
Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

Apache Security
and

Auditing

Copyright 2003 by Network Intelligence India Pvt. Ltd. All rights
reserved. No part of this publication may be reproduced or distributed
in any form or any means whatsoever, without the prior written
permission of Network Intelligence India Pvt. Ltd.

Other Research Documents at
http://www.nii.co.in/research/handbook.html

If you find this document useful and wish to recommend it to someone,
please do not make copies of it, but ask them to download it from
http://www.nii.co.in/research/handbook.html

http://www.nii.co.in/research/handbook.html

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

Introduction:

The Apache Web Server is a full-featured, efficient and robust Web Server developed by
the Apache Software Foundation [1]. The fact that about 66% [2] of the Websites use
Apache Web Server proves that, it has rich and varied features and compares very
favorably with other web servers [3]. Apache is easy to install and manage, thanks to the
Apache Documentation Project. By being open source, Apache offers greater security
and faster response to discovered vulnerabilities than most other web servers.

A website on the Internet, by its very purpose, is easily accessible by everyone. It is
therefore of paramount importance to secure the web server. Apache can be secured if the
configuration directives are used appropriately. This document focuses on the security
controls provided within Apache and how to audit them.

Contents:

Secure Apache Installation

OS Security
Directives
Authorization
Authentication
CGI Security
Other Security Issues
Auditing Tools and References

Other Research Documents at
http://www.nii.co.in/research/handbook.html

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

Secure Apache Installation

The installation directory for Apache tends to vary from one flavor of Unix to the other.
For instance, in Linux the default installation directory is /var/apache. This can be
modified at install time. Throughout this document we refer to this folder as $ServerRoot.
Also, the actual web site’s files – the HTML pages, images, scripts, etc. – might be
located in an entirely different folder and this is referred to as $DocumentRoot. The main
configuration file for Apache is the httpd.conf file present in the $ServerRoot/conf
directory. This file uses, what are called, ‘directives’ for configuration. Directives are the
directions given to the Apache server to determine every type of access to its resources.
For the purpose of running the web server, a new user should have been created. Under
no circumstances must Apache be run as root – the super user account on Unix. Also,
running Apache with an existing low-privileged user account such as nobody results in
unnecessary access to existing files and directories. A new user apache can be created by
root as follows:
useradd -c "Apache Web Server" -u 8080 -r -s /bin/false -d /home/apache apache

Check that this user has been given read-only access on the Apache server configuration
files, files in $DocumentRoot and system files, and write permissions on log files. To
check under which account apache is running, execute the following command:
ps –ef | grep httpd

For a minimum installation you may ensure that at least the following files have been
removed:
$ServerRoot/htdocs – Apache documentation
$ServerRoot/icons – default icons used for index pages
$ServerRoot/cgi-bin/sample_scripts

Other Research Documents at
http://www.nii.co.in/research/handbook.html

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

Operating System Security
All critical Apache server files such as executables, configuration files, error and log files
should be protected from non-root users. These directories are the primary targets for
loading Trojans, corrupting files and other malicious attempts. For an explanation on
Unix permissions and how to view them, go to [4]. Permissions on files/folders under
$ServerRoot should be set as follows:

File or Folder Owner Group Permissions
Conf root root 750
Bin root root 750
Logs root root 755
Httpd root root 511

Permissions on .htaccess:
The file .htaccess contains access control directives for a directory in which it is present,
and can exist for any directory. Permissions set in this file override those set at an upper
level in the directory hierarchy or at the OS level. A user who does not have access
permissions on files, but has write permission on .htaccess, can change directives in
.htaccess to gain write or execute permissions. Hence, this file should be protected from
non-root users who are not a part of Apache server management. Better still, .htaccess
must be completely avoided and all permissions should be set solely in httpd.conf. In case
a directory needs special permissions, these should be set using a different ‘Directory’
directive in httpd.conf. We shall see more in detail in the section on Directives.
Note: A user can change the name of the .htaccess file using the AccessFileName
directive in httpd.conf. So check to ensure that this directive has not modified the file
name, but if it has, then you must apply the above section to the new file.

Permissions on .htpasswd
The file .htpasswd stores usernames and passwords for those users who may need to be
authenticated before being given access to restricted areas in the website. The password
can be stored as plain text, which should be strictly prohibited, or using an encryption
algorithm such as MD5 (default on Windows, Netware, and TPF) or CRYPT (default on
Unix), which is highly recommended. If the file is not protected, the attacker can replace
a higher-privileged account’s hashed password with his own, and start using the hacked
account. Preferable permissions are 700.
Other Operating System hardening measures must be followed as well. See [5] and
[6].

Patches:
As with any other software, Apache also has had vulnerabilities being discovered in it.
So, it is very important that all necessary patches be applied, which gets reflected in the
version number of Apache. Apache has two series – the 1.3 and the 2.0 with latest
versions as of this writing being 1.3.20 and 2.0.44 respectively. You can determine the
Apache version number by issuing the command:
$ServerRoot/bin/httpd -v

Other Research Documents at
http://www.nii.co.in/research/handbook.html

Apache HTTP Server Official patches can be downloaded from
http://www.apache.org/dist/httpd/patches/

http://www.apache.org/dist/httpd/patches/

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

Directives

Directory
The Directory directive is used to enclose a group of directives that will apply only to the
named directory and all sub-directories of that directory. The default access control
permissions should be set to a very restrictive set. To achieve this, ensure that the
following configuration exists in the httpd.conf file. This is to prevent access from all
(clients) to any directory or file by setting the ‘deny from all’ for the ‘/’ directory.
Recommended setting –

<Directory />
Options None
AllowOverride None
Order Deny, Allow
Deny from all
</Directory>

Permissions can be set differently for specific directories by modifying the above syntax
to read: <Directory /dir_path>. This will have to be done to allow access to the web
site’s content. See the section on Authorization.

Permissions can be set differently for specific directories by modifying the above syntax
to read: <Directory /dir_path>. This will have to be done to allow access to the web
site’s content.

Moreover, Apache allows for host-based access control based on wildcard matching with
IP addresses or with domain names. For instance, you may choose to deny access from
all clients, except those that come from the domain yourcompany.com:
Order Deny, Allow
Deny from all
Allow from yourcompany.com
This would only allow access to users from any domain that matches yourcompany.com
such as hq.yourcompany.com or loc1.yourcompany.com. You may also choose to allow
access only from a particular range of IP addresses, by changing the above Allow
statement as follows:
Allow from 192.168.0.0/255.255.255.0

Setting AllowOverride to None stops users from setting their own .htaccess files which
can be used to override security configurations enabled at Server level. [See section on
.htaccess permissions above]

Setting Options to None will disable extra features, which could lead to weaker settings.
Risks associated with each of the Options features are explained below:

a. ExecCGI

Other Research Documents at
http://www.nii.co.in/research/handbook.html

This feature permits execution of CGI scripts at the server. If the input provided by the
client is not properly evaluated before using it, the attacker can find out some way or use

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

known vulnerabilities found in scripting methods and inject his code to get the desired
information from the server. Therefore it’s recommended to avoid its use unless
explicitly required. If required, use very strong parsing mechanisms to prevent any
malicious inputs. For more information on CGI security see section CGI Security.

b. FollowSymLinks
This feature allows the server to follow symbolic links [8] in this directory. The
permissions given on the symbolic links to the files or directories, overrides those that are
present on the actual files or directories. This will allow anyone having permissions on
the symbolic link to execute, read or write even though he has no permissions on the
actual file or directory. Strongly recommend against enabling this feature.

c. SymLinksIfOwnerMatch
This feature allows the server to follow symbolic links for only those users who have
permissions on the target file or directory. This feature overcomes the situation
mentioned above. Even so, you must check the permissions on the links and the files they
point to.

d. Indexes
This feature will create a directory listing if the file ‘index.html’ is not present in the
directory that is mapped to URL requested. This will list all the files and directories
including those that you do not want the world to see. This feature should never be used.

e. Includes
This feature permits Server Side Includes to be used in the Apache Server. SSIs (Server
Side Includes) are directives that are placed in HTML pages, and dynamically evaluated
on the server while the pages are being served. For details on SSI see [9]. This feature
creates both security and performance problems, since it allows execution of CGI scripts
or any executables under the Apache Server permissions. This can be exploited to gain
control over the server. If you still want to use SSIs, enable suexec and instead of using
option Includes use IncludesNOEXEC, which would allow SSI to be used but disallows
execution of any SSIs, which execute CGI scripts or programs.

f. IncludesNOEXEC
This feature permits SSIs with #exec and #exec cgi disabled. But the users may still use
#include virtual="..." to execute CGI scripts if these scripts are present in directories
which use the ScriptAlias directive. Therefore, audit all CGI scripts and HTML pages for
presence of SSI directives, in case these features are required. See section on Alias and
ScriptAlias below.

g. Multiviews
With this option, the server does an implicit filename pattern match and chooses the
closest match that exists. It may enable the server to serve critical content accidentally, so
this option should be avoided.

Other Research Documents at
http://www.nii.co.in/research/handbook.html

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

ServerSignature
ServerSignature will add a footer to the error pages giving out server information such as
version number, name of server, etc., which must be protected from outsiders. Hence it is
recommended to set it to ‘off’.
Also change the banner of Apache Server, and set it to something, which does not
mention about Apache and its version.. This can be done by setting the following
directive in the httpd.conf
ServerTokens ProductOnly.
This will only show ‘Apache’ in the banner. To completely remove any trace of Apache
from the banner, you will have to change the source code and recompile it.

UserDir
If it is necessary to give a user access to his home directory through Apache, then we
must use the UserDir directive. With this, a Unix user called harry can access his home
directory by browsing to: http://the_web_server/~harry
In that case disable access to directory in UserDir to all and enable access to only trusted
users. Take special care for the permissions on this directory, if possible give read-only
access. Use of this directive is strongly discouraged.

Alias and ScriptAlias
These directives are used to map URLs to system file paths, so that, content which is not
directly under $DocumentRoot, can be served up as part of the website. Use of these
directives must be avoided as far as possible. ScriptAlias is similar to Alias, except that it
marks the target directory as containing only CGI scripts.

Directives to prevent DoS and Buffer Overflows
Apache also provides directives for limiting resource usage such as RLimitCPU (to limit
CPU usage of child processes launched by the main Apache thread), RlimitMem (to limit
memory usage by Apache’s child processes), and RlimitNProc (to limit the child
processes that can be spawned by Apache’s child processes). The suggested values of
these parameters depend upon the hardware resources available and the expected peak
usage.

Buffer overflow attacks are those that try to execute code of the attacker’s choice by
overflowing the program stack. To mitigate the risk of these, we must apply all Apache
recommended patches, and in addition may consider setting directives such as
LimitRequestBody (to limit the total size of the HTTP request body sent by a client),
LimitRequestFields (to limit the number of HTTP request header fields that will be
accepted), LimitRequestFieldsize (to limit the size of the HTTP request header sent by the
client), and LimitRequestLine (to limit the size of the HTTP request line sent by the
client).

LogFormat (Auditing):

Other Research Documents at
http://www.nii.co.in/research/handbook.html

Ensure that the LogFormat directive includes the following critical fields: Remote IP
address (%a), Remote host (%h), Remote user (%u), Time (%t), First line of request
(%r), Status of the last request (%>s), Number of bytes sent (%b). Study the log files and
ensure the following:

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

1. Keep track of all remote IPs and the first line of request where server status is
403, which imply access to forbidden web pages.

2. Archive the log files at regular intervals, so that the log files do not increase to a
very large size. This is usually done by a shell script.

Other Research Documents at
http://www.nii.co.in/research/handbook.html

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

Authorization
Apache allows for host-based access control based on wildcard matching with IP
addresses or with domain names. The module mod_access is used to restrict access and it
uses the directives Order, Allow and Deny. The combination of these directives can be
used to allow or deny access to users. The ‘Order’ directive sets the default access state
and the order in which allow or deny are evaluated.

Example 1
Order allow,deny
allow yoursite.org
deny accounts.yoursite.org

This Order directive will set the default access as deny to everybody and will give access
to all users from the domain yoursite.org but will deny access to accounts.yoursite.org.
This setting is used when you want to keep your site very restrictive.

Example 2
Order deny,allow
deny yoursite.org
allow accounts.yoursite.org

This Order directive will set the default access to allow everybody and will deny access
to all users from the domain yoursite.org but will allow access to accounts.yousite.org.

You may also choose to allow access only from a particular range of IP addresses, by
changing the above Allow statement as follows:
Allow from 192.168.0.0/255.255.255.0

Note: Access rights are enforced in the descending order as given below, with the
Location (used for access control if documents are created on the fly) directive taking the
precedence. Therefore even if the Directory directive is prohibiting access to certain files,
Location may give access to these files.
 Directory
 DirectoryMatch
 Files/FilesMatch

Other Research Documents at
http://www.nii.co.in/research/handbook.html

 Location/LocationMatch

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

Authentication

Following modules are used for user authentication: mod_auth, mod_auth_dbm, etc. The
following directives are used for passing the authorization information to these modules:

1. AuthGroupFile: This directive represents the text file, which contains Apache groups
and the associated users. The syntax is
group_name: user1,user2,user3

2. AuthUserFile: This directive represents the text file, which contains Apache users and
their encrypted password. The syntax is
user1:password1
user2:password2

.htaccess is the default text file used for storing this information. Ensure that this file is
stored outside the $DocumentRoot, i.e. the AuthUserFile directive should not contain
$DocumentRoot as its parent directory.

3. AuthName: This directive sets the authorization realm (Apache refers to protected
areas as realms, which contain a set of critical documents – this is usually a link or actual
file location) for the client so that the client knows which user-password pair a client has
to sent to the server.

4. Authtype: This directive indicates how the user-password pair is transferred over the
network. Apache Server provides two types of Authentication: Basic and Digest. The
Basic type sends the password from client to the browser using Base64 encryption, which
is as good as being unencrypted. This authentication type will fail to protect the user
password if somebody sniffs the traffic in-between. Digest type is safer to use as it
provides MD5 hashing functionality. But all the browsers do not support Digest type.

5. Require: This directive lists the users or groups are allowed access to the protected
documents. Check that all entries here are users who are privileged to view this
information, and that there are no unauthorized users here. The possible settings can be:
Require user user1,user2
Require group group1,group2
Require valid-user

The last setting allows access to all the users from the authorization file indicated by
AuthUserFile or AuthGroupFile.

For example:
AuthType Basic
AuthName "Restricted Directory"
AuthUserFile /web/users
AuthGroupFile /web/groups
Require user sam,foo

Other Research Documents at
http://www.nii.co.in/research/handbook.html

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

This setting of directives indicates authorization type as basic. The realm (Protected area)
is known as "Restricted Directory". The Authorization files containing user-password
pairs and group-users pair are stored at "/web/users" and "/web/groups" respectively. The
Require directive indicates that user sam and foo are authorized to access this directory or
location.

Satisfy: This directive is used if you want to mix up the access and authentication
directives. This directive can be set to ‘all’, which require users to satisfy both types of
directives and ‘any’, which requires the user to satisfy at least one type of directive. Say
if you want to allow only two users,user1 & user2 from yoursite.org to access restricted
data, then we would set the directives as follows:

Order allow,deny
allow yoursite.org
deny accounts.yoursite.org
AuthName "Restricted Access"
AuthType Basic
AuthUserFile /var/www/html/imp-docs
Require user1,user2
Satisfy all

Other Research Documents at
http://www.nii.co.in/research/handbook.html

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

CGI Security

The security holes generated by the CGI scripts can be neutralized to some extent by
using CGI wrappers. CGI Wrappers are basically programs that get called whenever a
CGI script is to be executed and they run the script under a restricted environment.
Enabling CGI Wrappers requires a good deal of administration and configuration
settings. Apache comes with its own wrappers script ‘suEXEC’, which is usually found
in /usr/sbin. It allows us to configure parameters that will control execution of scripts by
Apache, such as the minimum User ID and Group ID, the user account, and the (safer)
PATH with which CGI and other scripts will be executed. This mitigates the risk from
scripts to a very large extent.

To check if suEXEC is used by Apache server issue the following command which will
produced the list of compiled modules. If suEXEC is enabled it will display a line
"suexec: enabled".
unix#>usr/sbin/httpd -l

You can view the suEXEC configuration by:
unix#>/usr/sbin/suexec –V

Following are the default settings for suEXEC.
-D AP_DOC_ROOT="/var/www"
-D AP_GID_MIN=500
-D AP_HTTPD_USER="apache"
-D AP_LOG_EXEC="/var/log/httpd/suexec.log"
-D AP_SAFE_PATH="/usr/local/bin:/usr/bin:/bin"
-D AP_UID_MIN=500
-D AP_USERDIR_SUFFIX="public_html"

AP_DOC_ROOT:
This is the same as DocumentRoot set in httpd.conf

AP_GID_MIN:
This is the lowest GID to which suEXEC can switch when executing CGI scripts.

AP_HTTPD_USER:
This represents the account under which Apache httpd service runs.

AP_LOG_EXEC:
This represents the file name under which suEXEC transactions and errors are logged.

AP_SAFE_PATH:

Other Research Documents at
http://www.nii.co.in/research/handbook.html

Apache CGI executables use the Unix environment variable 'PATH'. This PATH variable
may contain entries like '.' which could launch a Trojan or such malicious script.
SuEXEC provides a safe PATH environment using AP_SAFE_PATH variable. Review it
for suspicious entries.

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

AP_UID_MIN:
This represents the lowest UID to which suEXEC can switch when executing CGI
scripts.

Other CGI wrappers such as sbox and CGI Wrap are also available. For more information
on CGI wrappers see [7].

In any case, it is strongly recommended that if CGI is enabled, you must audit the CGI
scripts themselves. All default scripts must be removed. All customized scripts must
check user input and allow only safe characters while eliminating all else. For instance, a
CGI script might accept only alphabets and numerals while rejecting everything else.
This is to protect against CGI script manipulation by the user, who may supply meta-
characters such as ‘”/\?~`!@#$%^&*. These characters are interpreted by the Unix shell
and might cause the CGI script to execute system commands.

Other Research Documents at
http://www.nii.co.in/research/handbook.html

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

Modules

Adding modules to Apache during its execution can enhance its functionality. We must
ensure that only modules that are used for running and securing the Apache server should
be installed and all others should be unloaded. See the list of modules in httpd.conf with
the LoadModule directive. For details on each module see:
http://httpd.apache.org/docs-2.0/mod Below is a list of modules, which should be
disabled unless explicitly required:
mod_access mod_auth_any Libperl
mod_userdir mod_auth_mysql mod_php
mod_actions mod_auth_pgsql Libdav
mod_alias mod_cgi mod_roaming
mod_auth mod_cgid mod_put
mod_auth_anon mod_env mod_python
mod_auth_dbm mod_proxy

Other Research Documents at
http://www.nii.co.in/research/handbook.html

http://httpd.apache.org/docs-2.0/mod

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

Other Security Issues

Chroot
The main problem with the compromise of an Apache Web Server is that it more often
than not leads to a compromise of the underlying operating system, and from there,
onwards to other systems in the network as well. In spite of the security measures that we
put into place for Apache, we must prepare for the possibility of a successful intrusion. In
such a case, we would wish to prevent the attack on Apache escalating to an attack on the
OS and the rest of our network. To do this, we can run Apache in what is called a ‘chroot
jail’. This implies a configuration of the system wherein the Apache server believes its
$ServerRoot to be the root directory ‘/’ of the OS. This is done by copying necessary files
from the system to respective directories under $ServerRoot. For instance, to run Apache
properly we need certain system libraries, which must be copied from the original
location to a /lib directory under $ServerRoot. Similarly we will need to copy files such
as /etc/passwd and /etc/group from their original locations to $ServerRoot/etc. Moreover,
configuration files will need to be modified in order to use this new file system structure.
In such a scenario, even if Apache does get hacked into, the hacker cannot do anything
other than move around in the chroot jail. If the chroot has been configured properly, he
has no means to ‘break’ out of the jail as he does not have access to system commands,
scripts, configuration files, etc. See [9] for details on setting up a ‘chroot-jail’
environment for Apache.

Secure Server
A Secure Server is one that is accessed using the Secure HTTP protocol
(https://domainname/) and encrypts all data between the browser and the server. Apache
provides extensive support for HTTPS through the mod_ssl module. For this you need to
create a certificate and get it signed by a root CA such as Verisign or Thawte or self-sign
it. The details of this are beyond the scope of this article and the reader is referred to [11]
for a more thorough discussion

Other Research Documents at
http://www.nii.co.in/research/handbook.html

https://domainname/

Apache Security and Auditing
© Network Intelligence India Pvt. Ltd.

Auditing tools:
The auditor may use both host-based and network-based vulnerability assessment tools to
aid in his work. Host-based tools are:
Tripwire – for ensuring integrity of critical files http://www.tripwire.com/
COPS – to ensure Unix security http://dan.drydog.com/cops/
External auditing tools are:
Nmap – for checking open ports http://www.insecure.org/nmap/
Nessus– for vulnerability assessment http://www.nessus.org

References:

1. Apache Software Foundation http://www.apache.org
2. Netcraft Web Server Survey http://www.netcraft.com/survey/
3. Web Compare: http://webcompare.internet.com/
4. Unix Permissions

http://www.acm.uiuc.edu/webmonkeys/html_workshop/unix.html
5. Practical Unix and Internet Security, Simson Garfinkel and Gene Spafford.
6. The Unix Auditor’s Practical Handbook,

http://www.nii.co.in/research/handbook.html
7. CGI Wrappers and suexec: http://httpd.apache.org/docs-2.0/suexec.html
8. Unix Symbolic Links: A link in Unix is somewhat like a shortcut in Windows.

For a detailed explanation see: http://www.ncl.ac.uk/ucs/unix/ln.html
9. Apache and SSI http://httpd.apache.org/docs-2.0/howto/ssi.html
10. How to ‘chroot’ an Apache tree with Linux and Solaris:

http://penguin.epfl.ch/chroot.html
11. Apache and SSL http://httpd.apache.org/docs-2.0/ssl/ssl_faq.html

Other Research Documents at
http://www.nii.co.in/research/handbook.html

12. Professional Apache Security, Wrox Press,
http://www.wrox.com/books/1861007760.htm

http://www.tripwire.com/
http://dan.drydog.com/cops/
http://www.insecure.org/nmap/
http://www.nessus.org/
http://www.apache.org/
http://www.netcraft.com/survey/
http://webcompare.internet.com/
http://www.acm.uiuc.edu/webmonkeys/html_workshop/unix.html
http://www.nii.co.in/research/handbook.html
http://httpd.apache.org/docs-2.0/suexec.html
http://www.ncl.ac.uk/ucs/unix/ln.html
http://httpd.apache.org/docs-2.0/howto/ssi.html
http://penguin.epfl.ch/chroot.html
http://httpd.apache.org/docs-2.0/ssl/ssl_faq.html
http://www.wrox.com/books/1861007760.htm

	Contents:
	Secure Apache Installation
	OS Security
	Directives
	Authorization
	Authentication
	CGI Security
	Other Security Issues
	Auditing Tools and References
	Secure Apache Installation
	Patches:
	Directives
	Directory
	Allow from yourcompany.com
	Allow from 192.168.0.0/255.255.255.0

	a. ExecCGI
	b. FollowSymLinks
	c. SymLinksIfOwnerMatch
	d. Indexes
	e. Includes
	f. IncludesNOEXEC
	
	g. Multiviews
	
	Alias and ScriptAlias

	Authorization
	
	
	
	
	Example 1
	Example 2

	Allow from 192.168.0.0/255.255.255.0

	Authentication
	Chroot
	Secure Server

