

A Practical Guide to Ubuntu Linux

Mark G. Sobell

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

®

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

Ubuntu is a registered trademark of Canonical Ltd.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data
Sobell, Mark G.
 A practical guide Ubuntu Linux / Mark G. Sobell.
 p. cm.
 Includes index.
 ISBN-13: 978-0-13-236039-5 (pbk. : alk. paper)
 1. Linux. 2. Operating systems (Computers) I. Title.
 QA76.76.O63S59497 2008
 005.4'32—dc22
 2007043244
Copyright © 2008 Mark G. Sobell

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Permissions
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-13-236039-5
ISBN-10: 0-13-236039-X

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, December 2007

http://www.prenhallprofessional.com/safarienabled
www.prenhallprofessional.com

For my dad,
Morton Sobell,

who taught me to examine
the world very carefully.

This page intentionally left blank

ixix

Brief Contents

Contents xi
Preface xxxv

1 Welcome to Linux 1

PART I Installing Ubuntu Linux 21

2 Installation Overview 23

3 Step-by-Step Installation 45

PART II Getting Started with Ubuntu Linux 85

4 Introduction to Ubuntu Linux 87

5 The Linux Utilities 145

6 The Linux Filesystem 183

7 The Shell 219

PART III Digging into Ubuntu Linux 249

8 Linux GUIs: X and GNOME 251

9 The Bourne Again Shell 275

10 Networking and the Internet 353

11 Programming the Bourne Again Shell 395

x Brief Contents

PART IV System Administration 483

12 System Administration: Core Concepts 485

13 Files, Directories, and Filesystems 553

14 Downloading and Installing Software 583

15 Printing with CUPS 611

16 Building a Linux Kernel 635

17 Administration Tasks 657

18 Configuring a LAN 693

PART V Using Clients and Setting Up Servers 705

19 OpenSSH: Secure Network Communication 707

20 FTP: Transferring Files Across a Network 729

21 exim4: Setting Up Mail Servers, Clients, and More 755

22 NIS: Network Information Service 781

23 NFS: Sharing Filesystems 799

24 Samba: Linux and Windows File and Printer Sharing 823

25 DNS/BIND: Tracking Domain Names and Addresses 845

26 firestarter and iptables: Setting Up a Firewall 885

27 Apache: Setting Up a Web Server 915

PART VI Appendixes 969

A Regular Expressions 971

B Help 981

C Security 991

D The Free Software Definition 1011

E The Linux 2.6 Kernel 1015

Glossary 1021

Index 1071

xixi

Contents

Preface xxxvi

Chapter 1: Welcome to Linux 1

The GNU–Linux Connection 2
The History of GNU–Linux 2
The Code Is Free 4
Have Fun! 5

The Linux 2.6 Kernel 5

The Heritage of Linux: UNIX 5

What Is So Good About Linux? 6
Why Linux Is Popular with Hardware Companies and Developers 7
Linux Is Portable 8
Standards 9
The C Programming Language 9
Ubuntu Linux 10

Overview of Linux 10
Linux Has a Kernel Programming Interface 10
Linux Can Support Many Users 11
Linux Can Run Many Tasks 11
Linux Provides a Secure Hierarchical Filesystem 12
The Shell: Command Interpreter and Programming Language 12
A Large Collection of Useful Utilities 14
Interprocess Communication 14
System Administration 15

xii Contents

Additional Features of Linux 15
GUIs: Graphical User Interfaces 15
(Inter)Networking Utilities 16
Software Development 17

Conventions Used in This Book 17
Chapter Summary 20
Exercises 20

PART I Installing Ubuntu Linux 21

Chapter 2: Installation Overview 23

The Live/Install Desktop CD/DVD 24
More Information 24
Planning the Installation 25

Considerations 25
Requirements 25
Processor Architecture 26
Interfaces: Installer and Installed System 27
Ubuntu Releases 28
Ubuntu Editions 28
Installing a Fresh Copy or Upgrading an Existing Ubuntu System? 29
Setting Up the Hard Disk 30
RAID 34
LVM: Logical Volume Manager 35

The Installation Process 36
Downloading and Burning a CD/DVD 37

The Easy Way to Download a CD ISO Image File 37
Other Ways to Download a CD/DVD ISO Image File 37
Verifying an ISO Image File 40
Burning the CD/DVD 40

Gathering Information About the System 41
Chapter Summary 42
Exercises 43
Advanced Exercises 43

Chapter 3: Step-by-Step Installation 45

Basic Installation from the Live/Install Desktop CD/DVD 46
Booting the System 46
Checking the CD/DVD for Defects 47
Live Session 47

 Contents xiii

Graphical Partitioners 53
gparted: the GNOME Partition Editor 53
ubiquity: Setting Up Partitions 56

Upgrading to a New Release 59
Installing KDE 60
Setting Up a Dual-Boot System 61

Creating Free Space on a Windows System 61
Installing Ubuntu Linux as the Second Operating System 61

Advanced Installation 62
The Live/Install Desktop CD: The Initial Install Screen 62
The Alternate CD Initial Install Screen Menu 65
The Server CD Initial Install Screen Menu 66
The DVD 67
The Ubuntu Textual Installer 67

The X Window System 74
displayconfig-gtk: Configures the Display 75
The xorg.conf File 77
gdm: Displays a Graphical Login 82

Chapter Summary 83
Exercises 83
Advanced Exercises 84

PART II Getting Started with Ubuntu Linux 85

Chapter 4: Introduction to Ubuntu Linux 87

Curbing Your Power: root Privileges/sudo 88
A Tour of the Ubuntu Linux Desktop 89

Logging In on the System 89
Introduction 90
Launching Programs from the Desktop 91
Switching Workspaces 93
Setting Personal Preferences 94
Mouse Preferences 95
Working with Windows 96
Using Nautilus to Work with Files 96
The Update Notifier 100
Changing Appearances (Themes) 102
Session Management 104
Getting Help 104
Feel Free to Experiment 105
Logging Out 105

xiv Contents

Getting the Most out of the Desktop 105
GNOME Desktop Terminology 105
Opening Files 106
Panels 107
The Main Menu 110
Windows 111
The Object Context Menu 115

Updating, Installing, and Removing Software Packages 119
Software Sources Window 119
Add/Remove Applications 120
Synaptic: Finds, Installs, and Removes Software 121

Where to Find Documentation 124
Ubuntu Help Center 124
man: Displays the System Manual 124
info: Displays Information About Utilities 126
The ––help Option 129
HOWTOs: Finding Out How Things Work 129
Getting Help with the System 130

More About Logging In 132
The Login Screen 132
What to Do if You Cannot Log In 133
Logging In Remotely: Terminal Emulators, ssh, and Dial-Up Connections 133
Logging In from a Terminal (Emulator) 134
Changing Your Password 135
Using Virtual Consoles 136

Working from the Command Line 136
Correcting Mistakes 137
Repeating/Editing Command Lines 139

Controlling Windows: Advanced Operations 139
Changing the Input Focus 139
Changing the Resolution of the Display 140
The Window Manager 141

Chapter Summary 142
Exercises 143
Advanced Exercises 144

Chapter 5: The Linux Utilities 145

Special Characters 146
Basic Utilities 147

ls: Lists the Names of Files 147
cat: Displays a Text File 147
rm: Deletes a File 148
less Is more: Display a Text File One Screen at a Time 148
hostname: Displays the System Name 149

 Contents xv

Working with Files 149
cp: Copies a File 149
mv: Changes the Name of a File 150
lpr: Prints a File 151
grep: Searches for a String 151
head: Displays the Beginning of a File 152
tail: Displays the End of a File 152
sort: Displays a File in Order 153
uniq: Removes Duplicate Lines from a File 154
diff: Compares Two Files 154
file: Tests the Contents of a File 155

| (Pipe): Communicates Between Processes 156
Four More Utilities 157

echo: Displays Text 157
date: Displays the Time and Date 157
script: Records a Shell Session 158
unix2dos: Converts Linux and Macintosh Files to Windows Format 159

Compressing and Archiving Files 159
bzip2: Compresses a File 160
bunzip2 and bzcat: Decompress a File 160
gzip: Compresses a File 161
tar: Packs and Unpacks Archives 161

Locating Commands 164
which and whereis: Locate a Utility 164
apropos: Searches for a Keyword 165
slocate: Searches for a File 166

Obtaining User and System Information 166
who: Lists Users on the System 167
finger: Lists Users on the System 167
w: Lists Users on the System 169

Communicating with Other Users 170
write: Sends a Message 170
mesg: Denies or Accepts Messages 171

Email 171
Tutorial: Creating and Editing a File with vim 172

Starting vim 172
Command and Input Modes 174
Entering Text 175
Getting Help 176
Ending the Editing Session 178
The compatible Parameter 179

Chapter Summary 179
Exercises 181
Advanced Exercises 182

xvi Contents

Chapter 6: The Linux Filesystem 183

The Hierarchical Filesystem 184
Directory Files and Ordinary Files 184

Filenames 185
The Working Directory 188
Your Home Directory 188

Pathnames 189
Absolute Pathnames 189
Relative Pathnames 190

Directory Commands 191
mkdir: Creates a Directory 191
Important Standard Directories and Files 194

Working with Directories 196
rmdir: Deletes a Directory 196
Using Pathnames 197
mv, cp: Move or Copy Files 197
mv: Moves a Directory 198

Access Permissions 199
ls –l: Displays Permissions 199
chmod: Changes Access Permissions 200
Setuid and Setgid Permissions 201
Directory Access Permissions 202

ACLs: Access Control Lists 203
Enabling ACLs 204
Working with Access Rules 204
Setting Default Rules for a Directory 207

Links 209
Hard Links 210
Symbolic Links 212
rm: Removes a Link 214

Chapter Summary 214
Exercises 216
Advanced Exercises 218

Chapter 7: The Shell 219

The Command Line 220
Syntax 220
Processing the Command Line 223
Executing the Command Line 225
Editing the Command Line 225

Standard Input and Standard Output 226
The Screen as a File 226
The Keyboard and Screen as Standard Input and Standard Output 227
Redirection 228
Pipes 234

 Contents xvii

Running a Program in the Background 237
Filename Generation/Pathname Expansion 239

The ? Special Character 239
The * Special Character 240
The [] Special Characters 241

Builtins 243
Chapter Summary 244

Utilities and Builtins Introduced in This Chapter 245
Exercises 245
Advanced Exercises 247

PART III Digging into Ubuntu Linux 249

Chapter 8: Linux GUIs: X and GNOME 251

X Window System 252
Using X 254
Window Managers 259

The Nautilus File Browser Window 260
The View Pane 261
The Side Pane 261
Control Bars 262
Menubar 263

GNOME Utilities 266
Deskbar Applet 266
Font Preferences 267
Pick a Font Window 268
Pick a Color Window 268
Run Application Window 269
Searching for Files 269
GNOME Terminal Emulator/Shell 270

Chapter Summary 271
Exercises 272
Advanced Exercises 272

Chapter 9: The Bourne Again Shell 275

Background 276
Shell Basics 277

Startup Files 277
Commands That Are Symbols 280
Redirecting Standard Error 280
Writing a Simple Shell Script 282
Separating and Grouping Commands 286
Job Control 290
Manipulating the Directory Stack 292

xviii Contents

Parameters and Variables 295
User-Created Variables 296
Variable Attributes 299
Keyword Variables 301

Special Characters 309
Processes 310

Process Structure 310
Process Identification 310
Executing a Command 312

History 312
Variables That Control History 312
Reexecuting and Editing Commands 314
The Readline Library 322

Aliases 328
Single Versus Double Quotation Marks in Aliases 329
Examples of Aliases 330

Functions 331
Controlling bash Features and Options 334

Command Line Options 334
Shell Features 334

Processing the Command Line 338
History Expansion 338
Alias Substitution 338
Parsing and Scanning the Command Line 338
Command Line Expansion 339

Chapter Summary 347
Exercises 349
Advanced Exercises 351

Chapter 10: Networking and the Internet 353

Types of Networks and How They Work 355
Broadcast Networks 356
Point-to-Point Networks 356
Switched Networks 356
LAN: Local Area Network 357
WAN: Wide Area Network 358
Internetworking Through Gateways and Routers 358
Network Protocols 361
Host Address 363
CIDR: Classless Inter-Domain Routing 367
Hostnames 368

Communicate Over a Network 370
finger: Displays Information About Remote Users 370
Sending Mail to a Remote User 371
Mailing List Servers 372

 Contents xix

Network Utilities 372
Trusted Hosts 372
OpenSSH Tools 373
telnet: Logs In on a Remote System 373
ftp: Transfers Files Over a Network 375
ping: Tests a Network Connection 375
traceroute: Traces a Route Over the Internet 376
host and dig: Query Internet Nameservers 378
jwhois: Looks Up Information About an Internet Site 378

Distributed Computing 379
The Client/Server Model 380
DNS: Domain Name Service 381
Ports 383
NIS: Network Information Service 383
NFS: Network Filesystem 383
Internet Services 384
Proxy Servers 387
RPC Network Services 387

Usenet 388
WWW: World Wide Web 390

URL: Uniform Resource Locator 391
Browsers 392
Search Engines 392

Chapter Summary 392
Exercises 393
Advanced Exercises 394

Chapter 11: Programming the Bourne Again Shell 395

Control Structures 396
if...then 396
if...then...else 400
if...then...elif 403
for...in 409
for 410
while 412
until 416
break and continue 418
case 419
select 425
Here Document 427

File Descriptors 429
Parameters and Variables 432

Array Variables 432
Locality of Variables 434
Special Parameters 436
Positional Parameters 438
Expanding Null and Unset Variables 443

xx Contents

Builtin Commands 444
type: Displays Information About a Command 445
read: Accepts User Input 445
exec: Executes a Command 448
trap: Catches a Signal 451
kill: Aborts a Process 454
getopts: Parses Options 454
A Partial List of Builtins 457

Expressions 458
Arithmetic Evaluation 458
Logical Evaluation (Conditional Expressions) 459
String Pattern Matching 460
Operators 461

Shell Programs 466
A Recursive Shell Script 467
The quiz Shell Script 470

Chapter Summary 476
Exercises 478
Advanced Exercises 480

PART IV System Administration 483

Chapter 12: System Administration:

Core Concepts 485

Running Commands with root Privileges 487
sudo: Running a Command with root Privileges 490
sudoers: Configuring sudo 494
Unlocking the root Account (Assigning a Password to root) 499
su: Gives You Another User’s Privileges 499

The Upstart Event-Based init Daemon 500
Software Packages 501
Definitions 501
Jobs 503
SysVinit (rc) Scripts: Start and Stop System Services 507

System Operation 510
Runlevels 510
Booting the System 511
Recovery (Single-User) Mode 512
Going to Multiuser Mode 515
Logging In 516

 Contents xxi

Logging Out 517
Bringing the System Down 518
Crash 519

Avoiding a Trojan Horse 520
Getting Help 522
Textual System Administration Utilities 522

kill: Sends a Signal to a Process 522
Other Textual Utilities 525

Setting Up a Server 527
Standard Rules in Configuration Files 528
rpcinfo: Displays Information About portmap 530
The inetd and xinetd Superservers 531
Securing a Server 532
DHCP: Configures Network Interfaces 538

nsswitch.conf: Which Service to Look at First 542
How nsswitch.conf Works 542

PAM 545
More Information 546
Configuration Files, Module Types, and Control Flags 546
Example 548
Modifying the PAM Configuration 549

Chapter Summary 550
Exercises 551
Advanced Exercises 551

Chapter 13: Files, Directories, and Filesystems 553

Important Files and Directories 554
File Types 566

Ordinary Files, Directories, Links, and Inodes 566
Special Files 567

Filesystems 570
mount: Mounts a Filesystem 572
umount: Unmounts a Filesystem 575
fstab: Keeps Track of Filesystems 576
fsck: Checks Filesystem Integrity 577
tune2fs: Changes Filesystem Parameters 578
RAID Filesystem 580

Chapter Summary 580
Exercises 580
Advanced Exercises 581

xxii Contents

Chapter 14: Downloading and Installing Software 583

JumpStart: Installing and Removing Packages Using aptitude 585

Finding the Package That Holds a File You Need 587
APT: Keeps the System Up-to-Date 588

Repositories 588
sources.list: Specifies Repositories for APT to Search 589
The APT Local Package Indexes and the APT Cache 590
The apt cron Script and APT Configuration Files 590
aptitude: Works with Packages and the Local Package Index 592
apt-cache: Displays Package Information 596
apt-get source: Downloads Source Files 598

dpkg: The Debian Package Management System 598
deb Files 599
dpkg: The Foundation of the Debian Package Management System 600

BitTorrent 604
Installing Non-dpkg Software 607

The /opt and /usr/local Directories 607
GNU Configure and Build System 607

wget: Downloads Files Noninteractively 609
Chapter Summary 610
Exercises 610
Advanced Exercises 610

Chapter 15: Printing with CUPS 611

Introduction 612
Prerequisites 612
More Information 613
Notes 613

JumpStart I: Configuring a Local Printer 614
system-config-printer: Configuring a Printer 614

Configuration Tabs 614
Setting Up a Remote Printer 616

JumpStart II: Configuring a Remote Printer Using the CUPS Web Interface 618
Traditional UNIX Printing 622
Configuring Printers 624

The CUPS Web Interface 624
CUPS on the Command Line 626
Sharing CUPS Printers 629

Printing from Windows 630
Printing Using CUPS 631
Printing Using Samba 631

 Contents xxiii

Printing to Windows 632
Chapter Summary 633
Exercises 633
Advanced Exercises 633

Chapter 16: Building a Linux Kernel 635

Prerequisites 636
Downloading the Kernel Source Code 637

aptitude: Downloading and Installing the Kernel Source Code 637
git: Obtaining the Latest Kernel Source Code 637

Read the Documentation 638
Configuring and Compiling the Linux Kernel 639

.config: Configures the Kernel 639
Customizing a Kernel 640
Cleaning the Source Tree 642
Compiling a Kernel Image File and Loadable Modules 643
Using Loadable Kernel Modules 643

Installing the Kernel, Modules, and Associated Files 646
Rebooting 647
grub: The Linux Boot Loader 647

menu.lst: Configures grub 648
update-grub: Updates the menu.lst file 651
grub-install: Installs the MBR and grub Files 653

dmesg: Displays Kernel Messages 654
Chapter Summary 655
Exercises 656
Advanced Exercises 656

Chapter 17: Administration Tasks 657

Configuring User and Group Accounts 658
users-admin: Manages User Accounts 658
useradd: Adds a User Account 660
userdel: Removes a User Account 661
usermod: Modifies a User Account 661
groupadd: Adds a Group 661
groupdel: Removes a Group 661

Backing Up Files 662
Choosing a Backup Medium 663
Backup Utilities 663
Performing a Simple Backup 665
dump , restore: Back Up and Restore Filesystems 666

xxiv Contents

Scheduling Tasks 668
cron and anacron: Schedule Routine Tasks 668
at: Runs Occasional Tasks 671

System Reports 671
vmstat: Reports Virtual Memory Statistics 671
top: Lists Processes Using the Most Resources 672

parted: Reports on and Partitions a Hard Disk 673
Keeping Users Informed 677
Creating Problems 678
Solving Problems 679

Helping When a User Cannot Log In 679
Speeding Up the System 680
lsof: Finds Open Files 681
Keeping a Machine Log 681
Keeping the System Secure 682
Log Files and Mail for root 683
Monitoring Disk Usage 683
logrotate: Manages Log Files 684
Removing Unused Space from Directories 686
Disk Quota System 687
syslogd: Logs System Messages 688

Chapter Summary 690
Exercises 690
Advanced Exercises 691

Chapter 18: Configuring a LAN 693

Setting Up the Hardware 694
Connecting the Computers 694
Routers 695
NIC: Network Interface Card 695
Tools 695

Configuring the Systems 697
network-admin: Configures Network Connections 698
nm-applet: Configures Network Connections Automatically 700
iwconfig: Configures a Wireless NIC 700

Setting Up Servers 702
More Information 703
Chapter Summary 703
Exercises 704
Advanced Exercises 704

 Contents xxv

PART V Using Clients and Setting Up Servers 705

Chapter 19: OpenSSH: Secure Network

Communication 707

Introduction 708
About OpenSSH 708

Files 708
How OpenSSH Works 710
More Information 711

OpenSSH Clients 711
Prerequisites 711
JumpStart: Using ssh and scp 711
Setup 712
ssh: Connects to or Executes Commands on a Remote System 714
scp: Copies Files to and from a Remote System 716
sftp: A Secure FTP Client 718
~/.ssh/config and /etc/ssh/ssh_config Configuration Files 718

sshd: OpenSSH Server 720
Prerequisites 720
Note 720
JumpStart: Starting the sshd Daemon 720
Authorized Keys: Automatic Login 721
Command Line Options 722
/etc/ssh/sshd_config Configuration File 722

Troubleshooting 724
Tunneling/Port Forwarding 725
Chapter Summary 727
Exercises 728
Advanced Exercises 728

Chapter 20: FTP: Transferring Files Across a Network 729

Introduction 730
More Information 731
FTP Client 731

Prerequisites 731
JumpStart I: Downloading Files Using ftp 732
Notes 735
Anonymous FTP 735
Automatic Login 735
Binary Versus ASCII Transfer Mode 736
ftp Specifics 736

xxvi Contents

FTP Server (vsftpd) 740
Prerequisites 740
Notes 740
JumpStart II: Starting a vsftpd Server 741
Testing the Setup 741
vsftpd.conf: The vsftpd Configuration File 742

Chapter Summary 753
Exercises 753
Advanced Exercises 754

Chapter 21: exim4: Setting Up Mail Servers,

Clients, and More 755

 Introduction to exim4 756
Prerequisites 757
Notes 757
More Information 758

JumpStart I: Configuring exim4 to Use a Smarthost 758
JumpStart II: Configuring exim4 to Send and Receive Email 760
How exim4 Works 761

Mail Logs 762
Working with Messages 763
Aliases and Forwarding 763
Related Programs 765

Configuring exim4 765
Using a Text Editor to Configure exim4 766
The update-exim4.conf.conf Configuration File 766
dpkg-reconfigure: Configures exim4 768

SpamAssassin 768
Prerequisites 769
How SpamAssassin Works 769
Testing SpamAssassin 770
Configuring SpamAssassin 771

Additional Email Tools 772
Webmail 772
Mailing Lists 774
Setting Up an IMAP or POP3 Server 776

Authenticated Relaying 777
Alternatives to exim4 779
Chapter Summary 779
Exercises 780
Advanced Exercises 780

 Contents xxvii

Chapter 22: NIS: Network Information Service 781

Introduction to NIS 782
How NIS Works 782

More Information 784
Setting Up an NIS Client 784

Prerequisites 785
Notes 785
Step-by-Step Setup 786
Testing the Setup 787
yppasswd: Changes NIS Passwords 788

Setting Up an NIS Server 790
Prerequisites 790
Notes 791
Step-by-Step Setup 791
Testing 796
yppasswdd: The NIS Password Update Daemon 797

Chapter Summary 798
Exercises 798
Advanced Exercises 798

Chapter 23: NFS: Sharing Filesystems 799

Introduction 800
More Information 802
Setting Up an NFS Client 802

Prerequisites 802
JumpStart I: Mounting a Remote Directory Hierarchy 803
mount: Mounts a Directory Hierarchy 804
Improving Performance 806
/etc/fstab: Mounts Directory Hierarchies Automatically 807

Setting Up an NFS Server 808
Prerequisites 808
Notes 808
JumpStart II: Configuring an NFS Server Using shares-admin 809
Manually Exporting a Directory Hierarchy 811
Where the System Keeps NFS Mount Information 815
exportfs: Maintains the List of Exported Directory Hierarchies 817
Testing the Server Setup 818

automount: Mounts Directory Hierarchies on Demand 818
Chapter Summary 821
Exercises 822
Advanced Exercises 822

xxviii Contents

Chapter 24: Samba: Linux and Windows File

and Printer Sharing 823

Introduction 824
About Samba 825

Prerequisites 825
More Information 825
Notes 825
Samba Users, User Maps, and Passwords 826

JumpStart: Configuring a Samba Server Using shares-admin 826
swat: Configures a Samba Server 828
smb.conf: Manually Configuring a Samba Server 832

Parameters in the smbd.conf File 832
The [homes] Share: Sharing Users’ Home Directories 838

Accessing Linux Shares from Windows 838
Browsing Shares 838
Mapping a Share 839

Accessing Windows Shares from Linux 839
smbtree: Displays Windows Shares 839
smbclient: Connects to Windows Shares 840
Browsing Windows Networks 840
Mounting Windows Shares 841

Troubleshooting 841
Chapter Summary 844
Exercises 844
Advanced Exercises 844

Chapter 25: DNS/BIND: Tracking Domain Names

and Addresses 845

Introduction to DNS 846
Nodes, Domains, and Subdomains 846
Zones 848
Queries 849
Servers 850
Resource Records 851
DNS Query and Response 854
Reverse Name Resolution 855

About DNS 857
How DNS Works 857
Prerequisites 857
More Information 858
Notes 858

 Contents xxix

JumpStart I: Setting Up a DNS Cache 858

Setting Up BIND 860
named.conf: The named Configuration File 860
Zone Files 863
A DNS Cache 864
DNS Glue Records 868
TSIGs: Transaction Signatures 868
Running BIND in a chroot Jail 870

Troubleshooting 872

A Full-Functioned Nameserver 873

A Slave Server 877

A Split Horizon Server 878

Chapter Summary 883

Exercises 883

Advanced Exercises 884

Chapter 26: firestarter and iptables: Setting

Up a Firewall 885

About firestarter 886
Prerequisites 886
Notes 887
More Information 888

JumpStart: Building a Firewall Using the firestarter Firewall Wizard 888

firestarter: Maintains a Firewall 890
The Status Tab 890
The Events Tab 892
The Policy Tab 894

How iptables Works 896

About iptables 899
More Information 899
Prerequisites 899
Notes 899

Anatomy of an iptables Command 900

Building a Set of Rules 901
Commands 901
Packet Match Criteria 903
Display Criteria 903
Match Extensions 903
Targets 906

Copying Rules to and from the Kernel 907

xxx Contents

Sharing an Internet Connection Using NAT 908
Connecting Several Clients to a Single Internet Connection 910
Connecting Several Servers to a Single Internet Connection 912

Chapter Summary 912
Exercises 913
Advanced Exercises 913

Chapter 27: Apache: Setting Up a Web Server 915

Introduction 916
About Apache 917

Prerequisites 917
More Information 918
Notes 918

JumpStart: Getting Apache Up and Running 919
Modifying the Configuration Files 919
Testing Apache 920
Putting Your Content in Place 920

Configuring Apache 921
Configuration Tools 921
Include Directives 922
Filesystem Layout 923

Configuration Directives 925
Directives I: Directives You May Want to Modify as You Get Started 926
Contexts and Containers 931
Directives II: Advanced Directives 935

The Ubuntu apache2.conf File 948
The Ubuntu default Configuration File 950
Redirects 951
Content Negotiation 951

Type Maps 951
MultiViews 952

Server-Generated Directory Listings (Indexing) 953
Virtual Hosts 953

Setting Up a Virtual Host 954
Types of Virtual Hosts 954
The default Virtual Host 954
Examples 954

Troubleshooting 956
Modules 957

mod_cgi and CGI Scripts 958
mod_ssl 959
Authentication Modules and .htaccess 961
Scripting Modules 962
Multiprocessing Modules (MPMs) 963

 Contents xxxi

webalizer: Analyzes Web Traffic 964
MRTG: Monitors Traffic Loads 964
Error Codes 964
Chapter Summary 965
Exercises 966
Advanced Exercises 966

PART VI Appendixes 969

Appendix A: Regular Expressions 971

Characters 972
Delimiters 972
Simple Strings 972
Special Characters 972

Periods 973
Brackets 973
Asterisks 974
Carets and Dollar Signs 974
Quoting Special Characters 975

Rules 975
Longest Match Possible 975
Empty Regular Expressions 976

Bracketing Expressions 976
The Replacement String 976

Ampersand 977
Quoted Digit 977

Extended Regular Expressions 977
Appendix Summary 979

Appendix B: Help 981

Solving a Problem 982
Finding Linux-Related Information 983

Documentation 983
Useful Linux Sites 984
Linux Newsgroups 985
Mailing Lists 985
Words 986
Software 986
Office Suites and Word Processors 988

Specifying a Terminal 988

xxxii Contents

Appendix C: Security 991

Encryption 992
Public Key Encryption 993
Symmetric Key Encryption 994
Encryption Implementation 995
GnuPG/PGP 995

File Security 997
Email Security 997

MTAs (Mail Transfer Agents) 997
MUAs (Mail User Agents) 998

Network Security 998
Network Security Solutions 999
Network Security Guidelines 999

Host Security 1001
Login Security 1002
Remote Access Security 1003
Viruses and Worms 1004
Physical Security 1004

Security Resources 1006
Appendix Summary 1009

Appendix D: The Free Software Definition 1011

Appendix E: The Linux 2.6 Kernel 1015

Native Posix Thread Library (NPTL) 1016
IPSecurity (IPSec) 1016
Asynchronous I/O (AIO) 1016
O(1) Scheduler 1017
OProfile 1017
kksymoops 1017
Reverse Map Virtual Memory (rmap VM) 1017
HugeTLBFS: Translation Look-Aside Buffer Filesystem 1018
remap_file_pages 1018
2.6 Network Stack Features (IGMPv3, IPv6, and Others) 1018
Internet Protocol Virtual Server (IPVS) 1019
Access Control Lists (ACLs) 1019
4GB-4GB Memory Split: Physical Address Extension (PAE) 1019
Scheduler Support for HyperThreaded CPUs 1019

 Contents xxxiii

Block I/O (BIO) Block Layer 1019
Support for Filesystems Larger Than 2 Terabytes 1020
New I/O Elevators 1020
Interactive Scheduler Response Tuning 1020

Glossary 1021

Index 1071

This page intentionally left blank

xxxvxxxv

M Preface

Preface

The book Whether you are an end user, a system administrator, or a little of both, this book
explains with step-by-step examples how to get the most out of an Ubuntu Linux
system. In 27 chapters, this book takes you from installing an Ubuntu system
through understanding its inner workings to setting up secure servers that run on
the system.

The audience This book is designed for a wide range of readers. It does not require you to have
programming experience, although having some experience using a general-purpose
computer, such as a Windows, Macintosh, UNIX, or another Linux system is cer-
tainly helpful. This book is appropriate for

• Students who are taking a class in which they use Linux

• Home users who want to set up and/or run Linux

• Professionals who use Linux at work

• System administrators who need an understanding of Linux and the tools
that are available to them

• Computer science students who are studying the Linux operating system

• Technical executives who want to get a grounding in Linux

Benefits A Practical Guide to Ubuntu Linux® gives you a broad understanding of many fac-
ets of Linux, from installing Ubuntu Linux through using and customizing it. No
matter what your background, this book provides the knowledge you need to get
on with your work. You will come away from this book understanding how to use
Linux, and this book will remain a valuable reference for years to come.

xxxvi Preface

Overlap If you read A Practical Guide to Linux® Commands, Editors, and Shell Program-
ming, you will notice some overlap between that book and the one you are reading
now. The first chapter, the chapters on the utilities and the filesystem, and the
appendix on regular expressions are very similar in the two books, as are the three
chapters on the Bourne Again Shell (bash). Chapters that appear in this book but do
not appear in A Practical Guide to Linux® Commands, Editors, and Shell Program-
ming include Chapters 2 and 3 (installation), Chapters 4 and 8 (Ubuntu Linux and
the GUI), Chapter 10 (networking), all of the chapters in Part IV (system adminis-
tration) and Part V (servers), and Appendix C (security).

Differences While this book explains how to use Linux from a graphical interface and from the
command line (a textual interface), A Practical Guide to Linux® Commands, Edi-
tors, and Shell Programming works exclusively with the command line. It includes
full chapters on the vi and emacs editors, as well as chapters on the gawk pattern
processing language and the sed stream editor. In addition, it has a command refer-
ence section that provides extensive examples of the use of more than 80 of the
most important Linux utilities. You can use these utilities to solve problems without
resorting to programming in C.

This Book Includes Ubuntu Gutsy Gibbon (7.10)

on a Live/Install DVD

This book includes a live/install DVD that holds the Gutsy Gibbon (7.10) release of
Ubuntu Linux. You can use this DVD to run a live Ubuntu session that displays the
GNOME desktop without making any changes to your computer: Boot from the
DVD, run an Ubuntu live session, and log off. Your system remains untouched:
When you reboot, it is exactly as it was before you ran the Ubuntu live session.
Alternatively, you can install Ubuntu from the live session. Chapter 2 helps you get
ready to install Ubuntu. Chapter 3 provides step-by-step instructions for installing
Ubuntu from this DVD. This book guides you through learning about, using, and
administrating an Ubuntu Linux session.

DVD features The included DVD incorporates all the features of the live/install Desktop CD as
well as the Alternate and Server CDs. It also includes all software packages sup-
ported by Ubuntu. You can use it to perform a graphical or textual (command line)
installation of either a graphical or a textual Ubuntu system. If you do not have an
Internet connection, you can use the DVD as a software repository and install any
supported software packages from it.

Features of This Book

This book is designed and organized so you can get the most out of it in the shortest
amount of time. You do not have to read this book straight through in page order.
Instead, once you are comfortable using Linux, you can use this book as a reference:

Features of This Book xxxvii

Look up a topic of interest in the table of contents or index and read about it. Or
think of the book as a catalog of Linux topics: Flip through the pages until a topic
catches your eye. The book includes many pointers to Web sites where you can get
additional information: Consider the Internet an extension of this book.

A Practical Guide to Ubuntu Linux® is structured with the following features:

• Optional sections enable you to read the book at different levels, returning
to more difficult material when you are ready to delve into it.

• Caution boxes highlight procedures that can easily go wrong, giving you
guidance before you run into trouble.

• Tip boxes highlight ways you can save time by doing something differently
or situations when it may be useful or just interesting to have additional
information.

• Security boxes point out places where you can make a system more secure.
The security appendix presents a quick background in system security
issues.

• Concepts are illustrated by practical examples throughout the book.

• Chapter summaries review the important points covered in each chapter.

• Review exercises are included at the end of each chapter for readers who
want to further hone their skills. Answers to even-numbered exercises are
available at www.sobell.com.

• The glossary defines more than 500 common terms.

• The chapters that cover servers include JumpStart sections that get you off
to a quick start using clients and setting up servers. Once a server is up and
running, you can test and modify its configuration as explained in the rest
of the chapter.

• This book provides resources for finding software on the Internet. It also
explains how to download and install software using Synaptic, aptitude,
the GNOME Add/Remove Applications window, and BitTorrent. It details
controlling automatic updates using the Update Notifier and the Update
Manager window.

• This book describes in detail many important GNU tools, including the
GNOME desktop, the Nautilus File Browser, the parted and gparted parti-
tion editors, the gzip compression utility, and many command line utilities
that come from the GNU project.

• Pointers throughout the text provide help in obtaining online documenta-
tion from many sources, including the local system, the Ubuntu Web site,
and other locations on the Internet.

• Many useful URLs point to Web sites where you can obtain software,
security programs and information, and more.

• The comprehensive index helps you locate topics quickly and easily.

www.sobell.com

xxxviii Preface

Key Topics Covered in This Book

This book contains a lot of information. This section distills and summarizes its
contents. In addition, “Details” (starting on page xli) describes what each chapter
covers. Finally, the table of contents provides more detail. This book:

Installation • Describes how to download Ubuntu Linux ISO images from the Internet
and burn the Ubuntu live/install Desktop CD, the DVD, or the Ubuntu
Alternate or Server installation CD.

• Helps you plan the layout of the system’s hard disk. It includes a discus-
sion of partitions, partition tables, and mount points, and assists you in
using the ubiquity or gparted graphical partitioner or the Ubuntu textual
partitioner to partition the hard disk.

• Explains how to set up a dual-boot system so you can install Ubuntu
Linux on a Windows system and boot either operating system.

• Describes in detail how to install Ubuntu Linux from a live/install Desktop
CD or the live/install DVD using the ubiquity graphical installer. It also
explains how to use the textual installer found on the Alternate CD, the
Server CD, and the DVD. The graphical installer is fast and easy to use.
The textual installer gives you more options and works on systems with
less RAM (system memory).

• Covers testing an Ubuntu CD/DVD for defects, setting boot command line
parameters (boot options), and creating a RAID array.

• Covers the details of installing and customizing the X.org version of the
X Window System either graphically using the Screen and Graphics
Preferences window or manually with a text editor.

Working with
Ubuntu Linux

• Introduces the GNOME desktop (GUI) and explains how to use desktop
tools, including the Top and Bottom panels, panel objects, the Main menu,
object context menus, the Workspace Switcher, the Nautilus File Browser,
and the GNOME Terminal emulator.

• Explains how to use the Appearance Preferences window to add and mod-
ify themes to customize your desktop to please your senses and help you
work more efficiently.

• Details how to set up 3D desktop visual effects that take advantage of
Compiz Fusion.

• Covers the Bourne Again Shell (bash) in three chapters, including an entire
chapter on shell programming that includes many sample shell scripts.
These chapters provide clear explanations and extensive examples of how
bash works both from the command line in day-to-day work and as a pro-
gramming language to write shell scripts.

Key Topics Covered in This Book xxxix

• Explains the textual (command line) interface and introduces more than
30 command line utilities.

• Presents a tutorial on the vim textual editor.

• Covers types of networks, network protocols, and network utilities.

• Explains hostnames, IP addresses, and subnets, and explores how to use
host and dig to look up domain names and IP addresses on the Internet.

• Covers distributed computing and the client/server model.

• Explains how to use ACLs (Access Control Lists) to fine-tune user access
permissions.

System
administration

• Explains how to use the Ubuntu graphical and textual (command line)
tools to configure the display, DNS, NFS, Samba, Apache, a firewall, a
network interface, and more. You can also use these tools to add users and
manage local and remote printers.

• Goes into detail about using sudo to allow specific users to work with root
privileges (become Superuser) and customizing the way sudo works by
editing the sudoers configuration file. It also explains how you can unlock
the root account if necessary.

• Describes how to use the following tools to download and install software
to keep a system up-to-date and to install new software:

◆ The Software Sources window controls which Ubuntu and third-party
software repositories Ubuntu downloads software packages from and
whether Ubuntu downloads updates automatically. You can also use
this window to cause Ubuntu to download and install security updates
automatically.

◆ If you do not have an Internet connection, you can use the Software
Sources window to set up the DVD included with this book as a soft-
ware repository. You can then install any software packages that
Ubuntu supports from this repository.

◆ Based on how you set up updates in the Software Sources window, the
Update Notifier pops up on the desktop to let you know when soft-
ware updates are available. Click the Update Notifier to open the
Update Manager window, from which you can download and install
updates.

◆ The Add/Remove Applications window provides an easy way to
select, download, and install a wide range of software packages.

◆ Synaptic allows you to search for, install, and remove software pack-
ages. It gives you more ways to search for packages than does the
Add/Remove Applications window.

xl Preface

◆ APT downloads and installs software packages from the Internet (or
the included DVD), keeping a system up-to-date and resolving
dependencies as it processes the packages. You can use APT from a
graphical interface (Synaptic) or from several textual interfaces (e.g.,
aptitude and apt-get).

◆ BitTorrent is a good choice for distributing large amounts of data such
as the Ubuntu installation DVD and CDs. The more people who use
BitTorrent to download a file, the faster it works.

• Covers graphical system administration tools, including the many tools
available from the GNOME Main menu.

• Explains system operation, including the boot process, init scripts, recov-
ery (single-user) and multiuser modes, and steps to take if the system
crashes.

• Describes how to use and program the new Upstart init daemon, which
replaces the System V init daemon.

• Describes files, directories, and filesystems, including types of files and file-
systems, fstab (the filesystem table), and automatically mounted filesystems,
and explains how to fine-tune and check the integrity of filesystems.

• Covers backup utilities, including tar, cpio, dump, and restore.

• Describes compression/archive utilities, including gzip, bzip2, compress,
and zip.

• Explains how to customize and build a Linux kernel.

Security • Helps you manage basic system security issues using ssh (secure shell),
vsftpd (secure FTP server), Apache (Web server), iptables (firewalls), and
more.

• Covers using firestarter to share an Internet connection over a LAN, run a
DHCP server, and set up a basic firewall to protect the system.

• Provides instructions on using iptables to share an Internet connection over
a LAN and to build advanced firewalls.

• Describes how to set up a chroot jail to help protect a server system.

• Explains how to use TCP wrappers to control who can access a server.

Clients and servers • Explains how to set up and use the most popular Linux servers, providing a
chapter on each: Apache, Samba, OpenSSH, exim4, DNS, NFS, FTP, firestarter
and iptables, and NIS (all of which are supported by Ubuntu Linux).

• Describes how to set up a CUPS printer server.

• Describes how to set up and use a DHCP server either by itself or from firestarter.

Programming • Provides a full chapter covering shell programming using bash, including
many examples.

Key Topics Covered in This Book xli

Details

Chapter 1 Chapter 1 presents a brief history of Linux and explains some of the features that
make it a cutting-edge operating system. The “Conventions Used in This Book”
(page 17) section details the typefaces and terminology this book uses.

Part I Part I, “Installing Ubuntu Linux,” discusses how to install Ubuntu Linux. Chapter 2
presents an overview of the process of installing Ubuntu Linux, including hardware
requirements, downloading and burning a CD or DVD, and planning the layout of
the hard disk. Chapter 3 is a step-by-step guide to installing Ubuntu Linux from a
CD or DVD, using the graphical or textual installer. It also shows how to set up the
X Window System and customize your desktop (GUI).

Part II Part II, “Getting Started with Ubuntu Linux,” familiarizes you with Ubuntu Linux,
covering logging in, the GUI, utilities, the filesystem, and the shell. Chapter 4 intro-
duces desktop features, including the Top and Bottom panels and the Main menu;
explains how to use the Nautilus File Browser to manage files, run programs, and
connect to FTP and HTTP servers; covers finding documentation, dealing with login
problems, and using the window manager; and presents some suggestions on where
to find documentation, including manuals, tutorials, software notes, and HOWTOs.
Chapter 5 introduces the shell command line interface, describes more than 30 use-
ful utilities, and presents a tutorial on the vim text editor. Chapter 6 discusses the
Linux hierarchical filesystem, covering files, filenames, pathnames, working with
directories, access permissions, and hard and symbolic links. Chapter 7 introduces
the Bourne Again Shell (bash) and discusses command line arguments and options,
redirecting input to and output from commands, running programs in the back-
ground, and using the shell to generate and expand filenames.

Part III Part III, “Digging into Ubuntu Linux,” goes into more detail about working with the
system. Chapter 8 discusses the GUI (desktop) and includes a section on how to run
a graphical program on a remote system and have the display appear locally. The
section on GNOME describes several GNOME utilities, including the new Deskbar
applet, and goes into more depth about the Nautilus File Browser. Chapter 9 extends
the bash coverage from Chapter 7, explaining how to redirect error output, avoid
overwriting files, and work with job control, processes, startup files, important shell
builtin commands, parameters, shell variables, and aliases. Chapter 10 explains net-
works, network security, and the Internet and discusses types of networks, subnets,
protocols, addresses, hostnames, and various network utilities. The section on dis-
tributed computing describes the client/server model and some of the servers you can
use on a network. Chapter 11 goes into greater depth about shell programming

Experienced users may want to skim Part II

tip If you have used a UNIX or Linux system before, you may want to skim or skip some or all of the
chapters in Part II. Part I has two sections that all readers should take a look at: “Conventions Used
in This Book” (page 17), which explains the typographic and layout conventions used in this book,
and “Where to Find Documentation” (page 124), which points out both local and remote sources
of Linux and Ubuntu documentation.

xlii Preface

using bash, with the discussion enhanced by extensive examples. Details of setting up
and using clients and servers are reserved until Part V.

Part IV Part IV covers system administration. Chapter 12 discusses core concepts such as
the use of sudo, working with root privileges, system operation, chroot jails, TCP
wrappers, general information about how to set up a server, DHCP, and PAM.
Chapter 13 explains the Linux filesystem, going into detail about types of files,
including special and device files; the use of fsck to verify the integrity of and repair
filesystems; and the use of tune2fs to change filesystem parameters. Chapter 14
explains how to keep a system up-to-date by downloading software from the Inter-
net and installing it, including examples of using APT programs such as aptitude,
apt-get, and apt-cache. It also covers the dpkg software packaging system and the
use of some dpkg utilities. Finally, it explains how to use BitTorrent from the com-
mand line to download files. Chapter 15 explains how to set up the CUPS printing
system so you can print on both local and remote systems. Chapter 16 details cus-
tomizing and building a Linux kernel. Chapter 17 covers additional administration
tasks, including setting up user accounts, backing up files, scheduling automated
tasks, tracking disk usage, and solving general problems. Chapter 18 explains how
to set up a local area network (LAN), including both hardware (including wireless)
and software configuration.

Part V Part V goes into detail about setting up and running servers and connecting to them
with clients. Where appropriate, these chapters include JumpStart sections that get
you off to a quick start in using clients and setting up servers. The chapters in Part V
cover the following clients/servers:

• OpenSSH Set up an OpenSSH server and use ssh, scp, and sftp to com-
municate securely over the Internet.

• FTP Set up a vsftpd secure FTP server and use any of several FTP clients
to exchange files with the server.

• Mail Configure exim4 and use Webmail, POP3, or IMAP to retrieve
email; use SpamAssassin to combat spam.

• NIS Set up NIS to facilitate system administration of a LAN.

• NFS Share filesystems between systems on a network.

• Samba Share filesystems and printers between Windows and Linux systems.

• DNS/BIND Set up a domain nameserver to let other systems on the
Internet know the names and IP addresses of local systems they may need
to contact.

• firestarter and iptables Share a single Internet connection between systems
on a LAN, run a DHCP server, and set up a firewall to protect local systems.

• Apache Set up an HTTP server that serves Web pages that browsers can
display. This chapter includes many suggestions for increasing Apache
security.

Thanks xliii

Part VI Part VI includes appendixes on regular expressions, helpful Web sites, system secu-
rity, and free software. This part also includes an extensive glossary with more than
500 entries plus a comprehensive index.

Supplements

The author’s home page (www.sobell.com) contains downloadable listings of the
longer programs from this book as well as pointers to many interesting and useful
Linux sites on the World Wide Web, a list of corrections to the book, answers to even-
numbered exercises, and a solicitation for corrections, comments, and suggestions.

Thanks

First and foremost, I want to thank Mark L. Taub, Editor-in-Chief, Prentice Hall,
who provided encouragement and support through the hard parts of this project.
Mark is unique in my 25 years of book writing experience: an editor who works
with the tools I write about. Because Mark runs Ubuntu on his home computer, we
shared experiences as I wrote this book. Mark, your comments and direction are
invaluable; this book would not exist without your help. Thank you, Mark T.

Molly Sharp of ContentWorks worked with me day-by-day during production of
this book providing help, listening to my rants, and keeping everything on track.
Thanks to Jill Hobbs, Copyeditor, who made the book readable, understandable,
and consistent; and Linda Seifert, Proofreader, who made each page sparkle.

Thanks also to the folks at Prentice Hall who helped bring this book to life, espe-
cially Julie Nahil, Full-Service Production Manager, who oversaw production of
the book; John Fuller, Managing Editor, who kept the large view in check; Marie
McKinley, Marketing Manager; Noreen Regina, Editorial Assistant, who attended
to the many details involved in publishing this book, including keeping the review
team on schedule (no small task); Heather Fox, Publicist; Dan Scherf, Media
Developer; Sandra Schroeder, Design Manager; Chuti Prasertsith, Cover Designer;
and everyone else who worked behind the scenes to make this book come into
being.

I am also indebted to Denis Howe, Editor of The Free On-line Dictionary of Com-
puting (FOLDOC). Denis has graciously permitted me to use entries from his
compilation. Be sure to look at this dictionary (www.foldoc.org).

A big “thank you” to the folks who read through the drafts of the book and
made comments that caused me to refocus parts of the book where things were
not clear or were left out altogether: David Chisnall, Swansea University; Scott
Mann, Aztek Networks; Matthew Miller, Senior Systems Analyst/Administrator,
BU Linux Project, Boston University Office of Information Technology; George

www.sobell.com
www.foldoc.org

xliv Preface

Vish II, Senior Education Consultant, Hewlett-Packard; Thomas Achtemichuk,
Mansueto Ventures; John Dong, Ubuntu Forum Council Member/Backports
Team Leader; Scott James Remnant, Ubuntu Development Manager and Desktop
Team Leader; Daniel R. Arfsten, Pro/Engineer Drafter/Designer; Chris Cooper,
Senior Education Consultant, Hewlett-Packard Education Services; Sameer
Verma, Associate Professor of Information Systems, San Francisco State Univer-
sity; Valerie Chau, Palomar College and Programmers Guild; James Kratzer; Sean
McAllister; Nathan Eckenrode, New York Ubuntu Local Community Team;
Christer Edwards; Nicolas Merline; and Michael Price.

Thanks also to the following people who helped with my previous Linux books,
which provided a foundation for this book: Chris Karr, Northwestern University;
Jesse Keating, Fedora Project; Carsten Pfeiffer, Software Engineer and KDE Devel-
oper; Aaron Weber, Ximian; Cristof Falk, Software Developer at CritterDesign;
Steve Elgersma, Computer Science Department, Princeton University; Scott Dier,
University of Minnesota; Robert Haskins, Computer Net Works; Lars Kellogg-
Stedman, Harvard University; Jim A. Lola, Principal Systems Consultant, Priva-
teer Systems; Eric S. Raymond, Cofounder, Open Source Initiative; Scott Mann;
Randall Lechlitner, Independent Computer Consultant; Jason Wertz, Computer
Science Instructor, Montgomery County Community College; Justin Howell, Solano
Community College; Ed Sawicki, The Accelerated Learning Center; David Mercer;
Jeffrey Bianchine, Advocate, Author, Journalist; John Kennedy; and Jim Dennis,
Starshine Technical Services.

Thanks also to Dustin Puryear, Puryear Information Technology; Gabor Liptak,
Independent Consultant; Bart Schaefer, Chief Technical Officer, iPost; Michael J.
Jordan, Web Developer, Linux Online; Steven Gibson, Owner, SuperAnt.com; John
Viega, Founder and Chief Scientist, Secure Software; K. Rachael Treu, Internet
Security Analyst, Global Crossing; Kara Pritchard, K & S Pritchard Enterprises;
Glen Wiley, Capital One Finances; Karel Baloun, Senior Software Engineer, Look-
smart; Matthew Whitworth; Dameon D. Welch-Abernathy, Nokia Systems; Josh
Simon, Consultant; Stan Isaacs; and Dr. Eric H. Herrin II, Vice President, Herrin
Software Development. And thanks to Doug Hughes, long-time system designer
and administrator, who gave me a big hand with the sections on system administra-
tion, networks, the Internet, and programming.

More thanks go to consultants Lorraine Callahan and Steve Wampler; Ronald
Hiller, Graburn Technology; Charles A. Plater, Wayne State University; Bob
Palowoda; Tom Bialaski, Sun Microsystems; Roger Hartmuller, TIS Labs at Net-
work Associates; Kaowen Liu; Andy Spitzer; Rik Schneider; Jesse St. Laurent; Steve
Bellenot; Ray W. Hiltbrand; Jennifer Witham; Gert-Jan Hagenaars; and Casper Dik.

A Practical Guide to Ubuntu Linux® is based in part on two of my previous UNIX
books: UNIX System V: A Practical Guide and A Practical Guide to the UNIX Sys-
tem. Many people helped me with those books, and thanks here go to Pat Parseghian;
Dr. Kathleen Hemenway; Brian LaRose; Byron A. Jeff, Clark Atlanta University;
Charles Stross; Jeff Gitlin, Lucent Technologies; Kurt Hockenbury; Maury Bach, Intel

Thanks xlv

Israel; Peter H. Salus; Rahul Dave, University of Pennsylvania; Sean Walton, Intelligent
Algorithmic Solutions; Tim Segall, Computer Sciences Corporation; Behrouz Forouzan,
DeAnza College; Mike Keenan, Virginia Polytechnic Institute and State University;
Mike Johnson, Oregon State University; Jandelyn Plane, University of Maryland;
Arnold Robbins and Sathis Menon, Georgia Institute of Technology; Cliff Shaffer, Vir-
ginia Polytechnic Institute and State University; and Steven Stepanek, California State
University, Northridge, for reviewing the book.

I continue to be grateful to the many people who helped with the early editions of
my UNIX books. Special thanks are due to Roger Sippl, Laura King, and Roy
Harrington for introducing me to the UNIX system. My mother, Dr. Helen Sobell,
provided invaluable comments on the original manuscript at several junctures. Also,
thanks go to Isaac Rabinovitch, Professor Raphael Finkel, Professor Randolph
Bentson, Bob Greenberg, Professor Udo Pooch, Judy Ross, Dr. Robert Veroff,
Dr. Mike Denny, Joe DiMartino, Dr. John Mashey, Diane Schulz, Robert Jung, Charles
Whitaker, Don Cragun, Brian Dougherty, Dr. Robert Fish, Guy Harris, Ping Liao,
Gary Lindgren, Dr. Jarrett Rosenberg, Dr. Peter Smith, Bill Weber, Mike Bianchi,
Scooter Morris, Clarke Echols, Oliver Grillmeyer, Dr. David Korn, Dr. Scott
Weikart, and Dr. Richard Curtis.

Finally, thanks to Peter and his family for providing nourishment and a very com-
fortable place to work. I spent many hours reading the manuscript at JumpStart,
Peter’s neighborhood coffee and sandwich shop. If you are in the neighborhood
(24th & Guerrero in San Francisco), stop by and say “Hi.”

I take responsibility for any errors and omissions in this book. If you find one or
just have a comment, let me know (mgs@sobell.com) and I will fix it in the next
printing. My home page (www.sobell.com) contains a list of errors and credits those
who found them. It also offers copies of the longer scripts from the book and point-
ers to interesting Linux pages on the Internet.

Mark G. Sobell
San Francisco, California

www.sobell.com

This page intentionally left blank

11

1Chapter1The Linux kernel was developed by Finnish undergraduate
student Linus Torvalds, who used the Internet to make the
source code immediately available to others for free. Torvalds
released Linux version 0.01 in September 1991.

The new operating system came together through a lot of hard
work. Programmers around the world were quick to extend the
kernel and develop other tools, adding functionality to match
that already found in both BSD UNIX and System V UNIX
(SVR4) as well as new functionality.

The Linux operating system, which was developed through
the cooperation of many, many people around the world, is a
product of the Internet and is a free operating system. In other
words, all the source code is free. You are free to study it,
redistribute it, and modify it. As a result, the code is available
free of cost—no charge for the software, source, documenta-
tion, or support (via newsgroups, mailing lists, and other

In This Chapter

The GNU–Linux Connection 2

The Linux 2.6 Kernel 5

The Heritage of Linux: UNIX 5

What Is So Good About Linux?. 6

Overview of Linux 10

Additional Features of Linux. 15

Conventions Used in This Book . . . 17

1

Welcome to Linux

2 Chapter 1 Welcome to Linux

Internet resources). As the GNU Free Software Definition (reproduced in Appendix D)
puts it:

Free beer “Free software” is a matter of liberty, not price. To understand the
concept, you should think of “free” as in “free speech,” not as in
“free beer.”

The GNU–Linux Connection

An operating system is the low-level software that schedules tasks, allocates storage,
and handles the interfaces to peripheral hardware, such as printers, disk drives, the
screen, keyboard, and mouse. An operating system has two main parts: the kernel
and the system programs. The kernel allocates machine resources—including mem-
ory, disk space, and CPU (page 1031) cycles—to all other programs that run on the
computer. The system programs perform higher-level housekeeping tasks, often act-
ing as servers in a client/server relationship. Linux is the name of the kernel that
Linus Torvalds presented to the world in 1991 and that many others have worked
on since then to enhance, stabilize, expand, and make more secure.

The History of GNU–Linux

This section presents some background on the relationship between GNU and Linux.

Fade to 1983

Richard Stallman (www.stallman.org) announced1 the GNU Project for creating an
operating system, both kernel and system programs, and presented the GNU Mani-
festo,2 which begins as follows:

GNU, which stands for Gnu’s Not UNIX, is the name for the com-
plete UNIX-compatible software system which I am writing so that
I can give it away free to everyone who can use it.

Some years later, Stallman added a footnote to the preceding sentence when he realized
that it was creating confusion:

The wording here was careless. The intention was that nobody
would have to pay for *permission* to use the GNU system. But
the words don’t make this clear, and people often interpret them as
saying that copies of GNU should always be distributed at little or
no charge. That was never the intent; later on, the manifesto men-
tions the possibility of companies providing the service of distribu-
tion for a profit. Subsequently I have learned to distinguish

1. www.gnu.org/gnu/initial-announcement.html

2. www.gnu.org/gnu/manifesto.html

www.stallman.org
www.gnu.org/gnu/initial-announcement.html
www.gnu.org/gnu/manifesto.html

The GNU–Linux Connection 3

carefully between “free” in the sense of freedom and “free” in the
sense of price. Free software is software that users have the free-
dom to distribute and change. Some users may obtain copies at no
charge, while others pay to obtain copies—and if the funds help
support improving the software, so much the better. The important
thing is that everyone who has a copy has the freedom to cooperate
with others in using it.

In the manifesto, after explaining a little about the project and what has been
accomplished so far, Stallman continues:

Why I Must Write GNU
I consider that the golden rule requires that if I like a program I
must share it with other people who like it. Software sellers want
to divide the users and conquer them, making each user agree not
to share with others. I refuse to break solidarity with other users in
this way. I cannot in good conscience sign a nondisclosure agree-
ment or a software license agreement. For years I worked within
the Artificial Intelligence Lab to resist such tendencies and other
inhospitalities, but eventually they had gone too far: I could not
remain in an institution where such things are done for me against
my will.

So that I can continue to use computers without dishonor, I have
decided to put together a sufficient body of free software so that I
will be able to get along without any software that is not free. I
have resigned from the AI Lab to deny MIT any legal excuse to
prevent me from giving GNU away.

Next Scene, 1991

The GNU Project has moved well along toward its goal. Much of the GNU operat-
ing system, except for the kernel, is complete. Richard Stallman later writes:

By the early ’90s we had put together the whole system aside from
the kernel (and we were also working on a kernel, the GNU Hurd,3

which runs on top of Mach4). Developing this kernel has been a lot
harder than we expected, and we are still working on finishing it.5

...[M]any believe that once Linus Torvalds finished writing the ker-
nel, his friends looked around for other free software, and for no
particular reason most everything necessary to make a UNIX-like
system was already available.

3. www.gnu.org/software/hurd/hurd.html

4. www.gnu.org/software/hurd/gnumach.html

5. www.gnu.org/software/hurd/hurd-and-linux.html

www.gnu.org/software/hurd/hurd.html
www.gnu.org/software/hurd/gnumach.html
www.gnu.org/software/hurd/hurd-and-linux.html

4 Chapter 1 Welcome to Linux

What they found was no accident—it was the GNU system. The
available free software6 added up to a complete system because the
GNU Project had been working since 1984 to make one. The GNU
Manifesto had set forth the goal of developing a free UNIX-like
system, called GNU. The Initial Announcement of the GNU
Project also outlines some of the original plans for the GNU sys-
tem. By the time Linux was written, the [GNU] system was almost
finished.7

Today the GNU “operating system” runs on top of the FreeBSD (www.freebsd.org)
and NetBSD (www.netbsd.org) kernels with complete Linux binary compatibility
and on top of Hurd pre-releases and Darwin (developer.apple.com/opensource)
without this compatibility.

The Code Is Free

The tradition of free software dates back to the days when UNIX was released to
universities at nominal cost, which contributed to its portability and success. This
tradition died as UNIX was commercialized and manufacturers regarded the source
code as proprietary, making it effectively unavailable. Another problem with the
commercial versions of UNIX related to their complexity. As each manufacturer
tuned UNIX for a specific architecture, it became less portable and too unwieldy for
teaching and experimentation.

MINIX Two professors created their own stripped-down UNIX look-alikes for educational
purposes: Doug Comer created XINU and Andrew Tanenbaum created MINIX.
Linus Torvalds created Linux to counteract the shortcomings in MINIX. Every time
there was a choice between code simplicity and efficiency/features, Tanenbaum
chose simplicity (to make it easy to teach with MINIX), which meant this system
lacked many features people wanted. Linux goes in the opposite direction.

You can obtain Linux at no cost over the Internet (page 37). You can also obtain
the GNU code via the U.S. mail at a modest cost for materials and shipping. You
can support the Free Software Foundation (www.fsf.org) by buying the same
(GNU) code in higher-priced packages, and you can buy commercial packaged
releases of Linux (called distributions), such as Ubuntu Linux, that include installa-
tion instructions, software, and support.

GPL Linux and GNU software are distributed under the terms of the GNU General Pub-
lic License (GPL, www.gnu.org/licenses/licenses.html). The GPL says you have the
right to copy, modify, and redistribute the code covered by the agreement. When
you redistribute the code, however, you must also distribute the same license with
the code, thereby making the code and the license inseparable. If you get source
code off the Internet for an accounting program that is under the GPL and then

6. See Appendix D or www.gnu.org/philosophy/free-sw.html.

7. www.gnu.org/gnu/linux-and-gnu.html

www.freebsd.org
www.netbsd.org
www.fsf.org
www.gnu.org/licenses/licenses.html
www.gnu.org/philosophy/free-sw.html
www.gnu.org/gnu/linux-and-gnu.html

The Heritage of Linux: UNIX 5

modify that code and redistribute an executable version of the program, you must
also distribute the modified source code and the GPL agreement with it. Because
this arrangement is the reverse of the way a normal copyright works (it gives rights
instead of limiting them), it has been termed a copyleft. (This paragraph is not a
legal interpretation of the GPL; it is intended merely to give you an idea of how it
works. Refer to the GPL itself when you want to make use of it.)

Have Fun!

Two key words for Linux are “Have Fun!” These words pop up in prompts and doc-
umentation. The UNIX—now Linux—culture is steeped in humor that can be seen
throughout the system. For example, less is more—GNU has replaced the UNIX
paging utility named more with an improved utility named less. The utility to view
PostScript documents is named ghostscript, and one of several replacements for the vi
editor is named elvis. While machines with Intel processors have “Intel Inside” logos
on their outside, some Linux machines sport “Linux Inside” logos. And Torvalds
himself has been seen wearing a T-shirt bearing a “Linus Inside” logo.

The Linux 2.6 Kernel

The Linux 2.6 kernel was released on December 17, 2003. This kernel has many
features that offer increased security and speed. Some of these features benefit end
users directly; others help developers produce better code and find problems more
quickly. See Appendix E for a description of the features introduced in the Linux
2.6 kernel.

The Heritage of Linux: UNIX

The UNIX system was developed by researchers who needed a set of modern com-
puting tools to help them with their projects. The system allowed a group of people
working together on a project to share selected data and programs while keeping
other information private.

Universities and colleges played a major role in furthering the popularity of the
UNIX operating system through the “four-year effect.” When the UNIX operating
system became widely available in 1975, Bell Labs offered it to educational institu-
tions at nominal cost. The schools, in turn, used it in their computer science pro-
grams, ensuring that computer science students became familiar with it. Because
UNIX was such an advanced development system, the students became acclimated
to a sophisticated programming environment. As these students graduated and went
into industry, they expected to work in a similarly advanced environment. As more
of them worked their way up the ladder in the commercial world, the UNIX operat-
ing system found its way into industry.

6 Chapter 1 Welcome to Linux

In addition to introducing students to the UNIX operating system, the Computer
Systems Research Group (CSRG) at the University of California at Berkeley made
significant additions and changes to it. In fact, it made so many popular changes
that one version of the system is called the Berkeley Software Distribution (BSD) of
the UNIX system (or just Berkeley UNIX). The other major version is UNIX System
V (SVR4), which descended from versions developed and maintained by AT&T and
UNIX System Laboratories.

What Is So Good About Linux?

In recent years Linux has emerged as a powerful and innovative UNIX work-alike.
Its popularity is surpassing that of its UNIX predecessors. Although it mimics UNIX
in many ways, the Linux operating system departs from UNIX in several significant
ways: The Linux kernel is implemented independently of both BSD and System V,
the continuing development of Linux is taking place through the combined efforts of
many capable individuals throughout the world, and Linux puts the power of UNIX
within easy reach of both business and personal computer users. Using the Internet,
today’s skilled programmers submit additions and improvements to the operating
system to Linus Torvalds, GNU, or one of the other authors of Linux.

Applications A rich selection of applications is available for Linux—both free and commercial—
as well as a wide variety of tools: graphical, word processing, networking, security,
administration, Web server, and many others. Large software companies have
recently seen the benefit in supporting Linux and now have on-staff programmers
whose job it is to design and code the Linux kernel, GNU, KDE, or other software
that runs on Linux. For example, IBM (www.ibm.com/linux) is a major Linux sup-
porter. Linux conforms increasingly more closely to POSIX standards, and some
distributions and parts of others meet this standard. (See “Standards” on page 9.)
These developments indicate that Linux is becoming more mainstream and is
respected as an attractive alternative to other popular operating systems.

Peripherals Another aspect of Linux that appeals to users is the amazing range of peripherals that is
supported and the speed with which support for new peripherals emerges. Linux often
supports a peripheral or interface card before any company does. Unfortunately
some types of peripherals—particularly proprietary graphics cards—lag in their
support because the manufacturers do not release specifications or source code for
drivers in a timely manner, if at all.

Software Also important to users is the amount of software that is available—not just source
code (which needs to be compiled) but also prebuilt binaries that are easy to install
and ready to run. These include more than free software. Netscape, for example,
has been available for Linux from the start and included Java support before it was
available from many commercial vendors. Now its sibling Mozilla/Thunderbird/
Firefox is also a viable browser, mail client, and newsreader, performing many other
functions as well.

What Is So Good About Linux? 7

Platforms Linux is not just for Intel-based platforms: It has been ported to and runs on the Power
PC—including Apple computers (ppclinux), Compaq’s (née Digital Equipment Corpo-
ration) Alpha-based machines, MIPS-based machines, Motorola’s 68K-based machines,
various 64-bit systems, and IBM’s S/390. Nor is Linux just for single-processor
machines: As of version 2.0, it runs on multiple-processor machines (SMPs). It also
includes an O(1) scheduler, which dramatically increases scalability on SMP systems.

Emulators Linux supports programs, called emulators, that run code intended for other operat-
ing systems. By using emulators you can run some DOS, Windows, and Macintosh
programs under Linux. For example, Wine (www.winehq.com) is an open-source
implementation of the Windows API on top of the X Window System and
UNIX/Linux; QEMU (fabrice.bellard.free.fr/qemu) is a CPU-only emulator that
executes x86 Linux binaries on non-x86 Linux systems.

Xen Xen, which was created at the University of Cambridge and is now being developed
in the open-source community, is an open-source virtual machine monitor (VMM). A
VMM enables several virtual machines (VMs), each running an instance of a separate
operating system, to run on a single computer. Xen isolates the VMs so that if one
crashes it does not affect the others. In addition, Xen introduces minimal performance
overhead when compared with running each of the operating systems natively.

Using VMs, you can experiment with cutting-edge releases of operating systems and
applications without concern for the base (stable) system, all on a single machine.
You can also set up and test networks of systems on a single machine. Xen presents
a sandbox, an area (system) that you can work in without regard for the results of
your work or for the need to clean up.

The Gutsy release of Ubuntu supports Xen 3.1. This book does not cover the
installation or use of Xen. See help.ubuntu.com/community/Xen for information
on running Xen under Ubuntu.

For more information on Xen, refer to the wiki at wiki.xensource.com/xenwiki and
the Xen home page at www.cl.cam.ac.uk/research/srg/netos/xen.

KVM and VirtualBox If you want to run a virtual instance of Windows, you may want to investigate
KVM (Kernel Virtual Machine, help.ubuntu.com/community/KVM) and VirtualBox
(www.virtualbox.org).

Why Linux Is Popular with Hardware Companies

and Developers

Two trends in the computer industry set the stage for the growing popularity of
UNIX and Linux. First, advances in hardware technology created the need for an
operating system that could take advantage of available hardware power. In the
mid-1970s, minicomputers began challenging the large mainframe computers
because, in many applications, minicomputers could perform the same functions
less expensively. More recently, powerful 64-bit processor chips, plentiful and inex-
pensive memory, and lower-priced hard disk storage have allowed hardware com-
panies to install multiuser operating systems on desktop computers.

www.cl.cam.ac.uk/research/srg/netos/xen
www.virtualbox.org

8 Chapter 1 Welcome to Linux

Proprietary
operating systems

Second, with the cost of hardware continually dropping, hardware manufacturers
could no longer afford to develop and support proprietary operating systems. A
proprietary operating system is one that is written and owned by the manufacturer
of the hardware (for example, DEC/Compaq owns VMS). Today’s manufacturers
need a generic operating system that they can easily adapt to their machines.

Generic operating
systems

A generic operating system is written outside of the company manufacturing the
hardware and is sold (UNIX, Windows) or given (Linux) to the manufacturer.
Linux is a generic operating system because it runs on different types of hardware
produced by different manufacturers. Of course, if manufacturers can pay only for
development and avoid per-unit costs (as they have to pay to Microsoft for each
copy of Windows they sell), manufacturers are much better off. In turn, software
developers need to keep the prices of their products down; they cannot afford to
convert their products to run under many different proprietary operating systems.
Like hardware manufacturers, software developers need a generic operating system.

Although the UNIX system once met the needs of hardware companies and
researchers for a generic operating system, over time it has become more propri-
etary as manufacturers added support for their own specialized features and intro-
duced new software libraries and utilities.

Linux emerged to serve both needs: It is a generic operating system that takes
advantage of available hardware power.

Linux Is Portable

A portable operating system is one that can run on many different machines. More
than 95 percent of the Linux operating system is written in the C programming lan-
guage, and C is portable because it is written in a higher-level, machine-independent
language. (The C compiler is written in C.)

Because Linux is portable, it can be adapted (ported) to different machines and can
meet special requirements. For example, Linux is used in embedded computers,
such as the ones found in cellphones, PDAs, and the cable boxes on top of many
TVs. The file structure takes full advantage of large, fast hard disks. Equally impor-
tant, Linux was originally designed as a multiuser operating system—it was not
modified to serve several users as an afterthought. Sharing the computer’s power
among many users and giving them the ability to share data and programs are cen-
tral features of the system.

Because it is adaptable and takes advantage of available hardware, Linux runs on
many different microprocessor-based systems as well as mainframes. The popularity
of the microprocessor-based hardware drives Linux; these microcomputers are get-
ting faster all the time, at about the same price point. Linux on a fast microcom-
puter has become good enough to displace workstations on many desktops. Linux
benefits both users, who do not like having to learn a new operating system for each
vendor’s hardware, and system administrators, who like having a consistent soft-
ware environment.

What Is So Good About Linux? 9

The advent of a standard operating system has aided the development of the soft-
ware industry. Now software manufacturers can afford to make one version of a
product available on machines from different manufacturers.

Standards

Individuals from companies throughout the computer industry have joined together
to develop the POSIX (Portable Operating System Interface for Computer Environ-
ments) standard, which is based largely on the UNIX System V Interface Definition
(SVID) and other earlier standardization efforts. These efforts have been spurred by
the U.S. government, which needs a standard computing environment to minimize
its training and procurement costs. Now that these standards are gaining accep-
tance, software developers are able to develop applications that run on all conform-
ing versions of UNIX, Linux, and other operating systems.

The C Programming Language

Ken Thompson wrote the UNIX operating system in 1969 in PDP-7 assembly lan-
guage. Assembly language is machine dependent: Programs written in assembly
language work on only one machine or, at best, on one family of machines. The
original UNIX operating system therefore could not easily be transported to run on
other machines (it was not portable).

To make UNIX portable, Thompson developed the B programming language, a
machine-independent language, from the BCPL language. Dennis Ritchie developed
the C programming language by modifying B and, with Thompson, rewrote UNIX
in C in 1973. The revised operating system could be transported more easily to run
on other machines.

That development marked the start of C. Its roots reveal some of the reasons why it
is such a powerful tool. C can be used to write machine-independent programs. A
programmer who designs a program to be portable can easily move it to any com-
puter that has a C compiler. C is also designed to compile into very efficient code.
With the advent of C, a programmer no longer had to resort to assembly language
to get code that would run well (that is, quickly—although an assembler will always
generate more efficient code than a high-level language).

C is a good systems language. You can write a compiler or an operating system in C.
It is highly structured but is not necessarily a high-level language. C allows a program-
mer to manipulate bits and bytes, as is necessary when writing an operating system.
But it also has high-level constructs that allow for efficient, modular programming.

In the late 1980s the American National Standards Institute (ANSI) defined a stan-
dard version of the C language, commonly referred to as ANSI C or C89 (for the
year the standard was published). Ten years later the C99 standard was published;
it is mostly supported by the GNU Project’s C compiler (named gcc). The original
version of the language is often referred to as Kernighan & Ritchie (or K&R) C,
named for the authors of the book that first described the C language.

10 Chapter 1 Welcome to Linux

Another researcher at Bell Labs, Bjarne Stroustrup, created an object-oriented pro-
gramming language named C++, which is built on the foundation of C. Because
object-oriented programming is desired by many employers today, C++ is preferred
over C in many environments. Another language of choice is Objective-C, which
was used to write the first Web browser. The GNU Project’s C compiler supports C,
C++, and Objective-C.

Ubuntu Linux

From its first release in October 2004, Ubuntu has been a community-oriented
project. Ubuntu maintains several structures to keep it functioning effectively, with
community members invited to participate in all structures. For more information
about Ubuntu governance, see www.ubuntu.com/community/processes/governance.

Ubuntu Linux, which is sponsored by Canonical Ltd. (www.canonical.com), is
based on the Debian Linux and focuses on enhancing usability, accessibility, and
internationalization. Although Ubuntu initially targeted the desktop user, recent
releases have put increasing emphasis on the server market. With a new release
scheduled every six months, Ubuntu provides cutting-edge software.

An Ubuntu system uses the GNOME desktop manager (www.gnome.org) and
includes the OpenOffice.org suite of productivity tools, the Firefox Web browser,
the Pidgin (formerly Gaim) IM client, and an assortment of tools and games. To
keep software on a system up-to-date, Ubuntu uses Debian’s deb package format
and various APT-based tools. Ubuntu distributes and supports many versions of its
Linux distribution. For example, Kubuntu (www.kubuntu.org) runs the KDE desk-
top manager, Edubuntu (www.edubuntu.org) includes many school-related applica-
tions, and Xubuntu (www.xubuntu.org) runs the lightweight Xfce desktop, which
makes it ideal for older, slower machines. For more information about Ubuntu, see
www.ubuntu.com/aboutus/faq.

Overview of Linux

The Linux operating system has many unique and powerful features. Like other
operating systems, it is a control program for computers. But like UNIX, it is also a
well-thought-out family of utility programs (Figure 1-1) and a set of tools that
allow users to connect and use these utilities to build systems and applications.

Linux Has a Kernel Programming Interface

The Linux kernel—the heart of the Linux operating system—is responsible for allo-
cating the computer’s resources and scheduling user jobs so that each one gets its
fair share of system resources, including access to the CPU; peripheral devices, such
as hard disk, DVD, and CD-ROM storage; printers; and tape drives. Programs
interact with the kernel through system calls, special functions with well-known
names. A programmer can use a single system call to interact with many kinds of

www.ubuntu.com/community/processes/governance
www.canonical.com
www.gnome.org
www.ubuntu.com/aboutus/faq

Overview of Linux 11

devices. For example, there is one write() system call, not many device-specific ones.
When a program issues a write() request, the kernel interprets the context and
passes the request to the appropriate device. This flexibility allows old utilities to
work with devices that did not exist when the utilities were written. It also makes it
possible to move programs to new versions of the operating system without rewrit-
ing them (provided that the new version recognizes the same system calls). See
page 1015 for information on the Linux 2.6 kernel.

Linux Can Support Many Users

Depending on the hardware and the types of tasks that the computer performs, a
Linux system can support from 1 to more than 1,000 users, each concurrently run-
ning a different set of programs. The per-user cost of a computer that can be used
by many people at the same time is less than that of a computer that can be used by
only a single person at a time. It is less because one person cannot generally take
advantage of all the resources a computer has to offer. That is, no one can keep all
the printers going constantly, keep all the system memory in use, keep all the disks
busy reading and writing, keep the Internet connection in use, and keep all the ter-
minals busy at the same time. By contrast, a multiuser operating system allows
many people to use all of the system resources almost simultaneously. The use of
costly resources can be maximized and the cost per user can be minimized—the pri-
mary objectives of a multiuser operating system.

Linux Can Run Many Tasks

Linux is a fully protected multitasking operating system, allowing each user to run
more than one job at a time. Processes can communicate with one another but
remain fully protected from one another, just as the kernel remains protected from
all processes. You can run several jobs in the background while giving all your
attention to the job being displayed on the screen, and you can switch back and
forth between jobs. If you are running the X Window System (page 15), you can
run different programs in different windows on the same screen and watch all of
them. This capability ensures that users can be more productive.

Figure 1-1 A layered view of the Linux operating system

Compilers
Database
Management
Systems

Word
Mail and
Message
Facilities

ShellsProcessors

Hardware

Linux Kernel

12 Chapter 1 Welcome to Linux

Linux Provides a Secure Hierarchical Filesystem

A file is a collection of information, such as text for a memo or report, an accumu-
lation of sales figures, an image, a song, or an executable program. Each file is
stored under a unique identifier on a storage device, such as a hard disk. The Linux
filesystem provides a structure whereby files are arranged under directories, which
are like folders or boxes. Each directory has a name and can hold other files and
directories. Directories, in turn, are arranged under other directories, and so forth,
in a treelike organization. This structure helps users keep track of large numbers of
files by grouping related files in directories. Each user has one primary directory
and as many subdirectories as required (Figure 1-2).

Standards With the idea of making life easier for system administrators and software develop-
ers, a group got together over the Internet and developed the Linux Filesystem Stan-
dard (FSSTND), which has since evolved into the Linux Filesystem Hierarchy
Standard (FHS). Before this standard was adopted, key programs were located in
different places in different Linux distributions. Today you can sit down at a Linux
system and know where to expect to find any given standard program (page 194).

Links A link allows a given file to be accessed by means of two or more names. The alter-
native names can be located in the same directory as the original file or in another
directory. Links can make the same file appear in several users’ directories, enabling
those users to share the file easily. Windows uses the term shortcut in place of link
to describe this capability. Macintosh users will be more familiar with the term
alias. Under Linux, an alias is different from a link; it is a command macro feature
provided by the shell (page 328).

Security Like most multiuser operating systems, Linux allows users to protect their data from
access by other users. It also allows users to share selected data and programs with cer-
tain other users by means of a simple but effective protection scheme. This level of secu-
rity is provided by file access permissions, which limit which users can read from, write
to, or execute a file. More recently, Linux has implemented Access Control Lists (ACLs),
which give users and administrators finer-grained control over file access permissions.

The Shell: Command Interpreter and

Programming Language

In a textual environment, the shell—the command interpreter—acts as an interface
between you and the operating system. When you enter a command on the screen,
the shell interprets the command and calls the program you want. A number of
shells are available for Linux. The three most popular shells are

• The Bourne Again Shell (bash), an enhanced version of the original Bourne
Shell (the original UNIX shell).

• The TC Shell (tcsh), an enhanced version of the C Shell, developed as part
of BSD UNIX.

• The Z Shell (zsh), which incorporates features from a number of shells,
including the Korn Shell.

Overview of Linux 13

Because different users may prefer different shells, multiuser systems can have sev-
eral different shells in use at any given time. The choice of shells demonstrates one
of the advantages of the Linux operating system: the ability to provide a customized
interface for each user.

Shell scripts Besides performing its function of interpreting commands from a keyboard and send-
ing those commands to the operating system, the shell is a high-level programming
language. Shell commands can be arranged in a file for later execution (Linux calls
these files shell scripts; Windows calls them batch files). This flexibility allows users
to perform complex operations with relative ease, often with rather short commands,
or to build with surprisingly little effort elaborate programs that perform highly com-
plex operations.

Filename Generation

Wildcards and
ambiguous file

references

When you type commands to be processed by the shell, you can construct patterns
using characters that have special meanings to the shell. These characters are
called wildcard characters. The patterns, which are called ambiguous file refer-
ences, are a kind of shorthand: Rather than typing in complete filenames, users
can type patterns; the shell expands these patterns into matching filenames. An
ambiguous file reference can save you the effort of typing in a long filename or a
long series of similar filenames. For example, the shell might expand the pattern
mak* to make-3.80.tar.gz. Patterns can also be useful when you know only part
of a filename or cannot remember the exact spelling.

Device-Independent Input and Output

Redirection Devices (such as a printer or a terminal) and disk files appear as files to Linux pro-
grams. When you give a command to the Linux operating system, you can instruct
it to send the output to any one of several devices or files. This diversion is called
output redirection.

Figure 1-2 The Linux filesystem structure

/

etctmphome

hlsjennyalex

notesbin

report log

14 Chapter 1 Welcome to Linux

Device
independence

In a similar manner, a program’s input that normally comes from a keyboard can be
redirected so that it comes from a disk file instead. Input and output are device
independent; that is, they can be redirected to or from any appropriate device.

As an example, the cat utility normally displays the contents of a file on the screen.
When you run a cat command, you can easily cause its output to go to a disk file
instead of the screen.

Shell Functions

One of the most important features of the shell is that users can use it as a programming
language. Because the shell is an interpreter, it does not compile programs written for it
but rather interprets programs each time they are loaded from the disk. Loading and
interpreting programs can be time-consuming.

Many shells, including the Bourne Again Shell, include shell functions that the shell
holds in memory so it does not have to read them from the disk each time you exe-
cute them. The shell also keeps functions in an internal format so that it does not
have to spend as much time interpreting them.

Job Control

Job control is a shell feature that allows users to work on several jobs at once,
switching back and forth between them as desired. When you start a job, it is fre-
quently run in the foreground so it is connected to the terminal. Using job control,
you can move the job you are working with into the background and continue run-
ning it there while working on or observing another job in the foreground. If a
background job then needs your attention, you can move it into the foreground so
that it is once again attached to the terminal. The concept of job control originated
with BSD UNIX, where it appeared in the C Shell.

A Large Collection of Useful Utilities

Linux includes a family of several hundred utility programs, often referred to as
commands. These utilities perform functions that are universally required by users.
The sort utility, for example, puts lists (or groups of lists) in alphabetical or numeri-
cal order and can be used to sort lists by part number, last name, city, ZIP code, tele-
phone number, age, size, cost, and so forth. The sort utility is an important
programming tool and is part of the standard Linux system. Other utilities allow
users to create, display, print, copy, search, and delete files as well as to edit, format,
and typeset text. The man (for manual) and info utilities provide online documenta-
tion for Linux itself.

Interprocess Communication

Pipes and filters Linux allows users to establish both pipes and filters on the command line. A pipe
sends the output of one program to another program as input. A filter is a special

Additional Features of Linux 15

kind of pipe that processes a stream of input data to yield a stream of output data.
A filter processes another program’s output, altering it as a result. The filter’s output
then becomes input to another program.

Pipes and filters frequently join utilities to perform a specific task. For example, you
can use a pipe to send the output of the cat utility to sort (a filter) and then use
another pipe to send the output of sort to a third utility, lpr, that sends the data to a
printer. Thus, in one command line, you can use three utilities together to sort and
print a file.

System Administration

On a Linux system the system administrator is frequently the owner and only user
of the system. This person has many responsibilities. The first responsibility may be
to set up the system and install the software. Once the system is up and running, the
system administrator is responsible for downloading and installing software
(including upgrading the operating system), backing up and restoring files, and
managing such system facilities as printers, terminals, servers, and a local network.
The system administrator is also responsible for setting up accounts for new users
on a multiuser system, bringing the system up and down as needed, and taking care
of any problems that arise.

Additional Features of Linux

The developers of Linux included features from BSD, System V, and Sun Microsys-
tems’ Solaris, as well as new features, in their operating system. Although most of
the tools found on UNIX exist for Linux, in some cases these tools have been
replaced by more modern counterparts. This section describes some of the popular
tools and features available under Linux.

GUIs: Graphical User Interfaces

The X Window System (also called X or X11) was developed in part by researchers
at MIT (Massachusetts Institute of Technology) and provides the foundation for the
GUIs available with Linux. Given a terminal or workstation screen that supports X,
a user can interact with the computer through multiple windows on the screen, dis-
play graphical information, or use special-purpose applications to draw pictures,
monitor processes, or preview formatted output. X is an across-the-network proto-
col that allows a user to open a window on a workstation or computer system that
is remote from the CPU generating the window.

Desktop manager Usually two layers run under X: a desktop manager and a window manager. A
desktop manager is a picture-oriented user interface that enables you to interact
with system programs by manipulating icons instead of typing the corresponding

16 Chapter 1 Welcome to Linux

commands to a shell. Ubuntu runs GNOME (Figure 1-3; www.gnome.org) by
default, but it can also run KDE (www.kde.org) and a number of other desktop
managers.

Window manager A window manager is a program that runs under the desktop manager and allows
you to open and close windows, run programs, and set up a mouse so it has different
effects depending on how and where you click. The window manager also gives the
screen its personality. Whereas Microsoft Windows allows you to change the color
of key elements in a window, a window manager under X allows you to customize
the overall look and feel of the screen: You can change the way a window looks and
works (by giving it different borders, buttons, and scrollbars), set up virtual desk-
tops, create menus, and more.

Several popular window managers run under X and Linux. Ubuntu Linux provides
both Metacity (the default under GNOME) and kwin (the default under KDE).
Other window managers, such as Sawfish and WindowMaker, are also available.
Chapters 4 and 8 present information on GUIs.

(Inter)Networking Utilities

Linux network support includes many utilities that enable you to access remote
systems over a variety of networks. In addition to sending email to users on other
systems, you can access files on disks mounted on other computers as if they were
located on the local system, make your files available to other systems in a similar

Figure 1-3 A GNOME workspace

www.gnome.org
www.kde.org

Conventions Used in This Book 17

manner, copy files back and forth, run programs on remote systems while display-
ing the results on the local system, and perform many other operations across local
area networks (LANs) and wide area networks (WANs), including the Internet.

Layered on top of this network access is a wide range of application programs that
extend the computer’s resources around the globe. You can carry on conversations
with people throughout the world, gather information on a wide variety of subjects,
and download new software over the Internet quickly and reliably. Chapter 10 dis-
cusses networks, the Internet, and the Linux network facilities.

Software Development

One of Linux’s most impressive strengths is its rich software development environ-
ment. You can find compilers and interpreters for many computer languages. Besides
C and C++, languages available for Linux include Ada, Fortran, Java, Lisp, Pascal,
Perl, and Python. The bison utility generates parsing code that makes it easier to
write programs to build compilers (tools that parse files containing structured infor-
mation). The flex utility generates scanners (code that recognizes lexical patterns in
text). The make utility and the GNU Configure and Build System make it easier to
manage complex development projects. Source code management systems, such as
CVS, simplify version control. Several debuggers, including ups and gdb, can help
track down and repair software defects. The GNU C compiler (gcc) works with the
gprof profiling utility to help programmers identify potential bottlenecks in a pro-
gram’s performance. The C compiler includes options to perform extensive checking
of C code, thereby making the code more portable and reducing debugging time.
Table B-4 on page 987 lists some sites you can download software from.

Conventions Used in This Book

This book uses conventions to make its explanations shorter and clearer. The fol-
lowing paragraphs describe these conventions.

Widgets A widget is a simple graphical element that a user interacts with, such as a text box,
radio button, or combo box. When referring to a widget, this book specifies the
type of widget and its label. The term “tick” refers to the mark you put in a check
box, sometimes called a check mark. For example, “put a tick in the check box
labeled Run in terminal (click the box to put a tick in it; click again to remove the
tick).” See the glossary for definitions of various widgets.

Tabs and frames Tabs allow windows to display sets of related information, one set at a time. For
example, Figure 4-11 on page 102 shows the Appearance Preferences window,
which has five tabs; the Background tab is highlighted. A frame isolates a set of
information within a window. Figure 4-11 shows the Wallpaper frame, which
allows you to select one of several wallpapers.

Menu selection path The menu selection path is the name of the menu or the location of the menu, fol-
lowed by a colon, a SPACE, and the menu selections separated by markers. The entire

18 Chapter 1 Welcome to Linux

menu selection path is in bold type. You can read Main menu: System Preferences
Appearance as “From the Main menu, select System; from System, select Preferences;
and then select Appearance.”

Text and examples The text is set in this type, whereas examples are shown in a monospaced font (also
called a fixed-width font):

$ cat practice
This is a small file I created
with a text editor.

Items you enter Everything you enter at the keyboard is shown in a bold typeface. Within the text,
this bold typeface is used; within examples and screens, this one is used. In the pre-
vious example, the dollar sign ($) on the first line is a prompt that Linux displays, so
it is not bold; the remainder of the first line is entered by a user, so it is bold.

Utility names Names of utilities are printed in this bold sans serif typeface. This book references the
emacs text editor and the ls utility or ls command (or just ls) but instructs you to
enter ls –a on the command line. In this way the text distinguishes between utilities,
which are programs, and the instructions you give on the command line to invoke
the utilities.

Filenames Filenames appear in a bold typeface. Examples are memo5, letter.1283, and reports.
Filenames may include uppercase and lowercase letters; however, Linux is case sen-
sitive (page 1027), so memo5, MEMO5, and Memo5 name three different files.

Character strings Within the text, characters and character strings are marked by putting them in a
bold typeface. This convention avoids the need for quotation marks or other delim-
iters before and after a string. An example is the following string, which is displayed
by the passwd utility: Sorry, passwords do not match.

Buttons and labels Words appear in a bold typeface in the sections of the book that describe a GUI.
This font indicates that you can click a mouse button when the mouse pointer is
over these words on the screen or over a button with this name: Click Next.

Keys and characters This book uses SMALL CAPS for three kinds of items:

• Keyboard keys, such as the SPACE bar and the RETURN,8 ESCAPE, and TAB keys.

• The characters that keys generate, such as the SPACEs generated by the SPACE bar.

• Keyboard keys that you press with the CONTROL key, such as CONTROL-D. (Even
though D is shown as an uppercase letter, you do not have to press the SHIFT

key; enter CONTROL-D by holding the CONTROL key down and pressing d.)

8. Different keyboards use different keys to move the cursor (page 1032) to the beginning of the next line.
This book always refers to the key that ends a line as the RETURN key. Your keyboard may have a RET, NEWLINE,
ENTER, RETURN, or other key. Use the corresponding key on your keyboard each time this book asks you to
press RETURN.

Conventions Used in This Book 19

Prompts and
RETURNs

Most examples include the shell prompt—the signal that Linux is waiting for a
command—as a dollar sign ($), a pound sign (#), or sometimes a percent sign (%).
The prompt is not in a bold typeface because you do not enter it. Do not type the
prompt on the keyboard when you are experimenting with examples from this
book. If you do, the examples will not work.

Examples omit the RETURN keystroke that you must use to execute them. An example
of a command line is

$ vim memo.1204

To use this example as a model for running the vim text editor, give the command
vim memo.1204 and press the RETURN key. (Press ESCAPE ZZ to exit from vim; see
page 172 for a vim tutorial.) This method of entering commands makes the exam-
ples in the book correspond to what appears on the screen.

Definitions All glossary entries marked with FOLDOC are courtesy of Denis Howe, editor of the Free
Online Dictionary of Computing (foldoc.org), and are used with permission. This
site is an ongoing work containing definitions, anecdotes, and trivia.

optional Optional Information

Passages marked as optional appear in a gray box. This material is not central to
the ideas presented in the chapter but often involves more challenging concepts. A
good strategy when reading a chapter is to skip the optional sections and then
return to them when you are comfortable with the main ideas presented in the chap-
ter. This is an optional paragraph.

URLs (Web
addresses)

Web addresses, or URLs, have an implicit http:// prefix, unless ftp:// or https:// is
shown. You do not normally need to specify a prefix when the prefix is http://, but
you must use a prefix from a browser when you specify an FTP or secure HTTP site.
Thus you can specify a URL in a browser exactly as shown in this book.

Tip, caution, and
security boxes

The following boxes highlight information that may be helpful while you are using
or administrating a Linux system.

This is a tip box

tip A tip box may help you avoid repeating a common mistake or may point toward additional information.

This box warns you about something
caution A caution box warns you about a potential pitfall.

This box marks a security note

security A security box highlights a potential security issue. These notes are usually for system adminis-
trators, but some apply to all users.

20 Chapter 1 Welcome to Linux

Chapter Summary

The Linux operating system grew out of the UNIX heritage to become a popular
alternative to traditional systems (that is, Windows) available for microcomputer
(PC) hardware. UNIX users will find a familiar environment in Linux. Distributions
of Linux contain the expected complement of UNIX utilities, contributed by pro-
grammers around the world, including the set of tools developed as part of the GNU
Project. The Linux community is committed to the continued development of this
system. Support for new microcomputer devices and features is added soon after the
hardware becomes available, and the tools available on Linux continue to be refined.
Given the many commercial software packages available to run on Linux platforms
and the many hardware manufacturers offering Linux on their systems, it is clear
that the system has evolved well beyond its origin as an undergraduate project to
become an operating system of choice for academic, commercial, professional, and
personal use.

Exercises

1. What is free software? List three characteristics of free software.

2. Why is Linux popular? Why is it popular in academia?

3. What are multiuser systems? Why are they successful?

4. What is the Free Software Foundation/GNU? What is Linux? Which parts
of the Linux operating system did each provide? Who else has helped build
and refine this operating system?

5. In which language is Linux written? What does the language have to do
with the success of Linux?

6. What is a utility program?

7. What is a shell? How does it work with the kernel? With the user?

8. How can you use utility programs and a shell to create your own applications?

9. Why is the Linux filesystem referred to as hierarchical?

10. What is the difference between a multiprocessor and a multiprocessing
system?

11. Give an example of when you would want to use a multiprocessing
system.

12. Approximately how many people wrote Linux? Why is this project
unique?

13. What are the key terms of the GNU General Public License?

21

I

PART I

Installing Ubuntu Linux

CHAPTER 2

Installation Overview 23

CHAPTER 3

Step-by-Step Installation 45

This page intentionally left blank

2323

2Chapter2Installing Ubuntu Linux is the process of copying operating sys-
tem files from a CD or DVD to hard drive(s) on a system and
setting up configuration files so that Linux runs properly on the
hardware. Several types of installations are possible, including
fresh installations, upgrades from older releases of Ubuntu
Linux, and dual-boot installations.

This chapter discusses the installation process in general: planning,
partitioning the hard disk, obtaining the files for the installation,
burning a CD or a DVD, and collecting information about the
hardware that may be helpful for installation and administration.
Chapter 3 covers the process of installing Ubuntu.

The ubiquity utility is a user-friendly, graphical tool that installs
Ubuntu. To install Ubuntu Linux on standard hardware, you can
typically insert the live/install Desktop CD or DVD, boot the sys-
tem, and double-click Install. After you answer a few questions,
you are done. However, you may want to customize the system
or you may be installing on nonstandard hardware: the installer
gives you choices as the installation process unfolds. Ubuntu also
provides a textual installer that gives you more control over the

In This Chapter

More Information 24

Planning the Installation 25

Setting Up the Hard Disk 30

LVM: Logical Volume Manager 35

The Installation Process 36

Downloading and Burning
a CD/DVD 37

Using BitTorrent 39

Gathering Information About
the System 41

2

Installation

Overview

24 Chapter 2 Installation Overview

installation. Refer to “Basic Installation from the Live/Install Desktop CD/DVD”
(page 46) and “Advanced Installation” (page 62) for information about installing and
customizing Ubuntu Linux.

The Live/Install Desktop CD/DVD

A live/install Desktop CD/DVD runs Ubuntu without installing it on the system.
When you boot a live/install Desktop CD/DVD, it brings up a GNOME desktop:
You are running a live session. When you exit from the live session, the system is as
it was before you booted from the CD/DVD. If the system has a swap partition
(most Linux systems have one; see page 32), the live session uses it to improve its
performance but does not otherwise write to the hard disk. You can also install
Ubuntu from a live session.

Booting a live/install Desktop CD/DVD is a good way to test hardware and fix a
system that will not boot from the hard disk. A live session is ideal for people who
are new to Ubuntu or Linux and want to experiment with Ubuntu but are not ready
to install Ubuntu on their system.

More Information

In addition to the following references, see “Where to Find Documentation” on
page 124 and refer to Appendix B for additional resources.

Web memtest86+ www.memtest.org
gparted (GNOME Partition Editor) gparted.sourceforge.net
Hardware compatibility wiki.ubuntu.com/HardwareSupport
Swap space help.ubuntu.com/community/SwapFaq
Partition HOWTO tldp.org/HOWTO/Partition
Upgrading www.ubuntu.com/getubuntu/upgrading
Boot command line parameters help.ubuntu.com/community/BootOptions and

The Linux BootPrompt-HowTo
RAID en.wikipedia.org/wiki/RAID
LVM Resource Page (includes many links) sourceware.org/lvm2
LVM HOWTO www.tldp.org/HOWTO/LVM-HOWTO
BitTorrent help.ubuntu.com/community/BitTorrent
BitTorrent azureus.sourceforge.net
X.org release information wiki.x.org

Download Ubuntu Easiest download www.ubuntu.com/getubuntu
Released versions releases.ubuntu.com
Older versions old-releases.ubuntu.com/releases
Development images and unsupported releases cdimage.ubuntu.com
Mac (PowerPC) wiki.ubuntu.com/PowerPCDownloads
BitTorrent torrent files torrent.ubuntu.com/releases

www.memtest.org
www.ubuntu.com/getubuntu/upgrading
www.tldp.org/HOWTO/LVM-HOWTO
www.ubuntu.com/getubuntu

Planning the Installation 25

Planning the Installation

The major decision when planning an installation is determining how to divide the
hard disk into partitions or, in the case of a dual-boot system, where to put the
Linux partitions. Once you have installed Ubuntu, you can decide which software
packages you want to add to the base system (or whether you want to remove
some). In addition to these topics, this section discusses hardware requirements for
Ubuntu Linux and fresh installations versus upgrades.

Considerations

GUI On most systems, except for servers, you probably want to install a graphical user
interface (a desktop). Ubuntu installs GNOME by default. See page 60 for informa-
tion about installing KDE.

Software and
services

As you install more software packages on a system, the number of updates and the
interactions between the packages increase. Server packages that listen for network
connections make the system more vulnerable by increasing the number of ways the
system can be attacked. Additional services can also slow the system down.

For a system to learn on, or for a development system, additional packages and services
may be useful. However, for a more secure production system, it is best to install and
maintain the minimum number of packages required and enable only needed services.
See page 507 for information on starting and stopping system services.

Requirements

Hardware This chapter and Chapter 3 cover installing Ubuntu on 32-bit Intel and compatible
processor architectures such as AMD as well as 64-bit processor architectures such
as AMD64 processors and Intel processors with Intel EM64T technology. Within
these processor architectures, Ubuntu Linux runs on much of the available hard-
ware. You can view Ubuntu’s list of compatible and supported hardware at
wiki.ubuntu.com/HardwareSupport. Many Internet sites discuss Linux hardware;
use Google (www.google.com/linux) to search for linux hardware, ubuntu hard-
ware, or linux and the specific hardware you want more information on (for exam-
ple, linux sata or linux a8n). In addition, many HOWTOs cover specific hardware.
There is also a Linux Hardware Compatibility HOWTO, although it becomes
dated rather quickly. Ubuntu Linux usually runs on systems that Windows runs on,
unless the system includes a very new or unusual component.

The hardware required to run Ubuntu depends on what kind of system you want to
set up. A very minimal system that runs a textual (command line) interface and has
very few software packages installed requires very different hardware from a system
that runs a GUI, has many installed packages, and supports visual effects (page 103).
Use the Alternate CD (page 28) if you are installing Ubuntu on a system with less
than 320 megabytes of RAM. If you want to run visual effects on the system, see
gentoo-wiki.com/HARDWARE_Video_Card_Support_Under_XGL for a list of sup-
ported graphics cards.

www.google.com/linux

26 Chapter 2 Installation Overview

A network connection is invaluable for keeping Ubuntu up-to-date. A sound card is nice
to have for multimedia applications. If you are installing Ubuntu on old or minimal
hardware and want to run a GUI, consider installing Xubuntu (www.xubuntu.org), as
it provides a lightweight desktop and uses system resources more efficiently than
Ubuntu does.

RAM (memory) An extremely minimal textual (command line) system requires 32 megabytes of
RAM. A standard desktop system requires 320 megabytes, although you may be
able to use less if you install Xubuntu. Installing Ubuntu from a live session requires
320 megabytes. Use the textual installer (page 67) if the system has less than 320
megabytes of RAM.

Linux makes good use of extra memory: The more memory a system has, the faster
it runs. Adding memory is one of the most cost-effective ways you can speed up a
Linux system.

CPU Ubuntu Linux requires a minimum of a 200-megahertz Pentium-class processor or the
equivalent AMD or other processor for textual mode and at least a 400-megahertz
Pentium II processor or the equivalent for graphical mode.

Hard disk space The amount of hard disk space Ubuntu requires depends on which edition of Ubuntu
Linux you install, which packages you install, how many languages you install, and
how much space you need for user data (your files). The operating system typically
requires 2–8 gigabytes, although a minimal system can make due with much less space.
Installing Ubuntu from a live session requires 4 gigabytes of space on a hard disk.

BIOS setup Modern computers can be set to boot from a CD/DVD or hard disk. The BIOS
determines the order in which the system tries to boot from each device. You may
need to change this order: Make sure the BIOS is set up to try booting from the
CD/DVD before it tries to boot from the hard disk.

CMOS CMOS is the persistent memory that stores hardware configuration information. To
change the BIOS setup, you need to edit the information stored in CMOS. When the
system boots, it displays a brief message about how to enter System Setup or CMOS
Setup mode. Usually you need to press Del or F2 while the system is booting. Press the
key that is called for and move the cursor to the screen and line that deal with boot-
ing the system. Generally there is a list of three or four devices that the system tries
to boot from; if the first attempt fails, the system tries the second device, and so on.
Manipulate the list so that the CD/DVD is the first choice, save the list, and reboot.
Refer to the hardware/BIOS manual for more information.

Processor Architecture

Ubuntu CDs and DVDs hold programs compiled to run on a specific processor
architecture (class of processors, or CPUs). The following list describes each of the
architectures Ubuntu is compiled for. See help.ubuntu.com/community/ProcessorArch
for a detailed list of processors in each architecture. Because Linux source code is
available to everyone, a knowledgeable user can compile Ubuntu Linux to run on
other processor architectures.

www.xubuntu.org

Planning the Installation 27

PC (Intel x86) Software on an Ubuntu PC (Intel x86) CD/DVD is compiled to run on Intel x86-
compatible processors, including most machines with Intel and AMD processors,
almost all machines that run MS Windows, and newer Apple Macintosh machines
that use Intel processors. If you are not sure which type of processor a machine has,
assume it has this type of processor.

64-bit PC (AMD64) Software on an Ubuntu 64-bit PC (AMD64) CD/DVD is compiled to run on
AMD64 processors, including the Athlon64, Opteron, and Intel 64-bit processors
that incorporate EM64T technology, such as the EMT64 Xeon. Because some fea-
tures of proprietary third-party applications are not available for 64-bit architec-
ture, you may want to run Ubuntu compiled for a 32-bit (Intel x86) processor on a
system with a 64-bit processor.

SPARC Software on an Ubuntu SPARC CD (there is no DVD for this architecture) is com-
piled to run on UltraSPARC machines, including those based on the multicore
UltraSPARC T1 (Niagara) processors.

Mac (PowerPC) Ubuntu does not officially support the PowerPC, but there is extensive community
support for this processor architecture. See wiki.ubuntu.com/PowerPCFAQ for more
information about running Ubuntu on a PowerPC. You can download PowerPC ver-
sions of Ubuntu from wiki.ubuntu.com/PowerPCDownloads.

Interfaces: Installer and Installed System

When you install Ubuntu, you have a choice of interfaces to use while you install it (to
work with the installer) and a choice of interfaces to use to work with the installed
system. This section describes the two basic interfaces: textual and graphical.

Textual (CLI) A textual interface, also called a command line interface (CLI) or character-based
interface, displays characters and some simple graphical symbols. It is line oriented;
you give it instructions using a keyboard only.

Graphical (GUI) A graphical user interface (GUI) typically displays a desktop (such as GNOME) and
windows; you give it instructions using a mouse and keyboard. You can run a textual
interface within a GUI by opening a terminal emulator window (page 114). A GUI
uses more computer resources (CPU time and memory) than a textual interface does.

Pseudographical A pseudographical interface is a textual interface that takes advantage of graphical ele-
ments on a text-based display device such as a terminal. It may also use color. This
interface uses text elements, including simple graphical symbols, to draw rudimentary
boxes that emulate GUI windows and buttons. The TAB key frequently moves the cursor
from one element to the next and the RETURN key selects the element the cursor is on.

Advantages A GUI is user friendly, whereas the textual interface is compact, uses fewer system
resources, and can work on a text-only terminal or over a text-only connection.
Because it is more efficient, a textual interface is useful for older, slower systems and
systems with minimal amounts of RAM. Server systems frequently use a textual
interface because it allows the system to dedicate more resources to the job it is set
up to do and fewer resources to pleasing the system administrator. Not running a
GUI can also improve system security.

28 Chapter 2 Installation Overview

Installer interfaces Ubuntu provides a user-friendly, graphical installer (ubiquity) and an efficient,
pseudographical installer that offers more options and gives you greater control
over the installation (Figure 2-1). Both interfaces accomplish the same task: They
enable you to tell the installer how you want it to configure Ubuntu.

Ubuntu Releases

Ubuntu distributes a new release about every six months. Each release has both a
number and a name. In sequence, recent releases are 6.06 (Dapper Drake), 6.10
(Edgy Eft), 7.04 (Feisty Fawn), and 7.10 (Gutsy Gibbon). Ubuntu supports (i.e., pro-
vides updates for, including security updates) each release for at least 18 months.

LTS releases Ubuntu supports releases of its operating system marked LTS (long-term support—
Dapper is an LTS release) for three years for a desktop system and for five years for
a server system. LTS releases are designed for people who are more interested in
having a stable, unchanging operating system rather than the latest, fastest version.
Large and corporate installations frequently fall into this category. You can install
and upgrade an LTS release just as you would any other release.

Ubuntu Editions

Desktop CD The Desktop CD is a live/install CD (page 24); you can use it to boot into a live ses-
sion. You can install Ubuntu from a live session (page 48). This CD is available for
PC and 64-bit PC architectures (page 26), uses the graphical installer, and installs a
graphical (desktop) Ubuntu system.

Alternate CD The Alternate Install CD is not a live CD; it is for special installations only. It pre-
sents more advanced installation options than the Desktop CD does. This CD is
available for PC and 64-bit PC architectures (page 26), uses the textual installer,
and installs an Ubuntu system that displays either a graphical or a textual interface.
You can use this CD to

Figure 2-1 Graphical (left) and textual (pseudographical, right) installers

Planning the Installation 29

• Upgrade from older releases of Ubuntu on systems without an Internet
connection.

• Rescue a broken system (page 67).

• Install Ubuntu on systems with less than 256 megabytes of RAM. These
systems may work best from a textual interface; they may not be able to
run a graphical interface fast enough to be usable.

• Set up RAID (page 34) and/or LVM (page 35) partitions.

• Create preconfigured OEM systems.

• Set up automated deployments (having the installer answer installation
questions automatically; also called preseeding).

Server CD The Server CD is not a live CD; it is for installation only. This CD is available for
PC, 64-bit PC, and SPARC architectures (page 26). It uses the textual installer and
installs an Ubuntu system that displays a textual interface (no desktop). During
installation, the Server CD gives you the option of installing DNS and/or LAMP
(Linux, Apache, MySQL, and PHP). A system installed using this CD has no open
ports (page 383) and includes only software essential to a server.

DVD The DVD is a live/install DVD (page 24); you can use it to boot into a live session.
You can install Ubuntu from a live session (page 48). The DVD is available for PC
and 64-bit PC architectures (page 26), uses the graphical or textual installer, and
installs an Ubuntu system that displays either a graphical or a textual interface. The
DVD includes all software packages supported by Ubuntu, not just those installed
by default. It is an excellent resource for someone with a system that has no Internet
connection.

Installing a Fresh Copy or Upgrading an

Existing Ubuntu System?

Clean install An installation, sometimes referred to as a clean install, writes all fresh data to a
disk. The installation program overwrites all system programs and data as well as
the kernel. You can preserve some user data during an installation depending on
where it is located and how you format/partition the disk. Alternatively, you can
perform a clean install on an existing system without overwriting data by setting up
a dual-boot system (page 61).

Upgrade An upgrade replaces the Linux kernel and utilities on an installed release of Ubuntu
Linux with a newer release. During an upgrade, the installation program preserves
both system configuration and user data files. An upgrade brings utilities that are
present in the old release up-to-date and installs new utilities. Before you upgrade a
system, back up all files on the system.

Because an upgrade preserves the desktop, an upgraded system may not display or
take advantage of new features that a clean install would display. See page 59 for
instructions on upgrading an Ubuntu system to a new release.

30 Chapter 2 Installation Overview

Setting Up the Hard Disk

Formatting and
free space

Hard disks must be prepared in several ways so an operating system can write to
and read from them. Low-level formatting is the first step in preparing a disk for
use. Normally you do not need to low-level format a hard disk, as this task is done
at the factory. The next steps in preparing a hard disk for use are to write a partition
table to it and to create partitions on the disk. The area of the disk not occupied by
partitions is called free space. A new disk has no partition table and no partitions.
Under DOS/Windows, the term formatting means creating a filesystem on a parti-
tion; see “Filesystems” below.

Partitions A partition, or slice, is a logical section of a hard disk that has a device name, such
as /dev/sda1, so you can address it separately from other sections. From a live ses-
sion, and after you install Ubuntu, you can use the GNOME Partition Editor
(page 53) to view and resize partitions on an existing system. During installation,
you can use the ubiquity partitioner (pages 50 and 56) to create partitions. After
installation, you can use parted (page 673) to manipulate partitions. See /dev on
page 554 for more information on device names.

Partition table A partition table holds information about the partitions on a hard disk. Before the
first partition can be created on a disk, the program creating the partition must set
up an empty partition table on the disk. As partitions are added, removed, and
modified, information about these changes is recorded in the partition table. If you
remove a partition table, you can no longer access information on the disk except
by extraordinary means.

Filesystems Before most programs can write to a partition, a data structure (page 1032), called
a filesystem, needs to be written to the partition. When the Ubuntu installer creates
a partition, it writes a filesystem to the partition. You can use the mkfs (make file-
system; page 525) utility, which is similar to the DOS/Windows format utility, to
manually create a filesystem on a partition. Table 13-1 on page 570 lists some
common types of filesystems. Ubuntu Linux typically creates ext3 filesystems for
data, whereas Windows uses FAT16, FAT32, and NTFS filesystems. Apple uses
HFS (Hierarchical Filesystem) and HFS+. OS X uses either HFS+ or UFS. Under
Linux, typical filesystem names are / (root), /boot, /var, /home, and /usr. Under
DOS/Windows, filesystems are labeled C:, D: , and so on (sometimes a whole disk
is a single partition). Different types of partitions can coexist on the same hard
disk, including both Windows and Linux partitions. Under Linux, the fsck (file-
system check; page 577) utility checks the integrity of filesystem data structures.

Mount point A partition holds no information about where it will reside in a system’s directory
structure. When you use the installer to create most partitions, you specify the name
of a directory that Ubuntu associates with the partition. For example, you might
create a partition and associate it with the /var directory. The location you specify is
the mount point for the partition. As part of the boot process, Ubuntu consults the
fstab (filesystem table; page 576) file which associates each partition with its mount
point. This association, called mounting, enables you to access the filesystem on a
partition using the name of the directory it is mounted on.

Planning the Installation 31

For example, the second partition on the first hard disk, with the device name
/dev/sda2, might hold the filesystem that normally is mounted on the /home direc-
tory. This association is normal, but not mandatory. When you work in recovery
mode, you may mount this filesystem on the /target directory so you can repair the
filesystem. A partition is frequently referred to by the name of its normal mount
point: Thus “the /home partition” refers to the partition that holds the filesystem
normally mounted on the /home directory. See page 572 for more information on
mount points.

Filesystem
independence

The state of one filesystem does not affect other filesystems: One filesystem on a
drive may be corrupt and unreadable while other filesystems function normally.
One filesystem may be full so you cannot write to it while others have plenty of
room for more data.

Primary, Extended, and Logical Partitions

You can divide an IDE/ATA/SATA disk into a maximum of 63 partitions and a SCSI
disk into a maximum of 15 partitions. You can use each partition independently for
swap devices, filesystems, databases, other resources, and even other operating systems.

Unfortunately disk partitions follow the template established for DOS machines a
long time ago. At most, a disk can hold four primary partitions. You can divide one
(and only one) of these primary partitions into multiple logical partitions; this
divided primary partition is called an extended partition. If you want more than
four partitions on a drive—and you frequently do—you must set up an extended
partition.

A typical disk is divided into three primary partitions (frequently numbered 1, 2,
and 3) and one extended partition (frequently numbered 4). The three primary par-
titions are the sizes you want the final partitions to be. The extended partition occu-
pies the rest of the disk. Once you establish the extended partition, you can
subdivide it into additional logical partitions (numbered 5 or greater) that are each
the size you want. You cannot use the extended partition (number 4, above), only
the logical partitions it holds. Figure 17-5 on page 674 illustrates the disk described
in this paragraph.

Partitioning a Disk

During installation, the installer calls a partitioner to set up disk partitions. This sec-
tion discusses how to plan partition sizes. Although this section uses the term parti-
tion, planning and sizing LVs (logical volumes; page 35) works the same way. For
more information refer to pages 53 and 56 and to the Linux Partition HOWTO at
www.tldp.org/HOWTO/Partition.

Planning Partitions

Guided partitioning It can be difficult to plan partition sizes appropriately if you are not familiar with
Linux. For this reason Ubuntu provides guided partitioning. Without asking any
questions, guided partitioning divides the portion of the disk allotted to Ubuntu

www.tldp.org/HOWTO/Partition

32 Chapter 2 Installation Overview

into two partitions. One partition is the swap partition, which can be any size from
512 megabytes to 2 or more gigabytes. The other partition is designated as / (root)
and contains the remainder of the disk space. Having only two partitions makes
managing disk space quite easy. But if a program runs amok or if the system is sub-
jected to a DoS attack (page 1034), the entire disk can fill up. System accounting
and logging information, which may contain data that can tell you what went
wrong, may be lost.

Partition Suggestions

A Linux system must have a / (root) partition. It is advisable to set up a swap par-
tition as well. You can create additional partition/mount point pairs; this section
lists some of the more common ones. Any standard directories you do not create
partitions/mount points for automatically become subdirectories of the / (root)
directory and reside on the / (root) partition. For example, if you do not create a
partition to hold the /home filesystem, the installer creates home as a subdirectory
of / and the home directory resides on the / (root) partition.

(swap) Linux temporarily stores programs and data on a swap partition when it does not
have enough RAM to hold all the information it is processing. The size of the swap
partition should be between one and two times the size of the RAM in the system,
with a minimum size of 256 megabytes. For example, a system with 1 gigabyte of
RAM should have a 1- to 2-gigabyte swap partition. Although a swap partition is
not required, most systems perform better with one. A swap partition is not
mounted so it is not associated with a mount point. See swap on page 564 for more
information.

/boot This partition holds the kernel and other data the system needs when it boots. The
/boot partition is typically about 100 megabytes, although the amount of space
required depends on how many kernel images you want to keep on hand. This
partition can be as small as 50 megabytes. Although you can omit the /boot parti-
tion, it is useful in many cases. Many administrators put an ext2 filesystem on this
partition because the data on it does not change frequently enough to justify the
added overhead of the ext3 journal. Some older BIOSs require the /boot partition
[or the / (root) partition if there is no /boot partition] to appear near the begin-
ning of the disk.

Where to put the /boot partition

tip On older systems, the /boot partition must reside completely below cylinder 1023 of the hard disk.
When a system has more than one hard disk, the /boot partition must also reside on a drive on:

• Multiple IDE or EIDE drives: the primary controller

• Multiple SCSI drives: ID 0 or ID 1

• Multiple IDE and SCSI drives: the primary IDE controller or SCSI ID 0

Planning the Installation 33

/var The name var is short for variable: The data in this partition changes frequently.
Because it holds the bulk of system logs, package information, and accounting data,
making /var a separate partition is a good idea. In this way, if a user runs a job that
consumes all of the user’s disk space, system logs will not be affected. The /var par-
tition can occupy from 500 megabytes up to several gigabytes for extremely active
systems with many verbose daemons and a lot of printer activity (files in the print
queue are stored on /var). Systems that are license servers for licensed software
often qualify as extremely active systems. By default, Apache content (Web pages it
serves) is stored on /var under Ubuntu.

/home It is a common strategy to put user home directories on their own disk or partition.
This partition is usually named /home. Having /home in a separate partition allows
you to perform a clean install without overwriting user files.

/ (root) Some administrators choose to separate the / (root), /boot, and /usr partitions.
When you have Ubuntu decide how to partition the disk (guided partitioning), it
puts all directories in the root partition. By itself, the root partition usually con-
sumes less than 30 megabytes of disk space. However, /lib, which can consume
more than 300 megabytes, is part of the root partition. On occasion, you may
install a special program that has many kernel drivers that consume a lot of space in
the root partition. Allot 1 gigabyte to the root partition at a minimum.

/usr Separating the /usr partition can be useful if you plan to export /usr to another sys-
tem and want the security that a separate partition can give. Many administrators put
an ext2 filesystem on this partition because the data on it does not change frequently
enough to justify the added overhead of the ext3 journal. The size of /usr depends on
the number of packages you install. On a default system, it is typically 2–4 gigabytes.

/usr/local
and /opt

Both /usr/local and /opt are candidates for separation. If you plan to install many
packages in addition to Ubuntu Linux, you may want to keep them on a separate
partition. If you install the additional software in the same partition as the users’
home directories, for example, it may encroach on the users’ disk space. Many sites
keep all /usr/local or /opt software on one server and export it to other systems. If
you choose to create a /usr/local or /opt partition, its size should be appropriate to
the software you plan to install.

Table 2-1 (next page) gives guidelines for minimum sizes for partitions used by Linux.
Set the sizes of other partitions, such as /home, /opt, and /usr/local, according to
need and the size of the hard disk. If you are not sure how you will use additional disk
space, you can create extra partitions using whatever names you like (for example,
/b01, /b02, and so on) or wait until later to divide the space into partitions.

Set up partitions to aid in making backups

tip Plan partitions around which data you want to back up and how often you want to back it up. One
very large partition can be more difficult to back up than several smaller ones.

34 Chapter 2 Installation Overview

RAID

RAID (Redundant Array of Inexpensive/Independent Disks) employs two or more
hard disk drives or partitions in combination to improve fault tolerance and/or per-
formance. Applications and utilities see these multiple drives/partitions as a single
logical device. RAID, which can be implemented in hardware or software (Ubuntu
gives you this option), spreads data across multiple disks. Depending on which level
you choose, RAID can provide data redundancy to protect data in the case of hard-
ware failure. Although it can improve disk performance by increasing read/write
speed, software RAID uses quite a bit of CPU time, which may be a consideration.
True hardware RAID requires hardware designed to implement RAID and is not
covered in this book (but see “Fake RAID” on the next page).

RAID can be an effective addition to a backup. Ubuntu offers RAID software that
you can install either when you install an Ubuntu system or as an afterthought. The
Linux kernel automatically detects RAID arrays (sets of partitions) at boot time if
the partition ID is set to 0xfd (raid autodetect).

Software RAID, as implemented in the kernel, is much cheaper than hardware
RAID. Not only does this approach avoid the need for specialized RAID disk con-
trollers, but it also works with the less expensive ATA disks as well as SCSI disks.

Table 2-1 Example minimum partition sizesa

Partition Example size

/boot 50–100 megabytes

/ (root) 1 gigabyte

(swap) One to two times the amount of RAM in the system with a minimum of 256
megabytes

/home As large as necessary; depends on the number of users and the type of work
they do

/tmp Minimum of 500 megabytes

/usr Minimum of 2–16 gigabytes, depending on which and how many software
packages you install

/var Minimum of 500 megabytes

a. The sizes in this table assume you create all partitions separately. For example, if you create a 1-gigabyte
/ (root) partition and do not create a /usr partition, in most cases you will not have enough room to store
all the system programs.

Do not replace backups with RAID

caution Do not use RAID as a replacement for regular backups. If the system undergoes a catastrophic failure,
RAID is useless. Earthquake, fire, theft, and other disasters may leave the entire system inaccessible
(if the hard disks are destroyed or missing). RAID also does not take care of the simple case of replac-
ing a file when a user deletes it by accident. In these situations, a backup on a removable medium
(which has been removed) is the only way you will be able to restore a filesystem.

Planning the Installation 35

Fake RAID Ubuntu provides support for motherboard-based RAID (known as fake RAID)
through the dmraid driver set. Linux software RAID is almost always better than fake
RAID. For more information see help.ubuntu.com/community/FakeRaidHowto.

The partitioner on the Alternate CD gives you the choice of implementing RAID
level 0, 1, or 5:

• RAID level 0 (striping) Improves performance but offers no redundancy.
The storage capacity of the RAID device is equal to that of the member
partitions or disks.

• RAID level 1 (mirroring) Provides simple redundancy, improving data
reliability, and can improve the performance of read-intensive applications.
The storage capacity of the RAID device is equal to one of the member par-
titions or disks.

• RAID level 5 (disk striping with parity) Provides redundancy and
improves (most notably, read) performance. The storage capacity of the
RAID device is equal to that of the member partitions or disks, minus one
of the partitions or disks (assuming they are all the same size).

For more information refer to the Software-RAID HOWTO.

LVM: Logical Volume Manager

The Logical Volume Manager (LVM2, which this book refers to as LVM) allows
you to change the size of logical volumes (LVs, the LVM equivalent of partitions) on
the fly. With LVM, if you make a mistake in setting up LVs or your needs change,
you can make LVs smaller or larger without affecting user data. You must choose to
use LVM at the time you install the system or add a hard disk; you cannot retroac-
tively apply it to a disk full of data. LVM supports IDE and SCSI drives as well as
multiple devices such as those found in RAID arrays.

LVM groups disk components (partitions, hard disks, or storage device arrays), called
physical volumes (PVs), into a storage pool, or virtual disk, called a volume group
(VG). See Figure 2-2. You allocate a portion of a VG to create a logical volume.

Figure 2-2 LVM: Logical Volume Manager

Disk A
40 GB

Disk B
80 GB

Disk C
40 GB

Disk D
20 GB

/ (root) home var usr (swap)

boot

40 + 80 + 40 + 20 GB
(– boot partition)

Physical volumes (PVs)

Boot partition

Volume group (VG)

Logical volumes (LVs)

36 Chapter 2 Installation Overview

An LV is similar in function to a traditional disk partition in that you can create a
filesystem on an LV. It is much easier, however, to change and move LVs than parti-
tions: When you run out of space on a filesystem on an LV, you can grow (expand)
the LV and its filesystem into empty or new disk space, or you can move the file-
system to a larger LV. LVM’s disk space manipulation is transparent to users; service
is not interrupted.

LVM also eases the burden of storage migration. When you outgrow or need to
upgrade PVs, LVM can move data to new PVs. To read more about LVM, refer to
the resources listed on page 24.

The Installation Process

The following steps outline the process of installing Ubuntu Linux from a CD/DVD.
See Chapter 3 for installation specifics.

1. Insert the installation CD/DVD in and reset the computer. The computer
boots from the CD/DVD and displays the initial install screen (Figure 3-1,
page 46).

2. You can press function keys to display options, select an item from the ini-
tial install screen menu, and begin bringing up a live session or installing
Ubuntu when you are ready. Or you can do nothing. A live/install Desktop
CD/DVD starts to bring up the system after 30 seconds; an installation-
only CD waits for you to select an item from the menu. One of the menu
items checks the installation medium.

3. As part of the process of bringing up a live session or installing Ubuntu,
Ubuntu Linux creates RAM disks (page 1056) that it uses in place of a
hard disk used for a normal boot operation. The installer copies tools
required for the installation or to bring up a system from a live/install
Desktop CD/DVD to the RAM disks. The use of RAM disks allows the
installation process to run through the specification and design phases
without writing to the hard disk and enables you to opt out of the installa-
tion at any point before the system warns you it is about to write to the
hard disk (or you complete the installation). If you opt out before this
point, the system is left in its original state. The RAM disks also allow a
system booted from a live/install Desktop CD to leave the hard disk
untouched.

4. The installer prompts you with questions about how you want to configure
Ubuntu Linux.

5. When the installer is finished collecting information, it displays the Ready
to install screen (Figure 3-7, page 53). When you click Install, it writes the
operating system files to the hard disk.

Downloading and Burning a CD/DVD 37

6. The installer prompts you to remove the CD/DVD and press RETURN; it then
reboots the system.

7. The Ubuntu Linux system is ready for you to log in and use.

Downloading and Burning a CD/DVD

There are several ways to obtain an Ubuntu CD/DVD. Ubuntu makes available
releases of Linux as CD and DVD ISO image files (named after the ISO9660 standard
that defines the CD filesystem). This section describes how to download one of these
images and burn a CD/DVD. You can also point a browser at shipit.ubuntu.com to
display a Web page with links that enable you to request a free CD from Ubuntu or
purchase a CD/DVD from a Web site.

The Easy Way to Download a CD ISO Image File

This section explains the easiest way to download a CD ISO image file. This tech-
nique works in most situations; it is straightforward but limited. For example, it
does not allow you to use BitTorrent to download the file nor does it download a
DVD image.

To begin, point a browser at www.ubuntu.com and click Download Now or Get
Ubuntu. Select the release (page 28) and edition (page 28) you want to download.
Then select the type of system you want to install it on (see “Processor Architec-
ture” on page 26). Finally select a location from the drop-down list labeled Choose
a location near you and click Start Download. If the browser gives you a choice of
what to do with the file, save it to the hard disk. The browser saves the ISO image
file to the hard disk. Continue reading at “Burning the CD/DVD” on page 40.

Other Ways to Download a CD/DVD ISO Image File

This section explains how to download a release that is not listed on the Ubuntu
download page or a DVD image, and how to download a torrent that enables you
to use BitTorrent to download the ISO image file. See “Download Ubuntu” on
page 24 for other locations you can download Ubuntu from.

Browser When you use a Web browser to download a file, the browser contacts a Web
(HTTP) or FTP server and downloads the file from that server. If too many people
download files from a server at the same time, the downloads become slower.

BitTorrent BitTorrent efficiently distributes large amounts of static data, such as ISO image files.
Unlike using a browser to download a file from a single server, BitTorrent distributes
the functions of a server over its clients. As each client downloads a file, it becomes a
server for the parts of the file it has downloaded. To use BitTorrent, you must down-
load a small file called a torrent (or have a Web browser do it for you). This file,
which holds information that allows clients to communicate with one another, has a
filename extension of .torrent. As more people use a torrent to download a file at the

www.ubuntu.com

38 Chapter 2 Installation Overview

same time, the downloads become faster. Downloading an ISO image file using
BitTorrent is covered later in this section.

Mirrors Many sites mirror (hold copies of) the Ubuntu ISO image files and BitTorrent tor-
rents. Some mirrors use HTTP while others use FTP; you can use a browser to
download files from either. FTP and HTTP appear slightly different. Point a
browser at www.ubuntu.com/getubuntu/downloadmirrors to locate a mirror site.
Scroll through the list of mirror sites, find a site near you, and click that site’s URL.
The browser displays a page similar to the one shown in Figure 2-3.

Click any link on the page that includes the name or release number of the version
of Ubuntu you want to install. The browser displays a page similar to the one
shown in Figure 2-4.

Downloading an ISO
image file

You can click the links at the top of the page, although there is usually a better
selection of versions in the list of files at the bottom of the page. Click the number
or name of the release you want to download (e.g., gutsy or 7.10). At this point,
some sites display a page with two links: Parent Directory and release. If the
browser displays this page, click release. The browser displays a page with the name
and number of the release at the top, followed by a description of the different types
of CDs. At the bottom of the page is a list of files, with each line showing the name
of the file, the date it was created, its size, and a short description. Each filename is
a link. The following two lines describe the Intel x86 desktop ISO image file for
Gutsy (7.10) and the torrent file that enables you to use BitTorrent to download the
same ISO image file. The ISO image file is almost 700 megabytes; the torrent file is
27 kilobytes.

ubuntu-7.10-desktop-i386.iso ... 687M Desktop CD for PC (Intel x86) computers (standard download)
ubuntu-7.10-desktop-i386.iso.torrent..27k Desktop CD for PC (Intel x86) computers (BitTorrent download)

Figure 2-3 An Ubuntu mirror I

www.ubuntu.com/getubuntu/downloadmirrors

Downloading and Burning a CD/DVD 39

Click the filename/link that specifies the release, edition, and architecture you want.
For example, clicking gutsy-desktop-i386.iso downloads the CD ISO image for
Gutsy (release 7.10) desktop (edition) for the i386 architecture. Save the file to the
hard disk. Next, download the file named MD5SUMS.htm (at the top of the list) to
the same directory. An easy way to save a file is to right-click it, select Save
Link/Target As, and save the file to a directory with enough space for the file. See
page 40 for an explanation of how to use the MD5SUMS.htm file to verify the ISO
image file you download.

Downloading a DVD To download a DVD ISO image file, go to cdimage.ubuntu.com/releases and follow
the instructions under “Downloading an ISO image file.” You can identify DVD
ISO image files by the string dvd in their names. Make sure you have room for the
file on the hard disk: A DVD ISO image file occupies about 4 gigabytes.

Using BitTorrent You can use BitTorrent to obtain an ISO image file. Because BitTorrent is avail-
able for both Windows and Mac OS X (www.bittorrent.com), you can download
and burn the Ubuntu CD/DVD under either of these operating systems. To

Figure 2-4 An Ubuntu mirror II

www.bittorrent.com

40 Chapter 2 Installation Overview

download a torrent, point a browser at releases.ubuntu.com and click the file-
name of the torrent. You can identify a torrent file by its filename extension of
.torrent. A BitTorrent client should start automatically and ask where to put the
downloaded file. You can also download the torrent manually; follow the
instructions under “Downloading an ISO image file” on page 38. You can then
start downloading the file from the command line (page 604) or by clicking it in
a File Browser such as Nautilus (page 96).

Verifying an ISO Image File

This section assumes you have an ISO image file and a MD5SUMS.htm file saved
on the hard disk and explains how to verify that the ISO IMAGE file is correct. The
MD5SUMS.htm file contains the MD5 (page 1047) sums for each of the available
ISO image files. When you process a file using the md5sum utility, md5sum generates
a number based on the file. If that number matches the corresponding number in
the MD5SUMS.htm file, the downloaded file is correct. You can run the following
commands from a terminal emulator:

$ grep desktop-i386 MD5SUMS.htm;md5sum gutsy-desktop-i386.iso
198fc031e7e482514eb57a2a7890dcac *gutsy-desktop-i386.iso
198fc031e7e482514eb57a2a7890dcac gutsy-desktop-i386.iso

Computing an MD5 sum for a large file takes a while. The two long strings that the
preceding command displays must be identical: If they are not, you must download
the file again.

Burning the CD/DVD

An ISO image file is an exact image of what needs to be on the CD/DVD. Putting
that image on a CD/DVD involves a different process than copying files to a
CD/DVD. The CD/DVD burning software you use has a special selection for burn-
ing an ISO image. It has a label similar to Record CD from CD Image or Burn CD
Image. Refer to the instructions for the software you are using for information on
how to burn an ISO image file to a CD/DVD.

You can download and burn the CD/DVD on any operating system

tip You can download and burn the CD/ DVD on any computer that is connected to the Internet, has
a browser, has enough space on the hard disk to hold the ISO image file (about 700 megabytes
for a CD and 4 gigabytes for a DVD), and can burn a CD/DVD. You can frequently use ftp
(page 732) or, on a Linux system, Nautilus menubar: File Places Connect to Server
(page 263) in place of a browser to download the file.

Make sure the software is set up to burn an ISO image
tip Burning an ISO image is not the same as copying files to a CD/DVD. Make sure the CD/DVD burn-

ing software is set up to burn an ISO image. If you simply copy the ISO file to a CD/DVD, it will
not work when you try to install Ubuntu Linux.

Gathering Information About the System 41

Gathering Information About the System

It is not difficult to install and bring up an Ubuntu Linux system. Nevertheless, the
more you know about the process before you start, the easier it will be. The installa-
tion software collects information about the system and can help you make deci-
sions during the installation process. However, the system will work better when
you know how you want your disk partitioned rather than letting the installation
program create partitions without your input. There are many details, and the more
details you take control of, the more pleased you are likely to be with the finished
product. Finding the information that this section asks for will help ensure you end
up with a system you understand and know how to change when necessary. To an
increasing extent, the installation software probes the hardware and figures out
what you have. Newer equipment is more likely to report on itself than older equip-
ment is.

It is critical to have certain pieces of information before you start. One thing Linux
can never figure out is all the relevant names and IP addresses (unless you are using
DHCP, in which case the addresses are set up for you).

Following is a list of items you may need information about. Get as much informa-
tion on each item as you can: manufacturer, model number, size (megabytes,
gigabytes, and so forth), number of buttons, chipset (for cards), and so on. Some
items, such as the network interface card, may be built into the motherboard.

• Hard disks.

• Memory. You don’t need it for installation, but it is good to know.

• SCSI interface card.

• Network interface card (NIC).

You must use 700-megabyte CD-ROM blanks

tip When you burn an Ubuntu Linux CD from an ISO image, you must use a 700-megabyte blank. A
650-megabyte blank will not work because there is too much data to fit on it.

Test the ISO file and test the CD/DVD
tip It is a good idea to test the ISO image file and the burned CD/DVD before you use it to install

Ubuntu Linux. When you boot the system from the CD/DVD, Ubuntu gives you the option of
checking the CD/DVD for defects (page 47). A bad file on a CD may not show up until you finish
installing Ubuntu Linux and have it running. At that point, it may be difficult and time-consuming
to figure out where the problem lies. Testing the file and CD/DVD takes a few minutes, but can save
you hours of trouble if something is not right. If you want to perform one test only, test the
CD/DVD.

42 Chapter 2 Installation Overview

• Video interface card (including the amount of video RAM/memory).

• Sound card and compatibility with standards, such as SoundBlaster.

• Mouse (PS/2, USB, AT, and number of buttons).

• Monitor (size and maximum resolution).

• IP addresses and names, unless you are using DHCP (page 538), in which
case the IP addresses are automatically assigned to the system. Most of this
information comes from the system administrator or ISP.

◆ System hostname (anything you like).

◆ System address.

◆ Network mask (netmask).

◆ Gateway address (the connecting point to the network or Internet) or
a phone number when you use a dial-up connection.

◆ Addresses for nameservers, also called DNS addresses.

◆ Domain name (not required).

Chapter Summary

A live/install Desktop CD runs a live Ubuntu session without installing Ubuntu on
the system. You can install Ubuntu from a live session. Booting a live/install Desk-
top CD is a good way to test hardware and fix a system that will not boot from the
hard disk.

Before you download or otherwise obtain an Ubuntu CD or DVD, make sure you
are using medium that is appropriate to the hardware you are installing it on and to
what the system will be used for. Ubuntu has three editions: Desktop (the most com-
mon), Alternate (for special cases), and Server. The Ubuntu live DVD combines fea-
tures of all three of these editions.

When you install Ubuntu Linux, you copy operating system files from a CD or
DVD to hard disk(s) on a system and set up configuration files so Linux runs prop-
erly on the hardware. Operating system files are stored as CD or DVD ISO image
files. You can use a Web browser or BitTorrent to download an ISO image file. It is
a good idea to test the ISO image file when it is downloaded and the burned
CD/DVD before you use it to install Ubuntu Linux.

When you install Ubuntu, you can let the installer decide how to partition the
hard disk (guided partitioning) or you can manually specify how you want to par-
tition it.

Advanced Exercises 43

Exercises

1. Briefly, what does the process of installing an operating system such as
Ubuntu Linux involve?

2. What is an installer?

3. Would you set up a GUI on a server system? Why or why not?

4. A system boots from the hard disk. To install Linux, you need it to boot
from a CD/DVD. How can you make the system boot from a CD/DVD?

5. What is free space on a hard disk? What is a filesystem?

6. What is an ISO image? How do you burn an ISO image to a CD/DVD?

Advanced Exercises

7. List two reasons why RAID cannot replace backups.

8. What are RAM disks? How are they used during installation?

9. What is MD5? How does it work to ensure that an ISO image file you
download is correct?

This page intentionally left blank

4545

3Chapter3Chapter 2 covered planning the installation of Ubuntu Linux:
determining the requirements; performing an upgrade versus a
clean installation; planning the layout of the hard disk;
obtaining the files you need for the installation, including how
to download and burn CD/DVD ISO images; and collecting
information about the system. This chapter focuses on install-
ing Ubuntu. Frequently the installation is quite simple, espe-
cially if you have done a good job of planning. Sometimes you
may run into a problem or have a special circumstance; this
chapter gives you tools to use in these cases. Read as much of
this chapter as you need to; once you have installed Ubuntu,
continue with Chapter 4, which covers getting started using
the Ubuntu desktop. If you install a textual (command line)
system, continue with Chapter 5.

In This Chapter

Basic Installation from the
Live/Install Desktop CD/DVD . . . 46

The Ubuntu Graphical Installer . . . 48

Graphical Partitioners. 53

Setting Up a Dual-Boot System . . . 61

The live/Install Desktop CD:
The Initial Install Screen 62

The Alternate CD Initial Install
Screen Menu 65

The Server CD Initial Install
Screen Menu 66

The Ubuntu Textual Installer. 67

Manual Partitioning 70

Setting Up a RAID Array 73

The xorg.conf File 77

3

Step-by-Step

Installation

46 Chapter 3 Step-by-Step Installation

Basic Installation from the Live/Install

Desktop CD/DVD

To begin installing Ubuntu from a live/install Desktop CD/DVD, insert the disk in
the computer and boot the system. The system displays the initial install screen
(Figure 3-1). Refer to “BIOS setup” on page 26 if the system does not boot from the
CD/DVD. See “The Function Keys” on page 62 for information about changing the
language, keyboard, and accessibility features the live session uses.

The menu on the initial install screen differs depending on which edition of Ubuntu
(page 28) you are installing; along the bottom of the screen, the labels for the func-
tion keys remain the same. To the left of the menu, the live (desktop) CD/DVD dis-
plays a counter that counts down from 30 to 1; when the counter reaches 0, Ubuntu
boots the system. When you press a key (other than RETURN) before the counter
reaches 0, the counter stops and the system waits for you to make a selection from
the menu. The installation-only (Alternate and Server) CDs do not have a counter,
but rather wait for you to make a selection. This section describes how to boot into
a live session and how to install Ubuntu from that session.

Booting the System

Before Ubuntu can display a desktop from a live/install Desktop CD/DVD or install
itself on a hard disk, the Ubuntu operating system must be read into memory

Figure 3-1 The initial install screen for the live/install Desktop CD

Basic Installation from the Live/Install Desktop CD/DVD 47

(booted). This process can take a few minutes on older, slower systems or systems
with minimal RAM (memory). Each of the menu selections on the initial install
screen, except the memory test, boots the system.

Checking the CD/DVD for Defects

Whether you burned your own CD/DVD, purchased it, or are using the one
included with this book, it is a good idea to verify that the contents of the CD/DVD
is correct. On the initial install screen, use the ARROW keys to highlight Check the CD
for Defects (this selection checks DVDs too) and press RETURN. Checking the
CD/DVD takes a few minutes—Ubuntu keeps you apprised of its progress. When
Ubuntu finishes checking the CD/DVD, it displays the result of its testing. Press
RETURN to redisplay the initial install screen.

Live Session

In most cases, you can boot Ubuntu to run a live session that displays a desktop with-
out doing anything after you boot from the live/install Desktop CD/DVD: Ubuntu
displays the initial install screen, counts down from 30, boots the system, displays the
Ubuntu logo while an orange cursor moves back and forth on the progress bar, and
finally displays the GNOME desktop (Figure 3-2). To speed up this process, you can

Test the CD/DVD

tip Testing the CD/DVD takes a few minutes but can save you much aggravation if the installation fails
or you run into problems after installing Ubuntu owing to bad media.

Figure 3-2 The GNOME desktop displayed by a live session

Install object

48 Chapter 3 Step-by-Step Installation

press RETURN when Ubuntu displays the initial install screen. The first time you use a
CD/DVD, it is a good idea to check it for defects (see the previous page).

If you encounter problems with the display while you are bringing up the desktop
from a live/install Desktop CD/DVD or during installation, reboot the system and
select Start Ubuntu in safe graphics mode (page 62) from the initial install screen. If
that does not work, install Ubuntu using the textual installer on the Alternate CD
(page 65) or the DVD.

The live/install Desktop CD/DVD gives you a chance to preview Ubuntu without
installing it. Boot the live/install Desktop CD/DVD to begin a live session and work
with Ubuntu as explained in Chapter 4. When you are finished, remove the
CD/DVD and reboot the system. The system boots as it did before the live session.

Because a live session does not write to the hard disk (other than using a swap parti-
tion if one is available), none of the work you save will be available once you reboot.
You can use Webmail or another method to transfer files you want to preserve to
another system.

optional Seeing What Is Going On

If you are curious and want to see what Ubuntu is doing as it boots, remove quiet
and splash from the boot command line (Figure 3-16, page 64): With the initial
install screen displayed, press F6 to display the boot command line. Press BACKSPACE or
DEL to back up and erase quiet and splash from the boot command line. If you have
not added anything to this line, you can remove the two hyphens at the end of the
line. If you have added to this line, use the BACK ARROW key to back up over—but not
remove—whatever you added, the hyphens, and the SPACE on each side of them.
Then remove quiet and splash. As Ubuntu boots, it displays information about
what it is doing. Text scrolls on the screen, although sometimes too rapidly to read.

The Ubuntu Graphical Installer

ubiquity The ubiquity utility is a graphical installer, written mostly in Python, which installs
Ubuntu from a live session. You can use the Alternate or Server CD or the DVD to
install Ubuntu using the textual installer (page 67).

Welcome screen To install Ubuntu from the live/install Desktop CD/DVD, start a live session and
double-click (use the left mouse button) the object on the desktop labeled Install
(Figure 3-2, page 47).

After a few moments Ubuntu displays the Welcome screen of the Install window
(Figure 3-3). This screen displays a welcome message and a query about which lan-
guage you would like ubiquity to use. The language you choose will be the default

Before you start, see what is on the hard disk

tip Unless you are certain you are working with a new disk, or you are sure the data on the disk is of no
value, it is a good idea to see what is on the disk before you start installing Ubuntu. You can use the
GNOME Partition Editor to examine the contents of a hard disk. See page 53 for more information.

Basic Installation from the Live/Install Desktop CD/DVD 49

language for the installed system; you can change this default once the system is
installed (page 132).

Using the Mouse to Work with the Install Window

You can use the mouse or keyboard to make selections from the Install window
screens. To select a language from the Welcome screen using the mouse, left-click
the language you want to use in the list box at the left. If the language you want
does not appear on the displayed portion of the list, click or drag the scrollbar
(Figure 3-3) to display more languages; then click the language of your choice.
Ubuntu highlights the language you click. Once you select a language, you are fin-
ished working with the Welcome screen; click the Forward button to display the
next screen.

Using the Keyboard to Work with the Install Window

To use the keyboard to make selections, first use the TAB key to move the highlight to
the object you want to work with. On the Welcome screen, the objects are the
selected item in the list box and the buttons labeled Release Notes, Cancel, and For-
ward. With a language in the list box highlighted, use the UP ARROW and DOWN ARROW

keys to move the highlight to the language you want to use. The list scrolls auto-
matically when you move the highlight to the next, undisplayed entry in the list. See
“F3 Keymap” on page 63 to change the layout of the keyboard ubiquity uses during
installation.

Once you select a language, you are finished working with the Welcome screen; use
the TAB key to highlight the Forward button. The border of a button becomes thicker
and darker when it is highlighted. With the Forward button highlighted, press RETURN

to display the next screen.

Figure 3-3 The Install window, Welcome screen

Scrollbar
Forward button

List box

50 Chapter 3 Step-by-Step Installation

This book describes using the mouse to make selections from a graphical interface;
you can use the keyboard if you prefer.

Where are you? Next, ubiquity displays the Where are you? screen. This screen allows you to specify
the time zone the computer is in. You can use the map or the drop-down list labeled
Selected city to specify the time zone. Initially, when it is over the map, the mouse
pointer appears a magnifying glass with a plus sign in it. Left-click the map near a
city that is in the same time zone as the computer; the map zooms in on that area.
Left-click again to choose a city; the name of the city appears in the box labeled
Selected city.

To use the drop-down list, click anywhere in the box labeled Selected city; ubiquity
expands the box into a list of cities. Use the mouse or ARROW keys to select a city and
then either click the city or press RETURN. Click Forward.

Keyboard layout The Keyboard layout screen allows you to specify the type of keyboard to be used
by the installed system. (See “F3 Keymap” on page 63 to change the layout of the
keyboard ubiquity uses during installation.) Select the country you are in or the lan-
guage you will be using with the installed system from the list box on the left. Then
select the type of keyboard you will be using from the list box on the right. Click the
empty text box near the bottom of the window and enter some characters to test
your selection. Click Forward. The installer displays the Setting up the partitioner
window while it gets ready for the next step.

Prepare disk space The Prepare disk space screen controls how ubiquity partitions the hard disk. See
page 31 for a discussion of some of the issues involved in partitioning a hard disk.

With a single, clean hard disk—a hard disk with nothing installed on it, as it comes
from the factory (i.e., no partition table)—the ubiquity partitioner displays a Prepare
disk space screen similar to the one shown in Figure 3-4. In this case, the simplest
way to partition the disk is to have ubiquity do it for you. By default, the radio button
labeled Guided – use entire disk and the radio button next to the name of the only
hard disk in the system are selected. If the system has two or more clean hard disks,
the ubiquity partitioner displays a line for each hard disk; click the radio button next
to the one you want to install Ubuntu on. Click Forward and ubiquity creates two
partitions on the hard disk: a small swap partition (page 32) and a root partition (/,
page 33) that occupies the rest of the disk. The installer displays the Starting Up the
Partitioner window while it gets ready for the next step.

If the Prepare disk space screen includes Guided - resize... and Guided - use the larg-
est continuous free space selections, there is probably at least one partition on the

Figure 3-4 The ubiquity partitioner showing one empty hard disk

Basic Installation from the Live/Install Desktop CD/DVD 51

hard disk (there could just be an empty partition table). If you are sure you do not
want to keep any of the information on the hard disk, you can select Guided - use
entire disk. To find out more about what is on the disk, see the section on the Parti-
tion Editor on page 53. For more information on guided partitioning, see page 56.
For information on manual partitioning, see page 57.

The ubiquity partitioner displays a warning window (Figure 3-5) if it is going to
write to the hard disk before it displays the Ready to install screen (Figure 3-7,
page 53). If it does not display this window, ubiquity will not make changes to the
hard disk until you click Install on the Ready to install screen.

Migrate documents
and settings

If you are installing Ubuntu on a system that already has one or more operating
systems installed on it, and you are not overwriting those operating systems, the
Migrate documents and settings screen displays a list of accounts and settings
from the existing operating systems. For example, if you are creating a dual-boot
system on a system that already has Windows installed on it, this screen shows
the accounts from the Windows system and a list of programs and settings. It
might show your name from the Windows system and, under that, Internet
Explorer and My Documents. Put ticks in the check boxes adjacent to the items
you want to migrate to the Ubuntu system. On the lower portion of the screen,
enter the information necessary to create an Ubuntu user to receive the migrated
information.

Who are you? The Who are you? screen (Figure 3-6 on the next page) sets up the first Ubuntu user.
This user can use sudo (page 88) to administer the system, including setting up addi-
tional users (page 658). Enter the full name of the user in the text box labeled What
is your name?. When you press RETURN, ubiquity enters the first name from the name
you just entered in the box labeled What name do you want to use to log in?. Press
RETURN to accept this name or backspace (page 137) over it and enter a different
name. Enter the same password in the next two (adjacent) boxes. Although ubiquity
accepts any password, it is a good idea to choose a more secure password if the sys-
tem is connected to the Internet. See “Changing Your Password” on page 135 for a
discussion of password security.

The final text box specifies the name of the computer. For use on a local network
and to connect to the Internet with a Web browser or other client, you can use a
simple name such as tiny. If you are setting up a system that is to function as a
server, see “FQDN” on page 847 for information on names that are valid on the
Internet. Click Forward.

Figure 3-5 Write to disk warning window

52 Chapter 3 Step-by-Step Installation

Ready to install The final screen ubiquity displays is the Ready to install screen (Figure 3-7). Unless
ubiquity asked your permission to write to the hard disk during the partitioning
phase of the installation, it has not written to the disk yet. If you click Cancel at this
point, the hard disk will remain untouched. This screen summarizes your answers
to the questions ubiquity asked in the previous screens. Click Advanced to display
the Advanced Options window, which allows you to choose whether to install a
boot loader (normally you want to) and whether you want the system to participate
in an automatic, informal package usage survey. Click OK to close the Advanced
Options window. If everything looks right in the summary in the Ready to install
screen, click Install. The installer begins installing Ubuntu on the hard disk.

The ubiquity installer displays a series of windows to keep you informed of its progress.
When the new system is installed, Ubuntu displays the Installation Complete window,
which gives you the choice of continuing the live session or rebooting the system so you
can use the newly installed copy of Ubuntu. Click Restart now to reboot the system.

Ubuntu displays its logo and a progress bar. When it has finished shutting down the
system, it asks you to remove the disk (so you do not reboot from the live/install
Desktop CD/DVD) and press RETURN. When you do so, it reboots the system and dis-
plays the Ubuntu GNOME login screen (Figure 4-1, page 90).

Figure 3-6 The Install window, Who are you? screen

This is when ubiquity writes to the hard disk

caution You can abort the installation by clicking the Cancel button at any point up to and including the
Ready to install screen (Figure 3-7) without making any changes to the system. Once you click Next
in this screen, ubiquity writes to the hard disk. However, if ubiquity displayed the warning window
shown in Figure 3-5 on page 51 and you clicked Continue, it wrote to the hard disk at that time.

Graphical Partitioners 53

Graphical Partitioners

A partitioner displays and can add, delete, and modify partitions on a hard disk.
This section describes two graphical partitioners you can use to configure a hard
disk so you can install Ubuntu Linux. One partitioner, gparted, is available on the
live/install Desktop CD desktop. The other partitioner is part of the ubiquity installer
and is not available by itself. See page 57 for information on using the textual parti-
tioner, which is available when you use the textual installer. After you install
Ubuntu Linux, you can use parted (page 673) to manipulate partitions. If you want
a basic set of partitions, you can allow ubiquity to partition the hard disk automati-
cally using guided partitioning.

See “Setting Up the Hard Disk” on page 30 for a discussion of free space, parti-
tions, partition tables, and filesystems. “Partition Suggestions” on page 32 discusses
some of the filesystems you may want to set up partitions for.

gparted: the GNOME Partition Editor

Unless you know the hard disk you are installing Ubuntu Linux on has nothing on it
(it is a new disk) or you are sure the disk holds no information of value, it is a good
idea to examine the contents of the disk before you start the installation. The
GNOME Partition Editor (gparted), which is available from a live session, is a good

Figure 3-7 The Install window, Ready to install screen

54 Chapter 3 Step-by-Step Installation

tool for this job. Open the Partition Editor window by selecting Main menu: Admin-
istration Partition Editor as shown in Figure 3-8.

The Partition Editor displays the layout of a hard disk and can resize partitions, such
as when you are setting up a dual-boot system by adding Ubuntu to a Windows sys-
tem (page 61). Although you can create partitions using the Partition Editor, you
cannot specify the mount point (page 30) for a partition—this step must wait until
you are installing Ubuntu and using the ubiquity partitioner. You can save time if you
use the Partition Manager to examine a hard disk and the ubiquity partitioner to set
up the partitions that you install Ubuntu on.

An Empty Hard Disk

The Partition Editor shows one large unallocated space for a new hard disk (empty,
with no partition table). If you have more than one hard disk, use the list box in the
upper-right corner of the screen to select which disk the Partition Editor displays
information about. Figure 3-9 shows an empty 200-gigabyte hard disk on the
device named /dev/sda. Figure 3-4 on page 50 shows the ubiquity partitioner ready
to partition an empty drive similar to the one shown in Figure 3-9.

Figure 3-8 Selecting the Partition Editor from the Main menu

Figure 3-9 The Partition Editor displaying an empty disk drive

Graphical Partitioners 55

Deleting a Partition

Before deleting a partition, make sure it does not contain any data you need. To use
the Partition Editor to delete a partition, highlight the partition you want to delete
and click Delete and then Apply on the toolbar.

Resizing a Partition

Figure 3-10 shows the Partition Editor displaying information about a hard disk
with a single partition that occupies the entire disk. It shows a single 200-gigabyte
NTFS filesystem. The process of resizing a partition is the same regardless of the
type of partition: You can use the following technique to resize Windows, Linux, or
other types of partitions.

To install Ubuntu on this system, you must resize (shrink) the partition to make room
for Ubuntu. Before you resize a Windows partition, you must boot Windows and
defragment the partition using the Windows defragmenter; see the tip on page 61.
Although you can resize a partition with the ubiquity partitioner while you are install-
ing Ubuntu, it is easier to see what you are doing when you use the Partition Editor

Figure 3-10 The Partition Editor displaying a disk drive holding a Windows system

Always back up the data on a hard disk
caution If you are installing Ubuntu on a disk that holds data that is important to you, always back up the

data before you start the installation. Things can and do go wrong. The power may go out in the
middle of an installation, corrupting the data on the hard disk. There may be a bug in the partition-
ing software that destroys a filesystem. Although it is unlikely, you might make a mistake and for-
mat a partition holding data you want to keep.

56 Chapter 3 Step-by-Step Installation

for this task. Also, the ubiquity partitioner will not resize a partition on a hard disk
with more than one partition. To resize the partition, right-click to highlight the line
that describes the partition and select Resize/Move on the toolbar. The Partition Edi-
tor opens a small Resize/Move window, as shown in Figure 3-10 on page 55.

At the top of the Resize/Move window is a graphical representation of the partition.
Initially, the partition occupies the whole disk. The spin box labeled New Size (MiB)
shows the number of megabytes occupied by the partition—in this case the whole
disk. The two spin boxes labeled Free Space show no free space.

Back up the partition before you begin resizing. You can specify how you want to
resize the partition by (right-clicking and) dragging one of the triangles at the ends
of the graphical representation of the partition or by entering the number of mega-
bytes you want to shrink the Windows partition to in the spin box labeled New
Size. The value in one of the spin boxes labeled Free Space increases. Click
Resize/Move to add the resize operation to the list of pending operations at the bot-
tom of the window. Click Apply on the toolbar to resize the partition.

Although you can use the Partition Editor to create partitions to install Ubuntu on,
it may be easier to create partitions using ubiquity while you are installing Ubuntu.
The ubiquity partitioner allows you to specify mount points for the partitions; the
Partition Editor does not.

ubiquity: Setting Up Partitions

While you are installing Ubuntu, ubiquity offers two ways to partition a disk: guided
and manual. Guided partitioning sets up two partitions, one for swap space
(page 32) and one for / (root, where the entire Ubuntu filesystem gets mounted;
page 33). The amount of space occupied by root depends on which guided option
you select. Manual partitioning enables you to set up partitions of any type and
size, and to specify the mount point for each partition.

Advanced Guided Partitioning

“Prepare disk space” on page 50 explained how to use guided partitioning to parti-
tion an empty disk. This section explains how guided partitioning works on a disk
that is already partitioned.

Installing Ubuntu on a partitioned disk gives you a few options:

• You can install Ubuntu on the entire hard disk; by doing so you delete any
information that was on the hard disk.

• If the disk has enough free space, you can install Ubuntu in the free space,
typically creating a dual-boot system.

• If one partition has enough unused space, you can resize (shrink) the parti-
tion, creating free space in the process. You can then install Ubuntu in the

Graphical Partitioners 57

free space. It it easier to see what you are doing if you use the Partiton Editor
to resize a partition before you begin installing Ubuntu. Also, the ubiquity
partitioner will not resize a partition on a hard disk with more than one par-
tition. For more information refer to “Resizing a Partition” on page 55.

Figure 3-11 shows the Prepare disk space screen for a hard disk with one partition
and some free space. If the disk had no free space, the partitioner would not display
Guided - use the largest continuous free space. If the disk had two or more parti-
tions, the partitioner would not give you the option of resizing a partition—you
must use the Partition Editor to resize a partition on a hard disk with more than one
partition.

Using the whole disk for Ubuntu is easy. Before you start, make certain the disk
does not contain any information you need. Once you rewrite the partition table,
the data is gone for good. If you are not sure what is on the disk, use the Nautilus
File Browser to take a look. (See page 96; select Main menu: Places Computer and
double-click one or more of the Filesystem objects.) To use guided partitioning to
partition the whole disk, click the radio button labeled Guided - use entire disk and
click Forward.

To use the free space, select Guided - use the largest continuous free space and click
Forward. If you want to use the ubiquity partitioner to resize a partition, click the
radio button labeled Guided - resize ... and drag the slider until the numbers above
it show the size you would like the new partition to be. Click Forward.

Manual Partitioning

This section explains how to use the ubiquity partitioner to create a partition on an
empty hard disk. Figure 3-4 on page 50 shows the Prepare disk space screen for an
empty hard disk. To create partitions manually, click the radio button labeled Man-
ual and click Forward. The ubiquity partitioner displays a Prepare partitions screen
that shows a device without any partitions. Before you can create partitions, you

Figure 3-11 The Prepare disk space screen showing a hard disk
with one partition and some free space

58 Chapter 3 Step-by-Step Installation

must set up a partition table (page 30): Highlight the device name (e.g., /dev/sda)
and click New partition table. The partitioner asks you to confirm you want to cre-
ate a new empty partition table. Click Continue to create a partition table that con-
tains only free space. Now ubiquity displays a screen that looks similar to the one in
Figure 3-12. The device (hard disk) at /dev/sda has a partition table without any
partitions—it contains only free space.

To create a partition, highlight the line with free space in the Device column and
click New partition. The ubiquity partitioner displays a Create Partition window
(Figure 3-13), which asks you to specify whether you want to create a primary or a
logical partition (page 31), what size you want to make the partition (in mega-
bytes), whether you want the partition to appear at the beginning or end of the free
space, what type you want to make the partition (Use as), and the name of the
mount point (page 30) for the partition. Because Linux does not mount a swap par-
tition, you cannot specify a mount point for a type swap partition. If you are unsure
of which type a partition should be, choose ext3 (page 571). Click OK.

After a few moments the Prepare partitions screen displays the new partition
(Figure 3-14). To create another partition, highlight free space and repeat the preced-
ing steps. Remember to create a swap partition (page 32). When you have finished
creating partitions, click Forward.

The Prepare partitions screen displays two or three buttons immediately below the
frame that lists the disks and partitions. The labels on these buttons change depend-
ing on what is highlighted. This screen always displays a button labeled Undo

Figure 3-12 An empty hard disk with a partition table

Figure 3-13 The Create Partition window

Upgrading to a New Release 59

changes to partitions. When the device is highlighted, the Prepare partitions screen
displays a New partition table button. Clicking this button creates a new partition
table, destroying any existing partition table. Highlighting a partition gives you the
choice of editing or deleting the partition. Editing a partition you just created allows
you to change only its type and mount point. You must delete and recreate a parti-
tion to change any of its other attributes. As mentioned earlier, highlighting free
space allows you to create a new partition.

Upgrading to a New Release

Upgrading a system is the process of installing a new release of Ubuntu over an
older one. All user and configuration files are preserved and all software is
upgraded to the most recent version consistent with the new release of Ubuntu.
Ubuntu cautions that you must not skip releases when you upgrade; doing so can
cause irreparable damage to the system, requiring a clean install and potentially los-
ing data. For example, you can upgrade from Feisty Fawn (7.04) to Gutsy Gibbon
(7.10), but not from Edgy Eft (6.10) to Gutsy Gibbon. Ubuntu also advises against
upgrading systems that have had packages installed from repositories (page 588)
that it does not control. These packages may corrupt the software package data-
base, causing the upgrade to fail.

Before you upgrade a system, it is a good idea to back up all user files on the system.
The following procedure assumes that you have a desktop system that is connected
to the Internet. Even with a fast Internet connection, this process takes a long time.
Follow these steps to upgrade a system:

1. Open the Update Manager window (Figure 4-10, page 101) by selecting
Main menu: System Administration Update Manager.

2. Regardless of whether the window says You can install nn updates or
not, click Check. This step ensures the software package database is
up-to-date.

3. If the window displays You can install nn updates, click Install Updates.
This step ensures all software packages on the system are up-to-date.

Figure 3-14 The Prepare partitions screen displays a new partition

60 Chapter 3 Step-by-Step Installation

4. At this point, if a new release is available, the window displays the message
New distribution release 'X.XX' is available. Click Upgrade.

5. The utility displays the Release Notes window. Read the release notes and
then click Upgrade.

6. The utility downloads the upgrade tool and updates some files.

7. You are asked if you want to start the upgrade. Click Start Upgrade.

8. When the upgrade is complete, reboot the system.

See www.ubuntu.com/getubuntu/upgrading for instructions on upgrading other edi-
tions of Ubuntu.

Installing KDE

You can install KDE in one of two ways. The first approach installs KDE only: Follow
the instructions in Chapter 2 and this chapter but instead of downloading and burn-
ing an Ubuntu CD/DVD, download a Kubuntu CD/DVD from www.kubuntu.org,
burn it, and use that disk to install Linux.

The second approach requires the system to be connected to the Internet and
installs KDE in addition to GNOME. After you install Ubuntu as explained in this
chapter, use Synaptic (page 121) or aptitude (page 592) to perform the following
steps. This process takes a while; you will be downloading and installing more than
200 software packages.

1. Ensure the software package database is up-to-date: From Synaptic, click
Reload. To use aptitude, give the command sudo aptitude update from a
command line, terminal emulator, or Run Application window (ALT-F2).

2. Ensure all software packages on the system are up-to-date: From Synaptic,
click Mark All Upgrades and then click Apply. To use aptitude, give the
command sudo aptitude safe-upgrade from a command line, terminal
emulator, or Run Application window (ALT-F2).

3. Install the KDE software: From Synaptic, search for and install the
kubuntu-desktop virtual package (page 592). To use aptitude, give the
command sudo aptitude install kubuntu-desktop from a command line,
terminal emulator, or Run Application window (ALT-F2).

After the software is downloaded, while it is being installed, debconf asks if you
want to use the gdm (page 82, GNOME) or kdm (KDE) display manager. Either one
works with either desktop. One way to choose which display manager to use is to
select the one associated with the desktop you will be using most often.

Once KDE is installed, reboot the system. From the Login screen, follow the
instructions on page 132 to display the Action menu and select the session you want
to run (GNOME or KDE).

www.ubuntu.com/getubuntu/upgrading
www.kubuntu.org

Setting Up a Dual-Boot System 61

Setting Up a Dual-Boot System

A dual-boot system is one that can boot one of two (or more) operating systems.
This section describes how to add Ubuntu to a system that can boot Windows, cre-
ating a system that can boot Windows or Linux. You can use the same technique for
adding Ubuntu to a system that runs a different version or distribution of Linux.
One issue in setting up a dual-boot system is finding disk space for the new Ubuntu
system. The next section discusses several ways to create the needed space.

Creating Free Space on a Windows System

Typically you install Ubuntu Linux in free space on a hard disk. To add Ubuntu Linux
to a Windows system, you must have enough free space on a hard disk that already
holds Windows. There are several ways to provide or create this free space. The fol-
lowing paragraphs discuss these options in order from easiest to most difficult:

Add a new disk drive Add another disk drive to the system and install Linux on the new disk, which contains
only free space. This technique is very easy and clean but requires a new disk drive.

Use existing free
space

If there is sufficient free space on the Windows disk, you can install Linux there.
This technique is the optimal choice, but there is rarely enough free space on an
installed hard disk.

Resize Windows
partitions

Windows partitions typically occupy the entire disk, making resizing a Windows
partition the most common technique to free up space. Windows systems typically
use NTFS, FAT32, and/or FAT16 filesystems. You can use the Ubuntu Partition Edi-
tor to examine and resize an existing Windows partition to open up free space in
which to install Linux (page 55).

Remove a Windows
partition

If you can delete a big enough Windows partition, you can install Linux in its place.
To delete a Windows partition, you must have multiple partitions under Windows
and be willing to lose the data in the partition you delete. In many cases, you can
move the data from the partition you will delete to another Windows partition.

Once you are sure a partition contains no useful information, you can use the Parti-
tion Editor to delete it (page 55). After deleting the partition, you can install
Ubuntu Linux in the free space left by the partition you removed.

Installing Ubuntu Linux as the Second Operating System

After creating enough free space on a Windows system (see the previous section),
you can install Ubuntu Linux. On the ubiquity Prepare disk space screen, select

Always defragment before resizing

caution You must boot Windows and defragment a Windows partition before you resize it. Sometimes you
may need to run the Windows defragmenter several times to consolidate most file fragments. Not
only will defragmenting give you more space for a Linux partition, but it may also keep the process
of setting up a dual-boot system from failing.

62 Chapter 3 Step-by-Step Installation

Guided - use the largest continuous free space. Or, if you are installing Ubuntu on
its own hard disk, select Guided - use entire disk and click the radio button next to
the disk you want to install Ubuntu on. Click Forward. When you boot from the
hard disk, you will be able to choose which operating system you want to run.

Advanced Installation

This section discusses the live/install Desktop CD initial install screen, using the
Alternate and Server CDs as well as the live/install DVD to install Ubuntu, and the
Ubuntu textual installer.

The Live/Install Desktop CD: The Initial Install Screen

This section covers some of the things you can do from the initial install screen
(Figure 3-1, page 46) other than simply booting to a live session.

Menu Selections

Start or install
Ubuntu

Boots to a live session (page 47).

Start Ubuntu in safe
graphics mode

If you encounter problems with the display while you are bringing up a live session
or during installation, choose this menu selection. It adds xforcevesa to the boot
parameters, causing Ubuntu to use the generic vesa driver in place of the driver for
the graphics chip in the system. The vesa driver is slow and does not support high
resolutions, but it works with almost any graphics chip.

Install with driver
update CD

Installs Ubuntu with an updated driver.

OEM install (for
manufacturers)

Allows a manufacturer or reseller to preinstall Ubuntu but leave some configuration
details, such as creating a user account, to the purchaser.

Check CD for
defects

Verifies the contents of the CD/DVD you are booting from (page 47).

Memory test Runs memtest86+, a GPL-licensed, stand-alone memory test utility for x86-based
computers. Press C to configure the test; press ESCAPE to exit and reboot. See
www.memtest.org for more information.

Boot from first hard
disk

Boots the system from the first hard disk. This selection frequently has the same
effect as booting the system without the CD/DVD (depending on how the BIOS
[page 26] is set up).

The Function Keys

Along the bottom of the initial install screen is a row of labeled function key names
(Figure 3-1, page 46). Pressing these function keys displays information that may be
helpful if you are having a problem booting Ubuntu or working in a live session.
Some of the keys allow you to change boot parameters.

www.memtest.org

Advanced Installation 63

F1 Help The F1 key displays the help window shown in Figure 3-15. Pressing a function key
while this window is displayed displays yet another help window. Pressing a func-
tion key when this window is not displayed has the effect described in the following
paragraphs. Press ESCAPE to close the help window.

F2 Language The F2 key displays a menu of languages. Use the ARROW keys to highlight the lan-
guage you want the live session to use and then press RETURN. This language is not
necessarily the language the installed system displays.

F3 Keymap The F3 key displays a menu of countries and languages. Use the ARROW keys to high-
light the country/language of the keyboard you want the live session to use; press
RETURN. This keyboard is not necessarily the keyboard the installed system uses.

F4 VGA The ubiquity installer normally detects the characteristics of the monitor attached to
the system. The F4 key displays a list of monitor resolutions and color depths
(page 1029). For example, 640 x 480 x 16 specifies a resolution of 640 x 480 dots
per inch (dpi) and a color depth of 16. Use the ARROW keys to highlight the resolution
and color depth you want the live session to use and then press RETURN. This selection
is not necessarily the resolution and color depth the installed system uses.

F5 Accessibility The F5 key displays a list of features, such as a high-contrast display and a Braille
terminal, that can make Ubuntu more accessible for some people. Use the ARROW keys
to highlight the feature you want the live session to use and then press RETURN.

F6 Other Options The F6 key displays the boot command line (Figure 3-16 on the next page). Type the
parameters you want to add to the boot command line (discussed in the next section)
after the double hyphen and press RETURN to boot the system. If you remove quiet and
splash from this line, Ubuntu displays what it is doing while it boots (page 48).

Boot Command Line Parameters (Boot Options)

Following are some of the parameters you can add to the boot command line (see
“F6 Other Options” above). You can specify multiple parameters separated by SPACEs.

Figure 3-15 Initial install screen, F1 help window

64 Chapter 3 Step-by-Step Installation

See help.ubuntu.com/community/BootOptions and The Linux BootPrompt-HowTo
for more information.

noacpi Disables ACPI (Advanced Configuration and Power Interface). Useful for systems
that do not support ACPI or that have problems with their ACPI implementation.
Also acpi=off. The default is to enable ACPI.

noapic Disables APIC (Advanced Programmable Interrupt Controller). The default is to
enable APIC.

noapm Disables APM (Advanced Power Management). Also apm=off. The default is to
enable APM.

irqpoll Changes the way the kernel handles interrupts.

nolapic Disables local APIC (above). The default is to enable local APIC.

Virtual Consoles

While it is running, ubiquity opens a shell on each of the six virtual consoles (also
called virtual terminals; page 136). You can display a virtual console by pressing
CONTROL-ALT-Fx, where x is the virtual console number and Fx is the function key that
corresponds to the virtual console number.

At any time during the installation, you can switch to a virtual console and give shell
commands to display information about processes and files. Do not give commands

Figure 3-16 Initial install screen, F6 boot command line

Boot command line

Advanced Installation 65

that change any part of the installation process. To switch back to the graphical
installation screen, press CONTROL-ALT-F7. To switch back to the textual (pseudographi-
cal) installation screen, press CONTROL-ALT-F1.

The Alternate CD Initial Install Screen Menu

The Alternate CD uses the textual installer (page 67) to install a system that uses a
graphical interface or one that uses a textual interface. It is not a live CD (does not
bring up a desktop to install from), does not require as much RAM to install
Ubuntu, and presents more installation options. The Alternate CD initial install
screen takes advantage of the functions keys described on page 62 and accepts the
boot parameters described on page 63. This screen has the following selections that
are not present on the live/install Desktop CD initial install screen (page 62):

Install in text mode Installs a graphical Ubuntu system using the textual installer. For more information
refer to “The Ubuntu Textual Installer” on page 67.

Install a command-
line system

Installs a textual Ubuntu system (no graphical interface, no desktop, only a com-
mand line interface) using the textual installer. For more information refer to “The
Ubuntu Textual Installer” on page 67.

Rescue a broken
system

Brings up Ubuntu but does not install it. After detecting the system’s disks and parti-
tions, the system enters recovery mode and allows you to select the device you want
to mount as the root filesystem. Once you select a device, recovery mode displays a
list of rescue operations (Figure 3-17):

• Execute a shell in /dev/xxx Mounts the device you selected (/dev/xxx) as
/ (root) and spawns a root shell (e.g., dash or bash; Chapter 7) if a shell is
available on the mounted device. You are working with root privileges
(page 88) and can make changes to the filesystem on the device you
selected. You have access only to the shell and utilities on the mounted file-
system. You may be able to mount other filesystems. If the mounted file-
system does not include a shell, you must use the next selection. Give an
exit command to return to the list of rescue operations.

• Execute a shell in the installer environment Mounts the device you
selected as /target and spawns a root dash shell (Chapter 7). You are

Figure 3-17 The list of rescue operations

66 Chapter 3 Step-by-Step Installation

working in the installer environment with root privileges (page 88).
You have access to dash and the many utilities available in the installer
environment. The root filesystem is on a RAM disk (page 1056) and
you can use nano to edit files. You can make changes to the filesystem
on the device you selected, which is mounted on /target. You can mount
other filesystems. Give an exit command to return to the list of rescue
operations.

• Choose a different root file system Returns to the previous step where
you can select a filesystem to work with.

• Reboot the system Reboots the system. Remove the CD if you want to
boot from the hard disk.

The Server CD Initial Install Screen Menu

The Server CD uses the textual installer (page 67) to install a minimal system with a
textual interface and no open ports. The installed system is appropriate for a server.
The initial install screen takes advantage of the functions keys described on page 62
and accepts the boot parameters described on page 63. The Server CD initial install

Figure 3-18 The DVD initial install screen

Advanced Installation 67

screen has the following selections that are not present on the live/install Desktop
CD initial install screen (page 62):

Install to the hard
disk

Installs a textual Ubuntu server system using the textual installer. For more informa-
tion refer to “The Ubuntu Textual Installer” on page 67. At the end of the normal
installation, the installer displays the Software selection screen, which asks if you
want to install a DNS server (Chapter 25) and/or a LAMP server. LAMP stands for
Linux (which you are installing), Apache (Chapter 27), MySQL, and PHP. Use the
ARROW keys to move the highlight to the space between the brackets ([]) and press the
SPACE BAR to select either or both of the choices.

Rescue a broken
system

Brings Ubuntu up in recovery mode (page 65).

The DVD

The Ubuntu DVD does everything each of the CDs does and includes all software
packages supported by Ubuntu, not just those installed by default. If the system you
are installing is not connected to the Internet, you can install software packages
from the DVD but you will have no way to update the system. The initial install
screen takes advantage of the functions keys described on page 62 and accepts the
boot parameters described on page 63. Figure 3-18 shows the DVD initial install
screen. See the descriptions of the CD initial install screens on pages 62, 65, and 66
for information on the selections on this screen.

The Ubuntu Textual Installer

The Ubuntu textual installer gives you more control over the installation process
than the Ubuntu graphical installer does (page 48). The textual installer displays a
pseudographical interface and uses fewer system resources, including less RAM than
the graphical installer does. You can install either a graphical (desktop) or textual
(command line) system using the textual installer, depending on which CD/DVD you
use and which selection you make from the initial install screen: Install in text mode
installs a graphical system; Install a server and Install a command-line system install
textual systems.

Many of the screens that the textual installer displays parallel the screens displayed
by the graphical installer. Within the textual installer’s screens, TAB moves between
items, ARROW keys move between selections on a list, and RETURN activates the high-
lighted selection and causes the installer to display the next screen. A few screens
include brackets ([]) that function similarly to check boxes; they use an asterisk in
place of a tick. Use the ARROW keys to move the highlight to the space between the
brackets and press the SPACE BAR to place an asterisk between the brackets and select
the adjacent choice. Press the SPACE bar again to remove the asterisk.

68 Chapter 3 Step-by-Step Installation

The Ubuntu installer main menu (the contents of this menu varies—Figure 3-19
shows an example) allows you to go directly to any step of the installation process
or enter recovery mode (see “Rescue a broken system” on page 65). At the lower
left of most textual installer screens is <Go Back>. See Figure 3-20 for an example.
Use the TAB key to highlight this item and press RETURN to display the Ubuntu installer
main menu. You may have to back up through several screens to display this menu.

The first screen the textual installer displays is Choose a language (Figure 3-20). Use
the UP and DOWN arrow keys to select the language you want the installer to use. You
can type the first letter of the language to move the highlight to the vicinity of the
language you want to choose. This language will be the default language for the
installed system; you can change the default once the system is installed (page 132).
Press RETURN to select the highlighted language and display the next screen.

The installer steps through a series of screens, each of which has an explanation and
asks a question. Use the ARROW keys and/or TAB key to highlight an answer or selection
and press RETURN on each of the screens. After a few screens, the installer detects and
installs programs from the CD/DVD, detects the network hardware, and configures
it with DHCP (if available).

As it is configuring the network, the installer asks you for the hostname of the system
you are installing. For use on a local network and to connect to the Internet with a Web
browser or other client, you can make up a simple name. If you are setting up a server,
see “FQDN” on page 847 for information on names that are valid on the Internet.

Figure 3-19 The Ubuntu installer main menu

Advanced Installation 69

After this step, the installer continues detecting hardware, starts the partitioner, and
displays the Partitioning method screen (Figure 3-21). Many of the selections avail-
able from the textual partitioner parallel those available from the graphical parti-
tioner. This section describes how to use the textual partitioner to partition a hard
disk manually. See page 56 for a description of guided partitioning.

Figure 3-20 The Choose a language screen

Figure 3-21 The Partitioning method screen

70 Chapter 3 Step-by-Step Installation

Manual Partitioning

When you select Manual from the Partitioning method screen (Figure 3-21), the textual
partitioner displays the Partition overview screen, which lists the hard disks in the sys-
tem and partitions on those disks. If a hard disk has no partitions, the partitioner dis-
plays only information about the hard disk. Figure 3-22 shows a single 200+-megabyte
hard disk (highlighted) that has no partition table (and no partitions).

If you want to set up RAID, see page 73 before continuing.

Creating a partition
table

If the Partition overview screen shows no partitions and no free space on a hard disk, as
it does in Figure 3-22, the hard disk does not have a partition table: You need to create
one. If this screen shows at least one partition or some free space, the disk has a parti-
tion table and you can skip this step and continue with “Creating a partition” below.

To create a partition table, highlight the disk you want to create a partition table on
and press RETURN. The installer asks if you want to create a new partition table on the
device and warns that doing so will destroy all data on the disk. Highlight Yes and
press RETURN. The installer displays the Partition disks screen showing the disk with a
single block of free space as large as the disk (Figure 3-23).

Creating a partition To create a partition, highlight the line with FREE SPACE on it and press RETURN. The
partitioner asks how you want to use the free space; highlight Create a new partition
and press RETURN. Next the partitioner asks you to specify the size of the new parti-
tion. You can enter either a percentage (e.g., 50%) or a number of gigabytes fol-
lowed by GB (e.g., 30 GB). Press RETURN. The partitioner then asks you to specify the
type of the new partition (primary or logical; page 31) and asks whether you want to
create the partition at the beginning or the end of the free space. It does not usually
matter where you create the partition. After answering each of these questions, press
RETURN. The partitioner then displays the Partition settings screen (Figure 3-24).

To change a setting on the Partition settings screen, use the ARROW keys to move the
highlight to the setting you want to change and press RETURN. The partitioner displays
a screen that allows you to change the setting.

Figure 3-22 The Partition overview screen I

Advanced Installation 71

Specifying a
partition type

(Use as)

The first line, labeled Use as, allows you to specify the type of filesystem the
installer creates on the partition. This setting defaults to ext3, which is a good
choice for most normal filesystems. If you want to change the filesystem type, move
the highlight to this line and press RETURN; the installer displays the How to use this
partition screen (Figure 3-25 on the next page). You can select swap area (page 32),
RAID (next), LVM (page 35), or another type of filesystem. Table 13-1 on page 570
lists some common types of filesystems. Move the highlight to the selection you
want and press RETURN. The partitioner returns to the Partition settings screen, which
now reflects the selection you made. For a swap area, there is nothing else to set up;
skip to “Done setting up the partition” on the next page.

Specifying a mount
point

The mount point defaults to / (root). To change the mount point for the filesystem,
highlight the line labeled Mount point and press RETURN. The partitioner displays a

Figure 3-23 The Partition overview screen II

Figure 3-24 The Partitions settings screen

72 Chapter 3 Step-by-Step Installation

screen that allows you to specify a mount point (Figure 3-26). Select a mount point;
if the mount point you want to use is not listed, select Enter manually. Press RETURN.

The bootable flag Typically the only other setting you need to change is the bootable flag. Turn this flag
on for the /boot partition if the system has one; otherwise, turn it on for the / (root)
partition. To change the state of the bootable flag, highlight the line labeled Bootable
flag on the Partition settings screen and press RETURN. After a moment, the partitioner
redisplays the screen showing the changed state of this flag.

Done setting up
the partition

Once the partition settings are satisfactory, highlight Done setting up the partition and
press RETURN. The partitioner displays the Partition overview screen showing the new
partition setup. To create another partition, repeat the steps starting with “Creating a
partition” on page 70. To modify a partition, highlight the partition and press RETURN.

Write the partitions
to disk

When you are satisfied with the design of the partition table(s), highlight Finish par-
titioning and write changes to disk and press RETURN. After giving you another chance
to back out, the partitioner writes the partitions to the hard disk.

Figure 3-25 How to use this partition screen

Figure 3-26 Mount point screen

Advanced Installation 73

Time zone, user
account, and video

modes

The installer continues by asking which time zone the computer is in and if the sys-
tem clock is set to UTC (page 1067). It then asks you to set up a user account and
continues installing the system. Finally the installer asks you to select which video
modes the X server will use. If you leave all entries unmarked, the X server uses the
highest resolution the monitor is capable of displaying.

The installer continues to install software and then finishes the installation. When
the installer displays the Installation Complete window, remove the CD/DVD and
click Restart now to reboot the system.

Setting Up a RAID Array

To set up a RAID array (page 34), first create two or more partitions of the same
size. Usually, these partitions will be on different hard disks. You create RAID parti-
tions as explained in the preceding section, except instead of making the partitions
type ext3 or swap, you declare each to be a RAID volume. (RAID partitions are
referred to as volumes.) Once you have two or more RAID volumes, the partitioner
allows you to combine these volumes into a RAID array that looks and acts like a
single partition.

The following example uses 100 gigabytes from each of two new hard disks to set
up a 100-gigabyte RAID 1 array that is mounted on /home. Follow the instructions
on page 70 to create a new partition table on each hard disk. Then create two 100-
gigabyte partitions, one on each disk. When the partitioner displays the How to use
this partition screen (Figure 3-25, page 72), follow the instructions on page 71 and
specify a partition type of physical volume for RAID.

Figure 3-27 shows the partitioner screen after setting up the RAID volumes. Once
you have at least two RAID volumes, the partitioner adds the Configure software
RAID selection as the top line of its menu (highlighted in Figure 3-27).

Figure 3-27 The partitioner ready to set up RAID

74 Chapter 3 Step-by-Step Installation

Highlight Configure software RAID, press RETURN, and confirm you want to write
changes to the hard disk. From the next screen, select Create MD device (MD stands
for multidisk) and press RETURN. Then select RAID 0, 1, or 5 and press RETURN. The dif-
ferent types of RAID arrays are described on page 35. The partitioner then asks you
to specify the number of active devices (2) and the number of spares (0) in the RAID
array. The values the partitioner enters in these fields are based on your previous
input and are usually correct. Next select the active devices for the RAID array (use
the SPACE BAR to put an asterisk before each device; Figure 3-28) and press RETURN.

Select Finish from the next screen (the one that asks if you want to create an MD
device again) and press RETURN. Now you need to tell the installer where to mount the
RAID array. Highlight the RAID array. In the example, this line contains #1 100.0
GB FREE SPACE (this line is highlighted in Figure 3-29, but shown after the parti-
tion is created). Press RETURN. (If the RAID array line does not include the words
FREE SPACE and does not show a partition, highlight the RAID array line, press
RETURN, highlight Delete the Partition, and press RETURN. The RAID array line should
now include FREE SPACE.) Set up this partition as you would any other by follow-
ing the instructions under “Creating a partition” on page 70. In the example, the
full 100 gigabytes is used for an ext3 filesystem mounted on /home.

To complete this example, create a bootable / (root) partition using the rest of the
free space on the first drive and a 4-gigabyte swap partition on the second drive.
Figure 3-29 shows the Partition overview screen that includes these changes. High-
light Finish partitioning and write changes to disk and press RETURN.

The X Window System

If you are installing a graphical desktop environment such as GNOME, you installed
the X.org (x.org and freedesktop.org) implementation of the X Window System
when you installed Ubuntu. The X Window System release X11R7.2 comprises
almost 50 software packages. The X configuration files are kept in /etc/X11; the
configuration file that guides the initial setup is /etc/X11/xorg.conf. You can edit

Figure 3-28 Specifying the active devices in the RAID array

The X Window System 75

xorg.conf graphically using the Screen and Graphics Preferences window (discussed
next) or you can edit it manually using a text editor (page 77).

displayconfig-gtk: Configures the Display

Once the (graphical) system is installed, the Screen and Graphics Preferences win-
dow (Figure 3-30 on the next page) enables you to configure X.org, including spec-
ifying a monitor type and video (graphics) card. To display this window, select Main
menu: System Administration Screens and Graphics or give the command
gksudo displayconfig-gtk from a terminal emulator or Run Application window
(ALT-F2). This utility modifies the xorg.conf file.

Specifying monitors The Screen tab of the Screen and Graphics Preferences window allows you to spec-
ify the model, resolution, and frequency of one or two monitors. If you specify two
monitors, it enables you to specify one as the primary monitor and to describe the
spacial relationship of the two monitors. Click Screen 1 on the left of the window to
specify the characteristics of one monitor; click Screen 2 to specify the other. If there
is only one monitor, click the radio button labeled Disabled for one of the monitors.

Figure 3-29 The finished partition tables

Back up xorg.conf
tip Before you make any changes to /etc/X11/xorg.conf, whether graphically or manually, make a

backup copy of this file. If you run into problems with the graphical interface, you can bring the
system up in recovery mode (page 512), copy the backup over the new xorg.conf, and reboot the
system.

76 Chapter 3 Step-by-Step Installation

Normally the system probes the monitors and fills in the values in this window. If
these values are missing, click the box labeled Model. The displayconfig-gtk utility dis-
plays the Choose window. Specify the manufacturer and model of the monitor in this
window. If an appropriate model is not listed, scroll to the top of the Manufacturer
list and click Generic. From the Model list, select an LCD or conventional monitor
with the maximum resolution of the monitor attached to the system. Click OK. You
can specify a lower default resolution and the frequency of the monitor from the two
spin boxes labeled Resolution and at. No harm is done if you specify a lower resolu-
tion than the monitor is capable of displaying, but you can damage an older monitor
by specifying a resolution higher than the monitor is capable of displaying.

When you are done, click Test at the bottom of the window to check whether the
new settings work. The displayconfig-gtk utility displays the desktop using the new
settings with a dialog box asking Do you want to keep the current configuration?
Click Cancel or wait 15 seconds to keep the old configuration; click Keep configuration
to keep the new configuration.

Specifying a
graphics card

Next click the Graphics Card tab (Figure 3-31). The system normally probes for the
model of video card and enters an appropriate selection in the box labeled Driver. You
can manually select a graphics card by clicking the box labeled Driver; displayconfig-
gtk opens Choose Graphics Card Driver window (also in Figure 3-31). Near the top of
this window are two radio buttons that enable you to select a driver by specifying the
manufacturer and model of the graphics card in the system or by specifying the name
of the driver you want to use. Click OK. The displayconfig-gtk utility generates an
xorg.conf file with the information from the window.

Figure 3-30 The Screen and Graphics Preferences window, Screen tab

The X Window System 77

The xorg.conf File

If you choose to edit /etc/X11/xorg.conf manually, read the notes at the top of the
file. You may also want to refer to the xorg.conf man page. The xorg.conf file com-
prises sections that can appear in any order. Each section is formatted as follows:

Section "name"
entry

 ...
EndSection

where name is the name of the section. A typical entry occupies multiple physical
lines but is one logical line, consisting of multiple sets of a keyword followed by zero
or more integer, real, or string arguments. Keywords in these files are not case sensi-
tive; underscores (_) within keywords are ignored. Most strings are not case sensitive,
and SPACEs and underscores in most strings are ignored. All strings must appear within
double quotation marks.

The Option keyword provides free-form data to server components and is followed
by the name of the option and optionally a value. All Option values must be
enclosed within double quotation marks.

Boolean Options take a value of TRUE (1, on, true, yes) or FALSE (0, off, false,
no); no value is the same as TRUE. You can prepend No to the name of a Boolean
Option to reverse the sense of the Option.

Figure 3-31 The Screen and Graphics Preferences window, Graphics Card tab

78 Chapter 3 Step-by-Step Installation

The following sections can appear in an xorg.conf file:

ServerFlags Global Options (optional)
ServerLayout Binds Screen(s) and InputDevice(s)
Files Locations of configuration files
Module Modules to be loaded (optional)
InputDevice Keyboard(s) and pointer(s)
Monitor Monitor(s)
Device Video card(s)
Screen Binds device(s) and monitor(s)
VideoAdaptor Configures the Xv extension (optional)
Modes Video modes (optional)
DRI Direct Rendering Infrastructure (optional)
Vendor Vendor-specific information (optional)

This chapter covers the sections you most likely need to work with: ServerLayout,
InputDevice, Monitor, Device, and Screen.

ServerLayout Section

The ServerLayout section appears first in some xorg.conf files because it summa-
rizes the other sections that specify the server. The following ServerLayout section
names the server single head configuration and specifies that the server comprises
the sections named Screen0, Mouse0, Keyboard0, and DevInputMice.

The term core in this file means primary; there must be exactly one CoreKeyboard
and one CorePointer. The AlwaysCore argument indicates the device reports core
events and is used here to allow a non-USB mouse and a USB mouse to work at the
same time. As a result, you can use either type of mouse interchangeably without
modifying the xorg.conf file:

Section "ServerLayout"
 Identifier "single head configuration"
 Screen 0 "Screen0" 0 0
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
 InputDevice "DevInputMice" "AlwaysCore"
EndSection

Refer to the following sections for explanations of the sections specified in ServerLayout.

InputDevice Section

There must be at least two InputDevice sections: one specifying the keyboard and one
specifying the pointer (usually a mouse). An InputDevice section has the following format:

Section "InputDevice"
 Identifier "id_name"
 Driver "drv_name"
 options
 ...
EndSection

The X Window System 79

where id_name is a unique name for the device and drv_name is the driver to use
for the device. The displayconfig-gtk utility typically creates several InputDevice
sections.

The following section defines a keyboard device named Keyboard0 that uses the
kbd driver. The keyboard model is a 105-key PC keyboard. You can change pc105
to microsoft if you are using a U.S. Microsoft Natural keyboard, although the dif-
ferences are minimal.

Section "InputDevice"
 Identifier "Keyboard0"
 Driver "kbd"
 Option "XkbModel" "pc105"
 Option "XkbLayout" "us"
EndSection

To change the language supported by the keyboard, change the argument to the
XkbLayout Option to, for example, fr for French.

The next InputDevice section defines a mouse named Mouse0 that uses the mouse
driver. The Device Option specifies a PS2 device. The ZAxisMapping Option maps
the Z axis, the mouse wheel, to virtual mouse buttons 4 and 5, which are used to
scroll a window. For more information refer to “Remapping Mouse Buttons” on
page 258. When set to YES, the Emulate3Buttons Option enables the user of a
two-button mouse to emulate a three-button mouse by pressing the two buttons
simultaneously.

Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Protocol" "IMPS/2"
 Option "Device" "/dev/psaux"
 Option "ZAxisMapping" "4 5"
 Option "Emulate3Buttons" "no"
EndSection

The next InputDevice section is similar to the previous one except that the Device
Option specifies a USB mouse. See “ServerLayout Section” on page 78 for a discus-
sion of this option.

Section "InputDevice"
If the normal CorePointer mouse is not a USB mouse then
this input device can be used in AlwaysCore mode to let you
also use USB mice at the same time.
 Identifier "DevInputMice"
 Driver "mouse"
 Option "Protocol" "IMPS/2"
 Option "Device" "/dev/input/mice"
 Option "ZAxisMapping" "4 5"
 Option "Emulate3Buttons" "no"
EndSection

80 Chapter 3 Step-by-Step Installation

Monitor Section

The xorg.conf file must have at least one Monitor section. The easiest way to set up this
section is to use the displayconfig-gtk utility, which either determines the type of monitor
automatically by probing or allows you to select the type from a list of monitors.

The following section defines a monitor named Monitor0. The VendorName and
ModelName are for reference only and do not affect the way the system works.
The optional DisplaySize specifies the height and width of the screen in millime-
ters, allowing X to calculate the dpi (dots per inch) of the monitor. HorizSync
and VertRefresh specify ranges of vertical refresh frequencies and horizontal sync
frequencies for the monitor; these values are available from the manufacturer.
The dpms Option specifies that the monitor is DPMS (page 1034) compliant
(i.e., has built-in energy-saving features).

Section "Monitor"
 Identifier "Monitor0"
 VendorName "Monitor Vendor"
 ModelName "Dell D1028L"
 DisplaySize 360 290
 HorizSync 31.0 - 70.0
 VertRefresh 50.0 - 120.0
 Option "dpms"
EndSection

A Monitor section may mention DDC (Display Data Channel); a monitor can use
DDC to inform a video card about its properties. If you omit or comment out the
HorizSync and VertRefresh lines, X uses DDC probing to determine the proper values.

Device Section

The xorg.conf file must have at least one Device section to specify the type of video
card in the system. The VendorName and BoardName are for reference only and do
not affect the way the system works. The easiest way to set up this section is to use the
displayconfig-gtk utility, which usually determines the type of video card by probing.

The following Device section specifies that Videocard0 uses the nv driver and
locates it on the PCI bus:

Section "Device"
 Identifier "Videocard0"
 Driver "nv"
 VendorName "Videocard vendor"
 BoardName "NVIDIA GeForce4 (generic)"
 BusID "PCI:3:0:0"
EndSection

Do not guess at values for HorizSync or VertRefresh

caution If you configure the Monitor section manually, do not guess at the scan rates (HorizSync and Vert-
Refresh). On older monitors, you can destroy the hardware by choosing scan rates that are too high.

The X Window System 81

Screen Section

The xorg.conf file must contain at least one Screen section. This section binds a
video card specified in the Device section to a display specified in the Monitor
section.

The following Screen section specifies that Screen0 comprises Videocard0 and
Monitor0, both of which are defined elsewhere in the file. The DefaultDepth entry
specifies the default color depth (page 1029), which the Display subsection can
override.

Each Screen section must have at least one Display subsection. The subsection in the
following example specifies a color Depth and three Modes. The Modes specify the
screen resolutions in units of dots per inch (dpi). The first Mode is the default; you
can switch between Modes while X is running by pressing CONTROL-ALT-KEYPAD+ or
CONTROL-ALT-KEYPAD–. You must use the plus or minus on the numeric keypad when giv-
ing these commands. X ignores invalid Modes.

Section "Screen"
 Identifier "Screen0"
 Device "Videocard0"
 Monitor "Monitor0"
 DefaultDepth 24
 SubSection "Display"
 Depth 24
 Modes "1024x768" "800x600" "640x480"
 EndSubSection
EndSection

If you omit or comment out the Depth and Modes lines, X uses DDC probing to
determine the optimal values.

Multiple Monitors

X has supported multiple screens for a long time. X.org supports multimonitor con-
figurations using either two graphics cards or a dual-head card. Both setups are usu-
ally configured the same way because the drivers for dual-head cards provide a
secondary virtual device.

Traditionally each screen in X was treated as a single entity. That is, each window
had to be on one screen or another. More recently the Xinerama extension has
allowed windows to be split across two or more monitors. This extension is sup-
ported by X.org and works with most video drivers. When using Xinerama, you
must set all screens to the same color depth.

For each screen, you must define a Device, Monitor, and Screen section in the
xorg.conf file. These sections are exactly the same as for a single-screen configura-
tion; each screen must have a unique identifier. If you are using a dual-head card,
the Device section for the second head is likely to require a BusID value to enable
the driver to determine that you are not referring to the primary display.

82 Chapter 3 Step-by-Step Installation

The following section identifies the two heads on an ATI Radeon 8500 card. For
other dual-head cards, consult the documentation provided with the driver (for
example, give the command man mga to display information on the mga driver).

Section "Device"
 Identifier "Videocard0"
 Driver "radeon"
 VendorName "ATI"
 BoardName "Radeon 8500"
EndSection
Section "Device"
 Identifier "Videocard1"
 Driver "radeon"
 VendorName "ATI"
 BoardName "Radeon 8500"
 BusID "PCI:1:5:0"
EndSection

Once you have defined the screens, use the ServerLayout section to tell X where the
screens are in relation to each other. Each screen is defined in the following form:

Screen [ScreenNumber] "Identifier" Position

The ScreenNumber is optional. If omitted, X numbers screens in the order they are
specified, starting with 0. The Identifier is the same Identifier used in the Screen sec-
tions. The Position can be either absolute or relative. The easiest way to define
screen positions is to give one screen an absolute position, usually with the coordi-
nates of the origin, and then use the LeftOf, RightOf, Above, and Below keywords
to indicate the positions of the other screens:

Section "ServerLayout"
 Identifier "Multihead layout"
 Screen 0 "Screen0" LeftOf "Screen1"
 Screen 1 "Screen1" 0 0
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
 InputDevice "DevInputMice" "AlwaysCore"
 Option "Xinerama" "on"
 Option "Clone" "off"
EndSection

By default, Xinerama causes multiple screens to act as if they were a single screen.
Clone causes each of the screens to display the same image.

gdm: Displays a Graphical Login

Traditionally users logged in on a textual terminal and then started the X server. Ubuntu
Linux uses the GNOME display manager (gdm) to provide a graphical login. The Login
Window Preferences window enables you to configure the login presented by gdm. To
display this window, select Main menu: System Administration Login Window or
give the command gksudo gdmsetup from a terminal emulator or Run Application

Exercises 83

window (ALT-F2). The gdmsetup utility edits /etc/gdm/gdm.conf-custom, which aug-
ments the heavily commented /etc/gdm/gdm.conf file.

You can make many changes to the system from the Login Window Preferences
window. For example, you can alter the appearance and functionality of the login
screen, control whether remote logins are allowed (they are not by default), set up
an automatic login, and control TCP connections to the X server (they are denied
by default; page 255).

Chapter Summary

Most installations of Ubuntu Linux begin by booting from the live/install Desktop
CD/DVD and running a live session that displays a GNOME desktop. To start the
installation, double-click the object on the desktop labeled Install.

Ubuntu provides a graphical installer (ubiquity) on the live/install Desktop CD/DVD;
it offers a textual installer on the Alternate and Server CDs and the DVD. Both
installers identify the hardware, build the filesystems, and install the Ubuntu Linux
operating system. The ubiquity installer does not write to the hard disk until it dis-
plays the Ready to install screen or warns you it is about to write to the disk. Until
that point, you can back out of the installation without making any changes to the
hard disk.

A dual-boot system can boot one of two operating systems—frequently either Win-
dows or Linux. You can use the GNOME Partition Editor from a live session to
examine the contents of a hard disk and to resize partitions to make room for
Ubuntu when setting up a dual-boot system. During installation from a live session,
you can use the ubiquity partitioner to add, delete, and modify partitions.

Ubuntu uses the X.org X Window System version X11R7.2. The /etc/X11/xorg.conf
file configures the X server, setting up the monitor, mouse, and graphics card. The
displayconfig-gtk utility is a graphical editor for this file.

The GNOME display manager (gdm) provides a graphical login. The gdmsetup util-
ity configures the login presented by gdm by editing /etc/gdm/gdm.conf-custom,
which augments the heavily commented /etc/gdm/gdm.conf file.

Exercises

1. How do you start a live session? List two problems you could encounter
and explain what you would do to fix them.

2. What should you do before the first time you start a live session or install
Ubuntu with a new CD/DVD? How would you do it?

84 Chapter 3 Step-by-Step Installation

3. What is guided partitioning?

4. Without asking any questions, guided partitioning divides the portion of
the disk allotted to Ubuntu into two partitions. One partition is the swap
partition, which can be any size from 512 megabytes to 2 or more
gigabytes. The other partition is designated as / (root) and contains the
remainder of the disk space.What is ubiquity?

5. Describe the ubiquity partitioner. How does it differ from the partitioner on
the Alternate and Server CDs?

6. When is it beneficial to use an ext2 filesystem instead of an ext3 filesystem?

Advanced Exercises

7. What is a virtual console? During installation, what can you use a virtual
console for? If the system is displaying a virtual console, how do you dis-
play the graphical installation screen?

8. What would you do to have the system display all the things it is doing as
it boots from a live/install Desktop CD/DVD?

9. Assume you have configured four screens, screen0 through screen3. How
would you specify in xorg.conf that the screen layout is a T shape with the
first screen at the bottom and the other three screens in a row above it?

85

I

PART II

Getting Started with

Ubuntu Linux

CHAPTER 4

Introduction to Ubuntu Linux 87

CHAPTER 5

The Linux Utilities 145

CHAPTER 6

The Linux Filesystem 183

CHAPTER 7

The Shell 219

This page intentionally left blank

8787

4Chapter4One way or another you are sitting in front of a computer that
is running Ubuntu Linux. After describing root privileges, this
chapter takes you on a tour of the system to give you some
ideas about what you can do with it. The tour does not go into
depth about choices, options, menus, and so on; that is left for
you to experiment with and to explore in greater detail in
Chapter 8 and throughout later chapters. Instead, this chapter
presents a cook’s tour of the Linux kitchen: As you read it, you
will have a chance to sample the dishes that you will enjoy
more fully as you read the rest of this book.

Following the tour are sections that describe where to find Linux
documentation (page 124) and offer more about logging in on
the system, including information about passwords (page 132).
The chapter concludes with a more advanced, optional section
about working with Linux windows (page 139).

Be sure to read the warning about the dangers of misusing the
powers of root (sudo) in the next section. Heed that warning,
but feel free to experiment with the system: Give commands,
create files, click objects, choose items from menus, follow the
examples in this book, and have fun.

In This Chapter

Curbing Your Power: root
Privileges/sudo 88

A Tour of the Ubuntu Linux
Desktop . 89

The Update Notifier. 100

Updating, Installing, and
Removing Software Packages . . 119

Where to Find Documentation . . . 124

More About Logging In 132

What to Do If You Cannot Log In. . 133

Working from the
Command Line. 136

Controlling Windows: Advanced
Operations 139

4

Introduction to

Ubuntu Linux

88 Chapter 4 Introduction to Ubuntu Linux

Curbing Your Power: root Privileges/sudo

When you enter your password to run a program (not when you log in on the
system), or when you use sudo from the command line, you are working with
root privileges and have extraordinary systemwide powers. A person working
with root privileges is sometimes referred to as Superuser or administrator. When
working with root privileges, you can read from or write to any file on the sys-
tem, execute programs that ordinary users cannot, and more. On a multiuser
system you may not be permitted to run certain programs, but someone—the
system administrator—can and that person maintains the system. When you are
running Linux on your own computer, the first user you set up, usually when
you install Ubuntu, is able to use sudo and its graphical counterpart, gksudo, to
run programs with root privileges.

There are two primary ways to gain root privileges. First, when you start a program
that requires root privileges, a dialog box pops up asking you to Enter your pass-
word to perform administrative tasks. After you enter your password, the program
runs with root privileges. Second, if you use the sudo utility (for textual applica-
tions; page 490) or gksudo utility (for graphical applications; page 491) from the
command line (such as from a terminal emulator; page 114) and provide your pass-
word, the command you enter runs with root privileges. In both cases you cease
working with root privileges when the command finishes or when you exit from the
program you started with root privileges. For more information refer to “Running
Commands with root Privileges” on page 487.

root terminology

tip Most Linux systems include an account for a user named root. This user has special privileges and
is sometimes referred to as Superuser. On a classic Linux system a user can log in and work as
root by providing the root password.

As installed, Ubuntu has a root account but no password for the account: The root account is
locked. The next section explains how you can use sudo and provide your password to run a com-
mand with root privileges. This book uses the phrase “working with root privileges” to distinguish
this temporary escalation of privileges from the classic scenario wherein a user can work with root
privileges for an entire session. See page 487 for more information on root privileges.

Who is allowed to run sudo?

security The first user you set up when you install Ubuntu can administer the system: This user can
use sudo to execute any command. When you add user accounts, you can specify whether
they are allowed to administer the system. See page 658 and Figure 17-2 on page 659 for
more information.

In this chapter and in Chapter 8, when this book says you have to enter your password, it assumes
you have permission to administer the system. If not, you must get an administrator to perform
the task.

A Tour of the Ubuntu Linux Desktop 89

A Tour of the Ubuntu Linux Desktop

This section presents new words (for some readers) in a context that explains the
terms well enough to get you started with the Ubuntu desktop. If you would like
exact definitions as you read this section, refer to “GNOME Desktop Terminology”
on page 105 and to the Glossary. The Glossary also describes the data entry widgets
(page 1068), such as the combo box (page 1029), drop-down list (page 1035), list
box (page 1045), and text box (page 1064).

GNOME GNOME (www.gnome.org), a product of the GNU project (page 4), is the user-
friendly default desktop manager under Ubuntu Linux. KDE, the K Desktop Envi-
ronment, is a powerful desktop manager and complete set of tools you can use in
place of GNOME. The version of Ubuntu that runs KDE is named Kubuntu. See
page 60 for instructions on installing KDE.

This tour describes GNOME, a full-featured, mature desktop environment that
boasts a rich assortment of configurable tools. After discussing logging in, this sec-
tion covers desktop features—including panels, objects, and workspaces—and
explains how to move easily from one workspace to another. It describes several
ways to launch objects (run programs) from the desktop, how to set up the desktop
to meet your needs and please your senses, and how to manipulate windows. As the
tour continues, it explains how to work with files and folders using the Nautilus
File Browser window, one of the most important GNOME tools. The tour con-
cludes with a discussion of the Update Notifier, the object that allows you to keep a
system up-to-date with the click of a button; getting help; and logging out.

Logging In on the System

When you boot a standard Ubuntu Linux system, it displays a Login screen
(Figure 4-1) on the system console. At the lower-left corner of the screen is a small

Do not experiment while you are working with root privileges

caution Feel free to experiment when you are not working with root privileges. When you are working with
root privileges, do only what you have to do and make sure you know exactly what you are doing.
After you have completed the task at hand, revert to working as yourself. When working with root
privileges, you can damage the system to such an extent that you will need to reinstall Ubuntu
Linux to get it working again.

If you bought your system with Ubuntu installed at the factory

security When a manufacturer installs Ubuntu, it cannot set up an account for you (it does not know your
name). Typically, these systems come with the root account unlocked. Ubuntu suggests you not
unlock the root account. To set the system up the way Ubuntu suggests, use users-admin as
explained on page 658 to add a user who will be the system administrator. Make sure to put a tick
in the check box labeled Administer the system in the User Privileges tab (page 658). Then relock
the root account (page 499).

www.gnome.org

90 Chapter 4 Introduction to Ubuntu Linux

object labeled Options. Click this object or press F10 to display the Actions menu.
The selections on this menu allow you to work in a different language (Select Lan-
guage), specify a desktop manager (Session), log in remotely, reboot the system
(Restart), turn the system off (Shut Down), suspend the system, or have the system
hibernate. For more information refer to “The Login Screen” on page 132.

To log in, enter your username in the text box labeled Username and press RETURN.
The label changes to Password. Enter your password and press RETURN. If Ubuntu dis-
plays an error message, try entering your username and password again. Make sure
the CAPS LOCK key is not on (Ubuntu displays a message if it is); the routine that veri-
fies your entries is case sensitive. See page 133 if you need help with logging in and
page 135 if you want to change your password. The system takes a moment to set
things up and then displays a workspace (Figure 4-2).

Introduction

You can use the desktop as is or you can customize it until it looks and functions
nothing like the initial desktop. If you have a computer of your own, you may want
to add a user and work as that user while you experiment with the desktop. When
you figure out which features you like, you can log in as yourself and implement
those features. That way you need not concern yourself with “ruining” your desk-
top and not being able to get it back to a satisfactory configuration.

Panels and objects When you log in, GNOME displays a workspace that includes Top and Bottom panels
(bars) that are essential to getting your work done easily and efficiently (Figure 4-2).
Each of the bars holds several icons and words called objects. (Buttons, applets, and
menus are all types of objects.) When you click an object, something happens.

Figure 4-1 The Ubuntu GNOME login screen

A Tour of the Ubuntu Linux Desktop 91

A panel does not allow you to do anything you could not do otherwise, but rather
collects objects in one place and makes your work with the system easier. Because
the panels are easy to configure, you can set them up to hold tools you use fre-
quently. You can create additional panels to hold different groups of tools.

Workspaces and
the Desktop

What you see displayed on the screen is a workspace. Initially Ubuntu configures
GNOME with two workspaces. The desktop, which is not displayed all at once, is
the collection of all workspaces. “Switching Workspaces” on page 93 describes
some of the things you can do with workspaces.

Launching Programs from the Desktop

This section describes three of the many ways you can start a program running from
the desktop.

Click an object The effect of clicking an object depends on what the object is designed to do. Click-
ing an object may, for example, start a program; display a menu or a folder; or open
a file, a window, or a dialog box.

Figure 4-2 The initial workspace

Firefox Web Browser
Main menu

Clock

Log out

Workplace switcher
Trash

Tooltip

Do not remove objects or panels yet

caution You can add and remove panels and objects as you please. Until you are comfortable working with
the desktop and have finished reading this section, however, it is best not to remove any panels
or objects from the desktop.

Click and right-click
tip This book uses the term click when you need to click the left mouse button and right-click when

you need to click the right mouse button. See page 95 to adapt the mouse for left-handed use.

92 Chapter 4 Introduction to Ubuntu Linux

For example, to start the Firefox Web browser, (left) click the Firefox object (the
blue and orange globe on the Top panel; see Figure 4-2). GNOME opens a window
running Firefox. When you are done using Firefox, click the small x at the right end
of the titlebar at the top of the window. GNOME closes the window.

When you (left) click the date and time near the right end of the Top panel, the
Clock applet displays a calendar for the current month. (If you double-click a date
on the calendar, the object opens the Evolution calendar to the date you
clicked—but first you have to set up Evolution.) Click the date and time again to
close the calendar.

Select from the
Main menu

The second way to start a program is by selecting it from a menu. The Main menu
is the object at the left end of the Top panel that includes the words Applications,
Places, and System. Click one of these words to display the corresponding menu.
Each menu selection that holds a submenu displays a small triangle (pointing to
the right) to the right of the name of the menu (Figure 4-3). When you move the
mouse pointer over one of these selections and leave it there for a moment (this
action is called hovering), the menu displays the submenu. When you allow the
mouse cursor to hover over one of the submenu selections, GNOME displays a
tooltip (page 106).

Experiment with the Main menu. Start Solitaire (Main menu: Applications Games
Free Cell Solitaire), a terminal emulator (Main menu: Applications Accessories
Terminal), and other programs from the Applications menu. The Places and System
menus are discussed on page 110.

Use the Run
Application window

Finally, you can start a program by pressing ALT-F2 to display the Run Application
window (Figure 4-4). As you start to type firefox in the text box at the top of the
window, the window recognizes what you are typing and displays the Firefox logo
and the rest of the word firefox. Click Run to start Firefox.

Figure 4-3 The Applications menu, Accessories, Terminal

A Tour of the Ubuntu Linux Desktop 93

optional
Running textual

applications
You can run command line utilities, which are textual (not graphical), from the Run
Applications window. When you run a textual utility from this window, you must put
a tick in the check box labeled Run in terminal (click the box to put a tick in it; click
it again to remove the tick). The tick tells GNOME to run the command in a terminal
emulator window. When the utility finishes running, GNOME closes the window.

For example, type vim (a text-based editor) in the text box, put a tick in the box
labeled Run in terminal, and click Run. GNOME opens a Terminal (emulator) win-
dow and runs the vim text editor in that window. When you exit from vim (press
ESCAPE:q! sequentially to do so), GNOME closes the Terminal window.

You can run a command line utility that only displays output and then terminates.
Because the window closes as soon as the utility is finished running, and because
most utilities run quickly, you will probably not see the output. Type the following
command in the text box to run the df (disk free; page 800) utility and keep the win-
dow open until you press RETURN:

bash -c "df -h ; read"

This command starts a bash shell (Chapter 7) that executes the command line fol-
lowing the –c option. The command line holds two commands separated by a semi-
colon. The second command, read (page 445), waits for you to press RETURN before
terminating. Thus the output from the df –h command remains on the screen until
you press RETURN. Replace read with sleep 10 to have the window remain open for
ten seconds.

Switching Workspaces

Workplace Switcher Each rectangle in the Workplace Switcher applet (or just Switcher)—the group of
rectangles near the right end of the Bottom panel—represents a workspace
(Figure 4-2, page 91). When you click a rectangle, the Switcher displays the corre-
sponding workspace and highlights the rectangle to indicate which workspace is
displayed.

Figure 4-4 Run Application window

94 Chapter 4 Introduction to Ubuntu Linux

Click the rightmost rectangle in the Switcher (not the Trash applet to its right).
Next, select Main menu: Preferences Mouse. GNOME opens the Mouse Prefer-
ences window. The Switcher rectangle that corresponds to the workspace you are
working in displays a small colored rectangle. This small rectangle corresponds in
size and location within the Switcher rectangle to the window within the work-
space. Click and hold the left mouse button with the mouse pointer on the titlebar
at the top of the window and drag the window to the edge of the desktop. When
you release the mouse button, the small rectangle within the Switcher moves to the
corresponding location within the Switcher rectangle.

Now click a different rectangle in the Switcher and open another application—for
example, the Ubuntu Help Center (click the blue question mark on the Top panel).
With the Ubuntu Help Center window in one workspace and the Mouse Preferences
window in another, you can click the corresponding rectangles in the Switcher to
switch back and forth between the workspaces (and applications).

Setting Personal Preferences

You can set preferences for many objects on the desktop, including those on the panels.

Workspace Switcher To display the Workspace Switcher Preferences window (Figure 4-5), first right-click
anywhere on the Switcher to display the Switcher menu and then select Preferences.

Figure 4-5 The Workspace Switcher Preferences window

Right-click to display a Context menu

tip A context menu is one that is appropriate to its context. When you right-click an object, it displays
an Object Context menu. Each object displays its own context menu, although similar objects have
similar context menus. Most Object Context menus have either a Preferences or Properties selec-
tion. See the adjacent section, “Setting Personal Preferences,” and page 115 for more information
on Object Context menus.

A Tour of the Ubuntu Linux Desktop 95

Specify the number of workspaces you want in the spin box labeled Number of
workspaces or Columns. (The window looks different if you have Visual Effects
[page 103] enabled; in this case change the value in the spin box labeled Columns.)
The number of workspaces the Switcher displays changes as you change the number
in the spin box—you can see the result of your actions before you close the Prefer-
ences window. Four workspaces is typically a good number to start with. Click Close.

Clock applet The Clock applet has an interesting preferences window. Right-click the Clock
applet (Figure 4-2, page 91) and select Preferences. The resulting window enables
you to customize the date and time the Clock applet displays on the Top panel. The
clock immediately reflects the changes you make in this window.

Different objects display different Preferences windows. Objects that launch pro-
grams display Properties windows and do not have Preferences windows. Experi-
ment with different Preferences and Properties windows and see what happens.

Mouse Preferences

The Mouse Preferences window (Figure 4-6) enables you to change the characteristics
of the mouse to suit your needs. To display this window, select Main menu: System
Preferences Mouse or give the command gnome-mouse-properties from a terminal
emulator or Run Application window (ALT-F2). The Mouse Preferences window has
two tabs: Buttons and Motion (and a third, Touchpad, on a laptop).

Left-handed mouse To change the orientation of the mouse buttons for use by a left-handed person, put
a tick in the check box labeled Left-handed mouse. If you change the setup of the
mouse buttons, remember to reinterpret the descriptions in this book accordingly.
When this book asks you to click the left button or does not specify a button to click,
click the right button, and vice versa. See “Remapping Mouse Buttons” on page 258
if you want to change the orientation of the mouse buttons from the command line.

Figure 4-6 The Mouse Preferences window, Buttons tab

96 Chapter 4 Introduction to Ubuntu Linux

Double-click
timeout

Use the Double-Click Timeout slider in the Buttons tab to change the speed with
which you must double-click a mouse button to have the system recognize your
action as a double-click rather than as two single clicks.

In the Motion tab you can control the acceleration and sensitivity of the mouse. The
Drag and Drop Threshold specifies how far you must drag an object before the sys-
tem considers the action the drag part of a drag and drop.

Working with Windows

To resize a window, move the mouse pointer over an edge of the window; the pointer
turns into an arrow. When the pointer is an arrow, you can click and drag the side of
a window. When you position the mouse pointer over a corner of the window, you
can resize both the height and the width of the window at the same time.

To move a window, click and drag the titlebar (the bar across the top of the window
with the name of the window in it). For fun, try moving the window past either side
of the workspace. What happens? The result depends on how Visual Effects
(page 103) is set.

Titlebar At the right of the titlebar are three icons that control the window (Figure 4-16,
page 112). Clicking the underscore, usually at the left of the set of icons, minimizes
(iconifies) the window so the only indication of the window is the object with the
window’s name in it on the Bottom panel (a Window List applet; page 109). Click
this object to toggle the window between visible and minimized. Clicking the box
icon, usually the middle of the three icons, toggles the window between its maxi-
mum size (maximizes the window) and its normal size. Double-clicking the titlebar
does the same thing.

Terminating a
program

Clicking the x terminates the program running in the window and closes the win-
dow. In some cases you may need to click several times.

Using Nautilus to Work with Files

Nautilus, the GNOME file manager, is a simple, powerful file manager. You can
use it to create, open, view, move, and copy files and folders as well as to execute
programs and scripts. One of its most basic and important functions is to create
and manage the desktop. This section introduces Nautilus and demonstrates the
correspondence between Nautilus and the desktop. See page 260 for more detailed
information on Nautilus.

Terms: folder and
directory

Nautilus displays the File Browser window, which displays the contents of a folder.
The terms folder and directory are synonymous; “folder” is frequently used in
graphical contexts whereas “directory” may be used in textual or command line
contexts. This book uses these terms interchangeably.

Term: File Browser This book sometimes uses the terms File Browser window and File Browser when
referring to the Nautilus File Browser window.

Double-clicking an object in a File Browser window has the same effect as double-
clicking an object on the desktop: Nautilus takes an action appropriate to the object.

A Tour of the Ubuntu Linux Desktop 97

For example, when you double-click a text file, Nautilus opens the file with a text
editor. When you double-click an OpenOffice.org document, Nautilus opens the file
with OpenOffice.org. If the file is executable, Nautilus runs it. If the file is a folder,
Nautilus opens the folder and displays its contents in place of what had previously
been in the window.

The Desktop Directory

The files on the desktop are held in a directory that has a pathname (page 189) of
/home/username/Desktop, where username is your login name. The simple direc-
tory name is Desktop. When you select Main menu: Places Desktop, GNOME
opens a File Browser window showing the files on the desktop (Figure 4-7). Initially
there are no files. If you click the pencil and paper object at the left edge near the
top of the File Browser window, Nautilus displays in the Location text box the
pathname of the directory it is displaying.

To see the correspondence between the graphical desktop and the Desktop direc-
tory, right-click anywhere within the large clear area of the Desktop File Browser
window. Select Create Document Empty File. Nautilus creates a new file on the
desktop and displays its object in this window. When you create this file, GNOME
highlights the name new file under the file: You can type any name you like at this
point. Press RETURN when you are finished entering a name. If you double-click the
new file, Nautilus assumes it is a text file and opens the file in a gedit window. (The
gedit utility is a simple text editor.) Type some text and click Save on the toolbar.
Close the window from the File menu or by clicking the x at the right end of the
titlebar. You have created a text document on the desktop. You can double-click the
document object on the desktop or in the File Browser window to open and edit it.

Next, create a folder by right-clicking the root window (any empty part of the
workspace) and selecting Create Folder. You can name this folder in the same way
that you named the file you created. The folder object appears on the desktop and
within the Desktop File Browser window.

On the desktop, drag the file until it is over the folder; the folder opens. Release the
mouse button to drop the file into the folder; GNOME moves the file to the folder.

Figure 4-7 The desktop with a Nautilus File Browser window

98 Chapter 4 Introduction to Ubuntu Linux

Again on the desktop, double-click the folder you just moved the file to. GNOME
opens another File Browser window, this one displaying the contents of the folder
you clicked on. The file you moved to the folder appears in the new window. Now
drag the file from the window to the previously opened Desktop File Browser win-
dow. The file is back on the desktop, although it may be hidden by one of the File
Browser windows.

Next, open a word processing document by selecting Main menu: Applications
Office OpenOffice.org Word Processor. Type some text and click the floppy disk
icon or select menubar: File Save to save the document. OpenOffice.org displays
a Save window (Figure 4-8). Type the name you want to save the document as
(use memo for now) in the text box labeled Name. You can specify the directory
in which you want to save the document in one of two ways: by using the drop-
down list labeled Save in folder or by using the Browse for other folders section of
the Save window.

Click the triangle to the left of Browse for other folders to open and close this sec-
tion of the window. Figure 4-8 shows the Save window with this section closed. With
the Browse for other folders section closed, you can select a directory from the drop-
down list labeled Save in folder. This technique is quick and easy, but presents a lim-
ited number of choices of folders. By default, it saves the document in Documents
(/home/username/Documents). If you want to save the document to the desktop,
click Desktop in this drop-down list and then click Save. OpenOffice.org saves the
document with a filename extension of .odt, which indicates it is an OpenOffice.org
word processing document. The object for this type of file has some text and a pic-
ture in it.

optional
Browse/Save

window
With the Browse for other folders section opened, the Save window grays out the
drop-down list labeled Save in folder and expands the Browse for other folders sec-
tion, as shown in Figure 4-9. This expanded section holds two large side-by-side list
boxes: Places and Name. The list box labeled Places displays directories and loca-
tions on the system, including File System. The list box labeled Name lists the files
within the directory highlighted in Places.

Figure 4-8 The Save window

A Tour of the Ubuntu Linux Desktop 99

The Browse for other folders section of the Browse/Save window allows you to look
through the filesystem and select a directory or file. GNOME utilities and many
applications use this window, although sometimes applications call it a Browse win-
dow. In this example, OpenOffice.org calls it a Save window and uses it to locate
the directory to save a document in.

Assume you want to save a file in the /tmp directory. Click File System in the list
box on the left; the list box on the right displays the files and directories in the root
directory (/; see “Absolute Pathnames” on page 189 for more information). Next,
double-click tmp in the list box on the right. The button(s) above the list box on the
left change to reflect the directory the list box on the right is displaying. Click Save.

The buttons above the list box on the left represent directories. The list box on the
right displays the directories found within the directory named in the highlighted
(darker) button. This directory is the one you would save the file to if you clicked
Save. Click one of these buttons to display the corresponding directory in the list
box on the right and then click Save to save the file in that directory.

When you have finished editing the document, close the window. If you have made
any changes since you last saved it, OpenOffice.org asks if you want to save the
document. If you choose to save it, OpenOffice.org saves the revised version over
(in the same file as) the version you saved previously. Now the memo.odt object
appears on the desktop and in the Desktop File Browser window. Double-click
either object to open it in OpenOffice.org.

The Desktop
directory is special

In summary, the Desktop directory is like any other directory, except that GNOME
displays its contents on the desktop (in every workspace). It is as though the desk-
top is a large, plain Desktop File Browser window. You can work with the Desktop

Figure 4-9 A Save window with Browse for other folders open

100 Chapter 4 Introduction to Ubuntu Linux

directory because it is always displayed. Within the GUI, you must use a utility, such
as Nautilus, to display and work with the contents of any other directory.

Selecting Objects

The same techniques select one or more objects in a File Browser window or on the
desktop. Select an object by clicking it once; GNOME highlights the object. Select
additional objects by holding down the CONTROL key while you click each object. You
can select a group of adjacent objects by highlighting the first object and then, while
holding down the SHIFT key, clicking the last object; GNOME highlights all objects
between the two objects you clicked. Or, you can use the mouse pointer to drag a
box around a group of objects.

To experiment with these techniques, open a File Browser window displaying your
home folder. Display the Examples folder by double-clicking it. Select a few objects,
right-click, and select Copy. Now move the mouse pointer over an empty part of the
desktop, right-click, and select Paste. You have copied the selected objects from the
Examples folder to the desktop. You can drag and drop objects to move them,
although you do not have permission to move the objects from the Examples folder.

Emptying the Trash

Selecting File Browser menubar: File Move to Trash moves the selected (high-
lighted) object to the .Trash directory. Like the Desktop directory, .Trash is a direc-
tory in /home/username. Because its name starts with a period however, it is not
usually displayed. Press CONTROL-H or select File Browser menubar: View Show Hid-
den Files to display hidden files. For more information refer to “Hidden Filenames”
on page 188.

Because files in the trash take up space on the hard disk (just as any files do), it is a good
idea to remove them periodically. All File Browser windows allow you to permanently
delete all files in the .Trash directory by selecting File Browser menubar: File Empty
Trash. To view the files in the trash, click the Trash applet (Figure 4-2, page 91). Nauti-
lus displays the Trash File Browser window. Select Empty Trash from the Trash applet
context menu to permanently remove all files from the trash. (This selection does not
appear if there are no files in the trash.) Or you can open the .Trash directory, right-
click an object, and select Delete from Trash to remove only that object (file). You can
drag and drop files to and from the trash just as you can with any other folder.

The Update Notifier

On systems connected to the Internet, Ubuntu is initially set up to automatically
search for and notify you when software updates are available. GNOME displays
the message Software updates available in a bright dialog box and places the
Update Notifier (Figure 4-10) toward the right end of the Top panel when updates
are available. Clicking this object opens the Update Manager window (Figure 4-10).

A Tour of the Ubuntu Linux Desktop 101

You can also open this window by selecting Main menu: System Administration
Update Manager or by giving the command update-manager from a terminal emu-
lator or Run Application window (ALT-F2).

Update Manager
window

When the Update Manager window opens, it displays the message Starting Update
Manager; after a moment it tells you how many updates are available. If no updates are
available, this window displays the message Your system is up-to-date. If you have rea-
son to believe the system is not aware of available updates, click Check. The update-
manager asks for your password, reloads its database, and checks for updates again.

If updates are available, click Install Updates. The Update Manager asks for your
password, displays the Downloading Package Files window, and counts the pack-
ages as it downloads them. Next the Update Manager displays the Applying
Changes window with the message Installing software and describes the steps it is
taking to install the packages. When it is finished, the Update Manager displays the
Changes Applied window, which displays the message Update is complete. After
you click Close, the Update Manager again checks for updates and usually displays
the message Your system is up-to-date. Click Close. If the updates require you to
reboot the system or restart a program, an object appears on the Top panel. Click
this object and take the required action as soon as you are ready. For more informa-
tion refer to “Updating, Installing, and Removing Software Packages” on page 119.

Figure 4-10 The Update Notifier and the Update Manager window

Update Notifier

102 Chapter 4 Introduction to Ubuntu Linux

Changing Appearances (Themes)

One of the most exciting aspects of a Linux desktop is the ability it gives you to
change its appearance. You can change not only the backgrounds, but also window
borders (including the titlebar), icons, the buttons that applications use, and more.
To see some examples of what you can do, visit art.gnome.org.

Themes In a GUI, a theme is a recurring pattern and overall look that (ideally) pleases the
eye and is easy to interpret and use. You can work with desktop themes at several
levels. First and easiest is to leave well enough alone. Ubuntu comes with a good-
looking theme named Human. If you are not interested in changing the way the
desktop looks, continue with the next section.

The next choice, which is almost as easy, is to select one of the alternative themes
that comes with Ubuntu. You can also modify one of these themes, changing the
background, fonts, or interface. In addition, you can download themes from many
sites on the Internet and change them in the same ways.

The next level is customizing a theme, which changes the way the theme looks—for
example, changing the icons a theme uses. At an even higher level, you can design
and code your own theme. For more information see the tutorials at art.gnome.org.

Appearance
Preferences window

The key to changing the appearance of your desktop is the Appearance Preferences
window. Display this window by choosing Main Menu: Systems Preferences
Appearances or by right-clicking the root window (any empty space on a workspace)

Figure 4-11 The Appearance Preferences window, Theme tab

A Tour of the Ubuntu Linux Desktop 103

and selecting Change Desktop Background. The Appearance Preferences window
has five tabs:

• The Theme tab (Figure 4-11) enables you to select one of several themes.
Click a theme and the workspace immediately reflects the use of that
theme. The Human theme is the default Ubuntu theme; select this theme to
make the workspace appear as it did when you installed the system. Once
you select a theme, you can click Close or you can click the other tabs to
modify the theme.

• The Background tab enables you to specify a wallpaper or color for the
desktop background. To specify a wallpaper, click one of the samples in
the Wallpaper frame or click Add and choose a file—perhaps a picture—
you want to use as wallpaper. (Clicking Add displays the Add Wallpaper
window; see “Browse/Save window” on page 98 for instructions on select-
ing a file using this window.) Then choose the style you want GNOME to
use to apply the wallpaper. For example, Zoom makes the picture you
chose fit the workspace.

You can also specify a color for the background: either solid or a gradient
between two colors. To use a color, you must first select No Wallpaper
from the Wallpaper frame: Allow the mouse pointer to hover over each of
the wallpapers displayed in the Wallpaper frame until you find one that
displays the tooltip No Wallpaper. Select that (non)wallpaper. Next, select
Solid color from the drop-down list labeled Colors and click the colored
box to the right of this list. GNOME displays the Pick a Color window.
Click a color you like from the ring and adjust the color by moving the lit-
tle circle within the triangle. Click OK when you are done. The color you
chose becomes the background color of the desktop. See page 268 for
more information on the Pick a Color window.

• The Fonts tab (Figure 8-8, page 267) enables you to specify which fonts
you want GNOME to use in different places on the desktop. You can also
change how GNOME renders the fonts (page 267).

• The Interface tab enables you to modify the appearance of window menus
and toolbars and presents a Preview pane that shows what your choices
will look like.

Visual effects • The Visual Effects tab enables you to select one of three levels of visual
effects: None, Normal, and Extra. Normal and Extra effects replace the
Metacity window manager with Compiz Fusion (compiz.org), which
implements 3D desktop visual effects. (Compiz is the name of the core; the
plugins are called Compiz Fusion.) When you install Ubuntu, Ubuntu
determines what the hardware is capable of running and sets the proper
level of effects. One of the most dramatic visual effects is wiggly windows:
To see this effect, select Normal or Extra and drag a window around using
its titlebar. If you experience problems with the system, select None.

104 Chapter 4 Introduction to Ubuntu Linux

The changes you make in the Background, Fonts, Interface, and Visual Effects tabs
are used by any theme you select, including ones you customize. When you are
through making changes in the Appearance Preferences window tabs, you can click
Close to use the theme as you have modified it or return to the Theme tab to cus-
tomize the theme.

Customizing a
theme

From the Theme tab of the Appearance Preferences window, select the theme you
want to customize or continue with the theme you modified in the preceding sec-
tion. Click Customize to open the Customize Theme window. Go through each tab
in this window; choose entries and watch the change each choice makes in the
workspace. Not all tabs work with all themes. When you are satisfied with the
result, click Close.

After you customize a theme, it is named Custom. When you customize another
theme, those changes overwrite the Custom theme. For this reason it is best to save
a customized theme by clicking Save As and specifying a name for the theme. After
saving a theme, it appears among the themes in the Theme tab.

Session Management

A session starts when you log in and ends when you log out or reset the session.
With fully GNOME-compliant applications, GNOME can manage sessions so the
desktop looks the same when you log in as it did when you saved a session or
logged out: The same windows will be positioned as they were on the same work-
spaces and programs will be as you left them.

To save a session, first make sure you have only the windows open that you want to
appear the next time you log in. Then select Main Menu: System Preferences
Sessions to display the Sessions window. Click the Session Options tab and then
click Remember currently running applications. The window displays Your session
has been saved. Each time you log in, the same windows will appear. If you want
GNOME to remember what you were doing each time you log off, put a tick in the
check box labeled Automatically remember running applications when logging out.

Getting Help

Ubuntu provides help in many forms. Clicking the question mark object on the Top
panel displays the Ubuntu Help Center window, which provides information on the
desktop. To display other information, click a topic in the list on the left side of this
window. You can also enter text to search for in the text box labeled Search and
press RETURN. In addition, most windows provide a Help object or menu. See “Where
to Find Documentation” on page 124 for more resources.

Visual effects can cause problems

caution Setting Visual Effects to Normal or Extra can cause unexpected graphical artifacts, shorten battery
life, and reduce performance in 3D applications and video playback. If you are having problems with
an Ubuntu system, try setting Visual Effects to None and see if the problem goes away.

Getting the Most out of the Desktop 105

Feel Free to Experiment

Try selecting different items from the Main menu and see what you discover. Fol-
lowing are some applications you may want to explore:

• OpenOffice.org’s Writer is a full-featured word processor that can import and
export MS Word documents. Select Main menu: Office Open-Office.org
Writer. The Office menu also offers a database, presentation manager, and
spreadsheet.

• Firefox is a powerful, full-featured Web browser. Click the blue and
orange globe object on the Top panel to start Firefox. You can also select
Main menu: Applications Internet Firefox Web Browser.

• Pidgin is a graphical IM (instant messenger) client, formerly called Gaim,
that allows you to chat on the Internet with people who are using IM cli-
ents such as AOL, MSN, and Yahoo! To start Pidgin, select Main menu:
Applications Internet Pidgin Internet Messenger.

The first time you start Pidgin, it opens the Accounts window; click Add to
open the Add Account window. In the Add Account window, select a proto-
col (such as AIM or MSN), enter your screen name and password, and put a
tick in the check box labeled Remember password if you want Pidgin to
remember your password. Click Save. Visit pidgin.im for more information,
including Pidgin documentation and plugins that add features to Pidgin.

Logging Out

To log out, click the Logout button (Figure 4-2, page 91) at the upper-right corner
of the workspace. GNOME displays the Logout window. This window looks differ-
ent from other windows because it has no decorations (page 141). Or, you can
select Main Menu: System Quit and click Logout. You can also choose to shut
down or restart the system, among other options. From a textual environment,
press CONTROL-D or give the command exit in response to the shell prompt.

Getting the Most out of the Desktop

The GNOME desktop is a powerful tool with many features. This section covers
many aspects of panels, the Main menu, windows, terminal emulation, and ways to
update, install, and remove software. Chapter 8 continues where this chapter leaves
off, discussing the X Window System, covering Nautilus in more detail, and
describing a few of the GNOME utilities.

GNOME Desktop Terminology

The following terminology, from the GNOME Users Guide, establishes a founda-
tion for discussing the GNOME desktop. Figure 4-2 on page 91 shows the initial
Ubuntu GNOME desktop.

106 Chapter 4 Introduction to Ubuntu Linux

Desktop The desktop comprises all aspects of the GNOME GUI. While you are working with
GNOME, you are working on the desktop. There is always exactly one desktop.

Panels Panels are bars that appear on the desktop and hold (Panel) objects. Initially there
are two gray panels: one along the top of the screen (the Top Edge panel, or just Top
panel) and one along the bottom (the Bottom Edge panel, or just Bottom panel).
You can add and remove panels. You can place panels at the top, bottom, and both
sides of the desktop, and you can stack more than one panel at any of these loca-
tions. The desktop can have no panels, one panel, or several panels. See page 107
for more information on panels.

Panel objects Panel objects appear as words or icons on panels. You can click these objects to dis-
play menus, run applets, or launch programs. The five types of panel objects are
applets, launchers, buttons, menus, and drawers. See page 109 for more informa-
tion on Panel objects.

Windows A graphical application typically runs within and displays a window. At the top of
most windows is a titlebar that you can use to move, resize, and close the window.
The root window is the unoccupied area of the workspace and is frequently
obscured. The desktop can have no windows, one window, or many windows.
Most windows have decorations (page 141) but some, such as the Logout window,
do not.

Workspaces Workspaces divide the desktop into one or more areas, with one such area filling
the screen at any given time. Initially there are two workspaces. Because panels and
objects on the desktop are features of the desktop, all workspaces display the same
panels and objects. By default, a window appears in a single workspace. The
Switcher (page 93) enables you to display any one of several workspaces.

Tooltips Tooltips (Figure 4-2, page 91) is a minicontext help system that you activate by
moving the mouse pointer over a button, icon, window border, or applet (such as
those on a panel) and allowing it to hover there. When the mouse pointer hovers
over an object, GNOME displays a brief explanation of the object.

Opening Files

By default, you double-click an object to open it; or you can right-click the object
and select Open from the drop-down menu. When you open a file, GNOME figures
out the appropriate tool to use by determining the file’s MIME (page 1048) type.
GNOME associates each filename extension with a MIME type and each MIME
type with a program. Initially GNOME uses the filename extension to try to deter-
mine a file’s MIME type. If GNOME does not recognize the filename extension, it
examines the file’s magic number (page 1046).

For example, when you open a file with a filename extension of ps, GNOME calls
the Evince document viewer, which displays the PostScript file in a readable format.
When you open a text file, GNOME uses gedit to display and allow you to edit the

Getting the Most out of the Desktop 107

file. When you open a directory, GNOME displays its contents in a File Browser
window. When you open an executable file such as Firefox, GNOME runs the exe-
cutable. When GNOME uses the wrong tool to open a file, the tool generally issues
an error message. See “Open With” on page 118 for information on how to use a
tool other than the default tool to open a file.

Panels

As explained earlier, panels are the bars that initially appear at the top and bottom
of the desktop. They are part of the desktop and therefore are consistent across
workspaces.

The Panel Menu

Right-clicking an empty part of a panel displays the Panel (Context) menu. Aside
from help and informational selections, this menu has four selections.

Add to Panel Selecting Add to Panel displays the Add to Panel window (Figure 4-12). You can
drag an object from this window to a panel, giving you the choice of which
panel the object appears on. You can also highlight an object and click Add to
add the object to the panel whose menu you used to display this window. Many
objects in this window are whimsical: Try Geyes and select Bloodshot from its
preferences window, or try Fish. One of the more useful objects is Search for
Files. When you click this object on the panel, it displays the Search for Files
window (page 269).

Figure 4-12 The Add to Panel window

108 Chapter 4 Introduction to Ubuntu Linux

Properties Selecting Properties displays the Panel Properties window (Figure 4-13). This win-
dow has two tabs: General and Background.

In the General tab, Orientation selects which side of the desktop the panel appears
on; Size adjusts the width of the panel. Expand causes the panel to span the width or
height of the workspace; without a tick in this check box the panel is centered and
just wide enough to hold its objects. Autohide causes the panel to disappear until
you bump the mouse pointer against the side of the workspace. Hide buttons work
differently from autohide: Show hide buttons displays buttons at each end of the
panel. When you click one of these buttons, the panel slides out of view, leaving only
a button remaining. When you click that button, the panel slides back into place.

The Background tab of the Panel Properties window enables you to specify a color
and transparency or an image for the panel.

If you want to see what stacked panels look like, use the Orientation drop-down
list to change the location of the panel you are working with. If you are working
with the Top panel, select Bottom and vice versa. As with Preferences windows,
Properties windows have no Apply and Cancel buttons; they implement changes
immediately. Use the same procedure to put the panel back where it was.

See “Pick a Color Window” on page 268 for instructions on how to change the
color of the panel. Once you have changed the color, move the slider labeled Style to
make the color of the panel more or less transparent. If you do not like the effect,
click the radio button labeled None (use system scheme) to return the panel to its
default appearance. Click Close.

Figure 4-13 The Panel Properties window, General tab

Getting the Most out of the Desktop 109

Delete This Panel Selecting Delete This Panel does what you might expect it. Be careful with this selec-
tion: When it removes a panel, it removes all the objects on the panel and you will
need to reconstruct the panel if you want it back as it was.

New Panel Selecting New Panel adds a new panel to the desktop. GNOME decides where it
goes; you can move the panel if you want it somewhere else.

Moving a Panel

You can drag any panel to any of the four sides of the desktop: Left-click any empty
space on a panel; the mouse pointer turns into a small hand. Drag the panel to the
side you want to move it to. Unlike dragging an object across a workspace, the
panel does not move until you have dragged the mouse pointer all the way to the
new location of the panel; it then snaps into place. If you have stacked panels and
are having trouble restacking them in the order you want, try dragging a panel first
to an empty side of the workspace and then to its final location.

Panel Objects

The icons and words on a panel, called panel objects, display menus, launch pro-
grams, and present information. The panel object with the blue and orange globe
starts Firefox. The email button (the open envelope icon) starts Evolution, an email
and calendaring application (www.gnome.org/projects/evolution). You can start
almost any utility or program on the system using a Panel object. This section
describes the different types of Panel objects.

Applets An applet is a small program that displays its user interface on or adjacent to the
panel. You interact with the applet using its Applet Panel object. The Mixer (vol-
ume control), Clock (date and time; Figure 4-2, page 91), and Workspace Switcher
(Figure 4-2, page 91) are applets.

Window List applet Although not a distinct type of object, the Window List applet is a unique and
important tool. One Window List applet (Figure 4-14) appears on the Bottom panel
for each open or iconified window on the displayed workspace. Left-clicking this
object minimizes its window or restores the window if it is minimized. Right-click
to display the Window Operations menu (page 112). If a window is berried under
other windows, click its Window List applet to make it visible.

Launchers When you open a launcher, it can execute a command, start an application, display
the contents of a folder or file, open a URI in a Web browser, and so on. In addition
to appearing on panels, launchers can appear on the desktop. The Firefox object is a
launcher: It starts the Firefox application. Under Main menu: Applications, you can
find launchers that start applications. Under Main menu: Places, the Home Folder,

Figure 4-14 Window List applets

www.gnome.org/projects/evolution

110 Chapter 4 Introduction to Ubuntu Linux

Documents, Desktop, and Computer objects are launchers that open File Browser
windows to display folders.

Buttons A button performs a single, simple action. The Logout button (Figure 4-2, page 91) dis-
plays a window that enables you to log off, shut down, or reboot the system. The Show
Desktop button at the left of the Bottom panel minimizes all windows on the workspace.

Menus A menu displays a list of selections you can choose from. Some of the selections can
be submenus with more selections. All other selections are launchers. The next sec-
tion discusses the Main menu.

Drawers A drawer is an extension of a panel. You can put the same objects in a drawer that
you can put on a panel, including another drawer. When you click a Drawer object,
the drawer opens; you can then click an object in the drawer the same way you click
an object on a panel.

The Panel Object Context Menus

Three selections are unique to Panel Object Context menus (right-click a Panel
object). The Remove from Panel selection does just that. The Move selection
allows you to move the object within the panel and to other panels; you can also
move an object by dragging it with the middle mouse button. The Lock to Panel
selection locks the object in position so it cannot be moved. When you move an
object on a panel, it can move through other objects. If the other object is not
locked, it can displace the object if necessary. The Move selection is grayed out
when the object is locked.

The Main Menu

The Main menu appears at the left of the Top panel and includes Applications,
Places, and System. Click one of these words to display the corresponding menu.

Applications The Applications menu holds several submenus, each named for a category of appli-
cations (e.g., Games, Graphics, Internet, Office). The last selection, Add/Remove, is
discussed on page 120. Selections from the submenus launch applications—peruse
these selections, hovering over those you are unsure of to display tooltips.

Places The Places menu holds a variety of launchers, most of which open a File Browser
window. The Home Folder, Documents, and Desktop objects display your directo-
ries with corresponding names. The Computer, CD/DVD Creator, and Network
objects display special locations. Each of these locations enables you to access file
manager functions. A special URI (page 1067) specifies each of these locations. For
example, the CD/DVD Creator selection displays the burn:///, URI which enables
you to create a CD or DVD. The Connect to Server selection opens a window that
allows you to connect to various type of servers, including SSH and FTP (see “File”
on page 263). Below these selections are mounted filesystems; click one of these to

Getting the Most out of the Desktop 111

display the top-level directory of that filesystem. The Search for Files selection
enables you to search for files (page 269).

System The System menu holds two submenus, selections that can provide support, and the
Quit selection. The two submenus are key to configuring your account and setting
up and maintaining the system.

The Preferences submenu establishes the characteristics of your account; each user
can establish her own preferences. Click some of these selections to become familiar
with the ways you can customize your account on an Ubuntu system.

The Administration submenu controls the way the system works. For example,
Administration Folder Sharing enables Ubuntu to use NFS (Chapter 23) or Samba
(Chapter 24) to share folders with other systems. Administration Network config-
ures the system’s network connections (page 698). Most of these selections require
you to be a system administrator and enter your password to make changes. These
menu selections are discussed throughout this book.

Copying launchers
to a panel

You can copy any launcher from the Main menu to the Top panel or the desktop.
Instead of left-clicking the menu selection, right-click it. GNOME displays a small
menu that can add the launcher to the Top panel or desktop.

Windows

In a workspace, a window is a region that runs, or is controlled by, a particular pro-
gram (Figure 4-15). Because you can control the look and feel of windows—even
the buttons they display—your windows may not look like the ones shown in this
book. Each window in a workspace has a Window List applet (page 109) on the
Bottom panel.

Figure 4-15 A typical window

Titlebar

Toolbar

Vertical scrollbar

Menubar

Window contents

Buttons

112 Chapter 4 Introduction to Ubuntu Linux

Titlebar A titlebar (Figures 4-15 and 4-16) appears at the top of most windows and con-
trols the window it is attached to. You can change the appearance and function of
a titlebar, but it will usually have at least the functionality of the buttons shown in
Figure 4-16.

The minimize (iconify) button collapses the window so that the only indication of
the window is its Window List applet on the Bottom panel; click this applet to
restore the window. Click the maximize button to expand the window so that it
occupies the whole workspace; click the same button on the titlebar of a maximized
window to restore the window to its former size. You can also double-click the title-
bar to maximize and restore a window. Clicking the maximize button with the mid-
dle mouse button expands the window vertically; using the left button expands it
horizontally. Use the same or a different mouse button to click the maximize button
again and see what happens. Clicking the close button closes the window and termi-
nates the program that is running in it. Left-click the titlebar and drag the window
to reposition it.

Window Operations
menu

The Window Operations menu contains most common operations you need to per-
form on any window. Click the Window Operations menu button or right-click
either the titlebar or the Window List applet (page 109) to display this menu.

Toolbar A toolbar (Figure 4-15) usually appears near the top of a window and contains
icons, text, applets, menus, and more. Many kinds of toolbars exist. The titlebar is
not a toolbar; rather, it is part of the window decorations placed there by the win-
dow manager (page 141).

Changing the Input Focus (Window Cycling)

The window with the input focus is the one that receives keyboard characters and
commands you type. In addition to using the Window List applet (page 109), you
can change which window on the current workspace has the input focus by using
the keyboard; this process is called window cycling. When you press ALT-TAB,
GNOME displays in the center of the workspace a box that holds the titlebar
information from the windows in the workspace. It also shifts the input focus to
the window that was active just before the currently active window, making it easy
to switch back and forth between two windows. When you hold ALT and press TAB

multiple times, the focus moves from window to window. Holding ALT and SHIFT and

Figure 4-16 A window titlebar

Minimize

Maximize

Close

Operations
menu

Window
title

Window

Getting the Most out of the Desktop 113

repeatedly pressing TAB cycles in the other direction. See page 139 for more infor-
mation on input focus.

Cutting and Pasting Objects Using the Clipboard

There are two similar ways to cut/copy and paste objects and text on the desktop
and both within and between windows. First you can use the clipboard, technically
called the copy buffer, to copy or move objects or text: You explicitly copy an
object or text to the buffer and then paste it somewhere else. Applications that fol-
low the user interface guidelines use CONTROL-X to cut, CONTROL-C to copy, and CONTROL-V to
paste. Application context menus frequently have these same selections.

You may be less familiar with the second method—using the selection or primary
buffer, which always contains the text you most recently selected (highlighted). You
cannot use this method to copy objects. Clicking the middle mouse button (click the
scroll wheel on a mouse that has one) pastes the contents of the selection buffer at
the location of the mouse pointer (if you are using a two-button mouse, click both
buttons at the same time to simulate clicking the middle button).

With both these techniques, start by highlighting the object or text to select it. You
can drag a box around multiple objects to select them or drag the mouse pointer
over text to select it. Double-click to select a word or triple-click to select a line.
Next, to use the clipboard, explicitly copy (CONTROL-C) or cut (CONTROL-X) the objects or
text.1 If you want to use the selection buffer, skip this step.

To paste the selected objects or text, position the mouse pointer where you want to
put it and then either press CONTROL-V (clipboard method) or press the middle mouse
button (selection buffer method).

Using the clipboard, you can give as many commands as you like between the CONTROL-C

or CONTROL-X and CONTROL-V, as long as you do not press CONTROL-C or CONTROL-X again. Using
the selection buffer, you can give other commands after selecting text and before past-
ing it, as long as you do not select (highlight) other text.

Using the Root Window

The root window is any part of a workspace that is not occupied by a window,
panel, or object. It is the part of the workspace where you can see the background.
To view the root window when it is obscured, click the Show Desktop button at the
left end of the Bottom panel to minimize the windows in the workspace.

Desktop menu Right-click the root window to display the Desktop menu, which enables you to
create a folder, launcher, or document. The Change Desktop Background selection
opens the Appearance Preferences window (page 102) to the Background tab.

1. These control characters do not work in a terminal emulator window because the shell running in the
window intercepts them before the terminal emulator can receive them. You must either use the selection
buffer in this environment or use copy/paste from the Edit selection on the menubar or from the context
menu (right-click).

114 Chapter 4 Introduction to Ubuntu Linux

Running Commands from a Terminal Emulator/Shell

A terminal emulator is a window that presents a command line interface (CLI); it
functions as a textual (character-based) terminal and is displayed in a graphical
environment.

To display the GNOME terminal emulator named Terminal (Figure 4-17), select
Main menu: Applications Accessories Terminal or enter the command gnome-
terminal from a Run Application window (ALT-F2). Because you are already logged in
and are creating a subshell in a desktop environment, you do not need to log in
again. Once you have opened a terminal emulator window, try giving the command
man man to read about the man utility (page 124), which displays Linux manual
pages. Chapter 5 describes utilities that you can run from a terminal emulator.

You can run character-based programs that would normally run on a terminal or
from the console in a terminal emulator window. You can also start graphical
programs, such as xeyes, from this window. A graphical program opens its own
window.

When you are typing in a terminal emulator window, several characters, including

*, ?, |, [, and], have special meanings. Avoid using these characters until you have
read “Special Characters” on page 146.

The shell Once you open a terminal emulator window, you are communicating with the com-
mand interpreter called the shell. The shell plays an important part in much of your
communication with Linux. When you enter a command at the keyboard in
response to the shell prompt on the screen, the shell interprets the command and
initiates the appropriate action—for example, executing a program; calling a com-
piler, a Linux utility, or another standard program; or displaying an error message
indicating that you entered a command incorrectly. When you are working on a
GUI, you bypass the shell and execute a program by clicking an object or name.
Refer to Chapter 7 for more information on the shell.

Figure 4-17 A Terminal terminal emulator window

Getting the Most out of the Desktop 115

The Object Context Menu

When you right-click an object or group of objects either on the desktop or in a File
Browser window, GNOME displays an Object Context menu. Different types of
objects display different context menus, but most context menus share common selec-
tions. Figure 4-18 shows context menus for a OpenOffice.org spreadsheet file and for
a plain text file. Table 4-1 lists some common Object Context menu selections.

Figure 4-18 The Object Context menus for a spreadsheet (left) and a text file (right)

Table 4-1 Common Object Context menu selections

Open Runs an executable file. Opens a file with an appropriate application. Opens a
folder in a File Browser window. Same as double-clicking the object.

Open in New
Window

(From a File Browser window only.) Opens a folder in a new File Browser win-
dow instead of replacing the contents of the current window. Same as holding
SHIFT while double-clicking a folder in a Browser window.

Open with "App" Opens the file using the application named App. When this selection appears
as the first selection in the menu, App is the default application that GNOME
uses to open this type of file. See page 118 for information on changing this
default.

Open with ➤ A triangle appearing to the right of a selection indicates the selection is a
menu. Allow the mouse pointer to hover over the selection to display the sub-
menu. Each submenu selection is an Open with "App" selection (above). The
last selection in the submenu is Open with Other Application (below).

Browse Folder (On the desktop only.) Opens a folder in a File Browser window. Same as double-
clicking a folder on the desktop.

116 Chapter 4 Introduction to Ubuntu Linux

The Object Properties Window

The Object Properties window displays information about a file, such as who owns
it, permissions, size, location, MIME type, ways to work with it, and so on. This
window is titled filename Properties, where filename is the name of the file you
clicked to open the window. Display this window by right-clicking an object and
selecting Properties from the drop-down menu. The Properties window initially dis-
plays some basic information. Click the tabs at the top of the window to display
additional information. Different types of files display different sets of tabs. You
can modify the settings in this window only if you have permission to do so. This
section describes the five tabs common to most Object Properties windows.

Basic The Basic tab displays information about the file, including its MIME type, and
enables you to select a custom icon for the file and change its name. Change the
name of the file in the text box labeled Name. If the filename is not listed in a text
box, you do not have permission to change it. An easy way to change the icon is to

Open with Other
Application

Displays the Open With menu. This menu allows you to select an application
to open this type of file; the next time you use the Object Context menu to open
this type of file, the application you selected appears as an Open with "App"
selection (above). Does not change the default application for this type of file.
See page 118 for information on changing the default application.

Cut Removes the object and places it on the clipboard (page 113).

Copy Copies the object to the clipboard (page 113).

Extract Here Extracts the contents of an archive and some other types of files, such as some
documents, to a directory with the same name as the original file plus _FILES.

Make Link Creates a link to the object in the same directory as the object. You can then
move the link to different directory where it may be more useful.

Move to Trash Moves the object to the trash (page 100).

Send to Opens a Send To window that allows you to email the object.

Create Archive Opens the Create Archive window which allows you to specify a format and a
name for an archive of one or more objects (page 264).

Share folder Opens the Share Folder window, which allows you to share a folder using NFS
(Chapter 23) or Samba (Chapter 24), depending on which is installed on the
local system. Select Main Menu: System Administration Shared Folders
to display the Shared Folders window, which lists folders that are shared from
the local system. Requires root privileges.

Properties Displays the Object Properties window.

Table 4-1 Common Object Context menu selections (continued)

Getting the Most out of the Desktop 117

open a File Browser window at /usr/share/icons. Work your way down through the
directories until you find an icon you like, and then drag and drop it on the icon to
the left of Name in the Basic tab of the Object Properties window. This technique
does not work for files that are links (indicated by the arrow emblem at the upper
right of the object).

Emblems The Emblems tab (Figure 4-19, left) allows you to add and remove emblems associ-
ated with the file by placing (removing) a tick in the check box next to an emblem.
Figure 4-15 on page 111 shows some emblems on file objects. Nautilus displays
emblems in both its Icon and List views, although there may not be room for more
than one emblem in the List view. Emblems are displayed on the desktop as well.
You can also place an emblem on an object by dragging the emblem from the Side
pane/Emblems and dropping it on an object in the View pane (page 261) of a File
Browser window. Drag the Erase emblem to an object to remove most emblems
from the object.

Permissions The Permissions tab (Figure 4-19, right) allows the owner of a file to change the file’s
permissions (page 199) and to change the group (see /etc/group on page 558) that
the file is associated with to any group the owner is associated with. When running
with root privileges, you can also change the owner of the file. The command
gksudo nautilus opens a File Browser window running with root privileges (but read
the caution on page 88). Nautilus grays out items you are not allowed to change.

Using the drop-down lists, you can give the owner (called user elsewhere; see the tip
about chmod on page 201), group, and others read or read and write permission for
a file. You can prohibit the group and others from accessing the file by specifying
permissions as None. Put a tick in the check box labeled Execute to give all users
permission to execute the file. This tab does not give you as fine-grained control
over assigning permissions as chmod (page 200) does.

Figure 4-19 The Object Properties window: Emblems tab (left);
Permissions tab (right)

118 Chapter 4 Introduction to Ubuntu Linux

Permissions for a directory work as explained on page 202. Owner, group, and
others can be allowed to list files in a directory, access (read and—with the
proper permissions—execute) files, or create and delete files. Group and others
permissions can be set to None. The tri-state check box labeled Execute does not
apply to the directory; it applies to the files in the directory. A tick in this check
box gives everyone execute access to these files; a hyphen does not change exe-
cute permissions of the files; and an empty check box removes execute access for
everyone from these files.

Open With When you ask GNOME to open a file that is not executable (by double-clicking its
icon or right-clicking and selecting the first Open with selection), GNOME deter-
mines which application or utility it will use to open the file. GNOME uses several
techniques to determine the MIME (page 1048) type of a file and selects the default
application based on that determination.

The Open With tab (Figure 4-20) enables you to change which applications
GNOME can use to open the file and other files of the same MIME type (typically
files with the same filename extension). Click the Add button to add to the list of
applications. Highlight an application and click Remove to remove an application
from the list. You cannot remove the default application.

When you add an application, GNOME adds that application to the Open With
list, but does not change the default application it uses to open that type of file.
Click the radio button next to an application to cause that application to become
the default application that GNOME uses to open this type of file.

When a file has fewer than four applications in the Open With tab, the Object Con-
text menu displays all applications in that menu. With four or more applications,
the Object Context menu uses an Open With submenu (Figure 4-20).

Notes The Notes tab provides a place to keep notes about the file.

Figure 4-20 The Object Properties window, Open With tab, and the
Object Context menu, Open With submenu for the same file

Updating, Installing, and Removing Software Packages 119

Updating, Installing, and Removing

Software Packages

Ubuntu software comes in packages that include all necessary files, instructions
so that a program can automatically install and remove the software, and a list
of other packages that the package depends on. There are many ways to search
for and install software packages. The Update Notifier (page 100) prompts you
each time updates are available for software on the system. The Software
Sources window (discussed next) is an easy way to install popular software.
Synaptic (page 121) is more complex and gives you a wider selection of soft-
ware. Chapter 14 explains how to work with software packages from the com-
mand line.

Software Sources Window

Repositories Repositories hold collections of software packages and related information. The
Software Sources window controls which categories of packages Ubuntu
installs, which repositories it downloads the packages from, how automatic
updating works, and more. Open this window by selecting Main menu: System
Administration Software Sources (you will need to supply your password) or by
giving the command gksudo software-properties-gtk from a terminal emulator or
Run Application window (ALT-F2). The Software Source window has five tabs,
which are discussed next.

Ubuntu Software The Ubuntu Software tab controls which categories of packages (page 588) APT
(page 588) and Synaptic install and the Update Manager updates automatically.
Typically all categories have ticks in their check boxes except for Source code.
Put a tick in this check box if you want to download source code. If the drop-
down list labeled Download from does not specify a server near you, use the list
to specify one.

If the system does not have an Internet connection, put a tick in one of the check
boxes in the drop-down list labeled Installable from CD-ROM/DVD; APT will
then install software from that source. If you do have an Internet connection,
remove the tick from that check box. You can specify a new CD/DVD in the Third-
Party Software tab.

Add only repositories you know to be trustworthy

security Adding software from other than the Ubuntu repositories can cause the system to not work prop-
erly and cause updates to fail. Even worse, it can make the system vulnerable to attack. Do not
add a third-party repository unless you trust it implicitly.

120 Chapter 4 Introduction to Ubuntu Linux

Third-Party
Software

You can add, edit, and remove repositories from the Third-Party Software tab. (See
the adjacent security box concerning adding repositories.) Unless you are working
with software that is not distributed by Ubuntu, you do not need to add any reposi-
tories. To add a CD/DVD as a repository, click Add CD-ROM.

Updates The top part of the Updates tab (Figure 4-21) specifies which types of updates you
want the Update Manager to download. Typically you will want to download
important security updates and recommended updates. In the bottom part of this
tab you can specify if and how often the Update Manager will check for updates
and what to do when it finds updates.

Authentication The Authentication tab holds keys for trusted software providers. Ubuntu uses keys
to authenticate software, which protects the system against malicious software.
Typically Ubuntu provides these keys automatically.

Statistics The Statistics tab allows you to participate in a software popularity contest.

Add/Remove Applications

The Add/Remove Applications window (Figure 4-22) adds and removes applica-
tions from the system. It is simpler and has fewer selections than Synaptic
(described next). Open this window by selecting Main menu: Applications
Add/Remove or by giving the command gnome-app-install from a terminal emula-
tor or Run Application window (ALT-F2). Maximizing this window may make it easier
to use.

Figure 4-21 The Software Sources window, Updates tab

Updating, Installing, and Removing Software Packages 121

Enter the name or part of the name of an application in the text box labeled Search
at the top of the window and press RETURN to search for an application. Unless you
want to limit selections, select All available applications in the drop-down list
labeled Show. You can select a category of applications from the list at the left of
the window.

Scroll through the applications displayed at the right of the window. When you
click/highlight an application, the window displays a summary of the application in
the frame at the lower-right corner of the window. Put a tick in the check box next
to each application you want to install. Remove tick marks from applications you
want to remove. Click Apply Changes to implement the changes you have marked.
This utility summarizes the changes you have requested and asks if you want to
apply them. Click Apply. Because you need to work with root privileges to install
and remove software, the utility may ask for your password. When it is finished it
tells you it has been successful. Click Close. Packages you installed should be avail-
able on the Main menu.

optional

Synaptic: Finds, Installs, and Removes Software

This section describes how to use Synaptic to find, download, install, and remove
software packages. Open the Synaptic Package Manager window by selecting

Figure 4-22 The Add/Remove Applications window

122 Chapter 4 Introduction to Ubuntu Linux

System: Administration Synaptic Package Manager from the Main menu or by
giving the command gksudo synaptic from a terminal emulator or Run Applica-
tion window (ALT-F2). Figure 4-23 shows the initial window. The first time you run
Synaptic, it reminds you to reload package information regularly. You can do so
by clicking Reload on the toolbar.

The Synaptic Package Manager window displays a lot of information. Maximizing
this window and widening the left column (by dragging the handle) may make it
easier to use. When the Sections button is highlighted in the left column, the top of
the left column holds a list box containing categories of software. Initially All is
selected in this list box, causing the window to display all software packages in the
list box at the top of the right column.

You can shorten the list of packages in the list box by selecting a category in the cate-
gory list box or by searching for a package. To search for a package, display the Find
window by clicking Search on the toolbar. Enter the name or part of the name of the
package you are looking for. For example, to display all packages related to exim4,
enter exim4 in the text box labeled Search and select Description and Name from the

Figure 4-23 The Synaptic Package Manager window

Figure 4-24 The Find window

Category list box

Handle

Sections button

Updating, Installing, and Removing Software Packages 123

drop-down list labeled Look in (Figure 4-24). Click Search. The Synaptic Package
Manager window displays the list of packages meeting the search criteria specified in
the list box at the top of the right column. When you click a package name in this list,
Synaptic displays a description of the package in the frame below the list.

The following example explains how to use Synaptic to locate, download, and
install a chess program. With the Synaptic Package Manager window open, search
for chess. Synaptic displays a list of chess-related packages in the righthand list
box. Click several packages, one at a time, reading the descriptions in the frame at
the lower right of the window. Assume you decide to install Dream Chess (the
dreamchess package, www.dreamchess.org). When you click the check box to the
left of dreamchess, Synaptic displays a list of options. Because this package is not
installed, all selections except Mark for Installation are grayed out (Figure 4-25).
Click this selection. Because the dreamchess package is dependent on other pack-
ages that are not installed, Synaptic displays a window asking if you want to mark
additional required changes (Figure 4-26 on the next page). This window lists
additional packages Synaptic needs to install so that Dream Chess will run. Click
Mark to mark the additional packages. All packages marked for installation are
highlighted in green.

To apply the changes you have marked, click Apply on the toolbar. Synaptic dis-
plays a Summary window. If you were installing and/or removing several packages,
this summary would be longer. Click Apply. Synaptic keeps you informed of its
progress. When it is done, it displays the Changes Applied window. Click Close and
then close the Synaptic Package Manager window. Now Dream Chess appears on
the Main menu: Applications Games menu.

Figure 4-25 The Synaptic Package Manager window displaying chess programs

www.dreamchess.org

124 Chapter 4 Introduction to Ubuntu Linux

Where to Find Documentation

Distributions of Linux, including Ubuntu, typically do not come with hardcopy reference
manuals. However, its online documentation has always been one of Linux’s strengths.
The man (or manual) and info pages have been available via the man and info utilities
since early releases of the operating system. Ubuntu provides a graphical help center. Not
surprisingly, with the growth of Linux and the Internet, the sources of documentation
have expanded as well. This section discusses some of the places you can look for infor-
mation on Linux in general and Ubuntu Linux in particular. See also Appendix B.

Ubuntu Help Center

To display the Ubuntu Help Center window (Figure 4-27), click the blue object with
a question mark in it on the Top panel or select Main menu: System Help and Sup-
port. Click topics in this window until you find the information you are looking for.
You can also search for a topic using the text box labeled Search.

man: Displays the System Manual

In addition to the Graphical Ubuntu Help Center, the textual man utility displays
(man) pages from the system documentation. This documentation is helpful when
you know which utility you want to use but have forgotten exactly how to use it.
You can also refer to the man pages to get more information about specific topics or
to determine which features are available with Linux. Because the descriptions in
the system documentation are often terse, they are most helpful if you already
understand the basic functions of a utility.

Because man is a character-based utility, you need to open a terminal emulator win-
dow (page 114) to run it. You can also log in on a virtual terminal (page 136) and
run man from there.

Figure 4-26 Mark additional required changes screen

Where to Find Documentation 125

To find out more about a utility, give the command man, followed by the name of
the utility. Figure 4-28 shows man displaying information about itself; the user
entered a man man command.

less (pager) The man utility automatically sends its output through a pager—usually less
(page 148), which displays one screen at a time. When you access a manual page in
this manner, less displays a prompt [e.g., Manual page man(1) line 1] at the bottom
of the screen after it displays each screen of text and waits for you to request

Figure 4-27 The Ubuntu Help Center window

Figure 4-28 The man utility displaying information about itself

126 Chapter 4 Introduction to Ubuntu Linux

another screen of text by pressing the SPACE bar. Pressing h (help) displays a list of
less commands. Pressing q (quit) stops less and causes the shell to display a prompt.
You can search for topics covered by man pages using the apropos utility (page 165).

Based on the FHS (Filesystem Hierarchy Standard, page 194), the Linux system
manual and the man pages are divided into ten sections, where each section
describes related tools:

1. User Commands
2. System Calls
3. Subroutines
4. Devices
5. File Formats
6. Games
7. Miscellaneous
8. System Administration
9. Kernel

10. New

This layout closely mimics the way the set of UNIX manuals has always been
divided. Unless you specify a manual section, man displays the earliest occurrence in
the manual of the word you specify on the command line. Most users find the infor-
mation they need in sections 1, 6, and 7; programmers and system administrators
frequently need to consult the other sections.

In some cases the manual contains entries for different tools with the same name.
For example, the following command displays the man page for the passwd utility
from section 1 of the system manual:

$ man passwd

To see the man page for the passwd file from section 5, enter

$ man 5 passwd

The preceding command instructs man to look only in section 5 for the man page. In
documentation you may see this man page referred to as passwd(5). Use the –a
option (see the adjacent tip) to view all man pages for a given subject (press qRETURN

to display the next man page). For example, give the command man –a passwd to
view all man pages for passwd.

info: Displays Information About Utilities

The textual info utility is a menu-based hypertext system developed by the GNU
project (page 2) and distributed with Ubuntu Linux. The info utility includes a

Options

tip An option modifies the way a utility or command works. Options are usually specified as one or
more letters that are preceded by one or two hyphens. An option typically appears following the
name of the utility you are calling and a SPACE. Other arguments (page 1023) to the command fol-
low the option and a SPACE. For more information refer to “Options” on page 221.

Where to Find Documentation 127

tutorial on itself (go to www.gnu.org/software/texinfo/manual/info) and documen-
tation on many Linux shells, utilities, and programs developed by the GNU
project. Figure 4-29 shows the screen that info displays when you give the com-
mand info coreutils (the coreutils software package holds the Linux core utilities).

Because the information on this screen is drawn from an editable file, your display
may differ from the screens shown in this section. When you see the initial info
screen, you can press any of the following keys or key combinations:

• h to go through an interactive tutorial on info

• ? to list info commands

• SPACE to scroll through the menu of items for which information is available

• m followed by the name of the menu you want to display or a SPACE to dis-
play a list of menus

• q or CONTROL-C to quit

The notation info uses to describe keyboard keys may not be familiar to you. The
notation C-h is the same as CONTROL-H. Similarly M-x means hold down the META or ALT

key and press x. (On some systems you need to press ESCAPE and then x to duplicate
the function of META-x.)

Figure 4-29 The screen info coreutils displays

man and info display different information

tip The info utility displays more complete and up-to-date information on GNU utilities than does
man. When a man page displays abbreviated information on a utility that is covered by info, the
man page refers to info. The man utility frequently displays the only information available on
non-GNU utilities. When info displays information on non-GNU utilities, it is frequently a copy of
the man page.

www.gnu.org/software/texinfo/manual/info

128 Chapter 4 Introduction to Ubuntu Linux

After giving the command info, press the SPACE bar a few times to scroll through the
display. Figure 4-30 shows the entry for sleep. The asterisk at the left end of the line
indicates that this entry is a menu item. Following the asterisk is the name of the
menu item and a description of the item.

Each menu item is a link to the info page that describes the item. To jump to that
page, use the ARROW keys to move the cursor to the line containing the menu item and
press RETURN. Alternatively, you can type the name of the menu item in a menu com-
mand to view the information. To display information on sleep, for example, you
can give the command m sleep, followed by RETURN. When you type m (for menu),
the cursor moves to the bottom line of the window and displays Menu item:. Typing
sleep displays sleep on that line, and pressing RETURN displays information about the
menu item you have chosen.

Figure 4-31 shows the top node of information on sleep. A node groups a set of
information you can scroll through with the SPACE bar. To display the next node,
press n. Press p to display the previous node.

As you read through this book and learn about new utilities, you can use man or info to
find out more about those utilities. If you can print PostScript documents, you can print
a manual page with the man utility using the –t option (for example, man –t cat | lpr
prints information about the cat utility). You can also use a Web browser to display the
documentation at www.tldp.org, help.ubuntu.com, help.ubuntu.com/community, or
answers.launchpad.net/ubuntu and print the desired information from the browser.

Figure 4-30 The screen info displays after you type /sleepRETURN

You may find pinfo easier to use than info

tip The pinfo utility is similar to info but is more intuitive if you are not familiar with the emacs editor.
This utility runs in a textual environment, as does info. When it is available, pinfo uses color to make
its interface easier to use. Use Synaptic to install the pinfo package if you want to experiment with it.
Run pinfo from a terminal emulator or Run Application window (ALT-F2) and select Run in terminal).

www.tldp.org

Where to Find Documentation 129

The ––help Option

Another tool you can use in a textual environment is the ––help option. Most GNU
utilities provide a ––help option that displays information about the utility. Non-
GNU utilities may use a –h or –help option to display help information.

$ cat --help
Usage: cat [OPTION] [FILE]...
Concatenate FILE(s), or standard input, to standard output.

 -A, --show-all equivalent to -vET
 -b, --number-nonblank number nonblank output lines
 -e equivalent to -vE
 -E, --show-ends display $ at end of each line
...

If the information that ––help displays runs off the screen, send the output through
the less pager (page 125) using a pipe (page 156):

$ ls --help | less

HOWTOs: Finding Out How Things Work

A HOWTO document explains in detail how to do something related to
Linux—from setting up a specialized piece of hardware to performing a system
administration task to setting up specific networking software. Mini-HOWTOs
offer shorter explanations. As with Linux software, one person or a few people gen-
erally are responsible for writing and maintaining a HOWTO document, but many
people may contribute to it.

The Linux Documentation Project (LDP, page 131) site houses most HOWTO and
mini-HOWTO documents. Use a Web browser to visit www.tldp.org, click HOWTOs,

Figure 4-31 The info page on the sleep utility

www.tldp.org

130 Chapter 4 Introduction to Ubuntu Linux

and pick the index you want to use to find a HOWTO or mini-HOWTO. You can also
use the LDP search feature on its home page to find HOWTOs and other documents.

Getting Help with the System

GNOME provides tooltips (page 106), a context-sensitive Help system, and Ubuntu
provides the help center discussed on page 124.

Finding Help Locally

/usr/share/doc The /usr/src/linux/Documentation (present only if you installed the kernel source
code as explained in Chapter 16) and /usr/share/doc directories often contain more
detailed and different information about a utility than man or info provides.
Frequently this information is meant for people who will be compiling and modify-
ing the utility, not just using it. These directories hold thousands of files, each con-
taining information on a separate topic.

Using the Internet to Get Help

The Internet provides many helpful sites related to Linux. Aside from sites that carry
various forms of documentation, you can enter an error message from a program
you are having a problem with in a search engine such as Google (www.google.com,
or its Linux-specific version at www.google.com/linux). Enclose the error message
within double quotation marks to improve the quality of the results. The search will
likely yield a post concerning your problem and suggestions about how to solve it.
See Figure 4-32.

Ubuntu Web sites The Ubuntu Web site is a rich source of information. The following list identifies
some locations that may be of interest:

Figure 4-32 Google reporting on an error message

www.google.com
www.google.com/linux

Where to Find Documentation 131

• Ubuntu documentation is available at help.ubuntu.com.

• Ubuntu community documentation is available at help.ubuntu.com/community.

• You can find answers to many questions at answers.launchpad.net/ubuntu.

• The Ubuntu forums (ubuntuforums.org) is a good place to find answers to
questions.

• You can talk with other Ubuntu users using IRC (Internet relay chat). See
help.ubuntu.com/community/InternetRelayChat for a list of Ubuntu IRC
channels available via the Freenode IRC service.

• You can subscribe to Ubuntu mailing lists. See lists.ubuntu.com.

• You can search for information about packages and find out which pack-
age contains a specific file at packages.ubuntu.com.

GNU GNU manuals are available at www.gnu.org/manual. In addition, you can visit the
GNU home page (www.gnu.org) for more documentation and other GNU resources.
Many of the GNU pages and resources are available in a variety of languages.

The Linux
Documentation

Project

The Linux Documentation Project (www.tldp.org), which has been around for almost
as long as Linux, houses a complete collection of guides, HOWTOs, FAQs, man pages,
and Linux magazines. The home page is available in English, Portuguese, Spanish,
Italian, Korean, and French. It is easy to use and supports local text searches. It also
provides a complete set of links (Figure 4-33) you can use to find almost anything you
want related to Linux (click Links in the Search box or go to www.tldp.org/links). The
links page includes sections on general information, events, getting started, user
groups, mailing lists, and newsgroups, with each section containing many subsections.

Figure 4-33 The Linux Documentation Project home page

www.gnu.org/manual
www.gnu.org
www.tldp.org
www.tldp.org/links

132 Chapter 4 Introduction to Ubuntu Linux

More About Logging In

Refer to “Logging In on the System” on page 89 for information about logging in.
This section covers options you can choose from the Login screen and solutions to
common login problems. It also describes how to log in from a terminal and from a
remote system.

The Login Screen

At the lower-left corner of the Login screen is a small object labeled Options
(Figure 4-1, page 90). Click this object or press F10 to display the Actions menu,
which has the following selections:

• Select Language Displays a window from which you can select the lan-
guage for the session you are about to start. This change affects window
titles, prompts, error messages, and other textual items displayed by
GNOME and many applications. Just after you log in, the system asks
whether you want to make the language you specified the default language
or just use it for this session.

• Select Session Displays the Sessions dialog box, which presents several
choices concerning the session you are about to start. Choose one of the
following, click Change Session, and continue logging in:

◆ Last Session Brings up the same desktop environment you used the
last time you logged in. This choice is the default.

◆ Run Xclient script Brings up the default desktop environment.

◆ GNOME Brings up the GNOME desktop environment.

◆ KDE Brings up the KDE desktop environment (if you have installed
Kubuntu or KDE, see page 60).

◆ Failsafe GNOME Brings up a default GNOME session without run-
ning any startup scripts. Use this choice to fix problems that prevent
you from logging in normally.

◆ Failsafe Terminal Brings up an xterm terminal emulator window
without a desktop manager and without running any startup scripts.
This setup allows you to log in on a minimal desktop when your stan-
dard login does not work well enough to allow you to log in to fix a
problem. Give the command exit from the xterm window to log out
and display the Login screen.

Always use a password

security Unless you are the only user of a system; the system is not connected to any other systems, the
Internet, or a modem; and you are the only one with physical access to the system, it is poor prac-
tice to maintain a user account without a password.

More About Logging In 133

Just after you log in, the system asks whether to use your selection from
the Sessions dialog box just for this session or permanently. The failsafe
logins do not ask this question.

• Restart Shuts down and reboots the system.

• Shut Down Shuts down the system and turns off the power.

• Suspend Puts the system in power-saving mode. Exactly what this selec-
tion does depends on the hardware.

What to Do If You Cannot Log In

If you enter either your username or password incorrectly, the system displays an
error message after you enter both your username and your password. This message
indicates you have entered either the username or the password incorrectly or they
are not valid. It does not differentiate between an unacceptable username and an
unacceptable password—a strategy meant to discourage unauthorized people from
guessing names and passwords to gain access to the system. Following are some
common reasons why logins fail:

• The username and password are case sensitive. Make sure the CAPS LOCK key
is off and enter your username and password exactly as specified or as you
set them up.

• You are not logging in on the right machine. The login/password combina-
tion may not be valid if you are trying to log in on the wrong machine. On
a larger, networked system, you may have to specify the machine you want
to connect to before you can log in.

• Your username is not valid. The login/password combination may not be
valid if you have not been set up as a user. If you are the system adminis-
trator, refer to “Configuring User and Group Accounts” on page 658.
Otherwise, check with the system administrator.

• A filesystem is full. When a filesystem critical to the login process is full, it
may appear as though you have logged in successfully, but after a moment
the login screen reappears. You must log in using one of the failsafe logins
and delete some files.

Refer to “Changing Your Password” on page 135 if you want to change your password.

Logging In Remotely: Terminal Emulators, ssh,

and Dial-Up Connections

When you are not using a console, terminal, or other device connected directly to
the Linux system you are logging in on, you are probably connected to the Linux
system using terminal emulation software on another system. Running on the local
system, this software connects to the remote Linux system via a network (Ethernet,
asynchronous phone line, PPP, or other type) and allows you to log in.

134 Chapter 4 Introduction to Ubuntu Linux

When you log in via a dial-up line, the connection is straightforward: You instruct
the local emulator program to contact the remote Linux system, it dials the phone,
and the remote system displays a login prompt. When you log in via a directly con-
nected network, you use ssh (secure, page 714) or telnet (not secure, page 373) to
connect to the remote system. The ssh program has been implemented on many
operating systems, not just Linux. Many user interfaces to ssh include a terminal
emulator. From an Apple, PC, or UNIX machine, open the program that runs ssh
and give it the name or IP address (refer to “Host Address” on page 363) of the
system you want to log in on. For examples and more details on working with a
terminal emulator, refer to “Running Commands from a Terminal Emulator/Shell”
on page 114. The next section provides more information about logging in from a
terminal emulator.

Logging In from a Terminal (Emulator)

Before you log in on a terminal, terminal emulator, or other textual device, the sys-
tem displays a message called issue (stored in the /etc/issue file) that identifies the
version of Ubuntu Linux running on the system. A sample issue message follows:

Ubuntu 7.10 tiny tty1

This message is followed by a prompt to log in. Enter your username and password
in response to the system prompts. If you are using a terminal (page 1064) and the
screen does not display the login: prompt, check whether the terminal is plugged in
and turned on, and then press the RETURN key a few times. If login: still does not
appear, try pressing CONTROL-Q. If you are using a workstation (page 1069), run ssh
(page 714), telnet (page 373), or whatever communications/emulation software you
use to log in on the system. Log in.

Next the shell prompt (or just prompt) appears, indicating you have successfully
logged in; it indicates the system is ready for you to give a command. The first shell
prompt line may be preceded by a short message called the message of the day, or
motd (page 559), which is stored in the /etc/motd file. Ubuntu Linux establishes a
prompt of [user@host: directory]$, where user is your username, host is the name of

Make sure TERM is set correctly

tip No matter how you connect, make sure you have the TERM variable set to the type of terminal your
emulator is emulating. For more information refer to “Specifying a Terminal” on page 988.

Did you log in last?
security As you are logging in to a textual environment, after you enter your username and password, the

system displays information about the last login on this account, showing when it took place and
where it originated. You can use this information to determine whether anyone else has accessed
the account since you last used it. If someone has, perhaps an unauthorized user has learned your
password and logged on as you. In the interest of maintaining security, advise the system admin-
istrator of any circumstances that make you suspicious and change your password.

More About Logging In 135

the local system, and directory is the name of the directory you are working in. A
tilde (~) represents your home directory. For information on how to change the
prompt, refer to page 303.

Changing Your Password

If someone else assigned you a password, it is a good idea to give yourself a new one.
For security reasons none of the passwords you enter is displayed by any utility.

To change your password, select Main menu: System Preferences About Me and
click Change Password. From a command line, give the command passwd.

The first item the system asks for is your current (old) password. This password is
verified to ensure that an unauthorized user is not trying to alter your password.
Then the system requests a new password.

A password should contain a combination of numbers, uppercase and lowercase let-
ters, and punctuation characters and meet the following criteria to be relatively secure:

• Must be at least four characters long (or longer if the system administrator
sets it up that way). Seven or eight characters is a good compromise
between length and security.

• Should not be a word in a dictionary of any language, no matter how
seemingly obscure.

• Should not be the name of a person, place, pet, or other thing that might
be discovered easily.

• Should contain at least two letters and one digit or punctuation character.

• Should not be your username, the reverse of your username, or your user-
name shifted by one or more characters.

Protect your password
security Do not allow someone to find out your password: Do not put your password in a file that is not

encrypted, allow someone to watch you type your password, or give your password to someone
you do not know (a system administrator never needs to know your password). You can always
write your password down and keep it in a safe, private place.

Choose a password that is difficult to guess

security Do not use phone numbers, names of pets or kids, birthdays, words from a dictionary (not even
a foreign language), and so forth. Do not use permutations of these items or a l33t-speak variation
of a word as modern dictionary crackers may also try these permutations.

Differentiate between important and less important passwords
security It is a good idea to differentiate between important and less important passwords. For example,

Web site passwords for blogs or download access are not very important; it is acceptable to use
the same password for these types of sites. However, your login, mail server, and bank account
Web site passwords are critical: Never use these passwords for an unimportant Web site.

136 Chapter 4 Introduction to Ubuntu Linux

Only the first item is mandatory. Avoid using control characters (such as CONTROL-H)
because they may have a special meaning to the system, making it impossible for
you to log in. If you are changing your password, the new password should differ
from the old one by at least three characters. Changing the case of a character does
not make it count as a different character. Refer to “Keeping the System Secure” on
page 682 for more information about choosing a password.

After you enter your new password, the system asks you to retype it to make sure
you did not make a mistake when you entered it the first time. If the new password is
the same both times you enter it, your password is changed. If the passwords differ,
you made an error in one of them. In this situation the system displays an error mes-
sage or does not allow you to click the OK button. If the password you enter is not
long enough, the system displays a message similar to The password is too short.

When you successfully change your password, you change the way you log in. If
you forget your password, a user running with root privileges can change it and tell
you the new password.

Using Virtual Consoles

When running Linux on a personal computer, you frequently work with the display
and keyboard attached to the computer. Using this physical console, you can access
as many as 63 virtual consoles (also called virtual terminals). Some are set up to
allow logins; others act as graphical displays. To switch between virtual consoles,
hold the CONTROL and ALT keys down and press the function key that corresponds to
the console you want to view. For example, CONTROL-ALT-F5 displays the fifth virtual
console. This book refers to the console you see when you press CONTROL-ALT-F1 as the
system console, or just console.

By default, six virtual consoles are active and have textual login sessions running.
When you want to use both textual and graphical interfaces, you can set up a tex-
tual session on one virtual console and a graphical session on another. No matter
which virtual console you start a graphical session from, the graphical session runs
on the first unused virtual console (number seven by default).

Working from the Command Line

Before the introduction of the graphical user interface (GUI), UNIX and then Linux
provided only a command line (textual) interface (CLI). Today, a CLI is available
when you log in from a terminal, a terminal emulator, a textual virtual console, or
when you use ssh (page 711) or telnet (insecure, page 373) to log in on a system.

This section introduces the Linux CLI. Chapter 5 describes some of the more
important utilities you can use from the command line. Most of the examples in
Parts IV and V of this book use the CLI, adding examples of graphical tools where
available.

Working from the Command Line 137

Advantages of
the CLI

Although the concept may seem antiquated, the CLI has a place in modern comput-
ing. In some cases an administrator may use a command line tool either because a
graphical equivalent does not exist or because the graphical tool is not as powerful
or flexible as the textual one. Frequently, on a server system, a graphical interface
may not even be installed. The first reason for this omission is that a GUI consumes
a lot of system resources; on a server, those resources are better dedicated to the main
task of the server. Additionally, security mandates that a server system run as few
tasks as possible because each additional task can make the system more vulnerable
to attack.

Pseudographical
interface

Before the introduction of GUIs, resourceful programmers created textual interfaces
that included graphical elements such as boxes, borders outlining rudimentary win-
dows, highlights, and, more recently, color. These textual interfaces, called pseudo-
graphical interfaces, bridge the gap between textual and graphical interfaces.

One example of a modern utility that uses a pseudographical interface is the dpkg-
reconfigure utility, which reconfigures an installed software package.

Correcting Mistakes

This section explains how to correct typographical and other errors you may make
while you are logged in on a textual display. Because the shell and most other utili-
ties do not interpret the command line or other text until after you press RETURN, you
can readily correct typing mistakes before you press RETURN.

You can correct typing mistakes in several ways: erase one character at a time, back
up a word at a time, or back up to the beginning of the command line in one step.
After you press RETURN, it is too late to correct a mistake: You must either wait for the
command to run to completion or abort execution of the program (page 138).

Erasing a Character

While entering characters from the keyboard, you can back up and erase a mistake
by pressing the erase key once for each character you want to delete. The erase key
backs over as many characters as you wish. It does not, in general, back up past the
beginning of the line.

The default erase key is BACKSPACE. If this key does not work, try DELETE or CONTROL-H. If
these keys do not work, give the following stty2 command to set the erase and line
kill (see “Deleting a Line”) keys to their default values:

$ stty ek

Deleting a Word

You can delete a word you entered by pressing CONTROL-W. A word is any sequence of
characters that does not contain a SPACE or TAB. When you press CONTROL-W, the cursor

2. The command stty is an abbreviation for set teletypewriter, the first terminal that UNIX was run on.
Today stty is commonly thought of as set terminal.

138 Chapter 4 Introduction to Ubuntu Linux

moves left to the beginning of the current word (as you are entering a word) or the
previous word (when you have just entered a SPACE or TAB), removing the word.

Deleting a Line

Any time before you press RETURN, you can delete the line you are entering by press-
ing the (line) kill key. When you press this key, the cursor moves to the left, erasing
characters as it goes, back to the beginning of the line. The default line kill key is
CONTROL-U. If this key does not work, try CONTROL-X. If these keys do not work, give the
stty command described under “Erasing a Character.”

Aborting Execution

Sometimes you may want to terminate a running program. For example, you may
want to stop a program that is performing a lengthy task such as displaying the con-
tents of a file that is several hundred pages long or copying a file that is not the one
you meant to copy.

To terminate a program from a textual display, press the interrupt key (CONTROL-C or
sometimes DELETE or DEL). When you press this key, the Linux operating system
sends a terminal interrupt signal to the program you are running and to the shell.
Exactly what effect this signal has depends on the program. Some programs stop
execution immediately, some ignore the signal, and some take other actions.
When it receives a terminal interrupt signal, the shell displays a prompt and waits
for another command.

If these methods do not terminate the program, try stopping the program with the
suspend key (typically CONTROL-Z), giving a jobs command to verify the number of the
job running the program, and using kill to abort the job. The job number is the num-
ber within the brackets at the left end of the line that jobs displays ([1]). The kill
command (page 522) uses –TERM to send a termination signal3 to the job specified
by the job number, which is preceded by a percent sign (%1):

$ bigjob
^Z
[1]+ Stopped bigjob
$ jobs
[1]+ Stopped bigjob

CONTROL-Z suspends a program

tip Although it is not a way of correcting a mistake, you may press the suspend key (typically CONTROL-Z)
by mistake and wonder what happened (you will see a message containing the word Stopped). You
have just stopped your job, using job control (page 290). Give the command fg to continue your job
in the foreground, and you should return to where you were before you pressed the suspend key. For
more information refer to “bg: Sends a Job to the Background” on page 291.

3. When the terminal interrupt signal does not work, use the kill (–KILL) signal. A running program can-
not ignore a kill signal; it is sure to abort the program (page 522).

Controlling Windows: Advanced Operations 139

$ kill -TERM %1
$ RETURN
[1]+ Killed bigjob

The kill command returns a prompt; press RETURN again to see the confirmation mes-
sage. For more information refer to “Running a Program in the Background” on
page 237.

Repeating/Editing Command Lines

To repeat a previous command, press the UP ARROW key. Each time you press this key,
the shell displays an earlier command line. To reexecute the displayed command
line, press RETURN. Press the DOWN ARROW key to browse through the command lines in
the other direction.

The RIGHT and LEFT ARROW keys move the cursor back and forth along the displayed
command line. At any point along the command line, you can add characters by
typing them. Use the erase key to remove characters from the command line. For
information about more complex command line editing, see page 314.

optional

Controlling Windows: Advanced Operations

Refer to “Windows” on page 111 for an introduction to working with windows
under Ubuntu Linux. This section explores changing the input focus on the work-
space, changing the resolution of the display, and understanding more about the
window manager.

Changing the Input Focus

When you type on the keyboard, the window manager (page 141) directs the char-
acters you type somewhere, usually to a window. The active window (the window
accepting input from the keyboard) is said to have the input focus. Depending on
how you set up your account, you can use the mouse in one of three ways to change
the input focus (you can also use the keyboard; see page 112):

• Click-to-focus (explicit focus) Gives the input focus to a window when
you click the window. That window continues to accept input from the
keyboard regardless of the location of the mouse pointer. The window
loses the focus when you click another window. Although clicking the
middle or the right mouse button also activates a window, use only the left
mouse button for this purpose; other buttons may have unexpected effects
when you use them to activate a window.

• Focus-follows-mouse (sloppy focus, enter-only, or focus-under-mouse)
Gives the input focus to a window when you move the mouse pointer onto
the window. That window maintains the input focus until you move the

140 Chapter 4 Introduction to Ubuntu Linux

mouse pointer onto another window, at which point the new window gets
the focus. Specifically, when you move the mouse pointer off a window
and onto the root window, the window that had the input focus does not
lose it.

• Focus-strictly-under-mouse (enter-exit) Gives the input focus to a win-
dow when you move the mouse pointer onto the window. That window
maintains the input focus until you move the mouse pointer off if it, at
which point no window has the focus. Specifically, when you move the
mouse pointer off a window and onto the root window, the window that
had the input focus loses it, and input from the keyboard is lost.

GNOME The Window Preferences window changes the focus policy. To display this window,
select Main menu: System Preferences Windows or give the command gnome-
window-properties from a terminal emulator or Run Application window (ALT-F2).
Put a tick in the check box next to Select windows when the mouse moves over
them to select the focus-follows-mouse policy. When there is no tick in this check
box, click-to-focus is in effect. Click Close. Focus-strictly-under-mouse is not avail-
able from this window.

To determine which window has the input focus, compare the window borders. The
border color of the active window is different from the others or, on a monochrome
display, is darker. Another indication that a window is active is that the keyboard
cursor is a solid rectangle; in windows that are not active, the cursor is an outline of
a rectangle.

Use the following tests to determine which keyboard focus method you are using. If
you position the mouse pointer in a window and that window does not get the
input focus, your window manager is configured to use the click-to-focus method. If
the border of the window changes, you are using the focus-follows-mouse or focus-
strictly-under-mouse method. To determine which of the latter methods you are
using, start typing something, with the mouse pointer positioned on the active win-
dow. Then move the mouse pointer over the root window and continue typing. If
characters continue to appear within the window, you are using focus-follows-
mouse. Otherwise, you are using focus-strictly-under-mouse.

Changing the Resolution of the Display

The X server (the basis for the Linux graphical interface; see page 252) starts at a
specific display resolution and color depth (page 1029). Although you can change
the color depth only when you start an X server, you can change the resolution
while the X server is running. The number of resolutions available depends both on
the display hardware and on the configuration of the X server (see page 75 for
details). Many users prefer to do most of their work at a higher resolution but
might want to switch to a lower resolution for some tasks, such as playing games.
You can switch between display resolutions by pressing either CONTROL-ALT-KEYPAD-+ or
CONTROL-ALT-KEYPAD- –, using the + and – on the keyboard’s numeric keypad. You can

Controlling Windows: Advanced Operations 141

also use the Screen and Graphics Preferences window to change the resolution of
the display (page 75).

Changing to a lower resolution has the effect of zooming in on the display; as a
result, you may no longer be able to view the entire workspace at once. You can
scroll the display by pushing the mouse pointer against the edge of the screen.

The Window Manager

A window manager—the program that controls the look and feel of the basic
GUI—runs under a desktop manager (such as GNOME or KDE) and controls all
aspects of the windows in the X Window System environment. The window man-
ager defines the appearance of the windows on the desktop and controls how you
operate and position them: open, close, move, resize, minimize, and so on. It may
also handle some session management functions, such as how a session is paused,
resumed, restarted, or ended (page 104).

Window decorations A window manager controls window decorations—that is, the titlebar and border
of a window. Aside from the aesthetic aspects of changing window decorations, you
can alter their functionality by modifying the number and placement of buttons on
the titlebar.

The window manager takes care of window manipulation so client programs do not
need to. This setup is very different from that of many other operating systems, and
the way that GNOME deals with window managers is different from how other
desktop environments work. Window managers do more than simply manage win-
dows—they provide a useful, good-looking, graphical shell to work from. Their
open design allows users to define their own policy down to the fine details.

Theoretically GNOME is not dependent on any particular window manager and
can work with any of several window managers. Because of their flexibility, you
would not see major parts of the desktop environment change if you were to switch
from one window manager to another. A desktop manager collaborates with the
window manager to make your work environment intuitive and easy to use.
Although the desktop manager does not control window placement, it does get
information from the window manager about window placement.

Ubuntu Linux Window Managers

Metacity and Compiz—the default window managers for Ubuntu GNOME—provide
window management and start many components through GNOME panel objects.
They also communicate with and facilitate access to other components in the environ-
ment. The Visual Effects tab of the Appearance Preferences window (page 103)
allows you to switch between Metacity and Compiz.

Using the standard X libraries, programmers have created other window managers,
including blackbox, fluxbox, and WindowMaker. You can use Synaptic (page 121)
to install any of these packages.

142 Chapter 4 Introduction to Ubuntu Linux

Using a Window Manager Without a Desktop Manager

It is interesting to see exactly where the line that separates the window manager and
the desktop manager falls. Toward this end, you can run the Failsafe Terminal from
the Login screen: Specify Options: Select Session Failsafe Terminal and log in. You
should see a clean screen with an undecorated window running xterm. You can give
commands from this window to open other windows. Try xeyes, xterm, and xclock.
Give the command exit to return to the Login screen.

Chapter Summary

As with many operating systems, your access to a Linux system is authorized when
you log in. You enter your username and password on the Login screen. You can
change your password at any time while you are logged in. Choose a password that
is difficult to guess and that conforms to the criteria imposed by the utility that
changes your password.

The system administrator is responsible for maintaining the system. On a single-
user system, you are the system administrator. On a small, multiuser system, you
or another user may act as the system administrator, or this job may be shared. On
a large, multiuser system or a network of systems, there is frequently a full-time
system administrator. When extra privileges are required to perform certain system
tasks, the system administrator uses sudo to obtain extra privileges, called root
privileges. An administrator working with root privileges is sometimes referred to
as Superuser.

Do not work with root privileges as a matter of course. When you have to do some-
thing that requires root privileges, work with root privileges for only as long as
absolutely necessary; revert to working as yourself as soon as possible.

Understanding the desktop and its components is essential to getting the most out
of the Ubuntu GUI. The panels offer a convenient way to launch applications, either
by clicking objects or by using the Main menu. The Main menu is a multilevel menu
you can use to customize and maintain the system and to start many common appli-
cations. A window is the graphical manifestation of an application. You can control
its size, location, and appearance by clicking buttons on the window’s titlebar. A
terminal emulator allows you to use the Linux command line interface from a
graphical environment. You can use a terminal emulator to launch both textual and
graphical programs.

Panels and menus enable you to select an object (which can be just about anything
on the system). On a panel, you generally click an object; on a menu, you typically
click text in a list.

The GNOME environment provides the casual user, the office worker, the power
user, and the programmer/system designer a space to work in and a set of tools to

Exercises 143

work with. GNOME also provides off-the-shelf productivity and many ways to
customize its look, feel, and response.

Nautilus is GNOME’s simple, yet powerful file manager. It can create, open, dis-
play, move, and copy files and directories as well as execute programs and scripts.
One of its most basic and important functions is to create and manage the desktop.

The man utility provides online documentation for system utilities. This utility is
helpful both to new Linux users and to experienced users who must often delve into
system documentation for information on the finer points of a utility’s behavior.
The info utility also helps the beginner and the expert alike. It provides a tutorial on
its use and documentation on many Linux utilities.

The textual or command line interface (CLI) continues to have a place in modern
computing. For example, sometimes a graphical tool does not exist or may not be as
powerful or flexible as its textual counterpart. Security concerns on a server system
mandate that the system run as few tasks as possible. Because each additional task
can make a server more vulnerable to attack, frequently these systems do not have
GUIs installed.

Exercises

1. The system displays the following message when you attempt to log in
with an incorrect username or an incorrect password:

Incorrect username or password. Letters must be typed in the
correct case.

This message does not indicate whether your username, your password, or
both are invalid. Why does it not reveal this information?

2. Give three examples of poor password choices. What is wrong with each?

3. Is fido an acceptable password? Give several reasons why or why not.

4. What is a context menu? How does a context menu differ from other
menus?

5. What appears when you right-click the root window? How can you use
this object?

6. How would you swap the effects of the right and left buttons on a mouse?
What is the drag and drop threshold? How would you change it?

7. What are the primary functions of the Main menu?

8. What is the input focus? When no window has the input focus, what hap-
pens to the letters you type on the keyboard? Which type of input focus
would you prefer to work with? Why?

144 Chapter 4 Introduction to Ubuntu Linux

9. What are the functions of a Window Operations menu? How do you dis-
play this menu?

10. What is a panel? Name a few objects on the panels and explain what you
can use them for. What do the Workspace Switcher applet and the Win-
dow List applets do?

11. What are tooltips? How are they useful?

Advanced Exercises

12. What change does the mouse pointer undergo when you move it to the
edge of a window? What happens when you right-click and drag the
mouse pointer when it looks like this? Repeat this experiment with the
mouse pointer at the corner of a window.

13. Try the experiment described in “Using a Window Manager Without a
Desktop Manager” on page 142. What is missing from the screen? Based
only on what you see, describe what a window manager does. How does a
desktop manager make it easier to work with a GUI?

14. When the characters you type do not appear on the screen, what might be
wrong? How can you fix this problem?

15. What happens when you run vim from the Run Command window with-
out specifying that it be run in a terminal? Where does the output go?

16. The example on page 126 shows that the man pages for passwd appear in
sections 1 and 5 of the system manual. Explain how you can use man to
determine which sections of the system manual contain a manual page
with a given name.

17. How many man pages are in the Devices subsection of the system manual?
(Hint: Devices is a subsection of Special Files.)

145145

5Chapter5When Linus Torvalds introduced Linux and for a long time
thereafter, Linux did not have a graphical user interface (GUI): It
ran on character-based terminals only. All the tools ran from a
command line. Today the Linux GUI is important but many
people—especially system administrators—run many command
line programs. Command line utilities are often faster, more
powerful, or more complete than their GUI counterparts. Some-
times there is no GUI counterpart to a textual utility; some peo-
ple just prefer the hands-on feeling of the command line.

When you work with a command line interface, you are work-
ing with a shell (Chapters 7, 9, and 11). Before you start
working with a shell, it is important that you understand
something about the characters that are special to the shell, so
this chapter starts with a discussion of special characters. The
chapter then describes five basic utilities: ls, cat, rm, less, and
hostname. It continues by describing several other file manipu-
lation utilities as well as utilities that find out who is logged
in; that communicate with other users; that print, compress,
and decompress files; and that pack and unpack archive files.

In This Chapter

Special Characters 146

Basic Utilities 147

less Is more: Display a Text File
One Screen at a Time 148

Working with Files. 149

lpr: Prints a File 151

| (Pipe): Communicates Between
Processes 156

Compressing and Archiving
Files . 159

Obtaining User and System
 Information 166

Tutorial: Creating and Editing a File
with vim 172

5

The Linux Utilities

146 Chapter 5 The Linux Utilities

Special Characters

Special characters, which have a special meaning to the shell, are discussed in “File-
name Generation/Pathname Expansion” on page 239. These characters are men-
tioned here so that you can avoid accidentally using them as regular characters until
you understand how the shell interprets them. For example, it is best to avoid using
any of the following characters in a filename (even though emacs and some other
programs do) because they make the file harder to reference on the command line:

& ; | * ? ' " ‘ [] () $ < > { } # / \ ! ~

Whitespace Although not considered special characters, RETURN, SPACE, and TAB also have special
meanings to the shell. RETURN usually ends a command line and initiates execution of
a command. The SPACE and TAB characters separate elements on the command line
and are collectively known as whitespace or blanks.

Quoting special
characters

If you need to use a character that has a special meaning to the shell as a regular
character, you can quote (or escape) it. When you quote a special character, you
keep the shell from giving it special meaning. The shell treats a quoted special char-
acter as a regular character. However, a slash (/) is always a separator in a path-
name, even when you quote it.

Backslash To quote a character, precede it with a backslash (\). When two or more special
characters appear together, you must precede each with a backslash (for example,
you would enter ** as **). You can quote a backslash just as you would quote
any other special character—by preceding it with a backslash (\\).

Single quotation
marks

Another way of quoting special characters is to enclose them between single quota-
tion marks: '**'. You can quote many special and regular characters between a
pair of single quotation marks: 'This is a special character: >'. The regular charac-
ters are interpreted as usual, and the shell also interprets the special characters as
regular characters.

The only way to quote the erase character (CONTROL-H), the line kill character
(CONTROL-U), and other control characters (try CONTROL-M) is by preceding each with a
CONTROL-V. Single quotation marks and backslashes do not work. Try the following:

$ echo 'xxxxxxCONTROL-U'
$ echo xxxxxxCONTROL-V CONTROL-U

optional Although you cannot see the CONTROL-U displayed by the second of the preceding pair
of commands, it is there. The following command sends the output of echo
(page 157) through a pipe (page 156) to od (see the od man page) to display CONTROL-U

as octal 25 (025):

Run these utilities from a command line

tip This chapter describes command line, or textual, utilities. You can experiment with these utilities
from a terminal, a terminal emulator within a GUI (page 114), or a virtual console (page 136).

Basic Utilities 147

$ echo xxxxxxCONTROL-V CONTROL-U | od -c
0000000 x x x x x x 025 \n
0000010

The \n is the NEWLINE character that echo sends at the end of its output.

Basic Utilities

One of the important advantages of Linux is that it comes with thousands of utili-
ties that perform myriad functions. You will use utilities whenever you work with
Linux, whether you use them directly by name from the command line or indirectly
from a menu or icon. The following sections discuss some of the most basic and
important utilities; these utilities are available from a character-based interface.
Some of the more important utilities are also available from a GUI; others are avail-
able only from a GUI.

Folder The term directory is used extensively in the next sections. A directory is a resource
that can hold files. On other operating systems, including Windows and Macintosh,
and frequently when speaking about a Linux GUI, a directory is referred to as a
folder. That is a good analogy: A traditional manila folder holds files just as a direc-
tory does.

ls: Lists the Names of Files

Using the editor of your choice, create a small file named practice. (A tutorial on the
vim editor appears on page 172.) After exiting from the editor, you can use the ls
(list) utility to display a list of the names of the files in your home directory. In the
first command in Figure 5-1 (next page), ls lists the name of the practice file. (You
may also see files the system or a program created automatically.) Subsequent com-
mands in Figure 5-1 display the contents of the file and remove the file. These com-
mands are described next.

cat: Displays a Text File

The cat utility displays the contents of a text file. The name of the command is
derived from catenate, which means to join together, one after the other. (Figure 7-8
on page 230 shows how to use cat to string together the contents of three files.)

A convenient way to display the contents of a file to the screen is by giving the com-
mand cat, followed by a SPACE and the filename. Figure 5-1 shows cat displaying the
contents of practice. This figure shows the difference between the ls and cat utilities:
The ls utility displays the name of a file, whereas cat displays the contents of a file.

In this chapter you work in your home directory
tip When you log in on the system, you are working in your home directory. In this chapter that is the

only directory you use: All the files you create in this chapter are in your home directory. Chapter 6
goes into more detail about directories.

148 Chapter 5 The Linux Utilities

rm: Deletes a File

The rm (remove) utility deletes a file. Figure 5-1 shows rm deleting the file named
practice. After rm deletes the file, ls and cat show that practice is no longer in the
directory. The ls utility does not list its filename, and cat says that no such file exists.
Use rm carefully.

less Is more: Display a Text File One Screen at a Time

Pagers When you want to view a file that is longer than one screen, you can use either the
less utility or the more utility. Each of these utilities pauses after displaying a screen
of text. Because these utilities show one page at a time, they are called pagers.
Although less and more are very similar, they have subtle differences. At the end of
the file, for example, less displays an EOF (end of file) message and waits for you to
press q before returning you to the shell. In contrast, more returns you directly to
the shell. In both utilities you can press h to display a Help screen that lists com-
mands you can use while paging through a file. Give the commands less practice
and more practice in place of the cat command in Figure 5-1 to see how these com-
mands work. Use the command less /etc/termcap instead if you want to experiment
with a longer file. Refer to the less man page for more information.

$ ls
practice
$ cat practice
This is a small file that I created
with a text editor.
$ rm practice
$ ls
$ cat practice
cat: practice: No such file or directory
$

Figure 5-1 Using ls, cat, and rm on the file named practice

A safer way of removing files

tip You can use the interactive form of rm to make sure that you delete only the file(s) you intend to
delete. When you follow rm with the –i option (see page 126 for a tip on options) and the name
of the file you want to delete, rm displays the name of the file and then waits for you to respond
with y (yes) before it deletes the file. It does not delete the file if you respond with a string that
does not begin with y.

$ rm -i toollist
rm: remove regular file 'toollist'? y

Optional: You can create an alias (page 328) for rm –i and put it in your startup file (page 188) so
that rm always runs in interactive mode.

Working with Files 149

hostname: Displays the System Name

The hostname utility displays the name of the system you are working on. Use this
utility if you are not sure that you are logged in on the right machine.

$ hostname
bravo.example.com

Working with Files

This section describes utilities that copy, move, print, search through, display, sort,
and compare files.

cp: Copies a File

The cp (copy) utility (Figure 5-2) makes a copy of a file. This utility can copy any
file, including text and executable program (binary) files. You can use cp to make a
backup copy of a file or a copy to experiment with.

The cp command line uses the following syntax to specify source and destination files:

cp source-file destination-file

The source-file is the name of the file that cp will copy. The destination-file is the
name that cp assigns to the resulting (new) copy of the file.

The cp command line in Figure 5-2 copies the file named memo to memo.copy. The
period is part of the filename—just another character. The initial ls command shows
that memo is the only file in the directory. After the cp command, a second ls shows
two files in the directory, memo and memo.copy.

Filename completion

tip After you enter one or more letters of a filename (following a command) on a command line, press
TAB and the Bourne Again Shell will complete as much of the filename as it can. When only one
filename starts with the characters you entered, the shell completes the filename and places a
SPACE after it. You can keep typing or you can press RETURN to execute the command at this point.
When the characters you entered do not uniquely identify a filename, the shell completes what it
can and waits for more input. When pressing TAB does not change the display, press TAB again to
display a list of possible completions. For more information refer to “Pathname Completion” on
page 324.

$ ls
memo
$ cp memo memo.copy
$ ls
memo memo.copy

Figure 5-2 cp copies a file

150 Chapter 5 The Linux Utilities

Sometimes it is useful to incorporate the date in the name of a copy of a file. The
following example includes the date January 30 (0130) in the copied file:

$ cp memo memo.0130

Although it has no significance to Linux, the date can help you find a version of a
file that you created on a certain date. Including the date can also help you avoid
overwriting existing files by providing a unique filename each day. For more infor-
mation refer to “Filenames” on page 185.

Use scp (page 711) or ftp (page 729) when you need to copy a file from one system
to another on a common network.

mv: Changes the Name of a File

The mv (move) utility can rename a file without making a copy of it. The mv com-
mand line specifies an existing file and a new filename using the same syntax as cp:

mv existing-filename new-filename

The command line in Figure 5-3 changes the name of the file memo to memo.0130.
The initial ls command shows that memo is the only file in the directory. After you
give the mv command, memo.0130 is the only file in the directory. Compare this
result to that of the earlier cp example.

The mv utility can be used for more than changing the name of a file. Refer to “mv,
cp: Move or Copy Files” on page 197. See the mv info page for more information.

cp can destroy a file

caution If the destination-file exists before you give a cp command, cp overwrites it. Because cp over-
writes (and destroys the contents of) an existing destination-file without warning, you must take
care not to cause cp to overwrite a file that you still need. The cp –i (interactive) option prompts
you before it overwrites a file. See page 126 for a tip on options.

The following example assumes that the file named orange.2 exists before you give the cp com-
mand. The user answers y to overwrite the file:

$ cp –i orange orange.2
cp: overwrite 'orange.2'? y

mv can destroy a file

caution Just as cp can destroy a file, so can mv. Also like cp, mv has a –i (interactive) option. See the
caution box labeled “cp can destroy a file.”

$ ls
memo
$ mv memo memo.0130
$ ls
memo.0130

Figure 5-3 mv renames a file

Working with Files 151

lpr: Prints a File

The lpr (line printer) utility places one or more files in a print queue for printing.
Linux provides print queues so that only one job is printed on a given printer at a
time. A queue allows several people or jobs to send output simultaneously to a sin-
gle printer with the expected results. On systems that have access to more than one
printer, you can use lpstat –p to display a list of available printers. Use the –P option
to instruct lpr to place the file in the queue for a specific printer—even one that is
connected to another system on the network. The following command prints the file
named report:

$ lpr report

Because this command does not specify a printer, the output goes to the default
printer, which is the printer when you have only one printer.

The next command line prints the same file on the printer named mailroom:

$ lpr -P mailroom report

You can see which jobs are in the print queue by giving an lpstat –o command or by
using the lpq utility:

$ lpq
lp is ready and printing
Rank Owner Job Files Total Size
active alex 86 (standard input) 954061 bytes

In this example, Alex has one job that is being printed; no other jobs are in the
queue. You can use the job number (86 in this case) with the lprm utility to remove
the job from the print queue and stop it from printing:

$ lprm 86

You can send more than one file to the printer with a single command. The follow-
ing command line prints three files on the printer named laser1:

$ lpr -P laser1 05.txt 108.txt 12.txt

Refer to Chapter 15 for information on setting up a printer and defining the default
printer.

grep: Searches for a String

The grep1 utility searches through one or more files to see whether any contain a
specified string of characters. This utility does not change the file it searches but
simply displays each line that contains the string.

1. Originally the name grep was a play on an ed—an original UNIX editor, available on Ubuntu
Linux—command: g/re/p. In this command g stands for global, re is a regular expression delimited by
slashes, and p means print.

152 Chapter 5 The Linux Utilities

The grep command in Figure 5-4 searches through the file memo for lines that con-
tain the string credit and displays a single line that meets this criterion. If memo
contained such words as discredit, creditor, or accreditation, grep would have dis-
played those lines as well because they contain the string it was searching for. The
–w option causes grep to match only whole words. Although you do not need to
enclose the string you are searching for in single quotation marks, doing so allows
you to put SPACEs and special characters in the search string.

The grep utility can do much more than search for a simple string in a single file.
Refer to the grep info page and Appendix A, “Regular Expressions,” for more infor-
mation.

head: Displays the Beginning of a File

By default the head utility displays the first ten lines of a file. You can use head to
help you remember what a particular file contains. For example, if you have a file
named months that lists the 12 months of the year in calendar order, one to a line,
then head displays Jan through Oct (Figure 5-5).

This utility can display any number of lines, so you can use it to look at only the
first line of a file, at a full screen, or even more. To specify the number of lines dis-
played, include a hyphen followed by the number of lines in the head command. For
example, the following command displays only the first line of months:

$ head -1 months
Jan

The head utility can also display parts of a file based on a count of blocks or charac-
ters rather than lines. Refer to the head info page for more information.

tail: Displays the End of a File

The tail utility is similar to head but by default displays the last ten lines of a file.
Depending on how you invoke it, this utility can display fewer or more than ten
lines, use a count of blocks or characters rather than lines to display parts of a file,

$ cat memo

Helen:

In our meeting on June 6 we
discussed the issue of credit.
Have you had any further thoughts
about it?

 Alex
$ grep 'credit' memo
discussed the issue of credit.

Figure 5-4 grep searches for a string

Working with Files 153

and display lines being added to a file that is changing. The following command
causes tail to display the last five lines, Aug through Dec, of the months file shown
in Figure 5-5:

$ tail -5 months
Aug
Sep
Oct
Nov
Dec

You can monitor lines as they are added to the end of the growing file named logfile
with the following command:

$ tail -f logfile

Press the interrupt key (usually CONTROL-C) to stop tail and display the shell prompt.
Refer to the tail info page for more information.

sort: Displays a File in Order

The sort utility displays the contents of a file in order by lines but does not change
the original file.

$ cat months
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

$ head months
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct

Figure 5-5 head displays the first ten lines of a file

154 Chapter 5 The Linux Utilities

For example, if a file named days contains the name of each day of the week in cal-
endar order, each on a separate line, then sort displays the file in alphabetical order
(Figure 5-6).

The sort utility is useful for putting lists in order. The –u option generates a sorted
list in which each line is unique (no duplicates). The –n option puts a list of numbers
in order. Refer to the sort info page for more information.

uniq: Removes Duplicate Lines from a File

The uniq (unique) utility displays a file, skipping adjacent duplicate lines, but does
not change the original file. If a file contains a list of names and has two successive
entries for the same person, uniq skips the extra line (Figure 5-7).

If a file is sorted before it is processed by uniq, this utility ensures that no two lines
in the file are the same. (Of course, sort can do that all by itself with the –u option.)
Refer to the uniq info page for more information.

diff: Compares Two Files

The diff (difference) utility compares two files and displays a list of the differences
between them. This utility does not change either file, so it is useful when you want
to compare two versions of a letter or a report or two versions of the source code
for a program.

The diff utility with the –u (unified output format) option first displays two lines
indicating which of the files you are comparing will be denoted by a plus sign (+)
and which by a minus sign (–). In Figure 5-8, a minus sign indicates the colors.1 file;
a plus sign indicates the colors.2 file.

The diff –u command breaks long, multiline text into hunks. Each hunk is preceded
by a line starting and ending with two at signs (@@). This hunk identifier indicates
the starting line number and the number of lines from each file for this hunk. In
Figure 5-8, the hunk covers the section of the colors.1 file (indicated by a minus

$ cat days
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
$ sort days
Friday
Monday
Saturday
Sunday
Thursday
Tuesday
Wednesday

Figure 5-6 sort displays the lines of a file in order

Working with Files 155

sign) from the first line through the sixth line. The +1,5 then indicates that the hunk
covers colors.2 from the first line through the fifth line.

Following these header lines, diff –u displays each line of text with a leading minus
sign, a leading plus sign, or nothing. A leading minus sign indicates that the line
occurs only in the file denoted by the minus sign. A leading plus sign indicates that
the line comes from the file denoted by the plus sign. A line that begins with neither
a plus sign nor a minus sign occurs in both files in the same location. Refer to the
diff info page for more information.

file: Tests the Contents of a File

You can use the file utility to learn about the contents of any file on a Linux system
without having to open and examine the file yourself. In the following example, file
reports that letter_e.bz2 contains data that was compressed by the bzip2 utility
(page 160):

$ file letter_e.bz2
letter_e.bz2: bzip2 compressed data, block size = 900k

$ cat dups
Cathy
Fred
Joe
John
Mary
Mary
Paula
$ uniq dups
Cathy
Fred
Joe
John
Mary
Paula

Figure 5-7 uniq removes duplicate lines

$ diff -u colors.1 colors.2
--- colors.1 Fri Nov 28 15:45:32 2007
+++ colors.2 Fri Nov 28 15:24:46 2007
@@ -1,6 +1,5 @@
 red
+blue
 green
 yellow
-pink
-purple
 orange

Figure 5-8 diff displaying the unified output format

156 Chapter 5 The Linux Utilities

Next file reports on two more files:

$ file memo zach.jpg
memo: ASCII text
zach.jpg: JPEG image data, ... resolution (DPI), 72 x 72

Refer to the file man page for more information.

| (Pipe): Communicates Between Processes

Because pipes are integral to the functioning of a Linux system, they are introduced
here for use in examples. Pipes are covered in detail beginning on page 234.

A process is the execution of a command by Linux (page 310). Communication
between processes is one of the hallmarks of both UNIX and Linux. A pipe (written
as a vertical bar, |, on the command line and appearing as a solid or broken vertical
line on keyboards) provides the simplest form of this kind of communication. Sim-
ply put, a pipe takes the output of one utility and sends that output as input to
another utility. Using UNIX/Linux terminology, a pipe takes standard output of one
process and redirects it to become standard input of another process. (For more
information refer to “Standard Input and Standard Output” on page 226.) Most of
what a process displays on the screen is sent to standard output. If you do not redi-
rect it, this output appears on the screen. Using a pipe, you can redirect the output
so that it becomes instead standard input of another utility. For example, a utility
such as head can take its input from a file whose name you specify on the command
line following the word head, or it can take its input from standard input. Thus,
you can give the command shown in Figure 5-5 on page 153 as follows:

$ cat months | head
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct

The next command displays the number of files in a directory. The wc (word count)
utility with the –w option displays the number of words in its standard input or in a
file you specify on the command line:

$ ls | wc -w
14

You can use a pipe to send output of a program to the printer:

$ tail months | lpr

Four More Utilities 157

Four More Utilities

The echo and date utilities are two of the most frequently used members of the large
collection of Linux utilities. The script utility records part of a session in a file, and
unix2dos makes a copy of a text file that can be read on either a Windows or a
Macintosh machine.

echo: Displays Text

The echo utility copies anything you put on the command line after echo to the
screen. Some examples appear in Figure 5-9. The last example shows what the shell
does with an unquoted asterisk (*) on the command line: It expands the asterisk
into a list of filenames in the directory.

The echo utility is a good tool for learning about the shell and other Linux pro-
grams. Some examples on page 240 use echo to illustrate how special characters,
such as the asterisk, work. Throughout Chapters 7, 9, and 11, echo helps explain
how shell variables work and how you can send messages from shell scripts to the
screen. Refer to the echo info page for more information.

date: Displays the Time and Date

The date utility displays the current date and time:

$ date
Thu Jan 24 10:24:00 PST 2008

The following example shows how you can choose the format and select the con-
tents of the output of date:

$ date +"%A %B %d"
Thursday January 24

Refer to the date info page for more information.

$ ls
memo memo.0714 practice
$ echo Hi
Hi
$ echo This is a sentence.
This is a sentence.
$ echo star: *
star: memo memo.0714 practice
$

Figure 5-9 echo copies the command line (but not the word echo) to the screen

158 Chapter 5 The Linux Utilities

script: Records a Shell Session

The script utility records all or part of a login session, including your input and the
system’s responses. This utility is useful only from character-based devices, such as
a terminal or a terminal emulator. It does capture a session with vim; however,
because vim uses control characters to position the cursor and display different
typefaces, such as bold, the output will be difficult to read and may not be useful.
When you cat a file that has captured a vim session, the session quickly passes
before your eyes.

By default script captures the session in a file named typescript. To use a different
filename, follow the script command with a SPACE and the new filename. To append
to a file, use the –a option after script but before the filename; otherwise script over-
writes an existing file. Following is a session being recorded by script:

$ script
Script started, file is typescript
mark@plum:~$ whoami
sam
$ ls -l /bin | head -5
total 5024
-rwxr-xr-x 1 root root 2928 Sep 21 21:42 archdetect
-rwxr-xr-x 1 root root 1054 Apr 26 15:37 autopartition
-rwxr-xr-x 1 root root 7168 Sep 21 19:18 autopartition-loop
-rwxr-xr-x 1 root root 701008 Aug 27 02:41 bash
$ exit
exit
Script done, file is typescript
$

Use the exit command to terminate a script session. You can then view the file you
created with cat, less, more, or an editor. Following is the file that was created by
the preceding script command:

$ cat typescript
Script started on Mon Sep 24 20:54:59 2007
$ whoami
sam
$ ls -l /bin | head -4
total 5024
-rwxr-xr-x 1 root root 2928 Sep 21 21:42 archdetect
-rwxr-xr-x 1 root root 1054 Apr 26 15:37 autopartition
-rwxr-xr-x 1 root root 7168 Sep 21 19:18 autopartition-loop
$ ls -l /bin | head -5
total 5024
-rwxr-xr-x 1 root root 2928 Sep 21 21:42 archdetect
-rwxr-xr-x 1 root root 1054 Apr 26 15:37 autopartition
-rwxr-xr-x 1 root root 7168 Sep 21 19:18 autopartition-loop
-rwxr-xr-x 1 root root 701008 Aug 27 02:41 bash
$ exit
exit

Script done on Mon Sep 24 20:55:29 2007

Compressing and Archiving Files 159

If you will be editing the file with vim, emacs, or another editor, you can use
dos2unix (below) to eliminate from the typescript file the ^M characters that appear
at the ends of the lines. Refer to the script man page for more information.

unix2dos: Converts Linux and Macintosh Files to

Windows Format

If you want to share a text file that you created on a Linux system with someone on
a Windows or Macintosh system, you need to convert the file before the person on
the other system can read it easily. The unix2dos utility converts a Linux text file so
that it can be read on a Windows or Macintosh system. This utility is part of the
tofrodos software package; give the command sudo aptitude install tofrodos to
install this package. Give the following command to convert a file named memo.txt
(created with a text editor) to a DOS-format file:

$ unix2dos memo.txt

Without any options unix2dos overwrites the original file. You can now email the
file as an attachment to someone on a Windows or Macintosh system.

dos2unix You can use the dos2unix utility to convert Windows or Macintosh files so they can
be read on a Linux system:

$ dos2unix memo.txt

See the unix2dos and dos2unix man pages for more information.

You can also use tr to change a Windows or Macintosh text file into a Linux text
file. In the following example, the –d option causes tr to remove RETURNs (represented
by \r) as it makes a copy of the file:

$ cat memo | tr -d '\r' > memo.txt

The greater than (>) symbol redirects the standard output of tr to the file named
memo.txt. For more information refer to “Redirecting Standard Output” on
page 228. Converting a file the other way without using unix2dos is not as easy.

Compressing and Archiving Files

Large files use a lot of disk space and take longer than smaller files to transfer from
one system to another over a network. If you do not need to look at the contents of a
large file very often, you may want to save it on a CD, DVD, or another medium and
remove it from the hard disk. If you have a continuing need for the file, retrieving a
copy from a CD may be inconvenient. To reduce the amount of disk space you use
without removing the file entirely, you can compress the file without losing any of the
information it holds. Similarly a single archive of several files packed into a larger file
is easier to manipulate, upload, download, and email than multiple files. You may fre-
quently download compressed, archived files from the Internet. The utilities described
in this section compress and decompress files and pack and unpack archives.

160 Chapter 5 The Linux Utilities

bzip2: Compresses a File

The bzip2 utility compresses a file by analyzing it and recoding it more efficiently.
The new version of the file looks completely different. In fact, because the new file
contains many nonprinting characters, you cannot view it directly. The bzip2 utility
works particularly well on files that contain a lot of repeated information, such as
text and image data, although most image data is already in a compressed format.

The following example shows a boring file. Each of the 8,000 lines of the letter_e
file contains 72 e’s and a NEWLINE character that marks the end of the line. The file
occupies more than half a megabyte of disk storage.

$ ls -l
-rw-rw-r-- 1 sam sam 584000 Mar 1 22:31 letter_e

The –l (long) option causes ls to display more information about a file. Here it
shows that letter_e is 584,000 bytes long. The ––verbose (or –v) option causes bzip2
to report how much it was able to reduce the size of the file. In this case, it shrank
the file by 99.99 percent:

$ bzip2 -v letter_e
letter_e: 11680.00:1, 0.001 bits/byte, 99.99% saved, 584000 in, 50 out.
$ ls -l
-rw-rw-r-- 1 sam sam 50 Mar 1 22:31 letter_e.bz2

.bz2 filename
extension

Now the file is only 50 bytes long. The bzip2 utility also renamed the file, appending
.bz2 to its name. This naming convention reminds you that the file is compressed;
you would not want to display or print it, for example, without first decompressing
it. The bzip2 utility does not change the modification date associated with the file,
even though it completely changes the file’s contents.

In the following, more realistic example, the file zach.jpg contains a computer
graphics image:

$ ls -l
-rw-r--r-- 1 sam sam 33287 Mar 1 22:40 zach.jpg

The bzip2 utility can reduce the size of the file by only 28 percent because the image
is already in a compressed format:

$ bzip2 -v zach.jpg
zach.jpg: 1.391:1, 5.749 bits/byte, 28.13% saved, 33287 in, 23922 out.

$ ls -l
-rw-r--r-- 1 sam sam 23922 Mar 1 22:40 zach.jpg.bz2

Refer to the bzip2 man page, www.bzip.org, and the Bzip2 mini-HOWTO (see
page 129) for more information.

bunzip2 and bzcat: Decompress a File

You can use the bunzip2 utility to restore a file that has been compressed with bzip2:

$ bunzip2 letter_e.bz2
$ ls -l
-rw-rw-r-- 1 sam sam 584000 Mar 1 22:31 letter_e

www.bzip.org

Compressing and Archiving Files 161

$ bunzip2 zach.jpg.bz2
$ ls -l
-rw-r--r-- 1 sam sam 33287 Mar 1 22:40 zach.jpg

The bzcat utility displays a file that has been compressed with bzip2. The equivalent
of cat for .bz2 files, bzcat decompresses the compressed data and displays the con-
tents of the decompressed file. Like cat, bzcat does not change the source file. The
pipe in the following example redirects the output of bzcat so that instead of being
displayed on the screen it becomes the input to head, which displays the first two
lines of the file:

$ bzcat letter_e.bz2 | head -2
ee
ee

After bzcat is run, the contents of letter_e.bz is unchanged; the file is still stored on
the disk in compressed form.

bzip2recover The bzip2recover utility supports limited data recovery from media errors. Give the
command bzip2recover followed by the name of the compressed, corrupted file
from which you want to try to recover data.

gzip: Compresses a File

gunzip and zcat The gzip (GNU zip) utility is older and less efficient than bzip2. Its flags and opera-
tion are very similar to those of bzip2. A file compressed by gzip is marked by a .gz
filename extension. Linux stores manual pages in gzip format to save disk space;
likewise, files you download from the Internet are frequently in gzip format. Use
gzip, gunzip, and zcat just as you would use bzip2, bunzip2, and bzcat, respectively.
Refer to the gzip info page for more information.

compress The compress utility can also compress files, albeit not as well as gzip. This utility
marks a file it has compressed by adding .Z to its name.

tar: Packs and Unpacks Archives

The tar utility performs many functions. Its name is short for tape archive, as its origi-
nal function was to create and read archive and backup tapes. Today it is used to create
a single file (called a tar file, archive, or tarball) from multiple files or directory hierar-
chies and to extract files from a tar file. The cpio utility performs a similar function.

In the following example, the first ls shows the existence and sizes of the files g, b,
and d. Next tar uses the –c (create), –v (verbose), and –f (write to or read from a
file) options to create an archive named all.tar from these files. Each line output dis-
plays the name of the file tar is appending to the archive it is creating.

gzip versus zip
tip Do not confuse gzip and gunzip with the zip and unzip utilities. These last two are used to pack

and unpack zip archives containing several files compressed into a single file that has been
imported from or is being exported to a system running Windows. The zip utility constructs a zip
archive, whereas unzip unpacks zip archives. The zip and unzip utilities are compatible with
PKZIP, a Windows program that compresses and archives files.

162 Chapter 5 The Linux Utilities

The tar utility adds overhead when it creates an archive. The next command shows
that the archive file all.tar occupies about 9,700 bytes, whereas the sum of the sizes
of the three files is about 6,000 bytes. This overhead is more appreciable on smaller
files, such as the ones in this example.

$ ls -l g b d
-rw-r--r-- 1 jenny jenny 1302 Aug 20 14:16 g
-rw-r--r-- 1 jenny other 1178 Aug 20 14:16 b
-rw-r--r-- 1 jenny jenny 3783 Aug 20 14:17 d
$ tar -cvf all.tar g b d
g
b
d
$ ls -l all.tar
-rw-r--r-- 1 jenny jenny 9728 Aug 20 14:17 all.tar
$ tar -tvf all.tar
-rw-r--r-- jenny/jenny 1302 2007-08-20 14:16 g
-rw-r--r-- jenny/other 1178 2007-08-20 14:16 b
-rw-r--r-- jenny/jenny 3783 2007-08-20 14:17 d

The final command in the preceding example uses the –t option to display a table of
contents for the archive. Use –x instead of –t to extract files from a tar archive. Omit
the –v option if you want tar to do its work silently.2

You can use bzip2, compress, or gzip to compress tar files, making them easier to
store and handle. Many files you download from the Internet will already be in one
of these formats. Files that have been processed by tar and compressed by bzip2 fre-
quently have a filename extension of .tar.bz2 or .tbz. Those processed by tar and
gzip have an extension of .tar.gz or .tz, whereas files processed by tar and compress
use .tar.Z as the extension.

You can unpack a tarred and gzipped file in two steps. (Follow the same procedure if
the file was compressed by bzip2, but use bunzip2 instead of gunzip.) The next exam-
ple shows how to unpack the GNU make utility after it has been downloaded
(ftp.gnu.org/pub/gnu/make/make-3.80.tar.gz):

$ ls -l mak*
-rw-rw-r-- 1 sam sam 1211924 Jan 20 11:49 make-3.80.tar.gz
$ gunzip mak*
$ ls -l mak*
-rw-rw-r-- 1 sam sam 4823040 Jan 20 11:49 make-3.80.tar
$ tar -xvf mak*
make-3.80/
make-3.80/po/
make-3.80/po/Makefile.in.in
...
make-3.80/tests/run_make_tests.pl
make-3.80/tests/test_driver.pl

2. Although the original UNIX tar did not use a leading hyphen to indicate an option on the command
line, it now accepts hyphens. The GNU tar described here will accept tar commands with or without a lead-
ing hyphen. This book uses the hyphen for consistency with most other utilities.

Compressing and Archiving Files 163

The first command lists the downloaded tarred and gzipped file: make-3.80.tar.gz
(about 1.2 megabytes). The asterisk (*) in the filename matches any characters in any
filenames (page 240), so you end up with a list of files whose names begin with mak;
in this case there is only one. Using an asterisk saves typing and can improve accuracy
with long filenames. The gunzip command decompresses the file and yields make-
3.80.tar (no .gz extension), which is about 4.8 megabytes. The tar command creates
the make-3.80 directory in the working directory and unpacks the files into it.

$ ls -ld mak*
drwxrwxr-x 8 sam sam 4096 Oct 3 2002 make-3.80
-rw-rw-r-- 1 sam sam 4823040 Jan 20 11:49 make-3.80.tar
$ ls -l make-3.80
total 1816
-rw-r--r-- 1 sam sam 24687 Oct 3 2002 ABOUT-NLS
-rw-r--r-- 1 sam sam 1554 Jul 8 2002 AUTHORS
-rw-r--r-- 1 sam sam 18043 Dec 10 1996 COPYING
-rw-r--r-- 1 sam sam 32922 Oct 3 2002 ChangeLog
...
-rw-r--r-- 1 sam sam 16520 Jan 21 2000 vmsify.c
-rw-r--r-- 1 sam sam 16409 Aug 9 2002 vpath.c
drwxrwxr-x 5 sam sam 4096 Oct 3 2002 w32

After tar extracts the files from the archive, the working directory contains two files
whose names start with mak: make-3.80.tar and make-3.80. The –d (directory)
option causes ls to display only file and directory names, not the contents of directo-
ries as it normally does. The final ls command shows the files and directories in the
make-3.80 directory. Refer to the tar info page for more information.

optional You can combine the gunzip and tar commands on one command line with a pipe
(|), which redirects the output of gunzip so that it becomes the input to tar:

$ gunzip -c make-3.80.tar.gz | tar -xvf -

The –c option causes gunzip to send its output through the pipe instead of creating a
file. Refer to “Pipes” (page 234) and gzip (page 161) for more information about
how this command line works.

tar: the –x option may extract a lot of files

caution Some tar archives contain many files. To list the files in the archive without unpacking them, run
tar with the –t option and the name of the tar file. In some cases you may want to create a new
directory (mkdir [page 191]), move the tar file into that directory, and expand it there. That way
the unpacked files will not mingle with your existing files, and no confusion will occur. This strat-
egy also makes it easier to delete the extracted files. Some tar files automatically create a new
directory and put the files into it. Refer to the preceding example.

tar: the –x option can overwrite files

caution The –x option to tar overwrites a file that has the same filename as a file you are extracting. Follow
the suggestion in the preceding caution box to avoid overwriting files.

164 Chapter 5 The Linux Utilities

A simpler solution is to use the –z option to tar. This option causes tar to call gunzip
(or gzip when you are creating an archive) directly and simplifies the preceding com-
mand line to

$ tar -xvzf make-3.80.tar.gz

In a similar manner, the –j option calls bzip2 or bunzip2.

Locating Commands

The whereis and apropos utilities can help you find a command whose name you
have forgotten or whose location you do not know. When multiple copies of a util-
ity or program are present, which tells you which copy you will run. The locate util-
ity searches for files on the local system.

which and whereis: Locate a Utility

When you give Linux a command, the shell searches a list of directories for a pro-
gram with that name and runs the first one it finds. This list of directories is called a
search path. For information on how to change the search path, refer to “PATH:
Where the Shell Looks for Programs” on page 302. If you do not change the search
path, the shell searches only a standard set of directories and then stops searching.
Other directories on the system may also contain useful utilities, however.

which The which utility locates utilities by displaying the full pathname of the file for the
utility. (Chapter 6 contains more information on pathnames and the structure of the
Linux filesystem.) The local system may include several commands that have the
same name. When you type the name of a command, the shell searches for the com-
mand in your search path and runs the first one it finds. You can find out which
copy of the program the shell will run by using which. In the following example,
which reports the location of the tar command:

$ which tar
/bin/tar

The which utility can be helpful when a command seems to be working in unexpected
ways. By running which, you may discover that you are running a nonstandard version
of a tool or a different one than you expected. (“Important Standard Directories and
Files” on page 194 provides a list of standard locations for executable files.) For exam-
ple, if tar is not working properly and you find that you are running /usr/local/bin/tar
instead of /bin/tar, you might suspect that the local version is broken.

whereis The whereis utility searches for files related to a utility by looking in standard loca-
tions instead of using your search path. For example, you can find the locations for
files related to tar:

$ whereis tar
tar: /bin/tar /usr/include/tar.h /usr/share/man/man1/tar.1.gz

In this example whereis finds three references to tar: the tar utility file, a tar header
file, and the tar man page.

Locating Commands 165

apropos: Searches for a Keyword

When you do not know the name of the command you need to carry out a particu-
lar task, you can use apropos with a keyword to search for it. This utility searches
for the keyword in the short description line (the top line) of all man pages and dis-
plays those that contain a match. The man utility, when called with the –k (key-
word) option, gives you the same output as apropos (it is the same command).

The database apropos uses, named whatis, is not on Ubuntu Linux systems when they
are first installed, but is built automatically by cron (page 668) using mandb. If apro-
pos does not produce any output, run the command sudo mandb.

The following example shows the output of apropos when you call it with the who
keyword. The output includes the name of each command, the section of the man-
ual that contains it, and the brief description from the top of the man page. This list
includes the utility that you need (who) and identifies other, related tools that you
might find useful:

$ apropos who
at.allow (5) - determine who can submit jobs via at or batch
at.deny (5) - determine who can submit jobs via at or batch
from (1) - print names of those who have sent mail
w (1) - Show who is logged on and what they are doing.
w.procps (1) - Show who is logged on and what they are doing.
who (1) - show who is logged on
...

which versus whereis

tip Given the name of a program, which looks through the directories in your search path, in order,
and locates the program. If the search path includes more than one program with the specified
name, which displays the name of only the first one (the one you would run).

The whereis utility looks through a list of standard directories and works independently of your
search path. Use whereis to locate a binary (executable) file, any manual pages, and source code
for a program you specify; whereis displays all the files it finds.

which, whereis, and builtin commands

caution Both the which and whereis utilities report only the names for commands as they are found on
the disk; they do not report shell builtins (utilities that are built into a shell; see page 243). When
you use whereis to try to find where the echo command (which exists as both a utility program
and a shell builtin) is kept, you get the following result:

$ whereis echo
echo: /bin/echo /usr/share/man/man1/echo.1.gz

The whereis utility does not display the echo builtin. Even the which utility reports the wrong
information:

$ which echo
/bin/echo

Under bash you can use the type builtin (page 445) to determine whether a command is a builtin:
$ type echo
echo is a shell builtin

166 Chapter 5 The Linux Utilities

whatis The whatis utility is similar to apropos but finds only complete word matches for the
name of the utility:

$ whatis who
who (1) - show who is logged on

slocate: Searches for a File

The slocate utility searches for files on the local system:

$ slocate motd
/usr/share/app-install/icons/xmotd.xpm
/usr/share/app-install/desktop/motd-editor.desktop
/usr/share/app-install/desktop/xmotd.desktop
/usr/share/base-files/motd.md5sums
/usr/share/base-files/motd
...

Before you can use slocate the updatedb utility must build or update the slocate data-
base. Typically the database is updated once a day by a cron script (page 668).

Obtaining User and System Information

This section covers utilities that provide information about who is using the system,
what those users are doing, and how the system is running.

To find out who is using the local system, you can employ one of several utilities
that vary in the details they provide and the options they support. The oldest utility,
who, produces a list of users who are logged in on the local system, the device each
person is using, and the time each person logged in.

The w and finger utilities show more detail, such as each user’s full name and the
command line each user is running. You can use the finger utility to retrieve infor-
mation about users on remote systems if your computer is attached to a network.
Table 5-1 on page 169 summarizes the output of these utilities.

If you are not on a network, skip the rest of this chapter

tip If you are the only user on a system that is not connected to a network, you may want to skip the
rest of this chapter. If you are not on a network but are set up to send and receive email, read
“Email” on page 171.

$ who
sam console Mar 27 05:00
alex pts/4 Mar 27 12:23
alex pts/5 Mar 27 12:33
jenny pts/7 Mar 26 08:45

Figure 5-10 who lists who is logged in

Obtaining User and System Information 167

who: Lists Users on the System

The who utility displays a list of users who are logged in. In Figure 5-10 the first col-
umn that who displays shows that Sam, Alex, and Jenny are logged in. (Alex is
logged in from two locations.) The second column shows the device that each user’s
terminal, workstation, or terminal emulator is connected to. The third column
shows the date and time the user logged in. An optional fourth column shows (in
parentheses) the name of the system that a remote user logged in from; this column
does not appear in Figure 5-10.

The information that who displays is useful when you want to communicate with a
user at your installation. When the user is logged in, you can use write (page 170) to
establish communication immediately. If who does not list the user or if you do not
need to communicate immediately, you can send email to that person (page 171).

If the output of who scrolls off the screen, you can redirect the output through a
pipe (|, page 156) so that it becomes the input to less, which displays the output one
page at a time. You can also use a pipe to redirect the output through grep to look
for a specific name.

If you need to find out which terminal you are using or what time you logged in,
you can use the command who am i:

$ who am i
alex pts/5 Mar 27 12:33

finger: Lists Users on the System

You can use finger to display a list of the users who are logged in on the system. In
addition to usernames, finger supplies each user’s full name along with information
about which device the user’s terminal is connected to, how recently the user typed
something on the keyboard, when the user logged in, and what contact information
is available. If the user has logged in over the network, the name of the remote sys-
tem is shown as the user’s location. For example, in Figure 5-11 jenny and hls are
logged in from the remote system named bravo. The asterisk (*) in front of the
name of Helen’s device (TTY) indicates that she has blocked others from sending
messages directly to her terminal (refer to “mesg: Denies or Accepts Messages” on
page 171).

$ finger
Login Name Tty Idle Login Time Office Office Phone
sam root 1 1:35 May 24 08:38
alex Alex Watson /0 Jun 7 12:46 (:0)
alex Alex Watson /1 19 Jun 7 12:47 (:0)
jenn Jenny Chen /2 2:24 Jun 2 05:33 (bravo.example.com)
hls Helen Simpson */2 2 Jun 2 05:33 (bravo.example.com)

Figure 5-11 finger I: lists who is logged in

168 Chapter 5 The Linux Utilities

You can also use finger to learn more about an individual by specifying the name of
that user on the command line. In Figure 5-12, finger displays detailed information
about the user named Alex. Alex is logged in and actively using one of his terminals
(pts/1); he has not used his other terminal (pts/0) for 5 minutes and 52 seconds.
You also learn from finger that if you want to set up a meeting with Alex, you
should contact Jenny at extension 1693.

.plan and .project Most of the information in Figure 5-12 was collected by finger from system files.
The information shown after the heading Plan:, however, was supplied by Alex. The
finger utility searched for a file named .plan in Alex’s home directory and displayed
its contents.

(Filenames that begin with a period, such as .plan, are not normally listed by ls and
are called hidden filenames [page 188].) You may find it helpful to create a .plan file
for yourself; it can contain any information you choose, such as your schedule,
interests, phone number, or address. In a similar manner, finger displays the contents
of the .project and .pgpkey files in your home directory. If Alex had not been logged
in, finger would have reported only his user information, the last time he logged in,
the last time he read his email, and his plan.

$ finger alex
Login: alex Name: Alex Watson
Directory: /home/alex Shell: /bin/bash
On since Wed Jun 6 12:46 (PDT) on pts/0 from :0
 5 minutes 52 seconds idle
On since Wed Jun 6 12:47 (PDT) on pts/1 from bravo
Last login Wed Jun 6 12:47 (PDT) on 1 from bravo
New mail received Wed Jun 6 13:16 2007 (PDT)
 Unread since Fri May 25 15:32 2007 (PDT)
Plan:
I will be at a conference in Hawaii all next week. If you need
to see me, contact Jenny Chen, x1693.

Figure 5-12 finger II: lists details about one user

finger can be a security risk

security On systems where security is a concern, the system administrator may disable finger. This utility
can reveal information that can help a malicious user break into a system.

$ w
 8:20am up 4 days, 2:28, 3 users, load average: 0.04, 0.04, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
alex pts/4 :0 5:55am 13:45 0.15s 0.07s w
alex pts/5 :0 5:55am 27 2:55 1:01 bash
jenny pts/7 bravo 5:56am 13:44 0.51s 30s vim 3.txt
scott pts/12 bravo 7:17pm 1.00s 0:14s run_bdgt

Figure 5-13 The w utility

Obtaining User and System Information 169

You can also use finger to display a user’s username. For example, on a system with
a user named Helen Simpson, you might know that Helen’s last name is Simpson
but might not guess that her username is hls. The finger utility, which is not case
sensitive, can search for information on Helen using her first or last name. The fol-
lowing commands find the information you seek as well as information on other
users whose names are Helen or Simpson:

$ finger HELEN
Login: hls Name: Helen Simpson.
...
$ finger simpson
Login: hls Name: Helen Simpson.
...

See page 370 for information about using finger over a network.

w: Lists Users on the System

The w utility displays a list of the users who are logged in. As discussed in the sec-
tion on who, the information that w displays is useful when you want to communi-
cate with someone at your installation.

The first column in Figure 5-13 shows that Alex, Jenny, and Scott are logged in. The
second column shows the designation of the device that each user’s terminal is con-
nected to. The third column shows the system that a remote user is logged in from.
The fourth column shows the time when each user logged in. The fifth column indi-
cates how long each user has been idle (how much time has elapsed since the user
pressed a key on the keyboard). The next two columns identify how much com-
puter processor time each user has used during this login session and on the task
that is running. The last column shows the command each user is running.

The first line that the w utility displays includes the time of day, the period of time
the computer has been running (in days, hours, and minutes), the number of users
logged in, and the load average (how busy the system is). The three load average
numbers represent the number of jobs waiting to run, averaged over the past 1, 5,
and 15 minutes. Use the uptime utility to display just this line. Table 5-1 compares
the w, who, and finger utilities.

Table 5-1 Comparison of w, who, and finger

Information displayed w who finger

Username x x x

Terminal-line identification (tty) x x x

Login day and time x

Login date and time x x

Idle time x x

170 Chapter 5 The Linux Utilities

Communicating with Other Users

The utilities discussed in this section exchange messages and files with other users
either interactively or through email.

write: Sends a Message

The write utility sends a message to another user who is logged in. When you and
another user use write to send messages to each other, you establish two-way com-
munication. Initially a write command (Figure 5-14) displays a banner on the other
user’s terminal, saying that you are about to send a message.

The syntax of a write command line is

write username [terminal]

The username is the username of the user you want to communicate with. The ter-
minal is an optional device name that is useful if the user is logged in more than
once. You can display the usernames and device names of all users who are logged
in on the local system by using who, w, or finger.

To establish two-way communication with another user, you and the other user
must each execute write, specifying the other’s username as the username. The write
utility then copies text, line by line, from one keyboard/display to the other
(Figure 5-15). Sometimes it helps to establish a convention, such as typing o (for
“over”) when you are ready for the other person to type and typing oo (for “over
and out”) when you are ready to end the conversation. When you want to stop
communicating with the other user, press CONTROL-D at the beginning of a line. Press-
ing CONTROL-D tells write to quit, displays EOF (end of file) on the other user’s terminal,
and returns you to the shell. The other user must do the same.

Information displayed w who finger

Program the user is executing x

Location the user logged in from x

CPU time used x

Full name (or other information from /etc/passwd) x

User-supplied vanity information x

System uptime and load average x

Table 5-1 Comparison of w, who, and finger (continued)

$ write alex
Hi Alex, are you there? o

Figure 5-14 The write utility I

Email 171

If the Message from banner appears on your screen and obscures something you are
working on, press CONTROL-L or CONTROL-R to refresh the screen and remove the banner.
Then you can clean up, exit from your work, and respond to the person who is
writing to you. You have to remember who is writing to you, however, because the
banner will no longer appear on the screen.

mesg: Denies or Accepts Messages

Give the following command when you do not wish to receive messages from
another user:

$ mesg n

If Alex had given this command before Jenny tried to send him a message, Jenny
would have seen the following message:

$ write alex
Permission denied

You can allow messages again by entering mesg y. Give the command mesg by itself
to display is y (for “yes, messages are allowed”) or is n (for “no, messages are not
allowed”).

Email

Email enables you to communicate with users on the local system and, if the instal-
lation is part of a network, with other users on the network. If you are connected to
the Internet, you can communicate electronically with users around the world.

Email utilities differ from write in that email utilities can send a message when the
recipient is not logged in. These utilities can also send the same message to more
than one user at a time.

Many email programs are available for Linux, including the original character-based
mail program, Mozilla/Thunderbird, pine, mail through emacs, KMail, and evolution.
Another popular graphical email program is sylpheed (sylpheed.good-day.net).

Two programs are available that can make any email program easier to use and
more secure. The procmail program (www.procmail.org) creates and maintains
email servers and mailing lists; preprocesses email by sorting it into appropriate
files and directories; starts various programs depending on the characteristics of

$ write alex
Hi Alex, are you there? o

Message from alex@bravo.example.com on pts/0 at 16:23 ...
Yes Jenny, I'm here. o

Figure 5-15 The write utility II

www.procmail.org

172 Chapter 5 The Linux Utilities

incoming email; forwards email; and so on. The GNU Privacy Guard (GPG or
GNUpg, page 995) encrypts and decrypts email and makes it almost impossible for
an unauthorized person to read.

Refer to Chapter 21 for more information on setting email clients and servers.

Network addresses If your system is part of a LAN, you can generally send email to and receive email
from users on other systems on the LAN by using their usernames. Someone send-
ing Alex email on the Internet would need to specify his domain name (page 1034)
along with his username. Use this address to send email to the author of this book:
mgs@sobell.com.

Tutorial: Creating and Editing a File with vim

This section explains how to start vim, enter text, move the cursor, correct text, save
the file to the disk, and exit from vim. The tutorial discusses three of the modes of
operation of vim and explains how to switch from one mode to another.

vimtutor In addition to working with this tutorial, you may want to try vim’s tutor, named
vimtutor: Give its name as a command to run it.

Specifying a
terminal

Because vim takes advantage of features that are specific to various kinds of termi-
nals, you must tell it what type of terminal or terminal emulator you are using. On
many systems, and usually when you work on a terminal emulator, your terminal
type is set automatically. If you need to specify your terminal type explicitly, refer to
“Specifying a Terminal” on page 988.

Starting vim

Start vim with the following command line to create and edit a file named practice:

$ vim practice

When you press RETURN, the command line disappears, and the screen looks similar to
the one shown in Figure 5-16.

The tildes (~) at the left of the screen indicate that the file is empty. They disappear
as you add lines of text to the file. If your screen looks like a distorted version of the
one shown in Figure 5-16, your terminal type is probably not set correctly.

If you start vim with a terminal type that is not in the terminfo database, vim dis-
plays an error message and the terminal type defaults to ansi, which works on many
terminals. In the following example, the user mistyped vt100 and set the terminal
type to vg100:

The vi command runs vim

tip On Ubuntu Linux systems the command vi runs vim. See “The compatible Parameter” on
page 179 for information on running vim in vi-compatible mode.

Tutorial: Creating and Editing a File with vim 173

E558: Terminal entry not found in terminfo
'vg100' not known. Available builtin terminals are:
 builtin_riscos
 builtin_amiga
 builtin_beos-ansi
 builtin_ansi
 builtin_pcansi
 builtin_win32
 builtin_vt320
 builtin_vt52
 builtin_xterm
 builtin_debug
 builtin_dumb
defaulting to 'ansi'

To reset the terminal type, press ESCAPE and then give the following command to exit
from vim and get the shell prompt back:

:q!

When you enter the colon (:), vim moves the cursor to the bottom line of the screen.
The characters q! tell vim to quit without saving your work. (You will not ordinarily
exit from vim this way because you typically want to save your work.) You must
press RETURN after you give this command. Once you get the shell prompt back, refer
to “Specifying a Terminal” on page 988, and then start vim again.

If you start this editor without a filename, vim assumes that you are a novice and
tells you how to get started (Figure 5-17, next page).

The practice file is new so it does not contain any text. The vim editor displays a
message similar to the one shown in Figure 5-16 on the status (bottom) line of the
terminal to indicate that you are creating and editing a new file. When you edit an
existing file, vim displays the first few lines of the file and gives status information
about the file on the status line.

Figure 5-16 Starting vim

174 Chapter 5 The Linux Utilities

Command and Input Modes

Two of vim’s modes of operation are Command mode (also called Normal mode)
and Input mode (Figure 5-18). While vim is in Command mode, you can give vim
commands. For example, you can delete text or exit from vim. You can also com-
mand vim to enter Input mode. In Input mode, vim accepts anything you enter as
text and displays it on the screen. Press ESCAPE to return vim to Command mode. By
default the vim editor keeps you informed about which mode it is in: It displays
INSERT at the lower-left corner of the screen while it is in Insert mode.

The following command causes vim to display line numbers next to the text you are
editing:

:set number RETURN

Figure 5-17 Starting vim without a filename

Figure 5-18 Modes in vim

Insert,
Append,
Open,
Replace,
Change

RETURN

ESCAPE

Colon (:)

Input
mode

Last
Line

mode

Command
mode

Input
mode

Last
Line

mode

Tutorial: Creating and Editing a File with vim 175

Last Line mode The colon (:) in the preceding command puts vim into another mode, Last Line mode.
While in this mode, vim keeps the cursor on the bottom line of the screen. When you
finish entering the command by pressing RETURN, vim restores the cursor to its place in
the text. Give the command :set nonumber RETURN to turn off line numbers.

vim is case
sensitive

When you give vim a command, remember that the editor is case sensitive. In other
words, vim interprets the same letter as two different commands, depending on
whether you enter an uppercase or lowercase character. Beware of the CAPS LOCK (SHIFT-

LOCK) key. If you set this key to enter uppercase text while you are in Input mode and
then exit to Command mode, vim interprets your commands as uppercase letters. It
can be confusing when this happens because vim does not appear to be executing the
commands you are entering.

Entering Text

i/a (Input mode) When you start vim, you must put it in Input mode before you can enter text. To put
vim in Input mode, press the i key (insert before the cursor) or the a key (append
after the cursor).

If you are not sure whether vim is currently in Input mode, press the ESCAPE key; vim
returns to Command mode if it was in Input mode or beeps, flashes, or does noth-
ing if it is already in Command mode. You can put vim back in Input mode by press-
ing the i or a key again.

While vim is in Input mode, you can enter text by typing on the keyboard. If the text
does not appear on the screen as you type, vim is not in Input mode.

To continue with this tutorial, enter the sample paragraph shown in Figure 5-19,
pressing the RETURN key at the end of each line. If you do not press RETURN before the
cursor reaches the right side of the screen or window, vim will wrap the text so that
it appears to start a new line. Physical lines will not correspond to programmatic
(logical) lines in this situation, so editing will be more difficult. While you are using
vim, you can always correct any typing mistakes you make. If you notice a mistake
on the line you are entering, you can correct it before you continue (page 176). You

Figure 5-19 Entering text with vim

176 Chapter 5 The Linux Utilities

can correct other mistakes later. When you finish entering the paragraph, press
ESCAPE to return vim to Command mode.

Getting Help

To get help while you are using vim, give the command :help [feature] followed by
RETURN (you must be in Command mode when you give this command). The colon
moves the cursor to the last line of the screen. If you type :help, vim displays an
introduction to vim Help (Figure 5-20). Each dark band near the bottom of the
screen names the file that is displayed above it. (Each area of the screen that dis-
plays a file, such as the two areas shown in Figure 5-20, is a vim “window.”) The
help.txt file occupies most of the screen (the upper window) in Figure 5-20. The file
that is being edited (practice) occupies a few lines in the lower portion of the screen
(the lower window).

Read through the introduction to Help by scrolling the text as you read. Press j or
the DOWN ARROW key to move the cursor down one line at a time; press CONTROL-D or
CONTROL-U to scroll the cursor down or up half a window at a time. Give the command
:q to close the Help window.

You can get help with the insert commands by giving the command :help insert
while vim is in Command mode (Figure 5-21).

Correcting Text as You Insert It

The keys that back up and correct a shell command line serve the same functions
when vim is in Input mode. These keys include the erase, line kill, and word kill keys
(usually CONTROL-H, CONTROL-U, and CONTROL-W, respectively). Although vim may not
remove deleted text from the screen as you back up over it using one of these keys,
the editor does remove it when you type over the text or press RETURN.

Figure 5-20 The main vim Help screen

Tutorial: Creating and Editing a File with vim 177

Moving the Cursor

You need to be able to move the cursor on the screen so that you can delete, insert,
and correct text. While vim is in Command mode, you can use the RETURN key, the
SPACE bar, and the ARROW keys to move the cursor. If you prefer to keep your hand
closer to the center of the keyboard, if your terminal does not have ARROW keys, or if
the emulator you are using does not support them, you can use the h, j, k, and l
(lowercase “l”) keys to move the cursor left, down, up, and right, respectively.

Deleting Text

x (Delete character)
dw (Delete word)

dd (Delete line)

You can delete a single character by moving the cursor until it is over the character
you want to delete and then giving the command x. You can delete a word by posi-
tioning the cursor on the first letter of the word and then giving the command dw
(Delete word). You can delete a line of text by moving the cursor until it is any-
where on the line and then giving the command dd.

Undoing Mistakes

u (Undo) If you delete a character, line, or word by mistake or give any command you want
to reverse, give the command u (Undo) immediately after the command you want to
undo. The vim editor will restore the text to the way it was before you gave the last
command. If you give the u command again, vim will undo the command you gave
before the one it just undid. You can use this technique to back up over many of
your actions. With the compatible parameter (page 179) set, however, vim can undo
only the most recent change.

:redo (Redo) If you undo a command you did not mean to undo, give a Redo command: CONTROL-R

or :redo (followed by a RETURN). The vim editor will redo the undone command. As
with the Undo command, you can give the Redo command many times in a row.

Figure 5-21 Help with insert commands

178 Chapter 5 The Linux Utilities

Entering Additional Text

i (Insert)
a (Append)

When you want to insert new text within existing text, move the cursor so it is on
the character that follows the new text you plan to enter. Then give the i (Insert)
command to put vim in Input mode, enter the new text, and press ESCAPE to return vim
to Command mode. Alternatively, you can position the cursor on the character that
precedes the new text and use the a (Append) command.

o/O (Open) To enter one or more lines, position the cursor on the line above where you want
the new text to go. Give the command o (Open). The vim editor opens a blank line,
puts the cursor on it, and goes into Input mode. Enter the new text, ending each line
with a RETURN. When you are finished entering text, press ESCAPE to return vim to Com-
mand mode. The O command works in the same way o works, except that it opens
a blank line above the line the cursor is on.

Correcting Text

To correct text, use dd, dw, or x to remove the incorrect text. Then use i, a, o, or O
to insert the correct text.

For example, to change the word pressing to hitting in Figure 5-19 on page 175,
you might use the ARROW keys to move the cursor until it is on top of the p in press-
ing. Then give the command dw to delete the word pressing. Put vim in Input mode
by giving an i command, enter the word hitting followed by a SPACE, and press ESCAPE.

The word is changed and vim is in Command mode, waiting for another command.
A shorthand for the two commands dw followed by the i command is cw (Change
word). The command cw puts vim into Input mode.

Ending the Editing Session

While you are editing, vim keeps the edited text in an area named the Work buffer.
When you finish editing, you must write out the contents of the Work buffer to a
disk file so that the edited text is saved and available when you next want it.

Make sure that vim is in Command mode, and then use the ZZ command (you must
use uppercase Zs) to write your newly entered text to the disk and end the editing
session. After you give the ZZ command, vim returns control to the shell. You can
exit with :q! if you do not want to save your work.

Page breaks for the printer
tip CONTROL-L tells the printer to skip to the top of the next page. You can enter this character anywhere

in a document by pressing CONTROL-L while you are in Input mode. If ^L does not appear, press
CONTROL-V before CONTROL-L.

Do not confuse ZZ with CONTROL-Z

caution When you exit from vim with ZZ, make sure that you type ZZ and not CONTROL-Z (typically the sus-
pend key). When you press CONTROL-Z, vim disappears from your screen, almost as though you
had exited from it. In fact, vim will continue running in the background with your work unsaved.
Refer to “Job Control” on page 290. If you try to start editing the same file with a new vim com-
mand, vim displays a message about a swap file.

Chapter Summary 179

The compatible Parameter

The compatible parameter makes vim more compatible with vi. By default this
parameter is not set. From the command line use the –C option to set the compati-
ble parameter and use the –N option to unset it. To get started with vim you can
ignore this parameter.

Setting the compatible parameter changes many aspects of how vim works. For
example, when the compatible parameter is set, the Undo command (page 177) can
undo only your most recent change; in contrast, with the compatible parameter
unset, you can call Undo repeatedly to undo many changes. To obtain more details
on the compatible parameter, give the command :help compatible RETURN. To display
a complete list of vim’s differences from the original vi, use :help vi-diff RETURN. See
page 176 for a discussion of the help command.

Chapter Summary

The utilities introduced in this chapter are a small but powerful subset of the many
utilities available on an Ubuntu Linux system. Because you will use them frequently
and because they are integral to the following chapters, it is important that you
become comfortable using them.

The utilities listed in Table 5-2 manipulate, display, compare, and print files.

Table 5-2 File utilities

Utility Function

cp Copies one or more files (page 149)

diff Displays the differences between two files (page 154)

file Displays information about the contents of a file (page 155)

grep Searches file(s) for a string (page 151)

head Displays the lines at the beginning of a file (page 152)

lpq Displays a list of jobs in the print queue (page 151)

lpr Places file(s) in the print queue (page 151)

lprm Removes a job from the print queue (page 151)

mv Renames a file or moves file(s) to another directory (page 150)

sort Puts a file in order by lines (page 153)

tail Displays the lines at the end of a file (page 152)

uniq Displays the contents of a file, skipping successive duplicate lines (page 154)

180 Chapter 5 The Linux Utilities

To reduce the amount of disk space a file occupies, you can compress it with the bzip2
utility. Compression works especially well on files that contain patterns, as do most
text files, but reduces the size of almost all files. The inverse of bzip2—bunzip2—
restores a file to its original, decompressed form. Table 5-3 lists utilities that compress
and decompress files. The bzip2 utility is the most efficient of these.

An archive is a file, frequently compressed, that contains a group of files. The tar
utility (Table 5-4) packs and unpacks archives. The filename extensions .tar.bz2,
.tar.gz, and .tgz identify compressed tar archive files and are often seen on software
packages obtained over the Internet.

The utilities listed in Table 5-5 determine the location of a utility on the local sys-
tem. For example, they can display the pathname of a utility or a list of C++ compil-
ers available on the local system.

Table 5-6 lists utilities that display information about other users. You can easily
learn a user’s full name, the user’s login status, the login shell of the user, and other
items of information maintained by the system.

Table 5-3 (De)compression utilities

Utility Function

bunzip2 Returns a file compressed with bzip2 to its original size and format (page 160)

bzcat Displays a file compressed with bzip2 (page 160)

bzip2 Compresses a file (page 160)

compress Compresses a file (not as well as gzip) (page 161)

gunzip Returns a file compressed with gzip or compress to its original size and for-
mat (page 161)

gzip Compresses a file (page 161)

zcat Displays a file compressed with gzip (page 161)

Table 5-4 Archive utility

Utility Function

tar Creates or extracts files from an archive file (page 161)

Table 5-5 Location utilities

Utility Function

apropos Searches the man page one-line descriptions for a keyword (page 165)

locate Searches for files on the local system (page 166)

whereis Displays the full pathnames of a utility, source code, or man page (page 164)

which Displays the full pathname of a command you can run (page 164)

Exercises 181

The utilities shown in Table 5-7 can help you stay in touch with other users on the
local network.

Table 5-8 lists miscellaneous utilities.

Exercises

1. Which commands can you use to determine who is logged in on a specific
terminal?

2. How can you keep other users from using write to communicate with you?
Why would you want to?

3. What happens when you give the following commands if the file named
done already exists?

$ cp to_do done
$ mv to_do done

4. How can you find out which utilities are available on your system for edit-
ing files? Which utilities are available for editing on your system?

5. How can you find the phone number for Ace Electronics in a file named phone
that contains a list of names and phone numbers? Which command can you
use to display the entire file in alphabetical order? How can you remove adja-
cent duplicate lines from the file? How can you remove all duplicates?

Table 5-6 User and system information utilities

Utility Function

finger Displays detailed information about users, including their full names (page 167)

hostname Displays the name of the local system (page 149)

w Displays detailed information about users who are logged in (page 169)

who Displays information about users who are logged in (page 167)

Table 5-7 User communication utilities

Utility Function

mesg Permits or denies messages sent by write (page 171)

write Sends a message to another user who is logged in (page 170)

Table 5-8 Miscellaneous utilities

Utility Function

date Displays the current date and time (page 157)

echo Copies its arguments (page 1023) to the screen (page 157)

182 Chapter 5 The Linux Utilities

6. What happens when you use diff to compare two binary files that are not
identical? (You can use gzip to create the binary files.) Explain why the diff
output for binary files is different from the diff output for ASCII files.

7. Create a .plan file in your home directory. Does finger display the contents
of your .plan file?

8. What is the result of giving the which utility the name of a command that
resides in a directory that is not in your search path?

9. Are any of the utilities discussed in this chapter located in more than one
directory on your system? If so, which ones?

10. Experiment by calling the file utility with the names of files in /usr/bin.
How many different types of files are there?

11. Which command can you use to look at the first few lines of a file named
status.report? Which command can you use to look at the end of the file?

Advanced Exercises

12. Re-create the colors.1 and colors.2 files used in Figure 5-8 on page 155. Test your
files by running diff –u on them. Do you get the same results as in the figure?

13. Try giving these two commands:

$ echo cat
$ cat echo

Explain the differences between them.

14. Repeat exercise 5 using the file phone.gz, a compressed version of the list
of names and phone numbers. Consider more than one approach to
answer each question, and explain how you made your choices.

15. Find existing files or create files that

a. gzip compresses by more than 80 percent.

b. gzip compresses by less than 10 percent.

c. Get larger when compressed with gzip.

d. Use ls –l to determine the sizes of the files in question. Can you charac-
terize the files in a, b, and c?

16. Older email programs were not able to handle binary files. Suppose that
you are emailing a file that has been compressed with gzip, which produces
a binary file, and the recipient is using an old email program. Refer to the
man page on uuencode, which converts a binary file to ASCII. Learn about
the utility and how to use it.

a. Convert a compressed file to ASCII using uuencode. Is the encoded file
larger or smaller than the compressed file? Explain. (If uuencode is not
on the local system, you can install it using aptitude [page 585]; it is part
of the sharutils package.)

b. Would it ever make sense to use uuencode on a file before compressing
it? Explain.

183183

6Chapter6A filesystem is a set of data structures (page 1032) that usually
resides on part of a disk and that holds directories of files. File-
systems store user and system data that are the basis of users’
work on the system and the system’s existence. This chapter
discusses the organization and terminology of the Linux file-
system, defines ordinary and directory files, and explains the
rules for naming them. It also shows how to create and delete
directories, move through the filesystem, and use absolute and
relative pathnames to access files in various directories. It
includes a discussion of important files and directories as well
as file access permissions and Access Control Lists (ACLs),
which allow you to share selected files with other users. It con-
cludes with a discussion of hard and symbolic links, which can
make a single file appear in more than one directory.

In addition to reading this chapter, you may want to refer to the
df info page and to the fsck, mkfs, and tune2fs man pages for
more information on filesystems.

In This Chapter

The Hierarchical Filesystem 184

Directory Files and Ordinary
Files . 184

The Working Directory. 188

Your Home Directory 188

Pathnames 189

Relative Pathnames 190

Working with Directories 196

Access Permissions 199

ACLs: Access Control Lists 203

Hard Links 210

Symbolic Links 212

6

The Linux Filesystem

184 Chapter 6 The Linux Filesystem

The Hierarchical Filesystem

Family tree A hierarchical structure (page 1040) frequently takes the shape of a pyramid. One
example of this type of structure is found by tracing a family’s lineage: A couple has
a child, who may in turn have several children, each of whom may have more chil-
dren. This hierarchical structure is called a family tree (Figure 6-1).

Directory tree Like the family tree it resembles, the Linux filesystem is called a tree. It consists of a
set of connected files. This structure allows you to organize files so you can easily
find any particular one. On a standard Linux system, each user starts with one
directory, to which the user can add subdirectories to any desired level. By creating
multiple levels of subdirectories, a user can expand the structure as needed.

Subdirectories Typically each subdirectory is dedicated to a single subject, such as a person,
project, or event. The subject dictates whether a subdirectory should be subdivided
further. For example, Figure 6-2 shows a secretary’s subdirectory named corre-
spond. This directory contains three subdirectories: business, memos, and personal.
The business directory contains files that store each letter the secretary types. If you
expect many letters to go to one client, as is the case with milk_co, you can dedicate
a subdirectory to that client.

One major strength of the Linux filesystem is its ability to adapt to users’ needs.
You can take advantage of this strength by strategically organizing your files so they
are most convenient and useful for you.

Directory Files and Ordinary Files

Like a family tree, the tree representing the filesystem is usually pictured upside
down, with its root at the top. Figures 6-2 and 6-3 show that the tree “grows”

Figure 6-1 A family tree

Grandparent

UncleMomAunt

SelfBrotherSister

Daughter 2Daughter 1

Grandchild 2Grandchild 1

Directory Files and Ordinary Files 185

downward from the root, with paths connecting the root to each of the other files. At
the end of each path is either an ordinary file or a directory file. Special files, which
can also be at the ends of paths, are described on page 567. Ordinary files, or sim-
ply files, appear at the ends of paths that cannot support other paths. Directory
files, also referred to as directories or folders, are the points that other paths can
branch off from. (Figures 6-2 and 6-3 show some empty directories.) When you
refer to the tree, up is toward the root and down is away from the root. Directories
directly connected by a path are called parents (closer to the root) and children
(farther from the root). A pathname is a series of names that trace a path along
branches from one file to another. More information about pathnames appears on
page 189.

Filenames

Every file has a filename. The maximum length of a filename varies with the type of
filesystem; Linux supports several types of filesystems. Although most of today’s filesys-
tems allow you to create files with names up to 255 characters long, some filesystems

Figure 6-2 A secretary’s directories

correspond

personal

milk_co

businessmemos

cheese_co

letter_2letter_1

Figure 6-3 Directories and ordinary files

DirectoryDirectory

Ordinary FileOrdinary File

Ordinary File Ordinary File

Ordinary File

Directory

Directory

Directory

Directory

186 Chapter 6 The Linux Filesystem

restrict you to shorter names. While you can use almost any character in a filename, you
will avoid confusion if you choose characters from the following list:

• Uppercase letters (A–Z)

• Lowercase letters (a–z)

• Numbers (0–9)

• Underscore (_)

• Period (.)

• Comma (,)

/ or root The root directory is always named / (slash) and referred to by this single character.
No other file can use this name or have a / in its name. However, in a pathname,
which is a string of filenames including directory names, the slash separates file-
names (page 189).

Like the children of one parent, no two files in the same directory can have the same
name. (Parents give their children different names because it makes good sense, but
Linux requires it.) Files in different directories, like the children of different parents,
can have the same name.

The filenames you choose should mean something. Too often a directory is filled
with important files with such unhelpful names as hold1, wombat, and junk, not to
mention foo and foobar. Such names are poor choices because they do not help you
recall what you stored in a file. The following filenames conform to the suggested
syntax and convey information about the contents of the file:

• correspond

• january

• davis

• reports

• 2001

• acct_payable

Filename length When you share your files with users on other systems, you may need to make long
filenames differ within the first few characters. Systems running DOS or older ver-
sions of Windows have an 8-character filename body length and a 3-character file-
name extension length limit. Some UNIX systems have a 14-character limit and
older Macintosh systems have a 31-character limit. If you keep the filenames short,
they are easy to type; later you can add extensions to them without exceeding the
shorter limits imposed by some filesystems. The disadvantage of short filenames is
that they are typically less descriptive than long filenames. See stat on page 526 for a
way to determine the maximum length of a filename on the local system.

Directory Files and Ordinary Files 187

Long filenames enable you to assign descriptive names to files. To help you select
among files without typing entire filenames, shells support filename completion. For
more information about this feature, see the “Filename completion” tip on page 149.

Case sensitivity You can use uppercase and/or lowercase letters within filenames. Linux is case sen-
sitive, so files named JANUARY, January, and january represent three distinct files.

Filename Extensions

A filename extension is the part of the filename following an embedded period. In
the filenames listed in Table 6-1, filename extensions help describe the contents of
the file. Some programs, such as the C programming language compiler, default to
specific filename extensions; in most cases, however, filename extensions are
optional. Use extensions freely to make filenames easy to understand. If you like,
you can use several periods within the same filename—for example, notes.4.10.01
or files.tar.gz.

Do not use SPACEs within filenames

caution Although you can use SPACEs within filenames, it is a poor idea. Because a SPACE is a special char-
acter, you must quote it on a command line. Quoting a character on a command line can be diffi-
cult for a novice user and cumbersome for an experienced user. Use periods or underscores
instead of SPACEs: joe.05.04.26, new_stuff.

If you are working with a filename that includes a SPACE, such as a file from another operating sys-
tem, you must quote the SPACE on the command line by preceding it with a backslash or by placing
quotation marks on either side of the filename. The two following commands send the file named
my file to the printer.

$ lpr my\ file
$ lpr "my file"

Table 6-1 Filename extensions

Filename with extension Meaning of extension

compute.c A C programming language source file

compute.o The object code for the program

compute The same program as an executable file

memo.0410.txt A text file

memo.pdf A PDF file; view with xpdf under a GUI

memo.ps A PostScript file; view with gs under a GUI

memo.Z A file compressed with compress (page 161); use
uncompress or gunzip (page 161) to decompress

memo.tgz or memo.tar.gz A tar (page 161) archive of files compressed with gzip (page 161)

188 Chapter 6 The Linux Filesystem

Hidden Filenames

A filename that begins with a period is called a hidden filename (or a hidden file or
sometimes an invisible file) because ls does not normally display it. The command
ls –a displays all filenames, even hidden ones. Names of startup files (page 188)
usually begin with a period so that they are hidden and do not clutter a directory
listing. The .plan file (page 168) is also hidden. Two special hidden entries—a sin-
gle and double period (. and . .)—appear in every directory (page 193).

The Working Directory

pwd While you are logged in on a character-based interface to a Linux system, you are
always associated with a directory. The directory you are associated with is called
the working directory or current directory. Sometimes this association is referred to
in a physical sense: “You are in (or working in) the jenny directory.” The pwd (print
working directory) utility displays the pathname of the working directory.

Your Home Directory

When you first log in on a Linux system or start a terminal emulator window, your
working directory is your home directory. To display the pathname of your home
directory, use pwd just after you log in (Figure 6-4).

When used without any arguments, the ls utility displays a list of the files in the
working directory. Because your home directory has been the only working directory
you have used so far, ls has always displayed a list of files in your home directory.
(All the files you have created up to this point were created in your home directory.)

Startup Files

Startup files, which appear in your home directory, give the shell and other pro-
grams information about you and your preferences. Frequently one of these files
tells the shell what kind of terminal you are using (page 988) and executes the stty
(set terminal) utility to establish the erase (page 137) and line kill (page 138) keys.

Either you or the system administrator can put a shell startup file containing shell
commands in your home directory. The shell executes the commands in this file
each time you log in. Because the startup files have hidden filenames, you must use

memo.gz A file compressed with gzip (page 161); view with zcat or
decompress with gunzip (both on page 161)

memo.bz2 A file compressed with bzip2 (page 160); view with bzcat or
decompress with bunzip2 (both on page 160)

memo.html A file meant to be viewed using a Web browser, such as Firefox

photo.gif, photo.jpg,
photo.jpeg, photo.bmp,
photo.tif, or photo.tiff

A file containing graphical information, such as a picture

Table 6-1 Filename extensions (continued)

Pathnames 189

the ls –a command to see whether one is in your home directory. A GUI has many
startup files. Usually you do not need to work with these files directly but can con-
trol startup sequences using icons on the desktop. See page 277 for more informa-
tion about startup files.

Pathnames

This section discusses absolute and relative pathnames and explains how to use
them to your advantage.

Absolute Pathnames

Every file has a pathname. Figure 6-5 shows the pathnames of directories and ordi-
nary files in part of a filesystem hierarchy. An absolute pathname always starts with
a slash (/), the name of the root directory. You can then build the absolute pathname
of a file by tracing a path from the root directory through all the intermediate direc-
tories to the file. String all the filenames in the path together, separating each from
the next with a slash (/) and preceding the entire group of filenames with a slash (/).
This path of filenames is called an absolute pathname because it locates a file abso-
lutely by tracing a path from the root directory to the file. The part of a pathname
following the final slash is called a simple filename, filename, or basename.

login: alex
Password:
Last login: Wed Oct 20 11:14:21 from bravo
$ pwd
/home/alex

Figure 6-4 Logging in and displaying the pathname of your home directory

Figure 6-5 Absolute pathnames

/

etctmphome

hlsjennyalex

notesbin

report log

/home /etc

/home/hls

/home/hls/notes

/home/hls/bin/log

/home/jenny

190 Chapter 6 The Linux Filesystem

~ (Tilde) in Pathnames

In another form of absolute pathname, the shell expands the characters ~/ (a tilde
followed by a slash) at the start of a pathname into the pathname of your home
directory. Using this shortcut, you can display your .bashrc startup file (page 277)
with the following command, no matter which directory is your working directory:

$ less ~/.bashrc

A tilde quickly references paths that start with your or someone else’s home directory.
The shell expands a tilde followed by a username at the beginning of a pathname into
the pathname of that user’s home directory. For example, assuming he has permission
to do so, Alex can examine Scott’s .bashrc file with the following command:

$ less ~scott/.bashrc

Refer to “Tilde Expansion” on page 341 for more information.

Relative Pathnames

A relative pathname traces a path from the working directory to a file. The path-
name is relative to the working directory. Any pathname that does not begin with
the root directory (/) or a tilde (~) is a relative pathname. Like absolute pathnames,
relative pathnames can trace a path through many directories. The simplest relative
pathname is a simple filename, which identifies a file in the working directory. The
examples in the next sections use absolute and relative pathnames.

Significance of the Working Directory

To access any file in the working directory, you need only a simple filename. To
access a file in another directory, you must use a pathname. Typing a long pathname
is tedious and increases the chance of making a mistake. This possibility is less likely
under a GUI, where you click filenames or icons. You can choose a working direc-
tory for any particular task to reduce the need for long pathnames. Your choice of a
working directory does not allow you to do anything you could not do
otherwise—it just makes some operations easier.

Refer to Figure 6-6 as you read this paragraph. Files that are children of the work-
ing directory can be referenced by simple filenames. Grandchildren of the working
directory can be referenced by short relative pathnames: two filenames separated by
a slash. When you manipulate files in a large directory structure, using short relative
pathnames can save you time and aggravation. If you choose a working directory
that contains the files used most often for a particular task, you need to use fewer
long, cumbersome pathnames.

When using a relative pathname, know which directory is the working directory
caution The location of the file that you are accessing with a relative pathname is dependent on (is relative to)

the working directory. Always make sure you know which directory is the working directory before
you use a relative pathname. Use pwd to verify the directory. If you are using mkdir and you are not
where you think you are in the file hierarchy, the new directory will end up in an unexpected location.

It does not matter which directory is the working directory when you use an absolute pathname.

Directory Commands 191

Directory Commands

This section discusses how to create directories (mkdir), switch between directories
(cd), remove directories (rmdir), use pathnames to make your work easier, and move
and copy files and directories between directories.

mkdir: Creates a Directory

The mkdir utility creates a directory. The argument (page 1023) to mkdir becomes the
pathname of the new directory. The following examples develop the directory struc-
ture shown in Figure 6-7. In the figure, the directories that are added appear in a
lighter shade than the others and are connected by dashes.

Figure 6-6 Relative pathnames

/

etctmphome

hlsjennyalex

notesbin

report log

..

working directory = .

notes

bin/log

../jenny

Figure 6-7 The file structure developed in the examples

/

home

alex

literature

promo

demonames temp

192 Chapter 6 The Linux Filesystem

In Figure 6-8, pwd shows that Alex is working in his home directory
(/home/alex) and ls shows the names of the files in his home directory: demo,
names, and temp. Using mkdir, Alex creates a directory named literature as a child
of his home directory. He uses a relative pathname (a simple filename) because
he wants the literature directory to be a child of the working directory. Of
course, Alex could have used an absolute pathname to create the same directory:
mkdir /home/alex/literature.

The second ls in Figure 6-8 verifies the presence of the new directory. The –F option
to ls displays a slash after the name of each directory and an asterisk after each exe-
cutable file (shell script, utility, or application). When you call it with an argument
that is the name of a directory, ls lists the contents of that directory. The final ls does
not display anything because there are no files in the literature directory.

The following commands show two ways to create the promo directory as a child of
the newly created literature directory. The first way checks that /home/alex is the
working directory and uses a relative pathname:

$ pwd
/home/alex
$ mkdir literature/promo

The second way uses an absolute pathname:

$ mkdir /home/alex/literature/promo

Use the –p (parents) option to mkdir to create both the literature and promo directo-
ries with one command:

$ pwd
/home/alex
$ ls
demo names temp
$ mkdir -p literature/promo

or

$ mkdir -p /home/alex/literature/promo

$ pwd
/home/alex
$ ls
demo names temp
$ mkdir literature
$ ls
demo literature names temp
$ ls -F
demo literature/ names temp
$ ls literature
$

Figure 6-8 The mkdir utility

Directory Commands 193

cd: Changes to Another Working Directory

The cd (change directory) utility makes another directory the working directory but
does not change the contents of the working directory. Figure 6-9 shows two ways
to make the /home/alex/literature directory the working directory, as verified by
pwd. First Alex uses cd with an absolute pathname to make literature his working
directory—it does not matter which is your working directory when you give a
command with an absolute pathname.

A pwd command confirms the change made by Alex. When used without an argu-
ment, cd makes your home directory the working directory, as it was when you
logged in. The second cd command in Figure 6-9 does not have an argument so it
makes Alex’s home directory the working directory. Finally, knowing that he is
working in his home directory, Alex uses a simple filename to make the literature
directory his working directory (cd literature) and confirms the change with pwd.

The . and . . Directory Entries

The mkdir utility automatically puts two entries in each directory you create: a single
period (.) and a double period (. .). The . is synonymous with the pathname of the
working directory and can be used in its place; the .. is synonymous with the path-
name of the parent of the working directory. These entries are hidden because their
filenames begin with a period.

With the literature directory as the working directory, the following example uses ..
three times: first to list the contents of the parent directory (/home/alex), second to

$ cd /home/alex/literature
$ pwd
/home/alex/literature
$ cd
$ pwd
/home/alex
$ cd literature
$ pwd
/home/alex/literature

Figure 6-9 cd changes your working directory

The working directory versus your home directory
tip The working directory is not the same as your home directory. Your home directory remains the

same for the duration of your session and usually from session to session. Immediately after you
log in, you are always working in the same directory: your home directory.

Unlike your home directory, the working directory can change as often as you like. You have no
set working directory, which explains why some people refer to it as the current directory. When
you log in and until you change directories by using cd, your home directory is your working
directory. If you were to change directories to Scott’s home directory, then Scott’s home directory
would be your working directory.

194 Chapter 6 The Linux Filesystem

copy the memoA file to the parent directory, and third to list the contents of the
parent directory again.

$ pwd
/home/alex/literature
$ ls ..
demo literature names temp
$ cp memoA ..
$ ls ..
demo literature memoA names temp

After using cd to make promo (a subdirectory of literature) his working directory,
Alex can use a relative pathname to call vim to edit a file in his home directory.

$ cd promo
$ vim ../../names

You can use an absolute or relative pathname or a simple filename virtually any-
where that a utility or program requires a filename or pathname. This usage holds
true for ls, vim, mkdir, rm, and most other Linux utilities.

Important Standard Directories and Files

Originally files on a Linux system were not located in standard places. The scat-
tered files made it difficult to document and maintain a Linux system and just about
impossible for someone to release a software package that would compile and run
on all Linux systems. The first standard for the Linux filesystem, the FSSTND
(Linux Filesystem Standard), was released on February 14, 1994. In early 1995
work was started on a broader standard covering many UNIX-like systems: FHS
(Linux Filesystem Hierarchy Standard, www.pathname.com/fhs). More recently
FHS has been incorporated in LSB (Linux Standard Base, www.linuxbase.org), a
workgroup of FSG (Free Standards Group, www.freestandards.org). Figure 6-10
shows the locations of some important directories and files as specified by FHS. The
significance of many of these directories will become clear as you continue reading.

The following list describes the directories shown in Figure 6-10, some of the direc-
tories specified by FHS, and some other directories. Ubuntu Linux, however, does
not use all the directories specified by FHS. Be aware that you cannot always deter-
mine the function of a directory by its name. For example, although /opt stores add-
on software, /etc/opt stores configuration files for the software in /opt. See also
“Important Files and Directories” on page 554.

/ Root The root directory, present in all Linux filesystem structures, is the ancestor
of all files in the filesystem.

/bin Essential command binaries Holds the files needed to bring the system up and run
it when it first comes up in recovery mode (page 512).

/boot Static files of the boot loader Contains all of the files needed to boot the system.

/dev Device files Contains all files that represent peripheral devices, such as disk drives,
terminals, and printers. Previously this directory was filled with all possible devices.

www.pathname.com/fhs
www.linuxbase.org
www.freestandards.org

Directory Commands 195

The udev utility (page 568) provides a dynamic device directory that enables /dev to
contain only devices that are present on the system.

/etc Machine–local system configuration files Holds administrative, configuration,
and other system files. One of the most important is /etc/passwd, which contains a
list of all users who have permission to use the system.

/etc/opt Configuration files for add-on software packages kept in /opt

/etc/X11 Machine–local configuration files for the X Window System

/home User home directories Each user’s home directory is typically one of many sub-
directories of the /home directory. As an example, assuming that users’ directories
are under /home, the absolute pathname of Jenny’s home directory is /home/jenny.
On some systems the users’ directories may not be found under /home but instead
might be spread among other directories such as /inhouse and /clients.

/lib Shared libraries

/lib/modules Loadable kernel modules

/mnt Mount point for temporarily mounting filesystems

/opt Add-on software packages (optional packages)

/proc Kernel and process information virtual filesystem

/root Home directory for the root account

/sbin Essential system binaries Utilities used for system administration are stored in
/sbin and /usr/sbin. The /sbin directory includes utilities needed during the booting
process, and /usr/sbin holds utilities used after the system is up and running. In
older versions of Linux, many system administration utilities were scattered
through several directories that often included other system files (/etc, /usr/bin,
/usr/adm, /usr/include).

/sys Device pseudofilesystem See udev on page 568 for more information.

/tmp Temporary files

/usr Second major hierarchy Traditionally includes subdirectories that contain infor-
mation used by the system. Files in /usr subdirectories do not change often and may
be shared by several systems.

/usr/bin Most user commands Contains the standard Linux utility programs—that is,
binaries that are not needed in recovery mode (page 512).

Figure 6-10 A typical FHS-based Linux filesystem structure

mail spool bin sbin alex jenny hls

sbin var dev usr etc tmp home root

/

bin

196 Chapter 6 The Linux Filesystem

/usr/games Games and educational programs

/usr/include Header files included by C programs

/usr/lib Libraries

/usr/local Local hierarchy Holds locally important files and directories that are added to the
system. Subdirectories can include bin, games, include, lib, sbin, share, and src.

/usr/man Online manuals

/usr/sbin Nonvital system administration binaries See /sbin.

/usr/share Architecture-independent data Subdirectories can include dict, doc, games, info,
locale, man, misc, terminfo, and zoneinfo.

/usr/share/doc Documentation

/usr/share/info GNU info system’s primary directory

/usr/src Source code

/var Variable data Files with contents that vary as the system runs are kept in sub-
directories under /var. The most common examples are temporary files, system log
files, spooled files, and user mailbox files. Subdirectories can include cache, lib,
lock, log, opt, run, spool, tmp, and yp. Older versions of Linux scattered such files
through several subdirectories of /usr (/usr/adm, /usr/mail, /usr/spool, /usr/tmp).

/var/log Log files Contains lastlog (a record of the last login by each user), messages (sys-
tem messages from syslogd), and wtmp (a record of all logins/logouts).

/var/spool Spooled application data Contains anacron, at, cron, lpd, mail, mqueue, samba,
and other directories. The file /var/spool/mail typically has a symbolic link in /var.

Working with Directories

This section covers deleting directories, copying and moving files between directo-
ries, and moving directories. It also describes how to use pathnames to make your
work with Linux easier.

rmdir: Deletes a Directory

The rmdir (remove directory) utility deletes a directory. You cannot delete the work-
ing directory or a directory that contains files other than the . and .. entries. If you
need to delete a directory that has files in it, first use rm to delete the files and then
delete the directory. You do not have to (nor can you) delete the . and .. entries;
rmdir removes them automatically. The following command deletes the promo
directory:

$ rmdir /home/alex/literature/promo

The rm utility has a –r option (rm –r filename) that recursively deletes files, includ-
ing directories, within a directory and also deletes the directory itself.

Working with Directories 197

Using Pathnames

touch Use a text editor to create a file named letter if you want to experiment with the
examples that follow. Alternatively you can use touch to create an empty file:

$ cd
$ pwd
/home/alex
$ touch letter

With /home/alex as the working directory, the following example uses cp with a rel-
ative pathname to copy the file letter to the /home/alex/literature/promo directory
(you will need to create promo again if you deleted it earlier). The copy of the file
has the simple filename letter.0610:

$ cp letter literature/promo/letter.0610

If Alex does not change to another directory, he can use vim as shown to edit the
copy of the file he just made:

$ vim literature/promo/letter.0610

If Alex does not want to use a long pathname to specify the file, he can use cd to
make promo the working directory before using vim:

$ cd literature/promo
$ pwd
/home/alex/literature/promo
$ vim letter.0610

To make the parent of the working directory (named /home/alex/literature) the new
working directory, Alex can give the following command, which takes advantage of
the .. directory entry:

$ cd ..
$ pwd
/home/alex/literature

mv, cp: Move or Copy Files

Chapter 5 discussed the use of mv to rename files. However, mv works even more
generally: You can use this utility to move files from one directory to another
(change the pathname of a file) as well as to change a simple filename. When used
to move one or more files to a new directory, the mv command has this syntax:

mv existing-file-list directory

Use rm –r carefully, if at all

caution Although rm –r is a handy command, you must use it carefully. Do not use it with an ambiguous
file reference such as *. It is frighteningly easy to wipe out your entire home directory with a single
short command.

198 Chapter 6 The Linux Filesystem

If the working directory is /home/alex, Alex can use the following command to move
the files names and temp from the working directory to the literature directory:

$ mv names temp literature

This command changes the absolute pathnames of the names and temp files from
/home/alex/names and /home/alex/temp to /home/alex/literature/names and
/home/alex/literature/temp, respectively (Figure 6-11). Like most Linux com-
mands, mv accepts either absolute or relative pathnames.

As you work with Linux and create more files, you will need to create new directo-
ries using mkdir to keep the files organized. The mv utility is a useful tool for moving
files from one directory to another as you extend your directory hierarchy.

The cp utility works in the same way as mv does, except that it makes copies of the
existing-file-list in the specified directory.

mv: Moves a Directory

Just as it moves ordinary files from one directory to another, so mv can move direc-
tories. The syntax is similar except that you specify one or more directories, not
ordinary files, to move:

mv existing-directory-list new-directory

If new-directory does not exist, the existing-directory-list must contain just one
directory name, which mv changes to new-directory (mv renames the directory).
Although you can rename directories using mv, you cannot copy their contents with
cp unless you use the –r option. Refer to the tar and cpio man pages for other ways
to copy and move directories.

Figure 6-11 Using mv to move names and temp

home

scottalexjenny

literature

names temp

names temp

/

Access Permissions 199

Access Permissions

Ubuntu Linux supports two methods of controlling who can access a file and how
they can access it: traditional Linux access permissions and Access Control Lists
(ACLs, page 203). ACLs provide finer-grained control of access privileges. This sec-
tion describes traditional Linux access permissions.

Three types of users can access a file: the owner of the file (owner), a member of a
group that the file is associated with (group; see page 558 for more information on
groups), and everyone else (other). A user can attempt to access an ordinary file in
three ways: by trying to read from, write to, or execute it.

ls –l: Displays Permissions

When you call ls with the –l option and the name of one or more ordinary files, ls
displays a line of information about the file. The following example displays infor-
mation for two files. The file letter.0610 contains the text of a letter, and
check_spell contains a shell script, a program written in a high-level shell program-
ming language:

$ ls -l letter.0610 check_spell
-rw-r--r-- 1 alex pubs 3355 May 2 10:52 letter.0610
-rwxr-xr-x 2 alex pubs 852 May 5 14:03 check_spell

From left to right, the lines that an ls –l command displays contain the following
information (refer to Figure 6-12):

• The type of file (first character)

• The file’s access permissions (the next nine characters)

• The ACL flag (present if the file has an ACL, page 203)

• The number of links to the file (page 209)

• The name of the owner of the file (usually the person who created the file)

• The name of the group that the file is associated with

• The size of the file in characters (bytes)

Figure 6-12 The columns displayed by the ls –l command

-rwxrwxr-x+..3.alex.....pubs.........2048.Aug.12.13:15.memo

Ty
pe

of
fil

e
Fi

le
ac

ce
ss

Li
nk

s
O

w
ne

r

Si
ze

of
m

od
ifi

ca
tio

n

D
at

e
an

d
tim

e

Fi
le

na
m

e

G
ro

up

AC
L

fla
g

pe
rm

is
si

on
s

200 Chapter 6 The Linux Filesystem

• The date and time the file was created or last modified

• The name of the file

The type of file (first column) for letter.0610 is a hyphen (–) because it is an ordi-
nary file (directory files have a d in this column).

The next three characters specify the access permissions for the owner of the file: r
indicates read permission, w indicates write permission, and x indicates execute per-
mission. A – in a column indicates that the owner does not have the permission that
would have appeared in that position.

In a similar manner the next three characters represent permissions for the group,
and the final three characters represent permissions for other (everyone else). In the
preceding example, the owner of letter.0610 can read from and write to the file,
whereas the group and others can only read from the file and no one is allowed to
execute it. Although execute permission can be allowed for any file, it does not
make sense to assign execute permission to a file that contains a document, such as
a letter. The check_spell file is an executable shell script, so execute permission is
appropriate for it. (The owner, group, and others have execute access permission.)

chmod: Changes Access Permissions

The owner of a file controls which users have permission to access the file and how
they can access it. When you own a file, you can use the chmod (change mode) util-
ity to change access permissions for that file. In the following example, chmod adds
(+) read and write permissions (rw) for all (a) users:

$ chmod a+rw letter.0610
$ ls -l letter.0610
-rw-rw-rw- 1 alex pubs 3355 May 2 10:52 letter.0610

In the next example, chmod removes (–) read (r) and execute (x) permissions for
users other (o) than the owner of the file (alex) and members of the group the file is
associated with (pubs):

$ chmod o-rx check_spell
$ ls -l check_spell
-rwxr-x--- 2 alex pubs 852 May 5 14:03 check_spell

In addition to a (all) and o (other), you can use g (group) and u (user, although user
refers to the owner of the file who may or may not be the user of the file at any
given time) in the argument to chmod. You can also use absolute, or numeric, argu-
ments with chmod. Refer to page 283 for more information on using chmod to make
a file executable and to the chmod man page for information on absolute arguments
and chmod in general. Refer to page 558 for more information on groups.

You must have read permission to execute a shell script

tip Because a shell needs to read a shell script (a text file containing shell commands) before it can
execute the commands within that script, you must have read permission for the file containing
the script to execute it. You also need execute permission to execute a shell script directly on the
command line. In contrast, binary (program) files do not need to be read; they are executed
directly. You need only execute permission to run a binary (nonshell) program.

Access Permissions 201

The Linux file access permission scheme lets you give other users access to the files
you want to share yet keep your private files confidential. You can allow other users
to read from and write to a file (handy if you are one of several people working on
a joint project). You can allow others only to read from a file (perhaps a project
specification you are proposing). Or you can allow others only to write to a file
(similar to an inbox or mailbox, where you want others to be able to send you mail
but do not want them to read your mail). Similarly you can protect entire directo-
ries from being scanned (covered shortly).

There is an exception to the access permissions just described. Anyone who can gain
root privileges (using sudo (page 490) or su) has full access to all files, regardless of
the file’s owner or access permissions.

Setuid and Setgid Permissions

When you execute a file that has setuid (set user ID) permission, the process execut-
ing the file takes on the privileges of the file’s owner. For example, if you run a set-
uid program that removes all files in a directory, you can remove files in any of the
file owner’s directories, even if you do not normally have permission to do so.

In a similar manner, setgid (set group ID) permission means that the process execut-
ing the file takes on the privileges of the group the file is associated with. The ls util-
ity shows setuid permission by placing an s in the owner’s executable position and
setgid permission by placing an s in the group’s executable position:

$ ls -l program1
-rwxr-xr-x 1 alex pubs 15828 Nov 5 06:28 program1
$ chmod u+s program1
$ ls -l program1
-rwsr-xr-x 1 alex pubs 15828 Nov 5 06:28 program1
$ chmod g+s program1
$ ls -l program1
-rwsr-sr-x 1 alex pubs 15828 Nov 5 06:28 program1

chmod: o for other, u for owner

tip When using chmod, many people assume that the o stands for owner; it does not. The o stands
for other, whereas u stands for owner (user). The acronym UGO (user-group-other) can help you
remember how permissions are named.

Minimize use of setuid and setgid programs owned by root
security Executable files that are setuid and owned by root have root privileges when they are run, even if

they are not run by root. This type of program is very powerful because it can do anything that
root can do (and that the program is designed to do). Similarly executable files that are setgid and
belong to the group root have extensive privileges.

Because of the power they hold and their potential for destruction, it is wise to avoid indiscrimi-
nately creating and using setuid and setgid programs owned by or belonging to the group root.
Because of their inherent dangers, many sites minimize the use of these programs on their sys-
tems. One necessary setuid program is passwd. See page 489 for a tip on setuid files owned by
root and page 521 for a command that lists setuid files on the local system.

202 Chapter 6 The Linux Filesystem

The following example shows two ways for a user working with root privileges to
give a program setuid privileges:

$ ls -l my*
–rwxr–xr–x 1 root other 24152 Apr 29 16:30 myprog
–rwxr–xr–x 1 root other 24152 Apr 29 16:31 myprog2
$ sudo chmod 4755 myprog
$ sudo chmod u+s myprog2
$ ls -l my*
–rwsr–xr–x 1 root other 24152 Apr 29 16:30 myprog
–rwsr–xr–x 1 root other 24152 Apr 29 16:31 myprog2

The s in the owner execute position of the ls –l output (page 199) indicates that the
file has setuid permission.

Directory Access Permissions

Access permissions have slightly different meanings when they are used with direc-
tories. Although the three types of users can read from or write to a directory, the
directory cannot be executed. Execute access permission is redefined for a directory:
It means that you can cd into the directory and/or examine files that you have per-
mission to read from in the directory. It has nothing to do with executing a file.

When you have only execute permission for a directory, you can use ls to list a file
in the directory if you know its name. You cannot use ls without an argument to list
the entire contents of the directory. In the following exchange, Jenny first verifies
that she is logged in as herself. Then she checks the permissions on Alex’s info direc-
tory. You can view the access permissions associated with a directory by running ls
with the –d (directory) and –l (long) options:

$ who am i
jenny pts/7 Aug 21 10:02
$ ls -ld /home/alex/info
drwx-----x 2 alex pubs 512 Aug 21 09:31 /home/alex/info
$ ls -l /home/alex/info
ls: /home/alex/info: Permission denied

The d at the left end of the line that ls displays indicates that /home/alex/info is a
directory. Alex has read, write, and execute permissions; members of the pubs
group have no access permissions; and other users have execute permission only, as
indicated by the x at the right end of the permissions. Because Jenny does not have
read permission for the directory, the ls –l command returns an error.

When Jenny specifies the names of the files she wants information about, she is not
reading new directory information but rather searching for specific information,
which she is allowed to do with execute access to the directory. She has read permis-
sion for notes so she has no problem using cat to display the file. She cannot display
financial because she does not have read permission for it:

Do not write setuid shell scripts

security Never give shell scripts setuid permission. Several techniques for subverting them are well known.

ACLs: Access Control Lists 203

$ ls -l /home/alex/info/financial /home/alex/info/notes
-rw------- 1 alex pubs 34 Aug 21 09:31 /home/alex/info/financial
-rw-r--r-- 1 alex pubs 30 Aug 21 09:32 /home/alex/info/notes

$ cat /home/alex/info/notes
This is the file named notes.
$ cat /home/alex/info/financial
cat: /home/alex/info/financial: Permission denied

Next Alex gives others read access to his info directory:

$ chmod o+r /home/alex/info

When Jenny checks her access permissions on info, she finds that she has both read
and execute access to the directory. Now ls –l works just fine without arguments,
but she still cannot read financial. (This restriction is an issue of file permissions,
not directory permissions.) Finally, Jenny tries to create a file named newfile by
using touch. If Alex were to give her write permission to the info directory, Jenny
would be able to create new files in it:

$ ls -ld /home/alex/info
drwx---r-x 2 alex pubs 512 Aug 21 09:31 /home/alex/info
$ ls -l /home/alex/info
total 8
-rw------- 1 alex pubs 34 Aug 21 09:31 financial
-rw-r--r-- 1 alex pubs 30 Aug 21 09:32 notes
$ cat /home/alex/info/financial
cat: financial: Permission denied
$ touch /home/alex/info/newfile
touch: cannot touch '/home/alex/info/newfile': Permission denied

ACLs: Access Control Lists

Access Control Lists (ACLs) provide finer-grained control over which users can
access specific directories and files than do traditional Linux permissions (page 199).
Using ACLs you can specify the ways in which each of several users can access a
directory or file. Because ACLs can reduce performance, do not enable them on file-
systems that hold system files, where the traditional Linux permissions are sufficient.
Also be careful when moving, copying, or archiving files: Not all utilities preserve
ACLs. In addition, you cannot copy ACLs to filesystems that do not support ACLs.

An ACL comprises a set of rules. A rule specifies how a specific user or group can
access the file that the ACL is associated with. There are two kinds of rules: access
rules and default rules. (The documentation refers to access ACLs and default
ACLs, even though there is only one type of ACL: There is one type of list [ACL]
and there are two types of rules that an ACL can contain.)

An access rule specifies access information for a single file or directory. A default
ACL pertains to a directory only; it specifies default access information (an ACL)
for any file in the directory that is not given an explicit ACL.

204 Chapter 6 The Linux Filesystem

Enabling ACLs

Before you can use ACLs you must install the acl software package:

$ sudo aptitude install acl

Ubuntu Linux officially supports ACLs on ext2 and ext3 filesystems only, although
informal support for ACLs is available on other filesystems. To use ACLs on an
ext2 or ext3 filesystem, you must mount the device with the acl option (no_acl is
the default). For example, if you want to mount the device represented by /home so
that you can use ACLs on files in /home, you can add acl to its options list in
/etc/fstab:

$ grep home /etc/fstab
LABEL=/home /home ext3 defaults,acl 1 2

After changing fstab, you need to remount /home before you can use ACLs. If no
one else is using the system, you can unmount it and mount it again (working with
root privileges) as long as your working directory is not in the /home hierarchy.
Alternatively you can use the remount option to mount to remount /home while the
device is in use:

mount -v -o remount /home
/dev/hda3 on /home type ext3 (rw,acl)

See page 576 for information on fstab and page 572 for information on mount.

Working with Access Rules

The setfacl utility modifies a file’s ACL and the getfacl utility displays a file’s ACL.
When you use getfacl to obtain information about a file that does not have an ACL,
it displays the same information as an ls –l command, albeit in a different format:

$ ls -l report
-rw-r--r-- 1 max max 9537 Jan 12 23:17 report

$ getfacl report
file: report
owner: max
group: max

Most utilities do not preserve ACLs

caution When used with the –p (preserve) or –a (archive) option, cp preserves ACLs when it copies files.
Another utility that is supplied with Ubuntu Linux that preserves ACLs is mv. When you use cp
with the –p or –a option and it is not able to copy ACLs, and in the case where mv is unable to
preserve ACLs, the utility performs the operation and issues an error message:

$ mv report /tmp
mv: preserving permissions for '/tmp/report': Operation not supported

Other utilities, such as tar, cpio, and dump, do not support ACLs. You can use cp with the –a
option to copy directory hierarchies, including ACLs.

You can never copy ACLs to a filesystem that does not support ACLs or to a filesystem that does
not have ACL support turned on.

ACLs: Access Control Lists 205

user::rw-
group::r--
other::r--

The first three lines of the getfacl output are called the header; they specify the name
of the file, the owner of the file, and the group the file is associated with. For more
information refer to “ls –l: Displays Permissions” on page 199. The ––omit-header
(or just ––omit) option causes getfacl not to display the header:

$ getfacl --omit-header report
user::rw-
group::r--
other::r--

In the line that starts with user, the two colons (::) with no name between them indi-
cate that the line specifies the permissions for the owner of the file. Similarly, the
two colons in the group line indicate that the line specifies permissions for the group
the file is associated with. The two colons following other are there for consistency:
No name can be associated with other.

The setfacl ––modify (or –m) option adds or modifies one or more rules in a file’s
ACL using the following format:

setfacl ––modify ugo:name:permissions file-list

where ugo can be either u, g, or o to indicate that the command sets file permissions
for a user, a group, or all other users, respectively; name is the name of the user or
group that permissions are being set for; permissions is the permissions in either
symbolic or absolute format; and file-list is the list of files that the permissions are
to be applied to. You must omit name when you specify permissions for other users
(o). Symbolic permissions use letters to represent file permissions (rwx, r–x, and so
on), whereas absolute permissions use an octal number. While chmod uses three sets
of permissions or three octal numbers (one each for the owner, group, and other
users), setfacl uses a single set of permissions or a single octal number to represent
the permissions being granted to the user or group represented by ugo and name.

For example, both of the following commands add a rule to the ACL for the report
file that gives Sam read and write permission to that file:

$ setfacl --modify u:sam:rw- report

or

$ setfacl --modify u:sam:6 report

$ getfacl report
file: report
owner: max
group: max
user::rw-
user:sam:rw-
group::r--
mask::rw-
other::r--

206 Chapter 6 The Linux Filesystem

The line containing user:sam:rw– shows that the user named sam has read and
write access (rw–) to the file. See page 199 for an explanation of how to read sym-
bolic access permissions. See the following optional section for a description of the
line that starts with mask.

When a file has an ACL, ls –l displays a plus sign (+) following the permissions,
even if the ACL is empty:

$ ls -l report
-rw-rw-r--+ 1 max max 9537 Jan 12 23:17 report

optional Effective Rights Mask

The line that starts with mask specifies the effective rights mask. This mask limits
the effective permissions granted to ACL groups and users. It does not affect the
owner of the file or the group the file is associated with. In other words, it does not
affect traditional Linux permissions. However, because getfacl always sets the effec-
tive rights mask to the least restrictive ACL permissions for the file, the mask has no
effect unless you set it explicitly after you set up an ACL for the file. You can set the
mask by specifying mask in place of ugo and by not specifying a name in a setfacl
command.

The following example sets the effective rights mask to read for the report file:

$ setfacl -m mask::r-- report

The mask line in the following getfacl output shows the effective rights mask set to
read (r––). The line that displays Sam’s file access permissions shows them still set
to read and write. However, the comment at the right end of the line shows that his
effective permission is read.

$ getfacl report
file: report
owner: max
group: max
user::rw-
user:sam:rw- #effective:r--
group::r--
mask::r--
other::r--

As the next example shows, setfacl can modify ACL rules and can set more than one
ACL rule at a time:

$ setfacl -m u:sam:r--,u:zach:rw- report

$ getfacl --omit-header report
user::rw-
user:sam:r--
user:zach:rw-
group::r--

ACLs: Access Control Lists 207

mask::rw-
other::r--

The –x option removes ACL rules for a user or a group. It has no effect on permis-
sions for the owner of the file or the group that the file is associated with. The next
example shows setfacl removing the rule that gives Sam permission to access the file:

$ setfacl -x u:sam report

$ getfacl --omit-header report
user::rw-
user:zach:rw-
group::r--
mask::rw-
other::r--

You must not specify permissions when you use the –x option. Instead, specify only
the ugo and name. The –b option, followed by a filename only, removes all ACL
rules and the ACL itself from the file or directory you specify.

Both setfacl and getfacl have many options. Use the ––help option to display brief
lists of options or refer to the man pages for details.

Setting Default Rules for a Directory

The following example shows that the dir directory initially has no ACL. The setfacl
command uses the –d option to add two default rules to the ACL for dir. These rules
apply to all files in the dir directory that do not have explicit ACLs. The rules give
members of the pubs group read and execute permissions and give members of the
admin group read, write, and execute permissions.

$ ls -ld dir
drwx------ 2 max max 4096 Feb 12 23:15 dir
$ getfacl dir
file: dir
owner: max
group: max
user::rwx
group::---
other::---

$ setfacl -d -m g:pubs:r-x,g:admin:rwx dir

The following ls command shows that the dir directory now has an ACL, as indi-
cated by the + to the right of the permissions. Each of the default rules that getfacl
displays starts with default:. The first two default rules and the last default rule spec-
ify the permissions for the owner of the file, the group that the file is associated with,
and all other users. These three rules specify the traditional Linux permissions and
take precedence over other ACL rules. The third and fourth rules specify the permis-
sions for the pubs and admin groups. Next is the default effective rights mask.

208 Chapter 6 The Linux Filesystem

$ ls -ld dir
drwx------+ 2 max max 4096 Feb 12 23:15 dir
$ getfacl dir
file: dir
owner: max
group: max
user::rwx
group::---
other::---
default:user::rwx
default:group::---
default:group:pubs:r-x
default:group:admin:rwx
default:mask::rwx
default:other::---

Remember that the default rules pertain to files held in the directory that are not
assigned ACLs explicitly. You can also specify access rules for the directory itself.

When you create a file within a directory that has default rules in its ACL, the effec-
tive rights mask for that file is created based on the file’s permissions. In some cases
the mask may override default ACL rules.

In the next example, touch creates a file named new in the dir directory. The ls com-
mand shows that this file has an ACL. Based on the value of umask (page 526), both
the owner and the group that the file is associated with have read and write permis-
sions for the file. The effective rights mask is set to read and write so that the effec-
tive permission for pubs is read and the effective permissions for admin are read and
write. Neither group has execute permission.

$ cd dir
$ touch new
$ ls -l new
-rw-rw----+ 1 max max 0 Feb 13 00:39 new
$ getfacl --omit new
user::rw-
group::---
group:pubs:r-x #effective:r--
group:admin:rwx #effective:rw-
mask::rw-
other::---

If you change the file’s traditional permissions to read, write, and execute for the
owner and the group, the effective rights mask changes to read, write, and execute
and the groups specified by the default rules gain execute access to the file.

$ chmod 770 new
$ ls -l new
-rwxrwx---+ 1 max max 0 Feb 13 00:39 new
$ getfacl --omit new
user::rwx
group::---
group:pubs:r-x
group:admin:rwx
mask::rwx
other::---

Links 209

Links

A link is a pointer to a file. Every time you create a file by using vim, touch, cp, or
any other means, you are putting a pointer in a directory. This pointer associates a
filename with a place on the disk. When you specify a filename in a command, you
are indirectly pointing to the place on the disk that holds the information you want.

Sharing files can be useful when two or more people are working on the same
project and need to share some information. You can make it easy for other users to
access one of your files by creating additional links to the file.

To share a file with another user, first give the user permission to read from and
write to the file (page 200). You may also have to change the access permissions
of the parent directory of the file to give the user read, write, or execute permis-
sion (page 202). Once the permissions are appropriately set, the user can create a
link to the file so that each of you can access the file from your separate directory
hierarchies.

A link can also be useful to a single user with a large directory hierarchy. You can
create links to cross-classify files in your directory hierarchy, using different classifi-
cations for different tasks. For example, if you have the file layout depicted in
Figure 6-2 on page 185, a file named to_do might appear in each subdirectory of
the correspond directory—that is, in personal, memos, and business. If you find it
difficult to keep track of everything you need to do, you can create a separate direc-
tory named to_do in the correspond directory. You can then link each subdirectory’s
to-do list into that directory. For example, you could link the file named to_do in
the memos directory to a file named memos in the to_do directory. This set of links
is shown in Figure 6-13.

Although it may sound complicated, this technique keeps all your to-do lists con-
veniently in one place. The appropriate list is easily accessible in the task-related
directory when you are busy composing letters, writing memos, or handling per-
sonal business.

Figure 6-13 Using links to cross-classify files

correspond

to_do businessmemospersonalto_doto_do

to_dobusinessmemospersonal

Links

business

210 Chapter 6 The Linux Filesystem

optional

Hard Links

A hard link to a file appears as another file. If the file appears in the same directory
as the linked-to file, the links must have different filenames because two files in the
same directory cannot have the same name. You can create a hard link to a file only
from within the filesystem that holds the file.

ln: Creates a Hard Link

The ln (link) utility (without the –s or ––symbolic option) creates a hard link to an
existing file using the following syntax:

ln existing-file new-link

The next command makes the link shown in Figure 6-14 by creating a new link
named /home/alex/letter to an existing file named draft in Jenny’s home directory:

$ pwd
/home/jenny
$ ln draft /home/alex/letter

The new link appears in the /home/alex directory with the filename letter. In prac-
tice, Alex may need to change the directory and file permissions so that Jenny will
be able to access the file. Even though /home/alex/letter appears in Alex’s directory,
Jenny is the owner of the file because she created it.

About the discussion of hard links

tip Two kinds of links exist: hard links and symbolic (soft) links. Hard links are older and becoming
outdated. The section on hard links is marked as optional; you can skip it, although it discusses
inodes and gives you insight into the structure of the filesystem.

Figure 6-14 Two links to the same file: /home/alex/letter and /home/jenny/draft

home

/

alex jenny

memo planning

/home/alex/letter and /home/jenny/draft

Links 211

The ln utility creates an additional pointer to an existing file but it does not make
another copy of the file. Because there is only one file, the file status informa-
tion—such as access permissions, owner, and the time the file was last modified—is
the same for all links; only the filenames differ. When Jenny modifies
/home/jenny/draft, for example, Alex sees the changes in /home/alex/letter.

cp versus ln
The following commands verify that ln does not make an additional copy of a file.
Create a file, use ln to make an additional link to the file, change the contents of the
file through one link, and verify the change through the other link:

$ cat file_a
This is file A.
$ ln file_a file_b
$ cat file_b
This is file A.
$ vim file_b
...
$ cat file_b
This is file B after the change.
$ cat file_a
This is file B after the change.

If you try the same experiment using cp instead of ln and change a copy of the file,
the difference between the two utilities will become clearer. Once you change a copy
of a file, the two files are different:

$ cat file_c
This is file C.
$ cp file_c file_d
$ cat file_d
This is file C.
$ vim file_d
...
$ cat file_d
This is file D after the change.
$ cat file_c
This is file C.

ls and link counts You can use ls with the –l option, followed by the names of the files you want to
compare, to confirm that the status information is the same for two links to the same
file and is different for files that are not linked. In the following example, the 2 in the
links field (just to the left of alex) shows there are two links to file_a and file_b:

$ ls -l file_a file_b file_c file_d
-rw-r--r-- 2 alex pubs 33 May 24 10:52 file_a
-rw-r--r-- 2 alex pubs 33 May 24 10:52 file_b
-rw-r--r-- 1 alex pubs 16 May 24 10:55 file_c
-rw-r--r-- 1 alex pubs 33 May 24 10:57 file_d

Although it is easy to guess which files are linked to one another in this example, ls
does not explicitly tell you.

212 Chapter 6 The Linux Filesystem

ls and inodes Use ls with the –i option to determine without a doubt which files are linked. The –i
option lists the inode (page 1041) number for each file. An inode is the control
structure for a file. If the two filenames have the same inode number, they share the
same control structure and are links to the same file. Conversely, when two file-
names have different inode numbers, they are different files. The following example
shows that file_a and file_b have the same inode number and that file_c and file_d
have different inode numbers:

$ ls -i file_a file_b file_c file_d
3534 file_a 3534 file_b 5800 file_c 7328 file_d

All links to a file are of equal value: The operating system cannot distinguish the
order in which multiple links were created. When a file has two links, you can
remove either one and still access the file through the remaining link. You can remove
the link used to create the file, for example, and, as long as one link remains, still
access the file through that link.

Symbolic Links

In addition to hard links, Linux supports symbolic links, also called soft links or
symlinks. A hard link is a pointer to a file (the directory entry points to the inode),
whereas a symbolic link is an indirect pointer to a file (the directory entry contains
the pathname of the pointed-to file—a pointer to the hard link to the file).

Advantages of
symbolic links

Symbolic links were developed because of the limitations inherent in hard links.
You cannot create a hard link to a directory, but you can create a symbolic link to a
directory.

In many cases the Linux file hierarchy encompasses several filesystems. Because
each filesystem keeps separate control information (that is, separate inode tables or
filesystem structures) for the files it holds, it is not possible to create hard links
between files in different filesystems. A symbolic link can point to any file, regard-
less of where it is located in the file structure, but a hard link to a file must be in the
same filesystem as the other hard link(s) to the file. When you create links only
among files in your home directory, you will not notice this limitation.

A major advantage of a symbolic link is that it can point to a nonexistent file. This
ability is useful if you need a link to a file that is periodically removed and re-
created. A hard link keeps pointing to a “removed” file, which the link keeps alive
even after a new file is created. In contrast, a symbolic link always points to the
newly created file and does not interfere when you delete the old file. For example,
a symbolic link could point to a file that gets checked in and out under a source
code control system, a .o file that is re-created by the C compiler each time you run
make, or a log file that is repeatedly archived.

Although they are more general than hard links, symbolic links have some disad-
vantages. Whereas all hard links to a file have equal status, symbolic links do not
have the same status as hard links. When a file has multiple hard links, it is analo-
gous to a person having multiple full legal names, as many married women do. In

Links 213

contrast, symbolic links are analogous to nicknames. Anyone can have one or more
nicknames, but these nicknames have a lesser status than legal names. The follow-
ing sections describe some of the peculiarities of symbolic links.

ln: Creates a Symbolic Link

You use ln with the ––symbolic (or –s) option to create a symbolic link. The follow-
ing example creates a symbolic link /tmp/s3 to the file sum in Alex’s home direc-
tory. When you use an ls –l command to look at the symbolic link, ls displays the
name of the link and the name of the file it points to. The first character of the list-
ing is l (for link).

$ ln --symbolic /home/alex/sum /tmp/s3
$ ls -l /home/alex/sum /tmp/s3
-rw-rw-r-- 1 alex alex 38 Jun 12 09:51 /home/alex/sum
lrwxrwxrwx 1 alex alex 14 Jun 12 09:52 /tmp/s3 -> /home/alex/sum
$ cat /tmp/s3
This is sum.

The sizes and times of the last modifications of the two files are different. Unlike a
hard link, a symbolic link to a file does not have the same status information as the
file itself.

You can also use ln to create a symbolic link to a directory. When you use the
––symbolic option, ln does not care whether the file you are creating a link to is an
ordinary file or a directory.

optional cd and Symbolic Links

When you use a symbolic link as an argument to cd to change directories, the results
can be confusing, particularly if you did not realize that you were using a symbolic link.

If you use cd to change to a directory that is represented by a symbolic link, the pwd
shell builtin lists the name of the symbolic link. The pwd utility (/bin/pwd) lists the
name of the linked-to directory, not the link, regardless of how you got there.

Use absolute pathnames with symbolic links

tip Symbolic links are literal and are not aware of directories. A link that points to a relative pathname,
which includes simple filenames, assumes that the relative pathname is relative to the directory
that the link was created in (not the directory the link was created from). In the following example,
the link points to the file named sum in the /tmp directory. Because no such file exists, cat gives
an error message:

$ pwd
/home/alex
$ ln --symbolic sum /tmp/s4
$ ls -l sum /tmp/s4
lrwxrwxrwx 1 alex alex 3 Jun 12 10:13 /tmp/s4 -> sum
-rw-rw-r-- 1 alex alex 38 Jun 12 09:51 sum
$ cat /tmp/s4
cat: /tmp/s4: No such file or directory

214 Chapter 6 The Linux Filesystem

$ ln -s /home/alex/grades /tmp/grades.old
$ pwd
/home/alex
$ cd /tmp/grades.old
$ pwd
/tmp/grades.old
$ /bin/pwd
/home/alex/grades

When you change directories back to the parent, you end up in the directory hold-
ing the symbolic link:

$ cd ..
$ pwd
/tmp
$ /bin/pwd
/tmp

rm: Removes a Link

When you create a file, there is one hard link to it. You can then delete the file or,
using Linux terminology, remove the link with the rm utility. When you remove the
last hard link to a file, you can no longer access the information stored there and the
operating system releases the space the file occupied on the disk for subsequent use
by other files. This space is released even if symbolic links to the file remain. When
there is more than one hard link to a file, you can remove a hard link and still access
the file from any remaining link. Unlike DOS and Windows, Linux does not provide
an easy way to undelete a file once you have removed it. A skilled hacker, however,
can sometimes piece the file together with time and effort.

When you remove all hard links to a file, you will not be able to access the file
through a symbolic link. In the following example, cat reports that the file total
does not exist because it is a symbolic link to a file that has been removed:

$ ls -l sum
-rw-r--r-- 1 alex pubs 981 May 24 11:05 sum
$ ln -s sum total
$ rm sum
$ cat total
cat: total: No such file or directory
$ ls -l total
lrwxrwxrwx 1 alex pubs 6 May 24 11:09 total -> sum

When you remove a file, be sure to remove all symbolic links to it. Remove a sym-
bolic link in the same way you remove other files:

$ rm total

Chapter Summary

Linux has a hierarchical, or treelike, file structure that makes it possible to orga-
nize files so that you can find them quickly and easily. The file structure contains

Chapter Summary 215

directory files and ordinary files. Directories contain other files, including other
directories; ordinary files generally contain text, programs, or images. The ances-
tor of all files is the root directory named /.

Most Linux filesystems support 255-character filenames. Nonetheless, it is a good
idea to keep filenames simple and intuitive. Filename extensions can help make file-
names more meaningful.

When you are logged in, you are always associated with a working directory. Your
home directory is your working directory from the time you log in until you use cd
to change directories.

An absolute pathname starts with the root directory and contains all the filenames that
trace a path to a given file. The pathname starts with a slash, representing the root
directory, and contains additional slashes between the other filenames in the path.

A relative pathname is similar to an absolute pathname but traces the path starting
from the working directory. A simple filename is the last element of a pathname and
is a form of a relative pathname.

A Linux filesystem contains many important directories, including /usr/bin, which
stores most of the Linux utility commands, and /dev, which stores device files, many of
which represent physical pieces of hardware. An important standard file is /etc/passwd;
it contains information about users, such as each user’s ID and full name.

Among the attributes associated with each file are access permissions. They deter-
mine who can access the file and how the file may be accessed. Three groups of
users can potentially access the file: the owner, the members of a group, and all
other users. An ordinary file can be accessed in three ways: read, write, and execute.
The ls utility with the –l option displays these permissions. For directories, execute
access is redefined to mean that the directory can be searched.

The owner of a file or a user working with root privileges can use the chmod utility
to change the access permissions of a file. This utility specifies read, write, and exe-
cute permissions for the file’s owner, the group, and all other users on the system.

Access Control Lists (ACLs) provide finer-grained control over which users can
access specific directories and files than do traditional Linux permissions. Using
ACLs you can specify the ways in which each of several users can access a directory
or file. Few utilities preserve ACLs when working with these files.

An ordinary file stores user data, such as textual information, programs, or images.
A directory is a standard-format disk file that stores information, including names,
about ordinary files and other directory files. An inode is a data structure, stored on
disk, that defines a file’s existence and is identified by an inode number. A directory
relates each of the filenames it stores to a specific inode.

A link is a pointer to a file. You can have several links to a single file so that you can
share the file with other users or have the file appear in more than one directory.
Because only one copy of a file with multiple links exists, changing the file through
any one link causes the changes to appear in all the links. Hard links cannot link
directories or span filesystems, whereas symbolic links can.

216 Chapter 6 The Linux Filesystem

Table 6-2 summarizes the utilities introduced in this chapter.

Exercises

1. Is each of the following an absolute pathname, a relative pathname, or a
simple filename?

a. milk_co

b. correspond/business/milk_co

c. /home/alex

d. /home/alex/literature/promo

e. . .

f. letter.0610

2. List the commands you can use to perform these operations:

a. Make your home directory the working directory

b. Identify the working directory

3. If your working directory is /home/alex with a subdirectory named litera-
ture, give three sets of commands that you can use to create a subdirectory
named classics under literature. Also give several sets of commands you
can use to remove the classics directory and its contents.

4. The df utility displays all mounted filesystems along with information
about each. Use the df utility with the –h (human-readable) option to
answer the following questions.

a. How many filesystems are mounted on your Linux system?

b. Which filesystem stores your home directory?

Table 6-2 Utilities introduced in Chapter 6

Utility Function

cd Associates you with another working directory (page 193)

chmod Changes the access permissions on a file (page 200)

getfacl Displays a file’s ACL (page 204)

ln Makes a link to an existing file (page 210)

mkdir Creates a directory (page 191)

pwd Displays the pathname of the working directory (page 188)

rmdir Deletes a directory (page 196)

setfacl Modifies a file’s ACL (page 204)

Exercises 217

c. Assuming that your answer to exercise 4a is two or more, attempt to
create a hard link to a file on another filesystem. What error message do
you get? What happens when you attempt to create a symbolic link to
the file instead?

5. Suppose that you have a file that is linked to a file owned by another user.
How can you ensure that changes to the file are no longer shared?

6. You should have read permission for the /etc/passwd file. To answer the
following questions, use cat or less to display /etc/passwd. Look at the
fields of information in /etc/passwd for the users on your system.

a. Which character is used to separate fields in /etc/passwd?

b. How many fields are used to describe each user?

c. How many users are on your system?

d. How many different login shells are in use on your system? (Hint: Look
at the last field.)

e. The second field of /etc/passwd stores user passwords in encoded form.
If the password field contains an x, your system uses shadow passwords
and stores the encoded passwords elsewhere. Does your system use
shadow passwords?

7. If /home/jenny/draft and /home/alex/letter are links to the same file and
the following sequence of events occurs, what will be the date in the open-
ing of the letter?

a. Alex gives the command vim letter.

b. Jenny gives the command vim draft.

c. Jenny changes the date in the opening of the letter to January 31, 2008,
writes the file, and exits from vim.

d. Alex changes the date to February 1, 2008, writes the file, and exits
from vim.

8. Suppose that a user belongs to a group that has all permissions on a file
named jobs_list, but the user, as the owner of the file, has no permissions.
Describe which operations, if any, the user/owner can perform on
jobs_list. Which command can the user/owner give that will grant the
user/owner all permissions on the file?

9. Does the root directory have any subdirectories that you cannot search as
a regular user? Does the root directory have any subdirectories that you
cannot read as a regular user? Explain.

10. Assume that you are given the directory structure shown in Figure 6-2 on
page 185 and the following directory permissions:

d--x--x--- 3 jenny pubs 512 Mar 10 15:16 business
drwxr-xr-x 2 jenny pubs 512 Mar 10 15:16 business/milk_co

218 Chapter 6 The Linux Filesystem

For each category of permissions—owner, group, and other—what hap-
pens when you run each of the following commands? Assume that the
working directory is the parent of correspond and that the file cheese_co is
readable by everyone.

a. cd correspond/business/milk_co

b. ls –l correspond/business

c. cat correspond/business/cheese_co

Advanced Exercises

11. What is an inode? What happens to the inode when you move a file within
a filesystem?

12. What does the . . entry in a directory point to? What does this entry point
to in the root (/) directory?

13. How can you create a file named –i? Which techniques do not work, and
why do they not work? How can you remove the file named –i?

14. Suppose that the working directory contains a single file named andor.
What error message do you get when you run the following command line?

$ mv andor and\/or

Under what circumstances is it possible to run the command without pro-
ducing an error?

15. The ls –i command displays a filename preceded by the inode number of
the file (page 212). Write a command to output inode/filename pairs for the
files in the working directory, sorted by inode number. (Hint: Use a pipe.)

16. Do you think that the system administrator has access to a program that
can decode user passwords? Why or why not? (See exercise 6.)

17. Is it possible to distinguish a file from a hard link to a file? That is, given a
filename, can you tell whether it was created using an ln command?
Explain.

18. Explain the error messages displayed in the following sequence of commands:

$ ls -l
total 1
drwxrwxr-x 2 alex pubs 1024 Mar 2 17:57 dirtmp
$ ls dirtmp
$ rmdir dirtmp
rmdir: dirtmp: Directory not empty
$ rm dirtmp/*
rm: No match.

219219

7Chapter7This chapter takes a close look at the shell and explains how to
use some of its features. For example, it discusses command line
syntax and also describes how the shell processes a command
line and initiates execution of a program. The chapter also
explains how to redirect input to and output from a command,
construct pipes and filters on the command line, and run a com-
mand in the background. The final section covers filename
expansion and explains how you can use this feature in your
everyday work.

The exact wording of the shell output differs from shell to shell:
What your shell displays may differ slightly from what appears
in this book. Refer to Chapter 9 for more information on bash
and to Chapter 11 for information on writing and executing
bash shell scripts.

In This Chapter

The Command Line 220

Standard Input and Standard
Output . 226

Pipes . 234

Running a Program in the
Background 237

kill: Aborting a Background Job . . 238

Filename Generation/Pathname
Expansion 239

Builtins . 243

7

The Shell

220 Chapter 7 The Shell

The Command Line

The shell executes a program when you give it a command in response to its
prompt. For example, when you give the ls command, the shell executes the utility
program named ls. You can cause the shell to execute other types of programs—
such as shell scripts, application programs, and programs you have written—in the
same way. The line that contains the command, including any arguments, is called
the command line. In this book the term command refers to the characters you type
on the command line as well as to the program that action invokes.

Syntax

Command line syntax dictates the ordering and separation of the elements on a
command line. When you press the RETURN key after entering a command, the shell
scans the command line for proper syntax. The syntax for a basic command line is

command [arg1] [arg2] ... [argn] RETURN

One or more SPACEs must separate elements on the command line. The command is
the name of the command, arg1 through argn are arguments, and RETURN is the key-
stroke that terminates all command lines. The brackets in the command line syntax
indicate that the arguments they enclose are optional. Not all commands require
arguments: Some commands do not allow arguments; other commands allow a
variable number of arguments; and others require a specific number of arguments.
Options, a special kind of argument, are usually preceded by one or two hyphens
(also called a dash or minus sign: –).

Command Name

Usage message Some useful Linux command lines consist of only the name of the command with-
out any arguments. For example, ls by itself lists the contents of the working direc-
tory. Most commands accept one or more arguments. Commands that require
arguments typically give a short error message, called a usage message, when you
use them without arguments, with incorrect arguments, or with the wrong number
of arguments.

Arguments

On the command line each sequence of nonblank characters is called a token or
word. An argument is a token, such as a filename, string of text, number, or other
object that a command acts on. For example, the argument to a vim or emacs com-
mand is the name of the file you want to edit.

The following command line shows cp copying the file named temp to tempcopy:

$ cp temp tempcopy

The Command Line 221

Arguments are numbered starting with the command itself as argument zero. In this
example cp is argument zero, temp is argument one, and tempcopy is argument
two. The cp utility requires two arguments on the command line. (The utility can
take more arguments but not fewer.) Argument one is the name of an existing file.
Argument two is the name of the file that cp is creating or overwriting. Here the
arguments are not optional; both arguments must be present for the command to
work. When you do not supply the right number or kind of arguments, cp displays
a usage message. Try typing cp and then pressing RETURN.

Options

An option is an argument that modifies the effects of a command. You can fre-
quently specify more than one option, modifying the command in several different
ways. Options are specific to and interpreted by the program that the command line
calls, not the shell.

By convention options are separate arguments that follow the name of the com-
mand and usually precede other arguments, such as filenames. Most utilities require
you to prefix options with a single hyphen. However, this requirement is specific to
the utility and not the shell. GNU program options are frequently preceded by two
hyphens in a row. For example, ––help generates a (sometimes extensive) usage
message.

Figure 7-1 first shows what happens when you give an ls command without any
options. By default ls lists the contents of the working directory in alphabetical
order, vertically sorted in columns. Next the –r (reverse order; because this is a
GNU utility, you can also use ––reverse) option causes the ls utility to display the
list of files in reverse alphabetical order, still sorted in columns. The –x option
causes ls to display the list of files in horizontally sorted rows.

Combining options When you need to use several options, you can usually group multiple single-letter
options into one argument that starts with a single hyphen; do not put SPACEs
between the options. You cannot combine options that are preceded by two

$ ls
alex house mark office personal test
hold jenny names oldstuff temp
$ ls -r
test personal office mark house alex
temp oldstuff names jenny hold
$ ls -x
alex hold house jenny mark names
office oldstuff personal temp test
$ ls -rx
test temp personal oldstuff office names
mark jenny house hold alex

Figure 7-1 Using options

222 Chapter 7 The Shell

hyphens in this way, however. Specific rules for combining options depend on the
program you are running. Figure 7-1 shows both the –r and –x options with the ls
utility. Together these options generate a list of filenames in horizontally sorted col-
umns, in reverse alphabetical order. Most utilities allow you to list options in any
order; thus ls –xr produces the same results as ls –rx. The command ls –x –r also
generates the same list.

Option arguments Some utilities have options that themselves require arguments. For example, the gcc
utility has a –o option that must be followed by the name you want to give the exe-
cutable file that gcc generates. Typically an argument to an option is separated from
its option letter by a SPACE:

$ gcc -o prog prog.c

Arguments that start
with a hyphen

Another convention allows utilities to work with arguments, such as filenames, that
start with a hyphen. If a file’s name is –l, the following command is ambiguous:

$ ls -l

This command could mean a long listing of all files in the working directory or a
listing of the file named –l. It is interpreted as the former. You should avoid creating
files whose names begin with hyphens. If you do create them, many utilities follow
the convention that a –– argument (two consecutive hyphens) indicates the end of
the options (and the beginning of the arguments). To disambiguate the command,
you can type

$ ls -- -l

You can use an alternative format in which the period refers to the working direc-
tory and the slash indicates that the name refers to a file in the working directory:

$ ls ./-l

Assuming that you are working in the /home/alex directory, the preceding com-
mand is functionally equivalent to

$ ls /home/alex/-l

You can give the following command to get a long listing of this file:

$ ls -l -- -l

Displaying readable file sizes: the –h option

tip Most utilities that report on file sizes specify the size of a file in bytes. Bytes work well when you
are dealing with smaller files, but the numbers can be difficult to read when you are working with
file sizes that are measured in megabytes or gigabytes. Use the –h (or ––human-readable) option
to display file sizes in kilo-, mega-, and gigabytes. Experiment with df –h (disk free) and ls –lh
commands.

The Command Line 223

These are conventions, not hard-and-fast rules, and a number of utilities do not fol-
low them (e.g., find). Following such conventions is a good idea; it makes it much
easier for users to work with your program. When you write shell programs that
require options, follow the Linux option conventions.

Processing the Command Line

As you enter a command line, the Linux tty device driver (part of the Linux operating
system kernel) examines each character to see whether it must take immediate
action. When you press CONTROL-H (to erase a character) or CONTROL-U (to kill a line), the
device driver immediately adjusts the command line as required; the shell never sees
the character(s) you erased or the line you killed. Often a similar adjustment occurs
when you press CONTROL-W (to erase a word). When the character you entered does not
require immediate action, the device driver stores the character in a buffer and waits
for additional characters. When you press RETURN, the device driver passes the com-
mand line to the shell for processing.

Parsing the
command line

When the shell processes a command line, it looks at the line as a whole and parses
(breaks) it into its component parts (Figure 7-2). Next the shell looks for the name
of the command. Usually the name of the command is the first item on the com-
mand line after the prompt (argument zero). The shell takes the first characters on
the command line up to the first blank (TAB or SPACE) and then looks for a command
with that name. The command name (the first token) can be specified on the com-
mand line either as a simple filename or as a pathname. For example, you can call
the ls command in either of the following ways:

$ ls

$ /bin/ls

The ––help option
tip Many utilities display a (sometimes extensive) help message when you call them with an argument

of ––help. All utilities developed by the GNU Project (page 2) accept this option. An example follows.
$ bzip2 --help
bzip2, a block-sorting file compressor. Version 1.0.2, 30-Dec-2001.

 usage: bzip2 [flags and input files in any order]

 -h --help print this message
 -d --decompress force decompression
 -z --compress force compression
 -k --keep keep (don't delete) input files
 -f --force overwrite existing output files
 -t --test test compressed file integrity
 -c --stdout output to standard out
 -q --quiet suppress noncritical error messages
 -v --verbose be verbose (a 2nd -v gives more)
...

224 Chapter 7 The Shell

optional The shell does not require that the name of the program appear first on the com-
mand line. Thus you can structure a command line as follows:

$ >bb <aa cat

This command runs cat with standard input coming from the file named aa and
standard output going to the file named bb. When the shell recognizes the redirect
symbols (page 228), it recognizes and processes them and their arguments before
finding the name of the program that the command line is calling. This is a properly
structured—albeit rarely encountered and possibly confusing—command line.

Absolute versus
relative pathnames

When you give an absolute pathname on the command line or a relative pathname
that is not a simple filename (i.e., any pathname that includes at least one slash), the
shell looks in the specified directory (/bin in the case of the /bin/ls command) for a
file that has the name ls and that you have permission to execute. When you give a
simple filename, the shell searches through a list of directories for a filename that
matches the specified name and that you have execute permission for. The shell does
not look through all directories but only the ones specified by the variable named
PATH. Refer to page 302 for more information on PATH. Also refer to the discus-
sion of the which and whereis utilities on page 164.

Figure 7-2 Processing the command line

NEWLINE

Get first word

command name
and save as

Execute program

Get more

command line
of the

Display

Issue prompt

no

noyes not found
Does

program
exist?

The Command Line 225

When it cannot find the executable file, the Bourne Again Shell (bash) displays a
message such as the following:

$ abc
bash: abc: command not found

One reason the shell may not be able to find the executable file is that it is not in a
directory in your PATH. Under bash the following command temporarily adds the
working directory (.) to your PATH:

$ PATH=$PATH:.

For security reasons, you may not want to add the working directory to PATH per-
manently; see the adjacent tip and the one on page 303.

When the shell finds the program but cannot execute it (you do not have execute
permission for the file that contains the program), it displays a message similar to

$ def
bash: ./def: Permission denied

See “ls –l: Displays Permissions” on page 199 for information on displaying access
permissions for a file and “chmod: Changes Access Permissions” on page 200 for
instructions on how to change file access permissions.

Executing the Command Line

Process If it finds an executable file with the same name as the command, the shell starts a
new process. A process is the execution of a command by Linux (page 310). The shell
makes each command line argument, including options and the name of the com-
mand, available to the called program. While the command is executing, the shell
waits for the process to finish. At this point the shell is in an inactive state called sleep.
When the program finishes execution, it passes its exit status (page 438) to the shell.
The shell then returns to an active state (wakes up), issues a prompt, and waits for
another command.

The shell does not
process arguments

Because the shell does not process command line arguments but only hands them to
the called program, the shell has no way of knowing whether a particular option or
other argument is valid for a given program. Any error or usage messages about
options or arguments come from the program itself. Some utilities ignore bad options.

Editing the Command Line

You can repeat and edit previous commands and edit the current command line. See
pages 139 and 314 for more information.

Try giving a command as ./command
tip You can always execute an executable file in the working directory by prepending ./ to the name

of the file. For example, if myprog is an executable file in the working directory, you can execute
it with the following command, regardless of how PATH is set:

$./myprog

226 Chapter 7 The Shell

Standard Input and Standard Output

Standard output is a place that a program can send information, such as text. The
program never “knows” where the information it sends to standard output is going
(Figure 7-3). The information can go to a printer, an ordinary file, or the screen.
The following sections show that by default the shell directs standard output from a
command to the screen1 and describe how you can cause the shell to redirect this
output to another file.

Standard input is a place that a program gets information from. As with standard
output the program never “knows” where the information came from. The follow-
ing sections also explain how to redirect standard input to a command so that it
comes from an ordinary file instead of from the keyboard (the default).

In addition to standard input and standard output, a running program normally has
a place to send error messages: standard error. Refer to page 280 for more informa-
tion on handling standard error.

The Screen as a File

Chapter 6 introduced ordinary files, directory files, and hard and soft links. Linux
has an additional type of file: a device file. A device file resides in the Linux file
structure, usually in the /dev directory, and represents a peripheral device, such as a
terminal emulator window, screen, printer, or disk drive.

The device name that the who utility displays after your username is the filename of
your screen. For example, when who displays the device name pts/4, the pathname
of your screen is /dev/pts/4. When you work with multiple windows, each window
has its own device name. You can also use the tty utility to display the name of the
device that you give the command from. Although you would not normally have
occasion to do so, you can read from and write to this file as though it were a text
file. Writing to it displays what you wrote on the screen; reading from it reads what
you entered on the keyboard.

Figure 7-3 The command does not know where standard input comes from or
where standard output and standard error go

CommandStandard
input

Standard
output

Standard
error

1. The term screen is used throughout this book to mean screen, terminal emulator window, or worksta-
tion. Screen refers to the device that you see the prompt and messages displayed on.

Standard Input and Standard Output 227

The Keyboard and Screen as Standard Input

and Standard Output

When you first log in, the shell directs standard output of your commands to the
device file that represents your screen (Figure 7-4). Directing output in this manner
causes it to appear on your screen. The shell also directs standard input to come
from the same file, so that your commands receive as input anything you type on
the keyboard.

cat The cat utility provides a good example of the way the keyboard and the screen
function as standard input and standard output, respectively. When you use cat, it
copies a file to standard output. Because the shell directs standard output to the
screen, cat displays the file on the screen.

chsh: changes your login shell

tip The person who sets up your account determines which shell you will use when you first log in
on the system or when you open a terminal emulator window in a GUI environment. You can run
any shell you like once you are logged in. Enter the name of the shell you want to use (bash, tcsh,
or another shell) and press RETURN; the next prompt will be that of the new shell. Give an exit com-
mand to return to the previous shell. Because shells you call in this manner are nested (one runs
on top of the other), you will be able to log out only from your original shell. When you have nested
several shells, keep giving exit commands until you reach your original shell. You will then be able
to log out.

Use the chsh utility when you want to change your login shell permanently. First give the com-
mand chsh. Then in response to the prompts enter your password and the absolute pathname of
the shell you want to use (/bin/bash, /bin/tcsh, or the pathname of another shell). When you
change your login shell in this manner using a terminal emulator (page 114) under a GUI, subse-
quent terminal emulator windows will not reflect the change until you log out of the system and
log back in.

Figure 7-4 By default, standard input comes from the keyboard and
standard output goes to the screen

Command

Standard
input

Standard
output

S
h

el
l

S
h

ell

228 Chapter 7 The Shell

Up to this point cat has taken its input from the filename (argument) you specified
on the command line. When you do not give cat an argument (that is, when you
give the command cat followed immediately by RETURN), cat takes its input from stan-
dard input. Thus, when called without an argument, cat copies standard input to
standard output, one line at a time.

To see how cat works, type cat and press RETURN in response to the shell prompt.
Nothing happens. Enter a line of text and press RETURN. The same line appears just
under the one you entered. The cat utility is working. Because the shell associates
cat’s standard input with the keyboard and cat’s standard output with the screen,
when you type a line of text cat copies the text from standard input (the keyboard)
to standard output (the screen). This exchange is shown in Figure 7-5.

CONTROL-D
signals EOF

The cat utility keeps copying text until you enter CONTROL-D on a line by itself. Pressing
CONTROL-D sends an EOF (end of file) signal to cat to indicate that it has reached the
end of standard input and there is no more text for it to copy. The cat utility then
finishes execution and returns control to the shell, which displays a prompt.

Redirection

The term redirection encompasses the various ways you can cause the shell to alter
where standard input of a command comes from and where standard output goes
to. By default the shell associates standard input and standard output of a com-
mand with the keyboard and the screen as mentioned earlier. You can cause the
shell to redirect standard input or standard output of any command by associating
the input or output with a command or file other than the device file representing
the keyboard or the screen. This section demonstrates how to redirect input from
and output to ordinary text files and utilities.

Redirecting Standard Output

The redirect output symbol (>) instructs the shell to redirect the output of a com-
mand to the specified file instead of to the screen (Figure 7-6). The format of a
command line that redirects output is

command [arguments] > filename

$ cat
This is a line of text.
This is a line of text.
Cat keeps copying lines of text
Cat keeps copying lines of text
until you press CONTROL-D at the beginning
until you press CONTROL-D at the beginning
of a line.
of a line.
CONTROL-D
$

Figure 7-5 The cat utility copies standard input to standard output

Standard Input and Standard Output 229

where command is any executable program (such as an application program or a
utility), arguments are optional arguments, and filename is the name of the ordi-
nary file the shell redirects the output to.

Figure 7-7 uses cat to demonstrate output redirection. This figure contrasts with
Figure 7-3 on page 226, where both standard input and standard output are associ-
ated with the keyboard and the screen. The input in Figure 7-7 comes from the key-
board. The redirect output symbol on the command line causes the shell to associate
cat’s standard output with the sample.txt file specified on the command line.

After giving the command and typing the text shown in Figure 7-7, the sample.txt
file contains the text you entered. You can use cat with an argument of sample.txt to
display this file. The next section shows another way to use cat to display the file.

Figure 7-7 shows that redirecting the output from cat is a handy way to create a file
without using an editor. The drawback is that once you enter a line and press RETURN,
you cannot edit the text. While you are entering a line, the erase and kill keys work
to delete text. This procedure is useful for making short, simple files.

Figure 7-6 Redirecting standard output

Command

Standard
input

S
h

ell Standard
outputS

he
ll

File

Redirecting output can destroy a file I

caution Use caution when you redirect output to a file. If the file exists, the shell will overwrite it and
destroy its contents. For more information see the tip “Redirecting output can destroy a file II” on
page 232.

$ cat > sample.txt
This text is being entered at the keyboard and
cat is copying it to a file.
Press CONTROL-D to indicate the
end of file.
CONTROL-D
$

Figure 7-7 cat with its output redirected

230 Chapter 7 The Shell

Figure 7-8 shows how to use cat and the redirect output symbol to catenate (join
one after the other—the derivation of the name of the cat utility) several files into
one larger file. The first three commands display the contents of three files:
stationery, tape, and pens. The next command shows cat with three filenames as
arguments. When you call it with more than one filename, cat copies the files, one at
a time, to standard output. In this case standard output is redirected to the file
supply_orders. The final cat command shows that supply_orders contains the con-
tents of all three files.

Redirecting Standard Input

Just as you can redirect standard output, so you can redirect standard input. The
redirect input symbol (<) instructs the shell to redirect a command’s input to come
from the specified file instead of from the keyboard (Figure 7-9). The format of a
command line that redirects input is

command [arguments] < filename

where command is any executable program (such as an application program or a
utility), arguments are optional arguments, and filename is the name of the ordi-
nary file the shell redirects the input from.

Figure 7-10 shows cat with its input redirected from the supply_orders file that was
created in Figure 7-8 and standard output going to the screen. This setup causes cat
to display the sample file on the screen. The system automatically supplies an EOF
(end of file) signal at the end of an ordinary file.

Utilities that take
input from a file or

standard input

Giving a cat command with input redirected from a file yields the same result as giv-
ing a cat command with the filename as an argument. The cat utility is a member of
a class of Linux utilities that function in this manner. Other members of this class of
utilities include lpr, sort, and grep. These utilities first examine the command line

$ cat stationery
2,000 sheets letterhead ordered: 10/7/05
$ cat tape
1 box masking tape ordered: 10/14/05
5 boxes filament tape ordered: 10/28/05
$ cat pens
12 doz. black pens ordered: 10/4/05

$ cat stationery tape pens > supply_orders

$ cat supply_orders
2,000 sheets letterhead ordered: 10/7/05
1 box masking tape ordered: 10/14/05
5 boxes filament tape ordered: 10/28/05
12 doz. black pens ordered: 10/4/05
$

Figure 7-8 Using cat to catenate files

Standard Input and Standard Output 231

that you use to call them. If you include a filename on the command line, the utility
takes its input from the file you specify. If you do not specify a filename, the utility
takes its input from standard input. It is the utility or program—not the shell or
operating system—that functions in this manner.

noclobber: Avoids Overwriting Files

The shell provides a feature called noclobber that stops you from inadvertently
overwriting an existing file using redirection. When you enable this feature by set-
ting the noclobber variable and then attempt to redirect output to an existing file,
the shell displays an error message and does not execute the command. If the pre-
ceding examples result in one of the following messages, the noclobber feature has
been set. The following examples set noclobber, attempt to redirect the output from
echo into an existing file, and then unset noclobber:

$ set -o noclobber
$ echo "hi there" > tmp
bash: tmp: Cannot overwrite existing file
$ set +o noclobber
$ echo "hi there" > tmp
$

You can override noclobber by putting a pipe symbol after the symbol you use for
redirecting output (>|).

In the following example, the user first creates a file named a by redirecting the out-
put of date to the file. Next the user sets the noclobber variable and tries redirecting

Figure 7-9 Redirecting standard input

$ cat < supply_orders
2,000 sheets letterhead ordered: 10/7/05
1 box masking tape ordered: 10/14/05
5 boxes filament tape ordered: 10/28/05
12 doz. black pens ordered: 10/4/05

Figure 7-10 cat with its input redirected

Command

Standard
outputS

h
el

l

Standard
input

File

S
hell

232 Chapter 7 The Shell

output to a again. The shell returns an error message. Then the user tries the same
thing but using a pipe symbol after the redirect symbol. This time the shell allows
the user to overwrite the file. Finally, the user unsets noclobber (using a plus sign in
place of the hyphen) and verifies that it is no longer set.

$ date > a
$ set -o noclobber
$ date > a
bash: a: Cannot overwrite existing file
$ date >| a
$ set +o noclobber
$ date > a

Appending Standard Output to a File

The append output symbol (>>) causes the shell to add new information to the end
of a file, leaving any existing information intact. This symbol provides a convenient
way of catenating two files into one. The following commands demonstrate the
action of the append output symbol. The second command accomplishes the cate-
nation described in the preceding caution box:

$ cat orange
this is orange
$ cat pear >> orange
$ cat orange
this is orange
this is pear

Redirecting output can destroy a file II

caution Depending on which shell you are using and how your environment has been set up, a command
such as the following may give you undesired results:

$ cat orange pear > orange
cat: orange: input file is output file

Although cat displays an error message, the shell goes ahead and destroys the contents of the
existing orange file. The new orange file will have the same contents as pear because the first
action the shell takes when it sees the redirection symbol (>) is to remove the contents of the orig-
inal orange file. If you want to catenate two files into one, use cat to put the two files into a tem-
porary file and then use mv to rename this third file:

$ cat orange pear > temp
$ mv temp orange

What happens in the next example can be even worse. The user giving the command wants to
search through files a, b, and c for the word apple and redirect the output from grep (page 151)
to the file a.output. Unfortunately the user enters the filename as a output, omitting the period and
inserting a SPACE in its place:

$ grep apple a b c > a output
grep: output: No such file or directory

The shell obediently removes the contents of a and then calls grep. The error message may take
a moment to appear, giving you a sense that the command is running correctly. Even after you see
the error message, it may take a while to realize that you destroyed the contents of a.

Standard Input and Standard Output 233

You first see the contents of the orange file. Next the contents of the pear file is
added to the end of (catenated with) the orange file. The final cat shows the result.

The next example shows how to create a file that contains the date and time (the
output from date), followed by a list of who is logged in (the output from who). The
first line in Figure 7-11 redirects the output from date to the file named whoson.
Then cat displays the file. Next the example appends the output from who to the
whoson file. Finally cat displays the file containing the output of both utilities.

/dev/null: Making Data Disappear

The /dev/null device is a data sink, commonly referred to as a bit bucket. You can
redirect output that you do not want to keep or see to /dev/null. The output disap-
pears without a trace:

$ echo "hi there" > /dev/null
$

When you read from /dev/null, you get a null string. Give the following cat command
to truncate a file named messages to zero length while preserving the ownership and
permissions of the file:

$ ls -l messages
-rw-r--r-- 1 alex pubs 25315 Oct 24 10:55 messages
$ cat /dev/null > messages
$ ls -l messages
-rw-r--r-- 1 alex pubs 0 Oct 24 11:02 messages

Do not trust noclobber
caution Appending output is simpler than the two-step procedure described in the preceding caution box

but you must be careful to include both greater than signs. If you accidentally use only one and
the noclobber feature is not on, you will overwrite the orange file. Even if you have the noclobber
feature turned on, it is a good idea to keep backup copies of files you are manipulating in these
ways in case you make a mistake.

Although it protects you from making an erroneous redirection, noclobber does not stop you from
overwriting an existing file using cp or mv. These utilities include the –i (interactive) option that
helps protect you from this type of mistake by verifying your intentions when you try to overwrite
a file. For more information see the tip “cp can destroy a file” on page 150.

$ date > whoson
$ cat whoson
Thu Mar 27 14:31:18 PST 2008
$ who >> whoson
$ cat whoson
Thu Mar 27 14:31:18 PST 2008
sam console Mar 27 05:00(:0)
alex pts/4 Mar 27 12:23(:0.0)
alex pts/5 Mar 27 12:33(:0.0)
jenny pts/7 Mar 26 08:45 (bravo.example.com)

Figure 7-11 Redirecting and appending output

234 Chapter 7 The Shell

Pipes

The shell uses a pipe to connect standard output of one command directly to stan-
dard input of another command. A pipe (sometimes referred to as a pipeline) has
the same effect as redirecting standard output of one command to a file and then
using that file as standard input to another command. A pipe does away with sepa-
rate commands and the intermediate file. The symbol for a pipe is a vertical bar (|).
The syntax of a command line using a pipe is

command_a [arguments] | command_b [arguments]

The preceding command line uses a pipe to generate the same result as the following
group of command lines:

command_a [arguments] > temp
command_b [arguments] < temp
rm temp

In the preceding sequence of commands, the first line redirects standard output
from command_a to an intermediate file named temp. The second line redirects
standard input for command_b to come from temp. The final line deletes temp. The
command using a pipe is not only easier to type, but is generally more efficient
because it does not create a temporary file.

tr You can use a pipe with any of the Linux utilities that accept input either from a file
specified on the command line or from standard input. You can also use pipes with
commands that accept input only from standard input. For example, the tr (trans-
late) utility takes its input from standard input only. In its simplest usage tr has the
following format:

tr string1 string2

The tr utility accepts input from standard input and looks for characters that match
one of the characters in string1. Upon finding a match, tr translates the matched
character in string1 to the corresponding character in string2. (The first character in
string1 translates into the first character in string2, and so forth.) The tr utility
sends its output to standard output. In both of the following examples, tr displays
the contents of the abstract file with the letters a, b, and c translated into A, B, and
C, respectively:

$ cat abstract | tr abc ABC
$ tr abc ABC < abstract

$ ls > temp
$ lpr temp
$ rm temp

or

$ ls | lpr

Figure 7-12 A pipe

Standard Input and Standard Output 235

The tr utility does not change the contents of the original file; it cannot change the
original file because it does not “know” the source of its input.

lpr The lpr (line printer) utility also accepts input from either a file or standard input.
When you type the name of a file following lpr on the command line, it places that
file in the print queue. When you do not specify a filename on the command line, lpr
takes input from standard input. This feature enables you to use a pipe to redirect
input to lpr. The first set of commands in Figure 7-12 shows how you can use ls and
lpr with an intermediate file (temp) to send a list of the files in the working directory
to the printer. If the temp file exists, the first command overwrites its contents. The
second set of commands sends the same list (with the exception of temp) to the
printer using a pipe.

The commands in Figure 7-13 redirect the output from the who utility to temp and
then display this file in sorted order. The sort utility (page 153) takes its input from
the file specified on the command line or, when a file is not specified, from standard
input and sends its output to standard output. The sort command line in
Figure 7-13 takes its input from standard input, which is redirected (<) to come
from temp. The output that sort sends to the screen lists the users in sorted (alpha-
betical) order.

Because sort can take its input from standard input or from a filename on the com-
mand line, omitting the < symbol from Figure 7-13 yields the same result.

Figure 7-14 achieves the same result without creating the temp file. Using a pipe the
shell redirects the output from who to the input of sort. The sort utility takes input
from standard input because no filename follows it on the command line.

When many people are using the system and you want information about only one of
them, you can send the output from who to grep (page 151) using a pipe. The grep util-
ity displays the line containing the string you specify—sam in the following example:

$ who | grep 'sam'
sam console Mar 24 05:00

$ who > temp
$ sort < temp
alex pts/4 Mar 24 12:23
alex pts/5 Mar 24 12:33
jenny pts/7 Mar 23 08:45
sam console Mar 24 05:00
$ rm temp

Figure 7-13 Using a temporary file to store intermediate results

$ who | sort
alex pts/4 Mar 24 12:23
alex pts/5 Mar 24 12:33
jenny pts/7 Mar 23 08:45
sam console Mar 24 05:00

Figure 7-14 A pipe doing the work of a temporary file

236 Chapter 7 The Shell

Another way of handling output that is too long to fit on the screen, such as a list of
files in a crowded directory, is to use a pipe to send the output through less or more
(both on page 148).

$ ls | less

The less utility displays text one screen at a time. To view another screen, press the
SPACE bar. To view one more line, press RETURN. Press h for help and q to quit.

Some utilities change the format of their output when you redirect it. Compare the
output of ls by itself and when you send it through a pipe to less.

Filters

A filter is a command that processes an input stream of data to produce an output
stream of data. A command line that includes a filter uses a pipe to connect stan-
dard output of one command to the filter’s standard input. Another pipe connects
the filter’s standard output to standard input of another command. Not all utilities
can be used as filters.

In the following example, sort is a filter, taking standard input from standard output
of who and using a pipe to redirect standard output to standard input of lpr. This
command line sends the sorted output of who to the printer:

$ who | sort | lpr

The preceding example demonstrates the power of the shell combined with the ver-
satility of Linux utilities. The three utilities who, sort, and lpr were not specifically
designed to work with each other, but they all use standard input and standard out-
put in the conventional way. By using the shell to handle input and output, you can
piece standard utilities together on the command line to achieve the results you want.

tee: Sends Output in Two Directions

The tee utility copies its standard input both to a file and to standard output. The
utility is aptly named: It takes a single input and sends the output in two directions.
In Figure 7-15 the output of who is sent via a pipe to standard input of tee. The tee
utility saves a copy of standard input in a file named who.out and also sends a copy
to standard output. Standard output of tee goes via a pipe to standard input of grep,
which displays lines containing the string sam.

$ who | tee who.out | grep sam
sam console Mar 24 05:00
$ cat who.out
sam console Mar 24 05:00
alex pts/4 Mar 24 12:23
alex pts/5 Mar 24 12:33
jenny pts/7 Mar 23 08:45

Figure 7-15 Using tee

Running a Program in the Background 237

Running a Program in the Background

Foreground In all the examples so far in this book, commands were run in the foreground.
When you run a command in the foreground, the shell waits for it to finish before
giving you another prompt and allowing you to continue. When you run a com-
mand in the background, you do not have to wait for the command to finish before
you start running another command.

Jobs A job is a series of one or more commands that can be connected by pipes. You can
have only one foreground job in a window or on a screen, but you can have many
background jobs. By running more than one job at a time, you are using one of
Linux’s important features: multitasking. Running a command in the background
can be useful when the command will run for a long time and does not need super-
vision. It leaves the screen free so that you can use it for other work. Of course,
when you are using a GUI, you can open another window to run another job.

Job number,
PID number

To run a command in the background, type an ampersand (&) just before the RETURN

that ends the command line. The shell assigns a small number to the job and displays
this job number between brackets. Following the job number, the shell displays the
process identification (PID) number—a larger number assigned by the operating
system. Each of these numbers identifies the command running in the background.
Then the shell displays another prompt and you can enter another command. When
the background job finishes running, the shell displays a message giving both the job
number and the command line used to run the command.

The next example runs in the background and sends its output through a pipe to lpr,
which sends it to the printer.

$ ls -l | lpr &
[1] 22092
$

The [1] following the command line indicates that the shell has assigned job number
1 to this job. The 22092 is the PID number of the first command in the job. When
this background job completes execution, you see the message

[1]+ Done ls -l | lpr

(In place of ls –l, the shell may display something similar to ls ––color=tty –l. This
difference is due to the fact that ls is aliased [page 328] to ls ––color=tty.)

Moving a Job from the Foreground to the Background

CONTROL-Z You can suspend a foreground job (stop it from running) by pressing the suspend
key, usually CONTROL-Z. The shell then stops the process and disconnects standard
input from the keyboard. You can put a suspended job in the background and
restart it by using the bg command followed by the job number. You do not need to
use the job number when there is only one stopped job.

238 Chapter 7 The Shell

Only the foreground job can take input from the keyboard. To connect the key-
board to a program running in the background, you must bring it into the fore-
ground. Type fg without any arguments when only one job is in the background.
When more than one job is in the background, type fg, or a percent sign (%), fol-
lowed by the number of the job you want to bring into the foreground. The shell
displays the command you used to start the job (promptme in the following exam-
ple), and you can enter any input the program requires to continue:

bash $ fg 1
promptme

Redirect the output of a job you run in the background to keep it from interfering
with whatever you are doing on the screen. Refer to “Separating and Grouping
Commands” on page 286 for more detail about background tasks.

kill: Aborting a Background Job

The interrupt key (usually CONTROL-C) cannot abort a process you are running in the
background; you must use kill (page 522) for this purpose. Follow kill on the com-
mand line with either the PID number of the process you want to abort or a percent
sign (%) followed by the job number.

Determining a PID
number with ps

If you forget the PID number, you can use the ps (process status) utility (page 310)
to display it. The following example runs a tail –f outfile command (the –f option
causes tail to watch outfile and display new lines as they are written to the file) as a
background job, uses ps to display the PID number of the process, and aborts the
job with kill:

$ tail -f outfile &
[1] 18228
$ ps | grep tail
18228 pts/4 00:00:00 tail
$ kill 18228
[1]+ Terminated tail -f outfile
$

If you forget the job number, you can use the jobs command to display a list of job
numbers. The next example is similar to the previous one but uses the job number
instead of the PID number to kill the job. Sometimes the message saying that the job
is terminated does not appear until you press RETURN after the RETURN that ends the kill
command:

$ tail -f outfile &
[1] 18236
$ bigjob &
[2] 18237
$ jobs
[1]- Running tail -f outfile &
[2]+ Running bigjob &
$ kill %1
$ RETURN
[1]- Terminated tail -f outfile
$

Filename Generation/Pathname Expansion 239

Filename Generation/Pathname Expansion

Wildcards, globbing When you give the shell abbreviated filenames that contain special characters, also
called metacharacters, the shell can generate filenames that match the names of
existing files. These special characters are also referred to as wildcards because they
act as the jokers do in a deck of cards. When one of these characters appears in an
argument on the command line, the shell expands that argument in sorted order
into a list of filenames and passes the list to the program that the command line
calls. Filenames that contain these special characters are called ambiguous file refer-
ences because they do not refer to any one specific file. The process that the shell
performs on these filenames is called pathname expansion or globbing.

Ambiguous file references refer to a group of files with similar names quickly, sav-
ing you the effort of typing the names individually. They can also help you find a
file whose name you do not remember in its entirety. If no filename matches the
ambiguous file reference, the shell generally passes the unexpanded reference—special
characters and all—to the command.

The ? Special Character

The question mark (?) is a special character that causes the shell to generate file-
names. It matches any single character in the name of an existing file. The following
command uses this special character in an argument to the lpr utility:

$ lpr memo?

The shell expands the memo? argument and generates a list of files in the working
directory that have names composed of memo followed by any single character. The
shell then passes this list to lpr. The lpr utility never “knows” that the shell generated
the filenames it was called with. If no filename matches the ambiguous file refer-
ence, the shell passes the string itself (memo?) to lpr or, if it is set up to do so, passes
a null string (see nullglob on page 337).

The following example uses ls first to display the names of all files in the working
directory and then to display the filenames that memo? matches:

$ ls
mem memo12 memo9 memoalex newmemo5
memo memo5 memoa memos
$ ls memo?
memo5 memo9 memoa memos

The memo? ambiguous file reference does not match mem, memo, memo12,
memoalex, or newmemo5. You can also use a question mark in the middle of an
ambiguous file reference:

$ ls
7may4report may4report mayqreport may_report
may14report may4report.79 mayreport may.report
$ ls may?report
may.report may4report may_report mayqreport

240 Chapter 7 The Shell

To practice generating filenames, you can use echo and ls. The echo utility displays
the arguments that the shell passes to it:

$ echo may?report
may.report may4report may_report mayqreport

The shell first expands the ambiguous file reference into a list of all files in the
working directory that match the string may?report and then passes this list to echo,
as though you had entered the list of filenames as arguments to echo. Next echo dis-
plays the list of filenames.

A question mark does not match a leading period (one that indicates a hidden file-
name; see page 188). When you want to match filenames that begin with a period,
you must explicitly include the period in the ambiguous file reference.

The * Special Character

The asterisk (*) performs a function similar to that of the question mark but
matches any number of characters, including zero characters, in a filename. The fol-
lowing example shows all of the files in the working directory and then shows three
commands that display all the filenames that begin with the string memo, end with
the string mo, and contain the string alx:

$ ls
amemo memo memoalx.0620 memosally user.memo
mem memo.0612 memoalx.keep sallymemo
memalx memoa memorandum typescript
$ echo memo*
memo memo.0612 memoa memoalx.0620 memoalx.keep memorandum memosally
$ echo *mo
amemo memo sallymemo user.memo
$ echo *alx*
memalx memoalx.0620 memoalx.keep

The ambiguous file reference memo* does not match amemo, mem, sallymemo, or
user.memo. Like the question mark, an asterisk does not match a leading period in a
filename.

The –a option causes ls to display hidden filenames. The command echo * does not
display . (the working directory), .. (the parent of the working directory), .aaa, or
.profile. In contrast, the command echo .* displays only those four names:

$ ls
aaa memo.sally sally.0612 thurs
memo.0612 report saturday
$ ls -a
. .aaa aaa memo.sally sally.0612 thurs
.. .profile memo.0612 report saturday
$ echo *
aaa memo.0612 memo.sally report sally.0612 saturday thurs
$ echo .*
. .. .aaa .profile

Filename Generation/Pathname Expansion 241

In the following example .p* does not match memo.0612, private, reminder, or
report. Next the ls .* command causes ls to list .private and .profile in addition to
the contents of the . directory (the working directory) and the .. directory (the par-
ent of the working directory). When called with the same argument, echo displays
the names of files (including directories) in the working directory that begin with a
dot (.), but not the contents of directories.

$ ls -a
. .private memo.0612 reminder
.. .profile private report
$ echo .p*
.private .profile
$ ls .*
.private .profile

.:
memo.0612 private reminder report

..:

.

.
$ echo .*
. .. .private .profile

You can take advantage of ambiguous file references when you establish conven-
tions for naming files. For example, when you end all text filenames with .txt, you
can reference that group of files with *.txt. The next command uses this convention
to send all the text files in the working directory to the printer. The ampersand
causes lpr to run in the background.

$ lpr *.txt &

The [] Special Characters

A pair of brackets surrounding a list of characters causes the shell to match file-
names containing the individual characters. Whereas memo? matches memo fol-
lowed by any character, memo[17a] is more restrictive, and matches only memo1,
memo7, and memoa. The brackets define a character class that includes all the
characters within the brackets. (GNU calls this a character list; a GNU character
class is something different.) The shell expands an argument that includes a charac-
ter-class definition, by substituting each member of the character class, one at a
time, in place of the brackets and their contents. The shell then passes the list of
matching filenames to the program it is calling.

Each character-class definition can replace only a single character within a filename.
The brackets and their contents are like a question mark that substitutes only the
members of the character class.

The first of the following commands lists the names of all the files in the working
directory that begin with a, e, i, o, or u. The second command displays the contents
of the files named page2.txt, page4.txt, page6.txt, and page8.txt.

242 Chapter 7 The Shell

$ echo [aeiou]*
...
$ less page[2468].txt
...

A hyphen within brackets defines a range of characters within a character-class def-
inition. For example, [6–9] represents [6789], [a–z] represents all lowercase letters
in English, and [a–zA–Z] represents all letters, both uppercase and lowercase, in
English.

The following command lines show three ways to print the files named part0,
part1, part2, part3, and part5. Each of these command lines causes the shell to call
lpr with five filenames:

$ lpr part0 part1 part2 part3 part5

$ lpr part[01235]

$ lpr part[0-35]

The first command line explicitly specifies the five filenames. The second and third
command lines use ambiguous file references, incorporating character-class defini-
tions. The shell expands the argument on the second command line to include all
files that have names beginning with part and ending with any of the characters in
the character class. The character class is explicitly defined as 0, 1, 2, 3, and 5. The
third command line also uses a character-class definition but defines the character
class to be all characters in the range 0–3 plus 5.

The following command line prints 39 files, part0 through part38:

$ lpr part[0-9] part[12][0-9] part3[0-8]

The next two examples list the names of some of the files in the working directory.
The first lists the files whose names start with a through m. The second lists files
whose names end with x, y, or z.

$ echo [a-m]*
...
$ echo *[x-z]
...

optional When an exclamation point (!) or a caret (^) immediately follows the opening
bracket ([) that defines a character class, the string enclosed by the brackets matches
any character not between the brackets. Thus [^ab]* matches any filename that
does not begin with a or b.

The following examples show that *[^ab] matches filenames that do not end with
the letters a or b and that [b-d]* matches filenames that begin with b, c, or d.

$ ls
aa ab ac ad ba bb bc bd cc dd

Builtins 243

$ ls *[^ab]
ac ad bc bd cc ddcc dd
$ ls [b-d]*
ba bb bc bd cc dd

You can match a hyphen (–) or a closing bracket (]) by placing it immediately before
the final closing bracket.

The next example demonstrates that the ls utility cannot interpret ambiguous file
references. First ls is called with an argument of ?old . The shell expands ?old into a
matching filename, hold, and passes that name to ls. The second command is the
same as the first, except the ? is quoted (refer to “Special Characters” on page 146).
The shell does not recognize this question mark as a special character and passes it
on to ls. The ls utility generates an error message saying that it cannot find a file
named ?old (because there is no file named ?old).

$ ls ?old
hold
$ ls \?old
ls: ?old: No such file or directory

Like most utilities and programs, ls cannot interpret ambiguous file references; that
work is left to the shell.

Builtins

A builtin is a utility (also called a command) that is built into a shell. Each of the
shells has its own set of builtins. When it runs a builtin, the shell does not fork a
new process. Consequently builtins run more quickly and can affect the environ-
ment of the current shell. Because builtins are used in the same way as utilities, you
will not typically be aware of whether a utility is built into the shell or is a stand-
alone utility.

The echo utility is a shell builtin. The shell always executes a shell builtin before try-
ing to find a command or utility with the same name. See page 444 for an in-depth
discussion of builtin commands and page 457 for a list of bash builtins.

Listing bash
builtins

To get a complete list of bash builtins, give the command info bash builtin. To dis-
play a page with more information on each builtin, move the cursor to one of the
lines listing a builtin command and press RETURN. Alternatively, after typing info

The shell expands ambiguous file references

tip The shell does the expansion when it processes an ambiguous file reference, not the program that
the shell runs. In the examples in this section, the utilities (ls, cat, echo, lpr) never see the ambig-
uous file references. The shell expands the ambiguous file references and passes a list of ordinary
filenames to the utility. In the previous examples, echo shows this to be true because it simply
displays its arguments; it never displays the ambiguous file reference.

244 Chapter 7 The Shell

bash, give the command /builtin to search the bash documentation for the string
builtin. The cursor will rest on the word Builtin in a menu; press RETURN to display
the builtins menu.

Because bash was written by GNU, the info page has better information than does
the man page. If you want to read about builtins in the man page, give the command
man bash and then search for the section on builtins with the command /^SHELL
BUILTIN COMMANDS (search for a line that begins with SHELL . . .).

Chapter Summary

The shell is the Linux command interpreter. It scans the command line for proper
syntax, picking out the command name and any arguments. The first argument is
argument one, the second is argument two, and so on. The name of the command
itself is argument zero. Many programs use options to modify the effects of a com-
mand. Most Linux utilities identify an option by its leading one or two hyphens.

When you give it a command, the shell tries to find an executable program with the
same name as the command. When it does, the shell executes the program. When it
does not, the shell tells you that it cannot find or execute the program. If the com-
mand is a simple filename, the shell searches the directories given in the variable
PATH in an attempt to locate the command.

When it executes a command, the shell assigns one file to the command’s standard
input and another file to its standard output. By default the shell causes a com-
mand’s standard input to come from the keyboard and its standard output to go to
the screen. You can instruct the shell to redirect a command’s standard input from
or standard output to any file or device. You can also connect standard output of
one command to standard input of another command using a pipe. A filter is a
command that reads its standard input from standard output of one command and
writes its standard output to standard input of another command.

When a command runs in the foreground, the shell waits for it to finish before it
displays a prompt and allows you to continue. When you put an ampersand (&) at
the end of a command line, the shell executes the command in the background and
displays another prompt immediately. Run slow commands in the background
when you want to enter other commands at the shell prompt. The jobs builtin dis-
plays a list of jobs and includes the job number of each.

The shell interprets special characters on a command line to generate filenames.
A question mark represents any single character, and an asterisk represents zero
or more characters. A single character may also be represented by a character
class: a list of characters within brackets. A reference that uses special characters
(wildcards) to abbreviate a list of one or more filenames is called an ambiguous
file reference.

Exercises 245

A builtin is a utility that is built into a shell. Each shell has its own set of builtins.
When it runs a builtin, the shell does not fork a new process. Consequently builtins
run more quickly and can affect the environment of the current shell.

Utilities and Builtins Introduced in This Chapter

Table 7-1 lists the utilities introduced in this chapter.

Exercises

1. What does the shell ordinarily do while a command is executing? What
should you do if you do not want to wait for a command to finish before
running another command?

2. Using sort as a filter, rewrite the following sequence of commands:

$ sort list > temp
$ lpr temp
$ rm temp

3. What is a PID number? Why are these numbers useful when you run pro-
cesses in the background? Which utility displays the PID numbers of the
commands you are running?

4. Assume that the following files are in the working directory:

$ ls
intro notesb ref2 section1 section3 section4b
notesa ref1 ref3 section2 section4a sentrev

Give commands for each of the following, using wildcards to express file-
names with as few characters as possible.

a. List all files that begin with section.

b. List the section1, section2, and section3 files only.

Table 7-1 New utilities

Utility Function

tr Maps one string of characters into another (page 234)

tee Sends standard input to both a file and standard output (page 236)

bg Moves a process into the background (page 237)

fg Moves a process into the foreground (page 238)

jobs Displays a list of currently running jobs (page 238)

246 Chapter 7 The Shell

c. List the intro file only.

d. List the section1, section3, ref1, and ref3 files.

5. Refer to the documentation of utilities in the man pages to determine
which commands will

a. Output the number of lines in the standard input that contain the word
a or A .

b. Output only the names of the files in the working directory that contain
the pattern $(.

c. List the files in the working directory in their reverse alphabetical order.

d. Send a list of files in the working directory to the printer, sorted by size.

6. Give a command to

a. Redirect the standard output from a sort command into a file named
phone_list. Assume that the input file is named numbers.

b. Translate all occurrences of the characters [and { to the character (, and
all occurrences of the characters] and } to the character) in the file
permdemos.c. (Hint: Refer to the tr man page.)

c. Create a file named book that contains the contents of two other files:
part1 and part2.

7. The lpr and sort utilities accept input either from a file named on the com-
mand line or from standard input.

a. Name two other utilities that function in a similar manner.

b. Name a utility that accepts its input only from standard input.

8. Give an example of a command that uses grep

a. With both input and output redirected.

b. With only input redirected.

c. With only output redirected.

d. Within a pipe.

In which of the preceding is grep used as a filter?

9. Explain the following error message. What filenames would a subsequent
ls display?

$ ls
abc abd abe abf abg abh
$ rm abc ab*
rm: cannot remove 'abc': No such file or directory

Advanced Exercises 247

Advanced Exercises

10. When you use the redirect output symbol (>) with a command, the shell
creates the output file immediately, before the command is executed. Dem-
onstrate that this is true.

11. In experimenting with shell variables, Alex accidentally deletes his PATH
variable. He decides that he does not need the PATH variable. Discuss
some of the problems he may soon encounter and explain the reasons for
these problems. How could he easily return PATH to its original value?

12. Assume that your permissions allow you to write to a file but not to delete it.

a. Give a command to empty the file without invoking an editor.

b. Explain how you might have permission to modify a file that you can-
not delete.

13. If you accidentally create a filename that contains a nonprinting character,
such as a CONTROL character, how can you rename the file?

14. Why does the noclobber variable not protect you from overwriting an
existing file with cp or mv?

15. Why do command names and filenames usually not have embedded SPACEs?
How would you create a filename containing a SPACE? How would you
remove it? (This is a thought exercise, not recommended practice. If you
want to experiment, create and work in a directory that contains only
your experimental file.)

16. Create a file named answer and give the following command:

$ > answers.0102 < answer cat

Explain what the command does and why. What is a more conventional
way of expressing this command?

This page intentionally left blank

249

I

PART III

Digging into Ubuntu Linux

CHAPTER 8

Linux GUIs: X and GNOME 251

CHAPTER 9

The Bourne Again Shell 275

CHAPTER 10

Networking and the Internet 353

CHAPTER 11

Programming the Bourne Again Shell 395

This page intentionally left blank

251251

8Chapter8This chapter covers the Linux graphical user interface (GUI).
It continues where Chapter 4 left off, going into more detail
about the X Window System, the basis for the Linux GUI. It
presents a brief history of GNOME and KDE and discusses
some of the problems and benefits of having two major
Linux desktop environments. The section on the Nautilus
File Browser covers the View and Side panes, the control
bars, and the menubar. The final section explores some
GNOME utilities, including the new Deskbar applet and
Terminal, the GNOME terminal emulator.

In This Chapter

X Window System 252

Starting X from a Character-
Based Display 254

Remote Computing and Local
Displays 254

Window Managers 259

The Nautilus File Browser
Window 260

GNOME Utilities 266

Run Application Window 269

GNOME Terminal
Emulator/Shell 270

8

Linux GUIs: X and

GNOME

252 Chapter 8 Linux GUIs: X and GNOME

X Window System

History of X The X Window System (www.x.org) was created in 1984 at the Massachusetts
Institute of Technology (MIT) by researchers working on a distributed computing
project and a campuswide distributed environment, called Project Athena. This sys-
tem was not the first windowing software to run on a UNIX system, but it was the
first to become widely available and accepted. In 1985, MIT released X (version 9)
to the public, for use without a license. Three years later, a group of vendors formed
the X Consortium to support the continued development of X, under the leadership
of MIT. By 1998, the X Consortium had become part of the Open Group. In 2001,
the Open Group released X version 11, release 6.6 (X11R6.6).

The X Window System was inspired by the ideas and features found in earlier propri-
etary window systems but is written to be portable and flexible. X is designed to run on a
workstation, typically attached to a LAN. The designers built X with the network in
mind. If you can communicate with a remote computer over a network, running an X
application on that computer and sending the results to a local display is straightforward.

Although the X protocol has remained stable for a long time, additions to it in the
form of extensions are quite common. One of the most interesting—albeit one that
has not yet made its way into production—is the Media Application Server, which
aims to provide the same level of network transparency for sound and video that X
does for simple windowing applications.

XFree86 and X.org Many distributions of Linux used the XFree86 X server, which inherited its license
from the original MIT X server, through release 4.3. In early 2004, just before the
release of XFree86 4.4, the XFree86 license was changed to one that is more
restrictive and not compatible with the GPL (page 4). In the wake of this change, a
number of distributions abandoned XFree86 and replaced it with an X.org X
server that is based on a pre-release version of XFree86 4.4, which predates the
change in the XFree86 license. Ubuntu uses the X.org X server, named X; it is func-
tionally equivalent to the one distributed by XFree86 because most of the code is
the same so modules designed to work with one server work with the other.

The X stack The Linux GUI is built in layers (Figure 8-1). The bottom layer is the kernel, which
provides the basic interfaces to the hardware. On top of the kernel is the X server,
which is responsible for managing windows and drawing basic graphical primitives
such as lines and bitmaps. Rather than directly generating X commands, most pro-
grams use Xlib, the next layer, which is a standard library for interfacing with an X
server. Xlib is complicated and does not provide high-level abstractions, such as
buttons and text boxes. Rather than using Xlib directly, most programs rely on a
toolkit that provides high-level abstractions. Using a library not only makes pro-
gramming easier, but also brings consistency to applications.

In recent years, the popularity of X has grown outside the UNIX community and
extended beyond the workstation class of computers it was originally conceived for.
Today X is available for Macintosh computers as well as for PCs running Windows.

www.x.org

X Window System 253

Client/server
environment

Computer networks are central to the design of X. It is possible to run an application
on one computer and display the results on a screen attached to a different computer;
the ease with which this can be done distinguishes X from other window systems
available today. Thanks to this capability, a scientist can run and manipulate a pro-
gram on a powerful supercomputer in another building or another country and view
the results on a personal workstation or laptop computer. For more information refer
to “Remote Computing and Local Displays” on page 254.

When you start an X Window System session, you set up a client/server environ-
ment. One process, called the X server, displays a desktop and windows under X.
Each application program and utility that makes a request of the X server is a client
of that server. Examples of X clients include xterm, Compiz, xclock, and such general
applications as word processing and spreadsheet programs. A typical request from a
client is to display an image or open a window.

Events The server also monitors keyboard and mouse actions (events) and passes them to
the appropriate clients. For example, when you click the border of a window, the
server sends this event to the window manager (client). Characters you type into a
terminal emulation window are sent to that terminal emulator (client). The client
takes appropriate action when it receives an event—for example, making a window
active or displaying the typed character on the server.

Figure 8-1 The X stack

Graphical applications

GTK Tk Motif OtherQt toolkits

Xlib

X server

Linux kernel

The roles of X client and server may be counterintuitive

tip The terms client and server, when referring to X, have the opposite meanings of how you might
think of them intuitively: The server runs the mouse, keyboard, and display; the application pro-
gram is the client.

This disparity becomes even more apparent when you run an application program on a remote
system. You might think of the system running the program as the server and the system provid-
ing the display as the client, but in fact it is the other way around. With X, the system providing
the display is the server, and the system running the program is the client.

254 Chapter 8 Linux GUIs: X and GNOME

Separating the physical control of the display (the server) from the processes need-
ing access to the display (the client) makes it possible to run the server on one com-
puter and the client on another computer. In general, this book discusses running
the X server and client applications on a single system. “Remote Computing and
Local Displays” describes using X in a distributed environment.

optional You can run xev (X event) by giving the command xev from a terminal emulator
window and then watch the information flow from the client to the server and back
again. This utility opens the Event Tester window, which has a box in it, and asks
the X server to send it events each time anything happens, such as moving the
mouse pointer, clicking a mouse button, moving the mouse pointer into the box,
typing, or resizing the window. The xev utility displays information about each
event in the window you opened it from. You can use xev as an educational tool:
Start it and see how much information is processed each time you move the mouse.
Close the Event Tester window to exit from xev.

Using X

This section provides basic information about starting and configuring X from the
command line. For more information see the Xserver man page and the man pages
listed at the bottom of the Xserver man page.

Starting X from a Character-Based Display

Once you have logged in on a virtual console (page 136), you can start an X Win-
dow System server by using startx. See page 506 for information on creating a
/etc/inittab file that causes Linux to boot into recovery (single-user) mode, where it
displays a textual interface. When you run startx, the X server displays an X screen,
using the first available virtual console. The following command causes startx to run
in the background so you can switch back to this virtual console and give other
commands:

$ startx &

Remote Computing and Local Displays

Typically the X server and the X client run on the same machine. To identify a
remote X server (display) an X application (client) is to use, you can either set a glo-
bal shell variable or use a command line option. Before you can connect to a remote
X server, you must turn off two security features: You must run xhost on the server
to give the client permission to connect to the X server and you must turn off the X
–nolisten tcp option on the server. Unless you have a reason to leave these features
off, turn them back on when you finish with the examples in this section—leaving
them off lessens system security. Both of these tasks must be performed on the X
server because the features protect the server. You do not have to prepare the client.
The examples in this section assume a server named tiny and a client named dog.

X Window System 255

The X –nolisten tcp Option

As Ubuntu is installed, the X server starts with the –nolisten tcp option, which pro-
tects the X server by preventing TCP connections to the X server. To connect to a
remote X server, you must turn this option off on the server. To turn it off, select
Main menu: System Administration Login Window, Security tab, and remove
the tick from the check box labeled Deny TCP connections to Xserver.

xhost Grants Access to a Display

As Ubuntu is installed, xhost protects each user’s X server. A user who wants to
grant access to his X server needs to run xhost. Assume Max is logged in on the sys-
tem named tiny and wants to allow a user on dog to use his display (X server). Max
runs the following command:

max@tiny:~$ xhost +dog
dog being added to access control list
max@tiny:~$ xhost
access control enabled, only authorized clients can connect
INET:dog

Without any arguments, xhost describes its state. In the preceding example, INET
indicates an IPv4 connection. If Max wants to allow all systems to access his dis-
play, he can give the following command:

$ xhost +
access control disabled, clients can connect from any host

If you frequently work with other users via a network, you may find it convenient
to add an xhost line to your .bash_profile file (page 277), but see the adjacent tip
regarding security and xhost. Be selective in granting access to your X display with
xhost, however; if another system has access to your display, you may find your
work frequently interrupted.

Security and the X –nolisten tcp option

security In a production environment, if you need to place an X server and the clients on different systems,
it is best to forward (tunnel) X over ssh. This setup provides a secure, encrypted connection. The
method described in this section is useful on local, secure networks and for understanding how
X works. See “X11 forwarding” on page 708 for information on setting up ssh so it forwards X.

Security and xhost
security Giving a remote system access to your display using xhost means any user on the remote system

can watch everything you type in a terminal emulation window, including passwords. For this rea-
son, some software packages, such as the Tcl/Tk development system (www.tcl.tk), restrict their
own capabilities when xhost permits remote access to the X server. If you are concerned about
security or want to take full advantage of systems such as Tcl/Tk, you should use a safer means
of granting remote access to your X session. See the xauth man page for information about a
more secure replacement for xhost.

www.tcl.tk

256 Chapter 8 Linux GUIs: X and GNOME

The DISPLAY Variable

The most common method of identifying a display is to use the DISPLAY shell envi-
ronment variable to hold the X server ID string. This locally unique identification
string is automatically set up when the X server starts. The DISPLAY variable holds
the screen number of a display:

$ echo $DISPLAY
:0.0

The format of the complete (globally unique) ID string for a display is

[hostname]:display-number[.screen-number]

where hostname is the name of the system running the X server, display-number is
the number of the logical (physical) display (0 unless multiple monitors or graphical
terminals are attached to the system, or if you are running X over ssh), and screen-
number is the logical number of the (virtual) terminal (0 unless you are running
multiple instances of X). When you are working with a single physical screen, you
can shorten the identification string. For example, you can use tiny:0.0 or tiny:0 to
identify the only physical display on the system named tiny. When the X server and
the X clients are running on the same system, you can shorten this identification
string even further to :0.0 or :0. An ssh connection shows DISPLAY as local-
host:10.0. See “X11 forwarding” on page 708 for information on setting up ssh so
that it forwards X.

If DISPLAY is empty or not set, the screen you are working from is not running X.
An application (the X client) uses the value of the DISPLAY variable to determine
which display, keyboard, and mouse (collectively, the X server) to use. One way to
run an X application, such as xclock, on the local system but have it use the X dis-
play on a remote system is to change the value of the DISPLAY variable on the client
system so that it identifies the remote X server.

sam@dog:~$ export DISPLAY=tiny:0.0
sam@dog:~$ xclock &

The preceding example shows Sam running xclock with the default X server running
on the system named tiny. After setting the DISPLAY variable to the ID of the tiny
server, all X programs (clients) Sam starts use tiny as their server (i.e., output
appears on tiny’s display and input comes from tiny’s keyboard and mouse). Try
running xterm in place of xclock and see which keyboard it accepts input from. If this
example generates an error, refer back to the two preceding sections, which explain
how to set up the server to allow a remote system to connect to it.

The –display Option

For a single command, you can specify the X server on the command line:

When you change the value of DISPLAY
tip When you change the value of the DISPLAY variable, all X programs send their output to the dis-

play named by DISPLAY.

X Window System 257

sam@dog:~$ xclock -display tiny:0.0

Many X programs accept the –display option. Those that do not accept this option
send their output to the display specified by the DISPLAY variable.

Running Multiple X Servers

You can run multiple X servers on a single system. The most common reason for
running a second X server is to use a second display that allocates a different number
of bits to each screen pixel (uses a different color depth [page 1029]). The possible
values are 8, 16, 24, and 32 bits per pixel. Most X servers available for Linux default
to 24 or 32 bits per pixel, permitting the use of millions of colors simultaneously.
Starting an X server with 8 bits per pixel permits the use of any combination of 256
colors at the same time. The maximum number of bits per pixel allowed depends on
the computer graphics hardware and X server. With fewer bits per pixel, the system
has to transfer less data, possibly making it more responsive. In addition, many
games work with only 256 colors.

When you start multiple X servers, each must have a different ID string. The following
command starts a second X server:

$ startx –– :1

The –– option marks the end of the startx options and arguments. The startx script
uses the arguments to the left of this option and passes arguments to the right of this
option to the X server. When you give the preceding command in a graphical envi-
ronment, such as from a terminal emulator, you must work with root privileges;
you will initiate a privileged X session. The following command starts an X server
running at 16 bits per pixel:

$ startx -- -depth 16 &

Refer to “Using Virtual Consoles” on page 136 for information on how to switch to a vir-
tual console to start a second server where you do not have to work with root privileges.

Switch User When you click the Logout object (Figure 4-2, page 91), select Switch User, and log
in as a different user, Ubuntu starts a second X server to accommodate that user.
When the second user logs off, the original X server displays the first user’s desktop.
You can switch between the X servers (and users) by selecting the virtual console
(page 136) that displays the X server you want to work with.

X over ssh See “Tunneling/Port Forwarding” on page 725 for information about running X
over an ssh connection.

Stopping the X Server

How you terminate a window manager depends on which window manager you are
running and how it is configured. If X stops responding, switch to a virtual terminal, log
in from another terminal or a remote system, or use ssh to access the system. Then kill
(page 522) the process running X. You can also press CONTROL-ALT-BACKSPACE to quit the X
server. This method may not shut down the X session cleanly; use it only as a last resort.

258 Chapter 8 Linux GUIs: X and GNOME

Remapping Mouse Buttons

Throughout this book, each description of a mouse click refers to the button by its
position (left, middle, or right, with left implied when no button is specified)
because the position of a mouse button is more intuitive than an arbitrary name or
number. X numbers buttons starting at the left and continuing with the mouse
wheel. The buttons on a three-button mouse are numbered 1 (left), 2 (middle), and
3 (right). A mouse wheel, if present, is numbered 4 (rolling it up) and 5 (rolling it
down). Clicking the wheel is equivalent to clicking the middle mouse button. The
buttons on a two-button mouse are 1 (left) and 2 (right).

If you are right-handed, you can conveniently press the left mouse button with your
index finger; X programs take advantage of this fact by relying on button 1 for the
most common operations. If you are left-handed, your index finger rests most con-
veniently on button 2 or 3 (the right button on a two- or three-button mouse).

“Mouse Preferences” on page 95 describes how to use a GUI to change a mouse
between right-handed and left-handed. You can also change how X interprets the
mouse buttons using xmodmap. If you are left-handed and using a three-button
mouse with a wheel, the following command causes X to interpret the right button
as button 1 and the left button as button 3:

$ xmodmap -e 'pointer = 3 2 1 4 5'

Omit the 4 and 5 if the mouse does not have a wheel. The following command
works for a two-button mouse without a wheel:

$ xmodmap -e 'pointer = 2 1'

If xmodmap displays a message complaining about the number of buttons, use the
xmodmap –pp option to display the number of buttons X has defined for the mouse:

$ xmodmap -pp
There are 9 pointer buttons defined.

 Physical Button
 Button Code
 1 1
 2 2
 3 3
 4 4
 5 5
 6 6
 7 7
 8 8
 9 9

Then expand the previous command, adding numbers to complete the list. If the
–pp option shows nine buttons, give the following command:

$ xmodmap -e 'pointer = 3 2 1 4 5 6 7 8 9'

X Window System 259

Changing the order of the first three buttons is critical to making the mouse suitable
for a left-handed user. When you remap the mouse buttons, remember to reinterpret
the descriptions in this book accordingly. When this book asks you to click the left
button or does not specify which button to click, use the right button, and vice versa.

Window Managers

Conceptually X is very simple and does not provide some of the more common fea-
tures found in GUIs, such as the ability to drag windows. The UNIX/Linux philoso-
phy is one of modularity: X relies on a window manager, such as Metacity or
Compiz, to draw window borders and handle moving and resizing operations.

Unlike a window manager, which has a clearly defined task, a desktop environment
(manager) does many things. In general, a desktop environment, such as KDE or
GNOME, provides a means of launching applications and utilities, such as a file
manager, that work with a window manager.

KDE and GNOME

The KDE project began in 1996, with the aim of creating a consistent, user-friendly
desktop environment for free UNIX-like operating systems. KDE is based on the Qt
toolkit made by Trolltech. When KDE development began, the Qt license was not
compatible with the GPL (page 4). For this reason the Free Software Foundation
decided to support a different project, the GNU Network Object Model Environ-
ment (GNOME). More recently Qt has been released under the terms of the GPL,
eliminating part of the rationale for GNOME’s existence.

GNOME GNOME is the default desktop environment for Ubuntu Linux. It provides a sim-
ple, coherent user interface that is suitable for corporate use. GNOME uses GTK
for drawing widgets. GTK, developed for the GNU Image Manipulation Program
(gimp), is written in C, although bindings for C++ and other languages are available.

GNOME does not take much advantage of its component architecture. Instead, it
continues to support the traditional UNIX philosophy of relying on many small
programs, each of which is good at doing a specific task.

KDE KDE is written in C++ on top of the Qt framework. KDE tries to use existing tech-
nology, if it can be reused, but creates its own if nothing else is available or a supe-
rior solution is needed. For example, KDE implemented an HTML rendering engine
long before the Mozilla project was born. Similarly, work on KOffice began a long
time before StarOffice became the open-source OpenOffice.org. In contrast, the
GNOME office applications are stand-alone programs that originated outside the
GNOME project. KDE’s portability is demonstrated by the use of most of its core
components, including Konqueror and KOffice, under Mac OS X.

Interoperability Since version 2, GNOME has focused on simplifying its user interface, removing
options where they are deemed unnecessary, and aiming for a set of default settings
that the end user will not wish to change. KDE has moved in the opposite direction,
emphasizing configurability.

260 Chapter 8 Linux GUIs: X and GNOME

The freedesktop.org group (freedesktop.org), whose members are drawn from the
GNOME and KDE projects, is improving interoperability and aims to produce
standards that will allow the two environments to work together. One standard
released by freedesktop.org allows applications to use the notification area of either
the GNOME or KDE panel without being aware of which desktop environment
they are running in.

GNUStep

The GNUStep project (www.gnustep.org), which began before both the KDE and
GNOME projects, is creating an open-source implementation of the OPENSTEP
API and desktop environment. The result is a very clean and fast user interface.

The default look of WindowMaker, the GNUStep window manager is somewhat
dated, but it supports themes so you can customize its appearance. The user inter-
face is widely regarded as one of the most intuitive found on a UNIX platform.
GNUStep has less overhead than KDE and GNOME, so it runs better on older
hardware. If you are running Linux on hardware that struggles with GNOME and
KDE or you would prefer a user interface that does not attempt to mimic Windows,
try GNUStep. WindowMaker is provided in the wmaker package.

The Nautilus File Browser Window

“Using Nautilus to Work with Files” on page 96 presented an introduction to
using Nautilus. This section discusses the Nautilus File Browser window in more
depth. Figure 8-2 shows a File Browser window with a Side pane (sometimes
called a sidebar), View pane, menubar, toolbar, location bar, and status bar. To

Figure 8-2 Nautilus File Browser window displaying icons

Menubar

Main toolbar

Location bar

Side pane button

Side pane

View pane

Status bar

Handle

www.gnustep.org

The Nautilus File Browser Window 261

display your home folder in a File Browser window, select Main menu: Places
Home Folder.

The View Pane

The View pane displays icons or a list of filenames. Select the view you prefer from
the drop-down list at the right end of the location bar. Figure 8-2 shows View as
Icons and Figure 8-3 shows View as List. Objects in the View pane behave exactly
as objects on the desktop do. See the sections starting on page 90 for information
on working with objects.

You can cut/copy and paste objects within a single View pane, between View panes,
or between a View pane and the desktop. The Object Context menu (right-click)
has cut, copy, and paste selections. Or, you can use the clipboard (page 113) to
cut/copy and paste objects.

The Side Pane

The Side pane augments the information Nautilus displays in the View pane. Press F9 or
click the small x at the top of the Side pane to close it. You can display the Side pane by
pressing F9 or selecting File Browser menu: View Side Pane. To change the horizontal
size of the Side pane and its contents, drag the handle (Figure 8-2) on its right side.

Figure 8-3 Nautilus File Browser window displaying a
List view and a textual location bar

Location bar

Nautilus can open a terminal emulator

tip When you install the nautilus-open-terminal package and reboot the system, Nautilus presents
an Open in Terminal selection in context menus where appropriate. For example, with this package
installed, when you right-click a folder (directory) object and select Open in Terminal, Nautilus
opens a terminal emulator with that directory as the working directory (page 188).

262 Chapter 8 Linux GUIs: X and GNOME

The Side pane can display six types of information. The button at its top controls
which type it displays. This button is initially labeled Places; click it to display the
Side pane drop-down list, which has the following selections:

Places Places lists folders. Double-click one of these folders to display that folder in the
View pane. You can open a directory in a new File Browser window by right-
clicking the directory in Places and selecting Open in New Window.

Places contains two parts: The list above the divider is static and holds your
home directory, your desktop, the filesystem, unmounted filesystems, and the
trash. The list below the divider holds bookmarks. Add a bookmark by display-
ing the directory you want to bookmark in the View pane and pressing CONTROL-D or
by selecting Browser menu: Bookmarks Add Bookmark. Remove a bookmark by
selecting Browser menu: Bookmarks Edit Bookmarks or by right-clicking the
bookmark and selecting Remove. You can also use Edit Bookmarks to reorder
bookmarks.

Information Information presents information about the folder displayed by the View pane.

Tree Tree presents an expandable tree view of your home folder, and each mounted file-
system. Each directory in the tree has a triangle to its left. Click a triangle that points
right to expand a directory; click a triangle that points down to close a directory.
Click a directory in the tree to display that directory in the View pane. Double-click
a directory to expand it in the Side pane and display it in the View pane.

History History displays a chronological list of the folders that have been displayed in the
View pane, with the most recently displayed folder at the top. Double-click a folder
in this list to display it in the View pane.

Notes Notes provides a place to keep notes about the folder displayed in the View pane.

Emblems Similar to the Emblems tab in the Object Properties window (page 117), Emblems
allows you to drag emblems from the Side pane and drop them on objects in the
View pane. Drag and drop the Erase emblem to erase emblems associated with an
object. You cannot erase emblems that Ubuntu places on objects, such as locked
and link emblems.

Control Bars

This section discusses the four control bars that initially appear in a File Browser
window: the Status bar, menubar, Main toolbar, and location bar (Figure 8-2).
From File Browser menubar: View, you can choose which of these bars to display,
except for the menubar, which Nautilus always displays.

Menubar The menubar appears at the top of the File Browser window and displays a menu
when you click one of its selections. Which menu selections Nautilus displays
depends on what the View pane is displaying and which object(s) are selected. The
next section describes the menubar in detail.

The Nautilus File Browser Window 263

Main toolbar The Main toolbar appears below the menubar and holds navigation tool icons:
Back, Forward, Up, Stop, Reload, Home, Computer, and Search. If the Main tool-
bar is too short to hold all icons, Nautilus displays a button with a triangle pointing
down at the right end of the toolbar. Click this button to display a drop-down list of
the remaining icons.

Location bar Below the Main toolbar is the location bar, which displays the name of the directory
that appears in the View pane. It can display this name in two formats: iconic (using
buttons) and textual (using a text box). Press CONTROL-L to switch to textual format,
click the pencil and paper icon at the left of this bar to switch between iconic and
textual formats.

In iconic format, each button represents a directory in a pathname (page 189). The
View pane displays the directory of the depressed (darker) button. Click one of
these buttons to display that directory. If the leftmost button holds a triangle that
points to the left, Nautilus is not displaying buttons for all the directories in the
absolute (full) pathname; click the button with a triangle in it to display more direc-
tory buttons.

In textual format, the text box displays the absolute pathname of the displayed
directory. To have Nautilus display another directory, enter the pathname of the
directory and press RETURN.

The location bar also holds the magnification selector and the View as drop-down
list. To change the magnification of the display in the View pane, click the plus or
minus sign in a magnifying glass on either side of the magnification percentage.
Right-click the magnification percentage itself to return to the default magnification.
Left-click the magnification percentage to display a drop-down list of magnifica-
tions. Click View as (to the right of the right-hand magnifying glass) to choose
whether to view files as icons or as a list.

Status bar The Status bar, at the bottom of the window, indicates how many items are displayed
in the View pane. If the directory you are viewing is on the local system, it also tells
you how much free space is on the device that holds the directory displayed by the
View pane.

Menubar

The Nautilus File Browser menubar controls what information the File Browser dis-
plays and how it displays that information. Many of the menu selections duplicate
controls found elsewhere in the File Browser window. This section highlights some
of the selections on the menubar; click Help on the menubar and select Contents or
Get Help Online for more information. This section describes the six parts of the
menubar.

File The several Open selections and the Property selection of File work with the high-
lighted object(s) in the View pane. If no objects are highlighted, these selections are

264 Chapter 8 Linux GUIs: X and GNOME

grayed out. Selecting Connect to Server displays the Connect to Server window
(Figure 8-4). This window presents a Service type drop-down list that allows you to
select FTP, SSH, Windows, or other types of servers. Enter the URL of the server in
the text box labeled Server. For an FTP connection, do not enter the ftp:// part of
the URL. Fill in the optional information as appropriate. Click Connect. If the
server requires authentication, Nautilus displays a window so you can enter your
username and password. Nautilus does not open a window but instead places an
object, named for the URL you specified, on the desktop. Open the object to con-
nect to and display the top-level directory on the server.

Edit Many of the Edit selections work with highlighted object(s) in the View pane; if no objects
are highlighted, these selections are grayed out or not displayed. This section discusses
three selections from Edit: Create Archive, Backgrounds and Emblems, and Preferences.

The Edit Create Archive selection creates a single archive file comprising the
selected objects. This selection opens a Create Archive window (Figure 8-5) that
allows you to specify the name and location of the archive. The drop-down list to
the right of the Archive text box allows you to specify a filename extension that
determines the type of archive this tool creates. For example, .tar.gz creates a tar
(page 161) file compressed by gzip (page 161) and .tar.bz2 creates a tar file com-
pressed by bzip2 (page 160).

The Edit Backgrounds and Emblems selection has three buttons on the left: Pat-
terns, Colors, and Emblems. Click Patterns to display many pattern objects on the
right side of the window. Drag and drop one of these objects on the View pane of a

Figure 8-4 Connect to Server window

Figure 8-5 Create Archive window

The Nautilus File Browser Window 265

File Browser window to change the background of all File Browser View panes. Drag
and drop the Reset object to reset the background to its default color and pattern
(usually white). The Colors button works the same way as the Patterns button. The
Emblems button works the same way as the Emblems tab in the Side pane (page 262).

The Edit Preferences selection displays the File Management Preferences window
(Figure 8-6). This window has five tabs that control the appearance and behavior of
File Browser windows.

The Edit Preferences Views tab sets several defaults, including which view the File
Browser displays (Icon or List view), the arrangement of the objects, and the default
zoom level.

Delete Versus
Move to Trash

The Edit Preferences Behavior tab controls how many clicks it takes to open an
object and what Nautilus does when it opens an executable text object (script). For
more confident users, this tab has an option that includes a Delete selection in
addition to the Move to Trash selection on several menus. The Delete selection
immediately removes the selected object instead of moving it to the Trash folder.

The Edit Preferences Display tab specifies which information Nautilus includes
in object (icon) captions. The three drop-down lists specify the order in which Nau-
tilus displays information as you increase the zoom level of the View pane. This tab
also specifies the date format Nautilus uses.

The Edit Preferences List Columns tab specifies which columns Nautilus displays,
and in what order it displays them, in the View pane when you select View as List.

Figure 8-6 File Management Preferences window, Views tab

266 Chapter 8 Linux GUIs: X and GNOME

The Edit Preferences Preview tab controls when Nautilus displays or plays pre-
views of files (local files, all files, no files).

View Click the Main Toolbar, Side Pane, Location Bar, and Statusbar selections in View
to display or remove these elements from the window. The Show Hidden Files selec-
tion displays in the View pane files with hidden filenames (page 188).

Go The Go selections display various folders in the View pane.

Bookmark Bookmarks appear at the bottom of this menu and in the Side pane under Places.
The Bookmark selections are explained under “Places” on page 262.

Help The Help selections display local and online information about Nautilus.

GNOME Utilities

GNOME comes with numerous utilities that can make your work with the desktop
easier and more productive. This section covers several tools that are integral to the
use of GNOME.

Deskbar Applet

Clicking the Deskbar applet (Figure 8-7) or pressing ALT-F3 opens the Deskbar Applet
window (also in Figure 8-7). As you type in the text box labeled Search, this tool
searches for the string you are entering. In Figure 8-7, the user has entered the string
desk. Below the list box labeled History, the Deskbar Applet window displays matches
it has found for desk. At the top of the list are actions that match or whose descriptions
match the string. For example, clicking Launch: Take Screenshot displays a window
that includes a radio button labeled Grab the whole desktop. Below the actions are
places: When you click Desktop, the Desktop Applet opens the Nautilus File Browser

Figure 8-7 Deskbar applet and Deskbar Applet window

Deskbar applet

GNOME Utilities 267

displaying the desktop. Finally, the window displays a list of Web searches. Click one of
these to open Firefox and perform the search. You can also use the Search for Files win-
dow (page 269) to search for files.

The Deskbar Applet displays matches based on extensions. Right-click the Deskbar
applet and select Preferences to open the Deskbar Preferences window. In the
Searches tab of this window, you can select the extensions you want the applet to use
and change the order in which it presents information generated by the extensions.
For example, remove the tick from the check box labeled Programs to cause the
Deskbar Applet window not to display programs in the Action section of its window.
Experiment with enabling and disabling extensions and changing their order.

The Extensions with Errors tab lists extensions the Deskbar applet cannot use.
When you highlight one of the lines in the Extensions with Errors frame, the Desk-
top Preferences window displays the reason the extension cannot be used.

For example, when you click Beagle, the message Beagle does not seem to be
installed appears below the frame. Install the beagle software package and, after the
beagle-crawl-system cron script runs (it runs each night) and you reboot the system,
this extension appears in the Searches tab. You can enable it and change its position
in the list of extensions.

Font Preferences

The Fonts tab of the Appearance Preferences window (Figure 8-8) enables you to
change the font that GNOME uses for applications, documents, the desktop, window
titles, and terminal emulators (fixed width). To display this window, select Main
menu: System Preferences Appearance or enter gnome-appearance-properties on
a command line. Click the Fonts tab. Click one of the five font bars in the upper part
of the window to display the Pick a Font window (discussed next).

Figure 8-8 Appearance Preferences window, Fonts tab

268 Chapter 8 Linux GUIs: X and GNOME

Examine the four sample boxes in the lower part of the window and select the one
in which the letters look the best. Subpixel smoothing is usually best for LCD mon-
itors. Click Details to refine the font rendering further, again picking the box in each
frame in which the letters look the best.

Pick a Font Window

The Pick a Font window (Figure 8-9) appears when you need to choose a font (see
“Font Preferences” on the previous page). From this window you can select a font
family, a style, and a size. A preview of your choice appears in the Preview box in
the lower part of the window. Click OK when you are satisfied with your choice.

Pick a Color Window

The Pick a Color window (Figure 8-10) appears when you need to specify a color,
such as when you specify a solid color for the desktop background (page 103) or a
panel. To specify a color for a panel, right-click the panel to display its context
menu, click the Background tab, click the radio button labeled Solid color, and click
within the box labeled Color. GNOME displays the Pick a Color window.

When the Pick a Color window opens, the bar below the color circle displays the
current color. Click the desired color on the color ring, and click/drag the lightness
of that color in the triangle. As you change the color, the right end of the bar below
the color circle previews the color you are selecting, while the left end continues to
display the current color. You can also use the eyedropper to pick up a color from
the workspace: Click the eyedropper, and then click the resulting eyedropper mouse
pointer on the color you want to select. The color you choose appears in the bar.
Click OK when you are satisfied with the color you have specified.

Figure 8-9 The Pick a Font window

GNOME Utilities 269

Run Application Window

The Run Application window (Figure 4-4, page 93) enables you to run a program as
though you had initiated it from a command line. To display the Run Application win-
dow, press Alt-F2. Enter a command in the text box. As soon as GNOME can uniquely
identify the command you are entering, it completes the command and may display an
object that identifies the application. Keep typing if the displayed command is not the
one you want to run. Otherwise, press RETURN to run the command or TAB to accept the
command in the text box. You can then continue entering information in the window.
Click Run with file to specify a file to use as an argument to the command in the text
box. Put a tick in the check box labeled Run in terminal to run a textual application,
such as vim, in a terminal emulator window.

Searching for Files

The Search for Files window (Figure 8-11 on the next page) can help you find files
whose locations or names you do not know or have forgotten. You can also use the
Deskbar applet (page 266) to search for files. Open this window by selecting Main
menu: Places Search for Files or enter gnome-search-tool on a command line from
a terminal emulator or Run Application window (ALT-F2). To search by filename or
partial filename, enter the (partial) filename in the combo box labeled Name con-
tains and then select the folder you want to search in from the drop-down list
labeled Look in folder. When GNOME searches in a folder, it searches subfolders to
any level (it searches the directory hierarchy). To search all directories in all
mounted filesystems, select File System from the drop-down list labeled Look in
folder. Select Other to search a folder not included in the drop-down list; GNOME
opens the Browse window (page 98). Once you have entered the search criteria,
click Find. GNOME displays the list of files matching the criteria in the list box
labeled Search results. Double-click a file in this list box to open it.

You can refine the search by entering more search criteria. Click the triangle to the
left of Select more options to expand the window and display more search criteria.
GNOME initially displays two search criteria and a line for adding criteria as shown

Figure 8-10 Pick a Color window

270 Chapter 8 Linux GUIs: X and GNOME

in Figure 8-12. With this part of the window expanded, GNOME incorporates all
visible search criteria when you click Find.

The first line below Select more options holds a text box labeled Contains the text.
Absence of an entry in this text box matches all files. You can leave this text box as is
or remove the line by clicking Remove at the right end of the line. To search for a file
that contains a specific string of characters (text), enter the string in this text box.

Add criteria by making a selection from the list box labeled Available options and
clicking Add to the right of the drop-down list. Remove criteria by clicking Remove
at the right end of the line that holds the criterion you want to remove.

To select files that were modified fewer than a specified number of days ago, select
Date modified less than from the list box and click Add. The Search for Files win-
dow adds a line with a spin box labeled Date modified less than. With this spin box
showing 0 (zero), as it does initially, no file matches the search criteria. Change this
number as desired and click Find to begin the search.

GNOME Terminal Emulator/Shell

The GNOME terminal emulator (Figure 4-17, page 114) displays a window that
mimics a character-based terminal (page 114). To display a terminal emulator win-
dow, select Main menu: Applications Accessories Terminal or enter gnome-
terminal on a command line from a Run Application window (ALT-F2). When the
GNOME terminal emulator is already displayed, select Terminal menubar:
File Open Terminal or right-click within the Terminal window and select Open
Terminal to display a new terminal emulator window.

To open an additional terminal session within the same Terminal window, right-
click the window and select Open Tab from the context menu or select Terminal
menubar: File Open Tab. A row of tabs appears below the menubar as gnome-
terminal opens another terminal session on top of the existing one. Add as many ter-
minal sessions as you like; click the tabs to switch between sessions.

Figure 8-11 The Search for Files window

Chapter Summary 271

A session you add from the context menu uses the same profile as the session you
open it from. When you use the menubar to open a session, GNOME gives you a
choice of profiles, if more than one is available. You can add and modify profiles,
including the Default profile, by selecting Terminal menubar: Edit Profiles. High-
light the profile you want to modify or click New to design a new profile.

Chapter Summary

The X Window System GUI is portable and flexible and makes it easy to write
applications that work on many different types of systems without having to know
low-level details for the individual systems. This GUI can operate in a networked
environment, allowing a user to run a program on a remote system and send the
results to a local display. The client/server concept is integral to the operation of the
X Window System, in which the X server is responsible for fulfilling requests made
of X Window System applications or clients. Hundreds of clients are available that
can run under X. Programmers can also write their own clients, using tools such as
the Qt and KDE libraries to write KDE programs and the GTK+ and GTK+2
GNOME libraries to write GNOME programs.

The window managers, and virtually all X applications, are designed to help users
tailor their work environments in simple or complex ways. You can designate appli-
cations that start automatically, set such attributes as colors and fonts, and even
alter the way keyboard strokes and mouse clicks are interpreted.

Built on top of the X Window System, you can use the GNOME desktop manager
as is or customize it to better suit your needs. It is a graphical user interface to sys-
tem services (commands), the filesystem, applications, and more. Although not part
of GNOME, the Metacity and Compiz window managers work closely with
GNOME and are the default window managers for GNOME under Ubuntu Linux.

Figure 8-12 The Search for Files window with Select more options expanded

272 Chapter 8 Linux GUIs: X and GNOME

A window manager controls all aspects of the windows, including placement, deco-
ration, grouping, minimizing and maximizing, sizing, and moving.

The Nautilus File Browser window is a critical part of GNOME; the desktop is a
modified File Browser window. The File Browser View pane displays icons or a list
of filenames that you can work with. The Side pane, which can display six types of
information, augments the information Nautilus displays in the View pane.

GNOME also provides many graphical utilities you can use to customize and work
with the desktop. It supports MIME types so when you double-click an object,
GNOME generally knows which tool to use to display the data represented by the
object. In sum, GNOME is a powerful desktop manager that can make your job
both easier and more fun.

Exercises

1. a. What is Nautilus?
a.

b. List four things you can do with Nautilus.

c. How do you use Nautilus to search for a file?

2. What is a terminal emulator? What does it allow you to do from a GUI
that you would not be able to do without one?

3. How would you search the entire filesystem for a file named today.odt?

4. a. List two ways you can open a file using Nautilus.
a.

b. How does Nautilus “know” which program to use to open different
types of files?

c. Which are the three common Nautilus control bars? What kinds of
tools do you find on each?

d. Discuss the use of the Nautilus location bar in textual mode.

Advanced Exercises

5. Assume a mouse with nine pointer buttons defined. How would you
reverse the effects of using the mouse wheel?

6. a. How would you use Nautilus to connect to the FTP server at
ftp.ubuntu.com?

a.

b. Open the following folders: ubuntu, dists, and gutsy. How would you
copy the file named Contents-i386.gz to the desktop? What type of file
is Contents-i386.gz?

Advanced Exercises 273

c. How would you open the Contents-i386.gz file on the desktop? How
would you open the Contents-i386.gz file on the FTP server? Which file
opens more quickly? Why? Which file can you modify?

7. Discuss the client/server environment the X Window System sets up. How
does the X server work? List three X clients. Where is the client and where
is the server when you log in on a local system? What is an advantage of
this setup?

8. Run xwininfo from a terminal emulator window and answer these questions:

a. What does xwininfo do?

b. What does xwininfo give as the name of the window you clicked? Does
that agree with the name in the window’s titlebar?

c. What is the size of the window? What units does xwininfo display? What
is the depth of a window?

d. How can you get xwininfo to display the same information without hav-
ing to click the window?

9. Write an xeyes command to display a window that is 600 pixels wide and
400 pixels tall, is located 200 pixels from the right edge of the screen and
300 pixels from the top of the screen, and contains orange eyes outlined in
blue with red pupils. (Hint: Refer to the xeyes man page.)

This page intentionally left blank

275275

9Chapter9This chapter picks up where Chapter 7 left off. Chapter 11
expands on this chapter, exploring control flow commands and
more advanced aspects of programming the Bourne Again
Shell. The bash home page is www.gnu.org/software/bash. The
bash info page is a complete Bourne Again Shell reference.

The Bourne Again Shell is a command interpreter and high-
level programming language. As a command interpreter, it pro-
cesses commands you enter on the command line in response to
a prompt. When you use the shell as a programming language,
it processes commands stored in files called shell scripts. Like
other languages, shells have variables and control flow com-
mands (for example, for loops and if statements).

When you use a shell as a command interpreter, you can cus-
tomize the environment you work in. You can make your
prompt display the name of the working directory, create a
function or alias for cp that keeps it from overwriting certain
kinds of files, take advantage of keyword variables to change
aspects of how the shell works, and so on. You can also write
shell scripts that do your bidding, from a one-line script that
stores a long, complex command to a longer script that runs a

In This Chapter

Startup Files 277

Redirecting Standard Error 280

Writing a Simple Shell Script 282

Job Control. 290

Manipulating the Directory
Stack . 292

Parameters and Variables 295

Processes 310

History . 312

Reexecuting and Editing
Commands 314

Functions . 331

Controlling bash Features
and Options 334

Processing the Command Line. . . 338

9

The Bourne Again

Shell

www.gnu.org/software/bash

276 Chapter 9 The Bourne Again Shell

set of reports, prints them, and mails you a reminder when the job is done. More
complex shell scripts are themselves programs; they do not just run other programs.
Chapter 11 has some examples of these types of scripts.

Most system shell scripts are written to run under the Bourne Again Shell. If you
will ever work in recovery mode—as when you boot your system or do system
maintenance, administration, or repair work, for example—it is a good idea to
become familiar with this shell.

This chapter expands on the interactive features of the shell described in Chapter 7,
explains how to create and run simple shell scripts, discusses job control, introduces
the basic aspects of shell programming, talks about history and aliases, and
describes command line expansion. Chapter 11 presents some more challenging
shell programming problems.

Background

The Bourne Again Shell is based on the Bourne Shell (the early UNIX shell; this
book refers to it as the original Bourne Shell to avoid confusion), which was written
by Steve Bourne of AT&T’s Bell Laboratories. Over the years the original Bourne
Shell has been expanded but it remains the basic shell provided with many commer-
cial versions of UNIX.

sh Shell Because of its long and successful history, the original Bourne Shell has been used to
write many of the shell scripts that help manage UNIX systems. Some of these
scripts appear in Linux as Bourne Again Shell scripts. Although the Bourne Again
Shell includes many extensions and features not found in the original Bourne Shell,
bash maintains compatibility with the original Bourne Shell so you can run Bourne
Shell scripts under bash. On UNIX systems the original Bourne Shell is named sh.

dash Shell The bash executable file is about 700 kilobytes, has many features, and is well
suited as a user login shell. The dash shell is about 80 kilobytes, offers Bourne Shell
compatibility for shell scripts (noninteractive use), and because of its size, can load
and execute shell scripts much more quickly than bash. Most system scripts are set
up to run sh which, under Ubuntu, is a symbolic link to dash. This setup allows the
system to boot and run system shell scripts quickly.

On Linux systems sh is a symbolic link to bash ensuring that scripts that require the
presence of the Bourne Shell still run. When called as sh, bash does its best to emu-
late the original Bourne Shell.

Korn Shell System V UNIX introduced the Korn Shell (ksh), written by David Korn. This shell
extended many features of the original Bourne Shell and added many new features.
Some features of the Bourne Again Shell, such as command aliases and command
line editing, are based on similar features from the Korn Shell.

POSIX standards The POSIX (the Portable Operating System Interface) family of related standards is
being developed by PASC (IEEE’s Portable Application Standards Committee,
www.pasc.org). A comprehensive FAQ on POSIX, including many links, appears at
www.opengroup.org/austin/papers/posix_faq.html.

www.pasc.org
www.opengroup.org/austin/papers/posix_faq.html

Shell Basics 277

POSIX standard 1003.2 describes shell functionality. The Bourne Again Shell pro-
vides the features that match the requirements of this POSIX standard. Efforts are
under way to make the Bourne Again Shell fully comply with the POSIX standard.
In the meantime, if you invoke bash with the ––posix option, the behavior of the
Bourne Again Shell will more closely match the POSIX requirements.

Shell Basics

This section covers writing and using startup files, redirecting standard error, writing
and executing simple shell scripts, separating and grouping commands, implement-
ing job control, and manipulating the directory stack.

Startup Files

When a shell starts, it runs startup files to initialize itself. Which files the shell runs
depends on whether it is a login shell, an interactive shell that is not a login shell
(such as you get by giving the command bash), or a noninteractive shell (one used to
execute a shell script). You must have read access to a startup file to execute the
commands in it. Ubuntu Linux puts appropriate commands in some of these files.
This section covers bash startup files.

Login Shells

The files covered in this section are executed by login shells and shells that you start
with the ––login option. Login shells are, by their nature, interactive.

/etc/profile The shell first executes the commands in /etc/profile. A user working with root privi-
leges can set up this file to establish systemwide default characteristics for bash users.

.bash_profile
.bash_login

.profile

Next the shell looks for ~/.bash_profile, ~/.bash_login, and ~/.profile (~/ is short-
hand for your home directory), in that order, executing the commands in the first of
these files it finds. You can put commands in one of these files to override the
defaults set in /etc/profile. A shell running on a virtual terminal does not execute
commands in these files.

.bash_logout When you log out, bash executes commands in the ~/.bash_logout file. Frequently
commands that clean up after a session, such as those that remove temporary files,
go in this file.

Interactive Nonlogin Shells

The commands in the preceding startup files are not executed by interactive, non-
login shells. However, these shells inherit from the login shell variables that are set
by these startup files.

/etc/bashrc Although not called by bash directly, many ~/.bashrc files call /etc/bashrc. This
setup allows a user working with root privileges to establish systemwide default
characteristics for nonlogin bash shells.

.bashrc An interactive nonlogin shell executes commands in the ~/.bashrc file. Typically a
startup file for a login shell, such as .bash_profile, runs this file, so that both login
and nonlogin shells benefit from the commands in .bashrc.

278 Chapter 9 The Bourne Again Shell

Noninteractive Shells

The commands in the previously described startup files are not executed by nonin-
teractive shells, such as those that runs shell scripts. However, these shells inherit
from the login shell variables that are set by these startup files.

BASH_ENV Noninteractive shells look for the environment variable BASH_ENV (or ENV, if the
shell is called as sh) and execute commands in the file named by this variable.

Setting Up Startup Files

Although many startup files and types of shells exist, usually all you need are the
.bash_profile and .bashrc files in your home directory. Commands similar to the fol-
lowing in .bash_profile run commands from .bashrc for login shells (when .bashrc
exists). With this setup, the commands in .bashrc are executed by login and non-
login shells.

if [-f ~/.bashrc]; then source ~/.bashrc; fi

The [–f ~/.bashrc] tests whether the file named .bashrc in your home directory
exists. See pages 397 and 399 for more information on test and its synonym [].

Sample .bash_profile and .bashrc files follow. Some of the commands used in these
files are not covered until later in this chapter. In any startup file, you must export
variables and functions that you want to be available to child processes. For more
information refer to “Locality of Variables” on page 434.

$ cat ~/.bash_profile
if [-f ~/.bashrc]; then

source ~/.bashrc # read local startup file if it exists
fi
PATH=$PATH:. # add the working directory to PATH
export PS1='[\h \W \!]\$ ' # set prompt

The first command in the preceding .bash_profile file executes the commands in the
user’s .bashrc file if it exists. The next command adds to the PATH variable
(page 302). Typically PATH is set and exported in /etc/profile so it does not need to
be exported in a user’s startup file. The final command sets and exports PS1
(page 303), which controls the user’s prompt.

Use .bash_profile to set PATH
tip Because commands in .bashrc may be executed many times, and because subshells inherit

exported variables, it is a good idea to put commands that add to existing variables in the
.bash_profile file. For example, the following command adds the bin subdirectory of the home
directory to PATH (page 302) and should go in .bash_profile:

PATH=$PATH:$HOME/bin

When you put this command in .bash_profile and not in .bashrc, the string is added to the PATH
variable only once, when you log in.

Modifying a variable in .bash_profile allows changes you make in an interactive session to prop-
agate to subshells. In contrast, modifying a variable in .bashrc overrides changes inherited from
a parent shell.

Shell Basics 279

Next is a sample .bashrc file. The first command executes the commands in the
/etc/bashrc file if it exists. Next the LANG (page 308) and VIMINIT (for vim initial-
ization) variables are set and exported and several aliases (page 328) are established.
The final command defines a function (page 331) that swaps the names of two files.

$ cat ~/.bashrc
if [-f /etc/bashrc]; then

source /etc/bashrc # read global startup file if it exists
fi
set -o noclobber # prevent overwriting files
unset MAILCHECK # turn off "you have new mail" notice
export LANG=C # set LANG variable
export VIMINIT='set ai aw' # set vim options
alias df='df -h' # set up aliases
alias rm='rm -i' # always do interactive rm's
alias lt='ls -ltrh | tail'
alias h='history | tail'

function switch() # a function to exchange the names
{ # of two files

local tmp=$$switch
mv "$1" $tmp
mv "$2" "$1"
mv $tmp "$2"

}

. (Dot) or source: Runs a Startup File in

the Current Shell

After you edit a startup file such as .bashrc, you do not have to log out and log in
again to put the changes into effect. You can run the startup file using the . (dot) or
source builtin (they are the same command). As with all other commands, the . must
be followed by a SPACE on the command line. Using the . or source builtin is similar
to running a shell script, except that these commands run the script as part of the
current process. Consequently, when you use . or source to run a script, changes you
make to variables from within the script affect the shell that you run the script
from. You can use the . or source command to run any shell script—not just a
startup file—but undesirable side effects (such as changes in the values of shell vari-
ables you rely on) may occur. If you ran a startup file as a regular shell script and
did not use the . or source builtin, the variables created in the startup file would
remain in effect only in the subshell running the script—not in the shell you ran the
script from. For more information refer to “Locality of Variables” on page 434.

In the following example, .bashrc sets several variables and sets PS1, the prompt, to
the name of the host. The . builtin puts the new values into effect.

$ cat ~/.bashrc
export TERM=vt100 # set the terminal type
export PS1="$(hostname -f): " # set the prompt string
export CDPATH=:$HOME # add HOME to CDPATH string
stty kill '^u' # set kill line to control-u$. ~/.bashrc
bravo.example.com:

280 Chapter 9 The Bourne Again Shell

Commands That Are Symbols

The Bourne Again Shell uses the symbols (,), [,], and $ in a variety of ways. To
minimize confusion, Table 9-1 lists the most common use of each of these symbols,
even though some of them are not introduced until later.

Redirecting Standard Error

Chapter 7 covered the concept of standard output and explained how to redirect
standard output of a command. In addition to standard output, commands can send
output to standard error. A command can send error messages to standard error to
keep them from getting mixed up with the information it sends to standard output.

Just as it does with standard output, by default the shell sends a command’s standard
error to the screen. Unless you redirect one or the other, you may not know the differ-
ence between the output a command sends to standard output and the output it sends
to standard error. This section covers the syntax used by the Bourne Again Shell.

File descriptors A file descriptor is the place a program sends its output to and gets its input from.
When you execute a program, the process running the program opens three file
descriptors: 0 (standard input), 1 (standard output), and 2 (standard error). The
redirect output symbol (> [page 228]) is shorthand for 1>, which tells the shell to
redirect standard output. Similarly < (page 230) is short for 0<, which redirects
standard input. The symbols 2> redirect standard error. For more information refer
to “File Descriptors” on page 429.

The following examples demonstrate how to redirect standard output and standard
error to different files and to the same file. When you run the cat utility with the
name of a file that does not exist and the name of a file that does exist, cat sends an
error message to standard error and copies the file that does exist to standard out-
put. Unless you redirect them, both messages appear on the screen.

$ cat y
This is y.
$ cat x
cat: x: No such file or directory

Table 9-1 Builtin commands that are symbols

Symbol Command

() Subshell (page 289)

$() Command substitution (page 344)

(()) Arithmetic evaluation; a synonym for let (use when the enclosed value con-
tains an equal sign) (page 458)

$(()) Arithmetic expansion (not for use with an enclosed equal sign) (page 342)

[] The test command (pages 397, 399, and 412)

[[]] Conditional expression; similar to [] but adds string comparisons (page 459)

Shell Basics 281

$ cat x y
cat: x: No such file or directory
This is y.

When you redirect standard output of a command, output sent to standard error is
not affected and still appears on the screen.

$ cat x y > hold
cat: x: No such file or directory
$ cat hold
This is y.

Similarly, when you send standard output through a pipe, standard error is not
affected. The following example sends standard output of cat through a pipe to tr,
which in this example converts lowercase characters to uppercase. (See the tr info
page for more information.) The text that cat sends to standard error is not trans-
lated because it goes directly to the screen rather than through the pipe.

$ cat x y | tr "[a-z]" "[A-Z]"
cat: x: No such file or directory
THIS IS Y.

The following example redirects standard output and standard error to different
files. The notation 2> tells the shell where to redirect standard error (file descriptor
2). The 1> tells the shell where to redirect standard output (file descriptor 1). You
can use > in place of 1>.

$ cat x y 1> hold1 2> hold2
$ cat hold1
This is y.
$ cat hold2
cat: x: No such file or directory

Duplicating a file
descriptor

In the next example, 1> redirects standard output to hold. Then 2>&1 declares file
descriptor 2 to be a duplicate of file descriptor 1. As a result both standard output
and standard error are redirected to hold.

$ cat x y 1> hold 2>&1
$ cat hold
cat: x: No such file or directory
This is y.

In the preceding example, 1> hold precedes 2>&1. If they had been listed in the
opposite order, standard error would have been made a duplicate of standard out-
put before standard output was redirected to hold. In that case only standard
output would have been redirected to hold.

The next example declares file descriptor 2 to be a duplicate of file descriptor 1 and
sends the output for file descriptor 1 through a pipe to the tr command.

$ cat x y 2>&1 | tr "[a-z]" "[A-Z]"
CAT: X: NO SUCH FILE OR DIRECTORY
THIS IS Y.

282 Chapter 9 The Bourne Again Shell

Sending errors to
standard error

You can also use 1>&2 to redirect standard output of a command to standard error.
This technique is used in shell scripts to send the output of echo to standard error. In
the following script, standard output of the first echo is redirected to standard error:

$ cat message_demo
echo This is an error message. 1>&2
echo This is not an error message.

If you redirect standard output of message_demo, error messages such as the one pro-
duced by the first echo will still go to the screen because you have not redirected stan-
dard error. Because standard output of a shell script is frequently redirected to another
file, you can use this technique to display on the screen error messages generated by the
script. The lnks script (page 404) uses this technique. You can also use the exec builtin
to create additional file descriptors and to redirect standard input, standard output,
and standard error of a shell script from within the script (page 448).

The Bourne Again Shell supports the redirection operators shown in Table 9-2.

Writing a Simple Shell Script

A shell script is a file that contains commands that the shell can execute. The com-
mands in a shell script can be any commands you can enter in response to a shell
prompt. For example, a command in a shell script might run a Linux utility, a com-
piled program, or another shell script. Like the commands you give on the command
line, a command in a shell script can use ambiguous file references and can have its
input or output redirected from or to a file or sent through a pipe (page 234). You
can also use pipes and redirection with the input and output of the script itself.

Table 9-2 Redirection operators

Operator Meaning

< filename Redirects standard input from filename.

> filename Redirects standard output to filename unless filename exists and noclobber
(page 231) is set. If noclobber is not set, this redirection creates filename if it
does not exist.

>| filename Redirects standard output to filename, even if the file exists and noclobber
(page 231) is set.

>> filename Redirects and appends standard output to filename unless filename exists and
noclobber (page 231) is set. If noclobber is not set, this redirection creates
filename if it does not exist.

<&m Duplicates standard input from file descriptor m (page 430).

[n] >&m Duplicates standard output or file descriptor n if specified from file descriptor
m (page 430).

[n]<&– Closes standard input or file descriptor n if specified (page 430).

[n] >&– Closes standard output or file descriptor n if specified.

Shell Basics 283

In addition to the commands you would ordinarily use on the command line, con-
trol flow commands (also called control structures) find most of their use in shell
scripts. This group of commands enables you to alter the order of execution of
commands in a script just as you would alter the order of execution of statements
using a structured programming language. Refer to “Control Structures” on
page 396 for specifics.

The shell interprets and executes the commands in a shell script, one after another.
Thus a shell script enables you to simply and quickly initiate a complex series of
tasks or a repetitive procedure.

chmod: Makes a File Executable

To execute a shell script by giving its name as a command, you must have permis-
sion to read and execute the file that contains the script (refer to “Access Permis-
sions” on page 199). Read permission enables you to read the file that holds the
script. Execute permission tells the shell and the system that the owner, group,
and/or public has permission to execute the file; it implies that the content of the file
is executable.

When you create a shell script using an editor, the file does not typically have its
execute permission set. The following example shows a file named whoson that
contains a shell script:

$ cat whoson
date
echo "Users Currently Logged In"
who

$ whoson
bash: ./whoson: Permission denied

You cannot execute whoson by giving its name as a command because you do not
have execute permission for the file. The shell does not recognize whoson as an exe-
cutable file and issues an error message when you try to execute it. When you give
the filename as an argument to bash (bash whoson), bash takes the argument to be a
shell script and executes it. In this case bash is executable and whoson is an argu-
ment that bash executes so you do not need to have permission to execute whoson.

Command not found?

tip If you get the message
$ whoson
bash: whoson: command not found

the shell is not set up to search for executable files in the working directory. Give this command
instead:

$./whoson

The ./ tells the shell explicitly to look for an executable file in the working directory. To change the
environment so that the shell searches the working directory automatically, see page 302.

284 Chapter 9 The Bourne Again Shell

The chmod utility changes the access privileges associated with a file. Figure 9-1
shows ls with the –l option displaying the access privileges of whoson before and
after chmod gives execute permission to the file’s owner.

The first ls displays a hyphen (–) as the fourth character, indicating that the owner
does not have permission to execute the file. Next chmod gives the owner execute
permission: The u+x causes chmod to add (+) execute permission (x) for the owner
(u). (The u stands for user, although it means the owner of the file who may be the
user of the file at any given time.) The second argument is the name of the file. The
second ls shows an x in the fourth position, indicating that the owner now has exe-
cute permission.

If other users will execute the file, you must also change group and/or public access
permissions for the file. Any user must have execute access to use the file’s name as
a command. If the file is a shell script, the user trying to execute the file must also
have read access to the file. You do not need read access to execute a binary execut-
able (compiled program).

The final command in Figure 9-1 shows the shell executing the file when its name is
given as a command. For more information refer to “Access Permissions” on
page 199, ls (page 199), and chmod (page 200).

#! Specifies a Shell

You can put a special sequence of characters on the first line of a file to tell the oper-
ating system which shell should execute the file. Because the operating system checks
the initial characters of a program before attempting to exec it, these characters save
the system from making an unsuccessful attempt. If #! are the first two characters of
a script, the system interprets the characters that follow as the absolute pathname of
the utility that should execute the script. This can be the pathname of any program,
not just a shell. The following example specifies that bash should run the script:

Figure 9-1 Using chmod to make a shell script executable

$ ls -l whoson
-rw-rw-r-- 1 alex group 40 May 24 11:30 whoson

$ chmod u+x whoson
$ ls -l whoson
-rwxrw-r-- 1 alex group 40 May 24 11:30 whoson

$ whoson
Tue May 22 11:40:49 PDT 2007
Users Currently Logged In
jenny pts/7 May 21 18:17
hls pts/1 May 22 09:59
scott pts/12 May 22 06:29 (bravo.example.com)
alex pts/4 May 22 09:08

Shell Basics 285

$ cat bash_script
#!/bin/bash
echo "This is a Bourne Again Shell script."

The #! characters are useful if you have a script that you want to run with a shell
other than the shell you are running the script from. The following example shows a
script that should be executed by tcsh:

$ cat tcsh_script
#!/bin/tcsh
echo "This is a tcsh script."
set person = jenny
echo "person is $person"

Because of the #! line, the operating system ensures that tcsh executes the script no
matter which shell you run it from.

You can use ps –f within a shell script to display the name of the shell that is execut-
ing the script. The three lines that ps displays in the following example show the
process running the parent bash shell, the process running the tcsh script, and the
process running the ps command:

$ cat tcsh_script2
#!/bin/tcsh
ps -f

$ tcsh_script2
UID PID PPID C STIME TTY TIME CMD
alex 3031 3030 0 Nov16 pts/4 00:00:00 -bash
alex 9358 3031 0 21:13 pts/4 00:00:00 /bin/tcsh ./tcsh_script2
alex 9375 9358 0 21:13 pts/4 00:00:00 ps -f

If you do not follow #! with the name of an executable program, the shell reports
that it cannot find the command that you asked it to run. You can optionally follow
#! with SPACEs. If you omit the #! line and try to run, for example, a tcsh script from
bash, the shell may generate error messages or the script may not run properly.

Begins a Comment

Comments make shell scripts and all code easier to read and maintain by you and
others. If a pound sign (#) in the first character position of the first line of a script is
not immediately followed by an exclamation point (!) or if a pound sign occurs in
any other location in a script, the shell interprets it as the beginning of a comment.
The shell then ignores everything between the pound sign and the end of the line
(the next NEWLINE character).

Running a Shell Script

fork and exec
system calls

A command on the command line causes the shell to fork a new process, creating a
duplicate of the shell process (a subshell). The new process attempts to exec (exe-
cute) the command. Like fork, the exec routine is executed by the operating system
(a system call). If the command is a binary executable program, such as a compiled

286 Chapter 9 The Bourne Again Shell

C program, exec succeeds and the system overlays the newly created subshell with
the executable program. If the command is a shell script, exec fails. When exec fails,
the command is assumed to be a shell script, and the subshell runs the commands in
the script. Unlike a login shell, which expects input from the command line, the sub-
shell takes its input from a file: the shell script.

As discussed earlier, if you have a shell script in a file that you do not have execute
permission for, you can run the commands in the script by using a bash command to
exec a shell to run the script directly. In the following example, bash creates a new
shell that takes its input from the file named whoson:

$ bash whoson

Because the bash command expects to read a file containing commands, you do not
need execute permission for whoson. (You do need read permission.) Even though
bash reads and executes the commands in whoson, standard input, standard output,
and standard error remain connected to the terminal.

Although you can use bash to execute a shell script, this technique causes the script to
run more slowly than giving yourself execute permission and directly invoking the
script. Users typically prefer to make the file executable and run the script by typing
its name on the command line. It is also easier to type the name, and this practice is
consistent with the way other kinds of programs are invoked (so you do not need to
know whether you are running a shell script or another kind of program). However, if
bash is not your interactive shell or if you want to see how the script runs with differ-
ent shells, you may want to run a script as an argument to bash or tcsh.

Separating and Grouping Commands

Whether you give the shell commands interactively or write a shell script, you must
separate commands from one another. This section reviews the ways to separate
commands that were covered in Chapter 7 and introduces a few new ones.

; and NEWLINE Separate Commands

The NEWLINE character is a unique command separator because it initiates execution
of the command preceding it. You have seen this throughout this book each time
you press the RETURN key at the end of a command line.

The semicolon (;) is a command separator that does not initiate execution of a com-
mand and does not change any aspect of how the command functions. You can exe-
cute a series of commands sequentially by entering them on a single command line
and separating each from the next with a semicolon (;). You initiate execution of the
sequence of commands by pressing RETURN:

sh does not call the original Bourne Shell
caution The original Bourne Shell was invoked with the command sh. Although you can call bash with an

sh command, it is not the original Bourne Shell. The sh command (/bin/sh) is a symbolic link to
/bin/bash, so it is simply another name for the bash command. When you call bash using the
command sh, bash tries to mimic the behavior of the original Bourne Shell as closely as possible.
It does not always succeed.

Shell Basics 287

$ x ; y ; z

If x, y, and z are commands, the preceding command line yields the same results as
the next three commands. The difference is that in the next example the shell issues
a prompt after each of the commands (x, y, and z) finishes executing, whereas the
preceding command line causes the shell to issue a prompt only after z is complete:

$ x
$ y
$ z

Whitespace Although the whitespace around the semicolons in the earlier example makes the
command line easier to read, it is not necessary. None of the command separators
needs to be surrounded by SPACEs or TABs.

\ Continues a Command

When you enter a long command line and the cursor reaches the right side of the
screen, you can use a backslash (\) character to continue the command on the next
line. The backslash quotes, or escapes, the NEWLINE character that follows it so that
the shell does not treat the NEWLINE as a command terminator. Enclosing a backslash
within single quotation marks turns off the power of a backslash to quote special
characters such as NEWLINE. Enclosing a backslash within double quotation marks has
no effect on the power of the backslash.

Although you can break a line in the middle of a word (token), it is typically easier
to break a line just before or after whitespace.

optional You can enter a RETURN in the middle of a quoted string on a command line without
using a backslash. The NEWLINE (RETURN) that you enter will then be part of the string:

$ echo "Please enter the three values
> required to complete the transaction."
Please enter the three values
required to complete the transaction.

In the three examples in this section, the shell does not interpret RETURN as a com-
mand terminator because it occurs within a quoted string. The > is a secondary
prompt indicating that the shell is waiting for you to continue the unfinished com-
mand. In the next example, the first RETURN is quoted (escaped) so the shell treats it as
a separator and does not interpret it literally.

$ echo "Please enter the three values \
> required to complete the transaction."
Please enter the three values required to complete the transaction.

Single quotation marks cause the shell to interpret a backslash literally:

$ echo 'Please enter the three values \
> required to complete the transaction.'
Please enter the three values \
required to complete the transaction.

288 Chapter 9 The Bourne Again Shell

| and & Separate Commands and Do Something Else

The pipe symbol (|) and the background task symbol (&) are also command separa-
tors. They do not start execution of a command but do change some aspect of how
the command functions. The pipe symbol alters the source of standard input or the
destination of standard output. The background task symbol causes the shell to exe-
cute the task in the background so you get a prompt immediately and can continue
working on other tasks.

Each of the following command lines initiates a single job comprising three tasks:

$ x | y | z
$ ls -l | grep tmp | less

In the first job, the shell redirects standard output of task x to standard input of
task y and redirects y’s standard output to z’s standard input. Because it runs the
entire job in the foreground, the shell does not display a prompt until task z runs to
completion: Task z does not finish until task y finishes, and task y does not finish
until task x finishes. In the second job, task x is an ls –l command, task y is grep
tmp, and task z is the pager less. The shell displays a long (wide) listing of the files
in the working directory that contain the string tmp, piped through less.

The next command line executes tasks d and e in the background and task f in the
foreground:

$ d & e & f
[1] 14271
[2] 14272

The shell displays the job number between brackets and the PID (process identifica-
tion) number for each process running in the background. You get a prompt as soon
as f finishes, which may be before d or e finishes.

Before displaying a prompt for a new command, the shell checks whether any back-
ground jobs have completed. For each job that has completed, the shell displays its
job number, the word Done, and the command line that invoked the job; then the
shell displays a prompt. When the job numbers are listed, the number of the last job
started is followed by a + character and the job number of the previous job is fol-
lowed by a – character. Any other jobs listed show a SPACE character. After running
the last command, the shell displays the following before issuing a prompt:

[1]- Done d
[2]+ Done e

The next command line executes all three tasks as background jobs. You get a shell
prompt immediately:

$ d & e & f &
[1] 14290
[2] 14291
[3] 14292

You can use pipes to send the output from one task to the next task and an amper-
sand (&) to run the entire job as a background task. Again the prompt comes back
immediately. The shell regards the commands joined by a pipe as being a single job.
That is, it treats all pipes as single jobs, no matter how many tasks are connected

Shell Basics 289

with the pipe (|) symbol or how complex they are. The Bourne Again Shell shows
only one process placed in the background:

$ d | e | f &
[1] 14295

optional () Groups Commands

You can use parentheses to group commands. The shell creates a copy of itself,
called a subshell, for each group. It treats each group of commands as a job and cre-
ates a new process to execute each command (refer to “Process Structure” on
page 310 for more information on creating subshells). Each subshell (job) has its
own environment, meaning that it has its own set of variables with values that can
differ from those of other subshells.

The following command line executes commands a and b sequentially in the back-
ground while executing c in the background. The shell prompt returns immediately.

$ (a ; b) & c &
[1] 15520
[2] 15521

The preceding example differs from the earlier example d & e & f & in that tasks a
and b are initiated sequentially, not concurrently.

Similarly the following command line executes a and b sequentially in the back-
ground and, at the same time, executes c and d sequentially in the background. The
subshell running a and b and the subshell running c and d run concurrently. The
prompt returns immediately.

$ (a ; b) & (c ; d) &
[1] 15528
[2] 15529

The next script copies one directory to another. The second pair of parentheses cre-
ates a subshell to run the commands following the pipe. Because of these parenthe-
ses, the output of the first tar command is available for the second tar command
despite the intervening cd command. Without the parentheses, the output of the
first tar command would be sent to cd and lost because cd does not process input
from standard input. The shell variables $1 and $2 represent the first and second
command line arguments (page 439), respectively. The first pair of parentheses,
which creates a subshell to run the first two commands, allows users to call cpdir
with relative pathnames. Without them the first cd command would change the
working directory of the script (and consequently the working directory of the sec-
ond cd command). With them only the working directory of the subshell is changed.

$ cat cpdir
(cd $1 ; tar -cf - .) | (cd $2 ; tar -xvf -)
$ cpdir /home/alex/sources /home/alex/memo/biblio

The cpdir command line copies the files and directories in the /home/alex/sources
directory to the directory named /home/alex/memo/biblio. This shell script is
almost the same as using cp with the –r option. Refer to the cp and tar man pages for
more information.

290 Chapter 9 The Bourne Again Shell

Job Control

A job is a command pipeline. You run a simple job whenever you give the shell a
command. For example, type date on the command line and press RETURN: You have
run a job. You can also create several jobs with multiple commands on a single
command line:

$ find . -print | sort | lpr & grep -l alex /tmp/* > alexfiles &
[1] 18839
[2] 18876

The portion of the command line up to the first & is one job consisting of three pro-
cesses connected by pipes: find, sort (page 153), and lpr (page 151). The second job is
a single process running grep. Both jobs have been put into the background by the
trailing & characters, so bash does not wait for them to complete before displaying
a prompt.

Using job control you can move commands from the foreground to the background
(and vice versa), stop commands temporarily, and list all the commands that are
running in the background or stopped.

jobs: Lists Jobs

The jobs builtin lists all background jobs. The following sequence demonstrates
what happens when you give a jobs command. Here the sleep command runs in the
background and creates a background job that jobs reports on:

$ sleep 60 &
[1] 7809
$ jobs
[1] + Running sleep 60 &

fg: Brings a Job to the Foreground

The shell assigns job numbers to commands you run in the background (page 288).
Several jobs are started in the background in the next example. For each job the
shell lists the job number and PID number immediately, just before it issues a
prompt.

$ xclock &
[1] 1246
$ date &
[2] 1247
$ Sun Dec 2 11:44:40 PST 2007
[2]+ Done date
$ find /usr -name ace -print > findout &
[2] 1269
$ jobs
[1]- Running xclock &
[2]+ Running find /usr -name ace -print > findout &

Job numbers, which are discarded when a job is finished, can be reused. When you
start or put a job in the background, the shell assigns a job number that is one more
than the highest job number in use.

Shell Basics 291

In the preceding example, the jobs command lists the first job, xclock, as job 1. The
date command does not appear in the jobs list because it finished before jobs was
run. Because the date command was completed before find was run, the find com-
mand became job 2.

To move a background job into the foreground, use the fg builtin followed by the job
number. Alternatively, you can give a percent sign (%) followed by the job number as
a command. Either of the following commands moves job 2 into the foreground:

$ fg 2

or

$ %2

You can also refer to a job by following the percent sign with a string that uniquely
identifies the beginning of the command line used to start the job. Instead of the
preceding command, you could have used either fg %find or fg %f because both
uniquely identify job 2. If you follow the percent sign with a question mark and a
string, the string can match any part of the command line. In the preceding exam-
ple, fg %?ace also brings job 2 into the foreground.

Often the job you wish to bring into the foreground is the only job running in the
background or is the job that jobs lists with a plus (+). In these cases you can use fg
without an argument.

bg: Sends a Job to the Background

To move the foreground job to the background, you must first suspend (temporarily
stop) the job by pressing the suspend key (usually CONTROL-Z). Pressing the suspend
key immediately suspends the job in the foreground. You can then use the bg builtin
to resume execution of the job in the background.

$ bg

If a background job attempts to read from the terminal, the shell stops it and noti-
fies you that the job has been stopped and is waiting for input. You must then move
the job into the foreground so that it can read from the terminal. The shell displays
the command line when it moves the job into the foreground.

$ (sleep 5; cat > mytext) &
[1] 1343
$ date
Sun Dec 2 11:58:20 PST 2007
[1]+ Stopped (sleep 5; cat >mytext)
$ fg
(sleep 5; cat >mytext)
Remember to let the cat out!
CONTROL-D
$

In the preceding example, the shell displays the job number and PID number of the
background job as soon as it starts, followed by a prompt. Demonstrating that you
can give a command at this point, the user gives the command date and its output

292 Chapter 9 The Bourne Again Shell

appears on the screen. The shell waits until just before it issues a prompt (after date
has finished) to notify you that job 1 is stopped. When you give an fg command, the
shell puts the job in the foreground and you can enter the input that the command is
waiting for. In this case the input needs to be terminated with a CONTROL-D to signify
EOF (end of file). The shell then displays another prompt.

The shell keeps you informed about changes in the status of a job, notifying you
when a background job starts, completes, or is stopped, perhaps waiting for input
from the terminal. The shell also lets you know when a foreground job is sus-
pended. Because notices about a job being run in the background can disrupt your
work, the shell delays displaying these notices until just before it displays a
prompt. You can set notify (page 337) to make the shell display these notices with-
out delay.

If you try to exit from a shell while jobs are stopped, the shell issues a warning and
does not allow you to exit. If you then use jobs to review the list of jobs or you
immediately try to leave the shell again, the shell allows you to leave and terminates
the stopped jobs. Jobs that are running (not stopped) in the background continue to
run. In the following example, find (job 1) continues to run after the second exit ter-
minates the shell, but cat (job 2) is terminated:

$ find / -size +100k > $HOME/bigfiles 2>&1 &
[1] 1426
$ cat > mytest &
[2] 1428
[2]+ Stopped cat >mytest
$ exit
exit
There are stopped jobs.
$ exit
exit

login:

Manipulating the Directory Stack

The Bourne Again Shell allows you to store a list of directories you are working
with, enabling you to move easily among them. This list is referred to as a stack. It
is analogous to a stack of dinner plates: You typically add plates to and remove
plates from the top of the stack, creating a last-in first-out, (LIFO) stack.

dirs: Displays the Stack

The dirs builtin displays the contents of the directory stack. If you call dirs when the
directory stack is empty, it displays the name of the working directory:

$ dirs
~/literature

Shell Basics 293

The dirs builtin uses a tilde (~) to represent the name of the home directory. The
examples in the next several sections assume that you are referring to the directory
structure shown in Figure 9-2.

pushd: Pushes a Directory on the Stack

To change directories and at the same time add a new directory to the top of the
stack, use the pushd (push directory) builtin. In addition to changing directories, the
pushd builtin displays the contents of the stack. The following example is illustrated
in Figure 9-3:

$ pushd ../demo
~/demo ~/literature
$ pwd
/home/sam/demo

$ pushd ../names
~/names ~/demo ~/literature
$ pwd
/home/sam/names

Figure 9-2 The directory structure in the examples

Figure 9-3 Creating a directory stack

home

sam

demo

promo

literaturenames

names

demo

literature

2 pushd

1 pushd

1

2

294 Chapter 9 The Bourne Again Shell

When you use pushd without an argument, it swaps the top two directories on the
stack and makes the new top directory (which was the second directory) become the
new working directory (Figure 9-4):

$ pushd
~/demo ~/names ~/literature
$ pwd
/home/sam/demo

Using pushd in this way, you can easily move back and forth between two directo-
ries. You can also use cd – to change to the previous directory, whether or not you
have explicitly created a directory stack. To access another directory in the stack,
call pushd with a numeric argument preceded by a plus sign. The directories in the
stack are numbered starting with the top directory, which is number 0. The follow-
ing pushd command continues with the previous example, changing the working
directory to literature and moving literature to the top of the stack:

$ pushd +2
~/literature ~/demo ~/names
$ pwd
/home/sam/literature

popd: Pops a Directory Off the Stack

To remove a directory from the stack, use the popd (pop directory) builtin. As the fol-
lowing example and Figure 9-5 show, popd used without an argument removes the top
directory from the stack and changes the working directory to the new top directory:

$ dirs
~/literature ~/demo ~/names
$ popd
~/demo ~/names
$ pwd
/home/sam/demo

To remove a directory other than the top one from the stack, use popd with a
numeric argument preceded by a plus sign. The following example removes direc-
tory number 1, demo:

$ dirs
~/literature ~/demo ~/names
$ popd +1
~/literature ~/names

Figure 9-4 Using pushd to change working directories

names demo names

demonamesdemo

literature literature literature

pushd pushdpushd pushd

Parameters and Variables 295

Removing a directory other than directory number 0 does not change the working
directory.

Parameters and Variables

Variables Within a shell, a shell parameter is associated with a value that is accessible to the
user. There are several kinds of shell parameters. Parameters whose names consist of
letters, digits, and underscores are often referred to as shell variables, or simply
variables. A variable name must start with a letter or underscore, not with a num-
ber. Thus A76, MY_CAT, and ___X___ are valid variable names, whereas
69TH_STREET (starts with a digit) and MY-NAME (contains a hyphen) are not.

User-created
variables

Shell variables that you name and assign values to are user-created variables. You
can change the values of user-created variables at any time, or you can make them
readonly so that their values cannot be changed. You can also make user-created
variables global. A global variable (also called an environment variable) is available
to all shells and other programs you fork from the original shell. One naming con-
vention is to use only uppercase letters for global variables and to use mixed-case or
lowercase letters for other variables. Refer to “Locality of Variables” on page 434
for more information on global variables.

To assign a value to a variable in the Bourne Again Shell, use the following syntax:

VARIABLE=value

There can be no whitespace on either side of the equal sign (=). An example assign-
ment follows:

$ myvar=abc

The Bourne Again Shell permits you to put variable assignments on a command
line. These assignments are local to the command shell—that is, they apply to the
command only. The my_script shell script displays the value of TEMPDIR. The fol-
lowing command runs my_script with TEMPDIR set to /home/sam/temp. The echo
builtin shows that the interactive shell has no value for TEMPDIR after running
my_script. If TEMPDIR had been set in the interactive shell, running my_script in
this manner would have had no effect on its value.

Figure 9-5 Using popd to remove a directory from the stack

literature

demo

names

popd

296 Chapter 9 The Bourne Again Shell

$ cat my_script
echo $TEMPDIR
$ TEMPDIR=/home/sam/temp my_script
/home/sam/temp
$ echo $TEMPDIR

$

Keyword variables Keyword shell variables (or simply keyword variables) have special meaning to the
shell and usually have short, mnemonic names. When you start a shell (by logging
in, for example), the shell inherits several keyword variables from the environment.
Among these variables are HOME, which identifies your home directory, and
PATH, which determines which directories the shell searches and in what order to
locate commands that you give the shell. The shell creates and initializes (with
default values) other keyword variables when you start it. Still other variables do
not exist until you set them.

You can change the values of most of the keyword shell variables at any time but it
is usually not necessary to change the values of keyword variables initialized in the
/etc/profile or /etc/csh.cshrc systemwide startup files. If you need to change the
value of a bash keyword variable, do so in one of your startup files (page 277). Just
as you can make user-created variables global, so you can make keyword variables
global; this is usually done automatically in the startup files. You can also make a
keyword variable readonly.

Positional and
special parameters

The names of positional and special parameters do not resemble variable names.
Most of these parameters have one-character names (for example, 1, ?, and #) and
are referenced (as are all variables) by preceding the name with a dollar sign ($1, $?,
and $#). The values of these parameters reflect different aspects of your ongoing
interaction with the shell.

Whenever you give a command, each argument on the command line becomes the
value of a positional parameter. Positional parameters (page 438) enable you to
access command line arguments, a capability that you will often require when you
write shell scripts. The set builtin (page 442) enables you to assign values to posi-
tional parameters.

Other frequently needed shell script values, such as the name of the last command
executed, the number of command line arguments, and the status of the most
recently executed command, are available as special parameters. You cannot assign
values to special parameters.

User-Created Variables

The first line in the following example declares the variable named person and ini-
tializes it with the value alex:

$ person=alex
$ echo person
person
$ echo $person
alex

Parameters and Variables 297

Because the echo builtin copies its arguments to standard output, you can use it to
display the values of variables. The second line of the preceding example shows that
person does not represent alex. Instead, the string person is echoed as person. The
shell substitutes the value of a variable only when you precede the name of the vari-
able with a dollar sign ($). The command echo $person displays the value of the
variable person; it does not display $person because the shell does not pass $person
to echo as an argument. Because of the leading $, the shell recognizes that $person
is the name of a variable, substitutes the value of the variable, and passes that value
to echo. The echo builtin displays the value of the variable—not its name—never
knowing that you called it with a variable.

Quoting the $ You can prevent the shell from substituting the value of a variable by quoting the
leading $. Double quotation marks do not prevent the substitution; single quotation
marks or a backslash (\) do.

$ echo $person
alex
$ echo "$person"
alex
$ echo '$person'
$person
$ echo \$person
$person

SPACEs Because they do not prevent variable substitution but do turn off the special mean-
ings of most other characters, double quotation marks are useful when you assign
values to variables and when you use those values. To assign a value that contains
SPACEs or TABs to a variable, use double quotation marks around the value. Although
double quotation marks are not required in all cases, using them is a good habit.

$ person="alex and jenny"
$ echo $person
alex and jenny

$ person=alex and jenny
bash: and: command not found

When you reference a variable that contains TABs or multiple adjacent SPACEs, you
need to use quotation marks to preserve the spacing. If you do not quote the vari-
able, the shell collapses each string of blank characters into a single SPACE before
passing the variable to the utility:

$ person="alex and jenny"
$ echo $person
alex and jenny
$ echo "$person"
alex and jenny

When you execute a command with a variable as an argument, the shell replaces the
name of the variable with the value of the variable and passes that value to the pro-
gram being executed. If the value of the variable contains a special character, such
as * or ?, the shell may expand that variable.

298 Chapter 9 The Bourne Again Shell

Pathname
expansion in
assignments

The first line in the following sequence of commands assigns the string alex* to the
variable memo. The Bourne Again Shell does not expand the string because bash
does not perform pathname expansion (page 239) when assigning a value to a vari-
able. All shells process a command line in a specific order. Within this order bash
expands variables before it interprets commands. In the following echo command
line, the double quotation marks quote the asterisk (*) in the expanded value of
$memo and prevent bash from performing pathname expansion on the expanded
memo variable before passing its value to the echo command:

$ memo=alex*
$ echo "$memo"
alex*

All shells interpret special characters as special when you reference a variable that
contains an unquoted special character. In the following example, the shell expands
the value of the memo variable because it is not quoted:

$ ls
alex.report
alex.summary
$ echo $memo
alex.report alex.summary

Here the shell expands the $memo variable to alex*, expands alex* to alex.report
and alex.summary, and passes these two values to echo.

optional
Braces The $VARIABLE syntax is a special case of the more general syntax ${VARIABLE},

in which the variable name is enclosed by ${}. The braces insulate the variable
name. Braces are necessary when catenating a variable value with a string:

$ PREF=counter
$ WAY=$PREFclockwise
$ FAKE=$PREFfeit
$ echo $WAY $FAKE

$

The preceding example does not work as planned. Only a blank line is output
because, although the symbols PREFclockwise and PREFfeit are valid variable
names, they are not set. By default bash evaluates an unset variable as an empty
(null) string and displays this value. To achieve the intent of these statements, refer
to the PREF variable using braces:

$ PREF=counter
$ WAY=${PREF}clockwise
$ FAKE=${PREF}feit
$ echo $WAY $FAKE
counterclockwise counterfeit

Parameters and Variables 299

The Bourne Again Shell refers to the arguments on its command line by position,
using the special variables $1, $2, $3, and so forth up to $9. If you wish to refer to
arguments past the ninth argument, you must use braces: ${10}. The name of the
command is held in $0 (page 439).

unset: Removes a Variable

Unless you remove a variable, it exists as long as the shell in which it was created
exists. To remove the value of a variable but not the variable itself, set the value
to null:

$ person=
$ echo $person

$

You can remove a variable with the unset builtin. To remove the variable person,
give the following command:

$ unset person

Variable Attributes

This section discusses attributes and explains how to assign them to variables.

readonly: Makes the Value of a Variable Permanent

You can use the readonly builtin to ensure that the value of a variable cannot be
changed. The next example declares the variable person to be readonly. You must
assign a value to a variable before you declare it to be readonly; you cannot change
its value after the declaration. When you attempt to unset or change the value of a
readonly variable, the shell displays an error message:

$ person=jenny
$ echo $person
jenny
$ readonly person
$ person=helen
bash: person: readonly variable

If you use the readonly builtin without an argument, it displays a list of all readonly
shell variables. This list includes keyword variables that are automatically set as
readonly as well as keyword or user-created variables that you have declared as
readonly. See “Listing variable attributes” on page 300 for an example (readonly
and declare –r produce the same output).

declare and typeset: Assign Attributes to Variables

The declare and typeset builtins (two names for the same command) set attributes
and values for shell variables. Table 9-3 lists five of these attributes.

300 Chapter 9 The Bourne Again Shell

The following commands declare several variables and set some attributes. The first
line declares person1 and assigns it a value of alex. This command has the same
effect with or without the word declare.

$ declare person1=alex
$ declare -r person2=jenny
$ declare -rx person3=helen
$ declare -x person4

The readonly and export builtins are synonyms for the commands declare –r and
declare –x, respectively. It is legal to declare a variable without assigning a value to
it, as the preceding declaration of the variable person4 illustrates. This declaration
makes person4 available to all subshells (makes it global). Until an assignment is
made to the variable, it has a null value.

You can list the options to declare separately in any order. The following is equiva-
lent to the preceding declaration of person3:

$ declare -x -r person3=helen

Use the + character in place of – when you want to remove an attribute from a vari-
able. You cannot remove a readonly attribute however. After the following com-
mand is given, the variable person3 is no longer exported but it is still readonly.

$ declare +x person3

You can also use typeset instead of declare.

Listing variable
attributes

Without any arguments or options, the declare builtin lists all shell variables. The
same list is output when you run set (page 442) without any arguments.

If you use a declare builtin with options but no variable names as arguments, the
command lists all shell variables that have the indicated attributes set. For example,
the option –r with declare gives a list of all readonly shell variables. This list is the
same as that produced by a readonly command without any arguments. After the
declarations in the preceding example have been given, the results are as follows:

$ declare -r
declare -ar BASH_VERSINFO='([0]="2" [1]="05b" [2]="0" [3]="1" ...)'
declare -ir EUID="500"
declare -ir PPID="936"

Table 9-3 Variable attributes (typeset or declare)

Attribute Meaning

–a Declares a variable as an array (page 432)

–f Declares a variable to be a function name (page 331)

–i Declares a variable to be of type integer (page 301)

–r Makes a variable readonly; also readonly (page 299)

–x Exports a variable (makes it global); also export (page 434)

Parameters and Variables 301

declare -r SHELLOPTS="braceexpand:emacs:hashall:histexpand:history:..."
declare -ir UID="500"
declare -r person2="jenny"
declare -rx person3="helen"

The first five entries are keyword variables that are automatically declared as read-
only. Some of these variables are stored as integers (–i). The –a option indicates that
BASH_VERSINFO is an array variable; the value of each element of the array is
listed to the right of an equal sign.

Integer By default the values of variables are stored as strings. When you perform arith-
metic on a string variable, the shell converts the variable into a number, manipulates
it, and then converts it back to a string. A variable with the integer attribute is
stored as an integer. Assign the integer attribute as follows:

$ typeset -i COUNT

Keyword Variables

Keyword variables either are inherited or are declared and initialized by the shell
when it starts. You can assign values to these variables from the command line or
from a startup file. Typically you want these variables to apply to all subshells you
start as well as to your login shell. For those variables not automatically exported
by the shell, you must use export (page 434) to make them available to child shells.

HOME: Your Home Directory

By default your home directory is your working directory when you log in. Your
home directory is determined when you establish your account; its name is stored in
the /etc/passwd file.

$ grep sam /etc/passwd
sam:x:501:501:Sam S. x301:/home/sam:/bin/bash

When you log in, the shell inherits the pathname of your home directory and assigns
it to the variable HOME. When you give a cd command without an argument, cd
makes the directory whose name is stored in HOME the working directory:

$ pwd
/home/alex/laptop
$ echo $HOME
/home/alex
$ cd
$ pwd
/home/alex

This example shows the value of the HOME variable and the effect of the cd buil-
tin. After you execute cd without an argument, the pathname of the working direc-
tory is the same as the value of HOME: your home directory.

Tilde (~) The shell uses the value of HOME to expand pathnames that use the shorthand tilde
(~) notation (page 190) to denote a user’s home directory. The following example

302 Chapter 9 The Bourne Again Shell

uses echo to display the value of this shortcut and then uses ls to list the files in Alex’s
laptop directory, which is a subdirectory of his home directory:

$ echo ~
/home/alex
$ ls ~/laptop
tester count lineup

PATH: Where the Shell Looks for Programs

When you give the shell an absolute or relative pathname rather than a simple file-
name as a command, it looks in the specified directory for an executable file with
the specified filename. If the file with the pathname you specified does not exist, the
shell reports command not found. If the file exists as specified but you do not have
execute permission for it, or in the case of a shell script you do not have read and
execute permission for it, the shell reports Permission denied.

If you give a simple filename as a command, the shell searches through certain
directories for the program you want to execute. It looks in several directories for a
file that has the same name as the command and that you have execute permission
for (a compiled program) or read and execute permission for (a shell script). The
PATH shell variable controls this search.

The default value of PATH is determined when bash is compiled. It is not set in a
startup file, although it may be modified there. Normally the default specifies that
the shell search several system directories used to hold common commands and
then search the working directory. These system directories include /bin and
/usr/bin and other directories appropriate to the local system. When you give a
command, if the shell does not find the executable—and, in the case of a shell
script, readable—file named by the command in any of the directories listed in
PATH, the shell generates one of the aforementioned error messages.

Working directory The PATH variable specifies the directories in the order the shell should search them.
Each directory must be separated from the next by a colon. The following command
sets PATH so that a search for an executable file starts with the /usr/local/bin direc-
tory. If it does not find the file in this directory, the shell first looks in /bin, and then
in /usr/bin. If the search fails in those directories, the shell looks in the bin directory,
a subdirectory of the user’s home directory. Finally the shell looks in the working
directory. Exporting PATH makes its value accessible to subshells:

$ export PATH=/usr/local/bin:/bin:/usr/bin:~/bin:

A null value in the string indicates the working directory. In the preceding example,
a null value (nothing between the colon and the end of the line) appears as the last
element of the string. The working directory is represented by a leading colon (not
recommended; see the following security tip), a trailing colon (as in the example), or
two colons next to each other anywhere in the string. You can also represent the
working directory explicitly with a period (.).

Because Linux stores many executable files in directories named bin (binary), users
typically put their own executable files in their own ~/bin directories. If you put

Parameters and Variables 303

your own bin directory at the end of your PATH, as in the preceding example, the
shell looks there for any commands that it cannot find in directories listed earlier
in PATH.

If you want to add directories to PATH, you can reference the old value of the
PATH variable while you are setting PATH to a new value (but see the preceding
security tip). The following command adds /usr/local/bin to the beginning of the
current PATH and the bin directory in the user’s home directory (~/bin) to the end:

$ PATH=/usr/local/bin:$PATH:~/bin

MAIL: Where Your Mail Is Kept

The MAIL variable contains the pathname of the file that holds your mail (your
mailbox, usually /var/spool/mail/name, where name is your username). If MAIL is
set and MAILPATH (next) is not set, the shell informs you when mail arrives in the
file specified by MAIL. In a graphical environment you can unset MAIL so that the
shell does not display mail reminders in a terminal emulator window (assuming you
are using a graphical mail program).

The MAILPATH variable contains a list of filenames separated by colons. If this
variable is set, the shell informs you when any one of the files is modified (for exam-
ple, when mail arrives). You can follow any of the filenames in the list with a ques-
tion mark (?), followed by a message. The message replaces the you have mail
message when you get mail while you are logged in.

The MAILCHECK variable specifies how often, in seconds, the shell checks for new
mail. The default is 60 seconds. If you set this variable to zero, the shell checks
before each prompt.

PS1: User Prompt (Primary)

The default Bourne Again Shell prompt is a dollar sign ($). When you run bash with
root privileges, you may have a pound sign (#) prompt. The PS1 variable holds the
prompt string that the shell uses to let you know that it is waiting for a command.
When you change the value of PS1, you change the appearance of your prompt.

PATH and security

security Do not put the working directory first in PATH when security is a concern. If you are working as
root, you should never put the working directory first in PATH. It is common for root’s PATH to
omit the working directory entirely. You can always execute a file in the working directory by
prepending ./ to the name: ./ls .

Putting the working directory first in PATH can create a security hole. Most people type ls as the
first command when entering a directory. If the owner of a directory places an executable file
named ls in the directory, and the working directory appears first in a user’s PATH, the user giving
an ls command from the directory executes the ls program in the working directory instead of the
system ls utility, possibly with undesirable results.

304 Chapter 9 The Bourne Again Shell

You can customize the prompt displayed by PS1. For example, the assignment

$ PS1="[\u@\h \W \!]$ "

displays the following prompt:

[user@host directory event]$

where user is the username, host is the hostname up to the first period, directory is
the basename of the working directory, and event is the event number of the current
command.

If you are working on more than one system, it can be helpful to incorporate the
system name into your prompt. For example, you might change the prompt to the
name of the system you are using, followed by a colon and a SPACE (a SPACE at the end
of the prompt makes the commands that you enter after the prompt easier to read):

$ PS1="$(hostname): "
bravo.example.com: echo test
test
bravo.example.com:

The first example that follows changes the prompt to the name of the local host, a
SPACE, and a dollar sign (or, if the user is running with root privileges, a pound sign).
The second example changes the prompt to the time followed by the name of the
user. The third example changes the prompt to the one used in this book (a pound
sign for root and a dollar sign otherwise):

$ PS1='\h \$ '
bravo $

$ PS1='\@ \u $ '
09:44 PM alex $

$ PS1='\$ '
$

Table 9-4 describes some of the symbols you can use in PS1. For a complete list of spe-
cial characters you can use in the prompt strings, open the bash man page and search
for the second occurrence of PROMPTING (give the command /PROMPTING and
then press n).

Table 9-4 PS1 symbols

Symbol Display in prompt

\$ # if the user is running with root privileges; otherwise, $

\w Pathname of the working directory

\W Basename of the working directory

\! Current event (history) number (page 317)

\d Date in Weekday Month Date format

Parameters and Variables 305

PS2: User Prompt (Secondary)

Prompt String 2 is a secondary prompt that the shell stores in PS2. On the first line
of the next example, an unclosed quoted string follows echo. The shell assumes that
the command is not finished and, on the second line, gives the default secondary
prompt (>). This prompt indicates that the shell is waiting for the user to continue
the command line. The shell waits until it receives the quotation mark that closes
the string and then executes the command:

$ echo "demonstration of prompt string
> 2"
demonstration of prompt string
2
$ PS2="secondary prompt: "
$ echo "this demonstrates
secondary prompt: prompt string 2"
this demonstrates
prompt string 2

The second command changes the secondary prompt to secondary prompt: fol-
lowed by a SPACE. A multiline echo demonstrates the new prompt.

PS3: Menu Prompt

PS3 holds the menu prompt for the select control structure (page 426).

PS4: Debugging Prompt

PS4 holds the bash debugging symbol (page 408).

IFS: Separates Input Fields (Word Splitting)

The IFS (Internal Field Separator) shell variable specifies the characters that you
can use to separate arguments on a command line and has the default value of
SPACE TAB NEWLINE. Regardless of the value of IFS, you can always use one or more
SPACE or TAB characters to separate arguments on the command line, provided that
these characters are not quoted or escaped. When you assign IFS character val-
ues, these characters can also separate fields but only if they undergo expansion.
This type of interpretation of the command line is called word splitting.

\h Machine hostname, without the domain

\H Full machine hostname, including the domain

\u Username of the current user

\@ Current time of day in 12-hour, AM/PM format

\T Current time of day in 12-hour HH:MM:SS format

\A Current time of day in 24-hour HH:MM format

\t Current time of day in 24-hour HH:MM:SS format

Table 9-4 PS1 symbols (continued)

306 Chapter 9 The Bourne Again Shell

The following example demonstrates how setting IFS can affect the interpretation
of a command line:

$ a=w:x:y:z
$ cat $a
cat: w:x:y:z: No such file or directory
$ IFS=":"
$ cat $a
cat: w: No such file or directory
cat: x: No such file or directory
cat: y: No such file or directory
cat: z: No such file or directory

The first time cat is called, the shell expands the variable a, interpreting the string
w:x:y:z as a single word to be used as the argument to cat. The cat utility cannot
find a file named w:x:y:z and reports an error for that filename. After IFS is set to a
colon (:), the shell expands the variable a into four words, each of which is an argu-
ment to cat. Now cat reports an error for four separate files: w, x, y, and z. Word
splitting based on the colon (:) takes place only after the variable a is expanded.

The shell splits all expanded words on a command line according to the separating
characters found in IFS. When there is no expansion, there is no splitting. Consider
the following commands:

$ IFS="p"
$ export VAR

Although IFS is set to p, the p on the export command line is not expanded so the
word export is not split.

The following example uses variable expansion in an attempt to produce an export
command:

$ IFS="p"
$ aa=export
$ echo $aa
ex ort

This time expansion occurs so that the character p in the token export is interpreted
as a separator as the preceding echo command shows. Now when you try to use the
value of the aa variable to export the VAR variable, the shell parses the $aa VAR
command line as ex ort VAR. The effect is that the command line starts the ex edi-
tor with two filenames: ort and VAR.

Be careful when changing IFS
caution Changing IFS has a variety of side effects so work cautiously. You may find it useful to first save

the value of IFS before changing it; you can easily then restore the original value if you get unex-
pected results. Alternatively, you can fork a new shell with a bash command before experimenting
with IFS; if you get into trouble, you can exit back to the old shell, where IFS is working properly.
You can also set IFS to its default value with the following command:

$ IFS=' \t\n'

Parameters and Variables 307

$ $aa VAR
2 files to edit
"ort" [New File]
Entering Ex mode. Type "visual" to go to Normal mode.
:q
E173: 1 more file to edit
:q
$

If you unset IFS, only SPACEs and TABs work as field separators.

CDPATH: Broadens the Scope of cd
The CDPATH variable allows you to use a simple filename as an argument to the cd
builtin to change the working directory to a directory other than a child of the
working directory. If you have several directories you like to work out of, this vari-
able can speed things up and save you the tedium of using cd with longer pathnames
to switch among them.

When CDPATH is not set and you specify a simple filename as an argument to cd,
cd searches the working directory for a subdirectory with the same name as the
argument. If the subdirectory does not exist, cd displays an error message. When
CDPATH is set, cd searches for an appropriately named subdirectory in the directo-
ries in the CDPATH list. If cd finds one, that directory becomes the working direc-
tory. With CDPATH set, you can use cd and a simple filename to change the
working directory to a child of any of the directories listed in CDPATH.

The CDPATH variable takes on the value of a colon-separated list of directory
pathnames (similar to the PATH variable). It is usually set in the ~/.bash_profile
startup file with a command line such as the following:

export CDPATH=$HOME:$HOME/literature

This command causes cd to search your home directory, the literature directory, and
then the working directory when you give a cd command. If you do not include the
working directory in CDPATH, cd searches the working directory if the search of
all the other directories in CDPATH fails. If you want cd to search the working
directory first (which you should never do when you are working with root privi-
leges—refer to the tip on page 303), include a null string, represented by two colons
(::), as the first entry in CDPATH:

export CDPATH=::$HOME:$HOME/literature

If the argument to the cd builtin is an absolute pathname—one starting with a slash
(/)—the shell does not consult CDPATH.

Multiple separator characters
tip Although sequences of multiple SPACE or TAB characters are treated as single separators, each

occurrence of another field-separator character acts as a separator.

308 Chapter 9 The Bourne Again Shell

Keyword Variables: A Summary

Table 9-5 lists the bash keyword variables.

Table 9-5 bash keyword variables

Variable Value

BASH_ENV The pathname of the startup file for noninteractive shells (page 278)

CDPATH The cd search path (page 307)

COLUMNS The width of the display used by select (page 425)

FCEDIT The name of the editor that fc uses by default (page 315)

HISTFILE The pathname of the file that holds the history list (default: ~/.bash_history;
page 312)

HISTFILESIZE The maximum number of entries saved in HISTFILE (default: 500; page 312)

HISTSIZE The maximum number of entries saved in the history list (default: 500;
page 312)

HOME The pathname of the user’s home directory (page 301); used as the default
argument for cd and in tilde expansion (page 190)

IFS Internal Field Separator (page 305); used for word splitting (page 345)

INPUTRC The pathname of the Readline startup file (default: ~/.inputrc; page 325)

LANG The locale category when that category is not specifically set with an LC_*
variable

LC_* A group of variables that specify locale categories including LC_COLLATE,
LC_CTYPE, LC_MESSAGES, and LC_NUMERIC; use the locale builtin to
display a complete list with values

LINES The height of the display used by select (page 425)

MAIL The pathname of the file that holds a user’s mail (page 303)

MAILCHECK How often, in seconds, bash checks for mail (page 303)

MAILPATH A colon-separated list of file pathnames that bash checks for mail in
(page 303)

PATH A colon-separated list of directory pathnames that bash looks for com-
mands in (page 302)

PROMPT_COMMAND A command that bash executes just before it displays the primary prompt

PS1 Prompt String 1; the primary prompt (default: '\s–\v\$ '; page 303)

PS2 Prompt String 2; the secondary prompt (default: '> '; page 305)

PS3 The prompt issued by select (page 425)

PS4 The bash debugging symbol (page 408)

REPLY Holds the line that read accepts (page 446); also used by select (page 425)

Special Characters 309

Special Characters

Table 9-6 lists most of the characters that are special to the bash shell.

Table 9-6 Shell special characters

Character Use

NEWLINE Initiates execution of a command (page 286)

; Separates commands (page 286)

() Groups commands (page 289) for execution by a subshell or identifies a func-
tion (page 331)

& Executes a command in the background (pages 237 and 288)

| Sends standard output of preceding command to standard input of following
command (pipe; page 288)

> Redirects standard output (page 228)

>> Appends standard output (page 232)

< Redirects standard input (page 230)

<< Here document (page 427)

* Any string of zero or more characters in an ambiguous file reference (page 240)

? Any single character in an ambiguous file reference (page 239)

\ Quotes the following character (page 146)

' Quotes a string, preventing all substitution (page 146)

" Quotes a string, allowing only variable and command substitution (pages 146
and 297)

‘...‘ Performs command substitution (page 344)

[] Character class in an ambiguous file reference (page 241)

$ References a variable (page 295)

. (dot builtin) Executes a command (only at the beginning of a line, page 279)

Begins a comment (page 285)

{ } Used to surround the contents of a function (page 331)

: (null builtin) Returns true (page 453)

&&
(Boolean AND)

Executes command on right only if command on left succeeds (returns a zero
exit status, page 464)

| | (Boolean OR) Executes command on right only if command on left fails (returns a nonzero
exit status; page 464)

! (Boolean NOT) Reverses exit status of a command

$() Performs command substitution (preferred form; page 344)

[] Evaluates an arithmetic expression (page 342)

310 Chapter 9 The Bourne Again Shell

Processes

A process is the execution of a command by Linux. The shell that starts when you
log in is a command, or a process, like any other. When you give the name of a
Linux utility on the command line, you initiate a process. When you run a shell
script, another shell process is started and additional processes are created for each
command in the script. Depending on how you invoke the shell script, the script is
run either by the current shell or, more typically, by a subshell (child) of the current
shell. A process is not started when you run a shell builtin, such as cd.

Process Structure

fork system call Like the file structure, the process structure is hierarchical, with parents, children,
and even a root. A parent process forks a child process, which in turn can fork other
processes. (The term fork indicates that, as with a fork in the road, one process
turns into two. Initially the two forks are identical except that one is identified as
the parent and one as the child. You can also use the term spawn; the words are
interchangeable.) The operating system routine, or system call, that creates a new
process is named fork.

When Linux begins execution when a system is started, it starts init, a single process
called a spontaneous process, with PID number 1. This process holds the same posi-
tion in the process structure as the root directory does in the file structure: It is the
ancestor of all processes that the system and users work with. When the system is in
multiuser mode, init runs getty or mingetty processes, which display login: prompts
on terminals and virtual consoles. When someone responds to the prompt and
presses RETURN, getty hands control over to a utility named login, which checks the
username and password combination. After the user logs in, the login process
becomes the user’s shell process.

Process Identification

PID number Linux assigns a unique PID (process identification) number at the inception of each
process. As long as a process exists, it keeps the same PID number. During one ses-
sion the same process is always executing the login shell. When you fork a new pro-
cess—for example, when you use an editor—the PID number of the new (child)
process is different from that of its parent process. When you return to the login
shell, it is still being executed by the same process and has the same PID number as
when you logged in.

The following example shows that the process running the shell forked (is the parent
of) the process running ps (page 238). When you call it with the –f option, ps dis-
plays a full listing of information about each process. The line of the ps display with
bash in the CMD column refers to the process running the shell. The column headed
by PID identifies the PID number. The column headed PPID identifies the PID num-
ber of the parent of the process. From the PID and PPID columns you can see that
the process running the shell (PID 21341) is the parent of the process running sleep

Processes 311

(PID 22789). The parent PID number of sleep is the same as the PID number of the
shell (21341).

$ sleep 10 &
[1] 22789
$ ps -f
UID PID PPID C STIME TTY TIME CMD
alex 21341 21340 0 10:42 pts/16 00:00:00 bash
alex 22789 21341 0 17:30 pts/16 00:00:00 sleep 10
alex 22790 21341 0 17:30 pts/16 00:00:00 ps -f

Refer to the ps man page for more information on ps and the columns it displays
with the –f option. A second pair of sleep and ps –f commands shows that the shell
is still being run by the same process but that it forked another process to run sleep:

$ sleep 10 &
[1] 22791
$ ps -f
UID PID PPID C STIME TTY TIME CMD
alex 21341 21340 0 10:42 pts/16 00:00:00 bash
alex 22791 21341 0 17:31 pts/16 00:00:00 sleep 10
alex 22792 21341 0 17:31 pts/16 00:00:00 ps -f

You can also use pstree (or ps ––forest, with or without the –e option) to see the
parent–child relationship of processes. The next example shows the –p option to
pstree, which causes it to display PID numbers:

$ pstree -p
init(1)-+-acpid(1395)
 |-atd(1758)
 |-crond(1702)
 ...
 |-kdeinit(2223)-+-firefox(8914)---run-mozilla.sh(8920)---firefox-bin(8925)
 | |-gaim(2306)
 | |-gqview(14062)
 | |-kdeinit(2228)
 | |-kdeinit(2294)
 | |-kdeinit(2314)-+-bash(2329)---ssh(2561)
 | | |-bash(2339)
 | | '-bash(15821)---bash(16778)
 | |-kdeinit(16448)
 | |-kdeinit(20888)
 | |-oclock(2317)
 | '-pam-panel-icon(2305)---pam_timestamp_c(2307)
 ...
 |-login(1823)---bash(20986)-+-pstree(21028)
 | '-sleep(21026)
 ...

The preceding output is abbreviated. The line that starts with –kdeinit shows a
graphical user running many processes, including firefox, gaim, and oclock. The
line that starts with –login shows a textual user running sleep in the background
while running pstree in the foreground. Refer to “$$: PID Number” on page 437
for a description of how to instruct the shell to report on PID numbers.

312 Chapter 9 The Bourne Again Shell

Executing a Command

fork and sleep When you give the shell a command, it usually forks (spawns) a child process to
execute the command. While the child process is executing the command, the par-
ent process sleeps. While a process is sleeping, it does not use any computer time
but remains inactive, waiting to wake up. When the child process finishes executing
the command, it tells its parent of its success or failure via its exit status and then
dies. The parent process (which is running the shell) wakes up and prompts for
another command.

Background process When you run a process in the background by ending a command with an amper-
sand (&), the shell forks a child process without going to sleep and without waiting
for the child process to run to completion. The parent process, which is executing the
shell, reports the job number and PID number of the child and prompts for another
command. The child process runs in the background, independent of its parent.

Builtins Although the shell forks a process to run most of the commands you give it, some
commands are built into the shell. The shell does not need to fork a process to run
builtins. For more information refer to “Builtins” on page 243.

Variables Within a given process, such as your login shell or a subshell, you can declare, initial-
ize, read, and change variables. By default however, a variable is local to a process.
When a process forks a child process, the parent does not pass the value of a variable
to the child. You can make the value of a variable available to child processes (global)
by using the export builtin (page 434).

History

The history mechanism, a feature adapted from the C Shell, maintains a list of
recently issued command lines, also called events, providing a quick way to reexe-
cute any of the events in the list. This mechanism also enables you to execute varia-
tions of previous commands and to reuse arguments from them. You can replicate
complicated commands and arguments that you used earlier in this login session or
in a previous one and enter a series of commands that differ from one another in
minor ways. The history list also serves as a record of what you have done. It can
prove helpful when you have made a mistake and are not sure what you did or
when you want to keep a record of a procedure that involved a series of commands.

The history builtin displays the history list. If it does not, read on—you need to set
some variables.

Variables That Control History

The value of the HISTSIZE variable determines the number of events preserved in
the history list during a session. A value in the range of 100 to 1,000 is normal.

When you exit from the shell, the most recently executed commands are saved in the
file given by the HISTFILE variable (the default is ~/.bash_history). The next time
you start the shell, this file initializes the history list. The value of the HISTFILESIZE

History 313

variable determines the number of lines of history saved in HISTFILE (not necessar-
ily the same as HISTSIZE). HISTSIZE holds the number of events remembered dur-
ing a session, HISTFILESIZE holds the number remembered between sessions, and
the file designated by HISTFILE holds the history list. See Table 9-7.

Event number The Bourne Again Shell assigns a sequential event number to each command line.
You can display this event number as part of the bash prompt by including \! in PS1
(page 303). Examples in this section show numbered prompts when they help to
illustrate the behavior of a command.

Give the following command manually or place it in ~/.bash_profile (to affect
future sessions) to establish a history list of the 100 most recent events:

$ HISTSIZE=100

The following command causes bash to save the 100 most recent events across login
sessions:

$ HISTFILESIZE=100

After you set HISTFILESIZE, you can log out and log in again, and the 100 most
recent events from the previous login session will appear in your history list.

Give the command history to display the events in the history list. The list of events
is ordered with oldest events at the top of the list. The following history list includes
a command to modify the bash prompt so that it displays the history event number.
The last event in the history list is the history command that displayed the list.

32 $ history | tail
 23 PS1="\! bash$ "
 24 ls -l
 25 cat temp
 26 rm temp
 27 vim memo
 28 lpr memo
 29 vim memo
 30 lpr memo
 31 rm memo
 32 history | tail

Table 9-7 History variables

Variable Default Function

HISTSIZE 500 events Maximum number of events saved during a session

HISTFILE ~/.bash_history Location of the history file

HISTFILESIZE 500 events Maximum number of events saved between sessions

history can help track down mistakes

tip When you have made a command line mistake (not an error within a script or program) and are
not sure what you did wrong, look at the history list to review your recent commands. Sometimes
this list can help you figure out what went wrong and how to fix things.

314 Chapter 9 The Bourne Again Shell

As you run commands and your history list becomes longer, it may run off the top
of the screen when you use the history builtin. Pipe the output of history through less
to browse through it, or give the command history 10 to look at the ten most recent
commands.

Reexecuting and Editing Commands

You can reexecute any event in the history list. This feature can save you time,
effort, and aggravation. Not having to reenter long command lines allows you to
reexecute events more easily, quickly, and accurately than you could if you had to
retype the entire command line. You can recall, modify, and reexecute previously
executed events in three ways: You can use the fc builtin (covered next); the excla-
mation point commands (page 316); or the Readline Library, which uses a one-line
vi- or emacs-like editor to edit and execute events (page 322).

fc: Displays, Edits, and Reexecutes Commands

The fc (fix command) builtin enables you to display the history list and to edit and
reexecute previous commands. It provides many of the same capabilities as the com-
mand line editors.

Viewing the History List

When you call fc with the –l option, it displays commands from the history list.
Without any arguments, fc –l lists the 16 most recent commands in a numbered list,
with the oldest appearing first:

$ fc -l
1024 cd
1025 view calendar
1026 vim letter.adams01
1027 aspell -c letter.adams01
1028 vim letter.adams01
1029 lpr letter.adams01
1030 cd ../memos
1031 ls
1032 rm *0405
1033 fc -l
1034 cd
1035 whereis aspell
1036 man aspell
1037 cd /usr/share/doc/*aspell*
1038 pwd
1039 ls
1040 ls man-html

Which method to use?

tip If you are more familiar with vi or emacs and less familiar with the C or TC Shell, use fc or the
Readline Library. If you are more familiar with the C or TC Shell and less familiar with vi and
emacs, use the exclamation point commands. If it is a toss-up, try the Readline Library; it will
benefit you in other areas of Linux more than learning the exclamation point commands will.

History 315

The fc builtin can take zero, one, or two arguments with the –l option. The argu-
ments specify the part of the history list to be displayed:

fc –l [first [last]]

The fc builtin lists commands beginning with the most recent event that matches
first. The argument can be an event number, the first few characters of the com-
mand line, or a negative number, which is taken to be the nth previous command. If
you provide last, fc displays commands from the most recent event that matches
first through the most recent event that matches last. The next command displays
the history list from event 1030 through event 1035:

$ fc -l 1030 1035
1030 cd ../memos
1031 ls
1032 rm *0405
1033 fc -l
1034 cd
1035 whereis aspell

The following command lists the most recent event that begins with view through
the most recent command line that begins with whereis:

$ fc -l view whereis
1025 view calendar
1026 vim letter.adams01
1027 aspell -c letter.adams01
1028 vim letter.adams01
1029 lpr letter.adams01
1030 cd ../memos
1031 ls
1032 rm *0405
1033 fc -l
1034 cd
1035 whereis aspell

To list a single command from the history list, use the same identifier for the first
and second arguments. The following command lists event 1027:

$ fc -l 1027 1027
1027 aspell -c letter.adams01

Editing and Reexecuting Previous Commands

You can use fc to edit and reexecute previous commands.

fc [–e editor] [first [last]]

When you call fc with the –e option followed by the name of an editor, fc calls the
editor with event(s) in the Work buffer. Without first and last, fc defaults to the
most recent command. The next example invokes the vi(m) editor to edit the most
recent command:

$ fc -e vi

316 Chapter 9 The Bourne Again Shell

The fc builtin uses the stand-alone vi(m) editor. If you set the FCEDIT variable, you
do not need to use the –e option to specify an editor on the command line. Because
the value of FCEDIT has been changed to /usr/bin/emacs and fc has no arguments,
the following command edits the most recent command with the emacs editor:

$ export FCEDIT=/usr/bin/emacs
$ fc

If you call it with a single argument, fc invokes the editor on the specified command.
The following example starts the editor with event 21 in the Work buffer. When you
exit from the editor, the shell executes the command:

$ fc 21

Again you can identify commands with numbers or by specifying the first few
characters of the command name. The following example calls the editor to work
on events from the most recent event that begins with the letters vim through
event 206:

$ fc vim 206

Reexecuting Commands Without Calling the Editor

You can reexecute previous commands without going into an editor. If you call fc
with the –s option, it skips the editing phase and reexecutes the command. The fol-
lowing example reexecutes event 1029:

$ fc -s 1029
lpr letter.adams01

The next example reexecutes the previous command:

$ fc -s

When you reexecute a command you can tell fc to substitute one string for another.
The next example substitutes the string john for the string adams in event 1029 and
executes the modified event:

$ fc -s adams=john 1029
lpr letter.john01

Using an Exclamation Point (!) to Reference Events

The C Shell history mechanism uses an exclamation point to reference events and is
available under bash. It is frequently more cumbersome to use than fc but nevertheless

Clean up the fc buffer
caution When you execute an fc command, the shell executes whatever you leave in the editor buffer,

possibly with unwanted results. If you decide you do not want to execute a command, delete
everything from the buffer before you exit from the editor.

History 317

has some useful features. For example, the !! command reexecutes the previous event,
and the !$ token represents the last word on the previous command line.

You can reference an event by using its absolute event number, its relative event
number, or the text it contains. All references to events, called event designators,
begin with an exclamation point (!). One or more characters follow the exclama-
tion point to specify an event.

You can put history events anywhere on a command line. To escape an exclamation
point so that it is treated literally instead of as the start of a history event, precede it
with a backslash (\) or enclose it within single quotation marks.

Event Designators

An event designator specifies a command in the history list. See Table 9-8 on
page 318 for a list of event designators.

!! reexecutes the
previous event

You can always reexecute the previous event by giving a !! command. In the follow-
ing example, event 45 reexecutes event 44:

44 $ ls -l text
-rw-rw-r-- 1 alex group 45 Apr 30 14:53 text
45 $!!
ls -l text
-rw-rw-r-- 1 alex group 45 Apr 30 14:53 text

The !! command works whether or not your prompt displays an event number. As
this example shows, when you use the history mechanism to reexecute an event, the
shell displays the command it is reexecuting.

!n event number A number following an exclamation point refers to an event. If that event is in the
history list, the shell executes it. Otherwise, the shell displays an error message. A
negative number following an exclamation point references an event relative to the
current event. For example, the command !–3 refers to the third preceding event.
After you issue a command, the relative event number of a given event changes
(event –3 becomes event –4). Both of the following commands reexecute event 44:

51 $!44
ls -l text
-rw-rw-r-- 1 alex group 45 Nov 30 14:53 text
52 $!-8
ls -l text
-rw-rw-r-- 1 alex group 45 Nov 30 14:53 text

!string event text When a string of text follows an exclamation point, the shell searches for and
executes the most recent event that began with that string. If you enclose the
string between question marks, the shell executes the most recent event that con-
tained that string. The final question mark is optional if a RETURN would immedi-
ately follow it.

318 Chapter 9 The Bourne Again Shell

68 $ history 10
 59 ls -l text*
 60 tail text5
 61 cat text1 text5 > letter
 62 vim letter
 63 cat letter
 64 cat memo
 65 lpr memo
 66 pine jenny
 67 ls -l
 68 history
69 $!l
ls -l
...
70 $!lpr
lpr memo
71 $!?letter?
cat letter
...

optional Word Designators

A word designator specifies a word or series of words from an event. Table 9-9 on
page 320 lists word designators.

The words are numbered starting with 0 (the first word on the line—usually the
command), continuing with 1 (the first word following the command), and going
through n (the last word on the line).

To specify a particular word from a previous event, follow the event designator
(such as !14) with a colon and the number of the word in the previous event. For

Table 9-8 Event designators

Designator Meaning

! Starts a history event unless followed immediately by SPACE, NEWLINE, =, or (.

!! The previous command.

!n Command number n in the history list.

!–n The n th preceding command.

!string The most recent command line that started with string.

!?string[?] The most recent command that contained string. The last ? is optional.

!# The current command (as you have it typed so far).

!{event } The event is an event designator. The braces isolate event from the surrounding
text. For example, !{–3}3 is the third most recently executed command followed
by a 3.

History 319

example, !14:3 specifies the third word following the command from event 14. You
can specify the first word following the command (word number 1) by using a caret
(^) and the last word by using a dollar sign ($). You can specify a range of words by
separating two word designators with a hyphen.

72 $ echo apple grape orange pear
apple grape orange pear
73 $ echo !72:2
echo grape
grape
74 $ echo !72:^
echo apple
apple
75 $!72:0 !72:$
echo pear
pear
76 $ echo !72:2-4
echo grape orange pear
grape orange pear
77 $!72:0-$
echo apple grape orange pear
apple grape orange pear

As the next example shows, !$ refers to the last word of the previous event. You can
use this shorthand to edit, for example, a file you just displayed with cat:

$ cat report.718
...

$ vim !$
vim report.718
...

If an event contains a single command, the word numbers correspond to the argu-
ment numbers. If an event contains more than one command, this correspondence
does not hold true for commands after the first. In the following example event 78
contains two commands separated by a semicolon so that the shell executes them
sequentially; the semicolon is word number 5.

78 $!72 ; echo helen jenny barbara
echo apple grape orange pear ; echo helen jenny barbara
apple grape orange pear
helen jenny barbara
79 $ echo !78:7
echo helen
helen
80 $ echo !78:4-7
echo pear ; echo helen
pear
helen

320 Chapter 9 The Bourne Again Shell

Modifiers

On occasion you may want to change an aspect of an event you are reexecuting.
Perhaps you entered a complex command line with a typo or incorrect pathname or
you want to specify a different argument. You can modify an event or a word of an
event by putting one or more modifiers after the word designator, or after the event
designator if there is no word designator. Each modifier must be preceded by a
colon (:).

Substitute modifier The substitute modifier is more complex than the other modifiers. The following
example shows the substitute modifier correcting a typo in the previous event:

$ car /home/jenny/memo.0507 /home/alex/letter.0507
bash: car: command not found
$!!:s/car/cat
cat /home/jenny/memo.0507 /home/alex/letter.0507
...

The substitute modifier has the following syntax:

[g]s/old/new /

where old is the original string (not a regular expression), and new is the string that
replaces old. The substitute modifier substitutes the first occurrence of old with
new. Placing a g before the s (as in gs/old/new/) causes a global substitution, replac-
ing all occurrences of old. The / is the delimiter in the examples but you can use any
character that is not in either old or new. The final delimiter is optional if a RETURN

would immediately follow it. As with the vim Substitute command, the history
mechanism replaces an ampersand (&) in new with old. The shell replaces a null
old string (s//new/) with the previous old string or string within a command that
you searched for with ?string?.

Table 9-9 Word designators

Designator Meaning

n The nth word. Word 0 is normally the command name.

^ The first word (after the command name).

$ The last word.

m–n All words from word number m through word number n; m defaults to 0 if you
omit it (0–n).

n* All words from word number n through the last word.

* All words except the command name. The same as 1*.

% The word matched by the most recent ?string ? search.

History 321

Quick substitution An abbreviated form of the substitute modifier is quick substitution. Use it to reexe-
cute the most recent event while changing some of the event text. The quick substi-
tution character is the caret (^). For example, the command

$ ^old^new^

produces the same results as

$!!:s/old/new/

Thus substituting cat for car in the previous event could have been entered as

$ ^car^cat
cat /home/jenny/memo.0507 /home/alex/letter.0507
...

You can omit the final caret if it would be followed immediately by a RETURN. As with
other command line substitutions, the shell displays the command line as it appears
after the substitution.

Other modifiers Modifiers (other than the substitute modifier) perform simple edits on the part of
the event that has been selected by the event designator and the optional word des-
ignators. You can use multiple modifiers, each preceded by a colon (:).

The following series of commands uses ls to list the name of a file, repeats the com-
mand without executing it (p modifier), and repeats the last command, removing
the last part of the pathname (h modifier) again without executing it:

$ ls /etc/sysconfig/harddisks
/etc/sysconfig/harddisks
$!!:p
ls /etc/sysconfig/harddisks
$!!:h:p
ls /etc/sysconfig
$

Table 9-10 lists event modifiers other than the substitute modifier.

Table 9-10 Modifiers

Modifier Function

e (extension) Removes all but the filename extension

h (head) Removes the last part of a pathname

p (print-not) Displays the command, but does not execute it

q (quote) Quotes the substitution to prevent further substitutions on it

r (root) Removes the filename extension

t (tail) Removes all elements of a pathname except the last

x Like q but quotes each word in the substitution individually

322 Chapter 9 The Bourne Again Shell

The Readline Library

Command line editing under the Bourne Again Shell is implemented through the
Readline Library, which is available to any application written in C. Any applica-
tion that uses the Readline Library supports line editing that is consistent with that
provided by bash. Programs that use the Readline Library, including bash, read
~/.inputrc (page 325) for key binding information and configuration settings. The
––noediting command line option turns off command line editing in bash.

vi mode You can choose one of two editing modes when using the Readline Library in bash:
emacs or vi(m). Both modes provide many of the commands available in the stand-
alone versions of the vi(m) and emacs editors. You can also use the ARROW keys to
move around. Up and down movements move you backward and forward through
the history list. In addition, Readline provides several types of interactive word
completion (page 324). The default mode is emacs; you can switch to vi mode with
the following command:

$ set -o vi

emacs mode The next command switches back to emacs mode:

$ set -o emacs

vi Editing Mode

Before you start make sure you are in vi mode.

When you enter bash commands while in vi editing mode, you are in Input mode
(page 174). As you enter a command, if you discover an error before you press
RETURN, you can press ESCAPE to switch to vi Command mode. This setup is different
from the stand-alone vi(m) editor’s initial mode. While in Command mode you can
use many vi(m) commands to edit the command line. It is as though you were using
vi(m) to edit a copy of the history file with a screen that has room for only one com-
mand. When you use the k command or the UP ARROW to move up a line, you access
the previous command. If you then use the j command or the DOWN ARROW to move
down a line, you will return to the original command. To use the k and j keys to
move between commands you must be in Command mode; you can use the ARROW

keys in both Command and Input modes.

In addition to cursor-positioning commands, you can use the search-backward (?)
command followed by a search string to look back through your history list for the
most recent command containing that string. If you have moved back in your history
list, use a forward slash (/) to search forward toward your most recent command.
Unlike the search strings in the stand-alone vi(m) editor, these search strings cannot

The stand-alone editor starts in Command mode

tip The stand-alone vim editor starts in Command mode, whereas the command line vi(m) editor
starts in Input mode. If commands display characters and do not work properly, you are in Input
mode. Press ESCAPE and enter the command again.

History 323

contain regular expressions. You can, however, start the search string with a caret (^)
to force the shell to locate commands that start with the search string. As in vi(m),
pressing n after a successful search looks for the next occurrence of the same string.

You can also access events in the history list by using event numbers. While you are
in Command mode (press ESCAPE), enter the event number followed by a G to go to
the command with that event number.

When you use /, ?, or G to move to a command line, you are in Command mode, not
Input mode. Now you can edit the command as you like or press RETURN to execute it.

Once the command you want to edit is displayed, you can modify the command line
using vi(m) Command mode editing commands such as x (delete character), r
(replace character), ~ (change case), and . (repeat last change). To change to Input
mode, use an Insert (i, I), Append (a, A), Replace (R), or Change (c, C) command.
You do not have to return to Command mode to run a command; simply press
RETURN, even if the cursor is in the middle of the command line.

emacs Editing Mode

Unlike the vi(m) editor, emacs is modeless. You need not switch between Command
mode and Input mode because most emacs commands are control characters,
allowing emacs to distinguish between input and commands. Like vi(m), the emacs
command line editor provides commands for moving the cursor on the command
line and through the command history list and for modifying part or all of a com-
mand. The emacs command line editor commands differ in a few cases from the
commands in the stand-alone emacs editor.

In emacs you perform cursor movement by using both CONTROL and ESCAPE commands.
To move the cursor one character backward on the command line, press CONTROL-B.
Press CONTROL-F to move one character forward. As in vi, you may precede these move-
ments with counts. To use a count you must first press ESCAPE; otherwise, the num-
bers you type will appear on the command line.

Like vi(m), emacs provides word and line movement commands. To move backward
or forward one word on the command line, press ESCAPE b or ESCAPE f. To move several
words by using a count, press ESCAPE followed by the number and the appropriate
escape sequence. To get to the beginning of the line, press CONTROL-A; to the end of the
line, press CONTROL-E; and to the next instance of the character c, press CONTROL-X CONTROL-F

followed by c.

You can add text to the command line by moving the cursor to the correct place and
typing the desired text. To delete text, move the cursor just to the right of the char-
acters that you want to delete and press the erase key (page 137) once for each char-
acter you want to delete.

CONTROL-D can terminate your screen session

tip If you want to delete the character directly under the cursor, press CONTROL-D. If you enter CONTROL-D
at the beginning of the line, it may terminate your shell session.

324 Chapter 9 The Bourne Again Shell

If you want to delete the entire command line, type the line kill character
(page 138). You can type this character while the cursor is anywhere in the com-
mand line. If you want to delete from the cursor to the end of the line, use CONTROL-K.

Readline Completion Commands

You can use the TAB key to complete words you are entering on the command line.
This facility, called completion, works in both vi and emacs editing modes. Several
types of completion are possible, and which one you use depends on which part of a
command line you are typing when you press TAB.

Command Completion

If you are typing the name of a command (the first word on the command line),
pressing TAB results in command completion. That is, bash looks for a command
whose name starts with the part of the word you have typed. If no command starts
with what you have entered, bash beeps. If there is one such command, bash com-
pletes the command name for you. If there is more than one choice, bash does noth-
ing in vi mode and beeps in emacs mode. Pressing TAB a second time causes bash to
display a list of commands whose names start with the prefix you typed and allows
you to finish typing the command name.

In the following example, the user types bz and presses TAB. The shell beeps (the user
is in emacs mode) to indicate that several commands start with the letters bz. The
user enters another TAB to cause the shell to display a list of commands that start
with bz followed by the command line as the user had entered it so far:

$ bz → TAB (beep) → TAB
bzcat bzdiff bzip2 bzless
bzcmp bzgrep bzip2recover bzmore
$ bz■

Next the user types c and presses TAB twice. The shell displays the two commands
that start with bzc. The user types a followed by TAB and the shell then completes the
command because only one command starts with bzca.

$ bzc → TAB (beep) → TAB
bzcat bzcmp
$ bzca → TAB → t ■

Pathname Completion

Pathname completion, which also uses TABs, allows you to type a portion of a path-
name and have bash supply the rest. If the portion of the pathname that you have
typed is sufficient to determine a unique pathname, bash displays that pathname. If
more than one pathname would match it, bash completes the pathname up to the
point where there are choices so that you can type more.

When you are entering a pathname, including a simple filename, and press TAB, the
shell beeps (if the shell is in emacs mode—in vi mode there is no beep). It then
extends the command line as far as it can.

History 325

$ cat films/dar → TAB (beep) cat films/dark_■

In the films directory every file that starts with dar has k_ as the next characters, so
bash cannot extend the line further without making a choice among files. You are
left with the cursor just past the _ character. At this point you can continue typing
the pathname or press TAB twice. In the latter case bash beeps, displays your choices,
redisplays the command line, and again leaves the cursor just after the _ character.

$ cat films/dark_ → TAB (beep) → TAB
dark_passage dark_victory
$ cat films/dark_■

When you add enough information to distinguish between the two possible files and
press TAB, bash displays the unique pathname. If you enter p followed by TAB after the
_ character, the shell completes the command line:

$ cat films/dark_p → TAB → assage

Because there is no further ambiguity, the shell appends a SPACE so you can finish typ-
ing the command line or just press RETURN to execute the command. If the complete
pathname is that of a directory, bash appends a slash (/) in place of a SPACE.

Variable Completion

When typing a variable name, pressing TAB results in variable completion, where
bash tries to complete the name of the variable. In case of an ambiguity, pressing TAB

twice displays a list of choices:

$ echo $HO → TAB → TAB
$HOME $HOSTNAME $HOSTTYPE
$ echo $HOM → TAB → E

.inputrc: Configuring Readline

The Bourne Again Shell and other programs that use the Readline Library read the
file specified by the INPUTRC environment variable to obtain initialization infor-
mation. If INPUTRC is not set, these programs read the ~/.inputrc file. They ignore
lines of .inputrc that are blank or that start with a pound sign (#).

Variables

You can set variables in .inputrc to control the behavior of the Readline Library
using the following syntax:

set variable value

Table 9-11 lists some variables and values you can use. See Readline Variables in the
bash man or info page for a complete list.

Pressing RETURN executes the command

caution Pressing RETURN causes the shell to execute the command regardless of where the cursor is on
the command line.

326 Chapter 9 The Bourne Again Shell

Key Bindings

You can specify bindings that map keystroke sequences to Readline commands,
allowing you to change or extend the default bindings. As in emacs, the Readline
Library includes many commands that are not bound to a keystroke sequence. To
use an unbound command, you must map it using one of the following forms:

keyname: command_name
"keystroke_sequence": command_name

In the first form, you spell out the name for a single key. For example, CONTROL-U would
be written as control-u. This form is useful for binding commands to single keys.

In the second form, you specify a string that describes a sequence of keys that will
be bound to the command. You can use the emacs-style backslash escape sequences
to represent the special keys CONTROL (\C), META (\M), and ESCAPE (\e). Specify a back-
slash by escaping it with another backslash: \\. Similarly, a double or single quota-
tion mark can be escaped with a backslash: \" or \'.

The kill-whole-line command, available in emacs mode only, deletes the current
line. Put the following command in .inputrc to bind the kill-whole-line command
(which is unbound by default) to the keystroke sequence CONTROL-R.

control-r: kill-whole-line

bind Give the command bind –P to display a list of all Readline commands. If a com-
mand is bound to a key sequence, that sequence is shown. Commands you can use
in vi mode start with vi. For example, vi-next-word and vi-prev-word move the cur-
sor to the beginning of the next and previous words, respectively. Commands that
do not begin with vi are generally available in emacs mode.

Use bind –q to determine which key sequence is bound to a command:

Table 9-11 Readline variables

Variable Effect

editing-mode Set to vi to start Readline in vi mode. Set to emacs to start
Readline in emacs mode (the default). Similar to the set –o vi
and set –o emacs shell commands (page 322).

horizontal-scroll-mode Set to on to cause long lines to extend off the right edge of the
display area. Moving the cursor to the right when it is at the
right edge of the display area shifts the line to the left so you can
see more of the line. You can shift the line back by moving the
cursor back past the left edge. The default value is off, which
causes long lines to wrap onto multiple lines of the display.

mark-directories Set to off to cause Readline not to place a slash (/) at the end of
directory names it completes. Normally it is on.

mark-modified-lines Set to on to cause Readline to precede modified history lines
with an asterisk. The default value is off.

History 327

$ bind -q kill-whole-line
kill-whole-line can be invoked via "\C-r".

You can also bind text by enclosing it within double quotation marks (emacs
mode only):

"QQ": "The Linux Operating System"

This command causes bash to insert the string The Linux Operating System when
you type QQ.

Conditional Constructs

You can conditionally select parts of the .inputrc file using the $if directive. The
syntax of the conditional construct is

$if test[=value]
commands

[$else
commands]

$endif

where test is mode, term, or bash. If test equals value or if test is true, this structure
executes the first set of commands. If test does not equal value or if test is false, it
executes the second set of commands if they are present or exits from the structure
if they are not present.

The power of the $if directive lies in the three types of tests it can perform.

1. You can test to see which mode is currently set.

$if mode=vi

The preceding test is true if the current Readline mode is vi and false other-
wise. You can test for vi or emacs.

2. You can test the type of terminal.

$if term=xterm

The preceding test is true if the TERM variable is set to xterm. You can
test for any value of TERM.

3. You can test the application name.

$if bash

The preceding test is true when you are running bash and not another pro-
gram that uses the Readline Library. You can test for any application
name.

These tests can customize the Readline Library based on the current mode, the type
of terminal, and the application you are using. They give you a great deal of power
and flexibility when using the Readline Library with bash and other programs.

328 Chapter 9 The Bourne Again Shell

The following commands in .inputrc cause CONTROL-Y to move the cursor to the begin-
ning of the next word regardless of whether bash is in vi or emacs mode:

$ cat ~/.inputrc
set editing-mode vi
$if mode=vi
 "\C-y": vi-next-word
 $else
 "\C-y": forward-word
$endif

Because bash reads the preceding conditional construct when it is started, you must
set the editing mode in .inputrc. Changing modes interactively using set will not
change the binding of CONTROL-Y.

For more information on the Readline Library, open the bash man page and give the
command /^READLINE, which searches for the word READLINE at the beginning
of a line.

Aliases

An alias is a (usually short) name that the shell translates into another (usually
longer) name or (complex) command. Aliases allow you to define new commands
by substituting a string for the first token of a simple command. They are typically
placed in the ~/.bashrc startup files so that they are available to interactive sub-
shells.

The syntax of the alias builtin is

alias [name[=value]]

No SPACEs are permitted around the equal sign. If value contains SPACEs or TABs, you
must enclose value between quotation marks. An alias does not accept an argument
from the command line in value. Use a function (page 331) when you need to use
an argument.

An alias does not replace itself, which avoids the possibility of infinite recursion in
handling an alias such as the following:

$ alias ls='ls -F'

You can nest aliases. Aliases are disabled for noninteractive shells (that is, shell
scripts). To see a list of the current aliases, give the command alias. To view the alias
for a particular name, use alias followed by the name and nothing else. You can use
the unalias builtin to remove an alias.

If Readline commands do not work, log out and log in again

tip The Bourne Again Shell reads ~/.inputrc when you log in. After you make changes to this file, you
must log out and log in again before the changes take effect.

Aliases 329

When you give an alias builtin command without any arguments, the shell displays
a list of all defined aliases:

$ alias
alias ll='ls -l'
alias l='ls -ltr'
alias ls='ls -F'
alias zap='rm -i'

Ubuntu Linux defines some aliases. Give an alias command to see which aliases
are in effect. You can delete the aliases you do not want from the appropriate
startup file.

Single Versus Double Quotation Marks in Aliases

The choice of single or double quotation marks is significant in the alias syntax
when the alias includes variables. If you enclose value within double quotation
marks, any variables that appear in value are expanded when the alias is created. If
you enclose value within single quotation marks, variables are not expanded until
the alias is used. The following example illustrates the difference.

The PWD keyword variable holds the pathname of the working directory. Alex cre-
ates two aliases while he is working in his home directory. Because he uses double
quotation marks when he creates the dirA alias, the shell substitutes the value of the
working directory when he creates this alias. The alias dirA command displays the
dirA alias and shows that the substitution has already taken place:

$ echo $PWD
/home/alex
$ alias dirA="echo Working directory is $PWD"
$ alias dirA
alias dirA='echo Working directory is /home/alex'

When Alex creates the dirB alias, he uses single quotation marks, which prevent the
shell from expanding the $PWD variable. The alias dirB command shows that the
dirB alias still holds the unexpanded $PWD variable:

$ alias dirB='echo Working directory is $PWD'
$ alias dirB
alias dirB='echo Working directory is $PWD'

After creating the dirA and dirB aliases, Alex uses cd to make cars his working
directory and gives each of the aliases as commands. The alias that he created with
double quotation marks displays the name of the directory that he created the alias
in as the working directory (which is wrong) and the dirB alias displays the proper
name of the working directory:

$ cd cars
$ dirA
Working directory is /home/alex
$ dirB
Working directory is /home/alex/cars

330 Chapter 9 The Bourne Again Shell

Examples of Aliases

The following alias allows you to type r to repeat the previous command or r abc to
repeat the last command line that began with abc:

$ alias r='fc -s'

If you use the command ls –ltr frequently, you can create an alias that substitutes ls
–ltr when you give the command l:

$ alias l='ls -ltr'
$ l
total 41
-rw-r--r-- 1 alex group 30015 Mar 1 2007 flute.ps
-rw-r----- 1 alex group 3089 Feb 11 2008 XTerm.ad
-rw-r--r-- 1 alex group 641 Apr 1 2008 fixtax.icn
-rw-r--r-- 1 alex group 484 Apr 9 2008 maptax.icn
drwxrwxr-x 2 alex group 1024 Aug 9 17:41 Tiger
drwxrwxr-x 2 alex group 1024 Sep 10 11:32 testdir
-rwxr-xr-x 1 alex group 485 Oct 21 08:03 floor
drwxrwxr-x 2 alex group 1024 Oct 27 20:19 Test_Emacs

Another common use of aliases is to protect yourself from mistakes. The following exam-
ple substitutes the interactive version of the rm utility when you give the command zap:

$ alias zap='rm -i'
$ zap f*
rm: remove 'fixtax.icn'? n
rm: remove 'flute.ps'? n
rm: remove 'floor'? n

The –i option causes rm to ask you to verify each file that would be deleted, to help
you avoid accidentally deleting the wrong file. You can also alias rm with the rm –i
command: alias rm='rm –i'.

The aliases in the next example cause the shell to substitute ls –l each time you give
an ll command and ls –F when you use ls:

$ alias ls='ls -F'
$ alias ll='ls -l'
$ ll
total 41
drwxrwxr-x 2 alex group 1024 Oct 27 20:19 Test_Emacs/
drwxrwxr-x 2 alex group 1024 Aug 9 17:41 Tiger/
-rw-r----- 1 alex group 3089 Feb 11 2008 XTerm.ad
-rw-r--r-- 1 alex group 641 Apr 1 2008 fixtax.icn
-rw-r--r-- 1 alex group 30015 Mar 1 2007 flute.ps
-rwxr-xr-x 1 alex group 485 Oct 21 08:03 floor*
-rw-r--r-- 1 alex group 484 Apr 9 2008 maptax.icn
drwxrwxr-x 2 alex group 1024 Sep 10 11:32 testdir/

How to prevent the shell from invoking an alias

tip The shell checks only simple, unquoted commands to see if they are aliases. Commands given as
relative or absolute pathnames and quoted commands are not checked. When you want to give a
command that has an alias but do not want to use the alias, precede the command with a back-
slash, specify the command’s absolute pathname, or give the command as ./command.

Functions 331

The –F option causes ls to print a slash (/) at the end of directory names and an
asterisk (*) at the end of the names of executable files. In this example, the string
that replaces the alias ll (ls –l) itself contains an alias (ls). When it replaces an alias
with its value, the shell looks at the first word of the replacement string to see
whether it is an alias. In the preceding example, the replacement string contains the
alias ls, so a second substitution occurs to produce the final command ls –F –l. (To
avoid a recursive plunge, the ls in the replacement text, although an alias, is not
expanded a second time.)

When given a list of aliases without the =value or value field, the alias builtin
responds by displaying the value of each defined alias. The alias builtin reports an
error if an alias has not been defined:

$ alias ll l ls zap wx
alias ll='ls -l'
alias l='ls -ltr'
alias ls='ls -F'
alias zap='rm -i'
bash: alias: wx: not found

You can avoid alias substitution by preceding the aliased command with a backslash (\):

$ \ls
Test_Emacs XTerm.ad flute.ps maptax.icn
Tiger fixtax.icn floor testdir

Because the replacement of an alias name with the alias value does not change the rest of
the command line, any arguments are still received by the command that gets executed:

$ ll f*
-rw-r--r-- 1 alex group 641 Apr 1 2008 fixtax.icn
-rw-r--r-- 1 alex group 30015 Mar 1 2007 flute.ps
-rwxr-xr-x 1 alex group 485 Oct 21 08:03 floor*

You can remove an alias with the unalias builtin. When the zap alias is removed, it is no
longer displayed with the alias builtin and its subsequent use results in an error message:

$ unalias zap
$ alias
alias ll='ls -l'
alias l='ls -ltr'
alias ls='ls -F'
$ zap maptax.icn
bash: zap: command not found

Functions

A shell function is similar to a shell script in that it stores a series of commands for
execution at a later time. However, because the shell stores a function in the com-
puter’s main memory (RAM) instead of in a file on the disk, the shell can access it
more quickly than the shell can access a script. The shell also preprocesses (parses) a
function so that it starts up more quickly than a script. Finally the shell executes a

332 Chapter 9 The Bourne Again Shell

shell function in the same shell that called it. If you define too many functions, the
overhead of starting a subshell (as when you run a script) can become unacceptable.

You can declare a shell function in the ~/.bash_profile startup file, in the script that
uses it, or directly from the command line. You can remove functions with the unset
builtin. The shell does not keep functions once you log out.

The syntax that declares a shell function is

[function] function-name ()
{

commands
}

where the word function is optional, function-name is the name you use to call the
function, and commands comprise the list of commands the function executes when
you call it. The commands can be anything you would include in a shell script,
including calls to other functions.

The first brace ({) can appear on the same line as the function name. Aliases and
variables are expanded when a function is read, not when it is executed. You can
use the break statement (page 418) within a function to terminate its execution.

Shell functions are useful as a shorthand as well as to define special commands. The
following function starts a process named process in the background, with the out-
put normally displayed by process being saved in .process.out:

start_process() {
process > .process.out 2>&1 &
}

The next example shows how to create a simple function that displays the date, a
header, and a list of the people who are using the system. This function runs the
same commands as the whoson script described on page 283. In this example the
function is being entered from the keyboard. The greater-than (>) signs are second-
ary shell prompts (PS2); do not enter them.

$ function whoson ()
> {
> date
> echo "Users Currently Logged On"
> who
> }

$ whoson
Sun Aug 5 15:44:58 PDT 2007
Users Currently Logged On
hls console Aug 4 08:59 (:0)
alex pts/4 Aug 4 09:33 (0.0)
jenny pts/7 Aug 4 09:23 (bravo.example.com)

Removing variables and functions
tip If you have a shell variable and a function with the same name, using unset removes the shell

variable. If you then use unset again with the same name, it removes the function.

Functions 333

Functions in
startup files

If you want to have the whoson function always be available without having to
enter it each time you log in, put its definition in ~/.bash_profile. Then run
.bash_profile, using the . (dot) command to put the changes into effect immediately:

$ cat ~/.bash_profile
export TERM=vt100
stty kill '^u'
whoson ()
{

date
echo "Users Currently Logged On"
who

}
$. ~/.bash_profile

You can specify arguments when you call a function. Within the function these
arguments are available as positional parameters (page 438). The following exam-
ple shows the arg1 function entered from the keyboard.

$ arg1 () {
> echo "$1"
> }

$ arg1 first_arg
first_arg

See the function switch () on page 279 for another example of a function. “Func-
tions” on page 435 discusses the use of local and global variables within a function.

optional The following function allows you to export variables using tcsh syntax. The env
builtin lists all environment variables and their values and verifies that setenv
worked correctly:

$ cat .bash_profile
...
setenv - keep tcsh users happy
function setenv()
{

if [$# -eq 2]
then

eval $1=$2
export $1

else
echo "Usage: setenv NAME VALUE" 1>&2

fi
}
$. ~/.bash_profile
$ setenv TCL_LIBRARY /usr/local/lib/tcl
$ env | grep TCL_LIBRARY
TCL_LIBRARY=/usr/local/lib/tcl

eval The $# special parameter (page 439) takes on the value of the number of command
line arguments. This function uses the eval builtin to force bash to scan the com-
mand $1=$2 twice. Because $1=$2 begins with a dollar sign ($), the shell treats the

334 Chapter 9 The Bourne Again Shell

entire string as a single token—a command. With variable substitution performed,
the command name becomes TCL_LIBRARY=/usr/local/lib/tcl, which results in an
error. Using eval, a second scanning splits the string into the three desired tokens,
and the correct assignment occurs.

Controlling bash Features and Options

This section explains how to control bash features and options using command line
options and the set and shopt builtins.

Command Line Options

Two kinds of command line options are available: short and long. Short options
consist of a hyphen followed by a letter; long options have two hyphens followed by
multiple characters. Long options must appear before short options on a command
line that calls bash. Table 9-12 lists some commonly used command line options.

Shell Features

You can control the behavior of the Bourne Again Shell by turning features on and
off. Different features use different methods to turn features on and off. The set

Table 9-12 Command line options

Option Explanation Syntax

Help Displays a usage message. ––help

No edit Prevents users from using the Readline Library
(page 322) to edit command lines in an interactive
shell.

––noediting

No profile Prevents reading these startup files (page 277):
/etc/profile, ~/.bash_profile, ~/.bash_login, and
~/.profile.

––noprofile

No rc Prevents reading the ~/.bashrc startup file
(page 277). This option is on by default if the shell is
called as sh.

––norc

POSIX Runs bash in POSIX mode. ––posix

Version Displays bash version information and exits. ––version

Login Causes bash to run as though it were a login shell. –l (lowercase “l”)

shopt Runs a shell with the opt shopt option (page 335). A
–O (uppercase “O”) sets the option; +O unsets it.

[±]O [opt]

End of options On the command line, signals the end of options.
Subsequent tokens are treated as arguments even if
they begin with a hyphen (–).

––

Controlling bash Features and Options 335

builtin controls one group of features, while the shopt builtin controls another group.
You can also control many features from the command line you use to call bash.

set ±o: Turns Shell Features On and Off

The set builtin, when used with the –o or +o option, enables, disables, and lists cer-
tain bash features. For example, the following command turns on the noclobber fea-
ture (page 231):

$ set -o noclobber

You can turn this feature off (the default) by giving the command

$ set +o noclobber

The command set –o without an option lists each of the features controlled by set fol-
lowed by its state (on or off). The command set +o without an option lists the same
features in a form that you can use as input to the shell. Table 9-13 lists bash features.

shopt: Turns Shell Features On and Off

The shopt (shell option) builtin enables, disables, and lists certain bash features that
control the behavior of the shell. For example, the following command causes bash
to include filenames that begin with a period (.) when it expands ambiguous file ref-
erences (the –s stands for set):

$ shopt -s dotglob

You can turn this feature off (the default) by giving the command (the –u stands for unset)

$ shopt -u dotglob

The shell displays how a feature is set if you give the name of the feature as the only
argument to shopt:

$ shopt dotglob
dotglob off

The command shopt without any options or arguments lists the features controlled
by shopt and their state. The command shopt –s without an argument lists the fea-
tures controlled by shopt that are set or on. The command shopt –u lists the features
that are unset or off. Table 9-13 lists bash features.

Features, options, variables?
tip To avoid confusing terminology, this book refers to the various shell behaviors that you can control

as features. The bash info page refers to them as “options” and “values of variables controlling
optional shell behavior.”

Setting set ±o features using shopt

tip You can use shopt to set/unset features that are otherwise controlled by set ±o. Use the regular
shopt syntax with –s or –u and include the –o option. For example, the following command turns
on the noclobber feature:

$ shopt -o -s noclobber

336 Chapter 9 The Bourne Again Shell

Table 9-13 bash features

Feature Description Syntax Alternate syntax

allexport Automatically exports all variables and
functions that you create or modify after
giving this command.

set –o allexport set –a

braceexpand Causes bash to perform brace expansion
(the default; page 340).

set –o braceexpand set –B

cdspell Corrects minor spelling errors in directory
names used as arguments to cd.

shopt –s cdspell

cmdhist Saves all lines of a multiline command in
the same history entry, adding semicolons
as needed.

shopt –s cmdhist

dotglob Causes shell special characters (wildcards;
page 239) in an ambiguous file reference
to match a leading period in a filename. By
default special characters do not to match
a leading period. You must always specify
the filenames . and .. explicitly because no
pattern ever matches them.

shopt –s dotglob

emacs Specifies emacs editing mode for com-
mand line editing (the default; page 323).

set –o emacs

errexit Causes bash to exit when a simple com-
mand (not a control structure) fails.

set –o errexit set –e

execfail Causes a shell script to continue running
when it cannot find the file that is given as
an argument to exec. By default a script
terminates when exec cannot find the file
that is given as its argument.

shopt –s execfail

expand_aliases Causes aliases (page 328) to be expanded
(by default it is on for interactive shells and
off for noninteractive shells).

shopt –s expand_alias

hashall Causes bash to remember where com-
mands it has found using PATH (page 302)
are located (default).

set –o hashall set –h

histappend Causes bash to append the history list to
the file named by HISTFILE (page 312)
when the shell exits. By default bash over-
writes this file.

shopt –s histappend

histexpand Causes the history mechanism (which
uses exclamation points; page 316) to
work (default). Turn this feature off to turn
off history expansion.

set –o histexpand set –H

Controlling bash Features and Options 337

history Enable command history (on by default;
page 312).

set –o history

ignoreeof Specifies that bash must receive ten EOF
characters before it exits. Useful on noisy
dial-up lines.

set –o ignoreeof

monitor Enables job control (on by default,
page 290).

set –o monitor set –m

nocaseglob Causes ambiguous file references
(page 239) to match filenames without
regard to case (off by default).

shopt –s nocaseglob

noclobber Helps prevent overwriting files (off by
default; page 231).

set –o noclobber set –C

noglob Disables pathname expansion (off by
default; page 239).

set –o noglob set –f

notify With job control (page 290) enabled,
reports the termination status of back-
ground jobs immediately. The default
behavior is to display the status just before
the next prompt.

set –o notify set –b

nounset Displays an error and exits from a shell
script when you use an unset variable in an
interactive shell. The default is to display a
null value for an unset variable.

set –o nounset set –u

nullglob Causes bash to expand ambiguous file
references (page 239) that do not match a
filename to a null string. By default bash
passes these file references without
expanding them.

shopt –s nullglob

posix Runs bash in POSIX mode. set –o posix

verbose Displays command lines as bash reads
them.

set –o verbose set –v

vi Specifies vi editing mode for command
line editing (page 322).

set –o vi

xpg_echo Causes the echo builtin to expand back-
slash escape sequences without the need
for the –e option (page 422).

shopt –s xpg_echo

xtrace Turns on shell debugging (page 408). set –o xtrace set –x

Table 9-13 bash features (continued)

338 Chapter 9 The Bourne Again Shell

Processing the Command Line

Whether you are working interactively or running a shell script, bash needs to read
a command line before it can start processing it—bash always reads at least one line
before processing a command. Some bash builtins, such as if and case, as well as
functions and quoted strings, span multiple lines. When bash recognizes a command
that covers more than one line, it reads the entire command before processing it. In
interactive sessions bash prompts you with the secondary prompt (PS2, > by default;
page 305) as you type each line of a multiline command until it recognizes the end
of the command:

$ echo 'hi
> end'
hi
end
$ function hello () {
> echo hello there
> }
$

After reading a command line, bash applies history expansion and alias substitution
to the line.

History Expansion

“Reexecuting and Editing Commands” on page 314 discusses the commands you
can give to modify and reexecute command lines from the history list. History
expansion is the process that bash uses to turn a history command into an execut-
able command line. For example, when you give the command !!, history expansion
changes that command line so it is the same as the previous one. History expansion
is turned on by default for interactive shells; set +o histexpand turns it off. History
expansion does not apply to noninteractive shells (shell scripts).

Alias Substitution

Aliases (page 328) substitute a string for the first word of a simple command. By
default aliases are turned on for interactive shells and off for noninteractive shells.
Give the command shopt –u expand_aliases to turn aliases off.

Parsing and Scanning the Command Line

After processing history commands and aliases, bash does not execute the command
immediately. One of the first things the shell does is to parse (isolate strings of charac-
ters in) the command line into tokens or words. The shell then scans each token for
special characters and patterns that instruct the shell to take certain actions. These
actions can involve substituting one word or words for another. When the shell parses
the following command line, it breaks it into three tokens (cp, ~/letter, and .):

$ cp ~/letter .

Processing the Command Line 339

After separating tokens and before executing the command, the shell scans the
tokens and performs command line expansion.

Command Line Expansion

In both interactive and noninteractive use, the shell transforms the command line
using command line expansion before passing the command line to the program
being called. You can use a shell without knowing much about command line
expansion, but you can use what a shell has to offer to a better advantage with an
understanding of this topic. This section covers Bourne Again Shell command line
expansion.

The Bourne Again Shell scans each token for the various types of expansion and
substitution in the following order. Most of these processes expand a word into a
single word. Only brace expansion, word splitting, and pathname expansion can
change the number of words in a command (except for the expansion of the vari-
able "$@"—page 440).

1. Brace expansion (page 340)

2. Tilde expansion (page 341)

3. Parameter and variable expansion (page 342)

4. Arithmetic expansion (page 342)

5. Command substitution (page 344)

6. Word splitting (page 345)

7. Pathname expansion (page 345)

8. Process substitution (page 347)

Quote removal After bash finishes with the preceding list, it removes from the command line single
quotation marks, double quotation marks, and backslashes that are not a result of
an expansion. This process is called quote removal.

Order of Expansion

The order in which bash carries out these steps affects the interpretation of com-
mands. For example, if you set a variable to a value that looks like the instruction
for output redirection and then enter a command that uses the variable’s value to
perform redirection, you might expect bash to redirect the output.

$ SENDIT="> /tmp/saveit"
$ echo xxx $SENDIT
xxx > /tmp/saveit
$ cat /tmp/saveit
cat: /tmp/saveit: No such file or directory

In fact, the shell does not redirect the output—it recognizes input and output redi-
rection before it evaluates variables. When it executes the command line, the shell
checks for redirection and, finding none, evaluates the SENDIT variable. After

340 Chapter 9 The Bourne Again Shell

replacing the variable with > /tmp/saveit, bash passes the arguments to echo, which
dutifully copies its arguments to standard output. No /tmp/saveit file is created.

The following sections provide more detailed descriptions of the steps involved in
command processing. Keep in mind that double and single quotation marks cause
the shell to behave differently when performing expansions. Double quotation
marks permit parameter and variable expansion but suppress other types of expan-
sion. Single quotation marks suppress all types of expansion.

Brace Expansion

Brace expansion, which originated in the C Shell, provides a convenient way to
specify filenames when pathname expansion does not apply. Although brace expan-
sion is almost always used to specify filenames, the mechanism can be used to gen-
erate arbitrary strings; the shell does not attempt to match the brace notation with
the names of existing files.

Brace expansion is turned on in interactive and noninteractive shells by default; you
can turn it off with set +o braceexpand. The shell also uses braces to isolate variable
names (page 298).

The following example illustrates how brace expansion works. The ls command
does not display any output because there are no files in the working directory. The
echo builtin displays the strings that the shell generates with brace expansion. In this
case the strings do not match filenames (there are no files in the working directory.)

$ ls
$ echo chap_{one,two,three}.txt
chap_one.txt chap_two.txt chap_three.txt

The shell expands the comma-separated strings inside the braces in the echo com-
mand into a SPACE-separated list of strings. Each string from the list is prepended
with the string chap_, called the preamble, and appended with the string .txt, called
the postscript. Both the preamble and the postscript are optional. The left-to-right
order of the strings within the braces is preserved in the expansion. For the shell to
treat the left and right braces specially and for brace expansion to occur, at least one
comma and no unquoted whitespace characters must be inside the braces. You can
nest brace expansions.

Brace expansion is useful when there is a long preamble or postscript. The follow-
ing example copies the four files main.c, f1.c, f2.c, and tmp.c located in the
/usr/local/src/C directory to the working directory:

$ cp /usr/local/src/C/{main,f1,f2,tmp}.c .

You can also use brace expansion to create directories with related names:

$ ls -F
file1 file2 file3
$ mkdir vrs{A,B,C,D,E}
$ ls -F
file1 file2 file3 vrsA/ vrsB/ vrsC/ vrsD/ vrsE/

Processing the Command Line 341

The –F option causes ls to display a slash (/) after a directory and an asterisk (*)
after an executable file.

If you tried to use an ambiguous file reference instead of braces to specify the direc-
tories, the result would be different (and not what you wanted):

$ rmdir vrs*
$ mkdir vrs[A-E]
$ ls -F
file1 file2 file3 vrs[A-E]/

An ambiguous file reference matches the names of existing files. Because it found no
filenames matching vrs[A–E], bash passed the ambiguous file reference to mkdir,
which created a directory with that name. Page 241 has a discussion of brackets in
ambiguous file references.

Tilde Expansion

Chapter 6 showed a shorthand notation to specify your home directory or the home
directory of another user. This section provides a more detailed explanation of tilde
expansion.

The tilde (~) is a special character when it appears at the start of a token on a com-
mand line. When it sees a tilde in this position, bash looks at the following string of
characters—up to the first slash (/) or to the end of the word if there is no slash—as
a possible username. If this possible username is null (that is, if the tilde appears as
a word by itself or if it is immediately followed by a slash), the shell substitutes the
value of the HOME variable for the tilde. The following example demonstrates this
expansion, where the last command copies the file named letter from Alex’s home
directory to the working directory:

$ echo $HOME
/home/alex
$ echo ~
/home/alex
$ echo ~/letter
/home/alex/letter
$ cp ~/letter .

If the string of characters following the tilde forms a valid username, the shell sub-
stitutes the path of the home directory associated with that username for the tilde
and name. If it is not null and not a valid username, the shell does not make any
substitution:

$ echo ~jenny
/home/jenny
$ echo ~root
/root
$ echo ~xx
~xx

342 Chapter 9 The Bourne Again Shell

Tildes are also used in directory stack manipulation (page 292). In addition, ~+ is a
synonym for PWD (the name of the working directory), and ~– is a synonym for
OLDPWD (the name of the previous working directory).

Parameter and Variable Expansion

On a command line a dollar sign ($) that is not followed by an open parenthesis
introduces parameter or variable expansion. Parameters include command line, or
positional, parameters (page 438) and special parameters (page 436). Variables
include user-created variables (page 296) and keyword variables (page 301). The
bash man and info pages do not make this distinction, however.

Parameters and variables are not expanded if they are enclosed within single quotation
marks or if the leading dollar sign is escaped (preceded with a backslash). If they are
enclosed within double quotation marks, the shell expands parameters and variables.

Arithmetic Expansion

The shell performs arithmetic expansion by evaluating an arithmetic expression and
replacing it with the result. Under bash the syntax for arithmetic expansion is

$((expression))

The shell evaluates expression and replaces $((expression)) with the result of the
evaluation. This syntax is similar to the syntax used for command substitution
[$(...)] and performs a parallel function. You can use $((expression)) as an argument
to a command or in place of any numeric value on a command line.

The rules for forming expression are the same as those found in the C programming
language; all standard C arithmetic operators are available (see Table 11-8 on
page 461). Arithmetic in bash is done using integers. Unless you use variables of
type integer (page 301) or actual integers, however, the shell must convert string-
valued variables to integers for the purpose of the arithmetic evaluation.

You do not need to precede variable names within expression with a dollar sign ($).
In the following example, an arithmetic expression determines how many years are
left until age 60:

$ cat age_check
#!/bin/bash
echo -n "How old are you? "
read age
echo "Wow, in $((60-age)) years, you'll be 60!"

$ age_check
How old are you? 55
Wow, in 5 years, you'll be 60!

You do not need to enclose the expression within quotation marks because bash
does not perform filename expansion on it. This feature makes it easier for you to
use an asterisk (*) for multiplication, as the following example shows:

Processing the Command Line 343

$ echo There are $((60*60*24*365)) seconds in a non-leap year.
There are 31536000 seconds in a non-leap year.

The next example uses wc, cut, arithmetic expansion, and command substitution to
estimate the number of pages required to print the contents of the file letter.txt. The
output of the wc (word count) utility used with the –l option is the number of lines
in the file, in columns 1 through 4, followed by a SPACE and the name of the file (the
first command following). The cut utility with the –c1–4 option extracts the first
four columns.

$ wc -l letter.txt
351 letter.txt
$ wc -l letter.txt | cut -c1-4
351

The dollar sign and single parenthesis instruct the shell to perform command substi-
tution; the dollar sign and double parentheses indicate arithmetic expansion:

$ echo $(($(wc -l letter.txt | cut -c1-4)/66 + 1))
6

The preceding example sends standard output from wc to standard input of cut via
a pipe. Because of command substitution, the output of both commands replaces
the commands between the $(and the matching) on the command line. Arith-
metic expansion then divides this number by 66, the number of lines on a page. A
1 is added at the end because the integer division results in any remainder being
discarded.

Another way to get the same result without using cut is to redirect the input to wc
instead of having wc get its input from a file you name on the command line. When
you redirect its input, wc does not display the name of the file:

$ wc -l < letter.txt
 351

It is common practice to assign the result of arithmetic expansion to a variable:

$ numpages=$(($(wc -l < letter.txt)/66 + 1))

let builtin The let builtin evaluates arithmetic expressions just as the $(()) syntax does. The
following command is equivalent to the preceding one:

$ let "numpages=$(wc -l < letter.txt)/66 + 1"

Fewer dollar signs ($)

tip When you use variables within $((and)), the dollar signs that precede individual variable refer-
ences are optional:

$ x=23 y=37
$ echo $((2*$x + 3*$y))
157
$ echo $((2*x + 3*y))
157

344 Chapter 9 The Bourne Again Shell

The double quotation marks keep the SPACEs (both those you can see and those that
result from the command substitution) from separating the expression into separate
arguments to let. The value of the last expression determines the exit status of let. If
the value of the last expression is 0, the exit status of let is 1; otherwise, the exit sta-
tus is 0.

You can give multiple arguments to let on a single command line:

$ let a=5+3 b=7+2
$ echo $a $b
8 9

When you refer to variables when doing arithmetic expansion with let or $(()), the
shell does not require you to begin the variable name with a dollar sign ($). Never-
theless, it is a good practice to do so, as in most places you must include this symbol.

Command Substitution

Command substitution replaces a command with the output of that command. The
preferred syntax for command substitution under bash follows:

$(command)

Under bash you can also use the following syntax:

‘command‘

The shell executes command within a subshell and replaces command, along with
the surrounding punctuation, with standard output of command.

In the following example, the shell executes pwd and substitutes the output of the
command for the command and surrounding punctuation. Then the shell passes the
output of the command, which is now an argument, to echo, which displays it.

$ echo $(pwd)
/home/alex

The next script assigns the output of the pwd builtin to the variable where and dis-
plays a message containing the value of this variable:

$ cat where
where=$(pwd)
echo "You are using the $where directory."
$ where
You are using the /home/jenny directory.

Although it illustrates how to assign the output of a command to a variable, this
example is not realistic. You can more directly display the output of pwd without
using a variable:

$ cat where2
echo "You are using the $(pwd) directory."
$ where2
You are using the /home/jenny directory.

Processing the Command Line 345

The following command uses find to locate files with the name README in the
directory tree with its root at the working directory. This list of files is standard out-
put of find and becomes the list of arguments to ls.

$ ls -l $(find . -name README -print)

The next command line shows the older ‘command‘ syntax:

$ ls -l ‘find . -name README -print‘

One advantage of the newer syntax is that it avoids the rather arcane rules for token
handling, quotation mark handling, and escaped back ticks within the old syntax.
Another advantage of the new syntax is that it can be nested, unlike the old syntax.
For example, you can produce a long listing of all README files whose size
exceeds the size of ./README with the following command:

$ ls -l $(find . -name README -size +$(echo $(cat ./README | wc -c)c) -print)

Try giving this command after giving a set –x command (page 408) to see how bash
expands it. If there is no README file, you just get the output of ls –l.

For additional scripts that use command substitution, see pages 404, 423, and 453.

Word Splitting

The results of parameter and variable expansion, command substitution, and arith-
metic expansion are candidates for word splitting. Using each character of IFS
(page 305) as a possible delimiter, bash splits these candidates into words or tokens.
If IFS is unset, bash uses its default value (SPACE-TAB-NEWLINE). If IFS is null, bash does
not split words.

Pathname Expansion

Pathname expansion (page 239), also called filename generation or globbing, is the
process of interpreting ambiguous file references and substituting the appropriate
list of filenames. Unless noglob (page 337) is set, the shell performs this function
when it encounters an ambiguous file reference—a token containing any of the
unquoted characters *, ?, [, or]. If bash cannot locate any files that match the spec-
ified pattern, the token with the ambiguous file reference is left alone. The shell does
not delete the token or replace it with a null string but rather passes it to the pro-
gram as is (except see nullglob on page 337).

In the first echo command in the following example, the shell expands the ambigu-
ous file reference tmp* and passes three tokens (tmp1, tmp2, and tmp3) to echo.
The echo builtin displays the three filenames it was passed by the shell. After rm

$((Versus $(
tip The symbols $((constitute a separate token. They introduce an arithmetic expression, not a com-

mand substitution. Thus, if you want to use a parenthesized subshell (page 289) within $(), you
must insert a SPACE between the $(and the next (.

346 Chapter 9 The Bourne Again Shell

removes the three tmp* files, the shell finds no filenames that match tmp* when it
tries to expand it. Thus it passes the unexpanded string to the echo builtin, which
displays the string it was passed.

$ ls
tmp1 tmp2 tmp3
$ echo tmp*
tmp1 tmp2 tmp3
$ rm tmp*
$ echo tmp*
tmp*

A period that either starts a pathname or follows a slash (/) in a pathname must be
matched explicitly unless you have set dotglob (page 336). The option nocaseglob
(page 337) causes ambiguous file references to match filenames without regard to case.

Quotation marks Putting double quotation marks around an argument causes the shell to suppress
pathname and all other expansion except parameter and variable expansion. Put-
ting single quotation marks around an argument suppresses all types of expansion.
The second echo command in the following example shows the variable $alex
between double quotation marks, which allow variable expansion. As a result the
shell expands the variable to its value: sonar. This expansion does not occur in the
third echo command, which uses single quotation marks. Because neither single nor
double quotation marks allow pathname expansion, the last two commands display
the unexpanded argument tmp* .

$ echo tmp* $alex
tmp1 tmp2 tmp3 sonar
$ echo "tmp* $alex"
tmp* sonar
$ echo 'tmp* $alex'
tmp* $alex

The shell distinguishes between the value of a variable and a reference to the vari-
able and does not expand ambiguous file references if they occur in the value of a
variable. As a consequence you can assign to a variable a value that includes special
characters, such as an asterisk (*).

Levels of expansion In the next example, the working directory has three files whose names begin with
letter. When you assign the value letter* to the variable var, the shell does not
expand the ambiguous file reference because it occurs in the value of a variable (in
the assignment statement for the variable). No quotation marks surround the string
letter*; context alone prevents the expansion. After the assignment the set builtin
(with the help of grep) shows the value of var to be letter*.

The three echo commands demonstrate three levels of expansion. When $var is
quoted with single quotation marks, the shell performs no expansion and passes the
character string $var to echo, which displays it. When you use double quotation
marks, the shell performs variable expansion only and substitutes the value of the var
variable for its name, preceded by a dollar sign. No pathname expansion is performed

Chapter Summary 347

on this command because double quotation marks suppress it. In the final command,
the shell, without the limitations of quotation marks, performs variable substitution
and then pathname expansion before passing the arguments to echo.

$ ls letter*
letter1 letter2 letter3
$ var=letter*
$ set | grep var
var='letter*'
$ echo '$var'
$var
$ echo "$var"
letter*
$ echo $var
letter1 letter2 letter3

Process Substitution

A special feature of the Bourne Again Shell is the ability to replace filename argu-
ments with processes. An argument with the syntax <(command) causes command
to be executed and the output written to a named pipe (FIFO). The shell replaces
that argument with the name of the pipe. If that argument is then used as the name
of an input file during processing, the output of command is read. Similarly an
argument with the syntax >(command) is replaced by the name of a pipe that com-
mand reads as standard input.

The following example uses sort (page 153) with the –m (merge, which works cor-
rectly only if the input files are already sorted) option to combine two word lists
into a single list. Each word list is generated by a pipe that extracts words matching
a pattern from a file and sorts the words in that list.

$ sort -m -f <(grep "[^A-Z]..$" memo1 | sort) <(grep ".*aba.*" memo2 |sort)

Chapter Summary

The shell is both a command interpreter and a programming language. As a com-
mand interpreter, the shell executes commands you enter in response to its prompt.
As a programming language, the shell executes commands from files called shell
scripts. When you start a shell, it typically runs one or more startup files.

Running a shell
script

Assuming that the file holding a shell script is in the working directory, there are
three basic ways to execute the shell script from the command line.

1. Type the simple filename of the file that holds the script.

2. Type a relative pathname, including the simple filename preceded by ./.

3. Type bash followed by the name of the file.

348 Chapter 9 The Bourne Again Shell

Technique 1 requires that the working directory be in the PATH variable. Tech-
niques 1 and 2 require that you have execute and read permission for the file hold-
ing the script. Technique 3 requires that you have read permission for the file
holding the script.

Job control A job is one or more commands connected by pipes. You can bring a job running in
the background into the foreground by using the fg builtin. You can put a fore-
ground job into the background by using the bg builtin, provided that you first sus-
pend the job by pressing the suspend key (typically CONTROL-Z). Use the jobs builtin to
see which jobs are running or suspended.

Variables The shell allows you to define variables. You can declare and initialize a variable by
assigning a value to it; you can remove a variable declaration by using unset. Vari-
ables are local to a process unless they are exported using the export builtin to make
them available to child processes. Variables you declare are called user-created vari-
ables. The shell also defines called keyword variables. Within a shell script you can
work with the command line (positional) parameters the script was called with.

Process Each process has a unique identification (PID) number and is the execution of a single
Linux command. When you give it a command, the shell forks a new (child) process
to execute the command, unless the command is built into the shell (page 243). While
the child process is running, the shell is in a state called sleep. By ending a command
line with an ampersand (&), you can run a child process in the background and
bypass the sleep state so that the shell prompt returns immediately after you press
RETURN. Each command in a shell script forks a separate process, each of which may in
turn fork other processes. When a process terminates, it returns its exit status to its
parent process. An exit status of zero signifies success and nonzero signifies failure.

History The history mechanism, a feature adapted from the C Shell, maintains a list of
recently issued command lines, also called events, that provides a way to reexecute
previous commands quickly. There are several ways to work with the history list;
one of the easiest is to use a command line editor.

Command line
editors

When using an interactive Bourne Again Shell, you can edit your command line and
commands from the history file, using either of the Bourne Again Shell’s command
line editors (vi[m] or emacs). When you use the vi(m) command line editor, you start
in Input mode, unlike the way you normally enter vi(m). You can switch between
Command and Input modes. The emacs editor is modeless and distinguishes com-
mands from editor input by recognizing control characters as commands.

Aliases An alias is a name that the shell translates into another name or (complex) com-
mand. Aliases allow you to define new commands by substituting a string for the
first token of a simple command.

Functions A shell function is a series of commands that, unlike a shell script, are parsed prior
to being stored in memory so that they run faster than shell scripts. Shell scripts are
parsed at runtime and are stored on disk. A function can be defined on the com-
mand line or within a shell script. If you want the function definition to remain in
effect across login sessions, you can define it in a startup file. Like the functions of a
programming language, a shell function is called by giving its name followed by any
arguments.

Exercises 349

Shell features There are several ways to customize the shell’s behavior. You can use options on the
command line when you call bash and you can use the bash set and shopt builtins to
turn features on and off.

Command line
expansion

When it processes a command line, the Bourne Again Shell may replace some words
with expanded text. Most types of command line expansion are invoked by the
appearance of a special character within a word (for example, a leading dollar sign
denotes a variable). See Table 9-6 on page 309 for a list of special characters. The
expansions take place in a specific order. Following the history and alias expan-
sions, the common expansions are parameter and variable expansion, command
substitution, and pathname expansion. Surrounding a word with double quotation
marks suppresses all types of expansion except parameter and variable expansion.
Single quotation marks suppress all types of expansion, as does quoting (escaping) a
special character by preceding it with a backslash.

Exercises

1. Explain the following unexpected result:

$ whereis date
date: /bin/date ...
$ echo $PATH
.:/usr/local/bin:/usr/bin:/bin
$ cat > date
echo "This is my own version of date."
$ date
Tue May 22 11:45:49 PDT 2007

2. What are two ways you can execute a shell script when you do not have
execute access permission for the file containing the script? Can you exe-
cute a shell script if you do not have read access permission for the file
containing the script?

3. What is the purpose of the PATH variable?

a. Set the PATH variable so that it causes the shell to search the following
directories in order:

• /usr/local/bin

• /usr/bin

• /bin

• /usr/kerberos/bin

• The bin directory in your home directory

• The working directory

b. If there is a file named doit in /usr/bin and another file with the same
name in your ~/bin, which one will be executed? (Assume that you have
execute permission for both files.)

350 Chapter 9 The Bourne Again Shell

c. If your PATH variable is not set to search the working directory, how
can you execute a program located there?

d. Which command can you use to add the directory /usr/games to the end
of the list of directories in PATH?

4. Assume that you have made the following assignment:

$ person=jenny

Give the output of each of the following commands:

a. echo $person

b. echo '$person'

c. echo "$person"

5. The following shell script adds entries to a file named journal-file in your
home directory. This script helps you keep track of phone conversations
and meetings.

$ cat journal
journal: add journal entries to the file
$HOME/journal-file

file=$HOME/journal-file
date >> $file
echo -n "Enter name of person or group: "
read name
echo "$name" >> $file
echo >> $file
cat >> $file
echo "--" >> $file
echo >> $file

a. What do you have to do to the script to be able to execute it?

b. Why does the script use the read builtin (page 445) the first time it
accepts input from the terminal and the cat utility the second time?

6. Assume that the /home/jenny/grants/biblios and /home/jenny/biblios
directories exist. Give Jenny’s working directory after she executes each
sequence of commands given. Explain what happens in each case.

a.

$ pwd
/home/jenny/grants
$ CDPATH=$(pwd)
$ cd
$ cd biblios

b.

$ pwd
/home/jenny/grants
$ CDPATH=$(pwd)
$ cd $HOME/biblios

Advanced Exercises 351

7. Name two ways you can identify the PID number of your login shell.

8. Give the following command:

$ sleep 30 | cat /etc/inittab

Is there any output from sleep? Where does cat get its input from? What
has to happen before the shell displays another prompt?

Advanced Exercises

9. Write a sequence of commands or a script that demonstrates that variable
expansion occurs before pathname expansion.

10. Write a shell script that outputs the name of the shell that is executing it.

11. Explain the behavior of the following shell script:

$ cat quote_demo
twoliner="This is line 1.
This is line 2."
echo "$twoliner"
echo $twoliner

a. How many arguments does each echo command see in this script?
Explain.

b. Redefine the IFS shell variable so that the output of the second echo is
the same as the first.

12. Add the exit status of the previous command to your prompt so that it
behaves similarly to the following:

$ [0] ls xxx
ls: xxx: No such file or directory
$ [1]

13. The dirname utility treats its argument as a pathname and writes to stan-
dard output the path prefix—that is, everything up to but not including
the last component:

$ dirname a/b/c/d
a/b/c

If you give dirname a simple filename (no / characters) as an argument,
dirname writes a . to standard output:

$ dirname simple
.

Implement dirname as a bash function. Make sure that it behaves sensibly
when given such arguments as /.

352 Chapter 9 The Bourne Again Shell

14. Implement the basename utility, which writes the last component of its
pathname argument to standard output, as a bash function. For example,
given the pathname a/b/c/d, basename writes d to standard output:

$ basename a/b/c/d
d

15. The Linux basename utility has an optional second argument. If you give
the command basename path suffix, basename removes the suffix and the
prefix from path:

$ basename src/shellfiles/prog.bash .bash
prog
$ basename src/shellfiles/prog.bash .c
prog.bash

Add this feature to the function you wrote for exercise 14.

353353

10Chapter10The communications facilities linking computers are continually
improving, allowing faster and more economical connections.
The earliest computers were unconnected stand-alone systems.
To transfer information from one system to another, you had to
store it in some form (usually magnetic tape, paper tape, or
punch cards—called IBM or Hollerith cards), carry it to a com-
patible system, and read it back in. A notable advance occurred
when computers began to exchange data over serial lines,
although the transfer rate was slow (hundreds of bits per sec-
ond). People quickly invented new ways to take advantage of
this computing power, such as email, news retrieval, and bulletin
board services. With the speed of today’s networks, a piece of
email can cross the country or even travel halfway around the
world in a few seconds.

Today it would be difficult to find a computer facility that does
not include a LAN to link its systems. Linux systems are typi-
cally attached to an Ethernet (page 1035) network. Wireless
networks are also prevalent. Large computer facilities usually
maintain several networks, often of different types, and almost
certainly have connections to larger networks (companywide or
campuswide and beyond).

In This Chapter

Types of Networks and How
They Work. 355

Network Protocols. 361

Network Utilities 372

ping: Tests a Network
Connection. 375

traceroute: Traces a Route Over
the Internet 376

host and dig: Query Internet
Nameservers 378

Distributed Computing 379

Usenet . 388

WWW: World Wide Web 390

10

Networking and the

Internet

354 Chapter 10 Networking and the Internet

Internet The Internet is a loosely administered network of networks (an internetwork) that
links computers on diverse LANs around the globe. An internet (small i) is a generic
network of networks that may share some parts in common with the public Internet.
It is the Internet that makes it possible to send an email message to a colleague thou-
sands of miles away and receive a reply within minutes. A related term, intranet,
refers to the networking infrastructure within a company or other institution. Intra-
nets are usually private; access to them from external networks may be limited and
carefully controlled, typically using firewalls (page 359).

Network services Over the past decade many network services have emerged and become standard-
ized. On Linux and UNIX systems, special processes called daemons (page 1032)
support such services by exchanging specialized messages with other systems over
the network. Several software systems have been created to allow computers to
share filesystems with one another, making it appear as though remote files are
stored on local disks. Sharing remote filesystems allows users to share information
without knowing where the files physically reside, without making unnecessary
copies, and without learning a new set of utilities to manipulate them. Because the
files appear to be stored locally, you can use standard utilities (such as cat, vim, lpr,
mv, or their graphical counterparts) to work with them.

Developers have created new tools and extended existing ones to take advantage of
higher network speeds and to work within more crowded networks. The rlogin, rsh,
and telnet utilities, which were designed long ago, have largely been supplanted by
ssh (secure shell, page 707) in recent years. The ssh utility allows a user to log in on
or execute commands securely on a remote computer. Users rely on such utilities as
scp and ftp to transfer files from one system to another across the network. Commu-
nication utilities, including email utilities and chat programs (e.g., talk, Internet Relay
Chat [IRC], ICQ, and instant messenger [IM] programs, such as AOL’s AIM and
gaim) have become so prevalent that many people with very little computer expertise
use them on a daily basis to keep in touch with friends, family, and colleagues.

Intranet An intranet is a network that connects computing resources at a school, company,
or other organization but, unlike the Internet, typically restricts access to internal
users. An intranet is very similar to a LAN (local area network) but is based on
Internet technology. An intranet can provide database, email, and Web page access
to a limited group of people, regardless of their geographic location.

The ability of an intranet to connect dissimilar machines is one of its strengths.
Think of all the machines you can find on the Internet: Macintosh systems, PCs run-
ning different versions of Windows, machines running UNIX and Linux, and so on.
Each of these machines can communicate via IP (page 361), a common protocol. So
it is with an intranet: Dissimilar machines can all talk to one another.

Another key difference between the Internet and an intranet is that the Internet trans-
mits only one protocol suite: IP. In contrast, an intranet can be set up to use a number
of protocols, such as IP, IPX, AppleTalk, DECnet, XNS, or other protocols developed
by vendors over the years. Although these protocols cannot be transmitted directly
over the Internet, you can set up special gateway boxes at remote sites that tunnel or
encapsulate these protocols into IP packets and then use the Internet to pass them.

Types of Networks and How They Work 355

You can use an extranet (also called a partner net) or a virtual private network
(VPN) to improve security. These terms describe ways to connect remote sites
securely to a local site, typically by using the public Internet as a carrier and
employing encryption as a means of protecting data in transit.

Following are some terms you may want to become familiar with before you read
the rest of this chapter:

ASP (page 1024) hub (page 1041) packet (page 1051)
bridge (page 1026) internet (page 1042) router (page 1058)
extranet (page 1036) Internet (page 1042) sneakernet (page 1060)
firewall (page 1037) intranet (page 1042) switch (page 1063)
gateway (page 1038) ISP (page 1043) VPN (page 1068)

Types of Networks and How They Work

Computers communicate over networks using unique addresses assigned by system
software. A computer message, called a packet, frame, or datagram, includes the
address of the destination computer and the sender’s return address. The three most
common types of networks are broadcast, point-to-point, and switched. Once pop-
ular, token-based networks (such as FDDI and token ring) are rarely seen anymore.

Speed is critical to the proper functioning of the Internet. Newer specifications (cat 6
and cat 7) are being standardized for 1000BaseT (1 gigabit per second, called gigabit
Ethernet, or GIG-E) and faster networking. Some of the networks that form the
backbone of the Internet run at speeds of almost 10 gigabits per second (OC192) to
accommodate the ever-increasing demand for network services. Table 10-1 lists some
of the specifications in use today.

Table 10-1 Network specifications

Specification Speed

DS0 64 kilobits per second

ISDN Two DS0 lines plus signaling (16 kilobits per second) or 128 kilobits per
second

T-1 1.544 megabits per second (24 DS0 lines)

T-3 43.232 megabits per second (28 T-1s)

OC3 155 megabits per second (100 T-1s)

OC12 622 megabits per second (4 OC3s)

OC48 2.5 gigabits per seconds (4 OC12s)

OC192 9.6 gigabits per second (4 OC48s)

356 Chapter 10 Networking and the Internet

Broadcast Networks

On a broadcast network, such as Ethernet, any of the many systems attached to the
network cable can send a message at any time; each system examines the address in
each message and responds only to messages addressed to it. A problem occurs on a
broadcast network when multiple systems send data at the same time, resulting in a
collision of the messages on the cable. When messages collide, they can become gar-
bled. The sending system notices the garbled message and resends it after waiting a
short but random amount of time. Waiting a random amount of time helps prevent
those same systems from resending the data at the same moment and experiencing
yet another collision. The extra traffic that results from collisions can strain the net-
work; if the collision rate gets too high, retransmissions may result in more colli-
sions. Ultimately the network may become unusable.

Point-to-Point Networks

A point-to-point link does not seem like much of a network because only two end-
points are involved. However, most connections to WANs (wide area networks) go
through point-to-point links, using wire cable, radio, or satellite links. The advan-
tage of a point-to-point link is its simplicity: Because only two systems are involved,
the traffic on the link is limited and well understood. A disadvantage is that each sys-
tem can typically be equipped for only a small number of such links; it is impractical
and costly to establish point-to-point links that connect each computer to all the rest.

Point-to-point links often use serial lines and modems. The combination of a
modem with a point-to-point link allows an isolated system to connect inexpen-
sively to a larger network.

The most common types of point-to-point links are the ones used to connect to the
Internet. When you use DSL1 (digital subscriber line), you are using a point-to-point
link to connect to the Internet. Serial lines, such as T-1, T-3, ATM links, and ISDN,
are all point-to-point. Although it might seem like a point-to-point link, a cable
modem is based on broadcast technology and in that way is similar to Ethernet.

Switched Networks

A switch is a device that establishes a virtual path between source and destination
hosts in such a way that each path appears to be a point-to-point link, much like a
railroad roundhouse. The switch creates and tears down virtual paths as hosts seek to
communicate with each other. Each host thinks it has a direct point-to-point path to
the host it is talking to. Contrast this approach with a broadcast network, where each
host also sees traffic bound for other hosts. The advantage of a switched network
over a pure point-to-point network is that each host requires only one connection: the
connection to the switch. Using pure point-to-point connections, each host must have
a connection to every other host. Scalability is provided by further linking switches.

1. The term DSL incorporates the xDSL suite of technologies, which includes ADSL, XDSL, SDSL, and HDSL.

Types of Networks and How They Work 357

LAN: Local Area Network

Local area networks (LANs) are confined to a relatively small area—a single com-
puter facility, building, or campus. Today most LANs run over copper or fiberoptic
(glass or plastic) cable, but other wireless technologies, such as infrared (similar to
most television remote control devices) and radio wave (wireless, or Wi-Fi), are
becoming more popular.

If its destination address is not on the local network, a packet must be passed on to
another network by a router (page 358). A router may be a general-purpose com-
puter or a special-purpose device attached to multiple networks to act as a gateway
among them.

Ethernet

A Linux system connected to a LAN usually connects to a network using Ethernet.
A typical Ethernet connection can support data transfer rates from 10 megabits per
second to 1 gigabit per second, with further speed enhancements planned for the
future. As a result of computer load, competing network traffic, and network over-
head, file transfer rates on an Ethernet are always slower than the maximum, theo-
retical transfer rate.

Cables An Ethernet network transfers data using copper or fiberoptic cable or wireless trans-
mitters and receivers. Originally, each computer was attached to a thick coaxial cable
(called thicknet) at tap points spaced at six-foot intervals along the cable. The thick
cable was awkward to deal with, so other solutions, including a thinner coaxial cable
called thinnet, or 10Base2,2 were developed. Today most Ethernet connections are
either wireless or made over unshielded twisted pair (referred to as UTP, Category 5
[cat 5], Category 5e [cat 5e], Category 6 [cat 6], 10BaseT, or 100BaseT) wire—similar
to the type of wire used for telephone lines and serial data communications.

Segment A network segment is a part of a network in which all systems communicate using
the same physical layer (layer 1) of the IP and OSI models (page 361).

Duplex In half-duplex mode, packets travel in one direction at a time over the cable. In full-
duplex mode, packets travel in both directions.

Hub A hub (sometimes called a concentrator) is a device that connects systems so they
are all part of one network segment and share the network bandwidth. Hubs work
at the physical layer of the IP and OSI models (layer 1, page 361).

Switch A switch connects network segments. A switch inspects each data packet and learns
which devices are connected to which of its ports. The switch sorts packets and
sends each packet only to the device it is intended for. Because a switch sends pack-
ets only to their destination devices, it can conserve network bandwidth and per-
form better than a hub. A switch may have buffers for holding and queuing packets.
Switches work at the data link layer of the IP and OSI models (layer 2, page 362).

2. Versions of Ethernet are classified as XBaseY, where X is the data rate in megabits per second, Base
means baseband (as opposed to radio frequency), and Y is the category of cabling.

358 Chapter 10 Networking and the Internet

Some Ethernet switches have enough bandwidth to communicate simultaneously, in
full-duplex mode, with all connected devices. A nonswitched (hub-based) broadcast
network can run in only half-duplex mode. Full-duplex Ethernet further improves
things by eliminating collisions. Theoretically, each host on a switched network can
transmit and receive simultaneously at speed of the network (e.g., 100 megabits per
second) for an effective bandwidth between hosts of twice the speed of the network
(e.g., 200 megabits per second), depending on the capacity of the switch.

Router A router connects networks. For example, a router can connect a LAN to a WAN
(such as the Internet). A router determines which path packets should take to travel to
a different network and forwards the packets. Routers work at the network layer of
the IP and OSI models (layer 3, page 362). The next page covers routers in more depth.

Wireless

Wireless networks are becoming increasingly common. They are found in offices,
homes, and public places, such as universities, coffee shops, and airports. Wireless
access points provide functionality similar to an Ethernet hub. They allow multiple
users to interact via a common radio frequency spectrum. A wireless, point-to-point
connection allows you to wander about your home or office with a laptop, using an
antenna to link to a LAN or to the Internet via an in-house base station. Linux
includes drivers for many of the common wireless boards. A wireless access point,
or base station, connects a wireless network to a wired network so that no special
protocol is required for a wireless connection. Refer to page 700 and to the Linux
Wireless LAN HOWTO at www.hpl.hp.com/personal/Jean_Tourrilhes/Linux.

WAN: Wide Area Network

A wide area network (WAN) covers a large geographic area. In contrast, the technol-
ogies (such as Ethernet) used for LANs were designed to work over limited distances
and for a certain number of host connections. A WAN may span long distances over
dedicated data lines (leased from a telephone company) or radio or satellite links.
Such networks are often used to interconnect LANs. Major Internet service providers
rely on WANs to connect to their customers within a country and around the globe.

MAN Some networks do not fit into either the LAN or the WAN designation. A metropol-
itan area network (MAN) is a network that is contained in a smaller geographic
area, such as a city. Like WANs, MANs are typically used to interconnect LANs.

Internetworking Through Gateways and Routers

Gateway A LAN connects to a WAN through a gateway, a generic term for a computer or a
special device with multiple network connections that passes data from one network
to another. A gateway converts the data traffic from the format used on the LAN to
that used on the WAN. Data that crosses the country from one Ethernet to another
over a WAN, for example, is repackaged from the Ethernet format to a different for-
mat that can be processed by the communications equipment that makes up the
WAN backbone. When it reaches the end of its journey over the WAN, the data is
converted by another gateway to a format appropriate for the receiving network. For
the most part, these details are of concern only to the network administrators; the
end user does not need to know anything about how the data transfer takes place.

www.hpl.hp.com/personal/Jean_Tourrilhes/Linux

Types of Networks and How They Work 359

Router A router (page 1058) is the most popular form of gateway. Routers play an impor-
tant role in internetworking. Just as you might study a map to plan your route when
you need to drive to an unfamiliar place, so a computer needs to know how to
deliver a message to a system attached to a distant network by passing through
intermediary systems and networks along the way. Although you might envision
using a giant network road map to choose the route that your data should follow, a
static map of computer routes is usually a poor choice for a large network. Comput-
ers and networks along the route you choose may be overloaded or down, without
providing a detour for your message.

Routers instead communicate dynamically, keeping each other informed about
which routes are open for use. To extend the analogy, this situation would be like
heading out on a car trip without consulting a map to find a route to your destina-
tion; instead you head for a nearby gas station and ask directions. Throughout the
journey you continue to stop at one gas station after another, getting directions at
each to find the next one. Although it would take a while to make the stops, the
owner of each gas station would advise you of bad traffic, closed roads, alternative
routes, and shortcuts.

The stops made by the data are much quicker than those you would make in your
car, but each message leaves each router on a path chosen based on the most current
information. Think of this system as a GPS (global positioning system) setup that
automatically gets updates at each intersection and tells you where to go next,
based on traffic and highway conditions.

Figure 10-1 (next page) shows an example of how LANs might be set up at three
sites interconnected by a WAN (the Internet). In this type of network diagram,
Ethernet LANs are drawn as straight lines, with devices attached at right angles;
WANs are represented as clouds, indicating that the details have been left out; and
wireless connections are drawn as zigzag lines with breaks, indicating that the con-
nection may be intermittent.

In Figure 10-1, a gateway or a router relays messages between each LAN and the
Internet. Three of the routers in the Internet are shown (for example, the one closest
to each site). Site A has a server, a workstation, a network computer, and a PC shar-
ing a single Ethernet LAN. Site B has an Ethernet LAN that serves a printer and
four Linux workstations. A firewall permits only certain traffic to pass between the
Internet router and the site’s local router. Site C has three LANs linked by a single
router, perhaps to reduce the traffic load that would result if the LANs were com-
bined or to keep workgroups or locations on separate networks. Site C also includes
a wireless access point that enables wireless communication with nearby computers.

Firewall

A firewall in a car separates the engine compartment from the passenger compartment,
protecting the driver and passengers from engine fires, noise, and fumes. In much the
same way, computer firewalls separate computers from malicious and unwanted users.

A firewall prevents certain types of traffic from entering or leaving a network. For
example, a firewall might prevent traffic from your IP address from leaving the network

3
6

0
C

h
a

p
t
e
r

 1
0

N
e
t
w

o
r

k
i
n

g
 a

n
d

 t
h

e
 I

n
t
e
r

n
e
t

Figure 10-1A
 Slice of the Internet

NC

Network Linux

PC

Personal

W

computer

Ethernet

Firewall
Router

Router 3

Router 1

Router 2

W

W

W

Gateway

PC W
Printer

Ethernet

Ethernet

W

W

Internet

GATEWAY/

W

W W

Legend
PC WNC

Site B

Site A

Site C

Ethernet

Printer

Printer

Wireless access

NC

W

workstation

Router

Switch

Server

computer

point

Figure 10-1 A slice of the Internet

Types of Networks and How They Work 361

and prevent anyone except users from selected domains from using FTP to retrieve data
from the network. The implementations of firewalls vary widely—from Linux machines
with two interfaces (page 1042) running custom software to a router (preceding sec-
tion) with simple access lists to esoteric, vendor-supplied firewall appliances. Most
larger installations have at least one kind of firewall in place. A firewall is often accom-
panied by a proxy server/gateway (page 387) that provides an intermediate point
between you and the host you are communicating with.

In addition to the firewalls found in multipurpose computers, firewalls are becom-
ing increasingly common in consumer appliances. For example, they are built into
cable modems, wireless gateways, routers, and stand-alone devices.

Typically a single Linux machine will include a minimal firewall. A small group of
Linux systems may have an inexpensive Linux machine with two network interfaces
and packet-filtering software functioning as a dedicated firewall. One of the inter-
faces connects to the Internet, modems, and other outside data sources. The other
connects, normally through a hub or switch, to the local network. Refer to
Chapter 26 for information on firestarter, iptables, and setting up a firewall and to
Appendix C for a discussion of security.

Network Protocols

To exchange information over a network, computers must communicate using a com-
mon language, or protocol (page 1054). The protocol determines the format of mes-
sage packets. The predominant network protocols used by Linux systems are TCP
and IP,3 collectively referred to as TCP/IP (Transmission Control Protocol and Inter-
net Protocol). Network services that need highly reliable connections, such as ssh and
scp, tend to use TCP/IP. Another protocol used for some system services is UDP (User
Datagram Protocol). Network services that do not require guaranteed delivery, such
as RealAudio and RealVideo, operate satisfactorily with the simpler UDP.4

IP: Internet Protocol

Layering was introduced to facilitate protocol design: Layers distinguish functional
differences between adjacent protocols. A grouping of layers can be standardized
into a protocol model. IP has a model that distinguishes protocol layers. The IP
model differs from the ISO seven-layer protocol model (also called the OSI model)
that is often illustrated in networking textbooks. Specifically IP uses the following
simplified five-layer model:

1. The first layer of the IP protocol, called the physical layer, describes the
physical medium (copper, fiber, wireless) and the data encoding used to

3. All references to IP imply IPv4 (page 1043).

4. Voice and video protocols are delay sensitive, not integrity sensitive. The human ear and eye accept and
interpolate loss in an audio or video stream but cannot deal with variable delay. The guaranteed delivery
that TCP provides introduces a delay on a busy network when packets get retransmitted. This delay is not
acceptable for video and audio transmissions, whereas less than 100 percent integrity is acceptable.

362 Chapter 10 Networking and the Internet

transmit signals on that medium (pulses of light, electrical waves, or radio
waves, for instance).

2. The second layer, called the data link layer, covers media access by net-
work devices and describes how to put data into packets, transmit the
data, and check it for errors. Ethernet is found at this layer, as is 802.11
(page 1022) wireless.

3. The third layer, called the network layer, frequently uses IP and addresses
and routes packets.

4. The fourth layer, called the transport layer, is where TCP and UDP exist.
This layer provides a means for applications to communicate with each
other. Functions commonly performed by the transport layer include guar-
anteed delivery, delivery of packets in the order of their transmission, flow
control, error detection, and error correction. The transport layer is respon-
sible for dividing data streams into packets. In addition, this layer performs
port addressing, which allows it to distinguish among different services
using the same transport protocol. Port addressing keeps the data from
multiple applications using the same protocol (for example, TCP) separate.

5. Anything above the transport layer is the domain of the application and is
part of the fifth layer. Unlike the ISO model, the Internet model does not
distinguish among application, presentation, and session layers. All of the
upper-layer characteristics, such as character encoding, encryption, and
GUIs, are part of the application. Applications choose the transport char-
acteristics they require as well as the corresponding transport layer proto-
col with which to send and receive data.

TCP: Transmission Control Protocol

TCP is most frequently run on top of IP in a combination referred to as TCP/IP.
This protocol provides error recovery and guaranteed delivery in packet transmis-
sion order; it also works with multiple ports so that it can handle more than one
application. TCP is a connection-oriented protocol (page 1030), also known as a
stream-based protocol. Once established, a TCP connection looks like a stream of
data, not individual IP packets. The connection is assumed to remain up and be
uniquely addressable. Every piece of information you write to the connection
always goes to the same destination and arrives in the order it was sent. Because
TCP is connection oriented and establishes a virtual circuit between two systems,
this protocol is not suitable for one-to-many transmissions (see the discussion of
UDP, following). TCP has builtin mechanisms for dealing with congestion (or flow)
control over busy networks and throttles back (slows the speed of data flow) when
it has to retransmit dropped packets. TCP can also deal with acknowledgments,
wide area links, high-delay links, and other situations.

UDP: User Datagram Protocol

UDP runs at layer 4 of the IP stack, just as TCP does, but is much simpler. Like TCP,
UDP works with multiple ports and multiple applications. It has checksums for error

Types of Networks and How They Work 363

detection but does not automatically retransmit datagrams (page 1032) that fail the
checksum test. UDP is a datagram-oriented protocol: Each datagram must carry its
own address and port information. Each router along the way examines each data-
gram to determine the destination, one hop at a time. You can broadcast or multicast
UDP datagrams to many destinations at the same time by using special addresses.

PPP: Point-to-Point Protocol

PPP provides serial line point-to-point connections that support IP. This protocol
compresses data to make the most of the limited bandwidth available on serial con-
nections. PPP, which replaces SLIP5 (Serial Line IP), acts as a point-to-point layer
2/3 transport that many other types of protocols can ride on. It is used mostly for
IP-based services and connections, such as TCP or UDP.

Xremote and LBX

Two protocols that speed up data transfer over serial lines are Xremote and LBX.
Xremote compresses the X Window System protocol so that it is more efficient over
slower serial lines. LBX (low-bandwidth X) is based on the Xremote technology
and is part of X Window System release X11R6 and higher.

Host Address

Each computer interface is identified by a unique address, or host number, on its
network. A system attached to more than one network has multiple interfaces—one
for each network, each with a unique address.

Each packet of information that is broadcast over the network has a destination
address. All hosts on the network must process each broadcast packet to see
whether it is addressed to that host.6 If the packet is addressed to a given host, that
host continues to process it. If not, the host ignores the packet.

The network address of a machine is an IP address, which, under IPv4, is repre-
sented as one number broken into four segments separated by periods (for example,
192.168.184.5). Domain names and IP addresses are assigned through a highly dis-
tributed system coordinated by ICANN (Internet Corporation for Assigned Names
and Numbers—www.icann.org) via many registrars (see www.internic.net). ICANN
is funded by the various domain name registries and registrars and by IP address
registries, which supply globally unique identifiers for hosts and services on the
Internet. Although you may not deal with any of these agencies directly, your Inter-
net service provider most assuredly does.

How a company uses IP addresses is determined by the system or network adminis-
trator. For example, the leftmost two sets of numbers in an IP address might represent

5. SLIP was one of the first serial line implementations of IP and has slightly less overhead than PPP. PPP
supports multiple protocols (such as AppleTalk and IPX), whereas SLIP supports only IP.

6. Contrast broadcast packets with unicast packets: Ethernet hardware on a computer filters out unicast pack-
ets that are not addressed to that machine; the operating system on that machine never sees these packets.

www.icann.org
www.internic.net

364 Chapter 10 Networking and the Internet

a large network (campuswide or companywide); the third set, a subnetwork (perhaps
a department or a single floor in a building); and the rightmost number, an individual
computer. The operating system uses the address in a different, lower-level form, con-
verting it to its binary equivalent, a series of 1s and 0s. See the following optional sec-
tion for more information. Refer to “Private address space” on page 697 for
information about addresses you can use on a LAN without registering them.

Static Versus Dynamic IP Addresses

A static IP address is one that always remains the same. A dynamic IP address is one
that can change each time you connect to the network. A dynamic address remains
the same during a single login session. Any server (mail, Web, and so on) must have
a static address so clients can find the machine that is acting as the server. End-user
systems usually work well with dynamic addresses. During a given login session,
they can function as a client (your Web browser, for example) because they main-
tain a constant IP address. When you log out and log in again, it does not matter
that you have a different IP address because your computer, acting as a client, estab-
lishes a new connection with a server. The advantage of dynamic addressing is that
it allows inactive addresses to be reused, reducing the total number of IP addresses
needed.

optional IP Classes

To facilitate routing on the Internet, IP addresses are divided into classes. These
classes, which are labeled class A through class E, allow the Internet address space
to be broken into blocks of small, medium, and large networks that are designed to
be assigned based on the number of hosts within a network.

When you need to send a message to an address outside the local network, your sys-
tem looks up the address block/class in its routing table and sends the message to
the next router on the way to the final destination. Every router along the way does
a similar lookup and forwards the message accordingly. At the destination, local
routers direct the message to the specific address. Without classes and blocks, your
host would have to know every network and subnetwork address on the Internet
before it could send a message. This setup would be impractical because of the huge
number of addresses on the Internet.

Each of the four numbers in the IP address is in the range 0–255 because each seg-
ment of the IP address is represented by 8 bits (an octet), with each bit being capa-
ble of taking on two values; the total number of values is therefore 28 = 256. When
you start counting at 0, the range 1–256 becomes 0–255.7 Each IP address is
divided into a net address (netid) portion, which is part of the class, and a host
address (hostid) portion. See Table 10-2.

7. Internally, the IP address is represented as a set of four unsigned 8-bit fields or a 32-bit unsigned num-
ber, depending on how programs are using it. The most common format in C is to represent it as a union
of an unsigned 32-bit long integer, four unsigned chars, and two unsigned short integers.

Types of Networks and How They Work 365

The first set of addresses, defining class A networks, is reserved for extremely large
corporations, such as General Electric (3.0.0.0) and Hewlett-Packard (15.0.0.0), and
for ISPs. One start bit (0) in the first position designates a class A network, 7 bits
holds the network portion of the address (netid), and 24 bits holds the host portion
of the address (hostid; see Table 10-2). This setup means that GE can have 224, or
approximately 16 million, hosts on its network. Unused address space and subnets
(page 1062) lower this number quite a bit. The 127.0.0.0 subnet (page 369) is
reserved, as are several others (see private address space on page 1054).

Two start bits (10) in the first two positions designates a class B network, 14 bits
holds the network portion of the address (netid), and 16 bits holds the host portion
of the address, for a potential total of 65,534 hosts.8 A class C network uses 3 start
bits (100), 21 netid bits (2 million networks), and 8 hostid bits (254 hosts). Today a
new large customer will not receive a class A or B network but is likely to receive a
class C or several (usually contiguous) class C networks, if merited.

Several other classes of networks exist. Class D networks are reserved for multicast
(page 1049) networks. When you run netstat –nr on a Linux system, you can see
whether the machine is a member of a multicast network. A 224.0.0.0 in the Desti-
nation column that netstat displays indicates a class D, multicast address
(Table 10-2). A multicast is like a broadcast, but only hosts that subscribe to the

Table 10-2 IP classes

Class Start bits Address range All bits (including start bits)

0–7 8–15 16–23 24–31

Class A 0 001.000.000.000–126.000.000.000 0-netid ========hostid=========

Class B 10 129.000.000.000–191.255.000.000 10-----netid------ =====hostid=====

Class C 110 192.000.000.000–223.255.255.000 110----------netid----------- =hostid=

Class D (multicast) 1110 224.000.000.000–239.255.255.000 1110

Class E (reserved) 11110 240.000.000.000–255.255.255.000 11110

8. A 16-bit (class B) address can address 216 = 65,536 hosts, yet the potential number of hosts is two fewer
than that because the first and last addresses on any network are reserved. In a similar manner, an 8-bit
(class C) address can address only 254 hosts (28 – 2 = 254). The 0 host address (for example, 194.16.100.0
for a class C network or 131.204.0.0 for a class B network) is reserved as a designator for the network
itself. Several older operating systems use this as a broadcast address. The 255 host address (for example,
194.16.100.255 for a class C network or 131.204.255.255 for a class B network) is reserved as the IP
broadcast address. An IP packet (datagram) that is sent to this address is broadcast to all hosts on the
network.

The netid portion of a subnet does not have the same limitations. Often you are given the choice of re-
serving the first and last networks in a range as you would a hostid, but this is rarely done in practice.
More often the first and last networks in the netid range provide more usable address space. Refer to
“Subnets” on page 367.

366 Chapter 10 Networking and the Internet

multicast group receive the message. To use Web terminology, a broadcast is like a
“push.” A host pushes a broadcast on the network, and every host on the network
must check each packet to see whether it contains relevant data. A multicast is like a
“pull.” A host will see a multicast only if it registers itself as subscribed to a multi-
cast group or service and pulls the appropriate packets from the network.

Table 10-3 shows some of the computations for the IP address 131.204.027.027.
Each address is shown in decimal, hexadecimal, and binary form. Binary is the easi-
est to work with for bitwise (binary) computations. The first three lines show the IP
address. The next three lines show the subnet mask (page 1063) in three bases.
Next the IP address and the subnet mask are ANDed together bitwise to yield the
subnet number (page 1063), which is shown in three bases. The last three lines
show the broadcast address (page 1026), which is computed by taking the subnet
number and turning the hostid bits to 1s. The subnet number identifies the local
network. The subnet number and the subnet mask determine what range the IP
address of the machine must be in. They are also used by routers to segment traffic;
see network segment (page 1050). A broadcast on this network goes to all hosts in
the range 131.204.27.1 through 131.204.27.254 but will be acted on only by hosts
that have a use for it.

Table 10-3 Computations for IP address 131.204.027.027

---------------Class B----------- netid hostid

IP address

131 .204 .027 .027 decimal

83 CC 1B 1B hexadecimal

1000 0011 1100 1100 0001 1011 0001 1011 binary

Subnet mask

255 .255 .255 .000 decimal

FF FF FF 00 hexadecimal

1111 1111 1111 1111 1111 1111 0000 0000 binary

IP address bitwise AND 1000 0011 1100 1100 0001 1011 0001 1011

binarySubnet mask 1111 1111 1111 1111 1111 1111 0000 0000

= Subnet number 1000 0011 1100 1100 0001 1011 0000 0000

Subnet number

131 .204 .027 .000 decimal

83 CC 1B 00 hexadecimal

1000 0011 1100 1100 0001 1011 0000 0000 binary

Broadcast address

(set host bits to 1)

131 .204 .27 .255 decimal

83 CC 1B FF hexadecimal

1000 0011 1100 1100 0001 1011 1111 1111 binary

Types of Networks and How They Work 367

Subnets

Each host on a network must process each broadcast packet to determine whether
the information in the packet is useful to that host. If the network includes numer-
ous hosts, each host must process many packets. To maintain efficiency—most net-
works, and particularly shared media networks such as Ethernet—need to be split
into subnetworks, or subnets.9 The more hosts on a network, the more dramatically
network performance is affected. Organizations use router and switch technology
called VLANs (virtual local area networks) to group similar hosts into broadcast
domains (subnets) based on function. For example, it is not uncommon to see a
switch with different ports being part of different subnets. See page 529 for infor-
mation on how to specify a subnet.

Subnet mask A subnet mask (or address mask) is a bit mask that identifies which parts of an IP
address correspond to the network address and the subnet portion of the address.
This mask has 1s in positions corresponding to the network and subnet numbers
and 0s in the host number positions. When you perform a bitwise AND on an IP
address and a subnet mask (Table 10-3), the resulting address contains everything
except the host address (hostid) portion.

There are several ways to represent a subnet mask: A network could have a subnet
mask of 255.255.255.0 (decimal), FFFFFF00 (hexadecimal), or /24 (the number of
bits used for the subnet mask). If it were a class B network (of which 16 bits are
already fixed), this yields 28 (24 total bits – 16 fixed bits = 8 bits, 28 = 256) net-
works10 with 28 – 2 (256 – 2 = 254) hosts11 on each network.

For example, when you divide the class C address 192.25.4.0 into eight subnets,
you get a subnet mask of 255.255.255.224, FFFFFFE0, or /27 (27 1s). The eight
resultant networks are 192.25.4.0, 192.25.4.32, 192.25.4.64, 192.25.4.96,
192.25.4.128, 192.25.4.160, 192.25.4.192, and 192.25.4.224. You can use a Web-
based subnet mask calculator to calculate subnet masks (refer to “Network Calcu-
lators” on page 987). To use this calculator to determine the preceding subnet
mask, start with an IP host address of 192.25.4.0.

For more information refer to “Specifying a Subnet” on page 529.

CIDR: Classless Inter-Domain Routing

CIDR (pronounced “cider”) allows groups of addresses that are smaller than a class
C block to be assigned to an organization or ISP and then further subdivided and
parceled out. In addition, it helps to alleviate the potential problem of routing tables
on major Internet backbone and peering devices becoming too large to manage.

9. Splitting a network is also an issue with other protocols, particularly AppleTalk.

10. The first and last networks are reserved in a manner similar to the first and last hosts, although the
standard is flexible. You can configure routers to reclaim the first and last networks in a subnet. Different
routers have different techniques for reclaiming these networks.

11. Subtract 2 because the first and last host addresses on every network are reserved.

368 Chapter 10 Networking and the Internet

The pool of available IPv4 addresses has been depleted to the point that no one gets
a class A address anymore. The trend is to reclaim these huge address blocks, if pos-
sible, and recycle them into groups of smaller addresses. Also, as more class C
addresses are assigned, routing tables on the Internet are filling up and causing
memory overflows. The solution is to aggregate12 groups of addresses into blocks
and allocate them to ISPs, which in turn subdivide these blocks and allocate them to
their customers. The address class designations (A, B, and C) described in the previ-
ous section are used less often today, although you may still encounter subnets.
When you request an address block, your ISP usually gives you as many addresses
as you need—and no more. The ISP aggregates several contiguous smaller blocks
and routes them to your location. This aggregation is CIDR. Without CIDR, the
Internet as we know it would not function.

For example, you might be allocated the 192.168.5.0/22 IP address block, which
could support 210 hosts (32 – 22 = 10). Your ISP would set its routers so that any
packets going to an address in that block would be sent to your network. Internally,
your own routers might further subdivide this block of 1,024 potential hosts into
subnets, perhaps into four networks. Four networks require an additional two bits
of addressing (22 = 4). You could therefore set up your router to support four net-
works with this allocation: 192.168.5.0/24, 192.168.6.0/24, 192.168.7.0/24, and
192.168.8.0/24. Each of these networks could then have 254 hosts. CIDR lets you
arbitrarily divide networks and subnetworks into increasingly smaller blocks along
the way. Each router has enough memory to keep track of the addresses it needs to
direct and aggregates the rest.

This scheme uses memory and address space efficiently. For example, you could take
192.168.8.0/24 and further divide it into 16 networks with 14 hosts each. The 16 net-
works require four more bits (24 = 16), so you would have 192.168.8.0/28,
192.168.8.16/28, 192.168.8.32/28, and so on, up through the last subnet of
192.168.8.240/16, which would have the hosts 192.168.8.241 through 192.168.8.254.

Hostnames

People generally find it easier to work with names than with numbers, so Linux
provides several ways to associate hostnames with IP addresses. The oldest method
is to consult a list of names and addresses that are stored in the /etc/hosts file:

$ cat /etc/hosts
127.0.0.1 localhost
130.128.52.1 gw–example.example.com gw–example
130.128.52.2 bravo.example.com bravo
130.128.52.3 hurrah.example.com hurrah
130.128.52.4 kudos.example.com kudos

12. Aggregate means to join. In CIDR, the aggregate of 208.178.99.124 and 208.178.99.125 is
208.178.99.124/23 (the aggregation of two class C blocks).

Types of Networks and How They Work 369

localhost =
127.0.0.1

The address 127.0.0.1 is reserved for the special hostname localhost, which serves
as a hook for the system’s networking software to operate on the local machine
without going onto a physical network. The names of the other systems are shown
in two forms: in a fully qualified domain name (FQDN) format that is unique on
the Internet and as a nickname that is locally unique.

NIS As more hosts joined networks, storing these name-to-address mappings in a text
file proved to be inefficient and inconvenient. The hosts file grew increasingly larger
and became impossible to keep up-to-date. To solve this problem Linux supports
NIS (Network Information Service, page 383), which was developed for use on Sun
computers. NIS stores information in a database, making it easier to find a specific
address, but it is useful only for host information within a single administrative
domain. Hosts outside the domain cannot access the information.

DNS The solution to this dilemma is DNS (Domain Name Service, page 381). DNS effec-
tively addresses the efficiency and update issues by arranging the entire network
namespace (page 1049) as a hierarchy. Each domain in the DNS manages its own
namespace (addressing and name resolution), and each domain can easily query for
any host or IP address by following the tree up or down the namespace until it finds
the appropriate domain. By providing a hierarchical naming structure, DNS distrib-
utes name administration across the entire Internet.

IPv6

The explosive growth of the Internet has uncovered deficiencies in the design of the
current address plan—most notably the shortage of addresses. Over the next few
years, a revised protocol, named IPng (IP Next Generation), also known as IPv6 (IP
version 6),13 will be phased in. (It may take longer—the phase-in is going quite
slowly.) This new scheme is designed to overcome the major limitations of the cur-
rent approach and can be implemented gradually because it is compatible with the
existing address usage. IPv6 makes it possible to assign many more unique Internet
addresses (2128, or 340 undecillion [1036]). It also supports more advanced security
and performance control features:

• IPv6 enables autoconfiguration. With IPv4, autoconfiguration is available
using optional DHCP (page 538). With IPv6, autoconfiguration is manda-
tory, making it easy for hosts to configure their IP addresses automatically.

• IPv6 reserves 24 bits in the header for advanced services, such as resource
reservation protocols, better backbone routing, and improved traffic
engineering.

• IPv6 makes multicast protocols mandatory and uses them extensively. In
IPv4, multicast, which improves scalability, is optional.

13. IPv5 referred to an experimental real-time stream protocol named ST—thus the jump from IPv4 to IPv6.

370 Chapter 10 Networking and the Internet

• IPv6 aggregates address blocks more efficiently because of the huge
address space. This aggregation makes obsolete NAT (page 1049), which
decreased scalability and introduced protocol issues.

• IPv6 provides a simplified packet header that allows hardware accelerators
to work better.

A sample IPv6 address is fe80::a00:20ff:feff:5be2/10. Each group of four hexadeci-
mal digits is equivalent to a number between 0 and 65,536 (164). A pair of adjacent
colons indicates a hex value of 0x0000; leading 0s need not be shown. With eight
sets of hexadecimal groupings, 65,5368 = 2128 addresses are possible. In an IPv6
address on a host with the default autoconfiguration, the first characters in the
address are always fe80. The last 64 bits hold an interface ID designation, which is
often the MAC address (page 1046) of the system’s Ethernet controller.

Communicate Over a Network

Many commands that you can use to communicate with other users on a single
computer system have been extended to work over a network. Examples of
extended utilities include electronic mail programs, information-gathering utilities
(such as finger, page 167), and communications utilities (such as talk). These utilities
are examples of the UNIX philosophy: Instead of creating a new, special-purpose
tool, modify an existing one.

Many utilities understand a convention for the format of network addresses:
user@host (spoken as “user at host”). When you use an @ sign in an argument to
one of these utilities, the utility interprets the text that follows as the name of a
remote host. When you omit the @ sign, a utility assumes that you are requesting
information from or corresponding with someone on the local system.

The prompts shown in the examples in this chapter include the hostname of the sys-
tem you are using. If you frequently use more than one system over a network, you
may find it difficult to keep track of which system you are interacting with at any
particular moment. If you set your prompt to include the hostname of the current
system, it will always be clear which system you are using. To identify the computer
you are using, run hostname or uname –n:

$ hostname
kudos

See page 303 for information on how you can change the prompt.

finger: Displays Information About Remote Users

The finger utility displays information about one or more users on a system. This
utility was designed for local use, but when networks became popular, it was obvi-
ous that finger should be enhanced to reach out and collect information remotely. In
the following examples, finger displays information about all users logged in on the
system named bravo:

Communicate Over a Network 371

[kudos]$ finger @bravo
[bravo.example.com]
Login Name Tty Idle Login Time Office Office Phone
sam Sam the Great *1 1:35 Oct 22 5:00
alex Alex Watson 4 Oct 22 12:23 (kudos)
alex Alex Watson 5 19 Oct 22 12:33 (:0)
jenny Jenny Chen 7 2:24 Oct 22 8:45 (:0)
hls Helen Simpson 11 2d Oct 20 12:23 (:0)

A user’s username in front of the @ sign causes finger to display information from
the remote system for the specified user only. If the remote system has multiple
matches for that name, finger displays the results for all of them:

[kudos]$ finger alex@bravo
[bravo.example.com]
Login Name Tty Idle Login Time Office Office Phone
alex Alex Watson 4 Oct 22 12:23 (kudos)
alex Alex Watson 5 19 Oct 22 12:33 (:0)

The finger utility works by querying a standard network service, the in.fingerd dae-
mon, that runs on the system being queried. Although this service is available in the
fingerd package for Ubuntu Linux, some sites choose not to run it to minimize the
load on their systems, reduce security risks, or maintain privacy. When you use finger
to obtain information about someone at such a site, you will see an error message or
nothing at all. The remote in.fingerd daemon determines how much information to
share and in what format. As a result, the report displayed for any given system may
differ from that shown in the preceding examples.

The information for remote finger looks much the same as it does when finger runs on
the local system, with one difference: Before displaying the results, finger reports the
name of the remote system that answered the query (bravo, as shown in brackets in
the preceding example). The name of the host that answers may be different from the
system name you specified on the command line, depending on how the finger dae-
mon service is configured on the remote system. In some cases, several hostnames
may be listed if one finger daemon contacts another to retrieve the information.

Sending Mail to a Remote User

Given a user’s username on a remote system and the name of the remote system or
its domain, you can use an email program to send a message over the network or
the Internet, using the @ form of an address:

jenny@bravo

or

jenny@example.com

The in.fingerd daemon

security The finger daemon (in.fingerd) gives away system account information that can aid a malicious
user. Some sites disable finger or randomize user account IDs to make a malicious user’s job
more difficult. Do not install the fingerd package if you do not want to run the finger daemon.

372 Chapter 10 Networking and the Internet

Although many Linux utilities recognize the @ form of a network address, you may
find that you can reach more remote computers with email than with the other net-
working utilities described in this chapter. This disparity arises because the email
system can deliver a message to a host that does not run IP, even though it appears
to have an Internet address. The message may be routed over the network, for
example, until it reaches a remote system that has a point-to-point, dial-up connec-
tion to the destination system. Other utilities, such as talk, rely on IP and operate
only between networked hosts.

Mailing List Servers

A mailing list server (listserv14) allows you to create and manage an email list. An
electronic mailing list provides a means for people interested in a particular topic to
participate in an electronic discussion and for a person to disseminate information
periodically to a potentially large mailing list. One of the most powerful features of
most list servers is their ability to archive email postings to the list, create an archive
index, and allow users to retrieve postings from the archive based on keywords or
discussion threads. Typically you can subscribe and unsubscribe from the list with or
without human intervention. The owner of the list can restrict who can subscribe,
unsubscribe, and post messages to the list. Popular list servers include LISTSERV
(www.lsoft.com), Lyris (www.lyris.com), Majordomo (www.greatcircle.com/
majordomo), Mailman (www.list.org, page 775), and ListProc (www.listproc.net).
Ubuntu maintains quite a few mailing lists and list archives for those mailing lists at
lists.ubuntu.com. Use Google to search on linux mailing list to find other lists.

Network Utilities

To realize the full benefits of a networked environment, it made sense to extend
certain tools, some of which have already been described. The advent of networks
also created a need for new utilities to control and monitor them, spurring the
development of new tools that took advantage of network speed and connectivity.
This section describes concepts and utilities for systems attached to a network.

Trusted Hosts

Some commands, such as rcp and rsh, work only if the remote system trusts your
local computer (that is, if the remote system knows your local computer and
believes that it is not pretending to be another system). The /etc/hosts.equiv file lists
trusted systems. For reasons of security, the root account does not rely on this file to
identify trusted privileged users from other systems.

14. Although the term listserv is sometimes used generically to include many different list server programs,
it is a specific product and a registered trademark of L-soft International, Inc.: LISTSERV (for more infor-
mation go to www.lsoft.com).

www.lsoft.com
www.lyris.com
www.list.org
www.greatcircle.com/majordomo
www.greatcircle.com/majordomo
www.listproc.net
www.lsoft.com

Network Utilities 373

Host-based trust is largely obsolete. Because there are many ways to circumvent
trusted host security, including subverting DNS systems and IP spoofing
(page 1043), authentication based on IP address is widely regarded as insecure and
obsolete. In a small homogeneous network of machines with local DNS control, it
can be “good enough.” Its greater ease of use in these situations may outweigh the
security concerns.

OpenSSH Tools

The OpenSSH project provides a set of tools that replace rcp, rsh, and others with
secure equivalents. These tools are installed by default in Ubuntu Linux and can be
used as drop-in replacements for their insecure counterparts. The OpenSSH tool
suite is covered in detail in Chapter 19.

telnet: Logs In on a Remote System

You can use the TELNET protocol to interact with a remote computer. The telnet
utility, a user interface to this protocol, is older than ssh and is not secure. Never-
theless, it may work where ssh (page 714) is not available (there is more non-UNIX
support for TELNET access than for ssh access). In addition, many legacy devices,
such as terminal servers and network devices, do not support ssh.

[bravo]$ telnet kudos
Trying 172.19.52.2...
Connected to kudos.example.com
Escape character is '^]'.

Welcome to SuSE Linux 7.3 (i386) - Kernel 2.4.10-4GB (2).
kudos login: watson
Password:
You have old mail in /var/mail/watson.
Last login: Mon Feb 27 14:46:55 from bravo.example.com
watson@kudos:~>
...
watson@kudos:~> logout
Connection closed by foreign host.
[bravo]$

telnet versus ssh When you connect to a remote UNIX or Linux system using telnet, you are pre-
sented with a regular, textual login: prompt. Unless you specify differently, the ssh
utility assumes that your username on the remote system matches that on the local
system. Because telnet is designed to work with non-UNIX and non-Linux systems,
it makes no such assumptions.

Do not share your login account
security You can use a .rhosts file to allow another user to log in as you from a remote system without

knowing your password. This setup is not recommended. Do not compromise the security of your
files or the entire system by sharing your login account. Use ssh and scp instead of rsh and rcp
whenever possible.

374 Chapter 10 Networking and the Internet

Another difference between these two utilities is that telnet allows you to configure
many special parameters, such as how RETURNs or interrupts are processed. When using
telnet between UNIX and/or Linux systems, you rarely need to change any parameters.

When you do not specify the name of a remote host on the command line, telnet runs
in an interactive mode. The following example is equivalent to the previous telnet
example:

[bravo]$ telnet
telnet> open kudos
Trying 172.19.52.2...
Connected to kudos.example.com
Escape character is '^]'.
...

Before connecting you to a remote system, telnet tells you what the escape character
is; in most cases, it is ^] (where ^ represents the CONTROL key). When you press CONTROL-],
you escape to telnet’s interactive mode. Continuing the preceding example:

[kudos]$ CONTROL-]
telnet> ?

(displays help information)

telnet> close
Connection closed.
[bravo]$

When you enter a question mark in response to the telnet> prompt, telnet lists its
commands. The close command ends the current telnet session, returning you to the
local system. To get out of telnet’s interactive mode and resume communication with
the remote system, press RETURN in response to a prompt.

You can use telnet to access special remote services at sites that have chosen to make
such services available. However, many of these services, such as the U.S. Library of
Congress Information System (LOCIS), have moved to the Web. As a consequence,
you can now obtain the same information using a Web browser.

Using telnet to Connect to Other Ports

By default telnet connects to port 23, which is used for remote logins. However, you
can use telnet to connect to other services by specifying a port number. In addition to
standard services, many of the special remote services available on the Internet use
unallocated port numbers. For example, you can access some multiplayer text games,
called MUDs (Multi-User Dungeons, or Dimensions), using telnet to connect to a spec-
ified port, such as 4000 or 8888. Unlike the port numbers for standard protocols, these
port numbers can be picked arbitrarily by the administrator of the game.

telnet is not secure

security Whenever you enter sensitive information, such as your password, while you are using telnet, it
is transmitted in cleartext and can be read by someone who is listening in on the session.

Network Utilities 375

While telnet is no longer commonly employed to log in on remote systems, it is still
used extensively as a debugging tool. This utility allows you to communicate
directly with a TCP server. Some standard protocols are simple enough that an
experienced user can debug problems by connecting to a remote service directly
using telnet. If you are having a problem with a network server, a good first step is
to try to connect to it using telnet.

In the following example, a system administrator who is debugging a problem with
email delivery uses telnet to connect to the SMTP port (port 25) on a the server at
example.com to see why it is bouncing mail from the spammer.com domain. The first
line of output indicates which IP address telnet is trying to connect to. After telnet dis-
plays the Connected to smtpsrv.example.com message, the user emulates an SMTP
dialog, following the standard SMTP protocol. The first line, which starts with helo,
begins the session and identifies the local system. After the SMTP server responds, the
user enters a line that identifies the mail sender as user@spammer.com. The SMTP
server’s response explains why the message is bouncing, so the user ends the session
with quit.

$ telnet smtpsrv 25
Trying 192.168.1.1...
Connected to smtpsrv.example.com.
Escape character is '^]'.
helo example.com
220 smtpsrv.example.com ESMTP Sendmail 8.13.1/8.13.1; Wed, 4 May 2005 00:13:43 -0500 (CDT)
250 smtpsrv.example.com Hello desktop.example.com [192.168.1.97], pleased to meet you
mail from:user@spammer.com
571 5.0.0 Domain banned for spamming
quit
221 2.0.0 smtpsrv.example.com closing connection

The telnet utility allows you to use any protocol you want, as long as you know it
well enough to type commands manually.

ftp: Transfers Files Over a Network

The File Transfer Protocol (FTP) is a method of downloading files from and upload-
ing files to another system using TCP/IP over a network. FTP is not a secure proto-
col; use it only for downloading public information from a public server. Most Web
browsers can download files from FTP servers. Chapter 20 covers FTP clients and
servers.

ping: Tests a Network Connection

The ping15 utility (http://ftp.arl.mil/~mike/ping.html) sends an ECHO_REQUEST
packet to a remote computer. This packet causes the remote system to send back a
reply. This exchange is a quick way to verify that a remote system is available and

15. The name ping mimics the sound of a sonar burst used by submarines to identify and communicate with each
other. The word ping also expands to packet internet groper.

http://ftp.arl.mil/~mike/ping.html

376 Chapter 10 Networking and the Internet

to check how well the network is operating, such as how fast it is or whether it is
dropping data packets. The ping utility uses the ICMP (Internet Control Message
Protocol) protocol. Without any options, ping tests the connection once per second
until you abort execution with CONTROL-C.

$ ping tsx-11.mit.edu
PING tsx-11.mit.edu (18.7.14.121) 56(84) bytes of data.
64 bytes from TSX-11.MIT.EDU (18.7.14.121): icmp_seq=0 ttl=45 time=97.2 ms
64 bytes from TSX-11.MIT.EDU (18.7.14.121): icmp_seq=1 ttl=45 time=96.1 ms
64 bytes from TSX-11.MIT.EDU (18.7.14.121): icmp_seq=2 ttl=45 time=95.7 ms
64 bytes from TSX-11.MIT.EDU (18.7.14.121): icmp_seq=3 ttl=45 time=96.3 ms
CONTROL-C

--- tsx-11.mit.edu ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3001ms
rtt min/avg/max/mdev = 95.755/96.361/97.202/0.653 ms

This example shows that the remote system named tsx-11.mit.edu is up and avail-
able over the network.

By default ping sends packets containing 64 bytes (56 data bytes and 8 bytes of pro-
tocol header information). In the preceding example, four packets were sent to the
system tsx-11.mit.edu before the user interrupted ping by pressing CONTROL-C. The
four-part number in parentheses on each line is the remote system’s IP address. A
packet sequence number (called icmp_seq) is also given. If a packet is dropped, a
gap occurs in the sequence numbers. The round-trip time is listed last; it represents
the time (in milliseconds) that elapsed from when the packet was sent from the local
system to the remote system until the reply from the remote system was received by
the local system. This time is affected by the distance between the two systems, net-
work traffic, and the load on both computers. Before it terminates, ping summarizes
the results, indicating how many packets were sent and received as well as the mini-
mum, average, maximum, and mean deviation round-trip times it measured. Use
ping6 to test IPv6 networks.

traceroute: Traces a Route Over the Internet

The traceroute utility traces the route that an IP packet follows, including all inter-
mediary points traversed (called network hops), to its destination (the argument to
traceroute—an Internet host). It displays a numbered list of hostnames, if avail-
able, and IP addresses, together with the round-trip time it took for a packet to
reach each router along the way and an acknowledgment to get back. You can put

When ping cannot connect
tip If it is unable to contact the remote system, ping continues trying until you interrupt it with

CONTROL-C. A system may not answer for any of several reasons: The remote computer may be
down, the network interface or some part of the network between the systems may be broken,
a software failure may have occurred, or the remote machine may be set up, for reasons of
security, not to return pings (try pinging www.microsoft.com or www.ibm.com).

www.microsoft.com
www.ibm.com

Network Utilities 377

this information to good use when you are trying to identify the location of a net-
work bottleneck.

The traceroute utility has no concept of the path from one host to the next; instead,
it simply sends out packets with increasing TTL (time to live) values. TTL is an IP
header field that indicates how many more hops the packet should be allowed to
make before being discarded or returned. In the case of a traceroute packet, the
packet is returned by the host that has the packet when the TTL value is zero. The
result is a list of hosts that the packet traveled through to get to its destination.

The traceroute utility can help you solve routing configuration problems and locate
routing path failures. When you cannot reach a host, use traceroute to discover what
path the packet follows, how far it gets, and what the delay is.

The next example shows the output of traceroute when it follows a route from a
local computer to www.linux.org. The first line indicates the IP address of the
target, the maximum number of hops that will be traced, and the size of the
packets that will be used. Each numbered line contains the name and IP address
of the intermediate destination, followed by the time it takes a packet to make a
trip to that destination and back again. The traceroute utility sends three packets
to each destination; thus three times appear on each line. Line 1 shows the statis-
tics when a packet is sent to the local gateway (less than 3 milliseconds). Lines
4–6 show the packet bouncing around Mountain View (California) before it goes
to San Jose. Between hops 13 and 14 the packet travels across the United States
(San Francisco to somewhere in the East). By hop 18 the packet has found
www.linux.org. The traceroute utility displays asterisks when it does not receive a
response. Each asterisk indicates that traceroute has waited three seconds. Use
traceroute6 to test IPv6 networks.

$ /usr/sbin/traceroute www.linux.org
traceroute to www.linux.org (198.182.196.56), 30 hops max, 38 byte packets
 1 gw.localco.com. (204.94.139.65) 2.904 ms 2.425 ms 2.783 ms
 2 covad-gw2.meer.net (209.157.140.1) 19.727 ms 23.287 ms 24.783 ms
 3 gw-mv1.meer.net (140.174.164.1) 18.795 ms 24.973 ms 19.207 ms
 4 d1-4-2.a02.mtvwca01.us.ra.verio.net (206.184.210.241) 59.091 ms d1-10-0-0-200.a03.

mtvwca01.us.ra.verio.net (206.86.28.5) 54.948 ms 39.485 ms
 5 fa-11-0-0.a01.mtvwca01.us.ra.verio.net (206.184.188.1) 40.182 ms 44.405 ms 49.362 ms
 6 p1-1-0-0.a09.mtvwca01.us.ra.verio.net (205.149.170.66) 78.688 ms 66.266 ms 28.003 ms
 7 p1-12-0-0.a01.snjsca01.us.ra.verio.net (209.157.181.166) 32.424 ms 94.337 ms 54.946 ms
 8 f4-1-0.sjc0.verio.net (129.250.31.81) 38.952 ms 63.111 ms 49.083 ms
 9 sjc0.nuq0.verio.net (129.250.3.98) 45.031 ms 43.496 ms 44.925 ms
10 mae-west1.US.CRL.NET (198.32.136.10) 48.525 ms 66.296 ms 38.996 ms
11 t3-ames.3.sfo.us.crl.net (165.113.0.249) 138.808 ms 78.579 ms 68.699 ms
12 E0-CRL-SFO-02-E0X0.US.CRL.NET (165.113.55.2) 43.023 ms 51.910 ms 42.967 ms
13 sfo2-vva1.ATM.us.crl.net (165.113.0.254) 135.551 ms 154.606 ms 178.632 ms
14 mae-east-02.ix.ai.net (192.41.177.202) 158.351 ms 201.811 ms 204.560 ms
15 oc12-3-0-0.mae-east.ix.ai.net (205.134.161.2) 202.851 ms 155.667 ms 219.116 ms
16 border-ai.invlogic.com (205.134.175.254) 214.622 ms * 190.423 ms
17 router.invlogic.com (198.182.196.1) 224.378 ms 235.427 ms 228.856 ms
18 www.linux.org (198.182.196.56) 207.964 ms 178.683 ms 179.483 ms

www.linux.org
www.linux.org

378 Chapter 10 Networking and the Internet

host and dig: Query Internet Nameservers

The host utility looks up an IP address given a name, or vice versa. The following
example shows how to use host to look up the domain name of a machine, given an
IP address:

$ host 140.174.164.2
2.164.174.140.in-addr.arpa. domain name pointer ns.meer.net.

You can also use host to determine the IP address of a domain name:

$ host ns.meer.net
ns.meer.net. has address 140.174.164.2

The dig (domain information groper) utility queries DNS servers and individual
machines for information about a domain. A powerful utility, dig has many features
that you may never use. It is more complex than host.

Chapter 25 on DNS has many examples of the use of host and dig.

jwhois: Looks Up Information About an Internet Site

The jwhois utility (jwhois package) replaces whois and queries a whois server for
information about an Internet site. This utility returns site contact and InterNIC or
other registry information that can help you track down the person who is responsi-
ble for a site: Perhaps that person is sending you or your company spam
(page 1061). Many sites on the Internet are easier to use and faster than jwhois. Use
a browser and search engine to search on whois or go to www.networksolu-
tions.com/whois or www.ripe.net/perl/whois to get started.

When you do not specify a whois server, jwhois defaults to whois.internic.net. Use
the –h option to jwhois to specify a different whois server. See the jwhois info page for
more options and setup information.

To obtain information on a domain name, specify the complete domain name, as in
the following example:

$ jwhois sobell.com
[Querying whois.internic.net]
[Redirected to whois.godaddy.com]
[Querying whois.godaddy.com]
[whois.godaddy.com]
The data contained in Go Daddy Software, Inc.'s WhoIs database,
...
Registrant:
 Sobell Associates Inc
 POBox 460068
 San Francisco, California 94146-0068
 United States

www.networksolutions.com/whois
www.networksolutions.com/whois
www.ripe.net/perl/whois

Distributed Computing 379

 Registered through: GoDaddy.com
 Domain Name: SOBELL.COM
 Created on: 07-Apr-95
 Expires on: 08-Apr-13
 Last Updated on: 16-Jan-04

 Administrative Contact:
 Sobell, Mark sobell@meer.net
 Sobell Associates Inc
 PO BOX 460068
 SAN FRANCISCO, California 94146-0068
 United States
 9999999999 Fax -- 9999999999
 Technical Contact:
 , hostmaster@meer.net
 meer.net
 po box 390804
 Mountain View, California 94039
 United States
 18888446337 Fax -- 18888446337

 Domain servers in listed order:
 NS.MEER.NET
 NS2.MEER.NET

Several top-level registries serve various regions of the world. You are most likely to
use the following ones:

North American registry whois.arin.net
European registry www.ripe.net
Asia-Pacific registry www.apnic.net
U.S. military whois.nic.mil
U.S. government www.nic.gov

Distributed Computing

When many similar systems are found on the same network, it is often desirable to
share common files and utilities among them. For example, a system administrator
might choose to keep a copy of the system documentation on one computer’s disk
and to make those files available to remote systems. In this case, the system admin-
istrator configures the files so users who need to access the online documentation
are not aware that the files are stored on a remote system. This type of setup,
which is an example of distributed computing, not only conserves disk space but
also allows you to update one central copy of the documentation rather than track-
ing down and updating copies scattered throughout the network on many different
systems.

www.ripe.net
www.apnic.net
www.nic.gov

380 Chapter 10 Networking and the Internet

Figure 10-2 illustrates a fileserver that stores the system manual pages and users’
home directories. With this arrangement, a user’s files are always available to that
user—no matter which system the user logs in on. Each system’s disk might contain
a directory to hold temporary files as well as a copy of the operating system.
Chapter 23 contains instructions for setting up NFS clients and servers in net-
worked configurations.

The Client/Server Model

Mainframe model The client/server model was not the first computational model. First came the main-
frame, which follows a one-machine-does-it-all model. That is, all the intelligence
resides in one system, including the data and the program that manipulates and
reports on the data. Users connect to a mainframe using terminals.

File-sharing model With the introduction of PCs, file-sharing networks became available. In this
scheme data is downloaded from a shared location to a user’s PC, where a program
then manipulates the data. The file-sharing model ran into problems as networks
expanded and more users needed access to the data.

Client/server model In the client/server model, a client uses a protocol, such as FTP, to request services,
and a server provides the services that the client requests. Rather than providing data
files as the file-sharing model does, the server in a client/server relationship is a data-
base that provides only those pieces of information that the client needs or requests.

The client/server model dominates UNIX and Linux system networking and under-
lies most of the network services described in this book. FTP, NFS, DNS, email, and
HTTP (the Web browsing protocol) all rely on the client/server model. Some servers,
such as Web servers and browser clients, are designed to interact with specific utili-
ties. Other servers, such as those supporting DNS, communicate with one another, in
addition to answering queries from a variety of clients. Clients and servers can reside
on the same or different systems running the same or different operating systems.
The systems can be proximate or thousands of miles apart. A system that is a server
to one system can turn around and act as a client to another. A server can reside on a
single system or, as is the case with DNS, be distributed among thousands of geo-
graphically separated systems running many different operating systems.

Peer-to-peer model The peer-to-peer (PTP) model, in which either program can initiate a transaction,
stands in contrast to the client/server model. PTP protocols are common on small

Figure 10-2 A fileserver

/usr/man
/home

Fileserver

Linux Linux

Distributed Computing 381

networks. For example, Microsoft’s Network Neighborhood and Apple’s AppleTalk
both rely on broadcast-based PTP protocols for browsing and automatic configura-
tion. The Zeroconf multicast DNS protocol is a PTP alternative DNS for small net-
works. The highest-profile PTP networks are those used for file sharing, such as
Kazaa and GNUtella. Many of these networks are not pure PTP topologies. Pure
PTP networks do not scale well, so networks such as Napster and Kazaa employ a
hybrid approach.

DNS: Domain Name Service

DNS is a distributed service: Nameservers on thousands of machines around the
world cooperate to keep the database up-to-date. The database itself, which
maps hundreds of thousands of alphanumeric hostnames to numeric IP
addresses, does not exist in one place. That is, no system has a complete copy of
the database. Instead, each system that runs DNS knows which hosts are local to
that site and understands how to contact other nameservers to learn about other,
nonlocal hosts.

Like the Linux filesystem, DNS is organized hierarchically. Each country has an ISO
(International Organization for Standardization) country code designation as its
domain name. (For example, AU represents Australia, IL is Israel, and JP is Japan;
see www.iana.org/cctld/cctld.htm for a complete list.) Although the United States is
represented in the same way (US) and uses the standard two-letter Postal Service
abbreviations to identify the next level of the domain, only governments and a few
organizations use these codes. Schools in the US domain are represented by a third-
(and sometimes second-) level domain: k12. For example, the domain name for
Myschool in New York state could be www.myschool.k12.ny.us.

Following is a list of the six original top-level domains. These domains are used
extensively within the United States and, to a lesser degree, by users in other
countries:

COM Commercial enterprises
EDU Educational institutions
GOV Nonmilitary government agencies
MIL Military government agencies
NET Networking organizations
ORG Other (often nonprofit) organizations

Recently, the following additional top-level domains have been approved for use:

AERO Air-transport industry
BIZ Business
COOP Cooperatives
INFO Unrestricted use
MUSEUM Museums
NAME Name registries

382 Chapter 10 Networking and the Internet

Like Internet addresses, domain names were once assigned by the Network Infor-
mation Center (NIC, page 363); now they are assigned by several companies. A sys-
tem’s full name, referred to as its fully qualified domain name (FQDN), is
unambiguous in the way that a simple hostname cannot be. The system
okeeffe.berkeley.edu at the University of California at Berkeley (Figure 10-3) is not
the same as one named okeeffe.moma.org, which might represent a host at the
Museum of Modern Art. The domain name not only tells you something about
where the system is located but also adds enough diversity to the namespace to
avoid confusion when different sites choose similar names for their systems.

Unlike the filesystem hierarchy, the top-level domain name appears last (reading
from left to right). Also, domain names are not case sensitive, so the names
okeeffe.berkeley.edu, okeeffe.Berkeley.edu, and okeeffe.Berkeley.EDU refer to the
same computer. Once a domain has been assigned, the local site is free to extend the
hierarchy to meet local needs.

With DNS, email addressed to user@example.com can be delivered to the com-
puter named example.com that handles the corporate mail and knows how to for-
ward messages to user mailboxes on individual machines. As the company grows,
its site administrator might decide to create organizational or geographical subdo-
mains. The name delta.ca.example.com might refer to a system that supports Cali-
fornia offices, for example, while alpha.co.example.com is dedicated to Colorado.
Functional subdomains might be another choice, with delta.sales.example.com
and alpha.dev.example.com representing the sales and development divisions,
respectively.

BIND On Linux systems, the most common interface to the DNS is BIND (Berkeley Inter-
net Name Domain). BIND follows the client/server model. On any given local net-
work, one or more systems may be running a nameserver, supporting all the local
hosts as clients. When it wants to send a message to another host, a system queries
the nearest nameserver to learn the remote host’s IP address. The client, called a
resolver, may be a process running on the same computer as the nameserver, or it
may pass the request over the network to reach a server. To reduce network traffic
and facilitate name lookups, the local nameserver maintains some knowledge of dis-
tant hosts. If the local server must contact a remote server to pick up an address,
when the answer comes back, the local server adds that address to its internal table

Figure 10-3 U.S. top-level domains

com edu org

bravo kudos okeeffe okeeffe

mil net

momaberkeley

gov

example

Distributed Computing 383

and reuses it for a while. The nameserver deletes the nonlocal information before it
can become outdated. Refer to “TTL” on page 1066.

The system’s translation of symbolic hostnames into addresses is transparent to
most users; only the system administrator of a networked system needs to be con-
cerned with the details of name resolution. Systems that use DNS for name resolu-
tion are generally capable of communicating with the greatest number of
hosts—more than would be practical to maintain in a /etc/hosts file or private NIS
database. Chapter 25 covers setting up and running a DNS server.

Three common sources are referenced for hostname resolution: NIS, DNS, and sys-
tem files (such as /etc/hosts). Linux does not ask you to choose among these
sources; rather, the nsswitch.conf file (page 542) allows you to choose any of these
sources, in any combination, and in any order.

Ports

Ports are logical channels on a network interface and are numbered from 1 to
65,535. Each network connection is uniquely identified by the IP address and port
number of each endpoint.

In a system that has many network connections open simultaneously, the use of
ports keeps packets (page 1051) flowing to and from the appropriate programs. A
program that needs to receive data binds to a port and then uses that port for com-
munication.

Privileged ports Services are associated with specific ports, generally with numbers less than 1024.
These ports are called privileged (or reserved) ports. For security reasons, only a
process running with root privileges can bind to privileged ports. A service run on a
privileged port provides assurance that the service is being provided by someone
with authority over the system, with the exception that any user on Windows 98 and
earlier Windows systems can bind to any port. Commonly used ports include 22
(SSH), 23 (TELNET), 80 (HTTP), 111 (Sun RPC), and 201–208 (AppleTalk).

NIS: Network Information Service

NIS (Network Information Service) simplifies the maintenance of frequently used
administrative files by keeping them in a central database and having clients contact
the database server to retrieve information from the database. Just as DNS
addresses the problem of keeping multiple copies of hosts files up-to-date, NIS deals
with the issue of keeping system-independent configuration files (such as
/etc/passwd) current. Refer to Chapter 22 for coverage of NIS.

NFS: Network Filesystem

The NFS (Network Filesystem) protocol allows a server to share selected local
directory hierarchies with client systems on a heterogeneous network. Files on the
remote fileserver appear as if they are present on the local system. NFS is covered in
Chapter 23.

384 Chapter 10 Networking and the Internet

optional
Internet Services

Linux Internet services are provided by daemons that run continuously or by a dae-
mon that is started automatically by the inetd or xinetd daemon (page 531) when a
service request comes in. The /etc/services file lists network services (for example,
telnet, ftp, and ssh) and their associated numbers. Any service that uses TCP/IP or
UDP/IP has an entry in this file. IANA (Internet Assigned Numbers Authority)
maintains a database of all permanent, registered services. The /etc/services file usu-
ally lists a small, commonly used subset of services. Visit www.rfc.net/rfc1700.html
for more information and a complete list of registered services.

Most of the daemons (the executable files) are stored in /usr/sbin. By convention the
names of many daemons end with the letter d to distinguish them from utilities (one
common daemon whose name does not end in d is sendmail). The prefix in. or rpc. is
often used for daemon names. Look at /usr/sbin/*d to see a list of many of the dae-
mon programs on the local system. Refer to “SysVinit (rc) Scripts: Start and Stop Sys-
tem Services” on page 507 for information about starting and stopping these daemons.

To see how a daemon works, consider what happens when you run ssh. The local sys-
tem contacts the ssh daemon (sshd) on the remote system to establish a connection.
The two systems negotiate the connection according to a fixed protocol. Each system
identifies itself to the other, and then they take turns asking each other specific ques-
tions and waiting for valid replies. Each network service follows its own protocol.

In addition to the daemons that support the utilities described up to this point,
many other daemons support system-level network services that you will not typi-
cally interact with. Table 10-4 lists some of these daemons.

Table 10-4 Common daemons

Daemon Used for or by Function

acpid Advanced
configuration and
power interface

Flexible daemon for delivering ACPI events. Replaces apmd.

anacron anacrontab Used for periodic execution of tasks. This daemon looks in the
/etc/anacrontab file. When a task comes up for execution, anacron
executes it as the user who owns the file that describes the task.

apache2 HTTP The Web server daemon (Apache, page 915).

apmd Advanced power
management

Reports and takes action on specified changes in system power,
including shutdowns. Useful with machines, such as laptops, that
run on batteries.

atd at Executes a command once at a specific time and date. See crond for
periodic execution of a command.

automount Automatic mounting Automatically mounts filesystems when they are accessed. Auto-
matic mounting is a way of demand-mounting remote directories
without having to hard-configure them into /etc/fstab.

www.rfc.net/rfc1700.html

Distributed Computing 385

cron crontab Used for periodic execution of tasks. This daemon looks in the
/var/spool/cron/crontabs directory for files with filenames that cor-
respond to users’ usernames. It also looks at the /etc/crontab file
and at files in the /etc/cron.d directory. When a task comes up for
execution, crond executes it as the user who owns the file that
describes the task.

dhcpcd DHCP DHCP client daemon (page 539).

dhcpd DHCP Assigns Internet address, subnet mask, default gateway, DNS, and
other information to hosts. This protocol answers DHCP requests
and, optionally, BOOTP requests. Refer to “DHCP: Configures Net-
work Interfaces” on page 538.

exim4 Mail programs The exim4 daemon came from the University of Cambridge. The the
exim4 daemon listens on port 25 for incoming mail connections and
then calls a local delivery agent, such as /bin/mail. Mail user agents
(MUAs), such as KMail and Thunderbird, typically use exim4 to
deliver mail messages.

ftpd FTP Handles FTP requests. Refer to “ftp: Transfers Files over a Network”
on page 375. See also vsftpd (page 729).

gpm General-purpose
mouse or GNU paste
manager

Allows you to use a mouse to cut and paste text on console
applications.

in.fingerd finger Handles requests for user information from the finger utility.

inetd Listens for service requests on network connections and starts up
the appropriate daemon to respond to any particular request.
Because of inetd, a system does not need the daemons running con-
tinually to handle various network requests. For more information
refer to page 531.

lpd Line printer spooler
daemon

Launched by xinetd when printing requests come to the machine.
Not used with CUPS.

named DNS Supports DNS (page 845).

nfsd, statd, lockd,
mountd, rquotad

NFS These five daemons operate together to handle NFS (page 799)
operations. The nfsd daemon handles file and directory requests.
The statd and lockd daemons implement network file and record
locking. The mountd daemon converts filesystem name requests
from the mount utility into NFS handles and checks access permis-
sions. If disk quotas are enabled, rquotad handles those.

ntpd NTP Synchronizes time on network computers. Requires a /etc/ntp.conf
file. For more information go to www.ntp.org.

Table 10-4 Common daemons (continued)

www.ntp.org

386 Chapter 10 Networking and the Internet

portmap RPC Maps incoming requests for RPC service numbers to TCP or UDP
port numbers on the local system. Refer to “RPC Network Services”
on page 387.

pppd PPP For a modem, this protocol controls the pseudointerface represented
by the IP connection between the local computer and a remote com-
puter. Refer to “PPP: Point-to-Point Protocol” on page 363.

rexecd rexec Allows a remote user with a valid username and password to run
programs on a system. Its use is generally deprecated for security
reasons; certain programs, such as PC-based X servers, may still
have it as an option.

routed Routing tables Manages the routing tables so your system knows where to send
messages that are destined for remote networks. If your system does
not have a /etc/defaultrouter file, routed is started automatically to
listen to incoming routing messages and to advertise outgoing routes
to other systems on the local network. A newer daemon, the gateway
daemon (gated), offers enhanced configurability and support for
more routing protocols and is proportionally more complex.

sendmail Mail programs The sendmail daemon came from Berkeley UNIX and has been avail-
able for a long time. The de facto mail transfer program on the Inter-
net, the sendmail daemon always listens on port 25 for incoming
mail connections and then calls a local delivery agent, such as
/bin/mail. Mail user agents (MUAs), such as KMail and Thunderbird,
typically use sendmail to deliver mail messages.

smbd, nmbd Samba Allow Windows PCs to share files and printers with UNIX and Linux
computers (page 823).

sshd ssh, scp Enables secure logins between remote systems (page 720).

syslogd System log Transcribes important system events and stores them in files and/or
forwards them to users or another host running the syslogd dae-
mon. This daemon is configured with /etc/syslog.conf and used with
the syslog utility. See page 688.

talkd talk Allows you to have a conversation with another user on the same or
a remote machine. The talkd daemon handles the connections
between the machines. The talk utility on each system contacts the
talkd daemon on the other system for a bidirectional conversation.

telnetd TELNET One of the original Internet remote access protocols (page 373).

tftpd TFTP Used to boot a system or get information from a network. Examples
include network computers, routers, and some printers.

timed Time server On a LAN synchronizes time with other computers that are also run-
ning timed.

xinetd Internet superserver Listens for service requests on network connections and starts up
the appropriate daemon to respond to any particular request.
Because of xinetd, a system does not need the daemons running
continually to handle various network requests. For more informa-
tion refer to page 531.

Table 10-4 Common daemons (continued)

Distributed Computing 387

Proxy Servers

A proxy is a network service that is authorized to act for a system while not being
part of that system. A proxy server or proxy gateway provides proxy services; it is a
transparent intermediary, relaying communications back and forth between an
application, such as a browser and a server, usually outside of a LAN and frequently
on the Internet. When more than one process uses the proxy gateway/server, the
proxy must keep track of which processes are connecting to which hosts/servers
so that it can route the return messages to the proper process. The most commonly
encountered proxies are email and Web proxies.

A proxy server/gateway insulates the local computer from all other computers or
from specified domains by using at least two IP addresses: one to communicate with
the local computer and one to communicate with a server. The proxy server/gateway
examines and changes the header information on all packets it handles so that it can
encode, route, and decode them properly. The difference between a proxy gateway
and a proxy server is that the proxy server usually includes cache (page 1027) to
store frequently used Web pages so that the next request for that page is available
locally and quickly; a proxy gateway typically does not use cache. The terms “proxy
server” and “proxy gateway” are frequently used interchangeably.

Proxy servers/gateways are available for such common Internet services as HTTP,
HTTPS, FTP, SMTP, and SNMP. When an HTTP proxy sends queries from local
systems, it presents a single organizationwide IP address (the external IP address of
the proxy server/gateway) to all servers. It funnels all user requests to the appropri-
ate servers and keeps track of them. When the responses come back, the HTTP
proxy fans them out to the appropriate applications using each machine’s unique IP
address, thereby protecting local addresses from remote/specified servers.

Proxy servers/gateways are generally just one part of an overall firewall strategy to
prevent intruders from stealing information or damaging an internal network.
Other functions, which can be either combined with or kept separate from the
proxy server/gateway, include packet filtering, which blocks traffic based on origin
and type, and user activity reporting, which helps management learn how the Inter-
net is being used.

RPC Network Services

Much of the client/server interaction over a network is implemented using the RPC
(Remote Procedure Call) protocol, which is implemented as a set of library calls
that make network access transparent to the client and server. RPC specifies and
interprets messages but does not concern itself with transport protocols; it runs on
top of TCP/IP and UDP/IP. Services that use RPC include NFS and NIS. RPC was
developed by Sun as ONC RPC (Open Network Computing Remote Procedure
Calls) and differs from Microsoft RPC.

In the client/server model, a client contacts a server on a specific port (page 383) to
avoid any mixup between services, clients, and servers. To avoid maintaining a long
list of port numbers and to enable new clients/servers to start up without registering
a port number with a central registry, when a server that uses RPC starts, it specifies

388 Chapter 10 Networking and the Internet

the port it expects to be contacted on. RPC servers typically use port numbers that
have been defined by Sun. If a server does not use a predefined port number, it picks
an arbitrary number.

portmap The server then registers this port with the RPC portmapper (the portmap daemon)
on the local system. The server tells the daemon which port number it is listening on
and which RPC program numbers it serves. Through these exchanges, the portmap
daemon learns the location of every registered port on the host and the programs
that are available on each port. The portmap daemon, which always listens on port
111 for both TCP and UDP, must be running to make RPC calls.

Files The /etc/rpc file (page 562) maps RPC services to RPC numbers. The /etc/services
file (page 562) lists system services.

RPC client/server
communication

The sequence of events for communication between an RPC client and server occurs
as follows:

1. The client program on the client system makes an RPC call to obtain data
from a (remote) server system. (The client issues a “read record from a
file” request.)

2. If RPC has not yet established a connection with the server system for the
client program, it contacts portmap on port 111 of the server and asks
which port the desired RPC server is listening on (for example, rpc.nfsd).

3. The portmap daemon on the remote server looks in its tables and returns a
UDP or TCP port number to the local system, the client (typically 2049 for nfs).

4. The RPC libraries on the server system receive the call from the client and
pass the request to the appropriate server program. The origin of the
request is transparent to the server program. (The filesystem receives the
“read record from file” request.)

5. The server responds to the request. (The filesystem reads the record.)

6. The RPC libraries on the remote server return the result over the network
to the client program. (The read record is returned to the calling program.)

Under Ubuntu Linux most servers start and run their own daemons. When RPC
servers are started by the xinetd daemon (page 531), the portmap daemon must be
started before the xinetd daemon is invoked. The init scripts (page 507) make sure
portmap starts before xinetd. You can confirm this sequence by looking at the
numbers associated with /etc/rc.d/*/S*portmap and /etc/rc.d/*/S*/xinetd. If the
portmap daemon stops, you must restart all RPC servers on the local system.

Usenet

One of the earliest information services available on the Internet, Usenet is an elec-
tronic bulletin board that allows users with common interests to exchange informa-
tion. Usenet comprises an informal, loosely connected network of systems that
exchange email and news items (commonly referred to as netnews). It was formed
in 1979 when a few sites decided to share some software and information on topics

Usenet 389

of common interest. They agreed to contact one another and to pass the informa-
tion along over dial-up telephone lines (at that time running at 1,200 baud at best),
using UNIX’s uucp utility (UNIX-to-UNIX copy program).

The popularity of Usenet led to major changes in uucp to handle the escalating vol-
ume of messages and sites. Today much of the news flows over network links using
a sophisticated protocol designed especially for this purpose: NNTP (Network
News Transfer Protocol). The news messages are stored in a standard format, and
the many public domain programs available let you read them. An old, simple inter-
face is named readnews. Other interfaces, such as rn, its X Window System cousin
xrn, tin, nn, and xvnews, have many features that help you browse through and reply
to the articles that are available or create articles of your own. In addition, Netscape
and Mozilla include an interface that you can use to read news (Netscape/Mozilla
News) as part of their Web browsers. One of the easiest ways to read netnews is to
go to groups.google.com. The program you select to read netnews is largely a mat-
ter of personal taste.

As programs to read netnews articles have been ported to non-UNIX and non-
Linux systems, the community of netnews users has become highly diversified. In
the UNIX tradition, categories of netnews groups are structured hierarchically. The
top level includes such designations as comp (computer-related), misc (miscella-
neous), rec (recreation), sci (science), soc (social issues), and talk (ongoing discus-
sions). Usually at least one regional category is at the top level, such as ba (San
Francisco Bay Area), and includes information about local events. New categories
are continually being added to the more than 30,000 newsgroups. The names of
newsgroups resemble domain names but are read from left to right (like Linux file-
names): comp.os.unix.misc, comp.lang.c, misc.jobs.offered, rec.skiing, sci.med,
soc.singles, and talk.politics are but a few examples.

A great deal of useful information is available on Usenet, but you need patience
and perseverance to find what you are looking for. You can ask a question, and
someone from halfway around the world might answer it. Before posing such a
simple question and causing it to appear on thousands of systems around the
world, however, first ask yourself whether you can get help in a less invasive way.
Try the following:

• Refer to the man pages and info.

• Look through the files in /usr/share/doc.

• Ask the system administrator or another user for help.

• All of the popular newsgroups have FAQs (lists of frequently asked ques-
tions). Consult these lists and see whether your question has been
answered. FAQs are periodically posted to the newsgroups; in addition, all
the FAQs are archived at sites around the Internet, including Google
groups (groups.google.com).

• Because someone has probably asked the same question earlier, search the
netnews archives for an answer. Try looking at groups.google.com, which
has a complete netnews archive.

390 Chapter 10 Networking and the Internet

• Use a search engine to find an answer. One good way to get help is to
search on an error message.

• Review support documents at help.ubuntu.com.

• Contact a Ubuntu Linux users’ group.

Post a query to the worldwide Usenet community as a last resort. If you are stuck
on a Linux question and cannot find any other help, try submitting it to one of these
newsgroups:

• comp.os.linux.misc

• alt.os.linux

• comp.os.linux.networking

• comp.os.linux.security

• comp.os.linux.setup

One way to find out about new tools and services is to read Usenet news. The
comp.os.linux hierarchy is of particular interest to Linux users; for example, news
about newly released software for Linux is posted to comp.os.linux.announce. Peo-
ple often announce the availability of free software there, along with instructions on
how to get a copy for your own use using anonymous FTP (page 735). Other tools
to help you find resources, both old and new, exist on the network; see Appendix B.

WWW: World Wide Web

The World Wide Web (WWW, W3, or the Web) provides a unified, interconnected
interface to the vast amount of information stored on computers around the world.
The idea that spawned the World Wide Web came from the mind of Tim Berners-Lee
(www.w3.org/People/Berners-Lee) of the European Particle Physics Laboratory
(CERN) in response to a need to improve communications throughout the high-
energy physics community. The first-generation solution consisted of a notebook pro-
gram named Enquire, short for Enquire Within Upon Everything (the name of a
book from Berners-Lee’s childhood), which he created in 1980 on a NeXT computer
and which supported links between named nodes. Not until 1989 was the concept
proposed as a global hypertext project to be known as the World Wide Web. In 1990,
Berners-Lee wrote a proposal for a hypertext project, which eventually produced
HTML (Hypertext Markup Language), the common language of the Web. The World
Wide Web program became available on the Internet in the summer of 1991. By
designing the tools to work with existing protocols, such as FTP and gopher, the
researchers who created the Web produced a system that is generally useful for many
types of information and across many types of hardware and operating systems.

The WWW is another example of the client/server paradigm. You use a WWW client
application, or browser, to retrieve and display information stored on a server that may
be located anywhere on your local network or the Internet. WWW clients can interact
with many types of servers. For example, you can use a WWW client to contact a remote

www.w3.org/People/Berners-Lee

WWW: World Wide Web 391

FTP server and display the list of files it offers for anonymous FTP. Most commonly you
use a WWW client to contact a WWW server, which offers support for the special fea-
tures of the World Wide Web that are described in the remainder of this chapter.

The power of the Web derives from its use of hypertext, a way to navigate through
information by following cross-references (called links) from one piece of informa-
tion to another. To use the Web effectively, you need to run interactive network
applications. The first GUI for browsing the Web was a tool named Mosaic, which
was released in February 1993. Designed at the National Center for Supercomputer
Applications at the University of Illinois, its introduction sparked a dramatic
increase in the number of users of the World Wide Web. Marc Andreessen, who
participated in the Mosaic project at the University of Illinois, later cofounded
Netscape Communications with the founder of Silicon Graphics, Jim Clark. The
pair created Netscape Navigator, a Web client program that was designed to per-
form better and support more features than the Mosaic browser. Netscape Naviga-
tor has enjoyed immense success and has become a popular choice for exploring the
World Wide Web. Important for Linux users is the fact that from its inception
Netscape has provided versions of its tools that run on Linux. Also, Netscape cre-
ated Mozilla (mozilla.org) as an open-source browser project.

These browsers provide GUIs that allow you to listen to sounds, watch Web events
or live news reports, and display pictures as well as text, giving you access to hyper-
media. A picture on your screen may be a link to more detailed, nonverbal informa-
tion, such as a copy of the same picture at a higher resolution or a short animation.
If your system can produce audio output, you can listen to audio clips that have
been linked to a document.

URL: Uniform Resource Locator

Consider the URL http://www.w3.org/Consortium/siteindex. The first component
in the URL indicates the type of resource, in this case http (HTTP—Hypertext
Transfer Protocol). Other valid resource names, such as https (HTTPS—secure
HTTP) and ftp (FTP—File Transfer Protocol), represent information available on
the Web using other protocols. Next come a colon and double slash (://). Fre-
quently the http:// string is omitted from a URL in print, as you seldom need to
enter it to reach the URL. The next element is the full name of the host that acts as
the server for the information (www.w3.org/). The rest of the URL consists of a rel-
ative pathname to the file that contains the information (Consortium/siteindex). If
you enter a URL in the location bar of a Web browser, the Web server returns the
page, frequently an HTML (page 1040) file, pointed to by this URL.

By convention many sites identify their WWW servers by prefixing a host or
domain name with www. For example, you can reach the Web server at the New
Jersey Institute of Technology at www.njit.edu. When you use a browser to explore
the World Wide Web, you may never need to enter a URL. However, as more infor-
mation is published in hypertext form, you cannot help but find URLs every-
where—not just online in email messages and Usenet articles, but also in
newspapers, in advertisements, and on product labels.

http://www.w3.org/Consortium/siteindex
www.w3.org/

392 Chapter 10 Networking and the Internet

Browsers

Mozilla (www.mozilla.org) is the open-source counterpart to Netscape. Mozilla,
which was first released in March 1998, was based on Netscape 4 code. Since then,
Mozilla has been under continuous development by employees of Netscape (now a
division of AOL) and other companies and by contributors from the community.
Firefox is the Web browser component of Mozilla. KDE offers Konqueror, an all-
purpose file manager and Web browser. Other browsers include Epiphany
(www.gnome.org/projects/epiphany) and Opera (www.opera.com). Although each
Web browser is unique, all of them allow you to move about the Internet, viewing
HTML documents, listening to sounds, and retrieving files. If you do not use the X
Window System, try a text browser, such as lynx or links. The lynx browser works
well with Braille terminals.

Search Engines

Search engine is a name that applies to a group of hardware and software tools that
help you search for World Wide Web sites that contain specific information. A
search engine relies on a database of information collected by a Web crawler, a pro-
gram that regularly looks through the millions of pages that make up the World
Wide Web. A search engine must also have a way of collating the information the
Web crawler collects so that you can access it quickly, easily, and in a manner that
makes it most useful to you. This part of the search engine, called an index, allows
you to search for a word, a group of words, or a concept; it returns the URLs of
Web pages that pertain to what you are searching for. Many different types of
search engines are available on the Internet, each with its own set of strengths and
weaknesses.

Chapter Summary

A Linux system attached to a network is probably communicating on an Ethernet,
which may in turn be linked to other local area networks (LANs) and wide area net-
works (WANs). Communication between LANs and WANs requires the use of gate-
ways and routers. Gateways translate the local data into a format suitable for the
WAN, and routers make decisions about the optimal routing of the data along the
way. The most widely used network, by far, is the Internet.

Basic networking tools allow Linux users to log in and run commands on remote
systems (ssh, telnet) and copy files quickly from one system to another (scp, ftp/sftp).
Many tools that were originally designed to support communication on a single-
host computer (for example, finger and talk) have since been extended to recognize
network addresses, thus allowing users on different systems to interact with one
another. Other features, such as the Network Filesystem (NFS), were created to
extend the basic UNIX model and to simplify information sharing.

www.mozilla.org
www.gnome.org/projects/epiphany
www.opera.com

Exercises 393

Concern is growing about our ability to protect the security and privacy of
machines connected to networks and of data transmitted over networks. Toward
this end, many new tools and protocols have been created: ssh, scp, HTTPS, IPv6,
firewall hardware and software, VPN, and so on. Many of these tools take advan-
tage of newer, more impenetrable encryption techniques. In addition, some weaker
concepts (such as that of trusted hosts) and some tools (such as finger and rwho) are
being discarded in the name of security.

Computer networks offer two major advantages over other ways of connecting
computers: They enable systems to communicate at high speeds and they require
few physical interconnections (typically one per system, often on a shared cable).
The Internet Protocol (IP), the universal language of the Internet, has made it possi-
ble for dissimilar computer systems around the world to readily communicate with
one another. Technological advances continue to improve the performance of com-
puter systems and the networks that link them.

One way to gather information on the Internet is via Usenet. Many Linux users rou-
tinely peruse Usenet news (netnews) to learn about the latest resources available for
their systems. Usenet news is organized into newsgroups that cover a wide range of
topics, computer-related and otherwise. To read Usenet news, you need to have
access to a news server and the appropriate client software. Many modern email
programs, such as Mozilla and Netscape, can display netnews.

The rapid increase of network communication speeds in recent years has encour-
aged the development of many new applications and services. The World Wide Web
provides access to vast information stores on the Internet and makes extensive use
of hypertext links to promote efficient searching through related documents. It
adheres to the client/server model that is so pervasive in networking. Typically the
WWW client is local to a site or is made available through an Internet service pro-
vider. WWW servers are responsible for providing the information requested by
their many clients.

Mozilla/Firefox is a WWW client program that has enormous popular appeal. Fire-
fox and other browsers use a GUI to give you access to text, picture, and audio
information: Making extensive use of these hypermedia simplifies access to and
enhances the presentation of information.

Exercises

1. Describe the similarities and differences between these utilities:

a. scp and ftp

b. ssh and telnet

c. rsh and ssh

394 Chapter 10 Networking and the Internet

2. Assuming rwho is disabled on the systems on your LAN, describe two ways
to find out who is logged in on some of the other machines attached to
your network.

3. Explain the client/server model. Give three examples of services on Linux
systems that take advantage of this model.

4. A software implementation of chess was developed by GNU and is
available for free. How can you use the Internet to find a copy and
download it?

5. What is the difference between the World Wide Web and the Internet?

6. If you have access to the World Wide Web, answer the following questions.

a. Which browser do you use?

b. What is the URL of the author of this book’s home page? How many
links does it have?

c. Does your browser allow you to create bookmarks? If so, how do you
create a bookmark? How can you delete one?

7. Give one advantage and two disadvantages of using a wireless network.

Advanced Exercises

8. Suppose the link between routers 1 and 2 is down in the Internet shown in
Figure 10-1 on page 360. What happens if someone at site C sends a mes-
sage to a user on a workstation attached to the Ethernet cable at site A?
What happens if the router at site A is down? What does this tell you
about designing network configurations?

9. If you have a class B network and want to divide it into subnets, each with
126 hosts, which subnet mask should you use? How many networks will
be available? What are the four addresses (broadcast and network num-
ber) for the network starting at 131.204.18?

10. Suppose you have 300 hosts and want to have no more than 50 hosts per
subnet. What size of address block should you request from your ISP?
How many class C–equivalent addresses would you need? How many sub-
nets would you have left over from your allocation?

11. a. On your system, find two daemons running that are not listed in this
chapter and explain what purpose they serve.

a.b. Review which services/daemons are automatically started on your system,
and consider which you might turn off. Are there any services/daemons in
the list in Table 10-4 on page 384 that you would consider adding?

395395

11Chapter11Chapter 7 introduced the shells and Chapter 9 went into detail
about the Bourne Again Shell. This chapter introduces additional
Bourne Again Shell commands, builtins, and concepts that carry
shell programming to a point where it can be useful. The first
part of this chapter covers programming control structures,
which are also known as control flow constructs. These struc-
tures allow you to write scripts that can loop over command line
arguments, make decisions based on the value of a variable, set
up menus, and more. The Bourne Again Shell uses the same con-
structs found in such high-level programming languages as C.

Although you may make use of shell programming as a system
administrator, reading this chapter is not required to perform
system administration tasks. Feel free to skip this chapter and
come back to it when you will find it most useful.

The next part of this chapter discusses parameters and vari-
ables, going into detail about array variables, local versus glo-
bal variables, special parameters, and positional parameters.
The exploration of builtin commands covers type, which dis-
plays information about a command, and read, which allows

In This Chapter

Control Structures 396

File Descriptors 429

Parameters and Variables 432

Array Variables 432

Locality of Variables 434

Special Parameters. 436

Positional Parameters. 438

Builtin Commands 444

Expressions 458

Shell Programs 466

A Recursive Shell Script 467

The quiz Shell Script. 470

11

Programming the

Bourne Again Shell

396 Chapter 11 Programming the Bourne Again Shell

you to accept user input in a shell script. The section on the exec builtin demon-
strates how exec provides an efficient way to execute a command by replacing a
process and explains how you can use it to redirect input and output from within a
script. The next section covers the trap builtin, which provides a way to detect and
respond to operating system signals (such as that which is generated when you press
CONTROL-C). The discussion of builtins concludes with a discussion of kill, which can
abort a process, and getopts, which makes it easy to parse options for a shell script.
(Table 11-6 on page 457 lists some of the more commonly used builtins.)

Next the chapter examines arithmetic and logical expressions and the operators
that work with them. The final section walks through the design and implementa-
tion of two major shell scripts.

This chapter contains many examples of shell programs. Although they illustrate
certain concepts, most use information from earlier examples as well. This overlap
not only reinforces your overall knowledge of shell programming but also demon-
strates how you can combine commands to solve complex tasks. Running, modify-
ing, and experimenting with the examples in this book is a good way to become
comfortable with the underlying concepts.

This chapter illustrates concepts with simple examples, which are followed by more
complex ones in sections marked “Optional.” The more complex scripts illustrate tra-
ditional shell programming practices and introduce some Linux utilities often used in
scripts. You can skip these sections without loss of continuity the first time you read
the chapter. Return to them later when you feel comfortable with the basic concepts.

Control Structures

The control flow commands alter the order of execution of commands within a shell
script. Control structures include the if...then, for...in, while, until, and case state-
ments. In addition, the break and continue statements work in conjunction with the
control structures to alter the order of execution of commands within a script.

if...then

The if...then control structure has the following syntax:

if test-command
then

commands
fi

Do not name a shell script test
tip You can unwittingly create a problem if you give a shell script the name test because a Linux utility

has the same name. Depending on how the PATH variable is set up and how you call the program,
you may run your script or the utility, leading to confusing results.

Control Structures 397

The bold words in the syntax description are the items you supply to cause the
structure to have the desired effect. The nonbold words are the keywords the shell
uses to identify the control structure.

test builtin Figure 11-1 shows that the if statement tests the status returned by the test-command
and transfers control based on this status. The end of the if structure is marked by a
fi statement, (if spelled backward). The following script prompts for two words,
reads them, and then uses an if structure to execute commands based on the result
returned by the test builtin when it compares the two words. (See the test info page
for information on the test utility, which is similar to the test builtin.) The test buil-
tin returns a status of true if the two words are the same and false if they are not.
Double quotation marks around $word1 and $word2 make sure that test works
properly if you enter a string that contains a SPACE or other special character:

$ cat if1
echo -n "word 1: "
read word1
echo -n "word 2: "
read word2

if test "$word1" = "$word2"
then

echo "Match"
fi
echo "End of program."

Figure 11-1 An if...then flowchart

then
commands

fi

if
test-command

True

False

398 Chapter 11 Programming the Bourne Again Shell

$ if1
word 1: peach
word 2: peach
Match
End of program.

In the preceding example the test-command is test "$word1" = "$word2". The test
builtin returns a true status if its first and third arguments have the relationship
specified by its second argument. If this command returns a true status (= 0), the
shell executes the commands between the then and fi statements. If the command
returns a false status (not = 0), the shell passes control to the statement following fi
without executing the statements between then and fi. The effect of this if statement
is to display Match if the two words are the same. The script always displays End of
program.

Builtins In the Bourne Again Shell, test is a builtin—part of the shell. It is also a stand-alone
utility kept in /usr/bin/test. This chapter discusses and demonstrates many Bourne
Again Shell builtins. You usually use the builtin version if it is available and the util-
ity if it is not. Each version of a command may vary slightly from one shell to the
next and from the utility to any of the shell builtins. See page 444 for more informa-
tion on shell builtins.

Checking arguments The next program uses an if structure at the beginning of a script to check that you
have supplied at least one argument on the command line. The –eq test operator com-
pares two integers, where the $# special parameter (page 439) takes on the value of
the number of command line arguments. This structure displays a message and exits
from the script with an exit status of 1 if you do not supply at least one argument:

$ cat chkargs
if test $# -eq 0

then
echo "You must supply at least one argument."
exit 1

fi
echo "Program running."
$ chkargs
You must supply at least one argument.
$ chkargs abc
Program running.

A test like the one shown in chkargs is a key component of any script that
requires arguments. To prevent the user from receiving meaningless or confusing
information from the script, the script needs to check whether the user has sup-
plied the appropriate arguments. Sometimes the script simply tests whether argu-
ments exist (as in chkargs). Other scripts test for a specific number or specific
kinds of arguments.

You can use test to ask a question about the status of a file argument or the relation-
ship between two file arguments. After verifying that at least one argument has been
given on the command line, the following script tests whether the argument is the

Control Structures 399

name of an ordinary file (not a directory or other type of file) in the working direc-
tory. The test builtin with the –f option and the first command line argument ($1)
check the file:

$ cat is_ordfile
if test $# -eq 0

then
echo "You must supply at least one argument."
exit 1

fi
if test -f "$1"

then
echo "$1 is an ordinary file in the working directory"

else
echo "$1 is NOT an ordinary file in the working directory"

fi

You can test many other characteristics of a file with test and various options.
Table 11-1 lists some of these options.

Other test options provide ways to test relationships between two files, such as
whether one file is newer than another. Refer to later examples in this chapter for
more detailed information.

[] is a synonym
for test

The following example—another version of chkargs—checks for arguments in a
way that is more traditional for Linux shell scripts. The example uses the bracket
([]) synonym for test. Rather than using the word test in scripts, you can surround
the arguments to test with brackets. The brackets must be surrounded by white-
space (SPACEs or TABs).

Table 11-1 Options to the test builtin

Option Tests file to see if it

–d Exists and is a directory file

–e Exists

–f Exists and is an ordinary file (not a directory)

–r Exists and is readable

–s Exists and has a size greater than 0 bytes

–w Exists and is writable

–x Exists and is executable

Always test the arguments
tip To keep the examples in this book short and focused on specific concepts, the code to verify argu-

ments is often omitted or abbreviated. It is a good practice to test arguments in shell programs
that other people will use. Doing so results in scripts that are easier to run and debug.

400 Chapter 11 Programming the Bourne Again Shell

$ cat chkargs2
if [$# -eq 0]

then
echo "Usage: chkargs2 argument..." 1>&2
exit 1

fi
echo "Program running."
exit 0
$ chkargs2
Usage: chkargs2 arguments
$ chkargs2 abc
Program running.

Usage message The error message that chkargs2 displays is called a usage message and uses the
1>&2 notation to redirect its output to standard error (page 280). After issuing the
usage message, chkargs2 exits with an exit status of 1, indicating that an error has
occurred. The exit 0 command at the end of the script causes chkargs2 to exit with
a 0 status after the program runs without an error. The Bourne Again Shell returns a
0 status if you omit the status code.

The usage message is commonly employed to specify the type and number of argu-
ments the script takes. Many Linux utilities provide usage messages similar to the
one in chkargs2. If you call a utility or other program with the wrong number or
kind of arguments, you will often see a usage message. Following is the usage mes-
sage that cp displays when you call it without any arguments:

$ cp
cp: missing file argument
Try 'cp --help' for more information.

if...then...else

The introduction of an else statement turns the if structure into the two-way branch
shown in Figure 11-2. The if...then...else control structure has the following syntax:

if test-command
then

commands
else

commands
fi

Because a semicolon (;) ends a command just as a NEWLINE does, you can place then on
the same line as if by preceding it with a semicolon. (Because if and then are sepa-
rate builtins, they require a command separator between them; a semicolon and NEW-

LINE work equally well.) Some people prefer this notation for aesthetic reasons, while
others like it because it saves space:

if test-command; then
commands

else
commands

fi

Control Structures 401

If the test-command returns a true status, the if structure executes the commands
between the then and else statements and then diverts control to the statement fol-
lowing fi. If the test-command returns a false status, the if structure executes the
commands following the else statement.

When you run the next script, named out, with arguments that are filenames, it dis-
plays the files on the terminal. If the first argument is –v (called an option in this
case), out uses less (page 148) to display the files one page at a time. After determin-
ing that it was called with at least one argument, out tests its first argument to see
whether it is –v. If the result of the test is true (if the first argument is –v), out uses
the shift builtin to shift the arguments to get rid of the –v and displays the files using
less. If the result of the test is false (if the first argument is not –v), the script uses cat
to display the files:

$ cat out
if [$# -eq 0]

then
echo "Usage: out [-v] filenames..." 1>&2
exit 1

fi

if ["$1" = "-v"]
then

shift
less -- "$@"

else
cat -- "$@"

fi

Figure 11-2 An if ...then...else flowchart

fi

if
test-commandTrue False

else
commands

then
commands

402 Chapter 11 Programming the Bourne Again Shell

optional In out the –– argument to cat and less tells these utilities that no more options fol-
low on the command line and not to consider leading hyphens (–) in the following
list as indicating options. Thus –– allows you to view a file with a name that starts
with a hyphen. Although not common, filenames beginning with a hyphen do occa-
sionally occur. (You can create such a file by using the command cat > –fname.) The
–– argument works with all Linux utilities that use the getopts builtin (page 454) to
parse their options; it does not work with more and a few other utilities. This argu-
ment is particularly useful when used in conjunction with rm to remove a file whose
name starts with a hyphen (rm –– –fname), including any that you create while
experimenting with the –– argument.

Figure 11-3 An if ...then...elif flowchart

fi

if
test-command

True False

else
commands

then
commands elif

test-commandTrue False

then
commands

Control Structures 403

if...then...elif
The if...then...elif control structure (Figure 11-3) has the following syntax:

if test-command
then

commands
elif test-command

then
commands

. . .
else

commands
fi

The elif statement combines the else statement and the if statement and allows you
to construct a nested set of if...then...else structures (Figure 11-3). The difference
between the else statement and the elif statement is that each else statement must be
paired with a fi statement, whereas multiple nested elif statements require only a sin-
gle closing fi statement.

The following example shows an if...then...elif control structure. This shell script com-
pares three words that the user enters. The first if statement uses the Boolean operator
AND (–a) as an argument to test. The test builtin returns a true status only if the first
and second logical comparisons are true (that is, if word1 matches word2 and word2
matches word3). If test returns a true status, the script executes the command following
the next then statement, passes control to the statement following fi, and terminates:

$ cat if3
echo -n "word 1: "
read word1
echo -n "word 2: "
read word2
echo -n "word 3: "
read word3

if ["$word1" = "$word2" -a "$word2" = "$word3"]
then

echo "Match: words 1, 2, & 3"
elif ["$word1" = "$word2"]
then

echo "Match: words 1 & 2"
elif ["$word1" = "$word3"]
then

echo "Match: words 1 & 3"
elif ["$word2" = "$word3"]
then

echo "Match: words 2 & 3"
else

echo "No match"
fi

404 Chapter 11 Programming the Bourne Again Shell

$ if3
word 1: apple
word 2: orange
word 3: pear
No match
$ if3
word 1: apple
word 2: orange
word 3: apple
Match: words 1 & 3
$ if3
word 1: apple
word 2: apple
word 3: apple
Match: words 1, 2, & 3

If the three words are not the same, the structure passes control to the first elif,
which begins a series of tests to see if any pair of words is the same. As the nesting
continues, if any one of the if statements is satisfied, the structure passes control
to the next then statement and subsequently to the statement following fi. Each
time an elif statement is not satisfied, the structure passes control to the next elif
statement. The double quotation marks around the arguments to echo that con-
tain ampersands (&) prevent the shell from interpreting the ampersands as special
characters.

optional The lnks Script

The following script, named lnks, demonstrates the if...then and if...then...elif con-
trol structures. This script finds hard links to its first argument, a filename. If you
provide the name of a directory as the second argument, lnks searches for links in
that directory and all subdirectories. If you do not specify a directory, lnks searches
the working directory and its subdirectories. This script does not locate symbolic
links.

$ cat lnks
#!/bin/bash
Identify links to a file
Usage: lnks file [directory]

if [$# -eq 0 -o $# -gt 2]; then
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi
if [-d "$1"]; then

echo "First argument cannot be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

else
file="$1"

fi

Control Structures 405

if [$# -eq 1]; then
directory="."

elif [-d "$2"]; then
directory="$2"

else
echo "Optional second argument must be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi

Check that file exists and is an ordinary file:
if [! -f "$file"]; then

echo "lnks: $file not found or special file" 1>&2
exit 1

fi
Check link count on file
set -- $(ls -l "$file")
linkcnt=$2
if ["$linkcnt" -eq 1]; then

echo "lnks: no other hard links to $file" 1>&2
exit 0

fi

Get the inode of the given file
set $(ls -i "$file")

inode=$1

Find and print the files with that inode number
echo "lnks: using find to search for links..." 1>&2
find "$directory" -xdev -inum $inode -print

Alex has a file named letter in his home directory. He wants to find links to this file
in his and other users’ home directory file trees. In the following example, Alex
calls lnks from his home directory to perform the search. The second argument to
lnks, /home, is the pathname of the directory he wants to start the search in. The
lnks script reports that /home/alex/letter and /home/jenny/draft are links to the
same file:

$ lnks letter /home
lnks: using find to search for links...
/home/alex/letter
/home/jenny/draft

In addition to the if...then...elif control structure, lnks introduces other features that
are commonly used in shell programs. The following discussion describes lnks sec-
tion by section.

Specify the shell The first line of the lnks script uses #! (page 284) to specify the shell that will exe-
cute the script:

#!/bin/bash

406 Chapter 11 Programming the Bourne Again Shell

In this chapter the #! notation appears only in more complex examples. It ensures
that the proper shell executes the script, even when the user is running a different
shell or the script is called from another shell script.

Comments The second and third lines of lnks are comments; the shell ignores the text that fol-
lows a pound sign up to the next NEWLINE character. These comments in lnks briefly
identify what the file does and how to use it:

Identify links to a file
Usage: lnks file [directory]

Usage messages The first if statement tests whether lnks was called with zero arguments or more
than two arguments:

if [$# -eq 0 -o $# -gt 2]; then
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi

If either of these conditions is true, lnks sends a usage message to standard error
and exits with a status of 1. The double quotation marks around the usage message
prevent the shell from interpreting the brackets as special characters. The brackets
in the usage message indicate that the directory argument is optional.

The second if statement tests whether the first command line argument ($1) is a
directory (the –d argument to test returns a true value if the file exists and is a
directory):

if [-d "$1"]; then
echo "First argument cannot be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

else
file="$1"

fi

If the first argument is a directory, lnks displays a usage message and exits. If it is
not a directory, lnks saves the value of $1 in the file variable because later in the
script set resets the command line arguments. If the value of $1 is not saved before
the set command is issued, its value will be lost.

Test the arguments The next section of lnks is an if...then...elif statement:

if [$# -eq 1]; then
directory="."

elif [-d "$2"]; then
directory="$2"

else
echo "Optional second argument must be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi

Control Structures 407

The first test-command determines whether the user specified a single argument
on the command line. If the test-command returns 0 (true), the user-created vari-
able named directory is assigned the value of the working directory (.). If the test-
command returns false, the elif statement tests whether the second argument is a
directory. If it is a directory, the directory variable is set equal to the second com-
mand line argument, $2. If $2 is not a directory, lnks sends a usage message to
standard error and exits with a status of 1.

The next if statement in lnks tests whether $file does not exist. This test keeps lnks
from wasting time looking for links to a nonexistent file.

The test builtin with the three arguments !, –f, and $file evaluates to true if the file
$file does not exist:

[! -f "$file"]

The ! operator preceding the –f argument to test negates its result, yielding false if
the file $file does exist and is an ordinary file.

Next lnks uses set and ls –l to check the number of links $file has:

Check link count on file
set -- $(ls -l "$file")
linkcnt=$2
if ["$linkcnt" -eq 1]; then

echo "lnks: no other hard links to $file" 1>&2
exit 0

fi

The set builtin uses command substitution (page 344) to set the positional parame-
ters to the output of ls –l. The second field in this output is the link count, so the
user-created variable linkcnt is set equal to $2. The –– used with set prevents set
from interpreting as an option the first argument produced by ls –l (the first argu-
ment is the access permissions for the file and typically begins with –). The if state-
ment checks whether $linkcnt is equal to 1; if it is, lnks displays a message and
exits. Although this message is not truly an error message, it is redirected to stan-
dard error. The way lnks has been written, all informational messages are sent to
standard error. Only the final product of lnks—the pathnames of links to the speci-
fied file—is sent to standard output, so you can redirect the output as you please.

If the link count is greater than one, lnks goes on to identify the inode (page 1041)
for $file. As explained on page 212, comparing the inodes associated with filenames
is a good way to determine whether the filenames are links to the same file. The lnks
script uses set to set the positional parameters to the output of ls –i. The first argu-
ment to set is the inode number for the file, so the user-created variable named
inode is assigned the value of $1:

Get the inode of the given file
set $(ls -i "$file")

inode=$1

408 Chapter 11 Programming the Bourne Again Shell

Finally lnks uses the find utility to search for files having inode numbers that match
$inode:

Find and print the files with that inode number
echo "lnks: using find to search for links..." 1>&2
find "$directory" -xdev -inum $inode -print

The find utility searches for files that meet the criteria specified by its arguments,
beginning its search with the directory specified by its first argument ($directory)
and searching all subdirectories. The remaining arguments specify that the file-
names of files having inodes matching $inode should be sent to standard output.
Because files in different filesystems can have the same inode number and not be
linked, find must search only directories in the same filesystem as $directory. The
–xdev argument prevents find from searching directories on other filesystems. Refer
to page 209 for more information about filesystems and links.

The echo command preceding the find command in lnks, which tells the user that
find is running, is included because find frequently takes a long time to run. Because
lnks does not include a final exit statement, the exit status of lnks is that of the last
command it runs, find.

Debugging Shell Scripts

When you are writing a script such as lnks, it is easy to make mistakes. You can use
the shell’s –x option to help debug a script. This option causes the shell to display
each command before it runs the command. Tracing a script’s execution in this way
can give you information about where a problem lies.

You can run lnks as in the previous example and cause the shell to display each
command before it is executed. Either set the –x option for the current shell (set –x)
so that all scripts display commands as they are run or use the –x option to affect
only the shell that is running the script called by the command line.

$ bash -x lnks letter /home
+ '[' 2 -eq 0 -o 2 -gt 2 ']'
+ '[' -d letter ']'
+ file=letter
+ '[' 2 -eq 1 ']'
+ '[' -d /home ']'
+ directory=/home
+ '[' '!' -f letter ']'
...

PS4 Each command that the script executes is preceded by the value of the PS4 vari-
able—a plus sign (+) by default, so you can distinguish debugging output from
script-produced output. You must export PS4 if you set it in the shell that calls the
script. The next command sets PS4 to >>>> followed by a SPACE and exports it:

$ export PS4='>>>> '

Control Structures 409

You can also set the –x option of the shell running the script by putting the follow-
ing set command at the top of the script:

set -x

Put set –x anywhere in the script you want to turn debugging on. Turn the debug-
ging option off with a plus sign.

set +x

The set –o xtrace and set +o xtrace commands do the same things as set –x and set
+x, respectively.

for...in

The for...in control structure has the following syntax:

for loop-index in argument-list
do

commands
done

Figure 11-4 A for...in flowchart

Assign next
argument in
argument-list
to loop-index

do

commands

Another
argument in
argument-list

done

Yes

No

?

410 Chapter 11 Programming the Bourne Again Shell

The for...in structure (Figure 11-4, previous page) assigns the value of the first argu-
ment in the argument-list to the loop-index and executes the commands between
the do and done statements. The do and done statements mark the beginning and
end of the for loop.

After it passes control to the done statement, the structure assigns the value of the
second argument in the argument-list to the loop-index and repeats the commands.
The structure repeats the commands between the do and done statements one time
for each argument in the argument-list. When the structure exhausts the argument-
list, it passes control to the statement following done.

The following for...in structure assigns apples to the user-created variable fruit and
then displays the value of fruit, which is apples. Next the structure assigns oranges
to fruit and repeats the process. When it exhausts the argument list, the structure
transfers control to the statement following done, which displays a message.

$ cat fruit
for fruit in apples oranges pears bananas
do

echo "$fruit"
done
echo "Task complete."

$ fruit
apples
oranges
pears
bananas
Task complete.

The next script lists the names of the directory files in the working directory by
looping over all the files, using test to determine which files are directories:

$ cat dirfiles
for i in *
do

if [-d "$i"]
then

echo "$i"
fi

done

The ambiguous file reference character * matches the names of all files (except hid-
den files) in the working directory. Prior to executing the for loop, the shell expands
the * and uses the resulting list to assign successive values to the index variable i.

for
The for control structure has the following syntax:

for loop-index
do

commands
done

Control Structures 411

In the for structure the loop-index takes on the value of each of the command line
arguments, one at a time. It is the same as the for...in structure (Figure 11-4) except
for where it gets values for the loop-index. The for structure performs a sequence of
commands, usually involving each argument in turn.

The following shell script shows a for structure displaying each command line argu-
ment. The first line of the script, for arg, implies for arg in "$@", where the shell
expands "$@" into a list of quoted command line arguments "$1" "$2" "$3" and
so on. The balance of the script corresponds to the for...in structure.

$ cat for_test
for arg
do

echo "$arg"
done
$ for_test candy gum chocolate
candy
gum
chocolate

optional The whos Script

The following script, named whos, demonstrates the usefulness of the implied "$@"
in the for structure. You give whos one or more users’ full names or usernames as
arguments, and whos displays information about the users. The whos script gets the
information it displays from the first and fifth fields in the /etc/passwd file. The first
field always contains a username, and the fifth field typically contains the user’s full
name. You can provide a username as an argument to whos to identify the user’s
name or provide a name as an argument to identify the username. The whos script
is similar to the finger utility, although whos delivers less information.

$ cat whos
#!/bin/bash
adapted from finger.sh by Lee Sailer
UNIX/WORLD, III:11, p. 67, Fig. 2

if [$# -eq 0]
then

echo "Usage: whos id..." 1>&2
exit 1

fi
for id
do

gawk -F: '{print $1, $5}' /etc/passwd |
grep -i "$id"

done

Below whos identifies the user whose username is chas and the user whose name is
Marilou Smith:

$ whos chas "Marilou Smith"
chas Charles Casey
msmith Marilou Smith

412 Chapter 11 Programming the Bourne Again Shell

Use of "$@" The whos script uses a for statement to loop through the command line arguments.
In this script the implied use of "$@" in the for loop is particularly beneficial
because it causes the for loop to treat an argument that contains a SPACE as a single
argument. This example quotes Marilou Smith, which causes the shell to pass it to
the script as a single argument. Then the implied "$@" in the for statement causes
the shell to regenerate the quoted argument Marilou Smith so that it is again treated
as a single argument.

gawk For each command line argument, whos searches the /etc/passwd file. Inside the for
loop the gawk utility extracts the first ($1) and fifth ($5) fields from the lines in
/etc/passwd. The –F: option causes gawk to use a colon (:) as a field separator when
it reads /etc/passwd, allowing it to break each line into fields. The gawk command
sets and uses the $1 and $5 arguments; they are included within single quotation
marks and are not interpreted by the shell. Do not confuse these arguments with
positional parameters, which correspond to command line arguments. The first and
fifth fields are sent to grep (page 151) via a pipe. The grep utility searches for $id
(which has taken on the value of a command line argument) in its input. The –i
option causes grep to ignore case as it searches; grep displays each line in its input
that contains $id.

| at the end of a line An interesting syntactical exception that bash gives the pipe symbol (|) appears on
the line with the gawk command: You do not have to quote a NEWLINE that immedi-
ately follows a pipe symbol (that is, a pipe symbol that is the last thing on a line) to
keep the NEWLINE from executing a command. Try giving the command who | and
pressing RETURN. The shell displays a secondary prompt. If you then enter sort fol-
lowed by another RETURN, you see a sorted who list. The pipe works even though a
NEWLINE follows the pipe symbol.

while

The while control structure has the following syntax:

while test-command
do

commands
done

As long as the test-command (Figure 11-5) returns a true exit status, the while
structure continues to execute the series of commands delimited by the do and done
statements. Before each loop through the commands, the structure executes the test-
command. When the exit status of the test-command is false, the structure passes
control to the statement after the done statement.

test builtin The following shell script first initializes the number variable to zero. The test builtin
then determines whether number is less than 10. The script uses test with the –lt
argument to perform a numerical test. For numerical comparisons, you must use –ne
(not equal), –eq (equal), –gt (greater than), –ge (greater than or equal to), –lt (less
than), or –le (less than or equal to). For string comparisons use = (equal) or != (not
equal) when you are working with test. In this example, test has an exit status of 0
(true) as long as number is less than 10. As long as test returns true, the structure

Control Structures 413

executes the commands between the do and done statements. See page 397 for infor-
mation on the test utility, which is very similar to the test builtin.

$ cat count
#!/bin/bash
number=0
while ["$number" -lt 10]

do
echo -n "$number"
((number +=1))

done
echo
$ count
0123456789
$

The echo command following do displays number. The –n prevents echo from issu-
ing a NEWLINE following its output. The next command uses arithmetic evaluation
[((...)); page 458] to increment the value of number by 1. The done statement termi-
nates the loop and returns control to the while statement to start the loop over
again. The final echo causes count to send a NEWLINE character to standard output, so
that the next prompt occurs in the leftmost column on the display (rather than
immediately following 9).

optional The spell_check Script

The aspell utility checks the words in a file against a dictionary of correctly spelled
words. With the –l option, aspell runs in list mode: Input comes from standard input
and aspell sends each potentially misspelled word to standard output. The following
command produces a list of possible misspellings in the file letter.txt:

$ aspell -l < letter.txt
quikly
portible
frendly

Figure 11-5 A while flowchart

while
test-command

do
commands

doneFalse

True

414 Chapter 11 Programming the Bourne Again Shell

The next shell script, named spell_check, shows another use of a while structure. To
find the incorrect spellings in a file, you can use spell_check, which calls aspell to
check a file against a system dictionary but goes a step further: It enables you to
specify a list of correctly spelled words and removes these words from the output of
aspell. This script is useful for removing words that you use frequently, such as
names and technical terms, that are not in a standard dictionary. Although you can
duplicate the functionality of spell_check by using additional aspell dictionaries, the
script is included here for its instructive value.

The spell_check script requires two filename arguments: a file containing the list of
correctly spelled words and a file that you want to check. The first if statement ver-
ifies that the user specified two arguments. The next two if statements verify that
both arguments are readable files. (The exclamation point negates the sense of the
following operator; the –r operator causes test to determine whether a file is read-
able. The result is a test that determines whether a file is not readable.)

$ cat spell_check
#!/bin/bash
remove correct spellings from aspell output
if [$# -ne 2]

then
echo "Usage: spell_check file1 file2" 1>&2
echo "file1: list of correct spellings" 1>&2
echo "file2: file to be checked" 1>&2
exit 1

fi

if [! -r "$1"]
then

echo "spell_check: $1 is not readable" 1>&2
exit 1

fi

if [! -r "$2"]
then

echo "spell_check: $2 is not readable" 1>&2
exit 1

fi

aspell -l < "$2" |
while read line
do

if ! grep "^$line$" "$1" > /dev/null
then

echo $line
fi

done

The spell_check script sends the output from aspell (with the –l option so that it
produces a list of misspelled words on standard output) through a pipe to standard
input of a while structure, which reads one line at a time (each line has one word on

Control Structures 415

it) from standard input. The test-command (that is, read line) returns a true exit sta-
tus as long as it receives a line from standard input.

Inside the while loop an if statement1 monitors the return value of grep, which deter-
mines whether the line that was read is in the user’s list of correctly spelled words.
The pattern that grep searches for (the value of $line) is preceded and followed by
special characters that specify the beginning and end of a line (^ and $, respectively).
These special characters ensure that grep finds a match only if the $line variable
matches an entire line in the file of correctly spelled words. (Otherwise, grep would
match a string, such as paul, in the output of aspell if the file of correctly spelled
words contained the word paulson.) These special characters, together with the
value of the $line variable, form a regular expression (Appendix A).

The output of grep is redirected to /dev/null (page 233) because the output is not
needed; only the exit code is important. The if statement checks the negated exit sta-
tus of grep (the leading exclamation point negates or changes the sense of the exit
status—true becomes false, and vice versa), which is 0 or true (false when negated)
when a matching line is found. If the exit status is not 0 or false (true when negated),
the word was not in the file of correctly spelled words. The echo builtin sends a list
of words that are not in the file of correctly spelled words to standard output.

Once it detects the EOF (end of file), the read builtin returns a false exit status. Con-
trol then passes out of the while structure, and the script terminates.

Before you use spell_check, create a file of correct spellings containing words that
you use frequently but that are not in a standard dictionary. For example, if you
work for a company named Blinkenship and Klimowski, Attorneys, you would put
Blinkenship and Klimowski into the file. The following example shows how
spell_check checks the spelling in a file named memo and removes Blinkenship and
Klimowski from the output list of incorrectly spelled words:

$ aspell -l < memo
Blinkenship
Klimowski
targat
hte
$ cat word_list
Blinkenship
Klimowski
$ spell_check word_list memo
targat
hte

Refer to the aspell manual (in the /usr/share/doc/aspell directory or at aspell.net)
for more information.

1. This if statement can also be written as

if ! grep -qw "$line" "$1"

The –q option suppresses the output from grep so that only an exit code is returned. The –w option causes
grep to match only a whole word.

416 Chapter 11 Programming the Bourne Again Shell

until
The until and while structures are very similar, differing only in the sense of the test
performed at the top of the loop. Figure 11-6 shows that until continues to loop
until the test-command returns a true exit status. The while structure loops while
the test-command continues to return a true or nonerror condition. The until con-
trol structure has the following syntax:

until test-command
do

commands
done

The following script demonstrates an until structure that includes read. When the
user enters the correct string of characters, the test-command is satisfied and the
structure passes control out of the loop.

$ cat until1
secretname=jenny
name=noname
echo "Try to guess the secret name!"
echo
until ["$name" = "$secretname"]
do

echo -n "Your guess: "
read name

done
echo "Very good."

$ until1
Try to guess the secret name!

Your guess: helen
Your guess: barbara
Your guess: rachael
Your guess: jenny
Very good

Figure 11-6 An until flowchart

until
test-command

do
commands

done

False

True

Control Structures 417

The following locktty script is similar to the lock command on Berkeley UNIX and
the Lock Screen menu selection in GNOME. The script prompts you for a key
(password) and uses an until control structure to lock the terminal. The until state-
ment causes the system to ignore any characters typed at the keyboard until the user
types in the key on a line by itself, which unlocks the terminal. The locktty script
can keep people from using your terminal while you are away from it for short peri-
ods of time. It saves you from having to log out if you are concerned about other
users using your login.

$ cat locktty
#! /bin/bash
UNIX/WORLD, III:4

trap '' 1 2 3 18
stty -echo
echo -n "Key: "
read key_1
echo
echo -n "Again: "
read key_2
echo
key_3=
if ["$key_1" = "$key_2"]

then
tput clear
until ["$key_3" = "$key_2"]
do

read key_3
done

else
echo "locktty: keys do not match" 1>&2

fi
stty echo

trap builtin The trap builtin (page 451) at the beginning of the locktty script stops a user from
being able to terminate the script by sending it a signal (for example, by pressing the
interrupt key). Trapping signal 18 means that no one can use CONTROL-Z (job control, a
stop from a tty) to defeat the lock. (See Table 11-5 on page 451 for a list of signals.)
The stty –echo command causes the terminal not to display characters typed at the
keyboard, thereby preventing the key that the user enters from appearing on the
screen. After turning off keyboard echo, the script prompts the user for a key, reads
it into the user-created variable key_1, prompts the user to enter the same key again,
and saves it in key_2. The statement key_3= creates a variable with a NULL value. If
key_1 and key_2 match, locktty clears the screen (with the tput command) and
starts an until loop. The until loop keeps attempting to read from the terminal and

Forget your password for locktty?

tip If you forget your key (password), you will need to log in from another (virtual) terminal and kill
the process running locktty.

418 Chapter 11 Programming the Bourne Again Shell

assigning the input to the key_3 variable. Once the user types in a string that
matches one of the original keys (key_2), the until loop terminates and keyboard
echo is turned on again.

break and continue
You can interrupt a for, while, or until loop by using a break or continue statement.
The break statement transfers control to the statement after the done statement,
which terminates execution of the loop. The continue command transfers control to
the done statement, which continues execution of the loop.

The following script demonstrates the use of these two statements. The for...in
structure loops through the values 1–10. The first if statement executes its com-
mands when the value of the index is less than or equal to 3 ($index –le 3). The
second if statement executes its commands when the value of the index is greater
than or equal to 8 ($index –ge 8). In between the two ifs, echo displays the value
of the index. For all values up to and including 3, the first if statement displays
continue and executes a continue statement that skips echo $index and the second
if statement and continues with the next for statement. For the value of 8, the sec-
ond if statement displays break and executes a break statement that exits from the
for loop:

$ cat brk
for index in 1 2 3 4 5 6 7 8 9 10

do
if [$index -le 3] ; then

echo "continue"
continue

fi
#

echo $index
#

if [$index -ge 8] ; then
echo "break"
break

fi
done

$ brk
continue
continue
continue
4
5
6
7
8
break

Control Structures 419

case

The case structure (Figure 11-7, page 420) is a multiple-branch decision mecha-
nism. The path taken through the structure depends on a match or lack of a match
between the test-string and one of the patterns. The case control structure has the
following syntax:

case test-string in
pattern-1)

commands-1
;;

pattern-2)
commands-2
;;

pattern-3)
commands-3
;;

. . .
esac

The following case structure examines the character that the user enters as the test-
string. This value is held in the variable letter. If the test-string has a value of A, the
structure executes the command following the pattern A. The right parenthesis is
part of the case control structure, not part of the pattern. If the test-string has a
value of B or C, the structure executes the command following the matching pat-
tern. The asterisk (*) indicates any string of characters and serves as a catchall in
case there is no match. If no pattern matches the test-string and if there is no catch-
all (*) pattern, control passes to the command following the esac statement, with-
out the case structure taking any action.

$ cat case1
echo -n "Enter A, B, or C: "
read letter
case "$letter" in

A)
echo "You entered A"
;;

B)
echo "You entered B"
;;

C)
echo "You entered C"
;;

*)
echo "You did not enter A, B, or C"
;;

esac

$ case1
Enter A, B, or C: B
You entered B

420 Chapter 11 Programming the Bourne Again Shell

The next execution of case1 shows the user entering a lowercase b. Because the test-
string b does not match the uppercase B pattern (or any other pattern in the case
statement), the program executes the commands following the catchall pattern and
displays a message:

$ case1
Enter A, B, or C: b
You did not enter A, B, or C

The pattern in the case structure is analogous to an ambiguous file reference. It can
include any of the special characters and strings shown in Table 11-2.

The next script accepts both uppercase and lowercase letters:

Figure 11-7 A case flowchart

case

esac

test-string
=

pattern-1
?

test-string
=

pattern-2
?

test-string
=

pattern-3
?

commands-1

commands-2

commands-3

Control Structures 421

$ cat case2
echo -n "Enter A, B, or C: "
read letter
case "$letter" in

a|A)
echo "You entered A"
;;

b|B)
echo "You entered B"
;;

c|C)
echo "You entered C"
;;

*)
echo "You did not enter A, B, or C"
;;

esac

$ case2
Enter A, B, or C: b
You entered B

optional The following example shows how you can use the case structure to create a simple
menu. The command_menu script uses echo to present menu items and prompt the
user for a selection. (The select control structure [page 425] makes it much easier to
code a menu.) The case structure then executes the appropriate utility depending on
the user’s selection.

$ cat command_menu
#!/bin/bash
menu interface to simple commands

echo -e "\n COMMAND MENU\n"
echo " a. Current date and time"
echo " b. Users currently logged in"
echo " c. Name of the working directory"
echo -e " d. Contents of the working directory\n"
echo -n "Enter a, b, c, or d: "
read answer
echo

Table 11-2 Patterns

Pattern Function

* Matches any string of characters. Use for the default case.

? Matches any single character.

[...] Defines a character class. Any characters enclosed within brackets are tried,
one at a time, in an attempt to match a single character. A hyphen between two
characters specifies a range of characters.

| Separates alternative choices that satisfy a particular branch of the case structure.

422 Chapter 11 Programming the Bourne Again Shell

#
case "$answer" in

a)
date
;;

b)
who
;;

c)
pwd
;;

d)
ls
;;

*)
echo "There is no selection: $answer"
;;

esac

$ command_menu

COMMAND MENU

a. Current date and time
b. Users currently logged in
c. Name of the working directory
d. Contents of the working directory

Enter a, b, c, or d: a

Wed Jan 2 12:31:12 PST 2008

echo –e The –e option causes echo to interpret \n as a NEWLINE character. If you do not include
this option, echo does not output the extra blank lines that make the menu easy to
read but instead outputs the (literal) two-character sequence \n. The –e option causes
echo to interpret several other backslash-quoted characters (Table 11-3). Remember
to quote (i.e., place double quotation marks around the string) the backslash-quoted
character so that the shell does not interpret it but passes the backslash and the char-
acter to echo. See xpg_echo (page 337) for a way to avoid using the –e option.

Table 11-3 Special characters in echo (must use –e)

Quoted
character echo displays

\a Alert (bell)

\b BACKSPACE

\c Suppress trailing NEWLINE

\f FORMFEED

\n NEWLINE

Control Structures 423

You can also use the case control structure to take various actions in a script,
depending on how many arguments the script is called with. The following script,
named safedit, uses a case structure that branches based on the number of com-
mand line arguments ($#). It saves a backup copy of a file you are editing with vim.

$ cat safedit
#!/bin/bash
UNIX/WORLD, IV:11

PATH=/bin:/usr/bin
script=$(basename $0)
case $# in

0)
vim
exit 0
;;

1)
if [! -f "$1"]

then
vim "$1"
exit 0

fi
if [! -r "$1" -o ! -w "$1"]

then
echo "$script: check permissions on $1" 1>&2
exit 1

else
editfile=$1

fi
if [! -w "."]

then
echo "$script: backup cannot be " \

"created in the working directory" 1>&2
exit 1

fi
;;

*)
echo "Usage: $script [file-to-edit]" 1>&2
exit 1
;;

esac

\r RETURN

\t Horizontal TAB

\v Vertical TAB

\\ Backslash

\nnn The character with the ASCII octal code nnn; if nnn is not valid, echo displays
the string literally

Table 11-3 Special characters in echo (must use –e) (continued)

424 Chapter 11 Programming the Bourne Again Shell

tempfile=/tmp/$$.$script
cp $editfile $tempfile
if vim $editfile

then
mv $tempfile bak.$(basename $editfile)
echo "$script: backup file created"

 else
mv $tempfile editerr
echo "$script: edit error--copy of " \

"original file is in editerr" 1>&2
fi

If you call safedit without any arguments, the case structure executes its first branch
and calls vim without a filename argument. Because an existing file is not being
edited, safedit does not create a backup file. If you call safedit with one argument, it
runs the commands in the second branch of the case structure and verifies that the
file specified by $1 does not yet exist or is the name of a file for which the user has
read and write permission. The safedit script also verifies that the user has write
permission for the working directory. If the user calls safedit with more than one
argument, the third branch of the case structure presents a usage message and exits
with a status of 1.

Set PATH In addition to using a case structure for branching based on the number of com-
mand line arguments, the safedit script introduces several other features. First, at
the beginning of the script, the PATH variable is set to search /bin and /usr/bin. Set-
ting PATH in this way ensures that the commands executed by the script are stan-
dard utilities, which are kept in those directories. By setting PATH inside a script,
you can avoid the problems that might occur if users have set PATH to search their
own directories first and have scripts or programs with the same names as the utili-
ties the script calls. You can also include absolute pathnames within a script to
achieve this end, but this practice can make a script less portable.

Name of the
program

In a second safedit feature, the following line creates a variable named script and
assigns the simple filename of the script to it:

script=$(basename $0)

The basename utility sends the simple filename component of its argument to stan-
dard output, which is assigned to the script variable, using command substitution.
The $0 holds the command the script was called with (page 439). No matter which
of the following commands the user calls the script with, the output of basename is
the simple filename safedit:

$ /home/alex/bin/safedit memo
$./safedit memo
$ safedit memo

After the script variable is set, it replaces the filename of the script in usage and
error messages. By using a variable that is derived from the command that invoked
the script rather than a filename that is hardcoded into the script, you can create

Control Structures 425

links to the script or rename it, and the usage and error messages will still provide
accurate information.

Naming temporary
files

A third significant feature of safedit relates to the use of the $$ variable in the name
of a temporary file. The statement following the esac statement creates and assigns
a value to the tempfile variable. This variable contains the name of a temporary file
that is stored in the /tmp directory, as are many temporary files. The temporary file-
name begins with the PID number of the shell and ends with the name of the script.
Use of the PID number ensures that the filename is unique, and safedit will not
attempt to overwrite an existing file, as might happen if two people were using
safedit at the same time. The name of the script is appended so that, should the file
be left in /tmp for some reason, you can figure out where it came from.

The PID number is used in front of—rather than after—$script in the filename
because of the 14-character limit placed on filenames by some older versions of
UNIX. Linux systems do not have this limitation. Because the PID number ensures
the uniqueness of the filename, it is placed first so that it cannot be truncated. (If the
$script component is truncated, the filename is still unique.) For the same reason,
when a backup file is created inside the if control structure a few lines down in the
script, the filename is composed of the string bak. followed by the name of the file
being edited. On an older system, if bak were used as a suffix rather than a prefix
and the original filename were 14 characters long, .bak might be lost and the origi-
nal file would be overwritten. The basename utility extracts the simple filename of
$editfile before it is prefixed with bak.

Fourth, safedit uses an unusual test-command in the if structure: vim $editfile. The
test-command calls vim to edit $editfile. When you finish editing the file and exit
from vim, vim returns an exit code. The if control structure uses that exit code to
determine which branch to take. If the editing session completed successfully, vim
returns 0 and the statements following the then statement are executed. If vim does
not terminate normally (as would occur if the user killed [page 522] the vim pro-
cess), vim returns a nonzero exit status and the script executes the statements fol-
lowing else.

select
The select control structure is based on the one found in the Korn Shell. It displays a
menu, assigns a value to a variable based on the user’s choice of items, and executes
a series of commands. The select control structure has the following syntax:

select varname [in arg . . .]
do

commands
done

The select structure displays a menu of the arg items. If you omit the keyword in
and the list of arguments, select uses the positional parameters in place of the arg

426 Chapter 11 Programming the Bourne Again Shell

items. The menu is formatted with numbers before each item. For example, a select
structure that begins with

select fruit in apple banana blueberry kiwi orange watermelon STOP

displays the following menu:

1) apple 3) blueberry 5) orange 7) STOP
2) banana 4) kiwi 6) watermelon

The select structure uses the values of the LINES and COLUMNS variables to
determine the size of the display. (LINES has a default value of 24; COLUMNS has
a default value of 80.) With COLUMNS set to 20, the menu looks like this:

1) apple
2) banana
3) blueberry
4) kiwi
5) orange
6) watermelon
7) STOP

PS3 After displaying the menu select displays the value of PS3, the special select prompt.
The default value of PS3 is ?# but you typically set PS3 to a more meaningful value.
When you enter a valid number (one in the menu range) in response to the PS3
prompt, select sets varname to the argument corresponding to the number you
entered. If you make an invalid entry, varname is set to null. Either way select stores
your response in the keyword variable REPLY and then executes the commands
between do and done. If you press RETURN without entering a choice, the shell redis-
plays the menu and the PS3 prompt.

The select structure continues to issue the PS3 prompt and execute the commands
until something causes it to exit—typically a break or exit statement. A break state-
ment exits from the loop and an exit statement exits from the script.

The following script illustrates the use of select:

$ cat fruit2
#!/bin/bash
PS3="Choose your favorite fruit from these possibilities: "
select FRUIT in apple banana blueberry kiwi orange watermelon STOP
do
 if ["$FRUIT" == ""]; then
 echo -e "Invalid entry.\n"
 continue
 elif [$FRUIT = STOP]; then
 echo "Thanks for playing!"
 break
 fi
echo "You chose $FRUIT as your favorite."
echo -e "That is choice number $REPLY.\n"
done

Control Structures 427

$ fruit2
1) apple 3) blueberry 5) orange 7) STOP
2) banana 4) kiwi 6) watermelon
Choose your favorite fruit from these possibilities: 3
You chose blueberry as your favorite.
That is choice number 3.

Choose your favorite fruit from these possibilities: 99
Invalid entry.

Choose your favorite fruit from these possibilities: 7
Thanks for playing!

After setting the PS3 prompt and establishing the menu with the select statement,
fruit2 executes the commands between do and done. If the user makes an invalid
entry, the shell sets varname ($FRUIT) to a null value, so fruit2 first tests whether
$FRUIT is null. If it is, echo displays an error and continue causes the shell to redis-
play the PS3 prompt. If the entry is valid, the script tests whether the user wants to
stop. If so, echo displays a message and break exits from the select structure (and
from the script). If the user entered a valid response and does not want to stop, the
script displays the name and number of the user’s response. (See page 422 for infor-
mation about the –e option to echo.)

Here Document

A Here document allows you to redirect input to a shell script from within the shell
script itself. A Here document is so called because it is here—immediately accessible
in the shell script—instead of there, perhaps in another file.

The following script, named birthday, contains a Here document. The two less than
(<<) symbols in the first line indicate that a Here document follows. One or more
characters that delimit the Here document follow the less than symbols—this exam-
ple uses a plus sign. Whereas the opening delimiter must appear adjacent to the less
than symbols, the closing delimiter must be on a line by itself. The shell sends every-
thing between the two delimiters to the process as standard input. In the example it
is as though you had redirected standard input to grep from a file, except that the
file is embedded in the shell script:

$ cat birthday
grep -i "$1" <<+
Alex June 22
Barbara February 3
Darlene May 8
Helen March 13
Jenny January 23
Nancy June 26
+
$ birthday Jenny
Jenny January 23
$ birthday june
Alex June 22
Nancy June 26

428 Chapter 11 Programming the Bourne Again Shell

When you run birthday, it lists all the Here document lines that contain the argu-
ment you called it with. In this case the first time birthday is run, it displays Jenny’s
birthday because it is called with an argument of Jenny. The second run displays all
the birthdays in June. The –i argument causes grep’s search not to be case sensitive.

optional The next script, named bundle,2 includes a clever use of a Here document. The
bundle script is an elegant example of a script that creates a shell archive (shar) file.
The script, shown following, creates a file that is itself a shell script containing sev-
eral other files as well as the code to re-create the original files.

$ cat bundle
#!/bin/bash
bundle: group files into distribution package

echo "# To unbundle, bash this file"
for i
do

echo "echo $i 1>&2"
echo "cat >$i <<'End of $i'"
cat $i
echo "End of $i"

done

Just as the shell does not treat special characters that occur in standard input of a
shell script as special, so the shell does not treat the special characters that occur
between the delimiters in a Here document as special.

As the following example shows, the output of bundle is a shell script, which is redi-
rected to a file named bothfiles. It contains the contents of each file given as an
argument to bundle (file1 and file2 in this case) inside a Here document. To extract
the original files from bothfiles, you simply run it as an argument to a bash com-
mand. Before each Here document is a cat command that causes the Here document
to be written to a new file when bothfiles is run:

$ cat file1
This is a file.
It contains two lines.
$ cat file2
This is another file.
It contains
three lines.

$ bundle file1 file2 > bothfiles
$ cat bothfiles
To unbundle, bash this file
echo file1 1>&2
cat >file1 <<'End of file1'

2. Thanks to Brian W. Kernighan and Rob Pike, The Unix Programming Environment (Englewood Cliffs,
N.J.: Prentice-Hall, 1984), 98. Reprinted with permission.

File Descriptors 429

This is a file.
It contains two lines.
End of file1
echo file2 1>&2
cat >file2 <<'End of file2'
This is another file.
It contains
three lines.
End of file2

In the next example, file1 and file2 are removed before bothfiles is run. The both-
files script echoes the names of the files it creates as it creates them. The ls command
then shows that bothfiles has re-created file1 and file2:

$ rm file1 file2
$ bash bothfiles
file1
file2
$ ls
bothfiles
file1
file2

File Descriptors

As discussed on page 280, before a process can read from or write to a file it must
open that file. When a process opens a file, Linux associates a number (called a file
descriptor) with the file. Each process has its own set of open files and its own file
descriptors. After opening a file, a process reads from and writes to that file by
referring to its file descriptor. When it no longer needs the file, the process closes the
file, freeing the file descriptor.

A typical Linux process starts with three open files: standard input (file descriptor 0),
standard output (file descriptor 1), and standard error (file descriptor 2). Often those
are the only files the process needs. Recall that you redirect standard output with the
symbol > or the symbol 1> and that you redirect standard error with the symbol 2>.
Although you can redirect other file descriptors, because file descriptors other than
0, 1, and 2 do not have any special conventional meaning, it is rarely useful to do so.
The exception is in programs that you write yourself, in which case you control the
meaning of the file descriptors and can take advantage of redirection.

Opening a file
descriptor

The Bourne Again Shell opens files using the exec builtin as follows:

exec n> outfile
exec m< infile

The first line opens outfile for output and holds it open, associating it with file
descriptor n. The second line opens infile for input and holds it open, associating it
with file descriptor m.

430 Chapter 11 Programming the Bourne Again Shell

Duplicating a file
descriptor

The <& token duplicates an input file descriptor; use >& to duplicate an output file
descriptor. You can duplicate a file descriptor by making it refer to the same file as
another open file descriptor, such as standard input or output. Use the following
format to open or redirect file descriptor n as a duplicate of file descriptor m:

exec n<&m

Once you have opened a file, you can use it for input and output in two different
ways. First, you can use I/O redirection on any command line, redirecting standard
output to a file descriptor with >&n or redirecting standard input from a file descrip-
tor with <&n. Second, you can use the read (page 445) and echo builtins. If you
invoke other commands, including functions (page 331), they inherit these open files
and file descriptors. When you have finished using a file, you can close it with

exec n<&–

When you invoke the shell function in the next example, named mycp, with two
arguments, it copies the file named by the first argument to the file named by the
second argument. If you supply only one argument, the script copies the file named
by the argument to standard output. If you invoke mycp with no arguments, it cop-
ies standard input to standard output.

function mycp ()
{
case $# in
 0)
 # zero arguments
 # file descriptor 3 duplicates standard input
 # file descriptor 4 duplicates standard output
 exec 3<&0 4<&1
 ;;
 1)
 # one argument
 # open the file named by the argument for input
 # and associate it with file descriptor 3
 # file descriptor 4 duplicates standard output
 exec 3< $1 4<&1
 ;;
 2)
 # two arguments
 # open the file named by the first argument for input
 # and associate it with file descriptor 3
 # open the file named by the second argument for output
 # and associate it with file descriptor 4
 exec 3< $1 4> $2
 ;;

A function is not a shell script

tip The mycp example is a shell function; it will not work as you expect if you execute it as a shell
script. (It will work: The function will be created in a very short-lived subshell, which is probably
of little use.) You can enter this function from the keyboard. If you put the function in a file, you
can run it as an argument to the . (dot) builtin (page 279). You can also put the function in a
startup file if you want it to be always available (page 333).

File Descriptors 431

 *)
 echo "Usage: mycp [source [dest]]"
 return 1
 ;;
esac

call cat with input coming from file descriptor 3
and output going to file descriptor 4
cat <&3 >&4

close file descriptors 3 and 4
exec 3<&- 4<&-
}

The real work of this function is done in the line that begins with cat. The rest of the
script arranges for file descriptors 3 and 4, which are the input and output of the cat
command, to be associated with the appropriate files.

optional The next program takes two filenames on the command line, sorts both, and sends
the output to temporary files. The program then merges the sorted files to standard
output, preceding each line by a number that indicates which file it came from.

$ cat sortmerg
#!/bin/bash
usage ()
{
if [$# -ne 2]; then

echo "Usage: $0 file1 file2" 2>&1
exit 1
fi

}

Default temporary directory
: ${TEMPDIR:=/tmp}

Check argument count
usage "$@"

Set up temporary files for sorting
file1=$TEMPDIR/$$.file1
file2=$TEMPDIR/$$.file2

Sort
sort $1 > $file1
sort $2 > $file2

Open $file1 and $file2 for reading. Use file descriptors 3 and 4.
exec 3<$file1
exec 4<$file2

Read the first line from each file to figure out how to start.
read Line1 <&3
status1=$?
read Line2 <&4
status2=$?

432 Chapter 11 Programming the Bourne Again Shell

Strategy: while there is still input left in both files:
Output the line that should come first.
Read a new line from the file that line came from.
while [$status1 -eq 0 -a $status2 -eq 0]

do
if [["$Line2" > "$Line1"]]; then

echo -e "1.\t$Line1"
read -u3 Line1
status1=$?

else
echo -e "2.\t$Line2"
read -u4 Line2
status2=$?

fi
done

Now one of the files is at end-of-file.
Read from each file until the end.
First file1:
while [$status1 -eq 0]

do
echo -e "1.\t$Line1"
read Line1 <&3
status1=$?

done
Next file2:
while [[$status2 -eq 0]]

do
echo -e "2.\t$Line2"
read Line2 <&4
status2=$?

done

Close and remove both input files
exec 3<&- 4<&-
rm -f $file1 $file2
exit 0

Parameters and Variables

Shell parameters and variables were introduced on page 295. This section adds to
the previous coverage with a discussion of array variables, global versus local vari-
ables, special and positional parameters, and expanding null and unset variables.

Array Variables

The Bourne Again Shell supports one-dimensional array variables. The subscripts
are integers with zero-based indexing (i.e., the first element of the array has the sub-
script 0). The following format declares and assigns values to an array:

Parameters and Variables 433

name=(element1 element2 ...)

The following example assigns four values to the array NAMES:

$ NAMES=(max helen sam zach)

You reference a single element of an array as follows:

$ echo ${NAMES[2]}
sam

The subscripts [*] and [@] both extract the entire array but work differently when
used within double quotation marks. An @ produces an array that is a duplicate of
the original array; an * produces a single element of an array (or a plain variable)
that holds all the elements of the array separated by the first character in IFS (nor-
mally a SPACE). In the following example, the array A is filled with the elements of the
NAMES variable using an *, and B is filled using an @. The declare builtin with the
–a option displays the values of the arrays (and reminds you that bash uses zero-
based indexing for arrays):

$ A=("${NAMES[*]}")
$ B=("${NAMES[@]}")

$ declare -a
declare -a A='([0]="max helen sam zach")'
declare -a B='([0]="max" [1]="helen" [2]="sam" [3]="zach")'
...
declare -a NAMES='([0]="max" [1]="helen" [2]="sam" [3]="zach")'

From the output of declare, you can see that NAMES and B have multiple elements.
In contrast, A, which was assigned its value with an * within double quotation
marks, has only one element: A has all its elements enclosed between double quota-
tion marks.

In the next example, echo attempts to display element 1 of array A. Nothing is dis-
played because A has only one element and that element has an index of 0. Element
0 of array A holds all four names. Element 1 of B holds the second item in the array
and element 0 holds the first item.

$ echo ${A[1]}

$ echo ${A[0]}
max helen sam zach
$ echo ${B[1]}
helen
$ echo ${B[0]}
max

You can apply the ${#name[*]} operator to array variables, returning the number
of elements in the array:

$ echo ${#NAMES[*]}
4

434 Chapter 11 Programming the Bourne Again Shell

The same operator, when given the index of an element of an array in place of *,
returns the length of the element:

$ echo ${#NAMES[1]}
5

You can use subscripts on the left side of an assignment statement to replace
selected elements of the array:

$ NAMES[1]=alex
$ echo ${NAMES[*]}
max alex sam zach

Locality of Variables

By default variables are local to the process in which they are declared. Thus a shell
script does not have access to variables declared in your login shell unless you
explicitly make the variables available (global). Under bash, export makes a variable
available to child processes.

Once you use the export builtin with a variable name as an argument, the shell
places the value of the variable in the calling environment of child processes. This
call by value gives each child process a copy of the variable for its own use.

The following extest1 shell script assigns a value of american to the variable named
cheese and then displays its filename (extest1) and the value of cheese. The extest1
script then calls subtest, which attempts to display the same information. Next sub-
test declares a cheese variable and displays its value. When subtest finishes, it
returns control to the parent process, which is executing extest1. At this point
extest1 again displays the value of the original cheese variable.

$ cat extest1
cheese=american
echo "extest1 1: $cheese"
subtest
echo "extest1 2: $cheese"
$ cat subtest
echo "subtest 1: $cheese"
cheese=swiss
echo "subtest 2: $cheese"
$ extest1
extest1 1: american
subtest 1:
subtest 2: swiss
extest1 2: american

The subtest script never receives the value of cheese from extest1, and extest1 never
loses the value. Unlike in the real world, a child can never affect its parent’s
attributes. When a process attempts to display the value of a variable that has not
been declared, as is the case with subtest, the process displays nothing; the value of
an undeclared variable is that of a null string.

Parameters and Variables 435

export The following extest2 script is the same as extest1 except that it uses export to make
cheese available to the subtest script:

$ cat extest2
export cheese=american
echo "extest2 1: $cheese"
subtest
echo "extest2 2: $cheese"
$ extest2
extest2 1: american
subtest 1: american
subtest 2: swiss
extest2 2: american

Here the child process inherits the value of cheese as american and, after displaying
this value, changes its copy to swiss. When control is returned to the parent, the
parent’s copy of cheese retains its original value: american.

An export builtin can optionally include an assignment:

export cheese=american

The preceding statement is equivalent to the following two statements:

cheese=american
export cheese

Although it is rarely done, you can export a variable before you assign a value to it.
You do not need to export an already-exported variable a second time after you
change its value. For example, you do not usually need to export PATH when you
assign a value to it in ~/.bash_profile because it is typically exported in the /etc/profile
global startup file.

Functions

Because functions run in the same environment as the shell that calls them, variables
are implicitly shared by a shell and a function it calls.

$ function nam () {
> echo $myname
> myname=zach
> }

$ myname=sam
$ nam
sam
$ echo $myname
zach

In the preceding example, the myname variable is set to sam in the interactive shell.
Then the nam function is called. It displays the value of myname it has (sam) and
sets myname to zach. The final echo shows that, in the interactive shell, the value of
myname has been changed to zach.

436 Chapter 11 Programming the Bourne Again Shell

Function local
variables

Local variables are helpful in a function written for general use. Because the func-
tion is called by many scripts that may be written by different programmers, you
need to make sure that the names of the variables used within the function do not
interact with variables of the same name in the programs that call the function.
Local variables eliminate this problem. When used within a function, the typeset
builtin declares a variable to be local to the function it is defined in.

The next example shows the use of a local variable in a function. It uses two vari-
ables named count. The first is declared and assigned a value of 10 in the interactive
shell. Its value never changes, as echo verifies after count_down is run. The other
count is declared, using typeset, to be local to the function. Its value, which is
unknown outside the function, ranges from 4 to 1, as the echo command within the
function confirms.

The example shows the function being entered from the keyboard; it is not a shell
script. (See the tip “A function is not a shell script” on page 430).

$ function count_down () {
> typeset count
> count=$1
> while [$count -gt 0]
> do
> echo "$count..."
> ((count=count-1))
> sleep 1
> done
> echo "Blast Off."
> }
$ count=10
$ count_down 4
4...
3...
2...
1...
Blast Off\!
$ echo $count
10

The ((count=count–1)) assignment is enclosed between double parentheses, which
cause the shell to perform an arithmetic evaluation (page 458). Within the double
parentheses you can reference shell variables without the leading dollar sign ($).

Special Parameters

Special parameters enable you to access useful values pertaining to command line
arguments and the execution of shell commands. You reference a shell special
parameter by preceding a special character with a dollar sign ($). As with posi-
tional parameters, it is not possible to modify the value of a special parameter by
assignment.

Parameters and Variables 437

$$: PID Number

The shell stores in the $$ parameter the PID number of the process that is execut-
ing it. In the following interaction, echo displays the value of this variable and the
ps utility confirms its value. Both commands show that the shell has a PID number
of 5209:

$ echo $$
5209
$ ps
 PID TTY TIME CMD
 5209 pts/1 00:00:00 bash
 6015 pts/1 00:00:00 ps

Because echo is built into the shell, the shell does not have to create another process
when you give an echo command. However, the results are the same whether echo is
a builtin or not, because the shell substitutes the value of $$ before it forks a new
process to run a command. Try using the echo utility (/bin/echo), which is run by
another process, and see what happens. In the following example, the shell substi-
tutes the value of $$ and passes that value to cp as a prefix for a filename:

$ echo $$
8232
$ cp memo $$.memo
$ ls
8232.memo memo

Incorporating a PID number in a filename is useful for creating unique filenames
when the meanings of the names do not matter; it is often used in shell scripts for
creating names of temporary files. When two people are running the same shell
script, these unique filenames keep them from inadvertently sharing the same tem-
porary file.

The following example demonstrates that the shell creates a new shell process when
it runs a shell script. The id2 script displays the PID number of the process running
it (not the process that called it—the substitution for $$ is performed by the shell
that is forked to run id2):

$ cat id2
echo "$0 PID= $$"
$ echo $$
8232
$ id2
./id2 PID= 8362
$ echo $$
8232

The first echo displays the PID number of the interactive shell. Then id2 displays its
name ($0) and the PID of the subshell that it is running in. The last echo shows that
the PID number of the interactive shell has not changed.

438 Chapter 11 Programming the Bourne Again Shell

$! The value of the PID number of the last process that you ran in the background is
stored in $!. The following example executes sleep as a background task and uses
echo to display the value of $! :

$ sleep 60 &
[1] 8376
$ echo $!
8376

$?: Exit Status

When a process stops executing for any reason, it returns an exit status to the par-
ent process. The exit status is also referred to as a condition code or a return code.
The $? variable stores the exit status of the last command.

By convention a nonzero exit status represents a false value and means that the
command failed. A zero is true and indicates that the command was successful. In
the following example, the first ls command succeeds and the second fails:

$ ls es
es
$ echo $?
0
$ ls xxx
ls: xxx: No such file or directory
$ echo $?
1

You can specify the exit status that a shell script returns by using the exit builtin, followed
by a number, to terminate the script. If you do not use exit with a number to terminate a
script, the exit status of the script is that of the last command the script ran.

$ cat es
echo This program returns an exit status of 7.
exit 7
$ es
This program returns an exit status of 7.
$ echo $?
7
$ echo $?
0

The es shell script displays a message and terminates execution with an exit com-
mand that returns an exit status of 7, the user-defined exit status in this script. The
first echo then displays the value of the exit status of es. The second echo displays
the value of the exit status of the first echo. The value is 0 because the first echo was
successful.

Positional Parameters

The positional parameters comprise the command name and command line argu-
ments. They are called positional because within a shell script, you refer to them by

Parameters and Variables 439

their position on the command line. Only the set builtin (page 442) allows you to
change the values of positional parameters with one exception: You cannot change
the value of the command name from within a script.

$#: Number of Command Line Arguments

The $# parameter holds the number of arguments on the command line (positional
parameters), not counting the command itself:

$ cat num_args
echo "This script was called with $# arguments."
$ num_args sam max zach
This script was called with 3 arguments.

$0: Name of the Calling Program

The shell stores the name of the command you used to call a program in parameter
$0. This parameter is numbered zero because it appears before the first argument
on the command line:

$ cat abc
echo "The command used to run this script is $0"
$ abc
The command used to run this script is ./abc
$ /home/sam/abc
The command used to run this script is /home/sam/abc

The preceding shell script uses echo to verify the name of the script you are executing.
You can use the basename utility and command substitution to extract and display
the simple filename of the command:

$ cat abc2
echo "The command used to run this script is $(basename $0)"
$ /home/sam/abc2
The command used to run this script is abc2

$1–$n: Command Line Arguments

The first argument on the command line is represented by parameter $1, the second
argument by $2, and so on up to $n. For values of n over 9, the number must be
enclosed within braces. For example, the twelfth command line argument is repre-
sented by ${12}. The following script displays positional parameters that hold com-
mand line arguments:

$ cat display_5args
echo First 5 arguments are $1 $2 $3 $4 $5

$ display_5args jenny alex helen
First 5 arguments are jenny alex helen

The display_5args script displays the first five command line arguments. The shell
assigns a null value to each parameter that represents an argument that is not

440 Chapter 11 Programming the Bourne Again Shell

present on the command line. Thus the $4 and $5 variables have null values in this
example.

$* The $* variable represents all the command line arguments, as the display_all pro-
gram demonstrates:

$ cat display_all
echo All arguments are $*

$ display_all a b c d e f g h i j k l m n o p
All arguments are a b c d e f g h i j k l m n o p

Enclose references to positional parameters between double quotation marks. The
quotation marks are particularly important when you are using positional parame-
ters as arguments to commands. Without double quotation marks, a positional
parameter that is not set or that has a null value disappears:

$ cat showargs
echo "$0 was called with $# arguments, the first is :$1:."

$ showargs a b c
./showargs was called with 3 arguments, the first is :a:.
$ echo $xx

$ showargs $xx a b c
./showargs was called with 3 arguments, the first is :a:.
$ showargs "$xx" a b c
./showargs was called with 4 arguments, the first is ::.

The showargs script displays the number of arguments ($#) followed by the value of
the first argument enclosed between colons. The preceding example first calls
showargs with three simple arguments. Next the echo command demonstrates that
the $xx variable, which is not set, has a null value. In the final two calls to
showargs, the first argument is $xx. In the first case the command line becomes
showargs a b c; the shell passes showargs three arguments. In the second case the
command line becomes showargs "" a b c, which results in calling showargs with
four arguments. The difference in the two calls to showargs illustrates a subtle
potential problem that you should keep in mind when using positional parameters
that may not be set or that may have a null value.

"$*" versus "$@" The $* and $@ parameters work the same way except when they are enclosed
within double quotation marks. Using "$*" yields a single argument (with SPACEs or
the value of IFS [page 305] between the positional parameters), whereas "$@" pro-
duces a list wherein each positional parameter is a separate argument. This differ-
ence typically makes "$@" more useful than "$*" in shell scripts.

The following scripts help to explain the difference between these two special
parameters. In the second line of both scripts, the single quotation marks keep the
shell from interpreting the enclosed special characters so they can be displayed as
themselves. The bb1 script shows that set "$*" assigns multiple arguments to the
first command line parameter:

Parameters and Variables 441

$ cat bb1
set "$*"
echo $# parameters with '"$*"'
echo 1: $1
echo 2: $2
echo 3: $3

$ bb1 a b c
1 parameters with "$*"
1: a b c
2:
3:

The bb2 script shows that set "$@" assigns each argument to a different command
line parameter:

$ cat bb2
set "$@"
echo $# parameters with '"$@"'
echo 1: $1
echo 2: $2
echo 3: $3

$ bb2 a b c
3 parameters with "$@"
1: a
2: b
3: c

shift: Promotes Command Line Arguments

The shift builtin promotes each command line argument. The first argument (which
was $1) is discarded. The second argument (which was $2) becomes the first argu-
ment (now $1), the third becomes the second, and so on. Because no “unshift” com-
mand exists, you cannot bring back arguments that have been discarded. An
optional argument to shift specifies the number of positions to shift (and the number
of arguments to discard); the default is 1.

The following demo_shift script is called with three arguments. Double quotation
marks around the arguments to echo preserve the spacing of the output. The pro-
gram displays the arguments and shifts them repeatedly until there are no more
arguments left to shift:

$ cat demo_shift
echo "arg1= $1 arg2= $2 arg3= $3"
shift
echo "arg1= $1 arg2= $2 arg3= $3"
shift
echo "arg1= $1 arg2= $2 arg3= $3"
shift
echo "arg1= $1 arg2= $2 arg3= $3"
shift

442 Chapter 11 Programming the Bourne Again Shell

$ demo_shift alice helen jenny
arg1= alice arg2= helen arg3= jenny
arg1= helen arg2= jenny arg3=
arg1= jenny arg2= arg3=
arg1= arg2= arg3=

Repeatedly using shift is a convenient way to loop over all the command line argu-
ments in shell scripts that expect an arbitrary number of arguments. See page 401
for a shell script that uses shift.

set: Initializes Command Line Arguments

When you call the set builtin with one or more arguments, it assigns the values of
the arguments to the positional parameters, starting with $1. The following script
uses set to assign values to the positional parameters $1, $2, and $3:

$ cat set_it
set this is it
echo $3 $2 $1
$ set_it
it is this

Combining command substitution (page 344) with the set builtin is a convenient
way to get standard output of a command in a form that can be easily manipulated
in a shell script. The following script shows how to use date and set to provide the
date in a useful format. The first command shows the output of date. Then cat dis-
plays the contents of the dateset script. The first command in this script uses com-
mand substitution to set the positional parameters to the output of the date utility.
The next command, echo $*, displays all positional parameters resulting from the
previous set. Subsequent commands display the values of parameters $1, $2, $3, and
$6. The final command displays the date in a format you can use in a letter or report:

$ date
Wed Jan 2 23:39:18 PST 2008
$ cat dateset
set $(date)
echo $*
echo
echo "Argument 1: $1"
echo "Argument 2: $2"
echo "Argument 3: $3"
echo "Argument 6: $6"
echo
echo "$2 $3, $6"

$ dateset
Wed Jan 2 23:39:25 PST 2008

Argument 1: Wed
Argument 2: Jan
Argument 3: 2
Argument 6: 2008

Jan 2, 2008

Parameters and Variables 443

You can also use the +format argument to date to modify the format of its output.

When used without any arguments, set displays a list of the shell variables that are
set, including user-created variables and keyword variables. Under bash, this list is
the same as that displayed by declare and typeset when they are called without any
arguments.

The set builtin also accepts options that let you customize the behavior of the shell.
For more information refer to “set ±o: Turns Shell Features On and Off” on
page 335.

Expanding Null and Unset Variables

The expression ${name} (or just $name if it is not ambiguous) expands to the value
of the name variable. If name is null or not set, bash expands ${name} to a null
string. The Bourne Again Shell provides the following alternatives to accepting the
expanded null string as the value of the variable:

• Use a default value for the variable.

• Use a default value and assign that value to the variable.

• Display an error.

You can choose one of these alternatives by using a modifier with the variable
name. In addition, you can use set –o nounset (page 337) to cause bash to display
an error and exit from a script whenever an unset variable is referenced.

:– Uses a Default Value

The :– modifier uses a default value in place of a null or unset variable while allow-
ing a nonnull variable to represent itself:

${name:–default}

The shell interprets :– as “If name is null or unset, expand default and use the
expanded value in place of name; else use name.” The following command lists the
contents of the directory named by the LIT variable. If LIT is null or unset, it lists
the contents of /home/alex/literature:

$ ls ${LIT:-/home/alex/literature}

The default can itself have variable references that are expanded:

$ ls ${LIT:-$HOME/literature}

:= Assigns a Default Value

The :– modifier does not change the value of a variable. You may want to change
the value of a null or unset variable to its default in a script, however. You can do so
with the := modifier:

${name:=default}

444 Chapter 11 Programming the Bourne Again Shell

The shell expands the expression ${name:=default} in the same manner as it
expands ${name:–default} but also sets the value of name to the expanded value
of default. If a script contains a line such as the following and LIT is unset or null at
the time this line is executed, LIT is assigned the value /home/alex/literature:

$ ls ${LIT:=/home/alex/literature}

: builtin Shell scripts frequently start with the : (colon) builtin followed on the same line by
the := expansion modifier to set any variables that may be null or unset. The : buil-
tin evaluates each token in the remainder of the command line but does not execute
any commands. Without the leading colon (:), the shell evaluates and attempts to
execute the “command” that results from the evaluation.

Use the following syntax to set a default for a null or unset variable in a shell script
(there is a SPACE following the first colon):

: ${name:=default}

When a script needs a directory for temporary files and uses the value of TEMPDIR
for the name of this directory, the following line makes TEMPDIR default to /tmp:

: ${TEMPDIR:=/tmp}

:? Displays an Error Message

Sometimes a script needs the value of a variable but you cannot supply a reasonable
default at the time you write the script. If the variable is null or unset, the :? modi-
fier causes the script to display an error message and terminate with an exit status
of 1:

${name:?message}

You must quote message if it contains SPACEs. If you omit message, the shell displays
the default error message (parameter null or not set). Interactive shells do not exit
when you use :? . In the following command, TESTDIR is not set so the shell dis-
plays on standard error the expanded value of the string following :?. In this case
the string includes command substitution for date, with the %T format being fol-
lowed by the string error, variable not set.

cd ${TESTDIR:?$(date +%T) error, variable not set.}
bash: TESTDIR: 16:16:14 error, variable not set.

Builtin Commands

Builtin commands were introduced in Chapter 7. Commands that are built into a
shell do not fork a new process when you execute them. This section discusses the
type, read, exec, trap, kill, and getopts builtins and concludes with Table 11-6 on
page 457, which lists many bash builtins.

Builtin Commands 445

type: Displays Information About a Command

The type builtin provides information about a command:

$ type cat echo who if lt
cat is hashed (/bin/cat)
echo is a shell builtin
who is /usr/bin/who
if is a shell keyword
lt is aliased to 'ls -ltrh | tail'

The preceding output shows the files that would be executed if you gave cat or who
as a command. Because cat has already been called from the current shell, it is in the
hash table (page 1039) and type reports that cat is hashed. The output also shows
that a call to echo runs the echo builtin, if is a keyword, and lt is an alias.

read: Accepts User Input

When you begin writing shell scripts, you soon realize that one of the most common
tasks for user-created variables is storing information a user enters in response to a
prompt. Using read, scripts can accept input from the user and store that input in
variables. The read builtin reads one line from standard input and assigns the words
on the line to one or more variables:

$ cat read1
echo -n "Go ahead: "
read firstline
echo "You entered: $firstline"
$ read1
Go ahead: This is a line.
You entered: This is a line.

The first line of the read1 script uses echo to prompt you to enter a line of text. The
–n option suppresses the following NEWLINE, allowing you to enter a line of text on the
same line as the prompt. The second line reads the text into the variable firstline.
The third line verifies the action of read by displaying the value of firstline. The vari-
able is quoted (along with the text string) in this example because you, as the script
writer, cannot anticipate which characters the user might enter in response to the
prompt. Consider what would happen if the variable were not quoted and the user
entered * in response to the prompt:

$ cat read1_no_quote
echo -n "Go ahead: "
read firstline
echo You entered: $firstline
$ read1_no_quote
Go ahead: *
You entered: read1 read1_no_quote script.1
$ ls
read1 read1_no_quote script.1

446 Chapter 11 Programming the Bourne Again Shell

The ls command lists the same words as the script, demonstrating that the shell
expands the asterisk into a list of files in the working directory. When the variable
$firstline is surrounded by double quotation marks, the shell does not expand the
asterisk. Thus the read1 script behaves correctly:

$ read1
Go ahead: *
You entered: *

If you want the shell to interpret the special meanings of special characters, do not
use quotation marks.

REPLY The read builtin has features that can make it easier to use. When you do not
specify a variable to receive read’s input, bash puts the input into the variable
named REPLY. You can use the –p option to prompt the user instead of using a
separate echo command. The following read1a script performs exactly the same
task as read1:

$ cat read1a
read -p "Go ahead: "
echo "You entered: $REPLY"

The read2 script prompts for a command line and reads the user’s response into the
variable cmd. The script then attempts to execute the command line that results
from the expansion of the cmd variable:

$ cat read2
read -p "Enter a command: " cmd
$cmd
echo "Thanks"

In the following example, read2 reads a command line that calls the echo builtin.
The shell executes the command and then displays Thanks. Next read2 reads a
command line that executes the who utility:

$ read2
Enter a command: echo Please display this message.
Please display this message.
Thanks
$ read2
Enter a command: who
alex pts/4 Jun 17 07:50 (:0.0)
scott pts/12 Jun 17 11:54 (bravo.example.com)
Thanks

If cmd does not expand into a valid command line, the shell issues an error message:

$ read2
Enter a command: xxx
./read2: line 2: xxx: command not found
Thanks

The read3 script reads values into three variables. The read builtin assigns one word
(a sequence of nonblank characters) to each variable:

Builtin Commands 447

$ cat read3
read -p "Enter something: " word1 word2 word3
echo "Word 1 is: $word1"
echo "Word 2 is: $word2"
echo "Word 3 is: $word3"

$ read3
Enter something: this is something
Word 1 is: this
Word 2 is: is
Word 3 is: something

When you enter more words than read has variables, read assigns one word to each
variable, with all leftover words going to the last variable. Both read1 and read2
assigned the first word and all leftover words to the one variable they each had to
work with. In the following example, read accepts five words into three variables,
assigning the first word to the first variable, the second word to the second variable,
and the third through fifth words to the third variable:

$ read3
Enter something: this is something else, really.
Word 1 is: this
Word 2 is: is
Word 3 is: something else, really.

Table 11-4 lists some of the options supported by the read builtin.

Table 11-4 read options

Option Function

–a aname (array) Assigns each word of input to an element of array aname.

–d delim (delimiter) Uses delim to terminate the input instead of NEWLINE.

–e (Readline) If input is coming from a keyboard, use the Readline Library
(page 322) to get input.

–n num (number of characters) Reads num characters and returns. As soon as the user types
num characters, read returns; there is no need to press RETURN.

–p prompt (prompt) Displays prompt on standard error without a terminating NEWLINE
before reading input. Displays prompt only when input comes
from the keyboard.

–s (silent) Does not echo characters.

–un (file descriptor) Uses the integer n as the file descriptor that read takes its input
from.

read –u4 arg1 arg2

is equivalent to
read arg1 arg2 <&4

See “File Descriptors” (page 429) for a discussion of redirec-
tion and file descriptors.

448 Chapter 11 Programming the Bourne Again Shell

The read builtin returns an exit status of 0 if it successfully reads any data. It has a
nonzero exit status when it reaches the EOF (end of file). The following example
runs a while loop from the command line. It takes its input from the names file and
terminates after reading the last line from names.

$ cat names
Alice Jones
Robert Smith
Alice Paulson
John Q. Public

$ while read first rest
> do
> echo $rest, $first
> done < names
Jones, Alice
Smith, Robert
Paulson, Alice
Q. Public, John
$

The placement of the redirection symbol (<) for the while structure is critical. It is
important that you place the redirection symbol at the done statement and not at
the call to read.

optional Each time you redirect input, the shell opens the input file and repositions the read
pointer at the start of the file:

$ read line1 < names; echo $line1; read line2 < names; echo $line2
Alice Jones
Alice Jones

Here each read opens names and starts at the beginning of the names file. In the fol-
lowing example, names is opened once, as standard input of the subshell created by
the parentheses. Each read then reads successive lines of standard input.

$ (read line1; echo $line1; read line2; echo $line2) < names
Alice Jones
Robert Smith

Another way to get the same effect is to open the input file with exec and hold it
open (refer to “File Descriptors” on page 429):

$ exec 3< names
$ read -u3 line1; echo $line1; read -u3 line2; echo $line2
Alice Jones
Robert Smith
$ exec 3<&-

exec: Executes a Command

The exec builtin has two primary purposes: to run a command without creating a
new process and to redirect a file descriptor—including standard input, output, or
error—of a shell script from within the script (page 429). When the shell executes a

Builtin Commands 449

command that is not built into the shell, it typically creates a new process. The new
process inherits environment (global or exported) variables from its parent but does
not inherit variables that are not exported by the parent. (For more information
refer to “Locality of Variables” on page 434.) In contrast, exec executes a command
in place of (overlays) the current process.

exec versus . (dot) Insofar as exec runs a command in the environment of the original process, it is sim-
ilar to the . (dot) command (page 279). However, unlike the . command, which can
run only shell scripts, exec can run both scripts and compiled programs. Also,
whereas the . command returns control to the original script when it finishes run-
ning, exec does not. Finally, the . command gives the new program access to local
variables, whereas exec does not.

exec runs a
command

The exec builtin used for running a command has the following syntax:

exec command arguments

exec does not
return control

Because the shell does not create a new process when you use exec, the command
runs more quickly. However, because exec does not return control to the original
program, it can be used only as the last command that you want to run in a script.
The following script shows that control is not returned to the script:

$ cat exec_demo
who
exec date
echo "This line is never displayed."

$ exec_demo
jenny pts/7 May 30 7:05 (bravo.example.com)
hls pts/1 May 30 6:59 (:0.0)
Mon May 26 11:42:56 PDT 2007

The next example, a modified version of the out script (page 401), uses exec to exe-
cute the final command the script runs. Because out runs either cat or less and then
terminates, the new version, named out2, uses exec with both cat and less:

$ cat out2
if [$# -eq 0]

then
echo "Usage: out2 [-v] filenames" 1>&2
exit 1

fi
if ["$1" = "-v"]

then
shift
exec less "$@"

else
exec cat -- "$@"

fi

exec redirects
input and output

The second major use of exec is to redirect a file descriptor—including standard
input, output, or error—from within a script. The next command causes all subse-
quent input to a script that would have come from standard input to come from the
file named infile:

exec < infile

450 Chapter 11 Programming the Bourne Again Shell

Similarly the following command redirects standard output and standard error to
outfile and errfile, respectively:

exec > outfile 2> errfile

When you use exec in this manner, the current process is not replaced with a new
process, and exec can be followed by other commands in the script.

/dev/tty When you redirect the output from a script to a file, you must make sure that the
user sees any prompts the script displays. The /dev/tty device is a pseudonym for
the screen the user is working on; you can use this device to refer to the user’s screen
without knowing which device it is. (The tty utility displays the name of the device
you are using.) By redirecting the output from a script to /dev/tty, you ensure that
prompts and messages go to the user’s terminal, regardless of which terminal the
user is logged in on. Messages sent to /dev/tty are also not diverted if standard out-
put and standard error from the script are redirected.

The to_screen1 script sends output to three places: standard output, standard error,
and the user’s screen. When it is run with standard output and standard error redi-
rected, to_screen1 still displays the message sent to /dev/tty on the user’s screen.
The out and err files hold the output sent to standard output and standard error.

$ cat to_screen1
echo "message to standard output"
echo "message to standard error" 1>&2
echo "message to the user" > /dev/tty

$ to_screen1 > out 2> err
message to the user
$ cat out
message to standard output
$ cat err
message to standard error

The following command redirects the output from a script to the user’s screen:

exec > /dev/tty

Putting this command at the beginning of the previous script changes where the out-
put goes. In to_screen2, exec redirects standard output to the user’s screen so the >
/dev/tty is superfluous. Following the exec command, all output sent to standard
output goes to /dev/tty (the screen). Output to standard error is not affected.

$ cat to_screen2
exec > /dev/tty
echo "message to standard output"
echo "message to standard error" 1>&2
echo "message to the user" > /dev/tty

$ to_screen2 > out 2> err
message to standard output
message to the user

One disadvantage of using exec to redirect the output to /dev/tty is that all subse-
quent output is redirected unless you use exec again in the script.

Builtin Commands 451

You can also redirect the input to read (standard input) so that it comes from
/dev/tty (the keyboard):

read name < /dev/tty

or

exec < /dev/tty

trap: Catches a Signal

A signal is a report to a process about a condition. Linux uses signals to report
interrupts generated by the user (for example, pressing the interrupt key) as well as
bad system calls, broken pipes, illegal instructions, and other conditions. The trap
builtin catches, or traps, one or more signals, allowing you to direct the actions a
script takes when it receives a specified signal.

This discussion covers six signals that are significant when you work with shell
scripts. Table 11-5 lists these signals, the signal numbers that systems often ascribe
to them, and the conditions that usually generate each signal. Give the command
kill –l, trap –l, or man 7 signal for a list of signal names.

Table 11-5 Signals

Type Name Number Generating condition

Not a real signal EXIT 0 Exit because of exit command or reaching the
end of the program (not an actual signal but use-
ful in trap)

Hang up SIGHUP or
HUP

1 Disconnect the line

Terminal
interrupt

SIGINT or
INT

2 Press the interrupt key (usually CONTROL-C)

Quit SIGQUIT or
QUIT

3 Press the quit key (usually CONTROL-SHIFT-| or
CONTROL-SHIFT-\)

Kill SIGKILL or
KILL

9 The kill command with the –9 option (cannot be
trapped; use only as a last resort)

Software
termination

SIGTERM or
TERM

15 Default of the kill command

Stop SIGTSTP or
TSTP

20 Press the suspend key (usually CONTROL-Z)

Debug DEBUG Executes commands specified in the trap state-
ment after each command (not an actual signal
but useful in trap)

Error ERR Executes commands specified in the trap state-
ment after each command that returns a nonzero
exit status (not an actual signal but useful in trap)

452 Chapter 11 Programming the Bourne Again Shell

When it traps a signal, a script takes whatever action you specify: It can remove files
or finish any other processing as needed, display a message, terminate execution
immediately, or ignore the signal. If you do not use trap in a script, any of the six
actual signals listed in Table 11-5 (not EXIT, DEBUG, or ERR) terminates the
script. Because a process cannot trap a KILL signal, you can use kill –KILL (or kill
–9) as a last resort to terminate a script or any other process. (See page 454 for
more information on kill.)

The trap command has the following syntax:

trap ['commands'] [signal]

The optional commands part specifies the commands that the shell executes when it
catches one of the signals specified by signal. The signal can be a signal name or
number—for example, INT or 2. If commands is not present, trap resets the trap to
its initial condition, which is usually to exit from the script.

The trap builtin does not require single quotation marks around commands as
shown in the preceding syntax, but it is a good practice to use them. The single
quotation marks cause shell variables within the commands to be expanded when
the signal occurs, not when the shell evaluates the arguments to trap. Even if you
do not use any shell variables in the commands, you need to enclose any command
that takes arguments within either single or double quotation marks. Quoting the
commands causes the shell to pass to trap the entire command as a single argument.

After executing the commands, the shell resumes executing the script where it left
off. If you want trap to prevent a script from exiting when it receives a signal but not
to run any commands explicitly, you can specify a null (empty) commands string, as
shown in the locktty script (page 417). The following command traps signal num-
ber 15 after which the script continues.

trap '' 15

The following script demonstrates how the trap builtin can catch the terminal inter-
rupt signal (2). You can use SIGINT, INT, or 2 to specify this signal. The script
returns an exit status of 1:

$ cat inter
#!/bin/bash
trap 'echo PROGRAM INTERRUPTED; exit 1' INT
while true
do

echo "Program running."
sleep 1

done
$ inter
Program running.
Program running.
Program running.
CONTROL-C
PROGRAM INTERRUPTED
$

Builtin Commands 453

: (null) builtin The second line of inter sets up a trap for the terminal interrupt signal using INT.
When trap catches the signal, the shell executes the two commands between the sin-
gle quotation marks in the trap command. The echo builtin displays the message
PROGRAM INTERRUPTED, exit terminates the shell running the script, and the
parent shell displays a prompt. If exit were not there, the shell would return control
to the while loop after displaying the message. The while loop repeats continuously
until the script receives a signal because the true utility always returns a true exit sta-
tus. In place of true you can use the : (null) builtin, which is written as a colon and
always returns a 0 (true) status.

The trap builtin frequently removes temporary files when a script is terminated pre-
maturely so that the files are not left to clutter the filesystem. The following shell
script, named addbanner, uses two traps to remove a temporary file when the script
terminates normally or owing to a hangup, software interrupt, quit, or software ter-
mination signal:

$ cat addbanner
#!/bin/bash
script=$(basename $0)

if [! -r "$HOME/banner"]
then

echo "$script: need readable $HOME/banner file" 1>&2
exit 1

fi

trap 'exit 1' 1 2 3 15
trap 'rm /tmp/$$.$script 2> /dev/null' 0

for file
do

if [-r "$file" -a -w "$file"]
then

cat $HOME/banner $file > /tmp/$$.$script
cp /tmp/$$.$script $file
echo "$script: banner added to $file" 1>&2

else
echo "$script: need read and write permission for $file" 1>&2

fi
done

When called with one or more filename arguments, addbanner loops through the
files, adding a header to the top of each. This script is useful when you use a stan-
dard format at the top of your documents, such as a standard layout for memos, or
when you want to add a standard header to shell scripts. The header is kept in a file
named ~/banner. Because addbanner uses the HOME variable, which contains the
pathname of the user’s home directory, the script can be used by several users with-
out modification. If Alex had written the script with /home/alex in place of
$HOME and then given the script to Jenny, either she would have had to change it
or addbanner would have used Alex’s banner file when Jenny ran it (assuming Jenny
had read permission for the file).

454 Chapter 11 Programming the Bourne Again Shell

The first trap in addbanner causes it to exit with a status of 1 when it receives a
hangup, software interrupt (terminal interrupt or quit signal), or software termina-
tion signal. The second trap uses a 0 in place of signal-number, which causes trap to
execute its command argument whenever the script exits because it receives an exit
command or reaches its end. Together these traps remove a temporary file whether
the script terminates normally or prematurely. Standard error of the second trap is
sent to /dev/null for cases in which trap attempts to remove a nonexistent temporary
file. In those cases rm sends an error message to standard error; because standard
error is redirected, the user does not see this message.

See page 417 for another example that uses trap.

kill: Aborts a Process

The kill builtin sends a signal to a process or job. The kill command has the following
syntax:

kill [–signal] PID

where signal is the signal name or number (for example, INT or 2) and PID is the
process identification number of the process that is to receive the signal. You can
specify a job number (page 237) as %n in place of PID. If you omit signal, kill sends
a TERM (software termination, number 15) signal. For more information on signal
names and numbers see Table 11-5 on page 451.

The following command sends the TERM signal to job number 1:

$ kill -TERM %1

Because TERM is the default signal for kill, you can also give this command as kill
%1. Give the command kill –l (lowercase “l”) to display a list of signal names.

A program that is interrupted often leaves matters in an unpredictable state: Tempo-
rary files may be left behind (when they are normally removed), and permissions may
be changed. A well-written application traps, or detects, signals and cleans up before
exiting. Most carefully written applications trap the INT, QUIT, and TERM signals.

To terminate a program, first try INT (press CONTROL-C, if the job is in the foreground).
Because an application can be written to ignore these signals, you may need to use
the KILL signal, which cannot be trapped or ignored; it is a “sure kill.” For more
information refer to “kill: Sends a Signal to a Process” on page 522.

getopts: Parses Options

The getopts builtin parses command line arguments, thereby making it easier to write
programs that follow the Linux argument conventions. The syntax for getopts is

getopts optstring varname [arg ...]

where optstring is a list of the valid option letters, varname is the variable that
receives the options one at a time, and arg is the optional list of parameters to be
processed. If arg is not present, getopts processes the command line arguments. If
optstring starts with a colon (:), the script takes care of generating error messages;
otherwise, getopts generates error messages.

Builtin Commands 455

The getopts builtin uses the OPTIND (option index) and OPTARG (option argu-
ment) variables to store option-related values. When a shell script starts, the value
of OPTIND is 1. Each time getopts locates an argument, it increments OPTIND to
the index of the next option to be processed. If the option takes an argument, bash
assigns the value of the argument to OPTARG.

To indicate that an option takes an argument, follow the corresponding letter in
optstring with a colon (:). The option string dxo:lt:r indicates that getopts should
search for –d, –x, –o, –l, –t, and –r options and that the –o and –t options take
arguments.

Using getopts as the test-command in a while control structure allows you to loop
over the options one at a time. The getopts builtin checks the option list for options
that are in optstring. Each time through the loop, getopts stores the option letter it
finds in varname.

Suppose that you want to write a program that can take three options:

1. A –b option indicates that the program should ignore whitespace at the
start of input lines.

2. A –t option followed by the name of a directory indicates that the program
should use that directory for temporary files. Otherwise, it should use /tmp.

3. A –u option indicates that the program should translate all its output to
uppercase.

In addition, the program should ignore all other options and end option processing
when it encounters two hyphens (––).

The problem is to write the portion of the program that determines which options
the user has supplied. The following solution does not use getopts:

SKIPBLANKS=
TMPDIR=/tmp
CASE=lower
while [["$1" = -*]] # [[=]] does pattern match
do

case $1 in
-b) SKIPBLANKS=TRUE ;;
-t) if [-d "$2"]

then
TMPDIR=$2
shift

else
echo "$0: -t takes a directory argument." >&2
exit 1

fi ;;
-u) CASE=upper ;;
--) break ;; # Stop processing options

*) echo "$0: Invalid option $1 ignored." >&2 ;;
esac

shift
done

456 Chapter 11 Programming the Bourne Again Shell

This program fragment uses a loop to check and shift arguments while the argument
is not ––. As long as the argument is not two hyphens, the program continues to
loop through a case statement that checks for possible options. The –– case label
breaks out of the while loop. The * case label recognizes any option; it appears as
the last case label to catch any unknown options, displays an error message, and
allows processing to continue. On each pass through the loop, the program does a
shift to get to the next argument. If an option takes an argument, the program does
an extra shift to get past that argument.

The following program fragment processes the same options, but uses getopts:

SKIPBLANKS=
TMPDIR=/tmp
CASE=lower

while getopts :bt:u arg
do

case $arg in
b) SKIPBLANKS=TRUE ;;
t) if [-d "$OPTARG"]

then
TMPDIR=$OPTARG

else
echo "$0: $OPTARG is not a directory." >&2
exit 1

fi ;;
u) CASE=upper ;;
:) echo "$0: Must supply an argument to -$OPTARG." >&2

exit 1 ;;
\?) echo "Invalid option -$OPTARG ignored." >&2 ;;
esac

done

In this version of the code, the while structure evaluates the getopts builtin each time
it comes to the top of the loop. The getopts builtin uses the OPTIND variable to
keep track of the index of the argument it is to process the next time it is called.
There is no need to call shift in this example.

In the getopts version of the script the case patterns do not start with a hyphen
because the value of arg is just the option letter (getopts strips off the hyphen). Also,
getopts recognizes –– as the end of the options, so you do not have to specify it
explicitly as in the case statement in the first example.

Because you tell getopts which options are valid and which require arguments, it
can detect errors in the command line and handle them in two ways. This example
uses a leading colon in optstring to specify that you check for and handle errors in
your code; when getopts finds an invalid option, it sets varname to ? and OPTARG
to the option letter. When it finds an option that is missing an argument, getopts
sets varname to : and OPTARG to the option lacking an argument.

The \? case pattern specifies the action to take when getopts detects an invalid
option. The : case pattern specifies the action to take when getopts detects a missing

Builtin Commands 457

option argument. In both cases getopts does not write any error message; it leaves
that task to you.

If you omit the leading colon from optstring, both an invalid option and a missing
option argument cause varname to be assigned the string ?. OPTARG is not set and
getopts writes its own diagnostic message to standard error. Generally this method
is less desirable because you have less control over what the user sees when an
error is made.

Using getopts will not necessarily make your programs shorter. Its principal advan-
tages are that it provides a uniform programming interface and it enforces standard
option handling.

A Partial List of Builtins

Table 11-6 lists some of the bash builtins. See “Listing bash builtins” on page 243
for instructions on how to display complete lists of builtins.

Table 11-6 bash builtins

Builtin Function

: Returns 0 or true (the null builtin; page 453)

. (dot) Executes a shell script as part of the current process (page 279)

bg Puts a suspended job in the background (page 291)

break Exits from a looping control structure (page 418)

cd Changes to another working directory (page 193)

continue Starts with the next iteration of a looping control structure (page 418)

echo Displays its arguments (page 157)

eval Scans and evaluates the command line (page 333)

exec Executes a shell script or program in place of the current process (page 448)

exit Exits from the current shell (usually the same as CONTROL-D from an interactive
shell; page 438)

export Places the value of a variable in the calling environment (makes it global;
page 434)

fg Brings a job from the background into the foreground (page 290)

getopts Parses arguments to a shell script (page 454)

jobs Displays list of background jobs (page 290)

kill Sends a signal to a process or job (page 522)

pwd Displays the name of the working directory (page 188)

458 Chapter 11 Programming the Bourne Again Shell

Expressions

An expression is composed of constants, variables, and operators that can be pro-
cessed to return a value. This section covers arithmetic, logical, and conditional
expressions as well as operators. Table 11-8 on page 461 lists the bash operators.

Arithmetic Evaluation

The Bourne Again Shell can perform arithmetic assignments and evaluate many dif-
ferent types of arithmetic expressions, all using integers. The shell performs arith-
metic assignments in a number of ways. One is with arguments to the let builtin:

$ let "VALUE=VALUE * 10 + NEW"

In the preceding example, the variables VALUE and NEW contain integer values.
Within a let statement you do not need to use dollar signs ($) in front of variable
names. Double quotation marks must enclose a single argument, or expression, that
contains SPACEs. Because most expressions contain SPACEs and need to be quoted, bash
accepts ((expression)) as a synonym for let "expression", obviating the need for
both quotation marks and dollar signs:

$ ((VALUE=VALUE * 10 + NEW))

You can use either form wherever a command is allowed and can remove the SPACEs
if you like. In the following example, the asterisk (*) does not need to be quoted
because the shell does not perform pathname expansion on the right side of an
assignment (page 298):

$ let VALUE=VALUE*10+NEW

read Reads a line from standard input (page 445)

readonly Declares a variable to be readonly (page 299)

set Sets shell flags or command line argument variables; with no argument, lists
all variables (pages 335 and 442)

shift Promotes each command line argument (page 441)

test Compares arguments (page 397)

times Displays total times for the current shell and its children

trap Traps a signal (page 451)

type Displays how each argument would be interpreted as a command (page 445)

umask Returns the value of the file-creation mask (page 526)

unset Removes a variable or function (page 299)

wait Waits for a background process to terminate

Table 11-6 bash builtins (continued)

Expressions 459

Because each argument to let is evaluated as a separate expression, you can assign
values to more than one variable on a single line:

$ let "COUNT = COUNT + 1" VALUE=VALUE*10+NEW

You need to use commas to separate multiple assignments within a set of double
parentheses:

$ ((COUNT = COUNT + 1, VALUE=VALUE*10+NEW))

Logical expressions You can use the ((expression)) syntax for logical expressions, although that task is fre-
quently left to [[expression]]. The next example expands the age_check script
(page 342) to include logical arithmetic evaluation in addition to arithmetic expansion:

$ cat age2
#!/bin/bash
echo -n "How old are you? "
read age
if ((30 < age && age < 60)); then

echo "Wow, in $((60-age)) years, you'll be 60!"
else

echo "You are too young or too old to play."
fi

$ age2
How old are you? 25
You are too young or too old to play.

The test-statement for the if structure evaluates two logical comparisons joined by a
Boolean AND and returns 0 (true) if they are both true or 1 (false) otherwise.

Logical Evaluation (Conditional Expressions)

The syntax of a conditional expression is

[[expression]]

where expression is a Boolean (logical) expression. You must precede a variable
name with a dollar sign ($) within expression. The result of executing this builtin,
like the test builtin, is a return status. The conditions allowed within the brackets
are almost a superset of those accepted by test (page 397). Where the test builtin
uses –a as a Boolean AND operator, [[expression]] uses &&. Similarly, where test
uses –o as a Boolean OR operator, [[expression]] uses ||.

Arithmetic evaluation versus arithmetic expansion

tip Arithmetic evaluation differs from arithmetic expansion. As explained on page 342, arithmetic
expansion uses the syntax $((expression)), evaluates expression, and replaces $((expression)) with
the result. You can use arithmetic expansion to display the value of an expression or to assign that
value to a variable.

Arithmetic evaluation uses the let expression or ((expression)) syntax, evaluates expression, and
returns a status code. You can use arithmetic evaluation to perform a logical comparison or an
assignment.

460 Chapter 11 Programming the Bourne Again Shell

You can replace the line that tests age in the age2 script (preceding) with the follow-
ing conditional expression. You must surround the [[and]] tokens with whitespace
or a command terminator, and place dollar signs before the variables:

if [[30 < $age && $age < 60]]; then

You can also use test’s relational operators –gt, –ge, –lt, –le, –eq, and –ne :

if [[30 -lt $age && $age -lt 60]]; then

String comparisons The test builtin tests whether strings are equal or unequal. The [[expression]] syn-
tax adds comparison tests for string operators. The > and < operators compare
strings for order (for example, "aa" < "bbb"). The = operator tests for pattern
match, not just equality: [[string = pattern]] is true if string matches pattern. This
operator is not symmetrical; the pattern must appear on the right side of the equal
sign. For example, [[artist = a*]] is true (= 0), whereas [[a* = artist]] is false (= 1):

$ [[artist = a*]]
$ echo $?
0
$ [[a* = artist]]
$ echo $?
1

The next example uses a command list that starts with a compound condition. The
condition tests that the directory bin and the file src/myscript.bash exist. If this is
true, cp copies src/myscript.bash to bin/myscript. If the copy succeeds, chmod
makes myscript executable. If any of these steps fails, echo displays a message.

$ [[-d bin && -f src/myscript.bash]] && cp src/myscript.bash \
bin/myscript && chmod +x bin/myscript || echo "Cannot make \
executable version of myscript"

String Pattern Matching

The Bourne Again Shell provides string pattern-matching operators that can manip-
ulate pathnames and other strings. These operators can delete from strings prefixes
or suffixes that match patterns. The four operators are listed in Table 11-7.

The syntax for these operators is

${varname op pattern}

Table 11-7 String operators

Operator Function

Removes minimal matching prefixes

Removes maximal matching prefixes

% Removes minimal matching suffixes

%% Removes maximal matching suffixes

Expressions 461

where op is one of the operators listed in Table 11-7 and pattern is a match pattern
similar to that used for filename generation. These operators are commonly used to
manipulate pathnames so as to extract or remove components or to change suffixes:

$ SOURCEFILE=/usr/local/src/prog.c
$ echo ${SOURCEFILE#/*/}
local/src/prog.c
$ echo ${SOURCEFILE##/*/}
prog.c
$ echo ${SOURCEFILE%/*}
/usr/local/src
$ echo ${SOURCEFILE%%/*}

$ echo ${SOURCEFILE%.c}
/usr/local/src/prog
$ CHOPFIRST=${SOURCEFILE#/*/}
$ echo $CHOPFIRST
local/src/prog.c
$ NEXT=${CHOPFIRST%%/*}
$ echo $NEXT
local

Here the string-length operator, ${#name}, is replaced by the number of characters
in the value of name:

$ echo $SOURCEFILE
/usr/local/src/prog.c
$ echo ${#SOURCEFILE}
21

Operators

Arithmetic expansion and arithmetic evaluation use the same syntax, precedence,
and associativity of expressions as the C language. Table 11-8 lists operators in
order of decreasing precedence (priority of evaluation); each group of operators has
equal precedence. Within an expression you can use parentheses to change the order
of evaluation.

Table 11-8 Operators

Type of operator/operator Function

Post

var++

var––

Postincrement

Postdecrement

Pre

++var

––var

Preincrement

Predecrement

462 Chapter 11 Programming the Bourne Again Shell

Type of operator/operator Function

Unary

– Unary minus

+ Unary plus

Negation

! Boolean NOT (logical negation)

~ Complement (bitwise negation)

Exponentiation

** Exponent

Multiplication, division,
remainder

* Multiplication

/ Division

% Remainder

Addition, subtraction

– Subtraction

+ Addition

Bitwise shifts

<< Left bitwise shift

>> Right bitwise shift

Comparison

<= Less than or equal

>= Greater than or equal

< Less than

> Greater than

Equality, inequality

== Equality

!= Inequality

Bitwise

& Bitwise AND

^ Bitwise XOR (exclusive OR)

| Bitwise OR

Table 11-8 Operators (continued)

Expressions 463

Pipe The pipe token has higher precedence than operators. You can use pipes anywhere
in a command that you can use simple commands. For example, the command line

$ cmd1 | cmd2 || cmd3 | cmd4 && cmd5 | cmd6

is interpreted as if you had typed

$ ((cmd1 | cmd2) || (cmd3 | cmd4)) && (cmd5 | cmd6)

Increment and
decrement
operators

The postincrement, postdecrement, preincrement, and predecrement operators
work with variables. The pre- operators, which appear in front of the variable name
as in ++COUNT and ––VALUE, first change the value of the variable (++ adds 1;
–– subtracts 1) and then provide the result for use in the expression. The post- oper-
ators appear after the variable name as in COUNT++ and VALUE––; they first pro-
vide the unchanged value of the variable for use in the expression and then change
the value of the variable.

$ N=10
$ echo $N
10
$ echo $((--N+3))
12
$ echo $N
9
$ echo $((N++ - 3))
6
$ echo $N
10

Boolean (logical)

&& Boolean AND

|| Boolean OR

Conditional evaluation

? : Ternary operator

Assignment

=, *=, /=, %=, +=, –=,
<<=, >>=, &=, ^=, |=

Assignment

Comma

, Comma

Table 11-8 Operators (continued)

Do not rely on rules of precedence: use parentheses

tip Do not rely on the precedence rules when you use compound commands. Instead, use parenthe-
ses to explicitly state the order in which you want the shell to interpret the commands.

464 Chapter 11 Programming the Bourne Again Shell

Remainder The remainder operator (%) gives the remainder when its first operand is divided
by its second. For example, the expression $((15%7)) has the value 1.

Boolean The result of a Boolean operation is either 0 (false) or 1 (true).

The && (AND) and || (OR) Boolean operators are called short-circuiting operators.
If the result of using one of these operators can be decided by looking only at the left
operand, the right operand is not evaluated. The && operator causes the shell to test
the exit status of the command preceding it. If the command succeeded, bash exe-
cutes the next command; otherwise, it skips the remaining commands on the com-
mand line. You can use this construct to execute commands conditionally:

$ mkdir bkup && cp -r src bkup

This compound command creates the directory bkup. If mkdir succeeds, the contents
of directory src is copied recursively to bkup.

The || separator also causes bash to test the exit status of the first command but has
the opposite effect: The remaining command(s) are executed only if the first one
failed (that is, exited with nonzero status):

$ mkdir bkup || echo "mkdir of bkup failed" >> /tmp/log

The exit status of a command list is the exit status of the last command in the list.
You can group lists with parentheses. For example, you could combine the previous
two examples as

$ (mkdir bkup && cp -r src bkup) || echo "mkdir failed" >> /tmp/log

In the absence of parentheses, && and || have equal precedence and are grouped
from left to right. The following examples use the true and false utilities. These util-
ities do nothing and return true (0) and false (1) exit statuses, respectively:

$ false; echo $?
1

The $? variable holds the exit status of the preceding command (page 438). The
next two commands yield an exit status of 1 (false):

$ true || false && false
$ echo $?
1
$ (true || false) && false
$ echo $?
1

Similarly the next two commands yield an exit status of 0 (true):

$ false && false || true
$ echo $?
0
$ (false && false) || true
$ echo $?
0

Expressions 465

Because || and && have equal precedence, the parentheses in the two preceding
pairs of examples do nothing to change the order of operations.

Because the expression on the right side of a short-circuiting operator may never get
executed, you must be careful with assignment statements in that location. The fol-
lowing example demonstrates what can happen:

$ ((N=10,Z=0))
$ echo $((N || ((Z+=1))))
1
$ echo $Z
0

Because the value of N is nonzero, the result of the || (OR) operation is 1 (true), no
matter what the value of the right side is. As a consequence ((Z+=1)) is never evalu-
ated and Z is not incremented.

Ternary The ternary operator, ? : , decides which of two expressions should be evaluated,
based on the value returned from a third expression:

expression1 ? expression2 : expression3

If expression1 produces a false (0) value, expression3 is evaluated; otherwise,
expression2 is evaluated. The value of the entire expression is the value of
expression2 or expression3, depending on which one is evaluated. If expression1
is true, expression3 is not evaluated. If expression1 is false expression2 is not
evaluated:

$ ((N=10,Z=0,COUNT=1))
$ ((T=N>COUNT?++Z:--Z))
$ echo $T
1
$ echo $Z
1

Assignment The assignment operators, such as +=, are shorthand notations. For example, N+=3
is the same as ((N=N+3)) .

Other bases The following commands use the syntax base#n to assign base 2 (binary) values.
First v1 is assigned a value of 0101 (5 decimal) and v2 is assigned a value of 0110 (6
decimal). The echo utility verifies the decimal values.

$ ((v1=2#0101))
$ ((v2=2#0110))
$ echo "$v1 and $v2"
5 and 6

Next the bitwise AND operator (&) selects the bits that are on in both 5 (0101
binary) and 6 (0110 binary). The result is binary 0100, which is 4 decimal.

$ echo $((v1 & v2))
4

466 Chapter 11 Programming the Bourne Again Shell

The Boolean AND operator (&&) produces a result of 1 if both of its operands are
nonzero and a result of 0 otherwise. The bitwise inclusive OR operator (|) selects
the bits that are on in either 0101 or 0110, resulting in 0111, which is 7 decimal.
The Boolean OR operator (| |) produces a result of 1 if either of its operands is non-
zero and a result of 0 otherwise.

$ echo $((v1 && v2))
1
$ echo $((v1 | v2))
7
$ echo $((v1 || v2))
1

Next the bitwise exclusive OR operator (^) selects the bits that are on in either, but
not both, of the operands 0101 and 0110, yielding 0011, which is 3 decimal. The
Boolean NOT operator (!) produces a result of 1 if its operand is 0 and a result of 0
otherwise. Because the exclamation point in $((! v1)) is enclosed within double
parentheses, it does not need to be escaped to prevent the shell from interpreting the
exclamation point as a history event. The comparison operators produce a result of
1 if the comparison is true and a result of 0 otherwise.

$ echo $((v1 ^ v2))
3
$ echo $((! v1))
0
$ echo $((v1 < v2))
1
$ echo $((v1 > v2))
0

Shell Programs

The Bourne Again Shell has many features that make it a good programming lan-
guage. The structures that bash provides are not a random assortment. Rather, they
have been chosen to provide most of the structural features that are in other proce-
dural languages, such as C or Pascal. A procedural language provides the ability to

• Declare, assign, and manipulate variables and constant data. The
Bourne Again Shell provides string variables, together with powerful
string operators, and integer variables, along with a complete set of
arithmetic operators.

• Break large problems into small ones by creating subprograms. The
Bourne Again Shell allows you to create functions and call scripts from
other scripts. Shell functions can be called recursively; that is, a Bourne
Again Shell function can call itself. You may not need to use recursion
often, but it may allow you to solve some apparently difficult problems
with ease.

• Execute statements conditionally, using statements such as if.

Shell Programs 467

• Execute statements iteratively, using statements such as while and for.

• Transfer data to and from the program, communicating with both data
files and users.

Programming languages implement these capabilities in different ways but with the
same ideas in mind. When you want to solve a problem by writing a program, you
must first figure out a procedure that leads you to a solution—that is, an algorithm.
Typically you can implement the same algorithm in roughly the same way in differ-
ent programming languages, using the same kinds of constructs in each language.

Chapter 9 and this chapter have introduced numerous bash features, many of which
are useful for interactive use as well as for shell programming. This section develops
two complete shell programs, demonstrating how to combine some of these features
effectively. The programs are presented as problems for you to solve along with
sample solutions.

A Recursive Shell Script

A recursive construct is one that is defined in terms of itself. Alternatively, you
might say that a recursive program is one that can call itself. This may seem circular,
but it need not be. To avoid circularity a recursive definition must have a special
case that is not self-referential. Recursive ideas occur in everyday life. For example,
you can define an ancestor as your mother, your father, or one of their ancestors.
This definition is not circular; it specifies unambiguously who your ancestors are:
your mother or your father, or your mother’s mother or father or your father’s
mother or father, and so on.

A number of Linux system utilities can operate recursively. See the –R option to the
chmod, chown, and cp utilities for examples.

Solve the following problem by using a recursive shell function:

One algorithm for a recursive solution follows:

1. Examine the path argument. If it is a null string or if it names an existing
directory, do nothing and return.

2. If it is a simple path component, create it (using mkdir) and return.

3. Otherwise, call makepath using the path prefix of the original argument.
This step eventually creates all the directories up to the last component,
which you can then create with mkdir.

In general, a recursive function must invoke itself with a simpler version of the
problem than it was given until it is finally called with a simple case that does not
need to call itself. Following is one possible solution based on this algorithm.

Write a shell function named makepath that, given a pathname, creates all compo-
nents in that pathname as directories. For example, the command makepath
a/b/c/d should create directories a, a/b, a/b/c, and a/b/c/d. (The mkdir utility sup-
ports a –p option that does exactly this. Solve the problem without using mkdir –p.)

468 Chapter 11 Programming the Bourne Again Shell

makepath # this is a function
enter it at the keyboard, do not run it as a shell script
#
function makepath()
{

if [[${#1} -eq 0 || -d "$1"]]
then

return 0 # Do nothing
fi
if [["${1%/*}" = "$1"]]

then
mkdir $1
return $?

fi
makepath ${1%/*} || return 1
mkdir $1
return $?

}

In the test for a simple component (the if statement in the middle of the function),
the left expression is the argument after the shortest suffix that starts with a / char-
acter has been stripped away (page 460). If there is no such character (for example,
if $1 is alex), nothing is stripped off and the two sides are equal. If the argument is a
simple filename preceded by a slash, such as /usr, the expression ${1%/*} evaluates
to a null string. To make the function work in this case, you must take two precau-
tions: Put the left expression within quotation marks and ensure that the recursive
function behaves sensibly when it is passed a null string as an argument. In general,
good programs are robust: They should be prepared for borderline, invalid, or
meaningless input and behave appropriately in such cases.

By giving the following command from the shell you are working in, you turn on
debugging tracing so that you can watch the recursion work:

$ set -o xtrace

(Give the same command, but replace the hyphen with a plus sign (+) to turn debug-
ging off.) With debugging turned on, the shell displays each line in its expanded
form as it executes the line. A + precedes each line of debugging output. In the fol-
lowing example, the first line that starts with + shows the shell calling makepath.
The makepath function is called from the command line with arguments of a/b/c.
Subsequently it calls itself with arguments of a/b and finally a. All the work is done
(using mkdir) as each call to makepath returns.

$ makepath a/b/c
+ makepath a/b/c
+ [[5 -eq 0]]
+ [[-d a/b/c]]
+ [[a/b = \a\/\b\/\c]]
+ makepath a/b
+ [[3 -eq 0]]
+ [[-d a/b]]
+ [[a = \a\/\b]]

Shell Programs 469

+ makepath a
+ [[1 -eq 0]]
+ [[-d a]]
+ [[a = \a]]
+ mkdir a
+ return 0
+ mkdir a/b
+ return 0
+ mkdir a/b/c
+ return 0

The function works its way down the recursive path and back up again.

It is instructive to invoke makepath with an invalid path and see what happens.
The following example, run with debugging turned on, tries to create the path
/a/b, which requires that you create directory a in the root directory. Unless you
have permission to write to the root directory, you are not permitted to create this
directory.

$ makepath /a/b
+ makepath /a/b
+ [[4 -eq 0]]
+ [[-d /a/b]]
+ [[/a = \/\a\/\b]]
+ makepath /a
+ [[2 -eq 0]]
+ [[-d /a]]
+ [['' = \/\a]]
+ makepath
+ [[0 -eq 0]]
+ return 0
+ mkdir /a
mkdir: cannot create directory '/a': Permission denied
+ return 1
+ return 1

The recursion stops when makepath is denied permission to create the /a directory.
The error return is passed all the way back, so the original makepath exits with
nonzero status.

Use local variables with recursive functions
tip The preceding example glossed over a potential problem that you may encounter when you use a

recursive function. During the execution of a recursive function, many separate instances of that
function may be active simultaneously. All but one of them are waiting for their child invocation to
complete.

Because functions run in the same environment as the shell that calls them, variables are implicitly
shared by a shell and a function it calls so that all instances of the function share a single copy of
each variable. Sharing variables can give rise to side effects that are rarely what you want. As a
rule, you should use typeset to make all variables of a recursive function be local variables. See
page 435 for more information.

470 Chapter 11 Programming the Bourne Again Shell

The quiz Shell Script

Solve the following problem using a bash script:

The detailed design of this program and even the detailed description of the prob-
lem depend on a number of choices: How will the program know which subjects are
available for quizzes? How will the user choose a subject? How will the program
know when the quiz is over? Should the program present the same questions (for a
given subject) in the same order each time, or should it scramble them?

Of course, you can make many perfectly good choices that implement the specifica-
tion of the problem. The following details narrow the problem specification:

• Each subject will correspond to a subdirectory of a master quiz directory.
This directory will be named in the environment variable QUIZDIR, whose
default will be ~/quiz. For example, you could have the following directories
correspond to the subjects engineering, art, and politics: ~/quiz/engineering,
~/quiz/art, and ~/quiz/politics. Put the quiz directory in /usr/games if you
want all users to have access to it (requires root privileges).

• Each subject can have several questions. Each question is represented by a
file in its subject’s directory.

• The first line of each file that represents a question is the text of the ques-
tion. If it takes more than one line, you must escape the NEWLINE with a
backslash. (This setup makes it easy to read a single question with the read
builtin.) The second line of the file is an integer that specifies the number
of choices. The next lines are the choices themselves. The last line is the
correct answer. Following is a sample question file:

Who discovered the principle of the lever?
4
Euclid
Archimedes
Thomas Edison
The Lever Brothers
Archimedes

• The program presents all the questions in a subject directory. At any point
the user can interrupt the quiz with CONTROL-C, whereupon the program will
summarize the results so far and exit. If the user does not interrupt, the
program summarizes the results and exits when it has asked all questions
for the chosen subject.

• The program scrambles the questions in a subject before presenting them.

Write a generic multiple-choice quiz program. The program should get its questions
from data files, present them to the user, and keep track of the number of correct
and incorrect answers. The user must be able to exit from the program at any time
with a summary of results to that point.

Shell Programs 471

Following is a top-level design for this program:

1. Initialize. This involves a number of steps, such as setting the counts of the
number of questions asked so far and the number of correct and wrong
answers to zero. Sets up to trap CONTROL-C.

2. Present the user with a choice of subjects and get the user’s response.

3. Change to the corresponding subject directory.

4. Determine the questions to be asked (that is, the filenames in that direc-
tory). Arrange them in random order.

5. Repeatedly present questions and ask for answers until the quiz is over or
is interrupted by the user.

6. Present the results and exit.

Clearly some of these steps (such as step 3) are simple, whereas others (such as step
4) are complex and worthy of analysis on their own. Use shell functions for any
complex step, and use the trap builtin to handle a user interrupt.

Here is a skeleton version of the program with empty shell functions:

function initialize
{
Initializes variables.
}
function choose_subj
{
Writes choice to standard output.
}

function scramble
{
Stores names of question files, scrambled,
in an array variable named questions.
}

function ask
{
Reads a question file, asks the question, and checks the
answer. Returns 1 if the answer was correct, 0 otherwise. If it
encounters an invalid question file, exit with status 2.
}

function summarize
{
Presents the user's score.
}

Main program
initialize # Step 1 in top-level design

subject=$(choose_subj) # Step 2
[[$? -eq 0]] || exit 2 # If no valid choice, exit

472 Chapter 11 Programming the Bourne Again Shell

cd $subject || exit 2 # Step 3
echo # Skip a line
scramble # Step 4

for ques in ${questions[*]}; do # Step 5
 ask $ques
 result=$?
 ((num_ques=num_ques+1))
 if [[$result == 1]]; then
 ((num_correct += 1))
 fi
 echo # Skip a line between questions
 sleep ${QUIZDELAY:=1}
done

summarize # Step 6
exit 0

To make reading the results a bit easier for the user, a sleep call appears inside the
question loop. It delays $QUIZDELAY seconds (default = 1) between questions.

Now the task is to fill in the missing pieces of the program. In a sense this program
is being written backward. The details (the shell functions) come first in the file but
come last in the development process. This common programming practice is called
top-down design. In top-down design you fill in the broad outline of the program
first and supply the details later. In this way you break the problem up into smaller
problems, each of which you can work on independently. Shell functions are a great
help in using the top-down approach.

One way to write the initialize function follows. The cd command causes QUIZDIR
to be the working directory for the rest of the script and defaults to ~/quiz if
QUIZDIR is not set.

function initialize ()
{
trap 'summarize ; exit 0' INT # Handle user interrupts
num_ques=0 # Number of questions asked so far
num_correct=0 # Number answered correctly so far
first_time=true # true until first question is asked
cd ${QUIZDIR:=~/quiz} || exit 2
}

Be prepared for the cd command to fail. The directory may be unsearchable or con-
ceivably another user may have removed it. The preceding function exits with a sta-
tus code of 2 if cd fails.

The next function, choose_subj, is a bit more complicated. It displays a menu using
a select statement:

Shell Programs 473

function choose_subj ()
{
subjects=($(ls))
PS3="Choose a subject for the quiz from the preceding list: "
select Subject in ${subjects[*]}; do
 if [[-z "$Subject"]]; then
 echo "No subject chosen. Bye." >&2
 exit 1
 fi
 echo $Subject
 return 0
done
}

The function first uses an ls command and command substitution to put a list of
subject directories in the subjects array. Next the select structure (page 425) pre-
sents the user with a list of subjects (the directories found by ls) and assigns the cho-
sen directory name to the Subject variable. Finally the function writes the name of
the subject directory to standard output. The main program uses command substi-
tution to assign this value to the subject variable [subject=$(choose_subj)].

The scramble function presents a number of difficulties. In this solution it uses an
array variable (questions) to hold the names of the questions. It scrambles the entries
in an array using the RANDOM variable (each time you reference RANDOM it has
the value of a [random] integer between 0 and 32767):

function scramble ()
{
typeset -i index quescount
questions=($(ls))
quescount=${#questions[*]} # Number of elements
((index=quescount-1))
while [[$index > 0]]; do
 ((target=RANDOM % index))
 exchange $target $index
 ((index -= 1))
done
}

This function initializes the array variable questions to the list of filenames (questions)
in the working directory. The variable quescount is set to the number of such files. Then
the following algorithm is used: Let the variable index count down from quescount – 1
(the index of the last entry in the array variable). For each value of index, the function
chooses a random value target between 0 and index, inclusive. The command

((target=RANDOM % index))

produces a random value between 0 and index – 1 by taking the remainder (the %
operator) when $RANDOM is divided by index. The function then exchanges the
elements of questions at positions target and index. It is convenient to do this in
another function named exchange:

474 Chapter 11 Programming the Bourne Again Shell

function exchange ()
{
temp_value=${questions[$1]}
questions[$1]=${questions[$2]}
questions[$2]=$temp_value
}

The ask function also uses the select structure. It reads the question file named in its
argument and uses the contents of that file to present the question, accept the
answer, and determine whether the answer is correct. (See the code that follows.)

The ask function uses file descriptor 3 to read successive lines from the question file,
whose name was passed as an argument and is represented by $1 in the function. It
reads the question into the ques variable and the number of questions into
num_opts. The function constructs the variable choices by initializing it to a null
string and successively appending the next choice. Then it sets PS3 to the value of
ques and uses a select structure to prompt the user with ques. The select structure
places the user’s answer in answer, and the function then checks it against the cor-
rect answer from the file.

The construction of the choices variable is done with an eye toward avoiding a
potential problem. Suppose that one answer has some whitespace in it. Then it
might appear as two or more arguments in choices. To avoid this problem, make
sure that choices is an array variable. The select statement does the rest of the work:

quiz $ cat quiz
#!/bin/bash

remove the # on the following line to turn on debugging
set -o xtrace

#==================
function initialize ()
{
trap 'summarize ; exit 0' INT # Handle user interrupts
num_ques=0 # Number of questions asked so far
num_correct=0 # Number answered correctly so far
first_time=true # true until first question is asked
cd ${QUIZDIR:=~/quiz} || exit 2
}

#==================
function choose_subj ()
{
subjects=($(ls))
PS3="Choose a subject for the quiz from the preceding list: "
select Subject in ${subjects[*]}; do
 if [[-z "$Subject"]]; then
 echo "No subject chosen. Bye." >&2
 exit 1
 fi
 echo $Subject
 return 0
done
}

Shell Programs 475

#==================
function exchange ()
{
temp_value=${questions[$1]}
questions[$1]=${questions[$2]}
questions[$2]=$temp_value
}

#==================
function scramble ()
{
typeset -i index quescount
questions=($(ls))
quescount=${#questions[*]} # Number of elements
((index=quescount-1))
while [[$index > 0]]; do
 ((target=RANDOM % index))
 exchange $target $index
 ((index -= 1))
done
}

#==================
function ask ()
{
exec 3<$1
read -u3 ques || exit 2
read -u3 num_opts || exit 2

index=0
choices=()
while ((index < num_opts)) ; do
 read -u3 next_choice || exit 2
 choices=("${choices[@]}" "$next_choice")
 ((index += 1))
done
read -u3 correct_answer || exit 2
exec 3<&-

if [[$first_time = true]]; then
 first_time=false
 echo -e "You may press the interrupt key at any time to quit.\n"
fi

PS3=$ques" " # Make $ques the prompt for select
 # and add some spaces for legibility.
select answer in "${choices[@]}"; do
 if [[-z "$answer"]]; then
 echo Not a valid choice. Please choose again.
 elif [["$answer" = "$correct_answer"]]; then
 echo "Correct!"
 return 1
 else
 echo "No, the answer is $correct_answer."
 return 0
 fi
done
}

476 Chapter 11 Programming the Bourne Again Shell

#==================
function summarize ()
{
echo # Skip a line
if ((num_ques == 0)); then
 echo "You did not answer any questions"
 exit 0
fi

((percent=num_correct*100/num_ques))
echo "You answered $num_correct questions correctly, out of \
$num_ques total questions."
echo "Your score is $percent percent."
}

#==================
Main program
initialize # Step 1 in top-level design

subject=$(choose_subj) # Step 2
[[$? -eq 0]] || exit 2 # If no valid choice, exit

cd $subject || exit 2 # Step 3
echo # Skip a line
scramble # Step 4

for ques in ${questions[*]}; do # Step 5
 ask $ques
 result=$?
 ((num_ques=num_ques+1))
 if [[$result == 1]]; then
 ((num_correct += 1))
 fi
 echo # Skip a line between questions
 sleep ${QUIZDELAY:=1}
done

summarize # Step 6
exit 0

Chapter Summary

The shell is a programming language. Programs written in this language are called
shell scripts, or simply scripts. Shell scripts provide the decision and looping control
structures present in high-level programming languages while allowing easy access
to system utilities and user programs. Shell scripts can use functions to modularize
and simplify complex tasks.

Control structures The control structures that use decisions to select alternatives are if...then,
if...then...else, and if...then...elif. The case control structure provides a multiway
branch and can be used when you want to express alternatives using a simple
pattern-matching syntax.

The looping control structures are for...in, for, until, and while. These structures
perform one or more tasks repetitively.

Chapter Summary 477

The break and continue control structures alter control within loops: break trans-
fers control out of a loop, and continue transfers control immediately to the top of
a loop.

The Here document allows input to a command in a shell script to come from
within the script itself.

File descriptors The Bourne Again Shell provides the ability to manipulate file descriptors. Coupled
with the read and echo builtins, file descriptors allow shell scripts to have as much
control over input and output as programs written in lower-level languages.

Variables You assign attributes, such as readonly, to bash variables using the typeset builtin.
The Bourne Again Shell provides operators to perform pattern matching on vari-
ables, provide default values for variables, and evaluate the length of variables. This
shell also supports array variables and local variables for functions and provides
built-in integer arithmetic capability, using the let builtin and an expression syntax
similar to the C programming language.

Builtins Bourne Again Shell builtins include type, read, exec, trap, kill, and getopts. The type
builtin displays information about a command, including its location; read allows a
script to accept user input.

The exec builtin executes a command without creating a new process. The new
command overlays the current process, assuming the same environment and PID
number of that process. This builtin executes user programs and other Linux com-
mands when it is not necessary to return control to the calling process.

The trap builtin catches a signal sent by Linux to the process running the script and
allows you to specify actions to be taken upon receipt of one or more signals. You
can use this builtin to cause a script to ignore the signal that is sent when the user
presses the interrupt key.

The kill builtin allows you to terminate a running program. The getopts builtin
parses command line arguments, making it easier to write programs that follow
standard Linux conventions for command line arguments and options.

Utilities in scripts In addition to using control structures, builtins, and functions, shell scripts gener-
ally call Linux utilities. The find utility, for instance, is commonplace in shell scripts
that search for files in the system hierarchy and can perform a vast range of tasks,
from simple to complex.

A well-written shell script adheres to standard programming practices, such as spec-
ifying the shell to execute the script on the first line of the script, verifying the num-
ber and type of arguments that the script is called with, displaying a standard usage
message to report command line errors, and redirecting all informational messages
to standard error.

Expressions There are two basic types of expressions: arithmetic and logical. Arithmetic expres-
sions allow you to do arithmetic on constants and variables, yielding a numeric
result. Logical (Boolean) expressions compare expressions or strings, or test condi-
tions to yield a true or false result. As with all decisions within Linux shell scripts, a
true status is represented by the value zero; false, by any nonzero value.

478 Chapter 11 Programming the Bourne Again Shell

Exercises

1. Rewrite the journal script of Chapter 9 (question 5, page 350) by adding
commands to verify that the user has write permission for a file named
journal-file in the user’s home directory, if such a file exists. The script
should take appropriate actions if journal-file exists and the user does not
have write permission to the file. Verify that the modified script works.

2. The special parameter "$@" is referenced twice in the out script (page 401).
Explain what would be different if the parameter "$*" were used in its place.

3. Write a filter that takes a list of files as input and outputs the basename
(page 424) of each file in the list.

4. Write a function that takes a single filename as an argument and adds exe-
cute permission to the file for the user.

a. When might such a function be useful?

b. Revise the script so that it takes one or more filenames as arguments
and adds execute permission for the user for each file argument.

c. What can you do to make the function available every time you log in?

d. Suppose that, in addition to having the function available on subsequent
login sessions, you want to make the function available now in your
current shell. How would you do so?

5. When might it be necessary or advisable to write a shell script instead of a
shell function? Give as many reasons as you can think of.

6. Write a shell script that displays the names of all directory files, but no
other types of files, in the working directory.

7. Write a script to display the time every 15 seconds. Read the date man page
and display the time, using the %r field descriptor. Clear the window
(using the clear command) each time before you display the time.

8. Enter the following script named savefiles, and give yourself execute per-
mission to the file:

$ cat savefiles
#! /bin/bash
echo "Saving files in current directory in file savethem."
exec > savethem
for i in *
 do
 echo "==="
 echo "File: $i"
 echo "==="
 cat "$i"
 done

Exercises 479

a. What error message do you get when you execute this script? Rewrite
the script so that the error does not occur, making sure the output still
goes to savethem.

b. What might be a problem with running this script twice in the same
directory? Discuss a solution to this problem.

9. Read the bash man or info page, try some experiments, and answer the fol-
lowing questions:

a. How do you export a function?

b. What does the hash builtin do?

c. What happens if the argument to exec is not executable?

10. Using the find utility, perform the following tasks:

a. List all files in the working directory and all subdirectories that have
been modified within the last day.

b. List all files that you have read access to on the system that are larger
than 1 megabyte.

c. Remove all files named core from the directory structure rooted at your
home directory.

d. List the inode numbers of all files in the working directory whose file-
names end in .c.

e. List all files that you have read access to on the root filesystem that have
been modified in the last 30 days.

11. Write a short script that tells you whether the permissions for two files,
whose names are given as arguments to the script, are identical. If the per-
missions for the two files are identical, output the common permission
field. Otherwise, output each filename followed by its permission field.
(Hint: Try using the cut utility.)

12. Write a script that takes the name of a directory as an argument and
searches the file hierarchy rooted at that directory for zero-length files.
Write the names of all zero-length files to standard output. If there is no
option on the command line, have the script delete the file after displaying
its name, asking the user for confirmation, and receiving positive confir-
mation. A –f (force) option on the command line indicates that the script
should display the filename but not ask for confirmation before deleting
the file.

480 Chapter 11 Programming the Bourne Again Shell

Advanced Exercises

13. Write a script that takes a colon-separated list of items and outputs the
items, one per line, to standard output (without the colons).

14. Generalize the script written in exercise 13 so that the character separating
the list items is given as an argument to the function. If this argument is
absent, the separator should default to a colon.

15. Write a function named funload that takes as its single argument the name
of a file containing other functions. The purpose of funload is to make all
functions in the named file available in the current shell; that is, funload
loads the functions from the named file. To locate the file, funload
searches the colon-separated list of directories given by the environment
variable FUNPATH. Assume that the format of FUNPATH is the same as
PATH and that searching FUNPATH is similar to the shell’s search of the
PATH variable.

16. Rewrite bundle (page 428) so that the script it creates takes an optional
list of filenames as arguments. If one or more filenames are given on the
command line, only those files should be re-created; otherwise, all files in
the shell archive should be re-created. For example, suppose that all files
with the filename extension .c are bundled into an archive named srcshell,
and you want to unbundle just the files test1.c and test2.c. The following
command will unbundle just these two files:

$ bash srcshell test1.c test2.c

17. What kind of links will the lnks script (page 404) not find? Why?

18. In principle, recursion is never necessary. It can always be replaced by an
iterative construct, such as while or until. Rewrite makepath (page 468) as
a nonrecursive function. Which version do you prefer? Why?

19. Lists are commonly stored in environment variables by putting a colon (:)
between each of the list elements. (The value of the PATH variable is a
good example.) You can add an element to such a list by catenating the
new element to the front of the list, as in

PATH=/opt/bin:$PATH

If the element you add is already in the list, you now have two copies of it
in the list. Write a shell function named addenv that takes two arguments:
(1) the name of a shell variable and (2) a string to prepend to the list that is
the value of the shell variable only if that string is not already an element
of the list. For example, the call

addenv PATH /opt/bin

Advanced Exercises 481

would add /opt/bin to PATH only if that pathname is not already in
PATH. Be sure that your solution works even if the shell variable starts out
empty. Also make sure that you check the list elements carefully. If
/usr/opt/bin is in PATH but /opt/bin is not, the example just given should
still add /opt/bin to PATH. (Hint: You may find this exercise easier to
complete if you first write a function locate_field that tells you whether a
string is an element in the value of a variable.)

20. Write a function that takes a directory name as an argument and writes to
standard output the maximum of the lengths of all filenames in that direc-
tory. If the function’s argument is not a directory name, write an error
message to standard output and exit with nonzero status.

21. Modify the function you wrote for exercise 20 to descend all subdirecto-
ries of the named directory recursively and to find the maximum length of
any filename in that hierarchy.

22. Write a function that lists the number of ordinary files, directories, block
special files, character special files, FIFOs, and symbolic links in the work-
ing directory. Do this in two different ways:

a. Use the first letter of the output of ls –l to determine a file’s type.

b. Use the file type condition tests of the [[expression]] syntax to deter-
mine a file’s type.

23. Modify the quiz program (page 474) so that the choices for a question are
randomly arranged.

This page intentionally left blank

483

I

PART IV

System Administration

CHAPTER 12

System Administration: Core Concepts 485

CHAPTER 13

Files, Directories, and Filesystems 553

CHAPTER 14

Downloading and Installing Software 583

CHAPTER 15

Printing with CUPS 611

CHAPTER 16

Building a Linux Kernel 635

CHAPTER 17

Administration Tasks 657

CHAPTER 18

Configuring a LAN 693

This page intentionally left blank

485485

12Chapter12The job of a system administrator is to keep one or more sys-
tems in a useful and convenient state for users. On a Linux
system, the administrator and user may both be you, with
you and the computer being separated by only a few feet.
Alternatively, the system administrator may be halfway
around the world, supporting a network of systems, with you
being one of thousands of users. On one hand, a system
administrator can be one person who works part-time taking
care of a system and perhaps is also a user of the system. On
the other hand, several administrators can work together full-
time to keep many systems running.

In This Chapter

Running Commands with root
Privileges 487

sudo: Running a Command with
root Privileges 490

The Upstart Event-Based init
Daemon 500

SysVinit (rc) Scripts: Start and
Stop System Services 507

Recovery (Single-User) Mode 512

rpcinfo: Displays Information
About portmap 530

TCP Wrappers: Secure a Server
(hosts.allow and hosts.deny) . . 532

Setting Up a chroot Jail 534

DHCP: Configures Network
Interfaces 538

12

System

Administration:

Core Concepts

486 Chapter 12 System Administration: Core Concepts

A well-maintained system

• Runs quickly enough so users do not get frustrated waiting for the system
to respond or complete a task.

• Has enough storage to accommodate users’ reasonable needs.

• Provides a working environment appropriate to each user’s abilities and
requirements.

• Is secure from malicious and accidental acts altering its performance or
compromising the security of the data it holds and exchanges with other
systems.

• Is backed up regularly, with recently backed-up files being readily avail-
able to users.

• Has recent copies of the software that users need to get their jobs done.

• Is easier to administer than a poorly maintained system.

In addition, a system administrator should be available to help users with all types
of system-related problems—from logging in to obtaining and installing software
updates to tracking down and fixing obscure network issues.

Part IV of this book breaks system administration into seven chapters:

• Chapter 12 covers the core concepts of system administration, including
working with root (Superuser) privileges, system operation, the Ubuntu
configuration tools and other useful utilities, general information about
setting up and securing a server (including a section on DHCP), and PAM.

• Chapter 13 covers files, directories, and filesystems from an administra-
tor’s point of view.

• Chapter 14 covers installing software on the system, including how to use
APT (aptitude), the Debian package (dpkg) management system, BitTor-
rent, and wget.

• Chapter 15 discusses how to set up local and remote printers that use the
CUPS printing system.

• Chapter 16 explains how to rebuild the Linux kernel.

• Chapter 17 covers additional system administrator tasks and tools, includ-
ing setting up users and groups, backing up files, scheduling tasks, printing
system reports, and general problem solving.

• Chapter 18 goes into detail about how to set up a LAN, including setting
up and configuring network hardware and configuring software.

Because Linux is readily configurable and runs on a wide variety of platforms (Sun
SPARC, DEC/Compaq Alpha, Intel x86, AMD, PowerPC, and more), this chapter
cannot discuss every system configuration or every action you might potentially

Running Commands with root Privileges 487

have to take as a system administrator. Instead, this chapter seeks to familiarize you
with the concepts you need to understand and the tools you will use to maintain an
Ubuntu system. Where it is not possible to go into depth about a subject, the chap-
ter provides references to other sources.

This chapter assumes that you are familiar with the following terms:

block device (page 1025) filesystem (page 1036) root filesystem (page 1058)
daemon (page 1032) fork (page 1037) runlevel (page 1058)
device (page 1033) kernel (page 1044) signal (page 1060)
device filename (page 1033) login shell (page 1046) spawn (page 1061)
disk partition (page 1033) mount (page 1048) system console (page 1064)
environment (page 1035) process (page 1054) X server (page 1070)

Running Commands with root Privileges

Some commands can damage the filesystem or crash the operating system. Other
commands can invade users’ privacy or make the system less secure. To keep a
Linux system up and running as well as secure, Ubuntu is configured not to permit
ordinary users to execute some commands and access certain files. Linux provides
several ways for a trusted user to execute these commands and access these files.
The default username of the trusted user with these systemwide powers is root; a
user with these privileges is also sometimes referred to as Superuser. As this section
explains, Ubuntu enables specified ordinary users to run commands with root privi-
leges while logged in as themselves.

A user running with root privileges has the following powers—and more:

• Some commands, such as those that add new users, partition hard drives,
and change system configuration, can be executed only by a user with root
privileges. Such a user can configure tools, such as sudo, to give specific
users permission to perform tasks that are normally reserved for a user
running with root privileges.

• Read, write, and execute file access and directory access permissions do
not affect a user with root privileges. A user with root privileges can read
from, write to, and execute all files, as well as examine and work in all
directories.

Terminology: single-user mode is changing to recovery mode
tip Linux is in transition. With the advent of the Upstart init daemon (page 500), what was called

single-user mode Ubuntu now refers to as recovery mode. However, vestiges of the old terminol-
ogy remain. For example, you type single at the end of the grub kernel line to bring a system up
in recovery mode. This book uses these terms interchangeably.

488 Chapter 12 System Administration: Core Concepts

• Some restrictions and safeguards that are built in to some commands do
not apply to a user with root privileges. For example, a user with root priv-
ileges can change any user’s password without knowing the old password.

When you are running with root privileges in a command line environment, by con-
vention the shell displays a special prompt to remind you of your status. By default,
this prompt is (or ends with) a pound sign (#). You can gain or grant root privileges
in a number of ways:

• When you bring the system up in recovery mode (page 512), you are
logged in as the user named root.

• The sudo utility allows specified users to run selected commands with root
privileges while they are logged in as themselves. You can set up sudo to
allow certain users to perform specific tasks that require root privileges
without granting them systemwide root privileges. See page 490 for more
information on sudo.

• Some programs ask for your password when they start. If sudo is set up to
give you root privileges, when you provide your password, the program
runs with root privileges. When a program requests a password when it
starts, you stop running as a privileged user when you quit using the pro-
gram. This setup keeps you from remaining logged in with root privileges
when you do not need or intend to be.

• Any user can create a setuid (set user ID) file. Setuid programs run on
behalf of the owner of the file and have all the access privileges that the
owner has. While you are running as a user with root privileges, you can
change the permissions of a file owned by root to setuid. When an ordi-
nary user executes a file that is owned by root and has setuid permissions,
the program has full root privileges. In other words, the program can do

System console security

security Ubuntu Linux is not secure from a user at the console. Additional security measures, such as set-
ting bootloader and BIOS passwords, can help secure the console. However, when a user has
physical access to the hardware, as console users typically do, it is very difficult to secure a sys-
tem from that user.

Least privilege
caution When you are working on any computer system, but especially when you are working as the sys-

tem administrator (with root privileges), perform any task using the least privilege possible. When
you can perform a task logged in as an ordinary user, do so. When you must run a command with
root privileges, do as much as you can as an ordinary user, use sudo so that you have root priv-
ileges, complete the part of the task that has to be done with root privileges, and revert to being
an ordinary user as soon as you can. Because you are more likely to make a mistake when you
are rushing, this concept becomes more important when you have less time to apply it.

Running Commands with root Privileges 489

anything a user with root privileges can do that the program normally
does. The user’s privileges do not change. Thus, when the program finishes
running, all user privileges are as they were before the program started.
Setuid programs owned by root are both extremely powerful and
extremely dangerous to system security, which is why a system contains
very few of them. Examples of setuid programs that are owned by root
include passwd, at, and crontab. For more information refer to “Setuid and
Setgid Permissions” on page 201.

optional The following techniques for gaining root privileges depend on unlocking the root
account (setting up a root password) as explained on page 499.

• You can give an su (substitute user) command while you are logged in as
yourself. When you then provide the root password, you will have root
privileges. For more information refer to “su: Gives You Another User’s
Privileges” on page 499.

• Once the system is up and running in multiuser mode (page 515), you can
log in as root. When you then supply the root password, you will be run-
ning with root privileges.

Some techniques limit how someone can log in as root. For example, PAM (page 545)
controls the who, when, and how of logging in. The /etc/securetty file controls which
terminals (ttys) a user can log in on as root. The /etc/security/access.conf file adds
another dimension to login control (see the comments in the file for details).

root-owned setuid programs are extremely dangerous

security Because a root-owned setuid program allows someone who does not know the root password and
cannot use sudo to gain root privileges, it is a tempting target for a malicious user. Also, program-
ming errors that make normal programs crash can become root exploits in setuid programs. A
system should have as few of these programs as necessary. You can disable setuid programs at
the filesystem level by mounting a filesystem with the nosuid option (page 573). See page 521 for
a command that lists all setuid files on the local system.

Do not allow root access over the Internet
security Prohibiting root logins using login over a network is the default policy of Ubuntu and is imple-

mented by the PAM securetty module. The /etc/security/access.conf file must contain the names
of all users and terminals/workstations that you want a user to be able to log in as root. Initially
every line in access.conf is commented out.

You can, however, log in as root over a network using ssh (page 707). As shipped by Ubuntu, ssh
does not follow the instructions in securetty or access.conf. In addition, in /etc/ssh/sshd_config,
Ubuntu sets PermitRootLogin to yes to permit root to log in using ssh (page 723).

490 Chapter 12 System Administration: Core Concepts

sudo: Running a Command with root Privileges

Classically a user gained root privileges by logging in as root or by giving an su
(substitute user) command and providing the root password. When an ordinary
user executed a privileged command in a graphical environment, the system would
prompt for the root password. More recently the use of sudo (www.sudo.ws) has
taken over these classic techniques of gaining root privileges.

Ubuntu strongly encourages the use of sudo. In fact, as shipped, Ubuntu locks the root
account (there is no password) so you cannot use the classic techniques. There are
many advantages of using sudo over using the root account for system administration:

• When you run sudo, it requests your password—not the root password—
so you have to remember only one password.

• The sudo utility logs all commands it executes. This log can be useful for
retracing your steps if you make a mistake and for system auditing.

• The sudo utility allows implementation of a finer-grained security policy
than does the use of su and the root account. Using sudo, you can enable
specific users to execute specific commands—something you cannot do
with the classic root account setup.

• Using sudo makes it harder for a malicious user to gain access to a system.
When there is an unlocked root account, a malicious user knows the user-
name of the account she wants to crack before she starts. When the root
account is locked, the user has to determine the username and the pass-
word to break into a system.

Some users question whether sudo is less secure than su. Because both rely on pass-
words, they share the same strengths and weaknesses. If the password is compro-
mised, the system is compromised. However, if the password of a user who is
allowed by sudo to do one task is compromised, the entire system may not be at
risk. Thus, if used properly, the finer granularity of sudo’s permissions structure can
make it a more secure tool than su. Also, when sudo is used to invoke a single com-
mand, it is less likely that a user will be tempted to keep working with root privi-
leges than if the user opens a root shell with su.

There is a root account, but no root password

tip As installed, Ubuntu locks the root account by not providing a root password. This setup prevents
anyone from logging into the root account (except when you bring the system up in recovery
mode [page 512]). There is, however, a root account (a user with the username root—look at the
first line in /etc/passwd). This account/user owns files (give the command ls –l /bin) and runs
processes (give the command ps –ef and look at the left column of the output). The root account
is critical to the functioning of an Ubuntu system.

The sudo utility enables you to run a command as though it had been run by a user logged in as
root. This book uses the phrase “working with root privileges” to emphasize that, although you
are not logged in as root, when you use sudo you have the powers of the root user.

www.sudo.ws

Running Commands with root Privileges 491

Using sudo may not always be the best, most secure way to set up a system. On a
system used by a single user, there is not much difference between using sudo and
carefully using su and a root password. In contrast, on a system with several users,
and especially on a network of systems with central administration, sudo can be set
up to be more secure than su. If you are a dyed-in-the-wool UNIX/Linux user who
cannot get comfortable with sudo, it is easy enough to give the root account a pass-
word and use su. See page 499.

When you install Ubuntu, the first user you set up is included in the admin group.
As installed, sudo is configured to allow members of the admin group to run with
root privileges. Because there is no root password, initially the only way to perform
privileged administrative tasks from the command line is for the first user to run
them using sudo. Graphical programs call other programs, such as gksudo (see the
adjacent tip), which in turn call sudo for authentication.

Timestamp By default, sudo asks for your password (not the root password) the first time
you run it. At that time, sudo sets your timestamp. After you supply a password,
sudo will not prompt you again for a password for 15 minutes, based on your
timestamp.

In the following example, Sam tries to set the system clock working as the user sam,
an unprivileged user. The date utility displays an error message followed by the
expanded version of the date he entered. When he uses sudo to run date to set the
system clock, sudo prompts him for his password, and the command succeeds.

$ date 03121850
date: cannot set date: Operation not permitted
Mon Mar 12 18:50:00 PDT 2007

$ sudo date 03121850
[sudo] password for sam:
Mon Mar 12 18:50:00 PDT 2007

Next Sam uses sudo to unmount a filesystem. Because he gives this command within
15 minutes of the previous sudo command, he does not need to supply a password:

$ sudo umount /music
$

Run graphical programs using gksudo not sudo

caution Use gksudo (or kdesu from KDE) instead of sudo when you run a graphical program that
requires root privileges. Although both utilities run a program with root privileges, sudo uses your
configuration files, whereas gksudo uses root’s configuration files. Most of the time this difference
is not important, but sometimes it is critical. Some programs will not run when you call them with
sudo. Using gksudo can prevent incorrect permissions from being applied to files related to the
X Window System in your home directory. In a few cases, misapplying these permissions can pre-
vent you from logging back in. In addition, you can use gksudo in a launcher (page 109) on the
desktop or on a panel.

492 Chapter 12 System Administration: Core Concepts

Now Sam uses the –l option to check which commands sudo will allow him to run.
Because he was the first user registered on the system (and is therefore a member of
the admin group), he is allowed to run any command as any user.

$ sudo -l
User sam may run the following commands on this host:
 (ALL) ALL

Spawning a root
shell

When you have several commands you need to run with root privileges, it may be
easier to spawn a root shell, give the commands without having to type sudo in
front of each one, and exit from the shell. This technique defeats some of the safe-
guards built in to sudo, so use it carefully and remember to return to a nonroot shell
as soon as possible. (See the tip on least privilege on page 488.) Use the sudo –i
option to spawn a root shell:

$ pwd
/home/sam
$ sudo -i
id
uid=0(root) gid=0(root) groups=0(root)
pwd
/root
exit
$

In this example, sudo spawns a root shell, which displays a # prompt to remind you
that you are running with root privileges. The id utility displays the identity of the
user running the shell. The exit command (you can also use CONTROL-D) terminates the
root shell, returning the user to his normal status and his former shell and prompt.

sudo’s environment The pwd builtin in the preceding example shows one aspect of the modified environ-
ment the –i option (page 493) creates. This option spawns a root login shell (a shell
with the same environment as a user logging in as root would have) and executes
root’s startup files (page 277). Before issuing the sudo –i command, the pwd builtin
shows /home/sam as Sam’s working directory; after the command it shows /root,
root’s home directory, as the working directory. Use the –s option (page 493) to
spawn a root shell without modifying the environment. When you call sudo without
an option, it runs the command you specify in an unmodified environment. To dem-
onstrate, the following example has sudo run pwd without an option. The working
directory of a command run in this manner does not change.

$ pwd
/home/sam
$ sudo pwd
/home/sam

Redirecting output The following command fails because, although the shell that sudo spawns executes
ls with root privileges, the nonprivileged shell that the user is running redirects the
output. The user’s shell does not have permission to write to /root.

$ sudo ls > /root/ls.sam
-bash: /root/ls.sam: Permission denied

There are several ways around this problem. The easiest is to pass the whole com-
mand line to a shell running under sudo:

Running Commands with root Privileges 493

$ sudo bash -c 'ls > /root/ls.sam'

The bash –c option spawns a shell that executes the string following the option and
then terminates. The sudo utility runs the spawned shell with root privileges. You
can quote the string to prevent the nonprivileged shell from interpreting special
characters. You can also spawn a root shell with sudo –i, execute the command, and
exit from the privileged shell. (See the preceding section.)

optional Another way to deal with the problem of redirecting output of a command run by
sudo is to use tee (page 236):

$ ls | sudo tee /root/ls.sam
...

This command writes the output of ls to the file but also displays it. If you do not want
to display the output, you can have the nonprivileged shell redirect the output to
/dev/null (page 555). The next example uses this technique to do away with the screen
output and uses the –a option to tee to append to the file instead of overwriting it:

$ ls | sudo tee -a /root/ls.sam > /dev/null

Options

You can use command line options to control how sudo runs a command. Follow-
ing is the syntax of an sudo command line:

sudo [options] [command]

where options is one or more options and command is the command you want to
execute. Without the –u option, sudo runs command with root privileges. Some of
the more common options follow; see the sudo man page for a complete list.

–b (background) Runs command in the background.

–i (initial login environment) Spawns the shell that is specified for root (or another
user specified by –u) in /etc/passwd, running root’s (or the other user’s) startup files,
with some exceptions (e.g., TERM is not changed). Does not take a command.

–k (kill) Resets the timestamp (page 491) of the user running the command, which
means the user must enter a password the next time she runs sudo.

–L (list defaults) Lists the parameters that you can set on a Defaults line (page 497) in
the sudoers file. Does not take a command.

–l (list commands) Lists the commands the user who is running sudo is allowed to
run on the local system. Does not take a command.

–s (shell) Spawns a new root (or another user specified by –u) shell as specified in the
/etc/passwd file. Similar to –i but does not change the environment. Does not take a
command.

–u user Runs command with the privileges of user. Without this option sudo runs command
with root privileges.

494 Chapter 12 System Administration: Core Concepts

sudoers: Configuring sudo
As installed, sudo is not as secure and robust as it can be if you configure it care-
fully. The sudo configuration file is /etc/sudoers. The best way to edit sudoers is to
use visudo by giving this command: sudo visudo. The visudo utility locks, edits, and
checks the grammar of the sudoers file. By default, visudo calls the nano editor. You
can set the VISUAL environment variable to cause visudo to call vi with the follow-
ing command:

$ export VISUAL=vi

Replace vi with the textual editor of your choice. Put this command in a startup file
(page 277) to set this variable each time you log in.

In the sudoers file, comments, which start with a pound sign (#), can appear any-
where on a line. In addition to comments, this file holds two types of entries: aliases
and user privilege specifications. Each of these entries occupies a line, which can be
continued by terminating it with a backslash (\).

User Privilege Specifications

The format of a line that specifies user privileges is as follows (the whitespace
around the equal sign is optional)

user_list host_list = [(runas_list)] command_list

• The user_list specifies the user(s) this specification line applies to. This list
can contain usernames, groups (prefixed with %), and user aliases (next
section).

• The host_list specifies the host(s) this specification line applies to. This list
can contain one or more hostnames, IP addresses, or host aliases (dis-
cussed in the next section). You can use the builtin alias ALL to cause the
line to apply to all systems that refer to this sudoers file.

• The runas_list specifies the user(s) the commands in the command_list can
be run as when sudo is called with the –u option (page 493). This list can
contain usernames, groups (prefixed with %), and runas aliases (discussed
in the next section). Must be enclosed within parentheses. Without
runas_list, sudo assumes root.

Always use visudo to edit the sudoers file

caution A syntax error in the sudoers file can prevent you from using sudo to gain root privileges. If you
edit this file directly (without using visudo), you will not know that you introduced a syntax error
until you find you cannot use sudo. The visudo utility checks the syntax of sudoers before it
allows you to exit. If it finds an error, it gives you the choice of fixing the error, exiting without sav-
ing the changes to the file, or saving the changes and exiting. The last is usually a poor choice, so
visudo marks the last choice with (DANGER!).

Running Commands with root Privileges 495

• The command_list specifies the utilities this specification line applies to.
This list can contain names of utilities, names of directories holding utili-
ties, and command aliases (discussed in the next section). All names must
be absolute pathnames; directory names must end with a slash (/).

If you follow a name with two adjacent double quotation marks (""), the user will
not be able to specify any command line arguments, including options. Alterna-
tively, you can specify arguments, including wildcards, to limit the arguments a user
is allowed to use.

Examples The following user privilege specification allows Sam to use sudo to mount and
unmount filesystems (run mount and umount with root privileges) on all systems (as
specified by ALL) that refer to the sudoers file containing this specification:

sam ALL=(root) /bin/mount, /bin/umount

The (root) runas_list is optional. If you omit it, sudo allows the user to run the com-
mands in the command_list with root privileges. In the following example, Sam
takes advantage of these permissions. He cannot run umount directly; instead, he
must call sudo to run it.

$ whoami
sam
$ umount /music
umount: only root can unmount /dev/sdb7 from /music
$ sudo umount /music
[sudo] password for sam:
$

If you replace the line in sudoers described above with the following line, Sam is not
allowed to unmount /p03, although he can still unmount any other filesystem and
can mount any filesystem:

sam ALL=(root) /bin/mount, /bin/umount, !/bin/umount /p03

The result of the preceding line in sudoers is shown below. The sudo utility does not
prompt for a password because Sam has entered his password within the last 15
minutes.

$ sudo umount /p03
Sorry, user sam is not allowed to execute '/bin/umount /p03' as root on localhost.

The following line limits Sam to mounting and unmounting filesystems mounted on
/p01, /p02, /p03, and /p04:

sam ALL= /bin/mount /p0[1-4], /bin/umount /p0[1-4]

The following commands show the result:

$ sudo umount /music
Sorry, user sam is not allowed to execute '/bin/umount /music' as root on localhost.
$ sudo umount /p03
$

496 Chapter 12 System Administration: Core Concepts

Default privileges
for admin group

As shipped, the sudoers file contains the following lines:

Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL

This user privilege specification applies to all systems (as indicated by the ALL to the
left of the equal sign). As the comment says, this line allows members of the admin
group (specified by preceding the name of the group with a percent sign: %admin) to
run any command (the rightmost ALL) as any user (the ALL within parentheses).
When you call it without the –u option, the sudo utility runs the command you spec-
ify with root privileges, which is what sudo is used for most of the time.

If the following line were in sudoers, it would allow members of the wheel group to
run any command as any user with one exception: They would not be allowed to run
passwd to change the root password.

%wheel ALL=(ALL) ALL, !/usr/bin/passwd root

optional In the %admin ALL=(ALL) ALL line, if you replaced (ALL) with (root), or if you
omitted (ALL), you would still be able to run any command with root privileges.
You would not, however, be able to use the –u option to run a command as another
user. Typically, when you can have root privileges, this limitation is not an issue.
Working as a user other than yourself or root allows you to use the least privilege
possible to accomplish a task, which is a good idea.

For example, if you are in the admin group, the default entry in the sudoers file
allows you to give the following command to create and edit a file in Sam’s home
directory. Because you are working as Sam, he will own the file and be able to read
from and write to it.

$ sudo -u sam vi ~sam/reminder
$ ls -l ~sam/reminder
-rw-r--r-- 1 sam sam 15 Mar 9 15:29 /home/sam/reminder

Aliases

An alias enables you to rename and/or group users, hosts, or commands. Following
is the format of an alias definition:

alias_type alias_name = alias_list

where alias_type is the type of alias (User_Alias, Runas_Alias, Host_Alias,
Cmnd_Alias), alias_name is the name of the alias (by convention in all uppercase let-
ters), and alias_list is a comma-separated list of one or more elements that make up
the alias. Preceding an element of an alias with an exclamation point (!) negates it.

User_Alias The alias_list for a user alias is the same as the user_list for a user privilege specifi-
cation (discussed in the previous section). The following lines from a sudoers file
define three user aliases: OFFICE, ADMIN, and ADMIN2. The alias_list that
defines the first alias includes the usernames mark, sam, and sls; the second includes

Running Commands with root Privileges 497

two usernames and members of the admin group; and the third includes all mem-
bers of the admin group except Max.

User_Alias OFFICE = mark, sam, sls
User_Alias ADMIN = max, zach, %admin
User_Alias ADMIN2 = %admin, !max

Runas_Alias The alias_list for a runas alias is the same as the runas_list for a user privilege spec-
ification (discussed in the previous section). The following SM runas alias includes
the usernames sam and sls:

Runas_Alias SM = sam, sls

Host_Alias Host aliases are meaningful only when the sudoers file is referenced by sudo running
on more than one system. The alias_list for a host alias is the same as the host_list
for a user privilege specification (discussed in the previous section). The following
line defines the LCL alias to include the systems named dog and plum:

Host_Alias LCL = dog, plum

If you want to use fully qualified hostnames (hosta.example.com instead of just
hosta) in this list, you must set the fqdn flag (discussed in the next section), which
can slow the performance of sudo.

Cmnd_Alias The alias_list for a command alias is the same as the command_list for a user priv-
ilege specification (discussed in the previous section). The following command alias
includes three files and, by including a directory (denoted by its trailing /), incorpo-
rates all the files in that directory:

Cmnd_Alias BASIC = /bin/cat, /usr/bin/vi, /bin/df, /usr/local/safe/

Defaults (Options)

You can change configuration options from their default values by using the
Defaults keyword. Most values in this list are flags that are implicitly Boolean (can
either be on or off) or strings. You turn on a flag by naming it on a Defaults line,
and you turn it off by preceding it with a !. The following line from the installed
sudoers file turns off the lecture and fqdn flags and turns on tty_tickets:

Defaults !lecture,tty_tickets,!fqdn

This section lists some common flags; see the sudoers man page for a complete list.

fqdn (fully qualified domain name) Performs DNS lookups on FQDNs (page 1037) in
the sudoers file. When this flag is set, you can use FQDNs in the sudoers file, but
doing so may negatively affect sudo’s performance, especially if DNS is not work-
ing. When this flag is set, you must use the local host’s official DNS name, not an
alias. If hostname returns an FQDN, you do not need to set this flag. By default, this
flag is on; it is off in the sudoers file distributed by Ubuntu.

insults Displays mild, humorous insults when a user enters a wrong password. The default
is off. See also passwd_tries.

498 Chapter 12 System Administration: Core Concepts

lecture=freq Controls when sudo displays a reminder message before the password prompt. Pos-
sible values of freq are never (default), once, and always. Specifying !lecture is the
same as specifying a freq of never.

mailsub=subj (mail subject) Changes the default email subject for warning and error messages
from the default *** SECURITY information for %h *** to subj. The sudo util-
ity expands %h within subj to the local system’s hostname. Place subj between quo-
tation marks if it contains shell special characters (page 146).

mailto=eadd Sends sudo warning and error messages to eadd (an email address; the default is root).
Place eadd between quotation marks if it contains shell special characters (page 146).

mail_always Sends email to the mailto user each time a user runs sudo. The default is off.

mail_badpass Sends email to the mailto user when a user enters an incorrect password while run-
ning sudo. The default is off.

mail_no_host Sends email to the mailto user when a user whose username is in the sudoers file but
who does not have permission to run commands on the local host runs sudo. The
default is off.

mail_no_perms Sends email to the mailto user when a user whose username is in the sudoers file but
who does not have permission to run the requested command runs sudo. The
default is off.

mail_no_user Sends email to the mailto user when a user whose username is not in the sudoers file
runs sudo. The default is on.

passwd_tries=num
The num is the number of times the user can enter an incorrect password in
response to the sudo password prompt before sudo quits. The default is 3. See also
insults and lecture.

rootpw Causes sudo to accept only the root password in response to its prompt. Because
sudo issues the same prompt whether it is asking for your password or the root
password, turning this flag on may confuse users. Do not turn on this flag if you
have not unlocked the root account (page 499) as you will not be able to use sudo.
To fix this problem, bring the system up in recovery mode (page 512) and turn off
(remove) this flag. The default is off, causing sudo to prompt for the password of
the user running sudo. See the adjacent tip.

shell_noargs Causes sudo, when called without any arguments, to spawn a root shell without
changing the environment. The default is off. This option is the same as the sudo –s
option.

Using the root password in place of your password

tip If you have set up a root password (page 499), you can cause graphical programs that require a
password to require the root password in place of the password of the user who is running the
program by turning on rootpw. The programs will continue to ask for your password, but will
accept only the root password. Making this change causes an Ubuntu system to use the root pass-
word in a manner similar to the way some other distributions use this password.

Running Commands with root Privileges 499

timestamp_timeout=mins
The mins is the number of minutes that the sudo timestamp (page 491) is valid. The
default is 15; set mins to –1 to cause the timestamp to be valid forever.

umask=val The val is the umask (page 526) that sudo uses to run the command that the user
specifies. Set val to 0777 to preserve the user’s umask value. The default is 0022.

Unlocking the root Account (Assigning a Password to root)
Except for a few instances, there is no need to unlock the root account on an
Ubuntu system and Ubuntu suggests that you do not do so. The following com-
mand unlocks the root account by assigning a password to it:

$ sudo passwd root
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Relocking the root
account

If you decide you want to lock the root account after unlocking it, give the com-
mand sudo passwd –l root. You can unlock it again with the preceding command.

su: Gives You Another User’s Privileges

To use su to gain root privileges, you must unlock the root account (as discussed in
the preceding section).

The su (substitute user) utility can spawn a shell or execute a program with the
identity and privileges of a specified user. Follow su on the command line with the
name of a user; if you are working with root privileges or if you know the user’s
password, you will then take on the identity of that user. When you give an su com-
mand without an argument, su defaults to spawning a shell with root privileges
(you have to know the root password).

When you give an su command to work as root, su spawns a new shell, which dis-
plays the # prompt. You can return to your normal status (and your former shell
and prompt) by terminating this shell: Press CONTROL-D or give an exit command. Giv-
ing an su command by itself changes your user and group IDs but makes minimal
changes to the environment. For example, PATH has the same value as it did before
you gave the su command. When you give the command su – (you can use –l or
––login in place of the hyphen), you get a root login shell: It is as though you
logged in as root. Not only do the shell’s user and group IDs match those of root,
but the environment is identical to that of root. The login shell executes the appro-
priate startup files (page 277) before displaying a prompt.

The id utility displays the changes in your user and group IDs and in the groups you
are associated with:

$ id
uid=1002(sam) gid=1002(sam) groups=117(admin),1002(sam)
$ su
Password:
id
uid=0(root) gid=0(root) groups=0(root)

500 Chapter 12 System Administration: Core Concepts

You can use su with the –c option to run a command line with root privileges,
returning to the original shell when the command finishes executing. The following
example first shows that a user is not permitted to kill (page 522) a process. With the
use of su –c and the root password, however, the user is permitted to kill the process.
The quotation marks are necessary because su –c takes its command as a single
argument.

$ kill -15 4982
-bash: kill: (4982) - Operation not permitted
$ su -c "kill -15 4982"
Password:
$

The Upstart Event-Based init Daemon

Because the traditional System V init daemon (SysVinit) does not deal well with
modern hardware, including hotplug (page 568) devices, USB hard and flash drives,
and network-mounted filesystems, Ubuntu replaced it with the Upstart init daemon
(upstart.ubuntu.com and upstart.ubuntu.com/wiki).

Several other replacements for SysVinit are also available. One of the most promi-
nent, initng (www.initng.org), is available for Debian and runs on Ubuntu. In addi-
tion, Solaris uses SMF (Service Management Facility) and MacOS uses launchd.
Over time, Ubuntu will likely come to incorporate features of each of these systems
into Upstart.

The runlevel-based SysVinit daemon (sysvinit package) uses runlevels (single-user,
multiuser, and more) and links from the /etc/rc?.d directories to the init scripts in
/etc/init.d to start and stop system services. The event-based Upstart init daemon
(upstart package) uses events to start and stop system services. With the Feisty
release, Ubuntu switched to the Upstart init daemon and began the transition from
the SysVinit setup to the Upstart setup. This section discusses Upstart and the parts
of SysVinit that remain: the /etc/rc?.d and /etc/init.d directories and the concept of
runlevels. See the tip about terminology on page 487.

The Upstart init daemon is event-based and runs specified programs when something
on the system changes. These programs, which are frequently scripts, start and stop
services. This setup is similar in concept to the links to init scripts that SysVinit calls
as a system enters runlevels, except Upstart is more flexible. Instead of starting and
stopping services only when the runlevel changes, Upstart can start and stop services
upon receiving information that something on the system has changed. Such a

Superuser, PATH, and security
security The fewer directories you keep in PATH when you are working as root, the less likely you will be

to execute an untrusted program as root. Never include the working directory (as . or : : anywhere
in PATH, or : as the last element of PATH). For more information refer to “PATH: Where the Shell
Looks for Programs” on page 302.

www.initng.org

The Upstart Event-Based init Daemon 501

change is called an event. For example, Upstart can take action when it learns from
udev (page 568) that a filesystem, printer, or other device has been added or removed
from the running system. It can also start and stop services when the system is
brought up, when the system is shut down, or when a job changes state.

Future of Upstart Changing from Sysvinit to Upstart involves many parts of the Linux system. To
make the switch smoothly and to introduce as few errors as possible, the Upstart
team elected to make the transition over several releases.

Ubuntu started using the Upstart init daemon in Feisty. Between the Feisty and
Gutsy+2 releases, Ubuntu will move away from the SysVinit setup and toward the
cleaner, more flexible Upstart setup. As more system services are put under the con-
trol of Upstart, entries in the /etc/event.d directory (see the tip on page 507) will
replace the contents of the /etc/init.d and /etc/rc?.d directories. Runlevels will no
longer be a formal feature of Ubuntu, although they will be maintained for compat-
ibility with third-party software. Eventually Upstart will also replace crond.

Software Packages

The Upstart system comprises five packages, all of which are installed by default:

• upstart Provides the Upstart init daemon and initctl utility.

• upstart-logd Provides the logd daemon and the job definition file for the
logd service.

• upstart-compat-sysv Provides job definition files for the rc* tasks as well
as the reboot, runlevel, shutdown, and telinit utilities that provide compatibil-
ity with SysVinit.

• startup-tasks Provides job definition files for system startup tasks.

• system-services Provides job definition files for tty services.

Definitions

Events An event is a change in state that init can be informed of. Almost any change in
state—either internal or external to the system—can trigger an event. For example,
the boot loader triggers the startup event, the system entering runlevel 2 triggers the
runlevel 2 event, and a filesystem being mounted triggers the path-mounted event.
Removing and installing a hotplug (page 568) or USB device (such as a printer) can
trigger an event. You can also trigger an event manually by using the initctl emit
command (page 504).

Jobs A job is a series of instructions that init reads. The instructions typically include a
program (binary file or shell script) and the name of an event. The Upstart init dae-
mon runs the program when the event is triggered. You can run and stop a job man-
ually using the initctl start and stop commands, respectively (page 504). Jobs are
divided into tasks and services.

Tasks A task is a job that performs its work and returns to a waiting state when it is done.

502 Chapter 12 System Administration: Core Concepts

Services A service is a job that does not normally terminate by itself. For example, the logd
daemon and the gettys (page 506) are implemented as services. The init daemon
monitors each service, restarting the service if it fails and killing the service when it
is stopped manually or by an event.

Job definition files The /etc/event.d directory holds job definition files (files defining the jobs that the
Upstart init daemon runs). Initially this directory is populated by Upstart software
packages (page 501). With Ubuntu releases following Feisty, installing some services
will add a file to this directory to control the service, replacing the files that install-
ing a service had placed in the /etc/rc?.d and /etc/init.d directories.

init is a state
machine

At its core, the Upstart init daemon is a state machine. It keeps track of the state of
jobs and, as events are triggered, tracks jobs as they change states. When init tracks
a job from one state to another, it may execute the job’s commands or terminate
the job.

Runlevel emulation The System V init daemon used changes in runlevels (page 510) to determine when
to start and stop processes. Ubuntu systems, which use the Upstart init daemon,
have no concept of runlevels. To ease migration from a runlevel-based system to an
event-based system, and to provide compatibility with software intended for other
distributions, Ubuntu emulates runlevels using Upstart.

The rc? jobs, which are defined by the /etc/event.d/rc? files, run the /etc/init.d/rc
script. This script runs the init scripts in /etc/init.d from the links in the /etc/rc?.d
directories, emulating the functionality of these links under SysVinit. The rc? jobs
run these scripts as the system enters a runlevel; they take no action when the sys-
tem leaves a runlevel. See page 505 for a discussion of the rc2 job and page 507 for
information on init scripts. Upstart implements the runlevel (page 510) and telinit
(page 510) utilities to provide compatibility with SysVinit systems.

initctl The initctl (init control) utility allows a system administrator working with root priv-
ileges to communicate with the Upstart init daemon. This utility can start, stop, and
report on jobs. For example, the initctl list command lists jobs and their state:

$ sudo initctl list
logd (stop) waiting
rc-default (stop) waiting
rc0 (stop) waiting
...
tty5 (start) running, process 4720
tty6 (start) running, process 4727

See the initctl man page and the examples in this section for more information. You
can give the command initctl help (no hyphens before help) to display a list of initctl
commands. Alternatively, you can give the following command to display more
information about the list command:

$ initctl list --help
Usage: initctl list [OPTION]...
List known jobs.

The Upstart Event-Based init Daemon 503

Options:
 --show-ids show job ids, as well as names
 -p, --pid=PID destination process
 -q, --quiet reduce output to errors only
 -v, --verbose increase output to include informational
messages
 --help display this help and exit
 --version output version information and exit

Replace list with the initctl command you want more information about. The start,
stop, and status utilities are links to initctl that run the initctl commands they are
named for.

Jobs

Each file in the /etc/event.d directory defines a job and usually has at least an event
and a command. When the event is triggered, init executes the command. This sec-
tion describes examples of both administrator-defined jobs and jobs installed with
the Upstart packages.

Administrator-Defined Jobs

mudat example The following administrator-defined job uses the exec keyword to execute a shell
command. You can also use this keyword to execute a shell script stored in a file or
a binary executable file.

$ cat /etc/event.d/mudat
start on runlevel 2
exec echo "Entering multiuser mode on " $(date) > /tmp/mudat.out

This file defines a task: It runs the echo shell command when the system enters
multiuser mode (runlevel 2). This command writes a message that includes the time
and date to /tmp/mudat.out. The shell uses command substitution (page 344) to
execute the date utility. After this job runs to completion, the mudat task stops and
enters a wait state. In the next example, the cat utility shows the contents of the
/tmp/mudat.out file and the initctl list command reports on this task (the status util-
ity displays the same information):

$ cat /tmp/mudat.out
Entering multiuser mode on Tue Jul 10 17:34:39 PDT 2007

$ sudo initctl list mudat
mudat (stop) waiting

If the exec command line contains shell special characters (page 146), init executes
/bin/sh (a link to dash [page 276]) and passes the command line to the shell. Other-
wise, exec executes the command line directly. To run multiple shell commands,
either use exec to run a shell script stored in a file or use script...end script (dis-
cussed next).

504 Chapter 12 System Administration: Core Concepts

The Upstart init daemon can monitor only jobs (services) whose programs are exe-
cuted using exec. It cannot monitor jobs run using script...end script. Put another way,
services require the use of exec while tasks can use either method to run a program.

myjob example You can also define an event and set up a job that is triggered by that event. The
myjob job definition file defines a job that is triggered by the hithere event:

$ cat /etc/event.d/myjob
start on hithere
script

echo "Hi there, here I am!" > /tmp/myjob.out
date >> /tmp/myjob.out
end script

The myjob file shows another way of executing commands: It includes two com-
mand lines between the script and end script keywords. These keywords always
cause init to execute /bin/sh. These commands write a message and the date to the
/tmp/myjob.out file. You can use the emit initctl command to trigger the job. Fol-
lowing, init displays the stages myjob goes through when you trigger it:

initctl emit $ sudo initctl emit hithere
hithere
myjob (start) waiting
myjob (start) starting
myjob (start) pre-start
myjob (start) spawned, process 6064
myjob (start) post-start, (main) process 6064
myjob (start) running, process 6064
myjob (stop) running
myjob (stop) stopping
myjob (stop) killed
myjob (stop) post-stop
myjob (stop) waiting

$ cat /tmp/myjob.out
Hi there, here I am!
Sat Jul 7 20:19:13 PDT 2007

$ sudo initctl list myjob
myjob (stop) waiting

initctl start and stop In the preceding example, cat shows the output that myjob generates and initctl dis-
plays the status of the job. You can run the same job with the command initctl start
myjob (or just start myjob). The initctl start command is useful when you want to
run a job without triggering an event. For example, you can use the command
initctl start mudat to run the mudat job from the previous example without trigger-
ing the runlevel 2 event.

Job Definition Files in /etc/event.d

As Ubuntu transitions from SysVinit to Upstart init, more jobs will be defined in the
/etc/event.d directory. This section describes some of the jobs that the Upstart pack-
ages (page 501) put in this directory.

The Upstart Event-Based init Daemon 505

optional Specifying Events with Arguments

The telinit and shutdown utilities emit runlevel events that include arguments. For
example, shutdown emits runlevel 0, and telinit 2 emits runlevel 2. You can match
these events within a job definition using the following syntax:

start|stop on event [arg]

where event is an event such as runlevel and arg is an optional argument. To stop a
job when the system enters runlevel 2, specify stop on runlevel 2. You can also spec-
ify runlevel [235] to match runlevels 2, 3, and 5 or runlevel [!2] to match any run-
level except 2.

Event arguments Although Upstart ignores additional arguments in an event, additional arguments in
an event name within a job definition file must exist in the event. For example, run-
level (no argument) in a job definition file matches all runlevel events (regardless of
arguments) whereas runlevel S arg2 does not match any runlevel event because the
runlevel event takes only one argument.

rc2 task The /etc/event.d/rc2 job definition file defines the rc2 task, which is similar to the
other rc? tasks. The rc2 task is started when the system enters multiuser mode (the
event is named runlevel 2); it is stopped when the system enters any runlevel other
than runlevel 2 (runlevel [!2]). The first part of the script calls the runlevel utility
(page 510), which makes the system appear to be in runlevel 2 (there are no real
runlevels) and assigns values to two variables. The real work is done by the exec
command, which runs the /etc/init.d/rc script with an argument of 2. This script
calls the links in the /etc/rc?.d directory that correspond to its argument. Thus the
rc2 task runs the init scripts that the links in the /etc/rc2.d directory point to.

$ cat /etc/event.d/rc2
rc2 - runlevel 2 compatibility
#
This task runs the old sysv-rc runlevel 2 ("multi-user") scripts. It
is usually started by the telinit compatibility wrapper.

start on runlevel 2

stop on runlevel [!2]

console output
script

set $(runlevel --set 2 || true)
if ["$1" != "unknown"]; then

PREVLEVEL=$1
RUNLEVEL=$2
export PREVLEVEL RUNLEVEL

fi

exec /etc/init.d/rc 2
end script

506 Chapter 12 System Administration: Core Concepts

tty services Following is the job definition file for the service that starts and monitors the getty
process on tty1:

$ cat /etc/event.d/tty1
tty1 - getty
#
This service maintains a getty on tty1 from the point when
the system is started until it is shut down again.

start on runlevel 2
start on runlevel 3
start on runlevel 4
start on runlevel 5

stop on runlevel 0
stop on runlevel 1
stop on runlevel 6

respawn
exec /sbin/getty 38400 tty1

This service starts the getty process when any of the events runlevel 2 through run-
level 5 are triggered (i.e., when the system enters multiuser mode) and stops when
any of the events runlevel 0, runlevel 1, or runlevel 6 is triggered (i.e., when the sys-
tem is shut down, enters single-user mode, or is rebooted). The respawn keyword
tells init to restart the job if it terminates, and exec runs a getty process on tty1 at
38,400 baud. The initctl utility reports that the tty1 service has started and is running
as process 4747; ps reports on the process:

$ sudo initctl list tty1
tty1 (start) running, process 4747
$ ps -ef | grep 4747
root 4747 1 0 Jul02 tty1 00:00:00 /sbin/getty 38400 tty1

control-alt-del task See page 518 for a discussion of the control-alt-del task that you can use to bring
the system down.

rc-default task and
inittab

Under SysVinit, the initdefault entry in the /etc/inittab file tells init which runlevel
(page 510) to bring the system to when it comes up. Ubuntu does not include an
inittab file and, by default, the Upstart init daemon (using the rc-default task) boots
the system to multiuser mode (runlevel 2, the default runlevel). If you want the sys-
tem to boot to a different runlevel, create an inittab file. The following file causes
the system to boot to single-user mode (runlevel S; see the tip on page 511):

$ cat /etc/inittab
:id:S:initdefault:

When the system comes up in single-user (recovery) mode, if the root account on
the system is unlocked (page 499), init requests the root password before display-
ing the root prompt. Otherwise it displays the root prompt without requesting a
password.

The Upstart Event-Based init Daemon 507

Never set the system to boot to runlevel 0 or 6, as it will not come up properly. To
boot to multiuser mode (runlevel 2), remove the inittab file if it exists or create the
inittab file shown in the example and replace the S with a 2.

SysVinit (rc) Scripts: Start and Stop System Services

rc scripts The init (initialization) scripts, also called rc (run command) scripts, are shell scripts
located in the /etc/init.d directory. They are run via symbolic links in the /etc/rcn.d
directories, where n is the runlevel the system is entering.

The /etc/rcn.d directories contain scripts whose names begin with K (K19cupsys,
K20dhcp, K74bluetooth, and so on) and scripts whose names begin with S
(S15bind9, S18nis, S65firestarter, and so on). When entering a new runlevel, each K
(kill) script is executed with an argument of stop, and then each S (start) script is
executed with an argument of start. Each of the K files is run in numerical order.
The S files are run in similar fashion. This setup allows the person who sets up these
files to control which services are stopped and which are started, and in what order,
whenever the system enters a given runlevel. Using scripts with start and stop argu-
ments promotes flexibility because it allows one script to both start and kill a pro-
cess, depending on which argument it is called with.

To customize system initialization, you can add shell scripts to the /etc/init.d direc-
tory and place links to these files in the /etc/rcn.d directories (although in practice it
is best to use sysv-rc-conf [discussed next] to create the links). The following exam-
ple shows several links to the samba init script. These links are called to run the
samba init script to start or stop the nmbd and smbd daemons at various runlevels:

$ ls -l /etc/rc?.d/*samba*
lrwxrwxrwx 1 root root 15 May 17 10:51 /etc/rc0.d/K19samba -> ../init.d/samba
lrwxrwxrwx 1 root root 15 May 17 10:51 /etc/rc1.d/K19samba -> ../init.d/samba
lrwxrwxrwx 1 root root 15 May 17 10:51 /etc/rc2.d/S20samba -> ../init.d/samba
lrwxrwxrwx 1 root root 15 May 17 10:51 /etc/rc3.d/S20samba -> ../init.d/samba
lrwxrwxrwx 1 root root 15 May 17 10:51 /etc/rc4.d/S20samba -> ../init.d/samba
lrwxrwxrwx 1 root root 15 May 17 10:51 /etc/rc5.d/S20samba -> ../init.d/samba
lrwxrwxrwx 1 root root 15 May 17 10:51 /etc/rc6.d/K19samba -> ../init.d/samba

Each link in /etc/rcn.d points to a file in /etc/init.d. For example, the file
/etc/rc2.d/S20samba is a link to the file named samba in /etc/init.d. (The numbers
in the filenames of the links in the /etc/rcn.d directories may change from one
release of Ubuntu to the next, but the scripts in /etc/init.d always have the same

Most of the files in the /etc/rcn.d and /etc/init.d directories will go away

tip As explained on page 502, Ubuntu emulates runlevels using Upstart to aid migration and provide
compatibility with software for other distributions. This section explains how init scripts work with
(emulated) runlevels to control system services. The /etc/rcn.d and the /etc/init.d directories
described in this section will largely be empty by the release of Ubuntu Gutsy+2 (the second
Ubuntu release following Gutsy), the links in these directories having been replaced by job control
files in /etc/event.d (page 502).

508 Chapter 12 System Administration: Core Concepts

names.) The names of files in the init.d directory are functional. Thus, when you
want to turn NFS services on or off, you use the nfs-kernel-server script. When you
want to turn basic network services on or off, you run the networking script. The
cupsys script controls the printer daemon. Each script takes an argument of stop or
start, depending on what you want to do. Some scripts also take other arguments,
such as restart, reload, and status. Run a script without an argument to display a
usage message indicating which arguments it accepts.

Following are three examples of calls to init scripts:

$ sudo /etc/init.d/nfs-kernel-server stop
$ sudo /etc/init.d/networking start
$ sudo /etc/init.d/networking restart

The first example stops all NFS server processes (processes related to serving filesys-
tems over the network). The second example starts all processes related to basic net-
work services. The third example stops and then restarts these same processes.

/etc/rc.local The /etc/rc.local file is executed after the other init scripts when the system boots.
Put commands that customize the system in rc.local. Although you can add any
commands you like to rc.local, it is best to run them in the background; that way if
they hang, they will not stop the boot process.

sysv-rc-conf: Configures Services

The sysv-rc-conf utility (sysv-rc-conf package) makes it easier for a system adminis-
trator to maintain the /etc/rc?.d directory hierarchy. This utility can add, remove,
and list startup information for system services. You might also want to try the
graphical boot-up manager, bum (bum package), which this book does not cover.

You can run sysv-rc-conf in pseudographical or textual mode. In pseudographical
mode, it makes changes to configuration files as you enter the changes and can also
start and stop services. For more information on this mode, see the sysv-rc-conf man
page or run sysv-rc-conf without any arguments and give the command h. This sec-
tion discusses using sysv-rc-conf in textual mode in which it changes the configura-
tion only—it does not change the current state of any service. Give the following
command to see a the list of services:

$ sudo sysv-rc-conf --list
acpi-support 1:off 2:on 3:on 4:on 5:on
acpid 1:off 2:on 3:on 4:on 5:on
alsa-utils 0:off 6:off
anacron 1:off 2:on 3:on 4:on 5:on
apmd 1:off 2:on 3:on 4:on 5:on
apport 0:off 1:off 2:on 3:on 4:on 5:on 6:off
atd 1:off 2:on 3:on 4:on 5:on
avahi-daemon
binfmt-suppo 2:on 3:on 4:on 5:on
...

All services that run their own daemons are listed, one to a line, followed by their con-
figured state for each runlevel. If a runlevel is missing, it means that there is no entry

The Upstart Event-Based init Daemon 509

for that service in the corresponding file in the /etc/rc?.d directory. You can check how
a specific daemon is configured by adding its name to the previous command:

$ sudo sysv-rc-conf --list ssh
ssh 1:off 2:on 3:on 4:on 5:on

In the next example, sysv-rc-conf configures the /etc/rc?.d directories so that sshd
(the OpenSSH daemon) is off in runlevels 2, 3, 4, and 5 and then confirms the
change. To make changes, you must work with root privileges:

$ sudo sysv-rc-conf --level 2345 ssh off
$ sudo sysv-rc-conf --list ssh
ssh 1:off 2:off 3:off 4:off 5:off

For convenience, you can omit the ––level 2345 arguments. When you specify an
init script and on or off, sysv-rc-conf defaults to runlevels 2, 3, 4, and 5. The follow-
ing command is equivalent to the first of the preceding commands:

$ sudo sysv-rc-conf ssh off

The ps utility confirms that even though sysv-rc-conf set things up so sshd would be
off in all runlevels, it is still running. The sysv-rc-conf utility did not shut down sshd.

$ ps -ef | grep sshd
root 5169 1 0 Mar12 ? 00:00:00 /usr/sbin/sshd
zach 11545 5749 0 19:30 pts/2 00:00:00 grep sshd

With the preceding changes, when you reboot the system, sshd will not start. You
can stop it more easily using the ssh init script:

$ sudo /etc/init.d/ssh stop
 * Stopping OpenBSD Secure Shell server... [OK]
$ ps -ef | grep sshd
root 11740 8840 0 19:33 pts/1 00:00:00 grep sshd

The name of the init script is not always the same as name of the daemon it runs

tip The adjacent examples show that the ssh init script controls the sshd daemon. You can find the
name of the script that controls a daemon by listing the contents of the /etc/init.d directory and
searching for a filename that is similar to the name or function of the daemon you want to work
with. For example, the /etc/init.d/networking script controls the networking daemons.

Frequently, the first few lines of a script identify the daemon it controls. In the following example,
a comment explains what the ssh init script does and the line that starts with test checks whether
the sshd file, which runs the sshd daemon, exists on the system:

$ cat /etc/init.d/ssh
#! /bin/sh
set -e

/etc/init.d/ssh: start and stop the OpenBSD "secure shell(tm)" daemon

test -x /usr/sbin/sshd || exit 0
...

510 Chapter 12 System Administration: Core Concepts

System Operation

This section covers the basics of how the system functions and can help you make
intelligent decisions as a system administrator. It does not examine every aspect of
system administration in the depth necessary to set up or modify all system func-
tions. Instead, it provides a guide to bringing a system up and keeping it running
from day to day.

Runlevels

With the introduction of Upstart in the Feisty release of Ubuntu, true runlevels dis-
appeared from the system. As a transitional tool, runlevels were replaced with a
structure that runs under Upstart and emulates runlevels (page 502). Table 12-1
lists these pseudorunlevels as they exist under Upstart.

Default runlevel By default, Ubuntu systems boot to multiuser mode (runlevel 2). See “rc-default
task and inittab” on page 506 for instructions on how to change this default.

runlevel The runlevel utility displays the previous and current runlevels. This utility is a tran-
sitional tool; it provides compatibility with SysVinit. In the following example, the
N indicates that the system does not know what the previous runlevel was and the 2
indicates that the system is in multiuser mode.

$ runlevel
N 2

telinit The telinit utility allows a user with root privileges to bring the system down, reboot
the system, or change between recovery (single-user) and multiuser modes. The
telinit utility is a transitional tool; it provides compatibility with SysVinit. On a sys-
tem running Upstart, this utility emits a runlevel event based on its argument. The
format of a telinit command is

telinit runlevel

where runlevel is one of the pseudorunlevels described in Table 12-1.

Table 12-1 Pseudorunlevels

Number Name/function

0 Brings the system down

1 Brings the system to single-user (S, recovery) mode

S Single-user (recovery) mode, textual login, few system services running

2 Multiuser mode, graphical login, all scheduled system services running

3, 4, 5 Multiuser mode, graphical login, all scheduled system services running (for
system customization, runlevels 2–5 are identical)

6 Reboots the system

System Operation 511

Recovery mode and
the root password

When the system enters recovery (single-user) mode, if the root account is unlocked
(page 499), init requests the root password before displaying the root prompt. Oth-
erwise it displays the root prompt without requesting a password. When the system
enters multiuser mode, it displays a graphical login screen.

Booting the System

Booting a system is the process of reading the Linux kernel (page 1044) into system
memory and starting it running. Refer to “grub: The Linux Boot Loader” on
page 647 for more information on the initial steps of bringing a system up.

init daemon As the last step of the boot procedure, Linux starts the Upstart init daemon
(page 500) as PID number 1. The init daemon is the first genuine process to run
after booting and is the parent of all system processes. (That is why when you kill
process 1 while you are working with root privileges, the system dies.)

Once init is running, the startup event triggers the rcS task, which stops when the
system enters any runlevel. The rc-default task starts when rcS stops. Based on the
contents of /etc/inittab (page 506) or the absence of this file, rc-default either

• Executes telinit with an argument of S, which triggers rcS-sulogin and
brings the system to recovery (single-user) mode, or

• Executes telinit with an argument of 2, which triggers rc2 (page 505) and
brings the system to multiuser mode.

Reinstalling the
MBR

If the Master Boot Record (MBR) gets overwritten, the system will not boot into
Linux and you need to rewrite the MBR. See page 653 for details.

Do not change runlevels directly into runlevel S
caution Using telinit to request the system change to runlevel 1 brings the system first to runlevel 1,

where appropriate system processes (running system services) are killed, and then automati-
cally to runlevel S. Changing directly to runlevel S puts the system into runlevel S but does not
kill any processes first; it is usually a poor idea.

The Upstart init daemon consults /etc/inittab (page 506) only when the system is booting. At that
time there are no processes left running from a previous runlevel, so there is no issue with going
directly to runlevel S.

List the kernel boot messages

tip To save a list of kernel boot messages, give the following command immediately after booting the
system and logging in:

$ dmesg > dmesg.boot

This command saves the kernel messages in a file named dmesg.boot. This list can be educational.
It can also be useful when you are having a problem with the boot process. For more information
see page 654.

512 Chapter 12 System Administration: Core Concepts

Recovery (Single-User) Mode

When the system is in recovery (single-user) mode, only the system console is
enabled. You can run programs from the console in single-user mode as you would
from any terminal in multiuser mode. The differences are twofold: You are working
in textual mode so you cannot run graphical programs and few of the system dae-
mons are running. All filesystems are mounted per /etc/fstab (page 576).

When you boot the system to recovery mode, the init daemon runs the init scripts in
/etc/rcS.d as part of single-user initialization (see the tip on page 511). See the next
sections for instructions on booting a system to recovery mode. When you bring a
running system down to recovery mode (page 519), the init daemon runs the init
scripts in /etc/rc1.d and /etc/rcS.d.

With the system in recovery mode, you can perform system maintenance that
requires filesystems to be unmounted or that requires just a quiet system—no one
except you using it, so that no user programs interfere with disk maintenance and
backup programs. The classical UNIX term for this state is quiescent. You can often
boot to recovery mode when the system will not boot normally, allowing you to
change or replace configuration files, check and repair partitions using fsck
(page 577), rewrite boot information (page 653), and more.

Booting the System into Recovery (Single-User) Mode

You can bring a system up in recovery mode by booting from the hard drive or from
an installation CD/DVD. The Alternate and Server CDs make this task easy. Either
way, you must instruct grub to bring the system to single-user mode.

Booting to Recovery Mode from a Hard Drive

Displaying the
grub menu

The first step in bringing a system up in single-user mode from the hard disk is to
display the grub menu. Boot the system normally (turn on the power or reboot it).
The grub menu will be hidden or displayed.

Hidden menu If the grub menu is hidden, grub displays

GRUB loading, please wait...
press 'ESC' to enter the menu... 10

You must press ESCAPE before the 10 counts down to 0 to display the grub menu. Oth-
erwise grub boots the default operating system, which typically brings the system to
multiuser mode.

Displayed menu If grub displays its menu, you must press ESCAPE before the 10 counts down to 0. Oth-
erwise grub boots the default operating system.

Selecting recovery
mode

Unless you have modified menu.lst (page 648), the grub menu starts with a few pairs
of lines similar to the following:

Ubuntu, kernel 2.6.22-10-generic
Ubuntu, kernel 2.6.22-10-generic (recovery mode)

System Operation 513

Typically the first line is highlighted. Press the DOWN ARROW key to highlight the second
line, which includes the words recovery mode. Press RETURN to boot the system to
recovery (single-user) mode.

Editing the grub
menu

If there is no line with recovery mode in the menu, follow these instructions:

1. Highlight the kernel you want to boot—grub highlights the default kernel
when grub displays its menu.

2. Press e to edit the grub boot command lines (from menu.lst) for the kernel
you selected. The lines look similar to the following:

root (hd0,0)
kernel /boot/vmlinuz-2.6.22-10-generic root=UUID=9e467f91-5240-4472-8193-1954dd1be37b ro quiet splash
initrd /boot/initrd.img-2.6.22-10-generic

3. Press the UP or DOWN ARROW key to highlight the line that begins with kernel.

4. Press e to edit the highlighted line; grub displays the line in a simple editor
with the cursor at the end of the line. In this editor, grub displays only part
of the line. You can use the RIGHT and LEFT ARROW keys to display other parts
of the line.

5. With the cursor positioned at the right end of the line (where it is if you
have not moved it), enter SPACE single (following splash in the preceding
example) and press RETURN to display the previous screen.

6. Press b to boot the system using the modified kernel line. The system
comes up in recovery (single-user) mode.

root password If the root account on the system is unlocked (page 499), the system requests the
root password before displaying the root prompt. Otherwise it displays the root
prompt without requesting a password.

Booting to Recovery Mode from an Installation CD

If you are booting Ubuntu from the Alternate CD or the Server CD, select Rescue a
broken system from the initial install screen. Follow the instructions on page 65,
select one of the Execute a shell... selections, and continue with the “Which is the
boot disk and partition?” section below.

If you are booting from the live/install Desktop CD/DVD, when Ubuntu displays
the Ubuntu logo and the startup menu, press F6 (Other options—see Figure 3-16 on
page 64). Ubuntu stops its countdown and displays the boot options line, which
looks similar to the following:

Boot Options :casper initrd=/casper/initrd.gz quiet splash --

Boot options Ubuntu displays only the end of the boot options line. You can use the RIGHT and LEFT

ARROW keys to display other parts of the line. With the cursor positioned to the right
of the SPACE following the two hyphens at the right end of the line (where it is if you
have not moved it), type single and press RETURN. Ubuntu boots to recovery mode
from the CD/DVD; it will not request a password. At this point, you are working

514 Chapter 12 System Administration: Core Concepts

with root privileges (the system displays a # prompt) and none of the hard disk par-
titions are mounted. If you want to make changes to the system that resides on the
hard drive, you must mount the partition(s) you want to change.

Which is the boot
disk and partition?

The most common reason for booting to recovery mode from a CD/DVD on an
installed Ubuntu system is to repair the system when it cannot boot from the hard
disk. To fix this problem, you need to make changes to the bootable partition. Once
you can boot the system from the hard drive, you can boot to recovery mode from
the hard disk as explained earlier and make other changes as needed.

A system typically boots from the hard disk at /dev/hda, /dev/sda, /dev/hdb, or
/dev/sdb. Give the following command, substituting each of the device names until
parted displays a list of partitions that includes one with a boot flag:

parted /dev/hda print
Error: Error opening /dev/hda: No medium found
Retry/Cancel? c

parted /dev/sda print

Disk /dev/sda: 150GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos

Number Start End Size Type File system Flags
 1 32.3kB 1003MB 1003MB primary ext2 boot
 2 1003MB 5001MB 3997MB primary ext3
 3 5001MB 25.0GB 20.0GB primary ext3
...

The preceding example shows that parted cannot read /dev/hda and that partition 1
of /dev/sda has the boot flag set (it is a bootable partition). The device name for this
partition is the catenation of the device name and the partition number: /dev/sda1.
Typically the boot directory is mounted on an ext2 or ext3 filesystem.

Dual-boot systems The /boot directory does not have to be on a partition with the boot flag. On a
dual-boot system, the partition with the boot flag may not be the partition that
holds the /boot directory. Or, on a system that can boot more than one version of
Linux, the partition with the boot flag may not hold the boot directory you need to
fix. Following is the line that parted displays for the primary partition of a dual-
boot system that boots both Windows and Ubuntu:

1 32.3kB 42.2GB 42.2GB primary ntfs boot

The first clue that this is not the partition you want to work with is that it is an
NTFS filesystem, which is unlikely to hold a Linux boot partition.

The second clue will come after you mount the partition and look at its contents
(next step). If you find filenames such as WINDOWS, DRIVERS, and Program
Files, it is likely the C drive of a Windows system. Unmount this partition and
mount another one as explained next.

System Operation 515

Mounting the boot
partition

Once you determine the device name of the boot partition, mount that partition so
you can edit files on it. Frequently you will need to edit /boot/grub/menu.lst. If you
made a change to this file and you (or the system) made a backup of the file before
making the change, you may only need to copy the backup over menu.lst.

Continuing with the preceding example, mount /dev/sda1 on /mnt. A listing of
/mnt will look similar to the following. Use cd to make grub the working directory
and see which menu files are available to work with.

ls /mnt
bin dev initrd lib mnt root sys var
boot etc initrd.img lost+found opt sbin tmp vmlinuz
cdrom home initrd.img.old media proc srv usr vmlinuz.old

cd /mnt/boot/grub
ls -ltr menu.*
-rw-r--r-- 1 root root 4649 2007-06-25 17:59 menu.lst~
-rw-r--r-- 1 root root 5097 2007-07-02 08:59 menu.lst

If you have mounted the wrong partition, unmount it as described below; then
mount another partition and see whether it contains a /boot/grub directory. The
preceding listing shows a backup copy of the menu file (menu.lst~; the dpkg
postinst script makes a backup file with this name when it installs a new, precom-
piled kernel). Before preceding, make a backup of menu.lst by copying it to a file
named menu.list.00 or something similar. You can now copy a known-good backup
over menu.lst or edit menu.lst using a text editor such as nano or vi.

When you are done making changes, give the following commands to unmount the
device mounted on /mnt (you cannot unmount a filesystem while one of its directo-
ries is the working directory):

cd
umount /mnt

After unmounting /mnt, give the command reboot. Ubuntu asks you to remove the
CD and press ENTER (RETURN) to boot the system. If you have fixed the problem, the
system will boot normally.

Going to Multiuser Mode

Multiuser/graphical mode (runlevel 2) is the default state for an Ubuntu Linux sys-
tem. In this mode all appropriate filesystems are mounted, and users can log in from
all connected terminals, dial-up lines, and network connections. All support services
and daemons are enabled and running. With the system in multiuser mode, Ubuntu
displays a graphical login screen on the console.

If you booted to recovery mode to fix something, give a reboot command and allow
the system to come up in multiuser mode. If the system entered recovery mode auto-
matically to allow you to repair the filesystem, when you exit from the recovery
shell, init brings the system to the default mode—usually multiuser. Alternatively,

516 Chapter 12 System Administration: Core Concepts

you can give the following command in response to the root prompt to bring the
system to multiuser mode:

telinit 2

The telinit utility (page 510) tells init which runlevel to change to.

When it goes from single-user to multiuser mode, the system executes the K (kill or
stop) scripts and then the S (start) scripts in /etc/rc.d/rc2.d. For more information
refer to “SysVinit (rc) Scripts: Start and Stop System Services” on page 507. Use
sysv-rc-conf (page 508) to stop any of these scripts from running when the system
enters the new runlevel.

Logging In

Textual login With a textual login, the system uses init, getty, and login to allow a user to log in;
login uses PAM modules (page 545) to authenticate a user. Once the system is in
multiuser mode, init is responsible for spawning a getty process on each of the lines
a user can log in on.

When you enter your username, getty establishes the characteristics of the terminal.
It then overlays itself with a login process and passes to the login process whatever
you entered in response to the login: prompt. The login process uses PAM to consult
the /etc/passwd file to see whether any username there matches the username you
entered. PAM then consults the /etc/shadow file to see whether a password is asso-
ciated with the username. If it is, login prompts you for a password; if not, it contin-
ues without requiring a password. When your username requires a password, login
verifies the password you enter by checking the /etc/shadow file again. If either
your username or your password is not correct, login displays Login incorrect and
prompts you to log in again.

All passwords in the /etc/shadow file are hashed using MD5 (page 1047). It is not
feasible to recover a hashed password. When you log in, the login process hashes the
password you type at the prompt and compares it to the hashed password in
/etc/shadow. If the two passwords match, you are authenticated.

Graphical login With a graphical login, the init process spawns gdm (the GNOME display manager)
on the first free virtual terminal, providing features similar to getty and login. The
gdm utility starts an X server and presents a login window. The gdm display man-
ager then uses PAM to authenticate the user and runs the scripts in the
/etc/gdm/PreSession directory. These scripts inspect the user’s ~/.dmrc file, which
stores the user’s default session and language, and launch the user’s session. The
GNOME desktop environment stores the state of the last saved session and
attempts to restore it when the user logs in again.

With NIS, login compares your username and password with the information in
the appropriate naming service instead of (or in addition to) the passwd and
shadow files. If the system is configured to use both methods (/etc/passwd and

System Operation 517

NIS), it checks the /etc/nsswitch.conf file (page 542) to see in which order it
should consult them.

PAM (page 545), the Pluggable Authentication Module facility, gives you greater
control over user logins than the /etc/passwd and /etc/shadow files do. Using PAM,
you can specify multiple levels of authentication, mutually exclusive authentication
methods, or parallel methods, each of which is by itself sufficient to grant access to
the system. For example, you can have different authentication methods for console
logins and for ssh logins. Similarly, you can require modem users to authenticate
themselves using two or more methods (such as a smartcard or badge reader and a
password). PAM modules also provide security technology vendors with a conve-
nient way to interface their hardware or software products with a system.

Initializing the
session

When the username and password are correct, login or the scripts in PreSession con-
sult the appropriate services to initialize the user and group IDs, establish the home
directory, and determine which shell or desktop manager the user works with.

The login utility/PreSession scripts assign values to variables and look in the
/etc/group file (page 558) to identify the groups the user belongs to. When login has
finished its work, it overlays itself with the login shell, which inherits the variables
set by login. In a graphical environment, the PreSession scripts start the desktop
manager.

During a textual login, the login shell assigns values to additional shell variables
and executes the commands in the system startup files /etc/profile and /etc/bashrc.
Some systems have additional system startup files. The actions performed by these
scripts are system dependent. In most cases they display the contents of the
/etc/motd (message of the day) and /etc/issue files, let you know if you have mail,
and set umask (page 526), the file-creation mask.

After executing the system startup commands, the shell executes the commands
from the personal startup files in the user’s home directory. These scripts are
described on page 277. Because the shell executes the personal startup files after the
system startup files, a sophisticated user can override any variables or conventions
that were established by the system. A new user, by contrast, can remain uninvolved
in these matters.

Logging Out

With a shell prompt displayed, you can either execute a program or exit from the
shell. If you exit from the shell, the process running the shell dies and the parent
process wakes up. When the shell is a child of another shell, the parent shell wakes
up and displays a prompt. Exiting from a login shell causes the operating system to
send init a signal that one of its children has died. Upon receiving this signal, init
takes action based on the appropriate job (page 501). In the case of a process con-
trolling a line for a terminal, init calls the appropriate tty service (page 506), which
then respawns getty so another user can log in.

518 Chapter 12 System Administration: Core Concepts

Bringing the System Down

The shutdown and reboot utilities perform the tasks needed to bring the system down
safely. These utilities can restart the system, prepare the system to be turned off,
and, on most hardware, power down the system. The poweroff and halt utilities are
links to reboot.

You must tell shutdown when you want to bring the system down. This time can be
expressed as an absolute time of day, as in 19:15, which causes the shutdown to
occur at 7:15 PM. Alternatively, you can give this time as the number of minutes
from the present time, as in +15, which means 15 minutes from now. To bring the
system down immediately (recommended for emergency shutdowns only or when
you are the only user logged in), you can give the argument +0 or its synonym, now.
When the shutdown time exceeds 5 minutes, all nonroot logins are disabled for the
last 5 minutes before shutdown.

Calling shutdown with the –r option causes the system to reboot (same as reboot,
except reboot implies now). Using –h instead of –r forces the system to halt (same as
halt, except halt implies now). A message appears once the system has been safely
halted: System halted. Most ATX systems power off automatically after shutdown,
in which case you will not see this message.

Because Linux is a multiuser system, shutdown warns all users before taking action.
This warning gives users a chance to prepare for the shutdown, perhaps by writing
out editor files or exiting from applications. You can replace the default shutdown
message with one of your own by following the time specification on the command
line with a message:

$ sudo shutdown -h 09:30 Going down 9:30 to install disk, up by 10am.

CONTROL-ALT-DEL: Reboots the System

In a textual environment, pressing the key sequence CONTROL-ALT-DEL (also referred to as
the three-finger salute or the Vulcan death grip) on the console causes the kernel to
trigger a control-alt-delete event that causes init to run the commands in
/etc/event.d/control-alt-delete. See page 501 for more information on Upstart
events. These commands safely reboot the system by issuing a shutdown command.
You can disable CONTROL-ALT-DEL by removing the /etc/event.d/control-alt-delete file (or
by moving it to another directory for safe keeping).

Do not turn the power off before bringing the system down
caution Do not turn the power off on a Linux system without first bringing it down as described in this sec-

tion. Linux speeds disk access by keeping buffers in memory that it writes out to disk periodically
or when system use is momentarily low. When you turn off or reset the computer without writing
the contents of these buffers to the disk, you lose any information in the buffers. Running shut-
down forces these buffers to be written. You can force the buffers to be written at any time by
issuing a sync command. However, sync does not unmount filesystems, nor does it bring the
system down. Also, turning off or resetting a system in this manner can destroy filesystems on
IDE and SATA hard disks.

System Operation 519

In a graphical environment, the X Window System traps this key sequence but the
window manager does not pass it to the kernel. As a result, CONTROL-ALT-DEL does not
work in a graphical environment.

Going to Recovery (Single-User) Mode

The following steps describe a method of manually bringing the system down to
recovery mode—the point where it is safe to turn the power off. Make sure you give
other users enough warning before switching to recovery mode; otherwise they may
lose the data they are working on. Because going from multiuser to recovery mode
can affect other users, you must work with root privileges to perform all of these
tasks except the first.

1. Use wall (page 677) to warn everyone who is using the system to log out.

2. If you are sharing files via NFS, use exportfs –ua to disable network access
to the shared filesystems. (Use exportfs without an argument to see which
filesystems are being shared.)

3. Confirm no critical processes are running in the background (e.g., an unat-
tended compile).

4. Give the command telinit 1 (page 510) to bring the system down to recov-
ery mode. The system displays messages about the services it is shutting
down followed by a root shell prompt (#). In runlevel 1, the system kills
many system services and then brings the system to runlevel S. The runlevel
utility confirms the system was at runlevel 1 and is now at runlevel S. See
the tip about changing runlevels on page 511.

$ sudo telinit 1
...
runlevel
1 S

5. Use umount –a to unmount all mounted devices that are not in use. Use
mount without an argument to make sure that no devices other than root
(/) are mounted before continuing.

Turning the Power Off

Once the system is in recovery mode, give the command telinit 0 (page 510) or halt
to bring the system down. You can build a kernel with apm so it turns the machine
off at the appropriate time. If the system is not set up this way, turn the power off
when prompted to do so or when the system starts rebooting.

Crash

A crash occurs when the system suddenly stops or fails when you do not intend it
to. A crash may result from software or hardware problems or from a loss of power.
As a running system loses power, it may behave in erratic or unpredictable ways. In
a fraction of a second, some components are supplied with enough voltage; others

520 Chapter 12 System Administration: Core Concepts

are not. Buffers are not flushed, corrupt data may be written to hard disks, and so
on. IDE and SATA drives do not behave as predictably as SCSI drives under these
circumstances. After a crash, you must bring the operating system up carefully to
minimize possible damage to the filesystems. Frequently little or no damage will
have occurred.

Repairing a Filesystem

Although the filesystems are checked automatically during the boot process if
needed, you will have to check them manually if a problem cannot be repaired auto-
matically. By default, when fsck cannot repair a filesystem automatically at boot
time, Linux enters recovery mode so you can run fsck manually. If necessary, you
can boot the system to recovery mode (page 512).

With the system in recovery mode, use umount to unmount local filesystems you
want to check. Then run fsck (page 577) on these filesystems, repairing them as
needed. Make note of any ordinary files or directories that you repair (and can iden-
tify), and inform their owners that these files may not be complete or correct. Look
in the lost+found directory in each filesystem for missing files. After successfully
running fsck, if the system entered recovery mode automatically, type exit to exit
from the recovery shell and resume booting; otherwise give a reboot command.

If files are not correct or are missing altogether, you may have to recreate them from
a backup copy of the filesystem. For more information refer to “Backing Up Files”
on page 662.

When the System Does Not Boot

When a system will not boot from the hard disk, boot the system to recovery mode
from an installation CD/DVD (page 513). If the system comes up, run fsck on the
root filesystem on the hard disk and try booting from the hard disk again. If the sys-
tem still does not boot, you may have to reinstall the master boot record (page 653).

Avoiding a Trojan Horse

A Trojan horse is a program that does something destructive or disruptive to a sys-
tem while appearing to be benign. As an example, you could store the following
script in an executable file named mkfs:

while true
do
echo 'Good Morning Mr. Jones. How are you? Ha Ha Ha.' > /dev/console
done

If you are working with root privileges when you run this command, it will contin-
uously write a message to the console. If the programmer were malicious, it could
do something worse. The only thing missing in this plot is access permissions.

Avoiding a Trojan Horse 521

A malicious user could implement this Trojan horse by changing root’s PATH vari-
able to include a publicly writable directory at the start of the PATH string. (The
catch is that you need to be able to write to /etc/profile—where the PATH variable
is set for root—and only a user with root privileges can do that.) Then you would
need to put the bogus mkfs program file in that directory. Because the fraudulent
version appears in a directory mentioned earlier than the real one in PATH, the shell
will run it. Thus, the next time a user working with root privileges tries to run mkfs,
the fraudulent version would run.

Trojan horses that lie in wait for and take advantage of the misspellings that most
people make are among the most insidious types. For example, you might type sl
instead of ls. Because you do not regularly execute a utility named sl and you may
not remember typing the command sl, it is more difficult to track down this type of
Trojan horse than one that takes the name of a more familiar utility.

A good way to help prevent the execution of a Trojan horse is to make sure your
PATH variable does not contain a single colon (:) at the beginning or end of the PATH
string or a period (.) or double colon (::) anywhere in the PATH string. This precaution
ensures that you will not execute a file in the working directory by accident.

To check for a possible Trojan horse, examine the filesystem periodically for files
with setuid (page 488) permission. The following command lists these files:

Listing setuid files $ sudo find / -perm -4000 -exec ls -lh {} \; 2> /dev/null
-rwsr-xr-x 1 root root 25K Oct 19 15:52 /usr/bin/newgrp
-rwsr-xr-x 1 root root 35K Oct 19 15:52 /usr/bin/chfn
-rwsr-xr-x 1 root root 29K Oct 19 15:52 /usr/bin/chsh
-rwsr-xr-x 1 root root 38K Oct 19 15:52 /usr/bin/gpasswd
-rwsr-xr-x 1 root root 35K Oct 19 15:52 /usr/bin/passwd
-rwsr-sr-x 1 root root 21K Dec 6 22:11 /usr/bin/X
-rwsr-xr-x 2 root root 104K Oct 9 04:39 /usr/bin/sudoedit
-rwsr-xr-x 2 root root 104K Oct 9 04:39 /usr/bin/sudo
-rwsr-sr-x 1 daemon daemon 44K Jul 20 2007 /usr/bin/at
-rwsr-xr-x 1 root root 14K Oct 16 10:33 /usr/bin/arping
...

This command uses find to locate all files that have their setuid bit set (mode 4000).
The hyphen preceding the mode causes find to report on any file that has this bit set,
regardless of how the other bits are set. The output sent to standard error is redi-
rected to /dev/null so it does not clutter the screen.

Run software only
from sources

you trust

Another way a Trojan horse can enter a system is via a tainted ~/.bashrc (page 554)
file. A bogus sudo command or alias in this file can capture a user’s password,
which may then be used to gain root privileges. Because a user has write permission
to this file, any program the user executes can easily modify it. The best way to pre-
vent this type of Trojan horse from entering a system is to run software only from
sources you trust.

You can set up a program, such as AIDE (Advanced Intrusion Detection Environ-
ment), that will take a snapshot of the system and check it periodically. For more
information see sourceforge.net/projects/aide.

522 Chapter 12 System Administration: Core Concepts

Getting Help

The Ubuntu Linux distribution comes with extensive documentation (page 124). For
example, the Support tab on the Ubuntu home page (www.ubuntu.com/support)
and the Ubuntu wiki (wiki.ubuntu.com) point to many useful sources of support
that can help answer many questions. You can also find help on the System Adminis-
trators Guild site (www.sage.org). The Internet is another rich source of information
on managing a Linux system; refer to Appendix B (page 981) and to the author’s
home page (www.sobell.com) for pointers to useful sites.

You need not act as an Ubuntu system administrator in isolation; a large community
of Linux/Ubuntu experts is willing to assist you in getting the most out of your sys-
tem. Of course, you will get better help if you have already tried to solve a problem
yourself by reading the available documentation. If you are unable to solve a prob-
lem by consulting the documentation, a well-thought-out question to the appropriate
newsgroup, such as comp.os.linux.misc, or mailing list can often generate useful
information. Be sure to describe the problem accurately and identify the system care-
fully. Include information about the version of Ubuntu running on the system and
any software packages and hardware that you think relate to the problem. The news-
group comp.os.linux.answers contains postings of solutions to common problems
and periodic postings of the most up-to-date versions of FAQs and HOWTO docu-
ments. See www.catb.org/~esr/faqs/smart-questions.html for a good paper by Eric S.
Raymond and Rick Moen titled “How to Ask Questions the Smart Way.”

Textual System Administration Utilities

Many tools can help you be an efficient and thorough system administrator. This
section describes a few textual (command line) tools and utilities; others are
described throughout Part IV of this book.

kill: Sends a Signal to a Process

The kill builtin sends a signal to a process. This signal may or may not terminate
(kill) the process, depending on which signal it is and how the process is designed.
Refer to “trap: Catches a Signal” on page 451 for a discussion of the various signals
and their interaction with a process. Running kill is definitely not the first method to
try when a process needs to be aborted.

Usually a user can kill a process by working in another window or by logging in on
another terminal. Sometimes, however, you may have to use sudo to kill a process
for a user. To kill a process, you need to know its PID. The ps utility can provide
this information once you determine the name of the program the user is running
and/or the username of the user. The top utility (page 672) can also be helpful in
finding and killing a runaway process (use the top k command).

www.ubuntu.com/support
www.sage.org
www.sobell.com
www.catb.org/~esr/faqs/smart-questions.html

Textual System Administration Utilities 523

In the following example, Sam complains that xeyes is stuck and that he cannot do
anything from the xeyes window—not even close it. A more experienced user could
open another window and kill the process, but in this case you kill it for Sam. First
you use ps with the –u option, followed by the name of the user and the –f
(full/wide) option to view all processes associated with that user:

$ ps -u sam -f
UID PID PPID C STIME TTY TIME CMD
sam 2294 2259 0 09:31 ? 00:00:00 /bin/sh /usr/bin/startkde
sam 2339 2294 0 09:31 ? 00:00:00 /usr/bin/ssh-agent /usr/bin/dbus-launch
sam 2342 1 0 09:31 ? 00:00:00 dbus-daemon --fork --print-pid 8 --prin
sam 2343 1 0 09:31 ? 00:00:00 /usr/bin/dbus-launch --exit-with-sessio
sam 2396 1 0 09:31 ? 00:00:00 kdeinit Running...
sam 2399 1 0 09:31 ? 00:00:00 dcopserver [kdeinit] --nosid
sam 2401 2396 0 09:31 ? 00:00:00 klauncher [kdeinit]
sam 2403 1 0 09:31 ? 00:00:00 kded [kdeinit]
sam 2405 1 0 09:31 ? 00:00:00 /usr/libexec/gam_server
sam 2413 2396 0 09:31 ? 00:00:00 /usr/bin/artsd -F 10 -S 4096 -s 60 -m a
sam 2415 1 0 09:31 ? 00:00:00 kaccess [kdeinit]
sam 2416 2294 0 09:31 ? 00:00:00 kwrapper ksmserver
sam 2418 1 0 09:31 ? 00:00:00 ksmserver [kdeinit]
sam 2421 2396 0 09:31 ? 00:00:00 kwin [kdeinit] -session 1070626e6a00011
sam 2424 1 0 09:31 ? 00:00:01 kdesktop [kdeinit]
sam 2426 1 0 09:31 ? 00:00:01 kicker [kdeinit]
sam 2429 2396 0 09:31 ? 00:00:00 kio_file [kdeinit] file /tmp/ksocket-ma
sam 2434 2396 0 09:31 ? 00:00:00 konsole [kdeinit] -session 1070626e6a00
sam 2435 2396 0 09:31 ? 00:00:00 /bin/sh /usr/lib/firefox-1.5/firefox -U
sam 2446 2435 0 09:31 ? 00:00:00 /bin/sh /usr/lib/firefox-1.5/run-mozill
sam 2451 2446 0 09:31 ? 00:00:01 /usr/lib/firefox-1.5/firefox-bin -UILoc
sam 2453 2434 0 09:31 pts/2 00:00:00 /bin/bash
sam 2474 1 0 09:31 ? 00:00:00 /usr/libexec/gconfd-2 10
sam 3568 3567 0 13:55 pts/3 00:00:00 -bash
sam 3726 1 0 14:07 ? 00:00:00 knotify [kdeinit]
sam 3728 1 0 14:07 ? 00:00:00 /usr/bin/artsd -F 10 -S 4096 -s 60 -m a
sam 3730 2424 0 14:07 ? 00:00:00 xeyes
sam 3731 3568 0 14:07 pts/3 00:00:00 ps -u sam -f

This list is fairly short, and the process running xeyes is easy to find. Another way to
search for this process is to use ps to produce a long list of all processes and then use
grep to find which one is running xeyes.

$ ps -ef | grep xeyes
sam 3730 2424 0 14:07 ? 00:00:00 xeyes
sam 3766 3568 0 14:14 pts/3 00:00:00 grep xeyes

kill: Use the kill signal (–KILL or –9) as a method of last resort

caution When you do need to use kill, send the termination signal (kill –TERM or kill –15) first. Only if
that tactic does not work should you attempt to use the kill signal (kill –KILL or kill – 9).

Because of its inherent dangers, using a kill signal is a method of last resort, especially when you
are working with root privileges. One kill command issued while working with root privileges can
bring the system down without warning.

524 Chapter 12 System Administration: Core Concepts

If several people are running xeyes, look in the left column to find the correct
username so you can kill the right process. You can combine the two commands
as ps –u sam –f | grep xeyes.

Now that you know Sam’s process running xeyes has a PID of 3730, you can use kill
to terminate it. The safest way to do so is to log in as Sam (perhaps allow him to log
in for you) and give any of the following commands (they all send a termination sig-
nal to process 3730):

$ kill 3730

or

$ kill -15 3730

or

$ kill –TERM 3730

Only if this command fails should you send the kill signal:

$ kill –KILL 3730

The –KILL option instructs kill to send a SIGKILL signal, which the process cannot
ignore. Although you can give the same command while you are working with root
privileges, a typing mistake in this situation can have much more far-reaching con-
sequences than when you make the mistake while you are working as a nonprivi-
leged user. A nonprivileged user can kill only her own processes, whereas a user
with root privileges can kill any process, including system processes.

As a compromise between speed and safety, you can combine the sudo and kill util-
ities by using the sudo –u option. The following command runs the part of the
command line following the –u sam with the identity of Sam (Sam’s privileges):

$ sudo -u sam kill -TERM 3730

killall Two useful utilities related to kill are killall and pidof. The killall utility is very similar
to kill but uses a command name instead of a PID number. Give the following com-
mand to kill all your processes that are running xeyes or vi:

$ killall xeyes vi

Running this command while working with root privileges kills all processes run-
ning xeyes or vi.

pidof The pidof utility displays the PID number of each process running the command you
specify:

$ pidof apache2
567 566 565 564 563 562 561 560 553

If it is difficult to find the right process, try using top. Refer to the man pages for
these utilities for more information, including lists of options.

Textual System Administration Utilities 525

Other Textual Utilities

This section describes a few textual (command line) system administration tools
you may find useful. To learn more about most of these utilities, read the man pages.
For umask and uname, see the info pages.

chsh Changes the login shell for a user. When you call chsh without an argument, you
change your login shell. When an ordinary user changes his login shell with chsh, he
must specify an installed shell that is listed in the file /etc/shells, exactly as it is listed
there; chsh rejects other entries. When working with root privileges, you can change
any user’s shell to any value by calling chsh with the username as an argument. In the
following example, a user working with root privileges changes Sam’s shell to tcsh:

$ sudo chsh sam
Password:
Changing the login shell for sam
Enter the new value, or press ENTER for the default
 Login Shell [/bin/bash]: /bin/tcsh

clear Clears the screen. You can also use CONTROL-L from the bash shell to clear the screen.
The value of the environment variable TERM (page 988) determines how to clear
the screen.

dmesg Displays recent system log messages (page 654).

e2label Displays or creates a volume label on an ext2 or ext3 disk partition. You must run
this utility with root privileges. An e2label command has the following format:

e2label device [newlabel]

where device is the name of the device (/dev/hda2, /dev/sdb1, /dev/fd0, and so on)
you want to work with. When you include the optional newlabel parameter, e2label
changes the label on device to newlabel. Without this parameter, e2label displays
the label. You can also create a volume label with the –L option of tune2fs
(page 578).

lshw Lists hardware. This utility provides complete information only when run with root
privileges. Use the –short option to display a brief listing.

mkfs Creates a new filesystem on a device, destroying all data on the device as it does so.
This utility is a front-end for many utilities, each of which builds a different type of
filesystem. By default, mkfs builds an ext2 filesystem and works on either a hard
disk partition or a floppy diskette. Although it can take many options and argu-
ments, you can use mkfs simply as

$ sudo mkfs device

where device is the name of the device (/dev/hda2, /dev/sdb1, /dev/fd0, and so on)
you want to make a filesystem on. Use the –t option to specify a type of filesystem.
As an example, the following command creates an ext3 filesystem on /dev/hda2:

$ sudo mkfs -t ext3 /dev/hda2

Page 574 has an example of using mkfs to create a filesystem on a floppy diskette.

526 Chapter 12 System Administration: Core Concepts

ping Sends packets to a remote system. This utility determines whether you can reach a
remote system through the network and determines how long it takes to exchange
messages with the remote system. Refer to “ping: Tests a Network Connection” on
page 375.

reset (link
to tset)

Resets terminal characteristics. The value of the TERM environment variable
(page 988) determines how to reset the screen. The screen is cleared, the kill and
interrupt characters are set to their default values, and character echo is turned on.
From a graphical terminal emulator, this command also changes the size of the win-
dow to its default. The reset utility is useful for restoring the screen to a sane state
after it has been corrupted. In this sense, it is similar to an stty sane command.

setserial Gets and sets serial port information. When run with root privileges, this utility can
configure a serial port. The following command sets the input address of /dev/ttys0
to 0x100, the interrupt (IRQ) to 5, and the baud rate to 115,000 baud:

$ sudo setserial /dev/ttys0 port 0x100 irq 5 spd_vhi

You can also check the configuration of a serial port with setserial:

$ sudo setserial /dev/ttys0
/dev/ttyS0, UART: 16550A, Port: 0x0100, IRQ: 5, Flags: spd_vhi

Normally the system calls setserial as it is booting if a serial port needs custom con-
figuration. This utility is part of the setserial package.

stat Displays information about a file or filesystem. Use the –f (filesystem) option fol-
lowed by the device name or mount point of a filesystem to display information
about the filesystem, including the maximum length of filenames (Namelen in the
following example). See the stat man page for more information.

$ stat -f /dev/hda
 File: "/dev/hda"
 ID: 0 Namelen: 255 Type: tmpfs
Block size: 4096 Fundamental block size: 4096
Blocks: Total: 121237 Free: 121206 Available: 121206
Inodes: Total: 121237 Free: 120932

umask A shell builtin that specifies the mask the system uses to set up access permissions
when you create a file. A umask command has the following format:

umask [mask]

where mask is a three-digit octal number or a symbolic value such as you would use
with chmod (page 200). The mask specifies the permissions that are not allowed.
When mask is an octal number, the digits correspond to the permissions for the
owner of the file, members of the group the file is associated with, and everyone
else. Because mask specifies the permissions that are not allowed, the system sub-
tracts each of the three digits from 7 when you create a file. The result is three octal
numbers that specify the access permissions for the file (the numbers you would use

Setting Up a Server 527

with chmod). A mask that you specify using symbolic values specifies the permis-
sions that are allowed.

Most utilities and applications do not attempt to create files with execute permis-
sions, regardless of the value of mask; they assume you do not want an executable
file. As a result, when a utility or application (such as touch) creates a file, the sys-
tem subtracts each of the three digits in mask from 6. An exception is mkdir, which
assumes you want the execute (access in the case of a directory) bit set.

The following commands set the file-creation mask and display the mask and its
effect when you create a file and a directory. The mask of 022, when subtracted
from 666 or 777, gives permissions of 644 (rw–r––r––) for a file and 755
(rwxr–xr–x) for a directory.

$ umask 022
$ umask
0022
$ touch afile
$ mkdir adirectory
$ ls -ld afile adirectory
drwxr-xr-x 2 sam sam 4096 May 2 23:57 adirectory
-rw-r--r-- 1 sam sam 0 May 2 23:57 afile

The next example sets the same mask using symbolic values. The –S option displays
the mask symbolically:

$ umask u=rwx,g=rx,o=rx
$ umask
0022
$ umask -S
u=rwx,g=rx,o=rx

uname Displays information about the system. Without arguments, this utility displays the
name of the operating system (Linux). With the –a (all) option, it displays the oper-
ating system name, hostname, version number and release date of the operating sys-
tem, and type of hardware you are using:

$ uname –a
Linux dog 2.6.22-10-generic #2 SMP Thu Jun 7 20:19:32 UTC 2007 i686 GNU/Linux

Setting Up a Server

This section discusses issues that you may need to address when setting up a server:
how to write configuration files; how to specify hosts and subnets; how to use port-
map, rpcinfo, and TCP wrappers (hosts.allow and hosts.deny); and how to set up a
chroot jail. Chapters 15 and 19–27 cover setting up specific servers; Chapter 18 dis-
cusses setting up a LAN.

528 Chapter 12 System Administration: Core Concepts

Standard Rules in Configuration Files

Most configuration files, which are typically named *.conf, rely on the following
conventions:

• Blank lines are ignored.

• A # anywhere on a line starts a comment that continues to the end of the
line. Comments are ignored.

• When a name contains a SPACE, you must quote the SPACE by preceding it
with a backslash (\) or by enclosing the entire name within single or dou-
ble quotation marks.

• To make long lines easier to read and edit, you can break them into several
shorter lines. To break a line, insert a backslash (\) immediately followed
by a NEWLINE (press RETURN in a text editor). When you insert the NEWLINE before
or after a SPACE, you can indent the following line to make it easier to read.
Do not break lines in this manner while editing on a Windows machine, as
the NEWLINEs may not be properly escaped (Windows uses a RETURN-LINEFEED

combination to end lines).

Configuration files that do not follow these conventions are noted in the text.

Specifying Clients

Table 12-2 shows some common ways to specify a host or a subnet. Most of the
time you can specify multiple hosts or subnets by separating their specifications
with SPACEs.

Table 12-2 Specifying a client

Client name pattern Matches

n.n.n.n One IP address.

name One hostname, either local or remote.

Name that starts with . Matches a hostname that ends with the specified string. For
example, .example.com matches the systems named
kudos.example.com and speedy.example.com, among others.

IP address that ends with . Matches a host address that starts with the specified numbers. For
example, 192.168.0. matches 192.168.0.0–192.168.0.255. If
you omit the trailing period, this format does not work.

n.n.n.n/m.m.m.m or
n.n.n.n/mm

An IP address and subnet mask specifying a subnet.

Starts with / An absolute pathname of a file containing one or more names
or addresses as specified in this table.

Setting Up a Server 529

Examples Each of the following examples specifies one or more systems:

10.10. Matches all systems with IP addresses that start with 10.10.
.ubuntu.com Matches all named hosts on the Ubuntu network
localhost Matches the local system
127.0.0.1 The loopback address; always resolves to localhost
192.168.*.1 Could match all routers on a network of /24 subnets

Specifying a Subnet

When you set up a server, you frequently need to specify which clients are allowed
to connect to it. Sometimes it is convenient to specify a range of IP addresses, called
a subnet. The discussion on page 367 explains what a subnet is and how to use a
subnet mask to specify a subnet. Usually you can specify a subnet as

n.n.n.n/m.m.m.m

or

n.n.n.n/maskbits

where n.n.n.n is the base IP address and the subnet is represented by m.m.m.m (the
subnet mask) or maskbits (the number of bits used for the subnet mask). For exam-
ple, 192.168.0.1/255.255.255.0 represents the same subnet as 192.168.0.1/24. In
binary, decimal 255.255.255.0 is represented by 24 ones followed by 8 zeros. The
/24 is shorthand for a subnet mask with 24 ones. Each line in Table 12-3 (on the
next page) presents two notations for the same subnet, followed by the range of IP
addresses that the subnet includes.

Wildcard Matches

* and ? Matches one (?) or more (*) characters in a simple hostname
or IP address. These wildcards do not match periods in a
domain name.

ALL Always matches.

LOCAL Matches any hostname that does not contain a period.

Operator

EXCEPT Matches anything in the preceding list that is not in the follow-
ing list. For example, a b c d EXCEPT c matches a, b, and d.
Thus you could use 192.168. EXCEPT 192.168.0.1 to match all
IP addresses that start with 192.168. except 192.168.0.1.

Table 12-2 Specifying a client (continued)

530 Chapter 12 System Administration: Core Concepts

rpcinfo: Displays Information About portmap
The rpcinfo utility displays information about programs registered with portmap
and makes RPC calls to programs to see if they are alive. For more information on
portmap, refer to “RPC Network Services” on page 387. The rpcinfo utility takes
the following options and arguments:

rpcinfo –p [host]
rpcinfo [–n port] –u | –t host program [version]
rpcinfo –b | –d program version

–p (probe) Lists all RPC programs registered with portmap on host or on the local
system when you do not specify host.

–n (port number) With –t or –u, uses the port numbered port instead of the port
number specified by portmap.

–u (UDP) Makes a UDP RPC call to version (if specified) of program on host and
reports whether it receives a response.

–t (TCP) Makes a TCP RPC call to version (if specified) of program on host and
reports whether it receives a response.

–b (broadcast) Makes an RPC broadcast to version of program and lists those hosts
that respond.

–d (delete) Removes local RPC registration for version of program. Available to a
user running with root privileges only.

Give the following command to see which RPC programs are registered with the
portmap daemon on the system named plum:

$ rpcinfo -p plum
 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100003 4 udp 2049 nfs
 100021 1 udp 32768 nlockmgr
...

Use the –u option to display a list of versions of a daemon, such as ypserv, registered
on a remote system (plum):

Table 12-3 Different ways to represent a subnet

Bits Mask Range

10.0.0.0/8 10.0.0.0/255.0.0.0 10.0.0.0–10.255.255.255

172.16.0.0/12 172.16.0.0/255.240.0.0 172.16.0.0–172.31.255.255

192.168.0.0/16 192.168.0.0/255.255.0.0 192.168.0.0–192.168.255.255

Setting Up a Server 531

$ rpcinfo -u plum nfs
program 100003 version 2 ready and waiting
program 100003 version 3 ready and waiting
program 100003 version 4 ready and waiting

Specify localhost to display a list of versions of a daemon registered on the local system:

$ rpcinfo -u localhost ypbind
program 100007 version 1 ready and waiting
program 100007 version 2 ready and waiting

Locking down
portmap

Because the portmap daemon holds information about which servers are running
on the local system and which port each server is running on, only trusted systems
should have access to this information. One way to ensure that only selected sys-
tems have access to portmap is to lock it down in the /etc/hosts.allow and
/etc/hosts.deny files (page 532). Put the following line in hosts.deny to prevent all
systems from using portmap on the local (server) system:

portmap: ALL

You can test this setup from a remote system with the following command:

$ rpcinfo -p hostname
No remote programs registered.

Replace hostname with the name of the remote system that you changed the
hosts.deny file on. The change is immediate; you do not need to kill/restart a daemon.

Next add the following line to the hosts.allow file on the server system:

portmap: host-IP

where host-IP is the IP address of the trusted, remote system that you gave the pre-
ceding rpcinfo command from. Use only IP addresses with portmap in hosts.allow;
do not use system names that portmap could get stuck trying to resolve. If you give
the same command, rpcinfo should display a list of the servers that RPC knows
about, including portmap. See page 787 for more examples.

The inetd and xinetd Superservers

The inetd (Internet daemon) daemon, and its replacement xinetd (extended Internet
daemon; xinetd.org), are called superservers or service dispatchers because they
start other daemons, such as smbd (Samba) and vsftpd (FTP), as necessary. These
superservers listen for network connections. When one is made, they identify a
server daemon based on the port the connection comes in on, set the daemon’s stan-
dard input and standard output file descriptors to the socket (page 569), and start
the daemon.

Set the clocks

tip The portmap daemon relies on the client’s and the server’s clocks being synchronized. A simple
DoS attack (page 1034) can be initiated by setting the server’s clock to the wrong time.

532 Chapter 12 System Administration: Core Concepts

Using these superservers offers two advantages over having several servers con-
stantly running daemons that monitor ports. First, the superservers avoid the need
for daemons to be running when not in use. Second, they allow developers to write
servers that read from standard input and write to standard output; they handle all
socket communication.

The inetd superserver, which originally shipped with 4.3BSD, was not particularly
insecure. However, it typically opened a lot of ports and ran many servers, increas-
ing the possibility that exploitable software would be exposed to the Internet. Its
successor, xinetd, introduced access control and logging. This daemon allowed an
administrator to limit the hours a service was available and the origin and number
of incoming connections. When compiled with libwrap, xinetd can take advantage
of TCP wrappers (discussed in the next section).

At a time when CPU power was more limited than it is today and RAM was more
expensive, these superservers offered the advantage of efficient memory and CPU
usage. Systems have slowly moved away from using these superservers over the past
few years. Today a system can easily spare the few megabytes of memory and the
minimal CPU time it takes to keep a daemon running to monitor a port: It takes
fewer resources to keep a process in RAM (or swap space) than it does to restart it
periodically. Also, a developer can now handle socket communications more easily
using various toolkits.

Securing a Server

Two ways you can secure a server are by using TCP wrappers and by setting up a
chroot jail. This section describes both techniques.

TCP Wrappers: Secure a Server (hosts.allow

and hosts.deny)

Follow these guidelines when you open a local system to access from remote systems:

• Open the local system only to systems you want to allow to access it.

• Allow each remote system to access only the data you want it to access.

• Allow each remote system to access data only in the appropriate manner
(readonly, read/write, write only).

libwrap As part of the client/server model, TCP wrappers, which can be used for any dae-
mon that is linked against libwrap, rely on the /etc/hosts.allow and /etc/hosts.deny
files as the basis of a simple access control language (ACL). This access control lan-
guage defines rules that selectively allow clients to access server daemons on a local
system based on the client’s address and the daemon the client tries to access. The
output of ldd shows that one of the shared library dependencies of sshd is libwrap:

$ ldd /usr/sbin/sshd | grep libwrap
libwrap.so.0 => /lib/libwrap.so.0 (0xb7f56000)

Setting Up a Server 533

hosts.allow and
hosts.deny

Each line in the hosts.allow and hosts.deny files has the following format:

daemon_list : client_list [: command]

where daemon_list is a comma-separated list of one or more server daemons (such
as portmap, vsftpd, or sshd), client_list is a comma-separated list of one or more cli-
ents (see Table 12-2, “Specifying a client,” on page 528), and the optional command
is the command that is executed when a client from client_list tries to access a server
daemon from daemon_list.

When a client requests a connection to a server, the hosts.allow and hosts.deny files
on the server system are consulted as follows until a match is found:

1. If the daemon/client pair matches a line in hosts.allow, access is granted.

2. If the daemon/client pair matches a line in hosts.deny, access is denied.

3. If there is no match in the hosts.allow or hosts.deny file, access is granted.

The first match determines whether the client is allowed to access the server. When
either hosts.allow or hosts.deny does not exist, it is as though that file was empty.
Although it is not recommended, you can allow access to all daemons for all clients
by removing both files.

Examples For a more secure system, put the following line in hosts.deny to block all access:

$ cat /etc/hosts.deny
...
ALL : ALL : echo '%c tried to connect to %d and was blocked' >> /var/log/tcpwrappers.log

This line prevents any client from connecting to any service, unless specifically per-
mitted to do so in hosts.allow. When this rule is matched, it adds a line to the file
named /var/log/tcpwrappers.log. The %c expands to client information and the
%d expands to the name of the daemon the client attempted to connect to.

With the preceding hosts.deny file in place, you can include lines in hosts.allow that
explicitly allow access to certain services and systems. For example, the following
hosts.allow file allows anyone to connect to the OpenSSH daemon (ssh, scp, sftp)
but allows telnet connections only from the same network as the local system and
users on the 192.168. subnet:

$ cat /etc/hosts.allow
sshd: ALL
in.telnet: LOCAL
in.telnet: 192.168.* 127.0.0.1
...

The first line allows connection from any system (ALL) to sshd. The second line
allows connection from any system in the same domain as the server (LOCAL).
The third line matches any system whose IP address starts 192.168. and the local
system.

534 Chapter 12 System Administration: Core Concepts

Setting Up a chroot Jail

On early UNIX systems, the root directory was a fixed point in the filesystem. On mod-
ern UNIX variants, including Linux, you can define the root directory on a per-process
basis. The chroot utility allows you to run a process with a root directory other than /.

The root directory appears at the top of the directory hierarchy and has no parent.
Thus a process cannot access files above the root directory because none exists. If,
for example, you run a program (process) and specify its root directory as /tmp/jail,
the program would have no concept of any files in /tmp or above: jail is the pro-
gram’s root directory and is labeled / (not jail).

By creating an artificial root directory, frequently called a (chroot) jail, you prevent a
program from accessing, executing, or modifying—possibly maliciously—files out-
side the directory hierarchy starting at its root. You must set up a chroot jail prop-
erly to increase security: If you do not set up a chroot jail correctly, you can make it
easier for a malicious user to gain access to a system than if there were no chroot jail.

Using chroot
Creating a chroot jail is simple: Working with root privileges, give the command
/usr/sbin/chroot directory. The directory becomes the root directory and the pro-
cess attempts to run the default shell. The following command sets up a chroot jail in
the (existing) /tmp/jail directory:

$ sudo /usr/sbin/chroot /tmp/jail
/usr/sbin/chroot: cannot run command '/bin/bash': No such file or directory

This example sets up a chroot jail, but when it attempts to run the bash shell, it fails.
Once the jail is set up, the directory that was named jail takes on the name of the
root directory, /. As a consequence, chroot cannot find the file identified by the path-
name /bin/bash. In this situation the chroot jail works correctly but is not useful.

Getting a chroot jail to work the way you want is more complicated. To have the
preceding example run bash in a chroot jail, create a bin directory in jail
(/tmp/jail/bin) and copy /bin/bash to this directory. Because the bash binary is
dynamically linked to shared libraries, you need to copy these libraries into jail as
well. The libraries go in lib.

The next example creates the necessary directories, copies bash, uses ldd to display
the shared library dependencies of bash, and copies the necessary libraries to lib.
The linux-gate.so.1 file is a dynamically shared object (DSO) provided by the kernel
to speed system calls; you do not need to copy it.

$ pwd
/tmp/jail
$ mkdir bin lib
$ cp /bin/bash bin
$ ldd bin/bash

linux-gate.so.1 => (0xffffe000)
libncurses.so.5 => /lib/libncurses.so.5 (0xb7f44000)
libdl.so.2 => /lib/tls/i686/cmov/libdl.so.2 (0xb7f40000)
libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7dff000)
/lib/ld-linux.so.2 (0xb7f96000)

Setting Up a Server 535

$ cp /lib/{libncurses.so.5,ld-linux.so.2} lib
$ cp /lib/tls/i686/cmov/{libdl.so.2,libc.so.6} lib

Now start the chroot jail again. Although all the setup can be done by an ordinary
user, you must be working with root privileges to run chroot:

$ sudo /usr/sbin/chroot /tmp/jail
bash-3.2# pwd
/
bash-3.2# ls
bash: ls: command not found
bash-3.2# exit
exit
$

This time chroot finds and starts bash, which displays its default prompt (bash-3.2#).
The pwd command works because it is a shell builtin (page 243). However, bash can-
not find the ls utility because it is not in the chroot jail. You can copy /bin/ls and its
libraries into the jail if you want users in the jail to be able to use ls. An exit com-
mand allows you to escape from the jail.

If you provide chroot with a second argument, it takes that argument as the name of
the program to run inside the jail. The following command is equivalent to the pre-
ceding one:

$ sudo /usr/sbin/chroot /home/sam/jail /bin/bash

To set up a useful chroot jail, first determine which utilities the users of the chroot jail
need. Then copy the appropriate binaries and their libraries into the jail. Alterna-
tively, you can build static copies of the binaries and put them in the jail without
installing separate libraries. (The statically linked binaries are considerably larger
than their dynamic counterparts. The base system with bash and the core utilities
exceeds 50 megabytes.) You can find the source code for most common utilities in
the bash and coreutils source packages.

The chroot utility fails unless you run it with root privileges. The preceding examples
used sudo to gain these privileges. The result of running chroot with root privileges is a
root shell (a shell with root privileges) running inside a chroot jail. Because a user with
root privileges can break out of a chroot jail, it is imperative that you run a program in
the chroot jail with reduced privileges (i.e., privileges other than those of root).

There are several ways to reduce the privileges of a user. For example, you can put
su or sudo in the jail and then start a shell or a daemon inside the jail, using one of
these programs to reduce the privileges of the user working in the jail. A command
such as the following starts a shell with reduced privileges inside the jail:

$ sudo /usr/sbin/chroot jailpath /usr/bin/sudo -u user /bin/bash &

where jailpath is the pathname of the jail directory, and user is the username
under whose privileges the shell runs. The problem with this scenario is that sudo
and su as compiled for Ubuntu, call PAM. To run one of these utilities you need to
put all of PAM, including its libraries and configuration files, in the jail, along with
sudo (or su) and the /etc/passwd file. Alternatively, you can recompile su or sudo.

536 Chapter 12 System Administration: Core Concepts

The source code calls PAM, however, so you would need to modify the source so it
does not call PAM. Either one of these techniques is time-consuming and introduces
complexities that can lead to an insecure jail.

The following C program1 runs a program with reduced privileges in a chroot jail.
Because this program obtains the UID and GID of the user you specify on the com-
mand line before calling chroot(), you do not need to put /etc/passwd in the jail.
The program reduces the privileges of the specified program to those of the speci-
fied user. This program is presented as a simple solution to the preceding issues so
you can experiment with a chroot jail and better understand how it works.

$ cat uchroot.c

/* See svn.gna.org/viewcvs/etoile/trunk/Etoile/LiveCD/uchroot.c for terms of use. */

#include <stdio.h>
#include <stdlib.h>
#include <pwd.h>

int main(int argc, char * argv[])
{

if(argc < 4)
{

printf("Usage: %s {username} {directory} {program} [arguments]\n", argv[0]);
return 1;

}
/* Parse arguments */
struct passwd * pass = getpwnam(argv[1]);
if(pass == NULL)
{

printf("Unknown user %s\n", argv[1]);
return 2;

}
/* Set the required UID */
chdir(argv[2]);
if(chroot(argv[2])

||
setgid(pass->pw_gid)
||
setuid(pass->pw_uid))

{
printf("%s must be run as root. Current uid=%d, euid=%d\n",

argv[0],
(int)getuid(),
(int)geteuid()
);

return 3;
}
char buf[100];
return execv(argv[3], argv + 3);

}

1. Thanks to David Chisnall and the Étoilé Project (etoile-project.org) for the uchroot.c program.

Setting Up a Server 537

The first of the following commands compiles uchroot.c, creating an executable file
named uchroot. Subsequent commands move uchroot to /usr/local/bin and give it
appropriate ownership.

$ cc -o uchroot uchroot.c
$ sudo mv uchroot /usr/local/bin
$ sudo chown root:root /usr/local/bin/uchroot
$ ls -l /usr/local/bin/uchroot
-rwxr-xr-x 1 root root 7922 Jul 17 08:26 /usr/local/bin/uchroot

Using the setup from earlier in this section, give the following command to run a
shell with the privileges of the user sam inside a chroot jail:

$ sudo /usr/local/bin/uchroot sam /tmp/jail /bin/bash

Running a Service in a chroot Jail

Running a shell inside a jail has limited usefulness. Instead, you are more likely to
want to run a specific service inside the jail. To run a service inside a jail, make sure
all files needed by that service are inside the jail. Using uchroot, the format of a com-
mand to start a service in a chroot jail is

$ sudo /usr/local/bin/uchroot user jailpath daemonname

where jailpath is the pathname of the jail directory, user is the username that runs
the daemon, and daemonname is the pathname (inside the jail) of the daemon that
provides the service.

Some servers are already set up to take advantage of chroot jails. You can set up
DNS so that named runs in a jail (page 870), for example, and the vsftpd FTP server
can automatically start chroot jails for clients (page 744).

Security Considerations

Some services need to be run by a user/process with root privileges but release
their root privileges once started (Apache, Procmail, and vsftpd are examples). If
you are running such a service, you do not need to use uchroot or put su or sudo
inside the jail.

A process run with root privileges can potentially escape from a chroot jail. For this
reason, always reduce privileges before starting a program running inside the jail.
Also, be careful about which setuid (page 201) binaries you allow inside a jail—a
security hole in one of them could compromise the security of the jail. In addition,
make sure the user cannot access executable files that he uploads to the jail.

Keeping multiple chroot jails

tip If you plan to deploy multiple chroot jails, it is a good idea to keep a clean copy of the bin and lib
directories somewhere other than one of the active jails.

538 Chapter 12 System Administration: Core Concepts

DHCP: Configures Network Interfaces

Instead of storing network configuration information in local files on each system,
DHCP (Dynamic Host Configuration Protocol) enables client systems to retrieve
network configuration information from a DHCP server each time they connect to
the network. A DHCP server assigns IP addresses from a pool of addresses to clients
as needed. Assigned addresses are typically temporary but need not be.

This technique has several advantages over storing network configuration informa-
tion in local files:

• A new user can set up an Internet connection without having to deal with
IP addresses, netmasks, DNS addresses, and other technical details. An
experienced user can set up a connection more quickly.

• DHCP facilitates assignment and management of IP addresses and related
network information by centralizing the process on a server. A system
administrator can configure new systems, including laptops that connect
to the network from different locations, to use DHCP; DHCP then assigns
IP addresses only when each system connects to the network. The pool of
IP addresses is managed as a group on the DHCP server.

• IP addresses can be used by more than one system, reducing the total num-
ber of IP addresses needed. This conservation of addresses is important
because the Internet is quickly running out of IPv4 addresses. Although a
particular IP address can be used by only one system at a time, many end-
user systems require addresses only occasionally, when they connect to the
Internet. By reusing IP addresses, DHCP has lengthened the life of the IPv4
protocol. DHCP applies to IPv4 only, as IPv6 (page 369) forces systems to
configure their IP addresses automatically (called autoconfiguration) when
they connect to a network.

DHCP is particularly useful for an administrator who is responsible for maintaining
a large number of systems because individual systems no longer need to store
unique configuration information. With DHCP, the administrator can set up a mas-
ter system and deploy new systems with a copy of the master’s hard disk. In educa-
tional establishments and other open-access facilities, the hard disk image may be
stored on a shared drive, with each workstation automatically restoring itself to
pristine condition at the end of each day.

More Information

Web www.dhcp.org
www.dhcp-handbook.com/dhcp_faq.html DHCP FAQ

HOWTO DHCP Mini HOWTO

How DHCP Works

Using dhclient, the client contacts the server daemon, dhcpd, to obtain the IP
address, netmask, broadcast address, nameserver address, and other networking

www.dhcp.org
www.dhcp-handbook.com/dhcp_faq.html

Setting Up a Server 539

parameters. In turn, the server provides a lease on the IP address to the client. The
client can request the specific terms of the lease, including its duration; the server
can limit these terms. While connected to the network, a client typically requests
extensions of its lease as necessary so its IP address remains the same. This lease
may expire once the client is disconnected from the network, with the server giving
the client a new IP address when it requests a new lease. You can also set up a
DHCP server to provide static IP addresses for specific clients (refer to “Static Ver-
sus Dynamic IP Addresses” on page 364). DHCP is broadcast based, so both client
and server must be on the same subnet (page 367).

When you install Ubuntu, the system runs a DHCP client, connects to a DHCP
server if it can find one, and configures its network interface. You can use firestarter
(page 886) to configure and run a DHCP server.

DHCP Client

A DHCP client requests network configuration parameters from the DHCP server
and uses those parameters to configure its network interface.

Prerequisites

Make sure the following package is installed:

• dhcp3-client

dhclient: The DHCP Client

When a DHCP client system connects to the network, dhclient requests a lease from
the DHCP server and configures the client’s network interface(s). Once a DHCP cli-
ent has requested and established a lease, it stores the lease information in a file
named dhclient.interface.leases, which is stored in /var/lib/dhcp3. The interface is
the name of the interface that the client uses, such as eth0. The system uses this
information to reestablish a lease when either the server or the client needs to
reboot. You need to change the default DHCP client configuration file,
/etc/dhcp3/dhclient.conf, only for custom configurations.

The following dhclient.conf file specifies a single interface, eth0:

$ cat /etc/dhclient.conf
interface "eth0"
{
send dhcp-client-identifier 1:xx:xx:xx:xx:xx:xx;
send dhcp-lease-time 86400;
}

In the preceding file, the 1 in the dhcp-client-identifier specifies an Ethernet net-
work and xx:xx:xx:xx:xx:xx is the MAC address (page 1046) of the device control-
ling that interface. See page 541 for instructions on how to determine the MAC
address of a device. The dhcp-lease-time is the duration, in seconds, of the lease on
the IP address. While the client is connected to the network, dhclient automatically
renews the lease each time half of the lease time is up. The lease time of 86,400 sec-
onds (or one day) is a reasonable choice for a workstation.

540 Chapter 12 System Administration: Core Concepts

DHCP Server

A DHCP server maintains a list of IP addresses and other configuration parameters.
Clients request network configuration parameters from the server.

Prerequisites

Install the following package:

• dhcp3-server

dhcp3-server init
script

When you install the dhcpd3-server package, the dpkg postinst script starts the
dhcpd3 daemon. After you configure dhcpd3, call the dhcp3-server init script to
restart the dhcpd3 daemon:

$ sudo /etc/init.d/dhcp3-server restart

dhcpd: The DHCP Daemon

A simple DCHP server (dhcpd) allows you to add clients to a network without
maintaining a list of assigned IP addresses. A simple network, such as a home LAN
sharing an Internet connection, can use DHCP to assign a dynamic IP address to
almost all nodes. The exceptions are servers and routers, which must be at known
network locations to be able to receive connections. If servers and routers are con-
figured without DHCP, you can specify a simple DHCP server configuration in
/etc/dhcp3/dhcpd.conf:

$ cat /etc/dhcp3/dhcpd.conf
default-lease-time 600;
max-lease-time 86400;

option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option routers 192.168.1.1;
option domain-name-servers 192.168.1.1;
option domain-name "example.com";

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.2 192.168.1.200;
}

The /etc/default/dhcp3-server file specifies the interfaces that dhcpd serves requests
on. By default, dhcpd uses eth0. To use another interface or to use more than one
interface, set the INTERFACES variable in this file to a SPACE-separated list of the
interfaces you want to use; enclose the list within quotation marks.

The preceding configuration file specifies a LAN where both the router and DNS
server are located on 192.168.1.1. The default-lease-time specifies the number of
seconds the dynamic IP lease will remain valid if the client does not specify a dura-
tion. The max-lease-time is the maximum time allowed for a lease.

The information in the option lines is sent to each client when it connects. The
names following the word option specify what the following argument represents.
For example, the option broadcast-address line specifies the broadcast address of
the network. The routers and domain-name-servers options allow multiple values
separated by commas.

Setting Up a Server 541

The subnet section includes a range line that specifies the range of IP addresses the
DHCP server can assign. If case of multiple subnets, you can define options, such as
subnet-mask, inside the subnet section. Options defined outside all subnet sections
are global and apply to all subnets.

The preceding configuration file assigns addresses in the range from 192.168.1.2 to
192.168.1.200. The DHCP server starts at the bottom of this range and attempts to
assign a new IP address to each new client. Once the DHCP server reaches the top
of the range, it starts reassigning IP addresses that have been used in the past but are
not currently in use. If you have fewer systems than IP addresses, the IP address of
each system should remain fairly constant. Two systems cannot use the same IP
address at the same time.

Once you have configured a DHCP server, restart it using the dhcpd init script
(page 540). With the server is running, clients configured to obtain an IP address
from the server using DHCP should be able to do so.

Static IP Addresses

As mentioned earlier, routers and servers typically require static IP addresses.
Although you can manually configure IP addresses for these systems, it may be
more convenient to have the DHCP server provide them with static IP addresses.

When a system that requires a specific static IP address connects to the network and
contacts the DHCP server, the server needs a way to identify the system so it can assign
the proper IP address to that system. The DHCP server uses the MAC address
(page 1046) of the system’s Ethernet card (NIC) as an identifier. When you set up the
server, you must know the MAC address of each system that requires a static IP address.

Determining a MAC
address

The ifconfig utility displays the MAC addresses of the Ethernet cards in a system. In
the following example, the MAC addresses are the colon-separated series of hexa-
decimal number pairs following HWaddr:

$ ifconfig | grep -i hwaddr
eth0 Link encap:Ethernet HWaddr BA:DF:00:DF:C0:FF
eth1 Link encap:Ethernet HWaddr 00:02:B3:41:35:98

Run ifconfig on each system that requires a static IP address. Once you have deter-
mined the MAC addresses of these systems, you can add a host section to the
/etc/dhcpd.conf file for each one, instructing the DHCP server to assign a specific
address to that system. The following host section assigns the address 192.168.1.1
to the system with the MAC address of BA:DF:00:DF:C0:FF:

$ cat /etc/dhcp3/dhcpd.conf
...
host router {
 hardware ethernet BA:DF:00:DF:C0:FF;
 fixed-address 192.168.1.1;
 option host-name router;
}

The name following host is used internally by dhcpd. The name specified after
option host-name is passed to the client and can be a hostname or an FQDN. After
making changes to dhcpd.conf, restart dhcpd using the dhcpd init script (page 540).

542 Chapter 12 System Administration: Core Concepts

nsswitch.conf: Which Service to Look at First

With the advent of NIS and DNS, finding user and system information was no
longer a simple matter of searching a local file. Where once you looked in
/etc/passwd to get user information and in /etc/hosts to find system address infor-
mation, you can now use several methods to obtain this type of information. The
/etc/nsswitch.conf (name service switch configuration) file specifies which methods
to use and the order in which to use them when looking for a certain type of infor-
mation. You can also specify which action the system should take based on whether
a method succeeds or fails.

Format Each line in nsswitch.conf specifies how to search for a piece of information, such
as a user’s password. A line in nsswitch.conf has the following format:

info: method [[action]] [method [[action]]...]

where info specifies the type of information the line describes, method is the method
used to find the information, and action is the response to the return status of the
preceding method. The action is enclosed within square brackets.

How nsswitch.conf Works

When called upon to supply information that nsswitch.conf describes, the system
examines the line with the appropriate info field. It uses the methods specified on
the line, starting with the method on the left. By default, when it finds the desired
information, the system stops searching. Without an action specification, when a
method fails to return a result, the system tries the next action. It is possible for the
search to end without finding the requested information.

Information

The nsswitch.conf file commonly controls searches for usernames, passwords, host IP
addresses, and group information. The following list describes most of the types of
information (info in the syntax given earlier) that nsswitch.conf controls searches for.

automount Automount (/etc/auto.master and /etc/auto.misc, page 818)
bootparams Diskless and other booting options (See the bootparam man page.)
ethers MAC address (page 1046)
group Groups of users (/etc/group, page 558)
hosts System information (/etc/hosts, page 559)
networks Network information (/etc/networks)
passwd User information (/etc/passwd, page 560)
protocols Protocol information (/etc/protocols, page 561)
publickey Used for NFS running in secure mode
rpc RPC names and numbers (/etc/rpc, page 562)
services Services information (/etc/services, page 562)
shadow Shadow password information (/etc/shadow, page 562)

nsswitch.conf: Which Service to Look at First 543

Methods

Following is a list of the types of information that nsswitch.conf controls searches
for (method in the format above). For each type of information, you can specify one
or more of the following methods:2

files Searches local files such as /etc/passwd and /etc/hosts
nis Searches the NIS database; yp is an alias for nis
dns Queries the DNS (hosts queries only)
compat ± syntax in passwd, group, and shadow files (page 544)

Search Order

The information provided by two or more methods may overlap: For example, both
files and nis may provide password information for the same user. With overlapping
information, you need to consider which method you want to be authoritative (take
precedence); place that method at the left of the list of methods.

The default nsswitch.conf file lists methods without actions, assuming no overlap
(which is normal). In this case, the order is not critical: When one method fails, the
system goes to the next one and all that is lost is a little time. Order becomes critical
when you use actions between methods or when overlapping entries differ.

The first of the following lines from nsswitch.conf causes the system to search for
password information in /etc/passwd and, if that fails, to use NIS to find the infor-
mation. If the user you are looking for is listed in both places, the information in the
local file is used and is considered authoritative. The second line uses NIS to find an
IP address given a hostname; if that fails, it searches /etc/hosts; if that fails, it checks
with DNS to find the information.

passwd files nis
hosts nis files dns

Action Items

Each method can optionally be followed by an action item that specifies what to do
if the method succeeds or fails. An action item has the following format:

[[!]STATUS=action]

where the opening and closing square brackets are part of the format and do not
indicate that the contents are optional; STATUS (uppercase by convention) is the
status being tested for; and action is the action to be taken if STATUS matches the
status returned by the preceding method. The leading exclamation point (!) is
optional and negates the status.

2. There are other, less commonly used methods. See the default /etc/nsswitch.conf file and the
nsswitch.conf man page for more information. Although NIS+ belongs in this list, it is not implemented as
a Linux server and is not discussed in this book.

544 Chapter 12 System Administration: Core Concepts

STATUS Values for STATUS are

NOTFOUND The method worked but the value being searched for was not
found. The default action is continue.

SUCCESS The method worked and the value being searched for was found; no
error was returned.The default action is return.

UNAVAIL The method failed because it is permanently unavailable. For example,
the required file may not be accessible or the required server may be down. The
default action is continue.

TRYAGAIN The method failed because it was temporarily unavailable. For
example, a file may be locked or a server overloaded. The default action is continue.

action Values for action are

return Returns to the calling routine with or without a value.

continue Continues with the next method. Any returned value is overwritten by a
value found by a subsequent method.

Example The following line from nsswitch.conf causes the system first to use DNS to search
for the IP address of a given host. The action item following the DNS method tests
whether the status returned by the method is not (!) UNAVAIL.

hosts dns [!UNAVAIL=return] files

The system takes the action associated with the STATUS (return) if the DNS
method does not return UNAVAIL (!UNAVAIL)—that is, if DNS returns SUCCESS,
NOTFOUND, or TRYAGAIN. The result is that the following method (files) is
used only when the DNS server is unavailable. If the DNS server is not unavailable
(read the two negatives as “is available”), the search returns the domain name or
reports that the domain name was not found. The search uses the files method
(checks the local /etc/hosts file) only if the server is not available.

compat Method: ± in passwd, group, and shadow Files

You can put special codes in the /etc/passwd, /etc/group, and /etc/shadow files that
cause the system, when you specify the compat method in nsswitch.conf, to com-
bine and modify entries in the local files and the NIS maps.

A plus sign (+) at the beginning of a line in one of these files adds NIS information;
a minus sign (–) removes information. For example, to use these codes in the
passwd file, specify passwd: compat in nsswitch.conf. The system then goes through
the passwd file in order, adding or removing the appropriate NIS entries when it
reaches each line that starts with a + or –.

Although you can put a plus sign at the end of the passwd file, specify passwd: compat
in nsswitch.conf to search the local passwd file, and then go through the NIS map,
it is more efficient to put passwd: file nis in nsswitch.conf and not modify the
passwd file.

PAM 545

PAM

PAM (Linux-PAM, or Linux Pluggable Authentication Modules) allows a system
administrator to determine how applications use authentication (page 1024) to
verify the identity of a user. PAM provides shared libraries of modules (located in
/lib/security) that, when called by an application, authenticate a user. The configu-
ration files kept in the /etc/pam.d directory determine the method of authentica-
tion and contain a list, or stack, of calls to the modules. PAM may also use other
files, such as /etc/passwd, when necessary. The term “Pluggable” in PAM’s name
refers to the ease with which you can add and remove modules from an authentica-
tion stack.

Instead of building the authentication code into each application, PAM provides
shared libraries that keep the authentication code separate from the application
code. The techniques of authenticating users stay the same from application to
application. PAM enables a system administrator to change the authentication
mechanism for a given application without modifying the application.

PAM provides authentication for a variety of system-entry services (such as login,
ftp, su, and sudo). You can take advantage of its ability to stack authentication mod-
ules to integrate system-entry services with different authentication mechanisms,
such as RSA, DCE, Kerberos, and smartcards.

From login through using sudo to shutting the system down, whenever you are
asked for a password (or not asked for a password because the system trusts you
are who you say you are), PAM makes it possible for system administrators to con-
figure the authentication process. It also makes the configuration process essentially
the same for all applications that use PAM for authentication.

The configuration files stored in /etc/pam.d describe the authentication procedure
for each application. These files usually have names that are the same as or similar
to the name of the application that they authenticate for. For example, authentica-
tion for the login utility is configured in /etc/pam.d/login. The name of the file is the
name of the PAM service3 that the file configures. Occasionally one file may serve
two programs. PAM accepts only lowercase letters in the names of files in the
/etc/pam.d directory.

PAM warns you about errors it encounters, logging them to /var/log/messages or
/var/log/secure. Review these files if you are trying to figure out why a changed
PAM file is not working properly. To prevent a malicious user from seeing informa-
tion about PAM, PAM sends error messages to a file rather than to the screen.

3. There is no relationship between PAM services and the /etc/services file. The name of the PAM service
is an arbitrary string that each application gives to PAM; PAM then looks up the configuration file with
that name and uses it to control authentication. There is no central registry of PAM service names.

546 Chapter 12 System Administration: Core Concepts

More Information

Local /usr/share/doc/libpam*
pam man page

Web Linux-PAM System Administrators’ Guide
www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-PAM_SAG.html

HOWTO User Authentication HOWTO

Configuration Files, Module Types, and Control Flags

Following is an example of a PAM configuration file. Comment lines, which have
been omitted, begin with a pound sign (#).

Login module $ grep '^[^#]' /etc/pam.d/login
auth requisite pam_securetty.so
auth requisite pam_nologin.so
session required pam_env.so readenv=1
session required pam_env.so readenv=1 envfile=/etc/default/locale
@include common-auth
auth optional pam_group.so
session required pam_limits.so
session optional pam_lastlog.so
session optional pam_motd.so
session optional pam_mail.so standard
@include common-account
@include common-session
@include common-password

Each line tells PAM to do something as part of the authentication process. The first
word on each line is a module type indicator: account, auth, password, or session
(Table 12-4). The second is a control flag (Table 12-5) that indicates the action
PAM should take if authentication fails. The rest of the line contains the name of a
PAM module (located in /lib/security) and any arguments for that module. The
PAM library itself uses the /etc/pam.d files to determine which modules to delegate
work to. Lines that begin with @include include the named file.

Do not lock yourself out of the system

caution Editing PAM configuration files correctly requires paying careful attention. It is easy to lock yourself
out of the system with a single mistake. To avoid this problem, keep backup copies of the PAM con-
figuration files you edit, test every change thoroughly, and make sure you can still log in once the
change is installed. Keep a root shell open (use sudo –i) until you have finished testing. If a change
fails and you cannot log in, use the root shell to replace the newly edited files with the backup copies.

Table 12-4 Module type indicators

Module type Description Controls

account Account
management

Determining whether an already authenticated user is
allowed to use the service she is trying to use. (That is, has
the account expired? Is the user allowed to use this service
at this time of day?)

www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-PAM_SAG.html

PAM 547

You can use one of the control flag keywords listed in Table 12-5 to set the control flags.

PAM uses each of the module types as requested by the application. That is, the appli-
cation asks PAM separately to authenticate, check account status, manage sessions,
and change the password. PAM uses one or more modules from the /lib/security
directory to accomplish each of these tasks.

auth Authentication Proving that the user is authorized to use the service; uses
passwords or another mechanism.

password Password
modification

Updating authentication mechanisms such as user
passwords.

session Session
management

Setting things up when the service is started (as when a
user logs in) and breaking them down when the service is
terminated (as when a user logs out).

Table 12-5 Control flag keywords

Keyword Flag function

required Success is required for authentication to succeed. Control and a failure result
are returned after all modules in the stack have been executed. The technique
of delaying the report to the calling program until all modules have been exe-
cuted may keep attackers from knowing precisely what caused their authenti-
cation attempts to fail and tell them less about the system, making it more
difficult for them to break in.

requisite Success is required for authentication to succeed. Further module processing
is aborted, and control is returned immediately after a module fails. This tech-
nique may expose information about the system to an attacker. However, if it
prevents a user from giving a password over an insecure connection, it might
keep information out of the hands of an attacker.

sufficient Success indicates that this module type has succeeded, and no subsequent
required modules of this type are executed. Failure is not fatal to the stack of
this module type. This technique is generally used when one form of authen-
tication or another is good enough: If one fails, PAM tries the other. For exam-
ple, when you use rsh to connect to another computer, pam_rhosts_auth first
checks whether your connection can be trusted without a password. If the
connection can be trusted, the pam_rhosts_auth module reports success, and
PAM immediately reports success to the rsh daemon that called it. You will not
be asked for a password. If your connection is not considered trustworthy,
PAM starts the authentication over and asks for a password. If this second
authentication succeeds, PAM ignores the fact that the pam_rhosts_auth
module reported failure. If both modules fail, you will not be able to log in.

optional Result is generally ignored. An optional module is relevant only when it is the
only module on the stack for a particular service.

Table 12-4 Module type indicators (continued)

548 Chapter 12 System Administration: Core Concepts

The configuration files in /etc/pam.d list the set of modules to be used for each
application to perform each task. Each such set of the same module types is called a
stack. PAM calls the modules one at a time in order, going from the top of the stack
(the first module listed in the configuration file) to the bottom. Each module reports
success or failure back to PAM. When all stacks of modules (with some exceptions)
within a configuration file have been called, the PAM library reports success or fail-
ure back to the application.

Example

Part of a sample login service’s authentication stack follows:

$ cat /etc/pam.d/login
auth requsite pam_securetty.so
@include common-auth
account required pam_nologin.so
...

The login utility first asks for a username and then asks PAM to run this stack to
authenticate the user. Refer to Table 12-4 on page 546 and Table 12-5 on page 547.

1. PAM first calls the pam_securetty (secure tty) module to make sure the
root user logs in only from an allowed terminal. (By default, root is not
allowed to run login over the network; this policy helps prevent security
breaches.) The pam_securetty module is required to succeed if the authen-
tication stack is to succeed. The pam_securetty module reports failure only
if someone is trying to log in as root from an unauthorized terminal. Oth-
erwise (if the username being authenticated is not root or if the username
is root and the login attempt is being made from a secure terminal), the
pam_securetty module reports success.

Success and failure within PAM are opaque concepts that apply only to
PAM. They do not equate to true and false as used elsewhere in the operat-
ing system.

2. The included common-auth file holds modules that check whether the user
who is logging in is authorized to do so. As part of completing this task,
they verify the username and password.

3. The pam_nologin module makes sure that if the /etc/nologin.txt file exists,
only the root user is allowed to log in. (That is, the pam_nologin module
reports success only if /etc/nologin.txt does not exist or if the root user is
logging in.) Thus, when a shutdown has been scheduled to occur in the
near future, the system keeps users from logging in only to have the system
shut down moments later.

The account module type works like the auth module type but is called after the
user has been authenticated; it acts as an additional security check or requirement
for a user to gain access to the system. For example, account modules might enforce
a policy that a user can log in only during business hours.

PAM 549

The session module type sets up and tears down the session (perhaps mounting and
unmounting the user’s home directory). One common session module on an Ubuntu
system is pam_mail, which announces you have new mail when a user logs in to a
textual environment.

The password module type is a bit unusual: All modules in the stack are called once
and told to get all information they need to store the password to persistent mem-
ory, such as a disk, but not actually to store it. If it determines that it cannot or
should not store the password, a module reports failure. If all password modules in
the stack report success, they are called a second time and told to store to persistent
memory the password they obtained on the first pass. The password module is
responsible for updating the authentication information (that is, changing the user’s
password).

Any one module can act as more than one module type; many modules can act as all
four module types.

Modifying the PAM Configuration

Some UNIX systems require that a user be a member of the wheel group to use the
su command. Although Ubuntu Linux is not configured this way by default, PAM
allows you to change this behavior by editing the /etc/pam.d/su file:

$ cat /etc/pam.d/su
...
Uncomment this to force users to be a member of group root before they can use 'su'
auth required pam_wheel.so

Uncomment this if you want wheel members to be able to su without a password.
auth sufficient pam_wheel.so trust
...

The lines of this su module contain comments that include the lines necessary to per-
mit only users who are in the wheel group to use su (required) and to permit members
of the wheel group to run su without supplying a password (sufficient). Uncomment
one of these lines when you want the system to follow one of these rules.

Be cautious when changing PAM files
caution Unless you understand how to configure PAM, do not change the files in /etc/pam.d. Mistakes in

the configuration of PAM can make the system unusable.

Brackets ([]) in the control flags field
caution You can set the control flags in a more complex way than described in this section. When you see

brackets ([]) in the control flags position in a PAM configuration file, the newer, more complex method
is in use. Each comma-delimited argument is a value=action pair. When the result returned by the func-
tion matches value, action is evaluated. For more information refer to the PAM System Administrator’s
Guide (www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-PAM_SAG.html).

www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-PAM_SAG.html

550 Chapter 12 System Administration: Core Concepts

Chapter Summary

A system administrator is someone who keeps the system useful and convenient for
its users. Much of the work you do as the system administrator will require you to
work with root privileges. A user with these privileges (sometimes referred to as
Superuser) has extensive systemwide powers that normal users do not have. A user
with root privileges can read from and write to any file and can execute programs
that ordinary users are not permitted to execute.

The system administrator controls system operation, which includes many tasks:
configuring the system; booting up; running init scripts; setting up servers; working
in recovery (single-user) and multiuser modes; bringing the system down; and han-
dling system crashes. Ubuntu Linux provides both graphical and textual configura-
tion tools.

When you bring up the system in recovery (single-user) mode, only the system con-
sole is functional. When the system is in recovery mode, you can back up files and
use fsck to check the integrity of filesystems before you mount them. The telinit util-
ity can bring the system to its default multiuser state. With the system running in
multiuser mode, you can still perform many administration tasks, such as adding
users and printers.

As installed, the root account on an Ubuntu system is locked: It has no password.
Ubuntu recommends you use sudo when you need to perform a task with root priv-
ileges. The sudo utility grants root privileges based on your password. A system that
does not have a root password and that relies on sudo to escalate permissions can be
more secure than one with a root password.

The Upstart init daemon, which replaces the traditional System V init daemon
(SysVinit), is event-based and can start and stop services upon receiving informa-
tion that something on the system has changed. This kind of change is called an
event. Events include adding devices to and removing them from the system as well
as bringing the system up and shutting it down.

You can use TCP wrappers to control who can use which system services by editing
the hosts.allow and hosts.deny files in the /etc directory. Setting up a chroot jail lim-
its the portion of the filesystem a user sees, so it can help control the damage a mali-
cious user can do.

You can set up a DHCP server so you do not have to configure each system on a
network manually. DHCP can provide both static and dynamic IP addresses.
Whether a system uses NIS, DNS, local files, or a combination (and in what order)
as a source of information is determined by /etc/nsswitch.conf. Linux-PAM enables
you to maintain fine-grained control over who can access the system, how they can
access it, and what they can do.

Advanced Exercises 551

Exercises

1. How does recovery (single-user) mode differ from multiuser mode?

2. How would you communicate each of the following messages?

a. The system is coming down tomorrow at 6:00 in the evening for peri-
odic maintenance.

b. The system is coming down in 5 minutes.

c. Jenny’s jobs are slowing the system down drastically, and she should
postpone them.

d. Zach’s wife just had a baby girl.

3. How would you run a program with Sam’s privileges if you did not know
his password but had permission to use sudo to run a command with root
privileges? How would you spawn a shell with the same environment that
Sam has when he first logs in?

4. How would you allow a user to execute a specific, privileged command
without giving the user the root password or permission to use sudo to run
any command with root privileges?

5. How do you kill process 1648? How do you kill all processes running
kmail? In which instances do you need to work with root privileges?

6. What does the /etc/event.d/logd file do and what starts it? What does the
respawn keyword in this file mean?

7. Develop a strategy for coming up with a password that an intruder would
not be likely to guess but that you will be able to remember.

Advanced Exercises

8. Give the command

$ /sbin/fuser -uv /

What does the output list? Why is it so long? Give the same command
while working with root privileges (or ask the system administrator to do
so and email you the results). How does this list differ from the first? Why
is it different?

552 Chapter 12 System Administration: Core Concepts

9. When it puts files in a lost+found directory, fsck has lost the directory
information for the files and thus has lost the names of the files. Each file
is given a new name, which is the same as the inode number for the file:

$ ls –l lost+found
–rw–r––r–– 1 alex pubs 110 Jun 10 10:55 51262

How can you identify these files and restore them?

10. Take a look at /usr/bin/lesspipe. Explain its purpose and give six ways it
works.

11. Why are setuid shell scripts inherently unsafe?

12. When a user logs in, you would like the system to first check the local
/etc/passwd file for a username and then check NIS. How do you imple-
ment this strategy?

13. Some older kernels contain a vulnerability that allows a local user to gain
root privileges. Explain how this kind of vulnerability negates the value of
a chroot jail.

553553

13Chapter13Filesystems hold directories of files. These structures store user
data and system data that are the basis of users’ work on the
system and the system’s existence. This chapter discusses impor-
tant files and directories, various types of files and ways to
work with them, and the use and maintenance of filesystems.

In This Chapter

Important Files and Directories . . 554

Special Files 567

Filesystems 570

mount: Mounts a Filesystem 572

fstab: Keeps Track of
Filesystems 576

fsck: Checks Filesystem
Integrity 577

13

Files, Directories,

and Filesystems

554 Chapter 13 Files, Directories, and Filesystems

Important Files and Directories

This section details the files most commonly used to administer the system. For more
information, refer to “Important Standard Directories and Files” on page 194.

~/.bash_profile Contains an individual user’s login shell initialization script. By default, Ubuntu
does not create this file when it adds a user. The shell executes the commands in this
file in the same environment as the shell each time a user logs in. (For information
on executing a shell script in this manner, refer to the discussion of the . [dot] com-
mand on page 279.) The file must be located in a user’s home directory. It is not run
from terminal emulator windows because you do not log in in those windows.

You can use .bash_profile to specify a terminal type (for vi, terminal emulators, and
other programs), run stty to establish the terminal characteristics, set up aliases, and
perform other housekeeping functions when a user logs in.

A simple .bash_profile file specifying a vt100 terminal and CONTROL-H as the erase key
follows:

$ cat .bash_profile
export TERM=vt100
stty erase '^h'

For more information refer to “Startup Files” on page 277.

~/.bashrc Contains an individual user’s interactive, nonlogin shell initialization script. The
shell executes the commands in this file in the same environment as the (new) shell
each time a user creates a new interactive shell, including when a user opens a ter-
minal emulator window. (For information on executing a shell script in this manner,
refer to the discussion of the . [dot] command on page 279.) The .bashrc script dif-
fers from .bash_profile in that it is executed each time a new shell is spawned, not
just when a user logs in. For more information refer to “Startup Files” on page 277.

/dev Contains files representing pseudodevices and physical devices that may be attached to
the system. The following list explains the naming conventions for some physical devices:

• /dev/fd0 The first floppy disk. The second floppy disk is named
/dev/fd1.

• /dev/hda The master disk on the primary IDE controller. The slave disk
on the primary IDE controller is named /dev/hdb. This disk may be a CD-
ROM drive.

• /dev/hdc The master disk on the secondary IDE controller. The slave
disk on the secondary IDE controller is named /dev/hdd. This disk may be
a CD-ROM drive.

• /dev/sda Traditionally the first SCSI disk; now the first non-IDE drive,
including SATA and USB drives. Other, similar drives are named /dev/sdb,
/dev/sdc, etc.

Important Files and Directories 555

/dev/disk/by-id Holds symbolic links to local devices. The names of the devices in this directory
identify the devices. Each entry points to the device in /dev that it refers to.

$ ls -l /dev/disk/by-id
lrwxrwxrwx 1 root root 9 Sep 9 08:32 ata-CR-48XGTE_3E30053332_0175 -> ../../hdb
lrwxrwxrwx 1 root root 9 Sep 9 08:32 ata-WDC_WD1600JB-00GVA0_WD-WCAL95325197 -> ../../hda

/dev/disk/by-uuid Holds symbolic links to local devices. The names of the devices in this directory
consist of the UUID (page 1067) numbers of the devices. Each entry points to the
device in /dev that it refers to.

$ ls -l /dev/disk/by-uuid
lrwxrwxrwx 1 root root 10 Jun 4 11:41 39fc600f-91d5-4c9f-8559-727050b27645 -> ../../hda2
lrwxrwxrwx 1 root root 10 Jun 4 11:41 7eb0ba40-d48d-4ded-b4e4-7027cc93629f -> ../../hda5
lrwxrwxrwx 1 root root 10 Jun 4 11:41 8c2e5007-9cea-4bfb-8d26-82f8b376949b -> ../../hda6
...

/dev/null Also called a bit bucket. Output sent to this file disappears. The /dev/null file is a
device file. Input that you redirect to come from this file appears as null values, cre-
ating an empty file. You can create an empty file named nothing by giving one of
the following commands:

$ cat /dev/null > nothing
$ cp /dev/null nothing

or, without explicitly using /dev/null,

$ > nothing

The last command redirects the output of a null command to the file with the same
result as the previous commands. You can use any of these commands to truncate
an existing file to zero length without changing its permissions. You can also use
/dev/null to get rid of output that you do not want:

$ grep portable * 2> /dev/null

This command displays all lines in all files in the working directory that contain the
string portable. Any output to standard error (page 280), such as a permission or
directory error, is discarded, while output to standard output appears on the screen.

/dev/pts A hook into the Linux kernel. This pseudofilesystem is part of the pseudoterminal
support. Pseudoterminals are used by remote login programs, such as ssh and telnet,
as well as xterm and other graphical terminal emulators. The following sequence of
commands demonstrates that Sam is logged in on /dev/pts/2. After using who am i
to verify the pseudoterminal he is logged in on and using ls to show that this
pseudoterminal exists, Sam redirects the output of an echo command to /dev/pts/2,
whereupon the output appears on his screen:

$ who am i
sam pts/2 2007-05-31 17:37 (dog.bogus.com)
$ ls /dev/pts
0 1 2
$ echo Hi there > /dev/pts/2
Hi there

556 Chapter 13 Files, Directories, and Filesystems

/dev/random
and

/dev/urandom

Interfaces to the kernel’s random number generator. You can use either file with dd
to create a file filled with pseudorandom bytes.

$ dd if=/dev/urandom of=randfile2 bs=1 count=100
100+0 records in
100+0 records out
100 bytes (100 B) copied, 0.000884387 seconds, 113 kB/s

The preceding command reads from /dev/urandom and writes to the file named
randfile. The block size is 1 and the count is 100; thus randfile is 100 bytes long.
For bytes that are more random, you can read from /dev/random. See the urandom
and random man pages for more information.

optional
Wiping a file You can use a similar technique to wipe data from a file before deleting it, making it

almost impossible to recover data from the deleted file. You might want to wipe a
file for security reasons.

In the following example, ls shows the size of the file named secret. Using a block
size of 1 and a count corresponding to the number of bytes in secret, dd wipes the
file. The conv=notrunc argument ensures that dd writes over the data in the file and
not another (erroneous) place on the disk.

$ ls -l secret
-rw-r--r-- 1 sam sam 5733 2007-05-31 17:43 secret
$ dd if=/dev/urandom of=secret bs=1 count=5733 conv=notrunc
5733+0 records in
5733+0 records out
5733 bytes (5.7 kB) copied, 0.0358146 seconds, 160 kB/s
$ rm secret

For added security, run sync to flush the disk buffers after running dd, and repeat
the two commands several times before deleting the file. See wipe.sourceforge.net
for more information about wiping files.

/dev/zero Input you take from this file contains an infinite string of zeros (numerical zeros,
not ASCII zeros). You can fill a file (such as a swap file, page 564) or overwrite a
file with zeros with a command such as the following:

$ dd if=/dev/zero of=zeros bs=1024 count=10
10+0 records in
10+0 records out
10240 bytes (10 kB) copied, 0.000160263 seconds, 63.9 MB/s

$ od -c zeros
0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0024000

The od utility shows the contents of the new file.

Important Files and Directories 557

When you try to do with /dev/zero what you can do with /dev/null, you fill the par-
tition in which you are working:

$ cp /dev/zero bigzero
cp: writing 'bigzero': No space left on device
$ rm bigzero

/etc/aliases Used by the mail delivery system to hold aliases for users. Edit this file to suit local
needs. For more information refer to /etc/aliases on page 763.

/etc/alternatives Holds symbolic links so that you can call a utility by a name other than that of the
file that holds the utility. For example, when you give the command btdownload-
curses, the shell calls btdownloadcurses.bittorrent using the following links:

$ ls -l /usr/bin/btdownloadcurses
lrwxrwxrwx ... /usr/bin/btdownloadcurses -> /etc/alternatives/btdownloadcurses
$ ls -l /etc/alternatives/btdownloadcurses
lrwxrwxrwx ... /etc/alternatives/btdownloadcurses -> /usr/bin/btdownloadcurses.bittorrent

The alternatives directory also allows a utility to appear in more than one directory:

$ ls -l /usr/X11R6/bin/btdownloadcurses /usr/bin/X11/btdownloadcurses
lrwxrwxrwx ... /usr/X11R6/bin/btdownloadcurses -> /etc/alternatives/btdownloadcurses
lrwxrwxrwx ... /usr/bin/X11/btdownloadcurses -> /etc/alternatives/btdownloadcurses

In addition, this directory allows you to call one utility by several names. Although
the alternatives directory does not allow developers to do anything they could not
do without it, it provides an orderly way to keep and update these links. Use whereis
(page 164) to find all links to a utility.

/etc/at.allow,
/etc/at.deny,

/etc/cron.allow,
and

/etc/cron.deny

By default, users can use the at and crontab utilities. The at.allow and cron.allow
files list the users who are allowed to use at and crontab, respectively. The at.deny
and cron.deny files specify users who are not permitted to use the corresponding
utilities. As Ubuntu Linux is configured, the at.deny file holds a list of some system
accounts and there is no at.allow file, allowing nonsystem accounts to use at; the
absence of cron.allow and cron.deny files allows anyone to use crontab. To prevent
anyone except a user running with root privileges from using at, remove the
at.allow and at.deny files. To prevent anyone except a user running with root privi-
leges from using crontab, create a cron.allow file with the single entry root. For more
information on crontab, refer to “Scheduling Tasks” on page 668.

/etc/bash.bashrc Contains the global interactive, nonlogin shell initialization script. A user can over-
ride settings made in this file in her ~/.bashrc (page 554) file.

/etc/default Holds files that set default values for system services and utilities such as NFS and
useradd. Look at the files in this directory for more information.

/etc/dumpdates Contains information about the last execution of dump (part of the dump software
package). For each filesystem, it stores the time of the last dump at a given dump
level. The dump utility uses this information to determine which files to back up
when executing at a particular dump level. Refer to “Backing Up Files” on page 662
and the dump man page for more information.

558 Chapter 13 Files, Directories, and Filesystems

Following is a sample /etc/dumpdates file from a system with four filesystems and a
backup schedule that uses three dump levels:

/dev/hda1 5 Thu Apr 19 03:53:55 2007
/dev/hda8 2 Sun Apr 15 08:25:24 2007
/dev/hda9 2 Sun Apr 15 08:57:32 2007
/dev/hda10 2 Sun Apr 15 08:58:06 2007
/dev/hda1 2 Sun Apr 15 09:02:27 2007
/dev/hda1 0 Sun Mar 18 22:08:35 2007
/dev/hda8 0 Sun Mar 18 22:33:40 2007
/dev/hda9 0 Sun Mar 18 22:35:22 2007
/dev/hda10 0 Sun Mar 18 22:43:45 2007

The first column contains the device name of the dumped filesystem. The second
column contains the dump level and the date of the dump.

/etc/event.d Holds files that define Upstart init jobs. See page 502 for more information.

/etc/fstab filesystem (mount) table Contains a list of all mountable devices as specified by
the system administrator. Programs do not write to this file; they only read from it.
Refer to “fstab: Keeps Track of Filesystems” on page 576.

/etc/group Groups allow users to share files or programs without giving all system users access
to those files or programs. This scheme is useful when several users are working
with files that are not public. The /etc/group file associates one or more usernames
with each group (number). Refer to “ACLs: Access Control Lists” on page 203 for
a finer-grained way to control file access.

Each entry in the /etc/group file has four colon-separated fields that describe one
group:

group-name:password:group-ID:login-name-list

The group-name is the name of the group. The password is an optional hashed
(page 1039) password. This field frequently contains an x, indicating that group
passwords are not used. The group-ID is a number, with 1–999 reserved for system
accounts. The login-name-list is a comma-separated list of users who belong to the
group. If an entry is too long to fit on one line, end the line with a backslash (\),
which quotes the following RETURN, and continue the entry on the next line. A sample
entry from a group file follows. The group is named pubs, has no password, and
has a group ID of 1103:

pubs:x:1103:max,sam,zach,mark

You can use the groups utility to display the groups to which a user belongs:

$ groups sam
sam : sam pubs

Each user has a primary group, which is the group that user is assigned in the
/etc/passwd file. By default, Ubuntu Linux has user private groups: Each user’s pri-
mary group has the same name as the user. In addition, a user can belong to other
groups, depending on which login-name-lists the user appears on in the /etc/group

Important Files and Directories 559

file. In effect, you simultaneously belong both to your primary group and to any
groups you are assigned to in /etc/group. When you attempt to access a file you do
not own, Linux checks whether you are a member of the group that has access to
the file. If you are, you are subject to the group access permissions for the file. If you
are not a member of the group that has access to the file and you do not own the
file, you are subject to the public access permissions for the file.

When you create a new file, Linux assigns it to the group associated with the direc-
tory the file is being written into, assuming that you belong to that group. If you do
not belong to the group that has access to the directory, the file is assigned to your
primary group.

Refer to page 660 for information on using users-admin to work with groups.

/etc/hosts Stores the names, IP addresses, and optionally aliases of other systems. At the very
least, this file must have the hostname and IP address that you have chosen for the
local system and a special entry for localhost. This entry supports the loopback ser-
vice, which allows the local system to talk to itself (for example, for RPC services).
The IP address of the loopback service is always 127.0.0.1, while 127.0.1.1 names
the local system. Following is a simple /etc/hosts file:

$ cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 tiny
192.168.0.9 jam
192.168.0.10 plum
192.168.0.12 dog
...

If you are not using NIS or DNS to look up hostnames (called hostname resolution),
you must include in /etc/hosts all systems that the local system should be able to
contact by hostname. (A system can always contact another system by using the IP
address of the system.) The hosts entry in the /etc/nsswitch.conf file (page 542) con-
trols the order in which hostname resolution services are checked.

/etc/inittab initialization table Some distributions use this file to control the behavior of the
init process. It is not present on Ubuntu systems. See rc-default on page 506 for
more information.

/etc/motd Contains the message of the day, which can be displayed each time someone logs in
using a textual login. This file typically contains site policy and legal information.
Keep this file short because users tend to see the message many times.

/etc/mtab When you call mount without any arguments, it consults this file and displays a list
of mounted devices. Each time you (or an init script) call mount or umount, these
utilities make the necessary changes to mtab. Although this is an ASCII text file, you
should not edit it. See also /etc/fstab.

/etc/nsswitch.conf
Specifies whether a system uses NIS, DNS, local files, or a combination as the source
of certain information, and in what order it consults these services (page 542).

560 Chapter 13 Files, Directories, and Filesystems

/etc/pam.d Files in this directory specify the authentication methods used by PAM (page 545)
applications.

/etc/passwd Describes users to the system. Do not edit this file directly; instead, use one of the
utilities discussed in “Configuring User and Group Accounts” on page 658. Each
line in passwd has seven colon-separated fields that describe one user:

login-name:password:user-ID:group-ID:info:directory:program

The login-name is the user’s username—the name you enter in response to the
login: prompt or on a GUI login screen. The value of the password is the character
x. The /etc/shadow file (page 562) stores the real password, which is hashed
(page 1039). For security reasons, every account should have a password. By con-
vention, disabled accounts have an asterisk (*) in this field.

The user-ID is a number, with 0 indicating the root account and 1–999 being
reserved for system accounts. The group-ID identifies the user as a member of a
group. It is a number, with 0–999 being reserved for system accounts; see
/etc/group (page 558). You can change these values and set maximum values in
/etc/login.defs.

The info is information that various programs, such as accounting and email pro-
grams, use to identify the user further. Normally it contains at least the first and last
names of the user. It is referred to as the GECOS (page 1038) field.

The directory is the absolute pathname of the user’s home directory. The program is
the program that runs once the user logs in to a textual session. If program is not
present, a value of /bin/bash is assumed. You can put /bin/tcsh here to log in using
the TC Shell or /bin/zsh to log in using the Z Shell, assuming the shell you specify is
installed. The chsh utility (page 525) changes this value.

The program is usually a shell, but it can be any program. The following line in the
passwd file creates a “user” whose only purpose is to execute the who utility:

who:x:1000:1000:execute who:/usr:/usr/bin/who

Logging in with who as a username causes the system to log you in, execute the who util-
ity, and log you out. The output of who flashes by quickly because the new login prompt
clears the screen immediately after who finishes running. This entry in the passwd file
does not provide a shell, so you cannot stay logged in after who finishes executing.

This technique is useful for providing special accounts that may do only one thing. The
ftp account, for example, enables anonymous FTP (page 729) access to an FTP server.

Fixing mtab
tip The kernel maintains its own internal mount table. You can display this table with the command

cat /proc/mounts. Sometimes the list of files in /etc/mtab may not be synchronized with the par-
titions in this table. To bring the mtab file in line with the operating system’s mount table, you can
either reboot the system or replace /etc/mtab with a symbolic link to /proc/mounts (although
some information may be lost).

$ sudo rm /etc/mtab
$ sudo ln -s /proc/mounts /etc/mtab

Important Files and Directories 561

Because no one logs in on this account, the shell is set to /bin/false (which returns a
false exit status) or to /sbin/nologin (which does not permit the user to log in). When
you put a message in /etc/nologin.txt, nologin displays that message (except it has the
same problem as the output of who: It is removed so quickly that it is hard to see).

/etc/printcap The printer capability database for LPD/LPR (page 612). It is not used with CUPS
(Chapter 15), Ubuntu’s default printing system. This file describes system printers
and is derived from 4.3BSD UNIX.

/etc/profile Contains a systemwide interactive shell initialization script for environment and
startup programs. When you log in, the shell immediately executes the commands
in this file in the same environment as the shell. (For information on executing a
shell script in this manner, refer to the discussion of the . [dot] command on
page 279.) This file allows the system administrator to establish systemwide envi-
ronment parameters that individual users can override in their ~/.bash_profile
(page 554) files. For example, this file can set shell variables, execute utilities, set up
aliases, and take care of other housekeeping tasks.

The default Ubuntu /etc/profile file sets the shell prompt and executes the com-
mands in /etc/bash.bashrc (page 557).

Following is an example of a /etc/profile file that displays the message of the day
(the /etc/motd file), sets the file-creation mask (umask, page 526), and sets the inter-
rupt character to CONTROL-C:

cat /etc/profile
cat /etc/motd
umask 022
stty intr '^c'

/etc/protocols Provides protocol numbers, aliases, and brief definitions for DARPA Internet
TCP/IP protocols. Do not modify this file.

/etc/init.d Holds SysVinit initialization scripts. See page 507 for more information.

/etc/resolv.conf The resolver (page 848) configuration file, which is used to provide access to DNS.
By default, this file is rebuilt by resolvconf when you run the bind9 init script. See
“named options” on page 858, “resolvconf and resolv.conf” on page 859, and the
resolver and resolv.conf man pages for more information.

The following example shows the resolv.conf file for the example.com domain. A
resolv.conf file usually contains at least two lines—a search line (optional) and a
nameserver line:

cat /etc/resolv.conf
search example.com
nameserver 10.0.0.50
nameserver 10.0.0.51

Do not replace a login shell with a shell script
security Do not use shell scripts as replacements for shells in /etc/passwd. A user may be able to interrupt

a shell script, giving him full shell access when you did not intend to do so. When installing a
dummy shell, use a compiled program, not a shell script.

562 Chapter 13 Files, Directories, and Filesystems

The search keyword may be followed by a maximum of six domain names. The first
domain is interpreted as the host’s local domain. These names are appended one at
a time to all DNS queries, shortening the time needed to query local hosts. The
domains are searched in order in the process of resolving hostnames that are not
fully qualified. See FQDN on page 1037.

When you put search example.com in resolv.conf, any reference to a host within the
example.com domain or a subdomain (such as marketing.example.com) can use the
abbreviated form of the host. For example, instead of issuing the command ping
speedy.marketing.example.com, you can use ping speedy.marketing. The following
line in resolv.conf causes the marketing subdomain to be searched first, followed by
sales, and finally the entire example.com domain:

search marketing.example.com sales.example.com example.com

It is a good idea to put the most frequently used domain names first to try to outguess
possible conflicts. If both speedy.marketing.example.com and speedy.example.com
exist, for example, the order of the search determines which one is selected when you
invoke DNS. Do not overuse this feature: The longer the search path, the more net-
work DNS requests generated, and the slower the response. Three or four names are
typically sufficient.

The nameserver line(s) indicate which systems the local system should query to
resolve hostnames to IP addresses, and vice versa. These machines are consulted in
the order they appear, with a timeout between queries. The first timeout is a few
seconds; each subsequent timeout is twice as long as the previous one. The preced-
ing file causes this system to query 10.0.0.50, followed by 10.0.0.51 when the first
system does not answer within a few seconds. The resolv.conf file may be automati-
cally updated when a PPP- (Point-to-Point Protocol) or DHCP- (Dynamic Host
Configuration Protocol) controlled interface is activated. Refer to the resolv.conf
and resolver man pages for more information.

/etc/rpc Maps RPC services to RPC numbers. The three columns in this file show the name
of the server for the RPC program, the RPC program number, and any aliases.

/etc/services Lists system services. The three columns in this file show the informal name of the
service, the port number/protocol the service uses most frequently, and any aliases
for the service. This file does not specify which services are running on the local sys-
tem, nor does it map services to port numbers. The services file is used internally to
map port numbers to services for display purposes.

/etc/shadow Contains MD5 (page 1047) hashed user passwords. Each entry occupies one line
composed of nine fields, separated by colons:

login-name:password:last-mod:min:max:warn:inactive:expire:flag

The login-name is the user’s username—the name that the user enters in response to
the login: prompt or on a GUI login screen. The password is a hashed password
that passwd puts in this file. New accounts that are not set up with a password are

Important Files and Directories 563

given a value of ! or * in this field to prevent the user from logging in until you
assign a password to that user (page 658).

The last-mod field indicates when the password was last modified. The min is the
minimum number of days that must elapse before the password can be changed; the
max is the maximum number of days before the password must be changed. The
warn field specifies how much advance warning (in days) will be given to the user
before the password expires. The account will be closed if the number of days
between login sessions exceeds the number of days specified in the inactive field. The
account will also be closed as of the date in the expire field. The last field in an entry,
flag, is reserved for future use. You can use usermod (page 661) to modify these fields.

The shadow password file must be owned by root and must not be publicly read-
able or writable. Setting ownership and permissions in this way makes it more diffi-
cult for someone to break into the system by identifying accounts without
passwords or by using specialized programs that try to match hashed passwords.

A number of conventions exist for creating special shadow entries. An entry of
LK or NP in the password field indicates locked or no password, respectively. No
password is different from an empty password; no password implies that this is an
administrative account that no one ever logs in on directly. Occasionally programs
will run with the privileges of this account for system maintenance functions. These
accounts are set up under the principle of least privilege (page 488).

Entries in the shadow file must appear in the same order as in the passwd file. There
must be exactly one shadow entry for each passwd entry.

hosts.deny and
hosts.allow

As part of the client/server model, TCP wrappers rely on these files as the basis of a
simple access control language. See page 532 for more information.

/proc Provides a window into the Linux kernel. Through the /proc pseudofilesystem you
can obtain information on any process running on the system, including its current
state, memory usage, CPU usage, terminal association, parent, and group. You can
extract information directly from the files in /proc. An example follows:

$ sleep 1000 &
[1] 22756
$ cd /proc/22756
$ ls -l
total 0
dr-xr-xr-x 2 sam sam 0 2007-06-01 15:24 attr
-r-------- 1 sam sam 0 2007-06-01 15:24 auxv
-r--r--r-- 1 sam sam 0 2007-06-01 15:24 cmdline
-r--r--r-- 1 sam sam 0 2007-06-01 15:24 cpuset
lrwxrwxrwx 1 sam sam 0 2007-06-01 15:24 cwd -> /home/sam
-r-------- 1 sam sam 0 2007-06-01 15:24 environ
lrwxrwxrwx 1 sam sam 0 2007-06-01 15:24 exe -> /bin/sleep
dr-x------ 2 sam sam 0 2007-06-01 15:24 fd
-r--r--r-- 1 sam sam 0 2007-06-01 15:24 maps
-rw------- 1 sam sam 0 2007-06-01 15:24 mem
...

564 Chapter 13 Files, Directories, and Filesystems

$ cat status
Name: sleep
State: S (sleeping)
SleepAVG: 88%
Tgid: 22756
Pid: 22756
PPid: 22723
TracerPid: 0
Uid: 1002 1002 1002 1002
Gid: 1002 1002 1002 1002
FDSize: 256
Groups: 1002
VmPeak: 2800 kB
VmSize: 2800 kB
...

In this example, bash creates a background process (PID 22756) for sleep. Next the
user changes directories to the directory in /proc that has the same name as the PID
of the background process (cd /proc/22756). This directory holds information
about the process it is named for—the sleep process in the example. The ls –l com-
mand shows that some entries in this directory are links (cwd is a link to the direc-
tory the process was started from, and exe is a link to the executable file that this
process is running) and some appear to be ordinary files. All appear to be empty.
However, when you use cat to display one of these pseudofiles (status in the exam-
ple), cat displays output. Obviously it is not an ordinary file.

/sbin/shutdown A utility that brings the system down (see page 518).

swap Even though swap is not normally a file, swap space can be added and deleted from
the system dynamically. Swap space is used by the virtual memory subsystem of the
kernel. When it runs low on real memory (RAM), the kernel writes memory pages
from RAM to the swap space on the disk. Which pages are written and when they
are written are controlled by finely tuned algorithms in the Linux kernel. When
needed by running programs, the kernel brings these pages back into RAM—a tech-
nique called paging (page 1052). When a system is running very short on memory,
an entire process may be paged out to disk.

Running an application that requires a large amount of virtual memory may result
in the need for additional swap space. If you run out of swap space, you can use
mkswap to create a swap file and swapon to enable it. Normally you use a disk parti-
tion as swap space, but you can also use a file for this purpose. A disk partition pro-
vides much better performance than a file.

If you are creating a file as swap space, first use df to ensure that the partition you are
creating it in has adequate space for the file. In the following sequence of commands,
the administrator first uses dd and /dev/zero (page 556) to create an empty file (do not
use cp because you may create a file with holes, which may not work) in the working
directory. Next mkswap takes as an argument the name of the file created in the first
step to set up the swap space. For security reasons, change the file so that it cannot be
read from or written to by anyone except a user with root privileges. Use swapon with

Important Files and Directories 565

the same argument to turn the swap file on; then use swapon –s to confirm the swap
space is available. The final two commands turn off the swap file and remove it.
Because many of the commands in this sequence must be executed with root privileges,
and because typing sudo in front of each command would be tedious, the administra-
tor spawns a shell with root privileges by giving the command sudo –i before starting.
The exit command at the end of the sequence closes the privileged shell:

$ sudo -i
dd if=/dev/zero of=swapfile bs=1024 count=65536
65536+0 records in
65536+0 records out
67108864 bytes (67 MB) copied, 0.631809 seconds, 106 MB/s
mkswap swapfile
Setting up swapspace version 1, size = 67104 kB
no label, UUID=e2e4ec08-77a4-47b1-bca1-59dd9a59dbf7
chmod 600 swapfile
swapon swapfile
swapon -s
Filename Type Size Used
Priority
/dev/hda3 partition 1951888 33796 -1
/root/swapfile file 65528 0 -2
swapoff swapfile
rm swapfile
exit
$

/sys A pseudofilesystem that was added in the Linux 2.6 kernel to make it easy for pro-
grams running in kernelspace, such as device drivers, to exchange information with
programs running in userspace. Refer to udev on page 568.

/usr/share/file/magic
Most files begin with a unique identifier called a magic number. This file is a text
database listing all known magic numbers on the system. When you use the file util-
ity, it consults /usr/share/file/magic to determine the type of a file. Occasionally you
may acquire a new tool that creates a new type of file that is unrecognized by the file
utility. In this situation you can add entries to the /etc/magic file. Refer to the magic
and file man pages for more details. See also “magic number” on page 1046.

/var/log Holds system log files, many of which are generated by syslogd (page 688). You can
use a text display program such as less, tail, or cat, or the graphical program gnome-
system-log to view the files in this directory. To run gnome-system-log, select System:
Administration System Log or enter gnome-system-log (use gksudo if you are not
a member of the adm group) from a terminal emulator or in a Run Application win-
dow (ALT-F2).

/var/log/messages
Contains messages from daemons, the Linux kernel, and security programs. For
example, you will find filesystem full warning messages, error messages from sys-
tem daemons (NFS, exim4, printer daemons), SCSI and IDE disk error messages,
and more in messages. Check /var/log/messages periodically to keep informed

566 Chapter 13 Files, Directories, and Filesystems

about important system events. Much of the information displayed on the system
console is also sent to messages. If the system experiences a problem and you cannot
access the console, check this file for messages about the problem. See page 688 for
information on syslogd, which generates many of these messages.

/var/log/auth.log Holds messages from security-related programs such as sudo and the sshd daemon.

File Types

Linux supports many types of files. This section discusses the following types of
files:

• Ordinary files, directories, links, and inodes (next)

• Symbolic links (page 567)

• Special files (page 567)

• FIFO special files (named pipes) (page 568)

• Sockets (page 569)

• Block and character devices (page 569)

• Raw devices (page 570)

Ordinary Files, Directories, Links, and Inodes

Ordinary and
directory files

An ordinary file stores user data, such as textual information, programs, or images,
such as a jpeg or tiff file. A directory is a standard-format disk file that stores infor-
mation, including names, about ordinary files and other directory files.

Inodes An inode is a data structure (page 1032), stored on disk, that defines a file’s exist-
ence and is identified by an inode number. An inode contains critical information
about a file, such as the name of the owner, where it is physically located on the
disk, and how many hard links point to it. Except for directory inodes, inodes do
not contain filenames. An inode that describes a directory file relates each of the
filenames stored in the directory to the inode that describes that file. This setup
allows an inode to be associated with more than one filename and to be pointed to
from more than one directory.

When you move (mv) a file, including a directory file, within a filesystem, you
change the filename portion of the directory entry associated with the inode that
describes the file. You do not create a new inode. If you move a file to another file-
system, mv first creates a new inode on the destination filesystem and then deletes
the original inode. You can also use mv to move a directory recursively from one
filesystem to another. In this case mv copies the directory and all the files in it, and
deletes the original directory and its contents.

When you make an additional hard link (ln, page 210) to a file, you add a directory
entry that points to the inode that describes the file. You do not create a new inode.

File Types 567

When you remove (rm) a file, you delete the directory entry that describes the file.
When you remove the last hard link to a file, the operating system puts all blocks
the inode pointed to back in the free list (the list of blocks that are available for use
on the disk) and frees the inode to be used again.

The . and ..
directory entries

Every directory contains at least two entries (. and . .). The . entry is a link to the
directory itself. The . . entry is a link to the parent directory. In the case of the root
directory, there is no parent and the . . entry is a link to the root directory itself. It is
not possible to create hard links to directories.

Symbolic links Because each filesystem has a separate set of inodes, you can create hard links to a
file only from within the filesystem that holds that file. To get around this limita-
tion, Linux provides symbolic links, which are files that point to other files. Files
that are linked by a symbolic link do not share an inode. As a consequence, you can
create a symbolic link to a file from any filesystem. You can also create a symbolic
link to a directory, device, or other special file. For more information refer to “Sym-
bolic Links” on page 212.

Special Files

Special files represent Linux kernel routines that provide access to an operating sys-
tem feature. FIFO (first in, first out) special files allow unrelated programs to
exchange information. Sockets allow unrelated processes on the same or different
systems to exchange information. One type of socket, the UNIX domain socket, is a
special file. Symbolic links are another type of special file.

Device files Device files include both block and character special files and represent device driv-
ers that allow the system to communicate with peripheral devices, such as terminals,
printers, and hard disks. By convention, device files appear in the /dev directory and
its subdirectories. Each device file represents a device; hence, the system reads from
and writes to the file to read from and write to the device it represents. The follow-
ing example shows part of the output that an ls –l command produces for the /dev
directory:

$ ls -l /dev
total 0
lrwxrwxrwx 1 root root 13 May 24 16:08 MAKEDEV -> /sbin/MAKEDEV
crw-rw---- 1 root root 10, 63 May 24 16:08 acpi
crw-rw---- 1 root audio 14, 12 May 24 16:08 adsp
crw-rw---- 1 root video 10, 175 May 24 16:08 agpgart
crw-rw---- 1 root audio 14, 4 May 24 16:08 audio
drwxr-xr-x 3 root root 60 May 24 16:08 bus
lrwxrwxrwx 1 root root 3 May 24 16:08 cdrom -> hdb
lrwxrwxrwx 1 root root 3 May 24 16:08 cdrw -> hdb
crw------- 1 root root 5, 1 Jun 1 07:36 console
...
brw-rw---- 1 root disk 3, 0 Jun 6 13:49 hda
brw-rw---- 1 root disk 3, 1 Jun 6 13:50 hda1
brw-rw---- 1 root cdrom 3, 64 Jun 6 13:49 hd
...

568 Chapter 13 Files, Directories, and Filesystems

The first character of each line is always –, b, c, d, l, or p, representing the file
type—ordinary (plain), block, character, directory, symbolic link, or named pipe
(see the following section), respectively. The next nine characters identify the per-
missions for the file, followed by the number of hard links and the names of the
owner and the group. Where the number of bytes in a file would appear for an ordi-
nary or directory file, a device file shows major and minor device numbers
(page 569) separated by a comma. The rest of the line is the same as for any other ls
–l listing (page 199).

udev The udev utility manages device naming dynamically. It replaces the earlier devfs
and moves the device-naming functionality from the kernel to userspace. Because
devices are added to and removed from a system infrequently, the performance pen-
alty associated with this change is minimal. The benefit of the move is that a bug in
udev cannot compromise or crash the kernel.

The udev utility is part of the hotplug system (next). When a device is added to or
removed from the system, the kernel creates a device name in the /sys pseudofile-
system and notifies hotplug of the event, which is received by udev. The udev utility
then creates the device file, usually in the /dev directory, or removes the device file
from the system. The udev utility can also rename network interfaces. See
www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html for more information.

Hotplug The hotplug system allows you to plug a device into a running system and use it
immediately. Although hotplug was available in the Linux 2.4 kernel, the 2.6 kernel
integrates hotplug with the unified device driver model framework (the driver
model core) so that any bus can report an event when a device is added to or
removed from the system. User software can be notified of the event so it can take
appropriate action. See linux-hotplug.sourceforge.net for more information.

FIFO Special File (Named Pipe)

A FIFO special file, also called a named pipe, represents a pipe: You read from and
write to the file to read from and write to the pipe. The term FIFO stands for first in,
first out—the way any pipe works. In other words, the first information you put in
one end is the first information that comes out the other end. When you use a pipe on
a command line to send the output of a program to the printer, the printer outputs the
information in the same order that the program produced it and sent it to the pipe.

Unless you are writing sophisticated programs, you will not be working with FIFO
special files. However, programs that you use on Linux use named pipes for inter-
process communication. You can create a pipe using mkfifo:

$ mkfifo AA
$ ls -l AA
prw-rw-r-- 1 zach zach 0 Apr 26 13:11 AA

The p at the left end of the output of ls –l indicates the file is a pipe.

Both UNIX and Linux systems have included pipes for many generations. Without
named pipes, only processes that were children of the same ancestor could use pipes to

www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html

File Types 569

exchange information. Using named pipes, any two processes on a single system can
exchange information. When one program writes to a FIFO special file, another pro-
gram can read from the same file. The programs do not have to run at the same time or
be aware of each other’s activity. The operating system handles all buffering and infor-
mation storage. This type of communication is termed asynchronous (async) because
the programs on the opposite ends of the pipe do not have to be synchronized.

Sockets

Like a FIFO special file, a socket allows asynchronous processes that are not chil-
dren of the same ancestor to exchange information. Sockets are the central mecha-
nism of the interprocess communication that forms the basis of the networking
facility. When you use networking utilities, pairs of cooperating sockets manage the
communication between the processes on the local system and the remote system.
Sockets form the basis of such utilities as ssh and scp.

Major and Minor Device Numbers

A major device number points to a driver in the kernel that works with a class of
hardware devices: terminal, printer, tape drive, hard disk, and so on. In the listing of
the /dev directory on page 567, all the hard disk partitions have a major device
number of 3.

A minor device number identifies a particular piece of hardware within a class.
Although all hard disk partitions are grouped together by their major device num-
ber, each has a different minor device number (hda1 is 1, hda2 is 2, and so on). This
setup allows one piece of software (the device driver) to service all similar hard-
ware, yet still be able to distinguish among different physical units.

Block and Character Devices

This section describes typical device drivers. Because device drivers can be changed to
suit a particular purpose, the descriptions in this section do not pertain to every system.

Block device A block device is an I/O (input/output) device that has the following characteristics:

• Able to perform random access reads

• Has a specific block size

• Handles only single blocks of data at a time

• Accepts only transactions that involve whole blocks of data

• Able to have a filesystem mounted on it

• Has the Linux kernel buffer its input and output

• Appears to the operating system as a series of blocks numbered from 0
through n – 1, where n is the number of blocks on the device

Block devices commonly found on a Linux system include hard disks, floppy disk-
ettes, and CDs.

570 Chapter 13 Files, Directories, and Filesystems

Character device A character device is any device that is not a block device. Examples of character
devices include printers, terminals, tape drives, and modems.

The device driver for a character device determines how a program reads from and
writes to that device. For example, the device driver for a terminal allows a program
to read the information you type on the terminal in two ways. First, a program can
read single characters from a terminal in raw mode—that is, without the driver
doing any interpretation of the characters. (This mode has nothing to do with the
raw device described in the following section.) Alternatively, a program can read
one line at a time. When a program reads one line at a time, the driver handles the
erase and kill characters so the program never sees typing mistakes that have been
corrected. In this case, the program reads everything from the beginning of a line to
the RETURN that ends a line; the number of characters in a line can vary.

Raw Devices

Device driver programs for block devices usually have two entry points so they can
be used in two ways: as block devices or as character devices. The character device
form of a block device is called a raw device. A raw device is characterized by

• Direct I/O (no buffering through the Linux kernel).

• One-to-one correspondence between system calls and hardware requests.

• Device-dependent restrictions on I/O.

fsck An example of a utility that uses a raw device is fsck. It is more efficient for fsck to
operate on the disk as a raw device rather than being restricted by the fixed size of
blocks in the block device interface. Because it has full knowledge of the underlying
filesystem structure, fsck can operate on the raw device using the largest possible
units. When a filesystem is mounted, processes normally access the disk through the
block device interface, which explains why it is important to allow fsck to modify
only unmounted filesystems. On a mounted filesystem, there is the danger that, while
fsck is rearranging the underlying structure through the raw device, another process
could change a disk block using the block device, resulting in a corrupted filesystem.

Filesystems

Table 13-1 lists some types of filesystems available under Linux.

Table 13-1 Filesystems

Filesystem Features

adfs Advanced Disc Filing System. Used on Acorn computers. The word Advanced
differentiated this filesystem from its predecessor DFS, which did not support
advanced features such as hierarchical filesystems.

affs Amiga Fast Filesystem (FFS).

Filesystems 571

autofs Automounting filesystem (page 818).

cifs Common Internet Filesystem (page 823). Formerly the Samba Filesystem
(smbfs).

coda CODA distributed filesystem (developed at Carnegie Mellon).

devpts A pseudofilesystem for pseudoterminals (page 555).

ext2 A standard filesystem for Ubuntu systems, usually with the ext3 extension.

ext3 A journaling (page 1043) extension to the ext2 filesystem. It greatly improves
recovery time from crashes (it takes a lot less time to run fsck), promoting
increased availability. As with any filesystem, a journaling filesystem can lose
data during a system crash or hardware failure.

GFS Global Filesystem. GFS is a journaling, clustering filesystem. It enables a clus-
ter of Linux servers to share a common storage pool.

hfs Hierarchical Filesystem. Used by older Macintosh systems. Newer Macintosh
systems use hfs+.

hpfs High-Performance Filesystem. The native filesystem for IBM’s OS/2.

jffs2 Journaling Flash Filesystem (jffs). A filesystem for flash memory.

iso9660 The standard filesystem for CDs.

minix Very similar to Linux. The filesystem of a small operating system that was writ-
ten for educational purposes by Andrew S. Tanenbaum (www.minix3.org).

msdos Filesystem used by DOS and subsequent Microsoft operating systems. Do not
use msdos for mounting Windows filesystems; it does not read VFAT attributes.

ncpfs Novell NetWare NCP Protocol Filesystem. Used to mount remote filesystems
under NetWare.

nfs Network Filesystem. Developed by Sun Microsystems, this protocol allows a com-
puter to access remote files over a network as if the files were local (page 799).

ntfs NT Filesystem. The native filesystem of Windows NT. See www.linux-ntfs.org.

proc An interface to several Linux kernel data structures (page 1032) that behaves
like a filesystem (page 563).

qnx4 QNX 4 operating system filesystem.

reiserfs A journaling (page 1043) filesystem, based on balanced-tree algorithms. See
ext3 for more on journaling filesystems.

romfs A dumb, readonly filesystem used mainly for RAM disks (page 1056) during
installation.

smbfs Samba Filesystem (deprecated). See cifs.

Table 13-1 Filesystems (continued)

www.minix3.org
www.linux-ntfs.org

572 Chapter 13 Files, Directories, and Filesystems

mount: Mounts a Filesystem

The mount utility connects directory hierarchies—typically filesystems—to the
Linux directory hierarchy. These directory hierarchies can be on remote and local
disks, CDs, DVDs, and floppy diskettes. Linux can also mount virtual filesystems
that have been built inside ordinary files, filesystems built for other operating sys-
tems, and the special /proc filesystem (page 563), which maps useful Linux kernel
information to a pseudodirectory. This section covers mounting local filesystems;
refer to page 799 for information on using NFS to mount remote directory hierar-
chies. See /dev on page 554 for information on device names.

Mount point The mount point for the filesystem/directory hierarchy that you are mounting is a
directory in the local filesystem. This directory must exist before you can mount a
filesystem; its contents disappear as long as a filesystem is mounted on it and reap-
pear when you unmount the filesystem.

Without any arguments, mount lists the currently mounted filesystems, showing the
physical device holding each filesystem, the mount point, the type of filesystem, and
any options set when each filesystem was mounted. The mount utility gets this infor-
mation from the /etc/mtab file (page 559).

$ mount
/dev/hda1 on / type ext3 (rw,errors=remount-ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
...
/dev/hda2 on /home type ext3 (rw)
/dev/hda5 on /pl5 type ext3 (rw)
/dev/hda6 on /pl6 type ext3 (rw)
/dev/sda1 on /p01 type ext3 (rw)
//jam/C on /jam/c type cifs (rw,mand)
dog:/p04 on /p04 type nfs (rw,addr=192.168.0.12)
/dev/hdb on /media/cdrom0 type iso9660 (ro,noexec,nosuid,nodev,user=sam)

The first entry in the preceding example shows the root filesystem, which is
mounted on /. The second entry shows the /proc pseudofilesystem (page 563). The

Filesystem Features

software RAID RAID implemented in software. Refer to “RAID” on page 34.

sysv System V UNIX filesystem.

ufs Default filesystem under Sun’s Solaris operating system and other UNIXs.

umsdos A full-feature UNIX-like filesystem that runs on top of a DOS FAT filesystem.

vfat Developed by Microsoft, a standard that allows long filenames on FAT
partitions.

VxFS Veritas Extended Filesystem. The first commercial journaling (page 1043) file-
system, popular under HP-UX and Solaris.

xfs SGI’s journaling filesystem (ported from Irix).

Table 13-1 Filesystems (continued)

Filesystems 573

next four entries identify disk partitions holding standard Linux ext3 filesystems.
The directory /jam/c has a cifs (Windows) filesystem mounted on it using Samba.
You can use Linux utilities and applications to access the Windows files and direc-
tories on this partition as if they were Linux files and directories. The line starting
with dog shows a mounted, remote NFS filesystem. The last line shows the CD at
/dev/hdb mounted on /media/cdrom0.

If the list of filesystems in /etc/mtab is not correct, see the tip on page 560.

When you add a line for a filesystem to the /etc/fstab file (page 558), you can
mount that filesystem by giving the associated mount point or device name as the
argument to mount. For example, the CD listed earlier was mounted using the fol-
lowing command:

$ mount /media/cdrom0

This command worked because /etc/fstab contains the additional information
needed to mount the file. An ordinary user was able to mount the file because of the
user option:

/dev/hdb /media/cdrom0 udf,iso9660 user,nosuid,noauto 0 0

You can also mount filesystems that do not appear in /etc/fstab. For example, when
you insert a floppy diskette that holds a DOS filesystem into the floppy diskette
drive, you can mount that filesystem using the following command:

$ sudo mount –t msdos /dev/fd0 /media/floppy0

The –t msdos option specifies a filesystem type of msdos. You can mount DOS file-
systems only if you have configured the Linux kernel (page 635) to accept DOS
filesystems. You do not need to mount a DOS filesystem to read from and write to
it, such as when you use mcopy (page 159). However, you do need to mount a DOS
filesystem to use Linux commands (other than Mtools commands) on files on the
filesystem (which may be on a diskette).

Mount Options

The mount utility takes many options, which you can specify either on the command line
or in the /etc/fstab file (page 576). For a complete list of mount options for local filesys-
tems, see the mount man page; for remote directory hierarchies, see the nfs man page.

The noauto option causes Linux not to mount the filesystem automatically. The
nosuid option forces mounted setuid executables to run with regular permissions

Do not mount anything on root (/)

caution Always mount network directory hierarchies and removable devices at least one level below the root
level of the filesystem. The root filesystem is mounted on / ; you cannot mount two filesystems in
the same place. If you were to try to mount something on /, all files, directories, and filesystems
that were under the root directory would no longer be available, and the system would crash.

574 Chapter 13 Files, Directories, and Filesystems

(no effective user ID change) on the local system (the system that mounted the
filesystem).

Unless you specify the user, users, or owner option, only a user running with root
privileges can mount and unmount a filesystem. The user option allows any user to
mount the filesystem, but the filesystem can be unmounted only by the user who
mounted it; the users option allows any user to mount and unmount the filesystem.
These options are frequently specified for CD, DVD, and floppy drives. The owner
option, which is used only under special circumstances, is similar to the user option
except that the user mounting the device must own the device.

Mounting a Linux Floppy Diskette

Mounting a Linux floppy diskette is similar to mounting a partition of a hard disk.
If it does not already exist, put an entry similar to the following in /etc/fstab for a
diskette in the first floppy drive:

/dev/fd0 /media/floppy0 auto rw,user,nosuid,noauto 0 0

Specifying a filesystem type of auto causes the system to probe the filesystem to
determine its type and allows users to mount a variety of diskettes. Create the
/media/floppy0 directory if necessary. Insert a diskette and try to mount it. The dis-
kette must be formatted (use fdformat, which deletes all data on a diskette). In the fol-
lowing example, the error message following the first command usually indicates
there is no filesystem on the diskette. In some cases, the mount command may hang.
If this problem occurs, pop the diskette out to display a prompt. Use mkfs (page 525)
to create a filesystem—but be careful, because mkfs destroys all data on the diskette.

$ mount /dev/fd0
mount: I could not determine the filesystem type, and none was specified

$ mkfs /dev/fd0
mke2fs 1.40-WIP (14-Nov-2006)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
184 inodes, 1440 blocks
72 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=1572864
1 block group
8192 blocks per group, 8192 fragments per group
184 inodes per group

Mount removable devices with the nosuid option

security Always mount removable devices with the nosuid option so that a malicious user cannot, for
example, put a setuid copy of bash on a disk and have a shell with root privileges. By default,
Ubuntu uses the nosuid option when mounting removable media.

Filesystems 575

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 36 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

Now try the mount command again:

$ mount /dev/fd0
$ mount
...
/dev/fd0 on /media/floppy0 type ext2 (rw,noexec,nosuid,nodev,user=sam)

$ df -h /dev/fd0
Filesystem Size Used Avail Use% Mounted on
/dev/fd0 1.4M 19K 1.3M 2% /media/floppy0

The mount command without any arguments and df –h /dev/fd0 show that the
floppy diskette is mounted and ready for use.

umount: Unmounts a Filesystem

The umount utility unmounts a filesystem as long as it does not contain any files or
directories that are in use (open). For example, a logged-in user’s working directory
cannot be on the filesystem you want to unmount. The next command unmounts
the CD mounted earlier:

$ umount /media/cdrom0

Unmount a floppy or a remote (NFS) directory hierarchy the same way you would
unmount a partition of a hard drive.

The umount utility consults /etc/fstab to get the necessary information and then
unmounts the appropriate filesystem from its server. When a process has a file open
on the filesystem that you are trying to unmount, umount displays a message similar
to the following:

umount: /home: device is busy

Use the –a option to umount to unmount all mounted filesystems that are not in use.
You can never unmount the filesystem mounted at /. You can combine –a with the –t
option to unmount filesystems of a given type (ext3, nfs, or others). For example, the
following command unmounts all mounted nfs directory hierarchies that are not in use:

$ sudo umount -at nfs

When you cannot unmount a device because it is in use

tip When a process has a file open on a device you need to unmount, use fuser to determine which
process has the file open and to kill it. For example, when you want to unmount a floppy diskette,
give the command fuser –ki /media/floppy0 (substitute the mount point for the diskette on the
local system for /media/floppy0). After checking with you, this command kills the process(es)
using the diskette.

576 Chapter 13 Files, Directories, and Filesystems

fstab: Keeps Track of Filesystems

The system administrator maintains the /etc/fstab file, which lists local and remote
directory hierarchies, most of which the system mounts automatically when it
boots. The fstab file has six columns, where a hyphen is a placeholder for a column
that has no value:

1. Name The name, label, or UUID number of a local block device
(page 569) or a pointer to a remote directory hierarchy. When you install
the system, Ubuntu uses UUID numbers for fixed devices. It prefaces each
line in fstab that specifies a UUID with a comment that specifies the device
name. Using UUID numbers in fstab during installation circumvents the
need for consistent device naming. Because udev (page 568) manages
device naming dynamically, the installer may not be aware, for example,
that the first disk is not named /dev/hda1 but rather /dev/sda1, but it
always knows the UUID number of a device. See /dev/disk/by-uuid
(page 555) for more information on UUID numbers. You can use the vol-
ume label of a local filesystem by using the form LABEL=xx, where xx is
the volume label. Refer to e2label on page 525.

A remote directory hierarchy appears as hostname:pathname, where
hostname is the name of the remote system that houses the filesystem,
and pathname is the absolute pathname (on the remote system) of the
directory that is to be mounted.

2. Mount point The name of the directory file that the filesystem/directory
hierarchy is to be mounted on. If it does not already exist, create this direc-
tory using mkdir. See page 572.

3. Type The type of filesystem/directory hierarchy that is to be mounted.
Local filesystems are generally of type ext2, ext3, or iso9660, and remote
directory hierarchies are of type nfs or cifs. Table 13-1 on page 570 lists
filesystem types.

4. Mount options A comma-separated list of mount options, such as
whether the filesystem is mounted for reading and writing (rw, the default)
or readonly (ro). See pages 573 and 804, and refer to the mount and nfs
man pages for lists of options.

5. Dump Used by dump (page 666) to determine when to back up the filesystem.

6. Fsck Specifies the order in which fsck checks filesystems. Root (/) should
have a 1 in this column. Filesystems that are mounted to a directory just
below the root directory should have a 2. Filesystems that are mounted on
another mounted filesystem (other than root) should have a 3. For exam-
ple, if local is a separate filesystem from /usr and is mounted on /usr (as
/usr/local), then local should have a 3. Filesystems and directory hierar-
chies that do not need to be checked (for example, remotely mounted
directory hierarchies and CDs/DVDs) should have a 0.

The following example shows a typical fstab file:

Filesystems 577

$ cat /etc/fstab
/etc/fstab: static file system information.
#
<file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
/dev/hda1
UUID=8f3c51c2-a42c-49b1-9f03-db2140cb7eb5 / ext3 defaults,errors=remount-ro 0 1
/dev/hda2
UUID=39fc600f-91d5-4c9f-8559-727050b27645 /home ext3 defaults 0 2
/dev/hda3
UUID=a68fb957-2ae7-4ae5-8656-23a1cf8fcd14 none swap sw 0 0
/dev/hda5 /pl5 ext3 defaults 0 2
/dev/hda6 /pl6 ext3 defaults 0 2
/dev/hdb /media/cdrom0 udf,iso9660 user,nosuid,noauto 0 0
/dev/fd0 /media/floppy0 auto rw,user,nosuid,noauto 0 0
dog:/p04 /p04 nfs defaults 0 0

In the preceding example, /pl5 and /pl6 do not use UUID numbers because these
devices were added to fstab by the administrator after the system was installed.

fsck: Checks Filesystem Integrity

The fsck (filesystem check) utility verifies the integrity of filesystems and, if possible,
repairs problems it finds. Because many filesystem repairs can destroy data, particu-
larly on nonjournaling filesystems (page 1043), such as ext2, by default fsck asks
you for confirmation before making each repair.

The following command checks all unmounted filesystems that are marked to be
checked in /etc/fstab (page 576) except for the root filesystem:

$ sudo fsck -AR

The –A option causes fsck to check filesystems listed in fstab. When used with the
–A option, the –R option causes fsck not to check the root filesystem. You can check
a specific filesystem with a command similar to one of the following:

$ sudo fsck /home

or

$ sudo fsck /dev/hda2

Crash flag When the system boots, it runs the /etc/init.d/checkroot.sh and
/etc/init.d/checkfs.sh init scripts. With some exceptions, these scripts run fsck on the
filesystems as specified by the sixth column in /etc/fstab (page 576). The root file-
system is checked first, as long as it is mounted readonly. All checking is skipped if
the system is running on batteries.

Do not run fsck on a mounted filesystem

caution Do not run fsck on a mounted filesystem. When you attempt to check a mounted filesystem, fsck
warns you and asks whether you want to continue. Reply no. You can run fsck with the –N option
on a mounted filesystem because it will not write to the filesystem; as a result, no harm can come
of running it. See page 570 for more information

578 Chapter 13 Files, Directories, and Filesystems

Certain filesystem parameters (discussed in the next section) determine whether fsck
reports the filesystem as clean or checks it. If the file /forcefsck is present on the
root filesystem, fsck ignores the filesystem parameters and checks filesystems as
specified by fstab. The /forcefsck file exists if filesystems were not properly
unmounted, such as when the system has crashed.

tune2fs: Changes Filesystem Parameters

The tune2fs utility displays and modifies filesystem parameters on ext2 filesystems
and on ext3 filesystems, which are modified ext2 filesystems. This utility can also
set up journaling on an ext2 filesystem, turning it into an ext3 filesystem. With the
introduction of increasingly more reliable hardware and software, systems tend to
be rebooted less frequently, so it is important to check filesystems regularly. By
default, fsck is run on each partition while the system is brought up, before the par-
tition is mounted. (The checks scheduled by tune2fs are separate and scheduled dif-
ferently from the checks that are done following a system crash or hard disk error
[see the previous section].)

Depending on the flags, fsck may do nothing more than display a message saying
the filesystem is clean. The larger the partition, the more time it takes to check it,
assuming a nonjournaling filesystem. These checks are often unnecessary. The
tune2fs utility helps you to find a happy medium between checking filesystems each
time you reboot the system and never checking them. It does so by scheduling when
fsck checks a filesystem (these checks occur only when the system is booted).1 You
can use two scheduling patterns: time elapsed since the last check and number of
mounts since the last check. The following command causes fsck to check
/dev/hda5 after it has been mounted eight times or after 15 days have elapsed since
its last check, whichever happens first:

$ sudo tune2fs -c 8 -i 15 /dev/hda5
tune2fs 1.40-WIP (14-Nov-2006)
Setting maximal mount count to 8
Setting interval between checks to 1296000 seconds

The next tune2fs command is similar but works on a different partition and sets the cur-
rent mount count to 4. When you do not specify a current mount count, it is set to zero:

$ sudo tune2fs -c 8 -i 15 -C 4 /dev/hda6
tune2fs 1.40-WIP (14-Nov-2006)
Setting maximal mount count to 8
Setting current mount count to 4
Setting interval between checks to 1296000 seconds

The –l option lists a variety of information about the partition. You can combine
this option with others. A maximum mount count of –1 or 0 means fsck and the
kernel will ignore the mount count information.

1. For systems whose purpose in life is to run continuously, this kind of scheduling does not work. You
must develop a schedule that is not based on system reboots but rather on a clock. Each filesystem must
be unmounted periodically, checked with fsck (preceding section), and then remounted.

Filesystems 579

$ sudo tune2fs -l /dev/hda6
tune2fs 1.40-WIP (14-Nov-2006)
Filesystem volume name: <none>
Last mounted on: <not available>
Filesystem UUID: 8c2e5007-9cea-4bfb-8d26-82f8b376949b
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: has_journal resize_inode dir_index filetype

needs_recovery sparse_super large_file
Filesystem flags: signed directory hash
Default mount options: (none)
Filesystem state: clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 183936
Block count: 367479
...
Last mount time: Mon Jun 4 15:02:43 2007
Last write time: Mon Jun 4 15:25:54 2007
Mount count: 4
Maximum mount count: 8
Last checked: Mon Jun 4 15:02:42 2007
Check interval: 1296000 (2 weeks, 1 day)
...

Set the filesystem parameters on the local system so they are appropriate to the way
you use it. When using the mount count to control when fsck checks filesystems, use
the –C option to stagger the checks to ensure all checks do not occur at the same
time. Always make sure new and upgraded filesystems have checks scheduled as
you desire.

To change an ext2 filesystem to an ext3 filesystem, you must put a journal
(page 1043) on the filesystem, and the kernel must support ext3 filesystems. Use the
–j option to set up a journal on an unmounted filesystem:

$ sudo tune2fs -j /dev/hda5
tune2fs 1.40-WIP (14-Nov-2006)
Creating journal inode: done
This filesystem will be automatically checked every 8 mounts or
15 days, whichever comes first. Use tune2fs -c or -i to override.

Before you can use fstab (page 558) to mount the changed filesystem, you must
modify its entry in the fstab file to reflect its new type. To do so, change the third
column to ext3.

The following command changes an unmounted or readonly ext3 filesystem to an
ext2 filesystem:

$ sudo tune2fs -O ^has_journal /dev/hda5
tune2fs 1.40-WIP (14-Nov-2006)

Refer to the tune2fs man page for more details.

580 Chapter 13 Files, Directories, and Filesystems

RAID Filesystem

RAID (Redundant Arrays of Inexpensive/Independent Disks) spreads information
across several disks so as to combine several physical disks into one larger virtual
device. RAID improves performance and may create redundancy. For more infor-
mation see page 34.

Chapter Summary

Filesystems hold directories of files. These structures store user data and system
data that are the basis of users’ work on the system and the system’s existence.
Linux supports many types of files, including ordinary files, directories, links, and
special files. Special files provide access to operating system features. The kernel
uses major and minor device numbers to identify classes of devices and specific
devices within each class. Character and block devices represent I/O devices such as
hard disks and printers. Inodes, which are identified by inode numbers, are stored
on disk and define a file’s existence.

When the system comes up, the /etc/fstab file controls which filesystems are
mounted and how they are mounted (readonly, read-write, and so on). After a sys-
tem crash, filesystems are automatically verified and repaired if necessary by fsck.
You can use tune2fs to force the system to cause fsck to verify a filesystem periodi-
cally when the system boots.

Exercises

1. What is the function of the /etc/hosts file? Which services can you use in
place of, or to supplement, the hosts file?

2. What does the /etc/resolv.conf file do? What do the nameserver lines in
this file do?

3. What is an inode? What happens to the inode when you move a file within
a filesystem?

4. What does the . . entry in a directory point to? What does this entry point
to in the root (/) directory?

5. What is a device file? Where are device files located?

6. What is a FIFO? What does FIFO stand for? What is another name for a
FIFO? How does a FIFO work?

Advanced Exercises 581

Advanced Exercises

7. Write a line for the /etc/fstab file that mounts the /dev/hdb1 ext3 file-
system on /extra with the following characteristics: The filesystem will not
be mounted automatically when the system boots, and anyone can mount
and unmount the filesystem.

8. Without using rm, how can you delete a file? (Hint: How do you rename a
file?)

9. After burning an ISO image file named image.iso to a CD on /dev/hdc,
how can you can verify the copy from the command line?

10. Why should /var reside on a separate partition from /usr?

11. Create a FIFO. Using the shell, demonstrate that two users can use this
FIFO to communicate asynchronously.

12. How would you mount an ISO image so you could copy files from it with-
out burning it to a CD?

This page intentionally left blank

583583

14Chapter14A software package is the collection of scripts, programs, files,
and directories required to install and run applications, utilities,
servers, and system software. A package also includes a list of
other packages that the package depends on (dependencies).
Using software packages makes it easier to transfer, install, and
uninstall software. A package contains either executable files or
source code files. Executable files are precompiled for a specific
processor architecture and operating system, whereas source
files need to be compiled but will run on a wide range of
machines and operating systems.

In This Chapter

JumpStart: Installing and Removing
Packages Using aptitude. 585

Finding the Package That Holds a
File You Need 587

APT: Keeps the System
Up-to-Date 588

The apt cron Script and APT
Configuration Files. 590

aptitude: Works with Packages
and the Local Package Index . . 592

dpkg: The Debian Package
Management System. 598

BitTorrent. 604

Installing Non-dpkg Software. . . . 607

wget: Downloads Files
Noninteractively 609

14

Downloading and

Installing Software

584 Chapter 14 Downloading and Installing Software

Software package
formats

Software packages come in different formats. Ubuntu uses dpkg (page 598), which
was the first Linux packaging system to incorporate dependency information; it gets
its name from the Linux distribution it was developed on (Debian). Other formats
include rpm (used on Red Hat, SuSE, and other systems), yum, the GNU Configure
and Build System (page 607), and compressed tar. Formats such as compressed tar,
which were popular before the introduction of dpkg, are used less often today
because they require more work on the part of the installer (you) and do not pro-
vide the dependency and compatibility checking that dpkg offers.

dpkg The Debian package management system is referred to as the dpkg management
system, or just dpkg. This system is a collection of more than 20 utilities that man-
age and report on dpkg packages, both those installed on the system and those
available from online repositories. Give the command dpkgTABTAB (press TAB twice) or
apropos dpkg to display a list of dpkg utilities.

deb files The dpkg utilities work with files whose names end in .deb and are referred to as
deb files (page 599) or (software) packages.

APT APT (Advanced Package Tool) is a collection of utilities that, together with dpkg,
work with software packages. APT downloads software packages, while dpkg
installs, removes, maintains, manages dependencies of, and reports on software
packages. Give the command aptTABTAB or apropos apt to display a list of APT utili-
ties (and a few other things).

Kernel source code See Chapter 16 for information on downloading, compiling, and installing kernel
source code.

Graphical interfaces Several pseudographical and graphical interfaces to dpkg and APT are available.
Among the most popular are Synaptic (page 121), aptitude, and dselect.

Repositories APT downloads package headers and packages from servers called repositories
that can reside on the Internet, a CD, or a local network. See page 588 for more
information.

Bug tracking Ubuntu uses Launchpad, which belongs to a class of programs formally known as
defect tracking systems, to track bugs (launchpad.net/+about for information about
Launchpad and launchpad.net/ubuntu to use it). You can use Launchpad to read
about existing bugs and to report new ones. Ubuntu uses Bazaar for source code
version control (bazaar-vcs.org and wiki.ubuntu.com/Bzr). Launchpad allows you
to track any project that uses Bazaar version control.

Keeping software
up-to-date

Of the many reasons to keep software up-to-date, one of the most important is
security. Although you may hear about software-based security breaches after the
fact, you rarely hear about the fixes that were available but never installed before
the breach occurred. Timely installation of software updates is critical to system
security. Linux open-source software is the ideal environment to find and fix bugs
and make repaired software available quickly. When you keep the system and appli-
cation software up-to-date, you keep abreast of bug fixes, new features, support for
new hardware, speed enhancements, and more.

JumpStart: Installing and Removing Packages Using aptitude 585

As shipped, most versions of Ubuntu check for updates daily and advise you when
updates are available (page 100). Use the Software Sources window (page 119),
Updates tab to change these options.

JumpStart: Installing and Removing Packages

Using aptitude
This section explains how to install packages on and remove packages from a sys-
tem using aptitude, a versatile tool that is part of APT. The aptitude utility has two
interfaces: pseudographical and textual. This chapter covers the textual interface.
Give the command aptitude without arguments to display the pseudographical
interface. Information on this interface is available in the aptitude user’s manual
(people.debian.org/~dburrows/aptitude-doc/en).

If you do not know the name of the package you want to install, see page 587. If
you want aptitude to download packages that are not supported by Ubuntu, you
must add the repositories that hold those packages to the sources.list file; see
page 589.

Before using aptitude to install a package, give the command sudo aptitude update
to update the local list of packages (more about this process on page 594). By
default, the apt cron script (page 590) updates this list daily. Even so, it is a good
idea to give this command periodically until you are sure the script is updating
the list.

aptitude install The following example calls aptitude to install the tcsh shell, which is part of the tcsh
package:

$ sudo aptitude install tcsh
Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done
Building tag database... Done
The following NEW packages will be installed:
 tcsh
0 packages upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 0B/338kB of archives. After unpacking 709kB will be used.
Writing extended state information... Done
Selecting previously deselected package tcsh.
(Reading database ... 119619 files and directories currently installed.)
Unpacking tcsh (from .../tcsh_6.14.00-7_i386.deb) ...
Setting up tcsh (6.14.00-7) ...
...

586 Chapter 14 Downloading and Installing Software

The next command installs the apache2.2-common package. Because this package
depends on other packages, and because these packages are not installed, aptitude
lists the packages it will automatically install in addition to the one you asked it to
install. When aptitude is going to install more packages than you requested, it asks if
you want to continue. Reply y if you want to continue or n if you want to quit.

$ sudo aptitude install apache2.2-common
...
The following NEW packages will be automatically installed:
 apache2-utils libapr1 libaprutil1 libpq5
The following NEW packages will be installed:
 apache2-utils apache2.2-common libapr1 libaprutil1 libpq5
0 packages upgraded, 5 newly installed, 0 to remove and 0 not upgraded.
Need to get 0B/1698kB of archives. After unpacking 5407kB will be used.
Do you want to continue? [Y/n/?] y
...

aptitude remove The aptitude remove command removes a package, but leaves its configuration files in
place, allowing you to reinstall the package without having to reconfigure it. Use purge
(discussed next) in place of remove to remove a package and its configuration files.

$ sudo aptitude remove tcsh
...
The following packages will be REMOVED:
 tcsh
0 packages upgraded, 0 newly installed, 1 to remove and 0 not upgraded.
Need to get 0B of archives. After unpacking 709kB will be freed.
Writing extended state information... Done
(Reading database ... 120025 files and directories currently installed.)
Removing tcsh ...
...

Automatically
removes

dependencies

When aptitude removes a package, it also removes the dependent packages it auto-
matically installed when it installed the original package. The following example
removes apache2-common and its dependencies:

$ sudo aptitude remove apache2.2-common
...
The following packages are unused and will be REMOVED:
 apache2-utils libapr1 libaprutil1 libpq5
...
The following packages will be REMOVED:
 apache2.2-common
0 packages upgraded, 0 newly installed, 5 to remove and 0 not upgraded.
Need to get 0B of archives. After unpacking 5407kB will be freed.
Do you want to continue? [Y/n/?] y
...

aptitude purge The next example uses an alternative approach—the aptitude purge command—to
remove apache2-common, its dependencies, and all configuration files. The {p} fol-
lowing apache2.2-common indicates that aptitude is removing (purging) apache2.2-
common’s configuration files, as does the last line of the example.

Finding the Package That Holds a File You Need 587

$ sudo aptitude purge apache2.2-common
...
The following packages are unused and will be REMOVED:
 apache2-utils libapr1 libaprutil1 libpq5
...
The following packages will be REMOVED:
 apache2.2-common{p}
0 packages upgraded, 0 newly installed, 5 to remove and 0 not upgraded.
Need to get 0B of archives. After unpacking 5407kB will be freed.
Do you want to continue? [Y/n/?] y
...
Purging configuration files for apache2.2-common ...
...

Finding the Package That Holds a File You Need

You may know the name of a file or utility you need but not know the name of the
package that holds the file. There are several ways that you can locate a package
that holds a file. The Ubuntu Web page, packages.ubuntu.com, allows you to search
for packages based on several criteria. Partway down the page is a section titled
Search that gives you two ways to search for packages. You can use the second,
Search the contents of packages, to search for a package that holds a specific file.
Enter the name of the file in the text box labeled Keyword, click the radio button
labeled packages that contain files named like this, select Case sensitive (no), select
the distribution and architecture you are working with, and click Search. The
browser displays a list of packages that hold the file you are looking for. For exam-
ple, suppose you are compiling a program and get the following error message:

xv.h:174:22: error: X11/Xlib.h: No such file or directory

You are working on an Intel x86-compatible system running Gutsy and need the file
Xlib.h located in the X11 directory. When you enter X11/Xlib.h in the text box
labeled Keyword (on packages.ubuntu.com), the browser displays the following list:

usr/include/X11/Xlib.h libdevel/libx11-dev
usr/lib/TenDRA/lib/include/x5/lib.api/X11/Xlib.h devel/tendra [universe]

The [universe] on the second line indicates that the package comes from the uni-
verse repository (page 588). The most likely candidate is the first entry, which is
supported by Ubuntu and is the most generic. The libdevel/libx11-dev on the right
indicates that the libx11-dev package is part of the libdevel section of packages. You
can install this package using the following command:

$ sudo aptitude install libx11-dev

apt-file You can also use the apt-file utility to search for a package containing a specified file.
Before you can use this utility, you must install it and update the package list on the
local system. Updating the package list takes a few minutes. Because apt-file displays

588 Chapter 14 Downloading and Installing Software

multiple, sequential, identical lines, you can pipe its output through uniq (page 154)
to make the job of finding the right package easier:

$ sudo aptitude install apt-file
...
$ sudo apt-file update
...
$ apt-file search X11/Xlib.h | uniq
ivtools-dev: usr/include/IV-X11/Xlib.h
libghc6-x11-dev: usr/lib/X11-1.2.1/ghc-6.6.1/Graphics/X11/Xlib.hi
libhugs-x11-bundled: usr/lib/hugs/packages/X11/Graphics/X11/Xlib.hs
libx11-dev: usr/include/X11/Xlib.h
tendra: usr/lib/TenDRA/lib/include/x5/lib.api/X11/Xlib.h

Again, the most generic package (the next-to-last one listed) is probably the one you
want. While the aptitude search command (page 595) and apt-cache (page 596)
search installed packages only, apt-file searches all packages from the repositories
listed in /etc/apt/sources.list, including packages that have not been downloaded.
See also dpkg ––search (page 604) and dpkg ––listfiles (page 604) for other ways of
searching for files.

APT: Keeps the System Up-to-Date

APT (Advanced Package Tool) is a collection of utilities that download, install,
remove, upgrade, and report on software packages. APT utilities download packages
and call dpkg (page 598) utilities to manipulate the packages once they are on the local
system. For more information refer to www.debian.org/doc/manuals/apt-howto.

Repositories

Repositories hold collections of software packages and related information, includ-
ing headers that describe each package and provide information on other packages
the package depends on. Ubuntu maintains repositories for each of its releases.

Software package
categories

Software packages from Ubuntu repositories are divided into several categories,
including the following:

• main Ubuntu-supported open-source software

• universe Community-maintained open-source software

• multiverse Software restricted by copyright or legal issues

• restricted Proprietary device drivers

• backports Packages from later releases of Ubuntu that are not available
for an earlier release.

APT selects packages from repositories it searches based on the categories speci-
fied in the sources.list file (next). You do not need to reconfigure APT to install

www.debian.org/doc/manuals/apt-howto

APT: Keeps the System Up-to-Date 589

supported software. You may get the following error message when you try to
install a package:

$ sudo aptitude install xxx
...
Couldn't find package "xxx". However, the following
packages contain "xxx" in their name:
 mixxx mixxx-data
No packages will be installed, upgraded, or removed.
...

This message means that the package you requested does not exist in the reposito-
ries that APT is searching (as specified in sources.list). It may also mean that the
package does not exist; check the spelling. If you are not running the latest version
of Ubuntu, it may be available on a later version; try enabling the backports reposi-
tory in sources.list (discussed next).

sources.list: Specifies Repositories for APT to Search

The /etc/apt/sources.list file specifies the repositories APT searches when you ask it
to find or install a package. You must modify sources.list file to enable APT to
download software from nondefault repositories. You can use software-properties-gtk
to display the Software Sources window to modify sources.list (as explained on
page 119) or you can use an editor to modify it (as explained in this section).

Each line in sources.list describes one repository and has the following format:

type URI repository category-list

where type is deb (page 599) for packages of executable files and deb-src for pack-
ages of source files; URI is the location of the repository, usually cdrom or an Inter-
net address that starts with http://; repository is the name of the repository that
APT is to search; and category-list is a SPACE-separated list of categories (see “Soft-
ware package categories” in the preceding section) that APT selects packages from.
When a line specifies a non-Ubuntu repository, the repository and category-list may
have other values. Comments begin with a pound sign (#) anywhere on a line and
end at the end of the line. The comment #Added by software-properties indicates
that software-properties-gtk added the line to sources.list.

The following line from sources.list causes APT to search the Gutsy archive located
at us.archive.ubuntu.com/ubuntu for deb packages that contain executable files. It
accepts packages that are categorized as main, restricted, universe, or multiverse:

deb http://us.archive.ubuntu.com/ubuntu/ gutsy main restricted universe multiverse

Replacing deb with deb-src causes APT to search in the same manner for packages
of source files. Use the apt-get source command to download source packages
(page 598).

deb-src http://us.archive.ubuntu.com/ubuntu/ gutsy main restricted universe multiverse

590 Chapter 14 Downloading and Installing Software

Default repositories The default sources.list file includes repositories such as gutsy (Gutsy as originally
released), gutsy-updates (major bug fixes after the release of Gutsy), gutsy-security
(critical security-related updates), and backports (newer, less-tested software that is
not reviewed by the Ubuntu security team). Separating security updates from other
updates enables you to set up a system to automatically install security updates
while allowing you to review other updates before installing them. As installed, the
sources.list file allows you to search for and retrieve packages from the main, uni-
verse, multiverse, and restricted categories (page 588) of the gutsy, gutsy-updates,
and gutsy-security repositories. Some repositories in sources.list are commented
out. Remove the leading pound sign (#) on the lines of the repositories you want to
enable. After you modify sources.list, give the command aptitude update (page 594)
to update the local package indexes.

The next line, which was added to sources.list, enables APT to search a third-party
repository (but see the following security tip):

deb http://download.skype.com/linux/repos/debian/ stable non-free

In this case, the repository is named stable and the category is non-free. Although
the code is compiled for Debian, it runs on Ubuntu, as is frequently the case.

The APT Local Package Indexes and the APT Cache

APT local package
indexes

The /var/lib/apt/lists directory holds the local package index and associated files.
For each repository listed in /etc/apt/sources.list (page 589), this directory holds a
file that lists information about the most recent version of each package in that
repository. APT uses these files to determine whether the packages on the system,
and those in its cache, are the most recent versions.

APT cache The /var/cache/apt/archives directory holds recently downloaded deb files
(page 599). By default, the apt cron script (next) limits the size of this directory and
the age of the files in it.

The apt cron Script and APT Configuration Files

Traditionally, APT configuration instructions are kept in a single file:
/etc/apt/apt.conf; Ubuntu breaks this file into smaller files that it keeps in the
/etc/apt/apt.conf.d directory. The apt cron script, kept in /etc/cron.daily so it is run
daily, reads the configuration files in apt.conf.d and maintains the APT local pack-
age indexes and the APT cache based on the instructions in those files. APT tools,
such as aptitude, also read these files as they start. This section explains a few of the

Use repositories you trust

security There are many repositories of software packages. Search the Internet for ubuntu repositories to
display a sampling of them. Be selective in which repositories you add to sources.list, however:
When you add a repository, you are trusting the person who runs the repository not to put mali-
cious software in packages you may download. In addition, packages that are not supported by
Ubuntu can conflict with other packages and/or cause upgrades to fail.

APT: Keeps the System Up-to-Date 591

many directives you can use to control APT tools. See the apt.conf man page and
use zless to view the /usr/share/doc/apt/examples/configure-index.gz file for more
information.

The software-properties-gtk utility, which is part of the software package with the
same name, opens the Software Sources window (page 119), which allows you to
set some APT configuration directives using a graphical interface (Updates tab,
Automatic updates).

The following files, which are part of the update-notifier package, control how the
apt cron script maintains the APT local package indexes and the APT cache:

$ cat /etc/apt/apt.conf.d/10periodic
APT::Periodic::Update-Package-Lists "1";
APT::Periodic::Download-Upgradeable-Packages "1";
APT::Periodic::AutocleanInterval "0";
APT::Periodic::Unattended-Upgrade "0";

$ cat /etc/apt/apt.conf.d/20archive
APT::Archives::MaxAge "30";
APT::Archives::MinAge "2";
APT::Archives::MaxSize "500";

Working with root privileges, you can edit these files and change the values within
the quotation marks to change what the apt cron script does. Each line must end
with a semicolon. The following list explains each of the directives in these files.

APT::Periodic::Update-Package-Lists "days";
Synchronizes local package indexes with their corresponding repositories
(page 594) every days days. Set days to 0 to disable this directive.

APT::Periodic::Download-Upgradeable-Packages "days";
Downloads (but does not install) the packages necessary to upgrade all packages on
the system (page 594) every days days. Set days to 0 to disable this directive.

APT::Periodic::AutocleanInterval "days";
Clears the APT cache (page 590) of packages that can no longer be downloaded
every days days. Set days to 0 to disable this directive.

APT::Periodic::Unattended-Upgrade "days";
Installs upgrades that relate to system security every days days and writes a log to
/var/log/unattended-upgrades. Make sure the unattended-upgrades package is installed;
for more information see /usr/share/doc/unattended-upgrades/README. Set days
to 0 to disable this directive.

APT::Archives::MaxAge "days";
Deletes files from the APT cache (page 590) older than days days. Set days to 0 to
disable this directive.

APT::Archives::MinAge "days";
Causes files younger than days days not to be deleted from the APT (page 590). Set
days to 0 to disable this directive.

592 Chapter 14 Downloading and Installing Software

APT::Archives::MaxSize "MB";
Establishes the maximum size of the APT cache (page 590). When the cache grows
larger than MB megabytes, the apt cron script deletes files until the cache is smaller
than this size. It deletes the largest files first. Set MB to 0 to disable this directive.

KDE and Adept If you are running KDE, the apt.conf.d directory holds two files that work with the
Adept package manager (which is not covered in this book): 15adept-periodic-
update and 25adept-archive-limits. These files should be the same as their GNOME
counterparts: 10periodic and 20archive. If the Adept files exist on the local system
and you modify their GNOME counterparts, copy 10periodic to 15adept-periodic-
update and 20archive to 25adept-archive-limits.

aptitude: Works with Packages and the Local Package Index

One of the most commonly used APT utilities is aptitude. The JumpStart on
page 585 explains how to use the aptitude install and remove commands to add and
remove packages from the local system. This section describes aptitude in more
detail and explains how to use other of its commands and options.

Logs The aptitude utility keeps very readable logs in /var/log/aptitude.

Virtual package When you install certain packages, aptitude queries you and, if you agree, installs
more than one package. You are either installing a package with dependencies or a
virtual package, also called a metapackage. A virtual package is not a software
package, but rather a metapackage that depends on other packages. Virtual pack-
ages facilitate the installation of software that requires multiple packages.

The format of an aptitude command is

aptitude options command [package-list]

where options is one or more options from the list of options that begins on
page 593, command is a command from the list of commands in the next section,
and package-list is a SPACE-separated list of the names of one or more packages you
want to work with. With the search command, package-list is a list of search pat-
terns (page 595). With other commands, an element of package-list that contains a
tilde (~) is treated as a search pattern. Except when aptitude is only displaying pack-
age information, you must work with root privileges. If you call aptitude without
arguments, it displays its pseudographical interface. This section lists more common
commands and options; see the aptitude man page for a complete list.

See page 587 if you need to determine the name of the package that holds a file you
want to install.

aptitude Commands

This section describes the more common aptitude commands. You must run all these
commands, except search and show, while working with root privileges.

APT: Keeps the System Up-to-Date 593

autoclean Clears the APT cache (page 590) of packages that can no longer be downloaded.
Run this command periodically to keep the local cache from becoming cluttered
with useless files.

clean Deletes all packages from the APT cache (page 590).

download Downloads the deb file (page 599) for a package.

full-upgrade Performs the tasks safe-upgrade does and also works with newer packages that have
different dependencies than the ones they are replacing. This command installs new
packages if necessary. It does not upgrade from one release of Ubuntu to another;
see page 59 for information on upgrading Ubuntu to another release.

install Downloads, unpacks, and installs all packages in the package-list as well as all
packages those packages depend on. See page 585 for an example.

purge Removes all packages in the package-list, including their configuration files. See
page 586 for an example of the remove command.

reinstall Downloads, unpacks, and reinstalls an already installed package, upgrading to the
latest version if necessary.

remove Removes all packages in the package-list. This command does not remove configu-
ration files. See page 586 for an example.

safe-upgrade Installs the latest versions of most packages on the system. This command will not
install a package that is not already on the system, nor will it remove an installed
package. It will not install a newer version of a package that cannot be installed
without changing the install status of another package. To make sure the local APT
cache is up-to-date, run aptitude update before giving this command. See page 594
for an example. See also full-upgrade.

search Searches the repositories specified by sources.list for packages whose names are
matched by any element of package-list. For example, a search for apache2 will
yield apache2-dev, apache2-doc, apache2, apache2-mpm, and so on. See page 595
for an example.

show Displays detailed information about package-list. See page 595 for an example.

update Synchronizes the local APT package index files with those in the repositories. See
page 594 for an example.

aptitude Options

This section describes some of the options you can use with aptitude commands.
Each description advises you whether the option works with only certain commands.

––show-deps –D Displays information about packages a command would automatically install
or remove.

––download-only –d Does not unpack or install a package after downloading it.

–f Attempts to fix broken dependencies.

594 Chapter 14 Downloading and Installing Software

––purge-unused Removes packages that are no longer needed because they were automatically
installed to satisfy a dependency of a package that has been removed.

––help –h Displays a summary of usage, commands, and options.

––simulate –s Displays what command would do, without taking any action.

––assume-yes –y Assumes a yes response to most prompts so aptitude runs noninteractively. The
aptitude utility still prompts for an extraordinary event, such as removing an
essential package or attempting to install an unauthenticated package.

aptitude update: Synchronizes Local Package Indexes

with Repositories

The aptitude update command synchronizes local package indexes with their corre-
sponding repositories:

$ sudo aptitude update
Get:1 http://security.ubuntu.com gutsy-security Release.gpg [191B]
Get:2 http://us.archive.ubuntu.com gutsy Release.gpg [191B]
Get:3 http://us.archive.ubuntu.com gutsy-updates Release.gpg [191B]
Hit http://security.ubuntu.com gutsy-security Release
Get:4 http://us.archive.ubuntu.com gutsy Release [65.9kB]
Hit http://security.ubuntu.com gutsy-security/main Packages
...
Fetched 6941kB in 37s (187kB/s)
Reading package lists... Done

After running this command, APT can determine, without accessing repositories,
whether installed packages and those in its cache are the most recent versions
available.

By default, the apt cron script (page 590) synchronizes local package indexes nightly.
If this script is running and set to update the package index, you need not run the
update command. However, you must run this command after you add repositories
to /etc/apt/sources.list before APT can retrieve files from new repositories.

aptitude safe-upgrade and aptitude full-upgrade: Upgrade

the System

There are two aptitude commands that upgrade all packages on the system: safe-
upgrade, which upgrades all packages on the system that do not require new pack-
ages to be installed, and full-upgrade, which upgrades all packages on the system,
installing new packages as needed.

aptitude
safe-upgrade

The following example uses the aptitude safe-upgrade command to upgrade all
packages on the system that depend only on packages that are already installed.
This command will not install new packages (packages that are not already on the
system). Before running this command, run aptitude update (page 594) to make
sure the local package indexes are up-to-date.

APT: Keeps the System Up-to-Date 595

$ sudo aptitude update
...
$ sudo aptitude safe-upgrade
...
The following packages will be upgraded:
 belocs-locales-bin libpam-modules libpam-runtime libpam0g
4 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 571kB of archives. After unpacking 0B will be used.
Do you want to continue? [Y/n/?] y
...

The aptitude utility lists the changes it will make and asks you whether you want to con-
tinue. Enter y to upgrade the listed packages or n to quit. Packages that are not
upgraded because they depend on packages that are not installed are listed as kept back.

aptitude
full-upgrade

Use the aptitude full-upgrade command to upgrade all packages, including packages
that are dependent on packages that are not installed. This command installs new
packages as needed to satisfy dependencies.

aptitude search: Searches the Repositories for Packages

The search command interprets the package-list on the command line as a list of
patterns; all other aptitude commands normally interpret it as a list of package
names. This command displays one line about each package whose name matches
one of the elements of package-list:

$ aptitude search vim
v gvim -
p jvim-canna - Japanized VIM (Canna version)
p jvim-doc - Documentation for jvim (Japanized VIM)
i vim - Vi IMproved - enhanced vi editor
i vim-common - Vi IMproved - Common files
p vim-doc - Vi IMproved - HTML documentation
p vim-full - Vi IMproved - enhanced vi editor - full fledged version
p vim-gnome - Vi IMproved - enhanced vi editor - with GNOME2 GUI
...

The letter in the first column of each entry indicates the status of the package on the
system: i for installed, c for removed except for configuration files, p for purged
(package and configuration files removed), and v for a virtual package (page 592).
A second letter in the first column indicates a stored action that will be performed
on the package. An A appearing as the third letter means the package was automat-
ically installed.

aptitude show: Displays Package Information

The aptitude show command displays information about packages in the reposito-
ries, including dependency information. See also the apt-cache show command,
which displays more information (page 597), and the dpkg status command
(page 603). On the next page is an example.

596 Chapter 14 Downloading and Installing Software

$ aptitude show nfs-common
Package: nfs-common
State: installed
Automatically installed: yes
Version: 1:1.1.1~git-20070709-3ubuntu1
Priority: optional
Section: net
Maintainer: Ubuntu Core Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Uncompressed Size: 504k
Depends: portmap | rpcbind, adduser, ucf, lsb-base (>= 1.3-9ubuntu3),
 netbase (>= 4.24), initscripts (>= 2.86.ds1-14.1ubuntu1), libc6 (>=
 2.6-1), libcomerr2 (>= 1.33-3), libevent1 (>= 1.3b), libgssapi2,
 libkrb53 (>= 1.6.dfsg.1), libnfsidmap2, librpcsecgss3, libwrap0
Conflicts: nfs-client
Replaces: nfs-client, nfs-kernel-server (< 1:1.0.7-5), mount (< 2.13~)
Provides: nfs-client
Description: NFS support files common to client and server.
 Use this package on any machine that uses NFS, either as client or server.
 Programs included: lockd, statd, showmount, nfsstat, gssd and idmapd.

 Upstream: SourceForge project "nfs", CVS module nfs-utils.

 Homepage: http://nfs.sourceforge.net/

apt-cache: Displays Package Information

The apt-cache utility has many commands—some that manipulate the APT package
cache and others that display information about packages in the cache. This section
contains examples of some of the simpler commands that display information. Use
apt-file (page 587) to display information about packages that are not installed on
the system.

Displaying package
dependencies

The apt-cache depends command displays the list of packages that a package
depends on. These are forward (normal) dependencies. Use the ––recurse option to
display the packages that the dependencies are dependent on (the dependencies’
dependencies).

$ apt-cache depends nfs-common
nfs-common
 |Depends: portmap
 Depends: <rpcbind>
 Depends: adduser
 ...
 Depends: libwrap0
 Conflicts: <nfs-client>
 Replaces: <nfs-client>
 nfs-common
 Replaces: nfs-kernel-server

Use the rdepends apt-cache command to display the list of packages that are depen-
dent on a specified package. These are reverse dependencies. Use the ––recurse
option to display the packages that are dependent on the dependent packages.

APT: Keeps the System Up-to-Date 597

$ apt-cache rdepends nfs-common
nfs-common
Reverse Depends:
 sfs-common
 gconf
 education-networked
 rgmanager
 openoffice.org-core
 nfs-kernel-server
 netbase
 autofs

Displaying package
records

The apt-cache show command displays package records from the files in the APT
local package indexes. See also the aptitude show command, which displays less
information (page 595), and the dpkg status command (page 603). Following is an
example:

$ apt-cache show nfs-common
Package: nfs-common
Priority: optional
Section: net
Installed-Size: 392
Maintainer: Ubuntu Core Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer: Anibal Monsalve Salazar <anibal@debian.org>
Architecture: i386
Source: nfs-utils
Version: 1:1.0.12-4
Replaces: nfs-client, nfs-kernel-server (<< 1:1.0.7-5)
Provides: nfs-client
Depends: portmap | rpcbind, adduser, ucf, lsb-base (>= 1.3-9ubuntu3),
netbase (>= 4.24), libc6 (>= 2.5-0ubuntu1), libcomerr2 (>= 1.33-3),
libevent1 (>= 1.1a), libgssapi2, libkrb53 (>= 1.4.2), libnfsidmap2,
librpcsecgss3, libwrap0
Conflicts: nfs-client
Filename: pool/main/n/nfs-utils/nfs-common_1.0.12-4_i386.deb
Size: 132236
MD5sum: c381f4f9383b6e0993daff25ba463e83
SHA1: 77654317983629d331244c39ed42a0afba859802
SHA256: d1bc0e8cc4080af90148b4bf91a178c6c74ec542677738eb8a990be3ba0fe44f
Description: NFS support files common to client and server
 Use this package on any machine that uses NFS, either as client or
 server. Programs included: lockd, statd, showmount, nfsstat, gssd
 and idmapd.
 .
 Upstream: SourceForge project "nfs", CVS module nfs-utils.
 .
 Homepage: http://nfs.sourceforge.net/
Bugs: mailto:ubuntu-users@lists.ubuntu.com
Origin: Ubuntu
Task: edubuntu-server

The apt-cache showpkg command displays package version and location informa-
tion as well as dependency lists.

598 Chapter 14 Downloading and Installing Software

apt-get source: Downloads Source Files

The apt-get source command downloads and unpacks in the working directory
source code files from repositories specified with deb-src lines in sources.list
(page 589). APT does not keep index and cache files for source files as it does for
binary files. With the ––download-only option, this command does not unpack the
source code. With the ––compile option, it unpacks and compiles the source code.
You do not have to run this command with root privileges; it requires only write
access to the working directory. Following is an example:

$ apt-get source adduser
...
dpkg-source: extracting adduser in adduser-3.103ubuntu1
dpkg-source: unpacking adduser_3.103ubuntu1.tar.gz

$ ls -ld adduser*
drwxr-xr-x 7 zach zach 4096 Jul 10 08:12 adduser-3.103ubuntu1
-rw-r--r-- 1 zach zach 708 Jul 10 09:03 adduser_3.103ubuntu1.dsc
-rw-r--r-- 1 zach zach 246211 Jul 10 09:03 adduser_3.103ubuntu1.tar.gz

dpkg: The Debian Package Management System

The Debian package (dpkg) management system database tracks which software
packages are installed on a system, where each is installed, which version is
installed, and which packages each depends on.

The dpkg management system comprises many utilities. These utilities install, unin-
stall, upgrade, query, and verify software packages. The original and primary utility
is dpkg (page 600). Although you can use dpkg for most tasks involving the dpkg
management system, other tools can make your job easier. Some of the most com-
monly used of these tools are described here:

• apt-cache Displays information about and manipulates the APT cache
(page 596).

• apt-file Similar to apt-cache except that it works with packages that have
not been installed and packages that have not been downloaded, in addi-
tion to those that are installed on the local system (page 587).

• aptitude Retrieves software packages and calls dpkg to install and remove
them (pages 585 and 592).

• apt-get A textual interface to APT; similar to aptitude.

• dpkg The primary dpkg management system utility (page 600).

• dselect A pseudographical front-end for dpkg.

• Synaptic A graphical interface to APT (page 121).

dpkg: The Debian Package Management System 599

deb Files

The dpkg management system works with .deb format files, frequently referred to
as deb files. Because dpkg cannot download deb files from repositories, aptitude
(page 592) typically performs this task. By default, aptitude stores downloaded deb
files in /var/cache/apt/archives. The dpkg management system stores available
package information in /var/lib/dpkg/available and package installation informa-
tion in /var/lib/dpkg/status.

You can manually locate, download, and install deb files. However, doing so can be
tedious, especially when you find that a package is dependent on several other pack-
ages and that some of those packages are dependent on yet other packages.

You can create deb files, as when you build a kernel. Page 643 has an example of
building a kernel deb file; pages 602 and 646 show dpkg installing deb files.

Binary files A binary deb file can contain the following components, which are packed and
unpacked using the ar (archive) utility. All packages contain an executable file; the
other components are optional.

• binary Binary executable files.

• control Package information including lists of dependent, recommended,
and suggested packages.

• conffiles Package configuration files.

• preinst Preinstall script.

• postinst Postinstall script.

• prerm Preremove script.

• postrm Postremove script.

Source files A source file package contains a description file, a source code file, and a diff file
that contains Ubuntu-specific changes to the source file.

Installing a deb file When dpkg installs a binary package (page 602), it takes the following steps:

1. Extracts control files.

2. If another version of the same package is installed on the system, executes
the prerm script of the old package.

3. Runs the preinst script.

4. Backs up the old binary files and unpacks the new binary files, allowing
dpkg to revert to the existing setup if installation fails.

5. If another version of the same package is installed on the system, executes
the postrm script of the old package.

6. Backs up the old configuration files and unpacks the new configuration
files, allowing dpkg to revert to the existing setup if installation fails.

7. Runs the postinst script.

600 Chapter 14 Downloading and Installing Software

Removing a deb file When dpkg removes a binary package (page 602), it runs the prerm script, removes
the files, and runs the postrm script.

dpkg: The Foundation of the Debian Package

Management System

The dpkg (Debian package) utility installs (unpacks and configures), queries, and
removes deb packages. Before querying the software package database, give the
update-avail command (discussed next) to update the list of available packages.

Typically you will use one of the tools that acts as a front-end for dpkg and not work
with dpkg itself. In some cases you may find the following dpkg commands useful.
View the dpkg man page or use the ––help option for a complete list of commands.

dpkg ––update-avail: Updates the List of

Available Packages

The list of available packages is kept in the /var/lib/dpkg/available file. The
––update-avail dpkg command updates this list from files that the APT local pack-
age indexes (page 590).

$ sudo dpkg --update-avail /var/lib/dpkg/available
Replacing available packages info, using /var/lib/dpkg/available.
Information about 1868 package(s) was updated.

dpkg ––list: Displays Information About a Package

The dpkg ––list (or –l) command displays a line of information about packages you
name as an argument. Package names can include wildcards as described in “File-
name Generation/Pathname Expansion” on page 239. You must quote wildcards on
the command line.

The following command lists all packages whose names begin with apache2. The
first two lines of the header are keys for the first two letters on each line that
describes a package. The first line of the header, labeled Desired, lists the possible
desired package selection states (Table 14-1). The second line, labeled Status, lists
possible package statuses (Table 14-1). The Name column lists the name of the
package, while the Version and Description columns describe the package.

$ sudo dpkg --list "apache2*"
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description

dpkg commands and options both start with hyphens

tip Although command line arguments that start with one or two hyphens are generally called
options, the dpkg documentation divides these arguments into commands and options. For
example, ––purge is a command and ––simulate is an option.

dpkg: The Debian Package Management System 601

+++-===================-==================-===
pn apache2 <none> (no description available)
rc apache2-common 2.0.55-4ubuntu4 next generation, scalable, extendable web server
ii apache2-doc 2.0.55-4ubuntu4 documentation for apache2
un apache2-modules <none> (no description available)
un apache2-mpm-perchil <none> (no description available)
un apache2-mpm-prefork <none> (no description available)
un apache2-mpm-threadp <none> (no description available)
pn apache2-mpm-worker <none> (no description available)
pn apache2-utils <none> (no description available)

In the preceding example, the apache2 package has a desired state of purged (p)
and a status of not installed (n), meaning the package is not installed and has no
configuration files on the system. The apache2-common package has a desired
state of removed (r) and currently has only its configuration files installed (c). For
apache2-doc, the first i indicates that the desired state of the package is installed
and the second i indicates that the current state of the package is installed (the
package is installed on the system). For apache2-modules, the desired state of the
package is unknown (u) and it is not installed (n). See page 602 for more examples
of the ––list command.

Table 14-1 dpkg letter codes

Letter Means that the package is

Desired (selection state)

u (unknown) Unknown to dpkg

i (install) To be installed

r (remove) To be removed (uninstalled), except for configuration files

p (purge) To be removed, including configuration files

h (hold) Not handled by dpkg

Status (package state)

n (not installed) Not installed

i (installed) Installed

c (config-files) Not installed; only the configuration files exist on the system

u (unpacked) Unpacked, but not configured

f (failed-config) Unpacked, but not configured; configuration failed

h (half-installed) Partially installed; installation is not complete

602 Chapter 14 Downloading and Installing Software

dpkg ––install: Installs a Package

The dpkg ––install (–i) command installs (unpacks and sets up; see page 599) a
package stored in a deb file. It does not search for and download a package from
the Internet. Use aptitude (page 592) for that purpose. The following example shows
dpkg installing the ftp package:

$ sudo dpkg --install /var/cache/apt/archives/ftp_0.17-16_i386.deb
Selecting previously deselected package ftp.
(Reading database ... 173635 files and directories currently installed.)
Unpacking ftp (from .../archives/ftp_0.17-16_i386.deb) ...
Setting up ftp (0.17-16) ...

dpkg ––remove and dpkg ––purge: Remove an

Installed Package

The dpkg ––remove (–r) command removes an installed package except for its con-
figuration files. Leaving these files can be useful if you decide to reinstall the pack-
age. Use ––purge (–P) to completely remove a package, including configuration
files. The following command displays the status of the ftpd package (it is installed).

$ dpkg --list ftpd
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description
+++-=================-==================-==
ii ftpd 0.17-24 FTP server

The next command removes the ftpd package except for its configuration files:

$ sudo dpkg --remove ftpd
(Reading database ... 113335 files and directories currently installed.)
Removing ftpd ...

Next the dpkg ––list command shows a status of rc for the ftpd package, indicating
that it has been removed (r) but the configuration files (c) remain.

$ dpkg --list ftpd
...
rc ftpd 0.17-24 FTP server

Finally dpkg purges the ftpd package and shows a state of pn (purged, not installed).

$ sudo dpkg --purge ftpd
(Reading database ... 113325 files and directories currently installed.)
Removing ftpd ...
Purging configuration files for ftpd ...

$ dpkg --list ftpd
...
pn ftpd <none> (no description available)

If there are packages dependent on the package you are removing, the command fails.
In the next example, dpkg attempts to remove the apache2.2-common package but
fails because the apache2-mpm-worker package depends on apache2.2-common:

dpkg: The Debian Package Management System 603

$ sudo dpkg --remove apache2.2-common
dpkg: dependency problems prevent removal of apache2.2-common:
 apache2-mpm-worker depends on apache2.2-common (= 2.2.3-3.2build1).
dpkg: error processing apache2.2-common (--remove):
 dependency problems - not removing
Errors were encountered while processing:
 apache2.2-common

You can remove the dependent package and then remove apache2.2-common. It is
frequently easier to use aptitude to remove a package and its dependencies because
you can do so with a single aptitude remove command (page 586).

When dpkg removes a package, the prerm script stops any running daemons associ-
ated with the package. In the case of Apache, it stops the apache2 server.

$ sudo dpkg --remove apache2-mpm-worker
(Reading database ... 113816 files and directories currently installed.)
Removing apache2-mpm-worker ...
 * Stopping web server (apache2)... [OK]

dpkg ––status: Displays Information About a Package

The ––status (–s) dpkg command displays lengthy information about the installed
package you specify as an argument. This information includes package status,
installed size, architecture it is compiled for, conflicting packages, a description, and
the name of the package maintainer. See also the aptitude show command
(page 595) and the apt-cache show command (page 597).

$ dpkg --status apache2-mpm-worker
Package: apache2-mpm-worker
Status: install ok installed
Priority: optional
Section: web
Installed-Size: 684
Maintainer: Ubuntu Core Developers <ubuntu-devel@lists.ubuntu.com>
Architecture: i386
Source: apache2
Version: 2.2.3-3.2build1
Replaces: apache2-mpm-threadpool (<< 2.0.53), apache2-mpm-perchild (<< 2.2.0)
Provides: apache2-modules, apache2, httpd, httpd-cgi
Depends: libapr1, libaprutil1, libc6 (>= 2.5-0ubuntu1), libdb4.4, libexpat1 (>= 1.95.8),
libldap2 (>= 2.1.17-1), libpcre3 (>= 4.5), libpq5, libsqlite3-0 (>= 3.3.10), libuuid1,
apache2.2-common (= 2.2.3-3.2build1)
Conflicts: apache2-mpm-prefork, apache2-mpm-event, apache2-common
Description: High speed threaded model for Apache HTTPD 2.1
 The worker MPM provides a threaded implementation for Apache HTTPD 2.1. It is
 considerably faster than the traditional model, and is the recommended MPM.
 .
 Worker generally is a good choice for high-traffic servers because it
 has a smaller memory footprint than the prefork MPM.
Original-Maintainer: Debian Apache Maintainers <debian-apache@lists.debian.org>

604 Chapter 14 Downloading and Installing Software

Use the dpkg ––info command to display information about a deb file that is on the
system (for example, in the APT cache) but is not installed. The following command
displays information about the ftpd deb file in the archives directory:

$ dpkg --info /var/cache/apt/archives/ftpd_0.17-24_i386.deb

dpkg ––search: Displays the Name of the Package That

Contains a Specified File

The ––search (or –S) option to dpkg displays the name of the package that includes
the file you specify as an argument:

$ dpkg --search /etc/ssh
openssh-client: /etc/ssh

dpkg ––listfiles: Lists Files Within a Package

The dpkg ––listfiles (or –L) command lists the files that are part of the package you
specify as an argument. The following example lists the files in the openssh-server
package:

$ dpkg --listfiles openssh-server
/.
/etc
/etc/init.d
/etc/init.d/ssh
/etc/default
/etc/default/ssh
...

Use the dpkg ––contents command to list the files contained in a package that is on
the system but not installed. The following command lists the files in the dump deb
file in the archives directory:

$ dpkg --contents /var/cache/apt/archives/dump_0.4b41-4_i386.deb

BitTorrent

The easiest way to download a BitTorrent file is to click the torrent file object in a
Web browser or in the Nautilus File Browser. This section describes how BitTorrent
works and explains how to download a BitTorrent file from the command line.

The BitTorrent protocol implements a hybrid client/server and P2P (page 1051) file
transfer mechanism. BitTorrent efficiently distributes large amounts of static data,
such as the Ubuntu installation ISO images. It can replace protocols such as anony-
mous FTP, where client authentication is not required. Each BitTorrent client that
downloads a file provides additional bandwidth for uploading the file, thereby
reducing the load on the initial source. In general, BitTorrent downloads proceed
faster than FTP downloads. Unlike protocols such as FTP, BitTorrent groups multi-
ple files into a single package: a BitTorrent file.

BitTorrent 605

Tracker, peer, seed,
and swarm

BitTorrent, like other P2P systems, does not use a dedicated server. Instead, the
functions of a server are performed by the tracker, peers, and seeds. The tracker is a
server that allows clients to communicate with each other. Each client—called a
peer when it has downloaded part of the BitTorrent file and a seed once it has
downloaded the entire BitTorrent file—acts as an additional source for the BitTor-
rent file. Peers and seeds are collectively called a swarm. As with a P2P network, a
member of a swarm uploads to other clients the sections of the BitTorrent file it has
already downloaded. There is nothing special about a seed: It can be removed at
any time once the torrent is available for download from other seeds.

The torrent The first step in downloading a BitTorrent file is to locate or acquire the torrent, a
file with the filename extension of .torrent. A torrent contains pertinent information
(metadata) about the BitTorrent file to be downloaded, such as its size and the loca-
tion of the tracker. You can obtain a torrent by accessing its URI, or you can acquire
it via the Web, an email attachment, or other means. The BitTorrent client can then
connect to the tracker to learn the locations of other members of the swarm that it
can download the BitTorrent file from.

Manners Once you have downloaded a BitTorrent file (the local system has become a seed), it
is good manners to allow the local BitTorrent client to continue to run so peers (cli-
ents that have not downloaded the entire BitTorrent file) can upload at least as
much information as you have downloaded.

Prerequisites

If necessary, use aptitude (pages 585 and 592) to install the bittorrent package. With
this package installed, the command apropos bittorrent displays a list of BitTorrent
utilities. See /usr/share/doc/bittorrent for more information. You may want to try
BitTornado, an experimental BitTorrent client with additional features (bittornado
package; see bittornado.com)

Because the BitTorrent utilities are written in Python and run on any platform with
a Python interpreter, they are not dependent on system architecture. Python is
installed in /usr/bin/python and is available in the python package.

Using BitTorrent

The btdownloadcurses utility is a textual BitTorrent client that provides a pseudo-
graphical interface. Once you have a torrent, give a command such as the following,
substituting the name of the torrent you want to download for the Ubuntu torrent
in the example:

$ btdownloadcurses gutsy-desktop-i386.iso.torrent

In the preceding command, the torrent specifies that the BitTorrent file be saved as
gutsy-desktop-i386.iso in the working directory. The name of the BitTorrent file is not
always the same as the name of the torrent. In the case of a multifile torrent, the Bit-
Torrent files may be stored in a directory, also named by the torrent. Figure 14-1 shows
btdownloadcurses running. Depending on the speed of the Internet connection and the
number of seeds, downloading a large BitTorrent file can take from hours to days.

606 Chapter 14 Downloading and Installing Software

You can abort the download by pressing q or CONTROL-C. The download will automati-
cally resume from where it left off when you download the same torrent to the same
location again.

See the btdownloadcurses man page for a list of options. One of the most useful
options is ––max_upload_rate, which limits how much bandwidth the swarm can
use while downloading the torrent from you. The default is 0, meaning there is no
limit to the upload bandwidth. The following command prevents BitTorrent from
using more than 10 kilobytes per second of upstream bandwidth:

$ btdownloadcurses --max_upload_rate 10 gutsy-desktop-i386.iso.torrent

BitTorrent usually allows higher download rates for members of the swarm that
upload more data, so it is to your advantage to increase this value if you have spare
bandwidth. You need to leave enough free upstream bandwidth for the acknowledg-
ment packets from your download to get through or else the download will be very
slow. By default, btdownloadcurses uploads to a maximum of seven other clients at
once. You can change this number by using the ––max_uploads argument, followed
by the number of concurrent uploads you wish to permit. If you are downloading
over a modem, try setting ––max_upload_rate to 3 and ––max_uploads to 2.

The name of the file or directory that BitTorrent saves a file or files in is specified by
the torrent. You can specify a different file or directory name by using the ––saveas
option. The btshowmetainfo utility displays the name the BitTorrent file will be saved
as, the size of the file, the name of the torrent (metainfo file), and other information:

$ btshowmetainfo gutsy-desktop-i386.iso.torrent
btshowmetainfo 20021207 - decode BitTorrent metainfo files
metainfo file.: gutsy-desktop-i386.iso.torrent
info hash.....: 5457398c658984f7b6d54f3f7ebf9a06f3999796
file name.....: gutsy-desktop-i386.iso
file size.....: 728713216 (1389 * 524288 + 477184)
announce url..: http://torrent.ubuntu.com:6969/announce

Figure 14-1 btdownloadcurses working with the Ubuntu desktop torrent

Make sure you have enough room to download the torrent
caution Some torrents are huge. Make sure the partition you are working in has enough room to hold the

BitTorrent file you are downloading.

Installing Non-dpkg Software 607

Installing Non-dpkg Software

Most software that is not in dpkg format comes with detailed instructions on how
to configure, build (if necessary), and install it. Some binary distributions (those
containing prebuilt executables) require you to unpack the software from the root
directory.

The /opt and /usr/local Directories

Some newer application packages include scripts to install themselves automatically
into a directory hierarchy under /opt, with files in a /opt subdirectory that is named
after the package and executables in /opt/bin or /opt/package/bin.

Other software packages allow you to choose where you unpack them. Because
many different people develop software for Linux, there is no consistent method
for installing it. As you acquire software, install it on the local system in as consis-
tent and predictable a manner as possible. The standard Linux file structure has a
directory hierarchy under /usr/local for binaries (/usr/local/bin), manual pages
(/usr/local/man), and so forth. Because many GNU buildtools search the /usr/local
hierarchy by default and may find the wrong version of a utility if you install devel-
oper tools there, putting these tools in /opt is a good idea.

To prevent confusion later and to avoid overwriting or losing the software when
you install standard software upgrades, avoid installing nonstandard software in
standard system directories (such as /usr/bin). On a multiuser system, make sure
users know where to find the local software and advise them whenever you install,
change, or remove local tools.

GNU Configure and Build System

The GNU Configure and Build System makes it easy to build a program that is dis-
tributed as source code (see autoconf at developer.gnome.org/tools/build.html). This
process requires a shell, make, and gcc (the GNU C compiler). You do not need to
work with root privileges except to install the program.

The following example assumes you have downloaded the GNU chess program
(www.gnu.org/software/chess/chess.html) to the working directory. First unpack
and decompress the file and cd to the new directory:

$ tar -xvzf gnuchess-5.05.tar.gz
chess/
chess/CVS/
chess/CVS/Root
...
chess/src/util.c
chess/src/version.c
chess/src/version.h
$ cd chess

www.gnu.org/software/chess/chess.html

608 Chapter 14 Downloading and Installing Software

After reading the README and INSTALL files, run the configure script, which
gathers information about the local system and generates the Makefile file:

$./configure
checking for a BSD compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for mawk... mawk
checking whether make sets ${MAKE}... yes
checking for gcc... gcc
checking for C compiler default output... a.out
checking whether the C compiler works... yes
...
checking for memset... yes
configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating src/config.h

Refer to the configure info page, specifically the ––prefix option, which causes the
install phase to place the software in a directory other than /usr/local. Next, run make:

$ make
Making all in src
make[1]: Entering directory '/home/zach/chess/src'
make all-am
make[2]: Entering directory '/home/zach/chess/src'
source='atak.c' object='atak.o' libtool=no \
 depfile='.deps/atak.Po' tmpdepfile='.deps/atak.TPo' \
 depmode=gcc3 /bin/sh ../depcomp \
 gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -c 'test -f atak.c || echo './''atak.c
source='book.c' object='book.o' libtool=no \
 depfile='.deps/book.Po' tmpdepfile='.deps/book.TPo' \
 depmode=gcc3 /bin/sh ../depcomp \
 gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -c 'test -f book.c || echo './''book.c
...
gcc -g -O2 -o gnuchess atak.o book.o cmd.o epd.o eval.o genmove.o hash.o hung.o init.o
iterate.o main.o move.o null.o output.o players.o pgn.o quiesce.o random.o repeat.o
search.o solve.o sort.o swap.o test.o ttable.o util.o version.o
make[2]: Leaving directory '/home/zach/chess/src'
make[1]: Leaving directory '/home/zach/chess/src'
make[1]: Entering directory '/home/zach/chess'
make[1]: Nothing to be done for 'all-am'.
make[1]: Leaving directory '/home/zach/chess'

$ ls src/gnuchess
src/gnuchess

After make finishes, the gnuchess executable is in the src directory. If you want to
install it, give the following command:

$ sudo make install
Making install in src
make[1]: Entering directory '/home/zach/chess/chess/src'
make[2]: Entering directory '/home/zach/chess/chess/src'
/bin/sh ../mkinstalldirs /usr/local/bin
 /usr/bin/install -c gnuchess /usr/local/bin/gnuchess
...

wget: Downloads Files Noninteractively 609

You can complete the entire task with the following command line:

$ sudo ./configure && make && make install

The Boolean AND operator (&&) allows the execution of a subsequent command
only if the previous step returned a successful exit status.

wget: Downloads Files Noninteractively

The wget utility is a noninteractive, command line utility that retrieves files from the
Web using HTTP, HTTPS, or FTP. In the following example, wget downloads the
Ubuntu home page, named index.html, to a file in the working directory with the
same name:

$ wget http://www.ubuntu.com
--14:58:48-- http://www.ubuntu.com/
=> 'index.html'
Resolving www.ubuntu.com... 82.211.81.158
Connecting to www.ubuntu.com|82.211.81.158|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 13,112 (13K) [text/html]

100%[==>] 13,112 40.60K/s

14:58:49 (40.40 KB/s) - 'index.html' saved [13112/13112]

$

With the ––recursive (–r) option, wget downloads the directory hierarchy under the
URI you specify. Be careful with this option because it can download a lot of data
(which may completely fill the partition you are working in). The ––background
(–b) option runs wget in the background and redirects its standard error to a file
named wget-log:

$ wget --recursive --background http://www.ubuntu.com
Continuing in background, pid 28839.
Output will be written to 'wget-log'.
$

The wget utility does not overwrite log files. When wget-log exists, wget writes sub-
sequent logs to wget-log.1, wget-log.2, and so on.

Running wget in the background is useful when you need to download a large file to
a remote system. You can start it running from an ssh (page 714) session and then
disconnect, allowing the download to complete without any interaction.

The wget ––continue (–c) option continues an interrupted download. For example,
if you decide to stop a download so you can run it in the background, you can con-
tinue it from where it left off with this option.

610 Chapter 14 Downloading and Installing Software

Chapter Summary

As a system administrator, you need to keep applications and system software cur-
rent. Of the many reasons to keep the software on a system up-to-date, one of the
most important is system security. The Debian package (dpkg) management system
makes the process of adding and removing deb format software packages quite easy.

APT utilities, such as aptitude, download software packages and dependencies and
then work with dpkg to install, remove, or update packages. In addition, you can
use the apt-cache and dpkg utilities to query and verify dpkg packages. For packages
distributed as source code, the GNU Configure and Build System enables you to
build executable files.

BitTorrent is a handy tool for downloading large static data files such as the Ubuntu
installation ISO images. It can replace protocols such as anonymous FTP, where cli-
ent authentication is not required.

Exercises

1. Why would you use HTTP or FTP instead of BitTorrent for downloading
large files?

2. Which command would you give to perform a complete upgrade?

3. Why would you build a package from its source code when a (binary) deb
file is available?

4. Suggest two advantages that deb files have over source distributions.

Advanced Exercises

5. When you compile a package yourself, rather than from a deb file, which
directory hierarchy should you put it in?

6. Which steps should you take before performing an upgrade on a mission-
critical server?

611611

15Chapter15A printing system handles the tasks involved in first getting a
print job from an application (or the command line) through
the appropriate filters (page 1036) and into a queue for a suit-
able printer and then getting it printed. While handling a job,
a printing system can keep track of billing information so the
proper accounts can be charged for printer use. When a
printer fails, the printing system can redirect jobs to other,
similar printers.

In This Chapter

JumpStart I: Configuring
a Local Printer 614

system-config-printer:
Configuring a Printer 614

JumpStart II: Configuring
a Remote Printer Using the
CUPS Web Interface. 618

Traditional UNIX Printing 622

The CUPS Web Interface 624

CUPS on the Command Line. 626

Printing from Windows 630

Printing to Windows 632

15

Printing with CUPS

612 Chapter 15 Printing with CUPS

Introduction

LPD and LPR Traditionally, UNIX had two printing systems: the BSD Line Printer Daemon (LPD)
and the System V Line Printer system (LPR). Linux adopted those systems at first,
and both UNIX and Linux have seen modifications to and replacements for these
systems. Today CUPS is the default printing system under Ubuntu Linux.

CUPS CUPS (Common UNIX Printing System) is a cross-platform print server built
around IPP (Internet Printing Protocol), which is itself based on HTTP. CUPS pro-
vides a number of printer drivers and can print different types of files, including
PostScript. Because it is built on IPP and written to be portable, CUPS runs under
many operating systems, including Linux and Windows. Other UNIX variants,
including Mac OS X, use CUPS, and recent versions of Windows include the ability
to print to IPP printers, making CUPS an ideal solution for printing in a heteroge-
neous environment. CUPS provides System V and BSD command line interfaces
and, in addition to IPP, supports LPD/LPR, HTTP, SMB, and JetDirect (socket) pro-
tocols, among others.

IPP The IPP project (www.pwg.org/ipp) began in 1996, when Novell and several other
companies designed a protocol for printing over the Internet. IPP enables users to

• Determine the capabilities of a printer.

• Submit jobs to a printer.

• Determine the status of a printer.

• Determine the status of a print job.

• Cancel a print job.

IPP is a client/server protocol in which the server side can be a print server or a
network-capable stand-alone printer.

Printers and queues On a modern computing system, when you “send a job to the printer,” you actually
add the job to the list of jobs waiting their turn to be printed on a printer. The list is
called a print queue or simply a queue. The phrase configuring (or setting up) a
printer is often used to mean configuring a (print) queue. This chapter uses these
phrases interchangeably.

Prerequisites

Installation Install the following packages (installed with the base system):

• cupsys

• cupsys-bsd (optional; BSD printing commands)

www.pwg.org/ipp

Introduction 613

• cupsys-client (optional; System V printing commands)

• openprinting-ppds (PPD files)

• openprinting-ppds-extra (optional; more PPD files)

• system-config-printer (optional; graphical printer tool)

To use the Web interface to CUPS, you need an X server and a Web browser. You
also need to add the name of the administrator working with the Web interface to
the shadow group (page 660).

cupsys init script When you install the cupsys package, the dpkg postinst script starts the cupsd
daemon. After you configure CUPS, call the cupsys init script to restart the cupsd
daemon:

$ sudo /etc/init.d/cupsys restart
 * Restarting Common Unix Printing System: cupsd [OK]
$

More Information

Local CUPS Documentation With the CUPS Web interface up (page 624),
point a local browser at localhost:631/help.

Web www.linux-foundation.org/en/OpenPrinting Information on printers and
printing under Linux. Hosts a support database with details about many
printers, including notes and driver information; also offers forums, articles,
and a HOWTO document on printing.

CUPS home page www.cups.org
IPP information www.pwg.org/ipp

HOWTO SMB HOWTO has a section titled “Sharing a Windows Printer with
Linux Machines.”

Notes

Firewall A CUPS server normally uses TCP port 631 for an IPP connection and port 80 for
an LPR/LPD connection. If the CUPS server system is running a firewall, you need
to open one or both of these ports. Using firestarter (page 886), open one or both of
these ports by adding a rule that allows service for port 631 and/or port 80 from the
clients you want to be able to access the server.

PDF printer Ubuntu automatically creates a virtual PDF printer. You can use this printer to gen-
erate PDF output from applications that are not otherwise able to generate PDF
output, such as GIMP and Firefox.

www.linux-foundation.org/en/OpenPrinting
www.cups.org
www.pwg.org/ipp

614 Chapter 15 Printing with CUPS

JumpStart I: Configuring a Local Printer

In most cases, when you connect a printer to the local system and turn it on, after a
moment Ubuntu displays a Printer Added message (Figure 15-1). If you want to
modify the new printer’s configuration, click Configure (in the message window) to
display the Printer Configuration window (Figure 15-2). See the next section for
information on using this window.

system-config-printer: Configuring a Printer

The Printer Configuration window (Figure 15-2) enables you to add, remove, and
configure local and remote printers. To display this window, select Main menu:
Administration Printing or give the command gksudo system-config-printer from
a terminal emulator or Run Application window (ALT-F2).

Using system-config-printer is very similar to using the CUPS Web interface, which is
discussed on page 618. However, system-config-printer is a native application, not a
Web interface.

The frame on the left side of the Printer Configuration window lists the configured
printers. Ubuntu configures a PDF printer by default. On the right side of the win-
dow you can configure the printer highlighted on the left.

Server Settings Click Server Settings at the top of the frame on the left to display Basic Server Set-
tings on the right side of the window. The top two check boxes under Basic Server
Settings specify whether system-config-printer displays printers that are shared by
other systems and whether the local system publishes printers it shares. You control
whether a given printer is shared from the Settings tab (discussed next).

Configuration Tabs

This section describes the six tabs on the right side of the Printer Configuration win-
dow. You can use these tabs to configure the printer highlighted in the frame on the
left side of the window.

Figure 15-1 Printer added message

You must be a member of the lpadmin group

tip To modify a printer using the Printer Configuration window (system-config-printer), you must
be a member of the lpadmin group (the first user is a member of this group). See page 660 for
instructions on how to add a user to a group.

system-config-printer: Configuring a Printer 615

The right side of the Printer Configuration window holds six tabs you can use to
configure the printer highlighted on the left side.

Settings Figure 15-2 shows the Settings tab for an HP printer. The text boxes labeled
Description and Location hold information for your use; the system does not use
this information. The text boxes labeled Device URI and Make and Model specify
the location and type of the printer. At the lower left, under State, are check boxes
labeled Enabled, Accepting jobs, and Shared. Table 15-1 describes the effects of put-
ting ticks in the first two check boxes. Putting a tick in the check box labeled Shared
shares the printer with other systems if the local system publishes shared printers
(see “Server settings,” above). Click the buttons below Default Printer to make the
highlighted printer the default printer (if it is not already) and print a test page.

Policies The Policies tab controls whether the printer prints banners before and after jobs
and what CUPS does when it encounters an error.

Access Control The access Control tab allows you to set policy for printer access. By default, any-
one can use the printer. You can create a blacklist of users who are not allowed to
use it, however. Alternatively, you can prohibit anyone from using the printer and
create a whitelist of users who are allowed to use it.

Figure 15-2 The Printer Configuration window

Table 15-1 Printer status

Enabled Disabled

Accepting jobs Accepts new jobs into the
queue.
Prints jobs from the queue.

Accepts new jobs into the
queue.
Does not print jobs from the
queue until the printer is
enabled.

Rejecting jobs Rejects new jobs.
Prints jobs from the queue.

Rejects new jobs.
Does not print jobs from the
queue until the printer is
enabled.

616 Chapter 15 Printing with CUPS

Installed Options The Installed Options tab controls printer-specific options.

Printer Options The Printer Options tab sets up a watermark or overlay that the printer prints on
every page, and controls image quality as well as paper size and source (tray).

Job Options The Job Options tab controls the number of copies, orientation (portrait or land-
scape), scaling, margins, and more. Options specified by an application sending a
job to the printer override options you set in this tab.

Setting Up a Remote Printer

As explained earlier, system-config-printer recognizes and sets up a printer when you
connect it to the local system and turn it on. Specifying a remote printer takes a lit-
tle more work. This section describes setting up an IPP printer on another Linux
system. For more information on setting up a remote printer, refer to “JumpStart II:
Configuring a Remote Printer Using the CUPS Web Interface” on page 618. Because
of the similarity between system-config-printer and the CUPS Web interface, many of
the explanations in that section apply here.

To add a remote IPP printer to the local system, click New Printer on the toolbar in
the Printer Configuration window. The system-config-printer utility displays Search-
ing as it looks for printers attached to the system and then displays the New Printer
window (Figure 15-3).

To configure a remote IPP printer, highlight Internet Printing Protocol (ipp) in the
frame labeled Select Connection. Enter the name of the system the printer is con-
nected to (Hostname) and the name of the print queue on the remote system
(Printername). Click Forward.

In the second screen of the New Printer window (Figure 15-4), you specify a printer
manufacturer (such as HP) or provide a PPD file (page 626). To select a manufac-
turer, click within the list box labeled Makes and start typing the name of the man-
ufacturer. As you type, system-config-printer opens a small window (shown in
Figure 15-4) that displays what you type and tries to match a name in the list box to
what you have typed. When the correct name appears in the list box, press RETURN (or
just stop typing). Click Forward.

The next screen (Figure 15-5) allows you to specify the model of the printer and
select which driver you want to use (if there is more than one). When you highlight

Figure 15-3 The New Printer window

system-config-printer: Configuring a Printer 617

an entry in the list box labeled Models, you can type to specify a model just as you
typed to specify a manufacturer in the previous screen.

If the model of the printer you are configuring is not listed, check whether the
printer can emulate another printer (if it has an emulation mode). If it can, check
whether the manufacturer and model of the printer it can emulate are listed and set
it up that way. If all else fails, click Back and select Generic as the manufacturer.
Then click Forward and choose a type of generic printer from the list box labeled
Models. Choose PostScript Printer if the printer is PostScript capable. If there is no
match, select Text-only Printer; you will not be able to print graphics, but you
should be able to print text. If you are using a winprinter, select GDI Printer from
the list of generic printers. Click Forward.

On the next screen, you must specify a name for the printer; the description and
location are optional. The name of the printer must start with a letter and cannot
contain SPACEs. If you use only one printer, the name you choose is not important. If
you use two or more printers, the name should help you distinguish between them.
The printer name is the name of the print queue on the local system. Click Forward.

Figure 15-4 Selecting a printer manufacturer

Figure 15-5 Selecting a printer model and driver

618 Chapter 15 Printing with CUPS

The system-config-printer utility closes the New Printer window and the new printer
appears in the list at the left of the Printer Configuration window. If you have more
than one print queue and want to set up the new print queue as the default, high-
light the print queue and click Make Default Printer.

JumpStart II: Configuring a Remote Printer Using

the CUPS Web Interface

This JumpStart explains how to use the CUPS Web interface to configure either (1)
a printer connected to a different UNIX/Linux system that provides IPP support or
an LPD/LPR queue or (2) a printer that is connected directly to the network.

If the printer you are configuring is on an older Linux system or another UNIX-like
operating system that does not run CUPS, the system is probably running LPD/LPR.
Newer versions of Linux and UNIX variants that support CUPS (including Mac OS
X) support IPP. Most devices that connect printers directly to a network support
LPR/LPD and may support IPP.

Printers connected directly to a network are functionally equivalent to printers con-
nected to a system running a print server: They listen on the same ports as systems
running print servers and queue jobs.

shadow group At some point the CUPS Web interface will ask you for a username and password.
Supply your username and password. (You must be a member of the shadow group
[page 660] to change the printer configuration using the CUPS Web interface.)

Display the CUPS Web interface by pointing Firefox, or another browser, at localhost:631
on the system on which you are configuring the printer (Figure 15-6).

Figure 15-6 CUPS home page

JumpStart II: Configuring a Remote Printer Using the CUPS Web Interface 619

Clicking Add Printer on the row of buttons near the top of the page displays the
Add New Printer page (Figure 15-7). Enter the name of the printer in the Name
field; this name must start with a letter and not contain any SPACEs. You must supply
a name—supply any name you like. Optionally, you can fill in the Location and
Description fields with text that will help users identify the printer. Click Continue.

Specifying a
protocol

The next page asks you to select the device that the printer is attached to
(Figure 15-8). Click the down arrow at the right of the list box labeled Device to
display a list of printer devices. Select Internet Printing Protocol (ipp) or LPD/LPR
Host or Printer, depending on what the printer is attached to. Select AppSocket/HP
JetDirect for an HP JetDirect-compatible network printer. Click Continue.

Figure 15-7 Add New Printer page

Figure 15-8 Device page

620 Chapter 15 Printing with CUPS

Specifying the URI Next the Device URI page (Figure 15-9) asks for the URI (location on the network)
of the printer. For an LPD/LPR printer, use the form lpd://hostname/printer-name;
for an IPP printer, use ipp://hostname/printers/printer-name; for an HP JetDirect-
compatible network printer, use socket://hostname. Replace hostname with the
name of the host the printer is attached to (the server) or, for a network printer, the
name of the printer. You can specify an IP address instead of hostname. Replace
printer-name with the name of the printer on the server. Give the command lpstat
–p on the server to display the names of all printers on that system. Enter the appro-
priate URI in the text box labeled Device URI. Click Continue.

Next is the Make/Manufacturer page (Figure 15-10). Select and highlight the brand
of printer from the list. Click Continue.

Next the Model/Driver page (Figure 15-11) allows you to choose the model and
specify a driver for the printer. If the printer is PostScript capable but is not listed,

Figure 15-9 Device URI page

Figure 15-10 Make/Manufacturer page

JumpStart II: Configuring a Remote Printer Using the CUPS Web Interface 621

select a PostScript printer such as the Apple LaserWriter 12/640ps. If the printer is
not PostScript capable and is not listed, check whether the printer supports PCL; if
it does, select another, similar PCL printer. If all else fails, determine which listed
printer is most similar to the one you are configuring and specify that printer. You
can also try configuring the printer using system-config-printer (page 614), which
offers a different choice of models.

After you click Add Printer, CUPS briefly displays a message saying that the
printer has been successfully added and then displays the Set Printer Options
page (Figure 15-12). This page allows you to set printer options and configura-
tion information. Browse through the page and make any changes you like,
although frequently you need change nothing. Click one of the Set Printer
Options buttons.

Figure 15-11 Model/Driver page

Figure 15-12 Set Printer Options page

622 Chapter 15 Printing with CUPS

After another brief message, CUPS displays the Printers page (Figure 15-13) show-
ing the new printer. Click Print Test Page to confirm that the new setup works. If
you want to make this printer the default printer, click Set As Default.

The bottom of the Printers page allows you to cancel or move jobs in the print queue.
Figure 15-14 shows this page displaying information about a job the printer is print-
ing. In addition to these tasks, the CUPS Jobs page enables you to reprint jobs.

Traditional UNIX Printing

Before the advent of GUIs and WYSIWYG (page 1069) word processors, UNIX users
would create documents using an editor such as vi and a typesetting markup language
such as TeX or nroff/troff, convert the resulting files to PostScript using an interpreter,
and send the PostScript files to the printer using lpr (BSD) or lp (System V). Ubuntu
Linux implements both BSD and System V command line printing utilities for com-
patibility. However, these utilities are now wrappers around the equivalent functional-
ity in CUPS rather than core components of the printing system. The corresponding
utilities are functionally equivalent; use whichever you prefer (Table 15-2).

The cupsys-bsd package holds the BSD utilities; the cupsys-client package holds the
System V utilities. From the command line, you can print a text, PostScript, or PDF
file using lp:

$ lp memo.txt
request id is MainPrinter-25 (1 file(s))

The preceding command adds memo.txt to the print queue of the default printer as
job 25. When this printer is available, it prints the file. You can specify a printer
using the –d option:

$ lp -d ColorPtr graph.ps
request id is ColorPtr-26 (1 file(s))

Figure 15-13 Printers page

Traditional UNIX Printing 623

The lpr –P option is equivalent to the lp –d option.

Without an argument, lp and lpr send their standard input to the printer:

$ cat memo2.txt | lp
request id is MainPrinter-27 (1 file(s))

The lpq and lpstat commands display information about the print queue:

$ lpstat
MainPrinter-25 zach 13312 Sun Feb 24 18:28:38 2008
ColorPtr-26 zach 75776 Sun Feb 24 18:28:48 2008
MainPrinter-27 zach 8192 Sun Feb 24 18:28:57 2008

Use cancel or lprm to remove jobs from the print queue. Only the owner of a print
job or a user working with root privileges can remove a job.

$ cancel 27
$ lpstat
MainPrinter-25 zach 13312 Sun Feb 24 18:28:38 2008
ColorPtr-26 zach 75776 Sun Feb 24 18:28:48 2008

Give the command sudo cancel –a or sudo lprm – to remove all jobs from the print
queues.

Figure 15-14 Job information in the Printers page

Table 15-2 BSD and System V command line utilities

BSD/SysV Purpose

lpr/lp Sends job(s) to the printer.

lpq/lpstat Displays the status of the print queue.

lprm/cancel Removes job(s) from the print queue.

624 Chapter 15 Printing with CUPS

Configuring Printers

You can use the Web interface or the command line interface to CUPS to manage
printers and queues.

The CUPS Web Interface

CUPS, which was designed for Internet printing, provides a Web interface to config-
ure printers. To connect to this interface, point a Web browser running on the local
system at localhost:631. You must be a member of the shadow group (page 660) to
change the printer configuration using the CUPS Web interface.

Setting Up and Modifying a Printer

“JumpStart II: Configuring a Remote Printer Using the CUPS Web Interface”
(page 618) discusses how to set up a remote printer using CUPS. The procedure for set-
ting up a local printer is similar. The major difference is the second step: specifying the
device that the printer is connected to. Refer to “Specifying a protocol” on page 619.

With the printer attached to the local system and turned on, CUPS generally identifies
the printer, protocol, and device and places the printer in the list of choices in the Device
list on the Device page (Figure 15-15). When you select the identified printer and click
Continue, CUPS skips the Make/Manufacturer page and highlights the model and
driver on the Model/Driver page (Figure 15-11, page 621). Click Add Printer.

If CUPS does not identify the printer, select the port/device it is attached to from the
Device list. After you specify one of these ports/devices, the Web interface fre-
quently skips the Device URI page and displays the Make/Manufacturer page
(Figure 15-10, page 620). If you are setting up a serial printer, you need to specify
characteristics of the printer, including its baud rate. After these steps, the procedure
is the same as explained in JumpStart II.

Figure 15-15 CUPS Device page showing an identified printer in the Device list

Configuring Printers 625

To modify a printer, click the Printers tab near the top of the page and then click the
Modify Printer button adjacent to the printer you want to modify. The Web inter-
face takes you through the same steps as when you are setting up a new printer.

Click the Stop Printer button to pause the printer. Click the Reject Jobs button to
prevent jobs from being added to the print queue.

Jobs

Click the Jobs tab near the top of the page to display the Jobs page (Figure 15-16),
which lists jobs in the print queues. From this page you can hold (pause), release
(unpause), and cancel print jobs. Click Show Complete Jobs to display a list of
recently completed jobs. In some cases, you can reprint completed jobs from this page.

Classes

CUPS allows you to put similar printers into a group called a class. To clients, a
class of printers appears as a single printer. For each class, you must specify a name;
optionally, you can specify a location and description. A printer can belong to more
than one class. CUPS prints jobs sent to a class on the first available printer in the
class. For example, you may be able to divide your print jobs into black-and-white
jobs and color jobs. If more than one printer can fulfill each of these roles, you can
allow users to select a printer manually, or you can define two printer classes
(black-and-white and color) and have users send their jobs to a certain class of
printers.

Figure 15-16 CUPS Jobs page

Plan for the future
tip If you expect to add printers to the network, you may want to configure classes containing the

existing printers when you set up the network. You can then add printers later without having to
change printer configurations on client systems.

626 Chapter 15 Printing with CUPS

To define a class, first click the Administration tab near the top of the page and then
click Add Class. At a minimum, you must enter a name for the class. You may also
enter a location and description. The Members list displays the names of all CUPS
printers and classes. Highlight the printers you want to be members of the class you
are defining; hold SHIFT and click on another printer to highlight more than one
printer. To define a class that includes printers that are not adjacent in the list,
define the class to have a single printer and then modify the class after you create it
to add other printers. To modify existing classes, click Manage Classes in the
Administration tab.

CUPS on the Command Line

In addition to using the Web interface, you can control CUPS and manage print
queues from the command line. This section describes the utilities that enable you
to manage printers and print queues and establish printing quotas.

lpinfo: Displays Available Drivers

PPD files The lpinfo utility provides information about the printer drivers and interfaces
available to CUPS. The –m option displays the list of available PostScript Printer
Definition (PPD) files/drivers.

$ lpinfo -m | head
foomatic:Alps-MD-1000-md2k.ppd Alps MD-1000 Foomatic/md2k
foomatic:Alps-MD-1000-ppmtomd.ppd Alps MD-1000 Foomatic/ppmtomd (recommended)
foomatic:Alps-MD-1300-md1xMono.ppd Alps MD-1300 Foomatic/md1xMono
foomatic:Alps-MD-1300-md2k.ppd Alps MD-1300 Foomatic/md2k
foomatic:Alps-MD-1300-ppmtomd.ppd Alps MD-1300 Foomatic/ppmtomd (recommended)
foomatic:Alps-MD-1500-md1xMono.ppd Alps MD-1500 Foomatic/md1xMono
foomatic:Alps-MD-1500-md2k.ppd Alps MD-1500 Foomatic/md2k
foomatic:Alps-MD-1500-ppmtomd.ppd Alps MD-1500 Foomatic/ppmtomd (recommended)
foomatic:Alps-MD-2000-md2k.ppd Alps MD-2000 Foomatic/md2k
foomatic:Alps-MD-2000-ppmtomd.ppd Alps MD-2000 Foomatic/ppmtomd (recommended)

CUPS uses URIs (page 1067) to identify printer ports by type and location, just
as a Web browser identifies documents by protocol and location. A parallel port
has a URI with the format parallel:/dev/lp0; a remote LPD printer uses the for-
mat lpd://192.168.0.101. With the –v option, lpinfo provides a list of available
connections:

$ lpinfo -v
network socket
network beh
network http
network ipp
network lpd
direct parallel:/dev/lp0
direct scsi
serial serial:/dev/ttyS0?baud=115200
serial serial:/dev/ttyS1?baud=115200

Configuring Printers 627

The –v option to lpinfo does not display every possible network address for the
socket, HTTP, IPP, LPD, and SMB protocols because there are more than 4 billion
of these addresses in the IPv4 address space.

lpadmin: Configures Printers

The lpadmin utility can add and remove printers from the system, modify printer
configurations, and manage printer classes. It has three major options: –d (set the
default printer), –x (remove a printer), and –p (add or modify a printer). The first
two options are simple; examples follow the next section. Each of these three
options takes an argument that is the name of a printer. The name of the printer
must start with a letter and cannot contain SPACEs.

Adding or Modifying a Printer

Add a printer or modify an existing printer by giving a command in the following
format:

$ lpadmin –p printer-name options

where printer-name is the name of the printer and options is a combination of
options from the following list:

–c class Adds the printer to the class class, creating the class if necessary.

–D info The info is a string that describes the printer for users. This string has no meaning
to the system. Enclose info within quotation marks if it contains SPACEs.

–E Enables the printer instructing CUPS to accept jobs into its print queue.

–L loc The loc is a string that physically locates the printer for users (office, building, floor,
and so on). This string has no meaning to the system. Enclose loc within quotation
marks if it contains SPACEs.

–P file The file is the absolute pathname of the PPD file (page 626) that describes the printer.
Use lpinfo –m to display a list of installed PPD files. If you have a manufacturer-
provided PPD file, copy it to /usr/share/ppd/custom.

–r class Removes the printer from the class class. This option removes the class if, after
removing the printer, the class would be empty.

–v URI The URI is the device to which the printer is attached. Use lpinfo –v to list possible
devices.

Example lpadmin Commands

At a minimum, you need to provide a device and a model when you add a printer to
the system. The following command adds an Epson Stylus Color printer to the sys-
tem and enables it for use. This printer is connected locally to the first parallel port
and is named ColorPtr.

$ lpadmin -p ColorPtr -E -v parallel:/dev/lp0 -P /usr/share/ppd/custom/stcolor.ppd.gz

628 Chapter 15 Printing with CUPS

The printer information generated by the preceding command is stored in the
/etc/cups/printers.conf file:

$ sudo cat /etc/cups/printers.conf
Printer configuration file for CUPS v1.2.8
Written by cupsd on 2007-05-29 20:32
<Printer ColorPtr>
Info ColorPtr
DeviceURI parallel:/dev/lp0
State Idle
StateTime 1180495957
Accepting Yes
Shared Yes
JobSheets none none
QuotaPeriod 0
PageLimit 0
KLimit 0
OpPolicy default
ErrorPolicy retry-job
</Printer>

The lpadmin command decompresses and copies the printer driver information from
the /usr/share/ppd/custom/stcolor.ppd.gz file to /etc/cups/ppd. The resulting file is
given the printer’s name: /etc/cups/ppd/ColorPtr.ppd.

You can modify a printer configuration with lpadmin using the same options that
you used to add it. When you specify the name of an existing printer, lpadmin modi-
fies the printer rather than creating a new one.

The next command configures an HP LaserJet-compatible printer with a JetDirect
interface that is connected directly to the LAN at 192.168.1.103 and names this
printer HPLJ. Specifying socket in the protocol part of the URI instructs CUPS to
use the JetDirect protocol, a proprietary protocol developed by Hewlett-Packard for
printers connected directly to a network.

$ lpadmin -p HPLJ -E -v socket://192.168.1.103 -P /usr/share/ppd/custom/laserjet.ppd.gz

The lpstat utility with the –d option displays the name of the default printer:

$ lpstat -d
system default destination: MainPrinter

CUPS automatically makes the first printer you define the default printer. The fol-
lowing command makes HPLJ the default printer:

$ lpadmin -d HPLJ

The following command removes the configuration for the ColorPtr printer:

$ lpadmin -x ColorPtr

Printing Quotas

CUPS provides rudimentary printing quotas. You can define two forms of quotas:
page count and file size. File size quotas are almost meaningless because a small

Configuring Printers 629

PostScript file can take a long time to interpret and can require a lot more ink to
print than a large one. Page quotas are more useful, although their implementation
is flawed. To determine the number of pages in a document, CUPS examines the
PostScript input. If a job is submitted in the printer’s native language, such as PCL,
CUPS bypasses this accounting mechanism. Also, if mpage is used to create a Post-
Script file with multiple pages printed on each sheet, CUPS counts each page in the
original document, rather than each sheet of paper it prints on.

Use the job-quota-period and either job-page-limit or job-k-limit to establish a
quota for each user on a given printer. The job-quota-period option specifies the
number of seconds that the quota remains valid. The following command estab-
lishes a quota of 20 pages per day per user for the printer named HPLJ:

$ lpadmin -p HPLJ -o job-quota-period=86400 -o job-page-limit=20

The job-k-limit option works similarly but defines a file size limit in kilobytes. The
limit is the total number of kilobytes that each user can print during the quota
period. Once a user has exceeded her quota, she will not be allowed to print until
the next quota period.

Managing Print Queues

When a printer is operating normally, it accepts jobs into its print queue and prints them
in the order they are received. You can give the command reject followed by the name
of a printer to cause a printer to not accept jobs into its print queue; give the command
accept to reenable it. You can also use system-config-printer to control the print queue;
refer to “Settings” on page 615.

Sharing CUPS Printers

IPP facilitates remote printing. The Listen directive in the CUPS configuration file,
/etc/cups/cupsd.conf, specifies which IP address and port or which domain socket path
CUPS binds to and accepts requests on. The Listen directive has the following format:

Listen IP:port | path

where IP is the IP address that CUPS accepts connections on, port is the port num-
ber that CUPS listens on for connections on IP, and path is the pathname of the
domain socket CUPS uses to communicate with printers. CUPS typically uses port
631. By default, it binds to localhost so it accepts connections from the loopback
service of the local system only. CUPS uses /var/run/cups/cups.sock, a local domain
socket, to communicate with local printers. It can also use a Port directive to specify
the port number it listens to for HTTP requests.

$ cat /etc/cups/cupsd.conf
...
Only listen for connections from the local machine.
Listen localhost:631
Listen /var/run/cups/cups.sock
...

630 Chapter 15 Printing with CUPS

To allow other systems to connect to the CUPS server on the local system, you must
instruct CUPS to bind to an IP address that the other systems can reach. The follow-
ing directive would be appropriate on a CUPS server running on 192.168.0.12:

Listen 192.168.0.12:631

This directive, when placed after the other Listen directives, would cause CUPS to
listen on IP address 192.168.0.12, port 631. When you change cupsd.conf, you
need to call the cupsys init script to restart the cupsd daemon (page 613).

Some directives in cupsd.conf use the @LOCAL macro, which is internal to CUPS
and specifies the local system: It accepts communication from any address that
resolves to the local system.

Once you restart cupsd, remote systems can print on the local system’s printers using
the IP address and port number specified by the Listen directive. If the server is run-
ning a firewall, you need to allow remote systems to connect through it; see page 613.

Alternatively, you can use CUPS’s access control list to permit only selected
machines to connect to local printers. An access control list is defined inside a
<Location> container (see page 934 for the Apache equivalent). The following
example allows only the system at IP 192.168.1.101 and the local system to print to
the specified printer:

<Location /printers>
Order Allow,Deny
Allow from localhost
Allow from 192.168.1.101
</Location>

The /printers indicates that this container refers to all local printers. Alternatively,
you can control access on a per-printer basis by specifying /printers/printer-name,
where printer-name is the printer name, or by specifying /printers/path.ppd, where
path.ppd is the full pathname of the PPD file (page 626) used by the printer.

The Order Deny,Allow directive allows access by default and denies access only to
clients specified in Deny from directives. Specifying Order Allow,Deny denies print
requests by default and allows requests from specified addresses. You can use
domain names, including wildcards, and IP ranges with either wildcards or net-
masks in Allow from and Deny from directives. These directives work the same way
they do in Apache. For more information refer to “Order” on page 948.

With the Order Deny,Allow directive, Deny from specifies the only IP addresses
CUPS does not accept connections from. When you use the Order Allow,Deny direc-
tive, Allow from specifies the only IP addresses CUPS accepts connections from.

Printing from Windows

This section explains how to use printers on Linux CUPS servers from Windows
machines. CUPS is easier to manage and can be made more secure than using
Samba to print from Windows.

Printing from Windows 631

Printing Using CUPS

Modern versions of Windows (2000 and later) support IPP and, as a result, can
communicate directly with CUPS. To use this feature, you must have CUPS config-
ured on the Linux print server to allow remote IPP printing; you also need to create
a new printer on the Windows system that points to the IP address of the Linux
print server.

First, set up the /etc/cups/cupsd.conf file to allow network printing from a client as
explained under “Sharing CUPS Printers” on page 629. Setting up CUPS to allow
printing from a Windows machine is exactly the same as setting it up to allow printing
from a Linux client system. If necessary, open the firewall as explained on page 613.

From Windows XP, go to Control Panel Printers and Faxes and click Add Printer.
Click Next from the introductory window and select A network printer or a printer
attached to another computer. Click Next. Select Connect to a printer on the Inter-
net or on a home or office network and enter the following information in the text
box labeled URL:

http://hostname:631/printers/printer-name

where hostname is the name or IP address of the Linux CUPS server system and
printer-name is the name of the printer on that system. For example, for the printer
named dog88 on the system named dog at IP address 192.168.0.12, you could enter
http://dog:631/printers/dog88 or http://192.168.0.12:631/printers/dog88. If you
use a hostname, it must be defined in the hosts file on the Windows machine. Win-
dows requests that you specify the manufacturer and model of printer or provide a
driver for the printer. If you supply a printer driver, use the Windows version of the
driver. After Windows copies some files, the printer appears in the Printers and
Faxes window. Right-click the printer and select Set as Default Printer to make it
the default printer. You can specify comments, a location, and other attributes of
the printer by right-clicking the printer and selecting Properties.

Printing Using Samba

This section assumes that Samba (page 823) is installed and working on the Linux
system that controls the printer you want to use from Windows. Samba must be set
up so that the Windows user who will be printing is mapped to a Linux user
(including mapping the Windows guest user to the Linux user nobody). Make sure
these users have Samba passwords. Refer to “Samba Users, User Maps, and Pass-
words” on page 826.

Windows supports printer sharing via SMB, allowing a printer to be shared trans-
parently between Windows systems using the same mechanism as file sharing.
Samba allows Windows users to use printers connected to Linux systems just as
they would use any other shared printers. Because all Linux printers traditionally
appear to be PostScript printers, the Linux print server appears to share a PostScript
printer. Windows does not include a generic PostScript printer driver. Instead, Win-
dows users must select a printer driver for a PostScript printer. The Apple Laser-
Writer 12/640ps driver is a good choice.

When you install Samba, the dpkg postinst script creates a directory named
/var/spool/samba that is owned by the root account and that anyone can read from
and write to. The sticky bit (page 1062) is set for this directory, allowing a Win-
dows user who starts a print job as a Linux user to be able to delete that job, but
denying users the ability to delete the print jobs of other users. Make sure this direc-
tory is in place and has the proper ownership and permissions:

$ ls -ld /var/spool/samba
drwxrwxrwt 2 root root 4096 May 15 12:29 /var/spool/samba

Put the following two lines in the [global] section of the /etc/samba/smb.conf file:

[global]
...
printing = cups
printcap name = cups

The printer’s share is listed in the [printers] section in smb.conf. In the following
example, the path is the path Samba uses as a spool directory and is not a normal
share path. The settings allow anyone, including guest, to use the printer. Setting use
client driver to yes causes Windows systems to use their own drivers. Not setting this
option, or setting it to no, can cause printing from Windows to fail. The [printers]
section in the default smb.conf file has the following entries, which are appropriate
for most setups:

[printers]
 comment = All Printers
 browseable = no
 path = /var/spool/samba
 printable = yes
 public = no
 writable = no
 create mode = 0700

Ideally each user who plans to print should have an account because when multiple
users share the same account (for example, the nobody account), these users can
delete one another’s print jobs.

Printing to Windows

CUPS views a printer on a Windows machine exactly the same way it views any
other printer. The only difference is the URI you need to specify when connecting it.
To configure a printer connected to a Windows machine, go to the Printers page in
the CUPS Web interface and select Add Printer, as you would for a local printer.

When you are asked to select the device, choose Windows Printer via SAMBA.
Enter the URI of the printer in the following format:

smb://windows_system/printer_name

Advanced Exercises 633

where the windows_system can be an IP address or a hostname. Once you have
added the printer, you can use it as you would any other printer.

Chapter Summary

A printing system such as CUPS sets up printers. It also moves print jobs from an
application or the command line through the appropriate filters and into a queue
for a suitable printer and then prints those jobs.

CUPS is a cross-platform print server built around IPP, the Internet Printing Proto-
col. CUPS handles setting up and sending jobs through print queues. The easiest
way to configure printers is via the Printer Configuration window (system-config-
printer). You can also configure CUPS using the Web interface, which you can access
by pointing a Web browser at localhost:631 on the system the printer is connected
to. From the Web interface, you can configure print queues and modify print jobs in
the queues.

You can use the traditional UNIX commands from a command line to send jobs to
a printer (lpr/lp), display a print queue (lpq/lpstat), and remove jobs from a print
queue (lprm/cancel). In addition, CUPS provides the lpinfo and lpadmin utilities so
that you can configure printers from the command line.

CUPS and Samba enable you to print on a Linux printer from a Windows machine,
and vice versa.

Exercises

1. Which commands can you use from the command line to send a file to the
default printer?

2. Which command would you give to cancel all print jobs on the system?

3. Which commands list your outstanding print jobs?

4. What is the purpose of sharing a Linux printer using Samba?

5. Name three printing protocols that CUPS supports. Which is the CUPS
native protocol?

Advanced Exercises

6. Which command lists the installed printer drivers available to CUPS?

7. How would you send a text file to a printer connected to the first parallel
port without using a print queue? Why is doing so not a good idea?

634 Chapter 15 Printing with CUPS

8. Assume you have a USB printer with a manufacturer-supplied PostScript
printer definition file named newprinter.ppd. Which command would you
use to add this printer to the system on the first USB port with the name
USBPrinter?

9. /usr/share/ppd/custom/How would you define a quota that allows each
user to print up to 50 pages per week to the printer named LaserJet?

10. Define a set of access control rules for a <Location> container inside
/etc/cups/cupsd.conf that would allow anyone to print to all printers as
long as they were either on the local system or in the mydomain.com
domain.

635635

16Chapter16Once you have installed Ubuntu Linux, you may want to recon-
figure and build a new Linux kernel. Ubuntu Linux comes with
a prebuilt kernel that simplifies the installation process. How-
ever, this kernel may not be properly configured for all system
features. By configuring and building a new kernel, you can cre-
ate one that is customized for a system and its unique needs. A
customized kernel is typically smaller than a generic one.

Sometimes you do not need to build a new kernel. Instead,
you can dynamically change many things that used to require
building a new kernel. Two ways to make these changes are by
using boot command line parameters (page 63) or by modify-
ing /etc/sysctl.conf, which sysctl uses when the system boots
(page 636).

You can add the same parameters as you use on the boot com-
mand line to a kernel command in /boot/grub/menu.lst. For
example, acpi=off prevents acpid (the advanced configuration
and power interface daemon) from starting.

In This Chapter

Downloading the Kernel
Source Code. 637

Configuring and Compiling the
Linux Kernel 639

Installing the Kernel, Modules,
and Associated Files 646

grub: The Linux Boot Loader 647

dmesg: Displays Kernel
Messages 654

16

Building a Linux

Kernel

636 Chapter 16 Building a Linux Kernel

sysctl The sysctl utility modifies kernel parameters while the system is running. This utility
takes advantage of the facilities of /proc/sys, which defines the parameters that
sysctl can modify.

The command sysctl –a displays a complete list of sysctl parameters. An example of
displaying and changing the domainname kernel parameter follows. The quotation
marks are not required in this example, but you must quote any characters that
would otherwise be interpreted by the shell.

$ sudo /sbin/sysctl kernel.domainname
kernel.domainname = tcorp.com
$ sudo /sbin/sysctl -w kernel.domainname="testing.com"
kernel.domainname = testing.com
$ sudo /sbin/sysctl kernel.domainname
kernel.domainname = testing.com

Before you can start building a new kernel, you must download, install, and clean
the source code. You also need to build a configuration file that describes the new
kernel you want to build. This chapter describes the steps involved in completing
these tasks.

Prerequisites

Install the following packages:

• linux-source (the latest released Ubuntu kernel source code; not needed if
you use git to download the code)

• build-essential (metapackage; includes the packages required to compile
the code)

• fakeroot, kernel-package (kernel-specific)

• git-core (to use git to download the kernel source code)

• ncurses-dev (to configure the kernel using make menuconfig)

• libglade2-dev (to configure the kernel using make gconfig)

• module-assistant, debhelper (to create modules)

Have the installation CD/DVD handy when you build a new kernel
caution When you build a new Linux kernel to install a new version or to change the configuration of the

existing version, make sure you have the installation CD/DVD handy. This disk allows you to
reboot the system, even when you have destroyed the system software completely. Having this
CD/DVD available can mean the difference between momentary panic and a full-scale nervous
breakdown.

Downloading the Kernel Source Code 637

Downloading the Kernel Source Code

This section describes two ways to download kernel source code on the local sys-
tem: aptitude (or Synaptic, page 121) and git. If you want to download code that has
not been customized (patched) by Ubuntu, visit kernel.org or see the section on git.

aptitude: Downloading and Installing the

Kernel Source Code

The easiest way to download and install the updated kernel source code for the
most recently released version of the Ubuntu kernel is to use aptitude. The following
commands make sure that the package index is up-to-date and download the linux-
source package. The dpkg postinst script puts the compressed source code in
/usr/src/linux-source*:

$ sudo aptitude update
...
$ sudo aptitude install linux-source
...
$ ls -l /usr/src/linux-source*
-rw-r--r-- 1 root root 45202339 Sep 7 00:37 /usr/src/linux-source-2.6.22.tar.bz2

Because /usr/src is associated with the src group, if you are a member of this group
(page 558), you can extract and build kernels in the /usr/src directory. Otherwise,
you can unpack the kernel in any directory you have write access to.

git: Obtaining the Latest Kernel Source Code

The git utility (GNU interactive tools, git.or.cz) can download the latest versions of
the source code for several different kernels and can keep that source code up-to-
date. Give the following command to install git:

$ sudo aptitude install git-core

Do not work with root privileges

caution You do not need to—nor should you—work as a user with root privileges for any portion of con-
figuring or building the kernel except for installation (the last step). The kernel README file says,
“Don’t take the name of root in vain.” As long as you are a member of the group src, you can down-
load, configure, and compile the kernel in a directory under /usr/src without working with root
privileges.

Install the git-core Package, Not the git Package

tip Make sure to install the git-core package and not the git package. The git package is not useful
for downloading kernel source code.

638 Chapter 16 Building a Linux Kernel

The following command uses git to download a copy of the development (not the
released) kernel into the ubuntu-2.6 subdirectory of the working directory. As a
member of the src group, you can work in the /usr/src directory. Otherwise, you
can work in any directory you have write access to. You can and should work as a
nonprivileged user.

$ git-clone git://kernel.ubuntu.com/ubuntu/ubuntu-gutsy.git ubuntu-2.6
Initialized empty Git repository in /usr/src/ubuntu-2.6/.git/
remote: Generating pack...
remote: Done counting 509670 objects.
remote: Deltifying 509670 objects.
remote: 100% (509670/509670) done
Indexing 509670 objects...
remote: Total 509670, written 509670 (delta 401907), reused 492656 (delta 385717)
 100% (509670/509670) done
Resolving 401907 deltas...
 100% (401907/401907) done
Checking 22623 files out...
 100% (22623/22623) done

See kernel.ubuntu.com/git and kernel.org/git for a list of Ubuntu kernels you can
download. Substitute the URL of the kernel you want to download for the URL in
the preceding command and specify the name of an appropriate directory to hold
the files you download. For example, the following command downloads the latest
Feisty kernel into the feisty directory in the working directory:

$ git-clone git://kernel.ubuntu.com/ubuntu/ubuntu-feisty.git feisty

Once you have downloaded the kernel, cd to the directory that holds the code and
give the following command to update the source code to match that available at
the URL you specified in the git-clone command:

$ git pull
Already up-to-date.

The files you just downloaded should be up-to-date, as shown in the example. Give
this command anytime you want to synchronize the code in the working directory
with the latest source code at the URL.

Read the Documentation

The kernel package includes the latest documentation, some of which may not be
available in other documents. You may wish to review the README file in the top
level of the kernel source directory and the relevant files in the Documentation subdi-
rectory. In addition, there is a lot of information in the /usr/share/doc/kernel-package
directory. Read the Linux Kernel-HOWTO for a detailed, somewhat dated, generic
guide to installing and configuring the Linux kernel.

Configuring and Compiling the Linux Kernel 639

Configuring and Compiling the Linux Kernel

This section describes how to configure the kernel, how to compile it, and how to
download and compile kernel modules.

.config: Configures the Kernel

Before you can compile the code and create a Linux kernel, you must decide and
specify which features you want the kernel to support. You can configure the ker-
nel to support most features in one of two ways: by building the feature into the
kernel or by specifying the feature as a loadable kernel module (page 643), which
is loaded into the kernel only as needed. In deciding which method to use, you
must weigh the size of the kernel against the time it takes to load a module. Make
the kernel as small as possible while minimizing how often modules have to be
loaded. Do not make the SCSI driver modular unless you have a reason to do so.

The .config file in the directory you downloaded the source code in controls which
features the new kernel will support and how it will support them. “Customizing a
Kernel” (page 640) explains how to create a default version of this file if it does not
exist and how to edit the file if it does exist.

Replacing a Custom Kernel

If you have already configured a custom kernel, you may want to replace it with a
similarly configured newer kernel. However, each kernel potentially has new config-
uration options, so it is poor practice to use an old .config file for compiling a new
kernel. This section explains how to upgrade an existing .config file so it includes
options that are new to the new kernel and maintains the existing configuration for
the old options.

Work in the directory you downloaded or extracted the source code to. The system
keeps a copy of the configuration file for the kernel the local system is running in
/boot. The following command copies this file to .config in the working directory:

$ cp /boot/config-$(uname -r) .config

In this command, the shell executes uname –r and replaces $(uname –r) with the
output of the command, which is the name of the release of the kernel running on
the local system. For more information refer to “Command Substitution” on
page 344.

Next give the command make oldconfig to patch the .config file with options from
the new kernel that are not in the old kernel. This command displays each kernel
option that is the same in the new and old kernels and automatically sets the state of
the option in the new kernel the same way it was set in the old kernel. It stops when
it gets to an option that is in the new kernel but not in the old kernel. It then displays

640 Chapter 16 Building a Linux Kernel

a prompt, which is similar to [N/y/?] (NEW), showing possible responses and indi-
cating this option is new. The prompt shows the default response as an uppercase let-
ter; you can type this letter (uppercase or lowercase) and press RETURN, or just press
RETURN to select this response. In the example, the Tickless System option is new and
the default response is Y for yes, include the option in the new kernel. To select a
nondefault response (n means no, do not include the option and m means include
the option as a module), you must type the letter and press RETURN. Enter ? followed
by RETURN to display more information about the option.

$ make oldconfig
scripts/kconfig/conf -o arch/i386/Kconfig
*
* Linux Kernel Configuration
*
*
* Code maturity level options
*
Prompt for development and/or incomplete code/drivers (EXPERIMENTAL) [Y/n/?] y
*
* General setup
*
Local version - append to kernel release (LOCALVERSION) []
Automatically append version information to version string (LOCALVERSION_AUTO) [N/y/?] n
...
*
* Processor type and features
*
Tickless System (Dynamic Ticks) (NO_HZ) [Y/n/?] (NEW) ? ?

This option enables a tickless system: timer interrupts will
only trigger on an as-needed basis both when the system is
busy and when the system is idle.

Tickless System (Dynamic Ticks) (NO_HZ) [Y/n/?] (NEW) ? RETURN
High Resolution Timer Support (HIGH_RES_TIMERS) [Y/n/?] y
Symmetric multi-processing support (SMP) [Y/n/?] y
Subarchitecture Type
> 1. PC-compatible (X86_PC)
 2. AMD Elan (X86_ELAN)
...
#
configuration written to .config
#

Customizing a Kernel

You can use one of three standard commands to build the .config file that config-
ures a Linux kernel:

$ make config
$ make menuconfig
$ make gconfig

Configuring and Compiling the Linux Kernel 641

See “Prerequisites” on page 636 for a list of packages required to run all but the
first of these commands.

If a .config file does not exist in the working directory, each of these commands
except the first sets up a .config file that matches the kernel the local system is run-
ning and then allows you to modify that configuration. The commands can set up
this .config file only if the configuration file for the locally running kernel is in
/boot/config-$(uname –r). See the preceding section if you want to build a new ker-
nel with a configuration similar to that of an existing kernel.

The make config command is the simplest of the three commands, uses a textual
interface, and does not require any additional software. It is, however, the most
unforgiving and hardest to use of the configuration interfaces. The make menuconfig
command uses a pseudographical interface and also displays a textual interface. The
make gconfig command uses GTK+ (www.gtk.org) and uses a graphical interface.

Each command asks the same questions and produces the same result, given the
same responses. The first and second commands work in character-based environ-
ments; the third command works in graphical environments. For many administra-
tors working with a GUI, the third method is the easiest to use.

The make gconfig command displays the Linux Kernel Configuration window,
which you can view in three configurations: single, split, or full view. Choose a view
by clicking one of the three icons to the right of the floppy diskette on the toolbar.
Figure 16-1 shows the split view. In this view, the left frame shows the options and
the top-right view lists the features for each option. The bottom-right view describes
the highlighted option or feature. Figure 16-2 on the next page shows the full view.

In any view, you can click the boxes and circles next to the choices and subchoices. An
empty box/circle indicates the feature is disabled, a tick indicates it is to be included in
the kernel, and a dot means it is to be compiled as a module. With a choice or sub-
choice highlighted, you can also press M for module, N for not included, and Y for

Figure 16-1 The Linux Kernel Configuration window, split view

www.gtk.org

642 Chapter 16 Building a Linux Kernel

compiled into the kernel. Select Menubar: Options Show All Options to display all
options and features.

Go through the options and mark the features as you would like them to be config-
ured in the new kernel. At any time during the configuration process, you can store
the currently defined configuration to a file, load a configuration from a file, or exit
with or without saving your changes. See the selections in Menubar: File. When you
are done, select Menubar: File Save and close the window.

Cleaning the Source Tree

After generating a .config file, but before compiling or recompiling the kernel, make
a copy of the .config file (perhaps copy it to your home directory) and then purge
the source tree of all potentially stale *.o files by giving the following command:

$ make-kpkg clean
exec make -f /usr/share/kernel-package/ruleset/minimal.mk clean
====== making target minimal_clean [new prereqs:]======
Cleaning.
test ! -f .config || cp -pf .config config.precious
test ! -e stamp-building || rm -f stamp-building
test ! -f Makefile || \
 make ARCH=i386 distclean
make[1]: Entering directory `/usr/src/ubuntu-2.6'
 CLEAN scripts/basic
 CLEAN scripts/kconfig
 CLEAN /usr/src/ubuntu-2.6/debian/
 CLEAN include/config
 CLEAN .config .config.old include/linux/autoconf.h
make[1]: Leaving directory `/usr/src/ubuntu-2.6'
test ! -f config.precious || mv -f config.precious .config
rm -f modules/modversions.h modules/ksyms.ver conf.vars scripts/cramfs/cramfsck
scripts/cramfs/mkcramfs applied_patches stamp-build stamp-configure stamp-image stamp-
headers stamp-src stamp-diff stamp-doc stamp-manual stamp-patch stamp-buildpackage stamp-
debian

Figure 16-2 The Linux Kernel Configuration window, full view

Configuring and Compiling the Linux Kernel 643

This command ensures that make correctly applies any numbering scheme you use
when you compile the kernel. Continue to work as a nonprivileged user.

Compiling a Kernel Image File and Loadable Modules

See “Prerequisites” on page 636 for a list of packages that must be installed to com-
pile the source code. Give the following command to compile the kernel and modules.
This command generates a .deb file in the parent of the working directory.

$ make-kpkg --initrd --rootcmd fakeroot --append-to-version $(date +%s) kernel_image
exec make -f /usr/share/kernel-package/ruleset/minimal.mk debian
APPEND_TO_VERSION=1189554076 INITRD=YES ROOT_CMD=fakeroot
====== making target minimal_debian [new prereqs:]======
This is kernel package version .
test -d debian || mkdir debian
test ! -e stamp-building || rm -f stamp-building
...
This is kernel package version 11.001.

$ ls ../*deb
../linux-image-2.6.22.61189554076_2.6.22.61189554076-10.00.Custom_i386.deb

The ––append-to-version option allows you to specify a string that uniquely identi-
fies the kernel you are building. This string also helps prevent overwriting existing
kernels. You can specify any string you like following this option, using characters
from the set of lowercase letters, numbers, – (minus), + (plus), and . (period). The
value you specify is placed at the end of the kernel name and release number. You
can make note of patches applied to the kernel in this string to help developers track
bugs. The preceding example uses command substitution (page 344) to place the
number of seconds since the UNIX epoch in the name of the kernel, making easy to
tell which of several kernels is newest.

Using Loadable Kernel Modules

A loadable kernel module (page 1045) (sometimes called a module or loadable mod-
ule) is an object file—part of the kernel—that is linked into the kernel at runtime.
Modules can be inserted into and removed from a running kernel at almost any time
(except when a module is being used). This ability gives the kernel the flexibility to
be as small as possible at any given time. Modules are a good way to code some ker-
nel features, including drivers that are not used continually (such as a tape driver).
Module filenames end in .ko and are stored in subdirectories in /lib/modules. Under
Ubuntu, kernel modules are compiled along with the kernel as explained in the pre-
ceding section.

Finding Nonstandard Modules

Many drivers that are not in the main source tree or not free are supplied as

*-source packages. You can use aptitude to display a list of available *-source pack-
ages. The following example first updates APT’s cache, then displays a list of

*-source packages, and finally displays a list of packages that pertain to NVIDIA.

644 Chapter 16 Building a Linux Kernel

The dollar sign at the end of the search string (source$) ensures that the string
matches only the last part of a package name.

$ sudo aptitude update
$ aptitude search source$
p acl2-books-source - A Computational Logic for Applicative Comm
p acl2-infix-source - A Computational Logic for Applicative Comm
p acl2-source - A Computational Logic for Applicative Comm
p alsa-source - ALSA driver sources
p apparmor-modules-source - Source for the AppArmor LSM modules
...
$ aptitude search source$ | grep -i nvidia
p nvidia-kernel-source - NVIDIA binary kernel module source
p nvidia-legacy-kernel-source - NVIDIA binary 'legacy' kernel module sourc
p nvidia-new-kernel-source - NVIDIA binary 'new' kernel module source

module-assistant: Downloading, Compiling, and

Installing Nonstandard Modules

Once you determine its name, you need to download and install the module source
package. Then you need to compile, build, and install the Debian module package
that corresponds to the source package. Check the prerequisites listed on page 636
before starting this process. The following command uses module-assistant to per-
form these steps with the nvidia-kernel-source package:

$ module-assistant --text-mode auto-install nvidia-kernel

The module-assistant utility calls sudo to run apt-get and dpkg and will fail if you do
not have write permission to /usr/src (i.e., if you are not in the src group); sudo may
prompt you for your password. You must be a member of the admin group so
module-assistant can call sudo successfully. If you do not use the ––text-mode
option, module-assistant presents a pseudographical interface that requires input.

If you run into problems, you may want to call module-assistant to perform each of
the steps in turn. You must run the module-assistant prepare command once before
running other module-assistant commands (except auto-install). The following com-
mands use m-a, a link to module-assistant, and –t in place of ––text-mode:

$ m-a -t prepare
$ m-a -t get nvidia-kernel
$ m-a -t build nvidia-kernel
$ m-a -t install nvidia-kernel

The format of a module-assistant command is as follows:

module-assistant command [pkg-list]

where command is a command from the following list and pkg-list is a list of one or
more SPACE-separated module source packages. You do not need to include the

Configuring and Compiling the Linux Kernel 645

–source part of the package name when working with module-assistant. The prepare
command does not accept a pkg-list; all other commands require it. See the module-
assistant man page for a list of options, more commands, and more information.

auto-install pkg-list
Combines the prepare, get, build, and install commands and processes pkg-list.
Abbreviate this command as a-i.

build pkg-list Builds pkg-list. Error messages go to /var/cache/modass.

get pkg-list Downloads and installs the source code for pkg-list.

install pkg-list Installs pkg-list. Without pkg-list, installs the last package you built for the kernel
running on the local system.

list pkg-list With arguments, lists details about pkg-list. Without arguments, lists all known
packages. Abbreviate this command as la (list available).

list-installed Lists details about installed packages. Abbreviate this command as li.

prepare Determines the name of the kernel-header package, installs it and the build-essential
package as needed, and creates the /usr/src/linux symbolic link. With the –l option,
this command uses the kernel version you specify. Without this option, it uses the
version of the kernel running on the local system. You must run this command
before you run any other module-assistant commands.

Loading a Module

After you install a module with module-assistant, you must load it to make it avail-
able to the running kernel. Table 16-1 lists some of the tools available to help you
work with modules. Refer to the corresponding man pages for options and more
information.

Table 16-1 Tools for working with modules

Tool/utility Function

depmod Works with dependencies for modules.

insmod Loads modules in a running kernel.

lsmod Lists information about all loaded modules.

modinfo Lists information about a module.

modprobe Loads, unloads, and reports on modules. When it loads a module, it also loads
dependencies.

rmmod Unloads modules from a running kernel.

646 Chapter 16 Building a Linux Kernel

Installing the Kernel, Modules, and

Associated Files

The next step is to copy the compiled kernel, modules, and associated files to the
appropriate directories, usually /boot and a subdirectory of /lib/modules. When
you have a partition mounted at /boot, the files are kept in the root of this partition
(/boot). Because you have created a deb package, installing these files is quite easy.

The following message may be displayed during the execution of dpkg as described
below:

find: /lib/firmware/2.6.22.61189554076: No such file or directory

If this message appears, change directories to /lib/firmware and create a symbolic
link between the latest 2.6.*-generic directory and the directory listed in the error
message. For example:

$ cd /lib/firmware
$ ls -l
drwxr-xr-x 4 root root 4096 Sep 3 15:23 2.6.22-10-generic
drwxr-xr-x 4 root root 4096 Sep 8 20:14 2.6.22-11-generic
$ sudo ln -s 2.6.22-11-generic 2.6.22.61189554076

When you repeat the dpkg command (below), it displays a warning message ending
with Stop install since the kernel-image is already installed? Respond with No and
the installation should continue without a problem.

The following commands show how to install the new kernel files in the proper
directories:

$ cd ..
$ sudo dpkg -i linux-image-2.6.22.61189554076_2.6.22.61189554076-10.00.Custom_i386.deb
(Reading database ... 120137 files and directories currently installed.)
Done.
Unpacking replacement linux-image-2.6.22.61189554076 ...
Running postrm hook script /sbin/update-grub.
Searching for GRUB installation directory ... found: /boot/grub
Searching for default file ... found: /boot/grub/default
Testing for an existing GRUB menu.lst file ... found: /boot/grub/menu.lst
Searching for splash image ... none found, skipping ...
Found kernel: /boot/vmlinuz-2.6.22.61189554076
Found kernel: /boot/vmlinuz-2.6.22-11-generic
Found kernel: /boot/vmlinuz-2.6.22-10-generic
Found kernel: /boot/memtest86+.bin
Updating /boot/grub/menu.lst ... done

Setting up linux-image-2.6.22.61189554076 (2.6.22.61189554076-10.00.Custom) ...
Running depmod.
Finding valid ramdisk creators.
Using mkinitramfs-kpkg to build the ramdisk.
Running postinst hook script update-grub.

grub: The Linux Boot Loader 647

Searching for GRUB installation directory ... found: /boot/grub
Searching for default file ... found: /boot/grub/default
Testing for an existing GRUB menu.lst file ... found: /boot/grub/menu.lst
Searching for splash image ... none found, skipping ...
Found kernel: /boot/vmlinuz-2.6.22.61189554076
Found kernel: /boot/vmlinuz-2.6.22-11-generic
Found kernel: /boot/vmlinuz-2.6.22-10-generic
Found kernel: /boot/memtest86+.bin
Updating /boot/grub/menu.lst ... done

Installing the kernel in this manner updates the menu.lst grub configuration file to
include the new kernel. The grub bootloader is covered below.

Rebooting

Reboot the system by selecting Main menu: System Quit and then clicking
Restart. If you are working at the console, press CONTROL-ALT-DEL. You can also
give a reboot command from the console, a character-based terminal, or a termi-
nal emulator.

grub: The Linux Boot Loader

A boot loader is a very small program that the bootstrap (page 1026) process uses
as it brings a computer from off or reset to a fully functional state. The boot loader
frequently resides on the starting sectors of a hard disk called the master boot
record (MBR).

BIOS The BIOS (page 1025), which is stored in an EEPROM (page 1035) on the system’s
motherboard, gains control of a system when you turn on or reset the computer.
After testing the hardware, the BIOS transfers control to the MBR, which usually
passes control to the partition boot record. This transfer of control starts the boot
loader, which is responsible for locating the operating system kernel (kept in the
/boot directory), loading that kernel into memory, and starting it running. The
/boot directory, which may be mounted on a separate partition, must be present for
the system to boot Linux. Refer to “Booting the System” on page 511 for more
information on what happens from this point forward.

/boot You can place the /boot directory on a very small filesystem that is located near the
beginning of the hard drive, where the BIOS can access it. With this setup, the root
(/) filesystem can be anywhere on any hard drive that Linux can access and that
perhaps the BIOS cannot. If you are using grub (discussed next), make the filesystem
that holds the /boot directory an ext2 filesystem.

grub The name grub stands for Grand Unified Boot loader. A product of the GNU
project, the grub loader conforms to the multiboot specification (page 1048), which
allows it to load many free operating systems directly as well as to chain load

648 Chapter 16 Building a Linux Kernel

(page 1028) proprietary operating systems. The grub loader can recognize various
types of filesystems and kernel executable formats, allowing it to load an arbitrary
operating system. You must specify the kernel’s filename and location (drive and
partition) so grub knows where to find the kernel. You can pass this information to
grub via either the command line or the menu. When you boot the system, grub can
display a menu of choices that is generated by the /boot/grub/menu.lst file (next).
At this point you can modify a menu selection, choose which operating system or
kernel to boot, or do nothing and allow grub to boot the default system.

When you install grub at the time you install Linux, the installation program config-
ures grub automatically. See the grub info page, www.gnu.org/software/grub, and
www.gnu.org/software/grub/manual/grub.html for more information on grub.

menu.lst: Configures grub

The /boot/grub/menu.lst file is the default grub configuration file. This file is a grub
shell script that holds grub commands that tell grub which kernel and associated files
and which options to use when it boots the system. It can display a menu of kernels
for you to chose from when the system boots.

As generated by update-grub (which is run when you install Ubuntu or install or
upgrade a kernel using APT; see page 651), menu.lst comprises three sections:

• The file starts with many comments and a few interspersed global com-
mands such as timeout, which controls how long grub waits for you to
respond to its prompt before automatically booting the default kernel.

• It continues with the Automagic Kernels List, which is divided into two
sections. The first section holds default options (directives) that update-
grub uses to configure menu.lst (page 651). (The menu.lst file holds direc-
tives that control the generation of a replacement menu.lst file.)

• The second part of the Automagic Kernels List holds update-grub-
generated specifications for the grub boot-time menu (page 512). Each
boot-time menu entry (boot specification) starts with a title keyword,
which is followed by several lines that instruct grub which files to load and
which options to use when you choose that menu entry to boot the system.

Following is a single menu entry from a menu.lst file. Following the title, the root
command tells grub which device the /boot directory is located on (hd0,0 means
hard disk drive 0, partition 0, typically hda1). Next the kernel command specifies
the name of the file that holds the kernel that grub is to boot. The grub loader passes
the arguments following this filename to the kernel. The root= argument tells the
kernel which partition the root filesystem (/) is mounted on. This partition is usu-
ally initially mounted in readonly (ro) mode and is remounted in read-write mode
later, after being checked. The noapic option, which turns off the advanced pro-
grammable interrupt controllers, is required by the system this kernel is running on
(you may not need to use this option). The initrd (initial RAM disk; page 1056)

www.gnu.org/software/grub
www.gnu.org/software/grub/manual/grub.html

grub: The Linux Boot Loader 649

command specifies the name of the file that holds the initial RAM disk image. The
grub boot loader loads this image and mounts it as the root filesystem as the first
step in booting Linux. The savedefault command comes into play when the system
boots and you choose a grub menu entry other than the default. If that entry
includes a savedefault command, the menu entry becomes the default entry the next
time the system boots. The boot command tells grub to boot the system and is not
normally required.

title Ubuntu, kernel 2.6.17.14-ubuntu13.00
root (hd0,0)
kernel /vmlinuz-2.6.17.14-ubuntu13.00 root=/dev/sda2 ro noapic
initrd /initrd.img-2.6.17.14-ubuntu13.00
savedefault
boot

The menu.lst file in the next example is from a system that had its kernel replaced
(there are two versions of vmlinuz and initrd). This system has a separate boot parti-
tion or directory, as do most systems, so all kernel and initrd image paths are relative
to /boot.

The menu.lst file that update-grub configures when you install Ubuntu Linux starts
with comments that explain many of the commands you can use in the file. Most of
the comments have been removed from the following file. The first of the global
commands, default, specifies the ordinal number of the default menu entry. Menu
entries are numbered starting with 0. Although this number does not change, the
default boot specification changes when you select a boot specification that includes
a savedefault command (as explained earlier). The timeout command specifies the
number of seconds that grub waits after it has prompted you for a boot specification
before it automatically boots the system using the default boot specification. When
you specify hiddenmenu, grub boots the default entry and does not display its menu
unless you press ESCAPE while the timeout counter is ticking down. This option is
commented out in the following listing, which causes grub to display its menu. The
color command causes grub to display its menu in color.

$ cat /boot/grub/menu.lst
default 0
timeout 6
#hiddenmenu
color cyan/blue white/blue

BEGIN AUTOMAGIC KERNELS LIST

title Ubuntu, kernel 2.6.17.14-ubuntu13.00
root (hd0,0)
kernel /vmlinuz-2.6.17.14-ubuntu13.00 root=/dev/sda2 ro noapic
initrd /initrd.img-2.6.17.14-ubuntu13.00
savedefault
boot

650 Chapter 16 Building a Linux Kernel

title Ubuntu, kernel 2.6.17.14-ubuntu13.00 (recovery mode)
root (hd0,0)
kernel /vmlinuz-2.6.17.14-ubuntu13.00 root=/dev/sda2 ro noapic single
initrd /initrd.img-2.6.17.14-ubuntu13.00
boot

title Ubuntu, kernel 2.6.17-10-generic
root (hd0,0)
kernel /vmlinuz-2.6.17-10-generic root=/dev/sda2 ro quiet splash noapic
initrd /initrd.img-2.6.17-10-generic
quiet
savedefault
boot

title Ubuntu, kernel 2.6.17-10-generic (recovery mode)
root (hd0,0)
kernel /vmlinuz-2.6.17-10-generic root=/dev/sda2 ro single
initrd /initrd.img-2.6.17-10-generic
boot

title Ubuntu, memtest86+
root (hd0,0)
kernel /memtest86+.bin
quiet
boot

END DEBIAN AUTOMAGIC KERNELS LIST

Each menu entry/boot specification in the menu.lst file, called a stanza, starts with a
title command. If you do not specify hiddenmenu, or if you press ESCAPE while the
timeout counter is ticking down, grub displays a menu of these title strings and
allows you to a select one.

The preceding menu.lst file includes five boot specifications: The first, numbered 0,
is for the 2.6.17.14-ubuntu13.00 kernel; the second, numbered 1, is for the same
kernel brought up in recovery (single-user) mode. The next two entries are for
generic kernels—those installed when Ubuntu was installed. The final entry is for
memtest86 (page 62) and allows you to run this memory test utility directly from
the grub menu.

The menu entries that bring the system up in multiuser mode have a few more
entries than those that bring the system up in recovery mode. The quiet option fol-
lowing the kernel command causes the kernel to produce less output so the user can
more easily tell what is happening. The splash option causes grub to display the
Ubuntu logo as it boots the system. The single option in the recovery mode entries
brings the system up in recovery (single-user) mode.

Make sure that when you install a new kernel manually, its title line is different
from the other title lines in menu.lst.

You must add a kernel that is not managed by update-grub before or after the
Automagic Kernels List section of menu.lst or update-grub will replace it next time

grub: The Linux Boot Loader 651

update-grub runs. The Automagic Kernels List section is delimited with the follow-
ing comments: BEGIN AUTOMAGIC KERNELS LIST and END DEBIAN
AUTOMAGIC KERNELS LIST.

update-grub: Updates the menu.lst file

The update-grub utility updates the /boot/grub/menu.lst file if the file exists; other-
wise, update-grub creates this file. This utility first looks for all files in the /boot
directory whose names start with the string vmlinuz– and assumes that each of these
files holds a kernel. If the memtest86 directive (page 653) is set to true, it also looks
for a file that holds that utility. It creates a menu entry (boot specification) in
menu.lst for each kernel it finds (and optionally for memtest86). It also adds an initrd
(initial RAM disk) line to menu.lst for each file in /boot whose name starts with the
string initrd– and whose version number matches one of the kernel files it found. For
example, if update-grub finds the kernel file named vmlinuz-2.6.17-11-generic in
/boot and then finds initrd.img-2.6.17-11-generic, it creates an initrd line in
menu.lst for that RAM disk image file.

After update-grub runs for the first time, such as when you install Ubuntu, and cre-
ates a menu.lst file, you can edit menu.lst. The previous section discussed some of
the options, located near the beginning of menu.lst, that you can edit. This section
discusses the portion of this file that starts and ends with the following comments:

BEGIN AUTOMAGIC KERNELS LIST
lines between the AUTOMAGIC KERNELS LIST markers will be modified
by the debian update-grub script except for the default options below
...
End Default Options

The update-grub utility uses the directives in this part of menu.lst to configure
menu.lst when it updates this file. This part of the file is well commented; comments
begin with two pound signs (##). Directives begin with one pound sign (#). This sec-
tion of the chapter discusses the directives you are most likely to want to change.
Following is an example of three comments followed by one directive:

should update-grub create memtest86 boot option
e.g. memtest86=true
memtest86=false
memtest86=true

The directive memtest86=true tells update-grub to include in menu.lst an entry to
run a memory test (memtest86) instead of booting a kernel. If you do not want
update-grub to include a memory test entry, change the true in the last line to false:

memtest86=false

Do not remove the pound sign from the beginning of the line because a single
pound sign indicates a line that holds a directive. (As mentioned earlier, comment
lines start with two pound signs.)

652 Chapter 16 Building a Linux Kernel

When you run update-grub, it updates the menu.lst file based on the kernels in the
/boot directory and the directives in the Automagic Kernels List. In the following
example, update-grub finds three kernels and the memtest86 utility in /boot:

$ sudo update-grub
Searching for GRUB installation directory ... found: /boot/grub
Testing for an existing GRUB menu.lst file ... found: /boot/grub/menu.lst
Searching for splash image ... none found, skipping ...
Found kernel: /boot/vmlinuz-2.6.20-15-generic
Found kernel: /boot/vmlinuz-2.6.20-13-generic
Found kernel: /boot/vmlinuz-2.6.20-12-generic
Found kernel: /boot/memtest86+.bin
Updating /boot/grub/menu.lst ... done

List of Directives

The following directives can appear within the Automagic Kernels List section of
menu.lst.

alternative=true|false
When set to true (default), causes update-grub to create alternative stanzas for each
kernel. This option works in conjunction with altoption.

altoption=(string) options
Specifies information that update-grub provides in alternative stanzas: string, which
must be enclosed within parentheses, is appended to the title line, and options is a
SPACE-separated list of options that are appended to the kernel line. This option has
meaning only if alternatives is set to true. The default value of (recovery mode) sin-
gle provides recovery mode menu entries for each kernel. See kopt and defoptions
for more information on options.

defoptions=options
The options is a string that update-grub appends to the kernel line in the default
stanzas but not in the alternative stanzas. See kopt and altoption for more informa-
tion on options.

groot=(devX,Y) Specifies the default device that update-grub places in the root command of each
stanza. This device holds the /boot directory that contains the kernel file. This
directive starts numbering partitions at 0, while in most other situations partitions
are numbered starting at 1. For example, groot=(hd0,0) would generate the line
root (hd0,0), specifying that the /boot directory is located on first hard disk, first
partition (hard disk drive 0, partition 1)—typically sda1. The string (hd1,4) refers
to the second hard disk, first logical partition (logical partitions usually start at 5,
even if there are fewer than four primary partitions; see page 31).

howmany=num |all
The num specifies the maximum number of kernels update-grub creates stanzas for.
Does not count alternative stanzas. Setting howmany to all includes all kernels.

kopt=root=dev options
Specifies the part of the kernel command of each stanza that tells the kernel the
location of the root device (/). The dev can be the device name of a partition or a

grub: The Linux Boot Loader 653

UUID (page 576), which the following example uses. The comments in the example
explain how to specify kernel-specific devices and options. The options, such as ro
(readonly) or acip=off (disables ACIP), is a SPACE-separated list that grub passes to
the kernel in all stanzas. The options are the same as the parameters you can specify
on the boot command line (page 63). See also defoptions and altoption.

default kernel options for automagic boot options
If you want special options for specific kernels use kopt_x_y_z
where x.y.z is kernel version. Minor versions can be omitted.
e.g. kopt=root=/dev/hda1 ro
kopt_2_6_8=root=/dev/hdc1 ro
kopt_2_6_8_2_686=root=/dev/hdc2 ro
kopt=root=UUID=46f9dd87-4a2c-45f5-9177-3327567da56e ro

memtest86=true |false
When set to true (default), creates a stanza that calls the memory testing program
memtest86, instead of booting a kernel.

updatedefaultentry=true|false
When set to false (default), update-grub sets the default line in menu.lst so that it
always specifies the newest kernel. As a result, grub automatically boots the newest
kernel by default. When set to true, update-grub sets the default line in menu.lst so
that it always specifies the same kernel, even when it adds newer kernels to menu.lst.

grub-install: Installs the MBR and grub Files

The grub-install utility installs the MBR and the files, such as the *stage* files (the
grub images), that grub needs to boot the system. This utility takes a single argu-
ment, the name of the device that is to hold the MBR. You can specify the device
name as a grub device name (e.g., hd0) or a device filename (e.g., /dev/hda). The
/boot/grub/device.map lists both forms of the name of the device that holds the
MBR. The following example shows grub-install installing files in the default loca-
tion (/boot/grub) and the MBR on device /dev/hda:

$ sudo grub-install /dev/hda
Installation finished. No error reported.
This is the contents of the device map /boot/grub/device.map.
Check if this is correct or not. If any of the lines is incorrect,
fix it and re-run the script 'grub-install'.

$ cat /boot/grub/device.map
(hd0) /dev/hda

Reinstalling the MBR

The following procedure reinstalls the MBR, as is necessary when it gets overwrit-
ten by a Windows installation:

1. Boot the system using an Ubuntu live (installation) CD/DVD.

2. Open a terminal emulator window (Menubar: Applications Accessories
Terminal).

654 Chapter 16 Building a Linux Kernel

3. Give the following commands, substituting the name of the device that
holds the root partition (e.g., /dev/sda2) for /dev/xxx. Substitute the name
of the drive that you want to install the MBR on (e.g., /dev/sda) for
/dev/yyy. Do not forget to unmount /mnt when you are done.

a. If the system does not have a separate boot partition, use these
commands:

$ sudo mount /dev/xxx /mnt
$ sudo grub-install --root-directory=/mnt /dev/yyy
Installation finished. No error reported.
This is the contents of the device map /mnt/boot/grub/device.map.
Check if this is correct or not. If any of the lines is incorrect,
fix it and re-run the script 'grub-install'.
$ cat /boot/grub/device.map
(hd0) /dev/hda
$ sudo umount /mnt

b. If the system does have a separate boot partition, use these commands,
substituting the name of the device that holds the boot partition (e.g.,
/dev/hda1) for /dev/zzz:

$ sudo mount /dev/xxx /mnt
$ sudo mount /dev/zzz /mnt/boot
$ sudo grub-install --root-directory=/mnt /dev/yyy
Installation finished. No error reported.
This is the contents of the device map /mnt/boot/grub/device.map.
Check if this is correct or not. If any of the lines is incorrect,
fix it and re-run the script 'grub-install'.
$ cat /boot/grub/device.map
(hd0) /dev/hda
$ sudo umount /mnt

4. Reboot the system. Remove the CD/DVD when the system asks you to.

5. Continue to reboot the system from the hard drive you specified in place
of /dev/xxx.

dmesg: Displays Kernel Messages

The dmesg utility displays the kernel-ring buffer, where the kernel stores messages.
When the system boots, the kernel fills this buffer with messages related to hard-
ware and module initialization. Messages in the kernel-ring buffer are often useful
for diagnosing system problems.

When you run dmesg, it displays a lot of information. It is frequently easier to pipe
the output of dmesg through less or grep to find what you are looking for. For
example, if you find that your hard disks are performing poorly, you can use dmesg
to check whether they are running in DMA mode:

Chapter Summary 655

$ dmesg | grep DMA
...
[23.259422] ata1: SATA max UDMA/133 cmd 0x9F0 ctl 0xBF2 bmdma 0xE000 irq 5
[23.259478] ata2: SATA max UDMA/133 cmd 0x970 ctl 0xB72 bmdma 0xE008 irq 5
...

The preceding lines tell you which mode each SATA device is operating in. If you
are having problems with the Ethernet connection, search the dmesg log for eth:

$ dmesg | grep eth
forcedeth.c: Reverse Engineered nForce ethernet driver. Version 0.54.
eth0: forcedeth.c: subsystem: 0147b:1c00 bound to 0000:00:04.0
eth0: no IPv6 routers present

If everything is working properly, dmesg displays the hardware configuration
information for each network interface.

Another common source of problems is the Direct Rendering Infrastructure (DRI),
which allows graphics drivers direct access to the kernel. The corresponding kernel
component is the Direct Rendering Module (DRM—not to be confused with Digital
Rights Management).

$ dmesg | grep drm
[drm] AGP 0.99 Aperture @ 0xd8000000 64MB
[drm] Initialized radeon 1.7.0 20020828 on minor 0
[drm] Loading R200 Microcode

This output tells you that an ATi Radeon graphics card is configured correctly:
Any configuration problems must be in the /etc/X11/xorg.conf file. The nVidia
binary drivers do not use DRI. The dmesg log is a good place to start when diag-
nosing faults. If you have configured a system service incorrectly, this log quickly
fills up with errors.

Chapter Summary

You can build a Linux kernel from the source code. Sometimes you do not need to
build a kernel; instead, you can change many aspects of the kernel by using boot
options in /boot/grub/menu.lst. You can dynamically change options by modifying
/etc/sysctl.conf.

Before you can build a Linux kernel, you must have the kernel source files on the
system. These files are frequently located in /usr/src/linux*. Once you have the
source files, you need to configure the kernel, clean the source tree, compile the ker-
nel and the loadable modules, and install the kernel and loadable modules.

The grub boot loader is a small program that controls the process of bringing the
system up. The update-grub utility updates the menu.lst file so you can boot the
new kernel.

656 Chapter 16 Building a Linux Kernel

The dmesg utility displays the kernel-ring buffer, where the kernel stores messages.
You can use this utility to help diagnose boot-time problems.

Exercises

1. What is the purpose of the kernel?

2. How would you display a list of all loaded modules in the current kernel?

3. How would you use aptitude to download the source code for the most
recently released version of the Ubuntu kernel? Where and in what form
does the source code exist after you download it? How and where would
you unpack the source code so that you could work with it?

4. How would you display information from the kernel about the hard disk
on the first IDE channel?

5. The acpi=off kernel argument prevents acpid from starting. How would
you use this argument?

6. What is a boot loader?

Advanced Exercises

7. Why would you use the ––append-to-version option to the make-kpkg util-
ity when compiling a kernel?

8. You have just installed an Adaptec SCSI card. How can you find out
whether it has been recognized and which entry in /dev represents it?

9. When you install an experimental kernel for testing purposes, how do you
instruct grub not to load it by default?

10. How would you obtain a list of all network-related kernel parameters?

657657

17Chapter17The system administrator has many responsibilities. This
chapter discusses tasks not covered in Chapter 12, including
configuring user and group accounts, backing up files, sched-
uling tasks, general problem solving, and using the system log
daemon, syslogd.

In This Chapter

Configuring User and Group
Accounts 658

Backing Up Files 662

System Reports 671

Keeping Users Informed 677

Solving Problems 679

Speeding Up the System 680

Keeping the System Secure 682

logrotate: Manages Log Files 684

Disk Quota System 687

syslogd: Logs System
Messages 688

17

Administration Tasks

658 Chapter 17 Administration Tasks

Configuring User and Group Accounts

More than a username is required for a user to be able to log in and use a system.
That is, a user must have the necessary files, directories, permissions, and usually a
password to log in. At a minimum a user must have an entry in the /etc/passwd and
/etc/shadow files and a home directory. This section describes several ways you can
work with user accounts. Refer to Chapter 22 if you want to run NIS to manage the
passwd database.

users-admin: Manages User Accounts

The Users Settings window (Figure 17-1) enables you to add, delete, and modify
system users and groups. To display this window, select Main menu: System
Administration Users and Groups or give the command gksudo users-admin from
a terminal emulator or Run Application window (ALT-F2).

Modifying or adding
a user

To modify the properties of an existing user, highlight the user you want to work
with in the User Settings window and click Properties. To create a new user, click
Add User in the Users Settings window. The users-admin utility displays the Account
tab of the Account Properties window (Figure 17-3) or New User Account window.
The two windows are similar.

Account tab Modify or enter information for the user. At a minimum you must enter a username
and password. Click the User Privileges tab.

User Privileges tab The User Privileges tab (Figure 17-2) enables you to add and remove privileges for a
user. Place a tick in the check box next to each of the privileges you want to grant a
user; remove the tick from those privileges you do not want to grant. The most
important of these privileges is Administer the system. Putting a tick in this box
adds the user to the admin group, which in turn allows the user to use sudo
(page 490) to gain root privileges. Click OK.

Advanced tab The Advanced tab allows you to modify the home directory, shell, group, and ID of
the user (UID). The users-admin utility fills in these values for a new user. Typically
you do not need to modify these entries.

Figure 17-1 The Users Settings window

Configuring User and Group Accounts 659

When you are finished entering information under each of the tabs for the user,
click OK. At this point users-admin adds the user to or modifies the user on the sys-
tem and closes the window, leaving the Users Settings window visible.

Figure 17-2 The Account Properties window, User Privileges tab

Figure 17-3 The Account Properties window, Account tab

660 Chapter 17 Administration Tasks

Working with
groups

Click Manage Groups in the Users Settings window to work with groups; users-
admin displays the Groups Settings window (Figure 17-4). To create a group, click
Add Group and specify the name and number (GID) of the group. Put a tick in the
check box next to each user who you want to be a member of the group and click
OK. To change the name or number of a group or to add or remove users from a
group, highlight the group in the Groups Settings window and click Properties.
Make the changes you want, and then click OK. To remove a group, highlight the
group and click Delete. See page 558 for more information on groups.

When you are finished adding and modifying users and groups, click Close.

useradd: Adds a User Account

The useradd utility adds a new user account to the system. By default, useradd
assigns the next highest unused user ID to a new account and specifies bash as
the user’s login shell. The following example adds entries to the /etc/passwd and
/etc/shadow files, creates the user’s home directory (in /home), specifies the
user’s group ID, and puts the user’s full name in the comment field. The group
ID you specify must exist in /etc/group or the command will fail. Use groupadd to
add a group.

$ sudo useradd -g 1105 -c "Max R." max

The useradd utility puts a ! in the password field of the shadow file (page 562) to
prevent the user from logging in until you use passwd to assign a password to that
user. Based on the /etc/login.defs file, useradd creates a home directory for the new
user. When doing so, it copies the contents of /etc/skel, which contains bash and
other startup files, to that directory. For more information on adding user informa-
tion, see the useradd man page.

Under some distributions, adduser is a link to useradd. Under Ubuntu, it is a differ-
ent program. See the adduser man page for more information.

Figure 17-4 The Groups Settings window

Configuring User and Group Accounts 661

userdel: Removes a User Account

The userdel utility deletes a user’s account. If appropriate, back up the files belong-
ing to the user before deleting them. The following command removes Max’s
account. The ––remove (–r) option causes the command to remove his home direc-
tory hierarchy:

$ sudo userdel --remove max

See the userdel man page for more information.

usermod: Modifies a User Account

To turn off a user’s account temporarily, you can use usermod to change the expira-
tion date for the account. Because it specifies that his account expired in the past
(December 31, 2007), the following command line prevents Max from logging in:

$ sudo usermod -e "12/31/07" max

See the usermod man page for more information.

groupadd: Adds a Group

Just as useradd adds a new user to the system, so groupadd adds a new group by
adding an entry to /etc/group (page 558). The following example creates a group
named pubs:

$ sudo groupadd -g 1024 pubs

Unless you use the –g option to assign a group ID, the system picks the next avail-
able sequential number greater than 1000. The –o option allows the group ID to be
nonunique, which allows you to assign multiple names to a group ID.

groupdel: Removes a Group

The analogue of userdel for groups is groupdel, which takes a group name as an
argument. You can also use groupmod to change the name or group ID of a group,
as in the following examples:

$ sudo groupmod -g 1025 pubs
$ sudo groupmod -n manuals pubs

The first example gives the previously created pubs group a new group ID number.
The second example renames the pubs group to manuals.

Changing group ID numbers
caution The groupmod utility does not change group numbers in /etc/passwd when you renumber a

group. Instead, you must edit /etc/passwd and change the entries manually. If you change the num-
ber of a group, files that are associated with the group will no longer be associated with the group.
Rather, they may be associated with no group or with another group with the old group ID number.

662 Chapter 17 Administration Tasks

Backing Up Files

One of the most oft-neglected tasks of system administration is making backup cop-
ies of files on a regular basis. The backup copies are vital in three instances: when
the system malfunctions and files are lost, when a catastrophic disaster (fire, earth-
quake, and so on) occurs, and when a user or the system administrator deletes or
corrupts a file by accident. Even when you set up RAID (page 34), you still need to
back up files. Although RAID can provide fault tolerance (helpful in the event of
disk failure), it does not help when a catastrophic disaster occurs or when a file is
corrupted or removed accidentally. It is a good idea to have a written backup policy
and to keep copies of backups offsite (in another building, at home, or at a different
facility or campus) in a fireproof vault or safe.

The time to start thinking about backups is when you partition the disk. Refer to “Par-
titioning a Disk” on page 31. Make sure the capacity of the backup device and your
partition sizes are comparable. Although you can back up a partition onto multiple
volumes, it is easier not to—and it is much easier to restore data from a single volume.

You must back up filesystems regularly. Backup files are usually kept on magnetic
tape, external hard disk, or another removable medium. Alternatively, you can keep
backup files on a remote system. How often and which files you back up depend on
the system and your needs. Use this criterion when determining a backup schedule:
If the system crashes, how much work are you willing to lose? Ideally you would
back up all files on the system every few minutes so you would never lose more than
a few minutes of work.

Of course, there is a tradeoff: How often are you willing to back up the files? The
backup procedure typically slows the system for users, takes a certain amount of
your time, and requires that you have and store the media holding the backup.
Avoid backing up an active filesystem; the results may be inconsistent, and restoring
from the backup may be impossible. This requirement is a function of the backup
program and the filesystem you are backing up.

Another question is when to run the backup. Unless you plan to kick users off and
bring the system down to single-user mode (not a user-friendly practice), you will
want to perform this task when the machine is at its quietest. Depending on the use
of the system, sometime in the middle of the night can work well. Then the backup
is least likely to affect users, and the files are not likely to change as they are being
read for backup.

A full backup makes copies of all files, regardless of when they were created or
accessed. An incremental backup makes copies of those files that have been created
or modified since the last (usually full) backup.

The more people using the system, the more often you should back up the filesys-
tems. One popular schedule is to perform an incremental backup one or two times a
day and a full backup one or two times a week.

Backing Up Files 663

Choosing a Backup Medium

If the local system is connected to a network, you can write backups to a drive on
another system. This technique is often used with networked computers to avoid
the cost of having a backup drive on each computer in the network and to simplify
management of backing up many computers in a network. Although tapes are still
used for backups, system administrators are using hard disks for this purpose more
frequently. Backing up to a hard disk on a remote system is cost-effective, reliable,
and practical. Because hard disks hold many gigabytes of data, using them simpli-
fies the task of backing up the system, making it more likely that you will take care
of this important task regularly. Other options for holding backups are writable
CDs and DVDs. These devices, although not as cost-effective or able to store as
much information as hard disk or tape systems, offer the benefit of convenience.

Backup Utilities

A number of utilities are available to help you back up a system, and most work
with any media. Most Linux backup utilities are based on one of the archive pro-
grams—tar or cpio—and augment these basic programs with bookkeeping support
for managing backups conveniently.

You can use any of the tar, cpio, or dump/restore utilities to construct full or partial
backups of a system. Each utility constructs a large file that contains, or archives,
other files. In addition to file contents, an archive includes header information for
each file it holds. This header information can be used when extracting files from the
archive to restore file permissions and modification dates. An archive file can be
saved to disk, written to tape, or shipped across the network while it is being created.

In addition to helping you back up the system, these programs offer a convenient
way to bundle files for distribution to other sites. The tar program is often used for
this purpose, and some software packages available on the Internet are bundled as tar
archive files. A deb file (page 599) is an archive bundled using the ar archive utility.

amanda The amanda (Advanced Maryland Automatic Network Disk Archiver) utility
(www.amanda.org), which is one of the more popular backup systems, uses dump or
tar and takes advantage of Samba to back up Windows systems. The amanda utility
backs up a LAN of heterogeneous hosts to a hard disk or tape. Relevant software
packages are amanda-common, amanda-client, and amanda-server.

tar: Archives Files

The tar (tape archive) utility writes files to and retrieves files from an archive; it can com-
press this archive to conserve space. If you do not specify an archive device, tar writes to
standard output and reads from standard input. With the –f (––file) option, tar uses the
argument to –f as the name of the archive device. You can use this option to refer to a
device on another system on the network. Although tar has many options, you need only
a few in most situations. The following command displays a complete list of options:

$ tar ––help | less

www.amanda.org

664 Chapter 17 Administration Tasks

Most options for tar can be given either in a short form (a single letter) or as a
descriptive word. Descriptive-word options are preceded by two hyphens, as in
––help. Single-letter options can be combined into a single command line argument
and need not be preceded by a hyphen (for consistency with other utilities, it is good
practice to use the hyphen anyway).

Although the following two commands look quite different, they specify the same
tar options in the same order. The first version combines single-letter options into a
single command line argument; the second version uses descriptive words for the
same options:

$ sudo tar –ztvf /dev/st0
$ sudo tar ––gzip ––list ––verbose ––file /dev/st0

Both commands tell tar to generate a (v, verbose) table of contents (t, list) from the
tape on /dev/st0 (f, file), using gzip (z, gzip) to decompress the files. Unlike the orig-
inal UNIX tar utility, the GNU version strips the leading / from absolute pathnames.

The options in Table 17-1 tell the tar program what to do. You must include exactly
one of these options in a tar command.

The –c, –t, and –x options are used most frequently. You can use many other
options to change how tar operates. The –j option, for example, compresses or
decompresses the file by filtering it through bzip2 (page 160).

cpio: Archives Files

The cpio (copy in/out) program is similar to tar but can read and write archive files
in various formats, including the one used by tar. Normally cpio reads the names of
the files to add to the archive from standard input and produces the archive file as

Table 17-1 tar options

Option Effect

––append (–r) Appends files to an archive

––catenate (–A) Adds one or more archives to the end of an existing archive

––create (–c) Creates a new archive

––delete Deletes files in an archive (not on tapes)

––dereference (–h) Follows symbolic links

––diff (–d) Compares files in an archive with disk files

––extract (–x) Extracts files from an archive

––help Displays a help list of tar options

––list (–t) Lists the files in an archive

––update (–u) Like the –r option, but the file is not appended if a newer version is already
in the archive

Backing Up Files 665

standard output. When extracting files from an archive, it reads the archive as stan-
dard input.

As with tar, some options can be given in both a short, single-letter form and a more
descriptive word form. However, unlike with tar, the syntax of the two forms in cpio
differs when the option must be followed by additional information. In the short
form, you must include a SPACE between the option and the additional information;
with the word form, you must separate the two with an equal sign and no SPACEs.

Running cpio with the ––help option displays a complete list of options.

Performing a Simple Backup

When you prepare to make a major change to a system, such as replacing a disk
drive, upgrading to a new release, or updating the Linux kernel, it is a good idea to
archive some or all of the files so you can restore any that become damaged if some-
thing goes wrong. For this type of backup, tar or cpio works well. For example, if
you have a SCSI tape drive as device /dev/st0 (or it could be a hard disk at
/dev/hdb) that is capable of holding all the files on a single tape, you can use the fol-
lowing commands to construct a backup tape of the entire system:

$ cd /
$ sudo tar –cf /dev/st0 .

All the commands in this section start by using cd to change to the root directory so
you are sure to back up the entire system. The tar command then creates an archive
(c) on the device /dev/st0 (f). To compress the archive, replace the preceding tar
command with the following command, which uses j to call bzip2:

$ sudo tar –cjf /dev/st0 .

You can back up a system with a combination of find and cpio. The following com-
mands create an output file and set the I/O block size to 5120 bytes (the default is
512 bytes):

$ cd /
$ sudo find . –depth | cpio –oB > /dev/st0

The next command restores the files in the /home directory from the preceding
backup. The options extract files from an archive (–i) in verbose mode, keeping the
modification times and creating directories as needed.

$ cd /
$ sudo cpio –ivmd /home/* < /dev/st0

Although all the archive programs work well for simple backups, utilities such as
amanda (page 663) provide more sophisticated backup and restore systems. For
example, to determine whether a file is in an archive, you must read the entire
archive. If the archive is split across several tapes, this process is particularly tire-
some. More sophisticated utilities, including amanda, assist you in several ways,
including keeping a table of contents of the files in a backup.

666 Chapter 17 Administration Tasks

dump, restore: Back Up and Restore Filesystems

The dump utility (part of the dump package) first appeared in UNIX version 6. It
backs up either an entire ext2 or ext3 filesystem or only those files that have
changed since a recent dump. The restore utility can then restore an entire filesystem,
a directory hierarchy, or an individual file. You will get the best results if you per-
form a backup on a quiescent system so that the files are not changing as you make
the backup.

The next command backs up all files (including directories and special files) on the
root (/) partition to SCSI tape 0. Frequently there is a link to the active tape drive,
named /dev/tape, which you can use in place of the actual entry in the /dev directory.

$ sudo dump -0uf /dev/st0 /

The –0 option specifies that the entire filesystem is to be backed up (a full backup).
There are ten dump levels: 0–9. Zero is the highest (most complete) level and always
backs up the entire filesystem. Each additional level is incremental with respect to
the level above it. For example, 1 is incremental to 0 and backs up only those files
that have changed since the last level 0 dump; 2 is incremental to 1 and backs up
only those files that have changed since the last level 1 dump; and so on. You can
construct a flexible schedule using this scheme. You do not need to use sequential
numbers for backup levels, however. For example, you can perform a level 0 dump,
followed by level 2 and 5 dumps.

The –u option updates the /etc/dumpdates file (page 557) with filesystem, date, and
dump level information for use by the next incremental dump. The –f option and its
argument write the backup to the device named /dev/st0.

The next command makes a partial backup containing all files that have changed
since the last level 0 dump. The first argument (1) specifies a level 1 dump:

$ sudo dump -1uf /dev/st0 /

To restore an entire filesystem from a dump backup, first restore the most recent
complete (level 0) backup. Perform this operation carefully because restore can over-
write the existing filesystem. Change directories to the directory the filesystem is
mounted on (/xxx in the example) and give a restore command as shown following:

$ cd /xxx
$ sudo restore -if /dev/st0

Exclude some directories from a backup

tip In practice, you will likely want to exclude some directories from the backup process. For example,
not backing up /tmp or /var/tmp can save room in the archive. Also, do not back up the files in
/proc. Because the /proc pseudofilesystem is not a true disk filesystem but rather a way for the
Linux kernel to provide information about the operating system and system memory, you need not
back up /proc; you cannot restore it later. Similarly, you do not need to back up filesystems that
are mounted from disks on other systems on the network. Do not back up FIFOs; the results are
unpredictable. If you plan on using a simple backup method, similar to those just discussed, cre-
ate a file naming the directories to exclude from the backup, and use the appropriate option with
the archive program to read the file.

Backing Up Files 667

The –i option invokes an interactive mode that allows you to choose which files and
directories to restore. As with dump, the –f option specifies the name of the device
that the backup medium is mounted on. When restore finishes, load the next lower-
level (higher-number) dump tape and issue the same restore command. If multiple
incremental dumps have been made at a particular level, always restore with the
most recent one. You do not need to invoke restore with special arguments to
restore an incremental dump; it will restore whatever appears on the tape.

You can also use restore to extract individual files from a tape by using the –x
option and specifying the filenames on the command line. Whenever you restore a
file, the restored file appears in the working directory. Before restoring files, make
sure you are working in the correct directory.

The following commands restore the etc/fstab file from the tape on /dev/st0. The
filename of the dumped file does not begin with / because all dumped pathnames
are relative to the filesystem that you dumped—in this case /. Because the restore
command is given from the / directory, the file will be restored to its original loca-
tion of /etc/fstab:

$ cd /
$ sudo restore -xf /dev/st0 etc/fstab

If you use the –x option without specifying a file or directory name to extract, restore
extracts the entire dumped filesystem. Use the –r option to restore an entire filesys-
tem without using the interactive interface. The following command restores the file-
system from the tape on /dev/st0 to the working directory without interaction:

$ sudo restore -rf /dev/st0

You can also use dump and restore to access a tape drive or hard disk on another
system. Specify the file/directory as host:file, where host is the hostname of the sys-
tem the tape or disk is on and file is the file or directory you want to dump/restore.

Occasionally, restore may prompt you with the following message:

You have not read any volumes yet.
Unless you know which volume your file(s) are on you should start
with the last volume and work towards the first.
Specify next volume #:

Enter 1 (one) in response to this prompt. If the filesystem spans more than one tape
or disk, this prompt allows you to switch tapes.

At the end of the dump, you will receive another prompt:

set owner/mode for '.'? [yn]

Answer y to this prompt when you are restoring entire filesystems or files that
have been accidentally removed. Doing so will restore the appropriate permis-
sions to the files and directories being restored. Answer n if you are restoring a
dump to a directory other than the one it was dumped from. The working direc-
tory permissions and owner will then be set to those of the user doing the restore
(typically root).

668 Chapter 17 Administration Tasks

A variety of device names can access the /dev/st0 device. Each name accesses a dif-
ferent minor device number that controls some aspect of how the tape drive is used.
After you complete a dump using /dev/st0, the tape drive automatically rewinds the
tape. Use the nonrewinding SCSI tape device (/dev/nst0) to keep the tape from
rewinding on completion. This feature allows you to back up multiple filesystems to
the same volume.

Following is an example of backing up a system where the /home, /usr, and /var
directories reside on different filesystems:

$ sudo dump -0uf /dev/nst0 /home
$ sudo dump -0uf /dev/nst0 /usr
$ sudo dump -0uf /dev/st0 /var

The preceding example uses the nonrewinding device for the first two dumps. If you
use the rewinding device, the tape rewinds after each dump, and you are left with
only the last dump on the tape.

You can use mt (magnetic tape), which is part of the cpio package, to manipulate
files on a multivolume dump tape. The following mt command positions the tape
(fsf 2 instructs mt to skip forward past two files, leaving the tape at the start of the
third file). The restore command restores the /var filesystem from the previous
example:

$ sudo mt -f /dev/st0 fsf 2
$ sudo restore rf /dev/st0

Scheduling Tasks

It is a good practice to schedule certain routine tasks to run automatically. For
example, you may want to remove old core files once a week, summarize account-
ing data daily, and rotate system log files monthly.

cron and anacron: Schedule Routine Tasks

The cron daemon executes scheduled commands periodically. This daemon can exe-
cute commands at specific times on systems that are always running. The anacron
utility executes scheduled commands when it is called. It works well on laptops and
other systems that are not on all the time. The anacron init scrip, which calls ana-
cron, will not run commands when a system is running on batteries (i.e., not on AC).

Crontab Files

The cron daemon reads the commands it is to execute from crontab files. Users can use
the crontab utility to set up personal crontab files in /var/spool/cron/crontabs. System
crontab files are kept in the /etc/cron.d directory and in the /etc/crontab file. (The
term crontab has three meanings: It refers to a text file in a specific format [a crontab
file], it is the name of a utility [crontab], and it is the name of a file [/etc/crontab].)

Scheduling Tasks 669

By default, Ubuntu is set up with no restrictions on who can have cron run com-
mands in their personal crontab files. See cron.allow and cron.deny on page 557 for
ways of restricting this access.

System crontab files Crontab files specify how often cron is to run a command. A line in a system
crontab file, such as /etc/crontab, has the following format:

minute hour day-of-month month day-of-week user command

The first five fields indicate when cron will execute the command. The minute is the
number of minutes after the start of the hour, the hour is the hour of the day based
on a 24-hour clock, the day-of-month is a number from 1 to 31, and the day-of-
week is a number from 0 to 7, with 0 and 7 indicating Sunday. An asterisk (*) sub-
stitutes for any value in a field. The user is the username or user ID of the user that
the command will run as. Following are some examples:

20 1 * * * root /usr/local/bin/checkit
25 9 17 * * root /usr/local/bin/monthly.check
40 23 * * 7 root /usr/local/bin/sunday.check

All three lines run as their commands with root privileges. The first line runs checkit
every day at 1:20 AM. The second line runs monthly.check at 9:25 AM on day 17 of
every month. The third line runs sunday.check at 11:40 PM every Sunday. Give the
command man 5 crontab to obtain more information on crontab files.

User crontab files A user crontab file has the same format as a system crontab file except that it does
not include the user field because it always runs as the user who created it. Users can
work with their own crontab files by giving the command crontab followed by –l to
list the file, –r to remove the file, or –e to edit the file. This command uses the nano
editor by default; if you prefer, export (page 435) and set the VISUAL or EDITOR
environment variable to the textual editor of your choice. See the crontab man page
for more information.

/etc/crontab Following is the default /etc/crontab file. Comments begin with a pound sign (#).
The file sets the SHELL and PATH (page 302) environment variables.

$ cat /etc/crontab
/etc/crontab: system-wide crontab
Unlike any other crontab you don't have to run the 'crontab'
command to install the new version when you edit this file
and files in /etc/cron.d. These files also have username fields,
that none of the other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command
17 * * * * root cd / && run-parts --report /etc/cron.hourly
25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.daily)
47 6 * * 7 root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.weekly)
52 6 1 * * root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.monthly)
#

run-parts The run-parts utility runs all the executable files in the directory named as its argu-
ment. The ––report option affects commands that produce output. It sends the
name of the command to standard output or standard error—whichever the com-
mand sends its first output to.

670 Chapter 17 Administration Tasks

The cron daemon runs the line that begins with 17 at 17 minutes past every hour.
First the command cds to root (/). The AND Boolean operator (&&) then executes
run-parts, which executes all files in the /etc/cron.hourly directory.

The next three lines first test whether the /usr/sbin/anacron file is executable. If the
file is executable, the OR Boolean operator (| |) causes the shell to ignore the rest of
the line. Thus, if anacron is installed and executable, this file executes only the files
in the cron.hourly directory. If anacron is not installed or is not executable, each of
these three lines cds to root (/) and executes the files in the specified directory.

/etc/cron.d/anacron In addition to the /etc/crontab file, cron reads the files in /etc/cron.d for commands to
execute. The following file causes cron to run the anacron init script once a day at
7:30 AM. This init script runs anacron if the system is up and not running on batteries):

$ cat /etc/cron.d/anacron
/etc/cron.d/anacron: crontab entries for the anacron package

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

30 7 * * * root test -x /etc/init.d/anacron && /usr/sbin/invoke-rc.d anacron start >/dev/null

/etc/anacrontab When anacron is run, it reads the commands it is to execute from the /etc/anacrontab
file. The anacron utility keeps track of the last time it ran each of its jobs so when it is
called, it can tell which jobs need to be run. This file is where the files in the
cron.daily, cron.weekly, and cron.monthly directories get executed on a system run-
ning anacron.

$ cat /etc/anacrontab
/etc/anacrontab: configuration file for anacron

See anacron(8) and anacrontab(5) for details.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

These replace cron's entries
1 5 cron.daily nice run-parts --report /etc/cron.daily
7 10 cron.weekly nice run-parts --report /etc/cron.weekly
@monthly 15 cron.monthly nice run-parts --report /etc/cron.monthly

An entry in the anacrontab file has the following format:

period delay identifier command

where the period is the frequency in days (how often) that anacron executes the
command, the delay is the number of minutes after anacron starts that it executes
the command, and the identifier is the name of the file in /var/spool/anacron that
anacron uses to keep track of when it last executed the command.

The cron.daily job in anacrontab runs the executable files in /etc/cron.daily every
day, five minutes after anacron starts. If the system is running at 7:30 AM,
/etc/cron.d/anacron calls the anacron init script, and this job runs at 7:35 AM.
When Ubuntu boots, the rc scripts call the anacron init script. If the system is not
running at 7:30 AM, the cron.daily job has not been run for at least a day, and the
system is not running on batteries, the job runs five minutes after the system boots.

System Reports 671

at: Runs Occasional Tasks

Like the cron utility, at runs a job sometime in the future. Unlike cron, at runs a job
only once. For instance, you can schedule an at job that will reboot the system at
3:00 AM (when all users are probably logged off):

$ sudo at 3am
warning: commands will be executed using /bin/sh
at> reboot
at> CONTROL-D <EOT>
job 1 at 2008-02-01 03:00

It is also possible to run an at job from within an at job. For instance, an at job
might check for new patches every 18 days—something that would be more diffi-
cult with cron. See the at man page for more information.

By default, Ubuntu is set up with restrictions that prevent some system accounts
from running at. See at.allow and at.deny on page 557 for more information.

System Reports

Many utilities report on one thing or another. The who, finger, ls, ps, and other utili-
ties, for example, generate simple end-user reports. In some cases, these reports can
help with system administration. This section describes utilities that generate more
in-depth reports that can provide greater assistance with system administration
tasks. Linux has many other report utilities, including (from the sysstat package) sar
(system activity report), iostat (input/output and CPU statistics), and mpstat (proces-
sor statistics); (from the net-tools package) netstat (network report); and (from the
nfs-common package) nfsstat (NFS statistics).

vmstat: Reports Virtual Memory Statistics

The vmstat utility (procps package) generates virtual memory information along
with (limited) disk and CPU activity data. The following example shows virtual
memory statistics at three-second intervals for seven iterations (from the arguments
3 7). The first line covers the time since the system was last booted; each subsequent
line covers the period since the previous line.

Running cron jobs at the right time

tip As installed, if the /usr/sbin/anacron file is present and executable, cron uses anacron to run
daily, weekly, and monthly cron jobs. The anacron utility always runs the jobs at 7:35 in the morn-
ing, or as soon as possible after that. Refer to “run-parts” on page 669 and the section on
/etc/anacrontab. An easy way to get cron to run these jobs as scheduled in /etc/crontab is to
change permissions on the anacron file so it is not executable:

$ sudo chmod 644 /usr/sbin/anacron

If you want to reenable anacron, change its permissions back to 755.

672 Chapter 17 Administration Tasks

$ vmstat 3 7
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 0 2 0 684328 33924 219916 0 0 430 105 1052 134 2 4 86 8
 0 2 0 654632 34160 248840 0 0 4897 7683 1142 237 0 5 0 95
 0 3 0 623528 34224 279080 0 0 5056 8237 1094 178 0 4 0 95
 0 2 0 603176 34576 298936 0 0 3416 141 1161 255 0 4 0 96
 0 2 0 575912 34792 325616 0 0 4516 7267 1147 231 0 4 0 96
 1 2 0 549032 35164 351464 0 0 4429 77 1120 210 0 4 0 96
 0 2 0 523432 35448 376376 0 0 4173 6577 1135 234 0 4 0 95

The following list explains the column heads displayed by vmstat:

• procs Process information
◆ r Number of waiting, runnable processes
◆ b Number of blocked processes (in uninterruptable sleep)

• memory Memory information (in kilobytes)
◆ swpd Used virtual memory
◆ free Idle memory
◆ buff Memory used as buffers
◆ cache Memory used as cache

• swap System paging activity (in kilobytes per second)
◆ si Memory swapped in from disk
◆ so Memory swapped out to disk

• io System I/O activity (in blocks per second)
◆ bi Blocks received from a block device
◆ bo Blocks sent to a block device

• system (Values are per second)
◆ in Interrupts (including the clock)
◆ cs Context switches

• cpu Percentage of total CPU time spent in each of these states
◆ us User (nonkernel)
◆ sy System (kernel)
◆ id Idle
◆ wa Waiting for I/O

top: Lists Processes Using the Most Resources

The top utility is a useful supplement to ps. At its simplest, top displays system infor-
mation at the top and the most CPU-intensive processes below the system informa-
tion. The top utility updates itself periodically; type q to quit. Although you can use
command line options, the interactive commands are often more helpful. Refer to
Table 17-2 and to the top man page for more information.

Table 17-2 top: interactive commands

Command Function

A Sorts processes by age (newest first).

h or ? Displays a Help screen.

parted: Reports on and Partitions a Hard Disk 673

$ top
top - 17:58:53 up 3 days, 4:20, 1 user, load average: 2.16, 1.61, 0.83
Tasks: 167 total, 5 running, 162 sleeping, 0 stopped, 0 zombie
Cpu(s): 1.5%us, 0.5%sy, 1.3%ni, 96.0%id, 0.2%wa, 0.6%hi, 0.0%si, 0.0%st
Mem: 2076092k total, 1990652k used, 85440k free, 18416k buffers
Swap: 7815580k total, 34908k used, 7780672k free, 1330008k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
31323 zach 25 0 9020 6960 396 R 63 0.3 0:17.58 bzip2
31327 zach 18 0 2092 596 492 R 57 0.0 0:00.92 cp
31311 root 15 0 0 0 0 S 16 0.0 0:00.38 pdflush
 6870 zach 27 12 331m 190m 37m R 2 9.4 198:42.98 firefox-bin
31303 root 15 0 0 0 0 S 2 0.0 0:00.42 pdflush
 1 root 15 0 2912 1808 488 S 0 0.1 0:01.55 init
...

parted: Reports on and Partitions a Hard Disk

The parted (partition editor) utility reports on and manipulates hard disk partitions.
The following example shows how to use parted from the command line. It uses the
print command to display information about the partitions on the /dev/hda drive:

$ sudo parted /dev/hda print
Disk geometry for /dev/hda: 0kB - 165GB
Disk label type: msdos
Number Start End Size Type File system Flags
1 32kB 1045MB 1045MB primary ext3 boot
2 1045MB 12GB 10GB primary ext3
3 12GB 22GB 10GB primary ext3
4 22GB 165GB 143GB extended
5 22GB 23GB 1045MB logical linux-swap
6 23GB 41GB 18GB logical ext3
7 41GB 82GB 41GB logical ext3
Information: Don't forget to update /etc/fstab, if necessary.

k (kill) Prompts for a PID number and type of signal and sends the process that
signal. Defaults to signal 15 (SIGTERM); specify 9 (SIGKILL) only when 15
does not work.

M Sorts processes by memory usage.

P (processor) Sorts processes by CPU usage (default).

q Quits top.

s Prompts for time between updates in seconds. Use 0 (zero) for continuous
updates; such updates can slow the system by consuming a lot of resources.

SPACE Updates the display immediately.

T Sorts tasks by time.

W Writes a startup file named ~/.toprc so that the next time you start top, it uses
the same parameters it is currently using.

Table 17-2 top: interactive commands (continued)

674 Chapter 17 Administration Tasks

Figure 17-5 graphically depicts the partitions shown in this example. The first line
that parted displays specifies the device being reported on (/dev/hda) and its size
(165 gigabytes). The print command displays the following columns:

• Number The minor device number (page 569) of the device holding the
partition. This number is the same as the last number in the device name.
In the example, 5 corresponds to /dev/hda5.

• Start The location on the disk where the partition starts. The parted util-
ity specifies a location on the disk as the distance (in bytes) from the start
of the disk. Thus partition 3 starts 12 gigabytes from the start of the disk.

• End The location on the disk where the partition stops. Although parti-
tion 2 ends 12 gigabytes from the start of the disk and partition 3 starts at
the same location, parted takes care that the partitions do not overlap at
this single byte.

• Size The size of the partition in kilobytes (kB), megabytes (MB), or
gigabytes (GB).

• Type The partition type: primary, extended, or logical. See Figure 17-5
(next page) and page 31 for information on partitions.

• File system The filesystem type: ext2, ext3, fat32, linux-swap, and so on.
See Table 13-1 on page 570 for a list of filesystem types.

• Flags The flags that are turned on for the partition, including boot, raid,
and lvm. In the example, partition 1 is bootable.

In the preceding example, partition 4 defines an extended partition that includes
143 gigabytes of the 165-gigabyte disk (Figure 17-5). You cannot make changes to
an extended partition without affecting all logical partitions within it.

Figure 17-5 The primary and extended partitions from the example

/dev/hda /dev/hda4

Primary 2
/dev/hda2

Primary 3

Primary 4
(Extended)

/dev/hda3

Logical 5
/dev/hda5

Logical 6
/dev/hda6

Logical 7
/dev/hda7

Primary 1
/dev/hda1

.

.

.

parted: Reports on and Partitions a Hard Disk 675

In addition to reporting on the layout and size of a hard disk, you can use parted inter-
actively to modify the disk layout. Be extremely careful when using parted in this man-
ner, and always back up the system before starting to work with this utility. Changing
the partition information (the partition table) on a disk can destroy the information on
the disk. Read the parted info page before you attempt to modify a partition table.

To partition a disk, give the command parted followed by the name of the device
you want to work with. In the following example, after starting parted, the user
gives a help (or just h) command, which displays a list of parted commands:

$ sudo parted /dev/hdb
GNU Parted 1.7.1
Using /dev/hda
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) help
 check NUMBER do a simple check on the file system
 cp [FROM-DEVICE] FROM-NUMBER TO-NUMBER copy file system to another partition
 help [COMMAND] prints general help, or help on COMMAND
 mklabel LABEL-TYPE create a new disklabel (partition table)
 mkfs NUMBER FS-TYPE make a FS-TYPE file system on partititon NUMBER
 mkpart PART-TYPE [FS-TYPE] START END make a partition
 mkpartfs PART-TYPE FS-TYPE START END make a partition with a file system
 move NUMBER START END move partition NUMBER
 name NUMBER NAME name partition NUMBER as NAME
 print [NUMBER] display the partition table, or a partition
 quit exit program
 rescue START END rescue a lost partition near START and END
 resize NUMBER START END resize partition NUMBER and its file system
 rm NUMBER delete partition NUMBER
 select DEVICE choose the device to edit
 set NUMBER FLAG STATE change a flag on partition NUMBER
 toggle [NUMBER [FLAG]] toggle the state of FLAG on partition NUMBER
 unit UNIT set the default unit to UNIT
 version displays the version of GNU Parted and copyright information
(parted)

In response to the (parted) prompt, you can give the command help followed by the
name of the command you want more information about. When you give a print (or
just p) command, parted displays current partition information, just as a print com-
mand on the command line does.

The parted utility will not allow you to set up overlapping partitions (except for log-
ical partitions overlapping their containing extended partition). Similarly, it will not
allow you to create a partition that starts at the very beginning of the disk (cylinder
0). Both of these situations can cause loss of data.

parted can destroy everything
caution Be as careful with parted as you would be with a utility that formats a hard disk. Changes you

make with parted can easily result in the loss of large amounts of data. If you are using parted
and have any question about what you are doing, quit with a q command before making any
changes. Once you give parted a command, it immediately makes the change you requested.

676 Chapter 17 Administration Tasks

Following are guidelines to remember when defining a partition table for a disk. For
more information refer to “Partitioning a Disk” on page 31.

• Do not delete or modify the partition that defines the extended partition
unless you are willing to lose all data on all the logical partitions within
the extended partition.

• If you put /boot on a separate partition, it is a good idea to put it at the
beginning of the drive (partition 1) so there is no issue of Linux having to
boot from a partition located too far into the drive. When you can afford
the disk space, it is desirable to put each major filesystem on a separate
partition. Many people choose to combine / (root), /var, and /usr into a
single partition, which generally results in less wasted space but can, on
rare occasions, cause problems.

• Although parted can create some types of filesystems, it is typically easiest
to use parted to create partitions and then use mkfs and mkswap to create
filesystems on the partitions.

The following sequence of commands defines a 300-megabyte, bootable, Linux par-
tition as partition 1 on a clean disk:

/sbin/parted /dev/hdb
...
Using /dev/hdb
(parted) mkpart (create new partition)
Partition type? primary/extended? primary (select primary partition)
File system type? [ext2]? (default to an ext2 filesystem)
Start? 1 (start at the beginning of the disk)
End? 300m (specify a 300-megabyte partition)
(parted) help set (use help to check the syntax of the set command)
 set NUMBER FLAG STATE change a flag on partition NUMBER

 NUMBER is the partition number used by Linux. On msdos disk labels, the primary
 partitions number from 1 to 4, logical partitions from 5 onwards.
 FLAG is one of: boot, root, swap, hidden, raid, lvm, lba, hp-service, palo,
 prep, msftres
 STATE is one of: on, off
(parted) set 1 boot on (turn on the boot flag on partition 1)
(parted) print (verify that the partition is correct)
Disk geometry for /dev/hdb: 0kB - 250GB
Disk label type: msdos
Number Start End Size Type File system Flags
1 1kB 300MB 300MB primary ext2 boot
(parted) quit
Information: Don't forget to update /etc/fstab, if necessary.

When you specify a size within parted, you can use a suffix of k (kilobytes), m
(megabytes), or g (gigabytes). After creating a partition, give a print command to
see where the partition ends. Perform this task before defining the next contiguous
partition so you do not waste space. After setting up all the partitions, exit from
parted with a quit command.

Keeping Users Informed 677

Next make a filesystem (mkfs, page 525) on each partition that is to hold a file-
system (not swap). Make all partitions, except swap and /boot, of type ext3, unless
you have a reason to do otherwise. Make the /boot partition of type ext2. Use
mkswap (page 564) to set up a swap area on a partition. You can use e2label
(page 525) to label a partition.

Keeping Users Informed

One of your primary responsibilities as a system administrator is communicating
with system users. You need to make announcements, such as when the system will
be down for maintenance, when a class on some new software will be held, and
how users can access the new system printer. You can even start to fill the role of a
small local newspaper, letting users know about new employees, RIFs, births, the
company picnic, and so on.

Different communications have different priorities. For example, information about
the company picnic in two months is not as time sensitive as the fact that you are
bringing the system down in five minutes. To meet these differing needs, Linux pro-
vides different ways of communicating. The most common methods are described
and contrasted in the following list. All of these methods are generally available to
everyone, except for the message of the day, which is typically reserved for a user
with root privileges.

write Use the write utility (page 170) to communicate with a user who is logged in on the
local system. You might use it, for example, to ask a user to stop running a program
that is slowing the system; the user might reply that he will be done in three min-
utes. Users can also use write to ask the system administrator to mount a tape or
restore a file. Messages sent from write may not appear in a graphical environment.

wall The wall (write all) utility effectively communicates immediately with all users who
are logged in. This utility takes its input from standard input and works much like
write, except that users cannot use wall to write back to only you. Use wall when you
are about to bring the system down or are in another crisis situation. Users who are
not logged in will not get the message.

Run wall as a user with root privileges only in a crisis situation; it interrupts anything
anyone is doing. Messages sent from wall may not appear in a graphical environment.

Email Email is useful for communicating less urgent information to one or more systems
and/or remote users. When you send mail, you have to be willing to wait for each
user to read it. Email is useful for reminding users that they are forgetting to log
out, their bills are past due, or they are using too much disk space.

Users can easily make permanent records of messages they receive via email, as
opposed to messages received via write, so they can keep track of important details.
For instance, it would be appropriate to use email to inform users about a new,
complex procedure, so each user could keep a copy of the information for reference.

678 Chapter 17 Administration Tasks

Message of the day Users see the message of the day each time they log in in a textual environment, but
not when they open a terminal emulator window. You can edit the /etc/motd file to
change this message as necessary. The message of the day can alert users to upcom-
ing periodic maintenance, new system features, or a change in procedures.

Creating Problems

Even experienced system administrators make mistakes; new system administrators
just make more mistakes. Although you can improve your odds of avoiding prob-
lems by carefully reading and following the documentation provided with software,
many things can still go wrong. A comprehensive list, no matter how long, is not
possible because new and exciting ways to create problems are discovered every
day. This section describes a few of the more common techniques.

Failing to perform
regular backups

Few feelings are more painful to a system administrator than realizing that impor-
tant information is lost forever. If the local system supports multiple users, having a
recent backup may be your only protection from a public lynching. If it is a single-
user system, having a recent backup certainly keeps you happier when you lose a
hard disk or erase a file by mistake.

Not reading and
following

instructions

Software developers provide documentation for a reason. Even when you have
installed a software package before, carefully read the instructions again. They may
have changed, or you may simply remember them incorrectly. Software changes
more quickly than books are revised, so no book should be taken as offering fool-
proof advice. Instead, look for the latest documentation online. The /usr/share/doc
directory has information on many utilities, libraries, and software packages.

Failing to ask for
help when

instructions are not
clear

If something does not seem to make sense, try to find out what does make sense—
do not attempt to guess. See Appendix B for a list of places you may be able to
find help.

Deleting or
mistyping

information in a
critical file

One sure way to give yourself nightmares is to execute the command

$ sudo rm –rf /etc ← do not do this

Perhaps no other command renders a Linux system useless so quickly. The only
recourse is to reboot into recovery mode using an installation CD/DVD (page 513)
and restore the missing files from a recent backup. Although this example depicts
an extreme case, many files are critical to proper operation of a system. Deleting
one of these files or mistyping information in one of them is almost certain to cause
problems. If you directly edit /etc/passwd, for example, entering the wrong infor-
mation in a field can make it impossible for one or more users to log in. Do not use
rm –rf with an argument that includes wildcard characters; do pause after typing
the command, and read it before you press RETURN. Check everything you do care-
fully, and make a copy of a critical file before you edit it.

Solving Problems 679

Solving Problems

As the system administrator, it is your responsibility to keep the system secure and
running smoothly. When a user is having a problem, it usually falls to the adminis-
trator to help the user get back on track. This section suggests ways to keep users
happy and the system functioning at peak performance.

Helping When a User Cannot Log In

When a user has trouble logging in on the system, the source may be a user error or
a problem with the system software or hardware. The following steps can help
determine where the problem is:

• Check the log files in /var/log. The /var/log/messages file accumulates
system errors, messages from daemon processes, and other important
information. It may indicate the cause or more symptoms of a problem.
Also, check the system console. Occasionally messages about system
problems that are not written to /var/log/messages (for instance, a full
disk) are displayed on the system console.

• Determine whether only that one user or only that one user’s terminal/
workstation has a problem or whether the problem is more widespread.

• Check that the user’s Caps Lock key is not on.

• Make sure the user’s home directory exists and corresponds to that user’s
entry in the /etc/passwd file. Verify that the user owns her home directory
and startup files and that they are readable (and, in the case of the home
directory, executable). Confirm that the entry for the user’s login shell in
the /etc/passwd file is accurate and the shell exists as specified.

• Change the user’s password if there is a chance that he has forgotten the
correct password.

• Check the user’s startup files (.profile, .login, .bashrc, and so on). The user
may have edited one of these files and introduced a syntax error that pre-
vents login.

• Check the terminal or monitor data cable from where it plugs into the ter-
minal to where it plugs into the computer (or as far as you can follow it).
Try turning the terminal or monitor off and then turning it back on.

Be careful when using a wildcard character with rm

caution When you must use a wildcard character, such as *, in an argument to an rm command, first use
echo with the same argument to see exactly which files you will be deleting. This check is espe-
cially important when you are working with root privileges.

680 Chapter 17 Administration Tasks

• When the problem appears to be widespread, check whether you can log in
from the system console. Make sure the system is not in recovery mode. If
you cannot log in, the system may have crashed; reboot it and perform any
necessary recovery steps (the system usually does quite a bit automatically).

• If the user is logging in over a network connection, run the appropriate init
script (page 507) to restart the service the user is trying to use (e.g., ssh).

• Use df to check for full filesystems. If the /tmp filesystem or the user’s
home directory is full, login sometimes fails in unexpected ways. In some
cases you may be able to log in to a textual environment but not a graphi-
cal one. When applications that start when the user logs in cannot create
temporary files or cannot update files in the user’s home directory, the
login process itself may terminate.

Speeding Up the System

When the system is running slowly for no apparent reason, perhaps a process did
not exit when a user logged out. Symptoms of this problem include poor response
time and a system load, as shown by w or uptime, that is greater than 1.0. Running
top (page 672) is an excellent way to find rogue processes quickly. Use ps –ef to list
all processes. One thing to look for in ps –ef output is a large number in the TIME
column. For example, if a Firefox process has a TIME field greater than 100.0, this
process has likely run amok. However, if the user is doing a lot of Java work and
has not logged out for a long time, this value may be normal. Look at the STIME
field to see when the process was started. If the process has been running for longer
than the user has been logged in, it is a good candidate to be killed.

When a user gets stuck and leaves her terminal unattended without notifying any-
one, it is convenient to kill (page 522) all processes owned by that user. If the user is
running a window system, such as GNOME or KDE on the console, kill the win-
dow manager process. Manager processes to look for include startkde, x-session-
manager, or another process name that ends in wm. Usually the window manager is
either the first or last thing to be run, and exiting from the window manager logs
the user out. If killing the window manager does not work, try killing the X server
process. This process is typically listed as /usr/bin/X or /usr/X11R6/bin/X. If that
fails, you can kill all processes owned by a user by giving the command kill –15 –1
or, equivalently, kill –TERM –1 while you are logged in as that user. Using –1 (one)
in place of the process ID tells kill to send the signal to all processes that are owned
by that user. For example, you could give the following command:

$ sudo -u zach kill -TERM -1

If this does not kill all processes (sometimes TERM does not kill a process), you can
use the KILL signal (–9). The following line will definitely kill all processes owned by
Zach and will not be friendly about it:

$ sudo -u zach kill -KILL -1

If you do not include –u zach, this command brings the system down.

Solving Problems 681

lsof: Finds Open Files

The lsof (list open files) utility displays the names of open files. Its options display only
certain processes, only certain file descriptors of a process, or only certain network
connections (network connections use file descriptors just as normal files do and lsof
can show these as well). Once you have identified a suspect process using ps –ef, give
the following command:

$ sudo lsof -sp pid

Replace pid with the process ID of the suspect process; lsof displays a list of file
descriptors that process pid has open. The –s option displays the sizes of all open
files and the –p option allows you to specify the PID number of the process of inter-
est. This size information is helpful in determining whether the process has a very
large file open. If it does, contact the owner of the process or, if necessary, kill the
process. The –rn option redisplays the output of lsof every n seconds.

Keeping a Machine Log

A machine log that includes the information shown in Table 17-3 can help you find
and fix system problems. Note the time and date for each entry in the log. Avoid the
temptation to keep the log only on the computer—it will be most useful to you
when the system is down. Another good idea is to keep a record of all email dealing
with user problems. One strategy is to save this mail to a separate file or folder as
you read it. Another approach is to set up a mail alias that users can send mail to
when they have problems. This alias can then forward mail to you and also store a
copy in an archive file. Following is an example of an entry in the /etc/aliases file
(page 763) that sets up this type of alias:

trouble: admin,/var/mail/admin.archive

Email sent to the trouble alias will be forwarded to the admin user as well as stored
in the file /var/mail/admin.archive.

Table 17-3 Machine log

Entry Function

Hardware
modifications

Keep track of the system hardware configuration: which devices hold which
partitions, the model of the new NIC you added, and so on.

System software
modifications

Keep track of the options used when building Linux. Print such files as
/usr/src/linux/.config (Linux kernel configuration) and the X11 configuration
file /etc/X11/xorg.conf. The file hierarchy under /etc/default contains valuable
information about the network configuration, among other things.

Hardware
malfunctions

Keep as accurate a list as possible of any problems with the system. Make note
of any error messages or numbers that the system displays on the system
console and identify what users were doing when the problem occurred.

User complaints Make a list of all reasonable complaints made by knowledgeable users (for
example, “Machine is abnormally slow”).

682 Chapter 17 Administration Tasks

Keeping the System Secure

No system with dial-in lines or public access to terminals is absolutely secure. Nev-
ertheless, you can make a system as secure as possible by changing the passwords of
users who are members of the admin group (these users can use sudo to gain root
privileges) and the root password (if there is one) frequently and by choosing pass-
words that are difficult to guess. Do not tell anyone who does not absolutely need
to know any of these passwords. You can also encourage system users to choose dif-
ficult passwords and to change them periodically.

Passwords By default, passwords on Ubuntu Linux use MD5 (page 1047) hashing, which
makes them more difficult to break than passwords encrypted with DES (page 994).
Of course, it makes little difference how well encrypted your password is if you
make it easy for someone to find out or guess what the password is.

A password that is difficult to guess is one that someone else would not be likely to
think you would have chosen. Do not use words from the dictionary (spelled for-
ward or backward); names of relatives, pets, or friends; or words from a foreign
language. A good strategy is to choose a couple of short words, include some punc-
tuation (for example, put a ^ between them), mix the case, and replace some of the
letters in the words with numbers. If it were not printed in this book, an example of
a good password would be C&yGram5 (candygrams). Ideally you would use a ran-
dom combination of ASCII characters, but that would be difficult to remember.

You can use one of several password-cracking programs to find users who have
chosen poor passwords. These programs work by repeatedly hashing words from
dictionaries, phrases, names, and other sources. If the hashed password matches the
output of the program, then the program has found the password of the user. One
program that cracks passwords is crack (part of the crack software package). It and
many other programs and security tips are available from CERT (www.cert.org),
which was originally called the Computer Emergency Response Team. Specifically,
look at www.cert.org/tech_tips.

Setuid files Make sure no one except a user with root privileges can write to files containing
programs that are owned by root and run in setuid mode (for example, passwd
and sudo). Also make sure users do not transfer programs that run in setuid mode
and are owned by root onto the system by means of mounting tapes or disks.
These programs can be used to circumvent system security. One technique that
prevents users from having setuid files is to use the –nosuid flag to mount, which
you can set in the flags section in the fstab file. Refer to “fstab: Keeps Track of
Filesystems” on page 576.

BIOS The BIOS in many machines gives you some degree of protection from an unautho-
rized person who tries to modify the BIOS or reboot the system. When you set up
the BIOS, look for a section named Security. You can probably add a BIOS pass-
word. If you depend on the BIOS password, lock the computer case—it is usually a
simple matter to reset the BIOS password by using a jumper on the motherboard.

www.cert.org
www.cert.org/tech_tips

Solving Problems 683

Log Files and Mail for root
Users frequently email root and postmaster to communicate with the system admin-
istrator. If you do not forward root’s mail to yourself (/etc/aliases on page 763),
remember to check root’s mail periodically. You will not receive reminders about
mail that arrives for root when you use sudo to perform system administration
tasks. However, you can give the command sudo mail –u root to look at root’s mail.

Review the system log files regularly for evidence of problems. Some important files
are /var/log/messages, where the operating system and some applications record
errors; /var/log/mail.err (or /var/log/exmi4/mainlog if you are running exim4),
which contains errors from the mail system; and /var/log/syslog, which contains
messages from the system, including messages from cron.

Monitoring Disk Usage

Sooner or later you will probably start to run out of disk space. Do not fill up a par-
tition; Linux can write to files significantly faster if at least 5 to 30 percent of the
space in a partition remains free. Using more than the maximum optimal disk space
in a partition can degrade system performance.

Fragmentation As a filesystem becomes full, it can become fragmented. This is similar to the DOS
concept of fragmentation but is not nearly as pronounced and is typically rare on
modern Linux filesystems; by design Linux filesystems are resistant to fragmentation.
If you keep filesystems from running near full capacity, you may never need to worry
about fragmentation. If there is no space on a filesystem, you cannot write to it at all.

To check for filesystem fragmentation, unmount the filesystem and run fsck
(page 577) (with the –f option on ext2 and ext3 filesystems) on it. The output of
fsck includes a percent fragmentation figure for the filesystem. You can defragment
a filesystem by backing it up; using mkfs (page 525) to make a clean, empty image;
and then restoring the filesystem. Which utility you use to perform the backup and
restore—dump/restore, tar, cpio, or a third-party backup program—is not important.

Reports Linux provides several programs that report on who is using how much disk space
on which filesystems. Refer to the du, quota, and df man pages and the –size option
in the find utility man page. In addition to these utilities, you can use the disk quota
system (page 687) to manage disk space.

Four strategies to increase the amount of free space on a filesystem are to compress
files, delete files, grow LVM-based filesystems, and condense directories. This sec-
tion contains some ideas on ways to maintain a filesystem so that it does not
become overloaded.

Files that
grow quickly

Some files, such as log files and temporary files, inevitably grow over time. Core
dump files, for example, take up substantial space and are rarely needed. Also, users
occasionally run programs that accidentally generate huge files. As the system admin-
istrator, you must review these files periodically so they do not get out of hand.

684 Chapter 17 Administration Tasks

If a filesystem is running out of space quickly (that is, over a period of an hour
rather than weeks or months), first figure out why it is running out of space. Use a
ps –ef command to determine whether a user has created a runaway process that is
creating a huge file. When evaluating the output of ps, look for a process that has
consumed a large amount of CPU time. If such a process is running and creating a
large file, the file will continue to grow as you free up space. If you remove the huge
file, the space it occupied will not be freed until the process terminates, so you need
to kill the process. Try to contact the user running the process, and ask the user to
kill it. If you cannot contact the user, use sudo to kill the process yourself. Refer to
kill on page 522 for more information.

You can also truncate a large log file rather than removing it, although you can bet-
ter deal with this recurring situation with logrotate (discussed next). For example, if
the /var/log/messages file has become very large because a system daemon is mis-
configured, you can use /dev/null to truncate it:

$ sudo cp /dev/null /var/log/messages

or

$ sudo cat /dev/null > /var/log/messages

or, without spawning a new process,

$ sudo : > /var/log/messages

If you remove /var/log/messages, you have to restart the syslogd daemon. If you do
not restart syslogd, the space on the filesystem will not be released.

When no single process is consuming the disk space but capacity has instead been used
up gradually, locate unneeded files and delete them. You can archive these files by using
cpio, dump, or tar before you delete them. You can safely remove most files named core
that have not been accessed for several days. The following command line performs this
function without removing necessary files named core (such as /dev/core):

$ sudo find / -type f -name core | xargs file | grep 'B core file' | sed 's/:ELF.*//g' | xargs rm -f

The find command lists all ordinary files named core and sends its output to xargs,
which runs file on each of the files in the list. The file utility displays a string that
includes B core file for files created as the result of a core dump. These files need to
be removed. The grep command filters out from file any lines that do not contain
this string. Finally sed removes everything following the colon so that all that is left
on the line is the pathname of the core file; xargs then removes the file.

To free up more disk space, look through the /tmp and /var/tmp directories for old
temporary files and remove them. Keep track of disk usage in /var/mail, /var/spool,
and /var/log.

logrotate: Manages Log Files

Rather than deleting or truncating log files, you may want to keep these files for a
while in case you need to refer to them. The logrotate utility manages system log (and

Solving Problems 685

other) files automatically by rotating (page 1058), compressing, mailing, and remov-
ing each file as you specify. The logrotate utility is controlled by the /etc/logrotate.conf
file, which sets default values and can optionally specify files to be rotated. Typically
logrotate.conf has an include statement that points to utility-specific specification files
in /etc/logrotate.d. Following is the default logrotate.conf file:

$ cat /etc/logrotate.conf
see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

uncomment this if you want your log files compressed
#compress

packages drop log rotation information into this directory
include /etc/logrotate.d

no packages own wtmp -- we'll rotate them here
/var/log/wtmp {
 missingok
 monthly
 create 0664 root utmp
 rotate 1
}

/var/log/btmp {
 missingok
 monthly
 create 0664 root utmp
 rotate 1
}

system-specific logs may be also be configured here.

The logrotate.conf file sets default values for common parameters. Whenever logrotate
reads another value for one of these parameters, it resets the default value. You
have a choice of rotating files daily, weekly, or monthly. The number following
the rotate keyword specifies the number of rotated log files you want to keep.
The create keyword causes logrotate to create a new log file with the same name
and attributes as the newly rotated log file. The compress keyword (commented
out in the default file) causes log files to be compressed using gzip. The include
keyword specifies the standard /etc/logrotate.d directory for program-specific
logrotate specification files. When you install a program using dpkg (page 598) or
a dpkg-based utility such as aptitude (page 592), the installation script puts the
logrotate specification file in this directory.

686 Chapter 17 Administration Tasks

The last sets of instructions in logrotate.conf takes care of the /var/log/wtmp and
/var/log/btmp log files (wtmp holds login records; you can view this file with the com-
mand who /var/log/wtmp). The keyword missingok overrides the implicit default
value of nomissingok for this utility only (because the value is within brackets). This
keyword causes logrotate to continue without issuing an error message if the log file is
missing. The keyword monthly overrides the default value of weekly. The create key-
word is followed by the arguments establishing the permissions, owner, and group for
the new file. Finally rotate establishes that one rotated log file should be kept.

The /etc/logrotate.d/cupsys file is an example of a utility-specific logrotate specifica-
tion file:

$ cat cupsys
/var/log/cups/*log {
 daily
 missingok
 rotate 7
 sharedscripts
 postrotate
 if [-e /var/run/cups/cupsd.pid]; then
 invoke-rc.d --quiet cupsys force-reload > /dev/null
 sleep 10
 fi
 endscript
 compress
 notifempty
 create 640 cupsys lpadmin
}

This file, which is installed by the cupsys package install script and incorporated in
/etc/logrotate.d because of the include statement in logrotate.conf, works with each
of the files in /var/log/cups that has a filename ending in log (*log). The sharedscripts
keyword causes logrotate to execute the command(s) in the prerotate and postrotate
sections one time only—not one time for each log that is rotated. Although it does not
appear in this example, the copytruncate keyword causes logrotate to truncate the
original log file immediately after it copies it. This keyword is useful for programs that
cannot be instructed to close and reopen their log files because they might continue
writing to the original file even after it has been moved. The logrotate utility executes
the commands between prerotate and endscript before the rotation begins. Similarly,
commands between postrotate and endscript are executed after the rotation is com-
plete. The notifempty keyword causes logrotate not to rotate the log file if it is empty,
overriding the default action of rotating empty log files.

The logrotate utility works with a variety of keywords, many of which take argu-
ments and have side effects. Refer to the logrotate man page for details.

Removing Unused Space from Directories

A directory that contains too many filenames is inefficient. The point at which a
directory on an ext2 or ext3 filesystem becomes inefficient varies, depending partly

Solving Problems 687

on the length of the filenames it contains. Best practice is to keep directories rela-
tively small. Having fewer than several hundred files (or directories) in a directory is
generally a good idea, and having more than several thousand is generally a bad
idea. Additionally, Linux uses a caching mechanism for frequently accessed files
that speeds the process of locating an inode from a filename. This caching mecha-
nism works only on filenames of up to 30 characters in length, so avoid giving fre-
quently accessed files extremely long filenames.

When a directory becomes too large, you can usually break it into several smaller
directories by moving its contents to those new directories. Make sure you remove
the original directory once you have moved all of its contents.

Because Linux directories do not shrink automatically, removing a file from a direc-
tory does not shrink the directory, even though it frees up space on the disk. To
remove unused space and make a directory smaller, you must copy or move all the
files to a new directory and remove the original directory.

The following procedure removes unused directory space. First remove all unneeded
files from the large directory. Then create a new, empty directory. Next move or copy
all remaining files from the old large directory to the new empty directory. Remember
to copy hidden files. Finally delete the old directory and rename the new directory.

$ sudo mkdir /home/max/new
$ sudo mv /home/max/large/* /home/max/large/.[A-z]* /home/max/new
$ sudo rmdir /home/max/large
$ sudo mv /home/max/new /home/max/large

optional
Disk Quota System

The disk quota system (supplied by the quota software package) limits the disk
space and number of files owned by individual users. You can choose to limit each
user’s disk space, the number of files each user can own, or both. Each resource that
is limited has two limits: a lower limit and an upper limit. The user can exceed the
lower limit, or quota, although a warning is given each time the user logs in when
he is above the quota. After a certain number of warnings (set by the system admin-
istrator), the system behaves as if the user had reached the upper limit. Once the
upper limit is reached or the user has received the specified number of warnings, the
user will not be allowed to create any more files or use any more disk space. The
user’s only recourse at that point is to remove some files.

Users can review their usage and limits with the quota utility. Using sudo, you can
use quota to obtain information about any user.

First you must decide which filesystems to limit and how to allocate space among
users. Typically only filesystems that contain users’ home directories, such as
/home, are limited. Use the edquota utility to set the quotas, and then use quotaon to
start the quota system. Unmounting a filesystem automatically disables the quota
system for that filesystem.

688 Chapter 17 Administration Tasks

syslogd: Logs System Messages

Traditionally UNIX programs sent log messages to standard error. If a more perma-
nent log was required, the output was redirected to a file. Because of the limitations
of this approach, 4.3BSD introduced the system log daemon (syslogd) now used by
Linux. This daemon listens for log messages and stores them in the /var/log hierar-
chy. In addition to providing logging facilities, syslogd allows a single machine to
serve as a log repository for a network and allows arbitrary programs to process
specific log messages.

syslog.conf The /etc/syslog.conf file stores configuration information for syslogd. Each line in this
file contains one or more selectors and an action, separated by whitespace. The selec-
tors define the origin and type of the messages; the action specifies how syslogd pro-
cesses the message. Sample lines from syslog.conf follow (a # indicates a comment):

First some standard logfiles. Log by facility.
kern.* -/var/log/kern.log
lpr.* -/var/log/lpr.log
mail.* -/var/log/mail.log
#
Some 'catch-all' logfiles.
*.=debug;\
 auth,authpriv.none;\
 news.none;mail.none -/var/log/debug
.=info;.=notice;*.=warn;\
 auth,authpriv.none;\
 cron,daemon.none;\
 mail,news.none -/var/log/messages
#
Emergencies are sent to everybody logged in.
*.emerg *

Selectors A selector is split into two parts, a facility and a priority, which are separated by a
period. The facility indicates the origin of the message. For example, kern messages
come from the kernel and mail messages come from the mail subsystem. Following is
a list of facility names used by syslogd and the systems that generate these messages:

Facilities auth Authorization and security systems including login
authpriv Same as auth, but should be logged to a secure location
cron cron
daemon System and network daemons without their own categories
kern Kernel
lpr Printing subsystem
mail Mail subsystem
news Network news subsystem
user Default facility; all user programs use this facility
uucp The UNIX-to-UNIX copy protocol subsystem
local0 to local7 Reserved for local use

The priority indicates the severity of the message. The following list of the priority
names and the conditions they represent appears in priority order:

Solving Problems 689

Priorities debug Debugging information
info Information that does not require intervention
notice Conditions that may require intervention
warning Warnings
err Errors
crit Critical conditions such as hardware failures
alert Conditions that require immediate attention
emerg Emergency conditions

A selector consisting of a single facility and priority, such as kern.info, causes the
corresponding action to be applied to every message from that facility with that pri-
ority or higher (more urgent). Use .= to specify a single priority; for example,
kern.=info applies the action to kernel messages of info priority. An exclamation
point specifies that a priority is not matched. Thus kern.!info matches kernel mes-
sages with a priority lower than info and kern.!=info matches kernel messages with
a priority other than info.

A line with multiple selectors, separated by semicolons, applies the action if any of
the selectors is matched. Each of the selectors on a line with multiple selectors con-
strains the match, with subsequent selectors frequently tightening the constraints.
For example, the selectors mail.info;mail.!err match mail subsystem messages with
debug, info, notice, or warning priorities.

You can replace either part of the selector with an asterisk to match anything. The
keyword none in either part of the selector indicates no match is possible. The selec-
tor *.crit;kern.none matches all critical or higher-priority messages, except those
from the kernel.

Actions The action specifies how syslogd processes a message that matches the selector. The
simplest actions are ordinary files, which are specified by their absolute pathnames;
syslogd appends messages to these files. Specify /dev/console to send messages to the
system console. If you want a hardcopy record of messages, specify a device file that
represents a dedicated printer. Precede a filename with a hyphen (–) to keep syslogd
from writing each message to the file as it is generated (syncing). Doing so may
improve performance, but you may lose data if the system crashes after the message
is generated but before it gets written to a file.

You can write important messages to users’ terminals by specifying one or more
usernames separated by commas. Very important messages can be written to every
logged-in terminal by using an asterisk.

To forward messages to syslogd on a remote system, specify the name of the system
preceded by @. It is a good idea to forward critical messages from the kernel to
another system because these messages often precede a system crash and may not be
saved to the local disk. The following line from syslog.conf sends critical kernel
messages to plum:

kern.crit @plum

690 Chapter 17 Administration Tasks

Because syslogd is not configured by default to enable logging over the network,
you must edit the /etc/default/syslogd file on the remote system (plum in this case)
so that syslogd is started with the –r option. After you modify the syslog.conf file,
restart syslogd using the sysklogd init script.

Chapter Summary

The users-admin utility adds new users and groups to the system and modifies exist-
ing users’ accounts. You can also use the equivalent command line tools (useradd,
usermod, userdel, groupadd, and groupmod) to work with user accounts.

Backing up files on the system is a critical but often-overlooked part of system
administration. Linux includes the tar, cpio, dump, and restore utilities to back up
and restore files. You can also use more sophisticated packages such as amanda and
various commercial products.

The system scheduling daemon, cron, periodically executes scheduled tasks. You
can schedule tasks using crontab and at.

System reports present information on the health of the system. Two useful tools
that generate these reports are vmstat, which details virtual memory, I/O, and CPU
usage, and top, which reports on how the system is performing from moment to
moment and can help you figure out what might be slowing it down.

Another aspect of system administration is solving problems. Linux includes several
tools that can help track down system problems. One of the most important of
these tools is syslogd, the system log daemon. Using /etc/syslogd.conf, you can con-
trol which error messages appear on the console, which are sent as email, and which
go to one of several log files.

Exercises

1. How would you list all the processes running vi?

2. How would you use kill to cause a server process to reread its configura-
tion files?

3. From the command line, how would you create a user named John Doe
who has the username jd and who belongs to group 65535?

4. How would you notify users that you are going to reboot the system in ten
minutes?

5. Give a command that creates a level 0 dump of the /usr filesystem on the
first tape device on the system. Which command would you use to take
advantage of a drive that supports compression? Which command would
place a level 3 dump of the /var filesystem immediately after the level 0
dump on the tape?

Advanced Exercises 691

Advanced Exercises

6. If the system is less responsive than normal, what is a good first step in fig-
uring out where the problem is?

7. A process stores its PID number in a file named process.pid. Write a com-
mand line that terminates this process.

8. Working with root privileges, you are planning to delete some files but
want to make sure that the wildcard expression you use is correct. Suggest
two ways you could make sure you delete the correct files.

9. Create a crontab file that will regularly perform the following backups:

a. Perform a level 0 backup once per month.

b. Perform a level 2 dump one day per week.

c. Perform a level 5 dump every day on which neither a level 0 nor a level
2 dump is performed.

In the worst-case scenario, how many restore commands would you have
to give to recover a file that was dumped using this schedule?

This page intentionally left blank

693693

18Chapter18Networks allow computers to communicate and share
resources. A local area network (LAN) connects computers at
one site, such as an office, home, or library, and can allow the
connected computers to share an Internet connection, files, and
a printer. Of course, one of the most important reasons to set
up a LAN is to allow systems to communicate while users enjoy
multiplayer games.

This chapter covers the two aspects of configuring a LAN: set-
ting up the hardware and configuring the software. It is not
necessarily organized in the order you will perform the tasks
involved in setting up a particular LAN. Instead, read the
chapter through, figure out how you will set up your LAN,
and then read the parts of the chapter in the order appropriate
to your setup.

In This Chapter

Setting Up the Hardware 694

Routers . 695

NIC: Network Interface Card 695

Configuring the Systems 697

network-admin: Configures
Network Connections 698

iwconfig: Configures a
Wireless NIC. 700

Setting Up Servers 702

18

Configuring a LAN

694 Chapter 18 Configuring a LAN

Setting Up the Hardware

Each system, or node, on a LAN must have a network interface card (NIC). Each
system must connect to a central hub or switch. If the LAN is connected to another
network, such as the Internet, it must also have a router.

Connecting the Computers

Computers are connected to a network using cables (wired; page 357) or radio
waves (wireless or Wi-Fi, page 358). The cables can connect to a variety of devices,
some of which are described in this section. See “LAN: Local Area Network” on
page 357 for an explanation of cables and definitions of hub, switch, and router.

In the simple network shown in Figure 18-1, four computers are connected to a sin-
gle hub or switch. Assume computers 1 and 2 are communicating at the same time
as computers 3 and 4. With a hub (page 357), each conversation is limited to a
maximum of half the network bandwidth. With a switch (page 357), each conversa-
tion can theoretically use the full network bandwidth.

Hubs are usually less expensive than switches, although switches are getting cheaper
all the time and hubs are becoming less available. If you plan to use the network for
sharing an Internet connection and light file sharing, a hub is likely to be fast enough.
If systems on the network will exchange files regularly, a switch may be a better choice.

Wireless access
point (WAP)

A wireless access point (WAP) connects a wireless network to a wired one. Typically
a WAP acts as a transparent bridge, forwarding packets between the two networks
as if they were one. If you connect multiple WAPs in different locations to the same
wired network, wireless clients can roam transparently between the WAPs.

Wireless networks do not require a hub or switch, although a WAP can optionally
fill the role of a hub. In a wireless network, the bandwidth is shared among all nodes
within range of one another; the maximum speed is limited by the slowest node.

Figure 18-1 A simple network

Computer 1

Computer 2Computer 4

Computer 3

Hub
or

switch

Setting Up the Hardware 695

Routers

A router (page 359) connects a LAN to another network, such as the Internet. A
router can perform several functions, the most common of which is allowing several
systems to share a single Internet connection and IP address (NAT, page 897). When
a router uses NAT, the packets from each system on the LAN appear to come from
a single IP address; the router passes return packets to the correct system. A router
can also act as a firewall.

You have several choices for routers:

• A simple hardware router is relatively cheap and does most of the things
required by a small network.

• You can set up an Ubuntu Linux system as a router. The Linux kernel can
use firestarter (page 886) or iptables (page 896) to implement a firewall to
help protect a system.

• You can use a Linux distribution tailored for use as a router. For example,
SmoothWall (www.smoothwall.org) provides a browser-based configura-
tion in the style of a hardware router.

NIC: Network Interface Card

Each system’s NIC may be a separate Ethernet card (wired or wireless) or it may be
built into the motherboard.

Supported NICs Linux supports most wired and many wireless Ethernet NICs.

Unsupported
wireless NICs

If a wireless network card is not supported under Linux directly, you may be able to get
it to work with NdisWrapper (ndiswrapper.sourceforge.net; ndiswrapper-common,
ndiswrapper-utils-1.9, and ndisgtk packages), which uses Win32 drivers. NdisWrapper
is a kernel module that provides a subset of the Windows network driver API. See
help.ubuntu.com/community/WifiDocs/Driver/Ndiswrapper for instructions on install-
ing a Windows driver.

Wireless bridge An alternative to a wireless NIC is a wireless bridge. A wireless bridge forwards
packets between wired and wireless interfaces, eliminating the need for wireless
drivers. This simple device has an Ethernet port that plugs into a NIC and an
802.11 (wireless) controller. While carrying a bridge around is usually not feasible
for mobile users, a wireless bridge is an easy way to migrate a desktop computer to
a wireless configuration.

Ad hoc and
infrastructure

modes

Wireless networks operate in either ad hoc or infrastructure mode. In ad hoc mode,
individual nodes in the network communicate directly with each other. In infra-
structure mode, nodes communicate via a WAP (page 694). Infrastructure mode is
generally more reliable if the wireless LAN must communicate with a wired LAN.

If you do not want to use a WAP, it may be possible to set up a WLAN card so it
acts as a WAP. Consult the NIC/driver documentation for more information.

Tools

This section describes two of the tools you can use to examine system hardware.

www.smoothwall.org

696 Chapter 18 Configuring a LAN

lspci: Lists PCI Information

The lspci utility lists PCI device information:

$ lspci
00:00.0 Host bridge: nVidia Corporation nForce2 AGP (different version?) (rev c1)
00:00.1 RAM memory: nVidia Corporation nForce2 Memory Controller 1 (rev c1)
00:00.2 RAM memory: nVidia Corporation nForce2 Memory Controller 4 (rev c1)
00:00.3 RAM memory: nVidia Corporation nForce2 Memory Controller 3 (rev c1)
00:00.4 RAM memory: nVidia Corporation nForce2 Memory Controller 2 (rev c1)
00:00.5 RAM memory: nVidia Corporation nForce2 Memory Controller 5 (rev c1)
00:01.0 ISA bridge: nVidia Corporation nForce2 ISA Bridge (rev a4)
00:01.1 SMBus: nVidia Corporation nForce2 SMBus (MCP) (rev a2)
00:02.0 USB Controller: nVidia Corporation nForce2 USB Controller (rev a4)
...

With the –v option, lspci is more verbose. You can use the –vv option to display
even more information.

$ lspci -v
00:00.0 Host bridge: nVidia Corporation nForce2 AGP (different version?) (rev c1)
 Subsystem: ABIT Computer Corp. Unknown device 1c00
 Flags: bus master, 66MHz, fast devsel, latency 0
 Memory at e0000000 (32-bit, prefetchable) [size=64M]
 Capabilities: <access denied>

00:00.1 RAM memory: nVidia Corporation nForce2 Memory Controller 1 (rev c1)
 Subsystem: nVidia Corporation Unknown device 0c17
 Flags: 66MHz, fast devsel

00:00.2 RAM memory: nVidia Corporation nForce2 Memory Controller 4 (rev c1)
 Subsystem: nVidia Corporation Unknown device 0c17
 Flags: 66MHz, fast devsel
...

lshw: Lists Hardware Information

The lshw utility lists information about the hardware configuration of the local sys-
tem. Run this utility with root privileges to display a more detailed report. The
–short option displays a brief report. Without this option lshw displays much more
information.

$ sudo lshw -short
H/W path Device Class Description
==
 system Desktop Computer
/0 bus NF7-S/NF7 (nVidia-nForce2)
/0/0 memory 128KB BIOS
/0/4 processor AMD Athlon(tm) XP 2600+
/0/4/9 memory 128KB L1 cache
/0/4/a memory 512KB L2 cache
/0/1b memory 1GB System Memory
/0/1b/0 memory DIMM [empty]
...
/0/100/9/0/0 /dev/hda disk 149GB WDC WD1600JB-00GVA0
/0/100/9/0/0/1 /dev/hda1 volume 74GB Linux filesystem partition

Configuring the Systems 697

/0/100/9/0/0/2 /dev/hda2 volume 3812MB Linux swap / Solaris partition
/0/100/9/0/1 /dev/hdb disk CR-48XGTE
/0/100/1e bridge nForce2 AGP
/0/100/1e/0 display NV17 [GeForce4 MX 420]

You can also use lshal to display hardware information. This utility displays a
report based on the HAL (hardware abstraction layer) device database. See
www.freedesktop.org/wiki/Software/hal.

Configuring the Systems

Once the hardware is in place, you need to configure each system so it knows about
the NIC that connects it to the network. Normally Ubuntu detects and configures
new hardware automatically when you install Ubuntu or the first time you boot the
system after you install a NIC.

You can use network-admin (discussed in the next section) to augment the informa-
tion Ubuntu collects and to activate the NIC.

System information In addition to information about the NIC, each system needs the following data:

• The system’s IP address

• The netmask (subnet mask) for the system’s address (page 529)

• The IP address of the gateway (page 695)

• The IP addresses of the nameservers (DNS addresses—specify two or
three)

• The system’s hostname (set when you install Ubuntu Linux)

If you set up a DHCP server (page 538) to distribute network configuration infor-
mation to systems on the LAN, you do not need to specify the preceding informa-
tion on each system. Instead, you just specify that the system is using DHCP to
obtain this information (which Ubuntu does by default). You must specify this
information when you set up the DHCP server.

Private address
space

When you set up a LAN, the IP addresses of the systems on the LAN are generally not
made public on the Internet. Special IP addresses, which are part of the private address
space defined by IANA (page 1041), are reserved for private use and are appropriate
to use on a LAN (Table 18-1). Unless you have been assigned IP addresses for the sys-
tems on the LAN, choose addresses from the private address space.

Table 18-1 Private IP ranges (defined in RFC 1918)

Range of IP addresses From IP address To IP address

10.0.0.0/8 10.0.0.1 10.255.255.254

172.16.0.0/12 172.16.0.1 172.31.255.254

192.168.0.0/16 192.168.0.1 192.168.255.254

www.freedesktop.org/wiki/Software/hal

698 Chapter 18 Configuring a LAN

network-admin: Configures Network Connections

The Network Settings window (Figure 18-2) enables you to modify the configura-
tion of the NICs (wired or wireless). To display this window, select Main menu:
Administration Network or give the command gksudo network-admin from a ter-
minal emulator or Run Application window (ALT-F2).

The Network Settings window has tabs to specify hosts and DNS servers as well as
to configure information about the local host and network connections. After
Ubuntu identifies and configures new network hardware, you can use network-admin
to modify the configuration.

The Network Settings window has four tabs, one of which pertains to hardware
devices and three of which relate to the system. The Hosts tab modifies the
/etc/hosts file (page 559), the DNS tab modifies the /etc/resolv.conf file (page 561),
and the General tab modifies the hostname and the domain name (page 1034) of
the local system. Make changes in these tabs as necessary.

To modify the configuration of a NIC, select the Connections tab, highlight the
description of the connection you want to configure, and click Properties; network-
admin displays the Properties window (Figure 18-3).

Roaming mode A check box labeled Enable roaming mode appears in the upper-left corner of the
wired and wireless Properties windows. When you put a tick in this check box,
network-admin grays out the rest of the window and the nm-applet (next) takes over
configuring the device. The modem Properties window has a check box labeled
Enable this connection. Put a tick in this box to enable the modem connection;
continue configuring it from the Properties window.

Figure 18-2 The Network Settings window

Configuring the Systems 699

If you do not enable roaming mode, you can use the Properties window to configure
a device. The Configuration Settings portion of the wired and wireless Properties
windows is the same, but the wireless Properties window has a Wireless Settings
portion that is not present on the wired Properties window.

Wireless Settings It is usually easier to configure a wireless connection using the nm-applet (put a tick
in the box labeled Enable roaming mode, click OK, click Close in the Network Set-
tings window, and see the next section). To use the Properties window to configure
wireless settings, click the triangle at the right end of the combo box labeled Net-
work name (ESDID) and select the network you want to connect to. Alternatively,
you can enter the name of the network in the combo box. Select the password type
from, and enter the network password in, the next two boxes. Continue with Con-
nection Settings.

Connection Settings In the Configuration combo box you can select from Static IP address, Automatic
configuration (DHCP), and Local Zeroconf network. By default, Ubuntu attempts
to set up network devices automatically, using DHCP (page 538). Select Static IP
address and enter the information in the IP address (page 1042), Subnet mask
(page 529), and Gateway (page 695) text boxes if the local system has been
assigned a fixed IP address. Typically the ISP provides this information. Zeroconf
(www.zeroconf.org and zeroconf.sourceforge.net) allows networks to configure
themselves. Mac OS X, which calls Zeroconf Bonjour, uses this scheme exten-
sively. Select Local Zeroconf network if appropriate. Click OK. When you are fin-
ished entering information in the other tabs of the Network Settings window,
click Close.

Figure 18-3 The Properties window (wireless connection)

www.zeroconf.org

700 Chapter 18 Configuring a LAN

nm-applet: Configures Network

Connections Automatically

The nm-applet (network manager applet) object appears toward the right end of the
Top panel. Its icon appears as a double monitor when the system is using a wired
connection and as a series of vertical bars when the system is using a wireless con-
nection (Figure 18-4). The nm-applet package is a virtual package (page 592) that
installs the network-manager-gnome package. This applet works in conjunction
with network-admin. As explained in the previous section, when you put a tick in the
check box labeled Enable roaming mode in the Properties window for a wired or
wireless connection, nm-applet attempts to configure that connection automatically.
Exactly what clicking nm-applet displays depends on what is set up in network-admin.

Left-click nm-applet to display a menu that allows you to turn on/off networking
and, if available, wireless (networking). Click either selection to place or remove a
tick next to the entry. A tick indicates the service is enabled. You can also select
Connection Information to display a window showing information about the active
connection.

Right-clicking nm-applet displays a menu that lists the available wireless networks
and selections labeled Connect to Other Wireless Network and Create New Wire-
less Network (if the system has a wireless connection), Wired Network, and Man-
ual Configuration. In Figure 18-5 Wired Networks is selected (the adjacent radio
button has a dot in it), meaning that the system is using a wired connection and is
not using a wireless connection.

Click one of the wireless networks to disable the wired connection and connect to
the selected wireless network. Alternatively, if the system is connected to a wireless
network, click Wired Network to connect to the wired network. The nm-applet
changes to two dots with a tail going around them in circles while it connects to the
new network. It then displays the wireless or wired object, as is appropriate
(Figure 18-4). Clicking Manual Configuration displays the Network Settings win-
dow (discussed in the previous section).

iwconfig: Configures a Wireless NIC

You can configure a wireless NIC using either network-admin, nm-applet, or iwconfig.
As a last resort, you can use NdisWrapper to install a Windows driver under Ubuntu

Figure 18-4 The nm-applet

nm-applet (wired)
nm-applet (wireless)

Configuring the Systems 701

(see help.ubuntu.com/community/WifiDocs/Driver/Ndiswrapper). The iwconfig util-
ity is based on ifconfig and configures elements of a wireless NIC not supported by
ifconfig, such as setting up Master mode and binding a card to a WAP.

When you call iwconfig without any arguments, it reports on the status of the wireless
interfaces:

$ iwconfig eth1
lo no wireless extensions.

eth0 no wireless extensions.

eth1 unassociated ESSID:off/any
Mode:Managed Frequency=nan kHz Access Point: Not-Associated
Bit Rate:0 kb/s Tx-Power:16 dBm
Retry limit:15 RTS thr:off Fragment thr:off
Power Management:off
Link Quality:0 Signal level:0 Noise level:0
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:55 Missed beacon:0

The most common parameters you will change with iwconfig are the encryption key,
the mode, and the name of the network. Most devices support a minimum of 40-bit
Wired Equivalent Privacy (WEP) encryption. The encryption key is defined by a
string of 10 hexadecimal digits. The contents of the string is arbitrary, but must be
the same on all nodes:

$ sudo iwconfig eth1 key 19FEB47A5B

Figure 18-5 The nm-applet window

702 Chapter 18 Configuring a LAN

The algorithm used by WEP is known to be flawed; using it does not give much pro-
tection. If you require privacy, use an encrypted protocol, such as SSH or HTTPS. If
you have difficulty connecting, disable encryption on all nodes:

$ sudo iwconfig eth1 key off

The mode defines whether you are connecting to an ad hoc or infrastructure network.
Normally you can set mode to Auto, which selects the correct mode automatically:

$ sudo iwconfig eth1 mode Auto

The exception is if you want to use the NIC as a WAP, in which case you need to set
mode to Master:

$ sudo iwconfig eth1 mode Master

Not all wireless NICs are capable of acting as masters.

The network name is defined by the ESSID (Extended Service Set ID), an arbitrary
string. With the ESSID set (it must be the same on every node, including the WAP),
you should be able to roam between any set of nodes with the same network name:

$ sudo iwconfig eth1 essid "My Wireless Network"

See the iwconfig man page for more information.

Setting Up Servers

Setting up local clients and servers can make a LAN both easier to use and more
useful. The following list briefly describes some of these tools and references the
pages that describe them in detail.

Firewall Although not a server, a firewall—which is typically installed on the router—is an
important part of a LAN. See firestarter (page 886) or iptables (page 896) for more
information.

NIS NIS can provide a uniform login regardless of which system you log in on. The NIS
authentication server is covered on page 790 and the client on page 784. NIS is
often combined with home directories that are mounted using NFS.

NFS NFS allows you to share directory hierarchies. Sharing directories using NFS
requires that the server export the directory hierarchy (page 811) and that clients
mount the hierarchy (page 803).

Using NFS, you can store all home directories on one system and mount them from
other systems as needed. This configuration works well with NIS login authentica-
tion. With this setup, it can be convenient to create a world-writable directory—for
example, /home/shared—which users can use to exchange files. If you set the sticky
bit (page 1062) on this directory (chmod 1777 /home/shared), users can delete only
files they created. If you do not set the sticky bit, any user can delete any file.

OpenSSH OpenSSH tools include ssh (logs in on a remote system; page 714) and scp (copies
files to and from a remote system; page 716). You can also set up automatic logins
with OpenSSH: If you set up a shared home directory with NFS, each user’s ~/.ssh

Chapter Summary 703

directory (page 709) is the same on each system; a user who sets up a personal
authentication key (page 721) will be able to use OpenSSH tools between systems
without entering a password. See page 720 for information on how to set up an
OpenSSH server. You can just use the ssh and scp clients—you do not have to set
them up.

DNS cache Setting up a local cache can reduce the traffic between the LAN and the Internet
and can improve response times. For more information refer to “JumpStart I: Set-
ting Up a DNS Cache” on page 858.

DHCP DHCP enables a client system to retrieve network configuration information from a
server each time it connects to a network. See page 538 for more information.

Samba Samba allows Linux systems to participate in a Windows network, sharing directo-
ries and printers, and accessing those directories and printers shared by Windows
systems. Samba includes a special share for accessing users’ home directories. For
more information refer to “The [homes] Share: Sharing Users’ Home Directories”
on page 838.

You can also use Samba to set up a shared directory similar to the one described
under “NFS.” To share a Linux directory with Windows computers, the value of
Workgroup in /etc/samba/smb.conf must be the same as the Windows workgroup
(frequently MSHOME or WORKGROUP by default). Place the following code in
smb.conf (page 832):

[public]
 comment = Public file space
 path = /home/shared
 read only = no
 public = yes
 browseable = yes

Any Windows user can access this share, which can be used to exchange files
between users and between Linux and Windows systems.

More Information

Web SmoothWall Linux distribution www.smoothwall.org
help.ubuntu.com/community/WifiDocs/Driver/Ndiswrapper
NdisWrapper ndiswrapper.sourceforge.net

HOWTOs Linux Wireless Lan HOWTO www.hpl.hp.com/personal/Jean_Tourrilhes/Linux
Wireless HOWTO
Linux Hardware Compatibility HOWTO

Chapter Summary

A local area network (LAN) connects computers at one site and can allow the con-
nected computers to share an Internet connection, files, and a printer. Each system,

www.smoothwall.org
www.hpl.hp.com/personal/Jean_Tourrilhes/Linux

704 Chapter 18 Configuring a LAN

or node, on a LAN must have a network interface card (NIC). NICs can be con-
nected to the network via cables (wired) or radio waves (wireless).

An Ethernet-based LAN has a connection between each computer and a central hub
or switch. Hubs are generally slower than switches, but either is usually satisfactory
for a small LAN. A wireless access point (WAP) connects a wireless network to a
wired one. If the LAN you are setting up is connected to another network, such as
the Internet, the LAN requires a router. A router can perform several functions, the
most common of which is allowing several systems to share a single Internet con-
nection and IP address; this function is called NAT.

Several tools are useful when you are setting up a LAN. The Network Settings win-
dow (network-admin) and the nm-applet enable you to configure NICs (wired or wire-
less). The iwconfig utility configures elements of a wireless NIC.

You can configure the systems on the LAN to use NIS as a login server so you do
not have to set up accounts on each system. You can use NFS, which allows you to
mount remote directory hierarchies, to set up a universal home directory. Samba is
an important part of many LANs: It allows Linux systems to participate in a Win-
dows network, sharing directories and printers, and accessing those directories and
printers shared by Windows systems.

Exercises

1. What advantage does a switch have over a hub?

2. Which server would you set up to allow users to log in with the same user-
name and password on all computers on a LAN?

3. Name two servers that allow you to share directories between systems.

4. What is a WAP and what does it do?

5. What is a common function of a router? What is this function called?

6. What does a wireless bridge do?

7. Name two tools you can use to configure a wireless NIC (rather than hav-
ing it be configured automatically). What is the difference between the two?

8. What is the private address space? When would you use a private address?

Advanced Exercises

9. If you set a system’s subnet mask to 255.255.255.0, how many computers
can you put on the network without using a router?

10. Which file stores information about which DNS servers the system uses?

705

I

PART V

Using Clients and Setting

Up Servers

CHAPTER 19

OpenSSH: Secure Network Communication 707

CHAPTER 20

FTP: Transferring Files Across a Network 729

CHAPTER 21

exim4: Setting Up Mail Servers, Clients, and More 755

CHAPTER 22

NIS: Network Information Service 781

CHAPTER 23

NFS: Sharing Filesystems 799

CHAPTER 24

Samba: Linux and Windows File and Printer Sharing 823

CHAPTER 25

DNS/BIND: Tracking Domain Names and Addresses 845

CHAPTER 26

firestarter and iptables: Setting Up a Firewall 885

CHAPTER 27

Apache: Setting Up a Web Server 915

This page intentionally left blank

707707

19Chapter19OpenSSH is a suite of secure network connectivity tools that
replaces telnet/telnetd, rcp, rsh/rshd, rlogin/rlogind, and ftp/ftpd.
Unlike the tools they replace, OpenSSH tools encrypt all traf-
fic, including passwords. In this way they thwart malicious
users who attempt to eavesdrop, hijack connections, and steal
passwords.

This chapter covers the following OpenSSH tools:

• scp Copies files to and from another system

• sftp Copies files to and from other systems (a secure
replacement for ftp)

• ssh Runs a command on or logs in on another system

• sshd The OpenSSH daemon (runs on the server)

• ssh-keygen Creates, manages, and converts RSA or
DSA host/user authentication keys

In This Chapter

About OpenSSH 708

OpenSSH Clients. 711

JumpStart: Using ssh and scp . . . 711

sshd: OpenSSH Server 720

JumpStart: Starting the
sshd Daemon. 720

Troubleshooting 724

Tunneling/Port Forwarding. 725

19

OpenSSH: Secure

Network

Communication

708 Chapter 19 OpenSSH: Secure Network Communication

Introduction

Using public key encryption (page 993), OpenSSH provides two levels of authenti-
cation: server and client/user. First the client verifies that it is connected to the cor-
rect server. Then OpenSSH encrypts communication between the systems. Once a
secure, encrypted connection has been established, OpenSSH makes sure the user is
authorized to log in on or copy files to and from the server. After verifying the sys-
tem and user, OpenSSH allows different services to be passed through the connec-
tion. These services include interactive shell sessions (ssh), remote command
execution (ssh), file copying (scp), FTP services (sftp), X11 client/server connec-
tions, and TCP/IP port tunneling.

SSH1 versus SSH2 SSH protocol version 2 (SSH2) is a complete rewrite of SSH protocol version 1
(SSH1) that offers improved security, performance, and portability. The two proto-
cols are not compatible. Because SSH1 is being rapidly supplanted by SSH2 and
because SSH1 is vulnerable to a man-in-the-middle attack (footnote 3 on page 996),
this chapter does not discuss SSH1. Because version 2 is floating-point intensive,
version 1 does have a place on systems without FPUs (floating-point units or accel-
erators), such as old 486SX systems. As installed, the OpenSSH tools supplied with
Ubuntu Linux support SSH2 only.

ssh The ssh utility allows you to log in on a remote system over a network. You might
choose to use a remote system to access a special-purpose application or to take
advantage of a device that is available only on that system, or you might use a
remote system because you know it is faster or less busy than the local system.
While traveling, many businesspeople use ssh on a laptop to log in on a system at
company headquarters. From a GUI you can use several systems simultaneously by
logging in on each one from a different terminal emulator window.

X11 forwarding Once you turn on trusted X11 forwarding, it is a simple matter to run an X11 pro-
gram over an ssh connection: Run ssh from a terminal emulator running on an X11
server and give an X11 command such as xclock; the graphical output appears on
the local display. For more information refer to “Forwarding X11” on page 725.

About OpenSSH

This section discusses configuration files used by OpenSSH clients and servers,
describes how OpenSSH works, and highlights additional OpenSSH resources.

Files

OpenSSH clients and servers rely on many files. Global files are kept in /etc/ssh and
user files in ~/.ssh. In this section, the first word in the description of each file indi-
cates whether the client or the server uses the file.

About OpenSSH 709

/etc/ssh: Global Files

Global files listed in this section affect all users but can be overridden by files in a
user’s ~/.ssh directory.

moduli client and server Contains key exchange information that OpenSSH uses to estab-
lish a secure connection. Do not modify this file.

ssh_config client The global OpenSSH configuration file (page 718). Entries here can be over-
ridden by entries in a user’s ~/.ssh/config file.

sshd_config server The configuration file for sshd (page 722).

ssh_host_dsa_key,
ssh_host_dsa_key.pub

server SSH protocol version 2 DSA host keys. Both files should be owned by root.
The ssh_host_dsa_key.pub public file should be readable by anyone but writable
only by its owner (644 permissions). The ssh_host_dsa_key private file should not
be readable or writable by anyone except its owner (600 permissions).

ssh_host_rsa_key,
ssh_host_rsa_key.pub

server SSH protocol version 2 RSA host keys. Both files should be owned by root.
The ssh_host_rsa_key.pub public file should be readable by anyone but writable
only by its owner (644 permissions). The ssh_host_rsa_key private file should not
be readable or writable by anyone except its owner (600 permissions).

ssh_known_hosts client Contains public RSA (by default) keys of hosts that users on the local sys-
tem can connect to. This file contains information similar to that found in
~/.ssh/known_hosts, but is set up by the administrator and is available to all users.
This file should be owned by root and should be readable by anyone but writable
only by its owner (644 permissions).

sshrc server Contains initialization routines. When a user on a client connects to a
server, if ~/.ssh/rc is not present, OpenSSH runs this script on the server after
~/.ssh/environment and before the user’s shell starts.

~/.ssh: User Files

OpenSSH creates the ~/.ssh directory and the known_hosts file therein automati-
cally when a user connects to a remote system.

authorized_keys server Enables a user to log in on or copy files to and from another system with-
out supplying a user login password (page 721). However, the user may need to
supply a passphrase, depending on how the key was set up. No one except the
owner should be able to write to this file.

rhost authentication is a security risk

caution Although OpenSSH can get authentication information from /etc/hosts.equiv, /etc/shosts.equiv,
~/.rhosts, and ~/.shosts, this chapter does not cover the use of these files because they are secu-
rity risks. The default settings in the /etc/ssh/sshd_config configuration file prevent their use.

710 Chapter 19 OpenSSH: Secure Network Communication

config client A user’s private OpenSSH configuration file (page 718). Entries here over-
ride those in /etc/ssh/ssh_config.

environment server Contains assignment statements that define environment variables on a
server when a user logs in using ssh.

id_dsa,
id_dsa.pub

client User authentication DSA keys generated by ssh-keygen (page 721). Both
files should be owned by the user in whose home directory they appear. The
id_dsa.pub public file should be readable by anyone but writable only by its owner
(644 permissions). The id_dsa private file should not be readable or writable by
anyone except its owner (600 permissions).

id_rsa,
id_rsa.pub

client User authentication RSA keys generated by ssh-keygen (page 721). Both
files should be owned by the user in whose home directory they appear. The
id_rsa.pub public file should be readable by anyone but writable only by its owner
(644 permissions). The id_rsa private file should not be readable or writable by any-
one except its owner (600 permissions).

known_hosts client Contains public RSA keys (by default) of hosts the user has connected to.
OpenSSH automatically adds entries each time the user connects to a new server
(page 712). Refer to “HostKeyAlgorithms” (page 719) for information on using
DSA keys. If HashKnownHosts (page 719) is set to yes, the hostnames and
addresses in this file are hashed to improve security.

rc server Contains initialization routines. When a user on a client connects to a
server, OpenSSH runs this script on the server after environment and before the
user’s shell starts. If this file is not present, OpenSSH runs /etc/ssh/sshrc; if that file
does not exist, OpenSSH runs xauth.

How OpenSSH Works

When OpenSSH starts, it first establishes an encrypted connection and then authen-
ticates the user. Once these two tasks are completed, OpenSSH allows the two sys-
tems to send information back and forth.

OpenSSH uses two key pairs to negotiate an encrypted session: a host key pair and
a session key pair. The host key pair is a set of public/private keys that is established
when you install the openssh-server package (page 720). The session key pair is a
set of public/private keys that changes hourly.

The first time an OpenSSH client connects with an OpenSSH server, you are asked to
verify that it is connected to the correct server (see “First-time authentication” on
page 712). After verification, the client makes a copy of the server’s public host key. On
subsequent connections, the client compares the key provided by the server with the
original key it stored. Although this test is not foolproof, the next one is quite secure.

The client then generates a random key, which it encrypts with both the server’s
public host key and the session key. The client sends this encrypted key to the server.
The server, in turn, uses its private keys to decrypt the encrypted key. This process
creates a key that is known only to the client and the server and is used to encrypt
the rest of the session.

OpenSSH Clients 711

More Information

Local man pages ssh, scp, sftp, ssh-keygen, ssh_config, sshd, sshd_config

Web OpenSSH home page www.openssh.com
Search on ssh to find various HOWTOs and other documents tldp.org

Books Implementing SSH: Strategies for Optimizing the Secure Shell
by Dwivedi; John Wiley & Sons (October 2003)

SSH, The Secure Shell: The Definitive Guide by Barrett, Silverman, & Byrnes;
O’Reilly Media (May 2005)

OpenSSH Clients

This section covers setting up and using the ssh, scp, and sftp clients.

Prerequisites

The openssh-client package is installed by default. You do not need to install any
packages to run an OpenSSH client. There is no init script for OpenSSH clients.

JumpStart: Using ssh and scp
The ssh and scp clients do not require setup beyond installing the requisite package,
although you can create and edit files that facilitate their use. To run a secure shell on or
securely copy a file to and from a remote system, the following criteria must be met:
The remote system must be running the OpenSSH daemon (sshd), you must have an
account on the remote system, and the server must positively identify itself to the client.

The following example shows Zach logging in on the remote host named plum and
giving an exit command to return to the shell on the local system:

$ ssh zach@plum
zach@plum's password:
Linux plum 2.6.17-10-generic #2 SMP Tue Dec 5 22:28:26 UTC 2006 i686
...
Last login: Mon Jan 22 21:58:22 2007 from 192.168.0.12
zach@plum:~$ exit
logout
Connection to plum closed.

You can omit user@ (zach@ in the preceding example) from the command line if you
want to log in as yourself and you have the same username on both systems. The first
time you connect to a remote OpenSSH server, ssh or scp asks you to confirm that you
are connected to the right system. Refer to “First-time authentication” on page 712.

The following example copies ty1 from the working directory on the local system to
Zach’s home directory on plum:

$ scp ty1 zach@plum:
zach@plum's password:
ty1 100% 162 0.2KB/s 00:00

www.openssh.com

712 Chapter 19 OpenSSH: Secure Network Communication

Setup

This section describes how to set up OpenSSH on the client side.

Recommended Settings

X11 forwarding The configuration files provided by Ubuntu establish a mostly secure system and
may or may not meet your needs. One OpenSSH parameter you may want to
change is ForwardX11Trusted, which is set to yes by default. To increase security,
and in some cases reduce usability, set ForwardX11Trusted (page 719) to no in the
Ubuntu /etc/ssh/ssh_config configuration file. See page 725 for more information
about X11 forwarding.

Server Authentication/Known Hosts

known_hosts,
ssh_known_hosts

Two files list the hosts the local system has connected to and positively identified:
~/.ssh/known_hosts (user) and /etc/ssh/ssh_known_hosts (global). No one except
the owner (root in the case of the second file) should be able to write to either of
these files. No one except the owner should have any access to a ~/.ssh directory.

First-time
authentication

When you connect to an OpenSSH server for the first time, the OpenSSH client
prompts you to confirm that you are connected to the right system. This check can
help prevent a man-in-the-middle attack (footnote 3 on page 996):

The authenticity of host 'plum (192.168.0.10)' can't be established.
RSA key fingerprint is d1:9d:1b:5b:97:5c:80:e9:4b:41:9a:b7:bc:1a:ea:a1.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'plum,192.168.0.10' (RSA) to the list of
known hosts.

Before you respond to the preceding query, make sure you are logging in on the
correct system and not on an imposter. If you are not sure, a telephone call to
someone who logs in on that system locally can help verify that you are on the
intended system. When you answer yes (you must spell it out), the client appends
the server’s public host key (the single line in the /etc/ssh/ssh_host_rsa_key.pub or
/etc/ssh/ssh_host_dsa_key.pub file on the server) to the user’s ~/.ssh/known_hosts
file on the local system, creating the ~/.ssh directory if necessary. So that it can
keep track of which line in known_hosts applies to which server, OpenSSH
prepends the name of the server and the server’s IP address to the line.

When you subsequently use OpenSSH to connect to that server, the client verifies
that it is connected to the correct server by comparing this key to the one supplied
by the server. You can display the local system’s RSA key fingerprint with the fol-
lowing command:

$ ssh-keygen -lf /etc/ssh/ssh_host_rsa_key.pub
2048 d1:9d:1b:5b:97:5c:80:e9:4b:41:9a:b7:bc:1a:ea:a1 /etc/ssh/ssh_host_rsa_key.pub

known_hosts file The known_hosts file uses one or two very long lines to identify each host it keeps
track of. Each line starts with the hostname and IP address of the system the line cor-
responds to, followed by the type of encryption being used and the server’s public

OpenSSH Clients 713

host key. When HashKnownHosts (page 719) is set to yes (the default), OpenSSH
hashes the system name and address for security. Because it hashes the hostname and
IP address separately, OpenSSH puts two lines in known_hosts for each host. The
following lines (they are two logical lines, each of which wraps on to several physical
lines) from known_hosts are used to connect to a remote system using RSA
(page 1058) encryption:

$ cat ~/.ssh/known_hosts
|1|PrVUqXFVnnVLrkymq1ByCnmXaZc=|TVRAtwaqi15EJ9guFR5js3f1AR8= ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA7egm4YaOOj5/JtGUlt3jqC5RfcJ8/RAUixKzDAqJ5fE
...
|1|Pnu8B9UUqe7sGIWCiCIUTl8qysc=|Ldm5/7LK6v84ds2129mzw29jqb8= ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA7egm4YaOOj5/JtGUlt3jqC5RfcJ8/RAUixKzDAqJ5fE
...

You can use ssh-keygen with the –R option followed by the hostname to remove a
hashed entry. The –F option to ssh-keygen displays a line in a known_hosts file that
corresponds to a specified system, even if the entry is hashed:

$ ssh-keygen -F plum
Host plum found: line 1 type RSA
|1|PrVUqXFVnnVLrkymq1ByCnmXaZc=|TVRAtwaqi15EJ9guFR5js3f1AR8= ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA7egm4YaOOj5/JtGUlt3jqC5RfcJ8/RAUixKzDAqJ5fE
...

OpenSSH automatically stores keys from servers it has connected to in user-private
files (~/.ssh/known_hosts). These files work only for the user whose directory they
appear in. Working with root privileges and using a text editor, you can copy non-
hashed lines from a user’s private list of known hosts to the public list in
/etc/ssh/ssh_known_hosts to make a server known globally on the local system.

The following example shows how Sam, who has administrative privileges, puts the
hashed entry from his known_hosts file into the global ssh_known_hosts file. First,
working as himself, Sam sends the output of ssh-keygen through tail to strip off the
Host plum found line and redirects the output to a file named tmp_know_hosts.
Next, working with root privileges, Sam appends the contents of the file he just cre-
ated to /etc/ssh/ssh_known_hosts. This command creates this file if it does not
exist. Finally, Sam removes the temporary file he created and returns to working as
himself.

sam@dog:~$ ssh-keygen -F plum | tail -1 > tmp_known_hosts
sam@dog:~$ sudo -i
root@dog:~# cat ~sam/tmp_known_hosts >> /etc/ssh/ssh_known_hosts
root@dog:~# exit
sam@dog:~$ rm ~sam/tmp_known_hosts

Because the output from cat is redirected, Sam creates a shell with root privileges
(sudo –i) to execute the command. See page 492 for a discussion of redirecting the
output of a command run under sudo.

714 Chapter 19 OpenSSH: Secure Network Communication

If, after a remote system’s public key is stored in one of the known-hosts files, the
remote system supplies a different fingerprint when the systems connect, OpenSSH
displays the following message and does not complete the connection:

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
f1:6f:ea:87:bb:1b:df:cd:e3:45:24:60:d3:25:b1:0a.
Please contact your system administrator.
Add correct host key in /home/sam/.ssh/known_hosts to get rid of this message.
Offending key in /home/sam/.ssh/known_hosts:1
RSA host key for plum has changed and you have requested strict checking.
Host key verification failed.

If you see this message, you may be the subject of a man-in-the-middle attack. More
likely, however, something on the remote system has changed, causing it to supply a
new fingerprint. Check with the remote system’s administrator. If all is well, remove
the offending key from the specified file (the third line from the bottom in the pre-
ceding example points to the line you need to remove) and try connecting again.
You can use ssh-keygen with the –R option followed by the name of a host to
remove a hashed entry. You will be subject to first-time authentication (page 712)
again as OpenSSH verifies that you are connecting to the correct system. Follow the
same steps as when you initially connected to the remote host.

ssh: Connects to or Executes Commands on a

Remote System

The format of an ssh command line is

ssh [options] [user@]host [command]

where host, the name of the OpenSSH server (the remote system) you want to con-
nect to, is the only required argument. The host can be a local system name, the
FQDN (page 1037) of a system on the Internet, or an IP address. Give the com-
mand ssh host to log in on the remote system host with the same username you are
using on the local system. Include user@ when you want to log in with a username
other than the one you are using on the local system. Depending on how the server
is set up, you may need to supply your password.

Opening a
remote shell

Without command, ssh logs you in on host. The remote system displays a shell
prompt and you can run commands on host. Give the command exit to close the
connection to host and return to the local system’s prompt.

In the following example, Sam, who is logged in on dog, uses ssh to log in on
plum, gives a who am i command that shows the IP address of the system he is

OpenSSH Clients 715

logged in from, and uses exit to close the connection to plum and return to the
local system’s prompt:

sam@dog:~$ ssh plum
sam@plum's password:
Linux plum 2.6.17-10-generic #2 SMP Tue Dec 5 22:28:26 UTC 2006 i686
...
Last login: Mon Jan 22 22:00:13 2007 from 192.168.0.12
sam@plum:~$ who am i
sam pts/0 2007-01-23 14:19 (192.168.0.12)
sam@plum:~$ exit
logout
Connection to plum closed.
sam@dog:~$

Running a remote
command

When you include command, ssh logs in on host, executes command, closes the
connection to host, and returns control to the local system. The remote system
never displays a shell prompt.

The following example runs ls in the memos directory on the remote system plum.
The example assumes that the user running the command (Sam) has a login on
plum and that the memos directory is in Sam’s home directory on plum:

sam@dog:~$ ssh plum ls memos
sam@plum's password:
memo.0921
memo.draft
sam@dog:~$

For the next example, assume the working directory on the local system (dog) holds
file named memo.new. You cannot remember whether this file contains certain
changes or whether you made these changes to the file named memo.draft on plum.
You could copy memo.draft to the local system and run diff (page 154) on the two
files, but then you would have three similar copies of the file spread across two sys-
tems. If you are not careful about removing the old copies when you are done, you
may just become confused again in a few days. Instead of copying the file, you can
use ssh:

sam@dog:~$ ssh plum cat memos/memo.draft | diff memos.new –

When you run ssh, standard output of the command run on the remote system is
passed to the local shell as though the command had been run in place on the local
system. As with all shell commands, you must quote special characters you do not
want the local system to interpret. In the preceding example, the output of the cat
command on plum is sent through a pipe on dog to diff (running on dog), which
compares the local file memos.new to standard input (–). The following command
line has the same effect but causes diff to run on the remote system:

sam@dog:~$ cat memos.new | ssh plum diff – memos/memo.draft

Standard output from diff on the remote system is sent to the local shell, which dis-
plays it on the screen (because it is not redirected).

716 Chapter 19 OpenSSH: Secure Network Communication

Options

This section describes some of the options you can use with ssh.

–C (compression) Enables compression. (In the commercial version of ssh, –C disables
compression and +C enables compression.)

–f (not foreground) Sends ssh to the background after asking for a password and
before executing the command. Useful when you want to run the command in the
background but must supply a password. Implies –n.

–L Forwards a port on the local system to a remote system. For more information refer
to “Tunneling/Port Forwarding” on page 725.

–l user (login) Attempts to log in as user.

–n (null) Redirects standard input to ssh to come from /dev/null. Required when run-
ning ssh in the background (–f option).

–o option (option) Specifies option in the format used in configuration files (page 718).

–p (port) Specifies the port on the remote host that the connection is made to. Using
the host declaration (page 719) in the configuration file, you can specify a different
port for each system you connect to.

–R Forwards a port on the remote system to the local client. For more information
refer to “Tunneling/Port Forwarding” on page 725.

–t (tty) Allocates a pseudo-tty (terminal) to the ssh process on the remote system.
Without this option, when you run a command on a remote system, ssh does not
allocate a tty (terminal) to the process. Instead, it attaches standard input and stan-
dard output of the remote process to the ssh session—which is normally, but not
always, what you want. This option forces ssh to allocate a tty on the remote sys-
tem so programs that require a tty will work.

–v (verbose) Displays debugging messages about the connection and transfer. Useful if
things are not going as expected.

–X (X11) Turns on nontrusted X11 forwarding. This option is not necessary if you turn
on X11 nontrusted forwarding in the configuration file. For more information refer
to “Forwarding X11” on page 725.

–x (X11) Turns off X11 forwarding.

–Y (X11trusted) Turns on trusted X11 forwarding. This option is not necessary if you
turn on trusted X11 forwarding in the configuration file. For more information
refer to “Forwarding X11” on page 725.

scp: Copies Files to and from a Remote System

The scp (secure copy) utility copies an ordinary or directory file from one system to
another (including two remote systems) over a network. This utility uses ssh to
transfer files and employs the same authentication mechanism as ssh; thus it pro-
vides the same security as ssh. The scp utility asks for a password when one is
required. The format of an scp command is

OpenSSH Clients 717

scp [[user@]from-host:]source-file [[user@]to-host:][destination-file]

where from-host is the name of the system you are copying files from and to-host is
the system you are copying to. The from-host and to-host arguments can be local
system names, FQDNs (page 1037) of systems on the Internet, or IP addresses.
When you do not specify a host, scp assumes the local system. The user on either
system defaults to the user on the local system who is giving the command; you can
specify a different user with user@.

The source-file is the file you are copying, and the destination-file is the resulting
copy. Make sure you have read permission for the file you are copying and write
permission for the directory you are copying it into. You can specify plain or direc-
tory files as relative or absolute pathnames. (A relative pathname is relative to the
specified or implicit user’s home directory.) When the source-file is a directory, you
must use the –r option to copy its contents. When the destination-file is a directory,
each of the source files maintains its simple filename. When the destination-file is
missing, scp assumes the user’s home directory.

Suppose Sam has an alternate username, sls, on plum. In the following example, Sam
uses scp to copy memo.txt from the home directory of his sls account on plum to the
allmemos directory in the working directory on the local system. If allmemos was
not the name of a directory, memo.txt would be copied to a file named allmemos in
the working directory.

sam@dog:~$ scp sls@plum:memo.txt allmemos
sls@plum's password:
memo.txt 100% 4084KB 4.0MB/s 00:01

As the transfer progresses, the percentage and number of bytes transferred increase
and the time remaining decreases.

In the next example, Sam, while working from peach, copies the same file as in the
previous example to the directory named old in his home directory on speedy. For
this example to work, Sam must be able to use ssh to log in on speedy from plum
without using a password. For more information refer to “Authorized Keys: Auto-
matic Login” on page 721.

sam@peach:~$ scp sls@plum:memo.txt speedy:old
sam@plum's password:

Options

This section describes some of the options you can use with scp.

–C (compression) Enables compression.

–o option (option) Specifies option in the format used in configuration files (discussed shortly).

–P port (port) Connects to port port on the remote host. This option is given in uppercase
for scp and in lowercase for ssh.

–p (preserve) Preserves the modification and access times as well as the modes of the
original file.

718 Chapter 19 OpenSSH: Secure Network Communication

–q (quiet) Does not display the progress information as scp copies a file.

–r (recursive) Recursively copies a directory hierarchy.

–v (verbose) Displays debugging messages about the connection and transfer. Useful if
things are not going as expected.

sftp: A Secure FTP Client

As part of OpenSSH, Ubuntu Linux provides sftp, a secure alternative to ftp
(page 729). Functionally the same as ftp, sftp maps ftp commands to OpenSSH com-
mands. You can replace ftp with sftp when you are logging in on a server that is
running the OpenSSH daemon, sshd. Once you are connected to a system with sftp,
give the command ? to display a list of commands. For secure communication, use
sftp or scp to perform all file transfers requiring authentication. Refer to the sftp
man page for more information.

lftp Ubuntu also offers lftp, which is more sophisticated than sftp and supports sftp. The
lftp utility provides a shell-like command syntax that has many features, including
support for tab completion and the ability to run jobs in the background. Use
/etc/lftp.conf to configure lftp and see the lftp man page for more information.

~/.ssh/config and /etc/ssh/ssh_config Configuration Files

It is rarely necessary to modify OpenSSH client configuration files. For a given user
there may be two configuration files: ~/.ssh/config (user) and /etc/ssh/ssh_config
(global). These files are read in this order and, for a given parameter, the first one
found is the one that is used. A user can override a global parameter setting by set-
ting the same parameter in her user configuration file. Parameters given on the ssh
or scp command line take precedence over parameters set in either of these files.

A user’s ~/.ssh/config file must be owned by the user (the owner of the ~/ directory)
and must not be writable by anyone except the owner; if it is, the client will exit
with an error message. This file is typically set to mode 600 as there is no reason for
anyone except its owner to be able to read it.

Lines in the configuration files contain declarations. Each of these declarations starts with
a keyword that is not case sensitive, followed by whitespace, followed by case-sensitive
arguments. You can use the Host keyword to cause declarations to apply to a specific sys-
tem. A Host declaration applies to all the lines between it and the next Host declaration.

CheckHostIP yes | no
Identifies a remote system using the IP address in addition to a hostname from the
known_hosts file when set to yes (default). Set it to no to use a hostname only. Set-
ting CheckHostIP to yes can improve system security.

ForwardX11 yes | no
When set to yes, automatically forwards X11 connections over a secure channel
in nontrusted mode but does not set the DISPLAY shell variable. If
ForwardX11Trusted is also set to yes, the connections are made in trusted mode.
Alternatively, you can use –X on the command line to redirect X11 connections in

OpenSSH Clients 719

nontrusted mode. The default value for this parameter is yes. For X11 forwarding
to work, X11Forwarding must also be set to yes in the /etc/sshd_config file on the
server (page 724). For more information refer to “Forwarding X11” on page 725.

ForwardX11Trusted yes | no
Works in conjunction with ForwardX11, which must be set to yes (default) for this
declaration to have any effect. When this declaration is set to yes (default) and
ForwardX11 is set to yes, this declaration sets the DISPLAY shell variable and gives
remote X11 clients full access to the original (server) X11 display. Alternatively, you
can use –Y on the command line to redirect X11 connections in trusted mode. The
default value for this declaration is no. For X11 forwarding to work, X11Forwarding
must also be set to yes in the /etc/sshd_config file on the server (page 724). For more
information refer to “Forwarding X11” on page 725.

HashKnownHosts
Causes OpenSSH to hash hostnames and addresses in the ~/.ssh/known_hosts file
when set to yes. The hostnames and addresses are written in cleartext when it is set
to no. Ubuntu Linux sets this declaration to yes to improve system security. See
page 712 for more information on the known_hosts file.

Host hostnames Specifies that the following declarations, until the next Host declaration, apply only
to hosts that hostnames matches. The hostnames can include ? and * wildcards. A
single * specifies all hosts. Without this keyword, all declarations apply to all hosts.

HostbasedAuthentication yes | no
Tries rhosts authentication when set to yes. For a more secure system, set to no
(default).

HostKeyAlgorithms algorithms
The algorithms is a comma-separated list of algorithms the client uses in order of
preference. Choose algorithms from ssh-rsa or ssh-dss. The default is ssh-rsa,ssh-dss.

Port num Causes OpenSSH to connect to the remote system on port num. The default is 22.

StrictHostKeyChecking yes | no | ask
Determines whether and how OpenSSH adds host keys to a user’s known_hosts file.
Set this option to ask to ask whether to add a host key when connecting to a new
system, set it to no to add a host key automatically, and set it to yes to require that
host keys be added manually. The yes and ask arguments cause OpenSSH to refuse
to connect to a system whose host key has changed. For a more secure system, set
this option to yes or ask. The default is ask.

TCPKeepAlive yes | no
Periodically checks whether a connection is alive when set to yes (default). Checking
causes the ssh or scp connection to be dropped when the server crashes or the con-
nection dies for another reason, even if it is only temporary. This option tests the
connection at the transport (TCP) layer (page 362). Setting this parameter to no
causes the client not to check whether the connection is alive.

This declaration uses the TCP keepalive option, which is not encrypted and is sus-
ceptible to IP spoofing (page 1043). Refer to “ClientAliveInterval” on page 723 for
a server-based nonspoofable alternative.

720 Chapter 19 OpenSSH: Secure Network Communication

User name Specifies a username to use when logging in on a system. You can specify a system
with the Host declaration. This option means that you do not have to enter a user-
name on the command line when you are using a username that differs from your
username on the local system.

sshd: OpenSSH Server

This section discusses how to set up an OpenSSH server.

Prerequisites

Installation Install the following package:

• openssh-server

When you install the openssh-server package, the dpkg postinst script creates the
host key files in /etc/ssh (OpenSSH uses these files to identify the server; page 709)
and starts the sshd daemon:

...
Unpacking openssh-server (from .../openssh-server_1%3a4.3p2-5ubuntu1_i386.deb) ...
Setting up openssh-server (4.3p2-5ubuntu1) ...
Creating SSH2 RSA key; this may take some time ...
Creating SSH2 DSA key; this may take some time ...
 * Restarting OpenBSD Secure Shell server...

ssh init script After you configure the OpenSSH server, call the ssh init script to restart the sshd
daemon:

$ sudo /etc/init.d/ssh reload
 * Reloading OpenBSD Secure Shell server's configuration [OK]

Note

Firewall An OpenSSH server normally uses TCP port 22. If the OpenSSH server system is
running a firewall, you need to open this port. To do so, use firestarter (page 886) to
set a policy that allows the SSH service.

JumpStart: Starting the sshd Daemon

Installing the requisite package starts the sshd daemon. Look in /var/log/auth.log to
make sure everything is working properly.

Recommended Settings

The configuration files provided by Ubuntu establish a mostly secure system and
may or may not meet your needs. The Ubuntu /etc/ssh/sshd_config file turns on
X11 forwarding (page 725). It is important to set PermitRootLogin (page 723) to
no, which prevents a known-name, privileged account from being exposed to the
outside world with only password protection. If the root account is locked, the set-
ting of this declaration is not an issue.

sshd: OpenSSH Server 721

Authorized Keys: Automatic Login

You can configure OpenSSH so you do not have to enter a password each time you
connect to a server (remote system). To set up this feature, you need to generate a
personal authentication key on the client (local system), place the public part of the
key on the server, and keep the private part of the key on the client. When you con-
nect to the server, it issues a challenge based on the public part of the key. The private
part of the key must then respond properly to this challenge. If the client provides the
appropriate response, the server logs you in.

The first step in setting up an automatic login is to generate your personal authenti-
cation keys. First check whether these authentication keys already exist on the local
system (client) by looking in ~/.ssh for either id_dsa and id_dsa.pub or id_rsa and
id_rsa.pub. If one of these pairs of files is present, skip the next step (do not create a
new key).

On the client, the ssh-keygen utility creates the public and private parts of an RSA key:

ssh-keygen $ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/sam/.ssh/id_rsa):RETURN
Created directory '/home/sam/.ssh'.
Enter passphrase (empty for no passphrase):RETURN
Enter same passphrase again:RETURN
Your identification has been saved in /home/sam/.ssh/id_rsa.
Your public key has been saved in /home/sam/.ssh/id_rsa.pub.
The key fingerprint is:
f2:eb:c8:fe:ed:fd:32:98:e8:24:5a:76:1d:0e:fd:1d sam@peach

Replace rsa with dsa to generate DSA keys. In this example, the user pressed RETURN

in response to each query. You have the option of specifying a passphrase (10–30
characters is a good length) to encrypt the private part of the key. There is no way
to recover a lost passphrase. See the following security tip for more information
about the passphrase.

When you encrypt your personal key
security The private part of the key is kept in a file that only you can read. If a malicious user compromises

your account, an account that can use sudo to gain root privileges, or the root account on the
local system, that user then has access to your account on the remote system because she can
read the private part of your personal key.

Encrypting the private part of your personal key protects the key and, therefore, restricts access to the
remote system should someone compromise your local account. However, if you encrypt your per-
sonal key, you must supply the passphrase you used to encrypt the key each time you use the key,
negating the benefit of not having to type a password when logging in on the remote system. Also,
most passphrases that you can remember can be cracked quite quickly by a powerful computer.

A better idea is to store the private keys on a removable medium, such as a USB flash drive, and
use your ~/.ssh directory as the mount point for the filesystem stored on this drive. You may want
to encrypt these keys with a passphrase in case you lose the flash drive.

722 Chapter 19 OpenSSH: Secure Network Communication

The ssh-keygen utility generates two keys: a private key or identification in
~/.ssh/id_rsa and a public key in ~/.ssh/id_rsa.pub. No one except the owner
should be able to write to either of these files, and only the owner should be able to
read from the private key file.

authorized_keys To enable you to log in on or copy files to and from another system without supplying
a password, first create a ~/.ssh directory with permissions set to 700 on the server
(remote system). Next copy ~/.ssh/id_rsa.pub from the client (local system) to a file
named ~/.ssh/authorized_keys on the server (remote system). Set its permissions to
600 so that no one except the owner can read from or write to this file. Now when
you run ssh or scp to access the server, you do not have to supply a password. To
make the server even more secure, you can disable password authentication by setting
PasswordAuthentication to no in /etc/ssh/sshd_config (remove the # from the begin-
ning of the PasswordAuthentication line and change the yes to no; page 723).

Command Line Options

Command line options override declarations in the configuration files. Following
are descriptions of some of the more useful sshd options.

–d (debug) Sets debug mode so that sshd sends debugging messages to the system log
and the server stays in the foreground (implies –D). You can specify this option a
maximum of three times to increase the verbosity of the output. See also –e. (The
ssh client uses –v for debugging; see page 716.)

–e (error) Sends output to standard error, not to the system log. Useful with –d.

–f file Specifies file as the default configuration file instead of /etc/ssh/sshd_config.

–t (test) Checks the configuration file syntax and the sanity of the key files.

–D (noDetach) Keeps sshd in the foreground. Useful for debugging; implied by –d.

/etc/ssh/sshd_config Configuration File

The /etc/ssh/sshd_config configuration file contains one-line declarations. Each of
these declarations starts with a keyword that is not case sensitive, followed by whitespace,
followed by case-sensitive arguments. You must reload the sshd server before these
changes will take effect.

AllowUsers userlist
The userlist is a SPACE-separated list of usernames that specifies which users are
allowed to log in using sshd. This list can include * and ? wildcards. You can spec-
ify a user as user or user@host. If you use the second format, make sure you specify
the host as returned by hostname. Without this declaration, any user who can log in
locally can log in using an OpenSSH client.

ClientAliveCountMax n
The n specifies the number of client-alive messages that can be sent without receiv-
ing a response before sshd disconnects from the client. See ClientAliveInterval. The
default is 3.

sshd: OpenSSH Server 723

ClientAliveInterval n
Sends a message through the encrypted channel after n seconds of not receiving a
message from the client. See ClientAliveCountMax. The default is 0, meaning that
no messages are sent.

This declaration passes messages over the encrypted channel (application layer;
page 362) and is not susceptible to IP spoofing (page 1043). It differs from
TCPKeepAlive, which uses the TCP keepalive option (transport layer; page 362)
and is susceptible to IP spoofing.

DenyUsers userlist
The userlist is a SPACE-separated list of usernames that specifies users who are not
allowed to log in using sshd. This list can include * and ? wildcards. You can spec-
ify a user as user or user@host. If you use the second format, make sure you specify
the host as returned by hostname.

HostbasedAuthentication yes | no
Tries rhosts and /etc/hosts.equiv authentication when set to yes. For a more secure
system, set this declaration to no (default).

IgnoreRhosts yes | no
Ignores .rhosts and .shosts files for authentication. Does not affect the use of
/etc/hosts.equiv and /etc/ssh/shosts.equiv files for authentication. For a more
secure system, set this declaration to yes (default).

LoginGraceTime n
Waits n seconds for a user to log in on the server before disconnecting. A value of 0
means there is no time limit. The default is 120 seconds.

LogLevel val Specifies how detailed the log messages are. Choose val from QUIET, FATAL,
ERROR, INFO (default), and VERBOSE.

PasswordAuthentication
Permits a user to use a password for authentication. For a more secure system, set
up automatic login (page 721) and set this declaration to no. The default is yes.

PermitEmptyPasswords
Permits a user to log in on an account that has an empty password. The default is no.

PermitRootLogin Permits root to log in using an OpenSSH client. Given the number of brute-force
attacks on a typical system connected to the Internet, it is important to set this dec-
laration to no. (How you set this declaration is not an issue if the root account is
locked.) The default is yes.

Port num Specifies that the sshd server listen on port num. It may improve security to change
num to a nonstandard port. The default is port 22.

StrictModes yes | no
Checks modes and ownership of the user’s home directory and files. Login fails for
users other than the owner if the directories and/or files can be written to by anyone
other than the owner. For a more secure system, set this declaration to yes (default).

724 Chapter 19 OpenSSH: Secure Network Communication

TCPKeepAlive yes | no
Periodically checks whether a connection is alive when set to yes (default). Checking
causes the ssh or scp connection to be dropped when the client crashes or the con-
nection dies for another reason, even if it is only temporary. This option tests the
connection at the transport (TCP) layer (page 362). Setting this parameter to no
causes the server not to check whether the connection is alive.

This declaration uses the TCP keepalive option, which is not encrypted and is sus-
ceptible to IP spoofing (page 1043). Refer to ClientAliveInterval (page 723) for a
nonspoofable alternative.

X11Forwarding yes | no
Allows X11 forwarding when set to yes. The default is no, but Ubuntu Linux sets
X11Forwarding to yes. For trusted X11 forwarding to work, the ForwardX11 and
the ForwardX11Trusted declarations must also be set to yes in either the
~/.ssh/config or /etc/ssh/ssh_config client configuration file (page 718). For more
information refer to “Forwarding X11” on page 725.

Troubleshooting

Log files There are several places to look for clues when you have a problem connecting with
ssh or scp. First look for sshd entries in /var/log/auth.log on the server. Following
are messages you may see when you are using an AllowUsers declaration but have
not included the user who is trying to log in (page 722). The messages that are
marked (pam_unix) originate with PAM (page 545).

$ sudo grep sshd /var/log/auth.log
plum sshd[6927]: Invalid user sam from 192.168.0.12
plum sshd[6927]: Failed none for invalid user sam from 192.168.0.12 port 37134 ssh2
plum sshd[6927]: (pam_unix) check pass; user unknown
plum sshd[6927]: (pam_unix) authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
rhost=192.168.0.12
plum sshd[6927]: Failed password for invalid user sam from 192.168.0.12 port 37134 ssh2

Debug the client If entries in these files do not help solve the problem, try connecting with the –v
option (either ssh or scp—the results should be the same). OpenSSH displays a lot
of debugging messages, one of which may help you figure out what the problem is.
You can use a maximum of three –v options to increase the number of messages
that OpenSSH displays.

$ ssh -v plum
OpenSSH_4.3p2 Debian-5ubuntu1, OpenSSL 0.9.8b 04 May 2006
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Applying options for *
debug1: Connecting to plum [192.168.0.10] port 22.
debug1: Connection established.
debug1: identity file /home/sam/.ssh/identity type -1
debug1: identity file /home/sam/.ssh/id_rsa type 1
...

Tunneling/Port Forwarding 725

debug1: Host 'plum' is known and matches the RSA host key.
debug1: Found key in /home/sam/.ssh/known_hosts:1
debug1: ssh_rsa_verify: signature correct
...
debug1: Authentications that can continue: publickey,password
debug1: Next authentication method: publickey
debug1: Trying private key: /home/sam/.ssh/identity
debug1: Offering public key: /home/sam/.ssh/id_rsa
debug1: Authentications that can continue: publickey,password
debug1: Trying private key: /home/sam/.ssh/id_dsa
debug1: Next authentication method: password
sam@plum's password:

Debug the server You can debug from the server side by running sshd with the –de options. The
server will run in the foreground and its display may help you solve the problem.

Tunneling/Port Forwarding

The ssh utility can forward a port (port forwarding; page 1053) through the
encrypted connection it establishes. Because the data sent across the forwarded port
uses the encrypted ssh connection as its data link layer (page 362), the term tunneling
(page 1066) is applied to this type of connection: “The connection is tunneled
through ssh.” You can secure protocols—including POP, X, IMAP, VNC, and
WWW—by tunneling them through ssh.

Forwarding X11 The ssh utility makes it easy to tunnel the X11 protocol. For X11 tunneling to
work, you must enable it on both the server and the client, and the client must be
running the X Window System. On the ssh server, enable X11 forwarding by setting
the X11Forwarding declaration (page 724) to yes (the default) in the
/etc/ssh/sshd_config file.

Trusted clients On a client, enable trusted X11 forwarding by setting the ForwardX11 (default is
no; see page 718) and ForwardX11Trusted (default is no, but set to yes as installed;
see page 719) declarations to yes in the /etc/ssh/ssh_config or ~/.ssh/ssh_config file.

When you enable trusted X11 forwarding on a client, the client connects as a
trusted client, which means that the client trusts the server and is given full access to
the X11 display. With full access to the X11 display, in some situations a client may
be able to modify other clients of the X11 display. Make a trusted connection only
when you trust the remote system. (You do not want someone tampering with your
client.) If this concept is confusing, see the tip “The roles of X client and server may
be counterintuitive” on page 253.

Nontrusted clients An ssh client can connect to an ssh server as a trusted client or as a nontrusted cli-
ent. A nontrusted client is given limited access to the X11 display and cannot mod-
ify other clients of the X11 display.

Few clients work properly when they are run in nontrusted mode. If you are run-
ning an X11 client in nontrusted mode and encounter problems, try running in

726 Chapter 19 OpenSSH: Secure Network Communication

trusted mode (assuming you trust the remote system). Ubuntu Linux sets up ssh cli-
ents to run in nontrusted mode by default.

Running ssh When you start an ssh client, you can use the –Y option (page 716) on the com-
mand line to start the client in trusted mode. Alternatively, you can set the
ForwardX11 and ForwardX11trusted declarations to yes in a user’s ~/.ssh/config
configuration file (page 719) or, working with root privileges, in the global
/etc/ssh/ssh_config file (page 719) on the client to enable trusted X11 tunneling.

To use nontrusted tunneling, you can use the –X option (page 716) or set the
ForwardX11 declaration to yes and set the ForwardX11trusted declaration to no in
one of the configuration files (page 718) on the server.

With trusted X11 forwarding turned on, ssh tunnels the X11 protocol, setting the
DISPLAY environment variable on the system it connects to and forwarding the
required port. Typically you will be running from a GUI, which usually means that
you are using ssh on a terminal emulator to connect to a remote system. When you
give an X11 command from an ssh prompt, OpenSSH creates a new secure channel
that carries the X11 data and the graphical output from the X11 program appears
on the screen. Typically you will need to start the client in trusted mode.

sam@dog:~$ ssh plum
sam@plum's password:
...
sam@plum:~$ echo $DISPLAY
localhost:10.0

By default, ssh uses X Window System display numbers 10 and higher (port numbers
6010 and higher) for forwarded X sessions. Once you connect to a remote system
using ssh, you can give a command to run an X application. The application will then
run on the remote system with its display appearing on the local system, such that it
appears to run locally.

Port forwarding You can forward arbitrary ports using the –L and –R options. The –L option forwards
a local port to a remote system, so a program that tries to connect to the forwarded
port on the local system transparently connects to the remote system. The –R option
does the reverse: It forwards remote ports to the local system. The –N option, which
prevents ssh from executing remote commands, is generally used with –L and –R.
When you specify –N, ssh works only as a private network to forward ports. An ssh
command line using the –L or –R option has the following format:

$ ssh –N –L | –R local-port:remote-host:remote-port target

where local-port is the number of the local port that is being forwarded to or from
remote-host, remote-host is the name or IP address of the system that local-port
gets forwarded to or from, remote-port is the number of the port on remote-host
that is being forwarded from or to the local system, and target is the name or IP
address of the system ssh connects to.

Chapter Summary 727

As an example, assume that there is a POP mail client on the local system and that
the POP server is on a remote network, on a system named pophost. POP is not a
secure protocol; passwords are sent in cleartext each time the client connects to the
server. You can make it more secure by tunneling POP through ssh (POP-3 connects
on port 110; port 1550 is an arbitrary port on the local system):

$ ssh -N -L 1550:pophost:110 pophost

After giving the preceding command, you can point the POP client at local-
host:1550. The connection between the client and the server will then be encrypted.
(When you set up an account on the POP client, specify the location of the server as
localhost, port 1550; details vary with different mail clients.)

Firewalls In the preceding example, remote-host and target were the same system. However,
the system specified for port forwarding (remote-host) does not have to be the same
as the destination of the ssh connection (target). As an example, assume the POP
server is behind a firewall and you cannot connect to it via ssh. If you can connect
to the firewall via the Internet using ssh, you can encrypt the part of the connection
over the Internet:

$ ssh -N -L 1550:pophost:110 firewall

Here remote-host (the system receiving the port forwarding) is pophost, and target
(the system that ssh connects to) is firewall.

You can also use ssh when you are behind a firewall (that is running sshd) and want
to forward a port into your system without modifying the firewall settings:

$ ssh -R 1678:localhost:80 firewall

The preceding command forwards connections from the outside to port 1678 on
the firewall to the local Web server. Forwarding connections in this manner allows
you to use a Web browser to connect to port 1678 on the firewall when you connect
to the Web server on the local system. This setup would be useful if you ran a Web-
mail program (page 772) on the local system because it would allow you to check
your mail from anywhere using an Internet connection.

Compression Compression, which is enabled with the –C option, can speed up communication
over a low-bandwidth connection. This option is commonly used with port for-
warding. Compression can increase latency to an extent that may not be desirable
for an X session forwarded over a high-bandwidth connection.

Chapter Summary

OpenSSH is a suite of secure network connectivity tools that encrypts all traffic,
including passwords, thereby helping to thwart malicious users who might other-
wise eavesdrop, hijack connections, and steal passwords. The components discussed

728 Chapter 19 OpenSSH: Secure Network Communication

in this chapter were sshd (the server daemon), ssh (runs a command on or logs in on
another system), scp (copies files to and from another system), sftp (securely
replaces ftp), and ssh-keygen (creates, manages, and converts authentication keys).

To ensure secure communications, when an OpenSSH client opens a connection, it
verifies that it is connected to the correct server. Then OpenSSH encrypts communi-
cation between the systems. Finally OpenSSH makes sure that the user is authorized
to log in on or copy files to and from the server. You can secure many protocols—
including POP, X, IMAP, VNC, and WWW—by tunneling them through ssh.

OpenSSH also enables secure X11 forwarding. With this feature, you can run
securely a graphical program on a remote system and have the display appear on
the local system.

Exercises

1. What is the difference between the scp and sftp utilities?

2. How can you use ssh to find out who is logged in on a remote system?

3. How would you use scp to copy your ~/.bashrc file from the system
named plum to the local system?

4. How would you use ssh to run xterm on plum and show the display on the
local system?

5. What problem can enabling compression present when you are using ssh
to run remote X applications on a local display?

6. When you try to connect to another system using an OpenSSH client and
you see a message warning you that the remote host identification has
changed, what has happened? What should you do?

Advanced Exercises

7. Which scp command would you use to copy your home directory from
plum to the local system?

8. Which single command could you give to log in as root on the remote sys-
tem named plum, if plum has the root account unlocked and remote root
logins disabled?

9. How could you use ssh to compare the contents of the ~/memos directo-
ries on plum and the local system?

729729

20Chapter20File Transfer Protocol is a method of downloading files from
and uploading files to another system using TCP/IP over a
network. File Transfer Protocol is the name of a client/server
protocol (FTP) and a client utility (ftp) that invokes the pro-
tocol. In addition to the original ftp utility, there are many
textual and graphical FTP client programs, including most
browsers, that run under many different operating systems.
There are also many FTP server programs.

In This Chapter

FTP Client. 731

JumpStart I: Downloading Files
Using ftp. 732

Anonymous FTP 735

Automatic Login 735

Binary Versus ASCII Transfer
Mode . 736

FTP Server (vsftpd) 740

JumpStart II: Starting a vsftpd
Server . 741

vsftpd.conf: The vsftpd
Configuration File 742

20

FTP: Transferring

Files Across a

Network

730 Chapter 20 FTP: Transferring Files Across a Network

Introduction

First implemented under 4.2BSD, FTP has played an essential role in the propaga-
tion of Linux; this protocol/program is frequently used to distribute free software.
The term FTP site refers to an FTP server that is connected to a network, usually the
Internet. FTP sites can be public, allowing anonymous users to log in and download
software and documentation. In contrast, private FTP sites require you to log in
with a username and password. Some sites allow you to upload programs.

ftp and vsftpd Although most FTP clients are similar, the servers differ quite a bit. This chapter
describes the ftp client with references to sftp, a secure FTP client. It also covers the
FTP server available under Ubuntu, which is named vsftpd (very secure FTP daemon).

Security FTP is not a secure protocol: All usernames and passwords exchanged in setting up
an FTP connection are sent in cleartext, data exchanged over an FTP connection is
not encrypted, and the connection is subject to hijacking. Given these facts, FTP is
best used for downloading public files. In most cases, the OpenSSH clients, ssh
(page 714), scp (page 716), and sftp (page 718), offer secure alternatives to FTP.

The vsftpd server does not make usernames, passwords, data, and connections
more secure. However, it is secure in that a malicious user finds it more difficult to
compromise directly the system running it, even if vsftpd is poorly implemented.
One feature that makes vsftpd more secure than ftpd is the fact that it does not run
with root privileges. See also “Security” on page 741.

ftp utility The ftp utility is a user interface to FTP, the standard protocol used to transfer files
between systems that communicate over a network.

FTP connections FTP uses two connections: one for control (you establish this connection when you
log in on an FTP server) and one for data transfer (FTP sets up this connection when
you ask it to transfer a file). An FTP server listens for incoming connections on port
21 by default and handles user authentication and file exchange.

Passive versus
active connections

A client can ask an FTP server to establish either a PASV (passive—give the command
ftp –p or pftp) or a PORT (active—the default when you use ftp) connection for data
transfer. Some servers are limited to one type of connection. The difference between a
passive and an active FTP connection lies in whether the client or the server initiates the
data connection. In passive mode, the client initiates the connection to the server (on
port 20 by default); in active mode, the server initiates the connection (there is no
default port; see “Connection Parameters” on page 750 for the parameters that deter-
mine which ports a server uses). Neither approach is inherently more secure than the
other. Passive connections are more common because a client behind a NAT (page 897)
can connect to a passive server and it is simpler to program a scalable passive server.

Use FTP only to download public information
security FTP is not secure. The sftp utility provides better security for all FTP functions other than allowing anon-

ymous users to download information. Because sftp uses an encrypted connection, user passwords
and data cannot be sniffed when you use this utility. You can replace all instances of ftp in this chapter
with sftp because sftp uses the same commands as ftp. See page 718 for more information on sftp.

FTP Client 731

More Information

Local Type help or ? at an ftp> prompt to display a list of commands. Follow the ? with a
SPACE and an ftp command to display information about that command.
Files /usr/share/doc/vsftpd/*
man pages ftp, sftp, lftp, netrc, vsftpd.conf

Web vsftpd home page vsftpd.beasts.org

HOWTO FTP mini-HOWTO

FTP Client

ftp Ubuntu supplies several FTP clients, including ftp (an older version of the BSD ftp
utility). This section discusses ftp because most other FTP clients, including sftp and
lftp, provide a superset of ftp commands.

sftp Part of the OpenSSH suite, sftp (openssh-client package) is a secure and functionally
equivalent alternative to ftp. The sftp utility is not an FTP client—it does not under-
stand the FTP protocol. It maps ftp commands to OpenSSH commands. See page 718
for more information.

lftp The lftp utility (lftp package) provides the same security as sftp but offers more fea-
tures. See the lftp man page for more information.

gFTP The gftp utility (gftp package) is a graphical client that works with FTP, SSH, and
HTTP servers. This client has many useful features, including the ability to resume
an interrupted file transfer. See www.gftp.org and freshmeat.net/projects/gftp for
more information.

NcFTP The ncftp utility (ncftp package) is a textual client that offers many more features than
ftp, including filename completion and command line editing. See www.ncftp.com
and freshmeat.net/projects/ncftp for details.

Prerequisites

The ftp and sftp utilities are installed on most Ubuntu systems. You can check for
their presence by giving either of these utilities’ names as commands:

$ ftp
ftp> quit

$ sftp
usage: sftp [-1Cv] [-B buffer_size] [-b batchfile] [-F ssh_config]
 [-o ssh_option] [-P sftp_server_path] [-R num_requests]
 [-S program] [-s subsystem | sftp_server] host
 sftp [[user@]host[:file [file]]]
 sftp [[user@]host[:dir[/]]]
 sftp -b batchfile [user@]host

Install the ftp (contains ftp and pftp) or openssh-client (contains sftp) package if
needed.

www.gftp.org
www.ncftp.com

732 Chapter 20 FTP: Transferring Files Across a Network

JumpStart I: Downloading Files Using ftp
This JumpStart section is broken into two parts: a description of the basic com-
mands and a tutorial session that shows a user working with ftp.

Basic Commands

Give the command

$ ftp hostname

where hostname is the name of the FTP server you want to connect to. If you have an
account on the server, log in with your username and password. If it is a public system,
log in as the user anonymous (or ftp) and give your email address as your password.
Use the ls and cd ftp commands on the server as you would use the corresponding util-
ities from a shell. The command get file copies file from the server to the local system,
put file copies file from the local system to the server, status displays information
about the FTP connection, and help displays a list of commands.

The preceding commands, except for status, are also available in sftp, lftp, and ncftp.

Tutorial Session

Following are two ftp sessions wherein Sam transfers files from and to a vsftpd
server named dog. When Sam gives the command pftp dog, the local ftp client con-
nects to the server in passive (PASV) mode, which asks for a username and pass-
word. Because he is logged in on his local system as sam, ftp suggests that Sam log in
on dog as sam. To log in as sam, he could just press RETURN. Because his username on
dog is sls, however, he types sls in response to the Name (dog:sam): prompt. After
Sam responds to the Password: prompt with his normal system password, the
vsftpd server greets him and informs him that it is Using binary mode to transfer
files. With ftp in binary mode, Sam can transfer ASCII and binary files (page 736).

Connect and log in sam@plum:~$ pftp dog
Connected to dog.bogus.com.
220 (vsFTPd 2.0.4)
Name (dog:sam): sls
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

After logging in, Sam uses the ftp ls command to see what is in his remote working
directory, which is his home directory on dog. Then he cds to the memos directory
and displays the files there.

ls and cd ftp> ls
227 Entering Passive Mode (192,168,0,12,130,201)
150 Here comes the directory listing.
drwxr-xr-x 2 1001 1001 4096 Jan 25 04:51 expenses
drwxr-xr-x 2 1001 1001 4096 Jan 25 04:53 memos
drwxr-xr-x 2 1001 1001 4096 Jan 25 04:51 tech
226 Directory send OK.

FTP Client 733

ftp> cd memos
250 Directory successfully changed.

ftp> ls
227 Entering Passive Mode (192,168,0,12,48,84)
150 Here comes the directory listing.
-rw-r--r-- 1 1001 1001 3430 Jan 25 04:52 memo.0514
-rw-r--r-- 1 1001 1001 6581 Jan 25 04:52 memo.0628
-rw-r--r-- 1 1001 1001 2801 Jan 25 04:52 memo.0905
-rw-r--r-- 1 1001 1001 7351 Jan 25 04:53 memo.0921
-rw-r--r-- 1 1001 1001 14703 Jan 25 04:53 memo.1102
226 Directory send OK.
ftp>

Next Sam uses the ftp get command to copy memo.1102 from the server to the local
system. His use of binary mode ensures that he will get a good copy of the file
regardless of whether it is binary or ASCII. The server confirms that the file was
copied successfully and reports on its size and the time required to copy it. Sam then
copies the local file memo.1114 to the remote system. This file is copied into his
remote working directory, memos.

get and put ftp> get memo.1102
local: memo.1102 remote: memo.1102
227 Entering Passive Mode (192,168,0,12,53,74)
150 Opening BINARY mode data connection for memo.1102 (14703 bytes).
226 File send OK.
14703 bytes received in 0.00 secs (11692.5 kB/s)

ftp> put memo.1114
local: memo.1114 remote: memo.1114
227 Entering Passive Mode (192,168,0,12,182,124)
150 Ok to send data.
226 File receive OK.
11903 bytes sent in 0.00 secs (23294.6 kB/s)
ftp>

Now Sam decides he wants to copy all the files in the memo directory on dog to a
new directory on his local system. He gives an ls command to make sure he will
copy the right files, but ftp has timed out. Instead of exiting from ftp and giving
another ftp command from the shell, he gives ftp an open dog command to reconnect
to the server. After logging in, he uses the ftp cd command to change directories to
memos on the server.

Timeout and open ftp> ls
No control connection for command: Success
Passive mode refused.

ftp> open dog
Connected to dog.bogus.com.
220 (vsFTPd 2.0.4)
Name (dog:sam): sls
...
ftp> cd memos
250 Directory successfully changed.
ftp>

734 Chapter 20 FTP: Transferring Files Across a Network

Local cd (lcd) At this point, Sam realizes he has not created the new directory to hold the files he
wants to download. Giving an ftp mkdir command would create a new directory on
the server, but Sam wants a new directory on his local system. He uses an exclama-
tion point (!) followed by a mkdir memos.hold command to invoke a shell and run
mkdir on the local system, thereby creating a directory named memos.hold in his
working directory on the local system. (You can display the name of your working
directory on the local system with !pwd.) Next, because Sam wants to copy files
from the server to the memos.hold directory on his local system, he has to change
his working directory on the local system. Giving the command !cd memos.hold
will not accomplish what Sam wants to do because the exclamation point will
spawn a new shell on the local system and the cd command would be effective only
in the new shell, which is not the shell that ftp is running under. For this situation, ftp
provides the lcd (local cd) command, which changes the working directory for ftp
and reports on the new local working directory:

ftp> !mkdir memos.hold
ftp> lcd memos.hold
Local directory now /home/sam/memos.hold
ftp>

Sam uses the ftp mget (multiple get) command followed by the asterisk (*) wildcard
to copy all files from the remote memos directory to the memos.hold directory on
the local system. When ftp prompts him for the first file, Sam realizes that he forgot
to turn off the prompts, so he responds with n and presses CONTROL-C to stop copying
files in response to the second prompt. The server checks whether he wants to con-
tinue with his mget command.

Next Sam gives the ftp prompt command, which toggles the prompt action (turns it
off if it is on and turns it on if it is off). Now when he gives a mget * command, ftp
copies the files without prompting him. After getting the desired files, Sam gives a
quit command to close the connection with the server, exit from ftp, and return to
the local shell prompt.

mget and prompt ftp> mget *
mget memo.0514? n
mget memo.0628?CONTROL-C
Continue with mget? n
ftp>
ftp> prompt
Interactive mode off.
ftp> mget *
local: memo.0514 remote: memo.0514
227 Entering Passive Mode (192,168,0,12,216,239)
150 Opening BINARY mode data connection for memo.0514 (3430 bytes).
226 File send OK.
3430 bytes received in 0.00 secs (9409.0 kB/s)
local: memo.0628 remote: memo.0628
227 Entering Passive Mode (192,168,0,12,134,149)
150 Opening BINARY mode data connection for memo.0628 (6581 bytes).
226 File send OK.
...

FTP Client 735

150 Opening BINARY mode data connection for memo.1114 (11903 bytes).
226 File send OK.11903 bytes received in 0.00 secs (11296.4 kB/s)
ftp> quit
221 Goodbye.
sam@plum:~$

Notes

A Linux system running ftp can exchange files with any of the many operating sys-
tems that support FTP. Many sites offer archives of free information on an FTP
server, although for many it is just an alternative to an easier-to-access Web site (see,
for example, ftp://ftp.ibiblio.org/pub/Linux and http://www.ibiblio.org/pub/Linux).
Most browsers can connect to and download files from FTP servers.

The ftp utility makes no assumptions about filesystem nomenclature or structure
because you can use ftp to exchange files with non-UNIX/Linux systems (which may
use different filenaming conventions).

Anonymous FTP

Many systems—most notably those from which you can download free software—
allow you to log in as anonymous. Most systems that support anonymous logins
accept the name ftp as an easier-to-spell and quicker-to-enter synonym for anony-
mous. An anonymous user is usually restricted to a portion of a filesystem set aside to
hold files that are to be shared with remote users. When you log in as an anonymous
user, the server prompts you to enter a password. Although any password may be
accepted, by convention you are expected to supply your email address.

Many systems that permit anonymous access store interesting files in the pub direc-
tory. Most browsers, such as Firefox, log in on an anonymous FTP site and transfer
a file when you click on the filename.

Automatic Login

You can store server-specific FTP username and password information so you do
not have to enter it each time you visit an FTP site. Each line of ~/.netrc identifies a
server. When you connect to an FTP server, ftp reads the ~/.netrc file to determine
whether you have an automatic login set up for that server. The format of a line in
~/.netrc is

machine server login username password passwd

where server is the name of the server, username is your username, and passwd is
your password on server. Replace machine with default on the last line of the file to
specify a username and password for systems not listed in ~/.netrc. The default line
is useful for logging in on anonymous servers. A sample ~/.netrc file follows:

$ cat ~/.netrc
machine dog login sam password mypassword
default login anonymous password sam@example.com

736 Chapter 20 FTP: Transferring Files Across a Network

To protect the account information in .netrc, make it readable only by the user whose
home directory it appears in. Refer to the netrc man page for more information.

Binary Versus ASCII Transfer Mode

The vsftpd FTP server can—but does not always—provide two modes to transfer
files. Binary mode transfers always copy an exact, byte-for-byte image of a file and
never change line endings. Transfer all binary files using binary mode. Unless you
need to convert line endings, use binary mode to transfer ASCII files as well.

ASCII files, such as text or program source code, when created under Linux with a
text editor such as vi, use a single NEWLINE character (CONTROL-J, written as \n) to mark
the end of each line. Other operating systems mark the ends of lines differently.
Windows marks the end of each such line with a RETURN (CONTROL-M, written as \r) fol-
lowed by a NEWLINE (two characters). Macintosh uses a RETURN by itself. These descrip-
tions do not apply to files created by word processors such as Word or OpenOffice
because those programs generate binary files. The vsftpd server can map Linux line
endings to Windows line endings as you upload files and Windows line endings to
Linux line endings as you download files.

To use ASCII mode on an FTP server that allows it, give an ascii command
(page 738) after you log in and set cr to ON (the default; page 738). If the server
does not allow you to change line endings as you transfer a file, you can use the
unix2dos (page 159) or dos2unix (page 159) utility before or after you transfer a file
in binary mode.

Security When run against a very large file, the ftp size command, which displays the size of a
file, consumes a lot of server resources and can be used to initiate a DoS attack
(page 1034). To enhance security, by default vsftpd transfers every file in binary
mode, even when it appears to be using ASCII mode. On the server side, you can
enable real ASCII mode transfers by setting the ascii_upload_enable and
ascii_download_enable parameters (page 747) to YES. With the server set to allow
ASCII transfers, the client controls whether line endings are mapped by using the
ascii, binary, and cr commands (page 738).

ftp Specifics

This section covers the details of using ftp.

Format

An ftp command line has the following format:

ftp [options] [ftp-server]

where options is one or more options from the list in the next section and ftp-server
is the name or network address of the FTP server you want to exchange files with. If
you do not specify an ftp-server, you will need to use the ftp open command to con-
nect to a server once ftp is running.

FTP Client 737

Command Line Options

–g (globbing) Turns off globbing. See glob (page 738).

–i (interactive) Turns off prompts during file transfers with mget (page 737) and mput
(page 738). See also prompt (page 739).

–n (no automatic login) Disables automatic logins (page 735).

–v (verbose) Tells you more about how ftp is working. Responses from the remote com-
puter are displayed, and ftp reports information on how quickly files are transferred.
See also verbose (page 740).

ftp Commands

The ftp utility is interactive: After you start ftp, it prompts you to enter commands to
set parameters or transfer files. You can abbreviate commands as long as the abbre-
viations are unique. Enter a question mark (?) in response to the ftp> prompt to dis-
play a list of commands. Follow the question mark by a SPACE and a command to
display a brief description of what the command does:

ftp> ? mget
mget get multiple files

Shell Command

![command] Without command, escapes to (spawns) a shell on the local system. Use CONTROL-D or
exit to return to ftp when you are finished using the local shell. Follow the exclama-
tion point with command to execute that command only; ftp will display an ftp>
prompt when execution of the command finishes. Because the shell that ftp spawns
with this command is a child of the shell that is running ftp, no changes you make in
this shell are preserved when you return to ftp. Specifically, when you want to copy
files to a local directory other than the directory that you started ftp from, you need
to use the ftp lcd command to change the local working directory: Issuing a cd com-
mand in the spawned shell will not make the change you desire. See “Local cd (lcd)”
on page 734 for an example.

Transfer Files

In the following descriptions, remote-file and local-file can be pathnames.

append local-file [remote-file]
Appends local-file to the file with the same name on the remote system or to
remote-file if specified.

get remote-file [local-file]
Copies remote-file to the local system under the name local-file. Without local-file,
ftp uses remote-file as the filename on the local system.

mget remote-file-list
(multiple get) Copies several files to the local system, with each file maintaining its
original filename. You can name the remote files literally or use wildcards (see
glob). Use prompt (page 739) to turn off the prompts during transfers.

738 Chapter 20 FTP: Transferring Files Across a Network

mput local-file-list
(multiple put) Copies several files to the server, with each file maintaining its origi-
nal filename. You can name the local files literally or use wildcards (see glob). Use
prompt (page 739) to turn off the prompts during transfers.

newer remote-file [local-file]
If the modification time of remote-file is more recent than that of local-file or if
local-file does not exist, copies remote-file to the local system under the name local-
file. Without local-file, ftp uses remote-file as the filename on the local system. This
command is similar to get, but will not overwrite a newer file with an older one.

put local-file [remote-file]
Copies local-file to the remote system under the name remote-file. Without remote-
file, ftp uses local-file as the filename on the remote system.

reget remote-file [local-file]
If local-file exists and is smaller than remote-file, assumes that a previous get of
local-file was interrupted and continues from where the previous get left off. With-
out local-file, ftp uses remote-file as the filename on the local system. This com-
mand can save time when a get of a large file fails partway through the transfer.

Status

ascii Sets the file transfer type to ASCII. The cr command must be ON for ascii to work
(page 736).

binary Sets the file transfer type to binary (page 736).

bye Closes the connection to the server and terminates ftp. Same as quit.

case Toggles and displays the case mapping status. The default is OFF. When it is ON,
for get and mget commands, this command maps filenames that are all uppercase
on the server to all lowercase on the local system.

close Closes the connection to the server without exiting from ftp.

cr (carriage RETURN) Toggles and displays the (carriage) RETURN stripping status. Effective
only when the file transfer type is ascii. Set cr to ON (default) to remove RETURN char-
acters from RETURN/LINEFEED line termination sequences used by Windows, yielding the
standard Linux line termination of LINEFEED. Set cr to OFF to leave line endings
unmapped (page 736).

debug [n] Toggles/sets and displays the debugging status/level, where n is the debugging level.
OFF or 0 (zero) is the default. When n > 0, this command displays each command
ftp sends to the server.

glob Toggles and displays the filename expansion (page 239) status for mdelete (page 739),
mget (page 737), and mput (page 738) commands.

hash Toggles and displays the pound sign (#, also called a hash mark) display status. When
it is ON, ftp displays one pound sign for each 1024-byte data block it transfers.

FTP Client 739

open [hostname]
Specifies hostname as the name of the server to connect to. Without hostname,
prompts for the name of the server. This command is useful when a connection
times out or otherwise fails.

passive Toggles between active (PORT—the default) and passive (PASV) transfer modes
and displays the transfer mode. For more information refer to “Passive versus active
connections” on page 730.

prompt Toggles and displays the prompt status. When it is ON (default), mdelete
(page 739), mget (page 737), and mput (page 738) ask for verification before trans-
ferring each file. Set prompt to OFF to turn off these prompts.

quit Closes the connection to the server and terminates ftp. Same as bye.

umask [nnn] Changes the umask (page 526) applied to files created on the server to nnn. Without
nnn, displays the umask.

user [username] [password]
Prompts for or accepts the username and password that enable you to log in on the
server. When you call it with the –n option, ftp prompts you for a username and pass-
word automatically. For more information refer to “Automatic Login” on page 735.

Directories

cd remote-directory
Changes the working directory on the server to remote-directory.

cdup Changes the working directory on the server to the parent of the working directory.

lcd [local_directory]
(local change directory) Changes the working directory on the local system to
local_directory. Without an argument, this command changes the working direc-
tory on the local system to your home directory (just as the cd shell builtin does
without an argument). See “Local cd (lcd)” on page 734 for an example.

Files

chmod mode remote-file
Changes the access permissions of remote-file on the server to mode. See chmod on
page 200 for more information on how to specify the mode.

delete remote-file Removes remote-file from the server.

mdelete remote-file-list
(multiple delete) Deletes the files specified by remote-file-list from the server.

Display Information

dir [remote-directory] [file]
Displays a listing of remote-directory from the server. When you do not specify
remote-directory, displays the working directory. When you specify file, the listing
is saved on the local system in a file named file.

740 Chapter 20 FTP: Transferring Files Across a Network

help [command] Displays information about command. Without command, displays a list of local
ftp commands.

ls [remote-directory] [file]
Similar to dir but produces a more concise listing from some servers. When you
specify file, the listing is saved on the local system in a file named file.

pwd Displays the pathname of the working directory on the server. Use !pwd to display
the pathname of the local working directory.

status Displays ftp connection and status information.

verbose Toggles and displays verbose mode, which displays responses from the server and
reports how quickly files are transferred. The effect of this command is the same as
specifying the –v option on the command line.

FTP Server (vsftpd)

This section discusses the vsftpd server as supplied by Ubuntu.

Prerequisites

Install the following package:

• vsftpd

.vsftpd init script When you install the vsftpd package, the dpkg postinst script starts the vsftpd dae-
mon. After you configure vsftpd, call the vsftpd init script to restart the vsftpd
daemon:

$ sudo /etc/init.d/vsftpd restart
 * Stopping FTP server: vsftpd [OK]
 * Starting FTP server: vsftpd [OK]

After changing the vsftpd configuration on an active server, use reload in place of
restart to reload the vsftpd configuration files without disturbing clients that are
connected to the server.

Notes

The vsftpd server can run in normal mode (the xinetd daemon, which is not
installed by default, calls vsftpd each time a client tries to make a connection) or it
can run in stand-alone mode (vsftpd runs as a daemon and handles connections
directly).

Stand-alone mode Although by default vsftpd runs in normal mode, Ubuntu sets it up to run in stand-
alone mode by setting the listen parameter (page 743) to YES in the vsftpd.conf file.
Under Ubuntu Linux, with vsftpd running in stand-alone mode, you start and stop
the server using the vsftpd init script.

FTP Server (vsftpd) 741

Normal mode The xinetd superserver must be installed and running and you must install an xinetd
control file to run vsftpd in normal mode. A sample control file is located at
/usr/share/doc/vsftpd/EXAMPLE/INTERNET_SITE/vsftpd.xinetd. Copy the sam-
ple file to the /etc/xinetd.d directory, rename it vsftpd, edit the file to change the
no_access and banner_fail parameters as appropriate, and restart xinetd. With the
listen parameter in vsftpd.conf set to NO, xinetd starts vsftpd as needed.

Security The safest policy is not to allow users to authenticate against FTP: Instead, use FTP
for anonymous access only. If you do allow local users to authenticate and upload
files to the server, be sure to put local users in a chroot jail (page 744). Because FTP
sends usernames and passwords in cleartext, a malicious user can easily sniff
(page 1060) them. Armed with a username and password, the same user can imper-
sonate a local user, upload a Trojan horse (page 1065), and compromise the system.

Firewall An FTP server normally uses TCP port 21. If the FTP server system is running a fire-
wall, you need to open this port. To do so, use firestarter (page 886) to set a policy
that allows FTP service.

JumpStart II: Starting a vsftpd Server

By default, under Ubuntu Linux vsftpd allows anonymous users only to log in on
the server; it does not set up a guest account. When someone logs in as an anon-
ymous user, that person works in the /home/ftp directory. You do not have to
configure anything.

Testing the Setup

Make sure vsftpd is working by logging in from the system running the server. You
can refer to the server as localhost or by using its hostname on the command line.
Log in as anonymous; use any password.

$ ftp localhost
Connected to localhost.
220 (vsFTPd 2.0.4)
Name (localhost:sam): anonymous
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> quit
221 Goodbye.

If you are not able to connect to the server, first make sure the server is running:

$ ps -ef | grep vsftpd
root 5681 1 0 12:22 ? 00:00:00 /usr/sbin/vsftpd
sam 6629 6596 0 14:49 pts/2 00:00:00 grep vsftpd

742 Chapter 20 FTP: Transferring Files Across a Network

Next check that permissions on /home/ftp, or the home directory of ftp as specified
in /etc/passwd, are set to 755 and that the directory is not owned by ftp. If the ftp
user can write to /var/ftp, connections will fail.

$ ls -ld /home/ftp
drwxr-xr-x 2 root nogroup 4096 2007-01-24 08:45 /home/ftp

Once you are able to log in from the local system, log in from another system—
either one on the LAN or another system with access to the server. On the com-
mand line, use the hostname from within the LAN or the FQDN (page 1037) from
outside the LAN. The dialog should appear the same as in the previous example. If
you cannot log in from a system that is not on the LAN, use ping (page 375) to test
the connection and make sure the firewall is set up to allow FTP access. See “FTP
connections” on page 730 for a discussion of active and passive modes and the
ports that each mode uses.

vsftpd.conf: The vsftpd Configuration File

The configuration file for vsftpd, /etc/vsftpd.conf, lists Boolean, numeric, and string
name-value pairs of configuration parameters, called directives. Each name-value
pair is joined by an equal sign with no SPACEs on either side. Ubuntu Linux provides
a well-commented vsftpd.conf file that changes many of the compiled-in defaults.
This section covers most of the options, noting their default values and their values
as specified in the vsftpd.conf file supplied with Ubuntu Linux.

Set Boolean options to YES or NO and numeric options to a nonnegative integer.
Octal numbers, which are useful for setting umask options, must have a leading 0
(zero). Numbers without a leading zero are treated as base 10 numbers. Following
are examples from vsftpd.conf of setting each type of option:

anonymous_enable=YES
local_umask=022
xferlog_file=/var/log/vsftpd.log

Descriptions of the directives are broken into the following groups:

• Stand-alone mode (page 743)

• Logging in (page 743)

• Working directory and the chroot jail (page 744)

• Downloading and uploading files (page 746)

• Messages (page 748)

• Display (page 748)

• Logs (page 749)

• Connection parameters (page 750)

FTP Server (vsftpd) 743

Stand-Alone Mode

Refer to “Notes” on page 735 for a discussion of normal and stand-alone modes.
This section describes the parameters that affect stand-alone mode.

listen YES runs vsftpd in stand-alone mode; NO runs it in normal mode.

Default: NO
Ubuntu: YES

listen_address In stand-alone mode, specifies the IP address of the local interface that vsftpd listens
on for incoming connections. When this parameter is not set, vsftpd uses the default
network interface.

Default: none

listen_port In stand-alone mode, specifies the port that vsftpd listens on for incoming connections.

Default: 21

max_clients In stand-alone mode, specifies the maximum number of clients. Zero (0) indicates
unlimited clients.

Default: 0

max_per_ip In stand-alone mode, specifies the maximum number of clients from the same IP
address. Zero (0) indicates unlimited clients from the same IP address.

Default: 0

Logging In

Three classes of users can log in on a vsftpd server: anonymous, local, and guest.
The guest user is rarely used and is not covered in this chapter. Local users log in
with their system username and password. Anonymous users log in with anony-
mous or ftp, using their email address as a password. You can control whether each
of these classes of users can log in on the server and what they can do once they log
in. You can also specify what a local user can do on a per-user basis; for more infor-
mation refer to user_config_dir on page 752.

Local Users

userlist_enable The /etc/vsftpd.user_list file (page 752), or another file specified by userlist_file,
contains a list of zero or more users. YES consults this list and takes action based on
userlist_deny, either granting or denying users in the list permission to log in on the
server. To prevent the transmission of cleartext passwords, access is denied immedi-
ately after the user enters her username. NO does not consult the list. For a more
secure system, set this parameter to NO.

Default: NO
Ubuntu: YES

744 Chapter 20 FTP: Transferring Files Across a Network

userlist_deny YES prevents users listed in /etc/vsftpd.user_list (page 752) from logging in on the
server. NO allows only users listed in /etc/vsftpd.user_list to log in on the server.
Use userlist_file to change the name of the file that this parameter consults. This
parameter is checked only when userlist_enable is set to YES.

Default: YES

userlist_file The name of the file consulted when userlist_enable is set to YES.

Default: /etc/vsftpd.user_list

local_enable YES permits local users (users listed in /etc/passwd) to log in on the server.

Default: NO

Anonymous Users

anonymous_enable
YES allows anonymous logins. NO disables anonymous logins.

Default: YES

no_anon_password
YES skips asking anonymous users for passwords.

Default: NO

deny_email_enable
YES checks whether the password (email address) that an anonymous user enters is
listed in /etc/vsftpd/banned_emails or another file specified by banned_email_file. If
it is, the user is not allowed to log in on the system. NO does not perform this
check. Using firestarter (page 886) or iptables (page 885) to block specific hosts is
generally more productive than using this parameter.

Default: NO

banned_email_file
The name of the file consulted when deny_email_enable is set to YES.

Default: /etc/vsftpd.banned_emails

The Working Directory and the chroot Jail

When a user logs in on a vsftpd server, standard filesystem access permissions con-
trol which directories and files the user can access and how the user can access
them. Three basic parameters control a user who is logged in on a vsftpd server:

• The user ID (UID)

• The initial working directory

• The root directory

By default, the vsftpd server sets the user ID of a local user to that user’s username
and sets the user ID of an anonymous user to ftp. A local user starts in her home
directory and an anonymous user starts in /home/ftp.

FTP Server (vsftpd) 745

By default, anonymous users are placed in a chroot jail for security; local users are
not. For example, when an anonymous user logs in on a vsftpd server, his home
directory is /home/ftp. All that user sees, however, is that his home directory is /.
The user sees the directory at /home/ftp/upload as /upload. The user cannot see, or
work with, for example, the /home, /usr/local, or /tmp directory because the user is
in a chroot jail. For more information refer to “Setting Up a chroot Jail” on
page 534.

You can use the chroot_local_user option to put each local user in a chroot jail
whose root is the user’s home directory. You can use chroot_list_enable to put
selected local users in chroot jails.

chroot_list_enable
Upon login, YES checks whether a local user is listed in /etc/vsftpd.chroot_list
(page 752) or another file specified by chroot_list_file.

When a user is in the list and chroot_local_user is set to NO, the user is put in a
chroot jail in his home directory. Only users listed in /etc/vsftpd.chroot_list are put
in chroot jails.

When a user is in the list and chroot_local_user is set to YES, that user is not put in
a chroot jail. Users not listed in /etc/vsftpd.chroot_list are put in chroot jails.

Default: NO

chroot_local_user
See chroot_list_enable. Set to NO for a more open system, but remember to add
new users to the chroot_list_file as needed when you add users to the system. Set to
YES for a more secure system. New users are automatically restricted unless you
add them to chroot_list_file.

Default: NO

chroot_list_file The name of the file consulted when chroot_list_enable is set to YES.

Default: /etc/vsftpd.chroot_list

passwd_chroot_enable
YES enables you to change the location of the chroot jail that the chroot_list_enable
and chroot_local_user settings impose on a local user.

The location of the chroot jail can be moved up the directory structure by including
a /./ within the home directory string for that user in /etc/passwd. This change has
no effect on the standard system login, just as a cd . command has no effect on the
working directory.

For example, changing the home directory field in /etc/passwd (page 560) for Sam
from /home/sam to /home/./sam allows Sam to cd to /home after logging in using
vsftpd. Given the proper permissions, Sam can now view files and collaborate with
another user.

Default: NO

746 Chapter 20 FTP: Transferring Files Across a Network

secure_chroot_dir The name of an empty directory that is not writable by the user ftp. The vsftpd
server uses this directory as a secure chroot jail when the user does not need access to
the filesystem.

Default: /var/run/vsftpd

local_root After a local user logs in on the server, this directory becomes the user’s working
directory. No error results if the specified directory does not exist.

Default: none

Downloading and Uploading Files

By default, any user—whether local or anonymous—can download files from the
vsftpd server, assuming proper filesystem access and permissions. You must change
write_enable from NO (default) to YES to permit local users to upload files. By
default, local_umask is set to 077, giving uploaded files 600 permissions
(page 199). These permissions allow only the user who created a file to download
and overwrite it. Change local_umask to 022 to allow users to download other
users’ files.

Security Refer to “Security” on page 741 for information on the security hole that is created
when you allow local users to upload files.

The following actions set up vsftpd to allow anonymous users to upload files:

1. Set write_enable (page 747) to YES.

2. Create a directory under /home/ftp that an anonymous user can write to
but not read from (mode 333). You do not want a malicious user to be
able to see, download, modify, and upload a file that another user origi-
nally uploaded. The following commands create a /home/ftp/uploads
directory that anyone can write to but no one can read from:

$ sudo mkdir /home/ftp/uploads
$ sudo chmod 333 /home/ftp/uploads

Because of the security risk, vsftpd prevents anonymous connections when
an anonymous user (ftp) can write to /home/ftp.

3. Set anon_upload_enable (page 747) to YES.

4. See the other options in this section.

Download/Upload for Local Users

local_umask The umask (page 526) setting for local users.

Default: 077

file_open_mode Uploaded file permissions for local users. The umask (page 526) is applied to this
value. Change to 0777 to make uploaded files executable.

Default: 0666

FTP Server (vsftpd) 747

write_enable YES permits users to create and delete files and directories (assuming appropriate
filesystem permissions). NO prevents users from making changes to the filesystem.

Default: NO

Anonymous Users

anon_mkdir_write_enable
YES permits an anonymous user to create new directories when write_enable=YES
and the anonymous user has permission to write to the parent directory.

Default: NO

anon_other_write_enable
YES grants an anonymous user write permission in addition to the permissions
granted by anon_mkdir_write_enable and anon_upload_enable. For example, YES
allows an anonymous user to delete and rename files, assuming she has permis-
sion to write to the parent directory. For a more secure site, do not set this param-
eter to YES.

Default: NO

anon_root After an anonymous user logs in on the server, this directory becomes the user’s
working directory. No error results if the specified directory does not exist.

Default: none

anon_umask The umask (page 526) setting for anonymous users. The default setting gives only
anonymous users access to files uploaded by anonymous users; set this parameter to
022 to give everyone read access to these files.

Default: 077

anon_upload_enable
YES allows anonymous users to upload files when write_enable=YES and the anon-
ymous user has permission to write to the directory.

Default: NO

anon_world_readable_only
YES limits the files that a user can download to those that are readable by the
owner of the file, members of the group the file is associated with, and others. It
may not be desirable to allow one anonymous user to download a file that another
anonymous user uploaded. Setting this parameter to YES can avoid this scenario.

Default: YES

ascii_download_enable
YES allows a user to download files using ASCII mode. Setting this parameter to
YES can create a security risk (page 736).

Default: NO

ascii_upload_enable
YES allows a user to upload files using ASCII mode (page 736).

Default: NO

748 Chapter 20 FTP: Transferring Files Across a Network

chown_uploads YES causes files uploaded by anonymous users to be owned by root (or another
user specified by chown_username).

Default: NO

chown_username See chown_uploads.

Default: root

ftp_username The username of anonymous users.

Default: ftp

nopriv_user The name of the user with minimal privileges, as used by vsftpd. Because other pro-
grams use nobody, to enhance security you can replace nobody with the name of a
dedicated user such as ftp.

Default: nobody

Messages

You can replace the standard greeting banner that vsftpd displays when a user logs in
on the system (banner_file and ftpd_banner). You can also display a message each
time a user enters a directory (dirmessage_enable and message_file). When you set
dirmessage_enable=YES, each time a user enters a directory using cd, vsftpd displays
the contents of the file in that directory named .message (or another file specified by
message_file).

dirmessage_enable
YES displays .message or another file specified by message_file as an ftp user enters
a new directory by giving a cd command.

Default: NO
Ubuntu: YES

message_file See dirmessage_enable.

Default: .message

banner_file The absolute pathname of the file that is displayed when a user connects to the
server. Overrides ftpd_banner.

Default: none

ftpd_banner Overrides the standard vsftpd greeting banner displayed when a user connects to
the server.

Default: none; uses standard vsftpd banner

Display

This section describes parameters that can improve security and performance by
controlling how vsftpd displays information.

hide_ids YES lists all users and groups in directory listings as ftp. NO lists the real owners.

Default: NO

FTP Server (vsftpd) 749

setproctitle_enable
NO causes ps to display the process running vsftpd as vsftpd. YES causes ps to dis-
play what vsftpd is currently doing (uploading and so on). Set this parameter to NO
for a more secure system.

Default: NO

text_userdb_names
NO improves performance by displaying numeric UIDs and GIDs in directory list-
ings. YES displays names.

Default: NO

use_localtime NO causes the ls, mls, and modtime FTP commands to display UTC (page 1067).
YES causes these commands to display the local time.

Default: NO

ls_recurse_enable YES permits users to give ls –R commands. Setting this parameter to YES may pose
a security risk because giving an ls –R command at the top of a large directory hier-
archy can consume a lot of system resources.

Default: NO

Logs

By default, logging is turned off. However, the vsftpd.conf file distributed with
Ubuntu Linux turns it on. This section describes parameters that control the details
and locations of logs.

log_ftp_protocol YES logs FTP requests and responses, provided that xferlog_std_format is set to NO.

Default: NO

xferlog_enable YES maintains a transfer log in /var/log/vsftpd.log (or another file specified by
xferlog_file). NO does not create a log.

Default: NO
Ubuntu: YES

xferlog_std_format
YES causes a transfer log (not covering connections) to be written in standard
xferlog format, as used by wu-ftpd, as long as xferlog_file is explicitly set. If
xferlog_std_format is set to YES and xferlog_file is not explicitly set, logging is
turned off. The default vsftpd log format is more readable than xferlog format,
but it cannot be processed by programs that generate statistical summaries of
xferlog files. Search for xferlog on the Internet to obtain more information on this
command.

Default: NO

xferlog_file See xferlog_enable and xferlog_std_format.

Default: /var/log/xferlog

750 Chapter 20 FTP: Transferring Files Across a Network

Connection Parameters

You can allow clients to establish passive and/or active connections (page 730).
Setting timeouts and maximum transfer rates can improve server security and per-
formance. This section describes parameters that control the types of connections
that a client can establish, the length of time vsftpd will wait while establishing a
connection, and the speeds of connections for different types of users.

Passive (PASV) Connections

pasv_enable NO prevents the use of PASV connections.

Default: YES

pasv_promiscuous
NO causes PASV to perform a security check that ensures that the data and control
connections originate from a single IP address. YES disables this check; it is not rec-
ommended for a secure system.

Default: NO

pasv_max_port The highest port number that vsftpd will allocate for a PASV data connection; use-
ful in setting up a firewall.

Default: 0 (use any port)

pasv_min_port The lowest port number that vsftpd will allocate for a PASV data connection; useful
in setting up a firewall.

Default: 0 (use any port)

pasv_address Specifies an IP address other than the one used by the client to contact the server.

Default: none; the address is the one used by the client

Active (PORT) Connections

port_enable NO prevents the use of PORT connections.

Default: YES

port_promiscuous
NO causes PORT to perform a security check that ensures that outgoing data con-
nections connect only to the client. YES disables this check; it is not recommended
for a secure system.

Default: NO

connect_from_port_20
YES specifies port 20 (ftp-data, a privileged port) on the server for PORT connec-
tions, as required by some clients. NO allows vsftpd to run with fewer privileges (on
a nonprivileged port).

Default: NO
Ubuntu: YES

FTP Server (vsftpd) 751

ftp_data_port With connect_from_port_20 set to NO, specifies the port that vsftpd uses for PORT
connections.

Default: 20

Timeouts

accept_timeout The number of seconds the server waits for a client to establish a PASV data connection.

Default: 60

connect_timeout The number of seconds the server waits for a client to respond to a PORT data
connection.

Default: 60

data_connection_timeout
The number of seconds the server waits for a stalled data transfer to resume before
disconnecting.

Default: 300

idle_session_timeout
The number of seconds the server waits between FTP commands before disconnecting.

Default: 300

local_max_rate For local users, the maximum data transfer rate in bytes per second. Zero (0) indi-
cates no limit.

Default: 0

anon_max_rate For anonymous users, the maximum data transfer rate in bytes per second. Zero (0)
indicates no limit.

Default: 0

one_process_model
YES establishes one process per connection, which improves performance but
degrades security. NO allows multiple processes per connection. NO is recom-
mended to maintain a more secure system.

Default: NO

Miscellaneous

This section describes parameters not discussed elsewhere.

pam_service_name
The name of the PAM service used by vsftpd.

Default: vsftpd

rsa_cert_file Specifies where the RSA certificate for SSL-encrypted connections is kept.

Default: /usr/share/ssl/certs/vsftpd.pem
Ubuntu: /etc/ssl/certs/ssl-cert-snakeoil.pem

752 Chapter 20 FTP: Transferring Files Across a Network

rsa_private_key_file
Specifies where the RSA key for SSL-encrypted connections is kept.

Default: none
Ubuntu: /etc/ssl/private/ssl-cert-snakeoil.key

tcp_wrappers YES causes incoming connections to use tcp_wrappers (page 532) if vsftpd was
compiled with tcp_wrappers support. When tcp_wrappers sets the environment
variable VSFTPD_LOAD_CONF, vsftpd loads the configuration file specified by
this variable, allowing per-IP configuration.

Default: NO

user_config_dir Specifies a directory that contains files named for local users. Each of these files,
which mimic vsftpd.conf, contains parameters that override, on a per-user basis,
default parameters and parameters specified in vsftpd.conf. For example, assume that
user_config_dir is set to /etc/vsftpd/user_conf. Further suppose that the default con-
figuration file, /etc/vsftpd/vsftpd.conf, sets idlesession_timeout=300 and Sam’s indi-
vidual configuration file, /etc/vsftpd/user_conf/sam, sets idlesession_timeout=1200.
Then all users’ sessions except for Sam’s will time out after 300 seconds of inactivity.
Sam’s sessions will time out after 1,200 seconds.

Default: none

Files

In addition to /etc/vsftpd.conf, the following files control the functioning of vsftpd.
The directory hierarchy that user_config_dir points to is not included in this list
because it has no default name.

/etc/ftpusers
Lists users, one per line, who are never allowed to log in on the FTP server, regard-
less of how userlist_enable (page 743) is set and regardless of the users listed in the
user_list file. The default file lists root, bin, daemon, and others.

/etc/vsftpd.user_list
Lists either the only users who can log in on the server or the only users who are not
allowed to log in on the server. The userlist_enable (page 743) option must be set to
YES for vsftpd to examine the list of users in this file. Setting userlist_enable to YES
and userlist_deny (page 744) to YES (or not setting it) prevents listed users from
logging in on the server. Setting userlist_enable to YES and userlist_deny to NO per-
mits only the listed users to log in on the server.

/etc/vsftpd.chroot_list
Depending on the chroot_list_enable (page 745) and chroot_local_user (page 745)
settings, lists either users who are forced into a chroot jail in their home directories
or users who are not placed in a chroot jail.

/var/log/vsftpd.log
Log file. For more information refer to “Logs” on page 749.

Exercises 753

Chapter Summary

File Transfer Protocol is a protocol for downloading files from and uploading files
to another system over a network. FTP is the name of both a client/server protocol
(FTP) and a client utility (ftp) that invokes this protocol. Because FTP is not a secure
protocol, it should be used only to download public information. You can run the
vsftpd FTP server in the restricted environment of a chroot jail to make it signifi-
cantly less likely that a malicious user can compromise the system.

Many servers and clients implement the FTP protocol. The ftp utility is the original
client implementation; sftp and lftp are secure implementations that use OpenSSH
facilities to encrypt the connection. Although they do not understand the FTP pro-
tocol, they map ftp commands to OpenSSH commands. The vsftpd daemon is a
secure FTP server; it better protects the server from malicious users than do other
FTP servers.

Public FTP servers allow you to log in as anonymous or ftp. By convention, you
supply your email address as a password when you log in as an anonymous user.
Public servers frequently have interesting files in the pub directory.

FTP provides two modes of transferring files: binary and ASCII. It is safe to use
binary mode to transfer all types of files, including ASCII files. If you transfer a
binary file using ASCII mode, the transfer will fail.

Exercises

1. What changes does FTP make to an ASCII file when you download it in
ASCII mode to a Windows machine from a Linux server? What changes
are made when you download the file to a Mac?

2. What happens if you transfer an executable program file in ASCII mode?

3. When would ftp be a better choice than sftp?

4. How would you prevent local users from logging in on a vsftpd server
using their system username and password?

5. What advantage does sftp have over ftp?

6. What is the difference between cd and lcd in ftp?

754 Chapter 20 FTP: Transferring Files Across a Network

Advanced Exercises

7. Why might you have problems connecting to an FTP server in PORT mode?

8. Why is it advantageous to run vsftpd in a chroot jail?

9. After downloading a file, you find that it does not match the MD5
checksum provided. Downloading the file again gives the same incorrect
checksum. What have you done wrong and how would you fix it?

10. How would you configure vsftpd to run through xinetd, and what would
be the main advantage of this approach?

755755

21Chapter21Sending and receiving email require three pieces of software. At
each end, there is a client, called an MUA (mail user agent),
which is a bridge between a user and the mail system. Common
MUAs are mutt, Evolution, KMail, Thunderbird, and Outlook.
When you send an email, the MUA hands it to an MTA (a mail
transfer agent, such as exmi4 or sendmail), which transfers it to
the destination server. At the destination, an MDA (a mail
delivery agent, such as procmail) puts the mail in the recipient’s
mailbox file. On Linux systems, the MUA on the receiving sys-
tem either reads the mailbox file or retrieves mail from a remote
MUA or MTA, such as an ISP’s SMTP (Simple Mail Transfer
Protocol) server, using POP (Post Office Protocol) or IMAP
(Internet Message Access Protocol).

Most Linux MUAs expect a local MTA such as exim4 to deliver
outgoing email. On some systems, including those with a dial-
up connection to the Internet, the MTA sends email to an ISP’s
mail server. Because most MTAs use SMTP to deliver email,
they are often referred to as SMTP servers. By default, when
you install exim4 on an Ubuntu system, exim4 uses its own
builtin MDA to deliver email to the recipient’s mailbox file.

In This Chapter

Introduction to exim4 756

JumpStart I: Configuring exim4
to Use a Smarthost 758

JumpStart II: Configuring exim4
to Send and Receive Email 760

Configuring exim4. 765

SpamAssassin. 768

Webmail . 772

Mailing Lists 775

Setting Up an IMAP or POP3
Server . 776

Authenticated Relaying 777

21

exim4: Setting Up

Mail Servers,

Clients, and More

756 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

Introduction to exim4
When the network that was to evolve into the Internet was first set up, it connected
a few computers, each serving a large number of users and running several services.
Each computer was capable of sending and receiving email and had a unique host-
name, which was used as a destination for email.

Today the Internet has a large number of transient clients. Because these clients do
not have fixed IP addresses or hostnames, they cannot receive email directly. Users
on these systems usually maintain an account on an email server run by their
employer or an ISP, and they collect email from this account using POP or IMAP.
Unless you own a domain where you want to receive email, you will not need to set
up exim4 to receive mail from nonlocal systems.

Smarthost You can set up exim4 on a client system so it sends mail bound for nonlocal sys-
tems to an SMTP server that relays the mail to its destination. This type of server
is called a smarthost. Such a configuration is required by organizations that use
firewalls to prevent email from being sent out on the Internet from any system
other than the company’s official mail servers. As a partial defense against spread-
ing viruses, some ISPs block outbound port 25 to prevent their customers from
sending email directly to a remote computer. This configuration is required by
these ISPs.

You can also set up exim4 as a server that sends mail to nonlocal systems and does
not use an ISP as a relay. In this configuration, exim4 connects directly to the SMTP
servers for the domains receiving the email. An ISP set up as a smarthost is config-
ured this way.

You can set up exim4 to accept email for a registered domain name as specified in
the domain’s DNS MX record (page 852). However, most mail clients (MUAs) do
not interact directly with exim4 to receive email. Instead, they use POP or IMAP—
protocols that include features for managing mail folders, leaving messages on the
server, and reading only the subject of an email without downloading the entire
message. If you want to collect your email from a system other than the one running
the incoming mail server, you may need to set up a POP or IMAP server, as dis-
cussed on page 776.

You do not need to set up exim4 to send and receive email

tip Most MUAs can use POP or IMAP to receive email from an ISP’s server. These protocols do not
require an MTA such as exim4. As a consequence, you do not need to install or configure exim4
(or another MTA) to receive email. Although you still need SMTP to send email, the SMTP server
can be at a remote location, such as your ISP. Thus you may not need to concern yourself with
it, either.

Introduction to exim4 757

Prerequisites

Install the following packages:

• exim4 (a virtual package)

• eximon4 (optional; monitors exim4)

• mailx (optional; installs mail, which is handy for testing exim4 from the
command line)

• exim4-doc-html (optional; exim4 documentation in HTML format)

• exim4-doc-info (optional; exim4 documentation in info format)

exim4 init script When you install the exim4 package, the dpkg postinst script minimally configures
exim4 and starts the exim4 daemon. After you configure exim4, call the exim4 init
script to restart exim4:

$ sudo /etc/init.d/exim4 restart

After changing the exim4 configuration on an active server, use reload in place of
restart to reload exim4 configuration files without interrupting the work exim4 is
doing. The exim4 init script accepts several nonstandard arguments:

$ /etc/init.d/exim4
Usage: /etc/init.d/exim4 {start|stop|restart|reload|status|what|force-stop}

The status and what arguments display information about exim4. The force-stop
argument immediately kills all exim4 processes.

Notes

Firewall An SMTP server normally uses TCP port 25. If an SMTP server system that
receives nonlocal mail is running a firewall, you need to open this port. To do so,
use firestarter (page 886) to set a policy that allows SMTP service.

Log files You must be a member of the adm group or work with root privileges to view the
log files in /var/log/exim4.

sendmail and
exim4

Although it does not work the same way sendmail does, Ubuntu configures exim4
as a drop-in replacement for sendmail. The exim4-daemon-light package, which is
part of the exim4 virtual package, includes /usr/sbin/sendmail, which is a link to
exim4. Because the exim4 daemon accepts many of sendmail’s options, programs
that depend on sendmail will work with exim4 installed in place of sendmail.

Local and nonlocal
systems

The exim4 daemon sends and receives email. A piece of email that exim4 receives
can originate on a local system or on a nonlocal system. Similarly, email that exim4
sends can be destined for a local or a nonlocal system. The exim4 daemon processes
each piece of email based on its origin and destination.

The local system
versus

local systems

The local system is the one exim4 is running on. Local systems are systems that are
on the same LAN as the local system.

As it is installed, exim4 delivers mail to the local system only.

758 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

More Information

Web exim4 www.exim.org (includes the complete exim4 specification),
www.exim-new-users.co.uk, wiki.debian.org/PkgExim4
SpamAssassin spamassassin.apache.org, wiki.apache.org/spamassassin
Spam database razor.sourceforge.net
Mailman www.list.org
procmail www.procmail.org
SquirrelMail www.squirrelmail.org
IMAP www.imap.org
Dovecot www.dovecot.org
Postfix www.postfix.org/docs.html (alternative MTA; page 779)
Qmail www.qmail.org/top.html

Local exim4 /usr/share/doc/exim4*/*
SpamAssassin /usr/share/doc/spam*
Dovecot /usr/share/doc/dovecot*
man pages exim4 exim4_files update-exim4.conf update-exim4defaults spamassassin

spamc spamd
SpamAssassin Install the perl-doc package and give the following command:

$ perldoc Mail::SpamAssassin::Conf

JumpStart I: Configuring exim4 to Use a Smarthost

This JumpStart configures an exim4 server that sends mail from users on local sys-
tems to local and nonlocal destinations and does not accept mail from nonlocal
systems. This server

• Accepts email originating on local systems for delivery to local systems.

• Accepts email originating on local systems for delivery to nonlocal sys-
tems, delivering it using an SMTP server (a smarthost)—typically an ISP—
to relay email to its destination.

• Does not deliver email originating on nonlocal systems. As is frequently
the case, you need to use POP or IMAP to receive email.

• Does not forward email originating on nonlocal systems to other nonlocal
systems (does not relay email).

To set up this server, you need to change the values of a few configuration variables
in /etc/exim4/update-exim4.conf.conf (page 766) and restart exim4. The dpkg-
reconfigure utility (page 768) guides you in editing this file; this JumpStart uses a
text editor. Working with root privileges, use a text editor to make the following
changes to update-exim4.conf.conf:

dc_eximconfig_configtype='smarthost'
smarthost='mail.example.net'

www.exim.org
www.exim-new-users.co.uk
www.list.org
www.procmail.org
www.squirrelmail.org
www.imap.org
www.dovecot.org
www.postfix.org/docs.html
www.qmail.org/top.html

JumpStart I: Configuring exim4 to Use a Smarthost 759

Configuration type Set the dc_eximconfig_configtype configuration variable to smarthost to cause exim4
to send mail bound for nonlocal systems to the system that the smarthost configura-
tion variable specifies. This line should appear exactly as shown on the previous page.

Smarthost With dc_eximconfig_configtype set to smarthost, set smarthost to the FQDN or IP
address (preferred) of the remote SMTP server (the smarthost) that exim4 uses to
relay email to nonlocal systems. Replace mail.example.net with this FQDN or IP
address. For Boolean variables in update-exim4.conf.conf, exim4 interprets the null
value (specified by ' ') as a value of false. With these changes, the file should look
similar to this:

$ cat /etc/exim4/update-exim4.conf.conf
...
dc_eximconfig_configtype='smarthost'
dc_other_hostnames=''
dc_local_interfaces='127.0.0.1'
dc_readhost=''
dc_relay_domains=''
dc_minimaldns='false'
dc_relay_nets=''
dc_smarthost='mail.example.net'
CFILEMODE='644'
dc_use_split_config='false'
dc_hide_mailname='false'
dc_mailname_in_oh='true'
dc_localdelivery='mail_spool'

The exim4 server does not use the value of the dc_local_interfaces variable in a
smarthost configuration, so you can leave it blank. However, in other configura-
tions, the value of 127.0.0.1 prevents exim4 from accepting email from nonlocal
systems. It is a good idea to configure exim4 this way and change this variable only
when you are ready to accept mail from other systems.

To minimize network accesses for DNS lookups, which can be helpful if you are using
a dial-up line, change the value of the dc_minimaldns configuration variable to true.

/etc/mailname The /etc/mailname file initially holds the node name (uname –n) of the server. The
string stored in /etc/mailname appears as the name of the sending system on the
envelope-from and From lines of email that originates on the local system. If you
want email to appear to come from a different system, change the contents of this
file. You can modify this file using a text editor; the dpkg-reconfigure utility can also
change it.

The following file causes mail sent from the local system to appear to come from
username@example.com, where username is the username of the user who is send-
ing the email:

$ cat /etc/mailname
example.com

See page 766 for more information on exim4 configuration variables. After making
these changes, restart exim4 (page 757).

760 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

Test Test exim4 with the following command:

$ echo "my exim4 test" | exim4 user@remote.host

Replace user@remote.host with an email address on another system where you
receive email. You need to send email to a remote system to make sure that exim4 is
sending email to the remote SMTP server (the smarthost). If the mail is not deliv-
ered, check the email of the user who sent the email (on the local system) for errors.
Also check the log file(s) in the /var/log/exim4 directory.

JumpStart II: Configuring exim4 to Send

and Receive Email

To receive email sent from a nonlocal system to a registered domain (that you con-
trol), you need to configure exim4 to accept email from nonlocal systems. This
JumpStart describes how to set up a server that

• Accepts email from local and nonlocal systems.

• Delivers email that originates on local systems to a local system or directly
to a nonlocal system, without using a relay.

• Delivers email that originates on nonlocal systems to a local system only.

• Does not forward email originating on nonlocal systems to other nonlocal
systems (does not relay email).

This server does not relay email originating on nonlocal systems. (You must set the
dc_relay_domains variable [page 767] for the local system to act as a relay.) For this
configuration to work, you must be able to make outbound connections and receive
inbound connections on port 25 (see “Firewall” on page 757).

Working with root privileges, use a text editor to set the following configuration
variables in /etc/exim4/update-exim4.conf.conf:

dc_eximconfig_configtype='internet'
dc_other_hostnames='mydom.example.com'
dc_local_interfaces=''

Configuration type Set dc_eximconfig_configtype to internet to cause exim4 to send mail directly to non-
local systems as specified by the DNS MX record (page 852) for the domain the mail is
addressed to and to accept email on the interfaces specified by dc_local_interfaces
(next page). This line should appear exactly as shown above.

Other hostnames The dc_other_hostnames configuration variable specifies the FQDNs or IP addresses
that the local server receives mail addressed to. Replace mydom.example.com with
these FQDN or IP addresses. You must separate multiple entries with semicolons.
These values do not necessarily include the FQDN or the IP address of the local
server.

How exim4 Works 761

Local interfaces Set dc_local_interfaces to the interface you want exim4 to listen on. Set it to the null
value ('') to listen on all interfaces.

As in JumpStart I, you may need to change the value of /etc/mailname (page 759).
For Boolean variables in this file, exim4 interprets the null value (specified by '') as
false. The file should look similar to this:

$ cat /etc/exim4/update-exim4.conf.conf
...
dc_eximconfig_configtype='internet'
dc_other_hostnames='mydom.example.com'
dc_local_interfaces=''
dc_readhost=''
dc_relay_domains=''
dc_minimaldns='false'
dc_relay_nets=''
dc_smarthost=''
CFILEMODE='644'
dc_use_split_config='false'
dc_hide_mailname=''
dc_mailname_in_oh='true'
dc_localdelivery='mail_spool'

See page 766 for more information on exim4 configuration variables. Once you
have restarted exim4, it will accept mail addressed to the local system. To receive
email addressed to a domain, the DNS MX record (page 852) for that domain must
point to the IP address of the local system. If you are not running a DNS server, you
must ask your ISP to set up an MX record or else receive mail at the IP address of
the server. If you receive email addressed to an IP address, set dc_other_hostnames
to that IP address.

How exim4 Works

When exim4 receives email, from both local and nonlocal systems, it creates in the
/var/spool/exim4/input directory two files that hold the message while exim4 pro-
cesses it. To identify a particular message, exim4 generates a 16-character message
ID and uses that string in filenames pertaining to the email. The exim4 daemon
stores the body of the message in a file named by the message ID followed by –D
(data). It stores the headers and envelope information in a file named by the mes-
sage ID followed by –H (header).

If exim4 cannot deliver a message, it marks the message as frozen and makes no fur-
ther attempt to deliver it. Once it has successfully delivered an email, exim4
removes all files pertaining to that email from /var/spool/exim4/input.

Mail addressed to
the local system

By default, exim4 delivers email addressed to the local system to users’ files in the
mail spool directory, /var/mail, in mbox format. Within this directory, each user has
a mail file named with the user’s username. Mail remains in these files until it is col-
lected, typically by an MUA. Once an MUA collects the mail from the mail spool,
the MUA stores the mail as directed by the user, usually in the user’s home directory.

762 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

Mail addressed to
nonlocal systems

The scheme that exim4 uses to process email addressed to a nonlocal system
depends on how it is configured: It can send the email to a smarthost, it can send
the email to the system pointed to by the DNS MX record of the domain the email
is addressed to, or it can refuse to send the email.

mbox versus
maildir

The mbox format holds all messages for a user in a single file. To prevent corruption,
a process must lock this file while it is adding messages to or deleting messages from
the file; thus the MUA cannot delete a message at the same time the MTA is adding
messages. A competing format, maildir, holds each message in a separate file. This
format does not use locks, allowing an MUA to delete messages from a user at the
same time as mail is delivered to the same user. In addition, the maildir format is bet-
ter able to handle larger mailboxes. The downside is that the maildir format adds
overhead when you are using a protocol such as IMAP to check messages. The
exim4 daemon supports both mbox and maildir formats (see dc_localdelivery on
page 767). Qmail (page 779), which is an alternative to sendmail and exim4, uses
maildir-format mailboxes.

Mail Logs

By default, exim4 sends normal log messages to /var/exim4/mainlog, with other
messages going to other files in the same directory. The following lines in a mainlog
file describe an email message sent directly to a remote system’s SMTP server. The
exim4 daemon writes one line each time it receives a message and one line each time
it attempts to deliver a message. The Completed line indicates that exim4 has com-
pleted its part in delivering the message. Each line starts with the date and time of
the entry followed by the message ID.

$ tail -3 /var/log/exim4/mainlog
2007-07-19 23:13:12 1IBljk-0000t8-1Z <= zachs@example.com U=sam P=local S=304
2007-07-19 23:13:17 1IBljk-0000t8-1Z => zachs@example.com R=dnslookup T=remote_smtp

H=filter.mx.meer.net [64.13.141.12]
2007-07-19 23:13:17 1IBljk-0000t8-1Z Completed

The next entry on each line except the Completed line is a two-character status flag
that tells you which kind of event the line describes:

<= Received a message
=> Delivered a message normally
–> Delivered a message normally to an additional address (same delivery)

*> Did not deliver because of a –N command line option

** Did not deliver because the address bounced
== Did not deliver because of a temporary problem

Information following the flag is preceded by one of the following letters, which
indicates the type of the information, and an equal sign:

H Name of remote system (host)
U Username of the user who sent the message
P Protocol used to receive the message
R Router used to process the message
T Transport used to process the message
S Size of the message in bytes

How exim4 Works 763

The first line in the preceding example indicates that exim4 received a 304-byte
message to be delivered to zachs@example.com from sam on the local system. The
next line indicates that exim4 looked up the address using DNS (dnslookup) and
delivered it to the remote SMTP server (remote_smtp) at filter.mx.meer.net, which
has an IP address of 64.13.141.12.

The following log entries describe a message that exim4 received from a remote sys-
tem and delivered to the local system:

2007-07-19 23:13:32 1IBlk4-0000tL-8L <= zachs@gmail.com H=wx-out-0506.google.com
[66.249.82.229] P=esmtp S=1913 id=7154255d0707192313y304a1b27t39f...@mail.gmail.com

2007-07-19 23:13:32 1IBlk4-0000tL-8L => sam <sams@example.com> R=local_user T=mail_spool
2007-07-19 23:13:32 1IBlk4-0000tL-8L Completed

See the exim4 specification for more information on log files. If you send and
receive a lot of email, the mail logs can grow quite large. The logrotate (page 684)
exim4-base file archives and rotates these files regularly.

Working with Messages

You can call exim4 with many different options to work with email that is on the
system and to generate records of email that has passed through the system. Most of
these options begin with –M and require the message ID (see the preceding section)
of the piece of email you want to work with. The following command removes a
message from the queue:

$ sudo exim4 -Mrm 1IEKKj-0006CQ-LM
Message 1IEKKj-0006CQ-LM has been removed

Following are some of the exim4 options you can use to work with a message. Each
of these options must be followed by a message ID. See the exim4 man page for a
complete list.

–Mf Mark message as frozen
–Mrm Remove message
–Mt Thaw message
–Mvb Display message body
–Mvh Display message header

Aliases and Forwarding

You can use the aliases and .forward (page 764) files to forward email.

/etc/aliases Most of the time when you send email, it goes to a specific person; the recipient,
user@system, maps to a real user on the specified system. Sometimes, however, you
may want email to go to a class of users and not to a specific recipient. Examples of
classes of users include postmaster, webmaster, root, and tech_support. Different
users may receive this email at different times or the email may go to a group of users.
You can use the /etc/aliases file to map local addresses and classes to local users, files,
commands, and local as well as to nonlocal addresses.

Each line in /etc/aliases contains the name of a local (pseudo)user, followed by a
colon, whitespace, and a comma-separated list of destinations. Because email sent

764 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

to the root account is rarely checked, the default installation includes an entry simi-
lar to the following that redirects email sent to root to the initial user:

root: sam

You can set up an alias to forward email to more than one user. The following line
forwards mail sent to abuse on the local system to sam and max:

abuse: sam, max

You can create simple mailing lists with this type of alias. For example, the follow-
ing alias sends copies of all email sent to admin on the local system to several users,
including Zach, who is on a different system:

admin: sam, helen, max, zach@example.com

You can direct email to a file by specifying an absolute pathname in place of a desti-
nation address. The following alias, which is quite popular among less conscientious
system administrators, redirects email sent to complaints to /dev/null (page 555),
where it disappears:

complaints: /dev/null

You can also send email to standard input of a command by preceding the com-
mand with the pipe character (|). This technique is commonly used by mailing list
software such as Mailman (page 774). For each list it maintains, Mailman has
entries, such as the following one for painting_class, in the aliases file:

painting_class: "|/var/lib/mailman/mail/mailman post painting_class"

See the exim4_files man page for information on exim4 files, including aliases.

newaliases After you edit /etc/aliases, you must run newaliases while you are working with
root privileges. The /usr/bin/newaliases file is a symbolic link to exim4. Running
newaliases calls exim4, which rebuilds the exim4 alias database.

~/.forward Systemwide aliases are useful in many cases, but nonroot users cannot make or
change them. Sometimes you may want to forward your own mail: Maybe you
want mail from several systems to go to one address or perhaps you want to for-
ward your mail while you are working at another office. The ~/.forward file allows
ordinary users to forward their email.

Lines in a .forward file are the same as the right column of the aliases file explained
earlier in this section: Destinations are listed one per line and can be a local user, a
remote email address, a filename, or a command preceded by the pipe character (|).

Mail that you forward does not go to your local mailbox. If you want to forward
mail and keep a copy in your local mailbox, you must specify your local username
preceded by a backslash to prevent an infinite loop. The following example sends
Sam’s email to himself on the local system and on the system at example.com:

$cat ~sam/.forward
sams@example.com
\sam

Configuring exim4 765

Related Programs

exim4 The exim4 packages include several programs. The primary program, exim4, reads
from standard input and sends an email to the recipient specified by its argument.
You can use exim4 from the command line to check that the mail delivery system is
working and to email the output of scripts. See “Test” on page 760 for an example.
The command apropos exim4 displays a list of exim4-related files and utilities. In
addition, you can call exim4 with options (page 763) or through links to cause it to
perform various tasks.

exim4 –bp When you call exim4 with the –bp option, or when you call the mailq utility (which
is a symbolic link to exim4), it displays the status of the outgoing mail queue. When
there are no messages in the queue, it displays nothing. Unless they are transient,
messages in the queue usually indicate a problem with the local or remote MTA
configuration or a network problem.

$ sudo exim4 -bp
24h 262 1IBhYI-0006iT-7Q <sam@> *** frozen ***
 zachs@example.com

eximstats The eximstats utility displays statistics based on exim4 log files. Call this utility with an
argument of the name of a log file, such as /var/log/mainlog or /var/log/mainlog2.gz.
Without any options, eximstats sends information based on the log file in text format
to standard output. When you include the –html option, eximstats generates output in
HTML format, suitable for viewing with a browser:

$ eximstats -html /var/log/exim4/mainlog.2.gz > exim.0720.html

If you are not a member of the adm group, you must run the preceding command
with root privileges. See the eximstats man page for more information.

eximon Part of the eximon4 package, eximon displays a simple graphical representation of
the exim4 queue and log files.

Configuring exim4

The exim4 daemon is a complex and capable MTA that is configured by
/etc/default/exim4 and the files in the /etc/exim4 directory hierarchy. The former
allows you to specify how the daemon is to be run; the latter configures all other
aspects of exim4. You can configure exim4 by editing its configuration files with
a text editor (discussed in the next section) or by using dpkg-reconfigure
(page 768).

/etc/default/exim4 The default /etc/default/exim4 file sets QUEUERUNNER to combined, which
starts one daemon that both runs the queue and listens for incoming email. It sets
QUEUEINTERVAL to 30m, which causes the daemon to run the queue (that is,
check whether the queue contains mail to be delivered) every 30 minutes. See the
comments in the file for more information.

766 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

Using a Text Editor to Configure exim4

The files in the /etc/exim4 directory hierarchy control how exim4 works—which
interfaces it listens on, whether it uses a smarthost or sends email directly to its des-
tination, whether and for which systems it relays email, and so on. You can also cre-
ate an exim4.conf.localmacros file to turn on/off exim4 functions (see page 778 for
an example). Because of its flexibility, exim4 uses many configuration variables.
You can establish the values of these variables in one of two ways: You can edit a
single file, as the JumpStart sections of this chapter explain, or you can work with
the approximately 40 files in the /etc/exim4/conf.d directory hierarchy. For many
configurations, working with the single file update-exim4.conf.conf is sufficient.
This section describes the variables in that file but does not discuss working with
the files in conf.d. Refer to the exim4 specification if you need to set up a more
complex mail server.

The update-exim4.conf.conf Configuration File

update-
exim4.conf

The update-exim4.conf utility reads the exim4 configuration files in /etc/exim4, includ-
ing update-exim4.conf.conf, and generates the /var/lib/exim4/config.autogenerated
file. When exim4 starts, it reads this file for configuration information. Typically you do
not need to run update-exim4.conf manually because the exim4 init script (page 757)
runs this utility before it starts, restarts, or reloads exim4.

Split configuration Setting the dc_use_split_config variable in update-exim4.conf.conf to false speci-
fies an unsplit configuration, wherein update-exim4.conf merges the data from
exim4.conf.localmacros, update-exim4.conf.conf, and exim4.conf.template to cre-
ate config.autogenerated. Setting this variable to true specifies a split configura-
tion, wherein update-exim4.conf merges the data from exim4.conf.localmacros,
update-exim4.conf.conf, and all the files in the conf.d directory hierarchy to create
config.autogenerated.

Following is the list of configuration variables you can set in update-
exim4.conf.conf. Enclose all values within single quotation marks. For Boolean
variables, exim4 interprets the null value (specified by ' ') as false.

CFILEMODE='perms'
Sets the permissions of config.autogenerated to the octal value perms, typically 644.

dc_eximconfig_configtype='type'
Specifies the type of configuration that exim4 will run, where type is one of the following:

internet Sends and receives email locally and remotely. See “JumpStart II” on
page 760 for an example.

smarthost Sends and receives email locally and remotely, using a smarthost to
relay messages to nonlocal systems. See “JumpStart I” on page 758 for an example.

satellite Sends email remotely, using a smarthost to relay messages; does not
receive mail locally.

local Sends and receives local messages only.

none No configuration; exim4 will not work.

Configuring exim4 767

dc_hide_mailname='bool'
Controls whether exim4 displays the local mailname (from /etc/mailname,
page 759) in the headers of email originating on local systems. Set bool to true to
hide (not display) the local mailname or false to display it. When you set this vari-
able to true, exim4 uses the value of dc_readhost in headers.

dc_local_interfaces='interface-list'
The interface-list is a semicolon-separated list of interfaces that exim4 listens on.
Set interface-list to the null value ('') to cause exim4 to listen on all interfaces. Set it
to 127.0.0.1 to prevent exim4 from accepting email from other systems.

dc_localdelivery='lcl-transport'
Set lcl-transport to mail_spool to cause exim4 to store email in mbox format; set it
to maildir_home for maildir format. See page 762 for more information.

dc_mailname_in_oh='bool'
Used internally by exim4. Do not change this value.

dc_minimaldns='bool'
Set bool to true to minimize DNS lookups (useful for dial-up connections) or to
false to perform DNS lookups as needed.

dc_other_hostnames='host-list'
The host-list is a semicolon-separated list of IP addresses and/or FQDNs the local
system accepts (but does not relay) email for; localhost (127.0.0.1) is assumed to be
in this list.

dc_readhost='hostname'
The hostname replaces the local mailname in the headers of email originating on
local systems. This setting is effective only if dc_hide_mailname is set to true and
dc_eximconfig_configtype is set to smarthost or satellite.

dc_relay_domains='host-list'
The host-list is a semicolon-separated list of IP addresses and/or FQDNs the local
system accepts mail for, but does not deliver to local systems. The local system
relays mail to these systems. For example, the local system may be a secondary
server for these systems.

dc_relay_nets='host-list'
The host-list is a semicolon-separated list of IP addresses and/or FQDNs of systems
that the local system relays mail for. The local system is a smarthost (page 759) for
these systems.

dc_smarthost='host-list'
The host-list is a semicolon-separated list of IP addresses (preferred) and/or FQDNs
the local system sends email to for relaying to nonlocal systems (a smarthost;
page 759). See “JumpStart I” on page 758 for an example.

dc_use_split_config='bool'
Controls which files update-exim4.conf uses to generate the configuration file for
exim4. See “Split configuration” (page 766) for more information.

768 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

dpkg-reconfigure: Configures exim4

The dpkg-reconfigure utility reconfigures the installed copy of a software package. It
displays a pseudographical window that can be used from any character-based
device, including a terminal emulator. The following command enables you to
reconfigure exim4 interactively:

$ sudo dpkg-reconfigure exim4-config

The first window this command displays briefly explains the differences between
the split and unsplit configurations (page 766), tells you where you can find more
information on this topic, and asks if you want to set up the split configuration
(Figure 21-1). If you choose to set up a split configuration, dpkg-reconfigure assigns
a value of true to dc_use_split_config (see “Split configuration” on page 766) and
continues as though you had chosen to use an unsplit configuration: It does not
modify files in the /etc/exim4/conf.d directory hierarchy. This setup causes update-
exim4.conf to read the files in the /etc/exim4/conf.d directory hierarchy, incorporat-
ing any changes you make to those files.

The dpkg-reconfigure utility continues providing information, asking questions, and
assigning values to the variables in /etc/exim4/update-exim4.conf.conf (page 766).
It may also change the string in /etc/mailname (page 759). When it is finished, it
restarts exim4, running update-exim4.conf in the process.

SpamAssassin

Spam—or more correctly UCE (unsolicited commercial email)—accounts for more
than three-fourths of all email. SpamAssassin evaluates each piece of incoming
email and assigns it a number that indicates the likelihood that the email is spam.

Figure 21-1 Using dpkg-reconfigure on exim4-config

SpamAssassin 769

The higher the number, the more likely that the email is spam.You can filter email
based on its rating. SpamAssassin is effective as installed, but you can modify its
configuration files to make it better fit your needs. See page 758 for sources of more
information on SpamAssassin.

Prerequisites

Packages Install the following packages:

• spamassassin

• spamc

• procmail (needed to run SpamAssassin on a mail server; page 772)

When you install the spamassassin package, the dpkg postinst script does not start
the spamd daemon. Before you can start spamd, you must change the value
assigned to ENABLED to 1 in /etc/default/spamassassin. Typically you do not need
to make other changes to this file.

$ cat /etc/default/spamassassin
...
Change to one to enable spamd
ENABLED=1
...

spamassassin init
script

After making this change, start the spamd daemon with the following command:

$ sudo /etc/init.d/spamassassin start
Starting SpamAssassin Mail Filter Daemon: spamd.

After modifying any system SpamAssassin configuration files, give the same command,
but replacing start with reload, to cause spamd to reread its configuration files.

How SpamAssassin Works

spamc and spamd SpamAssassin comprises the spamd daemon and the spamc client. Although it
includes the spamassassin utility, the SpamAssassin documentation suggests using
spamc and not spamassassin to filter email because spamc is much quicker to load than
spamassassin. While spamassassin works alone, spamc calls spamd. The spamd dae-
mon spawns children; when spamd is running, ps displays several spamd child pro-
cesses in addition to the parent spamd process:

$ ps -ef | grep spam
root 5073 1 0 10:53 ? 00:00:00 /usr/sbin/spamd --create-prefs ...
root 5106 5073 0 10:53 ? 00:00:00 spamd child
root 5107 5073 0 10:53 ? 00:00:00 spamd child
zach 16080 6225 0 12:58 pts/0 00:00:00 grep spam

The spamc utility is a filter. That is, it reads each piece of email from standard input,
sends the email to spamd for processing, and writes the modified email to standard
output. The spamd daemon uses several techniques to identify spam:

• Header analysis Checks for tricks that people who send spam use to
make you think email is legitimate.

770 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

• Text analysis Checks the body of an email for characteristics of spam.

• Blacklists Checks lists to see whether the sender is known for sending
spam.

• Database Checks the signature of the message against Vipul’s Razor
(razor.sourceforge.net), a spam-tracking database.

Testing SpamAssassin

With spamd running, you can see how spamc works by sending it a string:

$ echo "hi there" | spamc
...
X-Spam-Flag: YES
X-Spam-Checker-Version: SpamAssassin 3.1.7-deb (2006-10-05) on plum.bogus.com
X-Spam-Level: *****
X-Spam-Status: Yes, score=5.7 required=5.0 tests=EMPTY_MESSAGE,MISSING_HB_SEP,
 MISSING_HEADERS,MISSING_SUBJECT,NO_RECEIVED,NO_RELAYS,TO_CC_NONE
 autolearn=no version=3.1.7-deb
...
Content analysis details: (5.7 points, 5.0 required)

 pts rule name description
---- ---------------------- --
-0.0 NO_RELAYS Informational: message was not relayed via SMTP
 2.5 MISSING_HB_SEP Missing blank line between message header and body
 0.2 MISSING_HEADERS Missing To: header
 1.3 MISSING_SUBJECT Missing Subject: header
 1.5 EMPTY_MESSAGE Message appears to have no textual parts and no
 Subject: text
-0.0 NO_RECEIVED Informational: message has no Received headers
 0.1 TO_CC_NONE No To: or Cc: header

...

Of course, SpamAssassin complains because the string you gave it did not contain
standard email headers. The logical line that starts with X-Spam-Status contains the
heart of the report on the string hi there. First it says Yes (it considers the message to
be spam). SpamAssassin uses a rating system that assigns a number of hits to a piece
of email. If the email receives more than the required number of hits (5.0 by
default), SpamAssassin marks it as spam. The string failed for many reasons that
are enumerated on this status line. The reasons are detailed in the section labeled
Content analysis details.

The following listing is from a real piece of spam processed by SpamAssassin. It
received 24.5 hits, indicating that it is almost certainly spam.

X-Spam-Status: Yes, hits=24.5 required=5.0
tests=DATE_IN_FUTURE_06_12,INVALID_DATE_TZ_ABSURD,
 MSGID_OE_SPAM_4ZERO,MSGID_OUTLOOK_TIME,
 MSGID_SPAMSIGN_ZEROES,RCVD_IN_DSBL,RCVD_IN_NJABL,
 RCVD_IN_UNCONFIRMED_DSBL,REMOVE_PAGE,VACATION_SCAM,
 X_NJABL_OPEN_PROXY
version=2.55

X-Spam-Level: ************************
X-Spam-Checker-Version: SpamAssassin 2.55 (1.174.2.19-2003-05-19-exp)
X-Spam-Report: This mail is probably spam. The original message has been attached

SpamAssassin 771

 along with this report, so you can recognize or block similar unwanted
 mail in future. See http://spamassassin.org/tag/ for more details.
 Content preview: Paradise SEX Island Awaits! Tropical 1 week vacations
 where anything goes! We have lots of WOMEN, SEX, ALCOHOL, ETC! Every
 man’s dream awaits on this island of pleasure. [...]
 Content analysis details: (24.50 points, 5 required)
 MSGID_SPAMSIGN_ZEROES (4.3 points) Message-Id generated by spam tool (zeroes variant)
 INVALID_DATE_TZ_ABSURD (4.3 points) Invalid Date: header (timezone does not exist)
 MSGID_OE_SPAM_4ZERO (3.5 points) Message-Id generated by spam tool (4-zeroes variant)
 VACATION_SCAM (1.9 points) BODY: Vacation Offers
 REMOVE_PAGE (0.3 points) URI: URL of page called “remove”
 MSGID_OUTLOOK_TIME (4.4 points) Message-Id is fake (in Outlook Express format)
 DATE_IN_FUTURE_06_12 (1.3 points) Date: is 6 to 12 hours after Received: date
 RCVD_IN_NJABL (0.9 points) RBL: Received via a relay in dnsbl.njabl.org
 [RBL check: found 94.99.190.200.dnsbl.njabl.org.]
 RCVD_IN_UNCONFIRMED_DSBL (0.5 points) RBL: Received via a relay in unconfirmed.dsbl.org
 [RBL check: found 94.99.190.200.unconfirmed.dsbl.org.]
 X_NJABL_OPEN_PROXY (0.5 points) RBL: NJABL: sender is proxy/relay/formmail/spam-source
 RCVD_IN_DSBL (2.6 points) RBL: Received via a relay in list.dsbl.org
 [RBL check: found 211.157.63.200.list.dsbl.org.]
X-Spam-Flag: YES
Subject: [SPAM] re: statement

Configuring SpamAssassin

SpamAssassin looks in many locations for configuration files; refer to the spam-
assassin man page for details. The easiest configuration file to work with is
/etc/mail/spamassassin/local.cf. You can edit this file to configure SpamAssassin
globally. Users can override these global options and add their own options in the
~/.spamassassin/user_prefs file. You can put the options discussed in this section in
either of these files.

For example, you can configure SpamAssassin to rewrite the Subject line of email
that it rates as spam. The rewrite_header keyword in the configuration files controls
this behavior. The word Subject following this keyword tells SpamAssassin to
rewrite Subject lines. Remove the # from the following line to turn on this behavior:

rewrite_header Subject *****SPAM*****

The required_score keyword specifies the minimum score a piece of email must
receive before SpamAssassin considers it to be spam. The default is 5.00. Set the
value of this keyword to a higher number to cause SpamAssassin to mark fewer
pieces of email as spam.

required_score 5.00

Sometimes mail from addresses that should be marked as spam is not, or mail from
addresses that should not be marked as spam is. Use the whitelist_from keyword to
specify addresses that should never be marked as spam and blacklist_from to spec-
ify addresses that should always be marked as spam:

whitelist_from sams@example.com
blacklist_from *@spammer.net

You can specify multiple addresses, separated by SPACEs, on the whitelist_from and
blacklist_from lines. Each address can include wildcards. To whitelist everyone
sending email from the example.com domain, use whitelist_from *@example.com.
You can use multiple whitelist_from and blacklist_from lines.

772 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

Running SpamAssassin on a Mail Server

This section explains how to set up SpamAssassin on a mail server so that it will
process all email being delivered to local systems before it is sent to users. It shows
how to use procmail as the MDA and have procmail send email through spamc.

First make sure the procmail package is installed on the server system. Next, if the
/etc/procmailrc configuration file does not exist, create it so that this file is owned
by root and has 644 permissions and the following contents. If it does exist, append
the last two lines from the following file to it:

$ cat /etc/procmailrc
DROPPRIVS=yes
:0 fw
| /usr/bin/spamc

The first line of this file ensures that procmail runs with the least possible privileges.
The next two lines implement a rule that pipes each user’s incoming email through
spamc. The :0 tells procmail that a rule follows. The f flag indicates a filter; the w
flag causes procmail to wait for the filter to complete and check the exit code. The
last line specifies that the /usr/bin/spamc utility will be used as the filter.

With this file in place, all email that the server system receives for local delivery
passes through SpamAssassin, which rates it according to the options in the global
configuration file. Users with accounts on the server system can override the global
SpamAssassin configuration settings in their ~/.spamassassin/user_prefs files.

When you run SpamAssassin on a server, you typically want to rate the email con-
servatively so that fewer pieces of good email are marked as spam. Setting
required_hits in the range of 6–10 is generally appropriate. Also, you do not want
to remove any email automatically because you could prevent a user from getting a
piece of nonspam email. When the server marks email as possibly being spam, users
can manually or automatically filter the spam and decide what to do with it.

Additional Email Tools

This section covers Webmail and mailing lists. In addition, it discusses how to set up
IMAP and POP3 servers.

Webmail

Traditionally you read email using a dedicated email client such as mail or Evolu-
tion. Recently it has become more common to use a Web application to read email.
If you have an email account with a commercial provider such as Gmail, HotMail,
or Yahoo! Mail, you use a Web browser to read email. Email read in this manner is
called Webmail. Unlike email you read on a dedicated client, you can read Webmail
from anywhere you can open a browser on the Internet: You can check your email
from an Internet cafe or a friend’s computer, for example.

SquirrelMail SquirrelMail provides Webmail services. It is written in PHP and supports the IMAP
and SMTP protocols. For maximum compatibility across browsers, SquirrelMail
renders pages in HTML 4.0 without the use of JavaScript.

Additional Email Tools 773

SquirrelMail is modular, meaning that you can easily add functionality using plug-
ins. Plugins can allow you to share a calendar, for example, or give you the ability to
change passwords using the Webmail interface. See the plugins section of the
SquirrelMail Web site (www.squirrelmail.org) for more information.

To use SquirrelMail, you must run IMAP (page 776) because SquirrelMail uses
IMAP to receive and authenticate email. You must also run Apache (Chapter 27) so
a user can use a browser to connect to SquirrelMail. Because the squirrelmail pack-
age depends on several Apache packages, APT installs apache2 when it installs
squirrelmail. You need to install an IMAP package manually.

Installation Install the following packages:

• squirrelmail

• apache2 (page 917; installed as a dependency when you install squirrelmail)

• exim4 (page 756) or sendmail

• dovecot-imapd (page 776) or another IMAP server

Startup You do not need to start SquirrelMail, nor do you have to open any ports for it.
However, you need to configure, start, and open ports (if the server is running on a
system with a firewall) for exim4 (page 760), IMAP (page 776), and Apache
(page 919).

Configuration The SquirrelMail files reside in /usr/share/squirrelmail. Create the following link to
make SquirrelMail accessible from the Web:

$ sudo ln -s /usr/share/squirrelmail /var/www/mail

Give the following command to configure SquirrelMail:

$ sudo squirrelmail-configure
SquirrelMail Configuration : Read: config.php (1.4.0)

Main Menu --
1. Organization Preferences
2. Server Settings
3. Folder Defaults
4. General Options
5. Themes
6. Address Books
7. Message of the Day (MOTD)
8. Plugins
9. Database
10. Languages

D. Set pre-defined settings for specific IMAP servers

C Turn color on
S Save data
Q Quit

Command >>

www.squirrelmail.org

774 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

This menu has multiple levels. When you select a setting (and not a submenu),
squirrelmail-configure displays information that can help you decide how to answer
the question it poses. Set the server’s domain name (number 1 on the Server Settings
page) and the name of the IMAP server you are using (D on the main menu).
SquirrelMail provides several themes; if you do not like the way SquirrelMail looks,
choose another theme from Themes (number 5). When you are finished making
changes, exit from squirrelmail-configure. Run squirrelmail-configure whenever you
want to change the configuration of SquirrelMail.

SquirrelMail provides a Web page that tests its configuration. Point a browser on the
server at localhost/mail/src/configtest.php. Replace localhost with the IP address or
FQDN of the server to view the page from another system. SquirrelMail checks its
configuration and displays the results on this page. Figure 21-2 shows that Squirrel-
Mail cannot connect to the IMAP server on the local system, probably because
IMAP has not been installed.

Logging in Point a Web browser at localhost/mail or localhost/mail/src/login.php to display
the SquirrelMail login page (Figure 21-3). Replace localhost with the IP address or
FQDN of the server to view the page from another system. Enter the username and
password of a user who has an account on the server system.

Figure 21-2 SquirrelMail running a configuration test

Figure 21-3 SquirrelMail login page

Additional Email Tools 775

Mailing Lists

A mailing list can be an asset if you regularly send email to the same large group of
people. It offers several advantages over listing numerous recipients in the To or Cc
field of an email or sending the same email individually to many people:

• Anonymity None of the recipients of the email can see the addresses of
the other recipients.

• Archiving Email sent to the list is stored in a central location where list mem-
bers or the public, as specified by the list administrator, can browse through it.

• Access control You can specify who can send email to the list.

• Consistency When you send mail to a group of people using To or Cc, it
is easy to forget people who want to be on the list and to erroneously
include people who want to be off the list.

• Efficiency A mailing list application spreads email transmissions over
time so it does not overload the mail server.

Mailman Mailman, the GNU list manager, is written mostly in Python and manages email
discussions and email newsletter lists. Because it is integrated with the Web, Mail-
man makes it easy for users to manage their accounts and for administrators to
manage lists. See the Mailman home page (www.list.org) and the files in the
/usr/share/doc/mailman directory for more information.

Prerequisites Install the mailman package and an MTA such as exim4 (page 757). To use the Web
interface you must install Apache (page 917).

Installing Mailman When you install the mailman package, the dpkg postinst script displays a pseudo-
graphical interface that asks you to specify the language you want Mailman to display
and tells you that you must create a site list. Give the following newlist command to
create a site list, substituting the name of your mailing site for painting_class:

$ sudo newlist painting_class
Enter the email of the person running the list: helen@example.com
Initial painting_class password:
To finish creating your mailing list, you must edit your /etc/aliases (or
equivalent) file by adding the following lines, and possibly running the
'newaliases' program:

painting_class mailing list
painting_class: "|/var/lib/mailman/mail/mailman post painting_class"
painting_class-admin: "|/var/lib/mailman/mail/mailman admin painting_class"
painting_class-bounces: "|/var/lib/mailman/mail/mailman bounces painting_class"
painting_class-confirm: "|/var/lib/mailman/mail/mailman confirm painting_class"
painting_class-join: "|/var/lib/mailman/mail/mailman join painting_class"
painting_class-leave: "|/var/lib/mailman/mail/mailman leave painting_class"
painting_class-owner: "|/var/lib/mailman/mail/mailman owner painting_class"
painting_class-request: "|/var/lib/mailman/mail/mailman request painting_class"
painting_class-subscribe: "|/var/lib/mailman/mail/mailman subscribe painting_class"
painting_class-unsubscribe: "|/var/lib/mailman/mail/mailman unsubscribe painting_class"

Hit enter to notify painting_class owner...

www.list.org

776 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

Before users on the list can receive email, you need to copy the lines generated by
newlist (the ones that start with the name of your mailing site) to the end of
/etc/aliases (page 763) and run newaliases (page 764).

mailman site list Before you can start Mailman, you must create a site list named mailman. Give the
command sudo newlist mailman, copy the lines to the aliases file, and run newaliases.

mailman init script After setting up the mailman site list and a site list of your choice, start the Mailman
qrunner daemon with the following command:

$ sudo /etc/init.d/mailman start
 * Starting Mailman master qrunner mailmanctl [OK]

After modifying any Mailman configuration files or adding a new site list, give the
same command, but replacing start with reload, to cause Mailman to reread its con-
figuration files.

mm_cfg.py The main Mailman configuration file is /etc/mailman/mm_cfg.py. When you install
Mailman, it automatically assigns values to DEFAULT_EMAIL_HOST (the default
domain for mailing lists) and DEFAULT_URL_HOST (the default Web server for
Mailman). Change the value of these variables as needed and restart Mailman.

$ cat /etc/mailman/mm_cfg.py
...
Default domain for email addresses of newly created MLs
DEFAULT_EMAIL_HOST = 'example.com'

Default host for web interface of newly created MLs
DEFAULT_URL_HOST = 'example.com'
...

Web interface Assuming the host for the Web interface is example.com, anyone can point a
browser at example.com/cgi-bin/mailman/listinfo to display a list of available mail-
ing lists. Click the name of a mailing list to display a page that allows you to view
the list’s archives, send a message, or subscribe to the list. At the bottom of the page
is a link to the administrative interface for the list.

Setting Up an IMAP or POP3 Server

Dovecot IMAP (Internet Message Access Protocol) and POP (Post Office Protocol) allow
users to retrieve and manipulate email remotely. This section explains how to set up
servers for these protocols. Dovecot (www.dovecot.org and wiki.dovecot.org) pro-
vides the imap-login and pop3-login daemons that implement these protocols.

Prerequisites Install the dovecot-pop3d (for a POP3 server) and/or dovecot-imapd (for an IMAP
server) packages. APT installs the dovecot-common package automatically when
you install one of these packages. When you install either package, the dpkg
postinst script for the dovecot-common package generates self-signed SSL certifi-
cates if they do not already exist.

Configuration Dovecot will not start until you specify in the /etc/dovecot/dovecot.conf configura-
tion file which servers you want to run. Near the beginning of this long file is a line

www.dovecot.org

Authenticated Relaying 777

that starts with protocols =. Put the names of the servers you want to run at the end
of this line. Possible servers, depending on which packages you have installed, are
imap (IMAP on port 143), imaps (IMAP over SSL on port 993), pop3 (POP3 on
port 110), and pop3s (POP3 over SSL on port 995). See /usr/share/doc/dovecot*
for more information.

dovecot init script After configuring Dovecot, start the Dovecot daemon(s) with the following
command:

$ sudo /etc/init.d/dovecot start
Starting mail server: dovecot.

After modifying a Dovecot configuration file, give the same command, but replac-
ing start with restart, to cause Dovecot to reread its configuration files.

Authenticated Relaying

If you travel with a portable computer such as a laptop, you may connect to the
Internet through a different connection at each location where you work. Perhaps
you travel for work, or maybe you just bring your laptop home at night.

This section does not apply if you always dial in to the network through your ISP. In
that case, you are always connected to your ISP’s network and it is as though you
never moved your computer.

On a laptop you do not use a local instance of exim4 to send email. Instead, you use
SMTP to connect to an ISP or to a company’s SMTP server (a smarthost), which
then relays your outgoing mail. To avoid relaying email for anyone, including mali-
cious users who would send spam, SMTP servers restrict who they relay email for,
based on IP address. By implementing authenticated relaying, you can cause the
SMTP server to authenticate, based on user identification. In addition, SMTP can
encrypt communication when you send mail from your email client and use an
SMTP server.

An authenticated relay provides several advantages over a plain connection:

• You can send email from any Internet connection.

• The secure connection makes it more difficult to intercept email as it
traverses the Internet.

• The outgoing mail server requires authentication, preventing it from being
used for spam.

You set up authenticated relaying by creating an SSL certificate or using an existing
one, enabling SSL in exim4, and telling your email client to connect to the SMTP
server using SSL. If you have an SSL certificate from a company such as VeriSign,
you can skip the next section, in which you create a self-signed certificate.

778 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

Creating a Self-Signed Certificate for exim4
Give the following command to create SSL certificates for exim4. The keys are
stored in exim.key and exim.crt in the /etc/exim4 directory. Apache uses a similar
procedure for creating a certificate (page 959).

$ sudo /usr/share/doc/exim4-base/examples/exim-gencert
[*] Creating a self signed SSL certificate for Exim!
 This may be sufficient to establish encrypted connections but for
 secure identification you need to buy a real certificate!

 Please enter the hostname of your MTA at the Common Name (CN) prompt!

Generating a 1024 bit RSA private key
...++++++
writing new private key to '/etc/exim4/exim.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Code (2 letters) [US]:
State or Province Name (full name) []:California
Locality Name (eg, city) []:San Francisco
Organization Name (eg, company; recommended) []:Sobell Associates Inc.
Organizational Unit Name (eg, section) []:
Server name (eg. ssl.domain.tld; required!!!) []:sobell.com
Email Address []:mgs@sobell.com
[*] Done generating self signed certificates for exim!
 Refer to the documentation and example configuration files
 over at /usr/share/doc/exim4-base/ for an idea on how to enable TLS
 support in your mail transfer agent.

You can enter any information you wish in the certificate.

Enabling SSL in exim4
Once you have a certificate, create a file named exim4.conf.localmacros in the
/etc/exim4 directory (you have to work with root privileges). With the following
contents, this file instructs exim4 to use SSL certificates:

$ cat /etc/exim4/exim4.conf.localmacros
MAIN_TLS_ENABLE = 1

Because exim4 will be relaying email, you need to add the name of the system you will be
sending email from to the dc_relay_nets variable (page 767). Restart exim4 (page 757).

Enabling SSL in the Mail Client

Enabling SSL in a mail client is usually quite simple. For example, Evolution pro-
vides the Edit Preferences Mail Accounts Sending Email Security Use Secure

Chapter Summary 779

Connection combo box that allows you to choose the type of encryption you want
to use: No encryption, SSL encryption, or TLS encryption. Clicking the Check for
Supported Types button (found just below this combo box) queries the server and
sets Evolution to use the type of security and authentication the server supports.

Alternatives to exim4

sendmail The most popular MTA today, sendmail (sendmail package) first appeared in
4.1BSD. The sendmail system is complex, but its complexity allows sendmail to be
flexible and to scale well. On the downside, because of its complexity, configuring
sendmail can be a daunting task. See www.sendmail.org for more information.

Postfix Postfix (postfix package) is an alternative MTA. Postfix is fast and easy to adminis-
ter, but is compatible enough with sendmail/exim4 to not upset sendmail/exim4
users. Postfix has a good reputation for ease of use and security and is a drop-in
replacement for sendmail. Point a browser at www.postfix.org/docs.html for Postfix
Documentation.

Qmail Qmail is a direct competitor of Postfix and has the same objectives. By default,
Qmail stores email using the maildir format as opposed to the mbox format that
other MTAs use (page 762). The Qmail Web site is www.qmail.org.

Chapter Summary

The exim4 daemon is an MTA (mail transfer agent). When you send a message,
exim4 works with other software to get the email to the proper recipients. You can
set up exim4 to send email to an SMTP server that then relays the email to its desti-
nation or you can have exim4 send email directly to the SMTP servers for the
domains receiving the email. By default, exim4 stores incoming messages in the mail
spool directory, /var/mail.

The /etc/exim4/update-exim4.conf.conf file controls many aspects of how exim4
works. After you edit this file, you must use the exim4 init script to restart exim4 so
it rereads its configuration files. The system administrator can use the /etc/aliases
file and ordinary users can use ~/.forward files to reroute email to one or more local
or remote addresses, to files, or as input to programs.

You can use a program such as SpamAssassin to grade and mark email as to the
likelihood of it being spam. You can then decide what to do with the marked email:
You can look at each piece of potential spam and decide where to put it, or you can
have your MUA automatically put potential spam in a special mailbox for spam.

Other programs that can help with email include SquirrelMail, which provides Web-
mail services, and Mailman, which provides mailing list support. IMAP (Internet
Message Access Protocol) and POP (Post Office Protocol) allow users to retrieve and
manipulate email remotely. The Dovecot system provides IMAP and POP servers.

www.sendmail.org
www.postfix.org/docs.html
www.qmail.org

780 Chapter 21 exim4: Setting Up Mail Servers, Clients, and More

Exercises

1. By default, email addressed to system goes to root. How would you also
save a copy in /var/logs/systemmail?

2. How would Max store a copy of his email in ~/mbox and send a copy to
max@example.com?

3. If your firewall allowed only the machine with the IP address 192.168.1.1
to send email outside the network, how would you instruct the local copy
of exim4 to use this server as a relay?

4. Describe how setting the dc_eximconfig_configtype variable in
/etc/exim4/update-exim4.conf.conf to smarthost affects exim4 behavior.
What happens when you set this variable to internet?

5. SpamAssassin is installed on your mail server, with the threshold set to an
unusually low value of 3, resulting in a lot of false positives. What rule
could you give to your mail client to allow it to identify spam with a score
of 5 or higher?

6. Describe the software and protocols used when Max sends an email to
Sam on a remote Linux system.

Advanced Exercises

7. Explain the differences between configuring exim4 to use a split configura-
tion and configuring it to use an unsplit configuration. Which files would
you modify to set up each type of configuration? Name two files that are
read by both configurations.

8. Assume a script stores certain information in a variable named RESULT.
What line could you put in the script that would send the contents of
RESULT to the email address specified by the first argument on the com-
mand line?

9. Give a simple way of reading your email that does not involve the use of
an MUA.

10. Describe the relationship between spamassassin, spamd, and spamc. How
does each work? Why not use the spamassassin utility by itself?

781781

22Chapter22NIS (Network Information Service) simplifies the maintenance of
common administrative files by keeping them in a central data-
base and having clients contact the database server to retrieve
information from the database. Developed by Sun Microsystems,
NIS is an example of the client/server paradigm.

Just as DNS addresses the problem of keeping multiple copies of
/etc/hosts files up-to-date, so NIS deals with the issue of keeping
system-independent configuration files (such as /etc/passwd)
current. Most networks today are heterogeneous (page 1039);
even though they run different varieties of UNIX or Linux, they
have certain common attributes, such as a passwd file.

In This Chapter

How NIS Works 782

Setting Up an NIS Client 784

yppasswd: Changes NIS
Passwords 788

Setting Up an NIS Server 790

yppasswdd: The NIS Password
Update Daemon. 797

22

NIS: Network

Information Service

782 Chapter 22 NIS: Network Information Service

Introduction to NIS

A primary goal of a LAN administrator is to make the network transparent to
users. One aspect of this transparency is presenting users with similar environments,
including usernames and passwords, when they log in on different machines. From
the administrator’s perspective, the information that supports a user’s environment
should not be replicated but rather should be kept in a central location and distrib-
uted as required. NIS simplifies this task.

As with DNS, users need not be aware that NIS is managing system configuration files.
Setting up and maintaining NIS databases are tasks for the system administrator; individ-
ual users and users on single-user Linux systems rarely need to work directly with NIS.

Yellow Pages NIS used to be called the Yellow Pages, and some people still refer to it by this
name. Sun renamed the service because another corporation holds the trademark to
the Yellow Pages name. The names of NIS utilities and files, however, are reminis-
cent of the old name: ypcat displays and ypmatch searches an NIS file, and the server
daemon is named ypserv.

How NIS Works

No encryption NIS does not encrypt data it transfers over the network—it transfers data as plain text.

NIS domain NIS makes a common set of information available to systems on a network. The
network, referred to as an NIS domain, is characterized by each system having the
same NIS domain name (different than a DNS domain name [page 1034]). Techni-
cally an NIS domain is a set of NIS maps (database files).

Master and slave
servers

Each NIS domain must have exactly one master server; larger networks may have
slave servers. Each slave server holds a copy of the NIS database from the master.
The need for slave servers is based on the size of the NIS domain and the reliability
of the systems and network. A system can belong to only one NIS domain at a time.

nsswitch.conf Whether a system uses NIS, DNS, local files, or a combination of these as the source
of certain information, and in what order, is determined by the /etc/nsswitch.conf
file (page 542). When it needs information from the NIS database, a client requests
the information from the NIS server. For example, when a user attempts to log in,
the client system may authenticate the user with username and password informa-
tion from the NIS server.

You can configure nsswitch.conf to cause /etc/passwd to override NIS password
information for the local system. When you do not export the root account to NIS
(and you should not), this setup allows you to have a unique root password (or no
root password, if the root account is locked) for each system.

Source files Under Ubuntu Linux, NIS derives the information it offers—such as usernames,
passwords, and local system names and IP addresses—from local ASCII configura-
tion files such as /etc/passwd and /etc/hosts. These files are called source files or
master files. (Some administrators avoid confusion by using different files to hold

How NIS Works 783

local configuration information and NIS source information.) An NIS server can
include information from as many of the following source files as is appropriate:

/etc/group Defines groups and their members
/etc/gshadow Provides shadow passwords for groups
/etc/hosts Maps local systems and IP addresses
/etc/passwd Lists user information
/etc/printcap Lists printer information
/etc/rpc Maps RPC program names and numbers
/etc/services Maps system service names and port numbers
/etc/shadow Provides shadow passwords for users

The information that NIS offers is based on files that change from time to time. NIS
is responsible for making the updated information available in a timely manner to
all systems in the NIS domain.

NIS maps Before NIS can store the information contained in a source file, it must be converted to a
dbm (page 1032) format file called a map. Each map is indexed on one field (column).
Records (rows) from a map can be retrieved by specifying a value from the indexed field.
Some files generate two maps, each indexed on a different field. For example, the
/etc/passwd file generates two maps: one indexed by username, the other indexed by
UID. These maps are named passwd.byname and passwd.byuid, respectively.

optional NIS maps correspond to C library functions. The getpwnam() and getpwuid() func-
tions obtain username and UID information from /etc/passwd on non-NIS systems.
On NIS systems, these functions place RPC calls to the NIS server in a process that
is transparent to the application calling the function.

Map names The names of the maps NIS uses correspond to the files in the /var/yp/nisdomainname
directory on the master server, where nisdomainname is the name of the NIS domain.
The examples in this chapter use the NIS domain named mgs:

$ ls /var/yp/mgs
group.bygid netgroup.byhost protocols.byname services.byservicename
group.byname netgroup.byuser protocols.bynumber shadow.byname
hosts.byaddr netid.byname rpc.byname ypservers
hosts.byname passwd.byname rpc.bynumber
netgroup passwd.byuid services.byname

Map nicknames To make it easier to refer to NIS maps, you can assign nicknames to them. The
/var/yp/nicknames file on both clients and servers holds a list of commonly used
nicknames:

$ cat /var/yp/nicknames
passwd passwd.byname
group group.byname
networks networks.byaddr
hosts hosts.byname
protocols protocols.bynumber
services services.byname
aliases mail.aliases
ethers ethers.byname

784 Chapter 22 NIS: Network Information Service

You can also use the command ypcat –x to display the list of nicknames. Each line
in nicknames contains a nickname followed by whitespace and the name of the map
corresponding to the nickname. You can add, remove, or modify nicknames by
changing the nicknames file.

Displaying maps The ypcat and ypmatch utilities display information from the NIS maps on the
server. Using the nickname passwd, the following command, which you can run on
any NIS client in the local domain, displays the information contained in the
passwd.byname map:

$ ypcat passwd
sam:x:1000:1000:Sam,,,,:/home/sam:/bin/bash
sls:x:1001:1001:Sam the Great,,,,:/home/sls:/bin/bash
...

By default, NIS stores passwords only for users with UIDs less than 1000 (see
MINUID on page 793). Thus ypcat does not display lines for root, bin, and other
system entries. You can display password information for a single user with
ypmatch:

$ ypmatch sam passwd
sam:x:1000:1000:Sam,,,,:/home/sam:/bin/bash

You can retrieve the same information by filtering the output of ypcat through grep,
but ypmatch is more efficient because it searches the map directly, using a single pro-
cess. The ypmatch utility works on the key for the map only. To match members of
the group or other fields not in a map, such as the GECOS (page 1038) field in
passwd, you need to use ypcat and grep:

$ ypcat passwd | grep -i great
sls:x:1001:1001:Sam the Great,,,,:/home/sls:/bin/bash

Terminology This chapter uses the following definitions:

NIS source files The ASCII files that NIS obtains information from
NIS maps The dbm-format files created from NIS source files
NIS database The collection of NIS maps

More Information

Local man pages domainname, makedbm, netgroup, revnetgroup, ypbind, ypcat, ypinit,
ypmatch, yppasswd, yppoll, yppush, ypset, ypserv, ypserv.conf, ypwhich, ypxfr,
ypxfrd

Web www.linux-nis.org
NIS-HOWTO

Setting Up an NIS Client

This section explains how to set up an NIS client on the local system.

www.linux-nis.org

Setting Up an NIS Client 785

Prerequisites

Install Install the following package:

• nis

When you install the nis package, the dpkg postinst script starts an NIS client. See
the “nis init script” section below if you want to start an NIS server or do not want
to start an NIS client. The dpkg postinst script asks you to specify the NIS domain
name of the local system if it does not find one in /etc/defaultdomain. If necessary,
the script creates this file and stores the NIS domain name in that file. If this file
does not exist, the NIS client (ypbind) will not start. If there is a server for the
domain you specify, the client quickly binds to that server.

No server If there is no NIS server for the NIS client to bind to when you install or start an
NIS client or boot the system, the client spends several minutes trying to find a
server, displaying the following message while doing so:

...
Setting up nis (3.17-2ubuntu2) ...
 * Setting NIS domainname to: mgs
 * Starting NIS services
 * binding to YP server...
 *
 *
...

Broadcast mode Finally the client (ypbind) gives up on finding a server and runs in the background
in broadcast mode:

$ ps -ef | grep yp
root 16832 1 0 19:33 ? 00:00:00 /usr/sbin/ypbind -broadcast
sam 17390 5839 0 19:38 pts/0 00:00:00 grep yp

Broadcast mode is less secure than other modes because it exposes the system to
rogue servers by broadcasting a request for a server to identify itself. If ypbind starts
in this mode, it is a good idea to restart it after you set up an NIS server (page 790)
and configure an NIS client as explained in the next section.

nis init script After you configure nis, call the nis init script to restart nis. However, as explained
earlier, starting nis takes a while if it cannot connect to a server. The /etc/default/nis
file specifies whether this script starts an NIS client, server, or both:

$ sudo /etc/init.d/nis restart

After changing the nis configuration on an active server, use reload in place of
restart to reload nis configuration files without disturbing clients connected to the
server.

Notes

If there is no NIS server for the local system’s NIS domain, you need to set one up
(page 790). If there is an NIS server, you need to know the name of the NIS domain

786 Chapter 22 NIS: Network Information Service

the system belongs to and (optionally) the name or IP address of one or more NIS
servers for the NIS domain.

An NIS client can run on the same system as an NIS server.

/etc/default/nis The /etc/default/nis file controls several aspects of NIS running on the local system,
including whether the nis init script starts a client, a server, or both. As installed,
this file causes the nis init script to start an NIS client (ypbind) and not to start an
NIS server (ypserv). Set NISSERVER to false if the local system is not an NIS server
or to master or slave as appropriate if it is a server. Set NISCLIENT to true if the
local system is an NIS client; otherwise set it to false.

$ head /etc/default/nis
...
Are we a NIS server and if so what kind (values: false, slave, master)?
NISSERVER=false

Are we a NIS client?
NISCLIENT=true

In the nis file you can also specify which ports the NIS server uses (refer to “Fire-
wall” on page 791) and control which values in /etc/passwd users can modify (refer
to “Allow GECOS and Login Shell Modification” on page 797).

Step-by-Step Setup

This section lists the steps involved in setting up and starting an NIS client.

/etc/defaultdomain: Specifies the NIS Domain Name

The /etc/defaultdomain file stores the name of the NIS domain the local system
belongs to. If you change this value, you need to reload the client and/or server dae-
mon to get NIS to recognize the change. The nis init script reads the defaultdomain
file and sets the name of the system’s NIS domain. If the defaultdomain file does not
exist when you install NIS, the dpkg postinst script prompts for it (refer to “Install”
on page 785). You can use the nisdomainname utility to set or view the NIS domain
name, but setting it in this manner does not maintain the name when the nis init
script is executed (for example, when the system is rebooted):

$ sudo nisdomainname
(none)
$ sudo nisdomainname mgs
$ sudo nisdomainname
mgs

A DNS domain name is different from an NIS domain name

tip The DNS domain name is used throughout the Internet to refer to a group of systems. DNS maps
these names to IP addresses to enable systems to communicate with one another.

The NIS domain name is used strictly to identify systems that share an NIS server and is normally
not seen or used by users and other programs. Although some administrators use one name as
both a DNS domain name and an NIS domain name, this practice can degrade security.

Setting Up an NIS Client 787

/etc/yp.conf: Specifies an NIS Server

Edit /etc/yp.conf to specify one or more NIS servers (masters and/or slaves). You
can use one of three formats to specify each server:

domain nisdomain server server_name

domain nisdomain broadcast (do not use)

ypserver server_name

where nisdomain is the name of the NIS domain that the local (client) system belongs
to and server_name is the hostname of the NIS server that the local system queries. It
is best to specify server_name as an IP address or a hostname from /etc/hosts. If you
specify a hostname that requires a DNS lookup and DNS is down, NIS will not find
the server. The second format puts ypbind in broadcast mode and is less secure than
the first and third formats because it exposes the system to rogue servers by broad-
casting a request for a server to identify itself. Under Ubuntu Linux, if you do not
specify an NIS server, or if the server you specify is not available, an NIS client runs in
broadcast mode.

Following is a simple yp.conf file for a client in the mgs domain with a server at
192.168.0.10:

$ cat /etc/yp.conf
domain mgs server 192.168.0.10

You can use multiple lines to specify multiple servers for one or more domains.
Specifying multiple servers for a single domain allows the system to change to
another server when its current server is slow or down.

When you specify more than one NIS domain, you must set the system’s NIS
domain name before starting ypbind so the client queries the proper server. Specify-
ing the NIS domain name in /etc/defaultdomain before running the ypbind init
script takes care of this issue (page 786).

Testing the Setup

After starting ypbind, use nisdomainname to make sure the correct NIS domain name
is set. Refer to “/etc/defaultdomain: Specifies the NIS Domain Name” on page 786
if you need to set the NIS domain name. Next check whether the system is set up to
connect to the proper server; the name of this server is set in /etc/yp.conf (page 787):

$ ypwhich
plum

To avoid confusion, use nisdomainname, not domainname
tip The domainname and nisdomainname utilities do the same thing: They display or set the sys-

tem’s NIS domain name. Use nisdomainname to avoid confusion when you are also working
with DNS domain names.

You must set the local system’s NIS domain name
tip If the /etc/defaultdomain file is not present, the NIS server and client will not start.

788 Chapter 22 NIS: Network Information Service

Make sure the NIS server is up and running (replace plum with the name of the
server that ypwhich returned):

$ rpcinfo -u plum ypserv
program 100004 version 1 ready and waiting
program 100004 version 2 ready and waiting

After starting ypbind, check that it is registered with portmap:

$ rpcinfo -u localhost ypbind
program 100007 version 1 ready and waiting
program 100007 version 2 ready and waiting

If rpcinfo does not report that ypbind is ready and waiting, check that ypbind is running:

$ ps -ef | grep ypbind
root 23144 1 0 18:10 ? 00:00:00 /usr/sbin/ypbind
sam 23670 5553 0 18:31 pts/2 00:00:00 grep ypbind

If NIS still does not work properly, stop the NIS server and start ypbind with debug-
ging turned on:

$ sudo /etc/init.d/nis stop

$ sudo /usr/sbin/ypbind -debug
7607: parsing config file
7607: Trying entry: domain mgs server 192.168.0.10
7607: parsed domain 'mgs' server '192.168.0.10'
7607: add_server() domain: mgs, host: 192.168.0.10, slot: 0
7607: [Welcome to ypbind-mt, version 1.20.1]

7607: ping interval is 20 seconds

7609: NetworkManager is running.

7609: Are already online
7609: interface: org.freedesktop.DBus, object path:
/org/freedesktop/DBus, method: NameAcquired
7610: ping host '192.168.0.10', domain 'mgs'
7610: Answer for domain 'mgs' from server '192.168.0.10'
7610: Pinging all active servers.
7610: Pinging all active servers.
...

The –debug option keeps ypbind in the foreground and causes it to send error mes-
sages and debugging output to standard error. Use CONTROL-C to stop ypbind when it is
running in the foreground.

yppasswd: Changes NIS Passwords

The yppasswd utility—not to be confused with the yppasswdd daemon (two d’s; see
page 797) that runs on the NIS server—replaces the functionality of passwd on cli-
ents when you use NIS for passwords. Where passwd changes password informa-
tion in the /etc/shadow file on the local system, yppasswd changes password

Setting Up an NIS Client 789

information in the /etc/shadow file on the NIS master server and in the NIS
shadow.byname map. Optionally, yppasswd can also change user information in the
/etc/passwd file and the passwd.byname map.

The yppasswd utility changes the way you log in on all systems in the NIS domain
that use NIS to authenticate passwords. It cannot change root and system pass-
words; by default, NIS does not store passwords of users with UIDs less than 1000.
You have to use passwd to change these users’ passwords locally.

To use yppasswd, the yppasswdd daemon must be running on the NIS master server.

passwd Versus yppasswd
When a user who is authenticated using NIS passwords runs passwd to change her
password, all appears to work properly, yet the user’s password is not changed: The
user needs to use yppasswd. The root and system accounts, in contrast, must use
passwd to change their passwords. A common solution to this problem is first to
rename passwd—for example, to rootpasswd—and then to change its permissions so
only root can execute it.1 Second, create a link to yppasswd named passwd:

$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 29104 Dec 19 12:35 /usr/bin/passwd
$ sudo -i
mv /usr/bin/passwd /usr/bin/rootpasswd
chmod 700 /usr/bin/rootpasswd
ln -s /usr/bin/yppasswd /usr/bin/passwd
exit
logout
$ ls -l /usr/bin/{yppasswd,passwd,rootpasswd}
lrwxrwxrwx 1 root root 17 May 8 18:42 /usr/bin/passwd -> /usr/bin/yppasswd
-rwx------ 1 root root 29104 Dec 19 12:35 /usr/bin/rootpasswd
-rwxr-xr-x 1 root root 20688 Mar 7 12:45 /usr/bin/yppasswd

The preceding example uses sudo –i to open a shell with root permissions so the
administrator does not have to type sudo several times in a row. The administrator
returns to using a normal shell as soon as possible.

With this setup, a nonroot user changing his password using passwd will run yppasswd,
which is appropriate. If root or a system account user runs passwd (really yppasswd),
yppasswd displays an error that reminds the administrator to run rootpasswd.

Modifying User Information

As long as the yppasswdd daemon is running on the NIS master server, a user can
use the yppasswd utility from an NIS client to change her NIS password while a user

1. The passwd utility has setuid permission with read and execute permissions for all users and read, write,
and execute permissions for root. If, after changing its name and permissions, you want to restore its original
name and permissions, first change its name and then give the command chmod 4755 /usr/bin/passwd.
(You must work with root privileges to make these changes.)

790 Chapter 22 NIS: Network Information Service

running with root privileges can change any user’s password (except that of root or
a system account). A user can also use yppasswd to change his login shell and
GECOS (page 1038) information if the yppasswdd daemon is set up to permit these
changes. Refer to “yppasswdd: The NIS Password Update Daemon” on page 797
for information on how to configure yppasswdd to permit users to change these val-
ues. Use the –p option with yppasswd to change the password, –f to change GECOS
information, and –l to change the login shell:

$ yppasswd -l
Changing NIS account information for sam on plum.
Please enter password:

To accept the default, simply press return. To use the
system's default shell, type the word "none".
Login shell [/bin/bash]: /bin/sh

The login shell has been changed on plum.

$ ypmatch sam passwd
sam:x:1000:1000:Sam,,,,:/home/sam:/bin/sh

If yppasswd does not work and the server system is running a firewall, refer to “Fire-
wall” on page 791.

Adding and Removing Users

There are several ways to add and remove users from the NIS passwd map. The
simplest approach is to keep the /etc/passwd file on the NIS master server synchro-
nized with the passwd map. You can keep these files synchronized by first making
changes to the passwd file using standard tools such as adduser and deluser, or their
graphical counterparts, and then running ypinit (page 795) to update the map.

Setting Up an NIS Server

This section explains how to set up an NIS server.

Prerequisites

Installation Decide on an NIS domain name (page 786) and install the following package:

• nis

nis init script When you install the nis package, the dpkg postinst script starts an NIS client. See
“Install” on page 785 for information on how to start a server, a client, or both.
The /etc/default/nis configuration file controls whether an NIS server starts as a
master or a slave (page 786). You may also want to specify the ports for the NIS
server and yppasswdd to run on (see “Firewall,” below). After you configure the
server you can start, restart, or reload it with the nis init script:

$ sudo /etc/init.d/nis restart

Setting Up an NIS Server 791

Notes

An NIS client can run on the same system as an NIS server.

There must be only one master server for each domain.

You can run multiple NIS domain servers (for different domains) on a single system.

An NIS server serves the NIS domains listed in /var/yp. For a more secure system,
remove the maps directories from /var/yp when disabling an NIS server.

Firewall The NIS server (ypserv) and the NIS password daemon (yppasswdd) use portmap
(page 530) to choose which ports they accept queries on. The portmap server
hands out a random unused port below 1024 when a service, such as ypserv,
requests a port. Having ypserv and yppasswdd use random port numbers makes it
difficult to set up a firewall on an NIS server. You can specify ports by editing the
ypserv and yppasswdd option lines in /etc/default/nis (choose any unused ports less
than 1024):

YPSERVARGS='--port 114'
...
YPPASSWDDARGS='--port 112'

If the NIS server system is running a firewall, open the ports you specify. Using fire-
starter (page 886), open these ports by setting two policies: one that allows service
on each of these ports. If you follow the preceding example, allow service on ports
114 and 112.

Step-by-Step Setup

This section lists the steps involved in setting up and starting an NIS server.

/etc/default/nis: Allows the NIS Server to Start

Edit the /etc/default/nis file as described on page 786 so that the nis init script starts
the NIS server. You can also specify ports for the NIS server and yppaswswdd to lis-
ten on in this file; refer to “Firewall” on page 791.

Specify the System’s NIS Domain Name

Specify the system’s NIS domain name as explained on page 786. This step is taken
care of when you install the nis package.

/etc/ypserv.conf: Configures the NIS Server

The /etc/ypserv.conf file, which holds NIS server configuration information, specifies
options and access rules. Option rules specify server options and have the following
format:

option: value

792 Chapter 22 NIS: Network Information Service

Options

Following is a list of options and their default values:

files Specifies the maximum number of map files that ypserv caches. Set to 0 to turn off
caching. The default is 30.

trusted_master On a slave server, the name/IP address of the master server from which the slave
accepts new maps. The default is no master server, meaning no new maps are
accepted.

xfer_check_port YES (default) requires the master server to run on a privileged port (page 1054).
NO allows it to run on any port.

Access Rules

Access rules, which specify which hosts and domains can access which maps, have
the following format:

host:domain:map:security

where host and domain specify the IP address and NIS domain this rule applies to;
map is the name of the map this rule applies to; and security is either none (always
allow access), port (allow access from a privileged port), or deny (never allow access).

The following lines appear in the ypserv.conf file supplied with Ubuntu Linux:

$ cat /etc/ypserv.conf
...
This is the default - restrict access to the shadow password file,
allow access to all others.
* : * : shadow.byname : port
* : * : passwd.adjunct.byname : port
* : * : * : none

These lines restrict the shadow.byname and passwd.adjunct.byname (the passwd
map with shadow [asterisk] entries) maps to access from ports numbered less than
1024. However, anyone using a DOS or early Windows system on the network can
read the maps because they can access ports numbered less than 1024. The last line
allows access to the other maps from any port on any host.

The following example describes a LAN with some addresses you want to grant
NIS access from and some that you do not; perhaps you have a wireless segment or
some public network connections you do not want to expose to NIS. You can list
the systems or an IP subnet that you want to grant access to in ypserv.conf. Anyone
logging in on another IP address will then be denied NIS services. The following line
from ypserv.conf grants access to anyone logging in from an IP address in the range
of 192.168.0.1 to 192.168.0.255 (specified as 192.168.0.1 with a subnet mask
[page 529] of /24):

$ cat /etc/ypserv.conf
...
 192.168.0.1/24 : * : * : none

Setting Up an NIS Server 793

/var/yp/securenets: Enhances Security

To enhance system security, you can create the /var/yp/securenets file, which pre-
vents unauthorized systems from sending RPC requests to the NIS server and
retrieving NIS maps. Notably securenets prevents unauthorized users from retriev-
ing the shadow map, which contains encrypted passwords. When securenets does
not exist or is empty, an NIS server accepts requests from any system.

Each line of securenets lists a netmask and IP address. NIS accepts requests from
systems whose IP addresses are specified in securenets; it ignores and logs requests
from other addresses. You must include the (local) server system as localhost
(127.0.0.1) in securenets. A simple securenets file follows:

$ cat /var/yp/securenets
you must accept requests from localhost
255.255.255.255 127.0.0.1
#
accept requests from IP addresses 192.168.0.1 - 192.168.0.62
255.255.255.192 192.168.0.0
#
accept requests from IP addresses starting with 192.168.14
255.255.255.0 192.168.14.0

/var/yp/Makefile: Specifies Maps

The make utility, which is controlled by /var/yp/Makefile, uses makedbm to create the
NIS maps that hold the information distributed by NIS. When you run ypinit (page 795)
on the master server, ypinit calls make: You do not need to run make manually.

Edit /var/yp/Makefile to set options and specify which maps to create. The follow-
ing sections discuss /var/yp/Makefile in more detail.

Variables

Following is a list of variables you can set in /var/yp/Makefile. The values following
Ubuntu are the values set in the file distributed by Ubuntu.

B Do not change.

Ubuntu: not set

NOPUSH Specifies that ypserv is not to copy (push) maps to slave servers. Set to TRUE if you
do not have any slave NIS servers; set to FALSE to cause NIS to copy maps to slave
servers.

Ubuntu: TRUE

YPPUSHARGS Specifies arguments for yppush. See the yppush man page for more information.

Ubuntu: not set

MINUID,
MINGID Specify the lowest UID and GID numbers, respectively, to include in NIS maps. In the

/etc/passwd and /etc/group files, lower ID numbers belong to root and system
accounts and groups. To enhance security, NIS does not distribute password and group

794 Chapter 22 NIS: Network Information Service

information about these users and groups. Set MINUID to the lowest UID number
you want to include in the NIS maps and set MINGID to the lowest GID number you
want to include.

Ubuntu: 1000/1000

NFSNOBODYUID,
NFSNOBODYGID

Specify the UID and GID, respectively, of the user named nfsnobody. NIS does not
export values for this user. Set to 0 to export maps for nfsnobody.

Ubuntu: 65534/65534

MERGE_PASSWD,
MERGE_GROUP

When set to TRUE, merge the /etc/shadow and /etc/passwd files and the
/etc/gshadow and /etc/group files in the passwd and group maps, respectively,
enabling shadow user passwords and group passwords.

Ubuntu: FALSE/FALSE

File Locations

The next sections of /var/yp/Makefile specify standard file locations; you do not
normally need to change these entries. This part of the makefile is broken into the
following groups:

Commands Locates awk (mawk) and make and sets a value for umask (page 526)
Source directories Locates directories that contain NIS source files
NIS source files Locates NIS source files used to build the NIS database
Servers Locates the file that lists NIS servers

The ALL Target

The ALL target in /var/yp/Makefile specifies the maps that make is to build for NIS:

ALL = passwd group hosts rpc services netid protocols netgrp
#ALL += publickey mail ethers bootparams printcap
#ALL += amd.home auto.master auto.home auto.local
#ALL += timezone locale networks netmasks

The first line of the ALL target lists the maps that make builds by default. This line
starts with the word ALL, followed by an equal sign and a TAB. The last three lines
are commented out. Uncomment lines and delete or move map names until the list
matches your needs.

As your needs change, you can edit the ALL target in Makefile and run make in the
/var/yp directory to modify the list of maps distributed by NIS.

Start the Servers

Restart the master server (page 785) and then the slave servers after completing the
preceding steps. On a master server, the nis init script starts the ypserv, yppasswdd,

Setting Up an NIS Server 795

and ypxfrd daemons. If you are running an NIS client on the local system, it also
starts ypbind. On a slave server, the nis init script starts only the ypserv daemon
and, optionally, the ypbind daemon.

When you start the master server before running ypinit (discussed in the next sec-
tion), as you must do to avoid getting errors, it takes a long time to start as
explained in “No server” on page 785. After running ypinit, you must restart the
server (page 785).

ypxfrd: the map
server

The ypxfrd daemon speeds up the process of copying large NIS databases from the
master server to slaves. It allows slaves to copy the maps, thereby avoiding the need
for each slave to copy the raw data and then compile the maps. When an NIS slave
receives a message from the server saying there is a new map, it starts ypxfr, which
reads the map from the server.

The ypxfrd daemon runs on the master server only; it is not necessary to run it on
slave servers. For more information refer to “Prerequisites” on page 790.

ypinit: Builds or Imports the Maps

The ypinit utility builds or imports and then installs the NIS database. On the master
server, ypinit gathers information from the passwd, group, hosts, networks, services,
protocols, netgroup, and rpc files in /etc and builds the database. On a slave server,
ypinit copies the database from the master server.

You must run ypinit by giving its absolute pathname (/usr/lib/yp/ypinit). Use the –m
option to create the domain subdirectory under /var/yp and build the maps that go
in it on the master server; use the –s master option on slave servers to import maps
from the master server named master. In the following example, ypinit asks for the
name of each of the slave servers; it already has the name of the master server
because this command is run on the system running the master server (plum in the
example). Terminate the list with CONTROL-D on a line by itself. After you respond to
the query about the list of servers being correct, ypinit builds the ypservers map and
calls make with /var/yp/Makefile, which builds the maps specified in Makefile.

$ sudo /usr/lib/yp/ypinit -m

At this point, we have to construct a list of the hosts which will run NIS
servers. dog is in the list of NIS server hosts. Please continue to add
the names for the other hosts, one per line. When you are done with the
list, type a <control D>.
next host to add: plum
next host to add:CONTROL-D
The current list of NIS servers looks like this:

plum

Is this correct? [y/n: y] y
We need a few minutes to build the databases...
Building /var/yp/mgs/ypservers...
Running /var/yp/Makefile...

796 Chapter 22 NIS: Network Information Service

make[1]: Entering directory '/var/yp/mgs'
Updating passwd.byname...
Updating passwd.byuid...
Updating group.byname...
Updating group.bygid...
Updating hosts.byname...
Updating hosts.byaddr...
Updating rpc.byname...
Updating rpc.bynumber...
Updating services.byname...
Updating services.byservicename...
Updating netid.byname...
Updating protocols.bynumber...
Updating protocols.byname...
Updating netgroup...
Updating netgroup.byhost...
Updating netgroup.byuser...
Updating shadow.byname...
make[1]: Leaving directory '/var/yp/mgs'

plum has been set up as a NIS master server.

Now you can run ypinit -s plum on all slave server.

After running ypinit, you must restart the server (page 785).

Testing

From the server, check that ypserv is connected to portmap:

$ rpcinfo -p | grep ypserv
100004 2 udp 114 ypserv
100004 1 udp 114 ypserv
100004 2 tcp 114 ypserv
100004 1 tcp 114 ypserv

Again from the server system, make sure the NIS server is up and running:

$ rpcinfo -u localhost ypserv
program 100004 version 1 ready and waiting
program 100004 version 2 ready and waiting

If the server is not working properly, use the nis init script to stop the NIS server.
Then start ypserv in the foreground with debugging turned on:

$ sudo /etc/init.d/nis stop

$ sudo /usr/sbin/ypserv --debug
[ypserv (ypserv) 2.19]

If you are starting an NIS client, be sure to edit yp.conf
tip If you are starting ypbind (the NIS client) on the same system on which you are running ypserv

(the NIS server), you must edit /etc/yp.conf to specify a server as explained on page 787. If you
do not do so, the server will start properly but the client will take a long time to come up and will
start in broadcast mode. For more information refer to “No server” on page 785.

Setting Up an NIS Server 797

Find securenet: 255.0.0.0 127.0.0.0
Find securenet: 0.0.0.0 0.0.0.0
ypserv.conf: 0.0.0.0/0.0.0.0:*:shadow.byname:2
ypserv.conf: 0.0.0.0/0.0.0.0:*:passwd.adjunct.byname:2
ypserv.conf: 0.0.0.0/0.0.0.0:*:*:0
ypserv.conf: 192.168.0.1/192.168.0.1:*:*:0
CONTROL-C

The ––debug option keeps ypserv in the foreground and causes it to send error mes-
sages and debugging output to standard error. Press CONTROL-C to stop ypserv when it
is running in the foreground.

yppasswdd: The NIS Password Update Daemon

The NIS password update daemon, yppasswdd, runs only on the master server; it is
not necessary to run it on slave servers. (If the master server is down and you try to
change your password from a client, yppasswd displays an error message.) When a
user runs yppasswd (page 788) on a client, this utility exchanges information with
the yppasswdd daemon to update the user’s password (and optionally other) infor-
mation in the NIS shadow (and optionally passwd) map and in the /etc/shadow
(and optionally /etc/passwd) file on the NIS master server. Password change
requests are sent to syslogd (page 688).

If the server system is running a firewall, open a port for yppasswdd. Refer to “Fire-
wall” on page 791.

Start yppasswdd
The nis init script starts yppasswdd (the daemon is named rpc.yppasswdd) on an
NIS server. For more information refer to “Prerequisites” on page 790.

Allow GECOS and Login Shell Modification

The /etc/default/nis file controls whether yppasswdd allows users to change
GECOS (page 1038) information and/or the login shell when they run yppasswd. As
shipped, users are allowed to change their login shell but not their GECOS informa-
tion. You can change these settings with options on the command line when you
start yppasswdd or, more conveniently, by modifying the /etc/default/nis configura-
tion file. The –e chfn option to yppasswdd allows users to change their GECOS
information; –e chsh allows users to change their login shell. When you set the
options in /etc/default/nis, these values are set automatically each time yppasswdd
is run. Set YPCHANGEOK as explained in the comments.

$ cat /etc/default/nis
...
Do we allow the user to use ypchsh and/or ypchfn ? The YPCHANGEOK
fields are passed with -e to yppasswdd, see it's manpage.
Possible values: "chsh", "chfn", "chsh,chfn"
YPCHANGEOK=chsh
...

798 Chapter 22 NIS: Network Information Service

Chapter Summary

NIS (Network Information Service) simplifies the management of common adminis-
trative files by maintaining them in a central database and having clients contact the
database server to retrieve information from the database. The network that NIS
serves is called an NIS domain. Each NIS domain has one master server; larger net-
works may have slave servers.

NIS derives the information it offers from local configuration files, such as
/etc/passwd and /etc/hosts. These files are called source files or master files. Before
NIS can store the information contained in a source file, it must be converted to
dbm-format files, called maps. The ypcat and ypmatch utilities display information
from NIS maps.

The yppasswd utility replaces the functionality of passwd on clients when you use
NIS to authenticate passwords. The /etc/ypserv.conf file, which holds NIS server
configuration information, specifies options and access rules for the NIS server. To
enhance system security, you can create a /var/yp/securenets file, which prevents
unauthorized systems from retrieving NIS maps.

Exercises

1. What is the difference between the passwd and yppasswd utilities?

2. How would you prevent NIS from exporting the root user and other sys-
tem users to clients?

3. How would you make NIS user information override local user informa-
tion on client systems?

4. Why does the /etc/passwd file need two NIS maps?

Advanced Exercises

5. How can you use NIS to mirror the functionality of a private DNS server for
a small network? Why should NIS not be used this way on a large network?

6. How can you find out if the working directory is the home directory of an
NIS user?

7. What advantage does NIS provide when you use it with NFS?

8. Suggest a way to implement NIS maps so they can be indexed on more
than one field.

799799

23Chapter23The NFS (Network Filesystem) protocol, a UNIX de facto stan-
dard developed by Sun Microsystems, allows a server to share
selected local directory hierarchies with client systems on a heter-
ogeneous network. NFS runs on UNIX, DOS, Windows, VMS,
Linux, and more. Files on the remote computer (the fileserver)
appear as if they are present on the local system (the client). Most
of the time, the physical location of a file is irrelevant to an NFS
user; all standard Linux utilities work with NFS remote files the
same way as they operate with local files.

NFS reduces storage needs and system administration workload.
As an example, each system in a company traditionally holds its
own copy of an application program. To upgrade the program, the
administrator needs to upgrade it on each system. NFS allows you
to store a copy of a program on a single system and give other users
access to it over the network. This scenario minimizes storage
requirements by reducing the number of locations that need to
maintain the same data. In addition to boosting efficiency, NFS
gives users on the network access to the same data (not just applica-
tion programs), thereby improving data consistency and reliability.
By consolidating data, it reduces administrative overhead and pro-
vides a convenience to users. This chapter covers NFSv3.

In This Chapter

Setting Up an NFS Client 802

JumpStart I: Mounting a Remote
Directory Hierarchy 803

Improving Performance 806

Setting Up an NFS Server 808

JumpStart II: Configuring an NFS
Server Using shares-admin. . . . 809

Manually Exporting a Directory
Hierarchy 811

automount: Mounts Directory
Hierarchies on Demand. 818

23

NFS: Sharing

Filesystems

800 Chapter 23 NFS: Sharing Filesystems

Introduction

Figure 23-1 shows the flow of data in a typical NFS client/server setup. An NFS
directory hierarchy appears to users and application programs as just another direc-
tory hierarchy. By looking at it, you cannot tell that a given directory holds a
remotely mounted NFS directory hierarchy and not a local filesystem. The NFS
server translates commands from the client into operations on the server’s filesystem.

Diskless systems In many computer facilities, user files are stored on a central fileserver equipped
with many large-capacity disk drives and devices that quickly and easily make
backup copies of the data. A diskless system boots from a fileserver (netboots—
discussed next) or a CD/DVD and loads system software from a fileserver. The
Linux Terminal Server Project (LTSP.org) Web site says it all: “Linux makes a great
platform for deploying diskless workstations that boot from a network server. The
LTSP is all about running thin client computers in a Linux environment.” Because
a diskless workstation does not require a lot of computing power, you can give
older, retired computers a second life by using them as diskless systems.

Netboot/PXE You can netboot (page 1049) systems that are appropriately set up. Ubuntu Linux
includes the PXE (Preboot Execution Environment; pxe package) server package for
netbooting Intel systems. Older systems sometimes use tftp (Trivial File Transfer Pro-
tocol; tftp and tftpd packages) for netbooting. Non-Intel architectures have histori-
cally included netboot capabilities, which Ubuntu Linux also supports. In addition,
you can build the Linux kernel so it mounts root (/) using NFS. Given the many
ways to set up a system, the one you choose depends on what you want to do. See
the Remote-Boot mini-HOWTO for more information.

Dataless systems Another type of Linux system is a dataless system, in which the client has a disk but
stores no user data (only Linux and the applications are kept on the disk). Setting
up this type of system is a matter of choosing which directory hierarchies are
mounted remotely.

df: shows where
directory hierarchies

are mounted

The df utility displays a list of the directory hierarchies available on the system,
along with the amount of disk space, free and used, on each. The –h (human)
option makes the output more intelligible. Directory hierarchy names in the left col-
umn that are prepended with hostname: are available through NFS.

zach@plum:~$ cd;pwd
/dog.home/zach
zach@plum:~$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/hda1 28G 8.9G 18G 35% /
...
/dev/hda2 28G 220M 26G 1% /home
/dev/hda5 9.2G 150M 8.6G 2% /pl5
/dev/hda6 1.4G 35M 1.3G 3% /pl6
dog:/home/zach 19G 6.7G 11G 39% /dog.home/zach
grape:/gc1 985M 92M 844M 10% /grape.gc1
grape:/gc5 3.9G 3.0G 738M 81% /grape.gc5

Introduction 801

In the preceding example, Zach’s home directory, /home/zach, is on the remote sys-
tem dog. Using NFS, the /home/zach directory hierarchy on dog is mounted on plum;
to make it easy to recognize, it is mounted as /dog.home/zach. The /gc1 and /gc5
filesystems on grape are mounted on plum as /grape.gc1 and /grape.gc5, respectively.

You can use the –T option to df to add a Type column to the display. The following
command uses –t nfs to display NFS filesystems only:

zach@plum:~$ df -ht nfs
Filesystem Size Used Avail Use% Mounted on
dog:/home/zach 19G 6.7G 11G 39% /dog.home/zach
grape:/gc1 985M 92M 844M 10% /grape.gc1
grape:/gc5 3.9G 3.0G 738M 81% /grape.gc5

Errors Sometimes a client may lose access to files on an NFS server. For example, a network
problem or a remote system crash may make these files temporarily unavailable. If you
try to access a remote file in these circumstances, you will get an error message, such as

Figure 23-1 Flow of data in a typical NFS client/server setup

Other FS
NFS client

Network

types (devfs,
procfs, ...)

Disk FS
(ext3, ...)

User

NFS server
Disk FS
(ext3, ...)

Filesystem
interface

Other FS
types (devfs,

procfs, ...)

Client Server

Disk Disk

Filesystem
interface

802 Chapter 23 NFS: Sharing Filesystems

NFS server dog not responding. When the local system can contact the remote server
again, NFS will display another message, such as NFS server dog OK. A stable net-
work and server (or not using NFS) is the best defense against this problem.

Security NFS is based on the trusted-host paradigm (page 372), so it has all the security
shortcomings that plague other services based on this paradigm. In addition, NFS is
not encrypted. Because of these issues, you should implement NFS on a single LAN
segment only, where you can be (reasonably) sure systems on the LAN segment are
what they claim to be. Make sure a firewall blocks NFS traffic from outside the
LAN and never use NFS over the Internet. To improve security, make sure UIDs and
GIDs are the same on the server and clients (page 814).

NFSv4 NFSv4 addresses many of these security issues, including the problem of users hav-
ing different UIDs on different systems (NFSv4 uses usernames, not UID numbers).
The new version of NFS adds Kerberos authentication, provides for encrypted file
transfers, and increases WAN performance.

More Information

Web Good information on NFS, including the Linux NFS-HOWTO nfs.sourceforge.net
Running NFS behind a firewall wiki.debian.org/?SecuringNFS

Local exportfs, exports, nfs (provides fstab information), rpc.idmapd, rpc.mountd,
rpc.nfsd, and showmount man pages

HOWTO Linux NFS-HOWTO nfs.sourceforge.net
Netboot and PXE Remote-Boot mini-HOWTO

Book NFS Illustrated by Callaghan, Addison-Wesley (December 1999)

Setting Up an NFS Client

This section describes how to set up an NFS client, mount remote directory hierar-
chies, and improve NFS performance.

Prerequisites

Installation Install the following package:

• nfs-common

portmap The portmap utility (which is part of the portmap package and is installed as a
dependency when you install nfs-common; page 388) must be running to enable
reliable file locking.

nfs-common init
script

When you install the nfs-common package, the dpkg postinst script starts the dae-
mons that an NFS client requires (not all daemons are always required): rpc.statd,

Setting Up an NFS Client 803

rpc.lockd (does not run but starts the NFS lock manager if necessary), rpc.idmapd,
and rpc.gssd. You do not normally need to restart any of these daemons.

JumpStart I: Mounting a Remote Directory Hierarchy

To set up an NFS client, mount the remote directory hierarchy the same way you mount
a local directory hierarchy (page 572). The following sections explain this process.

mount: Mounts a Remote Directory Hierarchy

The following examples show two ways to mount a remote directory hierarchy,
assuming dog is on the same network as the local system and is sharing /home and
/export with the local system. The /export directory on dog holds two directory
hierarchies you want to mount: /export/progs and /export/oracle. The example
mounts dog’s /home directory on /dog.home on the local system, /export/progs on
/apps, and /export/oracle on /oracle.

First run mkdir on the local (client) system to create the directories that are the
mount points for the remote directory hierarchies:

$ sudo mkdir /dog.home /apps /oracle

You can mount any directory hierarchy from an exported directory hierarchy. In
this example, dog exports /export and the local system mounts /export/progs and
/export/oracle. The following commands manually mount the directory hierarchies
one time:

$ sudo mount dog:/home /dog.home
$ sudo mount -o ro,nosuid dog:/export/progs /apps
$ sudo mount -o ro dog:/export/oracle /oracle

If you receive the error mount: RPC: Program not registered, it may mean NFS is
not running on the server.

By default, directory hierarchies are mounted read-write, assuming the NFS server
is exporting them with read-write permissions. The first of the preceding commands
mounts the /home directory hierarchy from dog on the local directory /dog.home.
The second and third commands use the –o ro option to force a readonly mount.
The second command adds the nosuid option, which forces setuid (page 201) exe-
cutables in the mounted directory hierarchy to run with regular permissions on the
local system.

nosuid option If a user has the ability to run a setuid program, that user has the power of a user
with root privileges. This ability should be limited. Unless you know a user will
need to run a program with setuid permissions from a mounted directory hierarchy,
always mount a directory hierarchy with the nosuid option. For example, you
would need to mount a directory hierarchy with setuid privileges when the root par-
tition of a diskless workstation is mounted using NFS.

nodev option Mounting a device file creates another potential security hole. Although the best
policy is not to mount untrustworthy directory hierarchies, it is not always possible

804 Chapter 23 NFS: Sharing Filesystems

to implement this policy. Unless a user needs to use a device on a mounted directory
hierarchy, mount directory hierarchies with the nodev option, which prevents char-
acter and block special files (page 569) on the mounted directory hierarchy from
being used as devices.

fstab file If you mount directory hierarchies frequently, you can add entries for the directory
hierarchies to the /etc/fstab file (page 807). (Alternatively, you can use automount;
see page 818.) The following /etc/fstab entries automatically mount the same direc-
tory hierarchies as in the previous example at the same time that the system mounts
the local filesystems:

$ cat /etc/fstab
...
dog:/home /dog.home nfs rw 0 0
dog:/export/progs /apps nfs ro,nosuid 0 0
dog:/export/oracle /oracle nfs ro 0 0

A file mounted using NFS is always of type nfs on the local system, regardless of
what type it is on the remote system. Typically you do not run fsck on or back up an
NFS directory hierarchy. The entries in the third, fifth, and sixth columns of fstab
are usually nfs (filesystem type), 0 (do not back up this directory hierarchy with
dump [page 666]), and 0 (do not run fsck [page 577] on this directory hierarchy).
The options for mounting an NFS directory hierarchy differ from those for mount-
ing an ext3 or other type of filesystem. See the section on mount (below) for details.

umount: Unmounts a Remote Directory Hierarchy

Use umount to unmount a remote directory hierarchy the same way you unmount a
local filesystem (page 575).

mount: Mounts a Directory Hierarchy

The mount utility (page 572) associates a directory hierarchy with a mount point (a
directory). You can use mount to mount an NFS (remote) directory hierarchy. This
section describes some mount options. It lists default options first, followed by non-
default options (enclosed in parentheses). You can use these options on the command
line or set them in /etc/fstab (page 807). For a complete list of options, refer to the
mount and nfs man pages.

Attribute Caching

A file’s inode (page 566) stores file attributes that provide information about a file,
such as file modification time, size, links, and owner. File attributes do not include
the data stored in a file. Typically file attributes do not change very often for an
ordinary file; they change even less often for a directory file. Even the size attribute
does not change with every write instruction: When a client is writing to an NFS-
mounted file, several write instructions may be given before the data is transferred
to the server. In addition, many file accesses, such as that performed by ls, are read-
only operations and, therefore, do not change the file’s attributes or its contents.
Thus a client can cache attributes and avoid costly network reads.

Setting Up an NFS Client 805

The kernel uses the modification time of the file to determine when its cache is out-
of-date. If the time the attribute cache was saved is later than the modification time
of the file itself, the data in the cache is current. The server must periodically refresh
the attribute cache of an NFS-mounted file to determine whether another process
has modified the file. This period is specified as a minimum and maximum number
of seconds for ordinary and directory files. Following is a list of options that affect
attribute caching:

ac (noac) (attribute cache) Permits attribute caching (default). The noac option disables
attribute caching. Although noac slows the server, it avoids stale attributes when
two NFS clients actively write to a common directory hierarchy.

acdirmax=n (attribute cache directory file maximum) The n is the number of seconds, at a maxi-
mum, that NFS waits before refreshing directory file attributes (default is 60 seconds).

acdirmin=n (attribute cache directory file minimum) The n is the number of seconds, at a mini-
mum, that NFS waits before refreshing directory file attributes (default is 30 seconds).

acregmax=n (attribute cache regular file maximum) The n is the number of seconds, at a maxi-
mum, that NFS waits before refreshing regular file attributes (default is 60 seconds).

acregmin=n (attribute cache regular file minimum) The n is the number of seconds, at a mini-
mum, that NFS waits before refreshing regular file attributes (default is 3 seconds).

actimeo=n (attribute cache timeout) Sets acregmin, acregmax, acdirmin, and acdirmax to n sec-
onds (without this option, each individual option takes on its assigned or default value).

Error Handling

The following options control what NFS does when the server does not respond or
when an I/O error occurs. To allow for a mount point located on a mounted device,
a missing mount point is treated as a timeout.

fg (bg) (foreground) Retries failed NFS mount attempts in the foreground (default). The bg
(background) option retries failed NFS mount attempts in the background.

hard (soft) Displays server not responding on the console on a major timeout and keeps retry-
ing (default). The soft option reports an I/O error to the calling program on a major
timeout. In general, it is not advisable to use soft. As the mount man page says of
soft, “Usually it just causes lots of trouble.” For more information refer to
“Improving Performance” on page 806.

nointr (intr) (no interrupt) Does not allow a signal to interrupt a file operation on a hard-
mounted directory hierarchy when a major timeout (see retrans) occurs (default).
The intr option allows this type of interrupt.

retrans=n (retransmission value) After n minor timeouts, NFS generates a major timeout
(default is 3). A major timeout aborts the operation or displays server not respond-
ing on the console, depending on whether hard or soft is set.

retry=n (retry value) The number of minutes that NFS retries a mount operation before giv-
ing up (default is 10,000).

806 Chapter 23 NFS: Sharing Filesystems

timeo=n (timeout value) The n is the number of tenths of a second that NFS waits before
retransmitting following an RPC, or minor, timeout (default is 7). The value is
increased at each timeout to a maximum of 60 seconds or until a major timeout
occurs (see retrans). On a busy network, in case of a slow server, or when the
request passes through multiple routers, increasing this value may improve perfor-
mance. See “Timeouts” on page 806 for more information.

Miscellaneous Options

Following are additional useful options:

lock (nolock) Permits NFS locking (default). The nolock option disables NFS locking (does not start
the lockd daemon) and is useful with older servers that do not support NFS locking.

nodev (no device) Causes mounted device files not to function as devices (page 803).

port=n The port used to connect to the NFS server (defaults to 2049 if the NFS daemon is
not registered with portmap). When n is set to 0 (default), NFS queries portmap on
the server to determine the port.

rsize=n (read block size) The number of bytes read at one time from an NFS server. The
default block size is 4096. Refer to “Improving Performance.”

wsize=n (write block size) The number of bytes written at one time to an NFS server. The
default block size is 4096. Refer to “Improving Performance.”

tcp Uses TCP in place of the default UDP protocol for an NFS mount. This option may
improve performance on a congested network; however, some NFS servers support
UDP only.

udp Uses the default UDP protocol for an NFS mount.

Improving Performance

hard/soft Several parameters can affect the performance of NFS, especially over slow connec-
tions such as a line with a lot of traffic or a line controlled by a modem. If you have
a slow connection, make sure hard (page 805) is set (this setting is the default) so
that timeouts do not abort program execution.

Block size One of the easiest ways to improve NFS performance is to increase the block
size—that is, the number of bytes NFS transfers at a time. The default of 4096 is
low for a fast connection using modern hardware. Try increasing rsize and wsize to
8192 or higher. Experiment until you find the optimal block size. Unmount and
mount the directory hierarchy each time you change an option. See the Linux NFS-
HOWTO for more information on testing different block sizes.

Timeouts NFS waits the amount of time specified by the timeo (timeout, page 806) option for
a response to a transmission. If it does not receive a response in this amount of time,
NFS sends another transmission. The second transmission uses bandwidth that,
over a slow connection, may slow things down even more. You may be able to
increase performance by increasing timeo.

Setting Up an NFS Client 807

The default value of timeo is seven-tenths of a second (700 milliseconds). After a
timeout, NFS doubles the time it waits to 1400 milliseconds. On each timeout it
doubles the amount of time it waits to a maximum of 60 seconds. You can test the
speed of a connection with the size of packets you are sending (rsize and wsize) by
using ping with the –s (size) option:

$ ping -s 4096 dog
PING dog (192.168.0.12) 4096(4124) bytes of data.
4104 bytes from dog (192.168.0.12): icmp_seq=1 ttl=64 time=0.823 ms
4104 bytes from dog (192.168.0.12): icmp_seq=2 ttl=64 time=0.814 ms
4104 bytes from dog (192.168.0.12): icmp_seq=3 ttl=64 time=0.810 ms
...
4104 bytes from dog (192.168.0.12): icmp_seq=28 ttl=64 time=0.802 ms
4104 bytes from dog (192.168.0.12): icmp_seq=29 ttl=64 time=0.802 ms
4104 bytes from dog (192.168.0.12): icmp_seq=30 ttl=64 time=0.801 ms

--- dog.bogus.com ping statistics ---
30 packets transmitted, 30 received, 0% packet loss, time 28999ms
rtt min/avg/max/mdev = 0.797/0.803/0.823/0.020 ms

The preceding example uses Ubuntu Linux’s default packet size of 4096 bytes and
shows a fast average packet round-trip time of slightly less than 1 millisecond. Over
a modem line, you can expect times of several seconds. If the connection is dealing
with other traffic, the time will be even longer. Run the test during a period of heavy
traffic. Try increasing timeo to three or four times the average round-trip time (to
allow for unusually bad network conditions, such as when the connection is made)
and see whether performance improves. Remember that the timeo value is given in
tenths of a second (100 milliseconds = one-tenth of a second).

/etc/fstab: Mounts Directory Hierarchies Automatically

The /etc/fstab file (page 576) lists directory hierarchies that the system mounts
automatically as it comes up. You can use the options discussed in the preceding
sections on the command line or in the fstab file.

The following line from fstab mounts grape’s /gc1 filesystem on the /grape.gc1
mount point:

grape:/gc1 /grape.gc1 nfs rsize=8192,wsize=8192 0 0

A mount point should be an empty, local directory. (Files in a mount point are hid-
den when a directory hierarchy is mounted on it.) The type of a filesystem mounted
using NFS is always nfs, regardless of its type on its local system. You can increase
the rsize and wsize options to improve performance. Refer to “Improving Perfor-
mance” on page 806.

The next example from fstab mounts a filesystem from dog:

dog:/export /dog.export nfs timeo=50,hard 0 0

808 Chapter 23 NFS: Sharing Filesystems

Because the local system connects to dog over a slow connection, timeo is increased
to 5 seconds (50-tenths of a second). Refer to “Timeouts” on page 806. In addition,
hard is set to make sure NFS keeps trying to communicate with the server after a
major timeout. Refer to “hard/soft” on page 806.

The final example from fstab shows a remote-mounted home directory. Because dog is
a local server and is connected via a reliable, high-speed connection, timeo is decreased
and rsize and wsize are increased substantially:

dog:/home /dog.home nfs timeo=4,rsize=16384,wsize=16384 0 0

Setting Up an NFS Server

Prerequisites

Installation Install the following package:

• nfs-kernel-server

portmap The portmap utility (which is part of the portmap package and is installed as a
dependency when you install nfs-kernel-server; page 388) must be running to enable
reliable file locking.

nfs-kernel-server
init script

When you install the nfs-kernel-server package, the dpkg postinst script starts the
nfsd (the NFS kernel) daemon. After you configure NFS, call the nfs-kernel-server
init script to reexport directory hierarchies and restart the nfsd daemon:

$ sudo /etc/init.d/nfs-kernel-server restart
 * Stopping NFS kernel daemon [OK]
 * Unexporting directories for NFS kernel daemon... [OK]
 * Exporting directories for NFS kernel daemon... [OK]
 * Starting NFS kernel daemon [OK]

After changing the NFS configuration on an active server, use reload in place of restart
to reexport directory hierarchies without disturbing clients connected to the server.

Notes

Firewall An NFS server normally uses TCP port 111 for portmap and TCP port 2049 for
nfsd. In addition, unless you instruct it otherwise, the NFS server uses portmap to
assign (almost) random ports for the services it provides: rpc.statd, rpc.mountd,
and (optionally) rpc.quotad. It is difficult to set up a firewall to protect a server
from queries from random ports; it is much easier to specify which port each of
these services uses. To specify the ports that NFS services use, modify the lines in
the following files as shown:

$ grep STATD /etc/default/nfs-common
STATDOPTS="--port 32765 --outgoing-port 32766"

$ grep MOUNTD /etc/default/nfs-kernel-server
RPCMOUNTDOPTS="-p 32767"

Setting Up an NFS Server 809

$ grep QUOTAD /etc/default/quota
RPCQUOTADOPTS="-p 32769"

If you are not running rpc.quotad, you do not need to create or modify the quota file.
The ports used in the example are the ones suggested in the Linux NFS-HOWTO,
but you can use any unused ports you like. See wiki.debian.org/?SecuringNFS for
more information.

If the NFS server system is running a firewall, you need to open ports 111 and
2049. To do so, use firestarter (page 886) to set a policy that allows NFS service. In
addition, open the ports you specified in the files in /etc/default, as explained ear-
lier. Because firestarter has no defined policy for these ports, you need to specify the
ports manually when you add a rule in firestarter.

Security The rpc.mountd daemon uses TCP wrappers to control client access to the server.
As explained on page 532, you can set up /etc/hosts.allow and /etc/hosts.deny files
to specify which clients can contact rpc.mountd on the server and thereby use NFS.
The name of the daemon to use in these files is mountd.

JumpStart II: Configuring an NFS Server

Using shares-admin
The Shared Folders window (Figure 23-2) enables the local system to share direc-
tory hierarchies using Samba (Chapter 24) and/or NFS. To display this window,
select Main menu: System Administration Shared Folders or give the command
gksudo shares-admin from a terminal emulator or Run Application window (ALT-F2).

As part of the process of setting up an NFS server, the Shared Folders window mod-
ifies the /etc/exports file. If the system is running a firewall, see “Firewall” on
page 808. The shares-admin utility allows you to specify which directory hierarchies
you want to share and how they are shared using NFS. Each exported hierarchy is
called a share—terminology that is borrowed from Samba.

Figure 23-2 Shared Folders window

810 Chapter 23 NFS: Sharing Filesystems

To add a share, click Add, which displays the Share Folder window (Figure 23-3).
This window has two sections: Shared Folder and Allowed Hosts. In the first section,
choose the pathname of the directory hierarchy you want to share from the list box
labeled Path. If the directory you want is not listed, click Other; then double-click
File System in the Places column and double-click the directory you want in the
Name column. Continue selecting directories in the Name column until the buttons
at the top of the window display the pathname of the directory hierarchy you want
to share. Click Open to select the directory hierarchy. Then select Unix networks
(NFS) from the list box labeled Share through.

In the Allowed Hosts section of the Share Folder window, click Add to display the
Add Allowed Hosts window (Figure 23-4). Select Specify hostname, Specify IP
address, or Specify network from the list box labeled Allowed hosts and specify the
system in the text box labeled IP address. Put a tick in the check box labeled Read
only if you do not want users on the remote system to be able to write to the
mounted directory hierarchy. Click OK. The shares-admin utility stores this infor-
mation in /etc/exports. Click Add and repeat this process for each system you want
to be able to access the directory hierarchy specified in the list box labeled Path.
Click OK.

To modify a share, highlight the object representing the share in the Shared Folders
window and click Properties, or double-click the object. The shares-admin utility
displays the Settings for Folder share-name window. To modify an existing host,
you must delete it from the Allowed Hosts list and then add it again. Make the
changes you want and click OK.

To remove a share, highlight the object representing the share in the Shared Folders
window and click Delete.

Click Close when you are finished setting up shares. There is no need to restart any
daemons. After running shares-admin, give the following command from a terminal
emulator:

$ sudo exportfs -r

Figure 23-3 The Share Folder window

Setting Up an NFS Server 811

You can ignore error messages that refer to subtree_check. For more information on
this parameter, see page 813.

Give the command exportfs without any options to display a list of exported direc-
tory hierarchies and the systems each is exported to:

$ exportfs
/pl6 192.168.0.12

See page 817 for more information on exportfs.

Manually Exporting a Directory Hierarchy

Exporting a directory hierarchy makes the directory hierarchy available for mounting
by designated systems via a network. “Exported” does not mean “mounted”: When a
directory hierarchy is exported, it is placed in the list of directory hierarchies that can
be mounted by other systems. An exported directory hierarchy may be mounted (or
not) at any given time.

A mounted directory hierarchy whose mount point is within an exported partition
is not exported with the exported partition. You need to explicitly export each
directory hierarchy you want exported, even if it resides within an already exported
directory hierarchy. For example, assume two directory hierarchies, /opt/apps and
/opt/apps/oracle, reside on two partitions. You must export each directory hierar-
chy explicitly, even though oracle is a subdirectory of apps. Most other subdirecto-
ries and files are exported automatically.

Figure 23-4 The Add Allowed Hosts window

Exporting symbolic links and device files
tip When you export a directory hierarchy that contains a symbolic link, make sure the object of the

link is available on the client (remote) system. If the object of the link does not exist on a client
system, you must export and mount it along with the exported link. Otherwise, the link will not
point to the same file it points to on the server.

A device file refers to a Linux kernel interface. When you export a device file, you export that inter-
face. If the client system does not have the same type of device available, the exported device will
not work. To improve security on a client, you can use mount’s nodev option (page 803) to pre-
vent device files on mounted directory hierarchies from being used as devices.

812 Chapter 23 NFS: Sharing Filesystems

/etc/exports: Holds a List of Exported

Directory Hierarchies

The /etc/exports file is the access control list for exported directory hierarchies that
NFS clients can mount; it is the only file you need to edit to set up an NFS server.
The exportfs utility (page 817) reads this file when it updates the files in /var/lib/nfs
(page 815), which the kernel uses to keep its mount table current. The exports file
controls the following NFS characteristics:

• Which clients can access the server (see also “Security” on page 802)

• Which directory hierarchies on the server each client can access

• How each client can access each directory hierarchy

• How client usernames are mapped to server usernames

• Various NFS parameters

Each line in the exports file has the following format:

export-point client1(option-list) [client2(option-list) ...]

where export-point is the absolute pathname of the root directory of the directory
hierarchy to be exported. The client1-n are the names or IP addresses of one or
more clients, separated by SPACEs, that are allowed to mount the export-point. The
option-list, described in the next section, is a comma-separated list of options that
applies to the preceding client; it must not contain any SPACEs. There must not be any
SPACE between each client name and the open parenthesis that starts the option-list.

You can either use shares-admin (page 809) to make changes to exports or edit this
file manually. The following exports file gives grape read and write access to /home,
and jam and the system at 192.168.0.12 read and write access to /pl6:

$ cat /etc/exports
/home grape(rw,no_subtree_check)
/pl6 192.168.0.12(rw,no_subtree_check) jam(rw,no_subtree_check)

The specified directories are on the local server. In each case, access is implicitly
granted for the directory hierarchy rooted at the exported directory. You can specify
IP addresses or hostnames and you can specify more than one client system on a
line. By default, directory hierarchies are exported in readonly mode. The current
version of exportfs complains when you do not specify either subtree_check or
no_subtree_check (page 813).

General Options

The left column of this section lists default options, followed by nondefault options
enclosed in parentheses. Refer to the exports man page for more information.

auth_nlm (no_auth_nlm) or secure_locks (insecure_locks)
Causes the server to require authentication of lock requests (using the NLM [NFS
Lock Manager] protocol). Use no_auth_nlm for older clients when you find that
only files that anyone can read can be locked.

Setting Up an NFS Server 813

mountpoint[=path]
Allows a directory to be exported only if it has been mounted. This option prevents
a mount point that does not have a directory hierarchy mounted on it from being
exported and prevents the underlying mount point from being exported. Also mp.

nohide (hide) When a server exports two directory hierarchies, one of which is mounted on the
other, a client has to mount both directory hierarchies explicitly to access both.
When the second (child) directory hierarchy is not explicitly mounted, its mount
point appears as an empty directory and the directory hierarchy is hidden. The
nohide option causes the underlying second directory hierarchy to appear when it is
not explicitly mounted, but this option does not work in all cases.

ro (rw) (readonly) Permits only read requests on an NFS directory hierarchy. Use rw to per-
mit read and write requests.

secure (insecure) Requires NFS requests to originate on a privileged port (page 1054) so a program
running without root privileges cannot mount a directory hierarchy. This option
does not guarantee a secure connection.

no_subtree_check (subtree_check)
Checks subtrees for valid files. Assume you have an exported directory hierarchy
that has its root below the root of the filesystem that holds it (that is, an exported
subdirectory of a filesystem). When the NFS server receives a request for a file in
that directory hierarchy, it performs a subtree check to confirm the file is in the
exported directory hierarchy.

Subtree checking can cause problems with files that are renamed while opened and,
when no_root_squash is used, files that only a process running with root privileges
can access. The no_subtree_check option disables subtree checking and can improve
reliability in some cases.

For example, you may need to disable subtree checking for home directories. Home
directories are frequently subtrees (of /home), are written to often, and can have files
within them frequently renamed. You would probably not need to disable subtree
checking for directory hierarchies that contain files that are mostly read, such as /usr.

Because the default has changed (it is now no_subtree_check), exportfs displays a
warning when you do not specify either subtree_check or no_subtree_check.

sync (async) (synchronize) Specifies that the server should reply to requests only after disk
changes made by the request are written to disk. The async option specifies that the
server does not have to wait for information to be written to disk and can improve
performance, albeit at the cost of possible data corruption if the server crashes or
the connection is interrupted.

wdelay
(no_wdelay)

(write delay) Causes the server to delay committing write requests when it antici-
pates that another, related request will follow, thereby improving performance by
committing multiple write requests within a single operation. The no_wdelay
option does not delay committing write requests and can improve performance
when the server receives multiple, small, unrelated requests.

814 Chapter 23 NFS: Sharing Filesystems

User ID Mapping Options

Each user has a UID number and a primary GID number on the local system. The
local /etc/passwd and /etc/group files may map these numbers to names. When a
user makes a request of an NFS server, the server uses these numbers to identify the
user on the remote system, raising several issues:

• The user may not have the same ID numbers on both systems. As a conse-
quence, the user may have owner access to files of another user and not
have owner access to his own files (see “NIS and NFS” for a solution).

• You may not want a user with root privileges on the client system to have
owner access to root-owned files on the server.

• You may not want a remote user to have owner access to some important
system files that are not owned by root (such as those owned by bin).

Owner access to a file means that the remote user can execute or—worse—modify
the file. NFS gives you two ways to deal with these cases:

• You can use the root_squash option to map the ID number of the root
account on a client to UID 65534 on the server.

• You can use the all-squash option to map all NFS users on the client to
UID 65534 on the server.

Use the anonuid and anongid options to override these values.

NIS and NFS When you use NIS (page 781) for user authorization, users automatically have the
same UIDs on both systems. If you are using NFS on a large network, it is a good
idea to use a directory service such as LDAP (page 1044) or NIS for authorization.
Without such a service, you must synchronize the passwd files on all the systems
manually.

root_squash (no_root_squash)
Maps requests from root on a remote system so they appear to come from the UID
65534, an unprivileged user on the local system, or as specified by anonuid. This
option does not affect other sensitive UIDs such as bin. The no_root_squash option
turns off this mapping so that requests from root appear to come from root.

Critical files in NFS-mounted directories should be owned by root
security Despite the mapping done by the root-squash option, a user with root privileges on a client system

can use sudo or su to assume the identity of any user on the system and then access that user’s
files on the server. Thus, without resorting to all-squash, you can protect only files owned by root
on an NFS server. Make sure that root—and not bin or another user—owns and is the only user
who can modify or delete critical files within any NFS-mounted directory hierarchy.

Taking this precaution does not completely protect the system against an attacker with root priv-
ileges, but it can help thwart an attack from a less experienced malicious user.

Setting Up an NFS Server 815

no_all_squash
(all_squash)

Does not change the mapping of users making requests of the NFS server. The
all_squash option maps requests from all users—not just root—on remote systems
to appear to come from the UID 65534, an unprivileged user on the local system, or
as specified by anonuid. This option is useful for controlling access to exported
public FTP, news, and other directories.

anonuid=un and
anongid=gn

Set the UID or the GID of the anonymous account to un or gn, respectively. NFS
uses these accounts when it does not recognize an incoming UID or GID and when
it is instructed to do so by root_squash or all_squash.

Where the System Keeps NFS Mount Information

A server holds several lists of directory hierarchies it can export. The list that you as
a system administrator work with is /etc/exports. The following discussion assumes
that the local server, plum, is exporting these directory hierarchies:

$ cat /etc/exports
/home grape(rw,no_subtree_check)
/pl6 192.168.0.12(rw,no_subtree_check) jam(rw,no_subtree_check)

As explained in more detail on page 817, exportfs displays the list of exported direc-
tory hierarchies:

$ exportfs
/home grape
/pl6 jam
/pl6 192.168.0.12

The important files and pseudofiles that NFS works with are described next.

/var/lib/nfs/etab (export table) On the server, lists the directory hierarchies that are exported (can be
mounted, but are not necessarily mounted at the moment) and the options they are
exported with:

$ cat /var/lib/nfs/etab
/home grape(rw,sync,wdelay,hide,nocrossmnt,secure,root_squash,no_all_s
quash,no_subtree_check,secure_locks,acl,mapping=identity,anonuid=65534,
anongid=65534)
/pl6 jam(rw,sync,wdelay,hide,nocrossmnt,secure,root_squash,no_all_squa
sh,no_subtree_check,secure_locks,acl,mapping=identity,anonuid=65534,ano
ngid=65534)
/pl6 192.168.0.12(rw,sync,wdelay,hide,nocrossmnt,secure,root_squash,no
_all_squash,no_subtree_check,secure_locks,acl,mapping=identity,anonuid=
65534,anongid=65534)

The preceding output shows that grape can mount /home and that jam and
192.168.0.12 can mount /pl6. The etab file is initialized from /etc/exports when the
system is brought up, read by mountd when a client asks to mount a directory hierar-
chy, and modified by exportfs (page 817) as the list of exported directory hierarchies
changes.

816 Chapter 23 NFS: Sharing Filesystems

/var/lib/nfs/rmtab
(remote mount table) On the server, lists the directory hierarchies that are mounted
by client systems:

$ cat /var/lib/nfs/rmtab
192.168.0.12:/pl6:0x00000002

The preceding output shows /pl6 is mounted by 192.168.0.12. The rmtab file is
updated by mountd as it mounts and unmounts directory hierarchies. This file is
“mostly ornamental” (from the mountd man page) and may not be accurate.

/proc/mounts On the client, this pseudofile displays the kernel mount table, which lists filesystems
mounted by the local system. In the following example, grep displays lines that con-
tain the string nfs followed by a SPACE. The SPACE, which you must quote, eliminates
lines with the string nfs that do not pertain to mounted filesystems.

$ grep nfs\ /proc/mounts
plum:/pl6 /mnt nfs rw,vers=3,rsize=131072,wsize=131072,hard,intr,proto=
tcp,timeo=600,retrans=2,sec=sys,addr=plum 0 0

showmount: Displays NFS Status Information

Without any options, the showmount utility displays a list of systems that are allowed
to mount local directories. You typically use showmount to display a list of directory
hierarchies that a server is exporting. To display information for a remote system,
give the name of the remote system as an argument. The information showmount pro-
vides may not be complete, however, because it depends on mountd and trusts that
remote servers are reporting accurately.

In the following example, 192.168.0.12 is allowed to mount local directories, but
you do not know which ones:

$ showmount
Hosts on plum:
192.168.0.12

If showmount displays an error such as RPC: Program not registered, NFS is not run-
ning on the server. Start NFS on the server with the nfs-kernel-server init script
(page 808).

–a (all) Displays a list of client systems and indicates which directories each client sys-
tem can mount. This information is stored in /etc/exports. In the following example,
showmount lists the directories that 192.168.0.12 can mount from the local system:

$ /sbin/showmount -a
All mount points on plum:
192.168.0.12:/pl6

–e (exports) Displays a list of exported directories and the systems that each directory
is exported to.

$ showmount -e
Export list for plum:
/pl6 192.168.0.12

Setting Up an NFS Server 817

exportfs: Maintains the List of Exported

Directory Hierarchies

The exportfs utility maintains the /var/lib/nfs/etab file (page 815). When mountd is
called, it checks this file to see if it is allowed to mount the requested directory hier-
archy. Typically exportfs is called with simple options and modifies the etab file
based on changes in /etc/exports. When called with client and directory arguments,
it can add to or remove the directory hierarchies specified by those arguments from
the list kept in etab, without reference to the exports file. An exportfs command has
the following format:

/usr/sbin/exportfs [options] [client:dir ...]

where options is one or more options (as discussed in the next section), client is the
name of the system that dir is exported to, and dir is the absolute pathname of the
directory at the root of the directory hierarchy being exported. Without any argu-
ments, exportfs reports which directory hierarchies are exported to which systems:

$ exportfs
/home grape
/pl6 jam
/pl6 192.168.0.12

The system executes the following command when it comes up (it is in the nfs-kernel-
server init script). This command reexports the entries in /etc/exports and removes
invalid entries from /var/lib/nfs/etab so etab is synchronized with /etc/exports:

$ sudo exportfs -r

Options

–a (all) Exports directory hierarchies specified in /etc/exports. This option does not
unexport entries you have removed from exports (that is, it does not remove invalid
entries from /var/lib/nfs/etab); use –r to perform this task.

–f (flush) Removes everything from the kernel’s export table.

–i (ignore) Ignores /etc/exports; uses what is specified on the command line only.

–o (options) Specifies options. You can specify options following –o the same way you
do in the exports file. For example, exportfs –i –o ro dog:/home/sam exports
/home/sam on the local system to dog for readonly access.

–r (reexport) Reexports the entries in /etc/exports and removes invalid entries from
/var/lib/nfs/etab so /var/lib/nfs/etab is synchronized with /etc/exports.

–u (unexport) Makes an exported directory hierarchy no longer exported. If a direc-
tory hierarchy is mounted when you unexport it, users see the message Stale NFS
file handle when they try to access the directory hierarchy from a remote system.

–v (verbose) Provides more information. Displays export options when you use exportfs
to display export information.

818 Chapter 23 NFS: Sharing Filesystems

Testing the Server Setup

From the server, run the nfs-kernel-server init script with an argument of status. If
all is well, the system displays the following:

$ /etc/init.d/nfs-kernel-server status
nfsd running

Also check that mountd is running:

$ ps -e | grep mountd
29609 ? 00:00:00 rpc.mountd

Next, from the server, use rpcinfo to make sure NFS is registered with portmap:

$ rpcinfo -p localhost | grep nfs
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100003 4 udp 2049 nfs
 100003 2 tcp 2049 nfs
 100003 3 tcp 2049 nfs
 100003 4 tcp 2049 nfs

Repeat the preceding command from the client, replacing localhost with the name
of the server. The results should be the same.

Finally, try mounting directory hierarchies from remote systems and verify access.

automount: Mounts Directory Hierarchies

on Demand

In a distributed computing environment, when you log in on any system on the net-
work, all your files—including startup scripts—are available. All systems are also
commonly able to mount all directory hierarchies on all servers: Whichever system
you log in on, your home directory is waiting for you.

As an example, assume /home/zach is a remote directory hierarchy that is
mounted on demand. When you issue the command ls /home/zach, autofs goes to
work: It looks in the /etc/auto.home map, finds zach is a key that says to mount
plum:/export/home/zach, and mounts the remote directory hierarchy. Once the
directory hierarchy is mounted, ls displays the list of files in that directory. If you
give the command ls /home after this mounting sequence, ls shows that zach is
present within the /home directory. The df utility shows that zach is mounted
from plum.

Prerequisites

Installation Install the following package:

• autofs

automount: Mounts Directory Hierarchies on Demand 819

autofs init script When you install the autofs package, the dpkg postinst script starts the automount
daemon. After you configure automount, call the autofs init script to restart the
automount daemon:

$ sudo /etc/init.d/autofs restart

After changing the automount configuration on an active server, use reload in place
of restart to reload automount configuration files without disturbing automatically
mounted filesystems. With an argument of status, autofs displays information about
configured and active autofs mount points. See the example on page 821.

More Information

Local man pages autofs, automount, auto.master

Web tutorial www.linuxhq.com/lg/issue24/nielsen.html

HOWTO Automount mini-HOWTO

autofs: Automatically Mounted Directory Hierarchies

An autofs directory hierarchy is like any other directory hierarchy but remains
unmounted until it is needed, at which time the system mounts it automatically
(demand mounting). The system unmounts an autofs directory hierarchy when it is
no longer needed—by default, after 5 minutes of inactivity. Automatically mounted
directory hierarchies are an important part of managing a large collection of sys-
tems in a consistent way. The automount daemon is particularly useful when an
installation includes a large number of servers or a large number of directory hierar-
chies. It also helps to remove server–server dependencies (discussed next).

When you boot a system that uses traditional fstab-based mounts and an NFS server
is down, the system can take a long time to come up as it waits for the server to time
out. Similarly, when you have two servers, each mounting directory hierarchies from
the other, and both systems are down, both may hang as they are brought up while
each tries to mount a directory hierarchy from the other. This situation is called a
server–server dependency. The automount facility gets around these issues by mount-
ing a directory hierarchy from another system only when a process tries to access it.

When a process attempts to access one of the directories within an unmounted
autofs directory hierarchy, the kernel notifies the automount daemon, which
mounts the directory hierarchy. You must give a command, such as cd /home/zach,
that accesses the autofs mount point (in this case /home/zach) to create the demand
that causes automount to mount the autofs directory hierarchy; only then can the
system display or use the autofs directory hierarchy. Before you issue this cd com-
mand, zach does not appear in /home.

The main file that controls the behavior of automount is /etc/auto.master. A simple
example follows:

$ cat /etc/auto.master
/free1 /etc/auto.misc --timeout=60
/plum /etc/auto.plum

www.linuxhq.com/lg/issue24/nielsen.html

820 Chapter 23 NFS: Sharing Filesystems

The auto.master file has three columns. The first column names the parent of the
autofs mount point—the location where the autofs directory hierarchy is to be
mounted. (/free1 and /plum in the example are not mount points but will hold the
mount points when the directory hierarchies are mounted). The second column
names the files, called map files, that store supplemental configuration information.
The optional third column holds mount options for map entries. In the preceding
example, the first line sets the timeout (the length of time a directory stays mounted
when it is not in use) to 60 seconds; the default timeout value is 300 seconds. You
can change autofs default values in /etc/default/autofs.

Although the map files can have any names, one is traditionally named auto.misc.
Following are the two map files specified in auto.master:

$ cat /etc/auto.misc
music -fstype=ext3 :/dev/sdb7

$ cat /etc/auto.plum
pl6 -fstype=nfs plum:/pl6

The first column of a map file holds the relative autofs mount point (music and pl6
in the preceding files). This mount point is appended to the corresponding autofs
mount point from column 1 of the auto.master file to create the absolute autofs
mount point. In this example, music (from auto.misc) is appended to /free1 (from
auto.master) to make /free1/music; pl6 is appended to /plum to make /plum/pl6.
The second column holds options, and the third column shows the server and
directory hierarchy to be mounted. The first example shows a local drive
(/dev/sdb7). You can tell it is local because its filesystem type is specified as ext3
and no system name appears before the colon. The second example shows a file-
system on a remote system. It has a filesystem type of nfs and specifies the name of
the remote system, a colon, and the name the filesystem is mounted under on the
remote system.

Before the new setup can work, you must reload the automount daemon using the
autofs init script (page 819). This script creates the directories that hold the mount
points (/free1 and /plum in the example) when you start, restart, or reload autofs
and removes those directories when you stop it.

In the following example, the first ls command shows that the /free1 and /plum
directories do not exist. The next command, running with root privileges, runs the
autofs init script to reload autofs. Now the directories exist but do not hold any
files. When the user lists the contents of /plum/pl6, autofs mounts pl6 and ls dis-
plays its contents:

$ ls /free1 /plum
ls: /free1: No such file or directory
ls: /plum: No such file or directory

$ sudo /etc/init.d/autofs reload
Reloading automounter: checking for changes ...

Chapter Summary 821

Reloading automounter map for: /free1
Reloading automounter map for: /plum

$ ls /free1 /plum
/free1:
/plum:

$ ls /plum/pl6
lost+found memo

The following command displays information about configured and active autofs
mount points:

$ /etc/init.d/autofs status
Configured Mount Points:

/usr/sbin/automount --timeout=60 /free1 file /etc/auto.misc
/usr/sbin/automount --timeout=300 /plum file /etc/auto.plum

Active Mount Points:

/usr/sbin/automount --pid-file=/var/run/autofs/_free1.pid --timeout=60 /free1 file
/etc/auto.misc
/usr/sbin/automount --pid-file=/var/run/autofs/_plum.pid --timeout=300 /plum file
/etc/auto.plum

Chapter Summary

NFS allows a server to share selected local directory hierarchies with client systems
on a heterogeneous network, thereby reducing storage needs and administrative
overhead. NFS defines a client/server relationship in which a server provides direc-
tory hierarchies that clients can mount.

On the server, the /etc/exports file typically lists the directory hierarchies that
the system exports. Each line in exports specifies a directory hierarchy and the
client systems that are allowed to mount it, including options for each client
(readonly, read-write, and so on). An exportfs –r command causes NFS to reread
this file.

From a client, a mount command mounts an exported NFS directory hierarchy.
Alternatively, you can put an entry in /etc/fstab to have the system automatically
mount the directory hierarchy when it boots.

Automatically mounted directory hierarchies help manage large groups of systems
containing many servers and filesystems in a consistent way and can help remove
server–server dependencies. The automount daemon automatically mounts autofs
directory hierarchies when they are needed and unmounts them when they are no
longer needed.

822 Chapter 23 NFS: Sharing Filesystems

Exercises

1. What are three reasons to use NFS?

2. Which command would you give to mount on the local system the /home
directory hierarchy that resides on the file server named plum? Assume the
mounted directory hierarchy will appear as /plum.home on the local sys-
tem. How would you mount the same directory hierarchy if it resided on
the fileserver at 192.168.1.1? How would you unmount /home?

3. How would you list the mount points on the remote system named plum
that the local system named grape can mount?

4. Which command line lists the currently mounted NFS directory hierarchies?

5. What does the /etc/fstab file do?

6. From a server, how would you allow readonly access to /opt for any sys-
tem in example.com?

Advanced Exercises

7. When is it a good idea to disable attribute caching?

8. Describe the difference between the root_squash and all_squash options in
/etc/exports.

9. Why does the secure option in /etc/exports not really provide any security?

10. Some diskless workstations use NFS as swap space. Why is this approach
useful? What is the downside?

11. NFS maps users on the client to users on the server. Explain why this map-
ping is a security risk.

12. What does the mount nosuid option do? Why would you want to use this
option?

823823

24Chapter24Samba is a suite of programs that enables UNIX-like operating
systems, including Linux, Solaris, FreeBSD, and Mac OS X, to
work with other operating systems, such as OS/2 and Windows,
as both a server and a client.

As a server, Samba shares Linux files and printers with Windows
systems. As a client, Samba gives Linux users access to files on
Windows systems. Its ability to share files across operating sys-
tems makes Samba an ideal tool in a heterogeneous computing
environment.

Refer to pages 630 and 632 for information about printing
using Samba.

In This Chapter

About Samba 825

JumpStart: Configuring a Samba
Server Using shares-admin. . . . 826

smb.conf: Manually Configuring
a Samba Server 832

Accessing Linux Shares from
Windows 838

Accessing Windows Shares from
Linux. 839

Troubleshooting 841

24

Samba: Linux and

Windows File and

Printer Sharing

824 Chapter 24 Samba: Linux and Windows File and Printer Sharing

Introduction

This chapter starts by providing a list of Samba tools followed by some basic infor-
mation. The JumpStart section discusses how to set up a simple Samba server using
the Shared Folders window. The section following that covers how to use swat, a
Web-based advanced configuration tool, to set up a Samba server. The final server
section discusses how to set up a Samba server by using a text editor to manually
edit the files that control Samba. The next two sections of this chapter, “Accessing
Linux Shares from Windows” (page 838) and “Accessing Windows Shares from
Linux” (page 839), explain how to work with Linux and Windows files and print-
ers. The final section, “Troubleshooting” (page 841), offers tips on what to do
when Samba does not work properly.

Table 24-1 lists some of the utilities and daemons that make up the Samba suite of
programs. See the samba man page for a complete list.

Table 24-1 Samba utilities and daemons

Utility or daemon Function

net This utility has the same syntax as the DOS net command and, over
time, will eventually replace other Samba utilities such as smbpasswd.

nmbd The NetBIOS (page 1049) nameserver program, run as a daemon by
default. Provides NetBIOS over IP naming services for Samba cli-
ents. Also provides browsing support (as in the Windows Network
Neighborhood or My Network Places view).

nmblookup Queries the NetBIOS (page 1049) name; see page 842.

pdbedit Maintains Samba user database.

smbclient Displays shares on a Samba server such as a Windows machine;
uses ftp-like commands (page 840).

smbd The Samba program, run as a daemon by default. Provides file and
print services for Samba clients.

smbpasswd Changes Windows NT password hashes on Samba and Windows NT
servers (page 828).

smbstatus Displays information about current smbd connections.

smbtar Backs up and restores data from Samba servers; similar to tar.

smbtree Displays a hierarchical diagram of available shares (page 839).

swat Samba Web Administration Tool. A browser-based editor for the
smb.conf file (page 828).

testparm Checks syntax of the smb.conf file (page 842).

About Samba 825

About Samba

This section covers the packages you need to install to run Samba, sources of more
information on Samba, and users and passwords under Samba.

Prerequisites

Installation Install the following packages:

• samba

• smbclient

• smbfs (the only package needed to mount a Windows share)

• swat (optional, but useful)

• openbsd-inetd (needed to run swat; installed as a swat dependency)

• samba-doc (optional documentation; installed with swat)

• samba-doc-pdf (optional; documentation in PDF format)

samba init script When you install the samba package, the dpkg postinst script configures Samba to run
as a normal daemon (not from inetd), copies all Linux users to the list of Samba users,
sets up Samba to use encrypted passwords, and starts the smbd and nmbd daemons.
After you configure samba, call the samba init script to restart smbd and nmbd:

$ sudo /etc/init.d/samba restart

After changing the samba configuration on an active server, use reload in place of
restart to reload samba configuration files without disturbing clients connected to
the server.

More Information

Local Samba/swat home page has links to local Samba documentation (page 828)
Documentation /usr/share/doc/samba-*

Web Samba www.samba.org (mailing lists, documentation, downloads, and more)
CIFS www.samba.org/cifs

HOWTO Unofficial Samba HOWTO hr.uoregon.edu/davidrl/samba.html
Samba Documentation Collection Point a browser at

/usr/share/doc/samba-doc/htmldocs/index.html; if you have installed
the samba-doc-pdf package, look in /usr/share/doc/samba-doc-pdf.

Notes

Firewall The Samba server normally uses UDP ports 137 and 138 and TCP ports 139 and 445.
If the Samba server system is running a firewall, you need to open these ports. Using
firestarter (page 886), open these ports by setting a policy that allows service for Samba.

Share Under Samba, an exported directory hierarchy is called a share.

www.samba.org
www.samba.org/cifs

826 Chapter 24 Samba: Linux and Windows File and Printer Sharing

Mapping a share The Samba term mapping a share is equivalent to the Linux term mounting a direc-
tory hierarchy.

Samba The name Samba is derived from SMB (page 1060), the protocol that is the native
method of file and printer sharing for Windows.

swat You must set up a root password to use swat to change the Samba configuration; see
page 499 for instructions.

Samba Users, User Maps, and Passwords

For a Windows user to access Samba services on a Linux system, the user must pro-
vide a Windows username and a Samba password. In some cases, Windows supplies
the username and password for you. It is also possible to authenticate using other
methods. For example, Samba can use LDAP (page 1044) or PAM (page 545)
instead of the default password file. Refer to the Samba documentation for more
information on authentication methods.

Usernames The username supplied by Windows must be the same as a Linux username or must
map to a Linux username.

User maps You can create a file, typically named /etc/samba/smbusers, to map Windows user-
names to Linux usernames. For more information see username map on page 835.

Passwords By default, Samba uses Linux passwords to authenticate users. However, Ubuntu
sets passdb backend (page 834) to tdbsam, causing Samba to use trivial database
passwords. Change this parameter to smbpasswd in smb.conf (page 832) to cause
Samba to use Linux passwords.

JumpStart: Configuring a Samba Server

Using shares-admin
The shares-admin utility can set up only basic features of a Samba server. It is, how-
ever, the best tool to use if you are not familiar with Samba and you want to set up

Figure 24-1 Shared Folders window

JumpStart: Configuring a Samba Server Using shares-admin 827

a simple Samba server quickly. The shares-admin utility exports shares (directory
hierarchies) to Windows machines.

The Shared Folders window (Figure 24-1) enables you to share directory hierarchies
using NFS (Chapter 23) and/or Samba. To display this window, select Main menu:
System Administration Shared Folders or give the command gksudo shares-
admin from a terminal emulator or Run Application window (ALT-F2).

The Shared Folders window allows you to modify the /etc/samba/smb.conf file,
which is a large part of setting up a Samba server. (If the system is running a fire-
wall, see “Firewall” on page 825.) In this window you can specify which directory
hierarchies you want to share and how they are shared.

Click the Shared Folders tab in the Shared Folders window and click Add to display
the Share Folder window (Figure 24-2). Then select Windows networks (SMB)
from the list box labeled Share through. Now the Share Folder window has two sec-
tions: Shared Folder and Share Properties. In the first section, choose the pathname
of the directory hierarchy you want to share from the list box labeled Path. If the
directory you want is not listed, click Other; then double-click File System in the
Places column and double-click the directory you want in the Name column. Con-
tinue selecting directories in the Name column until the buttons at the top of the
window display the pathname of the directory hierarchy you want to share. Click
Open to select the directory hierarchy.

Under Share Properties, shares-admin names the share with the simple filename of
the directory you selected to share. This name is the one you will use from Windows
when you map (mount) the share. For example, if you select /pl5/documents on the
host named plum as the directory to share, shares-admin names the share documents.
From Windows, you would map the share as the folder named //plum/documents.
For more information refer to “Mapping a Share” on page 839. You can change the
name of the share; doing so changes the name you use to map the share from Win-
dows. Add a comment if you like.

The General Properties tab of the Shared Folders window allows you to change the
name of the workgroup the server belongs to and to declare the server to be a WINS
server. If necessary, change the workgroup name so it is the same as the workgroup

Figure 24-2 The Share Folder window

828 Chapter 24 Samba: Linux and Windows File and Printer Sharing

name on the Windows machine. In most cases you do not need to make the system
a WINS server. Add more shares if you like. When you are done adding shares, click
Close to close the Shared Folders window.

smbpasswd Working with root privileges, you can use smbpasswd to change a Linux user’s Samba
password.

$ sudo smbpasswd sam
New SMB password:
Retype new SMB password:

This example assumes Sam was a user on the Linux system before Samba was
installed. When you install Samba, it copies all Linux users to the list of Samba
users. If you add a user after you install Samba, you need to use the –a option to
instruct smbpasswd to add the user to the list of Samba users. The following com-
mand adds a new Linux user, Max, to the list of Samba users and assigns a Samba
password to Max:

$ sudo smbpasswd -a max
New SMB password:
Retype new SMB password:
Added user max.

Once a user has a Samba password, he can use smbpasswd without any arguments
to change his password.

If a user has different usernames on the Linux and Windows systems, you must map
the Windows username to a Linux username (see username map on page 835).
Make sure all Linux users who will log in using Samba have Samba passwords.

You should now be able to access the new shares from a Windows machine
(page 838). There is no need to restart the Samba server.

swat: Configures a Samba Server

The swat (Samba Web Administration Tool, swat package) utility is a browser-based
graphical editor for the smb.conf file. For each of the configurable parameters, it
provides Help links, default values, and a text box to change the value. The swat
utility is a well-designed tool in that it remains true to the lines in the smb.conf file
you edit: You can use and learn from swat, so that, if you want to use a text editor
to modify smb.conf, the transition will be straightforward.

The swat utility is run from inetd (openbsd-inetd package). When you install the
swat package, it installs openbsd-inetd as a dependency and places the following
line in /etc/inetd.conf:

swat stream tcp nowait.400 root /usr/sbin/tcpd /usr/sbin/swat

Make a copy of smb.conf
tip As installed, the /etc/samba/smb.conf file contains extensive comments (page 832). The swat

utility overwrites this file, removing the comments. Make a copy of smb.conf for safekeeping
before you run this utility for the first time.

swat: Configures a Samba Server 829

This line enables swat when inetd is running. If necessary, give the following com-
mand to restart inetd so that it rereads its configuration file:

$ sudo /etc/init.d/openbsd-inetd restart

Now you should be able to run swat: From the local system, open a browser and
enter either http://127.0.0.1:901 or http://localhost:901 in the location bar. When
prompted, enter the username root and the password for root. (You must set up a
root password to use swat to change the Samba configuration; see page 499 for
instructions.) If you provide a username other than root, you will be able to view
some configuration information but will not be able to make changes. From a
remote system, replace 127.0.0.1 with the IP address of the server (but see the adja-
cent security tip). If a firewall is running on the local system and you want to access
swat from a remote system, open TCP port 901 using firestarter (page 894).

The browser displays the local Samba/swat home page (Figure 24-3). This page includes
links to local Samba documentation and the following buttons:

HOME Links to local Samba documentation. When you click the word Samba (not the
logo, but the one just before the word Documentation in the Samba/swat home
page), swat displays the Samba man page, which defines each Samba program.

GLOBALS Edits global parameters (variables) in smb.conf.

SHARES Edits share information in smb.conf.

PRINTERS Edits printer information in smb.conf.

Figure 24-3 The local swat home page

Do not allow unencrypted remote access to swat

security Do not allow access to swat from a remote system on an insecure network. When you do so and log
in, the root password is sent in cleartext over whatever connection you are using and can easily be
sniffed. If you want to access swat over an insecure network, use ssh to forward port 901 (page 725).

830 Chapter 24 Samba: Linux and Windows File and Printer Sharing

WIZARD Rewrites the smb.conf file, removing all comment lines and lines that specify default
values.

STATUS Shows the active connections, active shares, and open files. Stops and restarts the
smbd and nmbd daemons.

VIEW Displays a subset (click Full View) or all of the configuration parameters as deter-
mined by the default values and settings in smb.conf (click Normal View).

PASSWORD Manages Samba passwords.

It is quite easy to establish a basic Samba setup so you can work with a Linux direc-
tory hierarchy from a Windows system. More work is required to set up a secure
connection or one with special features. The following example creates a basic setup
based on the sample smb.conf file included with Ubuntu Linux.

swat Help and
defaults

Each of the parameters swat displays has a button labeled Help next to it. Click
Help to open a new browser window containing an explanation of that parameter.
Each parameter also has a Set Default button that sets the parameter to its default
value (not necessarily the initial value as supplied by Ubuntu).

For this example, do not click any of the Set Default buttons. Make sure to click
Commit Changes at the top of each page after you finish making changes on a page
but before you click a menu button at the top of the page. Otherwise, swat will dis-
card your changes.

GLOBALS page To follow this example, first click GLOBALS at the top of the Samba/swat home
page. Leave everything at its current setting with two exceptions: hosts allow and
hosts deny. Setting these parameters makes the server more secure by limiting the
clients that Samba responds to. Scroll to the bottom of the Security Options and set
hosts allow to the names or IP addresses of systems you want to allow to access the
local system’s shares and printers. If there are any addresses in hosts allow or if you
set hosts deny to ALL, you must also add 0.0.0.0 to hosts allow to be able to use
swat. Separate the entries with SPACEs or commas. See page 833 for more information
on the various ways you can set hosts allow. Set hosts deny to ALL. Click Commit
Changes (near the top of the page) when you are done with the GLOBALS page.

If you can no longer use swat

tip If you can no longer use swat, you probably changed the hosts allow setting incorrectly. In this
case you need to edit /etc/samba/smb.conf manually and fix the line with the words hosts allow
in it:

grep hosts smb.conf
 hosts allow = 0.0.0.0, 192.168.0.8
 hosts deny = ALL

The preceding entries allow access from 192.168.0.8 only. They also allow swat to work. You do
not need to restart Samba after changing smb.conf.

swat: Configures a Samba Server 831

SHARES page Next click SHARES at the top of the page. Three buttons and two text boxes
appear near the bottom of the page (Figure 24-4). In the text box adjacent to the
Create Share button, enter the name you want to assign to the share you are set-
ting up. You will use this share name from Windows when you map (mount) the
share. Click Create Share. To modify an existing share, bring up the name of the
share in the list box adjacent to Choose Share, and click Choose Share. Either of
these actions expands the Share Parameters page so it displays information about
the selected share.

Set path to the absolute pathname on the Linux server of the share and, if you like,
set comment to a string that will help you remember where the share is located. The
values for hosts allow and hosts deny, if any, are taken from the global parameters.
Make sure read only, guest ok, and browseable are set as you desire. Set available to
YES or you will not have access to the share. Click Commit Changes when you are
done with the SHARES page. If you want to see how many parameters there really
are, click Advanced near the top of the page. Switching between the Basic and
Advanced views removes any changes you have not committed.

From a Windows machine, you should now be able to access the share you just cre-
ated (page 838).

Figure 24-4 Share Parameters page

You do not need to restart Samba when you change smb.conf
tip Samba rereads its configuration files each time a client connects. Unless you change the security

parameter (page 834), you do not need to restart Samba when you change smb.conf.

832 Chapter 24 Samba: Linux and Windows File and Printer Sharing

smb.conf: Manually Configuring a Samba Server

The /etc/samba/smb.conf file controls most aspects of how Samba works and is
divided into sections. Each section begins with a line that holds some text between
brackets ([...]). The text within the brackets identifies the section. Typical sections are

[globals] Defines global parameters
[printers] Defines printers
[homes] Defines shares in the homes directory
[share name] Defines a share (you can have more than one of these sections)

smb.conf
comments

As installed on an Ubuntu Linux system, the smb.conf sample configuration file
contains extensive comments and commented-out examples. Comment lines start
with either a pound sign (#) or a semicolon (;). The sample file uses pound signs to
begin lines that are intended to remain as comments. Semicolons begin lines that
you may want to mimic or use as is by removing the semicolons. The following seg-
ment of smb.conf contains three lines of true comments and three lines beginning
with semicolons that you may want to uncomment and change:

Un-comment the following (and tweak the other settings below to suit)
to enable the default home directory shares. This will share each
user's home directory as \\server\username
;[homes]
; comment = Home Directories
; browseable = no

As Ubuntu sets the global parameters in smb.conf, you need simply add a share for
a Windows system to be able to access a directory on the Linux server. Add the fol-
lowing simple share to the end of the smb.conf file to enable a user on a Windows
system to be able to read from and write to the local /tmp directory:

[tmp]
 comment = temporary directory
 path = /tmp
 writable = YES
 guest ok = YES

The name of the share under Windows is tmp; the path under Linux is /tmp. Any
Windows user who can log in on Samba, including guest, can read from and write
to this directory, assuming the user’s Linux permissions allow it. To allow a user to
log in on Samba, you must run smbpasswd (page 828). Because browseable defaults
to YES, unless you specify browseable = NO, the share appears as a share on the
server without explicitly being declared browseable. The Linux permissions that
apply to a Windows user using Samba are the same permissions that apply to the
Linux user that the Windows user maps to.

Parameters in the smbd.conf File

The smb.conf man page and the Help feature of swat list all the parameters you can
set in smb.conf. The following sections identify some of the parameters you are likely
to want to change.

smb.conf: Manually Configuring a Samba Server 833

Global Parameters

interfaces A SPACE-separated list of networks Samba uses. Specify as interface names (such as
eth0) or as IP address/net mask pairs (page 529).

Default: all active interfaces except 127.0.0.1

server string The string that the Windows machine displays in various places. Within the string,
Samba replaces %v with the Samba version number and %h with the hostname.

Default: Samba %v
Ubuntu: %h server (Samba, Ubuntu)

workgroup The workgroup the server belongs to. Set to the same workgroup as the Windows
clients that use the server. This parameter controls the domain name that Samba
uses when security (page 834) is set to DOMAIN.

Default: WORKGROUP
Ubuntu: MSHOME

Security Parameters

encrypt
passwords

YES accepts only encrypted passwords from clients. Windows 98 and Windows NT
4.0 Service Pack 3 and later use encrypted passwords by default. This parameter
uses smbpasswd to authenticate passwords unless you set security to SERVER or
DOMAIN, in which case Samba authenticates using another server.

Default: YES

guest account The username that is assigned to users logging in as guest or mapped to guest; appli-
cable only when guest ok (page 838) is set to YES. This username should be present
in /etc/passwd but should not be able to log in on the system. Typically guest
account is assigned a value of nobody because the user nobody can access only files
that any user can access. If you are using the nobody account for other purposes on
the Linux system, set this parameter to a name other than nobody.

Default: nobody

hosts allow Analogous to the /etc/hosts.allow file (page 532); specifies hosts that are allowed
to connect to the server. Overrides hosts specified in hosts deny. A good strategy is
to specify ALL in hosts deny and to specify the hosts you want to grant access to in
this file. Specify hosts in the same manner as in hosts.allow.

Default: none (all hosts permitted access)

hosts deny Analogous to the /etc/hosts.deny file (page 532); specifies hosts that are not
allowed to connect to the server. Overridden by hosts specified in hosts allow. If you
specify ALL in this file, remember to include the local system (127.0.0.1) in hosts
allow. Specify hosts in the same manner as in hosts.deny.

Default: none (no hosts excluded)

invalid users Lists users who are not allowed to log in using Samba.

Default: none (all users are permitted to log in)
Ubuntu: root

834 Chapter 24 Samba: Linux and Windows File and Printer Sharing

map to guest Defines when a failed login is mapped to the guest account. Useful only when secu-
rity (page 834) is not set to SHARE.

Never: Allows guest to log in only when the user explicitly provides guest as the
username and a blank password.

Bad User: Treats any attempt to log in as a user who does not exist as a guest login.
This parameter is a security risk because it allows a malicious user to retrieve a list
of users on the system quickly.

Bad Password: Silently logs in as guest any user who incorrectly enters her pass-
word. This parameter may confuse a user when she mistypes her password and is
unknowingly logged in as guest because she will suddenly see fewer shares than she
is used to.

Default: Never

passdb backend Specifies how Samba stores passwords. Set to ldapsam for LDAP, smbpasswd for
Samba, or tdbsam for TDB (trivial database) password storage. See page 828 for
instructions on using smbpasswd to change Samba passwords.

Default: smbpasswd
Ubuntu: tdbsam

passwd chat The chat script Samba uses to converse with the passwd program. If this script is not
followed, Samba does not change the password. Used only when unix password
sync (page 835) is set to YES.

Default: *new*password* %n\n*new*password* %n\n *changed*
Ubuntu: *Enter\snew\sUNIX\spassword:* %n\n *Retype\snew\sUNIX\spass-
word:* %n\n *password\supdated\ssuccessfully* .

passwd program The program Samba uses to set Linux passwords. Samba replaces %u with the
user’s username.

Default: none
Ubuntu: /usr/bin/passwd %u

security Specifies if and how clients transfer user and password information to the server.
Choose one of the following:

USER: Causes Samba to require a username and password from Windows users
when logging in on the Samba server. With this setting you can use

• username map (page 835) to map Samba usernames to Linux usernames

• encrypt passwords (page 833) to encrypt passwords (recommended)

• guest account (page 833) to map users to the guest account

SHARE: Causes Samba not to authenticate clients on a per-user basis. Instead,
Samba uses the Windows 9x setup, in which each share can have an individual pass-
word for either read or full access. This option is not compatible with more recent
versions of Windows.

smb.conf: Manually Configuring a Samba Server 835

SERVER: Causes Samba to use another SMB server to validate usernames and
passwords. If the remote validation fails, the local Samba server tries to validate
usernames and passwords as though security were set to USER.

DOMAIN: Samba passes an encrypted password to a Windows NT domain con-
troller for validation. The workgroup parameter (page 833) must be properly set in
smb.conf for DOMAIN to work.

ADS: Instructs Samba to use an Active Directory server for authentication, allowing
a Samba server to participate as a native Active Directory member. (Active Directory
is the centralized information system that Windows 2000 and later use. It replaces
Windows Domains, which was used by Windows NT and earlier.)

Default: USER

unix password
sync

YES causes Samba to change a user’s Linux password when the associated user
changes the encrypted Samba password.

Default: NO

update
encrypted

YES allows users to migrate from cleartext passwords to encrypted passwords with-
out logging in on the server and using smbpasswd. To migrate users, set to YES and
set encrypt passwords to NO. As each user logs in on the server with a cleartext
Linux password, smbpasswd encrypts and stores the password. Set to NO and set
encrypt passwords to YES after all users have been converted.

Default: NO

username map The name of the file, typically /etc/samba/smbusers, that maps usernames from a
Windows client to usernames on the Linux server. This parameter is effective only
when security (page 834) is set to USER. Each line of the map file starts with a
server (Linux) username, followed by a SPACE, an equal sign, another SPACE, and one
or more SPACE-separated client (Windows) usernames. An asterisk (*) on the client
side matches any client username.

This file frequently maps Windows usernames to Linux usernames and/or maps
multiple Windows usernames to a single Linux username to facilitate file sharing.
Following is a sample map file:

$ cat /etc/samba/smbusers
Unix_name = SMB_name1 SMB_name2 ...
root = administrator admin
nobody = guest pcguest smbguest

The first entry maps the two Windows usernames (administrator and admin) to the
Linux username root (you must change the Ubuntu value for invalid users
[page 833] to be able to log in as root). The second entry maps three Windows
usernames, including guest, to the Linux username nobody: When a Windows user
attempts to log in on the Samba server as guest, Samba authenticates the Linux
user named nobody. Each user, including nobody, must have a Samba password
(refer to smbpasswd on page 828), even if it is blank.

836 Chapter 24 Samba: Linux and Windows File and Printer Sharing

Add the following line to the file this parameter points to, creating the file if neces-
sary, to map the Windows username sam to the Linux username sls:

sls = sam

After you add a user to this file, you must give the user a password using smbpasswd.
When Sam logs in as sam, Samba now maps sam to sls and looks up sls in the Samba
password database. Assuming Sam provides the correct password, he logs in on the
Samba server as sls.

Default: no map

Logging Parameters

log file The name of the Samba log file. Samba replaces %m with the name of the client sys-
tem, allowing you to generate a separate log file for each client.

Default: none
Ubuntu: /var/log/samba/log.%m

log level Sets the log level, with 0 (zero) being off and higher numbers being more verbose.

Default: 0 (off)

max log size An integer specifying the maximum size of the log file in kilobytes. A 0 (zero) speci-
fies no limit. When a file reaches this size, Samba appends .old to the filename and
starts a new log, deleting any old log file.

Default: 5000
Ubuntu: 1000

Browser Parameters

The domain master browser is the system responsible for maintaining the list of
machines on a network used when browsing a Windows Network Neighborhood or
My Network Places. SMB (page 1060) uses weighted elections every 11–15 minutes
to determine which machine is the domain master browser.

Whether a Samba server wins this election depends on two parameters:

• Setting domain master to YES instructs the Samba server to enter the
election.

• The os level determines how much weight the Samba server’s vote receives.

Setting os level to 2 should cause the Samba server to win against any Windows 9x
machines. NT Server series domain controllers—including Windows 2000, XP, and
2003—use an os level of 32. The maximum setting for os level is 255, although set-
ting it to 65 should ensure that the Samba server wins.

domain master YES causes nmbd to attempt to be the domain master browser. If a domain master
browser exists, then local master browsers will forward copies of their browse lists
to it. If there is no domain master browser, then browse queries may not be able to

smb.conf: Manually Configuring a Samba Server 837

cross subnet boundaries. A Windows PDC (primary domain controller) will always
try to become the domain master and may behave in unexpected ways if it fails.
Refer to the preceding discussion for more information.

Default: AUTO

local master YES causes nmbd to enter elections for the local master browser on a subnet. A
local master browser stores a cache of the NetBIOS (page 1049) names of entities
on the local subnet, allowing browsing. Windows machines automatically enter
elections; for browsing to work, the network must have at least one Windows
machine or one Samba server with local master set to YES. It is poor practice to set
local master to NO. If you do not want a computer to act as a local master, set its os
level to a lower number, allowing it to be used as the local master if all else fails.

Default: YES

os level An integer that controls how much Samba advertises itself for browser elections and
how likely nmbd is to become the local master browser for its workgroup. A higher
number increases the chances of the local server becoming the local master browser.
Refer to the discussion at the beginning of this section for more information.

Default: 20

preferred master YES forces nmbd to hold an election for local master and enters the local system
with a slight advantage. With domain master set to YES, this parameter helps
ensure the local Samba server becomes the domain master. Setting this parameter to
YES on more than one server causes the servers to compete to become master, gen-
erating a lot of network traffic and sometimes leading to unpredictable results. A
Windows PDC automatically acts as if this parameter is set.

Default: AUTO

Communication Parameters

dns proxy When acting as a WINS server (page 1069), YES causes nmbd to use DNS if NetBIOS
(page 1049) resolution fails.

Default: YES
Ubuntu: NO

socket options Tunes the network parameters used when exchanging data with a client. Adding
SO_RCVBUF=8192 SO_SNDBUF=8192 to this parameter may improve network
performance.

Default: TCP_NODELAY

wins server The IP address of the WINS server nmbd should register with.

Default: not enabled

wins support YES specifies nmbd is to act as a WINS server.

Default: NO

838 Chapter 24 Samba: Linux and Windows File and Printer Sharing

Share Parameters

Each of the following parameters can appear many times in smb.conf, once in each
share definition.

available YES specifies the share as active. Set this parameter to NO to disable the share but
continue logging requests for it.

Default: YES

browseable Determines whether the share can be browsed, for example, in Windows My Net-
work Places.

Default: YES
Ubuntu: YES, except for printers

comment A description of the share, shown when browsing the network from Windows.

Default: none
Ubuntu: varies

guest ok Allows a user who logs in as guest to access this share.

Default: NO

path The path of the directory being shared.

Default: none
Ubuntu: various

read only Does not allow write access.

Default: YES

The [homes] Share: Sharing Users’ Home Directories

Frequently users want to share their Linux home directories with a Windows
machine. To make this task easier, Samba provides the [homes] share. When you
define this share, each user’s home directory is shared with the specified parameters.
In most cases, the following parameters are adequate:

[homes]
 comment = Home Directories
 browseable = NO
 writable = YES

These settings prevent users other than the owners from browsing home directories
while allowing logged-in owners full access.

Accessing Linux Shares from Windows

Browsing Shares

To access a share on a Samba server from Windows, open My Computer or Explorer
on the Windows system and, in the text box labeled Address, enter \\ followed by the
NetBIOS name (or just the hostname if you have not assigned a different NetBIOS

Accessing Windows Shares from Linux 839

name) of the Samba server. Windows then displays the directories the Linux system is
sharing. To view the shares on the Linux system named dog, for example, enter \\dog.
From this window, you can view and, if permitted, browse the shares available on the
Linux system. If you set a share so it is not browseable, you need to enter the path of
the share using the format \\servername\sharename to display the share.

Mapping a Share

Another way to access a share on a Samba server is by mapping (mounting) a share.
Open My Computer or Explorer on the Windows system and click Map Network
Drive from one of the drop-down menus on the menubar (found on the Tools menu
on Windows XP). Windows displays the Map Network Drive window. Select an
unused Windows drive letter from the list box labeled Drive and enter the Windows
path to the share you want to map in the text box labeled Folder. The format of the
windows path is \\hostname\sharename. For example, to map /tmp on dog to
Windows drive J, assuming the share is named tmp on the Linux system, select J in
the list box labeled Drive, enter \\dog\tmp in the text box labeled Folder, and click
Finish. After supplying a username and password, you should be able to access the
/tmp directory from dog as J (tmp) on the Windows machine. If you cannot map the
drive, refer to “Troubleshooting” on page 841.

Accessing Windows Shares from Linux

Samba enables you to view and work with files on a Windows system (client) from
a Linux system (server). This section discusses several ways of accessing Windows
files from Linux.

smbtree: Displays Windows Shares

The smbtree utility displays a hierarchical diagram of available shares. When you
run smbtree, it prompts you for a password; do not enter a password if you want to
browse shares that are visible to the guest user. The password allows you to view
restricted shares, such as a user’s home directory in the [homes] share. Following is
sample output from smbtree:

$ smbtree
Password: RETURN (do not enter a password)
MGS
 \\JAM
 \\JAM\C$ Default share
 \\JAM\ADMIN$ Remote Admin
 \\JAM\F
 \\JAM\E
 ...
 \\DOG Samba 3.0.22
 \\DOG\dogprinter HP LaserJet 1320
 \\DOG\print$ Printer Drivers
 \\DOG\home
 \\DOG\p01 common backed-up directory
 \\DOG\p02 common backed-up directory

840 Chapter 24 Samba: Linux and Windows File and Printer Sharing

In the preceding output, MGS is the name of the workgroup, JAM is the name of
the Windows machine, and DOG is the name of the Samba server that the smbtree
utility is run from. Workgroup and machine names are always shown in uppercase
letters. If smbtree does not display output, set the workgroup (page 833) and wins
server (page 837) parameters in smb.conf. Refer to the smbtree man page for more
information.

smbclient: Connects to Windows Shares

The smbclient utility functions similarly to ftp (page 729) and connects to a Windows
share. However, smbclient uses Linux-style forward slashes (/) as path separators
rather than Windows-style backslashes (\). The next example connects to one of the
shares displayed in the preceding example:

$ smbclient //JAM/D
Password: RETURN (do not enter a password)
Domain=[JAM] OS=[Windows 5.1] Server=[Windows 2000 LAN Manager]
smb: \> ls
 audit D 0 Tue May 1 18:46:33 2007
 data D 0 Tue May 1 18:47:09 2007
 laptop.data D 0 Tue May 1 19:12:16 2007
 Linux D 0 Tue May 1 18:57:49 2007
 oldfonts D 0 Wed May 2 00:02:17 2007
 PSFONTS D 0 Tue May 1 18:45:36 2007
 RECYCLER DHS 0 Thu May 3 20:05:21 2007
 System Volume Information DHS 0 Tue May 1 18:45:32 2007

 46547 blocks of size 1048576. 42136 blocks available
smb: \>

You can use most ftp commands from smbclient. Refer to “Tutorial Session” on
page 732 for some examples. Alternatively, give the command help to display a
list of commands or help followed by a command for information on a specific
command:

smb: \> help history
HELP history:
 displays the command history

Browsing Windows Networks

Browsing Windows shares using smbtree and smbclient is quite awkward compared
with the ease of browsing a network from Windows; GNOME provides a more
user-friendly alternative. From Nautilus, enter smb:/// in the location bar to browse
the Windows shares on the network.

Nautilus uses virtual filesystem add-ons, which are part of the desktop environment
and not part of the native Linux system. As a consequence, only native GNOME
applications can open files on remote shares; normal Linux programs cannot. For
example, gedit can open files on remote shares, while OpenOffice, mplayer, and xedit
cannot.

Troubleshooting 841

Mounting Windows Shares

The mount utility (page 572) with a –t cifs option mounts a Windows share as if it
were a Linux directory hierarchy. See page 1029 for more information on the CIFS
protocol. When you mount a Windows share, you can write to the files on the
share; you cannot write to files on a share using smbclient.

A mount command that mounts a Windows share has the following syntax (you
must run this command with root privileges):

mount -t cifs //host/share dir

where host is the name of the system the share is on, share is the name of the Win-
dows share that you want to mount, and dir is the absolute pathname of the Linux
directory that you are mounting the share on (the mount point).

The following command, when run with root privileges, mounts on the /share
directory the share used in the preceding example:

$ sudo mount -t cifs //jam/d /share -o username=sam
Password:
$ ls /share
Linux RECYCLER audit laptop.data
PSFONTS System Volume Information data oldfonts

You can omit the username argument and provide a blank password to mount
shares that are visible to the guest user. Use the uid, file_mode, and dir_mode mount
options with type cifs filesystems to establish ownership and permissions of
mounted files.

$ sudo mount -t cifs //jam/d /share -o username=sam,uid=sam,file_mode=0644,dir_mode=0755

Permissions must be expressed as octal numbers preceded by a zero. For more infor-
mation refer to the mount.cifs man page.

Troubleshooting

Samba provides two utilities that can help troubleshoot a connection: testparm
checks the syntax of /etc/samba/smb.conf and displays its contents; smbstatus dis-
plays a report on open Samba connections.

The following steps can help you narrow down the problem when you cannot get
Samba to work.

1. Restart the Samba daemons. Make sure the last line of output ends
with OK.

$ sudo /etc/init.d/samba restart
 * Stopping Samba daemons... [OK]
 * Starting Samba daemons... [OK]

842 Chapter 24 Samba: Linux and Windows File and Printer Sharing

testparm 2. Run testparm to confirm that the smb.conf file is syntactically correct:

$ testparm
Load smb config files from /etc/samba/smb.conf
Processing section "[printers]"
Processing section "[print$]"
Processing section "[pl5]"
Loaded services file OK.
Server role: ROLE_STANDALONE
Press enter to see a dump of your service definitions
...

If you misspell a keyword in smb.conf, you get an error such as the following:

$ testparm
Load smb config files from /etc/samba/smb.conf
Unknown parameter encountered: "workgruop"
Ignoring unknown parameter "workgruop"
...

ping 3. Use ping (page 375) from both sides of the connection to make sure the
network is up.

Firewall 4. Confirm the firewall on the server is not blocking the Samba connection
(page 825).

Password 5. Make sure you have set up a password for the Samba user you are trying
to log in as.

net view 6. From a Windows command prompt, use net view to display a list of shares
available from the server (dog in this example):

C:>net view \\dog
Shared resources at \\dog

Samba 3.0.24

Share name Type Used as Comment

--
backup Disk The backup partition
dogprinter Print HP Laserjet 1320
homes Disk Home Directories
p04 Disk O: common backed-up directory
...
The command completed successfully.

net use 7. Try to map (mount) the drive from a Windows command prompt. The fol-
lowing command attempts to mount the share named p04 on dog as drive X:

C:>net use x: \\dog\p04
The command completed successfully.

nmblookup 8. From the Samba server, query the nmbd server, using the special name
__SAMBA__ for the server’s NetBIOS name. The –d 2 option turns the
debugger on at level 2, which generates a moderate amount of output. The
–B option specifies the server you are querying.

Troubleshooting 843

$ nmblookup -d 2 -B localhost __SAMBA__
added interface ip=192.168.0.10 bcast=192.168.0.127 nmask=255.255.255.128
querying __SAMBA__ on 127.0.0.1
Got a positive name query response from 127.0.0.1 (192.168.0.10)
192.168.0.10 __SAMBA__<00>

The next example uses nmblookup, without setting the debug level, to
query the local system for all NetBIOS names.

$ nmblookup -B localhost *
querying * on 127.0.0.1
192.168.0.10 *<00>

To query for the master browser from the local server, run nmblookup with
the –A option followed localhost or the name of the server:

$ nmblookup -A localhost
Looking up status of 127.0.0.1
 PLUM <00> - H <ACTIVE>
 PLUM <03> - H <ACTIVE>
 PLUM <20> - H <ACTIVE>
 ..__MSBROWSE__. <01> - <GROUP> H <ACTIVE>
 MGS <1d> - H <ACTIVE>
 MGS <1e> - <GROUP> H <ACTIVE>
 MGS <00> - <GROUP> H <ACTIVE>

 MAC Address = 00-00-00-00-00-00

smbclient 9. From the Samba server, use smbclient with the –L option followed by
the name of the server to generate a list of shares offered by the
server:

$ smbclient -L localhost
Password: RETURN (do not enter a password)
Anonymous login successful
Domain=[MGS] OS=[Unix] Server=[Samba 3.0.24]

 Sharename Type Comment
 --------- ---- -------
 IPC$ IPC IPC Service (plum server (Samba, Ubuntu))
 tmp Disk mgs comment tmp
 pl5 Disk
 print$ Disk Printer Drivers
Anonymous login successful
Domain=[MGS] OS=[Unix] Server=[Samba 3.0.24]

 Server Comment
 --------- -------
 PLUM plum server (Samba, Ubuntu)

 Workgroup Master
 --------- -------
 MGS PLUM

844 Chapter 24 Samba: Linux and Windows File and Printer Sharing

Chapter Summary

Samba is a suite of programs that enables Linux and Windows to share directory
hierarchies and printers. A directory hierarchy or printer that is shared between
Linux and Windows systems is called a share. To access a share on a Linux system,
a Windows user must supply a username and password. Usernames must corre-
spond to Linux usernames either directly or as mapped by the file that is pointed to
by the username map parameter in smb.conf, often /etc/samba/smbusers. Samba
passwords are generated by smbpasswd.

The main Samba configuration file is /etc/samba/smb.conf, which you can edit
using the Shared Folders window, swat (a Web-based administration utility), or a
text editor. The swat utility is a powerful configuration tool that provides integrated
online documentation and clickable default values to help you set up Samba.

From a Windows machine, you can access a share on a Linux Samba server by
opening My Computer or Explorer and, in the text box labeled Address, entering \\
followed by the name of the server. In response, Windows displays the shares on the
server. You can work with these shares as though they were Windows files.

From a Linux system, you can use any of several Samba tools to access Windows
shares. These tools include smbtree (displays shares), smbclient (similar to ftp), and
mount with the –t cifs option (mounts shares). In addition, you can enter smb:/// in
the Nautilus location bar and browse the shares.

Exercises

1. Which two daemons are part of the Samba suite? What does each do?

2. What steps are required for mapping a Windows user to a Linux user?

3. How can a system administrator add a Samba password for a new user?

4. What is the purpose of the [homes] share?

Advanced Exercises

5. Describe how Samba’s handling of users differs from that of NFS.

6. Which configuration changes would you need to apply to routers if you
wanted to allow SMB/CIFS browsing across multiple subnets without con-
figuring master browsers?

7. How could you use swat securely from a remote location?

8. $ sudo WINS resolution allows hosts to define their own names. Suggest a
way to use Samba to assign names from a centralized list.

845845

25Chapter25DNS (Domain Name System) maps domain names to IP
addresses, and vice versa. It reduces the need for humans to
work with IP addresses, which, with the introduction of IPv6,
are complex. The DNS specification defines a secure, general-
purpose database that holds Internet host information. It also
specifies a protocol that is used to exchange this information.
Further, DNS defines library routines that implement the pro-
tocol. Finally, DNS provides a means for routing email.
Under DNS, nameservers work with clients, called resolvers,
to distribute host information in the form of resource records
in a timely manner as needed.

This chapter describes BIND (Berkeley Internet Name Domain)
version 9, a popular open-source implementation of DNS. Part
of the Ubuntu Linux distribution, BIND includes the DNS
server daemon (named), a DNS resolver library, and tools for
working with DNS. Although DNS can be used for private net-
works, this chapter covers DNS as used by the Internet.

In This Chapter

Introduction to DNS 846

JumpStart I: Setting Up a DNS
Cache . 858

Setting Up BIND 860

Troubleshooting 872

A Full-Functioned Nameserver . . . 873

A Slave Server 877

A Split Horizon Server. 878

25

DNS/BIND: Tracking

Domain Names and

Addresses

846 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

Introduction to DNS

You typically use DNS when you display a Web page. For example, to display
Ubuntu’s home page, you enter its name, www.ubuntu.com, in a browser; the
browser then displays the page you want. You never enter or see the IP address for
the displayed page. However, without the IP address, the browser could not display
the page. DNS works behind the scenes to find the IP address when you enter the
name in the browser. The DNS database is

• Hierarchical, so it provides quick responses to queries. DNS has a root,
branches, and nodes.

• Distributed, so it offers fast access to servers. The DNS database is spread
across thousands of systems worldwide; each system is referred to as a
DNS server (or a domain server or nameserver).

• Replicated, to enhance reliability. Because many systems hold the same
information, when some systems fail, DNS does not stop functioning.

As implemented, DNS is

• Secure, so your browser or email is directed to the correct location.

• Flexible, so it can adapt to new names, deleted names, and names whose
information changes.

• Fast, so Internet connections are not delayed by slow DNS lookups.

History The mapping that DNS does was originally handled statically in a /etc/hosts file
(page 559) on each system on a network. Small LANs still make use of this file. As
networks—specifically the Internet—grew, a dynamic mapping system was required.
DNS was specified in 1983 and BIND became part of BSD in 1985. Today BIND is
by far the most popular implementation of DNS.

Security Historically BIND has not been very secure. Recently, however, developers have focused
on improving the security of BIND. You may want to run BIND inside a chroot jail
(page 870) and use transaction signatures (TSIG, page 868) to improve security.

host and dig The host and dig utilities (page 378) query DNS servers. The host utility is simpler, is
easier to use, and returns less information than dig. This chapter uses both tools to
explore DNS.

Nodes, Domains, and Subdomains

Node Each node in the hierarchical DNS database is called a domain and is labeled with a
(domain) name. As with the Linux file structure, the node at the top of the DNS
hierarchy is called the root node or root domain. While the Linux file structure sep-
arates the nodes (directory and ordinary files) with slashes (/) and labels the root
node (directory) with a slash, the DNS structure uses periods in place of the file
structure’s slashes (Figure 25-1).

You read an absolute pathname in a Linux filesystem from left to right: It starts
with the root directory (/) at the left and, as you read to the right, describes the path

www.ubuntu.com

Introduction to DNS 847

to the file being identified (for example, /var/spool/cups). Unlike a Linux path-
name, you read a DNS domain name from right to left: It starts with the root
domain at the right (represented by a period [.]) and, as you read to the left, works
its way down through the top-level and second-level domains to a subdomain or
host. Frequently the name of the root domain (the period at the right) is omitted
from a domain name.

Domain The term domain refers both to a single node in the DNS domain structure and to a
catenated, period-separated list (path) of domain names that describes the location
of a domain.

FQDN A fully qualified domain name (FQDN) is the DNS equivalent of a filesystem’s
absolute pathname: It is a pointer that positively locates a domain on the Internet.
Just as you (and Linux) can identify an absolute pathname by its leading slash (/)
that names the root directory, so an FQDN can be identified by its trailing period (.)
that names the root domain (Figure 25-2).

Figure 25-1 The DNS domain structure (FQDNs are shown below hostnames.)

ubuntu
ubuntu.com

berkeley
berkeley.edu

sobell
sobell.com

netcom edu

wiki
wiki.ubuntu.com

releases
releases.ubuntu.com

lib
lib.berkeley.edu

hrweb
hrweb.berkeley.edu

. (root)
Root
domain

Top-level
domains

Second-level
domains

Subdomains or hosts

Figure 25-2 A fully qualified domain name (FQDN)

wiki.ubuntu.com.

Root domain
Top-level domain

Second-level domain
Subdomain or hostname

Period separating parts of an FQDN

848 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

Resolver The resolver comprises the routines that turn an unqualified domain name into an
FQDN that is passed to DNS to be mapped to an IP address. The resolver can
append several domains, one at a time, to an unqualified domain name, producing
several FQDNs that it then passes, one at a time, to DNS. For each FQDN, DNS
reports success (it found the FQDN and is returning the corresponding IP address)
or failure (the FQDN does not exist).

The resolver always appends the root domain (.) to an unqualified domain name first,
thereby allowing you to type www.sobell.com instead of www.sobell.com. (including
the trailing period) in a browser. You can specify other domains for the resolver to try
if the root domain fails. Put the domain names, in the order you want them tried,
after the search keyword in /etc/resolv.conf (page 561). For example, if your search
domains include ubuntu.com., then the domains wiki and wiki.ubuntu.com. will
resolve to the same address.

Subdomains Each node in the domain hierarchy is a domain. Each domain that has a parent (that
is, every domain except the root domain) is also a subdomain, regardless of whether
it has children. All subdomains can resolve to hosts—even those with children. For
example, the ubuntu.com. domain resolves to the host that serves the Ubuntu Web
site, without preventing its children—domains such as wiki.ubuntu.com—from
resolving. The leftmost part of an FQDN is often called the hostname.

Hostnames In the past, hostnames could contain only characters from the set a–z, A–Z, 0–9,
and –. As of March 2004, however, hostnames can include various accents,
umlauts, and so on (www.switch.ch/id/idn). DNS considers uppercase and lower-
case letters to be the same (it is not case sensitive), so www.sobell.com is the same as
WWW.sObEll.coM.

Zones

For administrative purposes, domains are grouped into zones that extend down-
ward from a domain (Figure 25-3). A single DNS server is responsible for (holds the
information required to resolve) all domains within a zone. The DNS server for a
zone also holds pointers to DNS servers that are responsible for the zones immedi-
ately below the zone it is responsible for. Information about zones originates in zone
files, one zone per file.

Root domain The highest zone—the one containing the root domain—does not contain any
hosts. Instead, this domain delegates to the DNS servers for the top-level domains
(Figure 25-1, page 847).

Authority Each zone has at least one authoritative DNS server. This server holds all informa-
tion about the zone. A DNS query returns information about a domain and speci-
fies which DNS server is authoritative for that domain.

DNS employs a hierarchical structure to keep track of names and authority. At the top
or root of the structure is the root domain, which employs 13 authoritative nameserv-
ers. These are the only servers that are authoritative for the root and top-level domains.

www.sobell.com
www.sobell.com
www.switch.ch/id/idn
www.sobell.com
WWW.sObEll.coM

Introduction to DNS 849

Delegation of
authority

When referring to DNS, the term delegation means delegation of authority. ICANN
(Internet Corporation for Assigned Names and Numbers, www.icann.org) delegates
authority to the root and top-level domains. In other words, ICANN says which
servers are authoritative for these domains. Authority is delegated to each domain
below the top-level domains by the authoritative server at the next-higher-level
domain. ICANN is not authoritative for most second-level domains. For example,
Ubuntu is authoritative for the ubuntu.com domain. This scheme of delegating
authority allows for local control over segments of the DNS database while making
all segments available to the public.

Queries

There are two types of DNS queries: iterative and recursive.1

Iterative query An iterative query sends a domain name to a DNS server and asks the server to
return either the IP address of the domain or the name of the DNS server that is
authoritative for the domain or one of its parents: The server does not query other
servers when seeking an answer. Nameservers typically send each other iterative
queries.

Recursive query A recursive query sends a domain name to a DNS server and asks the server to
return the IP address of the domain. The server may need to query other servers to
get the answer.

Both iterative and recursive queries can fail. In this case, the server returns a mes-
sage saying it is unable to locate the domain.

Figure 25-3 DNS structure showing zones

org comedu gov

. (root)

ubuntu

smtp

example

ftp

site2www site1

1. A third type of query is not covered in this book: inverse. An inverse query provides a domain name
given a resource record. Reverse name resolution (page 855), not an inverse query, is used to query for a
domain name given an IP address.

www.icann.org

850 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

When a client, such as a browser, needs the IP address that corresponds to a domain
name, the client queries a resolver. Most resolvers are quite simple and require a
DNS server to do most of the work—that is, they send recursive queries. The
resolver communicates with a single DNS server, which can perform multiple itera-
tive queries in response to the resolver’s recursive query.

All DNS servers must answer iterative queries. DNS servers can also be set up to
answer recursive queries. A DNS server that is not set up to answer recursive que-
ries treats a recursive query as though it is an iterative query.

In Figure 25-4, the resolver on a client system is trying to discover the IP address of
the server ftp.site1.example.com. on the network with the DNS layout shown in
Figure 25-3 on page 849. The resolver on the client sends a recursive query to its
primary DNS server. This server interrogates the root server and one additional
server for each zone until it receives an answer, which it returns to the resolver on
the client. In practice, the query would not start with the root server because most
servers have the location of the authoritative nameserver for the com. domain
stored in cache (memory).

Servers

There are three main types of DNS servers: primary (master), secondary (slave), and
caching-only.

• A primary master server, also called a primary server or master server, is
the authoritative server that holds the master copy of zone data. It copies
information from the zone or master file, a local file that the server admin-
istrator maintains. For security and efficiency, a primary master server
should provide iterative answers only. A primary master server that pro-
vides recursive answers is more easily subverted by a DoS attack
(page 1034) than one that provides iterative answers only.

Figure 25-4 A recursive query that starts several iterative queries to find the answer

2. Do you know the address
of ftp.site1.example.com.?

3. No, but DNS server 1 should.

4. Do you know the address
of ftp.site1.example.com.?

5. No, but DNS server 2 should.

6. Do you know the address
of ftp.site1.example.com.?

7. No, but DNS server 3 should.

8. Do you know the address
of ftp.site1.example.com.?

9. Yes, here it is.

Root DNS
server

Authoritative
server for

Authoritative
server for

Authoritative
server for

Client’s
primary
DNS
server

1. Do you know
the address
of ftp.site1.-
example.com.?

10. Yes,
here it is.

Resolver

example.com

com

site1.example.com

Introduction to DNS 851

• Slave servers, also called secondary servers, are authoritative and copy
zone information from the primary master server or another slave server.
On some systems, when information on the primary master server
changes, the primary master server notifies the slave servers. When a slave
receives such a message, it uses a process called zone transfer to copy the
new zone information from the master server to itself.

• DNS caches, also called caching-only servers, are not authoritative. These
servers store answers to previous queries in cache (memory). When a DNS
cache receives a query, it answers it from cache if it can. If the DNS cache does
not have the answer in cache, it forwards the query to an authoritative server.

It is possible—but for reasons of security not recommended—for the same server to
be the primary master server (authoritative) for some zones and a DNS cache for
others. When the same server acts as both a DNS cache and a master server, if a
malicious local user or malfunctioning resolver on the local network floods the
DNS cache with more traffic than it can handle (a DoS attack), users may be pre-
vented from accessing the public servers handled by the primary master server. Con-
versely, if the authoritative server is compromised, the attacker can subvert all
traffic leaving the network.

Resource Records

Resource records store information about nodes (domains) in the DNS database
and are kept in zone files (page 863). The zone that a resource record pertains to is
defined by the zone file that contains the resource record. The zone is named in the
named.conf file (page 860) that references the zone file.

A resource record has the following fields:

• Name The domain name or IP address

• TTL Time to live (not in all resource records; see page 1066)

• Class Always IN for Internet (the only class supported by DNS)

• Type Record type (discussed in the next section)

• Data Varies with record type

If the Name field is missing, the resource record inherits the name from the previous
resource record in the same file. Cached resource records become out-of-date when
the information in the record changes on the authoritative server. The TTL field
indicates the maximum amount of time a server may keep a record in cache before
checking whether a newer one is available. Typically the TTL is on the order of
days. A TTL of 0 (zero) means that the resource record should not be cached.

More than 30 types of resource records exist, ranging from common types, such as
address records that store the address of a host, to those that contain geographical
information. The following paragraphs describe the types of resource records you
are most likely to encounter.

852 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

A IPv4 Address Maps a domain name to the IPv4 address of a host. There must be
at least one address record for each domain; multiple address records can point to
the same IP address. The Name field holds the domain name, which is assumed to
be in the same zone as the domain. The Data field holds the IP address associated
with the name. The following address resource record maps the ns domain in the
zone to 192.168.0.1:

ns IN A 192.168.0.1

AAAA IPv6 Address Maps a domain name to the IPv6 address of a host. The following
address resource record maps the ns domain in the zone to an IPv6 address:

ns IN AAAA 2001:630:d0:131:a00:20ff:feb5:ef1e

CNAME Canonical Name Maps an alias or nickname to a domain name. The Name field
holds the alias or nickname; the Data field holds the official or canonical name.
CNAME is useful for specifying an easy-to-remember name or multiple names for
the same domain. It is also useful when a system changes names or IP addresses. In
this case the alias can point to the real name that must resolve to an IP address.

When a query returns a CNAME, a client or DNS tool performs a DNS lookup on the
domain name returned with the CNAME. It is acceptable to provide multiple levels of
CNAME records. The following resource record maps ftp in the zone to www.sam.net.:

ftp IN CNAME www.sam.net.

MX Mail Exchange Specifies a destination for mail addressed to the domain. MX
records must always point to A (or AAAA) records. The Name field holds the
domain name, which is assumed to be in the zone; the Data field holds the name of
a mail server preceded by its priority. Unlike A records, MX records contain a prior-
ity number that allows mail delivery agents to fall back to a backup server if the pri-
mary server is down. Several mail servers can be ranked in priority order, where the
lowest number has the highest priority. DNS selects randomly from among mail
servers with the same priority. The following resource records forward mail sent to
speedy in the zone first to mail in the zone and then, if that attempt fails, to
mail.sam.net. . The value of speedy in the Name field on the second line is implicit.

speedy IN MX 10 mail
IN MX 20 mail.sam.net.

NS Nameserver Specifies the name of the system that provides domain service (DNS
records) for the domain. The Name field holds the domain name; the Data field
holds the name of the DNS server. Each domain must have at least one NS record.
DNS servers do not need to reside in the domain and, in fact, it is better if at least
one does not. The system name ns is frequently used to specify a nameserver, but this
name is not required and does not have any significance beyond assisting humans in
identifying a nameserver. The following resource record specifies ns.max.net. as a
nameserver for peach in the zone:

peach IN NS ns.max.net.

PTR Pointer Maps an IP address to a domain name and is used for reverse name resolu-
tion. The Name field holds the IP address; the Data field holds the domain name.
Do not use PTR resource records with aliases. The following resource record maps

www.sam.net

Introduction to DNS 853

3 in a reverse zone (for example, 3 in the 0.168.192.in-addr.arpa zone is
192.168.0.3) to peach in the zone:

3 IN PTR peach

For more information refer to “Reverse Name Resolution” on page 855.

SOA Start of Authority Designates the start of a zone. Each zone must have exactly one
SOA record. An authoritative server maintains the SOA record for the zone it is
authoritative for.

All zone files must have one SOA resource record, which must be the first resource
record in the file. The Name field holds the name of the domain at the start of the
zone. The Data field holds the name of the host the data was created on, the email
address of the person responsible for the zone, and the following information,
which must be enclosed within parentheses if the record does not fit on one line. If
this information is enclosed within parentheses (and it usually is), the opening
parenthesis must appear on the first physical line of the SOA record:

serial A value in the range 1 to 2,147,483,647. A change in this number indicates
the zone data has changed. By convention, this field is set to the string yyyymmddnn
(year, month, day, change number). Along with the date, the final two digits—that is,
the change number—should be incremented each time you change the SOA record.

refresh The elapsed time after which the primary master server notifies slave (sec-
ondary) servers to refresh the record; the amount of time between updates.

retry The time to wait after a refresh fails before trying to refresh again.

expiry The elapsed time after which the zone is no longer authoritative and the
root servers must be queried. The expiry applies to slave servers only.

minimum The negative caching (page 1049) TTL, which is the amount of time
that a nonexistent domain error (NXDOMAIN) can be held in a slave server’s
cache. A negative caching TTL is the same as a normal TTL except that it applies to
domains that do not exist rather than to domains that do exist.

The $TTL directive (page 863) specifies the default zone TTL (the maximum
amount of time data stays in a slave server’s cache). Jointly, the default zone TTL
and the negative caching TTL encompass all types of replies the server can generate.
If you will be adding subdomains or modifying existing domains frequently, set the
negative caching TTL to a low number. A short TTL increases traffic to DNS for cli-
ents requesting domains that do not exist, but allows new domains to propagate
quickly, albeit at the expense of increased traffic.

The following two SOA resource records are equivalent (the parentheses in the first
record are optional because the record fits on one physical line):

@ IN SOA ns.zach.net. mgs@sobell.com. (2007111247 8H 2H 4W 1D)

@ IN SOA ns.zach.net. mgs@sobell.com. (
2007111247 ; serial
8H ; refresh
2H ; retry
4W ; expire
1D) ; minimum

854 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

The second format is more readable because of its layout and the comments. The at
symbol (@) at the start of the SOA resource record stands for the zone name (also
called the origin) as specified in the named.conf file. Because the named.conf file
specifies the zone name to be zach.net, you could rewrite the first line as follows:

zach.net. IN SOA ns.zach.net. mgs@sobell.com. (

The host utility returns something closer to the first format with each of the times
specified in seconds:

$ host -t soa zach.net
zach.net. SOA ns.zach.net. mgs\@sobell.com. 03111 28800 7200 2419200 86400

TXT Text Associates a character string with a domain. The Name field holds the
domain name. The data field can contain up to 256 characters and must be enclosed
within quotation marks. TXT records can contain any arbitrary text value. As well
as general information, they can be used for things such as public key distribution.
Following is a TXT resource record that specifies a company name:

zach.net IN TXT "Sobell Associates Inc."

DNS Query and Response

Query A DNS query has three parts:

1. Name Domain name, FQDN, or IP address for reverse name resolution

2. Type Type of record requested (page 851)

3. Class Always IN for Internet class

Cache Most DNS servers store in cache memory the query responses from other DNS
servers. When a DNS server receives a query, it first tries to resolve the query
from its cache. If that attempt fails, the server may query other servers to get an
answer. Because DNS uses cache, when you make a change to a DNS record, the
change takes time—sometimes a matter of days—to propagate throughout the
DNS hierarchy.

Response A DNS message sent in response to a query has the following structure:

• Header record Information about this message

• Query record Repeats the query

• Answer records Resource records that answer the query

• Authority records Resource records for servers that have authority for
the answers

• Additional records Additional resource records, such as NS records

The dig utility does not consult /etc/nsswitch.conf (page 542) to determine which
server to query. The following example uses dig to query a DNS server:

Introduction to DNS 855

$ dig ubuntu.com

; <<>> DiG 9.3.2 <<>> ubuntu.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61389
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 4

;; QUESTION SECTION:
;ubuntu.com. IN A

;; ANSWER SECTION:
ubuntu.com. 600 IN A 82.211.81.166

;; AUTHORITY SECTION:
ubuntu.com. 2823 IN NS ns.ubuntu.com.
ubuntu.com. 2823 IN NS ns0.blackcatnetworks.co.uk.
ubuntu.com. 2823 IN NS ns1.blackcatnetworks.co.uk.

;; ADDITIONAL SECTION:
ns.ubuntu.com. 77912 IN A 82.211.81.173
ns0.blackcatnetworks.co.uk. 39247 IN A 193.201.200.34
ns0.blackcatnetworks.co.uk. 39247 IN AAAA 2001:1b40:0:20::34
ns1.blackcatnetworks.co.uk. 39247 IN A 69.55.225.40
...

Reverse Name Resolution

In addition to normal or forward name resolution, DNS provides reverse name res-
olution (also referred to as inverse mapping or reverse mapping) so you can look up
domain names given an IP address. Because resource records in the forward DNS
database are indexed hierarchically by domain name, DNS cannot perform an effi-
cient search by IP address on this database.

DNS implements reverse name resolution by means of special domains named
in-addr.arpa (IPv4) and ip6.int (IPv6). Resource records in these domains have
Name fields that hold IP addresses; the records are indexed hierarchically by IP
address. The Data fields hold the FQDNs that correspond to these IP addresses.

Reverse name resolution can verify that someone is who he says he is or at least is
from the domain he says he is from. In general, it allows a server to retrieve and
record the domain names of the clients it provides services to. For example, legiti-
mate mail contains the domain of the sender and the IP address of the sending
machine. A mail server can verify the stated domain of a sender by checking the
domain associated with the IP address. Reverse name resolution can also be used by
anonymous FTP servers to verify that a domain specified in an email address used as
a password is legitimate.

For example, to determine the domain name that corresponds to the IP address
82.211.81.150 in Figure 25-5, a resolver would query DNS for information about
the domain named 150.81.211.82.in-addr.arpa.

856 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

The following example uses dig to query DNS for the IP address that corresponds to
www.sobell.com, which is 209.157.128.22. The second command line uses the dig
utility to query the same IP address, reversed and appended with .in-addr.arpa
(22.128.157.209.in-addr.arpa) to display a PTR resource record (page 852). The
data portion of the resultant resource record is the domain name from the original
query: www.sobell.com.

$ dig www.sobell.com
...
;; QUESTION SECTION:
;www.sobell.com. IN A

;; ANSWER SECTION:
www.sobell.com. 2274 IN A 209.157.128.22
...

$ dig 22.128.157.209.in-addr.arpa PTR
...
;; QUESTION SECTION:
;22.128.157.209.in-addr.arpa. IN PTR

;; ANSWER SECTION:
22.128.157.209.in-addr.arpa. 2244 IN PTR www.sobell.com.
...

Instead of reformatting the IP address as in the preceding example, you can use the
–x option to dig to perform a reverse query:

Figure 25-5 Reverse name resolution and the in-addr.arpa domain

.

com arpanet

in-addr

11182

sobell ubuntu

help wiki

233211

81 229

150
PTR

www.sobell.com

About DNS 857

$ dig -x 209.157.128.22
...
;; QUESTION SECTION:
;22.128.157.209.in-addr.arpa. IN PTR

;; ANSWER SECTION:
22.128.157.209.in-addr.arpa. 2204 IN PTR www.sobell.com.
...

Alternatively, you can just use host:

$ host 209.157.128.22
22.128.157.209.in-addr.arpa domain name pointer www.sobell.com.

About DNS

This section discusses how DNS works and identifies resources you can consult for
additional information on DNS.

How DNS Works

Application programs do not issue DNS queries directly but rather use the
gethostbyname() system call. How the system comes up with the corresponding IP
address is transparent to the calling program. The gethostbyname() call examines
the hosts line in /etc/nsswitch.conf file (page 542) to determine which files it should
examine and/or which services it should query and in what order to obtain the IP
address corresponding to a domain name. When it needs to query DNS, the local
system (i.e., the DNS client) queries the DNS database by calling the resolver library
on the local system. This call returns the required information to the application
program.

Prerequisites

Installation Install the following packages:

• bind9

• bind9-doc (optional; installs bind documentation)

• dnsutils (optional; installs dig, nslookup, and nsupdate)

bind9 init script When you install the bind9 package, the dpkg postinst script starts the named daemon.
After you configure BIND, call the bind9 init script to restart the named daemon:

$ sudo /etc/init.d/named restart

After changing the BIND configuration on an active server, use reload in place of
restart to reload named configuration files without disturbing clients connected to the
server. By default, starting or restarting—but not reloading—named runs resolvconf,
which rebuilds the /etc/resolv.conf file. See “named options” on page 858 for more
information.

858 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

More Information

DNS for Rocket Scientists is an excellent site that makes good use of links to
present information on DNS in a very digestible form. The same information is
available in the Pro DNS and BIND book.

Local Bind Administrator Reference Manual
/usr/share/doc/bind9-doc/arm/Bv9ARM.html.

Web DNS for Rocket Scientists www.zytrax.com/books/dns
BIND www.isc.org/products/BIND
DNS security www.sans.org/reading_room/whitepapers/dns/1069.php

(downloadable PDF file)

HOWTO DNS HOWTO

Book DNS & BIND, fifth edition, by Albitz & Liu, O’Reilly & Associates (May 2006)
Pro DNS and BIND, first edition, by Ron Aitchison, Apress (August 2005)

Notes

Terms:
DNS and named

The name of the DNS server is named. This chapter uses “DNS” and “named”
interchangeably.

Firewall The named server normally accepts queries on TCP and UDP port 53. If the server
system is running a firewall, you need to open these ports. Using firestarter
(page 886), open this port by setting a policy that allows service for DNS.

chroot jail The bind-chroot.sh script sets up named to run in a chroot jail. After you run this
script, all files that control BIND are located within this jail. In this case the file-
names used in this chapter are symbolic links to the files in the chroot jail. See
page 870 for more information.

named options When the bind9 init script starts or restarts the named server, but not when it just
reloads the configuration files, it reads the options in the /etc/default/bind9 file. If the
RESOLVCONF variable is set to yes (as it is by default), the script runs resolvconf,
which rebuilds /etc/resolv.conf. You can cause the script not to run resolvconf by set-
ting RESOLVCONF to no.

$ cat /etc/default/bind9
OPTIONS="-u bind"
Set RESOLVCONF=no to not run resolvconf
RESOLVCONF=yes

JumpStart: Setting Up a DNS Cache

As explained earlier, a DNS cache is a bridge between a resolver and authoritative
DNS servers: It is not authoritative, but simply stores the results of its queries in
memory. Most ISPs provide a DNS cache for the use of their customers. Setting up a
local cache can reduce the traffic between the LAN and the outside world, thereby
improving response times. While it is possible to set up a DNS cache on each system
on a LAN, setting up a single DNS cache on a LAN prevents multiple systems on
the LAN from having to query a remote server for the same information.

www.zytrax.com/books/dns
www.isc.org/products/BIND
www.sans.org/reading_room/whitepapers/dns/1069.php

JumpStart: Setting Up a DNS Cache 859

After installing BIND, you have most of a caching-only nameserver ready to run.
Refer to “A DNS Cache” (page 864) for an explanation of which files this name-
server uses and how it works.

resolvconf and
resolv.conf

Before you start the DNS cache, you need to modify the /etc/resolv.conf file
(page 561). How you go about modifying this file depends on whether the resolvconf
package is installed and set up to run on the local system. When you give the command
resolvconf, a usage message tells you the package is installed, whereas a command not
found message tells you it is not installed.

If resolvconf is not installed or you have turned it off as explained in “named
options,” put the following line in /etc/resolv.conf, before other nameserver lines:

nameserver 127.0.0.1

If resolvconf is installed and is set up to rebuild resolv.conf when you run the bind9
init script (page 857), put the preceding line in /etc/resolvconf/resolv.conf.d/head,
following the comments and before any other nameserver lines. You can ignore the
comment telling you not to edit the file: This comment is intended for someone who is
trying to edit /etc/resolv.conf. You must put this line in the head file so resolvconf puts
it in resolv.conf before any other nameserver lines; otherwise the local DNS cache will
never be used. Put other nameserver lines in base in the same directory as needed.

The nameserver line tells the resolver to use the local system (localhost or
127.0.0.1) as the primary nameserver. To experiment with using the local system as
the only nameserver, comment out other nameserver lines in resolv.conf or base by
preceding each with a pound sign (#).

Finally, run the bind9 init script to restart the named daemon (page 857). When you do
so, if resolvconf is installed and set up to run, the bind9 init script will rebuild resolv.conf.
See the resolver and resolv.conf man pages for more information on resolv.conf.

Refer to “Troubleshooting” on page 872 for ways to confirm that the DNS cache is
working. Once you have restarted named, you can see the effect of the cache by
using dig to look up the IP address of www.ubuntu.com, a remote system:

$ dig www.ubuntu.com

; <<>> DiG 9.3.4 <<>> www.ubuntu.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 59184
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;www.ubuntu.com. IN A

;; ANSWER SECTION:
www.ubuntu.com. 60 IN A 82.211.81.199
...
;; Query time: 496 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Wed Apr 25 16:08:17 2007
;; MSG SIZE rcvd: 183

860 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

The fourth line from the bottom of the example on the preceding page shows that
this query took 496 milliseconds (about one-half of a second). When you run the
same query again, it runs more quickly because the DNS cache has saved the infor-
mation locally in memory:

$ dig www.ubuntu.com
...
;; Query time: 1 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Wed Apr 25 16:08:23 2007
;; MSG SIZE rcvd: 183

Setting Up BIND

This section discusses the /etc/named.conf file, zone files, implementation of a DNS
cache, and running DNS inside a chroot jail.

named.conf: The named Configuration File

Configuration information for named, including zone names and the names and
locations of zone files, is kept in /etc/bind/named.conf. By default, the zone files
reside in /etc/bind. If you are running named in a chroot jail, these files are kept in
/var/lib/named/etc/bind, with a link in /etc/bind (page 870).

IP-list

In the descriptions in this section, IP-list is a semicolon-separated list of IP
addresses, where each IP address is optionally followed by a slash and a subnet
mask length (page 529). Prefix an IP-list with an exclamation point (!) to negate it.
Builtin names you can use in IP-list include any, none, and localhost. You must
enclose these builtin names within double quotation marks.

Comments

Within named.conf, specify a comment by preceding it with a pound sign (#) as in a
Perl or shell program, preceding it with a double slash (//) as in a C++ program, or

Try not to modify named.conf
tip The Ubuntu bind9 package breaks the named.conf file distributed with BIND into three files:

named.conf, named.conf.options, and named.conf.local. There are two motivations for breaking
this file apart. First, it makes the configuration files easier to understand. Second, it enables you to
configure named without modifying named.conf. This setup allows the bind9 package to be
upgraded, including changes to named.conf, without requiring you to modify the local configuration.

When you configure named, try to put your changes in the named.conf.options and
named.conf.local files. For more complex setups it may be easier to modify named.conf and
carry those changes forward when bind9 is upgraded.

Setting Up BIND 861

enclosing it between /* and */ as in a C program. Within a DNS db.* file, a com-
ment starts with a semicolon (;).

Included Files

An include statement within the named.conf file includes the file named as its argu-
ment as though its contents appeared inline in the named.conf file. The default
Ubuntu named.conf file includes both the /etc/bind/named.conf.options and
/etc/bind/named.conf.local files. The named.conf.options file holds the Options
clause of named.conf. The named.conf.local file gives you a place to put local con-
figuration information.

Options clause

Options statements can appear in two places: in the Options clause found in
named.conf.options and in the Zone clauses found in named.conf. Option state-
ments within the Options clause apply globally. When an option statement appears
in a Zone clause, the option applies to the zone, and within that zone, overrides a
corresponding global option.

An Options clause starts with the keyword options and continues with braces sur-
rounding the statements. Following is a list of some option statements. Statements
that can appear only in an Options clause and statements that cannot appear in a
View clause (page 878) are so noted.

allow-query {IP-list}
Allows queries from IP-list only. Without this option, the server responds to all queries.

allow-recursion {IP-list}
Specifies systems for which this server will perform recursive queries (page 849).
For systems not in IP-list, the server performs iterative queries only. Without this
option, the server performs recursive queries for any system. This statement may be
overridden by the recursion statement.

allow-transfer {IP-list}
Specifies systems that are allowed to perform zone transfers from this server. Specify
an IP-list of "none" (include the quotation marks) to prevent zone transfers. For a
more secure network, include only trusted systems in IP-list because systems on the
list can obtain a list of all systems on the network.

directory path Specifies the absolute pathname of the directory containing the zone files. Under
Ubuntu Linux, this directory is initially /var/cache/bind. Relative pathnames
specified in named.conf are relative to this directory. Options clause only; not in
View clause.

forward ONLY|FIRST
ONLY forwards all queries and fails if it does not receive an answer. FIRST for-
wards all queries and, if a query does not receive an answer, attempts to find an
answer using additional queries. Valid with the forwarders statement only.

862 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

forwarders {IP [port] [; ...]}
Specifies IP addresses and optionally port numbers that queries are forwarded to.
See the forward statement.

notify YES|NO YES sends a message to slave servers for the zone when zone information changes.
Master servers only. See page 878.

recursion YES|NO
YES (default) provides recursive queries (page 849) if the client requests. NO pro-
vides iterative queries only (page 849). An answer is always returned if it appears in
the server’s cache. This statement overrides allow-recursion statements. Options
clause only.

Zone Clause

A Zone clause defines a zone and can include any of the statements listed for the
Options clause except as noted. A Zone clause is introduced by the keyword zone,
the name of the zone enclosed within double quotation marks, and the class (always
IN). The body of the Zone clause consists of a pair of braces surrounding one or
more zone statements. See the listing of named.conf on page 864 for examples of
Zone clauses. Following is a list of some zone statements:

allow-update {IP-list}
Specifies systems that are allowed to update this zone dynamically. This statement
may be useful when hosting a master DNS server for a domain owned by someone
other than the local administrator because it allows a remote user to update the
DNS entry without granting the user access to the server.

file filename Specifies the zone file—the file that specifies the characteristics of the zone. The
filename is relative to the directory specified by the directory statement in the
Options clause. The file statement is mandatory for master and hint zones. Includ-
ing it for slave zones is a good idea (see type).

masters (IP-list) Specifies systems that a slave zone can use to update zone files. Slave zones only.

type ztype Specifies the type of zone defined by this clause. Choose ztype from the following list:

• forward Specifies a forward zone, which forwards queries directed to
this zone. See the forward and/or forwarders statements in the Options
clause.

• hint Specifies a hint zone. A hint zone lists root servers that the local
server queries when it starts and when it cannot find an answer in its
cache.

• master Specifies the local system as a primary master server (page 850)
for this zone.

• slave Specifies the local system as a slave server (page 850) for this zone.

Setting Up BIND 863

Zone Files

Zone files define zone characteristics. The name of the zone is typically specified in
named.conf. In contrast to named.conf, zone files use periods at the ends of domain
names. See page 866 for example zone files.

Time Formats

All times in BIND files are given in seconds, unless they are followed by one of
these letters (uppercase or lowercase): S (seconds), M (minutes), H (hours), D
(days), or W (weeks). You can combine formats. For example, the time 2h25m30s
means 2 hours, 25 minutes, and 30 seconds and is the same as 8,730 seconds.

Domain Qualification

An unqualified domain in a zone file is assumed to be in the current zone (the zone
defined by the zone file and named by the named.conf file that refers to the zone
file). The name zach in the zone file for myzone.com, for example, would be
expanded to the FQDN zach.myzone.com. . Use an FQDN (include the trailing
period) to specify a domain that is not in the current zone. Any name that does not
end with a period is regarded as a subdomain of the current zone.

Zone Name

Within a zone file, an at sign (@) is replaced with the zone name as specified by the
named.conf file that refers to the zone file. The zone name is also referred to as the
origin. See “$ORIGIN” in the next section.

Zone File Directives

The following directives can appear within a zone file. Each directive is identified by
a leading dollar sign. The $TTL directive is mandatory and must be the first entry in
a zone file.

$TTL Defines the default time to live for all resource records in the zone. This directive
must appear in a zone file before any resource records that it applies to. Any
resource record can include a TTL value that overrides this value, except for the
resource record in the root zone (.).

$ORIGIN Changes the zone name from that specified in the named.conf file. This name, or the
zone name if this directive does not appear in the zone file, replaces an @ sign in the
Name field of a resource record.

$INCLUDE Includes a file as though it were part of the zone file. The scope of an $ORIGIN
directive within an included file is the included file. That is, an $ORIGIN direc-
tive within an included file does not affect the file that holds the $INCLUDE
directive.

864 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

A DNS Cache

You install a DNS cache (also called a resolving, caching nameserver) when you
install the bind9 package. The section “JumpStart I: Setting Up a DNS Cache”
(page 858) explains how to run this server. This section describes how the files pro-
vided by Ubuntu Linux implement this server.

named.conf: The named Configuration File

The default named.conf file is shown following:

$ cat /etc/bind/named.conf
// This is the primary configuration file for the BIND DNS server named.
//
// Please read /usr/share/doc/bind9/README.Debian.gz for information on the
// structure of BIND configuration files in Debian, *BEFORE* you customize
// this configuration file.
//
// If you are just adding zones, please do that in /etc/bind/named.conf.local

include "/etc/bind/named.conf.options";

// prime the server with knowledge of the root servers
zone "." {
 type hint;
 file "/etc/bind/db.root";
};

// be authoritative for the localhost forward and reverse zones, and for
// broadcast zones as per RFC 1912

zone "localhost" {
 type master;
 file "/etc/bind/db.local";
};

zone "127.in-addr.arpa" {
 type master;
 file "/etc/bind/db.127";
};

zone "0.in-addr.arpa" {
 type master;
 file "/etc/bind/db.0";
};

zone "255.in-addr.arpa" {
 type master;
 file "/etc/bind/db.255";
};

// zone "com" { type delegation-only; };
// zone "net" { type delegation-only; };
// From the release notes:
// Because many of our users are uncomfortable receiving undelegated answers
// from root or top level domains, other than a few for whom that behaviour

Setting Up BIND 865

// has been trusted and expected for quite some length of time, we have now
// introduced the "root-delegations-only" feature which applies delegation-only
// logic to all top level domains, and to the root domain. An exception list
// should be specified, including "MUSEUM" and "DE", and any other top level
// domains from whom undelegated responses are expected and trusted.
// root-delegation-only exclude { "DE"; "MUSEUM"; };

include "/etc/bind/named.conf.local";

Options clause The Options clause is in named.conf.options; named.conf incorporates it with an
include statement.

Zone clauses The named.conf file holds five Zone clauses, each of which uses an absolute filename
to locate its zone file. Any relative filenames appearing in this file would be relative
to /var/cache/bind, which the directory statement in named.conf.options points to.

• . (The name of the zone is a period.) The hint zone. Specifies that when
the server starts or does not know which server to query, it should look in
the /etc/bind/db.root file to find the addresses of authoritative servers for
the root domain.

• localhost Sets up the normal server on the local system.

• 127.in-addr.arpa Sets up IPv4 reverse name resolution.

• 0.in-addr.arpa Specifies that the local server handle reverse lookup for IP
addresses starting with 0, thereby preventing the local server from looking
upstream for this information.

• 255.in-addr.arpa Specifies that the local server handle reverse lookup for
IP addresses starting with 255, preventing the local server from looking
upstream for this information.

named.conf.options: Options File

The named.conf.options file, which named.conf incorporates with an include state-
ment, holds mostly comments with the following uncommented statements:

directory "/var/cache/bind";

auth-nxdomain no; # conform to RFC1035

listen-on-v6 { any; };

allow-recursion { localnets; };

The directory statement specifies the directory that all relative pathnames in this
file, named.conf, and all other files incorporated in named.conf are relative to. If you
are running named in a chroot jail, this directory is located under /var/lib/named
(page 870). The auth-nxdomain no statement does not allow the server to answer
authoritatively on NXDOMAIN (nonexistent domain error; see negative caching
[page 1049]) answers. The listen-on-v6 { any } statement enables the server to listen
for IPv6 queries on any address. The allow-recursion { localnets } statement specifies
that the server perform recursive queries for systems on the local network (page 861).

866 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

Zone Files

There are five zone files in /etc/bind, each of which corresponds to one of the Zone
clauses in named.conf. This section describes three of these zone files.

The root zone:
db.root

The hint zone file, db.root, is similar to the output of a dig @a.root-servers.net.
command, which does not change frequently (check the date on the next-to-last
line). It specifies authoritative servers for the root domain. The DNS server initial-
izes its cache from this file and can determine an authoritative server for any
domain from this information.

The root zone is required only for servers that answer recursive queries: If a server
responds to recursive queries, it needs to perform a series of iterative queries start-
ing at the root domain. Without the root domain hint file, it would not know where
to find the root domain servers.

$ cat /etc/bind/db.root
; <<>> DiG 9.2.3 <<>> ns . @a.root-servers.net.
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18944
;; flags: qr aa rd; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13

;; QUESTION SECTION:
;. IN NS

;; ANSWER SECTION:
. 518400 IN NS A.ROOT-SERVERS.NET.
. 518400 IN NS B.ROOT-SERVERS.NET.
. 518400 IN NS C.ROOT-SERVERS.NET.
. 518400 IN NS D.ROOT-SERVERS.NET.
. 518400 IN NS E.ROOT-SERVERS.NET.
. 518400 IN NS F.ROOT-SERVERS.NET.
. 518400 IN NS G.ROOT-SERVERS.NET.
. 518400 IN NS H.ROOT-SERVERS.NET.
. 518400 IN NS I.ROOT-SERVERS.NET.
. 518400 IN NS J.ROOT-SERVERS.NET.
. 518400 IN NS K.ROOT-SERVERS.NET.
. 518400 IN NS L.ROOT-SERVERS.NET.
. 518400 IN NS M.ROOT-SERVERS.NET.

;; ADDITIONAL SECTION:
A.ROOT-SERVERS.NET. 3600000 IN A 198.41.0.4
B.ROOT-SERVERS.NET. 3600000 IN A 192.228.79.201
C.ROOT-SERVERS.NET. 3600000 IN A 192.33.4.12
D.ROOT-SERVERS.NET. 3600000 IN A 128.8.10.90
E.ROOT-SERVERS.NET. 3600000 IN A 192.203.230.10
F.ROOT-SERVERS.NET. 3600000 IN A 192.5.5.241
G.ROOT-SERVERS.NET. 3600000 IN A 192.112.36.4
H.ROOT-SERVERS.NET. 3600000 IN A 128.63.2.53
I.ROOT-SERVERS.NET. 3600000 IN A 192.36.148.17
J.ROOT-SERVERS.NET. 3600000 IN A 192.58.128.30
K.ROOT-SERVERS.NET. 3600000 IN A 193.0.14.129
L.ROOT-SERVERS.NET. 3600000 IN A 198.32.64.12
M.ROOT-SERVERS.NET. 3600000 IN A 202.12.27.33

Setting Up BIND 867

;; Query time: 81 msec
;; SERVER: 198.41.0.4#53(a.root-servers.net.)
;; WHEN: Sun Feb 1 11:27:14 2004
;; MSG SIZE rcvd: 436

db.local The db.local zone file defines the localhost zone, the normal server on the local sys-
tem. It starts with a $TTL directive and holds three resource records: SOA, NS, and
A. The $TTL directive in the following file specifies that the default time to live for
the resource records specified in this file is 604,800 seconds (one week):

$ cat /etc/bind/db.local
;
; BIND data file for local loopback interface
;
$TTL 604800
@ IN SOA localhost. root.localhost. (
 1 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
;
@ IN NS localhost.
@ IN A 127.0.0.1

As explained earlier, the @ stands for the origin (the name of the zone), which is
localhost, as specified in named.conf. The last two lines are the NS resource record
that specifies the nameserver for the zone as localhost and the A resource record that
specifies the IPv4 address of the host as 127.0.0.1

db.127 The db.127 zone file provides information about the 127.in-addr.arpa reverse
lookup zone. It follows the same pattern as the localhost zone file, with one excep-
tion: Instead of the A resource record, this file has a PTR record that provides the
name the zone associates with the IP address. The PTR resource record specifies the
name 1.0.0, which equates the system at address 1.0.0 in the zone (127.in-addr.arpa)
with the name localhost, which has an IP address of 127.0.0.1:

$ cat /etc/bind/db.127
;
; BIND reverse data file for local loopback interface
;
$TTL 604800
@ IN SOA localhost. root.localhost. (
 1 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
;
@ IN NS localhost.
1.0.0 IN PTR localhost.

The other zone files perform similar functions as described under “Zone clauses”
on page 865. Once named is started (page 857), you can use the tests described
under “Troubleshooting” on page 872 to make sure the server is working.

868 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

DNS Glue Records

It is common practice to put the nameserver for a zone inside the zone it serves. For
example, you might put the nameserver for the zone starting at site1.example.com
(Figure 25-3, page 849) in ns.site1.example.com. When a DNS cache tries to resolve
www.site1.example.com, the authoritative server for example.com gives it the NS
record pointing to ns.site1.example.com. In an attempt to resolve ns.site1.example.com,
the DNS cache again queries the authoritative server for example.com, which points
back to ns.site1.example.com. This loop does not allow ns.site1.example.com to be
resolved.

The simplest solution to this problem is to prohibit any nameserver from residing
inside the zone it points to. Because every zone is a child of the root zone, this solution
means every domain would be served by the root server and would not scale at all.

A better solution is to use glue records. A glue record is an A record for a name-
server that is returned in addition to the NS record when an NS query is performed.
Because the A record provides an IP address for the nameserver, it does not need to
be resolved and does not create the problematic loop.

The nameserver setup for ubuntu.com illustrates the use of glue records. When you
query for NS records for ubuntu.com, DNS returns three NS records. In addition, it
returns three A records that provide the IP addresses for two of the hosts that the
NS records point to (the AAAA record provides an IPv6 address):

$ dig -t NS ubuntu.com
...
;; QUESTION SECTION:
;ubuntu.com. IN NS

;; ANSWER SECTION:
ubuntu.com. 10800 IN NS ns.ubuntu.com.
ubuntu.com. 10800 IN NS ns0.blackcatnetworks.co.uk.
ubuntu.com. 10800 IN NS ns1.blackcatnetworks.co.uk.

;; ADDITIONAL SECTION:
ns0.blackcatnetworks.co.uk. 160011 IN A 193.201.200.34
ns0.blackcatnetworks.co.uk. 160011 IN AAAA 2001:1b40:0:20::34
ns1.blackcatnetworks.co.uk. 160011 IN A 69.55.225.40

You can create a glue record by providing an A record for the nameserver inside the
delegating domain’s zone file:

site1.example.com IN NS ns.site1.example.com
ns.site1.example.com IN A 1.2.3.4

TSIGs: Transaction Signatures

Interaction between DNS components is based on the query–response model: One
part queries another and receives a reply. Traditionally a server determines whether
and how to reply to a query based on the client’s IP address. IP spoofing

Setting Up BIND 869

(page 1043) is relatively easy to carry out, making this situation less than ideal.
Recent versions of BIND support transaction signatures (TSIGs), which allow two
systems to establish a trust relationship by using a shared secret key.

TSIGs provide an additional layer of authentication between master and slave serv-
ers for a zone. When a slave server is located at a different site than the master
server (as it should be), a malicious person operating a router between the sites can
spoof the IP address of the master server and change the DNS data on the slave (a
man-in-the-middle scenario). With TSIGs, this person would need to know the
secret key to change the DNS data on the slave.

Creating a Secret Key

A secret key is an encoded string of up to 512 bits. The dnssec-keygen utility, which is
included with BIND, generates this key. The following command generates a 512-bit
random key using MD5, a one-way hash function (page 1051):

$ /usr/sbin/dnssec-keygen -a hmac-md5 -b 512 -n HOST keyname
Kkeyname.+157+47586

In the preceding command, replace keyname with a string that is unique yet mean-
ingful. This command creates a key in a file whose name is similar to the string
Kkeyname.+157+47586.private, where keyname is replaced by the name of the key,
+157 indicates the algorithm used, and +47586 is a hash of the key. If you run the
same command again, the hash part will be different.

The key file is not used directly. Use cat with an argument of the private filename to
display the algorithm and key information you will need in the next step:

$ cat Kkeyname.+157+47586.private
Private-key-format: v1.2
Algorithm: 157 (HMAC_MD5)
Key: uNPDouqVwR7fvo/zFyjkqKbQhcTd6Prm...

Using the Shared Secret

The next step is to tell the nameservers about the shared secret by inserting the fol-
lowing code in the /etc/named.conf file on both servers. This code is a top-level
clause; insert it at the end of the named.conf.local file (which is included in
named.conf):

key keyname {
algorithm "hmac-md5";
secret "uNPDouqVwR7fvo/zFyjkqKbQhcTd6Prm...";

};

The keyname is the name of the key you created. The algorithm is the string that
follows algorithm in the output of cat, above. The secret is the string that follows
secret in the output of cat. You must enclose each string within double quotation
marks. Be careful when you copy the key; although it is long, you must not break it
into multiple lines.

870 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

Because key names are unique, you can insert any number of Keys clauses into
named.conf. To keep the key a secret, make sure users other than bind cannot read
it: Either give named.conf.local permissions such that no one except bind has access
to it or put the key in a file that only bind can read and incorporate it in
named.conf.local using an include statement.

Once both servers know about the key, use a server statement in named.conf.local
to tell them when to use it:

server 1.2.3.4 {
1.2.3.4 is the IP address of the other server using this key

keys {
"keyname";

};
};

Each server must have a Server clause, each containing the IP address of the other
server. The servers will now communicate with each other only if they first authen-
ticate each other using the secret key.

Running BIND in a chroot Jail

To increase security, you can run BIND in a chroot jail. See page 534 for information
about the security advantages of, and ways to set up, a chroot jail. The bind-chroot.sh
shell script (below), which sets up BIND to run in a chroot jail, creates a directory
named /var/lib/named that takes the place of the root directory (/) for all BIND
files. The bind-chroot.sh shell installs the bind9 package if it is not already installed
and then runs the bind9 init script to stop named. It then adds the –t option to the
named options in /etc/default/bind9 so named chroots to the /var/lib/named direc-
tory before it reads its configuration files. The named daemon is already set up to
run as the user bind (–u bind).

After creating the necessary directories in /var/lib/named, the script moves the files
from /etc/bind to /var/lib/named, creates a symbolic link from /var/lib/named back
to /etc/bind, and creates and sets permissions on devices BIND may need. Next,
bind-chroot.sh adds a line to the syslogd configuration file so messages from named
that are not sent elsewhere go to the socket that named uses to send messages to sys-
logd. Finally, the script restarts syslogd, starts named, and displays the end of the
syslog file.

$ cat bind-chroot.sh
#!/bin/bash

install and stop bind
apt-get -y install bind9
/etc/init.d/bind9 stop

add -t /var/lib/named to OPTIONS in /etc/default/bind9
sed -i 's:OPTIONS="\(.*\)":OPTIONS="\1\ -t /var/lib/named":' /etc/default/bind9

Setting Up BIND 871

make the chroot directories
mkdir -p /var/lib/named/{etc,dev,var/cache/bind,var/run/bind/run}

move the configuration to the chroot and link back to /etc
mv /etc/bind /var/lib/named/etc
ln -s /var/lib/named/etc/bind /etc/bind

create devices and set permissions
mknod /var/lib/named/dev/null c 1 3
mknod /var/lib/named/dev/random c 1 8
chmod 666 /var/lib/named/dev/{null,random}
chown -R bind:bind /var/lib/named/var/*
chown -R bind:bind /var/lib/named/etc/bind

add -a /var/lib/named/dev/log to SYSLOGD in /etc/default/syslogd
so messages go to the socket that named uses to send messages to syslogd
sed -i 's:^SYSLOGD="\(.*\)":SYSLOGD="\1\ -a /var/lib/named/dev/log":' /etc/default/syslogd

restart syslogd and start bind
/etc/init.d/sysklogd restart
/etc/init.d/bind9 start

check that everything started fine
tail /var/log/syslog

Following is the output of the execution of bind-chroot.sh. You must run this script
while working with root privileges. You must also have execute permission to run
the script. In the example, the bind-chroot.sh file is in the working directory.

$ sudo ./bind-chroot.sh
Reading package lists... Done
Building dependency tree
Reading state information... Done
bind9 is already the newest version.
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
 * Stopping domain name service... bind [OK]
 * Restarting system log daemon... [OK]
 * Starting domain name service... bind [OK]
Apr 26 11:00:02 plum named[9301]: listening on IPv6 interfaces, port 53
Apr 26 11:00:02 plum named[9301]: listening on IPv4 interface lo, 127.0.0.1#53
Apr 26 11:00:02 plum named[9301]: listening on IPv4 interface eth0, 192.168.0.10#53
Apr 26 11:00:02 plum named[9301]: command channel listening on 127.0.0.1#953
Apr 26 11:00:02 plum named[9301]: command channel listening on ::1#953
Apr 26 11:00:02 plum named[9301]: zone 0.in-addr.arpa/IN: loaded serial 1
Apr 26 11:00:02 plum named[9301]: zone 127.in-addr.arpa/IN: loaded serial 1
Apr 26 11:00:02 plum named[9301]: zone 255.in-addr.arpa/IN: loaded serial 1
Apr 26 11:00:02 plum named[9301]: zone localhost/IN: loaded serial 1
Apr 26 11:00:02 plum named[9301]: running

After you run this script, all files that control BIND are located within this chroot
jail and the filenames used in this chapter are symbolic links to the files in the
chroot jail. See the command and output on the next page.

872 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

$ ls -l /etc/bind /var/lib/named/etc/bind
lrwxrwxrwx 1 root root 23 Apr 26 11:00 /etc/bind -> /var/lib/named/etc/bind

/var/lib/named/etc/bind:
total 44
-rw-r--r-- 1 bind bind 237 Feb 20 05:40 db.0
-rw-r--r-- 1 bind bind 271 Feb 20 05:40 db.127
-rw-r--r-- 1 bind bind 237 Feb 20 05:40 db.255
-rw-r--r-- 1 bind bind 353 Feb 20 05:40 db.empty
-rw-r--r-- 1 bind bind 256 Feb 20 05:40 db.local
-rw-r--r-- 1 bind bind 1507 Feb 20 05:40 db.root
-rw-r--r-- 1 bind bind 1611 Feb 20 05:40 named.conf
-rw-r--r-- 1 bind bind 165 Feb 20 05:40 named.conf.local
-rw-r--r-- 1 bind bind 1458 Feb 20 05:40 named.conf.options
-rw-r----- 1 bind bind 77 Apr 25 15:42 rndc.key
-rw-r--r-- 1 bind bind 1317 Feb 20 05:40 zones.rfc1918

BIND is running in a chroot jail in /var/lib/named. Because the /etc/bind directory is
now a link to /var/lib/named, you can make changes to BIND from either location.

Troubleshooting

When you start a DNS cache, the /var/log/syslog file contains lines similar to the
following. Other types of DNS servers display similar messages.

$ cat /var/log/syslog
...
Apr 26 11:00:02 plum named[9301]: starting BIND 9.3.4 -u bind
Apr 26 11:00:02 plum named[9301]: found 1 CPU, using 1 worker thread
Apr 26 11:00:02 plum named[9301]: loading configuration from '/etc/bind/named.conf'
Apr 26 11:00:02 plum named[9301]: listening on IPv6 interfaces, port 53
Apr 26 11:00:02 plum named[9301]: listening on IPv4 interface lo, 127.0.0.1#53
Apr 26 11:00:02 plum named[9301]: listening on IPv4 interface eth0, 192.168.0.10#53
Apr 26 11:00:02 plum named[9301]: command channel listening on 127.0.0.1#953
Apr 26 11:00:02 plum named[9301]: command channel listening on ::1#953
Apr 26 11:00:02 plum named[9301]: zone 0.in-addr.arpa/IN: loaded serial 1
Apr 26 11:00:02 plum named[9301]: zone 127.in-addr.arpa/IN: loaded serial 1
Apr 26 11:00:02 plum named[9301]: zone 255.in-addr.arpa/IN: loaded serial 1
Apr 26 11:00:02 plum named[9301]: zone localhost/IN: loaded serial 1
Apr 26 11:00:02 plum named[9301]: running

When you create or update DNS information, you can use dig or host to test
whether the server works as planned. The most useful part of the output from dig is
usually the answer section, which gives the nameserver’s reply to your query:

A Full-Functioned Nameserver 873

$ dig example.com
...
;; ANSWER SECTION:
example.com. 72683 IN A 192.0.34.166
...

The preceding output shows that the example.com. domain has a single A record
that points to 192.0.34.166. The TTL of this record, which tells you how long the
record can be held in cache, is 72,683 seconds (slightly less than one day). You can
also use dig to query other record types by using the –t option followed by the type
of record you want to query for (–t works with host, too):

$ dig -t MX ubuntu.com
...
;; ANSWER SECTION:
ubuntu.com. 3600 IN MX 10 fiordland.ubuntu.com.
...

If you query for a domain that does not exist, dig returns the SOA record for the
authority section of the highest-level domain in your query that does exist:

$ dig domaindoesnotexist.info
...
;; AUTHORITY SECTION:
info. 7200 IN SOA a9.info.afilias-nst.info. dns.afilias.info. ...
...

Because it tells you the last zone that was queried correctly, this information can be
useful in tracing faults.

TSIGs If two servers using TSIGs (page 868) fail to communicate, confirm that the time is
the same on both servers. The TSIG authentication mechanism is dependent on the
current time. If the clocks on the two servers are not synchronized, TSIG will fail.
Consider setting up NTP (page 1051) on the servers to prevent this problem.

A Full-Functioned Nameserver

Because the IP addresses used in this example are part of the private address space
(page 1054), you can copy the example and run the server without affecting global
DNS. Also, to prevent contamination of the global DNS, each zone has the notify
option set to NO. When you build a nameserver that is integrated with the Internet,
you will want to use IP addresses that are unique to your installation. You may
want to change the settings of the notify statements.

874 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

named.conf The named.conf file in this example limits the IP addresses that named answers que-
ries from and sets up logging:

$ cat /etc/bind/named.conf
options {

directory "/etc/bind";
// recursion NO;

allow-query {127.0.0.1; 192.168.0.0/24;};
};

zone "." IN {
type hint;
file "db.root";

};

zone "0.168.192.in-addr.arpa" IN {
type master;
file "named.conf.local";
notify NO;

};

zone "sam.net" IN {
type master;
file "sam.net";
notify NO;

};

logging{
channel "misc" {

file "/var/log/bind/misc.log" versions 4 size 4m;
print-time YES;
print-severity YES;
print-category YES;

};
channel "query" {

file "/var/log/bind/query.log" versions 4 size 4m;
print-time YES;
print-severity NO;
print-category NO;

};
category default {

"misc";
};
category queries {

"query";
};

};

The allow-query statement in the Options clause specifies the IP addresses of sys-
tems the server answers queries from. You must include the local system as
127.0.0.1 if it will be querying the server. The server is authoritative for the zone
sam.net; the zone file for sam.net is /etc/bind/sam.net.

A Full-Functioned Nameserver 875

Logging Logging is turned on by the Logging clause. Logging is separate from named mes-
sages, which go to syslogd. The Logging clause in the preceding example opens
two logging channels: one that logs information to /var/log/bind/misc.log and one
that logs information to /var/log/bind/query.log. When either of these logs grows
to 4 megabytes (size 4m in the file statement), it is renamed by appending .1 to its
filename and a new log is started. The numbers at the ends of other, similarly
named logs are incremented. Any log that would have a larger number than that
specified by the versions keyword (4 in the example) is removed. See logrotate
(page 684) for another way to maintain log files.

The print statements determine whether the time, severity, and category of the infor-
mation are sent to the log; specify each as YES or NO. The category determines what
information is logged to the channel. In the previous example, default information is
sent to the misc channel and queries are sent to the query channel. Refer to the
named.conf man page for more choices.

named.conf.local The origin for the reverse zone file (named.conf.local) is 0.168.192.in-addr.arpa (as
specified in the Zone clause that refers to this file in named.conf). Following the
SOA and NS resource records, the first three PTR resource records equate address 1
in the subnet 0.168.192.in-addr.arpa (192.168.0.1) with the names gw.sam.net.,
www.sam.net. , and ftp.sam.net., respectively. The next three PTR records equate
192.168.0.3 with mark.sam.net., 192.168.0.4 with mail.sam.net. , and 192.168.0.6
with ns.sam.net..

$ cat /etc/bind/named.conf.local
$TTL 3D
@ IN SOA ns.sam.net. mgs@sobell.com. (

2007110501 ; serial
8H ; refresh
2H ; retry
4W ; expire
1D) ; minimum

IN NS ns.sam.net.
1 IN PTR gw.sam.net.
1 IN PTR www.sam.net.
1 IN PTR ftp.sam.net.
3 IN PTR mark.sam.net.
4 IN PTR mail.sam.net.
6 IN PTR ns.sam.net.

sam.net The zone file for sam.net takes advantage of many BIND features and includes TXT
(page 854), CNAME (page 852), and MX (page 852) resource records. When you query
for resource records, named returns the TXT resource record along with the records you
requested. The first of the two NS records specifies an unqualified name (ns) to which
BIND appends the zone name (sam.net), yielding an FQDN of ns.sam.net. The second
nameserver is specified with an FQDN name that BIND does not alter. The MX records
specify mail servers in a similar manner and include a priority number at the start of the
data field, where lower numbers indicate preferred servers.

www.sam.net

876 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

$ cat sam.net
; zone "sam.net"
;
$TTL 3D
@ IN SOA ns.sam.net. mgs@sobell.com. (

200711051 ; serial
8H ; refresh
2H ; retry
4W ; expire
1D) ; minimum

TXT "Sobell Associates Inc."
NS ns ; Nameserver address (unqualified)
NS ns.max.net.; Nameserver address (qualified)
MX 10 mail ; Mail exchange (primary/unqualified)
MX 20 mail.max.net.; Mail exchange (2nd/qualified)

localhost IN A 127.0.0.1

www IN CNAME ns
ftp IN CNAME ns

gw IN A 192.168.0.1
TXT "Router"

ns IN A 192.168.0.6
MX 10 mail
MX 20 mail.max.net.

mark IN A 192.168.0.3
MX 10 mail
MX 20 mail.max.net.
TXT "MGS"

mail IN A 192.168.0.4
MX 10 mail
MX 20 mail.max.net.

Some resource records have a value in the Name field; those without a name inherit
the name from the previous resource record. In a similar manner, the previous
resource record may have an inherited name value, and so on. The five resource
records following the SOA resource record inherit the @, or zone name, from the
SOA resource record. These resource records pertain to the zone as a whole. In the
preceding example, the first TXT resource record inherits its name from the SOA
resource record; it is the TXT resource record for the sam.net zone (give the com-
mand host –t TXT sam.net to display the TXT resource record).

Following these five resource records are resource records that pertain to a domain
within the zone. For example, the MX resource records that follow the A resource
record with the Name field set to mark are resource records for the mark.sam.net.
domain.

A Slave Server 877

The A resource record for localhost is followed by two CNAME resource records that
specify www(.sam.net.) and ftp(.sam.net.) as aliases for the nameserver ns.sam.net..
For example, a user connecting to ftp.sam.net will connect to 192.168.0.6. The
resource records named gw, ns, mark, and mail are resource records for domains
within the sam.net zone.

Log files Before restarting named, create the directory for the log files and give it permissions
and ownership as shown below. If you are running named in a chroot jail, create the
bind directory in /var/lib/named/var/log.

$ sudo mkdir /var/log/bind
$ sudo chown bind:bind /var/log/bind
$ ls -ld /var/log/bind
drwxr-xr-x 2 bind bind 4096 Apr 26 17:43 /var/log/bind

With the log directory in place, and the named.conf, db.root, named.conf.local, and
sam.net zone files in /etc/bind (or in /var/lib/named/etc/bind if you are running
named in a chroot jail), restart named and check the log files. The file /var/log/syslog
should show something like the following (the example shows named started in a
chroot jail):

cat /var/log/syslog
...
Apr 26 18:05:19 plum named[22119]: starting BIND 9.3.4 -u bind -t /var/lib/named
Apr 26 18:05:19 plum named[22119]: found 1 CPU, using 1 worker thread
Apr 26 18:05:19 plum named[22119]: loading configuration from '/etc/bind/named.conf'
Apr 26 18:05:19 plum named[22119]: listening on IPv4 interface lo, 127.0.0.1#53
Apr 26 18:05:19 plum named[22119]: listening on IPv4 interface eth0, 192.168.0.10#53
Apr 26 18:05:19 plum named[22119]: command channel listening on 127.0.0.1#953
Apr 26 18:05:19 plum named[22119]: command channel listening on ::1#953
...

The misc.log file may show errors that do not appear in the syslog file:

cat /var/log/bind/misc.log
... 01:05:19.932 general: info: zone 0.168.192.in-addr.arpa/IN: loaded serial 2007110501
... 01:05:19.933 general: info: zone sam.net/IN: loaded serial 200711051
... 01:05:19.933 general: notice: running

A Slave Server

To set up a slave server, copy the /etc/bind/named.conf file from the master server
to the slave server, replacing the type master statement with type slave and adding a
masters { 1.2.3.4; }; directive. Remove any zones the slave server will not be acting
as a slave for, including the root (.) zone, if the slave server will not respond to
recursive queries. If necessary, create the /var/log/bind directory for log files as
explained at the end of the previous section.

878 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

notify statement Slave servers copy zone information from the primary master server or another
slave server. The notify statement specifies whether you want a master server to
notify slave servers when information on the master server changes. Set the (global)
value of notify in the Options clause or set it within a Zone clause, which overrides
a global setting for a given zone. The format is

notify YES | NO | EXPLICIT

YES causes the master server to notify all slaves listed in NS resource records for the
zone as well as servers at IP addresses listed in an also-notify statement. When you
set notify to EXPLICIT, the server notifies servers listed in the also-notify statement
only. NO turns off notification.

If you specify notify YES on the master server, the zone files on the slave server will be
updated each time you change the serial field of the SOA resource record in a zone.
You must manually distribute changes to /etc/bind/named.conf and included files.

A Split Horizon Server

Assume you want to set up a LAN that provides all of its systems and services to local
users on internal systems, which may be behind a firewall, but only certain public ser-
vices—such as Web, FTP, and mail—to Internet (public) users. A split horizon (also
called DMZ) DNS server takes care of this situation by treating queries from internal
systems differently from queries from public systems (systems on the Internet).

View clauses BIND 9 introduced View clauses in named.conf. View clauses facilitate the implemen-
tation of a split DNS server. Each view provides a different perspective of the DNS
namespace to a group of clients. When there is no View clause, all zones specified in
named.conf are part of the implicit default view.

Assume that an office has several systems on a LAN and public Web, FTP, DNS, and
mail servers. The single connection to the Internet is NATed (page 1049) so it is
shared by the local systems and the servers. The system connected directly to the
Internet is a router, firewall, and server. This scenario takes advantage of the View
clauses in named.conf and supports separate secondary nameservers for local and
public users. Although public users need access to the DNS server as the authority
on the domain that supports the servers, they do not require the DNS server to sup-
port recursive queries. Not supporting recursion for public users limits the load on
the DNS server and the Internet connection. For security reasons, public users must
not have access to information about local systems other than the servers. Local
users should have access to information about local systems and should be able to
use the DNS server recursively.

Figure 25-6 shows that the server responds differently to queries from the LAN and
from the Internet.

The firestarter (page 886) or iptables utility (page 896) controls which ports on
which systems users on internal and external systems can access. DNS controls
which systems are advertised to which users.

A Split Horizon Server 879

The named.conf file has four clauses: an Options clause, two View clauses, and a
Logging clause. The Options clause specifies that the zone files be located in the
/etc/bind directory. The View clauses specify the characteristics and zones that a
resolver is given access to, which depend on the resolver’s address. One zone is for
use by the LAN/local users; the other is used by Internet/public users. The Logging
clause sets up the misc2.log file for default messages.

There are several ways to specify which clients see a view. The following named.conf
file uses match-clients statements:

$ cat /etc/bind/named.conf
options {

directory "/etc/bind";
}; //end options

view "local" IN { // start local view
match-clients { 127.0.0.1; 192.168.0.0/24;};
recursion YES;

zone"zach.net" IN {
type master;
file "local.net";
notify YES;

};

zone "0.168.192.in-addr.arpa" IN {
type master;
file "named.local";
notify YES;

};

zone "." IN {
type hint;
file "named.ca";

};

}; // end local view

Figure 25-6 A split horizon DNS server

Internet LAN

Do you know the address
of grape.zach.net?

No, it does not exist.

Do you know the address
of www.zach.net?

Yes, it is 66.187.232.50

Do you know the address
of grape.zach.net?

Yes, it is 192.168.0.3.

Do you know the address
of www.zach.net?

Yes, it is 66.187.232.50

www.zach.net
www.zach.net

880 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

view "public" IN { // start public view
match-clients { "all";};
recursion NO;

zone"zach.net" IN {
type master;
file "public.net";
notify YES;

};

zone "0.168.192.in-addr.arpa" IN {
type master;
file "named.public";
notify YES;

};
zone "." IN {

type hint;
file "named.ca";

};

}; // end public view

logging{
channel "misc" {

file "/var/log/bind/misc2.log" versions 2 size 1m;
print-time YES;
print-severity YES;
print-category YES;

};
category default {

"misc";
};

}; //end logging

The ordering of View clauses within named.conf is critical because the view that is
presented to a client is the first view that the client matches. The preceding
named.conf file holds two View clauses: one for local users and one for public users,
in that order. Local users are defined to be those on the 192.168.0.0/24 subnet or
localhost (127.0.0.1); public users are defined to be any users. If you reversed the
order of the View clauses, all users—including local users—would get the view
intended for the public and no users would see the local view.

Many statements from the Options clause can be used within View clauses, where
they override statements in the (global) Options clause. The recursion statement,
which can appear within an Options clause, appears in each View clause. This
named.conf file sets up a server that provides recursive answers to queries that orig-
inate locally and iterative answers to queries from the public. This setup provides
quick, complete answers to local users, limiting the network and processor band-
width that is devoted to other users while continuing to provide authoritative name
service for the local servers.

A Split Horizon Server 881

To make named.conf easier to understand and maintain, zones in different View
clauses can have the same name but different zone files. Both the local and public
View clauses in the example have zones named zach.net: The public zach.net zone
file is named public.net and the local one is named local.net.

The Logging clause is described on page 875.

The zone files defining zach.net are similar to the ones in the previous examples; the
public file is a subset of the local one. Following the SOA resource record in both
files is a TXT, two NS, and two MX resource records. Next are three CNAME
resource records that direct queries addressed to www.zach.net, ftp.zach.net, and
mail.zach.net to the system named ns.zach.net. The next four resource records spec-
ify two nameserver addresses and two mail servers for the ns.zach.net domain.

The final four resource records appear in the local zach.net zone file and not in
the public zone file; they are address (A) resource records for local systems.
Instead of keeping this information in /etc/hosts files on each system, you can
keep it on the DNS server, where it can be updated easily. When you use DNS
instead of /etc/hosts, you must change the hosts line in /etc/nsswitch.conf
(page 542) accordingly.

$ cat local.net
; zach.net local zone file
;
$TTL 3D
@ IN SOA ns.zach.net. mgs@sobell.com. (

200711118 ; serial
8H ; refresh
2H ; retry
4W ; expire
1D) ; minimum

IN TXT "Sobell Associates Inc."
IN NS ns ; Nameserver address (unqualified)
IN NS ns.speedy.net.; Nameserver address (qualified)
IN MX 10 mail ; Mail exchange (primary/unqualified)
IN MX 20 mail.max.net.; Mail exchange (2nd/qualified)

www IN CNAME ns
ftp IN CNAME ns
mail IN CNAME ns

ns IN A 192.168.0.1
IN A 192.168.0.6
IN MX 10 mail
IN MX 20 mail.max.net.

speedy IN A 192.168.0.1
grape IN A 192.168.0.3
potato IN A 192.168.0.4
peach IN A 192.168.0.6

www.zach.net

882 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

The public version of the zach.net zone file follows:

$ cat public.net
; zach.net public zone file
;
$TTL 3D
@ IN SOA ns.zach.net. mgs@sobell.com. (

200711118 ; serial
8H ; refresh
2H ; retry
4W ; expire
1D) ; minimum

IN TXT "Sobell Associates Inc."
IN NS ns ; Nameserver address (unqualified)
IN NS ns.speedy.net.; Nameserver address (qualified)

IN MX 10 mail ; Mail exchange (primary/unqualified)
IN MX 20 mail.max.net.; Mail exchange (2nd/qualified)

www IN CNAME ns
ftp IN CNAME ns
mail IN CNAME ns

ns IN A 192.168.0.1
IN A 192.168.0.6
IN MX 10 mail
IN MX 20 mail.max.net.

Here there are two reverse zone files, each of which starts with SOA and NS
resource records, followed by PTR resource records for each of the names of the
servers. The local version of this file also lists the names of the local systems:

$ cat named.local
;"0.168.192.in-addr.arpa" reverse zone file
;
$TTL 3D
@ IN SOA ns.zach.net. mgs@sobell.com. (

2007110501 ; serial
8H ; refresh
2H ; retry
4W ; expire
1D) ; minimum

IN NS ns.zach.net.
IN NS ns.speedy.net.

1 IN PTR gw.zach.net.
1 IN PTR www.zach.net.
1 IN PTR ftp.zach.net.
1 IN PTR mail.zach.net.
1 IN PTR speedy.zach.net.
3 IN PTR grape.zach.net.
4 IN PTR potato.zach.net.
6 IN PTR peach.zach.net.

Exercises 883

Chapter Summary

DNS maps domain names to IP addresses, and vice versa. It is implemented as a
hierarchical, distributed, and replicated database on the Internet. You can improve
the security of BIND, which implements DNS, by running it inside a chroot jail and
using transaction signatures (TSIGs).

When a program on the local system needs to look up an IP address that corre-
sponds to a domain name, it calls the resolver. The resolver queries the local DNS
cache, if available, and then queries DNS servers on the LAN or Internet. There are
two types of queries: iterative and recursive. When a server responds to an iterative
query, it returns whatever information it has at hand; it does not query other serv-
ers. Recursive queries cause a server to query other servers if necessary to respond
with an answer.

There are three types of servers. Master servers, which hold the master copy of zone
data, are authoritative for a zone. Slave servers are also authoritative and copy their
data from a master server or other slave servers. DNS caches are not authoritative
and either answer queries from cache or forward queries to another server.

The DNS database holds resource records for domains. Many types of resource
records exist, including A (address), MX (mail exchange), NS (nameserver), PTR
(pointer for performing reverse name resolution), and SOA (start of authority,
which describes the zone) records.

Exercises

1. What kind of server responds to recursive queries? How does this server work?

2. What kind of DNS record is likely to be returned when a Web browser
tries to resolve the domain part of a URI?

3. What are MX resource records for?

4. How would you find the IP address of example.com from the com-
mand line?

5. How would you instruct a Linux system to use the local network’s DNS
cache, located at 192.168.1.254, or the ISP’s DNS cache, located at
1.2.3.4, if the LAN nameserver is unavailable?

6. How would you instruct a DNS server to respond only to queries from the
137.44.* IP range?

7. How might a resolver attempt to find the IP address of the example domain?

884 Chapter 25 DNS/BIND: Tracking Domain Names and Addresses

Advanced Exercises

8. How would you set up a private domain name hierarchy that does not
include any of the official InterNIC-assigned domain names?

9. Which part of DNS is most vulnerable to an attack from a malicious user
and why?

10. It is often irritating to have to wait for DNS records to update around the
world when you change DNS entries. You could prevent this delay by set-
ting the TTL to a small number. Why is setting the TTL to a small number
a bad idea?

11. Outline a method by which DNS could be used to support encryption.

885885

26Chapter26The firestarter utility is a user-friendly, graphical front-end for
iptables; iptables builds and manipulates network packet filter-
ing (page 1052) rules in the Linux kernel. You can use firestarter,
or iptables directly, to create a firewall that protects a system
from malicious users and to set up NAT (Network Address
Translation, page 1049), which can allow several systems to
share a single Internet connection. In addition, firestarter can
control a DHCP server.

The iptables utility is flexible and extensible, allowing you to
set up both simple and complex network packet filtering
solutions. It provides connection tracking (stateful packet fil-
tering), allowing you to handle packets (page 1051) based on
the state of their connection. For example, you can set up
rules that reject inbound packets trying to open a new con-
nection and accept inbound packets that are responses to
locally initiated connections. Many features not included in
the base iptables package are available as patches via the
patch-o-matic program.

In This Chapter

JumpStart: Building a Firewall
Using the firestarter Firewall
Wizard . 888

firestarter: Maintains a Firewall . . 890

How iptables Works 896

Rules, Matches, Targets, and
Chains . 896

Anatomy of an iptables
Command. 900

Building a Set of Rules 901

Copying Rules to and from the
Kernel . 907

Sharing an Internet Connection
Using NAT 908

26

firestarter and iptables:

Setting Up a Firewall

886 Chapter 26 firestarter and iptables: Setting Up a Firewall

The firestarter utility is frequently sufficient to protect a single system or a small LAN
but, because of its user-friendly nature, it does not provide access to the full com-
plexity and power of iptables. Most of the concepts involving firestarter will prob-
ably be familiar, or easy to learn, for someone who is familiar with basic
networking. Some of the concepts required to fully understand iptables are
beyond the scope of this book. Although you can use iptables at different levels,
this chapter presents only the fundamentals. There are, however, some sections of
this chapter that delve into areas that may require additional understanding or
explanation. If a concept is not clear, refer to one of the resources in “More
Information” on page 899.

About firestarter
The firestarter utility is a sophisticated, graphical tool for building and maintaining a
firewall. Although it works with GTK and is designed to run under GNOME, it is
equally at home under KDE. This utility enables a system to share an Internet con-
nection with other systems on a LAN. It can also set up and control a DHCP
(page 538) server. It provides a real-time view of intrusion and other events and
allows you to tune ICMP (page 1041) parameters to help stop DoS attacks
(page 1034). As installed, firestarter allows outbound connections and blocks and
displays information about inbound connections that originate outside the system or
LAN it is protecting (that is, connections that originate on the Internet). As you view
these events, you can set up rules to allow them, facilitating firewall customization.

The firestarter utility can protect the single system it runs on (the firewall host) or it
can protect the system it runs on as well as other client systems on a LAN that con-
nect to the Internet through the firewall host. Figure 26-1 shows a typical setup
where all network traffic to and from a LAN must pass through the firewall,
enabling the firewall to control access between the Internet and the LAN (including
the firewall host). In this setup the firewall host acts as a router (page 359).

Prerequisites

Install the following package:

• firestarter

• dhcp3-server (needed only if you want firestarter to run DHCP)

When you install the firestarter package, you must run the Firewall Wizard before
firestarter will start (see the JumpStart section on page 888). After you configure it,
firestarter starts running each time you boot the system. Although there is a firestarter
init file, you never need to run it manually; use the firestarter GUI to turn the firewall
on or off or to lock the system so no network traffic can enter or leave it. When you

About firestarter 887

bring the system up, firestarter comes up in the state it was in when you shut the sys-
tem down. The firestarter utility runs regardless of whether its GUI is displayed.

Notes

Terminology This section explains what some of the words used to explain firestarter mean in this
context. The terms firewall and firestarter are used interchangeably.

• (Firewall) host (system) The system the firewall is running on.

• Client systems Systems that are on the same LAN as the firewall host and
whose packets to and from systems outside the LAN (specifically the Inter-
net) pass through the firewall host.

• Policy The set of rules that the firewall applies.

• Rule A statement that specifies what the firewall does with specific types
of packets it receives from specific systems on its network interface(s).

• Connection Under TCP, the path through which two systems exchange
data. A client system opens a connection with a server system by sending it
a SYN (synchronization) packet. The server sends an ACK (acknowledge)
packet back to the client and the two systems exchange data. The client
closes the connection with a SYN packet. Although UDP works differently
because it has no concept of a connection, for the purposes of this discus-
sion the concept of a UDP connection is appropriate.

• Inbound connections Include connections that originate from the Internet
and client systems with the firewall host as the destination.

• Outbound connections Include connections that originate from the firewall
host and client systems with the Internet as the destination.

Figure 26-1 A typical firewall setup

Internet Firewall host LAN
(client systems)(router)

888 Chapter 26 firestarter and iptables: Setting Up a Firewall

Default policy By default, firestarter implements a user-friendly policy that protects the firewall host
and client systems. In general, it allows outbound traffic and blocks inbound traffic
that is not sent in response to outbound traffic. Specifically, the default firestarter policy

• Blocks new inbound connections from the Internet that are destined for
the firewall host or the client systems.

• Allows inbound packets that are sent in response to connections initiated
by the firewall host or client systems to the Internet.

• Allows the firewall host to establish connections.

• Allows client systems to establish connections to the Internet.

• Does not allow client systems to establish connections to the firewall host.

After you set up firestarter with the Firewall Wizard, you can modify the default pol-
icy to meet your needs.

iptables and
firestarter

Although firestarter is a front-end for iptables, it does not store its rules the way iptables
does (using iptables-save [page 907]). Instead, it keeps configuration information in its
own format in the /etc/firestarter directory hierarchy.

More Information

Web www.fs-security.com

JumpStart: Building a Firewall Using the

firestarter Firewall Wizard

The Firewall Wizard and Firestarter windows (Figure 26-2 and Figure 26-6 on
page 891) enable you to set up and control firestarter. To display this window, select
Main menu: System firestarter or give the command gksudo firestarter from a ter-
minal emulator or Run Application window (ALT-F2).

Figure 26-2 The Firewall Wizard: Welcome to Firestarter screen

www.fs-security.com

JumpStart: Building a Firewall Using the firestarter Firewall Wizard 889

When you run firestarter for the first time, it opens the Firewall Wizard (Figure 26-2),
which helps you configure firestarter. You can rerun this wizard at any time by select-
ing Firestarter menu: Firewall Run Wizard. The last step of the wizard allows you
to start the firewall and display the Firestarter window.

Device setup The first Firewall Wizard screen welcomes you to firestarter; click Forward to get
started. The Firewall Wizard displays the Network device setup screen (Figure 26-3).
In this screen you select the device that is connected to the Internet. You can also
specify that you want the firewall to start when you dial out from the system (if you
are using a modem to connect to the Internet) and/or that you want firestarter to use
DHCP (page 538) to assign IP addresses and provide other network configuration
information to the client systems.

From the drop-down list labeled Detected device(s), select the device that is con-
nected to the Internet. If the local system is functioning as a router, make sure to
select the device that is connected to the Internet, not the device that is connected to
the LAN. If the local system connects to the Internet using a modem only, put a tick
in the check box labeled Start the firewall on dial-out.

DHCP If you want to run DHCP, put a tick in the check box labeled IP address is assigned via
DHCP. (You can also configure DHCP using Firestarter menu: Edit Preferences.) If
firestarter is going to control DHCP, you must install the DHCP package (page 886).
Click Forward.

NAT (connection
sharing)

The Internet connection sharing setup screen (Figure 26-4, next page) allows you to set
up NAT (page 1049) so systems on the LAN can share a single Internet connection.
This window appears only if the system you are installing the firewall on has at least
two network connections. Put a tick in the check box labeled Enable Internet connec-
tion sharing if the firewall host is to function as a router (Figure 26-1, page 887) and
share an Internet connection; otherwise skip this screen. When you put a tick in this
check box, firestarter enables you to select the device that is connected to the LAN (not
the one that is connected to the Internet). Put a tick in the check box labeled Enable
DHCP for local network to cause firestarter to run DHCP. When you put a tick in this
check box, click the triangle adjacent to DHCP server details to choose whether to

Figure 26-3 The Network device setup screen

890 Chapter 26 firestarter and iptables: Setting Up a Firewall

keep an existing DHCP configuration or create a new one. The Server name can be the
IP address or name of the DHCP server. If you set the name to <dynamic>, firestarter
determines the IP address of the DHCP server at runtime, which can be useful if the
server is assigned an IP address using DHCP. Click Forward.

Starting the firewall In the Ready to start your firewall screen (Figure 26-5), you can choose to start the fire-
wall. The firewall starts in secure mode, which protects the LAN but may cause prob-
lems for some users and does not allow systems on the Internet to access servers behind
the firewall. If you are configuring the firewall from a remote system, you will not be
able to work with firestarter once you start the firewall. Put a tick in the check box
labeled Start firewall now if you want to start the firewall immediately. Click Save.

firestarter: Maintains a Firewall

After you configure firestarter, you can make changes to the policy from the Firestarter
window. After you run the Firewall Wizard, firestarter displays this window. You
can display this window at any time by following the instruction at the start of the
JumpStart section on page 888. The firewall runs regardless of whether the Fire-
starter window is displayed. When you bring the system up, the firewall resumes the
status it had (running, stopped, or locked) when you brought the system down.

The Status Tab

The Firestarter window Status tab (Figure 26-6) displays an overview of the fire-
wall. This tab can display active connections to the firewall. The toolbar allows you
to change the state of the firewall and specify preferences. The large round icon in
the Firewall frame of the window indicates the status of the firewall:

• Disabled The firewall is turned off—it is as though firestarter was not installed.

• Active The firewall is up and running and implementing the policy you
have set up (or the default policy).

Figure 26-4 The Internet connection sharing setup screen

firestarter: Maintains a Firewall 891

• Locked The firewall is up and running and blocking all packets. Noth-
ing can get in or out of the firewall host over the network interfaces that
firestarter controls.

Click the appropriate icon on the toolbar to change the state of the firewall.

Events An event occurs when the firewall blocks a packet based on a rule. The Events columns
in the Firewall frame list the number of inbound and outbound events the firewall
has blocked and indicate how many of those were of a serious nature. Events are

Figure 26-5 The Ready to start your firewall screen

Figure 26-6 The Status tab with Active connections expanded

892 Chapter 26 firestarter and iptables: Setting Up a Firewall

considered serious if they could have been attempts by malicious users to gain access
to the system. For example, a blocked attempt to log in using ssh is a serious event; a
blocked ping is not.

The Network frame shows the activity on each of the system’s network connections.

When you click the small triangle to the left of Active connections, firestarter dis-
plays a scrollable list of active connections; lengthen the window to display more
connections. Click on a line in this list to select it and then right-click and select
Lookup hostnames to change the value in the Source and Destination columns from
IP addresses to hostnames. The Port column lists the port on the target host that the
connection uses. The Service column indicates the service that is associated with the
specified port. The Program column shows the name the program running the ser-
vice if it is local and known to firestarter.

The Events Tab

The Firestarter window Events tab (Figure 26-7) is the key to modifying the default
firewall policy. It displays a list of blocked connections. Each line in this list speci-
fies an event that the firewall blocked based on a rule. Events displayed in black are
attempts to connect to a random port and are typically not of concern. Events in
gray are harmless, consisting mostly of broadcast traffic. Events in red are attempts
to access a service that is not provided to the public and may indicate that a mali-
cious user is attempting to gain access to the firewall host or a client system.

You can modify this list in several ways.

• To display a hostname in place of an IP address, highlight the entry you
want to change, right-click, and select Lookup Hostnames (Figure 26-7).

• By default, the Blocked Connections list does not include redundant
entries. To display redundant entries, remove the tick from the check box
at Firestarter menu: Edit Preferences Events Skip redundant entries.

Figure 26-7 Events tab, right-click menu

firestarter: Maintains a Firewall 893

• You can specify the columns that firestarter includes in the Blocked Con-
nections list by selecting from the menu displayed by Firestarter menu:
Events Show Column (Figure 26-8).

As Figure 26-7 shows, the right-click menu also allows you to change the rule for
the highlighted system and port (service). Inbound and outbound connections
present different menus. The inbound menu includes the following selections:

• Allow Connections from Source Enables the originating system on the
Internet that the highlighted event blocked to make any type of connection
to client systems or the firewall host. Set this rule only if you completely
trust the source system.

• Allow Inbound Service for Everyone Enables any system on the Internet
to connect to the service (port) that the highlighted event blocked. Set this
rule to allow the public to access servers behind the firewall.

• Allow Inbound Service for Source Enables the originating system on the
Internet to connect to the service (port) that the highlighted event blocked.
The port protected by this rule is called a stealth port because it is invisible
to all systems on the Internet except the specified system.

The outbound menu includes the following selections:

• Allow Connections to Destination Enables the firewall host and client
systems to establish a connection with the destination system that the
highlighted event blocked.

Figure 26-8 Selecting columns for the Blocked Connections list

894 Chapter 26 firestarter and iptables: Setting Up a Firewall

• Allow Outbound Service for Everyone Enables the firewall host and client
systems to establish a connection to the service (port) that the highlighted
event blocked.

• Allow Outbound Service for Source Enables the firewall host or a spe-
cific client that the event blocked to establish a connection to the service
that the highlighted event blocked.

In addition, both menus include these two selections:

• Disable Events from Source Prevents the highlighted originating system
on the Internet from connecting to client systems or the firewall host.

• Disable Events on Port Prevents any system on the Internet from con-
necting to the service (port) that the highlighted event blocked.

The Policy Tab

The Policy tab (Figure 26-9) displays the firewall rules and allows you to add,
remove, and edit rules. The drop-down list labeled Editing allows you to select
whether firestarter displays (and you can edit) inbound or outbound rules.

The Policy tab displays three frames each for inbound and outbound groups of
rules. Right-click with the mouse pointer in a frame to display a context menu with
these selections: Add Rule, Remove Rule, and Edit Rule. To use the last two selec-
tions, you must highlight a rule before right-clicking.

Applying changes By default, firestarter does not apply changes you make in this tab until you click
Apply Policy at the top of the window. You can cause firestarter to apply changes

Figure 26-9 The Policy tab

Events tab: ease of use

tip It is easiest to set up rules from the Events tab and view them in the Policy tab. However, you can-
not set up certain rules, such as forwarding rules, from the Events tab. Also, you cannot edit rules
from the Events tab.

firestarter: Maintains a Firewall 895

immediately by selecting Firestarter menu: Edit Preferences Policy and putting a
tick in the check box labeled Apply policy changes immediately.

Inbound Policy

The default inbound policy is to block all inbound connections except connections
that are responding to outbound connections. When you select Inbound traffic pol-
icy, firestarter displays three frames that enable you to work with rules that are
exceptions to the default policy:

• Allow connections from host Specifies a host or network that firestarter
accepts any incoming connection from. Make sure you trust this system or
network completely.

• Allow service Specifies a service (port) that firestarter accepts inbound
connections on. You can specify that firestarter accept inbound connections
on the specified port from anyone, all clients, or a specific host or network
on the Internet.

• Forward service Specifies a service (port) that firestarter will accept
inbound connections on. The firestarter firewall forwards these connections
to the client you specify on the port you specify. Forwarding a service is
appropriate if you are running a server on a client system and want systems
on the Internet to be able to connect to the server.

Outbound Policy

When you select Outbound traffic policy, firestarter displays two radio buttons that
enable you to set the default outbound policy:

• Permissive by default, blacklist traffic The default outbound policy.
Allows all outbound connections that originate from the firewall host or
clients. You must set up specific policies (a blacklist) to block outbound
requests for specific services and/or requests from specific systems.

• Restrictive by default, whitelist traffic Blocks all outbound traffic except
connections that you set up rules to allow (a whitelist).

Permissive by
default

With the default policy of Permissive by default, firestarter displays three frames that
enable you to deny connections and/or services:

• Deny connections to host Specifies systems on the Internet that the fire-
wall host and all client systems are not allowed to connect to.

• Deny connections from LAN host Specifies client systems that are not
allowed to connect to any system on the Internet.

• Deny service Specifies a service and/or port that firestarter blocks outbound
connections on. You can specify that firestarter block outbound connections
on the specified port from anyone, clients, the firewall host, or a specific host
or network on the Internet.

896 Chapter 26 firestarter and iptables: Setting Up a Firewall

Restrictive by
default

With the Restrictive by default policy, firestarter displays three frames that enable
you to allow connections and/or services:

• Allow connections to host Specifies systems on the Internet that the fire-
wall host and all client systems are allowed to connect to.

• Allow connections from LAN host Specifies client systems that are
allowed to connect to any system on the Internet.

• Allow service Specifies a service and/or port that firestarter allows outbound
connections on. You can specify that firestarter allow outbound connections
on the specified port from anyone, clients, the firewall host, or a specific host
or network on the Internet.

How iptables Works

netfilter and
iptables

The functionality referred to as iptables is composed of two components: netfilter
and iptables. Running in kernelspace (page 1044), the netfilter component is a set of
tables that hold rules that the kernel uses to control network packet filtering. Run-
ning in userspace (page 1067), the iptables utility sets up, maintains, and displays
the rules stored by netfilter.

Rules, matches,
targets, and chains

A rule comprises one or more criteria (matches or classifiers) and a single action (a
target). If, when a rule is applied to a network packet, the packet matches all the cri-
teria, the action is applied to the packet. Rules are stored in chains. Each rule in a
chain is applied, in order, to a packet until a match is found. If there is no match,
the chain’s policy, or default action, is applied to the packet (page 902).

History In the kernel, iptables replaces the earlier ipchains as a method of filtering network
packets. It provides multiple chains for increased filtration flexibility. The iptables
utility also provides stateful packet inspection (page 898).

Example rules As an example of how rules work, assume a chain has two rules (Figure 26-10). The
first rule tests whether a packet’s destination is port 23 (FTP) and drops the packet if it
is. The second rule tests whether a packet was received from the IP address
192.168.1.1 and alters the packet’s destination if it was. When a packet is processed by
the example chain, the kernel applies the first rule in the chain to see whether the
packet arrived on port 23. If the answer is yes, the packet is dropped and that is the
end of processing for that packet. If the answer is no, the kernel applies the second rule
in the chain to see whether the packet came from the specified IP address. If the answer
is yes, the destination in the packet’s header is changed and the modified packet is sent
on its way. If the answer is no, the packet is sent on without being changed.

Chains are collected in three tables: Filter, NAT, and Mangle. Each of these tables
has builtin chains (described next). You can create additional, user-defined chains in
Filter, the default table.

How iptables Works 897

Filter table The default table. This table is mostly used to DROP or ACCEPT packets based on
their content; it does not alter packets. Builtin chains are INPUT, FORWARD, and
OUTPUT. All user-defined chains go in this table.

NAT table The Network Address Translation table. Packets that create new connections
are routed through this table, which is used exclusively to translate the source or
destination fields of packets. Builtin chains are PREROUTING, OUTPUT, and
POSTROUTING. Use this table with DNAT, SNAT, and MASQUERADE tar-
gets only.

• DNAT (destination NAT) alters the destination IP address of the first
inbound packet in a connection so it is rerouted to another host. Subsequent
packets in the connection are automatically DNATed. DNAT is useful for
redirecting packets from the Internet that are bound for a firewall or a
NATed server (page 912).

• SNAT (source NAT) alters the source IP address of the first outbound
packet in a connection so it appears to come from a fixed IP address—
for example, a firewall or router. Subsequent packets in the connection
are automatically SNATed. Replies to SNATed packets are automatically
de-SNATed so they go back to the original sender. SNAT is useful for
hiding LAN addresses from systems outside the LAN and using a single
IP address to serve multiple local hosts.

• MASQUERADE differs from SNAT only in that it checks for an IP
address to apply to each outbound packet, making it suitable for use with
dynamic IP addresses such as those provided by DHCP (page 538). MAS-
QUERADE is slightly slower than SNAT.

Mangle table Used exclusively to alter the TOS (type of service), TTL (time to live), and MARK
fields in a packet. Builtin chains are PREROUTING and OUTPUT.

Network packet When a packet from the network enters the kernel’s network protocol stack, it is
given some basic sanity tests, including checksum verification. After passing these

Figure 26-10 Example of how rules in a chain work

Destination
=

Port 23?

Source
=

192.168.1.1?
Packet TCP stack

Alter
destination

Yes

No

Drop

No

Yes

898 Chapter 26 firestarter and iptables: Setting Up a Firewall

tests, the packet goes through the PREROUTING chain, where its destination
address may be changed (Figure 26-11).

Next the packet is routed based on its destination address. If it is bound for the local
system, it first goes through the INPUT chain, where it can be filtered (accepted,
dropped, or sent to another chain) or altered. If the packet is not addressed to the
local system (the local system is forwarding the packet), it goes through the FOR-
WARD and POSTROUTING chains, where it can again be filtered or altered.

Packets created locally pass through the OUTPUT and POSTROUTING chains,
where they can be filtered or altered before being sent to the network.

State The connection tracking machine (also called the state machine) provides informa-
tion on the state of a packet, allowing you to define rules that match criteria based
on the state of the connection the packet is part of. For example, when a connection
is opened, the first packet is part of a NEW connection, whereas subsequent packets
are part of an ESTABLISHED connection. Connection tracking is handled by the
conntrack module.

The OUTPUT chain handles connection tracking for locally generated packets. The
PREROUTING chain handles connection tracking for all other packets. For more
information refer to “State” on page 905.

Before the advent of connection tracking, it was sometimes necessary to open many
or all nonprivileged ports to make sure that the system accepted all RETURN and
RELATED traffic. Because connection tracking allows you to identify these kinds of
traffic, you can keep many more ports closed to general traffic, thereby increasing
system security.

Jumps and targets A jump or target (page 906) specifies the action the kernel takes if a network packet
matches all the match criteria (page 900) for the rule being processed.

Figure 26-11 Filtering a packet in the kernel

(Routing)

INPUT

POSTROUTINGFORWARDPREROUTING

OUTPUT

Filter, Mangle

Mangle, Filter Mangle, (S)NAT

Mangle, NAT, Filter

(Routing)

Mangle, (D)NAT

Local system

Network

About iptables 899

About iptables
This section contains information about iptables: resources to consult for more infor-
mation, prerequisites, and notes.

More Information

Web Documentation, HOWTOs, FAQs, patch-o-matic,
security information www.netfilter.org

Tutorial www.faqs.org/docs/iptables
Multicast DNS www.multicastdns.org
Scripts and more www.linuxguruz.com/iptables

HOWTO KernelAnalysis-HOWTO
IP-Masquerade-HOWTO (contains useful scripts)
Netfilter Extensions HOWTO www.netfilter.org
Netfilter Hacking-HOWTO www.netfilter.org

Book TCP Illustrated by W. Richard Stevens, Addison-Wesley, January 2002

Prerequisites

Installation Install the following package:

• iptables

iptables init script The iptables package does not include an init script because, under Ubuntu, it is gener-
ally called from firestarter. This chapter includes instructions for configuring and running
iptables. You can save and reload iptables rules as explained in “Saving rules” below.

Notes

Startup The iptables utility is a tool that manipulates rules in the kernel. It differs from dae-
mons (servers) in its setup and use. Whereas Linux daemons such as Apache, vsftpd,
and sshd read the data that controls their operation from a configuration file, you
must provide iptables with a series of commands that build a set of packet filtering
rules that are kept in the kernel.

Saving rules You can save and reload iptables rules as explained on page 907. Run iptables with
the –L option to display the packet filtering rules the kernel is using. You can put a
command to load iptables rules in /etc/rc.local. Or, if you want to start iptables ear-
lier in the boot process, you can write a simple init script, put it in /etc/init.d, and
use sysv-rc-conf (page 508) to tell init when to run it.

Resetting iptables If you encounter problems related to the firewall rules, you can return the packet
processing rules in the kernel to their default state without rebooting by giving the
following commands:

$ sudo iptables --flush && iptables --delete-chain

These commands flush all chains and delete any user-defined chains, leaving the sys-
tem without a firewall.

www.netfilter.org
www.faqs.org/docs/iptables
www.multicastdns.org
www.linuxguruz.com/iptables
www.netfilter.org
www.netfilter.org

900 Chapter 26 firestarter and iptables: Setting Up a Firewall

Anatomy of an iptables Command

Command line This section lists the components of an iptables command line that follow the name
of the utility, iptables. Except as noted, the iptables utility is not sensitive to the posi-
tions of arguments on the command line. The examples in this chapter reflect a gen-
erally accepted syntax that allows commands to be easily read, understood, and
maintained. Not all commands have all components.

Many tokens on an iptables command line have two forms: a short form, consisting
of a single letter preceded by a single hyphen, and a long form, consisting of a word
preceded by two hyphens. Most scripts use the short forms for brevity; lines using
the long forms can get unwieldy. The following iptables command lines are equiva-
lent and are used as examples in this section:

$ sudo iptables --append FORWARD --in-interface eth1 --out-interface eth0 --jump ACCEPT
$ sudo iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

Table Specifies the name of the table the command operates on: Filter, NAT, or Mangle.
You can specify a table name in any iptables command. When you do not specify a
table name, the command operates on the Filter table. Most examples in this chap-
ter do not specify table names and, therefore, work on the Filter table. Specify a
table as –t tablename or ––table tablename.

Command Tells iptables what to do with the rest of the command line—for example, add or
delete a rule, display rules, or add a chain. The example commands, –A and
––append, append the rule specified by the command line to the specified table
(defaults to Filter table) and chain. See page 901 for a list of commands.

Chain Specifies the name of the chain that this rule belongs to or that this command works on.
The chain is INPUT, OUTPUT, FORWARD, PREROUTING, POSTROUTING, or the
name of a user-defined chain. Specify a chain by putting the name of the chain on the
command line without any preceding hyphens. The examples at the beginning of this
section work with the FORWARD chain.

Match criteria There are two kinds of match criteria: packet match criteria, which match a net-
work packet, and rule match criteria, which match an existing rule.

Packet match
criteria/rule

specifications

Packet match criteria identify network packets and implement rules that take action
on packets that match the criteria. The combination of packet match criteria and an
action is called a rule specification. Rule specifications form the basis for packet fil-
tering. The first example at the beginning of this section uses the ––in-interface eth1
––out-interface eth0 rule match criteria. The second example uses the short form of
the same criteria: –i eth1 –o eth0. Both of these rules forward packets that come in
on device eth1 and go out on device eth0.

Rule match criteria Rule match criteria identify existing rules. An iptables command can modify,
remove, or position a new rule adjacent to a rule specified by a rule match criterion.
There are two ways to identify an existing rule: You can use the same rule specifica-
tion that was used to create the rule or you can use the rule’s ordinal number, called
a rule number. Rule numbers begin with 1, signifying the first rule in a chain, and

Building a Set of Rules 901

can be displayed with iptables –L (or ––line-numbers). The first command below
deletes the rule listed at the beginning of this section; the second command replaces
rule number 3 in the INPUT chain with a rule that rejects all packets from IP
address 192.168.0.10:

$ sudo iptables --delete -A FORWARD -i eth1 -o eth0 -j ACCEPT
$ sudo iptables -R INPUT 3 --source 192.168.0.10 --jump REJECT

A jump or target specifies what action the kernel takes on packets that match all
match criteria for a rule. Specify a jump or target as –j target or ––jump target. The
examples at the beginning of this section specify the ACCEPT target using the fol-
lowing commands: ––jump ACCEPT and –j ACCEPT.

Jumps A jump transfers control to a different chain within the same table. The following
command adds (––append) a rule to the INPUT chain that transfers packets that
use the TCP protocol (––protocol tcp) to a user-defined chain named tcp_rules
(––jump tcp_rules):

$ sudo iptables --append INPUT --protocol tcp --jump tcp_rules

When the packet finishes traversing the tcp_rules chain, assuming it has not been
dropped or rejected, it continues traversing the INPUT chain from the rule follow-
ing the one it jumped from.

Targets A target specifies an action the kernel takes on the packet; the simplest actions are
ACCEPT, DROP, and REJECT. The following command adds a rule to the FOR-
WARD chain that rejects packets coming from the FTP port (/etc/services, the file
iptables consults to determine which port to use, shows that FTP uses port 21):

$ sudo iptables --append FORWARD --sport ftp --jump REJECT

Some targets, such as LOG, are nonterminating: Control passes to the next rule
after the target is executed. See page 906 for information on how to use targets.

Building a Set of Rules

To specify a table, it is common practice to put the table declaration on the com-
mand line immediately following iptables. For example, the following command
flushes (deletes all the rules from) the NAT table:

$ sudo iptables -t NAT -F

Commands

Following is a list of iptables commands:

––append –A Adds rule(s) specified by rule-specifications to the end of chain. When a packet
matches all of the rule-specifications, target processes it.

iptables –A chain rule-specifications ––jump target

902 Chapter 26 firestarter and iptables: Setting Up a Firewall

––delete –D Removes one or more rules from chain, as specified by the rule-numbers or
rule-specifications.

iptables –D chain rule-numbers | rule-specifications

––insert –I Adds rule(s) specified by rule-specifications and target to the location in chain
specified by rule-number. If you do not specify rule-number, it defaults to 1, the
head of the chain.

iptables –I chain rule-number rule-specifications ––jump target

––replace –R Replaces rule number rule-number in chain with rule-specification and target.
The command fails if rule-number or rule-specification resolves to more than one
address.

iptables –R chain rule-number rule-specification ––jump target

––list –L Displays the rules in chain. Omit chain to display the rules for all chains. Use
––line-numbers to display rule numbers or select other display criteria from the list
on page 903.

iptables –L [chain] display-criteria

––flush –F Deletes all rules from chain. Omit chain to delete all rules from all chains.

iptables –F [chain]

––zero –Z Changes to zero the value of all packet and byte counters in chain or in all
chains when you do not specify chain. Use with –L to display the counters before
clearing them.

iptables –Z [–L] [chain]

––delete-chain –X Removes the user-defined chain named chain. If you do not specify chain,
removes all user-defined chains. You cannot delete a chain that a target points to.

iptables –X chain

––policy –P Sets the default target or policy builtin-target for the builtin chain builtin-
chain. This policy is applied to packets that do not match any rule in the chain. If a
chain does not have a policy, unmatched packets are ACCEPTed.

iptables –P builtin-chain builtin-target

––rename-chain –E Changes the name of the chain old to new.

iptables –E old new

––help –h Displays a summary of the iptables command syntax.

iptables –h

Follow a match extension protocol with –h to display options you can use with that
protocol. For more information refer to “Help with extensions” on page 904.

Building a Set of Rules 903

Packet Match Criteria

The following criteria match network packets. When you precede a criterion with
an exclamation point (!), the rule matches packets that do not match the criterion.

––protocol [!] proto
–p Matches if the packet uses the proto protocol. This criterion is a match exten-
sion (page 903).

––source [!] address[/mask]
–s or ––src Matches if the packet came from address. The address can be a name
or IP address. See page 529 for formats of the optional mask (only with an IP
address).

––destination [!] address[/mask]
–d or ––dst Matches if the packet is going to address. The address can be a name
or IP address. See page 529 for formats of the optional mask (only with an IP
address).

––in-interface [!] iface[+]
–i For the INPUT, FORWARD, and PREROUTING chains, matches if iface is the
name of the interface the packet was received from. Append a plus sign (+) to iface
to match any interface whose name begins with iface. When you do not specify in-
interface, the rule matches packets coming from any interface.

––out-interface [!] iface[+]
–o For the OUTPUT, FORWARD, and POSTROUTING chains, matches if iface
is the interface the packet will be sent to. Append a plus sign (+) to iface to match
any interface whose name begins with iface. When you do not specify out-interface,
the rule matches packets going to any interface.

[!] –fragment –f Matches the second and subsequent fragments of fragmented packets. Because
these packets do not contain source or destination information, they do not match
any other rules.

Display Criteria

The following criteria display information. All packets match these criteria.

––verbose –v Displays additional output.

––numeric –n Displays IP addresses and port numbers as numbers, not names.

––exact –x Use with –L to display exact packet and byte counts instead of rounded values.

––line-numbers Displays line numbers when listing rules. These line numbers are also the rule num-
bers that you can use in rule match criteria (page 900).

Match Extensions

Rule specification (packet match criteria) extensions, called match extensions, add
matches based on protocols and state to the matches described previously. Each of
the protocol extensions is kept in a module that must be loaded before that match

904 Chapter 26 firestarter and iptables: Setting Up a Firewall

extension can be used. The command that loads the module must appear in the
same rule specification as, and to the left of, the command that uses the module.
There are two types of match extensions: implicit and explicit.

Implicit Match Extensions

Help with
extensions

Implicit extensions are loaded (somewhat) automatically when you use a ––protocol
command (described below). Each protocol has its own extensions. Follow the pro-
tocol with –h to display extensions you can use with that protocol. For example, the
following command displays TCP extensions at the end of the Help output:

$ iptables -p tcp -h
...
TCP v1.3.6 options:
 --tcp-flags [!] mask comp match when TCP flags & mask == comp
 (Flags: SYN ACK FIN RST URG PSH ALL NONE)
[!] --syn match when only SYN flag set
 (equivalent to --tcp-flags SYN,RST,ACK SYN)
 --source-port [!] port[:port]
 --sport ...
 match source port(s)
 --destination-port [!] port[:port]
 --dport ...
 match destination port(s)
 --tcp-option [!] number match if TCP option set

This section does not describe all extensions. Use –h, as in the preceding example, to
display a complete list.

––protocol [!] proto
–p Loads the proto module and matches if the packet uses the proto protocol. The
proto can be a name or number from /etc/protocols, including tcp, udp, and icmp
(page 1041). Specifying all or 0 (zero) matches all protocols and is the same as not
including this match in a rule.

The following criteria load the TCP module and match TCP protocol packets com-
ing from port 22 (ssh packets):

--protocol tcp --source-port 22

The following command expands the preceding match to cause the kernel to drop all
incoming ssh packets. This command uses ssh, which iptables looks up in /etc/services,
in place of 22:

$ sudo iptables --protocol tcp --source-port ssh --jump DROP

TCP

The extensions in this section are loaded when you specify ––protocol tcp.

––destination-port [!] [port][:port]]
––dport Matches a destination port number or service name (see /etc/services).
You can also specify a range of port numbers. Specifically, :port specifies ports 0
through port, and port: specifies ports port through 65535.

Building a Set of Rules 905

––source-port [!] [port][:port]]
––sport Matches a source port number or service name (see /etc/services). You can
also specify a range of port numbers. Specifically, :port specifies ports 0 through
port, and port: specifies ports port through 65535.

[!] ––syn Matches packets with the SYN bit set and the ACK and FIN bits cleared. This
match extension is shorthand for ––tcp-flags SYN,RST,ACK SYN.

––tcp-flags [!] mask comp
Defines which TCP flag settings constitute a match. Valid flags are SYN, ACK, FIN,
RST, URG, PSH, ALL, and NONE. The mask is a comma-separated list of flags to
be examined; comp is a comma-separated subset of mask that specifies the flags that
must be set for a match to occur. Flags not specified in mask must be unset.

––tcp-option [!] n Matches a TCP option with a decimal value of n.

UDP

When you specify ––protocol udp, you can specify a source and/or destination port
in the same manner as described under “TCP” on the preceding page.

ICMP

The extension in this section is loaded when you specify ––protocol icmp. ICMP
(page 1041) packets carry messages only.

––icmp-type [!] name
Matches when the packet is an ICMP packet of type name. The name can be a
numeric ICMP type or one of the names returned by

$ iptables -p icmp -h

Explicit Match Extensions

Explicit match extensions differ from implicit match extensions in that you must
use a –m or ––match option to specify a module before you can use the extension.
Many explicit match extension modules are available; this section covers state, one
of the most important.

State

The state extension matches criteria based on the state of the connection the packet
is part of (page 898).

––state state Matches a packet whose state is defined by state, a comma-separated list of states
from the following list:

• ESTABLISHED Any packet, within a specific connection, following the
exchange of packets in both directions for that connection.

• INVALID A stateless or unidentifiable packet.

• NEW The first packet within a specific connection, typically a SYN
packet.

906 Chapter 26 firestarter and iptables: Setting Up a Firewall

• RELATED Any packets exchanged in a connection spawned from an
ESTABLISHED connection. For example, an FTP data connection might
be related to the FTP control connection. (You need the ip_conntrack_ftp
module for FTP connection tracking.)

The following command loads the state extension and establishes a rule that matches
and drops both invalid packets and packets from new connections:

$ sudo iptables --match state --state INVALID,NEW --jump DROP

Targets

All targets are built in; there are no user-defined targets. This section lists some of
the targets available with iptables. Applicable target options are listed following
each target.

ACCEPT Continues processing the packet.

DNAT Destination Network Address Translation Rewrites the destination address of the
packet (page 897).

––to-destination ip[-ip][:port-port]
Same as SNAT with to-source, except that it changes the destination addresses of
packets to the specified addresses and ports and is valid only in the PREROUTING
or OUTPUT chains of the NAT table and any user-defined chains called from those
chains. The following command adds to the PREROUTING chain of the NAT table
a rule that changes the destination in the headers of TCP packets with a destination
of 66.187.232.50 to 192.168.0.10:

$ sudo iptables -t NAT -A PREROUTING -p tcp -d 66.187.232.50 -j DNAT --to-destination 192.168.0.10

DROP Ends the packet’s life without notice.

LOG Turns on logging for the packet being processed. The kernel uses syslogd (page 688)
to process output generated by this target. LOG is a nonterminating target, so pro-
cessing continues with the next rule. Use two rules to LOG packets that you
REJECT or DROP, one each with the targets LOG and REJECT or DROP, with the
same matching criteria.

––log-level n Specifies logging level n as per syslog.conf (page 688).

––log-prefix string
Prefixes log entries with string, which can be a maximum of 14 characters long.

––log-tcp-options Logs options from the TCP packet header.

––log-ip-options Logs options from the IP packet header.

MASQUERADE Similar to SNAT with ––to-source, except that it grabs the IP information from the
interface on the specified port. For use on systems with dynamically assigned IP
addresses, such as those using DHCP, including most dial-up lines. Valid only in
rules in the POSTROUTING chain of the NAT table.

Copying Rules to and from the Kernel 907

––to-ports port[-port]
Specifies the port for the interface you want to masquerade. Forgets connections
when the interface goes down, as is appropriate for dial-up lines. You must specify
the TCP or UDP protocol (––protocol tcp or udp) with this target.

REJECT Similar to DROP, except that it notifies the sending system that the packet was
blocked.

––reject-with type Returns the error type to the originating system. The type can be any of the following,
all of which return the appropriate ICMP (page 1041) error: icmp-net-unreachable,
icmp-host-unreachable, icmp-port-unreachable, icmp-proto-unreachable, icmp-net-
prohibited, or icmp-host-prohibited. You can specify type as echo-reply from rules
that require an ICMP ping (page 375) packet to return a ping reply. You can specify
tcp-reset from rules in or called from the INPUT chain to return a TCP RST packet.
This parameter is valid in the INPUT, FORWARD, and OUTPUT chains and user-
defined chains called from these chains.

RETURN Stops traversing this chain and returns the packet to the calling chain.

SNAT Source Network Address Translation Rewrites the source address of the packet.
Appropriate for hosts on a LAN that share an Internet connection.

––to-source ip[-ip][:port-port]
Alters the source IP address of an outbound packet, and the source IP addresses of
all future packets in this connection, to ip. Skips additional rules, if any exist.
Returning packets are automatically de-SNATed so they return to the originating
host. Valid only in the POSTROUTING chain of the NAT table.

When you specify a range of IP addresses (ip-ip) or use multiple to-source targets,
iptables assigns the addresses in a round-robin fashion, cycling through the
addresses, one for each new connection.

When the rule specifies the TCP or UDP protocol (–p tcp or –p udp), you can spec-
ify a range of ports. When you do not specify a range of ports, the rule matches all
ports. Every connection on a NATed subnet must have a unique IP address and port
combination. If two systems on a NATed subnet try to use the same port, the kernel
maps one of the ports to another (unused) port. Ports less than 512 are mapped to
other ports less than 512, ports from 512 to 1024 are mapped to other ports from
512 to 1024, and ports above 1024 are mapped to other ports above 1024.

Copying Rules to and from the Kernel

The iptables-save utility copies packet filtering rules from the kernel to standard output
so you can save them in a file. The iptables-restore utility copies rules from standard
input, as written by iptables-save, to the kernel. Sample output from iptables-save
appears on the next page.

908 Chapter 26 firestarter and iptables: Setting Up a Firewall

$ sudo iptables-save
Generated by iptables-save v1.3.6 on Sat Jul 14 21:13:29 2007
*mangle
:PREROUTING ACCEPT [1720:889840]
:INPUT ACCEPT [1720:889840]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [1391:111855]
:POSTROUTING ACCEPT [1391:111855]
COMMIT
Completed on Sat Jul 14 21:13:29 2007
Generated by iptables-save v1.3.6 on Sat Jul 14 21:13:29 2007
*filter
:INPUT DROP [1:44]
:FORWARD DROP [0:0]
:OUTPUT DROP [0:0]
:INBOUND - [0:0]
:LOG_FILTER - [0:0]
:LSI - [0:0]
:LSO - [0:0]
:OUTBOUND - [0:0]
-A INPUT -s 198.144.192.2 -p tcp -m tcp ! --tcp-flags FIN,SYN,RST,ACK SYN -j ACCEPT
-A INPUT -s 198.144.192.2 -p udp -j ACCEPT
-A INPUT -s 209.157.152.23 -p tcp -m tcp ! --tcp-flags FIN,SYN,RST,ACK SYN -j ACCEPT
-A INPUT -s 209.157.152.23 -p udp -j ACCEPT
-A INPUT -i lo -j ACCEPT
...

Most lines that iptables-save writes are iptables command lines without the iptables
at the beginning. Lines that begin with a pound sign (#) are comments. Lines that
begin with an asterisk (*) are names of tables that the following commands work
on; the first few commands in the preceding example work on the Mangle table, the
rest work on the Filter table. The COMMIT line must appear at the end of all com-
mands for a table; it executes the preceding commands. Lines that begin with colons
specify chains in the following format:

:chain policy [packets:bytes]

where chain is the name of the chain, policy is the policy (default target) for the
chain, and packets and bytes are the packet and byte counters, respectively. The
square brackets must appear in the line; they do not indicate optional parameters.
Visit www.faqs.org/docs/iptables/iptables-save.html for more information.

Sharing an Internet Connection Using NAT

Many scripts that set up Internet connection sharing using iptables are available on
the Internet. Each of these scripts boils down to the same few basic iptables com-
mands, albeit with minor differences. This section discusses those few statements to
explain how a connection can be shared. You can use the statements presented in
this section or refer to the Linux IP Masquerade HOWTO for complete scripts.

www.faqs.org/docs/iptables/iptables-save.html

Sharing an Internet Connection Using NAT 909

The tldp.org/HOWTO/IP-Masquerade-HOWTO/firewall-examples.html Web page
holds the simplest of these scripts.

There are two ways you can share a single connection to the Internet (one IP
address), both of which involve setting up NAT to alter addresses in packets and
then forward them. The first allows clients (browsers, mail readers, and so on) on
several systems on a LAN to share a single IP address to connect to servers on the
Internet. The second allows servers (mail, Web, FTP, and so on) on different systems
on a LAN to provide their services over a single connection to the Internet. You can
use iptables to set up one or both of these configurations. In both cases, you need to
set up a system that is a router: It must have two network connections—one con-
nected to the Internet and the other to the LAN.

For optimal security, use a dedicated system as a router. Because data transmission
over a connection to the Internet—even over a broadband connection—is relatively
slow, using a slower, older system as a router does not generally slow down a LAN.
This setup also offers some defense against intrusion from the Internet. A worksta-
tion on the LAN can function as a router as well, but this setup means that you
maintain data on a system that is directly connected to the Internet. The following
sections discuss the security of each setup.

The examples in this section assume that the device named eth0 connects to the
Internet on 10.255.255.255 and that eth1 connects to the LAN on 192.168.0.1.
Substitute the devices and IP addresses that the local systems use. If you use a
modem to connect to the Internet, you need to substitute ppp0 (or another device)
for eth0 in the examples.

For the examples in this section to work, you must turn on IP forwarding. First give
the following command and make sure everything is working:

$ sudo sysctl -w net.ipv4.conf.default.forwarding=1
net.ipv4.conf.default.forwarding = 1

If you want to forward IPv6 packets, give this command instead:

$ sudo sysctl -w net.ipv6.conf.default.forwarding=1
net.ipv6.conf.default.forwarding = 1

Once you know that iptables is working correctly, follow the instructions in
/etc/sysctl.conf and uncomment one or both of the following assignments to make
the kernel always perform IP forwarding for IPv4 and/or IPv6:

Uncomment the next line to enable packet forwarding for IPv4
#net.ipv4.conf.default.forwarding=1

Uncomment the next line to enable packet forwarding for IPv6
#net.ipv6.conf.default.forwarding=1

After making this change, give the command /sbin/sysctl –p to apply the change
and to make sure that there are no typographical errors in the configuration file.

910 Chapter 26 firestarter and iptables: Setting Up a Firewall

Connecting Several Clients to a Single

Internet Connection

Configuring the kernel of the router system to allow clients on multiple local sys-
tems on the LAN to connect to the Internet requires you to set up IP masquerading,
or SNAT (source NAT). IP masquerading translates the source and destination
addresses in the headers of network packets that originate on local systems and the
packets that remote servers send in response to those packets. These packets are
part of connections that originate on a local system. The example in this section
does nothing to packets that are part of connections that originate on the remote
systems (on the Internet): These packets cannot get past the router system, which
provides some degree of security.

The point of rewriting the packet headers is to allow systems with different local IP
addresses to share a single IP address on the Internet. The router system translates the
source or origin address of packets from the local systems to that of the Internet con-
nection, so that all packets passing from the router to the Internet appear to come
from a single system—10.255.255.255 in the example. All packets sent in response by
remote systems on the Internet to the router system have the address of the Internet
connection—10.255.255.255 in the example—as their destination address. The
router system remembers each connection and alters the destination address of each
response packet to that of the local, originating system.

The router system is established by four iptables commands, one of which sets up a
log of masqueraded connections. The first command puts the first rule in the FOR-
WARD chain of the Filter (default) table (–A FORWARD):

$ sudo iptables -A FORWARD -i eth0 -o eth1 -m state --state ESTABLISHED,RELATED -j ACCEPT

To match this rule, a packet must be

1. Received on eth0 (coming in from the Internet): –i eth0.

2. Going to be sent out on eth1 (going out to the LAN): –o eth1.

3. Part of an established connection or a connection that is related to an
established connection: ––state ESTABLISHED,RELATED.

The kernel accepts (–j ACCEPT) packets that meet these three criteria. Accepted
packets pass to the next appropriate chain or table. Packets from the Internet that
attempt to create a new connection are not matched and, therefore, are not
accepted by this rule. Packets that are not accepted pass to the next rule in the FOR-
WARD chain.

The second command puts the second rule in the FORWARD chain of the Filter
table:

$ sudo iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

To match this rule, a packet must be

Sharing an Internet Connection Using NAT 911

1. Received on eth1 (coming in from the LAN): –i eth1.

2. Going to be sent out on eth0 (going out to the Internet): –o eth0.

The kernel accepts packets that meet these two criteria, which means all packets that
originate locally and are going to the Internet are accepted. Accepted packets pass to
the next appropriate chain/table; packets that are not accepted pass to the next rule
in the FORWARD chain.

The third command puts the third rule in the FORWARD chain of the Filter table:

$ sudo iptables -A FORWARD -j LOG

Because this rule has no match criteria, it acts on all packets it processes. This rule’s
action is to log packets—that is, it logs packets from the Internet that attempt to
create a new connection.

Packets that reach the end of the FORWARD chain of the Filter table are done with
the rules set up by iptables and are handled by the local TCP stack. Packets from the
Internet that attempt to create a new connection on the router system are accepted
or returned, depending on whether the service they are trying to connect to is avail-
able on the router system.

The fourth command puts the first rule in the POSTROUTING chain of the
NAT table. Only packets that are establishing a new connection are passed to
the NAT table. Once a connection has been set up for SNAT or MASQUER-
ADE, the headers on all subsequent ESTABLISHED and RELATED packets are
altered the same way as the header of the first packet. Packets sent in response
to these packets automatically have their headers adjusted so that they return to
the originating local system.

$ sudo iptables -t NAT -A POSTROUTING -o eth0 -j MASQUERADE

To match this rule, a packet must be

1. Establishing a new connection (otherwise it would not have come to the
NAT table).

2. Going to be sent out on eth0 (going out to the Internet): –o eth0.

The kernel MASQUERADEs all packets that meet these criteria. In other words, all
locally originating packets that are establishing new connections have their source
address changed to the address that is associated with eth0 (10.255.255.255 in the
example).

The following example shows all four commands together:

$ sudo iptables -A FORWARD -i eth0 -o eth1 -m state --state ESTABLISHED,RELATED -j ACCEPT
$ sudo iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT
$ sudo iptables -A FORWARD -j LOG
$ sudo iptables -t NAT -A POSTROUTING -o eth0 -j MASQUERADE

912 Chapter 26 firestarter and iptables: Setting Up a Firewall

See page 899 for instructions on how to save these rules so that the firewall comes
up each time the system boots. To limit the local systems that can connect to the
Internet, you can add a –s (source) match criterion to the last command:

$ sudo iptables -t NAT -A POSTROUTING -o eth0 -s 192.168.0.0-192.168.0.32 -j MASQUERADE

In the preceding command, –s 192.168.0.0-192.168.0.32 causes only packets from
an IP address in the specified range to be MASQUERADEd.

Connecting Several Servers to a Single

Internet Connection

DNAT (destination NAT) can set up rules that allow clients from the Internet to
send packets to servers on the LAN. This example sets up an SMTP mail server on
192.168.1.33 and an Apache (Web) server on 192.168.1.34. Both protocols use
TCP. SMTP uses port 25 and Apache uses port 80, so the rules match TCP packets
with destination ports of 25 and 80. The example assumes that the mail server does
not make outgoing connections and uses another server on the LAN for DNS and
mail relaying. Both commands put rules in the PREROUTING chain of the NAT
table (–A PREROUTING –t NAT):

$ sudo iptables -A PREROUTING -t NAT -p tcp --dport 25 --to-source 192.168.0.33:25 -j DNAT
$ sudo iptables -A PREROUTING -t NAT -p tcp --dport 80 --to-source 192.168.0.34:80 -j DNAT

To match these rules, the packet must use the TCP protocol (–p tcp) and have a des-
tination port of either 25 (first rule, ––dport 25) or 80 (second rule, ––dport 80).

The ––to-source is a target specific to the PREROUTING and OUTPUT chains of
the NAT table; it alters the destination address and port of matched packets as spec-
ified. As with MASQUERADE and SNAT, subsequent packets in the same and
related connections are altered the same way.

The fact that the servers cannot originate connections means that neither server can be
exploited to participate in a DDoS attack (page 1032) on systems on the Internet, nor
can they send private data from the local system back to a malicious user’s system.

Chapter Summary

A firewall, such as iptables or firestarter, is designed to prevent unauthorized access
to a system or network. The firestarter utility is a sophisticated, graphical tool for
building and maintaining a firewall. It can protect just the single system it runs on
or it can protect the system it runs on plus other systems on a LAN that connect to
the Internet through the system running firestarter.

An iptables command sets up or maintains in the kernel rules that control the flow
of network packets; rules are stored in chains. Each rule includes a criteria part and
an action part, called a target. When the criteria part matches a network packet, the
kernel applies the action from the rule to the packet.

Advanced Exercises 913

Chains are collected in three tables: Filter, NAT, and Mangle. Filter (the default
table) DROPs or ACCEPTs packets based on their content. NAT (the Network
Address Translation table) translates the source or destination field of packets.
Mangle is used exclusively to alter the TOS (type of service), TTL (time to live), and
MARK fields in a packet. The connection tracking machine, which is handled by
the conntrack module, defines rules that match criteria based on the state of the
connection a packet is part of.

Exercises

1. How would you remove all iptables rules and chains?

2. What is firestarter? How is it related to iptables?

3. What is the easiest way to set up a rule using firestarter?

4. How would you list all current iptables rules?

5. How is configuring iptables different from configuring most Linux services?

6. Define an iptables rule that will reject incoming connections on the
TELNET port.

7. What does NAT stand for? What does the NAT table do?

Advanced Exercises

8. What does the conntrack module do?

9. What do rule match criteria do? What are they used for?

10. What do packet match criteria do? What are they used for?

11. Which utilities copy packet filtering rules to and from the kernel? How do
they work?

12. Define a rule that will silently block incoming SMTP connections from
spmr.com.

This page intentionally left blank

915915

27Chapter27The World Wide Web (WWW or Web for short), is a collection of
servers that hold material, called content, that Web browsers (or
just browsers) can display. Each of the servers on the Web is con-
nected to the Internet, a network of networks (an internetwork).
Much of the content on the Web is coded in HTML (Hypertext
Markup Language, page 1040). Hypertext, the links you click on
a Web page, allows browsers to display and react to links that
point to other Web pages on the Internet.

Apache is the most popular Web server on the Internet. It is
both robust and extensible. The ease with which you can
install, configure, and run it in the Linux environment makes it
an obvious choice for publishing content on the World Wide
Web. The Apache server and related projects are developed and
maintained by the Apache Software Foundation (ASF), a not-
for-profit corporation formed in June 1999. The ASF grew out
of the Apache Group, which was established in 1995 to develop
the Apache server.

This chapter starts by providing introductory information about
Apache. Following this information is the JumpStart section,

In This Chapter

JumpStart: Getting Apache Up
and Running. 919

Configuring Apache 921

Configuration Directives 925

Contexts and Containers 931

The Ubuntu apache2.conf File . . . 948

Redirects . 951

Content Negotiation 951

Type Maps 951

MultiViews. 952

Virtual Hosts 953

Troubleshooting 956

27

Apache: Setting Up a

Web Server

916 Chapter 27 Apache: Setting Up a Web Server

which describes the minimal steps needed to get Apache up and running. Next is
“Filesystem Layout,” which tells you where the various Apache files are located.

Configuration directives (referred to simply as directives) are a key part of Apache
and are discussed starting on page 925. This section includes coverage of contexts
and containers, two features/concepts that are critical to understanding Apache.
The next section, which starts on page 948, explains the main Apache configuration
file, apache2.conf, as distributed by Ubuntu. The final pages of the chapter cover
virtual hosts, troubleshooting, and modules you can use with Apache, including
CGI and SSL.

Introduction

Apache is a server that responds to requests from Web browsers, or clients, such as
Firefox, Netscape, lynx, and Internet Explorer. When you enter the address of a Web
page (a URI, page 1067) in a Web browser’s location bar, the browser sends a request
over the Internet to the (Apache) server at that address. In response, the server sends
(serves) the requested content back to the browser. The browser then displays or plays
the content, which might be a song, picture, video clip, or other information.

Content Aside from add-on modules that can interact with the content, Apache looks only at
the type of data it is sending so that it can specify the correct MIME (page 1048)
type; otherwise it remains oblivious to the content itself. Server administration and
content creation are two different aspects of bringing up a Web site. This chapter
concentrates on setting up and running an Apache server; it spends little time dis-
cussing content creation.

Modules Apache, like the Linux kernel, uses external modules to increase load-time flexibil-
ity and allow parts of its code to be recompiled without recompiling the whole pro-
gram. Rather than being part of the Apache binary, modules are stored as separate
files that can be loaded when Apache is started.

Apache uses external modules, called dynamic shared objects (DSOs), for basic and
advanced functions; there is not much to Apache without these modules. Apache also
uses modules to extend its functionality. For example, modules can process scripts
written in Perl, PHP, Python, and other languages; use several different methods to
authenticate users; facilitate publishing content; and process nontextual content, such
as audio. The list of modules written by the ASF and third-party developers is con-
stantly growing. For more information refer to “Modules” on page 957.

Setup The Debian/Ubuntu Apache team provides one of the easiest-to-use Apache setups
of any distribution. Most packages that provide a Web interface and that depend on
Apache run as installed; typically you do not need to modify the configuration files.
For example, installing phpmyadmin (sourceforge.net/projects/phpmyadmin) makes
it available to a browser as /phpmyadmin.

About Apache 917

About Apache

This section describes the packages you need to install and provides references for
the programs covered in this chapter. The “Notes” section on page 918 introduces
terminology and other topics that may help you make better sense of this chapter.
“JumpStart I” (page 919) gets Apache up and running as quickly as possible.

Prerequisites

Minimal installation Install the following package:

• apache2

apache2 init script When you install the apache2 package, the dpkg postinst script starts the apache2
daemon. After you configure Apache, call the apache2 init script to restart the
apache2 daemon:

$ sudo /etc/init.d/apache2 restart

After changing the Apache configuration on an active server, use reload in place of
restart to reload Apache configuration files without disturbing clients connected to
the server.

Optional packages The mod_ssl package is installed as part of the apache2 package—you do not need
to install it separately. You may want to install the following optional packages:

• apache2-doc The Apache manual

• webalizer Web server log analyzer (page 964)

• awstats Web server log analyzer

• libapache2-mod-perl2 Embedded Perl scripting language (mod_perl)

• libapache2-mod-python Metapackage that installs the embedded Python
scripting language (mod_python)

• libapache2-mod-php5 Embedded PHP scripting language, including
IMAP and LDAP support (mod_php)

• mrtg MRTG traffic monitor (page 964)

The apache2ctl utility and restarting Apache gracefully

tip The apache2 init script calls apache2ctl to start and stop Apache. The reload argument calls this
utility with an argument of graceful, which does not disturb clients that are connected to the
server. The restart and force-reload arguments call it with arguments of stop and then start; this
pair of commands shuts down the server completely before restarting it.

918 Chapter 27 Apache: Setting Up a Web Server

More Information

Local Apache HTTP Server Version 2.2 Documentation. With Apache running
and apache2-doc installed, point a browser at server/manual, where server
is localhost or the name or IP address of the Apache server.

Apache directives server/manual/mod/directives.html
SSI directives server/manual/howto/ssi.html

Web Apache documentation httpd.apache.org/docs/2.2
Apache directives httpd.apache.org/docs/2.2/mod/directives.html
Apache Software Foundation (newsletters, mailing lists, projects,
module registry, and more) www.apache.org
webalizer www.mrunix.net/webalizer
awstats awstats.sourceforge.net
libapache2-mod-perl2 perl.apache.org (mod_perl)
libapache2-mod-php5 www.php.net (mod_php)
libapache2-mod-python www.modpython.org (mod_python)
SSL www.modssl.org (mod_ssl)
MRTG mrtg.hdl.com/mrtg
SNMP net-snmp.sourceforge.net
SSI directives httpd.apache.org/docs/2.2/howto/ssi.html

Notes

Terms:
Apache and

apache2

Apache is the name of a server that serves HTTP and other content. The name of the
Apache 2 daemon is apache2. This chapter uses Apache and apache2 interchangeably.

Terms: server and
process

An Apache server is the same thing as an Apache process. An Apache child process
exists to handle incoming client requests; hence it is referred to as a server.

Firewall An Apache server normally uses TCP port 80; a secure server uses TCP port 443. If
the Apache server system is running or behind a firewall, you must open one or both
of these ports. To get started, open port 80 (HTTP). Using firestarter (page 886),
open these ports by setting a policy that allows service for HTTP and/or HTTPS.

Running with root
privileges

Because Apache serves content on privileged ports, you must start it running with
root privileges. For security reasons, Ubuntu sets up Apache to spawn processes
that run as the user and group www-data.

Locale The apache2 daemon starts using the C locale by default. You can modify this
behavior—for example, to use the configured system locale—by setting the
LANG variable (in the line that starts with ENV="env -i LANG=C ...) in the
/etc/init.d/apache2 file.

Document root The root of the directory hierarchy that Apache serves content from is called the
document root and is controlled by the DocumentRoot directive (page 929). This
directive defines a directory on the server that maps to /. This directory appears to
users who are browsing a Web site as the root directory. As distributed by Ubuntu,
the document root is /var/www.

Modifying content With the default Ubuntu configuration of Apache, only a user working with root
privileges (using sudo) can add or modify content in /var/www. To avoid having

www.apache.org
www.mrunix.net/webalizer
www.php.net
www.modpython.org
www.modssl.org
httpd.apache.org/docs/2.2
httpd.apache.org/docs/2.2/mod/directives.html
httpd.apache.org/docs/2.2/howto/ssi.html

JumpStart: Getting Apache Up and Running 919

people work as root when they are manipulating content, create a group (webwork,
for example), put people who need to work with Web content in this group, and
make the directory hierarchy starting at /var/www (or another document root)
writable by that group. In addition, if you give the directory hierarchy setgid per-
mission, all new files created within this hierarchy will belong to the group, which
facilitates sharing files. The first three commands below add the new group, change
the mode of the document root to setgid, and change the group that the document
root belongs to. The last command adds username to the webwork group; you must
repeat this command for each user you want to add to the group.

$ sudo addgroup webwork
$ sudo chmod g+s /var/www
$ sudo chown :webwork /var/www

$ sudo usermod -aG webwork username

See page 660 for more information about working with groups.

Versions Ubuntu runs Apache version 2.2.

JumpStart: Getting Apache Up and Running

To get Apache up and running, modify the /etc/apache2/sites-available/default con-
figuration file as described in this section. “Directives I: Directives You May Want
to Modify as You Get Started” on page 926 explains more about this file and
explores other changes you may want to make to it.

Modifying the Configuration Files

Apache runs as installed, but it is a good idea to add the three lines described in this
section to the /etc/apache2/sites-available/default configuration file. If you do not
add these lines, Apache will assign values that may not work for you. After you
modify this file, you must restart Apache (page 917).

The ServerName line establishes a name for the server. Add one of the following
lines to /etc/apache2/sites-available/default to set the name of the server to the
domain name of the server or, if you do not have a domain name, to the IP address
of the server. Add the line just below the ServerAdmin line near the top of the file.

ServerName example.com

or

ServerName IP_address

where example.com is the domain name of the server and IP_address is the IP
address of the server. If you are not connected to a network, you can use the localhost
address, 127.0.0.1, so you can start the server and experiment with it. See (page 950)
for more information on the ServerName directive.

920 Chapter 27 Apache: Setting Up a Web Server

When a client has trouble getting information from a server, the server typically dis-
plays an error page that identifies the problem. For example, when Apache cannot
find a requested page, it displays a page that says Error 404: Not Found. Each error
page can include a mailto: link that the user can click to send mail to the server’s
administrator. The ServerSignature directive can specify that you want an email link
on error pages. This link appears as the domain name the user called in the Browser.
The ServerAdmin directive specifies the email address that the server sends mail to
when a user clicks the link on an error page. Add these two lines to the file named
default, each following the location at which the same directive is already defined
(ServerSignature is near the end of the file):

ServerAdmin email_address

ServerSignature EMail

where email_address is the email address of the person who needs to know when
people are having trouble using the server. Make sure that someone checks this
email account frequently. But see the tip “ServerAdmin attracts spam” on page 928.

It can make system administration much easier if you use a role alias (for example,
webmaster@example.com) instead of a specific username (e.g., max@example.com)
as an email_address. See the discussion of email aliases on page 763.

After making the changes to the file named default, restart apache2 as explained on
page 917.

Testing Apache

Once you restart the apache2 daemon, you can confirm that Apache is working cor-
rectly by pointing a browser on the local (server) system to http://localhost/. From
a remote system, point a browser to http:// followed by the ServerName you speci-
fied in the previous section. If you are displaying a page from a system other than
the local one, the local system must know how to resolve the domain name you
enter (e.g., by using DNS or the /etc/hosts file). For example, you might use either
of these URI formats: http://192.168.0.16 or http://example.org.

In response to your request, the browser should display the Index of / page, which lists
the apache2-default directory (stored at /var/www/apache2-default on the server).
Click this directory name to display the contents of the directory. This directory holds
a file named index.html. When you point a browser at a directory that holds a file
named index.html, Apache causes the browser to display the contents of that file in
place of a directory listing. In this case, the browser should display It works!

If the server is behind a firewall, open TCP port 80 (page 918). If you are having
problems getting Apache to work, see “Troubleshooting” on page 956.

Putting Your Content in Place

Place the content you want Apache to serve in /var/www. Apache automatically
displays the file named index.html in this directory. Give the following command to
create such a page:

Configuring Apache 921

$ sudo tee /var/www/index.html
<html><body><p>This is <i>my</i> test page.</p></body></html>
<html><body><p>This is <i>my</i> test page.</p></body></html>
CONTROL-D

The tee utility (page 236) copies standard input (page 226) to the file you give as its
argument and to standard output (page 226). Because of this redirection, tee repeats
each line you type after you press RETURN. After you create this file, either refresh the
page on the browser (if it is still running) or start it again and point it at the server.
The browser should display the page you just created.

See apache2-default on page 927 if you want Apache to redirect the browser to the
/var/www/apache2-default directory so that it displays the index.html file in that
directory.

Configuring Apache

This section describes configuration tools you can use to make your job easier. It
also tells you where you can find many of the files you may need to work with as
you set up and modify an Apache server. Most of the configuration files are in the
/etc/apache2 hierarchy.

Configuration Tools

This section describes the utilities that manage some of the files in the /etc/apache2
hierarchy. These utilities are part of the apache2.2-common package, which is
installed as a dependency when you install apache2.

a2enmod and
a2dismod

The a2enmod (Apache 2 enable module) and a2dismod (Apache 2 disable module)
utilities enable and disable an Apache module. The /etc/apache2/mods-available
directory holds files that contain LoadModule directives (page 944) and options for
modules that are installed on the local system. The /etc/apache2/mods-enabled
directory holds symbolic links to the files in mods-available. Apache incorporates
these links into its configuration files by using Include directives (next section). The
a2enmod utility creates symbolic links in the mods-enabled directory from configu-
ration files in the mods-available directory. It works on files whose basename is
given as its argument.

$ sudo -i
cd /etc/apache2
ls mods-available/userdir*
mods-available/userdir.conf mods-available/userdir.load
ls mods-enabled/userdir*
ls: mods-enabled/userdir*: No such file or directory
a2enmod userdir
Module userdir installed; run /etc/init.d/apache2 force-reload to enable.
ls mods-enabled/userdir*
mods-enabled/userdir.conf mods-enabled/userdir.load
exit
$

922 Chapter 27 Apache: Setting Up a Web Server

The a2dismod utility removes the symbolic links that a2enmod creates. You must
reload Apache (page 917) after you give one or more of these commands before
they will take effect.

The a2enmod and a2dismod utilities simplify Apache administration. Instead of add-
ing or commenting out a LoadModule directive in the httpd.conf or apache2.conf
file, you can use these programs to enable or disable a module. This setup
enables APT or Synaptic, after it installs a package, to call a2enmod via a dpkg
postinst script and then reload Apache so that the package is functional upon
installation.

a2ensite and
a2dissite

The a2ensite (Apache 2 enable site) and a2dissite (Apache 2 disable site) utilities
enable and disable an Apache virtual host (page 953). These commands work simi-
larly to the module commands described earlier. First you design a virtual host in a file
in the /etc/apache2/sites-available directory. Then you call a2ensite with the name of
the site as an argument to create a symbolic link in the /etc/apache2/sites-enabled
directory. The a2dissite utility removes the symbolic link, disabling the virtual host.

Include Directives

Under Ubuntu, the primary configuration file is /etc/apache2/apache2.conf. This
file incorporates other files using Include directives (page 944):

$ grep '^Include' /etc/apache2/apache2.conf
Include /etc/apache2/mods-enabled/*.load
Include /etc/apache2/mods-enabled/*.conf
Include /etc/apache2/httpd.conf
Include /etc/apache2/ports.conf
Include /etc/apache2/conf.d/
Include /etc/apache2/sites-enabled/

apache2.conf Typically, when you configure Apache, you do not make changes to apache2.conf;
instead, you modify files that are specified in Include directives. You can also use
the configuration tools described in the previous section. This setup allows updates
to Apache to change apache2.conf without affecting the server.

When Apache reads its configuration files, if it finds more than one occurrence of
the same directive, even in an Include file, it uses the value assigned by the last direc-
tive it encounters.

In the apache2.conf file, the Include directive for the httpd.conf file occurs after
directives that set up the global environment, which includes various timeouts and
limits as shown in Table 27-1. To change any of these directives, copy them to
httpd.conf and make the changes there. You must change directives that appear
after the Include httpd.conf directive in other included files as explained in this
section.

Configuring Apache 923

The Include directive for /etc/apache2/conf.d (it includes all files in this directory)
appears after the Include directive for httpd.conf, with only the Include directive for
/etc/apache2/ports.conf separating them. This directory is a good place to put small
configuration snippets, or break out parts of httpd.conf if it is growing too large.

Directives that control log formats, indexing options, MIME handling, and browser
bug handling appear after the Include directive for httpd.conf, but before the Include
directive for /etc/apache2/sites-enabled, which is the last line in apache2.conf. You
can override these directives on a per-site basis by copying them to individual site
files in the sites-enabled directory and modifying them there.

If you manage more than one Ubuntu Web server, it is nice to keep all the custom-
ized configuration code separate from the main configuration. That way you can
use scp to copy the files to each new server. Or you can keep the custom code under
a version control system and check it out to configure a new system. This technique
is much easier than using diff to find out what you changed from system to system.

Filesystem Layout

This section lists the locations and uses of files you will work with to configure
Apache and serve Web pages.

Binaries, scripts,
and modules

The Apache server and related binary files are kept in several directories:

/usr/sbin/apache2 The Apache server (daemon).

/usr/sbin/apache2ctl Starts and stops Apache. The apache2 init script calls apachectl.

Table 27-1 Directives that you can override in httpd.conf

AccessFileName MaxRequestsPerChild

DefaultType MaxSpareThreads

ErrorLog MinSpareThreads

Group PidFile

HostnameLookups ServerRoot

KeepAlive StartServers

KeepAliveTimeout ThreadsPerChild

LockFile Timeout

LogLevel TypesConfig

MaxClients User

MaxKeepAliveRequests

924 Chapter 27 Apache: Setting Up a Web Server

/usr/bin/htpasswd Creates and maintains the password files used by the Apache
authentication module (page 961).

/usr/sbin/rotatelogs Rotates Apache log files so that these files do not get too
large. See logrotate (page 684) for information about rotating log files.

/etc/apache2/mods-available Holds files containing LoadModule directives
(page 944) for their respective modules. The alias.conf file is kept in this directory
and is enabled by default. Two of the most frequently used module binary files are
mod_perl (part of the libapache2-mod-perl2 package) and mod_python (part of the
libapache2-mod-python metapackage). The *.load files in this directory load mod-
ules from the /usr/lib/apache2/modules directory (page 957). The *.conf files con-
figure the modules for use. See page 921 for information on using a2enmod to
enable a module.

/etc/apache2/mods-enabled Holds links to files in mods-available. Use a2enmod
to create links and a2dismod to remove links (page 921).

Configuration files Apache configuration files are kept in the /etc/apache2 hierarchy:

/etc/apache2/apache2.conf Holds configuration directives. This file is the main
Apache configuration file. You do not typically make changes to this file, but rather
put any configuration directives in httpd.conf and other files.

/etc/apache2/envvars Holds variables that modify the environment in which
Apache runs.

/etc/apache2/ports.conf Holds the Listen directive (page 926), which controls
which IP address(es) and port(s) Apache listens on.

/etc/apache2/sites-available Holds files containing the code that describes virtual
hosts. See page 922 for information on using a2ensite to enable a site.

/etc/apache2/sites-enabled Holds links to files in sites-available. Use a2ensite to
create links and a2dissite to remove links (page 922).

/etc/apache2/httpd.conf Holds local configuration directives. This file augments
the apache2.conf file in the same directory. The discussion of configuration direc-
tives starts on page 925.

/etc/apache2/conf.d Holds configuration files.

Logs Logs are kept in /var/log/apache2:

/var/log/apache2/access_log Logs requests made to the server.

/var/log/apache2/error_log Logs request and runtime server errors.

Web documents Web documents (including the Web pages displayed by client browsers), custom
error messages, and CGI scripts are kept in /var/www by default:

/usr/lib/cgi-bin Holds CGI scripts (page 958). This directory is aliased to /cgi-bin/.

/usr/share/apache2/error Holds default error documents. You can modify these
documents to conform to the style of your Web site. This directory is aliased to
/error/. See ErrorDocument (page 940).

Configuration Directives 925

/usr/share/apache2/icons Holds icons used to display directory entries. This direc-
tory is aliased to /icons/.

/usr/share/doc/apache2-doc/manual/index.html.* Apache HTTP Server Version
2.2 Documentation. With Apache running and apache2-doc installed, point a
browser at server/manual, where server is localhost or the name or IP address of the
Apache server.

Document root By default, the document root (page 918) is /var/www. You can change this loca-
tion with the DocumentRoot directive (page 929). In addition to content for the
Web pages that Apache serves, this directory can house the webalizer directory,
which holds webalizer (page 964) output.

.htaccess files A .htaccess file contains configuration directives and can appear in any directory in
the document root hierarchy. The location of a .htaccess file is critical: The direc-
tives in a .htaccess file apply to all files in the hierarchy rooted at the directory that
holds the .htaccess file. The AllowOverride directive (page 946) controls whether
Apache examines .htaccess files. Because the default site contains AllowOverride
None directives, you must use an AllowOverride directive to cause Apache to exam-
ine .htaccess files and process directives in those files. This protection is duplicated
and enhanced in the apache2.conf file distributed by Ubuntu, where a directive
instructs Apache not to serve files whose names start with .ht. Because of this direc-
tive, Apache does not serve .htaccess files (nor does it serve .htpassword files).

Configuration Directives

Configuration directives, or simply directives, are lines in a configuration file that
control some aspect of how Apache functions. A configuration directive is com-
posed of a keyword followed by one or more arguments (values) separated by SPACEs.
For example, the following configuration directive sets Timeout to 300 (seconds):

Timeout 300

You must enclose arguments that contain SPACEs within double quotation marks.
Keywords are not case sensitive, but arguments (pathnames, filenames, and so on)
often are.

apache2.conf The main file that holds Apache configuration directives is, by default,
/etc/apache2/apache2.conf. This file holds global directives that affect all content
served by Apache. Include directives (pages 922 and 944) within apache2.conf
incorporate the contents of other files as though they were part of apache2.conf.

.htaccess Local directives can appear in .htaccess files. A .htaccess file can appear in any
directory within the document root hierarchy; it affects files in the directory hierar-
chy rooted at the directory it appears in.

Pathnames When you specify an absolute pathname in a configuration directive, the directive
uses that pathname without modifying it. When you specify a relative pathname,
such as a simple filename or the name of a directory, Apache prepends to that name
the value specified by the ServerRoot (page 942) directive (/etc/apache2 by default).

926 Chapter 27 Apache: Setting Up a Web Server

Directives I: Directives You May Want to Modify as

You Get Started

When it starts, Apache reads the /etc/apache2/apache2.conf configuration file (by
default) for instructions governing every aspect of how Apache runs and serves content.
The apache2.conf file shipped by Ubuntu is more than 600 lines long. As explained
under apache2.conf on page 922, you do not normally make changes to this file.

This section details some directives you may want to add to /etc/apache2/httpd.conf,
or change in one of the other configuration files, as you are getting started with
Apache. You can use each of the following directives in httpd.conf to override the
corresponding directive in apache2.conf. Or you can change the directive if it appears
in another configuration file. In this chapter, the Specify in line near the end of each
explanation tells you in which configuration file in the /etc/apache2 hierarchy you
typically specify that directive. If the directive already appears in a file, you must spec-
ify the new directive after the one you want to override. See apache2.conf (page 922)
for more information. The Context line in each explanation tells you which locations
the directives can appear in; contexts are explained on page 931. The section titled
“Directives II: Advanced Directives” on page 935 describes more directives.

Listen Specifies the port(s) that Apache listens for requests on.

Listen [IP-address:]portnumber

where IP-address is the IP address that Apache listens on and portnumber is the
number of the port that Apache listens on for the given IP-address. When IP-address
is absent or is set to 0.0.0.0, Apache listens on all network interfaces. At least one
Listen directive must appear in the configuration files or Apache will not work.

The following minimal directive from the ports.conf file listens for requests on all
interfaces on port 80:

Listen 80

The next directive changes the port from the default value of 80 to 8080:

Listen 8080

When you specify a port other than 80, each request to the server must include a
port number (as in www.example.org:8080) or the kernel will return a Connection
Refused message. Use multiple Listen directives to have Apache listen on multiple IP
addresses and ports. For example,

Listen 80
Listen 192.168.1.1:8080
Listen 192.168.1.2:443

accepts connections on all network interfaces on port 80, on 192.168.1.1 on port
8080, and on 192.168.1.2 on port 443.

Configuration Directives 927

Context: server config
Specify in ports.conf
Default: none (Apache will not start without this directive)
Ubuntu: Listen 80

Redirect Tells the client to fetch a requested resource from a different, specified location.

Redirect [status] requested-path [new-URI]

where status is the status that Apache returns along with the redirect. If you omit
status, Apache assumes temp. The status can be an Apache error code in the range
300–399 or one of the following:

permanent Returns status 301 (the resource has moved permanently)
temp Returns status 302 (the resource has moved temporarily)
seeother Returns status 303 (the resource has been replaced)
gone Returns status 410 (the resource has been removed—does not

take a new-URI argument

The requested-path is the absolute pathname of the ordinary file or directory that
Apache is to redirect requests for. Apache redirects all requests that start with the abso-
lute pathname specified by requested-path. (See the example below.) Use RedirectMatch
(discussed next) if you want to use a regular expression in this argument.

The new-URI is the URI that Apache redirects requests to. If the new-URI starts
with a slash (/) and not http://, ftp://, or a similar prefix, Apache uses the same pre-
fix that it was called with. Most Redirect directives require a new-URI argument.

A request must match all segments of the requested-path argument. Assume the fol-
lowing directive:

Redirect /www.example.com/pictures http://pictures.example.com/

Apache will redirect a request for http://www.example.com/pictures/mom.jpg to
http://pictures.example.com/mom.jpg but, because the final segment does not match,
it will not redirect a request for http://www.example.com/pictures_mom.jpg.

Contexts: server config, virtual host, directory, .htaccess
Specify in sites-available/*
Default: none
Ubuntu: none

RedirectMatch Tells the client to fetch a requested resource from a different location specified by a
regular expression.

Redirect [status] requested-path-re [new-URI]

This directive is the same as Redirect (discussed above), except that you can use a
regular expression (Appendix A) in requested-path-re.

apache2-default The file installed at /etc/apache2/sites-available/default includes the following comment:

#RedirectMatch ^/$ /apache2-default/

928 Chapter 27 Apache: Setting Up a Web Server

If you remove the leading pound sign (i.e., uncomment the line), this directive redi-
rects all requests to / (root) to /apache2-default on the same server. The regular
expression ^/$ matches all URIs that start with a / (the ^ matches the beginning of
the string and the $ matches the end. Because the requested-path-re specifies the
start of the requested URI, this regular expression matches all requests for the root
directory. When a user points a browser at the root of the server (as described on
page 920) Apache redirects the user’s request to the apache2-default directory and
displays It works! immediately.

Contexts: server config, virtual host, directory, .htaccess
Specify in sites-available/*
Default: none
Ubuntu: none, but see above

ServerAdmin Sets the email address used in mailto: links on error pages.

ServerAdmin email-address

where email-address is the email address of the person who is responsible for man-
aging the Web content. Apache includes this address as a link on Apache-generated
error pages. However, Ubuntu Linux sets ServerSignature (page 943) to On, which
causes Apache to display information about the server—rather than a link to an
email address—on error pages. If you want to display the link on error pages, set
ServerSignature to EMail. Make sure email-address points to an email account that
someone checks frequently. Users can use this address to get help with the Web site
or to inform the administrator of problems. There is no default value for Server-
Admin; if you do not use this directive and ServerSignature is set to EMail, the
mailto: link on error pages points to [no address given].

You can use a role alias such as webmaster at your domain and use a mail alias to
forward mail that is sent to webmaster to the person who is responsible for main-
taining the Web site. See the discussion of mail aliases on page 763.

Contexts: server config, virtual host
Specify in sites-available/*
Default: none
Ubuntu: webmaster@localhost

ServerName Specifies the server’s name and the port it listens on.

ServerName FQDN [:port]

where FQDN is the fully qualified domain name or IP address of the server and port
is the optional port number Apache listens on. The domain name of the server must

ServerAdmin attracts spam
security The email address you put in ServerAdmin often attracts spam. Use a spam-guarded address such

as "mgs at sobell dot com" (you must use the quotation marks) or use a custom error page to
point to a Web page with a form for sending mail to the right person.

Configuration Directives 929

be able to be resolved (by DNS or /etc/hosts) and may differ from the hostname of
the system running the server. If you do not specify a ServerName, Apache performs
a DNS reverse name resolution (page 855) on the system’s IP address and assigns
that value to ServerName. If the reverse lookup fails, Apache assigns the system’s IP
address to ServerName.

In the following example, substitute the FQDN or IP address of the server for
www.example.com. Change the 80 to the port number Apache listens on (if it is not
port 80).

ServerName www.example.com:80

The ports specified by ServerName and Listen (page 926) must be the same if you
want the FQDN specified by ServerName to be tied to the IP address specified by
the Listen directive.

Apache uses ServerName to construct a URI when it redirects a client (page 951).
See also UseCanonicalName (page 938).

Contexts: server config, virtual host
Specify in sites-available/*
Default: none
Ubuntu: none

DocumentRoot Points to the root of the directory hierarchy that holds the server’s content.

DocumentRoot dirname

where dirname is the absolute pathname of the directory at the root of the directory
hierarchy that holds the content Apache serves. Do not use a trailing slash. You can
put the document root wherever you like, as long as the user www-data has read
access to the ordinary files and execute access to the directory files in the directory
hierarchy. The FHS (page 194) specifies /srv as the top-level directory for this pur-
pose. The following directive puts the document root at /srv/www:

DocumentRoot /srv/www

Contexts: server config, virtual host
Specify in sites-available/*
Default: /usr/local/apache/htdocs
Ubuntu: /var/www

UserDir Allows users to publish content from their home directories.

UserDir dirname | disabled | enabled user-list

where dirname is the name of a directory that, if it appears in a local user’s home
directory, Apache publishes to the Web. The disabled keyword prevents content
from being published from users’ home directories; enabled causes content to be
published from the home directories of users specified in the SPACE-separated user-list.
When you do not specify a dirname, Apache publishes content to ~/public_html.

930 Chapter 27 Apache: Setting Up a Web Server

Apache can combine the effects of multiple UserDir directives. Suppose you have
the following directives:

UserDir disabled
UserDir enabled user1 user2 user3
UserDir web

The first directive turns off user publishing for all users. The second directive
enables user publishing for three users. The third directive makes web the name of
the directory that, if it appears in one of the specified users’ home directories,
Apache publishes to the Web.

To cause a browser to display the content published by a user, specify in the loca-
tion bar the name of the Web site followed by a /~ and the user’s username. For
example, if Sam published content in the public_html directory in his home direc-
tory and the URI of the Web site was www.example.com, you would enter
http://www.example.com/~sam to display Sam’s Web page. To display a user’s
Web page, Apache must have execute permission (as user www-data) for the
user’s home directory and the directory holding the content, and read permission
for the content files.

Ubuntu Linux provides the following configuration for user directories in
/etc/apache2/mods-available/userdir.conf, which is disabled by default:

UserDir public_html
UserDir disabled root

Give the command a2enmod userdir to enable user directories.

Contexts: server config, virtual host
Specify in mods-available/userdir.conf
Default: none
Ubuntu: public_html, disabled root

DirectoryIndex Specifies which file Apache serves when a user requests a directory.

DirectoryIndex filename [filename ...]

where filename is the name of the file that Apache serves.

This directive specifies a list of filenames. When a client requests a directory,
Apache attempts to find a file in the specified directory whose name matches a file
in the list. When Apache finds a match, it returns that file. When this directive is
absent or when none of the files specified by this directive exists in the specified
directory, Apache displays a directory listing as specified by the IndexOptions direc-
tive (page 940).

The following DirectoryIndex directive, which Ubuntu Linux provides in the
mods-enabled/dir.conf file, is enabled by default:

DirectoryIndex index.html index.cgi index.pl index.php index.xhtml

Configuration Directives 931

This directive causes Apache to search the specified directory and return the file
named index.html, index.cgi, index.pl, index.php, or index.xhtml, where index.html
and index.xhtml are the names of the standard, default HTML and XHTML docu-
ments; index.cgi is a CGI document; index.pl is a Perl document; and index.php is a
PHP document. The name index is standard but arbitrary.

Using headers, a client can communicate a language preference to a server. If the server
can handle the preference, it determines the best response from among its resources.
The .var is an Ubuntu addition (a line in apache2.conf, AddHandler type-map var,
makes the .var extension a type map, one of the forms of content negotiation; Multi-
Views is the other form). For more information refer to “Content Negotiation” on
page 951.

Contexts: server config, virtual host
Specify in mods-available/dir.conf
Default: index.html
Ubuntu: index.html index.cgi index.pl index.php index.xhtml

Contexts and Containers

To make it flexible and easy to customize, Apache uses configuration directives,
contexts, and containers. Configuration directives were covered in the previous sec-
tion. This section discusses contexts and containers, which are critical to managing
an Apache server.

Contexts

Four locations, called contexts, define where configuration directives can appear.
This chapter marks each configuration directive to indicate which context(s) it can
appear in. Table 27-2 describes each of these contexts.

Directives in files incorporated by means of an Include directive (page 944) are part
of the context they are included in and must be allowed in that context.

Putting a directive in the wrong context generates a configuration error and can
cause Apache not to serve content correctly or not to start.

Table 27-2 Contexts

Context Location(s) directives can appear in

server config In apache2.conf or included files only, but not inside <VirtualHost> or
<Directory> containers (next section) unless so marked

virtual host Inside <VirtualHost> containers in apache2.conf or included files only

directory Inside <Directory>, <Location>, and <Files> containers in apache2.conf or
included files only

.htaccess In .htaccess files (page 925) only

932 Chapter 27 Apache: Setting Up a Web Server

Containers

Containers, or special directives, are directives that group other directives. Contain-
ers are delimited by XML-style tags. Three examples are shown here:

<Directory> ... </Directory>

<Location> ... </Location>

<VirtualHost> ... </VirtualHost>

Look in apache2.conf and sites-available/default for examples of containers. Like
other directives, containers are limited to use within specified contexts. This section
describes some of the more frequently used containers.

<Directory> Applies directives to all directories within the specified directory hierarchies.

<Directory directory> ... </Directory>

where directory is an absolute pathname specifying the root of the directory hierar-
chy that holds the directories the directives in the container apply to. The directory
can include wildcards; a * does not match a /.

A <Directory> container provides the same functionality as a .htaccess file. While
an administrator can use a <Directory> container in Apache configuration files, reg-
ular users cannot. Regular users can use .htaccess files to control access to their own
directories.

The directives in the <Directory> container shown in the following example apply
to the /var/www/html/corp directory hierarchy. The Deny directive denies access to
all clients, the Allow directive grants clients from the 192.168.10. subnet access,
and the AllowOverride directive (page 946) enables Apache to process directives in
.htaccess files in the hierarchy:

<Directory /var/www/html/corp>
 Deny from all
 Allow from 192.168.10.
 AllowOverride All
</Directory>

Contexts: server config, virtual host

<Files> Applies directives to specified ordinary files.

<Files directory> ... </Files>

where directory is an absolute pathname specifying the root of the directory hierar-
chy that holds the ordinary files the directives in the container apply to. The direc-
tory can include wildcards; a * does not match a /. This container is similar to
<Directory> but applies to ordinary files rather than to directories.

The following directive, from the Ubuntu apache2.conf file, denies access to all files
whose filenames start with .ht , meaning that Apache will not serve these files. The
tilde (~) changes how Apache interprets the following string. Without a tilde, the
string is a simple shell match that interprets shell special characters (page 239).
With a tilde, Apache interprets the string as a regular expression (page 971):

Configuration Directives 933

<Files ~ "^\.ht">
 Order allow,deny
 Deny from all
</Files>

Contexts: server config, virtual host, directory, .htaccess

<IfModule> Applies directives if a specified module is loaded.

<IfModule [!]module-name> ... </IfModule>

where module-name is the name of the module (page 957) that is tested for. Apache
executes the directives in this container if module-name is loaded or with ! if
module-name is not loaded.

Apache will not start if you specify a configuration directive that is specific to a
module that is not loaded.

The following <IfModule> container, which is located in the Ubuntu file named
mods-available/mime_magic.conf, depends on the mod_mime_magic.c module being
loaded. If this module is loaded, Apache runs the MIMEMagicFile directive, which
tells the mod_mime_magic.c module where its hints file is located.

<IfModule mod_mime_magic.c>
MIMEMagicFile /usr/share/file/magic.mime

</IfModule>

See page 949 for another example of an <IfModule> container.

Contexts: server config, virtual host, directory, .htaccess

<Limit> Limits access-control directives to specified HTTP methods.

<Limit method [method] ... > ... </Limit>

where method is an HTTP method. An HTTP method specifies which action is to
be performed on a URI. The most frequently used methods are GET, PUT, POST,
and OPTIONS; method names are case sensitive. GET (the default method) sends
any data indicated by the URI. PUT stores data from the body section of the com-
munication at the specified URI. POST creates a new document containing the body
of the request at the specified URI. OPTIONS requests information about the capa-
bilities of the server.

The <Limit> container binds a group of access-control directives to specified HTTP
methods: Only methods named by this container are affected by this group of directives.

The following example disables HTTP uploads (PUTs) from systems that are not in
a subdomain of example.com:

<Limit PUT>
order deny,allow
deny from all
allow from .example.com
</Limit>

Contexts: server config, virtual host, directory, .htaccess

934 Chapter 27 Apache: Setting Up a Web Server

<LimitExcept> Limits access-control directives to all except specified HTTP methods.

<LimitExcept method [method] ... > ... </LimitExcept>

where method is an HTTP method. See <Limit> for a discussion of methods.

This container causes a group of access-control directives not to be bound to speci-
fied HTTP methods. Thus methods not named in <LimitExcept> are affected by this
group of directives.

The access-control directives within the following <LimitExcept> container affect
HTTP methods other than GET, POST, and OPTIONS. You could put this con-
tainer in a <Directory> container to limit its scope:

<LimitExcept GET POST OPTIONS>
 Order deny,allow
 Deny from all
 </LimitExcept>

Contexts: server config, virtual host, directory, .htaccess

<Location> Applies directives to specified URIs.

<Location URI> ... </Location>

where URI points to content; it specifies a file or the root of the directory hierarchy
that the directives in the container apply to. While the <Directory> container points
within the local filesystem, <Location> points outside the local filesystem. The URI
can include wildcards; a * does not match a /.

The following <Location> container limits access to http://server/pop to clients
from the example.net domain, where server is the FQDN of the server:

<Location /pop>
 Order deny,allow
 Deny from all
 Allow from .example.net
</Location>

Contexts: server config, virtual host

Use <LimitExcept> instead of <Limit>

caution It is safer to use the <LimitExcept> container than to use the <Limit> container, as the former pro-
tects against arbitrary methods. When you use <Limit>, you must be careful to name explicitly all
possible methods that the group of directives could affect.

It is safer still not to put access-control directives in any container.

Use <Location> with care

caution Use this powerful container with care. Do not use it to replace the <Directory> container: When
several URIs point to the same location in a filesystem, a client may be able to circumvent the
desired access control by using a URI not specified by this container.

Configuration Directives 935

<LocationMatch> Applies directives to URIs specified by a regular expression.

<LocationMatch regexp> ... </LocationMatch>

where regexp is a regular expression that matches one or more URIs. This container
works the same way as <Location>, except that it applies to any URIs that regexp
matches.

Contexts: server config, virtual host

<VirtualHost> Applies directives to a specified virtual host.

<VirtualHost addr[:port] [addr[:port]] ... > ... </VirtualHost>

where addr is the IP address (or FQDN, although it is not recommended) of the vir-
tual host (or * to represent all addresses) and port is the port that Apache listens on
for the virtual host. This directive does not control which addresses and ports
Apache listens on; use a Listen directive (page 926) for that purpose. This container
holds commands that Apache applies to a virtual host. For more information see
“NameVirtualHost” on page 936 and “Virtual Hosts” on page 953.

Context: server config

Directives II: Advanced Directives

This section discusses configuration directives that you may want to use after you
have gained some experience with Apache.

Directives That Control Processes

MaxClients Specifies the maximum number of child processes.

MaxClients num

where num is the maximum number of child processes (servers) Apache runs at one
time, including idle processes and processes that are serving requests. When Apache
is running num processes and there are no idle processes, Apache issues Server too
busy errors to new connections; it does not start new child processes. A value of
150 is usually sufficient, even for moderately busy sites.

Context: server config
Change in httpd.conf
Default: 256
Ubuntu: 150

MaxRequestsPerChild

Specifies the maximum number of requests a child process can serve.

MaxRequestsPerChild num

where num is the maximum number of requests a child process (server) can serve
during its lifetime. After a child process serves num requests, it does not process any

936 Chapter 27 Apache: Setting Up a Web Server

more requests but dies after it finishes processing its current requests. Apache can
start another child process to replace the one that dies. Additional requests are pro-
cessed by other processes from the server pool.

Set num to 0 to not set a limit on the number of requests a child can process, except
for the effects of MinSpareServers. By limiting the lives of processes, this directive
can prevent memory leaks from consuming too much system memory. However,
setting MaxRequestsPerChild to a too-small value can hurt performance by causing
Apache to create new child servers constantly.

Context: server config
Specify in httpd.conf
Default: 10000
Ubuntu: 0

MaxSpareServers Specifies the maximum number of idle processes.

MaxSpareServers num

where num is the maximum number of idle processes (servers) Apache keeps running
to serve requests as they come in. Do not set this number too high, as each process
consumes system resources.

Context: server config
Specify in httpd.conf
Default: 10
Ubuntu: 10

MinSpareServers Specifies the minimum number of idle processes.

MinSpareServers num

where num is the minimum number of idle processes (servers) Apache keeps run-
ning to serve requests as they come in. More idle processes occupy more computer
resources; increase this value for busy sites only.

Context: server config
Specify in httpd.conf
Default: 5
Ubuntu: 5

NameVirtualHost

Specifies the address and port for a name-based (host-by-name) virtual host.

NameVirtualHost addr[:port]

where addr is the IP address (or FQDN, although it is not recommended) that
Apache will use for serving a name-based virtual host and port is the port that

Configuration Directives 937

Apache listens on for that virtual host. Specify addr as * to cause the server to pro-
cess requests on all interfaces as name-based virtual hosts.

This directive does not control which addresses and ports Apache listens on; use a Lis-
ten directive (page 926) for that purpose. For more information see “<VirtualHost>”
on page 935 and “Virtual Hosts” on page 953.

Context: server config
Specify in sites-available/*
Default: none
Ubuntu: *

StartServers Specifies the number of child processes that Apache starts with.

StartServers num

where num is the number of child processes (servers) that Apache starts when it is
brought up. This value is significant only when Apache starts; MinSpareServers and
MaxSpareServers control the number of idle processes once Apache is up and run-
ning. Starting Apache with multiple servers ensures that a pool of servers is waiting
to serve requests immediately.

Context: server config
Specify in httpd.conf
Default: 5
Ubuntu: 5 (prefork MPM) or 2 (worker MPM)

Networking Directives

HostnameLookups

Specifies whether Apache puts a client’s hostname or its IP address in the logs.

HostnameLookups On | Off | Double

On: Performs DNS reverse name resolution (page 855) to determine the hostname
of each client for logging purposes.

Off: Logs each client’s IP address.

Double: To provide greater security, performs DNS reverse name resolution
(page 855) to determine the hostname of each client, performs a forward DNS
lookup to verify the original IP address, and logs the hostname. Denies access if it
cannot verify the original IP address.

Contexts: server config, virtual host, directory
Specify in httpd.conf
Default: Off
Ubuntu: Off

938 Chapter 27 Apache: Setting Up a Web Server

Timeout Specifies the amount of time Apache waits for network operations to complete.

Timeout num

where num is the number of seconds that Apache waits for network operations to
finish. You can usually set this directive to a lower value; five minutes is a long time
to wait on a busy server. The Apache documentation says that the default is not
lower “because there may still be odd places in the code where the timer is not reset
when a packet is sent.”

Context: server config
Specify in httpd.conf
Default: 300
Ubuntu: 300

UseCanonicalName

Specifies the method the server uses to identify itself.

UseCanonicalName On | Off | DNS

On: Apache uses the value of the ServerName directive (page 928) as its identity.

Off: Apache uses the name and port from the incoming request as its identity.

DNS: Apache performs a DNS reverse name resolution (page 855) on the IP address
from the incoming request and uses the result as its identity. Rarely used.

This directive is important when a server has more than one name and needs to perform
a redirect. Ubuntu does not set this directive because it does not set the ServerName
directive (page 928). Once you set ServerName, change UseCanonicalName to On. See
page 951 for a discussion of redirects and this directive.

Contexts: server config, virtual host, directory
Specify in sites-available/*
Default: Off
Ubuntu: none

Logging Directives

ErrorLog Specifies where Apache sends error messages.

ErrorLog filename | syslog[:facility]

where filename specifies the name of the file, relative to ServerRoot (page 942), that
Apache sends error messages to. The syslog keyword specifies that Apache send

Lookups can consume a lot of system resources

tip Use the On and Double options with caution: They can consume a lot of resources on a busy system.
You can use a program such as logresolve to perform reverse name resolution offline for statistical
purposes.

If you perform hostname resolution offline, you run the risk that the name may have changed;
you usually want the name that was current at the time of the request. To minimize this problem,
perform the hostname resolution as soon as possible after writing the log.

Configuration Directives 939

errors to syslogd (page 688); facility specifies which syslogd facility to use. The
default facility is local7.

Contexts: server config, virtual host
Specify in httpd.conf or sites-available/*
Default: logs/error_log
Ubuntu: /var/log/apache2/error.log

LogLevel Specifies the level of error messages that Apache logs.

LogLevel level

where level specifies that Apache log errors of that level and higher (more urgent).
Choose level from the following list, which is presented here in order of decreasing
urgency and increasing verbosity:

emerg System unusable messages
alert Need for immediate action messages
crit Critical condition messages
error Error condition messages
warn Nonfatal warning messages
notice Normal but significant messages
info Operational messages and recommendations
debug Messages for finding and solving problems

Contexts: server config, virtual host
Specify in httpd.conf or sites-available/*
Default: warn
Ubuntu: warn

Directives That Control Content

AddHandler Creates a mapping between filename extensions and a builtin Apache handler.

AddHandler handler extension [extension] ...

where handler is the name of a builtin handler and extension is a filename exten-
sion that maps to the handler. Handlers are actions that are built into Apache and
are directly related to loaded modules. Apache uses a handler when a client requests
a file with a specified filename extension.

For example, the following AddHandler directive causes Apache to process files
that have a filename extension of .cgi with the cgi-script handler:

AddHandler cgi-script .cgi

See “Type Maps” on page 951 for another example of an AddHandler directive.

Contexts: server config, virtual host, directory, .htaccess
Specify in httpd.conf
Default: none
Ubuntu: type-map var

940 Chapter 27 Apache: Setting Up a Web Server

Alias Maps a URI to a directory or file.

Alias alias pathname

where alias must match part of the URI that the client requested to invoke the alias.
The pathname is the absolute pathname of the target of the alias, usually a directory.

For example, the following alias causes Apache to serve /usr/local/pix/milk.jpg
when a client requests http://www.example.com/pix/milk.jpg:

Alias /pix /usr/local/pix

In some cases, you need to use a <Directory> container (page 932) to grant access to
aliased content.

Contexts: server config, virtual host
Specify in httpd.conf, sites-available/*, or mods-available/alias.conf
Default: None
Ubuntu: /icons/ /usr/share/apache2/icons/ and /doc/ /usr/share/doc/

ErrorDocument Specifies the action Apache takes when the specified error occurs.

ErrorDocument code action

where code is the error code (page 964) that this directive defines a response for and
action is one of the following:

string: Defines the message that Apache returns to the client.

absolute pathname: Points to a local script or other content that Apache redirects
the client to.

URI: Points to an external script or other content that Apache redirects the client to.

When you do not specify this directive for a given error code, Apache returns a
hardcoded error message when that error occurs.

Some examples of ErrorDocument directives follow:

ErrorDocument 403 "Sorry, access is forbidden."
ErrorDocument 403 /cgi-bin/uh-uh.pl
ErrorDocument 403 http://errors.example.com/not_allowed.html

Contexts: server config, virtual host, directory, .htaccess
Specify in httpd.conf
Default: none; Apache returns hardcoded error messages
Ubuntu: none (but see the comments in apache2.conf)

IndexOptions Specifies how Apache displays directory listings.

IndexOptions [±]option [[±]option] ...

where option can be any combination of the following:

DescriptionWidth=n: Sets the width of the description column to n characters. Use

* in place of n to accommodate the widest description.

Configuration Directives 941

FancyIndexing: In directory listings, displays column headers that are links. When
you click one of these links, Apache sorts the display based on the content of the
column. Clicking the link a second time reverses the order.

FoldersFirst: Sorts the listing so that directories come before plain files. Use only
with FancyIndexing.

HTMLTable: Displays a directory listing in a table.

IconsAreLinks: Makes the icons clickable. Use only with FancyIndexing.

IconHeight=n: Sets the height of icons to n pixels. Use only with IconWidth.

IconWidth=n: Sets the width of icons to n pixels. Use only with IconHeight.

IgnoreCase: Ignores case when sorting names.

IgnoreClient: Ignores options the client supplied in the URI.

NameWidth=n: Sets the width of the filename column to n characters. Use * in
place of n to accommodate the widest filename.

ScanHTMLTitles: Extracts and displays titles from HTML documents. Use only
with FancyIndexing. Not normally used because it is CPU and disk intensive.

SuppressColumnSorting: Suppresses clickable column headings that can be used for
sorting columns. Use only with FancyIndexing.

SuppressDescription: Suppresses file descriptions. Use only with FancyIndexing.

SuppressHTMLPreamble: Suppresses the contents of the file specified by the Header-
Name directive, even if that file exists.

SuppressIcon: Suppresses icons. Use only with FancyIndexing.

SuppressLastModified: Suppresses the modification date. Use only with Fancy-
Indexing.

SuppressRules: Suppresses horizontal lines. Use only with FancyIndexing.

SuppressSize: Suppresses file sizes. Use only with FancyIndexing.

VersionSort: Sorts version numbers (in filenames) in a natural way; character
strings, except for substrings of digits, are not affected.

As an example, suppose a client requests a URI that points to a directory (such as
http://www.example.com/support/) and none of the files specified by the Directory-
Index directive (page 930) is present in that directory. If the directory hierarchy is
controlled by a .htaccess file and AllowOverride (page 946) has been set to allow
indexes, then Apache displays a directory listing according to the options specified
by this directive.

When this directive appears more than once within a directory, Apache merges the
options from the directives. Use + and – to merge IndexOptions options with options
from higher-level directories. (Unless you use + or – with all options, Apache discards
any options set in higher-level directories.) For example, the following directives and

942 Chapter 27 Apache: Setting Up a Web Server

containers set the options for /custsup/download to VersionSort; Apache discards
FancyIndexing and IgnoreCase in the download directory because there is no + or –
before VersionSort in the second <Directory> container:

<Directory /custsup>
 IndexOptions FancyIndexing
 IndexOptions IgnoreCase
</Directory

<Directory /custsup/download>
 IndexOptions VersionSort
</Directory>

Because + appears before VersionSort, the next directives and containers set the
options for /custsup/download to FancyIndexing, IgnoreCase, and VersionSort:

<Directory /custsup>
 IndexOptions FancyIndexing
 IndexOptions IgnoreCase
</Directory

<Directory /custsup/download>
 IndexOptions +VersionSort
</Directory>

Contexts: server config, virtual host, directory, .htaccess
Specify in httpd.conf
Default: none; lists only filenames
Ubuntu: FancyIndexing VersionSort HTMLTable NameWidth=*

ServerRoot Specifies the root directory for server files (not content).

ServerRoot directory

where directory specifies the pathname of the root directory for the files that make up
the server. Apache prepends directory to relative pathnames in httpd.conf. This direc-
tive does not specify the location of the content that Apache serves; the Document-
Root directive (page 929) performs that function. Do not change this value unless you
move the server files.

Context: server config
Specify in httpd.conf
Default: /usr/local/apache
Ubuntu: /etc/apache2

ServerTokens Specifies the server information that Apache returns to a client.

ServerTokens Prod | Major | Minor | Min | OS | Full

Prod: Returns the product name: Apache. Also ProductOnly.

Major: Returns the major release number of the server: Apache/2.

Configuration Directives 943

Minor: Returns the major and minor release numbers of the server: Apache/2.2.

Min: Returns the complete version: Apache/2.2.4. Also Minimal.

OS: Returns the name of the operating system and the complete version:
Apache/2.2.4 (Ubuntu). Provides less information that might help a malicious user
than Full does.

Full: Same as OS, plus sends the names and versions of non-ASF modules:
Apache/2.2.4 (Ubuntu) PHP/5.1.2.

Unless you want clients to know the details of the software you are running, set
ServerTokens to reveal as little as possible.

Context: server config
Specify in httpd.conf
Default: Full
Ubuntu: Full

ServerSignature Adds a line to server-generated pages.

ServerSignature On | Off | EMail

On: Turns the signature line on. The signature line contains the server version as
specified by the ServerTokens directive (discussed above) and the name specified by
the <VirtualHost> container (page 935).

Off: Turns the signature line off.

EMail: To the signature line, adds a mailto: link to the server email address. This
option produces output that can attract spam. See ServerAdmin (page 928) for
information on specifying an email address.

Contexts: server config, virtual host, directory, .htaccess
Specify in httpd.conf or sites-available/*
Default: Off
Ubuntu: On

Configuration Directives

Group Sets the GID of the processes that run the servers.

Group #groupid | groupname

where groupid is a GID value, preceded by #, and groupname is the name of a
group. The processes (servers) that Apache spawns are run as the group specified by
this directive. See the User directive (page 946) for more information.

Context: server config
Specify in httpd.conf
Default: #–1
Ubuntu: www-data

944 Chapter 27 Apache: Setting Up a Web Server

Include Loads directives from files.

Include filename | directory

where filename is the relative pathname of a file that contains directives. Apache
prepends ServerRoot (page 942) to filename. The directives in filename are
included in the file holding this directive at the location of the directive. Because
filename can include wildcards, it can specify more than one file.

The directory is the relative pathname that specifies the root of a directory hierar-
chy that holds files containing directives. Apache prepends ServerRoot to directory.
The directives in ordinary files in this hierarchy are included in the file holding this
directive at the location of the directive. The directory can include wildcards.

Ubuntu Linux categorizes and splits Apache configuration information into files
and directories related to virtual hosts, server configuration, ports, modules, and
miscellaneous configuration options. These files are incorporated into the main
apache2.conf file using Include directives; see page 922 for more information.

Contexts: server config, virtual host, directory
Specify anywhere
Default: none
Ubuntu: /etc/apache2/mods-enabled/*.load

/etc/apache2/mods-enabled/*.conf
/etc/apache2/httpd.conf
/etc/apache2/ports.conf
/etc/apache2/conf.d/
/etc/apache2/sites-enabled/

LoadModule Loads a module.

LoadModule module filename

where module is the name of an external DSO module and filename is the relative
pathname of the named module. Apache prepends ServerRoot (page 942) to filename
and loads the external module specified by this directive. Use a2enmod (page 921) to
enable modules. For more information refer to “Modules” on page 957.

Context: server config
Specify in mods-available/*.load
Default: none; nothing is loaded by default if this directive is omitted
Ubuntu: see the *.load files in the mods-enabled directory

Options Controls server features by directory.

Options [±]option [[±]option ...]

This directive controls which server features are enabled for a directory hierarchy.
The directory hierarchy is specified by the container this directive appears in. A + or
the absence of a – turns an option on, and a – turns it off.

The option may be one of the following:

Configuration Directives 945

None None of the features this directive can control are enabled.

All All of the features this directive can control are enabled, except for Multi-
Views, which you must explicitly enable.

ExecCGI Apache can execute CGI scripts (page 958).

FollowSymLinks Apache follows symbolic links.

Includes Permits SSIs (server-side includes, page 959). SSIs are containers embed-
ded in HTML pages that are evaluated on the server before the content is passed to
the client.

IncludesNOEXEC The same as Includes but disables the #exec and #exec cgi
commands that are part of SSIs. Does not prevent the #include command from ref-
erencing CGI scripts.

Indexes Generates a directory listing if DirectoryIndex (page 930) is not set.

MultiViews Allows MultiViews (page 952).

SymLinksIfOwnerMatch The same as FollowSymLinks but follows the link only
if the file or directory being pointed to has the same owner as the link.

The following Options directive from the Ubuntu sites-available/default file sets the
Indexes, FollowSymLinks, and MultiViews options and, because the <Directory> con-
tainer specifies the /var/www directory hierarchy (the document root), affects all content:

<Directory /var/www/>
Options Indexes FollowSymLinks MultiViews

...

Context: directory
Specify in httpd.conf or sites-available/*
Default: All
Ubuntu: various

ScriptAlias Maps a URI to a directory or file and declares the target to be a server (CGI) script.

ScriptAlias alias pathname

where alias must match part of the URI the client requested to invoke the Script-
Alias. The pathname is the absolute pathname of the target of the alias, usually a
directory. Similar to the Alias directive, this directive specifies the target is a CGI
script (page 958).

The following ScriptAlias directive from the Ubuntu default file maps client
requests that include /cgi-bin/ to the /var/lib/cgi-bin directory (and indicates that
these requests will be treated as CGI requests):

ScriptAlias /cgi-bin/ "/usr/lib/cgi-bin/"

Contexts: server config, virtual host
Specify in sites-available/*
Default: none
Ubuntu: /cgi-bin/ /usr/lib/cgi-bin/

946 Chapter 27 Apache: Setting Up a Web Server

User Sets the UID of the processes that run the servers.

User #userid | username

where userid is a UID value, preceded by #, and username is the name of a local user.
The processes that Apache spawns are run as the user specified by this directive.

Apache must start with root privileges to listen on a privileged port. For reasons of
security, Apache’s child processes (servers) run as nonprivileged users. The default
UID of –1 does not map to a user under Ubuntu Linux. Instead, Ubuntu’s apache2
package creates a user named www-data during installation and sets User to that user.

Context: server config
Specify in httpd.conf
Default: #–1
Ubuntu: www-data

Security Directives

Allow Specifies which clients can access specified content.

Allow from All | host [host ...] | env=var [env=var ...]

This directive, which must be written as Allow from, grants access to a directory
hierarchy to the specified clients. The directory hierarchy is specified by the con-
tainer or .htaccess file this directive appears in.

All: Serves content to any client.

host: Serves content to the client(s) specified by host, which can take several forms:
an FQDN, a partial domain name (such as example.com), an IP address, a partial IP
address, or a network/netmask pair.

var: Serves content when the environment variable named var is set. You can set a
variable with the SetEnvIf directive. See the Order directive (page 948) for an example.

Contexts: directory, .htaccess
Specify in httpd.conf or sites-available/*
Default: none; default behavior depends on the Order directive
Ubuntu: various

AllowOverride Specifies whether Apache examines .htaccess files and which classes of directives in
those files it processes.

AllowOverride All | None | directive-class [directive-class ...]

This directive specifies whether Apache examines .htaccess files in the directory
hierarchy specified by its container. If Apache does examine .htaccess files, this
directive specifies which classes of directives within .htaccess files Apache processes.

Do not set User to root or 0
security For a more secure system, do not set User to root or 0 (zero) and do not allow the www-data user

to have write access to the DocumentRoot directory hierarchy (except as needed for storing data),
especially not to configuration files.

Configuration Directives 947

All: Processes all classes of directives in .htaccess files.

None: Ignores directives in .htaccess files. However, Apache will still serve the con-
tent of .htaccess files, possibly exposing sensitive information. This choice does not
affect .htpasswrd files. The example in the description of the <Files> container
(page 932) shows how to prevent Apache from serving the content of files whose
names begin with .ht.

The directive-class is one of the following directive class identifiers:

AuthConfig: Class of directives that control authorization (AuthName, AuthType,
Require, and so on). This class is used mostly in .htaccess files to require a username
and password to access the content. For more information refer to “Authentication
Modules and .htaccess” on page 961.

FileInfo: Class of directives that controls document types (DefaultType, Error-
Document, SetHandler, and so on).

Indexes: Class of directives relating to directory indexing (DirectoryIndex, Fancy-
Indexing, IndexOptions, and so on).

Limit: Class of client-access directives (Allow, Deny, and Order).

Options: Class of directives controlling directory features.

Context: directory
Specify in httpd.conf or sites-available/*
Default: All
Ubuntu: various

Deny Specifies which clients are not allowed to access specified content.

Deny from All | host [host ...] | env=var [env=var ...]

This directive, which must be written as Deny from, denies access to a directory
hierarchy to the specified clients. The directory hierarchy is specified by the con-
tainer or .htaccess file this directive appears in. See the Order directive (next) for an
example.

All: Denies content to all clients.

host: Denies content to the client(s) specified by host, which can take several forms:
an FQDN, a partial domain name (such as example.com), an IP address, a partial IP
address, or a network/netmask pair.

var: Denies content when the environment variable named var is set. You can set a
variable with the SetEnvIf directive.

Contexts: directory, .htaccess
Specify in mods-available/proxy.conf, httpd.conf, and sites-available/*
Default: none
Ubuntu: All

948 Chapter 27 Apache: Setting Up a Web Server

Order Specifies the default access and the order in which Allow and Deny directives are
evaluated.

Order Deny,Allow | Allow,Deny

Deny,Allow: Allows access by default; denies access only to clients specified in Deny
directives. (First evaluates Deny directives, then evaluates Allow directives.)

Allow,Deny: Denies access by default; allows access only to clients specified in Allow
directives. (First evaluates Allow directives, then evaluates Deny directives.)

There must not be SPACEs on either side of the comma. Access defaults to the second
entry in the pair (Deny,Allow defaults to Allow) if there is no Allow from or Deny
from directive that matches the client. If a single Allow from or Deny from directive
matches the client, that directive overrides the default. If multiple Allow from and
Deny from directives match the client, Apache evaluates the directives in the order
specified by the Order directive; the last match takes precedence.

Access granted or denied by this directive applies to the directory hierarchy speci-
fied by the container or .htaccess file this directive appears in. Although Ubuntu
Linux has a default of Allow,Deny, which denies access to all clients not specified by
Allow directives, the next directive in sites-available/default, Allow from all, grants
access to all clients:

Order allow,deny
Allow from all

You can restrict access by specifying Deny,Allow to deny all access and then specifying
only those clients you want to grant access to in an Allow directive. The following
directives grant access to clients from the example.net domain only and would typi-
cally appear within a <Directory> container (page 932):

Order deny,allow
Deny from all
Allow from .example.net

Contexts: directory, .htaccess
Specify in httpd.conf or sites-available/*
Default: Deny,Allow
Ubuntu: Allow,Deny (for /var/www)

The Ubuntu apache2.conf File

This section highlights some of the important features of the Ubuntu apache2.conf
file, which is based on the httpd.conf file distributed by Apache. The version of this
heavily commented file that is distributed by Apache is broken into three parts, of
which Ubuntu uses the first (Section 1: Global Environment) as apache2.conf.
Ubuntu distributes the contents of the other two sections among other configura-
tion files, including the sites-available/default configuration file, which is described
in the next section.

The Ubuntu apache2.conf File 949

Include directives See page 922 for information on Include directives in the apache2.conf file.

ServerRoot The ServerRoot directive (page 942) is set to /etc/apache2, which is the pathname
that Apache prepends to relative pathnames in the configuration files:

ServerRoot "/etc/apache2"

<IfModule> The <IfModule> containers (page 933) allow you to use the same apache2.conf file
with different multiprocessing modules (MPMs, page 963). Apache executes the
directives in an <IfModule> container only if the specified module is loaded. The
apache2.conf file holds two <IfModule> containers that configure Apache differ-
ently, depending on which module—prefork or worker—is loaded. Ubuntu ships
with the more efficient worker MPM loaded.

Server-Pool Size Regulation (MPM specific)
...
<IfModule mpm_prefork_module>

StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 150
MaxRequestsPerChild 0

</IfModule>

<IfModule mpm_worker_module>
StartServers 2
MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25
MaxRequestsPerChild 0

</IfModule>

For more information refer to “Multiprocessing Modules (MPMs)” on page 963.

User The User directive causes Apache to run as the user www-data.

User www-data

TypesConfig The TypesConfig directive specifies the file that defines the MIME (page 1048)
types that Apache uses for content negotiation (page 951). It is used to match file-
name extensions with MIME types (e.g., .png with image/png).

TypesConfig /etc/mime.types

DefaultType Defines the content-type Apache sends if it cannot determine a type.

DefaultType text/plain

Do not modify apache2.conf
tip Typically, when you configure Apache, you do not make changes to apache2.conf; instead, you

modify files that are specified in Include directives (page 922). You can also use the configuration
tools described on page 921. This setup allows updates to Apache to change apache2.conf with-
out affecting the server.

950 Chapter 27 Apache: Setting Up a Web Server

Modules Instead of having a lot of LoadModule directives (page 944) in the apache2.conf
file, Ubuntu puts the following Include directives in that file:

Include /etc/apache2/mods-enabled/*.load
Include /etc/apache2/mods-enabled/*.conf

These directives include all the *.load and *.conf files in the mods-enabled direc-
tory. For more information on how to enable modules, see the discussion of a2enmod
on page 921.

There are many more directives in the apache2.conf file; the comments in the file
provide a guide as to what they do. There is nothing here you need to change as you
get started using Apache.

The Ubuntu default Configuration File

This section highlights some of the important features of the Ubuntu default config-
uration file, which is located in the /etc/apache2/sites-available directory.

ServerAdmin and
ServerName

As Ubuntu Linux is shipped, the ServerAdmin directive is set to webmaster@localhost.
Add a ServerName directive and change ServerAdmin to a useful value as suggested
under ServerAdmin (page 928) and ServerName (page 928).

DocumentRoot The DocumentRoot directive (page 929) appears as follows:

DocumentRoot /var/www/

Modify this directive only if you want to put content somewhere other than in the
/var/www directory.

<Directory> The following <Directory> container (page 932) sets up a restrictive environment
for the entire local filesystem (specified by /):

<Directory />
 Options FollowSymLinks
 AllowOverride None
</Directory>

The Options directive (page 944) allows Apache to follow symbolic links but disal-
lows many options. The AllowOverride directive (page 946) causes Apache not to
process directives in .htaccess files. You must explicitly enable less restrictive
options if you want them, but be aware that doing so can expose the root filesystem
and compromise system security.

Next, another <Directory> container sets up less restrictive options for the Document-
Root (/var/www). The code in default is interspersed with many comments. Without
the comments it looks like this:

<Directory /var/www/>
Options Indexes FollowSymLinks MultiViews
AllowOverride None

Content Negotiation 951

Order allow,deny
allow from all

</Directory>

The Indexes option in the Options directive allows Apache to display directory list-
ings. The Order (page 948) and Allow (page 946) directives combine to allow
requests from all clients. This container is slightly less restrictive than the preceding
one, although it still does not allow Apache to follow directives in .htaccess files.

Redirects

Apache can respond to a request for a URI by asking the client to request a different
URI. This response is called a redirect. A redirect works because redirection is part
of the HTTP implementation: Apache sends the appropriate response code and the
new URI, and a compliant browser requests the new location.

The Redirect directive can establish an explicit redirect that sends a client to a dif-
ferent page when a Web site is moved. Or, when a user enters the URI of a directory
in a browser but leaves off the trailing slash, Apache can automatically redirect the
client to the same URI terminated with a slash.

UseCanonicalName The ServerName directive (page 928), which establishes the name of the server, and
the UseCanonicalName directive (page 938) are both important when a server has
more than one name and needs to perform an automatic redirect. For example,
assume the server with the name zach.example.com and the alias www.example.com
has ServerName set to www.example.com. When a client specifies a URI of a direc-
tory but leaves off the trailing slash (zach.example.com/dir), Apache has to per-
form a redirect to determine the URI of the requested directory. When
UseCanonicalName is set to On, Apache uses the value of ServerName and returns
www.example.com/dir/. With UseCanonicalName set to Off, Apache uses the name
from the incoming request and returns zach.example.com/dir/.

Content Negotiation

Apache can serve multiple versions of the same page, using a client’s preference to
determine which version to send. The process Apache uses to determine which version
of a page (file) to send is called content negotiation. Apache supports two methods of
content negotiation: MultiViews search and type maps, which can work together.

Type Maps

The following directive from apache2.conf tells Apache to use any filename ending
in .var as a type map:

AddHandler type-map var

952 Chapter 27 Apache: Setting Up a Web Server

To see how type maps work, create the following files in /var/www:

$ cat /var/www/index.html.en
<html><body><h1>Hello</h1></body></html>

$ cat /var/www/index.html.fr
<html><body><h1>Bonjour</h1><body></html>

$ cat /var/www/index.html.var
URI: index.html.en
Content-Language: en
Content-type: text/html; charset=ISO-8859-1

URI: index.html.fr
Content-Language: fr
Content-type: text/html; charset=ISO-8859-1

If your browser’s preferred language is set to English (en), it will display the Hello
page when you browse to http://localhost/index.html.var. If your browser’s pre-
ferred language is set to French (fr), it will display the Bonjour page. (With the
MultiViews option turned on, as it is by default, the browser displays the correct
page when you browse to http://localhost. See the next section.) You can change the
default language in Firefox by selecting Edit Preferences from the menubar, clicking
the Advanced icon and then the General tab, and finally clicking Choose from the
Languages frame. Select a language from the Select a language to add combo box, if
necessary, and then move the preferred language to the top of the list. In the exam-
ple, the charset assignments are not necessary. However, they would be helpful if you
were sending pages using different encodings such as English, Russian, and Korean.

Type maps are used for more than selecting among different languages. Instead of
matching Content-Language as in the preceding example, the map could match
Content-type and send jpeg or png images depending on how the browser’s prefer-
ences are set.

MultiViews

When you set the MultiViews option on a directory, Apache attempts to deliver the
correct page when a requested resource does not exist. The following lines in the
sites-available/default file set MultiViews for the document root (/):

<Directory /var/www/>
Options Indexes FollowSymLinks MultiViews

...

To see how MultiViews work, remove the /var/www/index.html.var type map file
that you created in the preceding section. Now browse to http://localhost. The
proper language page is displayed, but why?

When a browser sends Apache a request for a directory, Apache looks for a file
named index.html in that directory. In the example, Apache does not find the file. If

Virtual Hosts 953

MultiViews is enabled, as it is by default, Apache looks for files named index.html.*.
In the example it finds index.html.en and index.html.fr. Apache effectively creates a
type map on the fly, mapping the index.html.* files to various languages, and sends
its best guess as to the page you want.

MultiViews provides an easy way to serve multiple versions of the same file without
having to create a type map. However if you require finer-grained control over
which version of a resource should be sent, type maps are a better solution.

Server-Generated Directory Listings (Indexing)

When a client requests a directory, the Apache configuration determines what is
returned to the client. Apache can return a file as specified by the DirectoryIndex direc-
tive (page 930), a directory listing if no file matches DirectoryIndex and the Options
Indexes directive (page 944) is set, or an error message if no file matches Directory-
Index and Options Indexes is not set. Figure 27-1 shows the server-generated directory
listing that results from pointing a local browser at http://localhost/doc/ (you must
include the trailing slash) on the server system (assuming the default configuration).

Virtual Hosts

Apache supports virtual hosts, which means that one instance of Apache can
respond to requests directed to multiple IP addresses or hostnames as though it
were multiple servers. Each IP address or hostname can then provide different con-
tent and be configured differently.

Figure 27-1 A server-generated directory listing

954 Chapter 27 Apache: Setting Up a Web Server

Setting Up a Virtual Host

To improve portability and make software upgrades easier, Ubuntu provides two direc-
tories that can hold the code to support virtual hosts. The apache2.conf file has an
Include directive (page 922) that incorporates the files in the /etc/apache2/sites-enabled
directory.

To create a new virtual host, you can create a file that defines the virtual host in
/etc/apache2/sites-available. Then run a2ensite (page 922) with the name of the file
you created as an argument and reload Apache. Running a2ensite enables the vir-
tual host by creating a link in /etc/apache2/sites-enabled.

Types of Virtual Hosts

There are two types of virtual hosts: host-by-name (also called host-based) and
host-by-IP. Host-by-name relies on the FQDN the client uses in its request to
Apache—for example, www.example.com versus www2.example.com. Host-by-IP
examines the IP address the host resolves as and responds according to that match.

Host-by-name is handy if there is only one IP address, but Apache must support
multiple FQDNs. Although you can use host-by-IP if a given Web server has aliases,
Apache should serve the same content regardless of which name is used.

The VirtualHost container and the ServerName directive control which kind of vir-
tual host you are running. The NameVirtualHost directive specifies which IP
address supports host-by-name virtual hosting. You can specify many virtual hosts
for a single instance of Apache.

The default Virtual Host

Ubuntu ships with the host-by-name virtual host named default defined in
/etc/apache2/sites-available/default. This virtual host displays a server-generated
directory listing (page 953) of /var/www. This directory includes the apache2-
default directory. When you click this directory, Apache serves the index.html file,
which displays It works! If you uncomment the RewriteMatch directive in the
default file, Apache serves the apache2-default directory in response to a request for
/ and automatically displays It works! Alternatively, if you put your content in
/var/www, the default configuration will serve your site as you would expect. It is
safe to remove the apache2-default directory.

Examples

The following examples of host-by-name virtual hosting use wildcards (*) to remain
as flexible as possible. You may want to replace the wildcards with the IP address of
the server for more precise control when Apache is serving multiple virtual hosts.

The first <VirtualHost> container sets up host-by-name for the site named example.com.
This virtual host handles requests that are directed to example.com. The ServerAlias
directive allows it to also process requests directed to www.example.com.

Virtual Hosts 955

<VirtualHost *>
ServerName example.com
ServerAlias www.example.com
ServerAdmin webmaster@example.com
DocumentRoot /var/www/example.com
CustomLog /var/log/apache2/example.com.log combined
ErrorLog /var/log/apache2/example.com.err

</VirtualHost>

The next example is similar to the previous one. It adds a Directory directive that
prevents remote users (users not coming from the 192.168. subnet) from accessing
the Web site.

<VirtualHost *>
ServerName intranet.example.com
ServerAdmin webmaster@example.com
DocumentRoot /var/www
ErrorLog /var/log/apache2/intra.error_log
CustomLog /var/log/apache2/example.com.log combined
<Directory /var/www>

Order deny,allow
Deny from all
Allow from 192.168. # allow from private subnet only

</Directory>
</VirtualHost>

The next example sets up two virtual hosts. The VirtualHost containers accept all
traffic directed to the server by specifying *. The ServerName directives accept traffic
for sam.example.com (or the alias www.example.com/sam) and mail.example.com.
The first virtual host serves documents from Sam’s public_html directory; the second
is a Webmail server with its content at /var/www/squirrelmail. This example works
because all three addresses resolve to the IP address of the server.

NameVirtualHost *:
<VirtualHost *>

ServerName sam.example.com
ServerAdmin webmaster@example.com
DocumentRoot /home/sam/public_html

</VirtualHost>

<VirtualHost *:>
ServerName mail.example.com
ServerAdmin webmaster2@example.com
DocumentRoot /var/www/squirrelmail

</VirtualHost>

If the user specifies an IP address and not a URI, that address may match more than
one of the virtual hosts, as in the example. In this case, Apache serves the virtual host
that best matches. If none of the virtual host addresses matches the IP address better
than another, Apache serves the first virtual host. In the preceding example, both vir-
tual hosts match an IP address the same way; neither is a better match, so Apache

956 Chapter 27 Apache: Setting Up a Web Server

serves the first virtual host (sam.example.com). If mail.example.com was defined as
<VirtualHost 192.168.1.102> and a user specified that IP address, Apache would serve
mail.example.com because it is a better match for the IP address than the wildcard
that the other virtual host specifies.

The next example shows VirtualHost containers for a host-by-IP server. The exam-
ple assumes that 111.111.0.0 and 111.111.0.1 point to the local server. Here each
virtual host has its own IP/port combination. The third virtual host is distinguished
from the first by the port that a request comes in on.

<VirtualHost 111.111.0.0:80>
DocumentRoot /var/www/www0

</VirtualHost>

<VirtualHost 111.111.0.1:80>
DocumentRoot /var/www/www1

</VirtualHost>

<VirtualHost 111.111.0.0:8080>
DocumentRoot /var/www/www2
Listen 8080 # this directive should go in ports.conf

</VirtualHost>

The final example sets up a virtual server for Webmail that can be accessed only
over SSL. It would be appropriate to put this code in a file named
/etc/apache2/sites-available/mail.example.com. To use this example you must cre-
ate an SSL certificate (page 959), enable the ssl module (included in the default
Apache installation) with a2enmod (page 921), and enable the virtual domain using
a2ensite (page 922).

<VirtualHost mail.example.com:80>
 Redirect permanent / https://mail.example.com/
</VirtualHost>
<VirtualHost mail.example.com:443>

ServerName mail.example.com
ServerAdmin postmaster@example.com
DocumentRoot /var/www/mail.example.com
ErrorLog /var/log/apache2/mail.example.com.err
CustomLog /var/log/apache2/mail.example.com.log combined
SSLEngine On
SSLCertificateFile /etc/apache2/ssl/apache.pem

</VirtualHost>

Troubleshooting

The apache2 init script checks the syntax of the Apache configuration files and logs an
error if there is a problem. You can also call apache2ctl directly to check the syntax:

$ apache2ctl configtest
Syntax OK

Modules 957

Once you start the apache2 daemon, you can confirm that Apache is working cor-
rectly by pointing a browser on the local system at http://localhost/. From a remote
system, use http://server/, substituting the hostname of the server for server. In
response, Apache displays a directory listing for /var/www unless you have added
an index file or changed the default virtual host.

If the browser does not display the directory listing, it will display one of two
errors: Connection refused or an error page. If you get a Connection refused error,
make sure that port 80 is not blocked by a firewall (page 918) and check that the
server is running:

$ ps -ef | grep apache2
max 3479 12869 0 16:55 pts/1 00:00:00 grep apache2
root 5031 1 0 Mar26 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 5032 5031 0 Mar26 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 5088 5031 0 Mar26 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 5092 5031 0 Mar26 ? 00:00:00 /usr/sbin/apache2 -k start

If the server is running, confirm that you did not specify a port other than 80 in a
Listen directive. If you did, the URI you specify in the browser must reflect this port
number (http://localhost:port specifies port port). Otherwise, check the error log
(/var/log/httpd/error_log) for information about what is not working.

To verify that the browser is not at fault, use telnet to try to connect to port 80 of
the server:

$ telnet www.example.com 80
Trying 192.0.34.166...
Connected to www.example.com.
Escape character is '^]'.
CONTROL-]
telnet> quit
Connection closed.

If telnet displays Connection refused, it means that the local system cannot connect
to the server.

Modules

Apache is a skeletal program that relies on external modules, called dynamic shared
objects (DSOs), to provide most of its functionality. In addition to the modules included
with Ubuntu Linux, many other modules are available. See httpd.apache.org/modules
for more information. See a2enmod on page 921 for information on enabling modules.

Configuring modules
tip You can configure some modules by editing their corresponding *.conf file in the mods-available

directory.

httpd.apache.org/modules

958 Chapter 27 Apache: Setting Up a Web Server

The names of the files that hold modules start with the prefix libapache2-mod-. The
following command displays a complete list of modules. You can pipe the list through
grep to find the module you want. See page 596 for information on apt-cache.

$ apt-cache search libapache2-mod
libapache2-mod-auth-mysql - Apache 2 module for MySQL authentication
libapache2-mod-auth-pam - module for Apache2 which authenticate using PAM
libapache2-mod-auth-pgsql - Module for Apache2 which provides pgsql authentication
libapache2-mod-auth-plain - Module for Apache2 which provides plaintext authentication
libapache2-mod-auth-sys-group - Module for Apache2 which checks user against system group
libapache2-mod-macro - Create macros inside apache2 config files
libapache2-mod-perl2 - Integration of perl with the Apache2 web server
libapache2-mod-perl2-dev - Integration of perl with the Apache2 server - development files
libapache2-mod-perl2-doc - Integration of perl with the Apache2 web server - documentation
libapache2-mod-php5 - server-side, HTML-embedded scripting language (apache 2 module)
libapache2-mod-python - Apache 2 module that embeds Python within the server
...

$ apt-cache search libapache2-mod | grep ruby
libapache2-mod-ruby - Embedding Ruby in the Apache2 web server

mod_cgi and CGI Scripts

The CGI (Common Gateway Interface) allows external application programs to
interface with Web servers. Any program can be a CGI program if it runs in real
time (at the time of the request) and relays its output to the requesting client. Vari-
ous kinds of scripts, including shell, Perl, Python, and PHP, are the most commonly
encountered CGI programs because a script can call a program and reformat its
output in HTML for a client.

Apache can handle requests for CGI programs in several different ways. The most
common method is to put a CGI program in the cgi-bin directory and then enable
its execution from that directory only. The location of the cgi-bin directory, as spec-
ified by the ScriptAlias directive (page 945), is /usr/lib/cgi-bin. Alternatively, an
AddHandler directive (page 939) can identify the filename extensions of scripts,
such as .cgi or .pl, within the regular content (for example, AddHandler cgi-script
.cgi). If you use AddHandler, you must also specify the ExecCGI option in an
Options directive within the appropriate <Directory> container. The mod_cgi mod-
ule must be loaded to access and execute CGI scripts.

The following Perl CGI script displays the Apache environment. This script should
be used for debugging only because it presents a security risk if remote clients can
access it:

#!/usr/bin/perl
##
printenv -- demo CGI program that prints its environment
##

print "Content-type: text/plain\n\n";

Modules 959

foreach $var (sort(keys(%ENV))) {
 $val = $ENV{$var};
 $val =~ s|\n|\\n|g;
 $val =~ s|"|\\"|g;
 print "${var}=\"${val}\"\n";
}

mod_ssl
SSL (Secure Sockets Layer), which is implemented by the mod_ssl module, has two
functions: It allows a client to verify the identity of a server and it enables secure
two-way communication between a client and a server. SSL is used on Web pages in
conjunction with forms that require passwords, credit card numbers, or other sensi-
tive data.

Apache uses the HTTPS protocol—not HTTP—for SSL communication. When
Apache uses SSL, it listens on a second port (443 by default) for a connection and
performs a handshaking sequence before sending the requested content to the client.

Server verification is critical for financial transactions. After all, you do not want to
give your credit card number to a fraudulent Web site posing as a known company.
SSL uses a certificate to positively identify a server. Over a public network such as
the Internet, the identification is reliable only if the certificate contains a digital sig-
nature from an authoritative source such as VeriSign or Thawte. SSL Web pages are
denoted by a URI beginning with https://.

Data encryption prevents malicious users from eavesdropping on Internet connec-
tions and copying personal information. To encrypt communication, SSL sits
between the network and an application and encrypts communication between the
server and the client.

Setting Up mod_ssl
The mod_ssl package is installed as part of the apache2 package—you do not need
to install it separately. The /etc/apache2/mods-available/ssl.conf file configures
mod_ssl; ssl.load, which is in the same directory, loads it. You must enable the mod-
ule with the command a2enmod ssl. The first few directives in this file set various
parameters for SSL operation.

You can set up a virtual host for SSL in the sites-available directory and enable it
using a2ensite (page 922). As with any virtual host, a virtual host for SSL holds
directives such as ServerName and ServerAdmin that need to be configured. In addi-
tion, it holds some SSL-related directives. See the example on page 956.

Using a Self-Signed Certificate for Encryption

If you require SSL for encryption and not verification—that is, if the client already
trusts the server—you can generate and use a self-signed certificate, bypassing the
time and expense involved in obtaining a digitally signed certificate. Self-signed
certificates generate a warning when you connect to the server: Most browsers

960 Chapter 27 Apache: Setting Up a Web Server

display a dialog box that allows you to examine and accept the certificate. The
exim4 daemon also uses certificates (page 778).

The following example creates a self-signed certificate. (See the procedure at
www.modssl.org/docs/2.8/ssl_faq.html#ToC28 if apache2-ssl-certificate is missing from
the system. You do not need to send in the CSR for a self-signed certificate.)

$ sudo apache2-ssl-certificate
creating selfsigned certificate
replace it with one signed by a certification authority (CA)

enter your ServerName at the Common Name prompt

If you want your certificate to expire after x days call this programm
with -days x
Generating a 1024 bit RSA private key
..++++++
........++++++
writing new private key to ‘/etc/apache2/ssl/apache.pem’

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ‘.’, the field will be left blank.

Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:San Francisco
Organization Name (eg, company; recommended) []:Sobell Associates Inc.
Organizational Unit Name (eg, section) []:
server name (eg. ssl.domain.tld; required!!!) []:www.sobell.com
Email Address []:mgs@sobell.com

The answers to the first five questions are arbitrary: They can help clients identify a
site when they examine the certificate. The answer to the sixth question (server
name) is critical. Because certificates are tied to the name of the server, you must
enter the server’s FQDN accurately. If you mistype this information, the server
name and the name of the certificate will not match. A browser will then generate a
warning message each time a connection is made.

Now you must create an SSL-enabled virtual host in /etc/apache2/sites-available.
Host-by-name virtual hosting will not work with SSL because the HTTP Host
header sent by the client that Apache uses to differentiate between host-by-name
virtual hosts is encrypted. You can use only one SSL certificate, matching one
domain per IP address. You can have multiple virtual hosts on that IP address, but if
they are accessed over HTTPS, the client will receive an error saying that the certifi-
cate does not match the domain name. After you enable the new virtual host and
restart Apache, the new certificate will be in use.

www.modssl.org/docs/2.8/ssl_faq.html#ToC28

Modules 961

Following is an example wildcard setup for /etc/apache2/sites-available/ssl. Enable
it with sudo a2ensite ssl:

<VirtualHost *:80>
Redirect permanent / https://www.sobell.com/

</VirtualHost>

<VirtualHost *:443>
ServerName www.sobell.com
SSLEngine On
SSLCertificateFile /etc/apache2/ssl/apache.pem
DocumentRoot /var/www

</VirtualHost>

This example directs all non-SSL traffic to the SSL site. You must add a Listen 443
directive to /etc/apache2/ports.conf if you want Apache to listen on the default
HTTPS port.

Notes on Certificates

• Although the server name is part of the certificate, the SSL connection is
tied to the IP address of the server: You can have only one certificate per IP
address. For multiple virtual hosts to have separate certificates, you must
specify host-by-IP rather than host-by-name virtual hosts (page 953).

• As long as the server is identified by the name for which the certificate was
issued, you can use the certificate on another server or IP address.

• A root certificate (root CA) is the certificate that signs the server certificate.
Every browser contains a database of the public keys for the root certificates
of the major signing authorities, including VeriSign and Thawte.

• It is possible to generate a root certificate (root CA) and sign all your
server certificates with this root CA. Regular clients can import the public
key of the root CA so that they recognize every certificate signed by that
root CA. This setup is convenient for a server with multiple SSL-enabled
virtual hosts and no commercial certificates. For more information see
www.modssl.org/docs/2.8/ssl_faq.html#ToC29.

• A self-signed certificate does not enable clients to verify the identity of the
server.

Authentication Modules and .htaccess
To restrict access to a Web page, Apache and third parties provide authentication
modules and methods that can verify a user’s credentials, such as a username and
password. Some modules support authentication against various databases includ-
ing LDAP (page 1044) and NIS (page 781).

www.modssl.org/docs/2.8/ssl_faq.html#ToC29

962 Chapter 27 Apache: Setting Up a Web Server

User authentication directives are commonly placed in a .htaccess file. A basic .htaccess
file that uses the Apache default authentication module (mod_auth) follows. Substitute
appropriate values for the local server.

$ sudo cat .htaccess
AuthUserFile /var/www/.htpasswd
AuthGroupFile /dev/null
AuthName "Browser dialog box query"
AuthType Basic
require valid-user

The /var/www/.htpasswd is a typical absolute pathname of a .htpasswd file and
Browser dialog box query is the string that the user will see as part of the dialog
box that requests a username and password.

The second line of the preceding .htaccess file turns off the group function. The
fourth line specifies the user authentication type Basic, which is implemented by the
default mod_auth module. The last line tells Apache which users can access the pro-
tected directory. The entry valid-user grants access to the directory to any user
whose username appears in the Apache password file and who enters the correct
password. You can also specify Apache usernames separated by SPACEs.

You can put the Apache password file anywhere on the system, as long as Apache
can read it. It is safe to put this file in the same directory as the .htaccess file
because, by default, Apache will not answer any requests for files whose names start
with .ht.

The following command creates a .htpasswd file in the working directory for Sam:

$ htpasswd -c .htpasswd sam
New password:
Re-type new password:
Adding password for user sam

The default virtual host includes an AllowOverride None directive (page 946) for
/var/www. You must change this directive to at least AllowOverride AuthConfig in
sites-available/default or remove it to enable Apache to process user authentication
directives.

Scripting Modules

Apache can process content before serving it to a client. In earlier versions of
Apache, only CGI scripts could process content. In the current version, scripting
modules can work with scripts embedded in HTML documents.

Scripting modules manipulate content before Apache serves it to a client. Because
they are built into Apache, scripting modules are fast. Scripting modules are espe-
cially efficient at working with external data sources such as relational databases.
Clients can pass data to a scripting module that modifies the information that
Apache serves.

Modules 963

Scripting modules stand in contrast to CGI scripts that are run externally to
Apache. In particular, CGI scripts do not allow client interaction and are slow
because they must make external calls.

Ubuntu provides packages that allow you to embed Perl (mod_perl), Python
(mod_python), and PHP (mod_php) code in HTML content. Perl and Python,
which are general-purpose scripting languages, are encapsulated for use directly in
Apache and are available in the libapache2-mod-perl2 and libapache2-mod-python
packages, respectively.

PHP, which was developed for manipulating Web content, outputs HTML by
default. Implemented in the mod_php module and available in libapache2-mod-
php5, this language is easy to set up, has a syntax similar to that of Perl and C, and
comes with a large number of Web-related functions.

Multiprocessing Modules (MPMs)

If Apache were to execute in only one process, every time a client requested a page,
Apache would have to ignore other requests while it read that page from disk (or
waited for a CGI script to generate it). After it read the page, it could send the page
to the client and respond to the next request. With this setup, Apache could serve
only one client at a time.

prefork MPM Apache 1.3 and earlier forked servers to respond to multiple clients. Apache 2
moved the forking behavior to the prefork multiprocessing module (MPM). MPMs
introduced the ability to switch between various multiprocessing techniques.

The prefork MPM uses the fork() system call to create an exact copy of the running
Apache process to serve each request. The MaxServers, MaxSpareServers, and simi-
lar directives control how many copies of Apache run at the same time. Because the
operating system has to spend time context switching between Apache processes,
and because each process has its own memory, the prefork MPM generates consid-
erable overhead on a busy server.

worker MPM The worker MPM reduces this overhead by using threads. A thread is similar to a
process in that it can execute independently of other threads or processes. Waiting
for a read to complete in one thread does not stop (block) other threads from exe-
cuting. The difference between threads and processes is that all the threads running
under one process share the same memory, and the program—rather than the oper-
ating system—is responsible for managing the threads. The worker MPM maintains
a pool of threads it can use to serve each request. Instead of the parent Apache pro-
cess forking a child to serve each request for content as in prefork, the worker
MPM uses threads to serve requests for content.

Threads Because all these threads run under the same process, they share the same memory. Code
that is not thread safe (see reentrant on page 1056) can return inconsistent results. For
example, some PHP library functions use the strtok() C function to convert a string to
tokens. This function maintains internal variables. If it is called by multiple threads shar-
ing the same memory, strtok()’s internal variables are put in an inconsistent state.

964 Chapter 27 Apache: Setting Up a Web Server

PHP If you want to use PHP, either you must use the prefork MPM or, if you want to use
the worker MPM and PHP, you must remove libapache2-mod-php5 and run PHP
as a CGI script (page 958).

MPMs Available MPMs include

• apache2-mpm-prefork Traditional MPM.

• apache2-mpm-worker High speed threaded MPM.

• apache2-mpm-event Event driven MPM.

The apache2-mpm-worker, apache2-mpm-event, and apache2-mpm-prefork pack-
ages each supply the apache2 binary and conflict with one another. You cannot have
more than one of these modules installed at the same time. When you install one of
these packages, the installer automatically removes the existing MPM.

webalizer: Analyzes Web Traffic

The webalizer package creates a directory at /var/www/webalizer and a cron file
(page 668) at /etc/cron.daily/webalizer. Once a day, the cron file generates usage
data and puts it in the webalizer directory; you can view this data by pointing a
browser at http://server/webalizer/, where server is the hostname of the server.

The /etc/webalizer/webalizer.conf file controls the behavior of the webalizer utility.
If you change the location of the DocumentRoot or log files, you must edit this file
to reflect those changes. For more information on webalizer, refer to the webalizer
man page and the sites listed under “More Information” on page 918.

MRTG: Monitors Traffic Loads

Multi Router Traffic Grapher (MRTG; mrtg package) is an open-source application
that graphs statistics available through SNMP (Simple Network Management Pro-
tocol). SNMP information is available on all high-end routers and switches as well
as on some other networked equipment, such as printers and wireless access points.

Once MRTG is installed and running, you can view the reports at
http://server/mrtg, where server is the hostname of the server. For more informa-
tion see the mrtg man page and the sites listed under “More Information” on
page 918.

Error Codes

Following is a list of Apache error codes:

Chapter Summary 965

100 Continue 404 Not Found
101 Switching Protocols 405 Method Not Allowed
200 OK 406 Not Acceptable
201 Created 407 Proxy Authentication Required
202 Accepted 408 Request Timed out
203 Non-Authoritative Information 409 Conflict
204 No Content 410 Gone
205 Reset Content 411 Length Required
206 Partial Content 412 Precondition Failed
300 Multiple Choices 413 Request Entity Too Large
301 Moved Permanently 414 Request-URI Too Large
302 Moved Temporarily 415 Unsupported Media Type
303 See Other 500 Internal Server Error
304 Not Modified 501 Not Implemented
305 Use Proxy 502 Bad Gateway
400 Bad Request 503 Service Unavailable
401 Unauthorized 504 Gateway Time-out
402 Payment Required 505 HTTP Version Not Supported
403 Forbidden

Chapter Summary

Apache is the most popular Web server on the Internet today. It is both robust and
extensible. The /etc/apache2/apache2.conf configuration file controls many aspects
of how Apache runs. This file, which is based on the first part of the httpd.conf file
distributed by Apache, is heavily commented. Ubuntu also puts some configuration
directives in the /etc/apache2/sites-available/default file.

Content to be served is typically placed in /var/www, called the document root.
Apache automatically displays the file named index.html in this directory.

Configuration directives, or simply directives, are lines in a configuration file that
control some aspect of how Apache functions. Four locations, called contexts,
define where a configuration directive can appear: server config, virtual host, direc-
tory, and .htaccess. Containers, or special directives, are directives that group other
directives.

To restrict access to a Web page, Apache and third parties provide authentication
modules and methods that can verify a user’s credentials, such as a username and
password. Some modules enable authentication against various databases, including
LDAP and NIS.

Apache can respond to a request for a URI by asking the client to request a different
URI. This response is called a redirect. Apache can also process content before serv-
ing it to a client using scripting modules that work with scripts embedded in HTML
documents.

966 Chapter 27 Apache: Setting Up a Web Server

Apache supports virtual hosts, which means that one instance of Apache can
respond to requests directed to multiple IP addresses or hostnames as though it
were multiple servers. Each IP address or hostname can provide different content
and be configured differently.

The CGI (Common Gateway Interface) allows external application programs to
interface with Web servers. Any program can be a CGI program if it runs in real
time and relays its output to the requesting client.

SSL (Secure Sockets Layer) has two functions: It allows a client to verify the identity
of a server and it enables secure two-way communication between a client and server.

Exercises

1. How would you tell Apache that your content is in /usr/local/www?

2. How would you instruct an Apache server to listen on port 81 instead of
port 80?

3. How would you enable Sam to publish Web pages from his ~/website
directory but not allow anyone else to publish to the Web?

4. Apache must be started with root privileges. Why? Why does this action
not present a security risk?

Advanced Exercises

5. If you are running Apache on a firewall system, perhaps to display a Web
front-end for firewall configuration, how would you make sure that it is
accessible only from inside the local network?

6. Why is it more efficient to run scripts using mod_php or mod_perl than to
run them through CGI?

7. What two things does SSL provide and how does this situation differ if the
certificate is self-signed?

8. Some Web sites generate content by retrieving data from a database and
inserting it into a template using PHP or CGI each time the site is accessed.
Why is this practice often a poor idea?

9. Assume you want to provide Webmail access for employees on the same
server that hosts the corporate Web site. The Web site address is exam-
ple.com, you want to use mail.example.com for Webmail, and the Web-
mail application is located in /var/www/webmail. Describe two ways you
can set this up this configuration.

Advanced Exercises 967

10. Part of a Web site is a private intranet. Describe how you would prevent
people outside the company’s internal 192.168.0.0/16 network from
accessing this site. The site is defined as follows:

<VirtualHost *>
ServerName example.com
DocumentRoot /var/www
<Directory /var/www/intranet>

AllowOverride AuthConfig
</Directory>

</VirtualHost>

This page intentionally left blank

969

I

PART VI

Appendixes

APPENDIX A

Regular Expressions 971

APPENDIX B

Help 981

APPENDIX C

Security 991

APPENDIX D

The Free Software Definition 1011

APPENDIX E

The Linux 2.6 Kernel 1015

This page intentionally left blank

971971

AAppendixAA regular expression defines a set of one or more strings of
characters. A simple string of characters is a regular expression
that defines one string of characters: itself. A more complex
regular expression uses letters, numbers, and special characters
to define many different strings of characters. A regular expres-
sion is said to match any string it defines.

This appendix describes the regular expressions used by ed, vim,
emacs, grep, gawk, sed, and other utilities. The regular expres-
sions used in shell ambiguous file references are different and
are described in “Filename Generation/Pathname Expansion”
on page 239.

In This Appendix

Characters 972

Delimiters 972

Simple Strings. 972

Special Characters 972

Rules . 975

Bracketing Expressions 976

The Replacement String 976

Extended Regular Expressions. . . 977

A

Regular Expressions

972 Appendix A Regular Expressions

Characters

As used in this appendix, a character is any character except a NEWLINE. Most charac-
ters represent themselves within a regular expression. A special character is one that
does not represent itself. If you need to use a special character to represent itself,
you must quote it as explained on page 975.

Delimiters

A character called a delimiter usually marks the beginning and end of a regular
expression. The delimiter is always a special character for the regular expression it
delimits (that is, it does not represent itself but marks the beginning and end of the
expression). Although vim permits the use of other characters as a delimiter and grep
does not use delimiters at all, the regular expressions in this appendix use a forward
slash (/) as a delimiter. In some unambiguous cases, the second delimiter is not
required. For example, you can sometimes omit the second delimiter when it would
be followed immediately by RETURN.

Simple Strings

The most basic regular expression is a simple string that contains no special charac-
ters except the delimiters. A simple string matches only itself (Table A-1). In the
examples in this appendix, the strings that are matched are underlined and look like
this.

Special Characters

You can use special characters within a regular expression to cause the regular
expression to match more than one string. A regular expression that includes a

Table A-1 Simple strings

Regular
expression Matches Examples

/ring/ ring ring, spring, ringing,
stringing

/Thursday/ Thursday Thursday, Thursday’s

/or not/ or not or not, poor nothing

Special Characters 973

special character always matches the longest possible string, starting as far toward
the beginning (left) of the line as possible.

Periods

A period (.) matches any character (Table A-2).

Brackets

Brackets ([]) define a character class1 that matches any single character within
the brackets (Table A-3). If the first character following the left bracket is a caret
(^), the brackets define a character class that matches any single character not
within the brackets. You can use a hyphen to indicate a range of characters. Within
a character-class definition, backslashes and asterisks (described in the following
sections) lose their special meanings. A right bracket (appearing as a member of the
character class) can appear only as the first character following the left bracket. A
caret is special only if it is the first character following the left bracket. A dollar sign
is special only if it is followed immediately by the right bracket.

Table A-2 Period

Regular
expression Matches Examples

/ .alk/ All strings consisting of a SPACE followed by
any character followed by alk

will talk, may balk

/.ing/ All strings consisting of any character pre-
ceding ing

sing song, ping,
before inglenook

1. GNU documentation calls these List Operators and defines Character Class operators as expressions
that match a predefined group of characters, such as all numbers (page 1028).

Table A-3 Brackets

Regular
expression Matches Examples

/[bB]ill/ Member of the character class b and B fol-
lowed by ill

bill, Bill, billed

/t[aeiou].k/ t followed by a lowercase vowel, any char-
acter, and a k

talkative, stink, teak, tanker

/# [6–9]/ # followed by a SPACE and a member of the
character class 6 through 9

60, # 8:, get # 9

/[^a–zA–Z]/ Any character that is not a letter (ASCII
character set only)

1, 7, @, ., }, Stop!

974 Appendix A Regular Expressions

Asterisks

An asterisk can follow a regular expression that represents a single character
(Table A-4). The asterisk represents zero or more occurrences of a match of the reg-
ular expression. An asterisk following a period matches any string of characters. (A
period matches any character, and an asterisk matches zero or more occurrences of
the preceding regular expression.) A character-class definition followed by an aster-
isk matches any string of characters that are members of the character class.

Carets and Dollar Signs

A regular expression that begins with a caret (^) can match a string only at the
beginning of a line. In a similar manner, a dollar sign ($) at the end of a regular
expression matches the end of a line. The caret and dollar sign are called anchors
because they force (anchor) a match to the beginning or end of a line (Table A-5).

Table A-4 Asterisks

Regular
expression Matches Examples

/ab*c/ a followed by zero or more b’s followed by
a c

ac, abc, abbc, debbcaabbbc

/ab.*c/ ab followed by zero or more characters fol-
lowed by c

abc, abxc, ab45c,
xab 756.345 x cat

/t.*ing/ t followed by zero or more characters fol-
lowed by ing

thing, ting, I thought of going

/[a–zA–Z]*/ A string composed only of letters and
SPACEs

1. any string without
numbers or punctuation!

/(.*)/ As long a string as possible between (and) Get (this) and (that);

/([^)]*)/ The shortest string possible that starts
with (and ends with)

(this), Get (this and that)

Table A-5 Carets and dollar signs

Regular
expression Matches Examples

/^T/ A T at the beginning of a line This line...,
That Time...,
In Time

/^+[0–9]/ A plus sign followed by a digit at the begin-
ning of a line

+5 +45.72,
+759 Keep this...

/:$/ A colon that ends a line ...below:

Rules 975

Quoting Special Characters

You can quote any special character (but not a digit or a parenthesis) by preceding it
with a backslash (Table A-6). Quoting a special character makes it represent itself.

Rules

The following rules govern the application of regular expressions.

Longest Match Possible

A regular expression always matches the longest possible string, starting as far
toward the beginning of the line as possible. For example, given the string

This (rug) is not what it once was (a long time ago), is it?

the expression /Th.*is/ matches

This (rug) is not what it once was (a long time ago), is

and /(.*)/ matches

(rug) is not what it once was (a long time ago)

However, /([^)]*)/ matches

(rug)

Given the string

singing songs, singing more and more

the expression /s.*ing/ matches

singing songs, singing

and /s.*ing song/ matches

singing song

Table A-6 Quoted special characters

Regular
expression Matches Examples

/end\./ All strings that contain end followed by a
period

The end., send., pretend.mail

/ \\ / A single backslash \

/ */ An asterisk *.c, an asterisk (*)

/ \[5\]/ [5] it was five [5]

/and\/or/ and/or and/or

976 Appendix A Regular Expressions

Empty Regular Expressions

Within some utilities, such as vim and less (but not grep), an empty regular expres-
sion represents the last regular expression that you used. For example, suppose you
give vim the following Substitute command:

:s/mike/robert/

If you then want to make the same substitution again, you can use the following
command:

:s//robert/

Alternatively, you can use the following commands to search for the string mike and
then make the substitution

/mike/
:s//robert/

The empty regular expression (//) represents the last regular expression you
used (/mike/).

Bracketing Expressions

You can use quoted parentheses, \(and \), to bracket a regular expression. The
string that the bracketed regular expression matches can be recalled, as explained in
“Quoted Digit.” A regular expression does not attempt to match quoted parenthe-
ses. Thus a regular expression enclosed within quoted parentheses matches what the
same regular expression without the parentheses would match. The expression
/\(rexp\)/ matches what /rexp/ would match; /a\(b*\)c/ matches what /ab*c/
would match.

You can nest quoted parentheses. The bracketed expressions are identified only by
the opening \(, so no ambiguity arises in identifying them. The expression
/\([a–z]\([A–Z]*\)x\)/ consists of two bracketed expressions, one nested within the
other. In the string 3 t dMNORx7 l u, the preceding regular expression matches
dMNORx, with the first bracketed expression matching dMNORx and the second
matching MNOR.

The Replacement String

The vim and sed editors use regular expressions as search strings within Substitute
commands. You can use the ampersand (&) and quoted digits (\n) special charac-
ters to represent the matched strings within the corresponding replacement string.

Extended Regular Expressions 977

Ampersand

Within a replacement string, an ampersand (&) takes on the value of the string that
the search string (regular expression) matched. For example, the following vim Sub-
stitute command surrounds a string of one or more digits with NN. The ampersand
in the replacement string matches whatever string of digits the regular expression
(search string) matched:

:s/[0-9][0-9]*/NN&NN/

Two character-class definitions are required because the regular expression [0–9]*
matches zero or more occurrences of a digit, and any character string constitutes
zero or more occurrences of a digit.

Quoted Digit

Within the search string, a bracketed regular expression, \(xxx\), matches what the
regular expression would have matched without the quoted parentheses, xxx.
Within the replacement string, a quoted digit, \n, represents the string that the
bracketed regular expression (portion of the search string) beginning with the nth \(
matched. For example, you can take a list of people in the form

last-name, first-name initial

and put it in the form

first-name initial last-name

with the following vim command:

:1,$s/\([^,]*\), \(.*\)/\2 \1/

This command addresses all the lines in the file (1,$). The Substitute command (s)
uses a search string and a replacement string delimited by forward slashes. The first
bracketed regular expression within the search string, \([^,]*\), matches what the
same unbracketed regular expression, [^,]*, would match: zero or more characters
not containing a comma (the last-name). Following the first bracketed regular
expression are a comma and a SPACE that match themselves. The second bracketed
expression, \(.*\), matches any string of characters (the first-name and initial).

The replacement string consists of what the second bracketed regular expression
matched (\2), followed by a SPACE and what the first bracketed regular expression
matched (\1).

Extended Regular Expressions

The three utilities egrep, grep when run with the –E option (similar to egrep), and gawk
provide all the special characters that are included in ordinary regular expressions,

978 Appendix A Regular Expressions

except for \(and \), as well as several others. The vim editor includes the additional
characters as well as \(and \). Patterns using the extended set of special characters are
called full regular expressions or extended regular expressions.

Two of the additional special characters are the plus sign (+) and the question mark
(?). They are similar to *, which matches zero or more occurrences of the previous
character. The plus sign matches one or more occurrences of the previous character,
whereas the question mark matches zero or one occurrence. You can use any one of
the special characters *, +, and ? following parentheses, causing the special charac-
ter to apply to the string surrounded by the parentheses. Unlike the parentheses in
bracketed regular expressions, these parentheses are not quoted (Table A-7).

In full regular expressions, the vertical bar (|) special character is a Boolean OR
operator. Within vim, you must quote the vertical bar by preceding it with a back-
slash to make it special (\|). A vertical bar between two regular expressions causes a
match with strings that match the first expression, the second expression, or both.
You can use the vertical bar with parentheses to separate from the rest of the regular
expression the two expressions that are being ORed (Table A-8).

Table A-7 Extended regular expressions

Regular
expression Matches Examples

/ab+c/ a followed by one or more b’s followed by
a c

yabcw, abbc57

/ab?c/ a followed by zero or one b followed by c back, abcdef

/(ab)+c/ One or more occurrences of the string ab
followed by c

zabcd, ababc!

/(ab)?c/ Zero or one occurrence of the string ab fol-
lowed by c

xc, abcc

Table A-8 Full regular expressions

Regular
expression Meaning Examples

/ab|ac/ Either ab or ac ab, ac, abac (abac is two
matches of the regular
expression)

/^Exit|^Quit/ Lines that begin with Exit or Quit Exit,
Quit,
No Exit

/(D|N)\. Jones/ D. Jones or N. Jones P.D. Jones, N. Jones

Appendix Summary 979

Appendix Summary

A regular expression defines a set of one or more strings of characters. A regular
expression is said to match any string it defines.

In a regular expression, a special character is one that does not represent itself.
Table A-9 lists special characters.

Table A-10 lists ways of representing character classes and bracketed regular
expressions.

In addition to the preceding special characters and strings (excluding quoted paren-
theses, except in vim), the characters in Table A-11 are special within full, or
extended, regular expressions.

Table A-9 Special characters

Character Meaning

. Matches any single character

* Matches zero or more occurrences of a match of the preceding character

^ Forces a match to the beginning of a line

$ A match to the end of a line

\ Quotes special characters

\< Forces a match to the beginning of a word

\> Forces a match to the end of a word

Table A-10 Character classes and bracketed regular expressions

Class Defines

[xyz] Defines a character class that matches x, y, or z

[^xyz] Defines a character class that matches any character except x, y, or z

[x–z] Defines a character class that matches any character x through z inclusive

\(xyz \) Matches what xyz matches (a bracketed regular expression)

Table A-11 Extended regular expressions

Expression Matches

+ Matches one or more occurrences of the preceding character

? Matches zero or one occurrence of the preceding character

980 Appendix A Regular Expressions

Table A-12 lists characters that are special within a replacement string in sed and vim.

Expression Matches

(xyz)+ Matches one or more occurrences of what xyz matches

(xyz)? Matches zero or one occurrence of what xyz matches

(xyz)* Matches zero or more occurrences of what xyz matches

xyz |abc Matches either what xyz or what abc matches (use \| in vim)

(xy|ab)c Matches either what xyc or what abc matches (use \| in vim)

Table A-12 Replacement strings

String Represents

& Represents what the regular expression (search string) matched

\n A quoted number, n, represents what the nth bracketed regular expression in
the search string matched

Table A-11 Extended regular expressions (continued)

981981

BAppendixBYou need not be a user or system administrator in isolation. A
large community of Linux experts is willing to assist you in
learning about, helping you solve problems with, and getting
the most out of a Linux system. Before you ask for help, how-
ever, make sure you have done everything you can to solve the
problem yourself. No doubt, someone has experienced the
same problem before you and the answer to your question
exists somewhere on the Internet. Your job is to find it. This
appendix lists resources and describes methods that can help
you in that task.

In This Appendix

Solving a Problem 982

Finding Linux-Related
Information 983

Documentation 983

Useful Linux Sites 984

Linux Newsgroups. 985

Mailing Lists 985

Words. 986

Software . 986

Office Suites and Word
Processors 988

Specifying a Terminal 988

B

Help

982 Appendix B Help

Solving a Problem

Following is a list of steps that can help you solve a problem without asking someone
for help. Depending on your understanding of and experience with the hardware and
software involved, these steps may lead to a solution.

1. Ubuntu Linux comes with extensive documentation. Read the documenta-
tion on the specific hardware or software you are having a problem with. If
it is a GNU product, use info; otherwise, use man to find local information.
Also look in /usr/share/doc for documentation on specific tools. For more
information refer to “Where to Find Documentation” on page 124.

2. When the problem involves some type of error or other message, use a
search engine, such as Google (www.google.com/linux) or Google Groups
(groups.google.com), to look up the message on the Internet. If the message
is long, pick a unique part of the message to search for; 10 to 20 characters
should be enough. Enclose the search string within double quotation
marks. See “Using the Internet to Get Help” on page 130 for an example of
this kind of search.

3. Check whether the Linux Documentation Project (www.tldp.org) has a
HOWTO or mini-HOWTO on the subject in question. Search its site for
keywords that relate directly to the product and problem. Read the FAQs.

4. See Table B-1 for other sources of documentation.

5. Use Google or Google Groups to search on keywords that relate directly
to the product and problem.

6. When all else fails (or perhaps before you try anything else), examine the
system logs in /var/log. First look at the end of the messages file using the
following command:

$ sudo tail -20 /var/log/messages

If messages contains nothing useful, run the following command. It dis-
plays the names of the log files in chronological order, with the most
recently modified files appearing at the bottom of the list:

$ ls -ltr /var/log

Look at the files at the bottom of the list first. If the problem involves a
network connection, review the auth.log file on the local and remote sys-
tems. Also look at messages on the remote system.

7. The /var/spool directory contains subdirectories with useful informa-
tion: cups holds the print queues, mail or exim4 holds the user’s mail
files, and so on.

www.google.com/linux
www.tldp.org

Finding Linux-Related Information 983

If you are unable to solve a problem yourself, a thoughtful question to an appropriate
newsgroup (page 985) or mailing list (page 985) can elicit useful information. When
you send or post a question, make sure you describe the problem and identify the local
system carefully. Include the version numbers of Ubuntu Linux and any software pack-
ages that relate to the problem. Describe the hardware, if appropriate. There is an eti-
quette to posting questions—see www.catb.org/~esr/faqs/smart-questions.html for a
good paper by Eric S. Raymond and Rick Moen titled “How To Ask Questions the
Smart Way.”

The author’s home page (www.sobell.com) contains corrections to this book,
answers to selected chapter exercises, and pointers to other Linux sites.

Finding Linux-Related Information

Ubuntu Linux comes with reference pages stored online. You can read these docu-
ments by using the man or info (page 126) utility. You can read man and info pages to
get more information about specific topics while reading this book or to determine
which features are available with Linux. To search for topics, use apropos (see
page 165 or give the command man apropos).

Documentation

Good books are available on various aspects of using and managing UNIX systems
in general and Linux systems in particular. In addition, you may find the sites listed
in Table B-1 useful.1

1. The right-hand columns of most of the tables in this appendix show Internet addresses (URLs). All sites
have an implicit http:// prefix unless ftp:// or https:// is shown. Refer to “URLs (Web addresses)” on page 19.

Table B-1 Documentation

Site About the site URL

freedesktop.org Creates standards for interoperability
between open-source desktop
environments.

freedesktop.org

GNOME GNOME home page. www.gnome.org

GNU Manuals GNU manuals. www.gnu.org/manual

info Instructions for using the info utility. www.gnu.org/software/texinfo/manual/info

Internet FAQ
Archives

Searchable FAQ archives. www.faqs.org

www.catb.org/~esr/faqs/smart-questions.html
www.sobell.com
www.gnome.org
www.gnu.org/manual
www.gnu.org/software/texinfo/manual/info
www.faqs.org

984 Appendix B Help

Useful Linux Sites

Sometimes the sites listed in Table B-2 are so busy that you cannot connect to them.
In this case, you are usually given a list of alternative, or mirror, sites to try.

Site About the site URL

KDE
Documentation

KDE documentation. kde.org/documentation

KDE News KDE news. dot.kde.org

Linux
Documentation
Project

All things related to Linux documenta-
tion (in many languages): HOWTOs,
guides, FAQs, man pages, and maga-
zines. This is the best overall source
for Linux documentation. Make sure
to visit the Links page.

www.tldp.org

Ubuntu
Documentation
and Support

These URIs have links to many
pages that provide documentation
and support.

www.ubuntu.com/support

help.ubuntu.com/community

RFCs Requests for comments; see RFC
(page 1057).

www.rfc-editor.org

System
Administrators
Guild (SAGE)

SAGE is a group for system
administrators.

www.sage.org

Table B-1 Documentation (continued)

Table B-2 Useful Linux sites

Site About the site URL

DistroWatch A survey of many Linux distributions,
including news, reviews, and articles.

distrowatch.com

GNU GNU Project Web server. www.gnu.org

Hardware
compatibility

User-written hardware reviews for
Ubuntu Linux.

www.ubuntuhcl.org

ibiblio A large library and digital archive. For-
merly Metalab; formerly Sunsite.

www.ibiblio.org
www.ibiblio.org/pub/linux
www.ibiblio.org/pub/historic-linux

Linux Standard
Base (LSB)

A group dedicated to standardizing
Linux.

www.linuxbase.org

www.tldp.org
www.ubuntu.com/support
www.rfc-editor.org
www.sage.org
www.gnu.org
www.ubuntuhcl.org
www.ibiblio.org
www.ibiblio.org/pub/linux
www.ibiblio.org/pub/historic-linux
www.linuxbase.org

Finding Linux-Related Information 985

Linux Newsgroups

One of the best ways of getting specific information is through a newsgroup (refer
to “Usenet” on page 388). You can often find the answer to a question by reading
postings to the newsgroup. Try using Google Groups (groups.google.com) to search
through newsgroups to see whether the question has already been asked and
answered. Or open a newsreader program and subscribe to appropriate news-
groups. If necessary, you can post a question for someone to answer. Before you do
so, make sure you are posting to the correct group and that your question has not
already been answered.

The newsgroup comp.os.linux.answers provides postings of solutions to common
problems and periodic postings of the most up-to-date versions of FAQ and HOWTO
documents. The comp.os.linux.misc newsgroup has answers to miscellaneous Linux-
related questions.

Mailing Lists

Subscribing to a mailing list (page 775) allows you to participate in an electronic
discussion. With most lists, you can send and receive email dedicated to a specific
topic to and from a group of users. Moderated lists do not tend to stray as much
as unmoderated lists, assuming the list has a good moderator. The disadvantage
of a moderated list is that some discussions may be cut off when they get interest-
ing if the moderator deems that the discussion has gone on for too long. Mailing
lists described as bulletins are strictly unidirectional: You cannot post informa-
tion to these lists but can only receive periodic bulletins. If you have the subscrip-
tion address for a mailing list but are not sure how to subscribe, put the word
help in the body and/or header of email you send to the address. You will usually
receive instructions via return email. Ubuntu hosts several mailing lists; go to
lists.ubuntu.com for more information. You can also use a search engine to
search for mailing list linux.

Sobell The author’s home page contains use-
ful links, errata for this book, code for
many of the examples in this book,
and answers to selected exercises.

www.sobell.com

USENIX A large, well-established UNIX group.
This site has many links, including a
list of conferences.

www.usenix.org

X.Org The X Window System home. www.x.org

Table B-2 Useful Linux sites (continued)

www.sobell.com
www.usenix.org
www.x.org

986 Appendix B Help

Words

Many dictionaries, thesauruses, and glossaries are available online. Table B-3 lists a
few of them.

Software

There are many ways to learn about interesting software packages and their avail-
ability on the Internet. Table B-4 lists sites you can download software from. For
security-related programs, refer to Table C-1 on page 1006. Another way to learn
about software packages is through a newsgroup (page 985).

Table B-3 Looking up words

Site About the site URL

DICT.org Multiple-database search for words www.dict.org

Dictionary.com Everything related to words dictionary.reference.com

DNS Glossary DNS glossary www.menandmice.com/online_docs_and_faq/glossary/
glossarytoc.htm

FOLDOC The Free On-Line Dictionary of
Computing

www.foldoc.org

GNOME Controls Defines many GUI controls (widgets) developer.gnome.org/projects/gup/hig/2.0/controls.html

The Jargon File An online version of The New
Hacker’s Dictionary

www.catb.org/~esr/jargon

Merriam-Webster English language www.m-w.com

OneLook Multiple-site word search with a
single query

www.onelook.com

Roget’s
Thesaurus

Thesaurus humanities.uchicago.edu/forms_unrest/ROGET.html

Webopedia Commercial technical dictionary www.webopedia.com

Wikipedia An open-source (user-contributed)
encyclopedia project

wikipedia.org

Wordsmyth Dictionary and thesaurus www.wordsmyth.net

Yahoo Reference Search multiple sources at the
same time

education.yahoo.com/reference

www.dict.org
www.menandmice.com/online_docs_and_faq/glossary/glossarytoc.htm
www.menandmice.com/online_docs_and_faq/glossary/glossarytoc.htm
www.foldoc.org
www.catb.org/~esr/jargon
www.m-w.com
www.onelook.com
www.webopedia.com
wikipedia.org
www.wordsmyth.net

Finding Linux-Related Information 987

Table B-4 Software

Site About the site URL

BitTorrent BitTorrent efficiently distributes large
amounts of static data

azureus.sourceforge.net
help.ubuntu.com/community/BitTorrent

CVS CVS (Concurrent Versions System) is
a version control system

www.nongnu.org/cvs

ddd The ddd utility is a graphical front-
end for command line debuggers
such as gdb

www.gnu.org/software/ddd

Firefox Web browser www.mozilla.com/firefox

Free Software
Directory

Categorized, searchable lists of free
software

directory.fsf.org

Freshmeat A large index of UNIX and cross-
platform software and themes

freshmeat.net

gdb The gdb utility is a command line
debugger

www.gnu.org/software/gdb

GNOME Project Links to all GNOME projects www.gnome.org/projects

IceWALKERS Categorized, searchable lists of free
software

www.icewalkers.com

kdbg The kdbg utility is a graphical user
interface to gdb

freshmeat.net/projects/kdbg

Linux Software
Map

A database of packages written for,
ported to, or compiled for Linux

www.boutell.com/lsm

Mtools A collection of utilities to access DOS
floppy diskettes from Linux without
mounting the diskettes

mtools.linux.lu

Network
Calculators

Subnet mask calculator www.subnetmask.info

NTFS driver Driver that enables Linux to read
from and write to Windows NTFS
filesystems (available in the ntfs-3g
package)

http://www.ntfs-3g.org

Savannah Central point for development, dis-
tribution, and maintenance of free
software

savannah.gnu.org

www.nongnu.org/cvs
www.gnu.org/software/ddd
www.mozilla.com/firefox
www.gnu.org/software/gdb
www.gnome.org/projects
www.icewalkers.com
www.boutell.com/lsm
www.subnetmask.info
http://www.ntfs-3g.org

988 Appendix B Help

Office Suites and Word Processors

Several office suites and many word processors are available for Linux. Table B-5
lists a few of them. If you are exchanging documents with people using Windows,
make sure the import from/export to MS Word functionality covers your needs.

Specifying a Terminal

Because vim, emacs, and other textual and pseudographical programs take advan-
tage of features specific to various kinds of terminals and terminal emulators, you
must tell these programs the name of the terminal you are using or the terminal
your terminal emulator is emulating. Most of the time the terminal name is set for
you. If the terminal name is not specified or is not specified correctly, the characters
on the screen will be garbled or, when you start a program, the program will ask
which type of terminal you are using.

Terminal names describe the functional characteristics of a terminal or terminal
emulator to programs that require this information. Although terminal names are
referred to as either Terminfo or Termcap names, the difference relates to the
method each system uses to store the terminal characteristics internally—not to the

Site About the site URL

SourceForge A development Web site with a large
repository of open-source code and
applications

sourceforge.net

strace The strace utility is a system call
trace debugging tool

http://sourceforge.net/

Thunderbird Mail application www.mozilla.com/thunderbird

ups The ups utility is a graphical source-
level debugger

ups.sourceforge.net

Table B-4 Software (continued)

Table B-5 Office suites and word processors

Product name What it does URL

AbiWord Word processor www.abisource.com

KOffice Integrated suite of office applications,
including the KWord word processing
program

www.koffice.org

OpenOffice A multiplatform and multilingual
office suite

www.openoffice.org
www.gnome.org/projects/ooo

http://sourceforge.net/
www.mozilla.com/thunderbird
www.abisource.com
www.koffice.org
www.openoffice.org
www.gnome.org/projects/ooo

Specifying a Terminal 989

manner in which you specify the name of a terminal. Terminal names that are often
used with Linux terminal emulators and with graphical monitors while they are run
in textual mode include ansi, linux, vt100, vt102, vt220, and xterm.

When you are running a terminal emulator, you can specify the type of terminal you
want to emulate. Set the emulator to either vt100 or vt220, and set TERM to the
same value.

When you log in, you may be prompted to identify the type of terminal you are using:

TERM = (vt100)

You can respond to this prompt in one of two ways. First you can press RETURN to set
your terminal type to the name in parentheses. If that name does not describe the
terminal you are using, you can enter the correct name and then press RETURN.

TERM = (vt100) ansi

You may also receive the following prompt:

TERM = (unknown)

This prompt indicates that the system does not know which type of terminal you
are using. If you plan to run programs that require this information, enter the name
of the terminal or terminal emulator you are using before you press RETURN.

TERM If you do not receive a prompt, you can give the following command to display the
value of the TERM variable and check whether the terminal type has been set:

$ echo $TERM

If the system responds with the wrong name, a blank line, or an error message, set
or change the terminal name. From the Bourne Again Shell (bash), enter a command
similar to the following to set the TERM variable so the system knows which type
of terminal you are using:

export TERM=name

Replace name with the terminal name for the terminal you are using, making sure
you do not put a SPACE before or after the equal sign. If you always use the same type
of terminal, you can place this command in your ~/.bashrc file (page 277), causing
the shell to set the terminal type each time you log in. For example, give the follow-
ing command to set your terminal name to vt100:

$ export TERM=vt100

LANG For some programs to display information correctly, you may need to set the LANG
variable (page 308). Frequently you can set this variable to C. Under bash use the
command

$ export LANG=C

This page intentionally left blank

991991

CAppendixCSecurity is a major part of the foundation of any system that is
not totally cut off from other machines and users. Some aspects
of security have a place even on isolated machines. Examples of
these measures include periodic system backups, BIOS or power-
on passwords, and self-locking screensavers.

A system that is connected to the outside world requires other
mechanisms to secure it: tools to check files (tripwire), audit tools
(tiger/cops), secure access methods (kerberos/ssh), services that
monitor logs and machine states (swatch/watcher), packet-filtering
and routing tools (ipfwadm/iptables/firestarter), and more.

System security has many dimensions. The security of a system as
a whole depends on the security of individual components, such
as email, files, network, login, and remote access policies, as well
as the physical security of the host itself. These dimensions fre-
quently overlap, and their borders are not always static or clear.
For instance, email security is affected by the security of both
files and the network. If the medium (the network) over which
you send and receive your email is not secure, then you must take
extra steps to ensure the security of your messages. If you save

In This Appendix

Encryption 992

File Security 997

Email Security 997

Network Security. 998

Host Security 1001

Login Security 1002

Remote Access Security 1003

Viruses and Worms 1004

Physical Security 1004

Security Resources 1006

C

Security

992 Appendix C Security

your secure email in a file on the local system, then you rely on the filesystem and host
access policies for file security. A failure in any one of these areas can start a domino
effect, diminishing reliability and integrity in other areas and potentially compromis-
ing system security as a whole.

This short appendix cannot cover all facets of system security in depth, but provides
an overview of the complexity of setting up and maintaining a secure system. This
appendix offers some specifics, concepts, guidelines to consider, and many pointers
to security resources (Table C-1 on page 1006).

Encryption

One of the building blocks of security is encryption, which provides a means of
scrambling data for secure transmission to other parties. In cryptographic terms, the
data or message to be encrypted is referred to as plaintext, and the resulting
encrypted block of text as ciphertext. Processes exist for converting plaintext into
ciphertext through the use of keys, which are essentially random numbers of a spec-
ified length used to lock and unlock data. This conversion is achieved by applying
the keys to the plaintext according to a set of mathematical instructions, referred to
as the encryption algorithm.

Developing and analyzing strong encryption software is extremely difficult. Many
nuances exist, many standards govern encryption algorithms, and a background in
mathematics is requisite. Also, unless an algorithm has undergone public scrutiny
for a significant period of time, it is generally not considered secure; it is often
impossible to know that an algorithm is completely secure but possible to know
that one is not secure. Ultimately time is the best test of any algorithm. Also, a solid
algorithm does not guarantee an effective encryption mechanism because the falli-
bility of an encryption scheme frequently arises from problems with its implementa-
tion and distribution.

An encryption algorithm uses a key that is a certain number of bits long. Each bit
added to the length of a key effectively doubles the key space (the number of combi-
nations allowed by the number of bits in the key—2 to the power of the length of
the key in bits1) and means it will take twice as long for an attacker to decrypt a
message (assuming the scheme lacks any inherent weaknesses or vulnerabilities to

Other sources of system security information

security Depending on how important system security is to you, you may want to purchase one or more
books dedicated to system security, visit some of the Internet sites that are dedicated to security,
or hire someone who is an expert in the field.

Do not rely on this appendix as your sole source of information on system security.

1. A 2-bit key would have a key space of 4 (22), a 3-bit key would have a key space of 8 (23), and so on.

Encryption 993

exploit). However, it is a mistake to compare algorithms based only on the number
of bits used. In some cases an algorithm that uses a 64-bit key can be more secure
than an algorithm that uses a 128-bit key.

The two primary classifications of encryption schemes are public key encryption
and symmetric key encryption. Public key encryption, also called asymmetric
encryption, uses two keys: a public key and a private key. These keys are uniquely
associated with a specific user. Public key encryption schemes are used mostly to
exchange keys and signatures. Symmetric key encryption, also called symmetric
encryption or secret key encryption, uses one key that you and the person you are
communicating with (hereafter referred to as your friend) share as a secret. Sym-
metric key encryption is typically used to encrypt large amounts of data. Public key
algorithm keys typically have a length of 512 bits to 2,048 bits, whereas symmetric
key algorithms use keys in the range of 64 bits to 512 bits.

When you are choosing an encryption scheme, realize that security comes at a price.
There is usually a tradeoff between resilience of the cryptosystem and ease of
administration.

The practicality of a security solution is a far greater factor in encryption, and in
security in general, than most people realize. With enough time and effort, nearly
every algorithm can be broken. In fact, you can often unearth the mathematical
instructions for a widely used algorithm by flipping through a cryptography book,
reviewing a vendor’s product specifications, or performing a quick search on the
Internet. The challenge is to ensure the effort required to follow the twists and turns
taken by an encryption algorithm and its resulting encryption solution outweighs
the worth of the information it is protecting.

Public Key Encryption

To use public key encryption, you must generate two keys: a public key and a pri-
vate key. You keep the private key for yourself and give the public key to the world.
In a similar manner, each of your friends will generate a pair of keys and give you
their public keys. Public key encryption is marked by two distinct features:

1. When you encrypt data with someone’s public key, only that person’s pri-
vate key can decrypt it.

2. When you encrypt data with your private key, anyone can decrypt it with
your public key.

You may wonder why the second point is useful: Why would you want everyone
else to be able to decrypt something you just encrypted? The answer lies in the pur-
pose of the encryption. Although encryption changes the original message into
unreadable ciphertext, its purpose is to provide a digital signature. If the message

How much time and money should you spend on encryption?

tip When the cost of obtaining the information exceeds the value realized by its possession, the solu-
tion is an effective one.

994 Appendix C Security

can be properly decrypted with your public key, only you could have encrypted it
with your private key, proving the message is authentic. Combining these two
modes of operation yields privacy and authenticity. You can sign a message with
your private key so it can be verified as authentic, and then you can encrypt it with
your friend’s public key so that only your friend can decrypt it.

Public key encryption has three major shortcomings:

1. Public key encryption algorithms are generally much slower than symmet-
ric key algorithms and usually require a much larger key size and a way to
generate large prime numbers to use as components of the key, making
them more resource intensive.

2. The private key must be stored securely and its integrity safeguarded. If a
person’s private key is obtained by another party, that party can encrypt,
decrypt, and sign messages while impersonating the original owner of the
key. If the private key is lost or becomes corrupted, any messages previ-
ously encrypted with it are also lost, and a new keypair must be generated.

3. It is difficult to authenticate the origin of a key—that is, to prove whom it
originally came from. This so-called key-distribution problem is the raison
d’être for such companies as VeriSign (www.verisign.com).

Algorithms such as RSA, Diffie-Hellman, and El-Gamal implement public key encryp-
tion methodology. Today a 512-bit key is considered barely adequate for RSA encryption
and offers marginal protection; 1,024-bit keys are expected to hold off determined
attackers for several more years. Keys that are 2,048 bits long are now becoming com-
monplace and are rated as espionage strength. A mathematical paper published in late
2001 and reexamined in spring 2002 describes how a machine can be built—for a very
large sum of money—that could break 1,024-bit RSA encryption in seconds to minutes
(this point is debated in an article at www.schneier.com/crypto-gram-0203.html#6).
Although the cost of such a machine exceeds the resources available to most indi-
viduals and smaller corporations, it is well within the reach of large corporations
and governments.

Symmetric Key Encryption

Symmetric key encryption is generally fast and simple to deploy. First you and your
friend agree on which algorithm to use and a key that you will share. Then either of
you can decrypt or encrypt a file with the same key. Behind the scenes, symmetric key
encryption algorithms are most often implemented as a network of black boxes,
which can involve hardware components, software, or a combination of the two.
Each box imposes a reversible transformation on the plaintext and passes it to the
next box, where another reversible transformation further alters the data. The secu-
rity of a symmetric key algorithm relies on the difficulty of determining which boxes
were used and the number of times the data was fed through the set of boxes. A good
algorithm will cycle the plaintext through a given set of boxes many times before
yielding the result, and there will be no obvious mapping from plaintext to ciphertext.

www.verisign.com
www.schneier.com/crypto-gram-0203.html#6

Encryption 995

The disadvantage of symmetric key encryption is that it depends heavily on the
availability of a secure channel through which to send the key to your friend. For
example, you would not use email to send your key; if your email is intercepted, a
third party is in possession of your secret key, and your encryption is useless. You
could relay the key over the phone, but your call could be intercepted if your phone
were tapped or someone overheard your conversation.

Common implementations of symmetric key algorithms include DES (Data Encryp-
tion Standard), 3-DES (triple DES), IDEA, RC5, Blowfish, and AES (Advanced
Encryption Standard). AES is the new Federal Information Processing Standard
(FIPS-197) algorithm endorsed for governmental use and has been selected to
replace DES as the de facto encryption algorithm. AES uses the Rijndael algorithm,
chosen after a thorough evaluation of 15 candidate algorithms by the cryptographic
research community.

None of the aforementioned algorithms has undergone more scrutiny than DES,
which has been in use since the late 1970s. However, the use of DES has drawbacks
and it is no longer considered secure because the weakness of its 56-bit key makes it
unreasonably easy to break. Given the advances in computing power and speed
since DES was developed, the small size of this algorithm’s key renders it inadequate
for operations requiring more than basic security for a relatively short period of
time. For a few thousand dollars, you can link off-the-shelf computer systems so
they can crack DES keys in a few hours.

The 3-DES application of DES is intended to combat its degenerating resilience by
running the encryption three times; it is projected to be secure for years to come.
DES is probably sufficient for such tasks as sending email to a friend when you need
it to be confidential or secure for only a few days (for example, to send a notice of a
meeting that will take place in a few hours). It is unlikely anyone is sufficiently inter-
ested in your email to invest the time and money to decrypt it. Because of 3-DES’s
wide availability and ease of use, it is advisable to use it instead of DES.

Encryption Implementation

Most of today’s commercial software packages use both public and symmetric key
encryption algorithms, taking advantage of the strengths of each and avoiding their
weaknesses. The public key algorithm is used first, as a means of negotiating a ran-
domly generated secret key and providing for message authenticity. Then a secret
key algorithm, such as 3-DES, IDEA, AES, or Blowfish, encrypts and decrypts the
data on both ends for speed. Finally a hash algorithm, such as DSA (Digital Signa-
ture Algorithm), generates a message digest that provides a signature that can alert
you to tampering. The digest is digitally signed with the sender’s private key.

GnuPG/PGP

The most popular personal encryption packages available today are GnuPG (GNU
Privacy Guard, also called GPG; www.gnupg.org) and PGP (Pretty Good Privacy;
www.pgp.com). GNU Privacy Guard was designed as a free replacement for PGP, a

www.gnupg.org
www.pgp.com

996 Appendix C Security

security tool that made its debut during the early 1990s. Phil Zimmerman devel-
oped PGP as a Public Key Infrastructure (PKI), featuring a convenient interface,
ease of use and management, and the security of digital certificates. One critical
characteristic set PGP apart from the majority of cryptosystems then available: PGP
functions entirely without certification authorities (CAs). Until the introduction of
PGP, PKI implementations were built around the concept of CAs and centralized
key management controls.

Both PGP and GnuPG rely on the notion of a web of trust:2 If you trust someone
and that person trusts someone else, the person you trust can provide an introduc-
tion to the third party. When you trust someone, you perform an operation called
key signing. By signing someone else’s key, you verify that the person’s public key is
authentic and safe for you to use to send email. When you sign a key, you are asked
whether you trust this person to introduce other keys to you. It is common practice
to assign this trust based on several criteria, including your knowledge of a person’s
character or a lasting professional relationship with the person. The best practice is
to sign someone’s key only after you have met face to face to avert any chance of a
man-in-the-middle3 scenario. The disadvantage of this scheme is the lack of a cen-
tral registry for associating with people you do not already know.

PGP is available without cost for personal use but its deployment in a commercial
environment requires the purchase of a license. This was not always the case: Soon
after its introduction, PGP was available on many bulletin board systems, and users
could implement it in any manner they chose. PGP rapidly gained popularity in the
networking community, which capitalized on its encryption and key management
capabilities for secure transmission of email.

After a time, attention turned to RSA and IDEA, the two robust cryptographic algo-
rithms that form an integral part of PGP’s code. These algorithms are privately
owned. The wide distribution of and growing user base for PGP sparked battles
over patent violation and licenses, resulting in the eventual restriction of PGP’s use.

Enter GnuPG, which supports most of the features and implementations made avail-
able by PGP and complies with the OpenPGP Message Format standard. Because
GnuPG does not use the patented IDEA algorithm but rather relies on BUGS (Big and
Useful Great Security; www.gnu.org/directory/bugs.html), you can use it almost
without restriction: It is released under the GNU GPL (refer to “The Code Is Free” on

2. For more information, see the section of The GNU Privacy Handbook (www.gnupg.org/documentation)
titled “Validating Other Keys on Your Public Keyring.”

3. Man-in-the-middle: If Alex and Jenny try to carry on a secure email exchange over a network, Alex first
sends Jenny his public key. However, suppose Mr. X sits between Alex and Jenny on the network and inter-
cepts Alex’s public key. Mr. X then sends his public key to Jenny. Jenny then sends her public key to Alex,
but once again Mr. X intercepts it and substitutes his public key and sends that to Alex. Without some
kind of active protection (a piece of shared information), Mr. X, the man-in-the-middle, can decrypt all
traffic between Alex and Jenny, reencrypt it, and send it on to the other party.

www.gnu.org/directory/bugs.html
www.gnupg.org/documentation

Email Security 997

page 4). PGP and GnuPG are considered to be interchangeable and interoperable. The
command sequences for and internal workings of these two tools are very similar.

GNU offers a good introduction to privacy, The GNU Privacy Handbook, which is
available in several languages and listed at www.gnupg.org (click Documentation
Guides). Click Documentation HOWTOs on the same Web page to view the
GNU Privacy Guard (GnuPG) Mini Howto, which steps through the setup and use
of gpg. And, of course, there is a gpg info page.

In addition to providing encryption, gpg is useful for authentication. For example, you
can use it to verify the person who signed a piece of email is the person who sent it.

File Security

From an end user’s perspective, file security is one of the most critical areas of secu-
rity. Some file security is built into Linux: chmod (page 200) gives you basic security
control. ACLs (Access Control Lists) allow more fine-grained control of file access
permissions. ACLs are part of Solaris, Windows NT/2000/XP, VAX/VMS, and
mainframe operating systems. Ubuntu Linux supports ACLs (page 203). Even these
tools are insufficient, however, when your account is compromised (for example, by
someone watching your fingers on the keyboard as you type your password). To
provide maximum file security, you must encrypt your files. Then even someone
who knows your password cannot read your files. (Of course, if someone knows
your key, that person can decrypt your files if she can get to them.)

Email Security

Email security overlaps file security and, as discussed later, network security. GnuPG
is the tool most frequently used for email security, although you can also use PGP.
PEM (Privacy Enhanced Mail) is a standard rather than an algorithm and is used less
frequently.

MTAs (Mail Transfer Agents)

An increasingly commonplace MTA is STARTTLS (Start Transport Layer Security;
www.sendmail.org/~ca/email/starttls.html). TLS itself usually refers to SSL (Secure
Sockets Layer) and has become the de facto method for encrypting TCP/IP traffic on
the Internet. The sendmail and exim4 daemons can be built to support STARTTLS,

The GnuPG system includes the gpg program
tip GnuPG is frequently referred to as gpg, but gpg is actually the main program for the GnuPG system.

www.gnupg.org
www.sendmail.org/~ca/email/starttls.html

998 Appendix C Security

and much documentation exists on how to do so. STARTTLS enhancements are also
available for qmail and postfix and other popular MTAs. It is important to recognize
that this capability provides encryption between two mail servers but not necessarily
between your machine and the mail server. Also, the advantages of using TLS are
negated if the email must pass through a relay that does not support TLS.

MUAs (Mail User Agents)

Many popular mail user agents, such as mutt, elm, Thunderbird, and emacs, include
the ability to use PGP or GnuPG for encryption. Evolution, the default Ubuntu
Linux MUA, has built-in GnuPG support. This approach has become the default
way to exchange email securely.

Network Security

Network security is a vital component for ensuring the security of a computing site.
However, without the right infrastructure, providing network security is difficult, if
not impossible. For example, if you run a shared network topology,4 such as Ether-
net, and have in public locations jacks that allow anyone to plug in to the network
at will, how can you prevent someone from plugging in a machine and capturing all
the packets (page 1051) that traverse the network?5 You cannot—so you have a
potential security hole. Another common security hole relates to the use of telnet for
logins. Because telnet sends and receives cleartext, anyone “listening in” on the line
can easily capture usernames and passwords, compromising security.

Do not allow any unauthenticated PC (any PC that does not require users to supply
a local name and password) on a network. With a Windows 9x PC, any user on the
network is effectively working with root privileges for the following reasons:

• A PC does not recognize the concept of root privileges. All users, by
default, have access to and can watch the network, capture packets, and
send packets.

• On UNIX/Linux, only a user working with root privileges can put the net-
work interface in promiscuous mode and collect packets. On UNIX and
Linux, ports numbered less than 10246 are privileged—that is, normal
user protocols cannot bind to these ports. This is an important but regret-
table means of security for some protocols, such as NIS, NFS, RSH, and

4. Shared network topology: A network in which each packet may be seen by machines other than its des-
tination. “Shared” means that the 100 megabits per second bandwidth is shared by all users.

5. Do not make the mistake of assuming that you have security just because you have a switch. Switches
are designed to allocate bandwidth, not to guarantee security.

6. The term port has many meanings; here it is a number assigned to a program. This number links incom-
ing data with a specific service. For example, port 21 is used by FTP traffic, and port 23 is used by TELNET.

Network Security 999

LPD. Normally a data switch on a LAN automatically protects machines
from people snooping on the network for data. In high-load situations,
switches have been known to behave unpredictably, directing packets to
the wrong ports. Certain programs can overload the switch tables that
hold information about which machine is on which port. When these
tables are overloaded, the switch becomes a repeater and broadcasts all
packets to all ports. The attacker on the same switch as you can poten-
tially see the traffic your system sends and receives.

Network Security Solutions

One solution to shared-network problems is to encrypt messages that travel
between machines. IPSec (Internet Protocol Security Protocol) provides an appro-
priate technology. IPSec is commonly used to establish a secure point-to-point vir-
tual network (VPN, page 1068) that allows two hosts to communicate securely
over an unsecure channel, such as the Internet. This protocol provides integrity,
confidentiality, authenticity, and flexibility of implementation that supports multi-
ple vendors.

IPSec is an amalgamation of protocols (IPSec = AH + ESP + IPComp + IKE):

• Authentication Header (AH) A cryptographically secure, irreversible
checksum (page 1028) for an entire packet. AH guarantees that the packet
is authentic.

• Encapsulating Security Payload (ESP) Encrypts a packet to make the
data unreadable.

• IP Payload Compression (IPComp) Compresses a packet. Encryption can
increase the size of a packet, and IPComp counteracts this increase in size.

• Internet Key Exchange (IKE) Provides a way for the endpoints to negoti-
ate a common key securely. For AH to work, both ends of the exchange
must use the same key to prevent a “man-in-the-middle” (see footnote 3
on page 996) from spoofing the connection.

While IPSec is an optional part of IPv4, IPv6 (page 369) mandates its use. It may be
quite some time before IPv6 is widely implemented, however. See page 1016 for
information about the implementation of IPSec in the Linux 2.6 kernel.

Network Security Guidelines

Some general guidelines for establishing and maintaining a secure system follow.
This list is not complete but rather is meant as a guide.

• Fiberoptic cable is more secure than copper cable. Copper is subject to
both active and passive eavesdropping. With access to copper cable, all a
data thief needs to monitor your network traffic is a passive device for
measuring magnetic fields. In contrast, it is much more difficult to tap a

1000 Appendix C Security

fiberoptic cable without interrupting the signal. Sites requiring top security
keep fiberoptic cable in pressurized conduits, where a change in pressure
signals that the physical security of the cable has been breached.

• Avoid leaving unused ports available in public areas. If a malicious user
can plug a laptop into the network without being detected, you are at risk
of a serious security problem. Network drops that will remain unused for
extended periods should be disabled at the switch, preventing them from
accepting or passing network traffic.

• Many network switches have provisions for binding a hardware address to
a port for enhanced security. If someone unplugs one machine and plugs in
another machine to capture traffic, chances are that the second machine
will have a different hardware address. When it detects a device with a dif-
ferent hardware address, the switch can disable the port. Even this solu-
tion is no guarantee, however, as some programs enable you to change or
mask the hardware address of a network interface.

• Do not allow NFS or NIS access outside the local network. Otherwise, it is
a simple matter for a malicious user to steal the password map. Default
NFS security is marginal to nonexistent (a common joke is that NFS
stands for No File Security) so such access should not be allowed outside
your network to machines that you do not trust. Experimental versions of
NFS for Linux that support much better authentication algorithms are
now becoming available. Use IPSec, NFSv4 (which includes improved
authentication), or firewalls to provide access outside of your domain.

• Support for VPN configuration is often built into new firewalls or pro-
vided as a separate product, enabling your system to join securely with the
systems of your customers or partners. If you must allow business part-
ners, contractors, or other outside parties to access local files, consider
using a secure filesystem, such as NFS with Kerberos (page 1044), secure
NFS (encrypts authentication, not traffic), NFS over a VPN such as IPSec,
or cfs (cryptographic filesystem).

• Specify /usr as readonly (ro) in /etc/fstab. Following is an example of such
a configuration:

/dev/hda6 /usr ext2 ro 0 0

This approach may make your machine difficult to update, so use this tac-
tic with care.

Install a small kernel and run only the programs you need

security Linux systems contain a huge number of programs that, although useful, significantly reduce the
security of the host. Install the smallest operating system kernel that meets your needs. For Web
and FTP servers, install only the needed components and do not install a graphical interface. Users
may require additional packages.

Host Security 1001

• Mount filesystems other than / and /usr nosuid to prevent setuid programs
from executing on this filesystem. For example:

/dev/hda4 /var ext3 nosuid 0 0
/dev/hda5 /usr/local ext3 nosuid 0 0

• Use a barrier or firewall product between the local network and the
Internet. Several valuable mailing lists cover firewalls, including the
comp.security.firewalls newsgroup and the free firewalls Web site
(www.freefire.org). Ubuntu Linux includes firestarter (page 886) and
iptables (page 896), which allow you to implement a firewall.

Host Security

Your host must be secure. Simple security steps include preventing remote logins and
leaving the /etc/hosts.equiv and individual users’ ~/.rhosts files empty (or not having
them at all). Complex security steps include installing IPSec for VPNs between hosts.
Many other security measures, some of which are discussed in this section, fall some-
where between these extremes. See Table C-1 on page 1006 for relevant URLs.

• Although potentially tricky to implement and manage, intrusion detection
systems (IDSs) are an excellent way to keep an eye on the integrity of a
device. An IDS can warn of possible attempts to subvert security on the
host on which it runs. The great-granddaddy of intrusion detection sys-
tems is tripwire. This host-based system checks modification times and
integrity of files by using strong algorithms (cryptographic checksums or
signatures) that can detect even the most minor modifications. A commer-
cial version of tripwire is also available. Another commercial IDS is
DragonSquire. Other free, popular, and flexible IDSs include samhain and
AIDE. The last two IDSs offer even more features and means of remaining
invisible to users than tripwire does. Commercial IDSs that are popular in
enterprise environments include Cisco Secure IDS (formerly NetRanger),
Enterasys Dragon, and ISS RealSecure.

• Keep Ubuntu systems up-to-date by downloading and installing the
latest updates. Use the Update Notifier to update the system regularly
(page 100). You can set the system up to automatically install security
updates using the Software Sources window, Updates tab (page 119).

• Complementing host-based IDSs are network-based IDSs. The latter pro-
grams monitor the network and nodes on the network and report suspi-
cious occurrences (attack signatures) via user-defined alerts. These
signatures can be matched based on known worms, overflow attacks
against programs, or unauthorized scans of network ports. Such programs
as snort, klaxon, and NFR are used in this capacity. Commercial programs,
such as DragonSentry, also fill this role.

www.freefire.org

1002 Appendix C Security

• Provided with Ubuntu Linux is PAM, which allows you to set up different
methods and levels of authentication in many ways (page 545).

• Process accounting—a good supplement to system security—can provide a
continuous record of user actions on your system. See the accton man page
(part of the acct package) for more information.

• Emerging standards for such things as Role-Based Access Control (RBAC)
allow tighter delegation of privileges along defined organizational bound-
aries. You can delegate a role or roles to each user as appropriate to the
access required.

• General mailing lists and archives are useful repositories of security infor-
mation, statistics, and papers. The most useful are the bugtraq mailing list
and CERT.7 The bugtraq site and email service offer immediate notifica-
tions about specific vulnerabilities, whereas CERT provides notice of
widespread vulnerabilities and useful techniques to fix them, plus links to
vendor patches.

• The syslogd facility can direct messages from system daemons to specific
files such as those in /var/log. On larger groups of systems, you can send
all important syslogd information to a secure host, where that host’s only
function is to store syslogd data so it cannot be tampered with. See
page 386 and the syslogd man page for more information.

Login Security

Without a secure host, good login security cannot add much protection. Table C-1
on page 1006 lists some of the best login security tools, including replacement dae-
mons for telnetd, rlogind, and rshd. Many sites use ssh, which comes as both free-
ware and a commercially supported package that works on UNIX/Linux, Windows,
and Macintosh platforms.

The PAM facility (page 545) allows you to set up multiple authentication methods
for users in series or in parallel. In-series PAM requires multiple methods of authen-
tication for a user. In-parallel PAM uses any one of a number of methods for
authentication.

Although not the most popular choice, you can configure a system to take advan-
tage of one-time passwords. S/Key is the original implementation of one-time pass-
words by Bellcore. OPIE (one-time passwords in everything), which was developed
by the U.S. Naval Research Labs, is an improvement over the original Bellcore sys-
tem. In one permutation of one-time passwords, the user gets a piece of paper listing
a set of one-time passwords. Each time a user logs in, she enters a password from
the piece of paper. Once used, a password becomes obsolete, and the next password

7. CERT is slow but useful as a medium for coordination between sites. It acts as a tracking agency to
document the spread of security problems.

Host Security 1003

in the list is the only one that will work. Even if a malicious user compromises the
network and sees your password, this information will be of no use because the
password can be used only once. This setup makes it very difficult for someone to
log in as you but does nothing to protect the data you type at the keyboard. One-
time passwords is a good solution if you are at a site where no encrypted login is
available. A truly secure (or paranoid) site will combine one-time passwords and
encrypted logins.

Another type of secure login that is becoming more common is facilitated by a token
or a smartcard. Smartcards are credit-card-like devices that use a challenge–response
method of authentication. Smartcard and token authentication rely on something
you have (the card) and something you know (a pass phrase, user ID, or PIN). For
example, you might enter your username in response to the login prompt and get a
password prompt. You would then enter your PIN and the number displayed on the
access token. The token has a unique serial number that is stored in a database on
the authentication server. The token and the authentication server use this serial
number as a means of computing a challenge every 30 to 60 seconds. If the PIN and
token number you enter match what they should be as computed by the access
server, you are granted access to the system.

Remote Access Security

Issues and solutions surrounding remote access security overlap with those pertain-
ing to login and host security. Local logins may be secure with simply a username
and password, whereas remote logins (and all remote access) should be made more
secure. Many break-ins can be traced back to reusable passwords. It is a good idea
to use an encrypted authentication client, such as ssh or kerberos. You can also use
smartcards for remote access authentication.

Modem pools can also be an entry point into a system. Most people are aware of
how easy it is to monitor a network line but they may take for granted the security
of the public switched telephone network (PSTN, also known as POTS—plain old
telephone service). You may want to set up an encrypted channel after dialing in to
a modem pool. One way to do so is by running ssh over PPP.

There are ways to implement stringent modem authentication policies so unautho-
rized users cannot use local modems. The most common techniques are PAP (Pass-
word Authentication Protocol), CHAP (Challenge Handshake Authentication
Protocol), and Radius. PAP and CHAP are relatively weak as compared to Radius,
so the latter has rapidly gained in popularity. Cisco also provides a method of
authentication called TACACS/TACACS+ (Terminal Access Controller Access Con-
trol System).

One or more of these authentication techniques are available in a RAS (remote
access server—in a network, a computer that provides network access to remote
users via modem). Before purchasing a RAS, check what kind of security it provides
and decide whether that level of security meets your needs.

1004 Appendix C Security

Two other techniques for remote access security can be built into a modem (or RAS
if it has integrated modems). One is callback: After you dial in, you get a password
prompt. Once you type your password, the modem hangs up and calls you back at
a phone number it has stored internally. Unfortunately this technique is not fool-
proof. Some modems have a built-in callback table that holds about ten entries, so
this strategy works for small sites with only a few modems. If you use more
modems, the RAS software must provide the callback.

The second technique is to use CLID (caller line ID) or ANI (automatic number
identification) to decide whether to answer the call. Depending on your wiring and
the local phone company, you may or may not be able to use ANI. ANI information
is provided before the call, whereas CLID information is provided in tandem with
the call.

Viruses and Worms

Examples of UNIX/Linux viruses include the Bliss virus/worm released in 1997 and
the RST.b virus discovered in December 2001. Both are discussed in detail in arti-
cles on the Web. Viruses spread through systems by infecting executable files. In the
cases of Bliss and RST.b, the Linux native executable format, ELF, was used as a
propagation vector.

Just after 5 PM on November 2, 1988, Robert T. Morris, Jr., a graduate student at
Cornell University, released the first big virus onto the Internet. Called an Internet
worm, this virus was designed to propagate copies of itself over many machines on
the Internet. The worm was a piece of code that exploited four vulnerabilities,
including one in finger, to force a buffer to overflow on a system. Once the buffer
overflowed, the code was able to get a shell and then recompile itself on the remote
machine. The worm spread around the Internet very quickly and was not disabled,
despite many people’s efforts, for 36 hours.

The chief characteristic of any worm is propagation over a public network, such as
the Internet. A virus propagates by infecting executables on the machine, whereas a
worm tends to prefer exploiting known security holes in network servers to gain
root access and then tries to infect other machines in the same way.

UNIX/Linux file permissions help to inoculate systems against many viruses. Win-
dows NT is resistant for similar reasons. You can easily protect the local system
against many viruses and worms by keeping its system patches up-to-date, not exe-
cuting untrusted binaries from the Internet, limiting PATH (page 302) to include
only necessary system directories, and doing as little as possible while working with
root privileges. You can prevent a disaster in case a virus strikes by backing up your
system frequently.

Physical Security

Often overlooked as a defense against intrusion, physical security covers access to
the computer itself and to the console or terminal attached to the machine. If the

Host Security 1005

machine is unprotected in an unlocked room, there is very little hope for physical
security. (A simple example of physical vulnerability is someone walking into the
room where the computer is, removing the hard drive from the computer, taking it
home, and analyzing it.) You can take certain steps to improve the physical security
of a computer.

• Keep servers in a locked room with limited access. A key, a combination,
or a swipe card should be required to gain access. Protect windows as well
as doors. Maintain a single point of entry. (Safety codes may require multi-
ple exits, but only one must be an entry.)

• For public machines, use a security system, such as a fiberoptic security
system, that can secure a lab full of machines. With such a system, you run
a fiberoptic cable through each machine such that the machine cannot be
removed (or opened) without cutting the cable. When the cable is cut, an
alarm goes off. Some machines—for example, PCs with plastic cases—are
much more difficult to secure than others. Although it is not a perfect solu-
tion, a fiberoptic security system may improve local security enough to
persuade a would-be thief to go somewhere else.

• Most modern PCs have a BIOS password. You can set the order in which a
PC searches for a boot device, preventing the PC from being booted from a
floppy disk or CD/DVD. Some BIOSs can prevent the machine from boot-
ing altogether without a proper password. The password protects the
BIOS from unauthorized modification. Beware, however: Many BIOSs
have well-known back doors (page 1024). Research this issue if the BIOS
password is an important feature for you. In addition, you can blank the
BIOS password by setting the clear-CMOS jumper on a PC motherboard;
if you are relying on a BIOS password, lock the case.

• Run only fiberoptic cable between buildings. This strategy is not only
more secure but also safer in the event of lightning strikes and is required
by many commercial building codes.

• Maintain logs of who goes in and out of secure areas. Sign-in/out sheets
are useful only if everyone uses them. Sometimes a guard is warranted.
Often a simple proximity badge or smartcard can tell when anyone has
entered or left an area and keep logs of these events, although these can be
expensive to procure and install.

• Anyone who has access to the physical hardware has the keys to the pal-
ace. Someone with direct access to a computer system can do such things
as swap components and insert boot media, all of which are security
threats.

• Avoid having activated, unused network jacks in public places. Such jacks
provide unnecessary risk.

1006 Appendix C Security

• Many modern switches can lock a particular switch port so it accepts only
traffic from an NIC (network interface card) with a particular hardware
address and shuts down the port if another address is seen. However, com-
monly available programs can enable someone to reset this address.

• Make periodic security sweeps. Check doors for proper locking. If you
must have windows, make sure they are locked or are permanently sealed.

• Waste receptacles are often a source of information for intruders. Have
policies for containment and disposal of sensitive documents.

• Use a UPS (uninterruptable power supply). Without a clean source of
power, your system is vulnerable to corruption.

Security Resources

Many free and commercial programs can enhance system security. Some of these are
listed in Table C-1. Many of these sites have links to other, interesting sites that are
worth looking at.

Table C-1 Security resources

Tool What it does Where to get it

AIDE Advanced Intrusion Detection
Environment. Similar to trip-
wire with extensible verification
algorithms.

sourceforge.net/projects/aide

bugtraq A moderated mailing list for the
announcement and detailed dis-
cussion of all aspects of com-
puter security vulnerabilities.

www.securityfocus.com/archive/1

CERT Computer Emergency
Response Team. A repository of
papers and data about major
security events and a list of
security tools.

www.cert.org

chkrootkit Checks for signs of a rootkit
indicating that the machine has
been compromised.

www.chkrootkit.org

dsniff Sniffing and network audit tool
suite. Free.

naughty.monkey.org/~dugsong/dsniff/

freefire Supplies free security solutions
and supports developers of free
security solutions.

www.freefire.org

www.securityfocus.com/archive/1
www.cert.org
www.chkrootkit.org
www.freefire.org

Security Resources 1007

fwtk Firewall toolkit. A set of proxies
that can be used to construct a
firewall.

www.fwtk.org

GIAC A security certification and
training Web site.

www.giac.org

hping Multipurpose network auditing
and packet analysis tool. Free.

www.hping.org

ISC2 Educates and certifies industry
professionals and practitioners
under an international standard.

www.isc2.org

John John the Ripper: a fast, flexible,
weak password detector.

www.openwall.com/john

Kerberos Complete, secure network
authentication system.

web.mit.edu/kerberos/www

L6 Verifies file integrity; similar to
tripwire (French and English).

www.pgci.ca/l6.html

Launchpad Tracks Ubuntu Linux bugs. bugs.launchpad.net/ubuntu

LIDS Intrusion detection and active
defense system.

www.lids.org

LinuxSecurity.com A solid news site dedicated to
Linux security issues.

www.linuxsecurity.com

LWN.net Security alert database for all
major Linux distributions.

lwn.net/Alerts

Microsoft Security Microsoft security information. www.microsoft.com/security

nessus A plugin-based remote security
scanner that can perform more
than 370 security checks. Free.

www.nessus.org

netcat Explores, tests, and diagnoses
networks.

freshmeat.net/projects/netcat

nmap Scans hosts to see which ports
are available. It can perform
stealth scans, determine operat-
ing system type, find open
ports, and more.

www.insecure.org/nmap

OPIE Provides one-time passwords
for system access.

inner.net/opie

Table C-1 Security resources (continued)

www.fwtk.org
www.giac.org
www.hping.org
www.isc2.org
www.openwall.com/john
www.pgci.ca/l6.html
www.lids.org
www.linuxsecurity.com
www.microsoft.com/security
www.nessus.org
www.insecure.org/nmap

1008 Appendix C Security

Tool What it does Where to get it

RBAC Role-Based Access Control.
Assigns roles and privileges
associated with the roles.

csrc.nist.gov/rbac

SAINT Security Administrator’s Inte-
grated Network Tool. Assesses
and analyzes network vulnera-
bilities. This tool follows satan.

www.saintcorporation.com

samhain A file integrity checker. Has a
GUI configurator, client/server
capability, and real-time report-
ing capability.

www.la-samhna.de

SANS Security training and
certification.

www.sans.org

SARA The Security Auditor’s Research
Assistant security analysis tool.

www-arc.com/sara

Schneier, Bruce Security visionary. www.schneier.com

Secunia Monitors a broad spectrum of
vulnerabilities.

secunia.com

SecurityFocus Home for security tools, mail
lists, libraries, and cogent
analysis.

www.securityfocus.com

snort A flexible IDS. www.snort.org

srp Secure Remote Password.
Upgrades common protocols,
such as TELNET and FTP, to use
secure password exchange.

srp.stanford.edu

ssh A secure rsh, ftp, and rlogin
replacement with encrypted
sessions and other options.
Supplied with Ubuntu Linux.

openssh.org

www.ssh.com

swatch A Perl-based log parser and
analyzer.

swatch.sourceforge.net

Treachery A collection of tools for security
and auditing.

www.treachery.net/tools

tripwire Checks for possible signs of
intruder activity. Supplied with
Ubuntu Linux.

www.tripwire.com

wireshark Network protocol analyzer. Free. www.wireshark.org

Table C-1 Security resources (continued)

www.saintcorporation.com
www.la-samhna.de
www.sans.org
www-arc.com/sara
www.schneier.com
www.securityfocus.com
www.snort.org
www.ssh.com
www.treachery.net/tools
www.tripwire.com
www.wireshark.org

Appendix Summary 1009

Appendix Summary

Security is inversely proportional to usability. There must be a balance between
users’ requirements to get their work done and the amount of security that is imple-
mented. It is often unnecessary to provide top security for a small business with
only a few employees. By contrast, if you work for a government military contrac-
tor, you are bound to have extreme security constraints and an official audit policy
to determine whether security policies are being implemented correctly.

Review your own security requirements periodically. Several of the tools mentioned
in this appendix can help you monitor a system’s security measures. Tools such as
nessus, samhain, and SAINT, for example, provide auditing mechanisms.

Some companies specialize in security and auditing. Hiring one of them to examine
your site can be costly but may yield specific recommendations for areas you may
have overlooked in your initial setup. When you hire someone to audit your secu-
rity, recognize you may be providing both physical and root access to local systems.
Make sure the company that you hire has a good history, has been in business for
several years, and has impeccable references. Check up on the company periodi-
cally: Things change over time. Avoid the temptation to hire former system crackers
as consultants. Security consultants should have an irreproachable ethical back-
ground or you will always have doubts about their intentions.

Your total security package is based on your risk assessment of local vulnerabilities.
Strengthen those areas that are most important for your business. For example,
many sites rely on a firewall to protect them from the Internet, whereas internal
hosts may receive little or no security attention. Crackers refer to this setup as “the
crunchy outside surrounding the soft chewy middle.” Yet this setup is entirely suffi-
cient to protect some sites. Perform your own risk assessment and address your
needs accordingly. If need be, hire a full-time security administrator whose job it is
to design and audit local security policies.

This page intentionally left blank

10111011

DAppendixDThe Free Software Definition
1

We maintain this free software definition to show clearly what
must be true about a particular software program for it to be
considered free software.

‘‘Free software’’ is a matter of liberty, not price. To understand
the concept, you should think of ‘‘free’’ as in ‘‘free speech,’’ not
as in ‘‘free beer.’’

Free software is a matter of the users’ freedom to run, copy, dis-
tribute, study, change and improve the software. More pre-
cisely, it refers to four kinds of freedom, for the users of the
software:

• The freedom to run the program, for any purpose
(freedom 0).

1. This material is at www.gnu.org/philosophy/free-sw.html on the GNU Web
site. Because GNU requests a verbatim copy, links remain in place (underlined).
View the document on the Web to ensure you are reading the latest copy and to
follow the links.

D

The Free Software

Definition
1

www.gnu.org/philosophy/free-sw.html

1012 Appendix D The Free Software Definition

• The freedom to study how the program works, and adapt it to your needs
(freedom 1). Access to the source code is a precondition for this.

• The freedom to redistribute copies so you can help your neighbor (free-
dom 2).

• The freedom to improve the program, and release your improvements to
the public, so that the whole community benefits (freedom 3). Access to
the source code is a precondition for this.

A program is free software if users have all of these freedoms. Thus, you should be
free to redistribute copies, either with or without modifications, either gratis or
charging a fee for distribution, to anyone anywhere. Being free to do these things
means (among other things) that you do not have to ask or pay for permission.

You should also have the freedom to make modifications and use them privately in
your own work or play, without even mentioning that they exist. If you do publish
your changes, you should not be required to notify anyone in particular, or in any
particular way.

The freedom to use a program means the freedom for any kind of person or organi-
zation to use it on any kind of computer system, for any kind of overall job, and
without being required to communicate subsequently with the developer or any
other specific entity.

The freedom to redistribute copies must include binary or executable forms of the
program, as well as source code, for both modified and unmodified versions. (Dis-
tributing programs in runnable form is necessary for conveniently installable free
operating systems.) It is ok if there is no way to produce a binary or executable
form for a certain program (since some languages don’t support that feature), but
you must have the freedom to redistribute such forms should you find or develop a
way to make them.

In order for the freedoms to make changes, and to publish improved versions, to be
meaningful, you must have access to the source code of the program. Therefore,
accessibility of source code is a necessary condition for free software.

One important way to modify a program is by merging in available free subroutines
and modules. If the program’s license says that you cannot merge in an existing
module, such as if it requires you to be the copyright holder of any code you add,
then the license is too restrictive to qualify as free.

In order for these freedoms to be real, they must be irrevocable as long as you do
nothing wrong; if the developer of the software has the power to revoke the license,
without your doing anything to give cause, the software is not free.

However, certain kinds of rules about the manner of distributing free software are
acceptable, when they don’t conflict with the central freedoms. For example, copy-
left (very simply stated) is the rule that when redistributing the program, you cannot
add restrictions to deny other people the central freedoms. This rule does not con-
flict with the central freedoms; rather it protects them.

The Free Software Definition 1013

You may have paid money to get copies of free software, or you may have obtained
copies at no charge. But regardless of how you got your copies, you always have the
freedom to copy and change the software, even to sell copies.

‘‘Free software’’ does not mean ‘‘non-commercial’’. A free program must be avail-
able for commercial use, commercial development, and commercial distribution.
Commercial development of free software is no longer unusual; such free commer-
cial software is very important.

Rules about how to package a modified version are acceptable, if they don’t sub-
stantively block your freedom to release modified versions, or your freedom to
make and use modified versions privately. Rules that ‘‘if you make your version
available in this way, you must make it available in that way also’’ can be acceptable
too, on the same condition. (Note that such a rule still leaves you the choice of
whether to publish your version at all.) Rules that require release of source code to
the users for versions that you put into public use are also acceptable. It is also
acceptable for the license to require that, if you have distributed a modified version
and a previous developer asks for a copy of it, you must send one, or that you iden-
tify yourself on your modifications.

In the GNU project, we use ‘‘copyleft’’ to protect these freedoms legally for every-
one. But non-copylefted free software also exists. We believe there are important
reasons why it is better to use copyleft, but if your program is non-copylefted free
software, we can still use it.

See Categories of Free Software for a description of how ‘‘free software,’’ ‘‘copy-
lefted software’’ and other categories of software relate to each other.

Sometimes government export control regulations and trade sanctions can con-
strain your freedom to distribute copies of programs internationally. Software
developers do not have the power to eliminate or override these restrictions, but
what they can and must do is refuse to impose them as conditions of use of the pro-
gram. In this way, the restrictions will not affect activities and people outside the
jurisdictions of these governments.

Most free software licenses are based on copyright, and there are limits on what
kinds of requirements can be imposed through copyright. If a copyright-based
license respects freedom in the ways described above, it is unlikely to have some
other sort of problem that we never anticipated (though this does happen occasion-
ally). However, some free software licenses are based on contracts, and contracts
can impose a much larger range of possible restrictions. That means there are many
possible ways such a license could be unacceptably restrictive and non-free.

We can’t possibly list all the ways that might happen. If a contract-based license
restricts the user in an unusual way that copyright-based licenses cannot, and which
isn’t mentioned here as legitimate, we will have to think about it, and we will prob-
ably conclude it is non-free.

When talking about free software, it is best to avoid using terms like ‘‘give away’’ or
‘‘for free’’, because those terms imply that the issue is about price, not freedom. Some
common terms such as ‘‘piracy’’ embody opinions we hope you won’t endorse. See
Confusing Words and Phrases that are Worth Avoiding for a discussion of these
terms. We also have a list of translations of “free software” into various languages.

1014 Appendix D The Free Software Definition

Finally, note that criteria such as those stated in this free software definition require
careful thought for their interpretation. To decide whether a specific software
license qualifies as a free software license, we judge it based on these criteria to
determine whether it fits their spirit as well as the precise words. If a license includes
unconscionable restrictions, we reject it, even if we did not anticipate the issue in
these criteria. Sometimes a license requirement raises an issue that calls for extensive
thought, including discussions with a lawyer, before we can decide if the require-
ment is acceptable. When we reach a conclusion about a new issue, we often update
these criteria to make it easier to see why certain licenses do or don’t qualify.

If you are interested in whether a specific license qualifies as a free software license,
see our list of licenses. If the license you are concerned with is not listed there, you
can ask us about it by sending us email at licensing@gnu.org.

If you are contemplating writing a new license, please contact the FSF by writing to
that address. The proliferation of different free software licenses means increased
work for users in understanding the licenses; we may be able to help you find an
existing Free Software license that meets your needs.

If that isn’t possible, if you really need a new license, with our help you can ensure
that the license really is a Free Software license and avoid various practical problems.
__

Another group has started using the term “open source” to mean something close
(but not identical) to “free software”. We prefer the term “free software” because,
once you have heard it refers to freedom rather than price, it calls to mind freedom.
The word “open” never does that.
__

Other Texts to Read

Translations of this page:

[Català | Chinese (Simplified) | Chinese (Traditional) | Czech | Dansk | Deutsch |
English | Español | Persian/Farsi | Français | Galego | Hebrew | Hrvatski | Bahasa
Indonesia | Italiano | Japanese | Korean | Magyar | Nederlands | Norsk | Polski | Por-
tuguês | Româna | Russian | Slovinsko | Serbian | Tagalog | Türkçe]

Return to the GNU Project home page.

Please send FSF & GNU inquiries to gnu@gnu.org. There are also other ways to
contact the FSF.

Please send broken links and other corrections (or suggestions) to
webmasters@gnu.org

Please see the Translations README for information on coordinating and submit-
ting translations of this article.

Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Soft-
ware Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA

Verbatim copying and distribution of this entire article is permitted in any medium
without royalty provided this notice is preserved.

• Updated: $Date: 2005/11/26 13:16:40 $ $Author: rms $

10151015

EAppendixEThe Linux 2.6 kernel was released on December 17, 2003. A
major release of a Linux kernel is not an everyday occurrence:
The last kernel, Linux 2.4, was released in January 2001. This
appendix lists features that are new to the 2.6 kernel.

Linux kernel revisions alternate between stable and unstable ver-
sions: 2.4 was the previous stable version, so 2.5 was the devel-
opment branch, which later became 2.6. For each of the major
revisions, there is a series of minor revisions. Usually, minor revi-
sions do not contain major changes, although one minor revision
to the 2.4 kernel replaced the entire virtual memory subsystem, a
major part of the kernel.

See www.kniggit.net/wwol26.html if you want more informa-
tion on the Linux 2.6 kernel than this appendix provides.

E

The Linux 2.6 Kernel

www.kniggit.net/wwol26.html

1016 Appendix E The Linux 2.6 Kernel

Native Posix Thread Library (NPTL)

Classically programs start execution at the beginning of a series of instructions and
execute them in sequence. While this technique works well for simple programs
running on single CPU systems, it is often better to allow a program to execute dif-
ferent parts of itself simultaneously in parallel. Most programs with a GUI benefit
from this functionality as it can prevent the user interface from freezing while the
program performs computations.

The traditional way of writing parallel code under UNIX is to execute a fork() system
call, which creates a copy of the running program in memory and starts it executing at
the same point as the original. At the point fork() is called, the two copies of the pro-
gram are indistinguishable, except for the fact that they receive different return values
from their fork() call. One disadvantage of this approach is that each time fork() is
called, the system must create a complete copy of the process. This copying takes a
relatively long time and causes parallel applications to use a lot of memory. (This
description is not quite accurate: Copy-on-write functionality in a modern operating
system copies only those parts of memory that would be different.)

A more efficient solution to this problem is to allow a single process to run multiple
threads. A thread exists in the same memory space as other threads and so has a
much smaller overhead than a single program running multiple processes. The dis-
advantage of this strategy is that multithreaded applications must be designed more
carefully and thus take more time to write than multiprocessor ones. Operating sys-
tems, such as Solaris, rely heavily on threads to provide scalability to very large
SMP (symmetric multiprocessing) systems. The new threading support in the Linux
2.6 kernel uses the same industry standard POSIX APIs as Solaris for implementing
threads and provides high-performance processing.

IPSecurity (IPSec)

IPSec is a network layer protocol suite that secures Internet connections by encrypt-
ing IP packets. IPSec is an optional part of IPv4 (page 1043) and a required part of
IPv6 (page 1043). See page 999 for more information on IPSec.

Kernel integration of IPSec means that any kernel module or application can use
IPSec in the same way that it would use unsecured IP.

Asynchronous I/O (AIO)

Without AIO, when an application needs to get data from a hardware device or a
network connection, it can either poll the connection until the data becomes avail-
able or spawn a thread for the connection that waits for the data. Neither of these
techniques is particularly efficient.

Reverse Map Virtual Memory (rmap VM) 1017

Asynchronous I/O allows the kernel to notify an application when it has data ready
to be read. This feature is most useful to large servers but can provide moderate per-
formance gains in almost any application.

O(1) Scheduler

One of the responsibilities of the kernel is to make sure that each execution thread
gets a reasonable amount of time on the CPU(s). The scheduling algorithm used in
the Linux 2.4 kernel gradually decreased performance as more processes were
added and additional CPUs were brought online, making it hard to use Linux on
large SMP systems. The 2.6 scheduling algorithm runs in O(1) time, a term that
indicates that a process takes the same time to run under all conditions, making
Linux better able to run large numbers of processes and scale to large systems.

OProfile

It is often said that a program spends 90 percent of its time executing 10 percent of
the code. Programmers use profiling tools to identify bottlenecks in code and target
this 10 percent for optimization. OProfile is an advanced profiling tool that identi-
fies common programming inefficiencies. Thanks to its close relationship with the
kernel, OProfile is able to identify hardware-specific efficiency problems, such as
cache misses, which are often not possible to identify from source code.

kksymoops

When something goes wrong in the kernel, it generates an error message called an
OOPS. This message is an in-joke from the Linux Kernel Mailing List, where devel-
opers would start bug reports with “Oops, we’ve found a bug in the kernel.” An
OOPS provides debugging information that can help kernel developers track down
the offending code or indicate that the OOPS was caused by hardware failure.

The kksymoops functionality provides detailed debugging information, allowing a
developer to determine the line of code in the kernel that caused the OOPS. While
this feature does not directly benefit the end user, it allows developers to find kernel
bugs more quickly, resulting in a more stable kernel.

Reverse Map Virtual Memory (rmap VM)

Virtual memory (VM) allows each process to exist in its own memory space. Every
time a process attempts to access a portion of memory, the kernel translates the
memory location from an address in the process’s own address space to one in real

1018 Appendix E The Linux 2.6 Kernel

memory. The reverse map enables the kernel to perform this process in reverse:
Given a location in physical memory, the kernel can determine which process owns
it. The reverse map allows pages to be unallocated quickly, giving the system more
free memory, fewer page faults, and less overhead when quitting a program.

HugeTLBFS: Translation Look-Aside Buffer

Filesystem

The kernel allocates memory in units of pages. Virtual memory uses these pages to
map between the virtual and real memory address spaces. Older versions of the
Linux kernel set the size of these pages to 4 kilobytes. In cases where a lot of virtual
memory is used, such as in large database servers, this small size can place a heavy
load on the VM subsystem. HugeTLBFS allows for much larger pages, which signif-
icantly improves performance under heavy VM load conditions.

remap_file_pages

When retrieving data from or writing data to a file, it is common practice to map
the file on disk to an area of memory. The system then translates accesses to that
area of memory directly into accesses to disk.

For additional flexibility, large database systems map different parts of a file to dif-
ferent parts of memory. Each mapping results in an additional load on the kernel
and VM subsystems. The remap_file_pages() system call can perform a nonuniform
mapping, meaning that a file needs to be mapped only once, which significantly
improves the performance of large database servers.

2.6 Network Stack Features (IGMPv3, IPv6,

and Others)

The Linux 2.6 kernel includes a large number of improvements in the area of net-
working, including support for IPv6 (page 1043) and enhanced multicast
(page 1049) support. Although these features do not immediately benefit end users,
they do permit the development and deployment of network services that will not
require significant modification for integration with future technologies.

Block I/O (BIO) Block Layer 1019

Internet Protocol Virtual Server (IPVS)

IPVS implements transport layer switching inside the kernel for load balancing.
This feature enables a single machine to distribute connections to a server farm,
allowing transparent load balancing.

Access Control Lists (ACLs)

The traditional UNIX permission system allows three permissions to be assigned to
each file: controlling access by the owner, by a single group, and by everyone else.
ACLs provide much finer-grained access control. In theory, ACLs can increase secu-
rity. However, they make setting correct permissions more complicated, which may
encourage administrators to establish weaker controls than they should.

4GB-4GB Memory Split: Physical Address

Extension (PAE)

The 32-bit CPUs are limited in that they can address only 232 bytes (4 gigabytes) of
memory. With the Pentium Pro, Intel introduced a work-around to this limitation
called Physical Address Extension (PAE), which permits the operating system to
address up to 64 gigabytes of memory. Because they are limited to addressing 4
gigabytes each, 32-bit programs cannot access this much memory. A Linux kernel
from the main tree is able to allocate up to 1 gigabyte for the kernel and 3 gigabytes
for each userspace (page 1067) process.

Scheduler Support for HyperThreaded CPUs

The Linux 2.6 kernel supports Intel’s HyperThreading. The 2.6 kernel treats each
virtual CPU as the equivalent of a physical CPU.

Block I/O (BIO) Block Layer

The 2.6 kernel includes a completely redesigned interface to drivers for block
devices (page 569). While this conveys a number of benefits, it also means that these
device drivers need to be rewritten and tested.

1020 Appendix E The Linux 2.6 Kernel

Support for Filesystems Larger Than 2 Terabytes

The Linux 2.6 kernel includes SGI’s XFS journaling filesystem, which supports file-
systems of up to 9 exabytes (9 × 260 bytes).

New I/O Elevators

I/O elevators control how long I/O requests can be queued to allow them to be re-
ordered for optimal device performance. The Linux 2.6 kernel includes some additional
settings that allow I/O elevators to be tuned for specific high-device-load situations.

Interactive Scheduler Response Tuning

The new scheduler in the Linux 2.6 kernel prioritizes I/O bound processes. Because
most user interface processes spend most of their time waiting for input from the
user, this tuning should result in a more responsive system under high system load.

10211021

GGlossaryAll entries marked with FOLDOC are based on definitions in the Free
Online Dictionary of Computing (www.foldoc.org), Denis Howe,
editor. Used with permission.

Glossary

Glossary

www.foldoc.org

1022 Glossary

10.0.0.0 See private address space on page 1054.

172.16.0.0 See private address space on page 1054.

192.168.0.0 See private address space on page 1054.

802.11 A family of specifications developed by IEEE for wireless LAN technology, includ-
ing 802.11 (1–2 megabits per second), 802.11a (54 megabits per second), 802.11b
(11 megabits per second), and 802.11g (54 megabits per second).

absolute
pathname

A pathname that starts with the root directory (/). An absolute pathname locates a
file without regard to the working directory.

access In computer jargon, a verb meaning to use, read from, or write to. To access a file
means to read from or write to the file.

Access Control
List

See ACL.

access
permission

Permission to read from, write to, or execute a file. If you have write access permis-
sion to a file, you can write to the file. Also access privilege.

ACL Access Control List. A system that performs a function similar to file permissions
but with much finer-grain control.

active window On a desktop, the window that receives the characters you type on the keyboard.
Same as focus, desktop (page 1037).

address mask See subnet mask on page 1063.

alias A mechanism of a shell that enables you to define new commands.

alphanumeric
character

One of the characters, either uppercase or lowercase, from A to Z and 0 to 9, inclusive.

ambiguous file
reference

A reference to a file that does not necessarily specify any one file but can be used to
specify a group of files. The shell expands an ambiguous file reference into a list of
filenames. Special characters represent single characters (?), strings of zero or more
characters (*), and character classes ([]) within ambiguous file references. An
ambiguous file reference is a type of regular expression (page 1056).

angle bracket A left angle bracket (<) and a right angle bracket (>). The shell uses < to redirect a
command’s standard input to come from a file and > to redirect the standard out-
put. The shell uses the characters << to signify the start of a Here document and >>
to append output to a file.

animate When referring to a window action, means that the action is slowed down so the
user can view it. For example, when you minimize a window, it can disappear all at
once (not animated) or it can slowly telescope into the panel so you can get a visual
feel for what is happening (animated).

Glossary 1023

anti-aliasing Adding gray pixels at the edge of a diagonal line to get rid of the jagged appearance
and thereby make the line look smoother. Anti-aliasing sometimes makes type on a
screen look better and sometimes worse; it works best on small and large fonts and
is less effective on fonts from 8 to 15 points. See also subpixel hinting (page 1063).

API Application program interface. The interface (calling conventions) by which an
application program accesses an operating system and other services. An API is
defined at the source code level and provides a level of abstraction between the
application and the kernel (or other privileged utilities) to ensure the portability of
the code.FOLDOC

append To add something to the end of something else. To append text to a file means to
add the text to the end of the file. The shell uses >> to append a command’s output
to a file.

applet A small program that runs within a larger program. Examples are Java applets that
run in a browser and panel applets that run from a desktop panel.

archive A file that contains a group of smaller, typically related, files. Also, to create such a
file. The tar and cpio utilities can create and read archives.

argument A number, letter, filename, or another string that gives some information to a com-
mand and is passed to the command when it is called. A command line argument is
anything on a command line following the command name that is passed to the
command. An option is a kind of argument.

arithmetic
expression

A group of numbers, operators, and parentheses that can be evaluated. When you
evaluate an arithmetic expression, you end up with a number. The Bourne Again
Shell uses the expr command to evaluate arithmetic expressions; the TC Shell uses
@, and the Z Shell uses let.

array An arrangement of elements (numbers or strings of characters) in one or more
dimensions. The Bourne Again, TC, and Z Shells and gawk can store and process
arrays.

ASCII American Standard Code for Information Interchange. A code that uses seven bits
to represent both graphic (letters, numbers, and punctuation) and CONTROL characters.
You can represent textual information, including program source code and English
text, in ASCII code. Because ASCII is a standard, it is frequently used when
exchanging information between computers. See the file /usr/pub/ascii or give the
command man ascii to see a list of ASCII codes.

Extensions of the ASCII character set use eight bits. The seven-bit set is common;
the eight-bit extensions are still coming into popular use. The eighth bit is some-
times referred to as the metabit.

ASCII terminal A textual terminal. Contrast with graphical display (page 1038).

1024 Glossary

ASP Application service provider. A company that provides applications over the Internet.

asynchronous
event

An event that does not occur regularly or synchronously with another event. Linux
system signals are asynchronous; they can occur at any time because they can be ini-
tiated by any number of nonregular events.

attachment A file that is attached to, but is not part of, a piece of email. Attachments are fre-
quently opened by programs (including your Internet browser) that are called by
your mail program so you may not be aware that they are not an integral part of an
email message.

authentication The verification of the identity of a person or process. In a communication system,
authentication verifies that a message comes from its stated source. Methods of
authentication on a Linux system include the /etc/passwd and /etc/shadow files,
LDAP, Kerberos 5, and SMB authentication.FOLDOC

automatic
mounting

A way of demand mounting directories from remote hosts without having them
hard configured into /etc/fstab. Also called automounting.

avoided An object, such as a panel, that should not normally be covered by another object,
such as a window.

back door A security hole deliberately left in place by the designers or maintainers of a system.
The motivation for creating such holes is not always sinister; some operating sys-
tems, for example, come out of the box with privileged accounts intended for use by
field service technicians or the vendor’s maintenance programmers.

Ken Thompson’s 1983 Turing Award lecture to the ACM revealed the existence, in
early UNIX versions, of a back door that may be the most fiendishly clever security
hack of all time. The C compiler contained code that would recognize when the
login command was being recompiled and would insert some code recognizing a
password chosen by Thompson, giving him entry to the system whether or not an
account had been created for him.

Normally such a back door could be removed by removing it from the source code
for the compiler and recompiling the compiler. But to recompile the compiler, you
have to use the compiler, so Thompson arranged that the compiler would recognize
when it was compiling a version of itself. It would insert into the recompiled com-
piler the code to insert into the recompiled login the code to allow Thompson entry,
and, of course, the code to recognize itself and do the whole thing again the next
time around. Having done this once, he was then able to recompile the compiler
from the original sources; the hack perpetuated itself invisibly, leaving the back
door in place and active but with no trace in the sources.

Sometimes called a wormhole. Also trap door.FOLDOC

background
process

A process that is not run in the foreground. Also called a detached process, a back-
ground process is initiated by a command line that ends with an ampersand (&).
You do not have to wait for a background process to run to completion before giving

Glossary 1025

the shell additional commands. If you have job control, you can move background
processes to the foreground, and vice versa.

basename The name of a file that, in contrast with a pathname, does not mention any of the
directories containing the file (and therefore does not contain any slashes [/]). For
example, hosts is the basename of /etc/hosts.FOLDOC

baud The maximum information-carrying capacity of a communication channel in sym-
bols (state transitions or level transitions) per second. It coincides with bits per sec-
ond only for two-level modulation with no framing or stop bits. A symbol is a
unique state of the communication channel, distinguishable by the receiver from all
other possible states. For example, it may be one of two voltage levels on a wire for
a direct digital connection, or it might be the phase or frequency of a carrier.FOLDOC

Baud is often mistakenly used as a synonym for bits per second.

baud rate Transmission speed. Usually used to measure terminal or modem speed. Common
baud rates range from 110 to 38,400 baud. See baud.

Berkeley
UNIX

One of the two major versions of the UNIX operating system. Berkeley UNIX was
developed at the University of California at Berkeley by the Computer Systems
Research Group and is often referred to as BSD (Berkeley Software Distribution).

BIND Berkeley Internet Name Domain. An implementation of a DNS (page 1034) server
developed and distributed by the University of California at Berkeley

BIOS Basic Input/Output System. On PCs, EEPROM-based (page 1035) system software
that provides the lowest-level interface to peripheral devices and controls the first stage
of the bootstrap (page 1026) process, which loads the operating system. The BIOS can
be stored in different types of memory. The memory must be nonvolatile so that it
remembers the system settings even when the system is turned off. Also BIOS ROM.
Refer to page 26 for instructions on how to open the BIOS screens for maintenance.

bit The smallest piece of information a computer can handle. A bit is a binary digit:
either 1 or 0 (on or off).

bit depth Same as color depth (page 1029).

bit-mapped
display

A graphical display device in which each pixel on the screen is controlled by an
underlying representation of zeros and ones.

blank
character

Either a SPACE or a TAB character, also called whitespace (page 1068). In some con-
texts, NEWLINEs are considered blank characters.

block A section of a disk or tape (usually 1,024 bytes long but shorter or longer on some
systems) that is written at one time.

block device A disk or tape drive. A block device stores information in blocks of characters. A
block device is represented by a block device (block special) file. Contrast with
character device (page 1028).

1026 Glossary

block number Disk and tape blocks are numbered so that Linux can keep track of the data on the
device.

blocking
factor

The number of logical blocks that make up a physical block on a tape or disk.
When you write 1K logical blocks to a tape with a physical block size of 30K, the
blocking factor is 30.

Boolean The type of an expression with two possible values: true and false. Also, a variable
of Boolean type or a function with Boolean arguments or result. The most common
Boolean functions are AND, OR, and NOT.FOLDOC

boot See bootstrap.

boot loader A very small program that takes its place in the bootstrap process that brings a
computer from off or reset to a fully functional state. See “grub: The Linux Boot
Loader” on page 647.

bootstrap Derived from “Pull oneself up by one’s own bootstraps,” the incremental process of
loading an operating system kernel into memory and starting it running without
any outside assistance. Frequently shortened to boot.

Bourne Again
Shell

bash. GNU’s command interpreter for UNIX, bash is a POSIX-compliant shell
with full Bourne Shell syntax and some C Shell commands built in. The Bourne
Again Shell supports emacs-style command line editing, job control, functions,
and online help.FOLDOC

Bourne Shell sh. This UNIX command processor was developed by Steve Bourne at AT&T Bell
Laboratories.

brace A left brace ({) and a right brace (}). Braces have special meanings to the shell.

bracket A square bracket (page 1061) or an angle bracket (page 1022).

branch In a tree structure, a branch connects nodes, leaves, and the root. The Linux file-
system hierarchy is often conceptualized as an upside-down tree. The branches con-
nect files and directories. In a source code control system, such as SCCS or RCS, a
branch occurs when a revision is made to a file and is not included in subsequent
revisions to the file.

bridge Typically a two-port device originally used for extending networks at layer 2 (data
link) of the Internet Protocol model.

broadcast A transmission to multiple, unspecified recipients. On Ethernet a broadcast packet
is a special type of multicast packet that has a special address indicating that all
devices that receive it should process it. Broadcast traffic exists at several layers of
the network stack, including Ethernet and IP. Broadcast traffic has one source but
indeterminate destinations (all hosts on the local network).

broadcast
address

The last address on a subnet (usually 255), reserved as shorthand to mean all hosts.

Glossary 1027

broadcast
network

A type of network, such as Ethernet, in which any system can transmit information
at any time, and all systems receive every message.

BSD See Berkeley UNIX on page 1025.

buffer An area of memory that stores data until it can be used. When you write informa-
tion to a file on a disk, Linux stores the information in a disk buffer until there is
enough to write to the disk or until the disk is ready to receive the information.

bug An unwanted and unintended program property, especially one that causes the pro-
gram to malfunction.FOLDOC

builtin
(command)

A command that is built into a shell. Each of the three major shells—the Bourne
Again, TC, and Z Shells—has its own set of builtins. Refer to “Builtins” on page 243.

byte A component in the machine data hierarchy, usually larger than a bit and smaller
than a word; now most often eight bits and the smallest addressable unit of storage.
A byte typically holds one character.FOLDOC

C
programming
language

A modern systems language that has high-level features for efficient, modular pro-
gramming as well as lower-level features that make it suitable for use as a systems
programming language. It is machine independent so that carefully written C pro-
grams can be easily transported to run on different machines. Most of the Linux
operating system is written in C, and Linux provides an ideal environment for pro-
gramming in C.

C Shell csh. The C Shell command processor was developed by Bill Joy for BSD UNIX. It
was named for the C programming language because its programming constructs
are similar to those of C. See shell on page 1059.

cable modem A type of modem that allows you to access the Internet by using your cable televi-
sion connection.

cache Holding recently accessed data, a small, fast memory designed to speed up subse-
quent access to the same data. Most often applied to processor-memory access but
also used for a local copy of data accessible over a network, from a hard disk, and
so on.FOLDOC

calling
environment

A list of variables and their values that is made available to a called program. Refer
to “Executing a Command” on page 312.

cascading
stylesheet

See CSS on page 1031.

cascading
windows

An arrangement of windows such that they overlap, generally with at least part of
the title bar visible. Opposite of tiled windows (page 1065).

case sensitive Able to distinguish between uppercase and lowercase characters. Unless you set the
ignorecase parameter, vim performs case-sensitive searches. The grep utility per-
forms case-sensitive searches unless you use the –i option.

1028 Glossary

catenate To join sequentially, or end to end. The Linux cat utility catenates files: It displays
them one after the other. Also concatenate.

chain loading The technique used by a boot loader to load unsupported operating systems. Used
for loading such operating systems as DOS or Windows, it works by loading
another boot loader.

character-
based

A program, utility, or interface that works only with ASCII (page 1023) characters.
This set of characters includes some simple graphics, such as lines and corners, and
can display colored characters. It cannot display true graphics. Contrast with GUI
(page 1038).

character-
based terminal

A terminal that displays only characters and very limited graphics. See character-based.

character class In a regular expression, a group of characters that defines which characters can
occupy a single character position. A character-class definition is usually sur-
rounded by square brackets. The character class defined by [abcr] represents a char-
acter position that can be occupied by a, b, c, or r. Also list operator.

In POSIX, used to refer to sets of characters with a common characteristic, denoted
by the notation [:class:]; for example, [:upper:] denotes the set of uppercase letters.

This book uses the term character class as explained under “Brackets” on page 973.

character
device

A terminal, printer, or modem. A character device stores or displays characters one
at a time. A character device is represented by a character device (character special)
file. Contrast with block device (page 1025).

check box A GUI widget, usually the outline of a square box with an adjacent caption, that a
user can click to display or remove a tick (page 1065). When the box holds a tick,
the option described by the caption is on or true. Also tick box.

checksum A computed value that depends on the contents of a block of data and is transmit-
ted or stored along with the data to detect corruption of the data. The receiving sys-
tem recomputes the checksum based on the received data and compares this value
with the one sent with the data. If the two values are the same, the receiver has
some confidence that the data was received correctly.

The checksum may be 8, 16, or 32 bits, or some other size. It is computed by sum-
ming the bytes or words of the data block, ignoring overflow. The checksum may be
negated so that the total of the data words plus the checksum is zero.

Internet packets use a 32-bit checksum.FOLDOC

child process A process that is created by another process, the parent process. Every process is a
child process except for the first process, which is started when Linux begins execu-
tion. When you run a command from the shell, the shell spawns a child process to
run the command. See process on page 1054.

Glossary 1029

CIDR Classless Inter-Domain Routing. A scheme that allocates blocks of Internet
addresses in a way that allows summarization into a smaller number of routing
table entries. A CIDR block is a block of Internet addresses assigned to an ISP by
the Internic. Refer to “CIDR: Classless Inter-Domain Routing” on page 367.FOLDOC

CIFS Common Internet File System. An Internet filesystem protocol based on SMB
(page 1060). CIFS runs on top of TCP/IP, uses DNS, and is optimized to support
slower dial-up Internet connections. SMB and CIFS are used interchangeably.FOLDOC

CIPE Crypto IP Encapsulation (page 1035). This protocol (page 1054) tunnels
(page 1066) IP packets within encrypted UDP (page 1066) packets, is lightweight
and simple, and works over dynamic addresses, NAT (page 1049), and SOCKS
(page 1061) proxies (page 1055).

cipher (cypher) A cryptographic system that uses a key to transpose/substitute characters within a
message, the key itself, or the message.

ciphertext Text that is encrypted. Contrast with plaintext (page 1053). See also “Encryption”
on page 992.

Classless
Inter-Domain
Routing

See CIDR on page 1029.

cleartext Text that is not encrypted. Also plaintext. Contrast with ciphertext. See also
“Encryption” on page 992.

CLI Command line interface. See also character-based (page 1028). Also textual interface.

client A computer or program that requests one or more services from a server.

CODEC Coder/decoder or compressor/decompressor. A hardware and/or software technol-
ogy that codes and decodes data. MPEG is a popular CODEC for computer video.

color depth The number of bits used to generate a pixel—usually 8, 16, 24, or 32. The color
depth is directly related to the number of colors that can be generated. The number
of colors that can be generated is 2 raised to the color-depth power. Thus a 24-bit
video adapter can generate about 16.7 million colors.

color quality See color depth.

combo box A combination of a drop-down list (page 1035) and text box (page 1064). You can
enter text in a combo box. Or, you can click a combo box, cause it to expand and
display a static list of selections for you to choose from.

command What you give the shell in response to a prompt. When you give the shell a com-
mand, it executes a utility, another program, a builtin command, or a shell script.
Utilities are often referred to as commands. When you are using an interactive util-
ity, such as vim or mail, you use commands that are appropriate to that utility.

1030 Glossary

command line A line containing instructions and arguments that executes a command. This term
usually refers to a line that you enter in response to a shell prompt on a character-
based terminal or terminal emulator (page 114).

command
substitution

Replacing a command with its output. The shells perform command substitution
when you enclose a command between $(and) or between a pair of back ticks
(‘‘), also called grave accent marks.

component
architecture

A notion in object-oriented programming where “components” of a program are
completely generic. Instead of having a specialized set of methods and fields, they
have generic methods through which the component can advertise the functional-
ity it supports to the system into which it is loaded. This strategy enables com-
pletely dynamic loading of objects. JavaBeans is an example of a component
architecture.FOLDOC

concatenate See catenate on page 1028.

condition code See exit status on page 1036.

connection-
oriented
protocol

A type of transport layer data communication service that allows a host to send
data in a continuous stream to another host. The transport service guarantees that
all data will be delivered to the other end in the same order as sent and without
duplication. Communication proceeds through three well-defined phases: connec-
tion establishment, data transfer, and connection release. The most common exam-
ple is TCP (page 1064).

Also called connection-based protocol and stream-oriented protocol. Contrast with
connectionless protocol and datagram (page 1032).FOLDOC

connectionless
protocol

The data communication method in which communication occurs between hosts
with no previous setup. Packets sent between two hosts may take different routes.
There is no guarantee that packets will arrive as transmitted or even that they will
arrive at the destination at all. UDP (page 1066) is a connectionless protocol. Also
called packet switching. Contrast with circuit switching and connection-oriented
protocol.FOLDOC

console See system console on page 1064.

console
terminal

See system console on page 1064.

control
character

A character that is not a graphic character, such as a letter, number, or punctuation
mark. Such characters are called control characters because they frequently act to
control a peripheral device. RETURN and FORMFEED are control characters that control a
terminal or printer.

The word CONTROL is shown in this book in THIS FONT because it is a key that appears on
most terminal keyboards. Control characters are represented by ASCII codes less
than 32 (decimal). See also nonprinting character on page 1051.

Glossary 1031

control
structure

A statement used to change the order of execution of commands in a shell script or
other program. Each shell provides control structures (for example, if and while) as
well as other commands that alter the order of execution (for example, exec). Also
control flow commands.

cookie Data stored on a client system by a server. The client system browser sends the
cookie back to the server each time it accesses that server. For example, a catalog
shopping service may store a cookie on your system when you place your first
order. When you return to the site, it knows who you are and can supply your
name and address for subsequent orders. You may consider cookies to be an inva-
sion of privacy.

CPU Central processing unit. The part of a computer that controls all the other parts.
The CPU includes the control unit and the arithmetic and logic unit (ALU). The
control unit fetches instructions from memory and decodes them to produce signals
that control the other parts of the computer. These signals can cause data to be
transferred between memory and ALU or peripherals to perform input or output. A
CPU that is housed on a single chip is called a microprocessor. Also processor and
central processor.

cracker An individual who attempts to gain unauthorized access to a computer system.
These individuals are often malicious and have many means at their disposal for
breaking into a system. Contrast with hacker (page 1039).FOLDOC

crash The system suddenly and unexpectedly stops or fails. Derived from the action of
the hard disk heads on the surface of the disk when the air gap between the two
collapses.

cryptography The practice and study of encryption and decryption—encoding data so that only a
specific individual or machine can decode it. A system for encrypting and decrypt-
ing data is a cryptosystem. Such systems usually rely on an algorithm for combining
the original data (plaintext) with one or more keys—numbers or strings of charac-
ters known only to the sender and/or recipient. The resulting output is called cipher-
text (page 1029).

The security of a cryptosystem usually depends on the secrecy of keys rather than
on the supposed secrecy of an algorithm. Because a strong cryptosystem has a large
range of keys, it is not possible to try all of them. Ciphertext appears random to
standard statistical tests and resists known methods for breaking codes.FOLDOC

.cshrc file In your home directory, a file that the TC Shell executes each time you invoke a new
TC Shell. You can use this file to establish variables and aliases.

CSS Cascading stylesheet. Describes how documents are presented on screen and in
print. Attaching a stylesheet to a structured document can affect the way it looks
without adding new HTML (or other) tags and without giving up device indepen-
dence. Also stylesheet.

1032 Glossary

current
(process, line,
character,
directory,
event, etc.)

The item that is immediately available, working, or being used. The current process
is the program you are running, the current line or character is the one the cursor is
on, and the current directory is the working directory.

cursor A small lighted rectangle, underscore, or vertical bar that appears on a terminal
screen and indicates where the next character will appear. Differs from the mouse
pointer (page 1048).

daemon A program that is not invoked explicitly but lies dormant, waiting for some condi-
tion(s) to occur. The perpetrator of the condition need not be aware that a daemon
is lurking (although often a program will commit an action only because it knows
that it will implicitly invoke a daemon). From the mythological meaning, later ratio-
nalized as the acronym Disk And Execution MONitor. See Table 10-4 on page 384
for a list of daemons.FOLDOC

data structure A particular format for storing, organizing, working with, and retrieving data. Fre-
quently, data structures are designed to work with specific algorithms that facilitate
these tasks. Common data structures include trees, files, records, tables, arrays, etc.

datagram A self-contained, independent entity of data carrying sufficient information to be
routed from the source to the destination computer without reliance on earlier
exchanges between this source and destination computer and the transporting net-
work. UDP (page 1066) uses datagrams; IP (page 1042) uses packets (page 1051).
Packets are indivisible at the network layer; datagrams are not.FOLDOC See also frame
(page 1037).

dataless A computer, usually a workstation, that uses a local disk to boot a copy of the oper-
ating system and access system files but does not use a local disk to store user files.

dbm A standard, simple database manager. Implemented as gdbm (GNU database man-
ager), it uses hashes to speed searching. The most common versions of the dbm
database are dbm, ndbm, and gdbm.

DDoS attack Distributed denial of service attack. A DoS attack (page 1034) from many systems
that do not belong to the perpetrator of the attack.

debug To correct a program by removing its bugs (that is, errors).

default Something that is selected without being explicitly specified. For example, when
used without an argument, ls displays a list of the files in the working directory by
default.

delta A set of changes made to a file that has been encoded by the Source Code Control
System (SCCS).

denial of
service

See DoS attack on page 1034.

Glossary 1033

dereference When speaking of symbolic links, follow the link rather than working with the refer-
ence to the link. For example, the –L or ––dereference option causes ls to list the
entry that a symbolic link points to rather than the symbolic link (the reference) itself.

desktop A collection of windows, toolbars, icons, and buttons, some or all of which appear
on your display. A desktop comprises one or more workspaces (page 1069). Refer
to “A Tour of the Ubuntu Linux Desktop” on page 89.

desktop
manager

An icon- and menu-based user interface to system services that allows you to run
applications and use the filesystem without using the system’s command line interface.

detached
process

See background process on page 1024.

device A disk drive, printer, terminal, plotter, or other input/output unit that can be
attached to the computer. Short for peripheral device.

device driver Part of the Linux kernel that controls a device, such as a terminal, disk drive, or
printer.

device file A file that represents a device. Also special file.

device
filename

The pathname of a device file. All Linux systems have two kinds of device files:
block and character device files. Linux also has FIFOs (named pipes) and sockets.
Device files are traditionally located in the /dev directory.

device number See major device number (page 1046) and minor device number (page 1048).

DHCP Dynamic Host Configuration Protocol. A protocol that dynamically allocates IP
addresses to computers on a LAN. Refer to “DHCP: Configures Network Inter-
faces” on page 538.FOLDOC

dialog box In a GUI, a special window, usually without a titlebar, that displays information.
Some dialog boxes accept a response from the user

directory Short for directory file. A file that contains a list of other files.

directory
hierarchy

A directory, called the root of the directory hierarchy, and all the directory and ordi-
nary files below it (its children).

directory
service

A structured repository of information on people and resources within an organiza-
tion, facilitating management and communication.FOLDOC

disk partition See partition on page 1052.

diskless A computer, usually a workstation, that has no disk and must contact another com-
puter (a server) to boot a copy of the operating system and access the necessary sys-
tem files.

distributed
computing

A style of computing in which tasks or services are performed by a network of
cooperating systems, some of which may be specialized.

1034 Glossary

DMZ Demilitarized zone. A host or small network that is a neutral zone between a LAN
and the Internet. It can serve Web pages and other data to the Internet and allow
local systems access to the Internet while preventing LAN access to unauthorized
Internet users. Even if a DMZ is compromised, it holds no data that is private and
none that cannot be easily reproduced.

DNS Domain Name Service. A distributed service that manages the correspondence of
full hostnames (those that include a domain name) to IP addresses and other system
characteristics.

DNS domain
name

See domain name.

document
object model

See DOM.

DOM Document Object Model. A platform-/language-independent interface that enables
a program to update the content, structure, and style of a document dynamically.
The changes can then be made part of the displayed document. Go to
www.w3.org/DOM for more information.

domain name A name associated with an organization, or part of an organization, to help identify
systems uniquely. Technically, the part of the FQDN (page 1037) to the right of the
leftmost period. Domain names are assigned hierarchically. The domain berkeley.edu
refers to the University of California at Berkeley, for example; it is part of the top-
level edu (education) domain. Also DNS domain name. Different than NIS domain
name (page 1050).

Domain Name
Service

See DNS.

door An evolving filesystem-based RPC (page 1058) mechanism.

DoS attack Denial of service attack. An attack that attempts to make the target host or network
unusable by flooding it with spurious traffic.

DPMS Display Power Management Signaling. A standard that can extend the life of CRT
monitors and conserve energy. DPMS supports four modes for a monitor: Normal,
Standby (power supply on, monitor ready to come to display images almost
instantly), Suspend (power supply off, monitor takes up to ten seconds to display an
image), and Off.

drag The motion part of drag-and-drop.

drag-and-drop To move an object from one position or application to another within a GUI. To
drag an object, the user clicks a mouse button (typically the left one) while the
mouse pointer hovers (page 1040) over the object. Then, without releasing the
mouse button, the user drags the object, which stays attached to the mouse pointer,
to a different location. The user can then drop the object at the new location by
releasing the mouse button.

www.w3.org/DOM

Glossary 1035

drop-down list A widget (page 1068) that displays a static list for a user to choose from. When the
list is not active, it appears as text in a box, displaying the single selected entry.
When a user clicks the box, a list appears; the user can move the mouse cursor to
select an entry from the list. Different from a list box (page 1045).

druid In role-playing games, a character that represents a magical user. Red Hat uses the
term druid at the ends of names of programs that guide you through a task-driven
chain of steps. Other operating systems call these types of programs wizards.

DSA Digital Signature Algorithm. A public key cipher used to generate digital signatures.

DSL Digital Subscriber Line/Loop. Provides high-speed digital communication over a
specialized, conditioned telephone line. See also xDSL (page 1070).

Dynamic Host
Configuration
Protocol

See DHCP on page 1033.

editor A utility, such as vim or emacs, that creates and modifies text files.

EEPROM Electrically erasable, programmable, readonly memory. A PROM (page 1054) that
can be written to.

effective user
ID

The user ID that a process appears to have; usually the same as the user ID. For
example, while you are running a setuid program, the effective user ID of the pro-
cess running the program is that of the owner of the program.

element One thing; usually a basic part of a group of things. An element of a numeric array
is one of the numbers stored in the array.

emoticon See smiley on page 1060.

encapsulation See tunneling on page 1066.

environment See calling environment on page 1027.

EOF End of file.

EPROM Erasable programmable readonly memory. A PROM (page 1054) that can be writ-
ten to by applying a higher than normal voltage.

escape See quote on page 1055.

Ethernet A type of LAN (page 1044) capable of transfer rates as high as 1,000 megabits per
second. Refer to “Ethernet” on page 357.

event An occurrence, or happening, of significance to a task or program—for example,
the completion of an asynchronous input/output operation, such as a keypress or
mouse click.FOLDOC

exabyte 260 bytes or about 1018 bytes. See also large number (page 1044).

1036 Glossary

exit status The status returned by a process; either successful (usually 0) or unsuccessful
(usually 1).

exploit A security hole or an instance of taking advantage of a security hole.FOLDOC

expression See logical expression (page 1046) and arithmetic expression (page 1023).

extranet A network extension for a subset of users (such as students at a particular school or
engineers working for the same company). An extranet limits access to private
information even though it travels on the public Internet.

failsafe session A session that allows you to log in on a minimal desktop in case your standard login
does not work well enough to allow you to log in to fix a login problem.

FDDI Fiber Distributed Data Interface. A type of LAN (page 1044) designed to transport
data at the rate of 100 million bits per second over fiberoptic cable.

file A collection of related information referred to with a filename and frequently stored
on a disk. Text files typically contain memos, reports, messages, program source
code, lists, or manuscripts. Binary or executable files contain utilities or programs
that you can run. Refer to “Directory Files and Ordinary Files” on page 184.

filename The name of a file. A filename refers to a file.

filename
completion

Automatic completion of a filename after you specify a unique prefix.

filename
extension

The part of a filename following a period.

filename
generation

What occurs when the shell expands ambiguous file references. See ambiguous file
reference on page 1022.

filesystem A data structure (page 1032) that usually resides on part of a disk. All Linux sys-
tems have a root filesystem, and many have other filesystems. Each filesystem is
composed of some number of blocks, depending on the size of the disk partition
that has been assigned to the filesystem. Each filesystem has a control block, named
the superblock, that contains information about the filesystem. The other blocks in
a filesystem are inodes, which contain control information about individual files,
and data blocks, which contain the information in the files.

filling A variant of maximizing in which window edges are pushed out as far as they can
go without overlapping another window.

filter A command that can take its input from standard input and send its output to stan-
dard output. A filter transforms the input stream of data and sends it to standard
output. A pipe usually connects a filter’s input to standard output of one command,
and a second pipe connects the filter’s output to standard input of another com-
mand. The grep and sort utilities are commonly used as filters.

Glossary 1037

firewall A device for policy-based traffic management used to keep a network secure. A fire-
wall can be implemented in a single router that filters out unwanted packets, or it
can rely on a combination of routers, proxy servers, and other devices. Firewalls are
widely used to give users access to the Internet in a secure fashion and to separate a
company’s public WWW server from its internal network. They are also employed
to keep internal network segments more secure.

Recently the term has come to be defined more loosely to include a simple packet
filter running on an endpoint machine.

See also proxy server on page 1055.

firmware Software built into a computer, often in ROM (page 1057). May be used as part of
the bootstrap (page 1026) procedure.

focus, desktop On a desktop, the window that is active. The window with the desktop focus
receives the characters you type on the keyboard. Same as active window
(page 1022).

footer The part of a format that goes at the bottom (or foot) of a page. Contrast with
header (page 1039).

foreground
process

When you run a command in the foreground, the shell waits for the command to
finish before giving you another prompt. You must wait for a foreground process to
run to completion before you can give the shell another command. If you have job
control, you can move background processes to the foreground, and vice versa. See
job control on page 1043. Contrast with background process (page 1024).

fork To create a process. When one process creates another process, it forks a process.
Also spawn.

FQDN Fully qualified domain name. The full name of a system, consisting of its hostname
and its domain name, including the top-level domain. Technically the name that
gethostbyname(2) returns for the host named by gethostname(2). For example,
speedy is a hostname and speedy.example.com is an FQDN. An FQDN is sufficient
to determine a unique Internet address for a machine on the Internet.FOLDOC

frame A data link layer packet that contains, in addition to data, the header and trailer
information required by the physical medium. Network layer packets are encapsu-
lated to become frames.FOLDOC See also datagram (page 1032) and packet
(page 1051).

free list In a filesystem, the list of blocks that are available for use. Information about the
free list is kept in the superblock of the filesystem.

free software Refer to Appendix D, “The Free Software Definition.”

free space The portion of a hard disk that is not within a partition. A new hard disk has no
partitions and contains all free space.

1038 Glossary

full duplex The ability to receive and transmit data simultaneously. A network switch
(page 1050) is typically a full-duplex device. Contrast with half-duplex (page 1039).

fully qualified
domain name

See FQDN on page 1037.

function See shell function on page 1059.

gateway A generic term for a computer or a special device connected to more than one dis-
similar type of network to pass data between them. Unlike a router, a gateway often
must convert the information into a different format before passing it on. The his-
torical usage of gateway to designate a router is deprecated.

GCOS See GECOS.

GECOS General Electric Comprehensive Operating System. For historical reasons, the user
information field in the /etc/passwd file is called the GECOS field. Also GCOS.

giga- In the binary system, the prefix giga- multiplies by 230 (i.e., 1,073,741,824). Gigabit
and gigabyte are common uses of this prefix. Abbreviated as G. See also large num-
ber on page 1044.

glyph A symbol that communicates a specific piece of information nonverbally. A smiley
(page 1060) is a glyph.

GMT Greenwich Mean Time. See UTC on page 1067.

graphical
display

A bitmapped monitor that can display graphical images. Contrast with ASCII ter-
minal (page 1023).

graphical user
interface

See GUI on page 1038.

group (of
users)

A collection of users. Groups are used as a basis for determining file access permis-
sions. If you are not the owner of a file and you belong to the group the file is
assigned to, you are subject to the group access permissions for the file. A user can
simultaneously belong to several groups.

group (of
windows)

A way to identify similar windows so they can be displayed and acted on similarly.
Typically windows started by a given application belong to the same group.

group ID A unique number that identifies a set of users. It is stored in the password and
group databases (/etc/passwd and /etc/group files or their NIS equivalents). The
group database associates group IDs with group names. Also GID.

GUI Graphical user interface. A GUI provides a way to interact with a computer system
by choosing items from menus or manipulating pictures drawn on a display screen
instead of by typing command lines. Under Linux, the X Window System provides a
graphical display and mouse/keyboard input. GNOME and KDE are two popular
desktop managers that run under X. Contrast with character-based (page 1028).

Glossary 1039

hacker A person who enjoys exploring the details of programmable systems and learning
how to stretch their capabilities, as opposed to users, who prefer to learn only the
minimum necessary. One who programs enthusiastically (even obsessively) or who
enjoys programming rather than just theorizing about programming.FOLDOC Contrast
with cracker (page 1031).

half-duplex A half-duplex device can only receive or transmit at a given moment; it cannot do both. A
hub (page 1041) is typically a half-duplex device. Contrast with full duplex (page 1038).

hard link A directory entry that contains the filename and inode number for a file. The inode
number identifies the location of control information for the file on the disk, which
in turn identifies the location of the file’s contents on the disk. Every file has at least
one hard link, which locates the file in a directory. When you remove the last hard
link to a file, you can no longer access the file. See link (page 1045) and symbolic
link (page 1064).

hash A string that is generated from another string. See one-way hash function on
page 1051. When used for security, a hash can prove, almost to a certainty, that a
message has not been tampered with during transmission: The sender generates a
hash of a message, encrypts the message and hash, and sends the encrypted message
and hash to the recipient. The recipient decrypts the message and hash, generates a
second hash from the message, and compares the hash that the sender generated to
the new hash. When they are the same, the message has probably not been tam-
pered with. Hashed versions of passwords can be used to authenticate users. A hash
can also be used to create an index called a hash table. Also hash value.

hash table An index created from hashes of the items to be indexed. The hash function makes
it highly unlikely that two items will create the same hash. To look up an item in the
index, create a hash of the item and search for the hash. Because the hash is typi-
cally shorter than the item, the search is more efficient.

header When you are formatting a document, the header goes at the top, or head, of a
page. In electronic mail the header identifies who sent the message, when it was
sent, what the subject of the message is, and so forth.

Here
document

A shell script that takes its input from the file that contains the script.

hesiod The nameserver of project Athena. Hesiod is a name service library that is derived
from BIND (page 1025) and leverages a DNS infrastructure.

heterogeneous Consisting of different parts. A heterogeneous network includes systems produced
by different manufacturers and/or running different operating systems.

hexadecimal
number

A base 16 number. Hexadecimal (or hex) numbers are composed of the hexadeci-
mal digits 0–9 and A–F. See Table G-1, next page.

1040 Glossary

hidden file A file whose filename starts with a period. These files are called hidden because the
ls utility does not normally list them. Use the –a option of ls to list all files, including
hidden ones. The shell does not expand a leading asterisk (*) in an ambiguous file
reference to match the filename of a hidden file. Also invisible file.

hierarchy An organization with a few things, or thing—one at the top—and with several
things below each other thing. An inverted tree structure. Examples in computing
include a file tree where each directory may contain files or other directories, a hier-
archical network, and a class hierarchy in object-oriented programming.FOLDOC Refer
to “The Hierarchical Filesystem” on page 184.

history A shell mechanism that enables you to modify and reexecute recent commands.

home
directory

The directory that is your working directory when you first log in. The pathname of
this directory is stored in the HOME shell variable.

hover To leave the mouse pointer stationary for a moment over an object. In many cases
hovering displays a tooltip (page 1065).

HTML Hypertext Markup Language. A hypertext document format used on the World
Wide Web. Tags, which are embedded in the text, consist of a less than sign (<), a
directive, zero or more parameters, and a greater than sign (>). Matched pairs of
directives, such as <TITLE> and </TITLE>, delimit text that is to appear in a special
place or style.FOLDOC For more information on HTML, go to www.htmlhelp.com/faq/
html/all.html.

Table G-1 Decimal, octal, and hexadecimal numbers

Decimal Octal Hex Decimal Octal Hex

1 1 1 17 21 11

2 2 2 18 22 12

3 3 3 19 23 13

4 4 4 20 24 14

5 5 5 21 25 15

6 6 6 31 37 1F

7 7 7 32 40 20

8 10 8 33 41 21

9 11 9 64 100 40

10 12 A 96 140 60

11 13 B 100 144 64

12 14 C 128 200 80

13 15 D 254 376 FE

14 16 E 255 377 FF

15 17 F 256 400 100

16 20 10 257 401 101

www.htmlhelp.com/faq/html/all.html
www.htmlhelp.com/faq/html/all.html

Glossary 1041

HTTP Hypertext Transfer Protocol. The client/server TCP/IP protocol used on the World
Wide Web for the exchange of HTML documents.

hub A multiport repeater. A hub rebroadcasts all packets it receives on all ports. This
term is frequently used to refer to small hubs and switches, regardless of the device’s
intelligence. It is a generic term for a layer 2 shared-media networking device.
Today the term hub is sometimes used to refer to small intelligent devices, although
that was not its original meaning. Contrast with network switch (page 1050).

hypertext A collection of documents/nodes containing (usually highlighted or underlined)
cross-references or links, which, with the aid of an interactive browser program,
allow the reader to move easily from one document to another.FOLDOC

Hypertext
Markup
Language

See HTML.

Hypertext
Transfer
Protocol

See HTTP.

i/o device Input/output device. See device on page 1033.

IANA Internet Assigned Numbers Authority. A group that maintains a database of all per-
manent, registered system services (www.iana.org).

ICMP Internet Control Message Protocol. A type of network packet that carries only mes-
sages, no data.

icon In a GUI, a small picture representing a file, directory, action, program, and so on.
When you click an icon, an action, such as opening a window and starting a program
or displaying a directory or Web site, takes place. From miniature religious statues.FOLDOC

iconify The process of changing a window into an icon. Contrast with restore (page 1057).

ignored
window

A state in which a window has no decoration and therefore no buttons or titlebar to
control it with.

indentation See indention.

indention The blank space between the margin and the beginning of a line that is set in from
the margin.

inode A data structure (page 1032) that contains information about a file. An inode for a
file contains the file’s length, the times the file was last accessed and modified, the
time the inode was last modified, owner and group IDs, access privileges, number of
links, and pointers to the data blocks that contain the file itself. Each directory entry
associates a filename with an inode. Although a single file may have several file-
names (one for each link), it has only one inode.

input Information that is fed to a program from a terminal or other file. See standard
input on page 1062.

www.iana.org

1042 Glossary

installation A computer at a specific location. Some aspects of the Linux system are installation
dependent. Also site.

interactive A program that allows ongoing dialog with the user. When you give commands in
response to shell prompts, you are using the shell interactively. Also, when you give
commands to utilities, such as vim and mail, you are using the utilities interactively.

interface The meeting point of two subsystems. When two programs work together, their
interface includes every aspect of either program that the other deals with. The user
interface (page 1067) of a program includes every program aspect the user comes
into contact with: the syntax and semantics involved in invoking the program, the
input and output of the program, and its error and informational messages. The
shell and each of the utilities and built-in commands have a user interface.

International
Organization
for
Standardization

See ISO on page 1043.

internet A large network that encompasses other, smaller networks.

Internet The largest internet in the world. The Internet (uppercase “I”) is a multilevel hierar-
chy composed of backbone networks (ARPANET, NSFNET, MILNET, and others),
midlevel networks, and stub networks. These include commercial (.com or .co), uni-
versity (.ac or .edu), research (.org or .net), and military (.mil) networks and span
many different physical networks around the world with various protocols, includ-
ing the Internet Protocol (IP). Outside the United States, country code domains are
popular (.us, .es, .mx, .de, and so forth), although you will see them used within the
United States as well.

Internet
Protocol

See IP.

Internet
service
provider

See ISP.

intranet An inhouse network designed to serve a group of people such as a corporation or school.
The general public on the Internet does not have access to the intranet. See page 354.

invisible file See hidden file on page 1040.

IP Internet Protocol. The network layer for TCP/IP. IP is a best-effort, packet-
switching, connectionless protocol (page 1030) that provides packet routing,
fragmentation, and reassembly through the data link layer. IPv4 is slowly giving
way to IPv6.FOLDOC

IP address Internet Protocol address. A four-part address associated with a particular network con-
nection for a system using the Internet Protocol (IP). A system that is attached to multi-
ple networks that use the IP will have a different IP address for each network interface.

Glossary 1043

IP multicast See multicast on page 1049.

IP spoofing A technique used to gain unauthorized access to a computer. The would-be intruder
sends messages to the target machine. These messages contain an IP address indicat-
ing that the messages are coming from a trusted host (page 372). The target machine
responds to the messages, giving the intruder (privileged) access to the target.

IPC Interprocess communication. A method to communicate specific information
between programs.

IPv4 IP version 4. See IP and IPv6.

IPv6 IP version 6. The next generation of Internet Protocol, which provides a much
larger address space (2128 bits versus 232 bits for IPv4) that is designed to accommo-
date the rapidly growing number of Internet addressable devices. IPv6 also has
built-in autoconfiguration, enhanced security, better multicast support, and many
other features.

ISDN Integrated Services Digital Network. A set of communications standards that allows
a single pair of digital or standard telephone wires to carry voice, data, and video at
a rate of 64 kilobits per second.

ISO International Organization for Standardization. A voluntary, nontreaty organiza-
tion founded in 1946. It is responsible for creating international standards in many
areas, including computers and communications. Its members are the national stan-
dards organizations of 89 countries, including the American National Standards
Institute.FOLDOC

ISO9660 The ISO standard defining a filesystem for CD-ROMs.

ISP Internet service provider. Provides Internet access to its customers.

job control A facility that enables you to move commands from the foreground to the back-
ground and vice versa. Job control enables you to stop commands temporarily.

journaling
filesystem

A filesystem that maintains a noncached log file, or journal, which records all trans-
actions involving the filesystem. When a transaction is complete, it is marked as
complete in the log file.

The log file results in greatly reduced time spent recovering a filesystem after a
crash, making it particularly valuable in systems where high availability is an issue.

JPEG Joint Photographic Experts Group. This committee designed the standard image-
compression algorithm. JPEG is intended for compressing either full-color or gray-scale
digital images of natural, real-world scenes and does not work as well on nonrealistic
images, such as cartoons or line drawings. Filename extensions: .jpg, .jpeg.FOLDOC

justify To expand a line of type in the process of formatting text. A justified line has even
margins. A line is justified by increasing the space between words and sometimes
between letters on the line.

1044 Glossary

Kerberos An MIT-developed security system that authenticates users and machines. It does
not provide authorization to services or databases; it establishes identity at logon,
which is used throughout the session. Once you are authenticated, you can open as
many terminals, windows, services, or other network accesses as you like until your
session expires.

kernel The part of the operating system that allocates machine resources, including mem-
ory, disk space, and CPU (page 1031) cycles, to all other programs that run on a
computer. The kernel includes the low-level hardware interfaces (drivers) and man-
ages processes (page 1054), the means by which Linux executes programs. The ker-
nel is the part of the Linux system that Linus Torvalds originally wrote (see the
beginning of Chapter 1).

kernelspace The part of memory (RAM) where the kernel resides. Code running in kernelspace
has full access to hardware and all other processes in memory. See the
KernelAnalysis-HOWTO.

key binding A keyboard key is said to be bound to the action that results from pressing it. Typi-
cally keys are bound to the letters that appear on the keycaps: When you press A, an
A appears on the screen. Key binding usually refers to what happens when you
press a combination of keys, one of which is CONTROL, ALT, META, or SHIFT, or when you
press a series of keys, the first of which is typically ESCAPE.

keyboard A hardware input device consisting of a number of mechanical buttons (keys) that
the user presses to input characters to a computer. By default a keyboard is con-
nected to standard input of a shell.FOLDOC

kilo- In the binary system, the prefix kilo- multiplies by 210 (i.e., 1,024). Kilobit and kilo-
byte are common uses of this prefix. Abbreviated as k.

Korn Shell ksh. A command processor, developed by David Korn at AT&T Bell Laboratories,
that is compatible with the Bourne Shell but includes many extensions. See also
shell on page 1059.

LAN Local area network. A network that connects computers within a localized area
(such as a single site, building, or department).

large number Go to mathworld.wolfram.com/LargeNumber.html for a comprehensive list.

LDAP Lightweight Directory Access Protocol. A simple protocol for accessing online
directory services. LDAP is a lightweight alternative to the X.500 Directory Access
Protocol (DAP). It can be used to access information about people, system users,
network devices, email directories, and systems. In some cases, it can be used as an
alternative for services such as NIS. Given a name, many mail clients can use LDAP
to discover the corresponding email address. See directory service on page 1033.

leaf In a tree structure, the end of a branch that cannot support other branches. When
the Linux filesystem hierarchy is conceptualized as a tree, files that are not directo-
ries are leaves. See node on page 1050.

Glossary 1045

least privilege,
concept of

Mistakes made by a user working with root privileges can be much more devastat-
ing than those made by an ordinary user. When you are working on the computer,
especially when you are working as the system administrator, always perform any
task using the least privilege possible. If you can perform a task logged in as an ordi-
nary user, do so. If you must work with root privileges, do as much as you can as an
ordinary user, log in as root or give an su or sudo command so you are working
with root privileges, do as much of the task that has to be done with root privileges,
and revert to being an ordinary user as soon as you can.

Because you are more likely to make a mistake when you are rushing, this concept
becomes more important when you have less time to apply it.

Lightweight
Directory
Access
Protocol

See LDAP.

link A pointer to a file. Two kinds of links exist: hard links and symbolic (soft) links. A
hard link associates a filename with a place on the disk where the contents of the
file is located. A symbolic link associates a filename with the pathname of a hard
link to a file. See hard link (page 1039) and symbolic link (page 1064).

Linux-PAM See PAM on page 1052.

Linux-
Pluggable
Authentication
Modules

See PAM on page 1052.

list box A widget (page 1068) that displays a static list for a user to choose from. The list
appears as multiple lines with a scrollbar (page 1059) if needed. The user can scroll
the list and select an entry. Different from a drop-down list (page 1035).

loadable
kernel module

See loadable module.

loadable
module

A portion of the operating system that controls a special device and that can be
loaded automatically into a running kernel as needed to access that device. See
“Using Loadable Kernel Modules” on page 643.

local area
network

See LAN on page 1044.

locale The language; date, time, and currency formats; character sets; and so forth that
pertain to a geopolitical place or area. For example, en_US specifies English as spo-
ken in the United States and dollars; en_UK specifies English as spoken in the
United Kingdom and pounds. See the locale man page in section 5 of the system
manual for more information. Also the locale utility.

1046 Glossary

log in To gain access to a computer system by responding correctly to the login: and Pass-
word: prompts. Also log on, login.

log out To end your session by exiting from your login shell. Also log off.

logical
expression

A collection of strings separated by logical operators (>, >=, =, !=, <=, and <) that
can be evaluated as true or false. Also Boolean (page 1026) expression.

.login file A file in a user’s home directory that the TC Shell executes when you log in. You
can use this file to set environment variables and to run commands that you want
executed at the beginning of each session.

login name See username on page 1067.

login shell The shell that you are using when you log in. The login shell can fork other pro-
cesses that can run other shells, utilities, and programs.

.logout file A file in a user’s home directory that the TC Shell executes when you log out,
assuming that the TC Shell is your login shell. You can put in the .logout file com-
mands that you want run each time you log out.

MAC address Media Access Control address. The unique hardware address of a device connected
to a shared network medium. Each Ethernet adapter has a globally unique MAC
address in ROM. MAC addresses are 6 bytes long, enabling 2566 (about 300 tril-
lion) possible addresses or 65,536 addresses for each possible IPv4 address.

A MAC address performs the same role for Ethernet that an IP address performs for
TCP/IP: It provides a unique way to identify a host.

machine
collating
sequence

The sequence in which the computer orders characters. The machine collating
sequence affects the outcome of sorts and other procedures that put lists in alpha-
betical order. Many computers use ASCII codes so their machine collating
sequences correspond to the ordering of the ASCII codes for characters.

macro A single instruction that a program replaces by several (usually more complex)
instructions. The C compiler recognizes macros, which are defined using a #define
instruction to the preprocessor.

magic number A magic number, which occurs in the first 512 bytes of a binary file, is a 1-, 2-, or 4-
byte numeric value or character string that uniquely identifies the type of file (much
like a DOS 3-character filename extension). See /usr/share/magic and the magic
man page for more information.

main memory Random access memory (RAM), an integral part of the computer. Although disk
storage is sometimes referred to as memory, it is never referred to as main memory.

major device
number

A number assigned to a class of devices, such as terminals, printers, or disk drives.
Using the ls utility with the –l option to list the contents of the /dev directory dis-
plays the major and minor device numbers of many devices (as major, minor).

Glossary 1047

MAN Metropolitan area network. A network that connects computers and LANs
(page 1044) at multiple sites in a small regional area, such as a city.

masquerade To appear to come from one domain or IP address when actually coming from
another. Said of a packet (iptables) or message (exim4). See also NAT on page 1049.

MD5 Message Digest 5. A one-way hash function (page 1051). The SHA1 (page 1059)
algorithm has supplanted MD5 in many applications.

MDA Mail delivery agent. One of the three components of a mail system; the other two
are the MTA (page 1048) and MUA (page 1048). An MDA accepts inbound mail
from an MTA and delivers it to a local user.

mega- In the binary system, the prefix mega- multiplies by 220 (i.e., 1,048,576). Megabit
and megabyte are common uses of this prefix. Abbreviated as M.

memory See RAM on page 1055.

menu A list from which the user may select an operation to be performed. This selection is
often made with a mouse or other pointing device under a GUI but may also be con-
trolled from the keyboard. Very convenient for beginners, menus show which com-
mands are available and facilitate experimenting with a new program, often
reducing the need for user documentation. Experienced users usually prefer key-
board commands, especially for frequently used operations, because they are faster
to use.FOLDOC

merge To combine two ordered lists so that the resulting list is still in order. The sort utility
can merge files.

META key On the keyboard, a key that is labeled META or ALT. Use this key as you would the SHIFT

key. While holding it down, press another key. The emacs editor makes extensive
use of the META key.

metacharacter A character that has a special meaning to the shell or another program in a particu-
lar context. Metacharacters are used in the ambiguous file references recognized by
the shell and in the regular expressions recognized by several utilities. You must
quote a metacharacter if you want to use it without invoking its special meaning.
See regular character (page 1056) and special character (page 1061).

metadata Data about data. In data processing, metadata is definitional data that provides
information about, or documentation of, other data managed within an application
or environment.

For example, metadata can document data about data elements or attributes (name,
size, data type, and so on), records or data structures (page 1032) (length, fields,
columns, and so on), and data itself (where it is located, how it is associated, who
owns it, and so on). Metadata can include descriptive information about the con-
text, quality and condition, or characteristics of the data.FOLDOC

1048 Glossary

metropolitan
area network

See MAN on page 1047.

MIME Multipurpose Internet Mail Extension. Originally used to describe how specific
types of files that were attached to email were to be handled. Today MIME types
describe how a file is to be opened or worked with, based on its contents, deter-
mined by its magic number (page 1046), and filename extension. An example of a
MIME type is image/jpeg: The MIME group is image and the MIME subtype is
jpeg. Many MIME groups exist, including application, audio, image, inode, mes-
sage, text, and video.

minimize See iconify on page 1041.

minor device
number

A number assigned to a specific device within a class of devices. See major device
number on page 1046.

modem Modulator/demodulator. A peripheral device that modulates digital data into ana-
log data for transmission over a voice-grade telephone line. Another modem
demodulates the data at the other end.

module See loadable module on page 1045.

mount To make a filesystem accessible to system users. When a filesystem is not mounted,
you cannot read from or write to files it contains.

mount point A directory that you mount a local or remote filesystem (page 572) on.

mouse A device you use to point to a particular location on a display screen, typically so
you can choose a menu item, draw a line, or highlight some text. You control a
pointer on the screen by sliding a mouse around on a flat surface; the position of the
pointer moves relative to the movement of the mouse. You select items by pressing
one or more buttons on the mouse.

mouse pointer In a GUI, a marker that moves in correspondence with the mouse. It is usually a
small black x with a white border or an arrow. Differs from the cursor (page 1032).

mouseover The action of passing the mouse pointer over an object on the screen.

MTA Mail transfer agent. One of the three components of a mail system; the other two are the
MDA (page 1047) and MUA (page 1048). An MTA accepts mail from users and MTAs.

MUA Mail user agent. One of the three components of a mail system; the other two are
the MDA (page 1047) and MTA (page 1048). An MUA is an end-user mail pro-
gram such as KMail, mutt, or Outlook.

multiboot
specification

Specifies an interface between a boot loader and an operating system. With compli-
ant boot loaders and operating systems, any boot loader should be able to load any
operating system. The object of this specification is to ensure that different operat-
ing systems will work on a single machine. For more information, go to
odin-os.sourceforge.net/guides/multiboot.html.

Glossary 1049

multicast A multicast packet has one source and multiple destinations. In multicast, source
hosts register at a special address to transmit data. Destination hosts register at the
same address to receive data. In contrast to broadcast (page 1026), which is LAN-
based, multicast traffic is designed to work across routed networks on a subscrip-
tion basis. Multicast reduces network traffic by transmitting a packet one time, with
the router at the end of the path breaking it apart as needed for multiple recipients.

multitasking A computer system that allows a user to run more than one job at a time. A multi-
tasking system, such as Linux, allows you to run a job in the background while run-
ning a job in the foreground.

multiuser
system

A computer system that can be used by more than one person at a time. Linux is a
multiuser operating system. Contrast with single-user system (page 1060).

namespace A set of names in which all names are unique.FOLDOC

NAT Network Address Translation. A scheme that enables a LAN to use one set of IP
addresses internally and a different set externally. The internal set is for LAN (pri-
vate) use. The external set is typically used on the Internet and is Internet unique.
NAT provides some privacy by hiding internal IP addresses and allows multiple
internal addresses to connect to the Internet through a single external IP address.
See also masquerade on page 1047.

NBT NetBIOS over TCP/IP. A protocol that supports NetBIOS services in a TCP/IP envi-
ronment. Also NetBT.

negative
caching

Storing the knowledge that something does not exist. A cache normally stores infor-
mation about something that exists. A negative cache stores the information that
something, such as a record, does not exist.

NetBIOS Network Basic Input/Output System. An API (page 1023) for writing network-
aware applications.

netboot To boot a computer over the network (as opposed to booting from a local disk).

netiquette The conventions of etiquette—that is, polite behavior—recognized on Usenet and in
mailing lists, such as not (cross-)posting to inappropriate groups and refraining
from commercial advertising outside the business groups.

The most important rule of netiquette is “Think before you post.” If what you
intend to post will not make a positive contribution to the newsgroup and be of
interest to several readers, do not post it. Personal messages to one or two individu-
als should not be posted to newsgroups; use private email instead.FOLDOC

netmask A 32-bit mask (for IPv4), that shows how an Internet address is to be divided into net-
work, subnet, and host parts. The netmask has ones in the bit positions in the 32-bit
address that are to be used for the network and subnet parts and zeros for the host part.
The mask should contain at least the standard network portion (as determined by the
address class). The subnet field should be contiguous with the network portion.FOLDOC

1050 Glossary

network
address

The network portion (netid) of an IP address. For a class A network, it is the first
byte, or segment, of the IP address; for a class B network, it is the first two bytes; and
for a class C network, it is the first three bytes. In each case the balance of the IP
address is the host address (hostid). Assigned network addresses are globally unique
within the Internet. Also network number. See also “Host Address” on page 363.

Network
Filesystem

See NFS.

Network
Information
Service

See NIS.

network
number

See network address.

network
segment

A part of an Ethernet or other network on which all message traffic is common to
all nodes; that is, it is broadcast from one node on the segment and received by all
others. This commonality normally occurs because the segment is a single continu-
ous conductor. Communication between nodes on different segments is via one or
more routers.FOLDOC

network
switch

A connecting device in networks. Switches are increasingly replacing shared media
hubs in an effort to increase bandwidth. For example, a 16-port 10BaseT hub
shares the total 10 megabits per second bandwidth with all 16 attached nodes. By
replacing the hub with a switch, both sender and receiver can take advantage of the
full 10 megabits per second capacity. Each port on the switch can give full band-
width to a single server or client station or to a hub with several stations. Network
switch refers to a device with intelligence. Contrast with hub (page 1041).

Network Time
Protocol

See NTP on page 1051.

NFS Network Filesystem. A remote filesystem designed by Sun Microsystems, available
on computers from most UNIX system vendors.

NIC Network interface card (or controller). An adapter circuit board installed in a com-
puter to provide a physical connection to a network.FOLDOC

NIS Network Information Service. A distributed service built on a shared database to
manage system-independent information (such as usernames and passwords).

NIS domain
name

A name that describes a group of systems that share a set of NIS files. Different
from domain name (page 1034).

NNTP Network News Transfer Protocol. Refer to “Usenet” on page 388.

node In a tree structure, the end of a branch that can support other branches. When the
Linux filesystem hierarchy is conceptualized as a tree, directories are nodes. See leaf
on page 1044.

Glossary 1051

nonprinting
character

See control character on page 1030. Also nonprintable character.

nonvolatile
storage

A storage device whose contents are preserved when its power is off. Also NVS and
persistent storage. Some examples are CD-ROM, paper punch tape, hard disk,
ROM (page 1057), PROM (page 1054), EPROM (page 1035), and EEPROM
(page 1035). Contrast with RAM (page 1055).

NTP Network Time Protocol. Built on top of TCP/IP, NTP maintains accurate local time
by referring to known accurate clocks on the Internet.

null string A string that could contain characters but does not. A string of zero length.

octal number A base 8 number. Octal numbers are composed of the digits 0–7, inclusive. Refer to
Table G-1 on page 1040.

one-way hash
function

A one-way function that takes a variable-length message and produces a fixed-
length hash. Given the hash, it is computationally infeasible to find a message with
that hash; in fact, you cannot determine any usable information about a message
with that hash. Also message digest function. See also hash (page 1039).

OpenSSH A free version of the SSH (secure shell) protocol suite that replaces TELNET, rlogin, and
more with secure programs that encrypt all communication—even passwords—over a
network. Refer to “OpenSSH: Secure Network Communication” on page 707.

operating
system

A control program for a computer that allocates computer resources, schedules
tasks, and provides the user with a way to access resources.

option A command line argument that modifies the effects of a command. Options are usu-
ally preceded by hyphens on the command line and traditionally have single-charac-
ter names (such as –h or –n). Some commands allow you to group options following
a single hyphen (for example, –hn). GNU utilities frequently have two arguments
that do the same thing: a single-character argument and a longer, more descriptive
argument that is preceded by two hyphens (such as ––show-all and ––invert-match).

ordinary file A file that is used to store a program, text, or other user data. See directory
(page 1033) and device file (page 1033).

output Information that a program sends to the terminal or another file. See standard out-
put on page 1062.

P2P Peer-to-Peer. A network that does not divide nodes into clients and servers. Each
computer on a P2P network can fulfill the roles of client and server. In the context
of a file-sharing network, this ability means that once a node has downloaded (part
of) a file, it can act as a server. BitTorrent implements a P2P network.

packet A unit of data sent across a network. Packet is a generic term used to describe a unit
of data at any layer of the OSI protocol stack, but it is most correctly used to
describe network or application layer (page 362) data units (“application protocol
data unit,” APDU).FOLDOC See also frame (page 1037) and datagram (page 1032).

1052 Glossary

packet filtering A technique used to block network traffic based on specified criteria, such as the
origin, destination, or type of each packet. See also firewall (page 1037).

packet sniffer A program or device that monitors packets on a network. See sniff on page 1060.

pager A utility that allows you to view a file one screen at a time (for example, less and more).

paging The process by which virtual memory is maintained by the operating system. The
contents of process memory is moved (paged out) to the swap space (page 1063) as
needed to make room for other processes.

PAM Linux-PAM or Linux-Pluggable Authentication Modules. These modules allow a
system administrator to determine how various applications authenticate users.
Refer to “PAM” on page 545.

parent process A process that forks other processes. See process (page 1054) and child process
(page 1028).

partition A section of a (hard) disk that has a name so you can address it separately from
other sections. A disk partition can hold a filesystem or another structure, such as
the swap area. Under DOS and Windows, partitions (and sometimes whole disks)
are labeled C:, D:, and so on. Also disk partition and slice.

passive FTP Allows FTP to work through a firewall by allowing the flow of data to be initiated
and controlled by the client FTP program instead of the server. Also called PASV
FTP because it uses the FTP PASV command.

passphrase A string of words and characters that you type in to authenticate yourself. A pass-
phrase differs from a password only in length. A password is usually short—6 to 10
characters. A passphrase is usually much longer—up to 100 characters or more.
The greater length makes a passphrase harder to guess or reproduce than a pass-
word and therefore more secure.FOLDOC

password To prevent unauthorized access to a user’s account, an arbitrary string of characters
chosen by the user or system administrator and used to authenticate the user when
attempting to log in.FOLDOC See also passphrase.

PASV FTP See passive FTP.

pathname A list of directories separated by slashes (/) and ending with the name of a file,
which can be a directory. A pathname is used to trace a path through the file struc-
ture to locate or identify a file.

pathname, last
element of a

The part of a pathname following the final /, or the whole filename if there is no /.
A simple filename. Also basename.

pathname
element

One of the filenames that forms a pathname.

peripheral
device

See device on page 1033.

Glossary 1053

persistent Data that is stored on nonvolatile media, such as a hard disk.

phish An attempt to trick users into revealing or sharing private information, especially
passwords or financial information. The most common form is email purporting to
be from a bank or vendor that requests that a user fill out a form to “update” an
account on a phoney Web site disguised to appear legitimate. Generally sent as
spam (page 1061).

physical device A tangible device, such as a disk drive, that is physically separate from other, similar
devices.

PID Process identification, usually followed by the word number. Linux assigns a unique
PID number as each process is initiated.

pipe A connection between programs such that standard output of one program is con-
nected to standard input of the next. Also pipeline.

pixel The smallest element of a picture, typically a single dot on a display screen.

plaintext Text that is not encrypted. Also cleartext. Contrast with ciphertext (page 1029). See
also “Encryption” on page 992.

Pluggable
Authentication
Modules

See PAM on page 1052.

point-to-point
link

A connection limited to two endpoints, such as the connection between a pair of
modems.

port A logical channel or channel endpoint in a communications system. The TCP
(page 1064) and UDP (page 1066) transport layer protocols used on Ethernet use
port numbers to distinguish between different logical channels on the same network
interface on the same computer.

The /etc/services file (see the beginning of this file for more information) or the
NIS (page 1050) services database specifies a unique port number for each applica-
tion program. The number links incoming data to the correct service (program).
Standard, well-known ports are used by everyone: Port 80 is used for HTTP (Web)
traffic. Some protocols, such as TELNET and HTTP (which is a special form of
TELNET), have default ports specified as mentioned earlier but can use other ports
as well.FOLDOC

port
forwarding

The process by which a network port on one computer is transparently connected
to a port on another computer. If port X is forwarded from system A to system B,
any data sent to port X on system A is sent to system B automatically. The connec-
tion can be between different ports on the two systems. See also tunneling
(page 1066).

portmapper A server that converts TCP/IP port numbers into RPC (page 1058) program num-
bers. See “RPC Network Services” on page 387.

1054 Glossary

printable
character

One of the graphic characters: a letter, number, or punctuation mark. Contrast with
a nonprintable, or CONTROL, character. Also printing character.

private address
space

IANA (page 1041) has reserved three blocks of IP addresses for private internets
or LANs:

10.0.0.0 - 10.255.255.255
172.16.0.0 - 172.31.255.255
192.168.0.0 - 192.168.255.255

You can use these addresses without coordinating with anyone outside of your LAN
(you do not have to register the system name or address). Systems using these IP
addresses cannot communicate directly with hosts using the global address space
but must go through a gateway. Because private addresses have no global meaning,
routing information is not stored by DNSs and most ISPs reject privately addressed
packets. Make sure that your router is set up not to forward these packets onto the
Internet.

privileged port A port (page 1053) with a number less than 1024. On Linux and other UNIX-like
systems, only a process running with root privileges can bind to a privileged port.
Any user on Windows 98 and earlier Windows systems can bind to any port. Also
reserved port.

procedure A sequence of instructions for performing a particular task. Most programming lan-
guages, including machine languages, enable a programmer to define procedures that
allow the procedure code to be called from multiple places. Also subroutine.FOLDOC

process The execution of a command by Linux. See “Processes” on page 310.

.profile file A startup file in a user’s home directory that the Bourne Again or Z Shell executes
when you log in. The TC Shell executes .login instead. You can use the .profile file
to run commands, set variables, and define functions.

program A sequence of executable computer instructions contained in a file. Linux utilities,
applications, and shell scripts are all programs. Whenever you run a command that
is not built into a shell, you are executing a program.

PROM Programmable readonly memory. A kind of nonvolatile storage. ROM (page 1057)
that can be written to using a PROM programmer.

prompt A cue from a program, usually displayed on the screen, indicating that it is waiting
for input. The shell displays a prompt, as do some of the interactive utilities, such as
mail. By default the Bourne Again and Z Shells use a dollar sign ($) as a prompt, and
the TC Shell uses a percent sign (%).

protocol A set of formal rules describing how to transmit data, especially across a network.
Low-level protocols define the electrical and physical standards, bit and byte order-
ing, and transmission, error detection, and correction of the bit stream. High-level
protocols deal with data formatting, including message syntax, terminal-to-computer
dialog, character sets, and sequencing of messages.FOLDOC

Glossary 1055

proxy A service that is authorized to act for a system while not being part of that system.
See also proxy gateway and proxy server.

proxy gateway A computer that separates clients (such as browsers) from the Internet, working as a
trusted agent that accesses the Internet on their behalf. A proxy gateway passes a
request for data from an Internet service, such as HTTP from a browser/client, to a
remote server. The data that the server returns goes back through the proxy gate-
way to the requesting service. A proxy gateway should be transparent to the user.

A proxy gateway often runs on a firewall (page 1037) system and acts as a barrier
to malicious users. It hides the IP addresses of the local computers inside the firewall
from Internet users outside the firewall.

You can configure browsers, such as Mozilla/Firefox and Netscape, to use a differ-
ent proxy gateway or to use no proxy for each URL access method including FTP,
netnews, SNMP, HTTPS, and HTTP. See also proxy.

proxy server A proxy gateway that usually includes a cache (page 1027) that holds frequently
used Web pages so that the next request for that page is available locally (and there-
fore more quickly). The terms proxy server and proxy gateway are frequently inter-
changed so that the use of cache does not rest exclusively with the proxy server. See
also proxy.

Python A simple, high-level, interpreted, object-oriented, interactive language that bridges
the gap between C and shell programming. Suitable for rapid prototyping or as an
extension language for C applications, Python supports packages, modules, classes,
user-defined exceptions, a good C interface, and dynamic loading of C modules. It
has no arbitrary restrictions. For more information, see www.python.orgFOLDOC

quote When you quote a character, you take away any special meaning that it has in the
current context. You can quote a character by preceding it with a backslash. When
you are interacting with the shell, you can also quote a character by surrounding it
with single quotation marks. For example, the command echo * or echo '*' dis-
plays *. The command echo * displays a list of the files in the working directory.
See ambiguous file reference (page 1022), metacharacter (page 1047), regular char-
acter (page 1056), regular expression (page 1056), and special character
(page 1061). See also escape on page 1035.

radio button In a GUI, a one of a group of buttons similar to those used to select the station on a
car radio. Radio buttons within a group are mutually exclusive; only one button
can be selected at a time.

RAID Redundant array of inexpensive/independent disks. Two or more (hard) disk drives
used in combination to improve fault tolerance and performance. RAID can be
implemented in hardware or software.

RAM Random access memory. A kind of volatile storage. A data storage device for which
the order of access to different locations does not affect the speed of access. Con-
trast with a hard disk or tape drive, which provides quicker access to sequential

www.python.org

1056 Glossary

data because accessing a nonsequential location requires physical movement of the
storage medium and/or read/write head rather than just electronic switching. Con-
trast with nonvolatile storage (page 1051). Also memory.FOLDOC

RAM disk RAM that is made to look like a floppy diskette or hard disk. A RAM disk is fre-
quently used as part of the boot (page 1026) process.

RAS Remote access server. In a network, a computer that provides access to remote users
via analog modem or ISDN connections. RAS includes the dial-up protocols and
access control (authentication). It may be a regular fileserver with remote access
software or a proprietary system, such as Shiva’s LANRover. The modems may be
internal or external to the device.

RDF Resource Description Framework. Being developed by W3C (the main standards
body for the World Wide Web), a standard that specifies a mechanism for encoding
and transferring metadata (page 1047). RDF does not specify what the metadata
should or can be. It can integrate many kinds of applications and data, using XML
as an interchange syntax. Examples of the data that can be integrated include
library catalogs and worldwide directories; syndication and aggregation of news,
software, and content; and collections of music and photographs. Go to
www.w3.org/RDF for more information.

redirection The process of directing standard input for a program to come from a file rather
than from the keyboard. Also, directing standard output or standard error to go to
a file rather than to the screen.

reentrant Code that can have multiple simultaneous, interleaved, or nested invocations that
do not interfere with one another. Noninterference is important for parallel process-
ing, recursive programming, and interrupt handling.

It is usually easy to arrange for multiple invocations (that is, calls to a subroutine)
to share one copy of the code and any readonly data. For the code to be reentrant,
however, each invocation must use its own copy of any modifiable data (or synchro-
nized access to shared data). This goal is most often achieved by using a stack and
allocating local variables in a new stack frame for each invocation. Alternatively,
the caller may pass in a pointer to a block of memory that that invocation can use
(usually for output), or the code may allocate some memory on a heap, especially if
the data must survive after the routine returns.

Reentrant code is often found in system software, such as operating systems and
teleprocessing monitors. It is also a crucial component of multithreaded programs,
where the term thread-safe is often used instead of reentrant.FOLDOC

regular
character

A character that always represents itself in an ambiguous file reference or another
type of regular expression. Contrast with special character.

regular
expression

A string—composed of letters, numbers, and special symbols—that defines one or
more strings. See Appendix A.

www.w3.org/RDF

Glossary 1057

relative
pathname

A pathname that starts from the working directory. Contrast with absolute path-
name (page 1022).

remote access
server

See RAS on page 1056.

remote
filesystem

A filesystem on a remote computer that has been set up so that you can access (usu-
ally over a network) its files as though they were stored on your local computer’s
disks. An example of a remote filesystem is NFS.

remote
procedure call

See RPC on page 1058.

resolver The TCP/IP library software that formats requests to be sent to the DNS
(page 1034) for hostname-to-Internet address conversion.FOLDOC

Resource
Description
Framework

See RDF on page 1056.

restore The process of turning an icon into a window. Contrast with iconify (page 1041)

return code See exit status on page 1036.

RFC Request for comments. Begun in 1969, one of a series of numbered Internet infor-
mational documents and standards widely followed by commercial software and
freeware in the Internet and UNIX/Linux communities. Few RFCs are standards
but all Internet standards are recorded in RFCs. Perhaps the single most influential
RFC has been RFC 822, the Internet electronic mail format standard.

The RFCs are unusual in that they are floated by technical experts acting on their
own initiative and reviewed by the Internet at large rather than being formally
promulgated through an institution such as ANSI. For this reason they remain
known as RFCs, even after they are adopted as standards. The RFC tradition of
pragmatic, experience-driven, after-the-fact standard writing done by individuals
or small working groups has important advantages over the more formal, committee-
driven process typical of ANSI or ISO. For a complete list of RFCs, go to
www.rfc-editor.org.FOLDOC

roam To move a computer between wireless access points (page 1069) on a wireless net-
work without the user or applications being aware of the transition. Moving
between access points typically results in some packet loss, although this loss is
transparent to programs that use TCP.

ROM Readonly memory. A kind of nonvolatile storage. A data storage device that is man-
ufactured with fixed contents. In general, ROM describes any storage system whose
contents cannot be altered, such as a phonograph record or printed book. When
used in reference to electronics and computers, ROM describes semiconductor inte-
grated circuit memories, of which several types exist, and CD-ROM.

www.rfc-editor.org

1058 Glossary

ROM is nonvolatile storage—it retains its contents even after power has been
removed. ROM is often used to hold programs for embedded systems, as these usu-
ally have a fixed purpose. ROM is also used for storage of the BIOS (page 1025) in
a computer. Contrast with RAM (page 1055).FOLDOC

root directory The ancestor of all directories and the start of all absolute pathnames. The name of
the root directory is /.

root filesystem The filesystem that is available when the system is brought up in recovery mode.
The name of this filesystem is always /. You cannot unmount or mount the root file-
system. You can remount root to change its mount options.

root login Usually the username of Superuser (page 1063).

root (user) Another name for Superuser (page 1063).

root window Any place on the desktop not covered by a window, object, or panel.

rotate When a file, such as a log file, gets indefinitely larger, you must keep it from taking
up too much space on the disk. Because you may need to refer to the information
in the log files in the near future, it is generally not a good idea to delete the con-
tents of the file until it has aged. Instead you can periodically save the current log
file under a new name and create a new, empty file as the current log file. You can
keep a series of these files, renaming each as a new one is saved. You will then
rotate the files. For example, you might remove xyzlog.4, xyzlog.3→xyzlog.4,
xyzlog.2→xyzlog.3, xyzlog.1→xyzlog.2, xyzlog→xyzlog.1, and create a new
xyzlog file. By the time you remove xyzlog.4, it will not contain any information
more recent than you want to remove.

router A device (often a computer) that is connected to more than one similar type of net-
work to pass data between them. See gateway on page 1038.

RPC Remote procedure call. A call to a procedure (page 1054) that acts transparently
across a network. The procedure itself is responsible for accessing and using the net-
work. The RPC libraries make sure that network access is transparent to the appli-
cation. RPC runs on top of TCP/IP or UDP/IP.

RSA A public key encryption (page 993) technology that is based on the lack of an effi-
cient way to factor very large numbers. Because of this lack, it takes an extraordi-
nary amount of computer processing time and power to deduce an RSA key. The
RSA algorithm is the de facto standard for data sent over the Internet.

run To execute a program.

runlevel Before the introduction of Upstart daemon, runlevels specified the state of the sys-
tem, including single-user and multiuser. For more information refer to “Runlevel
emulation” on page 502.

Samba A free suite of programs that implement the Server Message Block (SMB) protocol.
See SMB (page 1060).

Glossary 1059

schema Within a GUI, a pattern that helps you see and interpret the information that is pre-
sented in a window, making it easier to understand new information that is pre-
sented using the same schema.

scroll To move lines on a terminal or window up and down or left and right.

scrollbar A widget (page 1068) found in graphical user interfaces that controls (scrolls)
which part of a document is visible in the window. A window can have a horizontal
scrollbar, a vertical scrollbar (more common), or both.FOLDOC

server A powerful centralized computer (or program) designed to provide information to
clients (smaller computers or programs) on request.

session The lifetime of a process. For a desktop, it is the desktop session manager. For a
character-based terminal, it is the user’s login shell process. In KDE, it is launched
by kdeinit. A session may also be the sequence of events between when you start
using a program, such as an editor, and when you finish.

setgid When you execute a file that has setgid (set group ID) permission, the process exe-
cuting the file takes on the privileges of the group the file belongs to. The ls utility
shows setgid permission as an s in the group’s executable position. See also setuid.

setuid When you execute a file that has setuid (set user ID) permission, the process execut-
ing the file takes on the privileges of the owner of the file. As an example, if you run
a setuid program that removes all the files in a directory, you can remove files in any
of the file owner’s directories, even if you do not normally have permission to do so.
When the program is owned by root, you can remove files in any directory that a
user working with root privileges can remove files from. The ls utility shows setuid
permission as an s in the owner’s executable position. See also setgid.

sexillion In the British system, 1036. In the American system, this number is named undecil-
lion. See also large number (page 1044).

SHA1 Secure Hash Algorithm 1. The SHA family is a set of cryptographic hash
(page 1039) algorithms that were designed by the National Security Agency (NSA).
The second member of this family is SHA1, a successor to MD5 (page 1047). See
also cryptography on page 1031.

share A filesystem hierarchy that is shared with another system using SMB (page 1060).
Also Windows share (page 1069).

shared
network
topology

A network, such as Ethernet, in which each packet may be seen by systems other
than its destination system. Shared means that the network bandwidth is shared by
all users.

shell A Linux system command processor. The three major shells are the Bourne Again
Shell (page 1026), the TC Shell (page 1064), and the Z Shell (page 1070).

shell function A series of commands that the shell stores for execution at a later time. Shell func-
tions are like shell scripts but run more quickly because they are stored in the

1060 Glossary

computer’s main memory rather than in files. Also, a shell function is run in the
environment of the shell that calls it (unlike a shell script, which is typically run in
a subshell).

shell script An ASCII file containing shell commands. Also shell program.

signal A very brief message that the UNIX system can send to a process, apart from the
process’s standard input. Refer to “trap: Catches a Signal” on page 451.

simple
filename

A single filename containing no slashes (/). A simple filename is the simplest form
of pathname. Also the last element of a pathname. Also basename (page 1025).

single-user
system

A computer system that only one person can use at a time. Contrast with multiuser
system (page 1049).

slider A widget (page 1068) that allows a user to set a value by dragging an indicator
along a line. Many sliders allow the user also to click on the line to move the indica-
tor. Differs from a scrollbar (page 1059) in that moving the indicator does not
change other parts of the display.

SMB Server Message Block. Developed in the early 1980s by Intel, Microsoft, and IBM,
SMB is a client/server protocol that is the native method of file and printer sharing
for Windows. In addition, SMB can share serial ports and communications abstrac-
tions, such as named pipes and mail slots. SMB is similar to a remote procedure call
(RPC, page 1058) that has been customized for filesystem access. Also Microsoft
Networking.FOLDOC

smiley A character-based glyph (page 1038), typically used in email, that conveys an emo-
tion. The characters :-) in a message portray a smiley face (look at it sideways).
Because it can be difficult to tell when the writer of an electronic message is saying
something in jest or in seriousness, email users often use :-) to indicate humor. The
two original smileys, designed by Scott Fahlman, were :-) and :-(. Also emoticon,
smileys, and smilies. For more information search on smiley on the Internet.

smilies See smiley.

SMTP Simple Mail Transfer Protocol. A protocol used to transfer electronic mail between
computers. It is a server-to-server protocol, so other protocols are used to access the
messages. The SMTP dialog usually happens in the background under the control of
a message transport system such as exim4.FOLDOC

snap
(windows)

As you drag a window toward another window or edge of the workspace, it can
move suddenly so that it is adjacent to the other window/edge. Thus the window
snaps into position.

sneakernet Using hand-carried magnetic media to transfer files between machines.

sniff To monitor packets on a network. A system administrator can legitimately sniff
packets and a malicious user can sniff packets to obtain information such as user-
names and passwords. See also packet sniffer (page 1052).

Glossary 1061

SOCKS A networking proxy protocol embodied in a SOCKS server, which performs the
same functions as a proxy gateway (page 1055) or proxy server (page 1055).
SOCKS works at the application level, requiring that an application be modified to
work with the SOCKS protocol, whereas a proxy (page 1055) makes no demands
on the application.

SOCKSv4 does not support authentication or UDP proxy. SOCKSv5 supports a
variety of authentication methods and UDP proxy.

sort To put in a specified order, usually alphabetic or numeric.

SPACE character A character that appears as the absence of a visible character. Even though you can-
not see it, a SPACE is a printable character. It is represented by the ASCII code 32 (dec-
imal). A SPACE character is considered a blank or whitespace (page 1068).

spam Posting irrelevant or inappropriate messages to one or more Usenet newsgroups or
mailing lists in deliberate or accidental violation of netiquette (page 1049). Also,
sending large amounts of unsolicited email indiscriminately. This email usually
promotes a product or service. Another common purpose of spam is to phish
(page 1053). Spam is the electronic equivalent of junk mail. From the Monty
Python “Spam” song.FOLDOC

sparse file A file that is large but takes up little disk space. The data in a sparse file is not dense
(thus its name). Examples of sparse files are core files and dbm files.

spawn See fork on page 1037.

special
character

A character that has a special meaning when it occurs in an ambiguous file reference
or another type of regular expression, unless it is quoted. The special characters
most commonly used with the shell are * and ?. Also metacharacter (page 1047)
and wildcard.

special file See device file on page 1033.

spin box In a GUI, a type of text box (page 1064) that holds a number you can change by
typing over it or using the up and down arrows at the end of the box. Also spinner.

spinner See spin box.

spoofing See IP spoofing on page 1043.

spool To place items in a queue, each waiting its turn for some action. Often used when
speaking about printers. Also used to describe the queue.

SQL Structured Query Language. A language that provides a user interface to relational
database management systems (RDBMS). SQL, the de facto standard, is also an ISO
and ANSI standard and is often embedded in other programming languages.FOLDOC

square bracket A left square bracket ([) or a right square bracket (]). These special characters
define character classes in ambiguous file references and other regular expressions.

1062 Glossary

SSH
Communica-
tions Security

The company that created the original SSH (secure shell) protocol suite
(www.ssh.com). Linux uses OpenSSH (page 1051).

standard error A file to which a program can send output. Usually only error messages are sent to
this file. Unless you instruct the shell otherwise, it directs this output to the screen
(that is, to the device file that represents the screen).

standard input A file from which a program can receive input. Unless you instruct the shell other-
wise, it directs this input so that it comes from the keyboard (that is, from the device
file that represents the keyboard).

standard
output

A file to which a program can send output. Unless you instruct the shell otherwise,
it directs this output to the screen (that is, to the device file that represents the
screen).

startup file A file that the login shell runs when you log in. The Bourne Again and Z Shells run
.profile, and the TC Shell runs .login. The TC Shell also runs .cshrc whenever a new
TC Shell or a subshell is invoked. The Z Shell runs an analogous file whose name is
identified by the ENV variable.

status line The bottom (usually the twenty-fourth) line of the terminal. The vim editor uses
the status line to display information about what is happening during an editing
session.

sticky bit An access permission bit that causes an executable program to remain on the swap
area of the disk. It takes less time to load a program that has its sticky bit set than
one that does not. Only a user with root privileges can set the sticky bit. If the sticky
bit is set on a directory that is publicly writable, only the owner of a file in that
directory can remove the file.

streaming tape A tape that moves at a constant speed past the read/write heads rather than speed-
ing up and slowing down, which can slow the process of writing to or reading from
the tape. A proper blocking factor helps ensure that the tape device will be kept
streaming.

streams See connection-oriented protocol on page 1030.

string A sequence of characters.

stylesheet See CSS on page 1031.

subdirectory A directory that is located within another directory. Every directory except the root
directory is a subdirectory.

subnet Subnetwork. A portion of a network, which may be a physically independent net-
work segment, that shares a network address with other portions of the network
and is distinguished by a subnet number. A subnet is to a network as a network is to
an internet.FOLDOC

www.ssh.com

Glossary 1063

subnet address The subnet portion of an IP address. In a subnetted network, the host portion of an
IP address is split into a subnet portion and a host portion using a subnet mask (also
address mask). See also subnet number.

subnet mask A bit mask used to identify which bits in an IP address correspond to the network
address and subnet portions of the address. Called a subnet mask because the net-
work portion of the address is determined by the number of bits that are set in the
mask. The subnet mask has ones in positions corresponding to the network and
subnet numbers and zeros in the host number positions. Also address mask.

subnet number The subnet portion of an IP address. In a subnetted network, the host portion of an
IP address is split into a subnet portion and a host portion using a subnet mask.
Also address mask. See also subnet address.

subpixel
hinting

Similar to anti-aliasing (page 1023) but takes advantage of colors to do the anti-
aliasing. Particularly useful on LCD screens.

subroutine See procedure on page 1054.

subshell A shell that is forked as a duplicate of its parent shell. When you run an executable
file that contains a shell script by using its filename on the command line, the shell
forks a subshell to run the script. Also, commands surrounded with parentheses are
run in a subshell.

superblock A block that contains control information for a filesystem. The superblock contains
housekeeping information, such as the number of inodes in the filesystem and free
list information.

superserver The extended Internet services daemon. Refer to xinetd on page 386.

Superuser A user working with root privileges. This user has access to anything any other sys-
tem user has access to and more. The system administrator must be able to become
Superuser (work with root privileges) to establish new accounts, change passwords,
and perform other administrative tasks. The username of Superuser is usually root.
Also root or root user.

swap The operating system moving a process from main memory to a disk, or vice versa.
Swapping a process to the disk allows another process to begin or continue execu-
tion. Refer to “swap” on page 564.

swap space An area of a disk (that is, a swap file) used to store the portion of a process’s mem-
ory that has been paged out. Under a virtual memory system, the amount of swap
space—rather than the amount of physical memory—determines the maximum size
of a single process and the maximum total size of all active processes. Also swap
area or swapping area.FOLDOC

switch See network switch on page 1050.

1064 Glossary

symbolic link A directory entry that points to the pathname of another file. In most cases a sym-
bolic link to a file can be used in the same ways a hard link can be used. Unlike a
hard link, a symbolic link can span filesystems and can connect to a directory.

system
administrator

The person responsible for the upkeep of the system. The system administrator has the
ability to log in as root or use sudo to work with root privileges. See also Superuser.

system console The main system terminal, usually directly connected to the computer and the one
that receives system error messages. Also console and console terminal.

system mode The designation for the state of the system while it is doing system work. Some
examples are making system calls, running NFS and autofs, processing network
traffic, and performing kernel operations on behalf of the system. Contrast with
user mode (page 1067).

System V One of the two major versions of the UNIX system.

TC Shell tcsh. An enhanced but completely compatible version of the BSD UNIX C shell, csh.

TCP Transmission Control Protocol. The most common transport layer protocol used on
the Internet. This connection-oriented protocol is built on top of IP (page 1042) and
is nearly always seen in the combination TCP/IP (TCP over IP). TCP adds reliable
communication, sequencing, and flow control and provides full-duplex, process-to-
process connections. UDP (page 1066), although connectionless, is the other proto-
col that runs on top of IP.FOLDOC

tera- In the binary system, the prefix tera- multiplies by 240 (1,099,511,627,776). Ter-
abyte is a common use of this prefix. Abbreviated as T. See also large number on
page 1044.

termcap Terminal capability. The /etc/termcap file contains a list of various types of termi-
nals and their characteristics. System V replaced the function of this file with the
terminfo system.

terminal Differentiated from a workstation (page 1069) by its lack of intelligence, a terminal
connects to a computer that runs Linux. A workstation runs Linux on itself.

terminfo Terminal information. The /usr/lib/terminfo directory contains many subdirecto-
ries, each containing several files. Each of those files is named for and holds a sum-
mary of the functional characteristics of a particular terminal. Visually oriented
textual programs, such as vim, use these files. An alternative to the termcap file.

text box A GUI widget (page 1068) that allows a user to enter text.

theme Defined as an implicit or recurrent idea, theme is used in a GUI to describe a look
that is consistent for all elements of a desktop. Go to themes.freshmeat.net for
examples.

thicknet A type of coaxial cable (thick) used for an Ethernet network. Devices are attached
to thicknet by tapping the cable at fixed points.

Glossary 1065

thinnet A type of coaxial cable (thin) used for an Ethernet network. Thinnet cable is smaller
in diameter and more flexible than thicknet cable. Each device is typically attached
to two separate cable segments by using a T-shaped connector; one segment leads to
the device ahead of it on the network and one to the device that follows it.

thread-safe See reentrant on page 1056.

thumb The movable button in the scrollbar (page 1059) that positions the image in the
window. The size of the thumb reflects the amount of information in the buffer.
Also bubble.

tick A mark, usually in a check box (page 1028), that indicates a positive response. The
mark can be a checkmark (✔) or an x. Also checkmark or check.

TIFF Tagged Image File Format. A file format used for still-image bitmaps, stored in
tagged fields. Application programs can use the tags to accept or ignore fields,
depending on their capabilities.FOLDOC

tiled windows An arrangement of windows such that no window overlaps another. The opposite
of cascading windows (page 1027).

time to live See TTL.

toggle To switch between one of two positions. For example, the ftp glob command toggles
the glob feature: Give the command once, and it turns the feature on or off; give the
command again, and it sets the feature back to its original state.

token A basic, grammatically indivisible unit of a language, such as a keyword, operator,
or identifier.FOLDOC

token ring A type of LAN (page 1044) in which computers are attached to a ring of cable. A
token packet circulates continuously around the ring. A computer can transmit
information only when it holds the token.

tooltip A minicontext help system that a user activates by allowing the mouse pointer to
hover (page 1040) over an object (such as those on a panel).

transient
window

A dialog or other window that is displayed for only a short time.

Transmission
Control
Protocol

See TCP on page 1064.

Trojan horse A program that does something destructive or disruptive to your system. Its action
is not documented, and the system administrator would not approve of it if she
were aware of it. See “Avoiding a Trojan Horse” on page 520.

The term Trojan horse was coined by MIT-hacker-turned-NSA-spook Dan Edwards. It
refers to a malicious security-breaking program that is disguised as something benign,
such as a directory lister, archive utility, game, or (in one notorious 1990 case on the
Mac) a program to find and destroy viruses. Similar to back door (page 1024).FOLDOC

1066 Glossary

TTL Time to live.

1. All DNS records specify how long they are good for—usually up to a week
at most. This time is called the record’s time to live. When a DNS server or
an application stores this record in cache (page 1027), it decrements the
TTL value and removes the record from cache when the value reaches
zero. A DNS server passes a cached record to another server with the cur-
rent (decremented) TTL guaranteeing the proper TTL, no matter how
many servers the record passes through.

2. In the IP header, a field that indicates how many more hops the packet
should be allowed to make before being discarded or returned.

TTY Teletypewriter. The terminal device that UNIX was first run from. Today TTY
refers to the screen (or window, in the case of a terminal emulator), keyboard, and
mouse that are connected to a computer. This term appears in UNIX, and Linux has
kept the term for the sake of consistency and tradition.

tunneling Encapsulation of protocol A within packets carried by protocol B, such that A
treats B as though it were a data link layer. Tunneling is used to transfer data
between administrative domains that use a protocol not supported by the internet
connecting those domains. It can also be used to encrypt data sent over a public
internet, as when you use ssh to tunnel a protocol over the Internet.FOLDOC See also
VPN (page 1068) and port forwarding (page 1053).

UDP User Datagram Protocol. The Internet standard transport layer protocol that pro-
vides simple but unreliable datagram services. UDP is a connectionless protocol
(page 1030) that, like TCP (page 1064), is layered on top of IP (page 1042).

Unlike TCP, UDP neither guarantees delivery nor requires a connection. As a result
it is lightweight and efficient, but the application program must handle all error
processing and retransmission. UDP is often used for sending time-sensitive data
that is not particularly sensitive to minor loss, such as audio and video data.FOLDOC

UID User ID. A number that the passwd database associates with a username.

undecillion In the American system, 1036. In the British system, this number is named sexillion.
See also large number (page 1044).

unicast A packet sent from one host to another host. Unicast means one source and one
destination.

Unicode A character encoding standard that was designed to cover all major modern written
languages with each character having exactly one encoding and being represented
by a fixed number of bits.

unmanaged
window

See ignored window on page 1041.

Glossary 1067

URI Universal Resource Identifier. The generic set of all names and addresses that are
short strings referring to objects (typically on the Internet). The most common kinds
of URIs are URLs.FOLDOC

URL Uniform (was Universal) Resource Locator. A standard way of specifying the loca-
tion of an object, typically a Web page, on the Internet. URLs are a subset of URIs.

usage message A message displayed by a command when you call the command using incorrect
command line arguments.

User
Datagram
Protocol

See UDP.

User ID See UID.

user interface See interface on page 1042.

user mode The designation for the state of the system while it is doing user work, such as run-
ning a user program (but not the system calls made by the program). Contrast with
system mode (page 1064).

username The name you enter in response to the login: prompt. Other users use your user-
name when they send you mail or write to you. Each username has a corresponding
user ID, which is the numeric identifier for the user. Both the username and the user
ID are stored in the passwd database (/etc/passwd or the NIS equivalent). Also
login name.

userspace The part of memory (RAM) where applications reside. Code running in userspace
cannot access hardware directly and cannot access memory allocated to other appli-
cations. Also userland. See the KernelAnalysis-HOWTO.

UTC Coordinated Universal Time. UTC is the equivalent to the mean solar time at the
prime meridian (0 degrees longitude). Also called Zulu time (Z stands for longitude
zero) and GMT (Greenwich Mean Time).

UTF-8 An encoding that allows Unicode (page 1066) characters to be represented using
sequences of 8-bit bytes.

utility A program included as a standard part of Linux. You typically invoke a utility
either by giving a command in response to a shell prompt or by calling it from
within a shell script. Utilities are often referred to as commands. Contrast with buil-
tin (command) (page 1027).

UUID Universally Unique Identifier. A 128-bit number that uniquely identifies an object
on the Internet. Frequently used on Linux systems to identify an ext2 or ext3 disk
partition.

variable A name and an associated value. The shell allows you to create variables and use
them in shell scripts. Also, the shell inherits several variables when it is invoked, and

1068 Glossary

it maintains those and other variables while it is running. Some shell variables
establish characteristics of the shell environment; others have values that reflect dif-
ferent aspects of your ongoing interaction with the shell.

viewport Same as workspace (page 1069).

virtual console Additional consoles, or displays, that you can view on the system, or physical, con-
sole. See page 136 for more information.

virus A cracker (page 1031) program that searches out other programs and “infects”
them by embedding a copy of itself in them, so that they become Trojan horses
(page 1065). When these programs are executed, the embedded virus is executed as
well, propagating the “infection,” usually without the user’s knowledge. By analogy
with biological viruses.FOLDOC

VLAN Virtual LAN. A logical grouping of two or more nodes that are not necessarily on
the same physical network segment but that share the same network number. A
VLAN is often associated with switched Ethernet.FOLDOC

VPN Virtual private network. A private network that exists on a public network, such as
the Internet. A VPN is a less expensive substitute for company-owned/leased lines
and uses encryption (page 992) to ensure privacy. A nice side effect is that you can
send non-Internet protocols, such as AppleTalk, IPX, or NetBIOS (page 1049),
over the VPN connection by tunneling (page 1066) them through the VPN IP
stream.

W2K Windows 2000 Professional or Server.

W3C World Wide Web Consortium (www.w3.org).

WAN Wide area network. A network that interconnects LANs (page 1044) and MANs
(page 1047), spanning a large geographic area (typically states or countries).

WAP Wireless access point. A bridge or router between wired and wireless networks.
WAPs typically support some form of access control to prevent unauthorized clients
from connecting to the network.

Web ring A collection of Web sites that provide information on a single topic or group of
related topics. Each home page that is part of the Web ring has a series of links that
let you go from site to site.

whitespace A collective name for SPACEs and/or TABs and occasionally NEWLINEs. Also white space.

wide area
network

See WAN.

widget The basic objects of a graphical user interface. A button, combo box (page 1029),
and scrollbar (page 1059) are examples of widgets.

wildcard See metacharacter on page 1047.

www.w3.org

Glossary 1069

Wi-Fi Wireless Fidelity. A generic term that refers to any type of 802.11 (page 1022) wire-
less network.

window On a display screen, a region that runs or is controlled by a particular program.

window
manager

A program that controls how windows appear on a display screen and how you
manipulate them.

Windows
share

See share on page 1059.

WINS Windows Internet Naming Service. The service responsible for mapping NetBIOS
names to IP addresses. WINS has the same relationship to NetBIOS names that
DNS has to Internet domain names.

WINS server The program responsible for handling WINS requests. This program caches name
information about hosts on a local network and resolves them to IP addresses.

wireless access
point

See WAP.

word A sequence of one or more nonblank characters separated from other words by TABs,
SPACEs, or NEWLINEs. Used to refer to individual command line arguments. In vim, a
word is similar to a word in the English language—a string of one or more charac-
ters bounded by a punctuation mark, a numeral, a TAB, a SPACE, or a NEWLINE.

Work buffer A location where vim stores text while it is being edited. The information in the
Work buffer is not written to the file on the disk until you give the editor a com-
mand to write it.

working
directory

The directory that you are associated with at any given time. The relative path-
names you use are relative to the working directory. Also current directory.

workspace A subdivision of a desktop (page 1033) that occupies the entire display. See
page 106.

workstation A small computer, typically designed to fit in an office and be used by one person
and usually equipped with a bit-mapped graphical display, keyboard, and mouse.
Differentiated from a terminal (page 1064) by its intelligence. A workstation runs
Linux on itself while a terminal connects to a computer that runs Linux.

worm A program that propagates itself over a network, reproducing itself as it goes. Today
the term has negative connotations, as it is assumed that only crackers (page 1031)
write worms. Compare to virus (page 1068) and Trojan horse (page 1065). From
Tapeworm in John Brunner’s novel, The Shockwave Rider, Ballantine Books, 1990
(via XEROX PARC).FOLDOC

WYSIWYG What You See Is What You Get. A graphical application, such as a word processor,
whose display is similar to its printed output.

1070 Glossary

X server The X server is the part of the X Window System that runs the mouse, keyboard,
and display. (The application program is the client.)

X terminal A graphics terminal designed to run the X Window System.

X Window
System

A design and set of tools for writing flexible, portable windowing applications, cre-
ated jointly by researchers at MIT and several leading computer manufacturers.

XDMCP X Display Manager Control Protocol. XDMCP allows the login server to accept
requests from network displays. XDMCP is built into many X terminals.

xDSL Different types of DSL (page 1035) are identified by a prefix, for example, ADSL,
HDSL, SDSL, and VDSL.

Xinerama An extension to X.org. Xinerama allows window managers and applications to use
the two or more physical displays as one large virtual display. Refer to the Xin-
erama-HOWTO.

XML Extensible Markup Language. A universal format for structured documents and
data on the Web. Developed by W3C (page 1068), XML is a pared-down version of
SGML. See www.w3.org/XML and www.w3.org/XML/1999/XML-in-10-points.

XSM X Session Manager. This program allows you to create a session that includes cer-
tain applications. While the session is running, you can perform a checkpoint (saves
the application state) or a shutdown (saves the state and exits from the session).
When you log back in, you can load your session so that everything in your session
is running just as it was when you logged off.

Z Shell zsh. A shell (page 1059) that incorporates many of the features of the Bourne Again
Shell (page 1026), Korn Shell (page 1044), and TC Shell (page 1064), as well as
many original features.

Zulu time See UTC on page 1067.

www.w3.org/XML
www.w3.org/XML/1999/XML-in-10-points

10711071

Index

Only variables that must always appear with a leading dollar sign are indexed with a leading dollar
sign. Other variables are indexed without a leading dollar sign.

Symbols

! Boolean operator, 309, 462, 466
! variable, 317
!! to reexecute the previous event, 317
!$ last word of the previous event, 319
comment, 285
prompt, 488
variable, 439
#! to choose a script shell, 284
$ in regular expressions, 974
$ in variable name, 297
$! variable, 438
$# variable, 423
$$ variable, 425, 437
$(...). See Command, substitution
$* variable, 440
$? variable, 438
$@ variable, 411, 440
${}, expand variable, 443
$0 variable, 439
% job number, 238, 291
& background, 237, 288, 289, 290, 312, 438, 1024
& bitwise operator, 462, 465
& in replacement string, 977, 980
&& Boolean operator, 459, 463, 464, 466
((...)). See Arithmetic evaluation

() command grouping, 289
() in shell functions, 332

* in regular expressions, 974

* special character, 240
+ in full regular expressions, 978
. (dot) builtin, 279, 333, 449, 457
. directory, 193, 240, 567
. in regular expressions, 973
./ to execute a file in the working directory, 283, 303
.. directory, 193, 240, 567
.bash_history file, 312
.bash_login file, 277
.bash_logout file, 277
.bash_profile file, 277, 313, 554
.bashrc file, 190, 277, 554
.bmp filename extension, 188
.bz2 filename extension, 160, 188
.c filename extension, 187
.cgi filename extension, 931
.conf filename extension, 528
.cshrc file, 1031
.deb filename extension, 599
.forward file, 764
.gif filename extension, 188
.gz filename extension, 161, 188
.htaccess file, 925, 962
.html filename extension, 188, 931

1072 Index

.htpasswd file, 962

.inputrc file, 325

.jpeg filename extension, 188, 1043

.jpg filename extension, 188, 1043

.login file, 1046

.logout file, 1046

.netrc file, 735

.o filename extension, 187

.pdf filename extension, 187

.pgpkey file, 168

.php filename extension, 931

.pl filename extension, 931

.plan file, 168

.ppd filename extension, 626

.profile file, 277, 554, 1054

.project file, 168

.ps filename extension, 187

.rhosts file, 373, 1001

.ssh directory, 709

.tar.bz2 filename extension, 162

.tar.gz filename extension, 162

.tar.Z filename extension, 162, 187

.tbz filename extension, 162

.tgz filename extension, 187

.tif filename extension, 188, 1065

.tiff filename extension, 188, 1065

.toprc file, 673

.torrent filename extension, 40

.Trash directory, 100

.txt filename extension, 187, 241

.tz filename extension, 162

.var filename extension, 951

.xhtml filename extension, 931

.Z filename extension, 161, 187
/ (root) directory, 33, 186, 194
/bin directory, 194
/bin/false file, 561
/boot

grub/menu.lst file, 648, 651
location, 676
partition, 32, 646

/boot directory, 194
/dev, 194, 226, 1046

fd0 file, 554
hda file, 554
hdc file, 554
nst0 file, 668
null file, 233, 415, 454, 555, 557, 684
pts file, 555
random file, 556

rmt/0 file, 666
sda file, 554
special files, 567
st0 file, 668
tty file, 450
urandom file, 556
zero file, 556

/etc, 195
aliases file, 557, 681, 763
alternatives directory, 557
anacrontab file, 384, 670
apache2 directory, 924
apt

apt.conf file, 590
apt.conf.d directory, 590
sources.list file, 589

at.allow file, 557
at.deny file, 557
auto_master file, 819
bashrc file, 277
bind directory, 866
cron.allow file, 557
cron.d directory, 385, 668
cron.deny file, 557
crontab file, 385, 669
cups directory, 629
default, 557

autofs file, 820
exim4 file, 765
nis file, 786, 791, 797
syslogd file, 690

defaultdomain file, 785, 786
defaultrouter file, 386
dhcp3

dhclient.conf file, 539
dhcpd.conf file, 540

dumpdates file, 557, 666
event.d directory, 502, 504
event.d/control-alt-delete file, 518
exim4 directory, 766
exports file, 809, 812
firestarter directory, 888
fstab file, 384, 558, 576, 804, 807
ftpusers file, 752
group file, 558, 661, 1038
hosts file, 368, 383, 559, 781
hosts.allow file, 531, 532
hosts.deny file, 531, 532
hosts.equiv file, 372, 1001
init.d directory, 507, 561

Index 1073

init.d/apache2 file, 918
inittab file, 506, 559
issue file, 134
lftp.conf file, 718
login.defs file, 560, 660
logrotate.conf file, 685
logrotate.d directory, 685
magic file, 565
mailname file, 759
motd file, 134, 559, 561, 678
mtab file, 559
named.conf file, 860, 874, 879
nologin.txt file, 548, 561
nsswitch.conf file, 542, 559, 782
ntp.conf file, 385
opt directory, 195
pam.d directory, 545, 548, 560
passwd file, 412, 516, 560
printcap file, 561
profile file, 277, 561
protocols file, 561, 904
rc.local file, 508
rc?.d directory, 507, 508
resolv.conf file, 561, 859
rpc file, 388, 562
securetty file, 489
security/access.conf file, 489
services file, 384, 388, 562
shadow file, 516, 562
shells file, 525
skel directory, 660
ssh directory, 709
sudoers file, 494
syslog.conf file, 386, 688
termcap file, 1064
vsftpd.chroot_list file, 752
vsftpd.user_list file, 752
X11, 74
X11/xorg.conf file, 74
yp.conf file, 787
ypserv.conf file, 791

/home directory, 195
/home partition, 33
/lib, 195

modules directory, 195
modules file, 643
security directory, 545, 547

/lost+found directory, 520
/mnt directory, 195
/opt directory, 33, 195, 607

/proc
contents, 195
filesystem, 563, 572
mounts file, 560
sys file, 636

/root, 195
/sbin, 195
/sys directory, 195, 565
/tmp directory, 195, 425, 684
/usr, 195

bin directory, 195
doc directory, 196
games directory, 196
include, 196
info directory, 196
lib directory, 196
lib/terminfo directory, 1064
local directory, 196, 607
localpartition, 33
man directory, 196
partition, 33
pub/ascii file, 1023
sbin daemons, 384
sbin directory, 196
share, 196

doc directory, 678
magic file, 1046

src directory, 196
/var, 196

ftp directory, 741
lib/nfs/etab file, 815
lib/nfs/rmtab file, 816
log, 196, 565, 982

auth.log file, 566
disk usage, 684
lastlog file, 196
messages file, 196, 545, 565, 679, 684,

982
secure file, 545, 982
syslog file, 872
vsftpd.log file, 752
wtmp file, 196, 686

mail directory, 684, 761
partition, 33
spool, 982

disk usage, 684
mail directory, 303

tmp directory, 684
www directory, 918, 924, 925
www file, 920

1074 Index

: (null) builtin, 444, 453, 457
:– substitute default value, 443
:= assign default value, 443
:? display error message, 444
; command separator, 286
< redirect standard input, 230, 280, 1022
<& duplicate input file descriptor, 430
<< Here document, 427, 1022
> redirect standard output, 228, 231, 280, 281, 1022
>& duplicate output file descriptor, 281, 430
>> append standard output, 232, 1022
? in full regular expressions, 978
? special character, 239
@ in a network address, 370, 371
@ in an email address, 371
@ variable, 411
[] character class, 241, 973, 1028
[[...]] builtin, 460. See also Conditional expression
\ escape character, 146, 287, 297
\(in regular expressions, 976
\) in regular expressions, 976
\n in replacement strings, 980
^ bitwise operator, 462
^ in regular expressions, 974
^ quick substitution character, 320
{ expansion, 340
{ in a shell function, 332
| bitwise operator, 462
| Boolean operator, 978
| in full regular expressions, 978
| pipe, 234, 281, 288
|| Boolean operator, 309, 459, 463, 464, 465
} expansion, 340
} in a shell function, 332
~ (tilde) expansion, 190, 301, 341
~ home directory, 301. See also Home directory
~ in pathnames, 190
‘ ...‘. See Command, substitution

Numerics

0< redirect standard input, 280
1> redirect standard output, 280
100BaseT cable, 357
10Base2 cable, 357
10BaseT cable, 357
2> redirect standard error, 280
3-DES encryption, 995
64-bit PC processor architecture, 27
802.11, 1022

A

–a Boolean operator, 403, 459
Aborting execution, 138
Absolute pathname, 189, 224, 307, 1022
accept utility, 629
Access, 1022
Access Control List. See ACL
Access permission, 199, 200, 284, 1022

change using chmod, 200
directory, 202
display using ls, 199
execute, 199, 283
group, 199
other, 199
owner, 199
read, 199
write, 199

access.conf file, 489
accton utility, 1002
ACL, 203, 997, 1019, 1022

access rules, 204
default rules, 207
effective rights mask, 206
enabling, 204
exports file, 812

acpi boot parameter, 64
acpid daemon, 384
Actions menu, 132
Active window, 139, 1022
Ad hoc mode, wireless, 695
Add/Remove Applications window, 120
addbanner shell script, 453
Adding a user, 658, 660
Address

IP, 1042
class, 364
representation, 363

MAC, 541, 1046
mask, 367, 1022
network, 370, 1050
space, private, 697, 1054

adduser utility, 660
Adept package manager, 592
adfs filesystem, 570
Administration submenu, 111
Advanced Encryption Standard, 995
AES encryption, 995
affs filesystem, 570

Index 1075

AIDE utility, 521, 1001, 1006
AIM, 354
Algorithm, 467
Alias, 1022

bash, 328
double versus single quotation marks, 329
email, 763
quotation marks, 329
recursion, 328
recursive plunge, 331

alias builtin, 328
alias.conf file, 924
aliases file, 557, 681, 763
Alphanumeric character, 1022
Alternate CD, 28

See also Installation
checking for defects, 47
function keys, 62
installing software from, 119
ISO image, 37
menu, 65
recovery mode, 65

alternatives directory, 557
amanda utility, 663
Ambiguous file reference, 239, 1022
AMD64 processor architecture, 27
American National Standards Institute, 9
anacron daemon, 384
anacron file, 670
anacron init script, 668, 670
anacrontab file, 384, 670
anacrontab utility, 384
AND bitwise operator, 366, 367
AND Boolean operator, 403, 459
Andreessen, Marc, 391
Angle bracket, 1022
ANI, 1004
Animate, 1022
Anonymous FTP, 390, 735
ANSI, 9
ANSI C, 9
ansi terminal name, 989
Answers to questions, finding, 389
Antialiasing, 1023, 1063
Apache, 915

.htaccess context, 931

.htaccess file, 925, 962

.htpasswd file, 962
AddHandler directive, 939

Alias directive, 940
alias.conf file, 924
Allow directive, 946
AllowOverride directive, 946
apache2 daemon, 384, 917, 918
apache2 directory, 924
apache2ctl utility, 917, 956
authentication modules, 961
CGI, 958, 962
Common Gateway Interface. See Apache, CGI
configuration directives. See Apache, directives
containers, 932
content, 916, 918, 920
content negotiation, 951
contexts, 931
Deny directive, 947
directives, 925

control content, 939
control processes, 935
security, 946

<Directory> container, 932, 950
directory context, 931
directory listings, 953
DirectoryIndex directive, 930
document root, 918
DocumentRoot directive, 929, 950
DSO, 916, 957
dynamic shared objects, 916, 957
error codes, 964
ErrorDocument directive, 940
ErrorLog directive, 938
<Files> container, 932
files, where to find, 921
filesystem layout, 921
group apache, 918
Group directive, 943
group www-data, 918
HostnameLookups directive, 937
httpd daemon and, 918
HTTPS protocol, 959
<IfModule> container, 933, 949
Include directive, 944
index.cgi file, 931
index.html file, 931
index.php file, 931
index.pl file, 931
index.xhtml file, 931
indexing, 953
IndexOptions directive, 940

1076 Index

Apache, continued
JumpStart, getting Apache up and running, 919
<Limit> container, 933
<LimitExcept> container, 934
Listen directive, 926
LoadModule directive, 944, 950
<Location> container, 934
<LocationMatch> container, 935
log, 924
LogLevel directive, 939
logresolve utility, 938
MaxClients directive, 935
MaxRequestsPerChild directive, 935
MaxSpareServers directive, 936
MinSpareServers directive, 936
mod_ssl module, 959
modules, 916, 957
MRTG, 964
multiviews, 952
NameVirtualHost directive, 936
Options directive, 944
Order directive, 948
pathname, 925
Perl, 963
PHP, 963
prerequisites, 917
privileged port, 918
process, defined, 918
public_html directory, 930
Python, 963
redirect, 951
role alias, 928
root permission, 918
ScriptAlias directive, 945
scripting modules, 962
self-signed certificate, 959
server config context, 931
server, defined, 918
ServerAdmin directive, 920, 928, 950
ServerName directive, 919, 928, 950
ServerRoot directive, 942, 949
ServerSignature directive, 943
ServerTokens directive, 942
Software Foundation, 915
special directives. See Apache, containers
SSL, 959
StartServers directive, 937
terminology, 918
Testing, 920

Timeout directive, 938
troubleshooting, 956
type maps, 951
UseCanonicalName directive, 938, 951
User directive, 946
UserDir directive, 929
users publishing content, 929
virtual host context, 931
virtual hosts, 953
<VirtualHost> container, 935
webalizer utility, 964
www directory, 924

apache2 daemon. See Apache, apache2 daemon
apache2 directory, 924
apache2 file, 918
apache2 init script, 917
apache2ctl utility, 917, 956
API, 1023
apic boot parameter, 64
apm boot parameter, 64
apmd daemon, 384
Appearance Preferences window, 102
Appearance, desktop, 102
Append, 1023
Append standard output, 231, 232
Applet, 109, 1023

clock, 95
Deskbar, 266

AppleTalk, 367
Application, Run window, 269
Application, terminating, 96
Applications menu, 110
apropos utility, 126, 165
APT, 584, 588

See also aptitude utility; Software package
apt cron script, 590
apt.conf file, 590
apt.conf.d directory, 590
apt-cache utility, 596
apt-file utility, 587
apt-get, downloading source code, 598
cache, 590
configuration files, 590
dependencies. See Software package,

dependencies
JumpStart, using aptitude, to install and remove

packages, 585
local package indexes, 590
repositories. See Repositories

Index 1077

source code, downloading, 598
sources.list file, 589
update-notifier, 591

apt cron script, 590
apt.conf file, 590
apt.conf.d directory, 590
apt-cache utility, 596
apt-file utility, 587
apt-get, downloading source code, 598
aptitude utility, 592

commands, 592
full-upgrade command, 595
install command, 585
install error, 589
options, 593
purge command, 586
remove command, 586
safe-upgrade command, 594
show command, 595
update command, 594

Architecture, processor, 26
Archive, 1023

pack and unpack using tar, 161
shell, 428

Argument, 191, 220, 1023
command line, 440
display, 440
testing, 398

Arithmetic
bash, 458
expansion, 342
expression, 1023

Arithmetic evaluation, 458
Arithmetic evaluation, example, 413, 436, 459
Array, 1023
ASCII, 1023
ascii file, 1023
ASCII terminal, 1023
ASP, 1024
aspell utility, 413, 415
Assembly language, 9
Asterisk special character, 974
Asymmetric encryption. See Public key encryption
Asynchronous communication, 569
Asynchronous event, 1024
at utility, 384, 557, 671
AT&T Bell Laboratories, 5, 276
at.allow file, 557
at.deny file, 557

atd daemon, 384
Athena, Project, 252
ATM link, 356
Attachment, 1024
auth.log file, 566
Authenticated relaying, email, 777
Authentication, 1024

Apache, 961
database, 1003
OpenSSH, 708, 710, 712
user, 516

authorized_keys file, 709
auto_master file, 819
autofs directory hierarchy, 819
autofs file, 820
autofs filesystem, 571
autofs init script, 819
Automatic mounting, 384, 1024
Automatic number identification, telephone, 1004
automount daemon, 384, 819, 820
automount utility, 818
available file (dpkg), 599
Avoided, 1024

B

B language, 9
Back door, 1024
Back tick, 345, 1030
Background, 237

command grouping, 289
foreground versus, 237
job control, 14, 290
PID stored in $!, 438
process, 312, 1024
running a command in, 237
symbol (&), 288

backports software package category, 588
BACKSLASH escape character, 146, 287, 297
BACKSLASH in replacement strings, 977
BACKSPACE key, 137
Backup

active filesystem, 662
amanda, 663
cpio utility, 664
dump level, 666
failing to perform, 678
file, 662, 666
full, 662

1078 Index

Backup, continued
incremental, 662
media, 663
offsite, 662
policy, 662
simple, 665
using tar, 663
utilities, 663

Basename, 189, 1025
basename utility, 423, 424, 453
bash, 1026

<& duplicate input file descriptor, 430
>& duplicate output file descriptor, 430
alias, 328
arguments, 440
arithmetic evaluation, 458

example, 413, 436, 459
operators, 461

arithmetic expansion, 342
arithmetic expansion operators, 461
array variables, 432
attribute

array, 300
export, 300
function, 300
integer, 300, 301
readonly, 299, 300

background, 276
builtin. See Builtin
closing a file, 430
command line, order of expansion, 297
command substitution, 344
command, processing, 338
conditional expression, 459
conditional expression, example, 431, 455
control structure. See Control, structure
directory stack manipulation, 292
editing previous commands, 314, 315
emacs command line editor, 323
event number, 313
expanding a null variable, 443
expanding an unset variable, 443
expression, 461
features, 334
file descriptor, 429
globbing, 345
history mechanism, 312, 316
makepath shell script, 467
menu, 425

open file, 429
operator, 461

bitwise, 465
remainder, 464
short-circuiting, 464
ternary, 465

options. See bash, features
overlay, 286
pathname completion, 324
process substitution, 347
program structures, 466
programming, 466
prompt, 303
PS3 prompt, 426
quick substitution, 321
quiz shell script, 470
quotation mark removal, 339
recursion, 467
redirection operators, 282
reexecuting events, 314, 315
REPLY keyword variable, 426
signal names, 451, 454
special characters, 146
standard error. See Standard, error
standard input. See Standard, input
standard output. See Standard, output
startup files, 277
string pattern matching, 460
substitution, quick, 321
symbolic link, 213
ternary operator, 463
tilde substitution, 341
variable

See also Variable
array, 432
assign default value, 443
BASH_ENV, 278
COLUMNS, 426
display error message, 444
expansion, 443
LINES, 426
modifier, 443
OPTARG, 455
OPTIND, 455
PS3, 426
REPLY, 426, 446
substitute default value, 443

vi command line editor, 322
vim command line editor, 322
–x option, 408

Index 1079

BASH_ENV variable, 278
Baud, 1025
Baud rate, 1025
Bazaar version control, 584
BCPL language, 9
Bell Laboratories. See AT&T Bell Laboratories
Berkeley Internet Name Domain. See DNS
Berkeley UNIX, 6, 14, 1025
Berners-Lee, Tim, 390
bg builtin, 237, 291, 457
bin directory, 302
Binary file, 283
bind builtin, 326
bind directory, 866
BIND. See DNS
bind9 init script, 857
Binding, key, 1044
BIOS, 647, 1025

boot from CD/DVD, 26
security, 682
setup, 26

birthday shell script, 427
bison utility, 17
Bit, 1025

bucket, 233, 555
depth, 1025

Bit-mapped display, 1025
BitTornado, 605
BitTorrent, 604

BitTornado, 605
btdownloadcurses utility, 605
btshowmetainfo utility, 606
downloading from the command line, 605
manners, 605
obtaining Ubuntu using, 37, 39
peer, 605
prerequisites, 605
seed, 605
swarm, 605
torrent, 605
torrent information, displaying, 606
tracker, 605

Bitwise operator
&, 462, 465
^, 462
|, 462
AND, 366, 367

Blank character, 146, 297, 1025, 1061

Block, 1025
device, 569, 1025
number, 1026
special file, 1025

Blocking factor, 1026
Blowfish encryption, 995
bmp filename extension, 188
Bonjour, 699
Boolean, 1026
Boolean operator, 464

!, 309, 462, 466
&&, 459, 463, 464, 466
|, 978
||, 309, 459, 463, 464, 465
–a, 403, 459
NOT, 466
–o, 459

Boot, 1026
bootstrap, 1026
disk, finding, 514
display problems, 62
dual, system, 514
failure, 520
flag, 72
Linux, 647
loader, 1026
loader, grub, 647
loader, reinstall, 66, 653
netboot, 1049
options, 63
parameter

quiet, 48
specifying, 63
splash, 48
xforcevesa, 62

partition, mounting, 515
recovery mode, 512
safe graphics mode, 62
system, the, 46, 511

boot partition, 32, 646
Bootable flag, 72
Bootstrap, 1026
Bottleneck, network, 377
Bourne, Steve, 276, 1026
Bourne Shell (original), 276, 278, 1026
Brace, 1026

around a variable, 298
expansion, 340
shell functions, 332

1080 Index

Bracket, 1026
character class, 973
filename expansion, 241

Branch, 1026
break control structure, 418, 457
Bridge, network, 1026
Broadcast, 1026

about, 366
address, 1026
network, 356, 1027
packet, 363
unicast, versus, 363

Browse window, 99
Browser, 390

File. See Nautilus
Firefox, 105
Lynx (text only), 392
Mosaic, 391
Mozilla, 389, 391, 392, 1055

BSD. See Berkeley, UNIX
btdownloadcurses utility, 605
btshowmetainfo utility, 606
Buffer, 1027

disk, 518
primary, 113
selection, 113

Bug, 1027
bugtraq, 1002, 1006
defect tracking system, 584
Launchpad, 584
tracking, 584

bugtraq, 1006
Builtin, 243, 398, 444, 1027

. (dot), 279, 449, 457
: (null), 444, 453, 457
[[...]], 460
alias, 328
bash, list of, 457
bg, 237, 291, 457
bind, 326
cd, 193, 213, 289, 301, 307, 457
command, 1027
command editing using fc, 316
declare, 299, 300
dirs, 292
echo, 157, 240, 297, 422, 437, 445
eval, 333, 457
exec, 429, 448, 457
execution of, 312
exit, 105, 438, 453, 457

export, 300, 301, 434, 457, 561
fc, 314
fg, 238, 291, 457
getopts, 454, 457
history, 312, 313
jobs, 138, 238, 290, 292, 457
kill, 138, 238, 452, 454, 522, 524, 680
let, 343, 458
locale, 308
null, 453, 457
popd, 294
pushd, 293
pwd, 188, 193, 457
read, 415, 416, 421, 445, 446, 458
readonly, 299, 300, 301, 458
set, 300, 405, 407, 408, 442, 443, 458
shift, 441, 456, 458
source, 279
test, 397, 398, 399, 403, 407, 410, 412
times, 458
tput, 417
trap, 417, 451, 458
type, 445, 458
typeset, 436
umask, 526
unalias, 328, 331
unset, 299, 332, 458
utility versus, 398
wait, 458

bundle shell script, 428
bunzip2 utility, 160, 164
Button, 110
Button, Logout, 105
by-id directory, 555
Byte, 1027
by-uuid directory, 555
bz2 filename extension, 160, 188
bzcat utility, 161
bzip2 utility, 160, 164, 665
bzip2recover utility, 161

C

c filename extension, 187
C programming language, 1027

about, 8, 9
library

getpwnam() function, 783
getpwuid() function, 783
libwrap, 532

portability, 9

Index 1081

C++ programming language, 10
C89 programming language, 9
Cable

10Base2, 357
10BaseT, 357
Category 5, 357
Category 5e, 357
Category 6, 355, 357
Category 7, 355
coaxial, 357
fiberoptic, 357
glass, 357
modem, 1027
thicknet, 357
thinnet, 357
twisted pair, 357
unshielded twisted pair, 357
UTP, 357

Cache, 1027
Cache, APT, 590
Cache, APT, fixing broken dependencies, 593
Cache, DNS. See DNS, cache
Caching-only server. See DNS, cache
Call by value, 434
Caller ID, 1004
Calling environment, 1027
Calling program, name of, 439
cancel utility, 623
Caret in regular expressions, 974
Cascading windows, 1027
case control structure, 419
Case-sensitive, 1027

domain name, not, 382
filename, 187

cat utility, 147, 227, 229, 230, 280, 402
Category 5 cable, 357
Category 5e cable, 357
Category 6 cable, 355, 357
Category 7 cable, 355
Category, software package, 119
Catenate, 147, 230, 1028
cd builtin, 193, 213, 289, 301, 307, 457
CD. See Alternate CD; Desktop CD; Server CD
CDPATH variable, 307
CERN, 390
CERT, 1002, 1006
CGI, 958
cgi filename extension, 931
Chain loading, 1028

Change
access permission using chmod, 200
directories using cd, 193
filename using mv, 150
password, 135

Character
alphanumeric, 1022
class, 241, 1028
device, 570, 1028
escaping, 287
list. See Character, class
quoting, 287
special file, 1028
typeface, 18

Character-based, 1028
Character-based interface. See Command line;

Textual, interface
Character-based terminal, 1028
Check box, 1028
Check. See tick
checkfs.sh init script, 577
Checkmark. See tick
checkroot.sh init script, 577
Checksum, 1028
Child directory, 185, 186
Child process, 310, 312, 1028
chkargs shell script, 398, 400
chkrootkit utility, 1006
chmod utility, 200, 284
chroot jail

BIND, 870
DNS, 870
FTP, 744
named daemon, 870
running a service in, 537
security considerations, 537
setting up, 534
uchroot.c, 536
using, 534
vsftpd, 744

chsh utility, 525
CIDR, 367, 1029
CIFS, 1029
cifs filesystem, 571
CIPE, 1029
Cipher, 1029
Ciphertext, 992, 1029
Clark, Jim, 391
Class, character, 1028
Class, IP address, 364

1082 Index

Classless Inter-Domain Routing. See CIDR
Clear screen, 171
clear utility, 525
Cleartext, 1029
CLI, 1029. See also Command line; Textual,

interface
Click and right-click, 91
Click object, 91
Click-to-focus, 139
CLID, 1004
Client, 1029
Client, specifying, 528
Client/server model, 253, 380, 382, 390, 532, 729,

781, 799
Clock applet, 95
Close files, bash, 430
CMOS setup, 26
Coaxial cable, 357
coda filesystem, 571
Code, reentrant, 1056
CODEC, 1029
Collating sequence, machine, 1046
Colon (:) builtin, 444
Color

depth, 257, 1029
Pick a Color window, 268
quality, 1029

COLUMNS variable, 426
Combo box, 1029
Comer, Doug, 4
Command, 220, 1029

; separator, 286
argument, 220
builtin, 243, 312, 1027
completion, 324
control flow. See Control, structure
control structure. See Control, structure
editing previous, 315
executing, 312
export, 554
grouping, 286, 289
interpreter, shell, 114
line. See Command line
mode, vim, 174
name, 220
NEWLINE separator, 286
option, 221
process, 338
reexecuting previous, 315

repeating, 139
running remotely, ssh, 715
separation, 286
separator, 287, 400
substitution, 344, 407, 424, 1030
summary, 457
syntax, 220
terminator, 287
usage message, 220, 400, 406

Command line, 136, 220, 1030
advantages of, 137
argument, 220, 439
editing, 322
executing, 225
expansion, 297, 339
interface, 1029. See also Textual, interface
option, 221
parse, 223, 338
processing, 223, 297
syntax, 220
token, 220, 338
whitespace, 287
word, 220, 338

command_menu shell script, 421
Comments, shell scripts, 285
Common UNIX Printing System. See CUPS
Communication

interprocess, 156, 568, 569
network, 370
write, 170

comp.lang.c newsgroup, 389
comp.os.linux.announce newsgroup, 390
comp.os.linux.answers newsgroup, 522, 985
comp.os.linux.misc newsgroup, 389, 390, 522, 985
comp.os.linux.networking newsgroup, 390
comp.os.linux.security newsgroup, 390
comp.os.linux.setup newsgroup, 390
comp.security.firewalls newsgroup, 1001
Compare files using diff, 154
Compiz window manager, 103, 141
Completion

command, 324
pathname, 324
Readline Library, 324
variable, 325

Component architecture, 1030
Compress

bunzip2, 164
bzip2, 160, 164, 665

Index 1083

bzip2recover, 161
compress, 161, 187
gzip, 161
OpenSSH, 727
uncompress, 187
unzip, 161
zip, 161

compress utility, 161, 187
Computer Systems Research Group, 6
Computer, diskless, 1033
Computing, distributed, 379, 1033
Concatenate. See Catenate
Condition code. See Exit status
Conditional expression, 459

example, 431, 455
conf filename extension, 528
config file, 718
Configuration file rules, 528
Configure

and Build System, 607
monitor, 75
video card, 76

configure shell script, 608
Connectionless, protocol, 1030
Connection-oriented protocol, 362, 1030
Console, 1064

recovery mode, 512
security, 488
system, 136
virtual, 64, 136, 1068

Content negotiation, 951
Content, Apache, 916
Context menu, 94
Context menu, object, 115
continue control structure, 418, 457
Control

bars, Nautilus, 262
character, 1030
characters, printer, 422
flow. See Control, structure
job, 237
structure, 396, 1031

break, 418, 457
case, 419
continue, 418, 457
do, 409, 410, 412, 416
done, 409, 410, 412, 416
elif, 403
elif versus fi, 403

else, 400
esac, 419
fi, 396, 400, 403
fi versus elif, 403
for, 409, 410, 453
for...in, 409, 410
if, 396, 400, 403
if...then, 396
if...then...elif, 403
if...then...else, 400
in, 409
select, 425
shell scripts, 283
then, 396, 400, 403
two-way branch, 400
until, 416
while, 412, 448, 453

CONTROL key, 18
control-alt-delete file, 518
CONTROL-C key, 113, 138
CONTROL-D key, 105, 228, 292
CONTROL-H key, 137, 146, 176, 223
CONTROL-L key, 171, 178
CONTROL-M key, 146
CONTROL-Q key, 134
CONTROL-R key, 171
CONTROL-U key, 138, 146, 176, 223
CONTROL-V key, 113, 146
CONTROL-W key, 137, 176, 223
CONTROL-X key, 113, 138
CONTROL-Z key, 138, 237, 291
Conventions

end line key, 18
file naming, 241
used in this book, 17

Convert file to/from Windows format, 159
Cookie, 1031
Coordinated Universal Time. See UTC
Copy

buffer, 113
directory, shell script, 289
file using cp, 149, 198
launcher, 111
object, 100

Copyleft, 5
core file, 684
Correcting typing mistakes, 137
count shell script, 413
cp utility, 149, 198, 289

1084 Index

cp versus ln, 210
cpdir shell script, 289
cpio utility, 664, 665
CPU, 1031

intensive processes, report, 672
required for installation, 26

crack utility, 682
Cracker, 1031
Crash, 519, 1031
Create

directory using mkdir, 191
file using vim, 172
null file, 555

Creation date, file, display using ls, 200
cron daemon, 385, 668
cron script, apt, 590
cron.allow file, 557
cron.d directory, 385, 668
cron.deny file, 557
crontab file, 385, 669
Crontab file, system, 669
Crontab file, user, 669
crontab utility, 385, 557
crontabs directory, 385
crontabs file, 668
Cryptography, 1031. See also Encryption
csh, 1027
CSRG, 6
CSS, 1027, 1031
CUPS, 612

adding a printer, 627
command line interface, 626
configuring a printer, 624
JumpStart, configuring a local printer, 614
JumpStart, configuring a remote printer, 618
lpadmin utility, 627
lpinfo utility, 626
modifying a printer, 627
more information, 613
PPD files, 626
prerequisites, 612
print queue, 629
printing from Windows, 631
printing quotas, 628
printing to Windows, 632
sharing printers, 629
Web interface, 624
winprinter, 617

cups directory, 629

cupsd.conf file, 629
Current, 1032
Current directory. See Working directory
Cursor, 1032
Cut and paste, 113
cut utility, 343
Cycling, window, 112
Cypher, 1029

D

Daemon, 1032
acpid, 384
anacron, 384
apache2, 384
apmd, 384
atd, 384
automount, 384, 819, 820
cron, 385, 668
dhcpcd, 385
dhcpd, 385, 538, 540
exim4, 385
ftpd, 385
gated, 386
gpm, 385
imapd, 776
imap-login, 776
in.fingerd, 371, 385
inetd, 385, 531
init. See Upstart
initng, 500
ipop3d, 776
launchd, 500
lockd, 385
lpd, 385, 612
messages, 565, 679, 684, 688
mountd, 385
named, 385, 859, 860
names, 384
network, 354, 384
nfsd, 385
nmbd, 386, 824, 842
ntpd, 385
pop3-login, 776
portmap, 386, 388, 530
postfix, 998
pppd, 386
prefix in., 384
prefix rpc., 384

Index 1085

printer, 385
procmail, 772
protocol, 384
qrunner, 776
rexecd, 386
rlogind, 1002
routed, 386
rpc.yppasswdd, 797
rquotad, 385
rshd, 1002
sendmail, 386
services, providing, 384
smbd, 386, 824
spamd, 769
sshd, 384, 386, 720
starting, 508
statd, 385
stopping, 508
Superserver. See inetd daemon; xinetd daemon
syslogd, 386, 688
talkd, 386
telnetd, 386, 1002
tftpd, 386
timed, 386
xinetd, 386, 531, 741
ypbind, 788
yppasswdd, 797
ypxfrd, 795

dash Shell, 276
Data

Encryption Standard. See DES encryption
sink, 233
structure, 1032

Database
authentication, 1003
dbm, 1032
DNS, 381
gdbm, 1032
group, 1038
hosts, 383
Linux Software Map, 987
magic number, 565
ndbm, 1032
NIS, 369, 383, 781, 1050
passwd, 658, 1038, 1066, 1067
printcap, 561
search engine, 392
services, 1053
SQL, 1061

system services, 1041
terminfo, 172
whatis, 165

Datagram, network, 355, 1032
Dataless system, 800, 1032
Date, displaying, 157
date utility, 157, 233
dbm database, 1032
DDoS attack, 1032
deb filename extension, 599
deb files, 599
Debian package management system. See dpkg
Debug, 1032
Debugging a shell script, 408
declare builtin, 299, 300
Decorations, window, 141
Decrement operator, 463
Default, 1032
default directory, 557
Default runlevel, 506
defaultdomain file, 785, 786
defaultrouter file, 386
Defect tracking system, 584
Delete

directory using rmdir, 196
file using rm, 148
key, 137
line, 138
link using rm, 214
word, 137

Delete key, 137
Delimiter, regular expression, 972
Delta, SCCS, 1032
Demand mounting, filesystem, 819
Denial of Service. See DOS; DDoS
Dependencies. See Software package, dependencies
depmod utility, 645
Dereference, 1033
DES encryption, 995
Descriptor, file, 280
Descriptor, file, duplicate, 430
Design, top-down, 472
Deskbar applet, 266
Desktop, 91, 106, 1033

See also GNOME; Desktop CD
appearance, 102
directory, 97
manager, 1033
panel. See Panel

1086 Index

Desktop, continued
resolution, changing the, 140
theme, 102
visual effects, 103
window. See Window
workspace, 91
Xfce, 10

Desktop CD, 24, 28
See also Installation
basic installation, 46
checking for defects, 47
function keys, 62
installing software from, 119
ISO image, 37
menu, 62

Detached process. See Background, process
dev directory, 567, 1046
devfs filesystem, 568
Device, 1033

block, 569, 1025
character, 570, 1028
driver, 567, 569, 1033
file, 226, 1033. See also /dev
file, exporting, 811
filename, 1033
hotplug, 568
independence, 14
independent input and output, 13
MD, 74
multidisk, 74
name, 668
names, dynamic (udev), 568
nonrewinding, 668
null, 233
number, major, 569, 1046
number, minor, 569, 1048
physical, 1053
raw, 570
tape, 666
tape, nonrewinding, 668

devpts filesystem, 571
df utility, 800
dhclient utility, 539
dhclient.conf file, 539
dhclient.interface.leases file, 539
DHCP, 538, 1033

client, 539
firestarter and, 889
MAC addresses, 541

more information, 538
packages, 540
prerequisites, client, 539
prerequisites, server, 540
resolv.conf file, and, 562
server, 540
static IP addresses, 541

dhcpcd daemon, 385
dhcpd daemon, 385, 538, 540
dhcpd.conf file, 540
dhcpd3-server init script, 540
Dialog box, 1033
Dial-up connection, 133
Die, process, 312
diff utility, 154, 715
Diffie-Hellman encryption, 994
dig utility, 378, 856, 859, 872
Digital signature, 993
Digital Signature Algorithm. See DSA
Direct Rendering Infrastructure (DRI), 655
Direct Rendering Module (DRM), 655
Directory, 12, 147, 185, 568, 1033

., 193, 567

.., 193, 567

.ssh, 709

.Trash, 100
/ (root), 33, 186, 194
/bin, 194
/boot, 32, 194
/dev, 194, 226, 1046

special files, 567
/etc, 195

alternatives, 557
apache2, 924
apt.conf.d, 590
bind, 866
cron.d, 385, 668
cups, 629
default, 557
event.d, 502, 504
exim4, 766
firestarter, 888
init.d, 507
logrotate.d, 685
opt, 195
pam.d, 545, 548, 560
rc.d, 508
rc?.d, 507
skel, 660

Index 1087

ssh, 709
X11, 74, 195
X11/xorg.conf, 77

/home, 33, 195
/init.d, 561
/lib, 195

modules, 195
security, 545, 547

/lost+found, 520
/mnt, 195
/opt, 33, 195, 607
/proc, 195
/root, 195
/sbin, 195
/sys, 195, 565
/tmp, 195, 425, 684
/usr, 33, 195

bin, 195
doc, 196
games, 196
include, 196
info, 196
lib, 196
lib/terminfo, 1064
local, 33
man, 196
sbin, 384
share, 196
share/doc, 678
src, 196

/var, 33, 196
ftp, 741
log, 196, 565, 684, 982
mail, 684, 761
spool, disk usage, 684
spool, problem solving, 982
tmp, 684
www, 918, 924, 925

~ (home). See Home directory
access permission, 202
alternatives, 557
apache2, 924
apt.conf.d, 590
bin, 195, 302
bind, 866
boot, 32, 646
by-id, 555
by-uuid, 555
change using cd, 193

child, 185, 186
compact, 686
copy, shell script, 289
create using mkdir, 191
cron.d, 385, 668
crontabs, 385
cups, 629
current. See Directory, working
default, 557
delete using rmdir, 196
Desktop, 97
dev, 226, 567, 1046
doc, 130, 196, 678
empty, 185
event.d, 502, 504
exim4, 766
file, 185, 1033
firestarter, 888
folder and, 96
ftp, 741
games, 196
hierarchy, 1033
home, 147, 188, 301, 1040
home, 33, 560
home versus working, 193
important, 554
include, 196
info, 196
init.d, 507
lib, 196
link, 209
list using ls, 147
local, 33, 196
log, 196, 565, 684, 982
logrotate.d, 685
mail, 684, 761
make using mkdir, 191
man, 196
modules, 195
move using mv, 198
moving, 566
opt, 33, 195, 607
pam.d, 545, 548, 560
parent, 185, 186
pathname, 185, 197
proc, 195
public_html, 930
rc?.d, 507, 508
remove using rmdir, 196

1088 Index

Directory, continued
removing unused space, 686
rename using mv, 198
root, 184, 186, 194, 1058
sbin, 195, 196, 384
security, 545, 547
service, 1033
share, 196
skel, 660
spool, disk usage, 684
spool, problem solving, 982
src, 196
ssh, 709
stack manipulation, 292
standard, 194
terminfo, 1064
tmp, 425, 684
Trash, 100
usr, 33
var, 33
working, 188

change using cd, 193
home, versus, 193
relative pathnames, 190
significance of, 190
with, 196

www, 918, 924, 925
X11, 74, 195

dirs builtin, 292
Disk

buffer, 518
capacity planning, 31
extended partition, 31
filesystem, 30
formatting, 30
fragmentation, 683
free space, 30, 683
logical partition, 31
partition, 30, 1052
partition table, 30, 675
partitioning, 31
primary partition, 31
quota system, 687
RAM, 36
space, required for installation, 26
usage, 683
volume label, 525, 576

Diskette, floppy. See Floppy diskette
Diskless, 800, 1033

Display
beginning of a file using head, 152
color depth, 257, 1029
configuring, 75
date using date, 157
end of a file using tail, 152
file using cat, 147
graphical, 1038
hidden filename, 240
machine name, 149
problems when booting, 62
resolution, changing the, 140
sorted file using sort, 153
system load using w, 169
text using echo, 157
uptime using w, 169
user using finger, 167
user using w, 169
user using who, 167

DISPLAY variable, 256
displayconfig-gtk utility, 75
Distributed computing, 379, 818, 1033
Distribution, Linux, 4
dmesg utility, 511, 654
DMZ, 1034
DNS, 369, 381, 1034

$INCLUDE, 863
$ORIGIN, 863
$TTL, 863
A (address) record, 852
AAAA (address) record, IPv6, 852
authority, 848
cache, 851, 854, 864
caching-only server. See DNS, cache
chroot jail, 870
CNAME record, 852
database, 381, 851
db.root file, 866
delegation, 849
dig utility, 378, 856, 859, 872
domain, 846
domain qualification, 863
domain, root, 848
FQDN, 847
full-functioned nameserver, 873
glue, 868
hints zone, 866
host utility, 378, 857

Index 1089

how it works, 857
in-addr.arpa domain, 855
inverse mapping. See DNS, reverse name

resolution
ip6.int domain, 855
iterative query, 849
JumpStart, setting up a DNS cache, 858
log, 872, 875, 877
master server, 850
more information, 858
MX record, 852
named daemon, 385, 858, 859, 860
named.conf file, 860, 874, 879
nameserver, full-functioned, 873
node. See DNS, domain
NS record, 852
nsswitch.conf file, 857
origin. See DNS, zone name
overview, 845
prerequisites, 857
primary master server, 850
PTR record, 852
query, 849, 854
recursive query, 849
resolver, 848
resource record, 851
response, 854
reverse mapping. See DNS, reverse name

resolution
reverse name resolution, 855
root domain, 847, 848
root zone, 866
secondary server, 851
security, 846
server

caching, 864
master, 850
primary master, 850
secondary, 851
slave, 851, 877
split horizon, 878
types of, 850

setting up, 860
slave server, 851, 877
SOA record, 853
split horizon server, 878
subdomain, 848
terminology, 858

time format, 863
transactions signatures. See DNS, TSIG
troubleshooting, 872
TSIG, 868, 873
TTL value, 853
TXT record, 854
zone, 848

file, 863, 866
hint, 866
name, 863
root, 866
section, named.conf, 862

do control structure, 409, 410, 412, 416
doc directory, 130, 196, 678
Document Object Model. See DOM
Document root, Apache, 918
Documentation

finding, 983
online, 379
system, 124

Dollar sign in regular expressions, 974
Dollar sign, use with variables, 297
DOM, 1034
Domain

See also DNS
DNS, defined, 846
in-addr.arpa, 855
ip6.int, 855
name, 381, 1034
Name Service. See DNS
name, not case-sensitive, 382
NIS, 782
root, 848

done control structure, 409, 410, 412, 416
Door, 1034
DOS

convert files, 159
filename, 186
filename extension, 186
mounting filesystems, 573

DoS attack, 1034
dos2unix utility, 159, 736
Double versus single quotation marks, 329
Double-click timeout, mouse, 96
Dovecot, 776
dovecot.conf file, 776
Downloading files using wget, 609
Downloading source code useing apt-get, 598

1090 Index

Downloading Ubuntu, 37
BitTorrent, 37, 39
ISO image, 38
locations, 24
mirrors, 38
verifying an ISO image, 40

dpkg, 584
See also dpkg utility
available file, 599
database, 598
deb file

binary, 599
installing, 599
removing, 600

init script, 613
package information, 599
postinst script, 599
preinst script, 599
source files, 599
status file, 599

dpkg utility, 600. See also dpkg
dpkg-reconfigure utility, 768
DPMS, 1034
Drag, 1034
Drag-and-drop, 1034
DragonSquire utility, 1001
Drawer, 110
DRI (Direct Rendering Infrastructure), 655
Driver, device, 567, 1033
Driver, NTFS, 987
DRM (Direct Rendering Module), 655
Drop-down list, 1035
Druid, 1035
DSA, 995, 1035
DSL, 356, 1035
dsniff utility, 1006
DSO, Apache, 916
Dual monitors, specifying, 75
Dual-boot system, 61, 514
Dump level, 666
dump utility, 666
dumpdates file, 557, 666
Duplex network, 357
Duplicate lines, getting rid of using uniq, 154
DVD, live/install, 24, 29, 46, 67

See also Installation
checking for defects, 47
installing software from, 119
ISO image, 37

Dynamic
device names (udev), 568
Host Configuration Protocol. See DHCP
IP address, 364
shared objects, Apache, 916

E

e2label utility, 525
echo builtin, 157, 240, 297, 422, 437, 445
ed editor, 151
Editions, Ubuntu, 28
Editor, 1035

command line, 322
ed, 151
ex, 306
Readline Library, 322
vim, 172

edquota utility, 687
Edubuntu, 10
Edwards, Dan, 1065
EEPROM, 1035
Effective user ID, 1035
egrep utility, 977
Electronic message, write, 170
Element, 1035
El-Gamal encryption, 994
elif control structure, 403
else control structure, 400
emacs mail, 171
Email. See Mail
Emblems, Nautilus, 117, 262
Emoticon, 1035
Empty regular expression, 976
Emulator, operating system, 7
Emulator, terminal, 114, 133, 270
Encryption, 992

3-DES, 995
AES, 995
algorithm, 992
asymmetric. See Encryption, public key
Blowfish, 995
DES, 995
Diffie-Hellman, 994
digital signature, 993
DSA, 995
El-Gamal, 994
GnuPG, 995
host key, 710
IDEA, 995

Index 1091

implementation, 995
key, 992
man-in-the-middle, 869, 996, 999
MD5, 562
OpenSSH, 710
PEM, 997
PGP, 995
private key, 993
public key, 993
RC5, 995
RSA, 994, 1058
scheme, weaknesses of, 993
secret key, 993
session key, 710
symmetric key, 994
web of trust, 996

End line key, 18
End of file. See EOF
Enquire program, 390
Enter-only input focus, 139
ENV variable, 278
Environment, 1035

calling, 1027
establishing, 561
exec, 449
export, 301, 312, 434
variable, 295

EOF, 170, 228, 1035
EPROM, 1035
Erase key, 137, 223, 554
Erase word key, 223
Error

codes, Apache, 964
correcting typos, 137
message

cannot execute, 225
conditional, 444
mount: RPC: Program not registered,

803, 816
name of calling script, 424
NFS server not responding, 802, 805
not found, 225
redirecting to standard error, 282
Stale NFS file handle, 817
standard error. See Standard, error
system, 565
usage, 220, 400, 406

shell script, 407
standard. See Standard, error
usage message, 220, 400, 406

esac control structure, 419
Escape a character, 146, 287
Escape an end of line, 287
etab file, 815
Ethernet network, 353, 356, 357, 358, 1035
eval builtin, 333, 457
Event, 1035

asynchronous, 1024
control-alt-delete, 518
firestarter, 891
history, 312
modifying previous, 320
number, 313, 317
reexecuting, 314
text, 317
Upstart, 501
words within, 318
X Window System, 253

event.d directory, 502, 504
Evolution utility, 109, 171
ex editor, 306
Exabyte, 1035
Exclamation point, 317
exec builtin, 429, 448, 457
exec() system call, 285
Execute

access, 199, 283, 284
command, 225, 312
permission, 284
shell script, 285

exim.crt file, 778
exim.key file, 778
exim4, 756, 761

See also Mail
.forward file, 764
aliases, 763
–bp option, 765
configuration type, 759, 760
configuration variables, 766
configuring, 765
daemon, 385
directory, 766
dpkg-reconfigure utility, 768
exim4.conf.localmacros file, 766, 778
eximon utility, 765
eximstats utility, 765
file, 765
frozen message, removing, 763
init script, 757

1092 Index

exim4, continued
JumpStart, configuring exim4 to send and

receive email, 760
JumpStart, configuring exim4 to use a

smarthost, 758
local and nonlocal systems, 757
log files, 762
mainlog file, 762
masquerade, 1047
message ID, 761, 762
message, removing, 763
messages, working with, 763
packages, 757
prerequisites, 757
self-signed certificate, 778
sendmail and, 757
smarthost, 756, 759
split configuration, 766
SSL, 778
testing, 760
update-exim4.conf file, 766
variables, configuration, 766

exim4.conf.localmacros file, 766, 778
eximon utility, 765
eximstats utility, 765
exit builtin, 105, 438, 453, 457
Exit from a shell, 292
Exit status, 438, 1036
Expansion

arithmetic, 342
brace, 298, 340
command line, 339
filename, 346
null variable, 443
order of, 297, 339
parameter, 342
pathname, 239, 298, 345, 346
quotation marks, double, 346
tilde, 190, 341
unset variable, 443
variable, 342

Explicit input focus, 139
Exploit, 1036
Export

device file, 811
link, 811
variable, 449

export builtin, 300, 301, 434, 457, 561

exportfs utility, 817
exports file, 809, 812
Expression, 1036

arithmetic, 1023
logical, 1046

ext2 filesystem, 571, 578
ext3 filesystem, 571, 578
Extended partition, 31
Extended regular expression, 978
Extensible Markup Language. See XML
Extension, filename. See Filename, extension
Extranet, 355, 1036

F

Fahlman, Scott, 1060
Failsafe GNOME login, 132
Failsafe session, 1036
Failsafe terminal, 132
Fake RAID, 35
false file, 561
Family tree, 184
fc builtin, 314
FCEDIT variable, 316
fd0 file, 554
FDDI network, 1036
fdformat utility, 574
fdisk utility. See parted
fg builtin, 238, 291, 457
FHS (Linux Filesystem Hierarchy Standard), 12, 194
fi control structure, 396, 400, 403
Fiber Distributed Data Interface. See FDDI
Fiberoptic cable, 357
FIFO special file, 347, 567, 568
File, 12, 1036

.bash_history, 312

.bash_login, 277

.bash_logout, 277

.bash_profile, 277, 313, 554

.bashrc, 190, 277, 554

.cshrc, 1031

.forward, 764

.htaccess, 925, 962

.htpasswd, 962

.inputrc, 325

.login, 1046

.logout, 1046

.netrc, 735

Index 1093

.pgpkey, 168

.plan, 168

.profile, 277, 554, 1054

.project, 168

.rhosts, 373, 1001

.toprc, 673
/bin/false, 561
/boot/grub/menu.lst, 648, 651
/dev

fd0, 554
hda, 554
hdc, 554
nst0, 668
null, 233, 415, 454, 555, 557, 684
pts, 555
random, 556
rmt/0, 666
sda, 554
st0, 668
tty, 450
urandom, 556
zero, 556

/etc
aliases, 557, 681, 763
anacrontab, 384, 670
apt/apt.conf, 590
apt/sources.list, 589
at.allow, 557
at.deny, 557
auto_master, 819
cron.allow, 557
cron.deny, 557
crontab, 385, 669
default

autofs, 820
exim4, 765
nis, 786, 791, 797
syslogd, 690

defaultdomain, 785, 786
defaultrouter, 386
dhcp3/dhclient.conf, 539
dhcp3/dhcpd.conf, 540
dumpdates, 557, 666
event.d/control-alt-delete, 518
exports, 809, 812
fstab, 384, 558, 576, 804, 807
ftpusers, 752
group, 558, 661

hosts, 368, 383, 559, 781
hosts.allow, 531, 532
hosts.deny, 531, 532
hosts.equiv, 372, 1001
init.d/apache2, 918
inittab, 506, 559
issue, 134
lftp.conf, 718
login.defs, 560, 660
logrotate.conf, 685
magic, 565
mailname, 759
motd, 134, 559, 561, 678
mtab, 559
named.conf, 860, 874, 879
nologin.txt, 548, 561
nsswitch.conf, 542, 559, 782
ntp.conf, 385
pam.d, 545
passwd, 412, 516, 560
printcap, 561
profile, 277, 561
protocols, 561, 904
rc.local, 508
resolv.conf, 561, 859
rpc, 388, 562
securetty, 489
security/access.conf, 489
services, 384, 388, 562
shadow, 516, 562
shells, 525
sudoers, 494
syslog.conf, 386, 688
termcap, 1064
vsftpd.chroot_list, 752
vsftpd.user_list, 752
X11/xorg, 74
yp.conf, 787
ypserv.conf, 791

/lib/modules, 643
/proc/mounts, 560
/proc/sys, 636
/usr

local, 196
pub/ascii, 1023
sbin, 196
share/magic, 1046

1094 Index

File, continued
/var

lib/nfs/etab, 815
lib/nfs/rmtab, 816
log

auth.log, 566
lastlog, 196
messages, 196, 545, 565, 679, 684,

982
secure, 545, 982
syslog, 872
vsftpd.log, 752
wtmp, 196, 686

www, 920
access permission, 199, 201
access.conf, 489
alias.conf, 924
aliases, 557, 681, 763
ambiguous reference, 239
anacron, 670
anacrontab, 384, 670
apache2, 918
apt.conf, 590
archive using tar, 161
ascii, 1023
at.allow, 557
at.deny, 557
auth.log, 566
authorized_keys, 709
auto_master, 819
autofs, 820
available (dpkg), 599
backup. See Backup
bashrc, 277
block special, 1025
Browser. See Nautilus
character special, 1028
close (bash), 430
config, 718
configuration, rules, 528
control-alt-delete, 518
copy using cp, 198
core, 684
create using cat, 229
creation date, display using ls, 200
cron.allow, 557
cron.deny, 557
crontab, 669
crontab, 385, 669

crontabs, 668
cupsd.conf, 629
deb, 599
defaultdomain, 785, 786
defaultrouter, 386
delete vs. move to trash, 265
descriptor, 280, 429
descriptor, duplicate, 430
device, 226, 567, 1033. See also /dev
dhclient.conf, 539
dhclient.iinterface.leases, 539
dhcpd.conf, 540
directory, 185, 1033
directory vs. ordinary, 566
display

beginning of using head, 152
end of using tail, 152
using cat, 147

dovecot.conf, 776
dumpdates, 557, 666
empty, creating an, 197
etab, 815
execute permission, 284
exim.crt, 778
exim.key, 778
exim4, 765
exim4.conf.localmacros, 766, 778
exports, 809, 812
false, 561
fd0, 554
FIFO special, 347, 567, 568
finding the package containing a, 587
fstab, 384, 558, 576, 804, 807
ftpusers (vsftpd), 752
gdm.conf, 83
gdm.conf-custom, 83
group, 558, 661
group assignment, 559
group, display using ls, 199
growing, 683
hda, 554
hdc, 554
hierarchical structure, 184
hosts, 368, 383, 559, 781
hosts.allow, 531, 532
hosts.deny, 531, 532
hosts.equiv, 372, 1001
identifying using file, 155
important, 554

Index 1095

index.cgi, 931
index.html, 931
index.php, 931
index.pl, 931
index.xhtml, 931
inittab, 506, 559
issue, 134
job definition (Upstart), 502
known_hosts, 710, 712, 713
large, rotate, 684
lastlog, 196
lftp.conf, 718
link, 209
linux-gate.so.1, 534
list, 147
log, 196, 683, 684
login.defs, 560, 660
logrotate.conf, 685
magic, 565, 1046
mailname, 759
mainlog, 762
Manager. See Nautilus
MD5SUMS.htm, 40
menu.lst, 648, 651
messages, 196, 545, 565, 679, 684, 982
modules, 643
motd, 134, 559, 561, 678
mounts, 560
move using mv, 197
mtab, 559
name. See Filename
named pipe, 347, 567, 568
named.conf, 860, 874, 879
nicknames, 783
nis, 786, 791, 797
nologin.txt, 548, 561
nsswitch.conf, 542, 559, 782
nst0, 668
ntp.conf, 385
null, 233, 415, 454, 555, 557, 684
open, bash, 429
open, finding, 681
opening using Nautilus, 106
order using sort, 153
ordinary, 185, 1051
ordinary vs. directory, 566
owner, 284
owner, display using ls, 199
package, finding in a, 604

package, listing, 604
pam.d, 545
passwd, 412, 516, 560
pathname, 185, 197
permission, 117, 201, 284, 559
pointer to, 209
PPD, 626
printcap, 561
profile, 277, 561
protocols, 561, 904
pts, 555
random, 556
rc.local, 508
rc2, 505
reference, ambiguous, 239, 1022
remove using rm, 148
rename using mv, 197
resolv.conf, 561, 859
rmt/0, 666
rmtab, 816
rotate, 684, 1058
rpc, 388, 562
sda, 554
search for a, 266, 269
secure, 545, 982
securenets, 793
securetty, 489
security, 997
services, 384, 388, 562
shadow, 516, 562
shells, 525
size, display using ls, 199
smb.conf, 832
smbusers, 826
sort using sort, 153
sources.list, 589
sparse, 1061
special, 567, 1028, 1033, 1061
ssh_config, 718
ssh_known_hosts, 709, 712, 713
sshd_config, 722
st0, 668
standard, 194
startup, 188, 277, 554, 679, 1062
status (dpkg), 599
structure, 184
sudoers, 494
symbolic link, 567
sys, 636

1096 Index

File, continued
syslog, 872
syslog.conf, 386, 688
syslogd, 690
tar, 161
temporary, name of, 425
termcap, 1064
terminal, 226
text, 172
trash, moving to, 100
truncate, 555, 684
tty, 450
tty?, 506
type of, discover using ls, 200
types, GNOME, 118
typescript, 158
update-exim4.conf, 766
urandom, 556
user crontab, 669
vsftpd

ftpusers, 752
vsftpd.chroot_list, 752
vsftpd.user_list, 752

vsftpd.log, 752
vsftpd.user_list, 752
window, 226
wtmp, 196, 686
www, 920
xorg.conf, 74, 77
yp.conf, 787
ypserv.conf, 791
zero, 556

file utility, 155, 565, 684
Filename, 185, 1036

/, 186
absolute, 307
ambiguous reference. See File, ambiguous

reference
basename, 189, 1025
case, 18
case-sensitive, 187
change using mv, 150
characters in, 186
choice of, 186
completion, 1036
conventions, 241
defined, 189
device, 1033

DOS, 186
extension, 187, 1036

bmp, 188
bz2, 160, 188
c, 187
cgi, 931
conf, 528
deb, 599
DOS, 186
gif, 188
gz, 161, 188
html, 188, 931
jpeg, 188, 1043
jpg, 188, 1043
MIME and, 106
o, 187
pdf, 187
php, 931
pl, 931
ppd, 626
ps, 187
remove a, 321
tar.bz2, 162
tar.gz, 162
tar.Z, 162, 187
tbz, 162
tgz, 187
tif, 188, 1065
tiff, 188, 1065
torrent, 40, 605
txt, 187, 241
tz, 162
var, 951
xhtml, 931
Z, 161, 187

generation, 13, 239, 1036
hidden, 188, 240, 1040
length, 185, 186, 425, 526
period, leading, 240
quoting, 346
reference, ambiguous. See File, ambiguous

reference
root directory, 186
simple, 189, 190, 224, 1060
temporary file, 425
typeface, 18
unique, 425, 437
Windows, 186

Index 1097

Fileserver, 380, 799
Filesystem, 1036

/proc, 563, 572
active, 662
adfs, 570
affs, 570
autofs, 571, 819
bootable flag, 72
check integrity of, 577
cifs, 571
coda, 571
creating, 525
defined, 183
demand mounting, 819
devfs, 568
devpts, 571
disk, 30
ext2, 571, 578
ext3, 571, 578
filename length, 185, 526
free list, 567, 1037
GFS, 571
hfs, 571
Hierarchy Standard, Linux, 12
hpfs, 571
independence, 31
iso9660, 571
jffs2, 571
journaling, 571, 578, 1043
minix, 571
mount

automatically, 819
demand, 819
point, 30, 820, 1048
remote, 803

mount point, 71, 572, 576
msdos, 571
ncpfs, 571
NFS, 571, 804
ntfs, 571
organize, 184
proc, 563, 571, 572, 666
qnx4, 571
RAID, 34, 73, 572
reiserfs, 571
remote, 354, 1057
repair, 520
romfs, 571

root, 1058
smbfs, 571
Standard, Linux (FSSTND), 12, 194
structure, 12, 183
swap, 32, 564
sysv, 572
types, list of, 570
ufs, 572
umsdos, 572
use, 184
vfat, 572
virtual, 572
VxFS, 572
xfs, 572

Filling, 1036
Filter, 14, 236, 1036
Find

command name using apropos, 165
inode using find utility, 405, 408
string using grep, 151

find utility, 521, 684
finger utility, 167, 370, 371, 385, 411
fingerd daemon. See in.fingerd
Firefox, starting, 105
firestarter

and iptables, 888
default policy, 888
firewall wizard, 889
JumpStart, building a firewall using firestarter,

888
NAT, 889
terminology, 887

firestarter directory, 888
Firewall toolkit, 1007
Firewall, 359, 1037. See also firestarter; iptables
Firmware, 1037
flex utility, 17
Floppy diskette, mount, 573, 574
Focus, desktop, 1037
Focus, input, 112, 139
Folder. See Directory
Font

antialiasing, 1023, 1063
Pick a Font window, 268
preferences, GNOME, 267

Footer, 1037
for control structure, 409, 410, 453
for...in control structure, 409, 410

1098 Index

Foreground, 14, 237
background versus, 237
process, 1037

Fork, 310, 1037
fork() system call, 285, 310, 312, 963
Formatting a hard disk, low-level, 30
FQDN, 369, 382, 847, 1037
Fragmentation, disk, 683
Frame, network, 355, 1037
Free

list, filesystem, 567, 1037
software, definition, 1011
space, disk, 30, 683, 1037
Standards Group (FSG), 194

freedesktop.org group, 260
Freefire, security solutions, 1006
fsck utility, 570, 577
FSG (Free Standards Group), 194
FSSTND (Linux Filesystem Standard), 12, 194
fstab file, 384, 558, 576, 804, 807
FTP

about, 730
active, 730
anonymous, 735
ASCII transfer mode, 736
automatic login, 735
basic commands, 732
binary transfer mode, 736
chroot jail, 744
client, 731
ftp utility, 730, 736
JumpStart, starting a vsftpd server, 741
JumpStart, using ftp to download files, 732
lftp client, 718
more information, 731
passive, 730, 1052
PASV connection, 730
PORT connection, 730
prerequisites, 731
pub directory, 735
security, 730, 736, 741
server, 740
sftp client, 718
tutorial, 732
vsftpd server, 740

ftp directory, 741
ftp utility, 354, 730, 736
ftpd daemon, 385

ftpusers file, 752
Full

backup, 662
duplex, 1038
functioned nameserver, DNS, 873
regular expressions, 977

pipe, 978
plus sign, 978
question mark, 978
summary, 979

Fully qualified domain name. See FQDN
Function, 1038
Function keys, initial install screen, 62
Function, shell, 331, 1059
fuser utility, 575
fwtk utility, 1007

G

Gaim. See Pidgin IM client
games directory, 196
gated daemon, 386
Gateway, 1038

network, 358
proxy, 387

gawk, 411, 412
gcc, 9. See also C programming language
gdbm database, 1032
gdm utility, 82
gdm.conf file, 83
gdm.conf-custom file, 83
gdmsetup utility, 83
GECOS, 1038
GECOS and NIS, 797
Generate filenames, 239
Generic operating system, 8
getfacl utility, 204
gethostbyname() system call, 857
getopts builtin, 454, 457
getty utility, 310, 516
GFS filesystem, 571
GIAC, security certification and training, 1007
GID, 1038

displaying, 499
in /etc/group, 558
in /etc/passwd, 560

gif filename extension, 188
Giga-, 1038
gksudo utility, 491

Index 1099

Global Filesystem, 571
Global variable, 295, 449
Globbing, 239, 345
Glue, DNS, 868
Glyph, 1038
GMT, 1038
GNOME, 89, 259

Applet, 109
Browse window, 99
button, 110
Compiz window manager, 103
desktop, 15, 106
desktop and workspaces, 91
Drawer, 110
file types, 118
focus, input, 112, 139
font preferences, 267
gdm utility, 82
gdm.conf file, 83
gdm.conf-custom file, 83
gdmsetup utility, 83
gparted utility, 53
GTK, 259
input focus, 112, 139
KDE, compared, 259
Launcher, 109
Menu, 110
Metacity window manager, 103, 141
MIME types, 118
Nautilus. See Nautilus
object. See Object
panel. See Panel
partition editor, 53
root window, 106, 113
session manager, 104, 141
Switcher, 93, 94
terminal emulator, 270
terminology, 105
tooltips, 106
window. See Window
workspace, 16, 91, 106
Workspace Switcher, 93, 94

gnome-search-tool utility, 269
gnome-terminal utility, 270
GNU

Configure and Build System, 607
General Public License, 4

GnuPG encryption, 995
GNUStep window manager, 260
manuals, 983
usage message, 221

GnuPG encryption, 995
GNUStep window manager, 260
gopher utility, 390
gparted utility, 53
GPG. See GnuPG encryption
GPL. See GNU, General Public License
gpm daemon, 385
gprof utility, 17
Grand Unified Boot Loader. See grub
Graphical display, 1038
Graphical user interface. See GUI
Graphics card, specifying, 75
Grave accent, 1030
grep utility, 151, 235, 427
Group

about, 558
access, 199
adding, 661
admin and sudo, 496
commands, 286, 289
file assigned to, 559
ID. See GID
name of, display using ls, 199
password, 558
user private, 558
users, 1038
wheel, 549
windows, 1038
www-data, 918

group database, 1038
group file, 558, 661
groupadd utility, 661
groupdel utility, 661
groupmod utility, 661
groups utility, 558
grub, 647

grub-install utility, 653
menu, 512
menu.lst file, 651
reinstalling the boot loader, 66, 653
update-grub utility, 651

grub-install utility, 653
GTK, 259

1100 Index

GUI, 27, 1038
check box, 1028
check. See GUI, tick
checkmark. See GUI, tick
combo box, 1029
dialog box, 1033
drag, 1034
drag-and-drop, 1034
drop-down list, 1035
list box. See GUI, drop-down list
radio button, 1055
root privileges and, 491
scrollbar, 1059
slider, 1060
spin box, 1061
spinner. See GUI, spin box
text box, 1064
thumb, 1065
tick, 1065
tick box. See GUI, check box
WYSIWYG, 1069
X Window System, 15, 74

Guided partitioning, 31, 50, 56
gunzip utility, 161
gz filename extension, 161, 188
gzip utility, 161

H

–h option, 129
Hacker, 1039
Half duplex, 1039
Half-duplex network, 357
halt utility, 518, 519
Hard disk. See Disk
Hard link, 1039, 1045

create using ln, 566
remove using rm, 214
versus symbolic link, 567

Hardcoded filename in shell scripts, 424
Hardware required for installation, 25
Hardware required for visual effects, 25
Hardware, listing, 525
Hardware, listing PCI information, 696
Hash, 1039

one-way, 1051
SHA1 algorithm, 1059
table, 1039

hda file, 554
hdc file, 554
head utility, 152
Header, document, 1039
Help

apropos utility, 126
Center, Ubuntu, 104
documentation, 124
error messages, 130
finding answers, 389
from the Internet, 130
getting, 983
GNU manuals, 131
HOWTOs, 129
info pages, 126
Linux Documentation Project, 129, 131
local, 130
man pages, 124
netnews, 389
option, 129
Ubuntu Help Center, 124
Ubuntu Web site, 130
window (Ubuntu), 124

––help option, 129
–help option, 129
Here document, 427, 428, 1039
Hesiod, 1039
Heterogeneous, 1039
Heterogeneous network, 781
Hexadecimal number, 1039
hfs filesystem, 571
Hidden filename, 188, 1040

display, 240
not displayed with ?, 240

Hierarchical file structure, 184
Hierarchy, 1040
HISTFILESIZE variable, 312
History, 1040

C Shell mechanism, classic, 316
event

editing, 315
number, 317
previous, !$ last word of, 319
previous, modifying, 320
reexecuting, 315
text, 317
words within, 318

mechanism, 312

Index 1101

viewing, 314
word designator, 318

history builtin, 312, 313
HISTSIZE variable, 312
Home directory, 188, 301, 1040

.bash_history file, 312

.bash_login file, 277

.bash_logout file, 277

.bash_profile file, 277, 313

.bashrc file, 190, 277

.forward file, 764

.inputrc file, 325

.netrc, 735

.profile file, 277

.rhosts, 1001

.ssh, 709
~, shorthand for, 190, 301
automount, 818
defined, 147
hidden file, 188
passwd and, 560
startup file, 188
working directory, versus, 193

home partition, 33
HOME variable, 296, 301, 453
Host

address, 363
key, OpenSSH, 710
security, 1001
specifying, 528
trusted, 372

host utility, 378, 857
Hostname

about, 848
resolution, 559
symbolic, 383

hostname utility, 149, 370
hosts database, 383
hosts file, 368, 383, 559, 781
hosts.allow file, 531, 532
hosts.deny file, 531, 532
hosts.equiv file, 372, 1001
Hotplug system, 568
Hover, 1040
HOWTO documents, finding, 129
hpfs filesystem, 571
hping utility, 1007
HTML, 390, 1040

html filename extension, 188, 931
HTML suffix, 391
HTTP protocol, 391, 1041
HTTPS protocol, 391, 959
Hub, 357, 1041
Humor, 5, 1000, 1060
hunk (diff), 154
HUP signal, 680
Hypermedia, 391
Hypertext, 391, 1041

link, 391
Markup Language. See HTML
Transfer Protocol. See HTTP
World Wide Web, 391

I

I/O device. See Device
IANA, 384, 1041
ICMP packet, 376, 1041
icmp_seq, 376
Icon, 1041
Iconify, 1041
ICQ, 354
id utility, 492, 499
IDEA encryption, 995
IDS

about, 1001
AIDE, 1001
DragonSquire, 1001
samhain, 1001
tripwire, 1001

if control structure, 396, 400, 403
if...then control structure, 396
if...then...elif control structure, 403
if...then...else control structure, 400
ifconfig utility, 541
IFS variable, 305
Ignored window, 1041
IMAP, 776
imapd daemon, 776
imap-login daemon, 776
in control structure, 409
in.fingerd daemon, 371, 385
in-addr.arpa domain, 855
include directory, 196
Increment operator, 463
Incremental backup, 662

1102 Index

Indentation. See Indention
Indention, 1041
index.cgi file, 931
index.html file, 931
index.php file, 931
index.pl file, 931
index.xhtml file, 931
Indirect pointer, 212
inetd daemon, 385, 531
Infinite recursion, alias, 328
info directory, 196
info utility, 126, 243, 983
Information. See More information
Infrastructure mode, wireless, 695
init daemon. See Upstart
Init script, 507

anacron, 668, 670
apache2, 917
autofs, 819
bind9, 857
checkfs.sh, 577
checkroot.sh, 577
dhcpd3-server, 540
dpkg, 613
exim4, 757
mailman, 776
nfs-common, 802
nfs-kernel-server, 808
nis, 785
samba, 825
spamassassin, 769
ssh, 720
sysklogd, 690
vsftpd, 740

init utility, 310, 559
init.d directory, 507
initctl utility, 502
initng daemon, 500
inittab file, 506, 559
Inode, 212, 566, 1041

altering using mv, 566
create another reference using ln, 566
file, 566
filesystem, 212
links shell script, 404
number, 566

Input, 1041
focus, 112, 139
mode, vim, 174
standard. See Standard, input

Input/Output device. See Device
INPUTRC variable, 325
insmod utility, 645
Installation, 23, 36

See also Desktop CD; Alternate CD; Server
CD; DVD live/install

BIOS setup, 26
boot parameters, 63
CD/DVD, burning, 40
CD/DVD, checking for defects, 47
clean install, 29
CMOS setup, 26
computer, 1042
CPU, 26
disk setup, 50, 53, 56
disk space, 26
display, configuring, 75
dual monitors, 75
dual-boot system, 61
formatting, low-level, 30
free space, 30
function keys, 62
graphical

final step, 52
guided partitioning, 50, 56
installer, 48
keyboard, 50
language, 48
migrating documents and settings, 51
partitioning, 50, 53, 56
partitioning, manual, 57
Ready to install screen, 52
system, 48
time zone, 50
user, first, 51

guided partitioning, 31
hardware requirements, 25
installer interface, 28
low-level formatting, 30
MD5SUMS.htm file, 40
minimal RAM, 25
monitor, configuring, 75
partition, 30
partition planning, 31
planning, 25
processor architecture, 26
RAID, 73
RAM, 26
starting, 46

Index 1103

textual installer, 67
textual system, 65
upgrading versus installing, 29
video card, configuring, 76
virtual console, 64
X Window System, configuring, 75

Installing KDE, 60
Installing software packages, 585
Installing Ubuntu. See Installation
Instant messenger, 105
Integrated Services Digital Network. See ISDN
Integrity, filesystem, 577
Interactive, 1042
Interface, 1042

character-based. See Command line; Textual,
interface

command line. See Command line; Textual,
interface

graphical user, see GUI
pseudographical, 27, 137
textual. See Command line; Textual, interface
user, 1042, 1067

Internal Field Separator. See IFS variable
International Organization for Standardization. See

ISO
Internet, 17, 1042

Assigned Numbers Authority. See IANA
browser, 390
connection sharing, 908
Control Message Protocol. See ICMP
looking up a user, 378
multiple clients on a single connection, 910
multiple servers on a single connection, 912
netiquette, 1049
netnews. See Netnews
network, 354
Printing Protocol. See IPP
Protocol Security. See IPSec
Protocol. See IP; TCP/IP
Relay Chat, 354
search engine, 392
service provider. See ISP
services, 388
sharing a connection, 908
speed, 355
URI, 1067
URL, 391, 1067
Usenet, 391

internet (small i), 1042

Internetwork, 354
InterNIC, 378
Interprocess communication, 14, 156, 568, 569
Interrupt key, 138, 451
Intranet, 354, 1042
Intrusion detection system. See IDS
Invisible file. See Hidden filename
IP, 1042

address, 363, 382, 1042
address, static, 541
class, address, 364
IPng, 369
IPv6, 369, 999, 1018
masquerading, 897, 906, 910
multicast. See Multicast
Next Generation, 369
spoofing, 1043
version 6. See IP, IPv6

ip6.int domain, 855
IPC, 1043
ipchains utility, 896
ipop3d daemon, 776
IPP protocol, 612
IPSec, 999, 1016
iptables, 885

ACCEPT target, 906
building a set of rules, 901
chain policy, 902
chain, about, 896
classifiers. See iptables, match
command line, 900
commands, 901
connection tracking, 898, 905
conntrack module, 898
display criteria, 903
DNAT target, 897, 906
DROP target, 906
Filter table, 897
firestarter and, 888
how it works, 896
Internet connection sharing, 908
IP masquerading, 910
iptables-restore utility, 907
iptables-save utility, 907
jump, 901
LOG target, 906
Mangle table, 897
masquerade, 1047
MASQUERADE target, 897, 906

1104 Index

iptables, continued
match, 896

criteria, 900
extension, 903

explicit, 905
implicit, 904

more information, 899
NAT table, 897
netfilter, 896
network packet, 897
non-terminating target, 901
packet match criteria, 900, 903
patch-o-matic, 885
policy, 902
prerequisites, 899
protocols file, 904
REJECT target, 907
resetting rules, 899
RETURN target, 907
router, 908
rule

about, 896
defined, 896
match criteria, 900
number, 900
saving, 907
specification, 900

sharing an Internet connection, 908
SNAT target, 897, 907, 910
state machine, 898, 905
target, 896, 901, 906

iptables-restore utility, 907
iptables-save utility, 907
IPv6, 369, 1043

address record, DNS, 852
in 2.6 kernel, 1018
ping6, 376
traceroute6, 377

IRC, 354
IRC, Ubuntu channels, 131
is_regfile shell script, 399
ISC2 security certification, 1007
ISDN, 356, 1043
ISO, 1043

image, 37
ISO9660 filesystem, 571, 1043
protocol model, 361

ISP, 1043
issue file, 134
iwconfig utility, 700

J

jffs2 filesystem, 571
Job, 237

control, 14, 290, 1043
bg builtin, 291
fg builtin, 291
how to use, 237
jobs builtin, 290

number, 237, 238
stop foreground, 237
Upstart, 501, 503
Upstart, definition files, 502, 504

jobs builtin, 138, 238, 290, 292, 457
John the Ripper utility, 1007
Journaling filesystem, 571, 578, 1043
Joy, Bill, 1027
JPEG, 1043
jpeg filename extension, 188, 1043
jpg filename extension, 188, 1043
JumpStart

Apache, getting up and running, 919
aptitude, installing and removing packages, 585
DNS, setting up a cache, 858
exim4, configuring to send and receive email,

760
exim4, configuring to use a smarthost, 758
firestarter, building a firewall, 888
ftp, downloading files, 732
NFS server, configuring using shares-admin,

809
NFS, mounting a remote directory, 803
OpenSSH, starting the sshd daemon, 720
OpenSSH, using ssh and scp, 711
printer, configuring a local, 614
printer, configuring a remote, 618
shares-admin, configuring a Samba server, 826
vsftpd, starting a server, 741

Justify, 1043
jwhois utility, 378

K

K&R, 9
KDE, 89, 259

Adept package manager, 592
compated to GNOME, 259
desktop, 15
installing, 60

Index 1105

kdesu utility, 491
Kubuntu, 10
portability, 259
Qt toolkit, 259

kdesu utility, 491
Kerberos, 1003, 1007, 1044
Kernel, 6, 1044

/proc filesystem, 563
2.4, 1015
2.6 features

2TB filesystem, 1020
4GB-4GB memory split, 1019
ACL, 1019
AIO, 1016
asynchronous I/O, 1016
BIO, 1019
block I/O, 1019
hugeTLBFS, 1018
HyperThreaded CPUs, 1019
I/O elevators, 1020
IGMPv3, 1018
interactive scheduler response tuning,

1020
Internet Protocol virtual server, 1019
IPSec, 1016
IPv6, 1018
IPVS, 1019
kksymoops, 1017
native Posix thread library, 1016
network stack features, 1018
NPTL, 1016
O(1) scheduler, 1017
OOPS, 1017
OProfile, 1017
PAE, 1019
physical address extension, 1019
remap_file_pages, 1018
reverse map virtual memory, 1017
rmap VM, 1017
TLBFS, 1018
translation look-aside buffer file system,

1018
XFS journaling filesystem, 1020

2.6 release, 1015
booting, 511
building, 635
configuring, 639
dmesg utility, 654
installing compiled, 646

messages, 654
messages, saving, 511
module. See Loadable module
network packet filtering. See iptables;

firestarter
packet filtering. See iptables; firestarter
parameter, 636
programming interface, 10
raw device, 570
source code, installing, 637
special files, 567

kernelspace, 1044
Kernighan & Ritchie, 9
Key

BACKSPACE, 137
binding, 1044
CONTROL, 18
CONTROL-C, 113, 138
CONTROL-D, 105, 228, 292
CONTROL-H, 137, 146, 176, 223
CONTROL-L, 171, 178
CONTROL-M, 146
CONTROL-Q, 134
CONTROL-R, 171
CONTROL-U, 138, 146, 176, 223
CONTROL-V, 113, 146
CONTROL-W, 137, 176, 223
CONTROL-X, 113, 138
CONTROL-Z, 138, 237, 291
Delete, 137
encryption, 992
end line, 18
ENTER, 18
erase, 137, 223, 554
interrupt, 138
kill, 138, 223
line kill, 138, 223
META, 1047
NEWLINE, 18, 286, 287
RETURN, 18, 19, 137, 223, 286
SPACE bar, 146
suspend, 138, 178, 237, 291, 451
TAB, 146
typeface, 18
word erase, 223

Keyboard, 1044
graphical installation, 50
move cursor to the next line, 18

Keyword variable, 296, 301

1106 Index

Keyword, searching for using apropos, 165
Kill (line) key, 138, 223
kill builtin, 138, 238, 452, 454, 522, 524, 680
Kill process, 522, 523, 524
KILL signal, 680
killall utility, 524
kilo-, 1044
known_hosts file, 710, 712, 713
Korn, David, 276, 1044
Korn Shell, 276, 1044
ksh, 276, 1044
Kubuntu, 10, 60, 89
KVM, 7

L

L6 utility, 1007
LAN, 17, 357, 1044

compared to an intranet, 354
configuring, 693
example, 359
more information, 703
setting up, 694

Language, graphical installation, 48
Language, procedural, 466
Language, used by the system, 132
Large number, 1044
Last in first out stack, 292
Last Line mode, vim, 175
lastlog file, 196
launchd daemon, 500
Launcher, 109, 111
Launching applications, 92
Launchpad, 584
LBX, 363
LCD monitor, subpixel smoothing, 268
LDAP, 1044
ldd utility, 532
Leaf, 1044
Least privilege, 488, 1045
Left-click, 91
Left-handed mouse, 95, 258
Length of filename, 186, 526
less utility, 125, 148, 236, 288, 402
let builtin, 343, 458
lftp utility, 718
lftp.conf file, 718
lib directory, 196
Library, libwrap, 532

Library, listing with ldd, 532
libwrap library, 532
lids utility, 1007
LIFO stack, 292
Lightweight Directory Access Protocol. See LDAP
Line kill key, 138, 223
Line Printer Daemon. See lpd daemon
LINES variable, 426
Link, 12, 209, 1045

alternatives directory, 557
create using ln, 210
delete using rm, 214, 567
exporting, 811
hard, 566, 567, 1039, 1045
hard versus symbolic, 210, 212
hypertext, 391
inode, 566
number of, display using ls, 199
point-to-point, 1053
remove using rm, 214, 567
soft. See Link, symbolic
symbolic, 567, 1045

bash and, 213
create using ln, 213
versus hard, 210, 212

symlink. See Link, symbolic
utility naming, 557

links utility, 392
Linux

2.6 kernel. See Kernel
boot, 647
distribution, 4
documentation, 124
Documentation Project, 129, 131
FHS (Filesystem Hierarchy Standard), 12, 194
FSSTND (Filesystem Standard), 12, 194
kernel. See Kernel
LSB (Standard Base), 194
manual, 126
newsgroup, 522, 985
PAM. See PAM
Pluggable Authentication Modules. See PAM
Software Map database, 987
Terminal Server Project, 800

linux terminal name, 989
linux-gate.so.1 file, 534
LinuxSecurity.com security news, 1007
List box. See drop-down list
List server, 372, 985

Index 1107

Listserv, 372, 985
Live session, 47
Live/install CD. See Desktop CD
Live/install DVD. See DVD, live/install
ln utility, 210, 213, 566
ln utility versus cp, 210
lnks shell script, 404
Load average, display using w, 169
Loadable module, 643, 1045
Loader, boot. See grub
Local area network. See LAN
local directory, 33, 607
local file, 196
Local variable, 312, 434, 449
Locale, 1045
locale builtin, 308
localhost, 369, 559
Location bar, Nautilus, 263
lock utility, 417
lockd daemon, 385
locktty shell script, 417
Log

Apache, 924
DNS, 872, 875, 877
email, 762
exim4, 762
file, check, 683
file, rotate, 684
files, 196
in. See Login
machine, 681
OpenSSH, 724
out, 517, 1046
syslogd daemon, 386
system, 386
vsftpd, 749

log directory, 196, 565, 684, 982
Logical

expression, 1046
partition, 31
Volume Manager. See LVM

Login, 516, 1046
failsafe GNOME, 132
failsafe terminal, 132
name. See Username
options, 89, 132
problems, 133, 679
prompt, 134, 516
remote, 133, 134

root, 1058
screen, 89, 132
security, 1002
shell, 310, 517, 561, 1046
Window Preferences window, 82

login utility, 310, 516
login.defs file, 560, 660
Logout button, 105
logresolve utility, 938
logrotate utility, 684
logrotate.conf file, 685
logrotate.d directory, 685
Loopback service, 559
lost+found directory, 520
lp utility, 623
lpadmin utility, 627
lpd daemon, 385, 612
lpinfo utility, 626
lpq utility, 151, 623
LPR line printer system, 612
lpr utility, 151, 235, 237, 623
lprm utility, 151, 623
lpstat utility, 151, 623
ls utility, 147, 192, 199, 202, 211, 240, 284
LSB (Linux Standard Base), 194
lshal utility, 697
lshw utility, 525, 696
lsmod utility, 645
lsof utility, 681
lspci utility, 696
LTS release, 28
LVM, 35

LV, 35
PV, 35
VG, 35

LWN.net security alerts, 1007
lynx text browser, 392

M

MAC address, 541, 1046
Machine

collating sequence, 1046
independence, 9
log, 681
name, display using hostname, 149

Macro, 1046
magic file, 565, 1046
Magic number, 565, 1046

1108 Index

magic number database, 565
Mail

.forward file, 764
aliases, 557, 763
authenticated relaying, 777
checking root’s, 683
communicating with users, 677
delivery agent, 385, 386
Dovecot, 776
IMAP, 776
JumpStart, configuring exim4 to send and

receive email, 760
JumpStart, configuring exim4 to use a

smarthost, 758
list server, 372, 985
log, 762
mailbox, 303
maildir format, 762
mailing list, 774
Mailman, 775
mailq utility, 765
mbox format, 761
MDA, 755, 1047
more information, 758
MTA, 755, 997, 1048
MUA, 385, 386, 755, 998, 1048
network addresses, 172
newaliases utility, 764
POP3, 776
Postfix, 779
postmaster, 683
prerequisites, 757
Qmail, 779
security, 997

GnuPG, 997
MTA, 997
MUA, 998
PEM encryption, 997

self-signed certificate, 778
sending to a remote user, 371
SMTP, 755
spam, 378
SpamAssassin. See SpamAssassin
SquirrelMail, 772
SSL, 778
Webmail, 772

mail directory, 684, 761
mail utility, 171

MAIL variable, 303
Mailbox, 303
MAILCHECK variable, 303
maildir format, 762
Mailing list, 774
Mailman, 775
mailman init script, 776
mailname file, 759
MAILPATH variable, 303
mailq utility, 765
Main memory, 1046
Main menu, 92, 110
main software package category, 588
Main toolbar, Nautilus, 263
Mainframe computer, 7
mainlog file, 762
Maintenance. See System administration
Major device number, 569, 1046
make utility, 162
makedbm utility, 793
MAN, 358, 1047
man directory, 196
man utility, 14, 124, 128
Manager

File. See Nautilus
session, 104, 141
window, 141

mandb utility, 165
Man-in-the-middle, 869, 996, 999
Manuals

finding reference, 983
GNU, 131, 983
HOWTO, 129
man, 124
system, 124

Map file, 820
Masquerading, IP, 897, 906, 910, 1047
Massachusetts Institute of Technology. See MIT
Master Boot Record (MBR), 511, 647, 653
Master server, DNS, 850
mbox format, 761
MBR, 511, 647, 653
MD device, 74
MD5 encryption, 562, 1047
md5sum utility, 40
MD5SUMS.htm file, 40
MDA, 755, 1047
Mega-, 1047

Index 1109

Memory
See also RAM
main, 1046
paging, 564
testing, 62
virtual, 564

memtest86+ utility, 62
Menu, 110, 1047

Actions, 132
context, 94, 115
grub, 512
Main, 110
Object Context, 115
Panel Object Context, 110
panel. See Panel
shell script, 421

menu.lst file, 648, 651
Menubar, Nautilus, 262, 263
Merge, 1047
mesg utility, 171
Message

daemon, 565, 688
deny using mesg, 171
Digest 5. See MD5
ID, exim, 761, 762
of the day. See motd file
security, 566
sending

email, 677
wall, 677
write, 170, 677

system, 565, 679
truncating, 684
usage, 220, 400, 406, 424, 1067

messages file, 196, 545, 565, 679, 684, 982
META key, 1047
Metabit, 1023
Metacharacter, 239, 1047
Metacity window manager, 103, 141
Metadata, 1047
Metapackage, 592
Method of last resort, kill, 523
Metropolitan area network, 358, 1047
Microprocessor, 8
Middle mouse button, 113
MIME, 106, 118, 1048
mingetty utility, 310
Minicomputer, 7
mini-HOWTO documents, finding, 129

Minimize window, 1048
MINIX, 4
minix filesystem, 571
Minor device number, 569, 1048
misc.jobs.offered newsgroup, 389
Mistake, correct typing, 137
MIT, 15

Project Athena, 252
X Consortium, 252

MITM. See Man-in-the-middle
mkdir utility, 191, 192, 193, 803
mkfifo utility, 568
mkfs utility, 525, 574
mkswap utility, 564
Modem, 1048
Modem, cable, 1027
modinfo utility, 645
modprobe utility, 645
Module. See Loadable module
modules directory, 195
modules file, 643
Monitor

configuring, 75
dual, 75
LCD, subpixel smoothing, 268

More information
DHCP, 538
DNS, 858
email, 758
FTP, 731
iptables, 899
LAN, setting up a, 703
NFS, 802
NIS, 784
OpenSSH, 711
PAM, 546
Samba, 825
security, 1006
system administration, 522

more utility, 148, 236, 402
Morris, Robert T. Jr., 1004
Mosaic Web browser, 391
motd file, 134, 559, 561, 678
Mount, 1048

automatic, 384, 819, 1024
floppy diskette, 573
point, 30, 71, 572, 576, 820, 1048
remote filesystem, 803
table, 558

1110 Index

mount utility, 559, 572, 573, 803, 841
mountd daemon, 385
mounts file, 560
Mouse, 1048

click, 91
double-click timeout, 96
left-handed, 95, 258
middle button, 113
mouseover, 1048
pointer, 1048
pointer, hover, 1040
preferences, setting, 95
remap buttons, 258
right-click, 94
right-handed, 258
wheel, 258

Mouseover, 1048
Move

directory using mv, 198
file using mv, 197
window, 96

Mozilla
history of, 391, 392
netnews, 389
proxy, 1055

MS Windows. See Windows
msdos filesystem, 571
mt utility, 668
MTA, 755, 997, 1048
mtab file, 559
MUA, 755, 998, 1048
Multiboot specification, 1048
Multicast, 365, 1049
multidisk device, 74
Multipurpose Internet Mail Extension. See MIME
Multitasking, 11, 237, 1049
Multiuser, 11, 515, 1049
multiverse software package category, 588
Multiviews, 952
mv utility, 150, 197, 566
MX record, DNS, 852

N

Name
command, 220
daemons, 384
domain. See Domain, name
login. See Username

server, 381, 382
variable, 295

named.conf file, 860, 874, 879
named daemon, 385, 859, 860
Named pipe, 347, 567, 568
Namespace, 1049
NAT, 889, 897, 1049
National Center for Supercomputer Applications,

391
Nautilus, 96

control bars, 262
emblems, 117, 262
file permissions, 117
file, open with, 106
history, 262
location bar, 263
Main toolbar, 263
menubar, 262, 263
open file with, 106
Open With selection, 118
places, 262
Side pane, 261
Status bar, 263
toolbar, Main, 263
Vew pane, 261

NBT, 1049
ncpfs filesystem, 571
ndbm database, 1032
nessus utility, 1007
net use utility (Windows), 842
net utility, 824
net view utility (Windows), 842
NetBIOS, 1049
Netboot, 800, 1049
netcat utility, 1007
Netiquette, 1049
Netmask, 1049
Netnews, 388

See also Newsgroup
answers, finding, 389
Mozilla News, 389
Netscape News, 389
nn utility, 389
readnews utility, 389
rn utility, 389
tin utility, 389
xrn utility, 389
xvnews utility, 389

Index 1111

Netscape, 391
Navigator, 391
netnews, 389

netstat utility, 365
Network

@ in an address, 370, 371
@ with email, 371
100BaseT cable, 357
10Base2 cable, 357
10BaseT cable, 357
address, 1050

@ in, 370, 371
@ sign in, 371
email, 172
mask, 367
space, private, 697, 1054

Address Translation. See NAT
Bonjour, 699
boot, 1049
bottleneck, 377
broadcast, 356, 1026, 1027

address, 1026
multicast, compared, 366
packet, 363
unicast, compared, 363

browser, 390
Category 5 cable, 357
Category 5e cable, 357
Category 6 cable, 355, 357
Category 7 cable, 355
class, IP address, 364
coaxial cable, 357
configuring, 700
connection, test using ping, 375
daemon, 354, 384
datagram, 355, 1032
DNS. See DNS
domain name, 381
duplex, 357
dynamic IP address, 364
Ethernet, 353, 356, 357, 358, 1035
extranet, 355, 1036
FDDI, 1036
fiberoptic cable, 357
fileserver, 799
Filesystem. See NFS
firewall. See Firewall
frame, 355, 1037
gateway, 358, 1038

half-duplex, 357
heterogeneous, 781
hops, 376
host address, 363
hostname, FQDN. See FQDN
hostname, nickname, 369
hub, 357, 1041
ICMP packet, 1041
Information Service. See NIS
interface card. See Network, NIC
Internet, 354
intranet, 354
IP

address, 363
address class, 364
Next Generation, 369

local area. See LAN
manager applet, 700
metropolitan area, 358, 1047
multicast, 365, 1049
nameserver, 381, 382
netmask, 1049
netnews. See Netnews
newsgroup, 389
NIC, 694, 695
number. See Network, address
packet, 355, 376, 1051
packet filtering, 1052. See also iptables
packet sniffer, 1052
partner net, 355
ping to test, 375
point-to-point link, 356
port forwarding, 1053
PPP protocol, 363
private address space, 697, 1054
privileged port, 1054
protocol, 361
remote filesystem, 354
resolver, 382
route trace, 376
router, 358, 359, 695, 1058
router, SmoothWall Linux distribution, 695
security, 998, 999
segment, 357, 1050
services, 354, 384
setting up, 694
SLIP protocol, 363
sniff, 1060
socket, 569

1112 Index

Network, continued
static IP address, 364
subnet, 367, 1062

about, 367
address, 1063
mask, 367, 1063
number, 1063
specifying, 529

switch, 356, 357, 1050
TCP/IP protocol, 361
thicknet cable, 357
thinnet cable, 357
Time Protocol. See NTP
token ring, 1065
topology, shared, 1059
trace route, 376
transfer rate, 357
trusted hosts, 372
tunneling, 1066, 1068
twisted pair cable, 357
UDP, 361, 1066
unicast, 363, 1066
unicast vs. broadcast, 363
unshielded twisted pair cable, 357
user communication, 370
utilities, 354, 372
UTP cable, 357
virtual private, 355
VPN, 355, 1068
WAN. See WAN
WAP, 694
wide area. See WAN
Wi-Fi, 1069. See also Wireless
wireless. See Wireless
Zeroconf, 699

newaliases utility, 764
NEWLINE key, 18, 286, 287
newlist utility, 775
News, Internet. See Netnews
Newsgroup

See also Netnews
archive, groups.google.com, 389
comp.lang.c, 389
comp.os.linux.announce, 390
comp.os.linux.answers, 522, 985
comp.os.linux.misc, 389, 390, 522, 985
comp.os.linux.networking, 390
comp.os.linux.security, 390
comp.os.linux.setup, 390

comp.security.firewalls, 1001
hierarchical structure of, 389
list of, 985
misc.jobs.offered, 389
names of, 389
rec.skiing, 389
sci.med, 389
soc.singles, 389
talk.politics, 389

NFS, 799, 800, 1050
all_squash option, 815
attribute caching options, 804
block size, 806
client, setting up, 802
daemons, 385
data flow, 801
error handling options, 805
error message

mount: RPC: Program not registered,
803, 816

NFS server not responding, 802, 805
Stale NFS file handle, 817

etab file, 815
exchanging files, 702
exportfs utility, 817
exporting device files, 811
exporting directory hierarchies, 811
exports file, 812
filesystem, 571
fstab file, 804, 807
home directories, 702
init script, 808
JumpStart, configuring an NFS server using

shares-admin, 809
JumpStart, mounting a remote directory, 803
line speed, testing, 807
miscellaneous options, 806
more information, 802
mount utility, 803
mounting a filesystem, 803
NIS and, 814
options

all_squash, 815
attribute caching, 804
error handling, 805
miscellaneous, 806
root_squash, 814

performance, improving, 806
portmap utility, 802, 808, 818

Index 1113

prerequisites, 802, 808
rmtab file, 816
root_squash option, 814
security, 802
server–server dependency, 819
setuid, 803
showmount utility, 816
testing, 818
timeout, 806
umount utility, 804
user ID mapping, 814
version 4, 802

nfs-common init script, 802
nfsd daemon, 385
nfs-kernel-server init script, 808
NIC, 382, 694, 695, 1050
Nickname, host, 369
nicknames file, 783
NIS, 369, 781, 782, 1050

adding users, 790
client setup, 784
client, test, 787
database, 369, 383, 1050
domain, 782
domain name, 786, 1050
GECOS, 797
login, 516
makedbm utility, 793
Makefile, 793
map, 783
master server, 782
more information, 784
NFS and, 814
nicknames file, 783
nisdomainname utility, 786
passwd utility, 789
prerequisites, client, 785
prerequisites, server, 790
removing users, 790
rpcinfo utility, 788
securenets file, 793
server setup, 790
server specify, 787
slave server, 782
source files, 782
testing, 796
Yellow Pages, 782
yp.conf file, 787
ypinit utility, 795

yppasswd utility, 788
yppasswdd daemon, 797
ypserv.conf file, 791
ypwhich utility, 787
ypxfr utility, 795
ypxfrd daemon, 795

nis file, 786, 791, 797
nis init script, 785
nisdomainname utility, 786
nmap utility, 1007
nm-applet utility, 700
nmbd daemon, 386, 824, 842
nmblookup utility, 842, 843
nn utility, 389
NNTP, 389, 1050
noacpi boot parameter, 64
noapic boot parameter, 64
noapm boot parameter, 64
noclobber variable, 231
Node, 694, 1050
nologin utility, 561
nologin.txt file, 548, 561
Nonprinting character, 1051
Nonrewinding tape device, 668
Nonvolatile storage, 1051
Normal mode, vim. See vim, Command mode
NOT Boolean operator, 466
nsswitch.conf file, 542, 559, 782
nst0 file, 668
NTFS driver, 987
ntfs filesystem, 571
NTP, 1051
ntp.conf file, 385
ntpd daemon, 385
Null

builtin (:), 453, 457
device, 233
string, 434, 1051

null file, 233, 415, 454, 555, 557, 684
Number

block, 1026
device

major, 1046
minor, 1048

giga-, 1038
hexadecimal, 1039
job, 237
kilo-, 1044
large, 1044

1114 Index

Number, continued
magic, 1046
mega-, 1047
octal, 1051
sexillion, 1059
tera-, 1064
undecillion, 1066

O

–o Boolean operator, 459
o filename extension, 187
Object, 90

applet, 109
button, 110
click, 91
Clock, 95
Context menu, 94, 115
copying, 100, 113
cut and paste, 113
Deskbar, 266
dragging, 96
drawer, 110
launcher, 109
menu, 110
panel. See Panel
preferences, setting, 94
Properties window, 116
question mark, 104
right-click, 94
selecting, 100
trash, moving to, 100
Update Notifier, 100

Octal number, 1051
od utility, 556
OLDPWD variable, 342
One-time password, 1002
Online documentation, 124, 379
Open Group, 252
Opening a file using exec, 429
OpenOffice.org, 98, 105
OpenPGP Message Format, 996
OpenSSH, 1051

.ssh directory, 709
authentication, 708, 710
authorized keys, 721
authorized_keys file, 709
automatic login, 721
clients, 711

compression, 727
config file, 718
configuration files, 718, 722
debugging, 724
diff utility, 715
encryption, 710
files, 708
firewall, 727
global files, 709
host key, 710
how it works, 710
JumpStart

starting the sshd daemon, 720
using ssh and scp, 711

known hosts, 712
known_hosts file, 710, 712, 713
log file, 724
more information, 711
NFS shared home directories, and, 702
port forwarding, 725
prerequisites, 711, 720
protocol versions 1 and 2, 708
public key encryption, 708
recommended settings, 712, 720
remote commands, 715
rhost authentication, 709
scp utility, 711
security, 707
server authentication, 712
session key, 710
setup, 712
sftp utility, 718
shell, remote, 714
ssh directory, 709
ssh utility, 708, 711, 714, 715
ssh_config file, 718
ssh_known_hosts file, 709, 712, 713
sshd daemon, 720
sshd_config file, 722
ssh-keygen utility, 712, 713, 721
troubleshooting, 724
tunneling, 725
user files, 709
X11 forwarding, 712, 718, 719, 724, 725

Operating system, 1051
generic, 8
proprietary, 8

Operations menu, window, 112
Operator

Index 1115

bash, 461
in expressions, 461
redirection, 282

bitwise
&, 462, 465
^, 462
|, 462
AND, 366, 367

Boolean, 464
!, 309, 462, 466
&&, 459, 463, 464, 466
|, 978
||, 309, 459, 463, 464, 465
–a, 403, 459
NOT, 466
–o, 459

decrement, 463
increment, 463
postdecrement, 463
postincrement, 463
predecrement, 463
preincrement, 463
relational, 460
short-circuiting, 464
table of, 461

OPIE utility, 1002, 1007
opt directory, 33, 195, 607
OPTARG variable, 455
OPTIND variable, 455
Option, 221, 1051

bash. See bash, features
boot, 63
combining, 221

OR operator, 459
Order of expansion, command line, 297
Ordering a file using sort, 153
Ordinary file, 185, 1051
Organizing a filesystem, 184
Other access, 199
out shell script, 401
Output, 1051

append. See Append, standard output
redirect, 156
standard. See Standard, output

Overlay a shell, 286
Owner file access, 199
Owner, file, display the name of using ls, 199, 284

P

P2P, 1051
Package. See Software package
Packet, 1051

broadcast, 363
filtering, 1052. See also iptables
network, 355, 376
sniffer, 1052
unicast, 363

Page break, 178
Pager, 125, 148, 1052
Paging, 564, 1052
PAM, 545, 1052

features, 517
more information, 546
security, login, 1002
stack, 548

pam.d directory, 545, 548, 560
Panel, 90, 106

adding objects to a, 107
menu, 107
moving a, 109
moving objects on a, 110
object, 106, 109
Object Context menu, 110
orientation, 108
Properties window, 108

Parameter
expansion, 342
positional, 438
shell, 295
special, 436
substitution, 297

Parent
directory, 185, 186
of all processes, 511
process, 310, 449, 1052

Parentheses in shell functions, 332
Parentheses, using to group commands, 289
Parse, 223, 338
parted utility, 514, 673
Partition

/boot, 32, 646, 676
/home, 33
/usr, 33
/var, 33
creating graphically, 50, 53, 56
creating manually, 70

1116 Index

Partition, continued
deleting, 55
disk, 30, 1052
Editor, GNOME, 53
guided creation, 31, 50, 56
LVM, 35
parted editor, 514, 673
planning, 31
RAID, 34, 73
resizing, 55
size, table of minimum, 34
sizes, 31
table, 30
type, 70

Partitioning a disk, 31
Partner net, 355
PASC, 276
Passive FTP. See FTP, passive
Passphrase, 1052
passwd database, 658, 1038, 1066, 1067
passwd file, 412, 516, 560
passwd utility, 562, 789
Password, 135, 1052

assigning root a, 499
breaking, 682
group, 558
hashed, 562
one-time, 1002
root account, 490
Samba, 826

PASV FTP. See FTP, passive
Path, search, 164
PATH variable, 302

inherited, 296
root privileges and, 521
usage, 423

Pathname, 185, 1052
~ (tilde) in a, 190
absolute, 189, 224, 1022
completion, 324
element, 1052
expansion, 239, 298, 345, 346
last element of, 1052
relative, 190, 224, 1057
using, 197

PC processor architecture, 27
PCI device, information about, 696
pdbedit utility, 824
pdf filename extension, 187

Peer, BitTorrent, 605
Period, leading in a filename, 240
Peripheral device. See Device
Permission

access, 1022
change using chmod, 200
control of, 200
directory, 202
display using ls, 199
execute, 284
read, 284
types of, 201

execute, 284
file access, 201, 559
read, 284
setgid, 201
setuid, 201, 488

Persistent, 1053
PGP encryption, 995
.pgpkey file, 168
Philosophy, UNIX, 370
Phish, 1053
php filename extension, 931
Physical

device, 1053
security, 1004
volume. See LVM, PV

Pick a Color window, 268
Pick a Font window, 268
PID, 310, 1053

$! variable, and, 438
$$ variable, 437
background process and, 237, 288
fg, 290
number 1, 310, 511
temporary file, use in the name of, 425

Pidgin IM client, 105
pidgin utility, 105
pidof utility, 524
pinfo utility, 128
ping utility, 375, 526, 562, 842
ping6 utility, 376
Pipe, 156, 234, 1053

command separator, 288
end of line, at the, 412
filter, 14, 236
named, 347, 567, 568
noclobber and, 231
standard error, and, 281

Index 1117

symbol, 978
syntax exception, 412

Pipeline. See Pipe
Pixel, 1053
pl filename extension, 931
Places menu, 110
Plaintext, 992, 1053
.plan file, 168
Pluggable Authentication Module. See PAM
Plus sign, 978
Pointer to a file, 209
Point-to-point link, 356, 1053
Point-to-Point Protocol. See PPP protocol
POP3, 776
pop3-login daemon, 776
popd builtin, 294
Port, 383, 1053

forwarding, 725, 1053
privileged, 383, 998
stealth, 893

Portability, 8, 9
portmap daemon, 386, 388, 530
portmap utility, 802, 808, 818
Portmapper, 1053
Positional parameter, 296, 438
POSIX, 9, 276
Postdecrement operator, 463
Postfix, 779
postfix daemon, 998
Postincrement operator, 463
postinst script, dpkg, 599
Postmaster, 683
PostScript Printer Definition files, 626
Postscript, brace expansion, 340
Power management, 384
Power, turn off, 519
poweroff utility, 518
ppd filename extension, 626
PPD files, 626
PPID. See Parent, process
PPP protocol, 363, 562
pppd daemon, 386
Preamble, brace expansion, 340
Preboot Execution Environment. See PXE
Predecrement operator, 463
Preferences submenu, 111
Preferences, setting, 94
Preincrement operator, 463
preinst script, 599

Prerequisites
Apache, 917
automount, 818
BitTorrent, 605
CUPS, 612
DHCP client, 539
DHCP server, 540
DNS, 857
exim4, 757
ftp, 731
iptables, 899
NFS, 802, 808
NIS client, 785
NIS server, 790
Samba, 825
SpamAssassin, 769
vsftpd, 740

Pretty Good Privacy. See PGP
Primary

buffer, 113
master server, DNS, 850
partition, 31

Print
file, 151
IPP protocol, 612
queue, 629

Printable character, 1054
printcap file, 561
Printer

See also Printing
capability database, 561
configuring with CUPS, 624
control characters, 422
daemon, 385
lpr and, 151
page break, 178
sharing, 629
skip to top of page, 178
using, 151

Printing
See also Printer
CUPS, 612
quotas, 628
system, about, 611
UNIX traditional, 622
Windows, from, 630
Windows, to, 632

Privacy Enhanced Mail. See PEM encryption
Private address space, 697, 1054

1118 Index

Private key, 993
Privilege, least, 488, 1045
Privileged port, 383, 998, 1054
Privileges, root. See root privileges
Problem solving, 982
Problems, hung program, 523
Problems, login, 133
proc filesystem, 195, 563, 571, 572, 666
Procedural language, 466
Procedure, 1054
Process, 1054

background, 310, 312, 1024
child, 310, 312, 1028
defined, 225, 310
die, 310, 312
displaying the number of a, 524
first, 511
foreground, 1037
fork, 310
ID. See PID
init, 511
kill, 522, 523, 524
parent, 310, 1052
parent of all, 511
parent-child relationship, 310
search for using ps and grep, 523
sleep, 225, 312
spawn. See Process, fork
spontaneous, 310
start, 225
structure, 310
substitution, 347
wake up, 225, 310, 312

Processing a command line, 223
Processor architecture, 26
procmail daemon, 772
procmail utility, 171
profile file, 277, 561
Program, 1054

See also Builtin; Utility
stopping a, 138
structures, 466
terminating, 96, 138

Project Athena, 252
.project file, 168
PROM, 1054
Prompt, 1054

#, 488
$, 19

%, 19
bash, 303
job control and, 290
login, 134, 516
PS2, 332
PS3, 426
representation, 19
root account, 488
secondary, 412
shell, 134, 220

Proprietary operating system, 8
Protocol, 1054

connectionless, 1030
connection-oriented, 362, 1030
datagram-oriented, 363
defined, 361
DHCP, 538
HTTP, 391
HTTPS, 391, 959
ICMP, 376
IPP, 612
IPSec, 999, 1016
ISO model, 361
network, 361
NNTP, 389
PPP, 363
SLIP, 363
TCP/IP, 361
TELNET, 386
UDP, 361

protocols file, 561, 904
Proxy, 387, 1055

gateway, 387, 1055
server, 387, 1055

ps filename extension, 187
ps utility, 238, 310, 437, 680, 684
PS1 variable, 279, 303
PS2 variable, 305, 332
PS3 variable, 426
PS4 variable, 408
Pseudographical interface, 27, 137
Pseudoterminal, 555
pstree utility, 311
pts file, 555
pub directory, 735
Public key encryption, 708, 993
public_html directory, 930
pushd builtin, 293
pwd builtin, 188, 193, 457

Index 1119

pwd utility, 192, 213
PWD variable, 342
PXE, 800
Python, 1055

Q

Qmail, 779, 998
qnx4 filesystem, 571
qrunner daemon, 776
Qt toolkit, 259
Question mark, 978
Questions, finding answers to, 389
Quick substitution, 321
Quiescent, 512
quiet boot parameter, 48
quota utility, 687
quotaon utility, 687
Quotation mark

double, 297, 344, 397, 441
removal, 339
single, 146, 297, 412
single versus double, 329, 346
usage message, 406

Quoting, 1055
characters, 146, 287
shell variables, 297
special characters, 298
whitespace, 297

R

Radio button, 1055
RAID, 34, 73, 580, 1055

backups, does not replace, 662
fake, 35

RAM, 1055
disk, 36, 1056
required for installation, 26
swap and, 32, 564
testing, 62

Random access memory. See RAM
Random bytes, generating, 556
random file, 556
Random number generator, 556
RANDOM variable, 473
RAS, 1003, 1056, 1057
Raw device, 570

Raw mode, 570
rbac utility, 1008
rc script. See init script
rc.local file, 508
rc?.d directory, 507, 508
rc2 file, 505
RC5 encryption, 995
rcp utility, 372
RDF, 1056
Read access, 199, 284
read builtin, 415, 416, 421, 445, 446, 458
Reading user input, 445
Readline Library, 314, 322, 324
readnews utility, 389
readonly builtin, 299, 300, 301, 458
Readonly memory. See ROM
Readonly variable, 295
reboot utility, 518
Reboot, system, 133, 518
Rebuilding Linux, 635
rec.skiing newsgroup, 389
Recovery mode, 512

from multiuser mode, 519
from the Alternate CD, 65
maintenance, 512
root password, 511
root privileges, 488

Recursion, example of, 467
Recursion, infinite, alias, 328, 331
Recursive plunge. See Recursion, infinite, alias
Redirect

operators, bash, 282
output, 156
standard

error, 449, 454
input, 230, 449
output, 228, 231, 449
output and append, 232
output and error, 281
output of background job, 238
output using tee, 236

sudo output, 492
Redirection, 13, 228, 1056
Redundant array of inexpensive disks. See RAID
Reentrant code, 1056
Reexecuting commands, 314
Refresh screen, 171
Regular character, 1056

1120 Index

Regular expression, 971, 1056
\(...\) bracket expression, 976
ampersand, 977, 980
anchor, 974
asterisk, 974
bracket, 973
bracketing, 976
caret, 974
delimiter, 972
dollar sign, 974
empty, 976
extended, 978
full, 977
longest match, 975
period, 973
quoted digit, 977
quoting parentheses, 976
quoting special characters, 975
replacement string, 976
rules of use, 975
simple string, 972
special character, 972
special character, quoting, 975
square bracket, 1028
summary, 979

reiserfs filesystem, 571
reject utility, 629
Relational operator, 460
Relative pathname, 190, 224, 1057
Relaying, authenticated email, 777
Release, upgrading, 59
Releases, Ubuntu, 28
Religious statue, miniature. See Icon
Remainder operator, 464
Remapping mouse buttons, 258
Remote

access security, 1003
access server. See RAS
computing and local displays, 254
filesystem, 354, 1057
login, 134
procedure call. See RPC

Remove
directory using rmdir, 196
file using rm, 148
link using rm, 214
user, 661
variable, 299

Rename a directory using mv, 198

Rename a file using mv, 150, 197
Repairing a broken system using recovery mode, 65
Repairing a filesystem, 520
Repeating a command, 139
Replacement string, 976, 977, 980
REPLY variable, 426, 446
Reports, system, 671
Repositories, 119, 588, 590
Request for comments. See RFC
Reserved port. See Privileged port
reset utility, 526
Resizing a window, 96
Resolution, changing the display, 140
resolv.conf file, 561, 859
resolvconf utility, 858
Resolver, 382, 561, 848, 1057
Resource Description Framework, 1056
Resource record, DNS, 851
Restore, 1057
restore utility, 666
restricted software package category, 588
Return code. See Exit, status
RETURN key, 18, 19, 137, 223, 286
Reverse name resolution, DNS, 855
rexecd daemon, 386
RFC, 1057
rhost Authentication, OpenSSH, 709
Right-click, mouse, 94
Right-handed mouse, 258
Ritchie, Dennis, 9
rlogin utility, 354
rlogind daemon, 1002
rm utility, 148, 214, 330, 402, 567
rmdir utility, 196
rmmod utility, 645
rmt/0 file, 666
rmtab file, 816
rn utility, 389
Roam, 1057
Role alias, 928
ROM, 1057
romfs filesystem, 571
Root

directory, 184, 186, 194, 1058
domain, DNS, 848
filesystem, 1058
login, 1058
user. See root account
window, 106, 113, 1058

Index 1121

root account, 490
password, 490
password and recovery mode, 511
password and sudo, 498
privileges. See root privileges
prompt, 488
unlocking, 499

root privileges, 88, 487
gaining, 488
gksudo utility, 491
graphical programs and, 491
kdesu utility, 491
PATH, and security, 500
recovery mode, 488
setuid file, 488
shell with, 492
su utility, 489, 499
sudo utility, 490

root user. See root account
Rotate file, 684, 1058
routed daemon, 386
Router, 695, 1058

network, 358, 359
setting up with iptables, 908
SmoothWall Linux distribution, 695

RPC, 387, 783, 1058
rpc file, 388, 562
rpc.yppasswdd daemon, 797
rpcinfo utility, 530, 788
rquotad daemon, 385
RSA encryption, 994, 1058
rsh utility, 354, 372
rshd daemon, 1002
Run, 1058

Application window, 92, 269
background command, 237
command scripts. See rc scripts
shell script, 285

Runlevel, 510, 1058
emulation in Upstart, 502
initdefault, and, 506
table of, 510

runlevel utility, 510, 519
Running applications, 92
run-parts utility, 669
ruptime utility, 680

S

S/Key utility, 1002
safedit shell script, 423
saint utility, 1008
Samba, 823, 1058

browser parameters, 836
browsing Linux shares from Windows, 838
communication parameters, 837
daemons, 824
global parameters, 833
home directories, sharing, 838
[homes] share, 838
JumpStart, configuring a Samba server using

shares-admin, 826
Linux shares, accessing from Windows, 838
logging parameters, 836
manual configuration, 832
mapping a share, 839
more information, 825
NBT, 1049
net use utility (Windows), 842
net utility, 824
net view utility (Windows), 842
NetBIOS, 1049
nmbd daemon, 824, 842
nmblookup utility, 842, 843
password, 826
pdbedit utility, 824
ping utility, 842
prerequisites, 825
printing from Windows, 631
printing to Windows, 632
security parameters, 833
share, 1059
share parameters, 838
shared directory, 703
shares-admin utility, 826
SMB, 1060
smb.conf file, 832
smbclient utility, 824, 840, 843
smbd daemon, 824
smbpasswd utility, 828
smbstatus utility, 824
smbtar utility, 824
smbtree utility, 824, 839
smbusers file, 826
suite of programs, 824
swat utility, 828

1122 Index

Samba, continued
testparm utility, 842
troubleshooting, 841
user map, 826
user name, 826
utilities, 824
Web Administration Tool. See Samba, swat

utility
Windows

networks, browsing, 840
share, 1059
shares from Linux, accessing, 839
shares, connecting to, 840
shares, displaying, 839
shares, mounting, 841

WINS, 1069
samba init script, 825
samhain utility, 1001, 1008
SANS security training and education, 1008
sara utility, 1008
Save window, 99
sbin directory, 196
Scheduling jobs, 10
Scheduling routine tasks, 668
Schema, 1059
Schneier, Bruce, 1008
sci.med newsgroup, 389
scp utility, 354, 569, 711. See also OpenSSH
Screen and Graphics Preferences window, 75
Screen, login, 132
Screen, refresh, 171
Script

postinst, 599
preinst, 599
rc. See init script
shell. See Shell script

script utility, 158
Scroll, 1059
Scrollbar, 1059
sda file, 554
Search

engine, 392
for a file, 266, 269
for a keyword using apropos, 165
for a string using grep, 151
for Files window, 269
path, 164

Secondary prompt, 412
Secondary server, DNS, 851

Secret key encryption. See Symmetric key encryption
Secunia vulernability monitoring, 1008
secure file, 545, 982
Secure Sockets Layer. See SSL
securenets file, 793
securetty file, 489
Security

access permission, 199, 201
accton utility, 1002
ACL, 1019, 1022
admin group, user passwords, 682
AIDE utility, 521, 1001, 1006
ANI, 1004
Apache security directives, 946
authentication, 1024
automatic number identification, telephone,

1004
back door, 1024
BIND. See Security, DNS
BIOS, 682
Bugtraq, 1002
caller ID, 1004
CERT, 682, 1002, 1006
checksum, 1028
chkrootkit utility, 1006
chroot jail. See chroot jail
cipher, 1029
ciphertext, 992, 1029
cleartext, 1029
CLID, 1004
cookie, 1031
crack utility, 682
cracker, 1031
cryptography, 1031
cypher, 1029
DDoS attack, 1032
digital signature, 993
DNS, 846, 870
DoS attack, 1034
DragonSquire IDS, 1001
dsniff utility, 1006
email, 997
encryption. See Encryption
file, 997
finger utility, 371
firewall, 359
Firewall toolkit, 1007
Freefire solutions, 1006
FTP, 736, 741
fwtk utility, 1007

Index 1123

GIAC certification and training, 1007
host, 1001
host based trust, 373
host, trusted, 372
hosts.equiv file, 372
hping utility, 1007
in.rexecd daemon, 386
Internet, root access, 489
IP spoofing, 1043
IPng, 369
IPSec, 999, 1016
IPv6, 369
ISC2, 1007
John the Ripper utility, 1007
keeping a system secure, 682
Kerberos, 1007, 1044
kill, 523
L6 utility, 1007
lids utility, 1007
Linux features, 12
LinuxSecurity.com, 1007
locktty script, 417
login, 1002

account, 373
shell, 561

LWN.net, 1007
mailing list, bugtraq, 1006
man-in-the-middle, 869, 996, 999
messages, 566
MITM. See Man-in-the-middle
more information, 1006
MTA, 997
MUA, 998
nessus utility, 1007
netcat utility, 1007
network, 998
NFS, 802
nmap utility, 1007
one-time password, 1002
OpenSSH. See OpenSSH
OPIE utility, 1002, 1007
PAM, 517, 1002
password, 135, 560
PATH and root privileges, 500
PATH variable, 303
physical, 1004
plaintext, 992
RAS, 1003
rbac utility, 1008
remote access, 1003

resources, 1006
rlogind daemon, 1002
root access, Internet, 489
root password, 682
root privileges and PATH, 500
RSA, 1058
rshd daemon, 1002
saint utility, 1008
samhain utility, 1001, 1008
SANS training and certification, 1008
sara utility, 1008
Schneier, Bruce, 1008
Secunia vulnerability monitoring, 1008
SecurityFocus tools and lists, 1008
server, securing a, 532
setgid, 201
setuid, 201, 202, 488, 682
setuid file, 488
SHA1 hash algorithm, 1059
shadow file, 562
smartcard, 1003
snort utility, 1008
software, keeping up-to-date, 584
spoofing, 1043
srp utility, 1008
ssh. See ssh
SSL, 997
STARTTLS, 997
sudo utility, 490
swatch utility, 1008
syslogd daemon, 688
TCP wrappers, 532
telnet, 374
telnetd daemon, 1002
TLS, 997
Treachery, tools, 1008
tripwire utility, 1001, 1008
Trojan horse, 520, 1065
trust, 373
trusted host, 372
up-to-date software, 584
virtual private network, 355
virus, 1004, 1068
VPN, 355
vsftpd, 746
web of trust, 996
wiping a file, 556
wireshark utility, 1008
worm, 1004, 1068, 1069
xhost, 255

1124 Index

security directory, 545, 547
SecurityFocus, security tools and lists, 1008
sed utility, 684
Seed, BitTorrent, 605
Segment, network, 357, 1050
select control structure, 425
Selecting objects, 100
Selection buffer, 113
Self-signed certificate, 776, 778, 959
sendmail and exim4, 757
sendmail daemon, 386
sendmail utility, 779
Separating commands, 286
Server, 1059

DNS
cache, 864
full-functioned, 873
master, 850
primary master, 850
secondary, 851
slave, 877
split horizon, 878
types of, 850

file, 799
FTP, 740
mail list, 372, 985
Message Block protocol. See Samba, SMB
name, 381, 382
process, 380
proxy, 387
securing, 532
setting up, 527, 702
superserver. See inetd daemon; xinetd daemon
vsftpd, 740
X, 253, 1070

Server CD, 29
See also Installation
checking for defects, 47
function keys, 62
installing software from, 119
ISO image, 37
menu, 66

Service dispatcher, 531
Service, directory, 1033
Services

configuring, 508
daemons providing, 384
Internet, 388
network, 384

nsswitch.conf file, 542
Upstart, 502

services database, 1053
services file, 384, 388, 562
Session, 1059

failsafe, 1036
initialize, 517
key, OpenSSH, 710
manager, 104, 141

set builtin, 300, 405, 407, 408, 442, 443, 458
Set group ID. See Setgid
Set user ID. See Setuid
setfacl utility, 205
Setgid, 201, 1059
setserial utility, 526
Setuid, 201, 488, 1059

files, find using find, 521
grant privileges, 202
mount, 573, 803
NFS, 803
nosuid option to mount, 573, 803
security, 682

Sexillion, 1059
sftp utility, 718
sh Shell, 276, 278, 1026
SHA1 hash algorithm, 1059
shadow file, 516, 562
shar shell script, 428
Share, 1059
share directory, 196
Shared network topology, 1059
shares-admin utility, 658, 809, 812, 827
Sharing an Internet connection, 908
Shell, 219, 1059

See also Shell script; Shell variable
archive, 428
arithmetic (bash), 458
calling program, name of, 439
changing default, 525
command

grouping, 286, 289
interpreter, 114
separation, 286
substitution, 407, 424

comment, 406
comparing strings, 460
control structure

break, 418
case, 419

Index 1125

continue, 418
do, 409, 410, 412, 416
done, 409, 410, 412, 416
elif, 403
else, 400
esac, 419
fi, 396, 403
for, 409, 410, 453
for...in, 409, 410
if, 396, 400, 403
if...then, 396
if...then...elif, 403
if...then...else, 400
in, 409
then, 396, 400, 403
until, 416
while, 412, 453

dash, 276
environment variable, 295, 434
exit from, 292
features, 334
function, 331, 1059
job control, 290
keyword variable, 296
login, 310, 517, 561, 1046
name of the calling program, 439
options. See Shell, features
parameter, 295

positional, 296
special, 296

prompt, 19, 134, 220, 303
readonly variable, 295
root privileges, 492
sh, 276, 278
sleep, 225
strings, comparing, 460
user-created variable, 295
variable. See Shell variable

Shell script, 275, 282, 1060
comment, 285
#! specifies which shell to use, 284
/dev/tty for a terminal, 450
addbanner, 453
bash, 466
birthday, 427
bundle, 428
chkargs, 398, 400
command_menu, 421
comment, 285

configure, 608
count, 413
cpdir, 289
creating, 282
debugging, 408
double quotation marks, 441, 446
error message, 407, 424
executing, 283, 285
Here document, 427
infinite loop, 452
invocation, 285
is_regfile, 399
lnks, 404
locktty, 417
makepath, 467
menu, 421
out, 401
PATH usage, 424
quiz, 470
quote in, 397, 406, 412, 441
read user input, 445
recursion, 467
running, 285
safedit, 423
shar, 428
specifying a shell, 284
spell_check, 414
temporary filename, 425, 437
usage message, 400, 406, 424
user input, 445
whos, 411
whoson, 283

Shell variable
$!, 438
$#, 423, 439
$$, 425, 437
$*, 440
$?, 438
$@, 411, 440
$0, 439
BASH_ENV, 278
CDPATH, 307
COLUMNS, 426
DISPLAY, 256
ENV, 278
FCEDIT, 316
HISTFILESIZE, 312
HISTSIZE, 312
HOME, 296, 301, 453

1126 Index

Shell variable, continued
IFS, 305
INPUTRC, 325
keyword, 301
LINES, 426
MAIL, 303
MAILCHECK, 303
MAILPATH, 303
naming, 295
noclobber, 231
OLDPWD, 342
OPTARG, 455
OPTIND, 455
PATH, 302

example, 423
keyword shell variable, 296
security, 521

PS1, 279, 303
PS2, 305, 332
PS3, 426
PS4, 408
PWD, 342
quoting, 297
RANDOM, 473
readonly, 295
REPLY, 426, 446
TERM, 134, 554

shells file, 525
shift builtin, 441, 456, 458
Short-circuiting operator, 464
Shortcut. See Link
showmount utility, 816
Shutdown system, 133
shutdown utility, 518, 564
Side pane, Nautilus, 261
Signal, 1060

defined, 451
hang up, 452
HUP, 680
KILL, 680
kill, 452
list of, 451
names, 451, 454
quit, 452
software termination, 452
TERM, 138
terminal interrupt, 452

Signature, digital, 993
Silicon Graphics, 391

Simple filename, 189, 190, 224, 1060
Single quotation mark, 146, 412
Single versus double quotation marks, 329
Single-user mode. See Recovery mode
Single-user system, 1060
Size of file, display using ls, 199
skel directory, 660
Skip to top of page, 178
Slave server, DNS, 851, 877
Sleep, shell, 225
sleep system call, 312
Slice. See Partition
Slider, 1060
SLIP protocol, 363
slocate utility, 166
Sloppy input focus, 139
Slow system, 680
Smartcard, 1003
Smarthost, 756, 759
SMB. See Samba, SMB
smb.conf file, 832
smbclient utility, 824, 840, 843
smbd daemon, 386, 824
smbfs filesystem, 571
smbpasswd utility, 828
smbstatus utility, 824
smbtar utility, 824
smbtree utility, 824, 839
smbusers file, 826
SMF, 500
Smiley, 1060
Smilies, plural of smiley
SmoothWall, Linux router distribution, 695
SMTP, 375, 755, 1060
Snap, window, 1060
SNAT, 910
Sneakernet, 1060
Sniff, 1060
snort utility, 1008
SOA record, DNS, 853
soc.singles newsgroup, 389
Socket, 569
SOCKS, 1061
Soft link. See Symbolic, link
Software

bug tracking, 584
free, definition, 1011
keep up-to-date, 584
Sources window, 119

Index 1127

termination signal, 452
Update Notifier, 100
updating, 100

Software package, 583
See also APT; apt-cache; apt-file; aptitude;

dpkg
adding, 119, 120
binary, 599
category, 119, 588
CD/DVD, installing from, 119
dependencies, 586, 596
dependencies, fixing broken, 593
file, searching for a, 604
files, listing, 604
finding, 587
formats, 584
information, 595, 596, 597, 599, 600, 603
installing, 585, 602
metapackage, 592
removing, 119, 120, 586, 602
removing configuration files, 586
repositories. See Repositories
source code, 598, 599
updating, 119
updating index, 594
updating list of available, 600
upgrading, 594
virtual, 592

Solving a problem, 982
Sort, 1061
sort utility, 14, 153, 235, 236
source builtin, 279
Source code, downloading, 598
sources.list file, 589
SPACE, 146, 1061
Spam, 1061

See also SpamAssassin
whois and, 378

SpamAssassin, 768, 769
See also Spam
configuring, 771
mail server, on a, 772
prerequisites, 769
spamassassin init script, 769
spamc utility, 769
spamd daemon, 769
testing, 770

spamassassin init script, 769
spamc utility, 769

spamd daemon, 769
SPARC processor architecture, 27
Sparse file, 1061
Spawn. See Fork
Special

character, 146, 239, 1061

*, 240
?, 239
[], 241
filename generation, 239
Here document, 428
pathname expansion, 239
quoting, 297, 298
regular expressions, 971
standard input, 428

file, 567
about, 567
block, 568
character, 568
device file, 1033

parameters, shell, 296, 436
Speed, Internet, 355
spell_check shell script, 414
Spin box, 1061
Spinner. See spin box
splash boot parameter, 48
Split horizon server, DNS, 878
Splitting, word, 305
Spontaneous process, 310
Spoofing, IP, 1043
Spool, 1061
spool directory, 684, 982
SQL, 1061
Square bracket, 1061
Square bracket in place of test, 399
SquirrelMail, 772
squirrelmail-configure utility, 774
src directory, 196
srp utility, 1008
ssh directory, 709
ssh init script, 720
ssh utility, 134, 354, 384, 569, 708, 711, 714, 715,

1003, 1008. See also OpenSSH
ssh_config file, 718
ssh_known_hosts file, 709, 712, 713
sshd daemon, 384, 386
sshd_config file, 722
ssh-keygen utility, 712, 713, 721

1128 Index

SSL
Apache, 959
email, 778
security, 997

st0 file, 668
Stack, 292

directory, manipulation, 292
LIFO, 292
PAM, 548

Stallman, Richard, 2
Stand-alone computer, 353
Standard

directories and files, 194
error, 226, 280, 407, 429, 1062

file descriptor, 280, 429
redirecting with exec, 449
shell script, 406
trap, 454

input, 226, 1062
file descriptor, 280, 429
pipe (|), 288
redirect, 230
redirecting with exec, 449
special character, 428

output, 226, 1062
append, 232
file descriptor, 280, 429
pipe (|), 288
redirect, 228, 236
redirecting with exec, 449

Standards
FHS (Linux Filesystem Hierarchy Standard),

194
FSG (Free Standards Group), 194
FSSTND (Linux Filesystem Standard), 194
LSB (Linux Standard Base), 194
OpenPGP Message Format, 996
option handling, 457

STARTTLS MTA, 997
Startup file, 188, 1062

.bash_login file, 277

.bash_logout file, 277

.bash_profile, 277, 554

.bashrc, 190, 277, 554

.cshrc, 1031

.inputrc, 325

.login, 1046

.logout, 1046

.profile, 277, 554, 1054

.toprc, 673
/etc

bashrc, 277
profile, 277, 561

bash, 277
BASH_ENV variable, 278
check for problems, 679
ENV variable, 278

startx utility, 254
stat utility, 526
statd daemon, 385
Static IP address, 364
Status

bar, Nautilus, 263
exit, 1036
line, 1062

status file (dpkg), 599
status utility, 503
Stealth port, 893
Sticky bit, 1062
Stopping a job using the suspend key, 237
Stopping a program, 96, 138
Streaming tape, 1062
Streams. See Connection-oriented protocol
String, 1062

comparing, 460
finding using grep, 151
pattern matching (bash), 460
within double quotation marks, 297

Stroustrup, Bjarne, 10
strtok() system call, 963
Structure, data, 1032
Structured Query Language. See SQL
stty utility, 417, 554
Stylesheet. See CSS
su utility, 489, 499
Subdirectory, 184, 1062
Subdomain, 848
Subnet, 367, 1062

address, 1063
mask, 367, 1063
number, 1063
specifying, 529

Subpixel hinting, 1063
Subpixel smoothing, 268
Subroutine. See Procedure
Subshell, 285, 289, 1063
Substitution

command, 344

Index 1129

parameter, 297
sudo utility, 88, 490

See also root privileges
admin group, 496
configuring, 494
defaults (options), 497
environment, 492
redirect output, 492
root account password and, 498
root shell, spawning, 492
sudoers file, 494
tee utility and, 493
timestamp, 491

sudoers file, 494
Sun Microsystems, 369, 781, 799
Superblock, 1063
Supercomputers, 8
Superserver. See inetd daemon; xinetd daemon
Superuser, 1063. See also root privileges; System

administration
Suspend key, 138, 178, 237, 291, 451
SVID. See System, V Interface Definition
Swap, 564, 1063

filesystem, 32, 564
RAM, and, 32, 564
space, 1063

swapon utility, 564
Swarm, BitTorrent, 605
swat utility, 828
swatch utility, 1008
Switch, network, 356, 357, 1050
Switcher, Workspace, 93, 94
sylpheed utility, 171
Symbolic

hostname, 383
link, 212, 567, 1045, 1064

creating using ln, 213
deleting using rm, 214

symlink. See Symbolic, link
Symmetric key encryption, 994
Synaptic utility, 121
Syntax, command line, 220
sys file, 636
sysctl utility, 636
sysklogd init script, 690
syslog file, 872
syslog utility, 386
syslog.conf file, 386, 688
syslogd daemon, 386, 688

syslogd file, 690
System

administration. See System administration
administrator. See System administration
booting, 511
bringing down, 518
call, 10

bad, trapping, 451
exec(), 285
fork(), 285, 310, 312, 963
gethostbyname(), 857
raw device and, 570
sleep(), 312
strtok(), 963

console. See Console
crash, 519
dataless, 800, 1032
diskless, 800
does not boot, 520
error messages, 565
initialization, customize, 507
logging in, 89
logs, 688
menu, 111
messages, 565, 688
mode, 1064
operation, 510
powering down, 519
rebooting, 133, 518
reports, 671
security, 682
shutting down, 133, 518
single-user, 1060
upgrading, 59
V. See System V
well-maintained, 486

System administration
accept utility, 629
adduser utility, 660
aptitude utility. See aptitude utility
at utility, 671
back up files, 662, 666
backup, amanda, 663
client, specifying, 528
communicate with users, 677
configuration file rules, 528
dmesg utility, 511, 654
dump utility, 666
e2label utility, 525

1130 Index

System administration, continued
edquota utility, 687
files, growing, 683
filesystem

integrity, 577
mounting remote, 803
repairing, 520

firestarter utility, 888
free space, disk, 683
fsck utility, 577
gdmsetup utility, 83
getty utility, 516
group, adding, 661
groupadd utility, 661
groupdel utility, 661
groupmod utility, 661
halt utility, 518, 519
host, specifying, 528
hosts.allow file, 531
hosts.deny file, 531
kill builtin, 524
log in problem, 679
log, machine, 681
login utility, 516
lpadmin utility, 627
lpinfo utility, 626
lshal utility, 697
lshw utility, 696
lsof utility, 681
lspci utility, 696
maintenance, 512
memtest86+ utility, 62
mkfs utility, 525
more information, 522
mounting a remote filesystem, 803
multiuser mode, 515
parted utility, 514, 673
password, modifying, 661
poweroff utility, 518
powers of the administrator, 485
problem solving, 982
problems, 679
ps utility, 238, 310, 680, 684
quota utility, 687
quotaon utility, 687
reboot utility, 518
recovery mode, 512
reject utility, 629
reports, 671

restore utility, 666
rpcinfo utility, 530
runlevels, 510
scheduling tasks, 668
setuid files, finding, 521
shares-admin utility, 658, 809, 827
shutdown utility, 518
single-user mode. See Recovery mode
slow system, 680
su utility, 499
subnet, specifying, 529
sudo, users who are allowed to run, 88
sudoers file, 494
syslogd daemon, 688
system does not boot, 520
telinit utility, 516, 519
top utility, 672
Trojan horse, 520
trouble alias, 681
tune2fs utility, 525, 578
umask builtin, 526
umount utility, 575
uname utility, 527
updating software packages, 119
user

adding, 658, 660
cannot log in, 679
getting information to, 677
modifying, 661
removing, 661

useradd utility, 660
userdel utility, 661
usermod utility, 661
vmstat utility, 671
wget utility, 609

system services database, 1041
System V, 1064

init daemon, 500
init script. See Init script
Interface Definition, 9

sysv filesystem, 572
SysVinit, 500
SysVinit scripts. See Init script
sysv-rc-conf utility, 508

T

T-1 line, 356
T-3 line, 356

Index 1131

TAB key, 146
Table, hash, 1039
tail utility, 152, 238
talk utility, 372, 386
talk.politics newsgroup, 389
talkd daemon, 386
Tanenbaum, Andrew, 4, 571
Tape

archive. See tar utility
device, 666, 668
mt utility, 668
nonrewinding, 668
streaming, 1062

tar file, 161
tar utility, 161, 289, 663, 665
tar.bz2 filename extension, 162
tar.gz filename extension, 162
tar.Z filename extension, 162, 187
Tarball, 161
Task, Upstart, 501
tbz filename extension, 162
TC Shell, 1064
TCP, 1064
TCP wrappers, 532
TCP/IP, 361, 387
tcsh, 1064
tee utility, 236, 493
Teletypewriter, 1066
telinit utility, 510, 516, 519
telnet utility, 134, 354, 373, 374, 957, 998
telnetd daemon, 386, 1002
Temporary file, 425
Tera-, 1064
TERM signal, 138
TERM variable, 134, 554
Termcap, 988
termcap file, 1064
Terminal, 1064

ASCII, 1023
character-based, 1028
emulator, 114, 133, 270
failsafe, 132
file, 226
interrupt signal, 452
name

ansi, 989
linux, 989
vt100, 989
vt102, 989

vt220, 989
xterm, 989

pseudo, 555
resetting, 526
Server Project, Linux, 800
specifying, 988
standard input, 227
standard output, 227
virtual, 64
X, 1070

Terminating a program, 96, 138
Terminfo, 988
terminfo database, 172
terminfo directory, 1064
Terminology

Apache, 918
DNS, 858
firestarter, 887
folder and directory, 96
GNOME, 105
Nautilus and File Browser, 96
Upstart, 501

Ternary operator, 463, 465
test builtin, 397, 398, 399, 403, 407, 410, 412
test utility, 398
testparm utility, 842
Text

box, 1064
echo, 157
file, 172

Textual
installer, 67
interface, 27
partitioning, manual, 70
system, installing, 65

tftp utility, 800
tftpd daemon, 386
tgz filename extension, 187
Theme, 102, 1064
then control structure, 396, 400, 403
Thicknet, 357, 1064
Thinnet, 357, 1065
Thompson, Ken, 9, 1024
Thread safe. See Reentrant code
Three-finger salute, 518
Thumb, 1065
Tick, 1065
Tick box. See check box
tif filename extension, 188, 1065

1132 Index

tiff filename extension, 188, 1065
Tilde expansion, 190, 301, 341
Tiled windows, 1065
time builtin, 458
Time to live. See TTL
Time zone, graphical installation, 50
timed daemon, 386
tin utility, 389
Titlebar, 96, 112
TLS, security, 997
tmp directory, 425, 684
Toggle, 1065
Token, 220, 338
Token ring network, 1065
Toolbar, 112
Toolbar, Nautilus, 263
Tooltip, 106, 1065
Top of form, 178
top utility, 672, 680
Top-down design, 472
torrent filename extension, 40, 605
Torrent, BitTorrent, 605
Torvalds, Linus, 1, 2, 3, 6, 1044
touch utility, 197
tput builtin, 417
tr utility, 159, 234, 281
traceroute utility, 376
traceroute6 utility, 377
Tracker, BitTorrent, 605
Transactions signatures, DNS. See DNS, TSIG
Transfer rate, network, 357
Transient window, 1065
Transmission Control Protocol. See TCP
Transmission Control Protocol/Internet Protocol. See

TCP/IP
Transport Layer Security. See TLS
trap builtin, 417, 451, 458
Trash directory, 100
Trash vs. deleting a file, 265
Trash, emptying, 100
Treachery, security tools, 1008
Tree structure, 184
tripwire utility, 1001, 1008
Trojan horse, 520, 1065
Trolltech, 259
Troubleshooting, DNS, 872
true utility, 453
Trusted host, 372
tset utility, 526

TTL, 1066
TTL, DNS, 853
tty file, 450
tty utility, 226
TTY. See Teletypewriter
tty? file, 506
tune2fs utility, 525, 578
Tunneling, 1066
Tunneling, OpenSSH, 725
Tutorial, ftp, 732
Tutorial, vim, 172
Twisted pair cable, 357
txt filename extension, 187, 241
type builtin, 445, 458
Type maps, 951
Type of file, display using ls, 200
Typeface conventions, 18
typescript file, 158
typeset builtin, 299, 436
Typo, correcting, 137
tz filename extension, 162

U

U.S. Library of Congress, 374
ubiquity. See Installation, graphical
Ubuntu

Alternate CD. See Alternate CD
booting, 46
burning a CD/DVD, 40
Desktop CD. See Desktop CD
documentation, 124
download locations, 24
downloading. See Downloading Ubuntu
DVD. See DVD, live/install
editions, 28
Help Center window, 104
Help window, 124
history, 10
IRC channels, 131
live/install Desktop CD. See Desktop CD
LTS release, 28
recovery mode, 65
releases, 28
Server CD. See Server CD
upgrading, 59
X.org, 74

UCE. See Spam
uchroot.c program, 536

Index 1133

udev utility, 568
UDP, 361, 1066
UDP/IP, 387
ufs filesystem, 572
ufsdump utility, 557
UID, 1066

displaying, 499
effective, 1035
passwd file, in, 560

umask builtin, 458, 526
umount utility, 559, 575, 804
umsdos filesystem, 572
unalias builtin, 328, 331
uname utility, 527
uncompress utility, 187
Undecillion, 1066
Undeclared variable, 434
Unicast packet, 363, 1066
Unicast vs. broadcast, 363
Unicode, 1066
uniq utility, 154
Unique filename, 425, 437
universe software package category, 588
University of Illinois, 391
UNIX

Bourne Shell, 276
philosophy, 370
printing, traditional, 622
System V, 6, 1064

unix2dos utility, 159, 736
Unlocking the root account, 499
Unmanaged window, 1066
Unmounting a busy filesystem, 575
Unpacking an archive file using tar, 161
unset builtin, 299, 332, 458
Unshielded twisted pair. See UTP
until control structure, 416
unzip utility, 161
Update Manager window, 101
Update Notifier, 100
updatedb utility, 166
update-exim4.conf file, 766
update-grub utility, 651
Updating software package index, 594
Updating software packages, 100, 119
Upgrading software packages, 594
Upgrading Ubuntu, 59
Upstart, 500

event, 501

future of, 501
init daemon, 502, 511
initctl utility, 502
job, 501, 503
job definition file, 504
rc2 task, 505
runlevel emulation, 502
service, 502
status utility, 503
task, 501
terminology, 501
tty? tasks, 506

Uptime, display using w, 169
uptime utility, 169
urandom file, 556
URI, 1067
URL, 391, 1067
Usage message, 220, 400, 406, 424, 1067
Usenet, 388, 391
User

accounts, manage, 658
adding, 658, 660
authentication, 516
cannot log in, 679
communication, network, 370
created variable, 295, 296
Datagram Protocol. See UDP
finger, 167
graphical installation, 51
ID. See UID
interface, 1042, 1067
map, Samba, 826
mode, 1067
modifying, 661
name, Samba, 826
name. See Username
private groups, 558
removing, 661
Superuser. See root account
w, 169
who, 167

useradd utility, 660
userdel utility, 661
usermod utility, 661
Username, 560, 562, 1067
Userspace, 1067
usr partition, 33
UTC, 1067

1134 Index

Utility, 1067
accept, 629
accton, 1002
adduser, 660
AIDE, 521, 1001, 1006
amanda, 663
anacrontab, 384
apache2ctl, 917, 956
apropos, 126, 165
apt-cache, 596
aptitude. See aptitude utility
aspell, 413, 415
at, 384, 557, 671
automount, 818
basename, 423, 424, 453
bison, 17
BitTorrent. See BitTorrent
btdownloadcurses, 605
btshowmetainfo, 606
builtin versus, 398
bunzip2, 160, 164
bzcat, 161
bzip2, 160, 164, 665
bzip2recover, 161
cancel, 623
cat, 147, 227, 229, 230, 280, 402
chkrootkit, 1006
chmod, 200, 284
chsh, 525
clear, 525
compress, 161, 187
cp, 149, 198, 289
cpio, 664, 665
crack, 682
crontab, 385, 557
cut, 343
date, 157, 233
depmod, 645
df, 800
dhclient, 539
diff, 154, 715
dig, 378, 856, 859, 872
displayconfig-gtk, 75
dmesg, 511, 654
dos2unix, 159, 736
dpkg, 600
dpkg-reconfigure, 768
DragonSquire, 1001
dsniff, 1006

dump, 666
e2label, 525
edquota, 687
egrep, 977
emacs, 171
Evolution, 109, 171
eximon, 765
eximstats, 765
exportfs, 817
fdformat, 574
fdisk. See parted
file, 155, 565, 684
find, 405, 408, 521, 684
find using whereis, 164
find using which, 164
finger, 167, 370, 371, 385, 411
flex, 17
fsck, 570, 577
ftp, 354, 730, 736
fuser, 575
fwtk, 1007
gawk, 411, 412
gcc, 9
gdm (GNOME), 82
gdmsetup, 83
getfacl, 204
getty, 310, 516
gksudo, 491
gnome-search-tool, 269
gnome-terminal, 270
gopher, 390
gparted, 53
gprof, 17
grep, 151, 235, 427
groupadd, 661
groupdel, 661
groupmod, 661
groups, 558
grub, 647
grub-install, 653
gunzip, 161
gzip, 161
halt, 518, 519
head, 152
host, 378, 857
hostname, 149, 370
hping, 1007
id, 492, 499
ifconfig, 541

Index 1135

info, 126, 243, 983
init, 310, 559
initctl, 502
insmod, 645
ipchains, 896
iptables, 885
iptables-restore, 907
iptables-save, 907
iwconfig, 700
John the Ripper, 1007
jwhois, 378
kdesu, 491
kerberos, 1003, 1007
killall, 524
L6, 1007
ldd, 532
less, 125, 148, 236, 288, 402
lftp, 718
lids, 1007
links, 392
ln, 210, 213, 566
lock, 417
login, 310, 516
logresolve, 938
logrotate, 684
lp, 623
lpadmin, 627
lpinfo, 626
lpq, 151, 623
lpr, 151, 235, 237, 623
lprm, 151, 623
lpstat, 151, 623
ls, 147, 192, 199, 202, 211, 240, 284
lshal, 697
lshw, 525, 696
lsmod, 645
lsof, 681
lspci, 696
lynx, 392
mail, 171
mailq, 765
make, 162
makedbm, 793
man, 14, 124, 128
mandb, 165
md5sum, 40
memtest86+, 62
mesg, 171
mingetty, 310

mkdir, 191, 192, 193, 803
mkfifo, 568
mkfs, 525, 574
mkswap, 564
modinfo, 645
modprobe, 645
more, 148, 236, 402
mount, 559, 572, 573, 803, 841
mt, 668
mv, 150, 197, 566
names, typeface, 18
nessus, 1007
net, 824
net use (Windows), 842
net view (Windows), 842
netcat, 1007
netstat, 365
network, 354, 372
newaliases, 764
newlist, 775
nisdomainname, 786
nmap, 1007
nm-applet, 700
nmblookup, 842, 843
nn, 389
nologin, 561
od, 556
OPIE, 1002, 1007
option, 221
parted, 514, 673
passwd, 562, 789
pdbedit, 824
pidgin, 105
pidof, 524
pinfo, 128
ping, 375, 526, 562, 842
ping6, 376
portmap, 802, 808, 818
poweroff, 518
procmail, 171
ps, 238, 310, 437, 680, 684
pstree, 311
pwd, 192, 213
qmail, 998
quota, 687
quotaon, 687
rbac, 1008
rcp, 372
readnews, 389

1136 Index

Utility, continued
reboot, 518
reject, 629
reset, 526
resolvconf, 858
restore, 666
rlogin, 354
rm, 148, 214, 330, 402, 567
rmdir, 196
rmmod, 645
rn, 389
rpcinfo, 530, 788
rsh, 354, 372
runlevel, 510, 519
run-parts, 669
ruptime, 680
S/Key, 1002
saint, 1008
samhain, 1001, 1008
sara, 1008
scp, 354, 569, 711. See also OpenSSH
script, 158
sed, 684
sendmail, 779
setfacl, 205
setserial, 526
sftp, 718
shares-admin, 658, 809, 812, 827
showmount, 816
shutdown, 518, 564
slocate, 166
smbclient, 824, 840, 843
smbpasswd, 828
smbstatus, 824
smbtar, 824
smbtree, 824, 839
snort, 1008
sort, 14, 153, 235, 236
spamc, 769
squirrelmail-configure, 774
srp, 1008
ssh, 134, 354, 384, 569, 708, 711, 714, 715,

1003, 1008. See also OpenSSH
ssh-keygen, 712, 713, 721
startx, 254
stat, 526
status, 503
stty, 417, 554
su, 489, 499

sudo, 88
swapon, 564
swat, 828
swatch, 1008
sylpheed, 171
Synaptic, 121
sysctl, 636
syslog, 386
sysv-rc-conf, 508
tail, 152, 238
talk, 372, 386
tar, 161, 289, 663, 665
tee, 236, 493
telinit, 510, 516, 519
telnet, 134, 354, 373, 374, 957, 998
test, 397, 398, 403, 407
testparm, 842
tftp, 800
tin, 389
top, 672, 680
touch, 197
tr, 159, 234, 281
traceroute, 376
traceroute6, 377
tripwire, 1001, 1008
true, 453
tset, 526
tty, 226
tune2fs, 525, 578
typeset, 299
ubiquity. See Installation, graphical
udev, 568
ufsdump, 557
umount, 559, 575, 804
uname, 527
uncompress, 187
uniq, 154
unix2dos, 159, 736
unzip, 161
updatedb, 166
update-grub, 651
uptime, 169
useradd, 660
userdel, 661
usermod, 661
uucp, 389
vimtutor, 172
vmstat, 671
w, 169, 680

Index 1137

wall, 677
wc, 343
webalizer, 964
wget, 609
whatis, 166
whereis, 164
which, 164
who, 167, 226, 233, 235, 560, 686
whois. See Utility, jwhois
wireshark, 1008
write, 167, 170, 677
X server, 252
xargs, 684
xev, 254
xhost, 255
Xinerama, 1070
xmodmap, 258
xrn, 389
xvnews, 389
ypinit, 795
yppasswd, 788
yppush, 793
ypwhich, 787
ypxfr, 795
zcat, 161
zip, 161

UTP cable, 357
uucp utility, 389
UUID, 576, 1067

V

var filename extension, 951
var partition, 33
Variable, 295, 1067

braces, 298
completion, 325
default value, assigning, 443
displaying an error message, 444
environment, 295
expansion, 342, 443
exported, 449
global, 295, 449
keyword, 296
local, 312, 449
modifiers, 443
naming, 295
readonly, 295

removing, 299
shell, 295
substitute default value, 443
substitution, 297
undeclared, 434
unsetting, 299
user created, 295, 296

VeriSign, 994
Version control, Bazaar, 584
vfat filesystem, 572
vi bash command line editor, 322
Video card, configure, 76
View pane, Nautilus, 261
Viewport. See Workspace
vim

bash command line editor, 322
case sensitivity, 1027
Command mode, 174
correcting a mistake, 176, 178
creating a file, 172
d command, 177
dd command, 177
deleting text, 177
editing a file, 172
end a session, 178
enter text, 175
exit from, 178
exit, emergency, 172
getting started, 172
Input mode, 174, 175
inserting text, 178
Last Line mode, 175
moving the cursor, 177
Normal mode. See vim, Command mode
page break, 178
quitting, 178
replacement string, 980
safedit script, 423
special characters, 980
starting, 172
terminal specification, 988
u command, 177
undoing changes, 177
vimtutor utility, 172
Work buffer, 178
x command, 177
ZZ command, 178

vimtutor utility, 172

1138 Index

Virtual
console, 64, 136, 1068
filesystem, 572
memory, 564
package, software, 592
private network. See VPN
software package, 592
terminal. See Virtual, console

Virtual machine
KVM, 7
VirtualBox, 7
Xen, 7

VirtualBox, 7
Virus, 1004, 1068
Visual effects, 103
Visual effects, required hardware, 25
VLAN, 1068
vmstat utility, 671
Volume label, 525, 576
VPN, 355, 1068
vsftpd

See also FTP
chroot jail, 744
configuration file, 742
connection parameters, 750
display, 748
downloading files, 746
files, 752
init script, 740
log, 749
logging in (users), 743
messages, 748
PASV connections, 750
PORT connections, 750
prerequisites, 740
security, 746
server, 740
stand-alone mode, 740, 743
starting, 741
testing, 741
uploading files, 746

vsftpd.chroot_list file, 752
vsftpd.log file, 752
vsftpd.user_list file, 752
vt100 terminal, 989
vt102 terminal, 989

vt220 terminal, 989
Vulcan death grip, 518
VxFS filesystem, 572

W

w utility, 169, 680
W2K, 1068
W3. See World Wide Web
W3C, 1068
wait builtin, 458
Wake up a process, 312
wall utility, 677
WAN, 17, 356, 358, 359, 1068
WAP, 694, 1068
wc utility, 343
Web

See also World Wide Web
crawler, 392
of trust, 996
ring, 1068

webalizer utility, 964
Webmail, 772
wget utility, 609
whatis database, 165
whatis utility, 166
wheel group, 549
whereis utility, 164
which utility, 164
while control structure, 412, 448, 453, 456
Whitespace, 146, 1068

command line, 287
quoting, 297

who am i, 167
who utility, 167, 226, 233, 235, 560, 686
whois utility. See jwhois utility
whos shell script, 411
whoson shell script, 283
Wide area network. See WAN
Widget, 1068. See also GUI
Wi-Fi, 1069. See also Wireless
Wiggly windows, 103
Wildcard, 239, 1068. See also Metacharacter
Window, 106, 111, 1069

active, 139
Add/Remove Applications, 120

Index 1139

Appearance Preferences, 102
Browse, 99
cascading, 1027
clipboard, 113
cut and paste, 113
cycling, 112
decorations, 141
file, 226
File Browser. See Nautilus
focus, input, 112, 139
ignored, 1041
input focus, 112, 139
List applet, 109
Login Window Preferences, 82
manager, 16, 141, 259, 1069

Compiz, 103, 141
GNUStep, 260
Metacity, 103, 141
WindowMaker, 260

minimize, 1048
mouse buttons, remap, 258
Object Properties, 116
Operations menu, 112
Panel Properties, 108
Pick a Color, 268
Pick a Font, 268
Preferences window, 140
root, 106, 113, 1058
Run Application, 92, 269
Save, 99
Screen and Graphics Preferences, 75
scrollbar, 1059
Search for Files, 269
share. See Samba, share
slider, 1060
snap, 1060
Software Sources, 119
thumb, 1065
tiled, 1065
titlebar, 96, 112
toolbar, 112
transient, 1065
Ubuntu Help Center, 104
unmanaged, 1066
Update Manager, 101
wiggly, 103

Window Preferences, 140
working with, 96

WindowMaker window manager, 260
Windows

convert Linux files to, 159
dual-boot system, 61
filename limitation, 186
integration. See Samba
net use utility (Samba), 842
net view utility (Samba), 842
networks, browsing using Samba, 840
NTFS driver, 987
privileged port, 1054
Samba. See Samba
shares from Linux, accessing using Samba, 839
shares, connecting to using Samba, 840
shares, displaying using Samba, 839
shares, mounting, 841

winprinter, 617
WINS, 1069
Wiping a file, 556
Wire. See Cable
Wireless

access point, 694, 1069
ad hoc mode, 695
bridge, 695
configuring, 700
infrastructure mode, 695
iwconfig utility, 700
NIC, 700

wireshark utility, 1008
Word, 137, 1069

defined, 220, 446
deleting, 137
designator, 318
erase key, 223
parse a command line, 338
splitting (bash), 305

Work buffer, 1069
Work buffer, vim, 178
Working directory, 188, 1069

change using cd, 193
execute a file in, 303
PATH, 283
relative pathnames and, 190
significance of, 190
versus home directory, 193

1140 Index

Working with root privileges, 88
Workspace, 106, 1069

desktop, and the, 91
GNOME, 16
Switcher, 93, 94

Workstation, 7, 1069
World Wide Web, 390

Berners-Lee, Tim, 390
CERN, 390
Consortium, 1068
Enquire, 390
HTML, 390
hypermedia, 391
hypertext, 391
link, hypertext, 391
Mosaic browser, 391
search engine, 392
URL, 391
Web crawler, 392

Worm, 1004, 1068, 1069
Write access, 199
write utility, 167, 170, 677
wtmp file, 196, 686
www directory, 918, 924, 925
www file, 920
WWW. See World Wide Web
WYSIWYG, 1069

X

X
Consortium, 252
server, 1070
terminal, 1070
utility, 252

X Window System, 15, 74, 252, 1070
client and server, 253
color depth, 257
configuring, 75
display number, 256
DISPLAY variable, 256
display, access to, 255
emergency exit, 257
event, 253
exiting from, 257
freedesktop.org group, 260

ID string, 256
library, 141
Mouse. See Mouse
multiple X servers, 257
remote computing and local displays, 254
resolution, changing, 140
screen number, 256
server, 253
server process, 680
stack, 252
starting, 254
X stack, 252
X.org versus XFree86, 252
X11 forwarding, OpenSSH, 712, 718, 719,

724, 725
X11R6.6, 252
X11R7.2, 74
XFree86 versus X.org, 252
Xinerama, 1070
Xlib, 252
xorg.conf file, 77

X.org, 74
X11 directory, 74, 195
X11R6.6, 252
X11R7.2, 74
x86 processor architecture, 27
xargs utility, 684
XDMCP, 1070
xDSL, 1070
Xen, 7
xev utility, 254
Xfce desktop, 10
xforcevesa boot parameter, 62
xfs filesystem, 572
xhost utility, 255
xhtml filename extension, 931
Xinerama, 1070
xinetd daemon, 386, 531, 741
XINU, 4
Xlib, 252
XML, 1070
xmodmap utility, 258
xorg.conf file, 74, 77
Xremote, 363
xrn utility, 389
XSM, 1070

Index 1141

xterm terminal name, 989
Xubuntu, 10, 26
xvnews utility, 389

Y

Yellow Pages, 782
yp.conf file, 787
ypbind daemon, 788
ypinit utility, 795
yppasswd utility, 788
yppasswdd daemon, 797
yppush utility, 793
ypserv.conf file, 791
ypwhich utility, 787

ypxfr utility, 795
ypxfrd daemon, 795

Z

Z filename extension, 161, 187
Z Shell, 1070
zcat utility, 161
zero file, 556
Zeroconf, 699
Zimmerman, Phil, 996
zip utility, 161
Zone, DNS, 848
zsh shell, 1070
Zulu time. See UTC

	A PRACTICAL GUIDE TO UBUNTU LINUX
	CONTENTS
	PREFACE
	CHAPTER 1: WELCOME TO LINUX
	The GNU–Linux Connection
	The History of GNU–Linux
	The Code Is Free
	Have Fun!

	The Linux 2.6 Kernel
	The Heritage of Linux: UNIX
	What Is So Good About Linux?
	Why Linux Is Popular with Hardware Companies and Developers
	Linux Is Portable
	Standards
	The C Programming Language
	Ubuntu Linux

	Overview of Linux
	Linux Has a Kernel Programming Interface
	Linux Can Support Many Users
	Linux Can Run Many Tasks
	Linux Provides a Secure Hierarchical Filesystem
	The Shell: Command Interpreter and Programming Language
	A Large Collection of Useful Utilities
	Interprocess Communication
	System Administration

	Additional Features of Linux
	GUIs: Graphical User Interfaces
	(Inter)Networking Utilities
	Software Development

	Conventions Used in This Book
	Chapter Summary
	Exercises

	PART I: INSTALLING UBUNTU LINUX
	CHAPTER 2: INSTALLATION OVERVIEW
	The Live/Install Desktop CD/DVD
	More Information
	Planning the Installation
	The Installation Process
	Downloading and Burning a CD/DVD
	Gathering Information About the System
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 3: STEP-BY-STEP INSTALLATION
	Basic Installation from the Live/Install Desktop CD/DVD
	Graphical Partitioners
	Upgrading to a New Release
	Installing KDE
	Setting Up a Dual-Boot System
	Advanced Installation
	The X Window System
	Chapter Summary
	Exercises
	Advanced Exercises

	PART II: GETTING STARTED WITH UBUNTU LINUX
	CHAPTER 4: INTRODUCTION TO UBUNTU LINUX
	Curbing Your Power: root Privileges/sudo
	A Tour of the Ubuntu Linux Desktop
	Getting the Most out of the Desktop
	Updating, Installing, and Removing Software Packages
	Where to Find Documentation
	More About Logging In
	Working from the Command Line
	Controlling Windows: Advanced Operations
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 5: THE LINUX UTILITIES
	Special Characters
	Basic Utilities
	Working with Files
	| (Pipe): Communicates Between Processes
	Four More Utilities
	Compressing and Archiving Files
	Locating Commands
	Obtaining User and System Information
	Communicating with Other Users
	Email
	Tutorial: Creating and Editing a File with vim
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 6: THE LINUX FILESYSTEM
	The Hierarchical Filesystem
	Directory Files and Ordinary Files
	Pathnames
	Directory Commands
	Working with Directories
	Access Permissions
	ACLs: Access Control Lists
	Links
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 7: THE SHELL
	The Command Line
	Standard Input and Standard Output
	Running a Program in the Background
	Filename Generation/Pathname Expansion
	Builtins
	Chapter Summary
	Exercises
	Advanced Exercises

	PART III: DIGGING INTO UBUNTU LINUX
	CHAPTER 8: LINUX GUIS: X AND GNOME
	X Window System
	The Nautilus File Browser Window
	GNOME Utilities
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 9: THE BOURNE AGAIN SHELL
	Background
	Shell Basics
	Parameters and Variables
	Special Characters
	Processes
	History
	Aliases
	Functions
	Controlling bash Features and Options
	Processing the Command Line
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 10: NETWORKING AND THE INTERNET
	Types of Networks and How They Work
	Communicate Over a Network
	Network Utilities
	Distributed Computing
	Usenet
	WWW: World Wide Web
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 11: PROGRAMMING THE BOURNE AGAIN SHELL
	Control Structures
	File Descriptors
	Parameters and Variables
	Builtin Commands
	Expressions
	Shell Programs
	Chapter Summary
	Exercises
	Advanced Exercises

	PART IV: SYSTEM ADMINISTRATION
	CHAPTER 12: SYSTEM ADMINISTRATION: CORE CONCEPTS
	Running Commands with root Privileges
	The Upstart Event-Based init Daemon
	System Operation
	Avoiding a Trojan Horse
	Getting Help
	Textual System Administration Utilities
	Setting Up a Server
	nsswitch.conf: Which Service to Look at First
	PAM
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 13: FILES, DIRECTORIES, AND FILESYSTEMS
	Important Files and Directories
	File Types
	Filesystems
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 14: DOWNLOADING AND INSTALLING SOFTWARE
	JumpStart: Installing and Removing Packages Using aptitude
	Finding the Package That Holds a File You Need
	APT: Keeps the System Up-to-Date
	dpkg: The Debian Package Management System
	BitTorrent
	Installing Non-dpkg Software
	wget: Downloads Files Noninteractively
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 15: PRINTING WITH CUPS
	Introduction
	JumpStart I: Configuring a Local Printer
	system-config-printer: Configuring a Printer
	JumpStart II: Configuring a Remote Printer Using the CUPS Web Interface
	Traditional UNIX Printing
	Configuring Printers
	Printing from Windows
	Printing to Windows
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 16: BUILDING A LINUX KERNEL
	Prerequisites
	Downloading the Kernel Source Code
	Read the Documentation
	Configuring and Compiling the Linux Kernel
	Installing the Kernel, Modules, and Associated Files
	Rebooting
	grub: The Linux Boot Loader
	dmesg: Displays Kernel Messages
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 17: ADMINISTRATION TASKS
	Configuring User and Group Accounts
	Backing Up Files
	Scheduling Tasks
	System Reports
	parted: Reports on and Partitions a Hard Disk
	Keeping Users Informed
	Creating Problems
	Solving Problems
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 18: CONFIGURING A LAN
	Setting Up the Hardware
	Configuring the Systems
	Setting Up Servers
	More Information
	Chapter Summary
	Exercises
	Advanced Exercises

	PART V: USING CLIENTS AND SETTING UP SERVERS
	CHAPTER 19: OPENSSH: SECURE NETWORK COMMUNICATION
	Introduction
	About OpenSSH
	OpenSSH Clients
	sshd: OpenSSH Server
	Troubleshooting
	Tunneling/Port Forwarding
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 20: FTP: TRANSFERRING FILES ACROSS A NETWORK
	Introduction
	More Information
	FTP Client
	FTP Server (vsftpd)
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 21: exim4: SETTING UP MAIL SERVERS, CLIENTS, AND MORE
	Introduction to exim4
	JumpStart I: Configuring exim4 to Use a Smarthost
	JumpStart II: Configuring exim4 to Send and Receive Email
	How exim4 Works
	Configuring exim4
	SpamAssassin
	Additional Email Tools
	Authenticated Relaying
	Alternatives to exim4
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 22: NIS: NETWORK INFORMATION SERVICE
	Introduction to NIS
	How NIS Works
	Setting Up an NIS Client
	Setting Up an NIS Server
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 23: NFS: SHARING FILESYSTEMS
	Introduction
	More Information
	Setting Up an NFS Client
	Setting Up an NFS Server
	automount: Mounts Directory Hierarchies on Demand
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 24: SAMBA: LINUX AND WINDOWS FILE AND PRINTER SHARING
	Introduction
	About Samba
	JumpStart: Configuring a Samba Server Using shares-admin
	swat: Configures a Samba Server
	smb.conf: Manually Configuring a Samba Server
	Accessing Linux Shares from Windows
	Accessing Windows Shares from Linux
	Troubleshooting
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 25: DNS/BIND: TRACKING DOMAIN NAMES AND ADDRESSES
	Introduction to DNS
	About DNS
	JumpStart I: Setting Up a DNS Cache
	Setting Up BIND
	Troubleshooting
	A Full-Functioned Nameserver
	A Slave Server
	A Split Horizon Server
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 26: firestarter AND iptables: SETTING UP A FIREWALL
	About firestarter
	JumpStart: Building a Firewall Using the firestarter Firewall Wizard
	firestarter: Maintains a Firewall
	How iptables Works
	About iptables
	Anatomy of an iptables Command
	Building a Set of Rules
	Copying Rules to and from the Kernel
	Sharing an Internet Connection Using NAT
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 27: APACHE: SETTING UP A WEB SERVER
	Introduction
	About Apache
	JumpStart: Getting Apache Up and Running
	Configuring Apache
	Configuration Directives
	The Ubuntu apache2.conf File
	The Ubuntu default Configuration File
	Redirects
	Content Negotiation
	Server-Generated Directory Listings (Indexing)
	Virtual Hosts
	Troubleshooting
	Modules
	webalizer: Analyzes Web Traffic
	MRTG: Monitors Traffic Loads
	Error Codes
	Chapter Summary
	Exercises
	Advanced Exercises

	PART VI: APPENDIXES
	APPENDIX A: REGULAR EXPRESSIONS
	Characters
	Delimiters
	Simple Strings
	Special Characters
	Rules
	Bracketing Expressions
	The Replacement String
	Extended Regular Expressions
	Appendix Summary

	APPENDIX B: HELP
	Solving a Problem
	Finding Linux-Related Information
	Specifying a Terminal

	APPENDIX C: SECURITY
	Encryption
	File Security
	Email Security
	Network Security
	Host Security
	Security Resources
	Appendix Summary

	APPENDIX D: THE FREE SOFTWARE DEFINITION
	APPENDIX E: THE LINUX 2.6 KERNEL
	Native Posix Thread Library (NPTL)
	IPSecurity (IPSec)
	Asynchronous I/O (AIO)
	O(1) Scheduler
	OProfile
	kksymoops
	Reverse Map Virtual Memory (rmap VM)
	HugeTLBFS: Translation Look-Aside Buffer Filesystem
	remap_file_pages
	2.6 Network Stack Features (IGMPv3, IPv6, and Others)
	Internet Protocol Virtual Server (IPVS)
	Access Control Lists (ACLs)
	4GB-4GB Memory Split: Physical Address Extension (PAE)
	Scheduler Support for HyperThreaded CPUs
	Block I/O (BIO) Block Layer
	Support for Filesystems Larger Than 2 Terabytes
	New I/O Elevators
	Interactive Scheduler Response Tuning

	GLOSSARY
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

