiple networks
as part of our simulator design.

2. When multiple STNs are used to time dilate temporal patterns (as in the
SCAF), the activity patterns of the network units can be used as input
patterns to another network for further classification.

Finally, inspection of the STN record structure reveals that there is nothing
about the STN that will require further modifications or extensions to the generic
simulator structure we proposed in Chapter 1. We are therefore free to begin
developing STN algorithms.

9.5.2 STN Algorithms
Let us begin by considering the sequence of operations that must be performed
by the computer to simulate the STN. Using the speech-recognition example
as described in Section 9.2.1 as the basis for the processing model, we can
construct a list of the operations that must be performed by the STN simulator.

1. Construct the network, and initialize the input connections to the units such
that the first unit in the layer has the first normalized input pattern contained
in its connections, the second unit has the second pattern, and so on.

2. Begin processing the test pattern by zeroing the outputs from all units in
the network (as well as the STN.y value, since it is a duplicate copy of
the output value from the last network unit), and then applying the first
normalized test vector to the input of the STN.

3. Calculate the inner product between the input test vector and the weight
vector for the first unprocessed unit.

4. Compute the sum of the outputs from all units on the layer from the first
to the previous units, and multiply the result by the network d term.

5. Add the result from step 3 to the result from step 4 to produce the input
activation for the unit.

6. Subtract the threshold value (F) from the result of step 5. If the result is
greater than zero, multiply it by the network b term; otherwise, substitute
zero for the result.

7. Multiply the negative of the network a term by the previous output from
the unit, and add the result to the value produced in step 6.

8. If the result of step 7 was less than or equal to zero, multiply it by the
network c term to produce x. Otherwise, use the result of step 7 without
modification as the value for x.
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9. Compute the attack value for the unit by multiplying the x value calculated
in step 8 by a small value indicating the network update rate (6t) to produce
the update value for the unit output. Update the unit output by adding the
computed attack value to the current unit output value.

10. Repeat steps 3 through 9 for each unit in the network.
11. Repeat steps 3 through 10 for the duration of the time step, Ai. The number

of repetitions that occur during this step will be a function of the sampling
frequency for the specific application.

12. Apply the next time-sequential test vector to the network input, and repeat
steps 3 through 11.

13. After all the time-sequential test vectors have been applied, use the output
of the last unit on the layer as the output value for the network for the given
STP.

Notice that we have assumed that the network units update at a rate much
more rapid than the sampling rate of the input (i.e., the value for fit is much
smaller than the value of At). Since the actual sampling frequency (given by
-^r) will always be application dependent, we shall assume that the network
must update itself 100 times for each input pattern. Thus, the ratio of 6t to A<
is 0.01, and we can use this ratio as the value for 6t in our simulations.

We shall also assume that you will provide the routines necessary to perform
the first two operations in the list. We therefore begin developing the simulator
algorithms with the routine needed to propagate a given input pattern vector to a
specified unit on the STN. This routine will encompass the operations described
in steps 3 through 5.

function activation (net: STN; unumber:integer;
invec:"float[])

return float;
{propagate the given input vector to the STN unit number}

var i : integer; I {iteration counter}
sum : float; {accumulator}
others : float; {unit output accumulator}
connects : ~float[]; {locate connection array}
unit : "float[]; {locate unit outputs}

begin
sum = 0; {initialize accumulator}
others = 0; {ditto}
unit = net.UNITS".OUTS; {locate unit arrays}
connects = net.UNITS".WEIGHTS[unumber];

for i = 1 to length(invec) {for all input elements}
do {compute sum of products}
sum = sum + connects[i} * invec[i];

end do;
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for i = 1 to (unumber - 1) {sum other units outputs}
do

others = others + unit[i];
end do;

return (sum + net.d * others); {return activation}
end function;

The activation routine will allow us to compute the input-activation
value for any unit in the STN. What we now need is a routine that will convert
a given input value to the appropriate output value for any network unit. This
service will be performed by the Xdot function, which we shall now define.
Note that this routine performs the functions specified in steps 6 through 8 in
the processing list above for any STN unit.

function Xdot (net:STN; unumber:integer; inval:float)
return float;

{convert the input value for the specified unit to
output value}

var outval : float;
unit : "float[];

begin
unit = net.UNITS".OUTS; {access unit output array}
outval = inval - net.gamma; {threshold unit input}

if (outval > 0) {if unit is on}
then outval = outval * net.b {scale the unit output}
else outval = 0; {else unit is off}

outval = outval + unit[unumber] * -net.a;

if (outval <= 0) {factor in decay term}
then outval = outval * net.c;

return (outval); {return delta x value}
end function;

All that remains at this point is to define a top-level procedure to tie together
the signal-propagation routines, and to iterate for every unit in the network.
These functions are embodied in the following procedure.

procedure propagate (net:STN; invec:"float[]);
{propagate an input vector through the STN}

const dt = 0.01; {network update rate}

var i : integer; {iteration counter}
how_many : integer; {number of units in STN}
dx : float; {computed Xdot value}
inval : float; {input activation}
unit : "float[]; {locate unit output array}
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begin
unit = net.UNITS".OUTS; {locate the output array}
how_many = length(unit); {save number of units}

for i = 1 to how_many {for all units in the STN}
do {generate output from input}
inval = activation (net, i, invec);
dx = Xdot (net, i, inval);
unitfi] = unitfi] + (dx * dt);

end do;

net.y = unit[how_many]; {save last unit output}
end procedure;

The propagate procedure will perform a complete signal propagation
of one input vector through the entire STN. For a true spatiotemporal pattern-
classification operation, propagate would have to be performed many times4

for every Q; patterns that compose the spatiotemporal pattern to be processed.
If the network recognized the temporal pattern sequence, the value contained in
the STN. y slot would be relatively high after all patterns had been propagated.

9.5.3 STN Training
In the previous discussion, we considered an STN that was trained by initializa-
tion. Training the network in this manner is fine if we know all the training vec-
tors prior to building the network simulator. But what about those cases where
it is preferable to defer training until after the network is operational? Such
occurrences are common when the training environment is rather large, or when
training-data acquisition is cumbersome. In such cases, is it possible to train an
STN to record (and eventually to replay) data patterns collected at run time?

The answer to this question is a qualified "yes." The reason it is qualified
is that the STN is not undergoing training in the same sense that most of the
other networks described in this text are trained. Rather, we shall take the
approach that an STN can be constructed dynamically, thus simulating the effect
of training. As we have seen, the standard STN is constructed and initialized to
contain the normalized form of the pattern to be encoded at each timestep in the
connections of the individual network units. To train an STN, we will simply
cause our program to create a new STN whenever a new pattern to be learned
is available. In this manner, we construct specialized STNs that can then be
exercised using all of the algorithms developed previously.

The only special consideration is that, with multiple networks in the com-
puter simultaneously, we must take care to ensure that the networks remain
accessible and consistent. To accomplish this feat, we shall simply link together

4lt would have to be performed essentially ^j- times, where At is the inverse of the sampling
frequency for the application, and 8t is the time that it takes the host computer to perform the
propagate routine one time.
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the network structures in a doubly linked list that a top-level routine can then
access sequentially. A side benefit to this approach is that we have now cre-
ated a means of collecting a number of related STPs, and have grouped them
together sequentially. Thus, we can utilize this structure to encode (and recog-
nize) a sequence of related patterns, such as the sonar signatures of different
submarines, using the output from the most active STN as an indication of the
type of submarine.

The disadvantage to the STN, as mentioned earlier, is that it will require
many concurrent STN simulations to begin to tackle problems that can be con-
sidered nontrivial.5 There are two approaches to solving this dilemma, both of
which we leave to you as exercises. The first alternative method is to eliminate
redundant network elements whenever possible, as was illustrated in Figure 9.11
and described in the previous section. The second method is to implement the
SCAF network, and to combine many SCAF's with an associative-memory net-
work (such as a BPN or CPN, as described in Chapters 3 and 6 respectively) to
decode the output of the final SCAF.

Programming Exercises
9.1. Code the STN simulator and verify its operation by constructing multiple

STNs, each of which is coded to recognize a letter sequence as a word. For
example, consider the sequence "N E U R A L" versus the sequence "N E
U R O N." Assume that two STNs are constructed and initialized such that
each can recognize one of these two sequences. At what point do the STNs
begin to fail to respond when presented with the wrong letter sequence?

9.2. Create several STNs that recognize letter sequences corresponding to dif-
ferent words. Stack them to form simple sentences, and determine which
(if any) STNs fail to respond when presented with word sequences that are
similar to the encoded sequences.

9.3. Construct an STN simulator that removes the redundant nodes for the word-
recognition application described in Programming Exercise 9.1. Show list-
ings for any new (or modified) data structures, as well as for code. Draw a
diagram indicating the structure of the network. Show how your new data
structures lend themselves to performing this simulation.

9.4. Construct a simulator for the SCAF network. Show the data structures
required, and a complete listing of code required to implement the network.
Be sure to allow multiple SCAFs to feed one another, in order to stack
networks. Also describe how the output from your SCAF simulator would
tie into a BPN simulator to perform the associative-memory function at the
output.

5That is not to say that the STN should be considered a trivial network. There are many applications
where the STN might provide an excellent solution, such as voiceprint classification for controlling
access to protected environments.
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9.5. Describe a method for training a BPN simulator to recognize the output of
a SCAF. Remember that training in a BPN is typically completed before
that network is first applied to a problem.

Suggested Readings
There is not a great deal of information available about Hecht-Nielsen's STN
implementation. Aside from the papers cited in the text, you can refer to his
book for additional information [4].

On the subject of STP recognition in general, and speech recognition in
particular, there are a number of references to other approaches. For a gen-
eral review of neural networks for speech recognition, see the papers by Lipp-
mann [5, 6, 7]. For other methods see, for example, Grajski et al. [1] and
Williams and Zipser [9].
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C H A P T E R

The Neocognitron

ANS architectures such as backpropagation (see Chapter 3) tend to have general
applicability. We can use a single network type in many different applications
by changing the network's size, parameters, and training sets. In contrast, the
developers of the neocognitron set out to tailor an architecture for a specific
application: recognition of handwritten characters. Such a system has a great
deal of practical application, although, judging from the introductions to some
of their papers, Fukushima and his coworkers appear to be more interested in
developing a model of the brain [4, 3].' To that end, their design was based
on the seminal work performed by Hubel and Weisel elucidating some of the
functional architecture of the visual cortex.

We could not begin to provide a complete accounting of what is known
about the anatomy and physiology of the mammalian visual system. Neverthe-
less, we shall present a brief and highly simplified description of some of that
system's features as an aid to understanding thejbasis of the neocognitron design.

Figure 10.1 shows the main pathways for neurons leading from the retina
back to the area of the brain known as the viiual, or striate, cortex. This area
is also known as area 17. The optic nerve ii made up of axons from nerve
cells called retinal ganglia. The ganglia receive stimulation indirectly from the
light-receptive rods and cones through several intervening neurons.

Hubel and Weisel used an amazing technique to discern the function of the
various nerve cells in the visual system. They used microelectrodes to record
the response of individual neurons in the cortex while stimulating the retina with
light. By applying a variety of patterns and shapes, they were able to determine
the particular stimulus to which a neuron was most sensitive.

The retinal ganglia and the cells of the lateral geniculate nucleus (LGN)
appear to have circular receptive fields. They respond most strongly to circular

'This statement is intended not as a negative criticism, but rather as justification for the ensuing,
short discussion of biology.
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Figure 10.1 Visual pathways from the eye to the primary visual cortex
are shown. Some nerve fibers from each eye cross over into
the opposite hemisphere of the brain, where they meet nerve
fibers from the other eye at the LGN. From the LGN, neurons
project back to area 17. From area 17, neurons project into
other cortical areas, other areas deep in the brain, and also
back to the LGN. Source: Reprinted with permission ofAddison-
Wesley Publishing Co., Reading, MA, from Martin A. Fischler
and Oscar Firschein, Intelligence: The Eye, the Brain, and the
Computer, © 1987 by Addison-Wesley Publishing Co.

spots of light of a particular size on a particular part of the retina. The part
of the retina responsible for stimulating a particular ganglion cell is called the
receptive field of the ganglion. Some of these receptive fields give an excitatory
response to a centrally located spot of light, and an inhibitory response to a
larger, more diffuse spot of light. These fields have an on-center off-surround
response characteristic (see Chapter 6, Section 6.1). Other receptive fields have
the opposite characteristic, with an inhibitory response to the centrally located
spot—an off-center on-surround response characteristic.
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The visual cortex itself is composed of six layers of neurons. Most of the
neurons from the LGN terminate on cells in layer IV. These cells have circu-
larly symmetric receptive fields like the retinal ganglia and the cells of the LGN.
Further along the pathway, the response characteristic of the cells begins to in-
crease in complexity. Cells in layer IV project to a group of cells directly above
called simple cells. Simple cells respond to line segments having a particular
orientation. Simple cells project to cells called complex cells. Complex cells
respond to lines having the same orientation as their corresponding simple cells,
although complex cells appear to integrate their response over a wider receptive
field. In other words, complex cells are less sensitive to the position of the line
on the retina than are the simple cells. Some complex cells are sensitive to line
segments of a particular orientation that are moving in a particular direction.

Cells in different layers of area 17 project to different locations of the brain.
For example, cells in layers II and III project to cells in areas 18 and 19. These
areas contain cells called hypercomplex cells. Hypercomplex cells respond to
lines that form angles or corners and that move in various directions across the
receptive field.

The picture that emerges from these studies is that of a hierarchy of cells
with increasingly complex response characteristics. It is not difficult to extrap-
olate this idea of a hierarchy into one where further data abstraction takes place
at higher and higher levels. The neocognitron design adopts this hierarchical
structure in a layered architecture, as illustrated schematically in Figure 10.2.

"C1 US3

Figure 10.2 The neocognitron hierarchical structure is shown. Each box
represents a level in the neocognitron comprising a simple-
cell layer, usi, and a complex-cell layer, Ua, where i is
the layer number. U0 represents signals originating on the
retina. There is also a suggested mapping to the hierarchical
structure of the brain. The network concludes with single
cells that respond to complex visual stimuli. These final cells
are often called grandmother cells after the notion that there
may be some cell in your brain that responds to complex
visual stimuli, such as a picture of your grandmother.
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We remind you that the description of the visual system that we have pre-
sented here is highly simplified. There is a great deal of detail that we have
omitted. The visual system does not adhere to a strict hierarchical structure
as presented here. Moreover, we do not subscribe to the notion that grand-
mother cells per se exist in the brain. We know from experience that strict
adherence to biology often leads to a failed attempt to design a system to per-
form the same function as the biological prototype: Flight is probably the most
significant example. Nevertheless, we do promote the use of neurobiological
results if they prove to be appropriate. The neocognitron is an excellent ex-
ample of how neurobiological results can be used to develop a new network
architecture.

10.1 NEOCOGNITRON ARCHITECTURE
The neocognitron design evolved from an earlier model called the cognitron,
and there are several versions of the neocognitron itself. The one that we shall
describe has nine layers of PEs, including the retina layer. The system was
designed to recognize the numerals 0 through 9, regardless of where they are
placed in the field of view of the retina. Moreover, the network has a high degree
of tolerance to distortion of the character and is fairly insensitive to the size of
the character. This first architecture contains only feedforward connections.
In Section 10.3.2, we shall describe a network that has feedback as well as
feedforward connections.

10.1.1 Functional Description
The PEs of the neocognitron are organized into modules that we shall refer to
as levels. A single level is shown in Figure 10.3. Each level consists of two
layers: a layer of simple cells, or S-cells, followed by a layer of complex
cells, or C-cells. Each layer, in turn, is divided into a number of planes,
each of which consists of a rectangular array of PEs. On a given level, the
S-layer and the C-layer may or may not have the same number of planes.
All planes on a given layer will have the same number of PEs; however, the
number of PEs on the S-planes can be different from the number of PEs on
the C-planes at the same level. Moreover, the number of PEs per plane can
vary from level to level. There are also PEs called Vs-cells and Vc-cells that
are not shown in the figure. These elements play an important role in the
processing, but we can describe the functionality of the system without reference
to them.

We construct a complete network by combining an input layer, which we
shall call the retina, with a number of levels in a hierarchical fashion, as shown
in Figure 10.4. That figure shows the number of planes on each layer for the
particular implementation that we shall describe here. We call attention to the
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Figure 10.3 A single level of a neocognitron is shown. Each level consists
of two layers, and each layer consists of a number of planes.
The planes contain the PEs in a rectangular array. Data pass
from the S-layer to the C-layer through connections that are
not shown here. In neocognitrons having feedback, there also
will be connections from the C-layer to the S-layer.

fact that there is nothing, in principle, that dictates a limit to the size of the
network in terms of the number of levels.

The interconnection strategy is unlike that of networks that are fully in-
terconnected between layers, such as the backpropagation network described
in Chapter 3. Figure 10.5 shows a schematic illustration of the way units are
connected in the neocognitron. Each layer of simple cells acts as a feature-
extraction system that uses the layer preceding it as its input layer. On the
first S-layer, the cells on each plane are sensitive to simple features on the
retina—in this case, line segments at different orientation angles. Each S-
cell on a single plane is sensitive to the same feature, but at different loca-
tions on the input layer. S-cells on different planes respond to different fea-
tures.

As we look deeper into the network, the S-cells respond to features at higher
levels of abstraction; for example, corners with intersecting lines at various
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Figure 10.4 The figure shows the basic organization of the neocognitron
for the numeral-recognition problem. There are nine layers,
each with a varying number of planes. The size of each layer,
in terms of the number of processing elements, is given below
each layer. For example, layer Uc2 has 22 planes of 7 x 7
processing elements arranged in a square matrix. The layer
of C-cells on the final level is made up of 10 planes, each
of which has a single element. Each element corresponds to
one of the numerals from 0 to 9. The identification of the
pattern appearing on the retina is made according to which
C-cell on the final level has the strongest response.

angles and orientations. The C-cells integrate the responses of groups of S-
cells. Because each S-cell is looking for the same feature in a different location,
the C-cells' response is less sensitive to the exact location of the feature on the
input layer. This behavior is what gives the neocognitron its ability to identify
characters regardless of their exact position in the field of the retina. By the
time we have reached the final layer of C-cells, the effective receptive field

M
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S-layer

(a)
C-layer C-layer

Figure 10.5 This diagram is a schematic representation of the
interconnection strategy of the neocognitron. (a) On the first
level, each S unit receives input connections from a small
region of the retina. Units in corresponding positions on all
planes receive input connections from the same region of
the retina. The region from which an S-cell receives input
connections defines the receptive field of the cell, (b) On
intermediate levels, each unit on an s-plane receives input
connections from corresponding locations on all C-planes in
the previous level. C-eelIs have connections from a region of
S-cells on the S level preceding it. If the number of C-planes
is the same as that of S-planes at that level, then each C-cell
has connections from S-cells on a single s-plane. If there
are fewer C-planes than S-planes, some C-cells may receive
connections from more than one S-plane.

of each cell is the entire retina. Figure 10.6 shows the character identification
process schematically.

Note the slight difference between the first S -layer and subsequent S -layers
in Figure 10.5. Each cell in a plane on the first S-layer receives inputs from
a single input layer—namely, the retina. On subsequent layers, each S-cell
plane receives inputs from each of the C-cell planes immediately preceding
it. The situation is slightly different for the C-cell planes. Typically, each
cell on a C-cell plane examines a small region of S-cells on a single S-cell
plane. For example, the first C-cell plane on layer 2 would have connections
to only a region of S-cells on the first S-cell plane of the previous layer. Ref-
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Figure 10.6 This figure illustrates how the neocognitron performs
its character-recognition function. The neocognitron
decomposes the input pattern into elemental parts consisting
of line segments at various angles of rotation. The system
then integrates these elements into higher-order structures at
each successive level in the network. Cells in each level
integrate the responses of cells in the previous level over a
finite area. This behavior gives the neocognitron its ability to
identify characters regardless of their exact position or size
in the field of view of the retina. Source: Reprinted with
permission from Kunihiko Fukushima, "A neural network for
visual pattern recognition." IEEE Computer, March 1988. ©
1988 IEEE.

erence back to Figure 10.4 reveals that there is not necessarily a one-to-one
correspondence between C-cell planes and S-cell planes at each layer in the
system. This discrepancy occurs because the system designers found it advan-
tageous to combine the inputs from some S-planes to a single C-plane if the
features that the S-planes were detecting were similar. This tuning process
is evident in several areas of the network architecture and processing equa-
tions.

The weights on connections to S-cells are determined by a training process
that we shall describe in Section 10.2.2. Unlike in many other network architec-
tures (such as backpropagation), where each unit has a different weight vector,
all S-cells on a single plane share the same weight vector. Sharing weights
in this manner means that all S-cells on a given plane respond to the identical
feature in their receptive fields, as we indicated. Moreover, we need to train
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only one S-cell on each plane, then to distribute the resulting weights to the
other cells.

The weights on connections to C-cells are not modifiable in the sense that
they are not determined by a training process. All C-cell weights are usually
determined by being tailored to the specific network architecture. As with S-
planes, all cells on a single C-plane share the same weights. Moreover, in some
implementations, all C-planes on a given layer share the same weights.

10.2 NEOCOGNITRON DATA PROCESSING
In this section we shall discuss the various processing algorithms of the neocog-
nitron cells. First we shall look at the S-cell data processing including the
method used to train the network. Then, we shall describe processing on the
C-layer.

10.2.1 5-Cell Processing
We shall first concentrate on the cells in a single plane of \Js\, as indicated in
Figure 10.7. We shall assume that the retina, layer Uo, is an array of 19 by 19
pixels. Therefore, each Usi plane will have an array of 19 by 19 cells. Each
plane scans the entire retina for a particular feature. As indicated in the figure,
each cell on a plane is looking for the identical feature but in a different location
on the retina. Each S-cell receives input connections from an array of 3 by 3
pixels on the retina. The receptive field of each S-cell corresponds to the 3 by 3
array centered on the pixel that corresponds to the cell's location on the plane.

When building or simulating this network, we must make allowances for
edge effects. If we surround the active retina with inactive pixels (outputs al-
ways set to zero), then we can automatically account for cells whose fields
of view are centered on edge pixels. Neighboring S-cells scan the retina ar-
ray displaced by one pixel from each otlier. In this manner, the entire im-
age is scanned from left to right and top to bottom by the cells in each S-
plane.

A single plane of Vc-cells is associated with the S-layer, as indicated in
Figure 10.7. The V^-plane contains the same number of cells as does each S-
plane. Vc-cells have the same receptive fields as the S-cells in corresponding
locations in the plane. The output of a Vc-cell goes to a single S-cell in every
plane in the layer. The S-cells that receive inputs from a particular Vc-cell
are those that occupy a position in the plane corresponding to the position of
the Vc-cell. The output of the Vc-cell has an inhibitory effect on the S-cells.
Figure 10.8 shows the details of a single S-cell along with its corresponding
inhibitory cell.

Up to now, we have been discussing the first S-layer, in which cells receive
input connections from a single plane (in this case the retina) in the previous
layer. For what follows, we shall generalize our discussion to include the case
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S -layer

Retina

Figure 10.7 The retina, layer U0, is a 19-by-19-pixel array, surrounded by
inactive pixels to account for edge effects as described in the
text. One of the S-planes is shown, along with an indication
of the regions of the retina scanned by the individual cells.
Associated with each S-layer in the system is a plane of vr-
cells. These cells receive input connections from the same
receptive field as do the S-cells in corresponding locations in
the plane. The processing done by these Vc-cells is described
in the text.

of layers deeper in the network where an S-cell will receive input connections
from all the planes on the previous C-layer.

Let the index k/ refer to the kth plane on level 1. We can label each cell
on a plane with a two-dimensional vector, with n indicating its position on the
plane; then, we let the vector v refer to the relative position of a cell in the
previous layer lying in the receptive field of unit n. With these definitions, we
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Input connections
from retina

S-cell
output

Figure 10.8 A single 5-cell and corresponding inhibitory cell on the Us\
layer are shown. Each unit receives the identical nine inputs
from the retina layer. The weights, a,, on the S-ce\\ determine
the feature for which theicell is sensitive. Both the a, weights
on connections from the retina, and the weight, b, from the
Vr-cells are modifiable and are determined during a training
process, as described in tfie text.

can write the following equation for the output of any 5-cell:

v)

where the function 4> is a linear threshold function given by

( x x>0
(X)=\0X<0<K

(10.1)

(10.2)

We have used the dot notation to indicate ordinary multiplication in Eq. (10.1),
to enhance the readability of that expression.
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Let's dissect these equations in some detail. The inner summation of
Eq. (10.1) is the usual sum-of-products calculation of inputs, t /c ,_,(fc/- i . n + v),
and weights, a / ( f c ( _ i , v. A;/). The sum extends over all units in the previous C-
layer that lie within the receptive field of unit n. Those units are designated
by the vector n + v. Because we shall assume that all weights and cell output
values are nonnegative, the sum-of-products calculation yields a measure of how
closely the input pattern matches the weight vector on a unit.2 We have labeled
the receptive field AI, indicating that the geometry of the receptive field is the
same for all units on a particular layer. The outer summation of Eq. (10.1)
extends over all of the K\-\ planes of the previous C-layer. In the case of Us\ ,
there would be no need for this outer summation.

The product, bi(ki) • Vc,(n), in the denominator of Eq. (10.1), represents the
inhibitory contribution of the Vc-cell. The parameter r/, where 0 < r; < oo,
determines the cell's selectivity for a specific pattern. The factor r / /( l + r()
goes from zero to one as r/ goes from zero to infinity. Thus, for small values
of r;, the denominator of Eq. (10.1) could be relatively small compared to the
numerator even if the input pattern did not exactly match the weight vector. This
situation could result in a positive argument to the <j) function. If r/ were large,
then the match between the input pattern and the weights in the numerator of
Eq. (10.1) would have to be more exact to overcome the inhibitory effects of the
Vc-cell input. Notice also that this same rt parameter appears as a multiplicative
factor of the 0 function. If r/ is small, and cell selectivity is small, this factor
ensures that the output from the cell itself cannot become very large.

We can view the function of r; in another way. We rewrite the argument
of the function in Eq. (10.1) as

e - [n / ( l+r t ) ] / t

where e is the net excitatory term and h is the net inhibitory term. According
to Eq. (10.2), the S-cell output will be nonzero only if

or,
e
h>

Thus, the quantity r\ determines the minimum relative strength of excitation
versus inhibition that will result in a nonzero output of the unit. As r; increases,
r j / ( l + r;) —> 1. Therefore, a larger r\ requires a larger excitation relative to
inhibition for a nonzero output.

2Although we have not said anything about normalizing the input vector or the weights, we could
add this condition to our system design. Then, we could talk about closeness in terms of the angle
between the input and weight vectors, as we did in Chapter 6.
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Notice that neither of the weight expressions, ai(ki-\,\,ki), or bi(ki) de-
pend explicitly on the position, n, of the cell. Remember that all cells on a
plane share the same weights, even the &/(&;) weights, which we did not discuss
previously.

We must now specify the output from the inhibitory nodes. The Ve-cell at
position n has an output value of

KI-,
^ 5^c,(v).f/^ _ _ ( * , _ , , n + v) (10.3)

where c/(v) is the weight on the connection from a cell at position v of the
Vc -cell's receptive field. These weights are not subject to training. They can
take the form of any normalized function that decreases monotonically as the
magnitude of v increases. One such function is [7]

c,(v) = a['«-> (10.4)

where r'(v) is the normalized distance between the cell located at position v and
the center of the receptive field, and a; is a constant less than 1 that determines
the rate of falloff with increasing distance. The factor C(l) is a normalization
constant:

The condition that the weights are norrnalized can be expressed as

K,-t \

E E <\(v) = ' (1°6)
A - , _ | veA,

which is satisfied by Eqs. (10.4) and (10.5).3 The form of the c/(v) function
also affects the S-cells pattern selectivity by favoring patterns that are centrally
located in the receptive field. We shall see in the next section that this same
function modulates the weights, a j ( f c / _ i , v, fcj) , during learning. Thus, both
excitatory inputs and inhibitory inputs will be stronger if the input pattern is
centrally located in the cell's receptive field.

The particular form of Eq. (10.3) is that of a weighted, root-mean-square
of the inputs to the Vc—cell. Looking back at Eq. (10.1), we can see that, in
the 5-cells, the net excitatory input to the cell is being compared to a measure
of the average input signal. If the ratio of the net excitatory input to the net
inhibitory input is greater than 1, the cell will have a positive output.

'If we impose the condition thai the input vectors be normalized, as suggested in footnote 2, then
• we can relax the normalization condition on these weights.
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Exercise 10.1: We can rewrite Eq. (10.1) for a single S-cell in the succinct
form

US = r,* [|±1 - l] (10.7)

where e and h represent total excitatory and inhibitory inputs to the cell, respec-
tively, and we have absorbed the factor r//(l + r/) into h. Show that, when the
inhibitory input is very small, Eq. (10.7) can be written as

t/s « r,0[e - ft]

Exercise 10.2: Show that, when both e and h are very large in Eq. (10.7),

Us « r,<t> \l - ll
L/i J

10.2.2 Training Weights on the S-Layers
There are several different methods for training the weights on the neocognitron.
The method that we shall detail here is an unsupervised-learning algorithm
designed by the original neocognitron designers. At the end of this section, we
will mention a few alternatives to this approach.

Unsupervised Learning. In principle, training proceeds as it does for many
networks. First, an input pattern is presented at the input layer and the data are
propagated through the network. Then, weights are allowed to make incremental
adjustments according to the specified algorithm. After weight updates have
occurred, a new pattern is presented at the input layer, and the process is repeated
with all patterns in the training set until the network is classifying the input
patterns properly.

In the neocognitron, sharing of weights on a given plane means that only a
single cell on each plane needs to participate in the learning process. Once its
weights have been updated, a copy of the new weight vector can be distributed
to the other cells on the same plane. To understand how this works, we can
think of the 5-planes on a given layer as being stacked vertically on top of one
another, aligned so that cells at corresponding locations are directly on top of one
another. We can now imagine many overlapping columns running perpendicular
to this stack. These columns define groups of S-cells, where all of the members
in a group have receptive fields in approximately the same location of the input
layer.

With this model in mind, we now apply an input pattern and examine
the response of the S'-cells in each column. To ensure that each 5-cell pro-
vides a distinct response, we can initialize the a; weights to small, positive
random values. The b; weights on the inhibitory connections can be initialized
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to zero. We first note the plane and position of the S-cell whose response is
the strongest in each column. Then we examine the individual planes so that,
if one plane contains two or more of these S-cells, we disregard all but the
cell responding the strongest. In this manner, we will locate the S-cell on each
plane whose response is the strongest, subject to the condition that each of those
cells is in a different column. Those S-cells become the prototypes, or repre-
sentatives, of all the cells on their respective planes. Likewise, the strongest
responding Vf-cell is chosen as the representative for the other cells on the
Vc-plane.

Once the representatives are chosen, weight updates are made according to
the following equations:

, ( f c / - i , n - | -v ) (10.8)
= qtVCl_,(A) (10.9)

where qi is the learning rate parameter, c /_ i (v) , is the monotonically decreasing
function as described in the previous section, and the location of the represen-
tative for plane fc; is A.

Notice that the largest increases in the weights occur on those connections
that have the largest input signal, Uc,_, (ki-\ , n + v). Because the 5-cell whose
weights are being modified was the one with the largest output, this learning
algorithm implements a form of Hebbian learning. Notice also that weights can
only increase, and that there is no upper bound on the weight value. The form
of Eq. (10.1), for 5-cell output, guarantees that the output value will remain
finite, even for large weight values (see Exercise 10.2).

Once the cells on a given plane begin to respond to a certain feature, they
tend to respond less to other features. l\fter a short time, each plane will have
developed a strong response to a particular feature. Moreover, as we look deeper
into the network, planes will be responding to more complex features.

Other Learning Methods. The designers of the original neocognitron knew
to what features they wanted each level, and each plane on a level, to respond.
Under these circumstances, a set of training vectors can be developed for each
layer, and the layers can be trained independently. Figure 10.9 shows the
training patterns that were used to train the 38 planes on the second layer of the
neocognitron illustrated previously in Figure 10.4.

It is also possible to select the representative cell for each plane in advance.
Care must be taken, however, to ensure that the input pattern is presented in the
proper location with respect to the representative's receptive field. Here again,
some foreknowledge of the desired features is required.

Provided that the weight vectors and input vectors are normalized, weight
updates to representative cells can be made according to the method described
in Chapter 6 for competitive layers. To implement this method, you would
essentially rotate the existing weight vector a little in the direction of the input
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Figure 10.9 This figure shows the four patterns used to train each of
the 38 planes on layer Us2 of the neocognitron designed to
recognize the numerals 0 through 9. The square brackets
indicate groupings of S-planes whose output connections
converge on a single c-plane in the following layer. Source:
Reprinted with permission from Kunihiko Fukushima, Sei Miyake,
and Takayuki Ito, "Neocognitron: a neural network model for a
mechanism of visual pattern recognition." IEEE Transactions on
Systems, Man, and Cybernetics, SMC-13(5), September/October
1983. © 1983 IEEE.

vector. You would need to multiply the input vector by the monotonically
decreasing function and renormalize first [6].

10.2.3 Processing on the C-Layer
The functions describing the C-cell processing are similar in form to those for
the S-cells. Also like the S-layer, each C-layer has associated with it a single
plane of inhibitory units that function in a manner similar to the Vc -cells on the
S-layer. We label the output of these units Vs,(n)-

Generally, units on a given C-plane receive input connections from one, or
at most a small number of, S-planes on the preceding layer. Vs-cells receive
input connections from all S-planes on the preceding layer.
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The output of a C'-cell is given by

v)
VSl (n)

(10.10)

where A"/ is the number of S*-planes at level /, JI(KI. k{) is one or zero depending
on whether 5-plane /•>/ is or is not connected to C-plane A'/, rf/(v) is the weight
on the connection from the S-cell at position v in the receptive field of the
C'-cell, and I)/ defines the receptive-field geometry of the C'-cell.

The function 0 is defined by

0(x) = \ 0 + x X - (10.11)
[0 x <Q

where 3 is a constant. The output of the Vs-cells is given by

1
VSl(n) = —

'

The weights, r//(v), are fixed values with the same general form as the c/(v)
described in the previous section, although Menon and Heinemann report satis-
factory results if c//(v) is a uniform value across the receptive field [7].

Notice the absence of weights on the connection from the Vs-cell, as
indicated in the denominator of Eq. (1,0.10). Also substitute Eq. (10.12) in
Eq. (10.10) and notice the similarity between the numerator and denominator
of the first term in the brackets. Equation^ (10.12) indicates that the V^-cell is
calculating the average input value for all trie 5-planes. In that case, Eq. (10.10)
can have a nonzero value only if the excitatory response of the C'-cell is greater
than the average. This behavior is similar to that of the 5-cells, although the
measure of the average is different in each case.

In summary, only a certain percentage of .S-cells and (7-cells at each level
respond with a positive output value. These are the cells whose excitation level
exceeds that of the average cells.

10.3 PERFORMANCE OF THE NEOCOGNITRON
Figure 10.10 shows a typical response of cells in the nine-layer neocognitron
trained to recognize handwritten numerals 0 through 9. This particular example
shows the network being presented with the numeral 2. By the time the data
have propagated back to the final layer, only two cells are giving any response
at all. The cell corresponding to the numeral 2 shows the strongest response.



390 The Neocognitron

Uo U UC4

J I
9

Figure 10.10 In this figure, the numeral 2 appears on the retina of the
neocognitron. All the planes at each level are indicated
by individual boxes. Cells within those planes that are
responding to the input are indicated in black within the
boxes. The planes on layer UCA have only one cell per
plane, each cell corresponding to one of the numbers
from 0 to 9. The strength of the response from each unit
on that layer is indicated by the degree of darkening in
the associated box. Source: Reprinted with permission of
Addison-Wesley Publishing Co., Reading, MA, from Robert
Hecht-Nielsen, Neurocomputing, © 7990 by Addison-Wesley
Publishing Co.

Some examples of numerals that were recognized successfully appear in
Figure 10.11. Finally, we show in Figure 10.12 an example of a pattern that re-
sults in a completely ambiguous response from the neocognitron. In the next sec-
tion, we describe a method for resolving patterns such as the one in Figure 10.12.

10.4 ADDITION OF LATERAL INHIBITION AND
FEEDBACK TO THE NEOCOGNITRON
There are two issues raised by the example of the superimposed patterns that we
described at the end of the previous paragraph. The first deals with resolving
the ambiguity so that the network makes a clear choice. The second deals
with getting the network to recognize and identify both patterns present on the
retina.

Arranging for the network to make a choice between the two patterns can be
accomplished by the addition of lateral inhibition between neighboring cells on
a layer. If each cell is inhibiting other cells, then minor differences in response
will be magnified over time, and one cell in the final layer usually will emerge
as the clear winner.
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Figure 10.11 These are some examples of numerals that were successfully
recognized by the neocognitron. The patterns vary
according to sizev location on the retina, amount of
distortion, and addition of noise. Source: Reprinted with
permission of Addison-Wesley Publishing Co., Reading, MA,
from Robert Hecht-Nielsen, Neurocomputing, © 7990 by
Addison-Wesley Publishing Co.

The second issue can be addressed by the addition of feedback paths in the
network, along with other devices, such as gain controls on cells and variable
threshold conditions. If a pattern such as the one in Figure 10.12 is presented,
feedforward connections and lateral inhibition are allowed to function to choose
a single responsive cell in the final layer of the network. This cell may repre-
sent either a 2 or a 4, and slightly different input patterns may alter the initial
response.

Following this initial processing, signals are sent back toward the retina
via other planes of cells, called u;s-cells and wc-cells. During the feedforward
process, only certain (7-cells and 5-cells remain active. These cells gate the
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Figure 10.12 This pattern shows the numeral 4 superimposed on the
numeral 2. This pattern cannot be identified unambiguously
by the neocognitron that we have been describing.

feedback pathways so that feedback signals retrace the same pathways through
the network back to the retina. In turn, the ws-cells and we-cells facilitate the
strengthening of responses by the active C-cells and 5-cells by affecting changes
in the thresholds and gains of these cells. Thus, a self-sustaining resonance ef-
fect ensues, which is remindful of the similar effect in the ART networks of
Chapter 8.

To cause the network to recognize the second pattern present on the retina,
all that is necessary is to interrupt the feedback signals momentarily. This action
causes the gain of all active C-cells to be lowered, as though by fatigue. As
a result, other previously inactive cells can respond, and a second resonance
will be established where the second pattern is identified on the last layer of the
network. Once again, we are reminded of the orienting subsystem of ART and
the sustained inhibitory signals used there to facilitate search.

Although we have given only a cursory treatment to lateral inhibition and
feedback here, we do not mean to give the impression that implementing these
devices is easy. The architectural details and processing equations necessary
are similar to those for the neocognitron, but are considerably more complex.
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References at the end of this chapter will direct you to sources for the details,
should you be interested in reading further.
Exercise 10.3: There are actually three numerals present in the pattern in Fig-
ure 10.12. What is the third numeral?

Suggested Readings
The original cognitron is described in an article by Fukushima [1]. Other articles
by him and his colleagues are listed in the bibliography [4, 2, 3]. One of the
clearest descriptions of the operation and training of the neocognitron appears
in an article by Menon and Heinemann [7]. This paper also illustrates the use of
the neocognitron architecture in a pattern-recognition application different from
the numeral recognition application.

As we mentioned in the Preface, we chose not to include the pseudocode for
the neocognitron simulator. If you wish to see an example of how complicated
such a simulator can become, see the HNC ANZA User's Manual (Hecht-Nielsen
Neurocomputing Corporation, San Diego, CA) [5].
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