THE EXPERT'S VOICE® IN OPEN SOURCE

Hardenin
Linux

Loerrms hosr fo qradebly socune your Lin
fnoepis el erpaplicaiion s apenlngd ariack.

James Turnbull

Apress’

Hardening
Linux

JAMES TURNBULL

Apress’

Hardening Linux
Copyright © 2005 by James Turnbull

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-444-4
Printed and bound in the United States of America 9 8 7 6 54 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jim Sumser
Technical Reviewer: Judith Myerson

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason
Gilmore, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett

Production Manager: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Linda Weidemann
Proofreader: Lori Bring

Indexer: Kevin Broccoli

Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liabil-
ity to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section.

For Lucinda, who put up with having an absentee husband
for many months and without whose love and support
T'would not have been able to write this book.

For my grandparents, Alice and Jim Turnbull,
whose love and support is greatly missed.

Contents at a Glance

About the AUThOr XV
About the Technical Reviewer. Xvii
ACKNOWIBdgmMeNtS Xix
INtrOdUCHION. XXi
CHAPTER 1 Hardeningthe Basics... 1
CHAPTER 2 FirewallingYourHosts ... 79
CHAPTER 3 Securing Connections and Remote Administration............. 137
CHAPTER 4 Securing Files and File Systems 187
CHAPTER 5 Understanding Logging and Log Monitoring 233
CHAPTER 6 Using Tools for Security Testing 281
CHAPTER 7 Securing Your Mail Serverl 321
CHAPTER 8 Authenticating and Securing Your Mail 373
CHAPTER 9 Hardening Remote Accessto E-mail........................... 403
CHAPTER 10 SecuringanFTP Server....................................... 443
CHAPTER 11 HardeningDNSandBIND 463
APPENDIX A The Bastion Host Firewall Script 511
APPENDIX B BIND Configuration Files...................................... 517
APPENDIX C Checkpoints............. 525

Contents

ADOULTNE AUTNOT. . .. XV
About the Technical Reviewer. Xvii
ACKNOWIBAGMENTS Xix
I OdUCHION. . .. o XXi
CHAPTER 1 HardeningtheBasics.. 1
Installing Your Distribution Securely. 2

Some Answers to Common Installation Questions. 2

Install Only WhatYouNeed.coiiiiiinns. 2

Secure Booting, Boot Loaders, and Boot-Time Services 4

Securing Your Boat Loader.......................cal 5

Init, Starting Services, and Boot Sequencing 8

Consoles, Virtual Terminals, and Login Screens. 15
SecuringtheConsole ..., 16
TheRedHatConsole.................coiiiiiiiiiii, 16

Securing Virtual Terminals 17

Securing Login SCreens ... 18

Users and GroUPSovirit it e 19

Shadow Passwording ... 22

GrOUDS . . o 23

AddingUSers. ... 24

Adding Groups oo 26

Deleting Unnecessary Users and Groups. 28

Passwords. ... 31

Password Aging 35

SUAD . ..o 37

User Accounting. ...t 42

Process Accounting. 44

Pluggable Authentication Modules (PAM) 46

PAM Module Stacking................coiiii 48

The PAM “Other” Service 49
RestrictingsuUsingPAM, 50

vii

viii

CONTENTS

CHAPTER 2

Setting Limitswith PAM 51
Restricting Users to Specific Login Times with PAM 53
Package Management, File Integrity, and Updating 56
Ensuring File Integrity 57
Downloading Updates and Patches 61
Compilers and DevelopmentTools........................coiit 64
Removing the Compilers and Development Tools 64
Restricting the Compilers and Development Tools. 65
Hardening and Securing Your Kernel 66
Getting Your Kernel Source.................. 66
The Openwall Project 68
Other Kernel-Hardening Options.. 74
Keeping Informed About Security............... 75
Security Sites and Mailing Lists 75
Vendor and Distribution Security Sites......................... 76
RESOUICES. 76
Mailing Lists 76
SHES . . 77
Firewalling YourHosts...................................... 79
So, How Does a Linux Firewall Work? 80
Tables. 82
Chains 82
POliCiES. . ..o 82
Adding Your FirstRules. ... 83
Choosing Filtering Criteria i il 86
Theiptables Command i, 87
CreatingaBasic Firewall, 91
Creating a Firewall foraBastionHost.............................. 97
Securing the Bastion Services. 98
Firewall LOgging.covir i 101
Handling ICMP Traffic 105
Spoofing, Hijacking, and Denial of Service Attacks 108
iptablesand TCPFlagscooi i, 11
Some Final Bastion HostRules 116
Kernel Modules and Parameters. 117
Patch-o-Matic...............l 117
Kernel Parameters. ... 124
Managing iptablesand YourRules 129

iptables-save and iptables-restore........................... 130

CHAPTER 3

CHAPTER 4

CONTENTS
iptables init Scripts L 131
Testing and Troubleshooting 132

RESOUICES. 136
Mailing Lists 136
SHES . .o 136
BOOKS. 136

Securing Connections and Remote Administration. 137

Public-Key Encryption. 137
SSL,TLS,and OpenSSL 140
Stunnel. 152
IPSec, VPNs, and Openswancovvveninnn.. 159
inetd and xinetd-Based Connections 167

Remote Administration................. 169
SSN 171
scpandsftp ... 175
ssh-agent and Agent Forwarding 177
ThesshdDaemon 179
Configuringsshandsshd................................... 180
Port Forwarding withOpenSSH. 183
Forwarding X with OpenSSH 184

RESOUICES. 185
Mailing Lists o 185
SHES . . 185

Securing Files and File Systems 187

Basic File Permissions and File Attributes. 188
Access Permissions. 188
Ownership. ... 198

Immutable Files............... . 198

Capabilitiesand lcap................co oo 200

Encrypting Files......... 202

Securely Mounting File Systems. 204

Securing Removable Devices ... 207

Creating an Encrypted File System 208
Installing the Userland Tools 209
Enabling the Functionality 209
Encrypting a Loop File System 210
Unmounting Your Encrypted File System...................... 214

Remounting. ... 215

ix

X

CONTENTS

CHAPTER 5

CHAPTER 6

Maintaining File Integrity with Tripwire 215
Configuring Tripwire i, 216
Explaining Tripwire Policy 218

Network File System (NFS) i 229

RESOUICES. .. . 231
Mailing Lists 231
SHES . .o 231
Sites ADOULACLS 231

Understanding Logging and Log Monitoring............. 233

SYSIOg . . 233
Configuring Syslog. 235
Starting syslogd and Its Options 239

SYSIOG-NGo 241
Installing and Configuring syslog-NG......................... 241
The contrib Directory. 242
Running and Configuring syslog-NG. 242
Sample syslog-ng.confFile 254
Logging to a Database with syslog-NG 256
Secure Logging with syslog-NG 259
Testing Logging with logger...................oiiitt. 263

Log Analysis and Correlation............................oooiinl. 264
Installing and Running SEC 267
Inputting Messagesto SEC, 269
Building Your SECRuleso 270

Log Management and Rotation................................... 277

RESOUICES. ... 280
Mailing Lists 280
SHES . . 280
BOOKS 280

Using Tools for Security Testing 281

INNer Layer 282
Scanning for Exploits and RootKits 282
Testing Your Password Security. 287
Automated Security Hardening with Bastille Linux 290

OuterLayer. 295
NMAP . 296

CHAPTER 7

CHAPTER 8

CONTENTS

Other Methods of Detecting a Penetration 313
Recovering from a Penetration................................... 315
Additional Security Tools 318
asniff ... 318
Ethereal 318
Ettercap.............. o 318
LIDS .. 318
Netcat. 319
SARA 319
SNOMt. .. 319
CpdUMD 319
THan. .. 319
RESOUICES. 319
SHBS . .o 320
Securing Your Mail Server................................. 321
Which Mail Server to Choose?cooiiiiiin... 321
How Is Your Mail Server atRisk? 323
Protecting Your Mail Server............. i 323
Chrooting a Sendmail SMTP Gateway orRelay 324
Chrooting Postfix L, 330
Securing Your SMTP Server. ... 333
Obfuscating the MTA Banner and Version..................... 333
Disabling Dangerous and Legacy SMTP Commands. 336
Some Additional Sendmail Privacy Flags...................... 339
Sendmailandsmrsh.................. 339
Writingto FilesSafely 340
Limiting the Risk of (Distributed) DoS Attacks 34
Relaying, Spam, and Viruses 346
Relaying. ... 346
Antispam 351
Antivirus Scanning Your E-mail Server........................ 364
RESOUICES. 372
Mailing Lists 372
SHES . . 372
Authenticating and Securing Your Mail 373
TS 373

Xi

Xii

CONTENTS

CHAPTER 9

TLSwith Sendmail................. 377
TLSwith Postfix ... 381
SMTPAUTHUsIng Cyrus SASL 387
Compiling Cyrus SASL. 388
Configuring SASL saslauthd. 389
SMTP AUTH Using Cyrus SASL for Sendmail 389
Compiling Cyrus SASL into Sendmail......................... 390
Configuring Cyrus SASL for Sendmail 391
Using SMTP Server Authentication with Sendmail. 392
Using SMTP Client Authentication with Sendmail 394
SMTP AUTH Using Cyrus SASL for Postfix.......................... 395
Compiling Cyrus SASL into Postfix 395
Configuring Cyrus SASL for Postfix........................... 396
Using SMTP Server Authentication with Postfix 398
Using SMTP Client Authentication with Postfix................. 400
Testing SMTP AUTH with Qutlook Express 400
RESOUICES. ...\ 402
Mailing Lists 402
SHES . .o 402
Hardening Remote Accessto E-mail 403
IMAP 404
POP . 404
Choosing IMAP or POP Servers.ccoiiiiiiiiii... 405
How Is Your IMAP or POP Server atRisk?.......................... 406
CYrus IMAP 407
Installing and Compiling Cyrus IMAP 409
Installing Cyrus IMAP into a chroot Jail 411
Configuring Cyrus IMAP 47
Cyrus IMAP Authentication with SASL 422
Cyrus IMAP Access Control and Authorization 425
Testing Cyrus IMAP with imtest/pop3test 428
Fetchmail 430
Installing Fetchmail 431
Configuring and Running Fetchmail 434
RESOUICES. 441
Mailing Lists 441

CONTENTS
CHAPTER 10 Securingan FTP Server.................................... 443
How Does FTPWork? 444
Firewalling Your FTP Server. ... 446
What FTP Serverto Use?................ .. i 448
Installingvsftpd 448
Configuring vsftpd for Anonymous FTP............................ 450
General Configuration...................... ..., 451
Mode and Access Rights................. 452
General Security............ ... 454
Preventing Denial of Service Attacks 455
Configuring vsftpd with Local Users.coooo.t. 456
Adding SSL/TLS Support ... 459
Starting and Stopping vsftpd. 461
RESOUICES. 461
SHES . .o 461
CHAPTER 11 Hardening DNSandBIND.................................. 463
Your DNS ServeratRisk.............. 464
Man-in-the-Middle Attacks 464
Cache POiSONING.c.ovi i 465
Denial of Service Attacks, 465
Data Corruption and Alteration 466
Other RiSKS 466
What DNS Server Should You Choose? 466
Secure BIND Designovii 467
Installing BIND 470
Chrooting BIND 472
Permissionsinthe chroot Jail.................................... 473
Startingand Runningnamed. L. 474
Configuring BIND. 476
Access Control Lists 479
LOgging 480
OptiONS. . ..o 484
Viewsand Zoneso i 493
OMBS . i 497

Xiii

Xiv

CONTENTS

APPENDIX A

APPENDIX B

APPENDIX C

TherndcCommando i 504
MAC.CONT. 505
Adding rndc Support to named.conf............. 507
Usingrndc. ... 508

RESOUICES. 510
Mailing Lists 510
SHES . . 510
Information About Zone Files................................ 510
BOOKS. 510

The Bastion Host Firewall Seript.......................... 511

BIND ConfigurationFiles 517

ACaching Server. 517

An Authoritative Master Name Server 519

ASplitDNS Name Server................ i, 520

A Sample Named init Script............l 523

Checkpoints... 525

Chapter 1 525

Chapter 2 ... 526

Chapter 3 527

Chapter 4 527

Chapter b ... 528

Chapter 6 529

Chapter 7 ... 529

Chapter 8o 530

Chapter 9 530

Chapter 10 531

Chapter 11 ... 531

About the Author

JAMES TURNBULL is an IT&T security consultant at the Commonwealth Bank of Australia.
He is an experienced infrastructure architect with a background in Linux/Unix, AS/400,
Windows, and storage systems. He has been involved in security consulting, infrastructure
security design, SLA and support services design, and business application support.

Xv

About the Technical Reviewer

JUDITH MYERSON is a systems architect and engineer. Areas of interest include middleware
technologies, enterprise-wide systems, database technologies, application development,
server/network management, security, firewall technologies, and project management.

xvii

Acknowledgments

M ark Chandler, for his friendship and technical assistance during the writing of this book.
Nate Campi, for providing syslog-NG, SEC, and logging information.

Xix

Introduction

This book is a technical guide to hardening and securing Linux hosts and some of the com-
mon applications used on Linux hosts. It provides information on how to harden the base
Linux operating system, including firewalling and securing connections to your hosts. It also
looks at hardening and securing some of the applications commonly run on Linux hosts, such
as e-mail, IMAP/POP, FTP, and DNS.

No single book on security, even a book on the security of a single operating system, will
ever answer all the security questions or address all the possible threats. This book is about
providing risk mitigation and minimization. I have set out to identify risks associated with
running Linux and some of the applications that run on Linux hosts. I have then provided
technical solutions—backed by frequent examples, code, and commands—that minimize,
mitigate, or in some circumstances negate those risks. The configurations and examples I
provide are designed to ensure your Linux hosts are hardened against attack while not limit-
ing the functionality available to your users.

So why should you care about security? The answer to this is simple—because a significant
portion of businesses today rely heavily on the security of their IT assets. To use a metaphor:
running a computer host is like owning a house. When Unix-flavored operating systems and
TCP/IP networking were in their infancy, it was like owning a house in a small country town.
The emphasis was on making it easy for people to cooperate and communicate. People left their
doors open and did not mind other people exploring their houses or borrowing a cup of sugar.
You probably did not really keep anything too valuable in your house, and if you did, people
respected it. Your neighborhood was friendly, everyone knew everyone else, and you trusted
your neighbors. Your local neighborhood “hacker” was someone who showed expertise with
programming, systems, or telecommunications. Security was a secondary consideration, if
it was considered at all.

Times have changed. Now the little country town has a big interstate running right
through it. You need to lock up your house, install a burglar alarm, and put up a big fence.
Your neighbors have become considerably unfriendlier, and instead of borrowing a cup of
sugar, they are more interested in stealing your DVD player or burning your house down.
Additionally, the items you store in your house now have considerably more value to you,
in terms of both their financial cost and their importance to you. Worse, your local neighbor-
hood “hacker” has morphed into a variety of bad guys with skills ranging from the base to
the brilliant.

Note | do not like the term hackerto describe the people who attack your hosts. The term still has ambi-
guities associated with it, and its usage to describe attackers is not 100 percent accurate. Throughout this
book | use the term attackerto describe the people who threaten your hosts and applications.

XXi

XXii

INTRODUCTION

Many people scoff at IT security. They claim IT security professionals are paranoid and
are overstating the threat. Are we paranoid? Yes, probably we are. Is this paranoia justified? We
believe so; in fact, a common refrain in the IT security industry is “Are we being paranoid
enough?” IT assets have become absolutely critical to the functioning of most businesses,
both large and small. They have also become the repositories of highly valuable commercial,
research, customer, and financial information. The guys in the white hats are not the only
ones who have noticed the increase in importance of IT assets and the increase in value of the
information they contain. The guys in the black hats know exactly how important IT assets
are. They know how much damage they can do and how much they can gain from attacking,
penetrating, and compromising those assets.

The IT security skeptics claim that the threat of these attackers is overstated. They state
that the vast majority of attackers are unskilled, use collections of prepackaged tools that
exploit known vulnerabilities, and are no threat to most of your assets. That these make up
a significant portion of attacks is indeed true. Take a look at your Internet-facing firewall or
IDS logs, and you will see a considerable volume of attacks on your hosts with the patterns or
signatures of automated attack tools. Does this lessen the threat to your hosts? Yes, some-
times. It can be easier to defend against the less-skilled attacker using a prepackaged tool. The
vulnerabilities exploited by these tools and how to fix them are usually well-documented or
can be easily patched. But if you do not know about the vulnerability or have not applied the
patch, then an attacker using an automated or prepackaged attack tool becomes the same
level of threat as a brilliant attacker with a hand-coded attack tool.

The danger posed by these unskilled attackers has also increased. New vulnerabilities are
discovered daily. Exploits are frequently built on these vulnerabilities within hours of them
being discovered. Some vulnerabilities are not even discovered until someone uses them to
exploit a host. This means pre-packaged attack tools are often available to exploit a vulnera-
bility before the application developer or vendor has even released a patch. The combination
of the speed with which new methods of attack spread and the diminishing gap between the
discovery of a vulnerability and the development of an exploit means the risk that one of these
attacks gets through is significantly increased if you are not being vigilant. You must take seri-
ous, consistent, and systematic precautions to secure your hosts.

In addition to the vast majority of unskilled attackers, a smaller group of skilled attackers
exists. These are either intelligent and cunning outsiders or internal staff with in-house knowl-
edge. These attackers also pose a serious threat to your hosts, and you need to ensure that
your hosts are protected from them, too. This requires that your hosts be hardened and locked
down to ensure that only activities that you have authorized using functionality you have
approved and installed are conducted.

To return to the metaphor of an IT asset as a house, securing your host is a bit like having
home insurance. You hope you do not need it, but you would be foolish not to have it. Do not
underestimate the potential damage an attacker can cause or envisage these threats as being
somehow hypothetical. For example, imagine the response if you asked the staff of your
organization to go without e-mail for a week? This happened to many organizations during
the Netsky, Sobig, and Mimail virus attacks. Or imagine if your customers were denied access
to your e-commerce site as happened to Amazon, eBay, and Yahoo as the result of Distributed
Denial of Service (DDoS) attacks in 1999, 2000, and 2001. Or imagine if an attacker penetrated

INTRODUCTION

your hosts and stole your organization’s bank account detail, the numbers of its corporate
credit cards, or, worse, the credit card numbers of your customers.

You can see that the potential cost of attacks on IT assets is high. There is a potential
monetary cost to your organization from theft, loss of revenue, or productivity. There is also
a potential public relations cost through loss of customer or industry confidence. You need
to understand how to simply, consistently, and practically secure your IT environment. For
your Linux hosts and applications, this book provides this practical understanding.

Note In a later section of this introduction, “Basic Security Tenets,” | talk broadly about some basic secu-
rity tenets and theory. This should provide a basic understanding of IT security theory. | recommend you read
more widely in this area.

Who Should Read This Book?

This book is aimed at people who are new to security but who are not entirely new to Linux.
This includes system administrators and engineers, security administrators, and IT managers.
This is not a book for absolute beginners. I provide real-world examples of configurations,
commands, and scenarios that will help you harden and secure your Linux hosts. While doing
this, I try to explain in as much detail as possible to accommodate systems administrators of
varying skills. But I do expect that readers are at least familiar with basic to intermediate Linux
operations and systems administration.

I recommend you understand the following:

* Basic file manipulation (editors, grep, and so on)

* Basic file permissions and ownership

¢ Basic user administration

¢ Package management including some knowledge of compiling source packages
¢ Basic understanding of init and init scripts

¢ Basic networking including IP addressing, subnets, and administering network
resources using the command line

* Basic storage management: partitions, mounting and unmounting, and devices

The book is also designed to be used by those setting up new hosts in addition to people
seeking to harden and existing hosts. Thus, it covers addressing security vulnerabilities from
scratch, but you can also take the instructions and examples provided in this book and apply
them selectively to harden portions of your existing hosts and applications.

XXiii

XXiv

INTRODUCTION

Note One of the topics | do not cover in this book is Web serving, specifically Apache. For this | recom-
mend another book in this series, Hardening Apache (Apress, 2004) by Tony Mobily, for the complete picture
on installing, configuring, and running secure Apache servers. In the limited space available in this book,
| could not do this complicated and extensive topic justice.

How This Book Is Structured

This book covers the following topics:

Chapter 1, “Hardening the Basics,” covers the basics of hardening your Linux hosts. It
introduces the core security features of the Linux operating system and kernel and pro-
vides information and examples on how to harden them. It also covers patching and
updating your hosts and how to keep up-to-date with the latest security-related infor-
mation for Linux.

Chapter 2, “Firewalling Your Hosts,” addresses securing your Linux hosts with the
iptables firewall. It covers setting up a basic firewall and configuring and managing
iptables and then moves onto advanced topics such as firewall logging, protecting from
Denial of Service (DoS) attacks and other network-based attacks. (Appendix A contains
firewall scripts for securing a bastion host based on the contents of this chapter.)

Chapter 3, “Securing Connections and Remote Administration,” examines securing con-
nections on your hosts. This includes providing secure connections for the administra-
tion of your systems using tools such as OpenSSH. I address using OpenSSL and Stunnel
to encapsulate connections, and I show how to set up VPN connections.

Chapter 4, “Securing Files and File Systems,” looks at securing your files and file sys-
tems. I cover file permissions, file attributes, and symmetric file encryption. I also
explain securely mounting your disks and removable file systems, encrypting entire
file systems, and using the Tripwire tool to monitor the integrity and status of your
files and directories.

Chapter 5, “Understanding Logging and Log Monitoring,” covers logging and monitoring
and filtering your logs. I cover the syslog and syslog-ng tools for gathering your log mes-
sages. I also show you how to use the SEC tool to correlate log messages and demonstrate
how to manage and rotate your log files.

Chapter 6, “Using Tools for Security Testing,” provides information on the tools available
to you for testing the security of your hosts. I address testing the security of your pass-
words and scanning for root kits. I cover scanning your hosts for vulnerabilities and open
ports with tools such as nmap and Nessus. I also demonstrate how to use the Bastille hard-
ening script to harden your host.

1. http://www.apress.com/book/bookDisplay.html?bID=320

INTRODUCTION

Chapter 7, “Securing Your Mail Server,” looks at securing and hardening two of the most
commonly used e-mail servers, Sendmail and Postfix. I examine running these e-mail
servers in a chroot jail as well as other methods of limiting their exposure to attack. I also
explain how to protect your users from spam and viruses.

Chapter 8, “Authenticating and Securing Your Mail,” addresses securing the transmission
of your e-mail and the authentication of your clients to your e-mail servers. I examine
using Cyrus SASL and SMTP AUTH to ensure only authenticated clients can use your
e-mail servers and demonstrate how to use TLS to provide encryption of the transmis-
sion of your e-mail.

Chapter 9, “Hardening Remote Access to E-mail,” addresses securing your user’s remote
access to their e-mail via IMAP and POP and using tools such as Fetchmail. I cover pro-
viding secure IMAP and POP using SSL and how to build a “black box” secure IMAP
server using Cyrus IMAP.

Chapter 10, “Securing an FTP Server,” covers the FTP server and file transfers. I demon-
strate how to run secure local and anonymous FTP servers, including how to integrate it
with SSL/TLS and authenticate your users with PAM.

Chapter 11, “Hardening DNS and BIND,” looks at running DNS services. I cover DNS-
related threats and attacks, how to choose your DNS server, and the basics of secure DNS
design. I also cover installing and hardening a BIND DNS server and take you through the
security-related configurations options of BIND. Finally, I cover some BIND security fea-
tures such as TSIG. (Appendix B contains a number of secure BIND configuration files
based on the contents of this chapter.)

Basic Security Tenets

The practical examples I demonstrate in this book are built on some underlying tenets that
are crucial to maintaining your security.

¢ Be minimalist and minimize the risk.
¢ Defense in depth

* Vigilance

An understanding of these tenets, in combination with the examples and a little common
sense, can help you mitigate the risk of an attack on your hosts. In the following sections
I briefly articulate the IT security tenets on which I have based this book.

Be Minimalist, and Minimize the Risk

The first principle, that of minimalism, can also be expressed with the acronym KISS, or Keep
It Simple Stupid. The safest way to reduce the risks to your hosts is to not introduce risks in
the first place. For example, many distributions install services, tools, applications, and func-
tionality that could pose risks to your host. In some cases, they even start services. They also
create users for these services and applications that are often not needed or could be used by

XXV

XXvi

INTRODUCTION

an attacker to compromise your host. The first step in minimizing the risk to your hosts is to
remove this excess and unnecessary material. The second step is ensuring that you tightly
control what is installed on your hosts. Do not install more than you need to, do not run serv-
ices or functionality you do not need, and do not have users you do not need.

This is something you need to do from scratch with the installation of a new hardened
host or if hardening an existing host. Obviously, minimizing the functionality of an existing
host is harder. You need to make sure you are fully aware of all the functions that host per-
forms and ensure you do not switch off or remove something that is required for that host
to provide the required functionality. Hardening a production host requires extensive test-
ing, and I recommend you proceed only if you have the ability to back out any changes and
revert to your original configuration in the event a security change has an adverse effect.

Tip I recommend you use a change control system to ensure all changes are managed and planned
rather than simply implemented. At the least you should keep a journal of the activities you conduct on
a particular host. Every time you make a configuration change, you should detail the old and new settings
and the change performed in a logbook.

Defense in Depth

The second tenet of good security is defense in depth. At its most basic, defense in depth
means taking a layered approach to defending your hosts. The defense in depth concept pro-
poses using layers of technology, policies, and processes to protect your systems. This means
that, wherever possible in your environment, you do not rely on a single layer for defense of
your hosts.

As an example you can look at your connectivity to the Internet. Just installing a firewall
between your internal network and the Internet is not enough. In addition to a firewall between
your network and the Internet, you should firewall your individual internal hosts, install an IDS
system of some kind, and conduct regular penetration testing and vulnerability scanning of your
hosts. You should apply this principle to all the components of your host security.

Vigilance

One of the biggest threats to your security is simply doing nothing. No matter how secure your
hosts are at this point in time, they will, at varying rates, become less secure as time goes by.
This is a consequence of simple entropy, as changes to your applications, environment, and
requirements alter the configuration and potentially purpose of your systems. It is also a con-
sequence of the changing nature of the threats against you. What you have protected yourself
against now may not be what you need to protect yourself against in the future. This is most
obviously manifested as new vulnerabilities and exploits of those vulnerabilities are discov-
ered in the operating systems, applications, and tools you have running.

You need to ensure you include security administration and monitoring as part of your
regular system administration activities. Check your logs, audit your users and groups, and
monitor your files and objects for suspicious activity. Know the routines and configuration of

INTRODUCTION XXvii

your hosts; the more you understand about the normal rhythms of your hosts, the easier it is
to spot anomalies that could indicate you are under attack or have been penetrated.

You also need to ensure you keep up-to-date with vulnerabilities, threats, and exploits. In
Chapter 1 I talk about some of the sources of information you can utilize to do this. You should
subscribe to or review the security-related information your vendors distribute as well as those
available from third-party sources such as SANS or CIS.

Finally, the truly vigilant test. And test again. Perform regular security assessments of your
hosts and environment. Scan for vulnerabilities using tools such as Nessus or commercial tools
such as ISS Security Scanner. Consider using independent third parties to perform penetration
testing of your environment and hosts. Ongoing security assurance is vital to make sure you
stay protected and hardened from attack.

Downloading the Code and Examples

Some of the lengthier configurations and examples from this book are also available in a zip file
from the Downloads section of the Apress Web site (http://www.apress.com). These include the
iptables firewall script from Chapter 2, the BIND named. conf configuration files from Chapter 11,
and a variety of other configuration files and scripts.

Contacting the Author

You can reach James Turnbull at james@hardening-1linux.com.

CHAPTER 1

Hardening the Basics

At the heart of your Linux system is the Linux kernel and operating system. Combined, these
form the base level of your system on which all your applications run. Comparatively speak-
ing, the Linux operating system and kernel are actually reasonably secure. A large number of
security features are built in the kernel, and a variety of security-related tools and features come
with most distributions or are available in open-source form. Additionally, Linux offers excep-
tional control over whom, how, and what resources and applications users can access. So,
where are the risks?

Well, as the old saying goes, “The devil is in the details.” The security of your system
depends on a wide variety of configuration elements both at the operating system level and
the application level. Additionally, the Linux operating system and kernel are complex and
not always easy to configure. In fact, Linux systems are nearly infinitely configurable, and
subtle configuration changes can have significant security implications. Thus, some security
exposures and vulnerabilities are not always immediately obvious, and a lack of understand-
ing about the global impact of changing configuration elements can lead to inadvertent
exposures.

Furthermore, security on Linux systems never stays static. Once secured, your system does
not perpetually stay secure. Indeed, the longer you use your system, the less secure it becomes.
This can happen through operational or functional changes exposing you to threats or through
new exploits being discovered in packages and applications. Securing your system is an ongo-
ing and living process. Many of the steps and concepts in this chapter you will apply more
than once (for example, after you make an operational change to reaffirm the required level
of security), or you will apply on a regular basis to keep your security level consistent.

Finally, many distributions come prepackaged or preconfigured for you with a recom-
mended default set of packages, applications, and settings. Usually this configuration is based
on the author or vendor understanding what their end user requires of the distribution. Gen-
erally speaking, a lot of this preconfiguration is useful and enhances the potential security of
your system; for example, Red Hat comes preconfigured to use Pluggable Authentication Mod-
ules (or PAM) for a variety of authentication processes. But sometimes this preconfiguration
opens security holes or is poorly designed from a security perspective. For example, as a result
of the vendor’s desire to make it easy for you to set your system up, they may install, configure,
and start applications or services for you. Red Hat automatically configures and starts Send-
mail when you take the default installation options, for example.

To be able to address these issues, you need to have a solid understanding of the underly-
ing basic security requirements of your system—those of your operating system and kernel.
This chapter is entitled “Hardening the Basics” because it is aimed at exploring and explaining

CHAPTER 1 " HARDENING THE BASICS

the key areas of security and security configuration at that operating system and kernel level.
Additionally, I try to address some of the key weaknesses of a freshly installed Linux distribu-
tion or an existing unhardened Linux system and provide quick and practical fixes to them.

I will start with some guidelines for installing a Linux distribution and then address boot
security, user and password security, PAM, updates and package upgrades, and your kernel,
and I will finish up with some information that should help you keep up-to-date with the
latest vulnerabilities and security exposures.

Installing Your Distribution Securely

This book does not specifically cover a single distribution but rather tries to offer practical
examples that you can use on the majority of Linux distributions (though I most keenly focus
on Red Hat and Debian when offering examples of commands and application configuration).
As aresult, I am not going to take you through the process of installing a particular distribution
but rather offer some recommendations about how you should install your Linux distribution.
AsIarticulated in the chapter’s introduction, one of the key tenets of information technology
(IT) security is minimizing your risks. The default installation process for most Linux distribu-
tions does the opposite. Extraneous and inappropriate applications are installed, unnecessary
users are created, and some potentially highly insecure configuration decisions are made.

Let’s look at some ways to reduce the risks and the issues created during your distribu-
tion’s installation process.

Some Answers to Common Installation Questions

Almost all Linux distributions installations ask you a series of questions about your system’s pro-
posed configuration during the installation process. They are usually some important security-
related questions that you should take care answering. Obviously, whilst I cannot run through
what every distribution is going to ask, some questions remain similar across many distributions.

If prompted, enable MD5 and shadow passwording. This will make your passwords sig-
nificantly more secure.

When prompted to input a root password, always chose a secure password. I will briefly
talk about choosing suitable passwords in the “Users and Groups” section of this chapter.

Create a user other than root if prompted, ensuring you choose a suitable password for
this user also, so you have a user other than root to log onto the system.

If prompted during installation, enable any proposed firewall. If options to control the
configuration of the firewall are offered, select the bare minimum of allowed connections.
Only explicitly enable connections when you absolutely require them. Remember any
firewall you configure during installation will generally not be suitable for production
purposes, and you should see Chapter 2 for further information on firewalls.

Install Only What You Need

As T have stated, minimalism is important. If your distribution offers a Minimal or Custom
option when selecting packages that will allow you install a minimal numbers of packages or
allow you to deselect packages for installation, then you should use that option. In fact, on

CHAPTER 1 "/ HARDENING THE BASICS

a Red Hat system I recommend you deselect every possible package option and then install
the base system.

I cannot provide you with a definitive list of packages not to install. But a lot of this is com-
mon sense. Do you really need NetHack on your production Apache server? I can identify some
of the types of packages that are installed by default that you should be able to remove. This also
applies to hardening existing systems. You should review all installed packages and remove
those not required or those that present significant risks.

Some of the areas I recommend you remove packages from are as follows:

¢ Games

¢ Network servers

¢ Daemons and services

¢ Databases

¢ Web tools

¢ Editors

¢ Media-related (CD and MP3 players, CD burners)

¢ Development tools and compilers

¢ Printing and printing tools

¢ Office-style applications and tools

¢ Document management and manipulation

¢ X-Windows (including Gnome and KDE)

One of my most important recommendations when choosing not to install packages
involves X-Windows. Most, if not all, production Linux systems do not need X-Windows to per-
form their functions. An e-mail server, for example, should have no requirement for X-Windows.
So do notinstall it. X-Windows is a huge package with numerous components and a history of
numerous security vulnerabilities that make it a potentially dangerous package to install. Addi-

tionally, on a Linux system, unlike Windows systems, nothing requires the use of a graphical user
interface (GUI) to configure that you cannot configure from the command line.

Caution Do not install your distribution whilst connected to the Internet or to a network that is connected
to the Internet.

It may seem like a good idea to be connected to the Internet when you install your distribu-
tion to get patches and updates or register your system. But is it? Often the media used to install
a distribution could be quite old. A number of vulnerabilities could and probably will have been
discovered since the media was constructed. This means your system could be vulnerable to any
number of potential attacks. Until you have downloaded the updates that fix these vulnerabilities,

CHAPTER 1 " HARDENING THE BASICS

then your system is vulnerable. While you are busy waiting to download the required patches,
then an attacker has the potential to identify your unprotected system and penetrate it using
an as yet unfixed vulnerability.

To mitigate the risks of connecting an unpatched system to the Internet, I recommend you
stay offline until you have updated your system with all the required patches. To do this, I rec-
ommend you download all the updates and patches required for your system onto another sys-
tem first and check the MD5 checksums of the updates against those published by the vendor
and their GNU Privacy Guard (GPG) public key. For Red Hat updates the checksums and public
key are published on the Red Hat Network site, and for Debian they are contained in the .dsc
file, which describes each dpkg package. I go into more detail about how to do this in the “Pack-
age Management, File Integrity, and Updating” section later in this chapter.

Irecommend setting up a central “updates and patches” machine and download and ver-
ify all updates and patches on that system. You can also use this system to perform testing of
new releases or updates before migrating them to your production systems. For a new instal-
lation you can package and burn the updates onto a CD and load them from the media directly
onto the system to be patched.

Secure Booting, Boot Loaders,
and Boot-Time Services

An attacker who has physical access to your system can easily bypass a great deal of your sys-
tem’s inherent security (especially controls such as users and passwords) and can reboot it or
change the configuration of your boot loader or your init process—including what services
are run at boot and what sequence they are run in. You need to secure the boot process and
ensure you fully understand what happens during your boot process so that your system is
secure from this sort of attack.

Attackers who are able to reboot your system can create two major problems. The first is
that Linux systems allow a great deal of access to someone who can control how they boot
into your system. The second is that taking your system offline is an excellent Denial of Ser-
vice attack. Thus, control over who is allowed to reboot your system, how they interact with
your boot loader, and what kernel they boot into is something you need to tightly restrict.

Additionally, what services you start and the order you start them in can expose your sys-
tem to further risks. Indeed, after a default installation or on an unhardened system, many
services that are started at boot are not required. Some of the running services even expose
you to vulnerabilities because of their particular functionality. In the next section, I will cover
some good rules you should follow for securing and organizing your boot process and
sequence, including what you allow to start up when your system boots.

Note | have described the items that start at boot time as services, but of course not all of them are.
Some are daemons, one-off commands, or configuration tools. | will use the generic term services for
simplicity’s sake.

CHAPTER 1 "/ HARDENING THE BASICS

Securing Your Boat Loader

Most Linux systems use one of two boot loaders, the Linux Loader (LILO) or Grub. These boot
loaders control your boot images and determine what kernel is booted when the system is started
or rebooted. They are loaded after your Basic Input/Output System (BIOS) has initialized your
system and generally wait a set period of time (generally between 10 and 30 seconds, but you can
override this) for you to select a kernel to boot into; if you have not intervened, then they default
to a specified kernel and boot into that.

I recommend you do not have too many kernel versions available to boot into, especially
older versions of kernels. Many people leave older kernels on their systems and in their boot
loader menus. The risk exists that you, or an attacker, could boot into an older kernel with
a security vulnerability that could allow an attacker to compromise your system. Clean up
when you perform kernel upgrades. I recommend leaving the current and previous versions
of the kernel on the system (unless, of course, you have upgraded from the previous kernel
to correct a security vulnerability).

Both boot loaders, LILO and Grub, are inherently insecure if your attacker has physical
access to your system. For example, by default both LILO and Grub will allow you to boot into
single-user mode. In single-user mode you have root privileges without having to enter the root
password. Additionally, you can enter a variety of other parameters on both the boot loader’s
command lines that can provide an attacker with opportunities to compromise your system.

But both LILO and Grub have the option of being secured with passwords to prevent this,
and I will show how to address this for both boat loaders.

Tip You should do this in addition to securing your BIOS. Set a BIOS password for your system, and dis-
able booting from a floppy drive or CD/DVD drive.

Securing LILO with a Password

To prevent LILO from allowing unrestricted booting, you can specify a password in the
lilo.conf file that must be entered if you want to pick a nondefault boot item, add options
to the boot items, or boot into single-user mode. Listing 1-1 shows a sample 1ilo.conf file.

Listing 1-1. Sample lilo.conf File

prompt

timeout=50
default=linux
boot=/dev/hda
map=/boot/map
install=/boot/boot.b
message=/boot/message
linear
password=secretpassword
restricted

CHAPTER 1 " HARDENING THE BASICS

image=/boot/vmlinuz-2.4.18-14
label=1inux
initrd=/boot/initrd-2.4.18-14.img
read-only
append="root=LABEL=/"

The two important lines to note are the restricted and password options. These do not
appear in your lilo. conf file by default; I have added them to Listing 1-1.

The password option allows you to specify a password that must be entered before you are
allowed to boot when the system is first started. In Listing 1-1 you would replace the phrase
secretpassword with a suitably secure password.! Unfortunately, this password is added into
the 1ilo.conf file in clear text, which means anyone with access to this file (though it should
be those only with root privileges) can see the password.

The restricted option changes the behavior of the password option. With restricted spec-
ified, LILO will prompt for a password only if you specify parameters on the boot loader com-
mand line. For example, it would prompt you for a password if you tried to enter the parameter
single (to enter single-user mode) on the boot loader command line.

You can also specify the password and restricted options with a particular kernel image
statement. This way you can protect a particular kernel image or provide separate passwords
for each kernel image. In the following example I have omitted the restricted option, which
means a password will always be prompted for when trying to boot this kernel image:

image=/boot/vmlinuz-2.4.18-14
password=secretpassword
label=1inux
initrd=/boot/initrd-2.4.18-14.1img
read-only
append="root=LABEL=/"

Anytime you change your lilo. conf file, you need to run the 1ilo command to update
your LILO configuration.

puppy# /sbin/lilo

Finally, you need to ensure the 1ilo. conf file has the correct ownerships and permissions
to ensure only those authorized can see the password in the file.

puppy# chown root:root /etc/lilo.conf
puppy# chmod 0600 /etc/lilo.conf

Securing Grub with a Password

Like LILO, Grub suffers from security issues and allows anybody with access at boot time to
boot into single-user mode or change the boot parameters. The available Grub password secu-
rity to address these issues is somewhat more advanced than LILO’s and relies on generating
an MD5-encrypted password to secure the boot menu and boot entries. This MD5-encrypted

1. See the “Passwords” section for a definition of a suitably secure password.

CHAPTER 1 "/ HARDENING THE BASICS

password means that the password cannot be extracted by simply reading the Grub
configuration file, /etc/grub.conf.
Let’s first generate a Grub password. Listing 1-2 shows how to do this.

Listing 1-2. Generating a Grub Password

puppy# grub

grub> mdscrypt

Password: kkkkkk

Encrypted: $1$2FXKzQ0$I6k7iy22wB27CrkzdVPe70
grub> quit

You enter the Grub shell, execute the md5crpyt option, and are prompted for a pass-
word. The password is then encrypted and output on the screen in the form of an MD5
hash. Copy the MD5-encrypted password. Now you need to add the password to your
grub.conf configuration file.

Tip Red Hat has an unusual location for its grub. conf file. The grub. conf file in /etc is symlinked
to /boot/grub/grub. conf, which in turn is symlinked to /boot/grub/menu.1st. | recommend for
simplicity’s sake you edit /etc/grub. conf.

Listing 1-3 shows a sample grub. conf file.

Listing 1-3. Samplegrub.conf File

default=1
timeout=10
splashimage=(hd0,0)/grub/splash.xpm.gz
password --md5 $1$2FXKzQo$I6k7iy22wB27CrkzdVPe70
title Red Hat Linux (2.6.7)
root (hdo,0)
kernel /vmlinuz-2.6.7 ro root=LABEL=/
initrd /initrd-2.6.7.img

I have added the option password --mds to the file and specified the generated MD5 pass-
word. Now when you reboot you will not be allowed to interact with the Grub boot menu
unless you type p and enter the required password.

Tip You could also specify a plain-text password by excluding the - -md5 from the password option, but
I recommend for security that you stick with the MD5 password.

CHAPTER 1 " HARDENING THE BASICS

You can also add another parameter to the password option to launch a particular menu file
when you have entered the password. To do this, change your password option to the following:

password --md5 $1$2FXKzQ0$I6k7iy22wB27CrkzdVPe70 /boot/grub/administrator-menu.lst

When you enter the correct password, Grub will launch the specified menu file. This allows
you, for example, to create an additional menu of other kernels or boot options available only
to those users who provide the required password.

Like LILO, Grub allows you to protect a specific boot entry. It offers two ways of protecting
a particular entry. If you specify the option lock directly after the title entry, then you will not
be able to run that boot entry without entering a password previously specified by the password
option. I have modified Listing 1-3 to add the lock option to the following configuration file:

default=1
timeout=10
splashimage=(hd0,0)/grub/splash.xpm.gz
password --md5 $1$2FXKzQ0$I16k7iy22wB27CrkzdVPe70
title Red Hat Linux (2.6.7)
lock
root (hdo,0)
kernel /vmlinuz-2.6.7 ro root=LABEL=/
initrd /initrd-2.6.7.img

Now unless you specified the password defined by the password option, you would not be
able to boot the Red Hat Linux (2.6.7) kernel image.

You can also use the password option within a boot entry to allow you to specify a particu-
lar password for each boot entry; Listing 1-4 shows you how to do it.

Listing 1-4. Protecting a Boot Entry with Grub

title Red Hat Linux (2.6.7)
password --md5 $1$200$I6k7iy22wB27CrkzdVPe70
root (hdo,0)
kernel /vmlinuz-2.6.7 ro root=LABEL=/
initrd /initrd-2.6.7.img

Here I have placed the password option directly after the title option. Now before you
can boot this entry you will need to specify the correct password.

Finally, you need to ensure the grub. conf file has suitable ownership and permissions to
ensure only those authorized can work with the file. Enter the following:

puppy# chown root:root /etc/grub.conf
puppy# chmod 0600 /etc/grub.conf

Init, Starting Services, and Boot Sequencing

Most systems come with a large number of services that start at boot. Obviously, some of
these are actually important to the functioning of your system, and others are designed to
start applications such as Sendmail or Apache that run on your system. But many of the
others are not necessary or start services that potentially pose security risks to your system.

CHAPTER 1 "/ HARDENING THE BASICS

Table 1-1 shows some of the typical services that are generally started on both Red Hat and
Debian systems, describes what they do, and tells whether I recommend removing them from
your startup.

Note | am referring to the releases Red Hat 9, Red Hat Fedora Core, Red Hat Enterprise Linux 3, and
Debian Woody 3 here, but generally speaking most distributions start similar services.

Table 1-1. Starting Services for Red Hat and Debian

Service Description Remove?

anacron A variation on the cron tool Yes

apmd Advanced Power Management Yes

atd Daemon to the at scheduling tool Yes

autofs Automount Yes

crond The cron daemon No

cups Printing functions Yes

functions Shell-script functions for init scripts No

gpm Mouse support for text applications Yes

irda IrDA support Yes (unless you have IrDA devices)

isdn ISDN support Yes (unless you use ISDN)

keytable Keyboard mapping No

kudzu Hardware probing Yes

1pd Printing daemon Yes

netfs Mounts network file systems Yes

nfs NES services Yes

nfslock NFS locking services Yes

ntpd Network Time Protocol daemon No

pcmcia PCMCIA support Yes

portmap RPC connection support Yes

random Snapshots the random state No

rawdevices Assigns raw devices to block devices Yes

rhnsd Red Hat Network daemon Yes

snmpd Simple Network Management Protocol Yes
(SNMP) support

snmtptrap SNMP Trap daemon Yes

sshd Secure Shell (SSH) daemon No

winbind Samba support Yes

xfs X Font Server Yes

ypbind NIS/YP client support Yes

10

CHAPTER 1 " HARDENING THE BASICS

Tip | will talk about inetd and xinetd in Chapter 3.

Alot of the services listed in Table 1-1 you can apply common sense when deciding whether
to start them. The pcmcia script, for example, is required only if you have PCMCIA devices or the
winbind service if you are using Samba. If you are not doing any printing, then do not start the
1pd and cups daemons. My recommendations to disable particular services listed in Table 1-1
are based on my experience that these services are not required on a secured production server.
For example, you would rarely find the apmd daemon running on a production server, but it is
commonly used on laptops to provide the appropriate power management functionality.

Tip The other area of security vulnerability during startup is the potential for your daemons to create files
that are too permissive. You set this using the umask function; I will cover umask in Chapter 4.

You can stop these services from starting via a number of methods depending on your
distribution. I will focus on the Red Hat and Debian distributions’ methods for handling init
scripts. After stopping services, I recommend also removing the related package to stop some-
one restarting it.

Tip If you use SuSE, then the yast central configuration tool will provide much the same functionality
as chkconfig or update-rc.d.

Working with Red Hat init Scripts

To help handle your init scripts, Red Hat comes with the command chkconfig. The chkconfig
command works by reading two commented lines near the top of each of your init scripts. (Your
init scripts should be located in the /etc/rc.d/init.d directory.) Listing 1-5 shows the top two
lines of a typical Red Hat network init script.

Listing 1-5. Sample chkconfig Line in an init Script

chkconfig: 2345 10 90
description: Activates/Deactivates all network interfaces configured to \
start at boot time.

You can see the first line in the script starts with chkconfig:, followed by three components.
The first component comprises the run levels at which a service should start. The second com-
ponent consists of the starting sequence number of the service, and the third component con-
tains the stopping sequence number of the service. This means at run levels 2, 3, 4, and 5, the
network begins the service at sequence number 10, and, in turn, each higher sequence number

CHAPTER 1 "/ HARDENING THE BASICS

(in ascending order) until it stops when the sequence number reaches 90. The description line
details the purpose of the service.

You need to add both these lines into any init script you want to manipulate using the
chkconfig command.

To use this embedded information, you have to use some command-line options. The
first --1ist shows the current status of all init scripts and what run levels they will start.
Listing 1-6 shows this functionality.

Listing 1-6. Listing init Scripts Using the chkconfig Command

puppy# chkconfig --list

kdcrotate 0:off 1:0ff 2:0ff 3:0off 4:0ff 5:0ff 6:0ff
ntpd O0:off 1:off 2:off 3:on 4:0ff 5:on 6:0ff
courier-imap 0:off 1:o0ff 2:on 3:0n 4:on 5:0n 6:0ff

You can see from Listing 1-6 that each init script is listed together with the available run
levels. An on after the run level indicates the service will be started at that run level, and an off
indicates that it will not be started.

To stop a service from starting, you can use the --del option.

puppy# chkconfig --del name

In this syntax, you should replace the name variable with the name of a script to remove.
That script must exist and must contain the two commented chkconfig lines in the top of the
script. To add the service back to the boot sequence, you can use the --add option.

puppy# chkconfig --add name

Again, you should replace the name variable with the name of the appropriate init script
to be added. If you do not intend to add the script to the init sequence again, then I recom-
mend you delete the script from the /etc/rc.d/init.d/ directory.

Red Hat also comes with the useful ntsysv command-line graphical interface that can be
used to configure what services will start in the current or specified run level. See the ntsysv
man page for further details.

After removing scripts from your /etc/rc.d/init.d directory, I recommend you further
secure the contents of this directory.

puppy# chown root:root /etc/rc.d/init.d/*
puppy# chmod -R 700 /etc/rc.d/init.d/*

Working with Debian init Scripts

Debian stores its init scripts in a slightly different location than Red Hat does. The base init
scripts are located in /etc/init.d. Debian also uses different commands for managing init
scripts. The update.rc-d command is the Debian equivalent of the chkconfig command and
works in a similar manner. To add or change an init script, first you must have a copy of the
script stored in /etc/init.d. Without the script being installed in this directory, update-rc.d
has nothing to use. Listing 1-7 shows how you can add a new init script with update-rc.d.

1

12

CHAPTER 1 " HARDENING THE BASICS

Listing 1-7. Adding a Debian init Script
kitten# update-rc.d network defaults

The defaults option is useful for adding a typical init script. The defaults tells Debian to
start the service at run levels 2, 3, 4, and 5 and to stop the service at run levels 0, 1, and 6 with
a default sequence number of 20. You can also specify the sequence numbers with the default
option by adding the required sequence numbers after the defaults option as a suffix.

kitten# update-rc.d network defaults 20 80

The first number indicates the starting sequence number, and the second number indi-
cates the stopping sequence number for the service. You can also more explicitly control when
an init script is started and stopped. Listing 1-8 shows how you can specify this control.

Listing 1-8. Explicitly Controlling a Debian init Script
kitten# update-rc.d network start 20 2 3 4 5 . stop 200 1 6 .

The command in Listing 1-8 provides the same configuration as the defaults option but
using the full command-line options. You should be able to customize any start and stop com-
binations required by modifying the command in Listing 1-8.

If you want to remove an init script, update-rc.d also provides an option to do this. In
the opposite manner of adding an init script, you must first delete the required init script
from the /etc/init.d directory before removing the associated start and stop scripts from
the various run levels. Listing 1-9 shows how to do this.

Listing 1-9. Removing a Debian init Script

kitten# rm -f /etc/init.d/network
kitten# update-rc.d network remove

The update-rc.d command also comes with two command-line flags you can use. The first
option, -n, makes no actual change to the system and merely shows the proposed changes.

kitten# update-rc.d -n network defaults

Adding system startup for /etc/init.d/network ...
/etc/rc0.d/K20network -> ../init.d/network
/etc/rc1-d/K20network -> ../init.d/network
/etc/rc6.d/K20network -> ../init.d/network
/etc/rc2.d/S20network -> ../init.d/network
/etc/rc3.d/S20network -> ../init.d/network
/etc/rc4.d/S20network -> ../init.d/network
/etc/rc5.d/S20network -> ../init.d/network

The other command-line option, -f, is used in conjunction with the remove option to
specify that the update-rc.d command should remove all links even if the original init script
still exists in the /etc/init.d directory.

CHAPTER 1 "/ HARDENING THE BASICS

After removing scripts from your /etc/init.d directory, I recommend you further secure
the contents of this directory. Enter the following:

kitten# chown root:root /etc/init.d/*
kitten# chmod -R 700 /etc/init.d/*

Tip If you want, you can also download and install chkconfig on a Debian system. You can find a source
version that will compile on Debian at http://www.fastcoder.net/~thumper/software/sysadmin/
chkconfig/.

The inittab File

Your init scripts are not the only place where services are started. You should also review the
contents of the inittab file in the /etc directory. Though its use to start services is rarer these
days, some items still end up in this file. Red Hat systems, for example, place several services
in this file, including a trap for the Control+Alt+Delete key combination. Additionally, tty ter-
minals are often started in this file. Listing 1-10 shows some service lines in the inittab file.

Listing 1-10. inittab Service

sysacc:235:acct:/usr/sbin/acct -q -d
~~:S:wait:/sbin/sulogin
ca::ctrlaltdel:/sbin/shutdown -t3 -1 now

The first line shows starting a service called sysacc. The line is broken down into the name
of the service being started, the run levels the service will start at, a label for the service, and the
command and any options to run separated by colons.

servicename:runlevels:label:command -option -option

You should review all commands being started in this file and determine if they are all
needed. If you want to remove a service, simply comment out or delete that line.

Tip For consistency | recommend not starting services in inittab but using init scripts.

The second line in Listing 1-10 shows a trap I have added specifically for Red Hat systems.
Red Hat allows booting into single-user mode by typing linux single on the LILO command line
or the Grub boot-editing menus. This line forces the execution of the command /sbin/sulogin if
single-user mode is started (run level S). The /sbin/sulogin requires the root password be to be
entered before single-user mode will be started. See the sulogin man page for more information.

The third line in Listing 1-10 shows a trap for the Control+Alt+Delete key combination
commonly used to reboot systems.

13

14

CHAPTER 1 " HARDENING THE BASICS

Tip Linux pays attention only to the Control+Alt+Delete key combination when used from the console
or virtual consoles. For users who are logged into the system via other means—for example, a terminal
session—opressing these keys will do nothing.

By default most Linux kernels trap this key combination when pressed and pass it to the init
system for processing. This allows you to specify the action taken when the Control+Alt+Delete
key combination is pressed. The default action is usually to run the shutdown command. I recom-
mend securing this a bit further by adding the -a option to the trap in Listing 1-10.

ca::ctrlaltdel:/sbin/shutdown -a -t3 -1 now

The -a option enables the use of the shutdown.allowed file. Create a file called
shutdown.allowed in the /etc directory. Add the users you want to be authorized to use the
shutdown command to the file, one username per line. You can also have comments and
empty lines in this file. Listing 1-11 shows what is inside the sample shutdown.allowed file.

Listing 1-11. Sample shutdown.allowed File

root
bob
sarah

If someone other than these users tries to issue a Control+Alt+Delete from the console,
they will get an error message.

shutdown: no authorized users logged in

On some systems you may not want anybody to be able to use Control+Alt+Delete. To do
this, change the trap line to the following:

ca::ctrlaltdel:

Your /etc/inittab file also contains the definitions for the virtual terminals available to
you on the console using the Alt+number key combination. You can define them using the
following lines in inittab:

1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2

Generally most distributions define six or so virtual terminals. You can reduce the num-
ber of virtual terminals started by commenting out some of the ttys in the /etc/inittab file.

After making any changes to the inittab file, you need to tell the init process to review
the file. Use the following command:

puppy# telinit q

Then you need to ensure the inittab file has the correct ownerships and permissions to
ensure only those authorized can work with the file.

puppy# chown root:root /etc/inittab

CHAPTER 1 "/ HARDENING THE BASICS

Boot Sequencing

The order in which you start and stop services on your system is also important. This is mainly
for controlling when your firewall and logging services start and stop. Ensure you start your
firewall, (iptables, for example) and your syslog daemon before you bring up your network.
This ensures your system will not be connected to any external systems or networks without
the protection of your firewall or without any logging of your system occurring. Then during
the shutdown of your system, ensure you stop your networking services before you stop your
firewall and syslog services.

On most systems init scripts are started and stopped according to the sequence number
given to them; sequence 20 will start before 30, and so on. I briefly covered sequence numbers in
the previous “Working with Debian init Scripts” and “Working with Red Hat init Scripts” sec-
tions. You should ensure the start sequence numbers for your firewall and your syslog daemons
are lower than the sequence number for your system’s networking service, in other words, the
daemons start before your network. Your networking services are usually started by an init
script called network on a Red Hat system and a script called networking on a Debian system.
Then confirm that your system’s networking service stops before your firewall and logging.

Tip 1 will talk further about booting and some additional security features related to securing file systems
in Chapter 4.

Consoles, Virtual Terminals, and Login Screens

The next area I will cover is the security of your console, your terminals, and the login screens
presented to your users when they log into the system. The console of your system is usually
physically attached to your system. (It is usually from the console you will have installed your
distribution.) In the Linux world, logging onto the console often allows you to perform activities,
commands, or functions that you would not be able to do from other locations, such as via a
secure shell (SSH) login. You need to understand what the capabilities of a user logged into the
console are and how to secure them further. Additionally, your console also has a number of vir-
tual terminals defined that you can access. I talked about defining these virtual terminals in the
earlier “The inittab File” section. These also need to be secured, and I will cover in the “Securing
Virtual Terminals” section a method of locking these virtual terminals from unauthorized use.

Lastly, when users connect to your systems, they are presented with a login screen. The
information presented on most default login screens can offer attackers information about
your system you do not want to share. Additionally, these login screens are a good method of
communicating warnings and notices to the user logging into your system.

Tip In addition to securing your console and terminals, do not neglect your physical security. Ensure your
systems are stored somewhere that makes access to the console difficult to all those bar authorized people.
Ensure the access is logged of any authorized people who can enter the area in which the console and sys-
tem are stored. Additionally, if you have a case lock or similar physical security devices on your system, then
use it to secure access to the interior of your system.

15

16

CHAPTER 1 " HARDENING THE BASICS

Securing the Console

I'will first talk about where root can log on. In Chapter 3 I will talk about restricting root logons
over SSH to your system. You can further limit where root can log on by restricting it to a specific
set of terminals. To do this, edit the contents of the /etc/securetty file. The login program refers
to this file to determine whether the root user can log into a particular device. Listing 1-12 shows
a sample of a typical securetty file.

Listing 1-12. A Sample securetty File

tty1

#tty2
#tty3
#ttys

All devices you want to allow root to log in from should be listed in the file (without the
/dev/ prefix). I recommend allowing root login only on one terminal and forcing all other logins
to be a non-root user and if required use su to gain root privileges. In Listing 1-12 you can see
that only device tty1 allows a root login. All other devices have been commented out of the file,
disabling root login on those devices. You also need to secure the securetty file to ensure it is
modifiable only by root. Enter the following:

puppy# chown root:root /etc/securetty
puppy# chmod 0600 /etc/securetty

Tip You can also achieve similar results using the PAM module, pam_access. so. Seg its configuration
file in /etc/security/access.conf.

The Red Hat Console

On Red Hat systems? when non-root users log into the console, they are granted access to
some additional programs that they would otherwise not be able to run. Additionally, they are
given permissions to certain files they would not have as normal users solely because they are
logged onto the console. To achieve this, Red Hat uses a PAM module called pam_console. so,
which is defined in the PAM login service. See the “Pluggable Authentication Modules (PAM)”
section.

Tip If more than one non-root user is logged onto console, the first user to log in gets the right to run
these programs and the additional permissions.

2. Red Hat 8, Red Hat 9, and Red Hat Enterprise Linux 3

CHAPTER 1 "/ HARDENING THE BASICS

The configuration files contained in the /etc/security/console.apps/ directory define
the additional programs that users logged onto the console can run. This directory contains
a collection of files, and each file corresponds to a command that users, after logging onto
the console, can run as if they were root.

puppy# 1s -1 /etc/security/console.apps/

-IW-T--T-- 1 root root 10 Aug 22 2003 authconfig
-IW-I--I-- 1 root root 87 Aug 22 2003 authconfig-gtk
-IW-T--T-- 1 root root 83 Sep 20 2003 dateconfig
-IW-I--I-- 1 root root 64 May 29 01:31 ethereal
-YW-T--T-- 1 root root 66 Apr 15 00:33 gdmsetup
-IW-I--I-- 1 root root 14 Sep 26 2003 halt

Whilst perhaps this model of granting extra privileges to console users makes administra-
tion for your system easier, I do not think this is a good idea from a security perspective. Most,
if not all of these programs, should be run only by root, and the risk posed by this access being
granted to a non-root user just because the user is able to login to the console is not accept-
able on a production system. So, I recommend you disable this functionality. You can do this
by removing the contents of the /etc/security/console.apps directory. Enter the following:

puppy# Im -f /etc/security/console.apps/*

The file /etc/security/console.perms contains the additional permissions provided.
I also recommend you go through the permissions granted to users in the console.perms file
and confirm you are comfortable granting all of them to non-root users who are logged into
the console.

Tip You will also find sample configuration files for other PAM modules in the /etc/security directory.
| will talk about some of them in the Pluggable Authentication Modules (PAM)” section later in this chapter.

Securing Virtual Terminals

Your virtual terminals are useful to allow you to log into multiple sessions on your console.
But they can be dangerous if you leave sessions logged on unattended. I will show you a way
to lock them against unauthorized use with a password. This is especially useful when you
need to leave a process running interactively on the console. You start your process, change to
another virtual terminal, and lock all the other virtual terminals. Then, unless someone has
the root password, they cannot unlock the terminals and interfere with your running process.
You will learn how to do this using a tool called Vlock. The Vlock tool comes with some
Linux distributions but may need to be installed on others. Checking for the presence of the
vlock binary on your system will tell you if you have it installed. Otherwise you can install pack-
ages for Red Hat, Mandrake, Debian, and other distributions at http://1linux.maruhn.com/sec/
vlock.html. If not already installed, then add Vlock to your system, such as a Red Hat system.

puppy# rpm -Uvh vlock-1-3-13.1386.rpm

17

18

CHAPTER 1 " HARDENING THE BASICS

With Vlock you can lock a single virtual terminal and allow people to change to another
virtual terminal or lock all virtual terminals and disable changing between virtual terminals.
You can lock your current virtual terminal with the command in Listing 1-13.

Listing 1-13. Locking Your Current Virtual Terminal

puppy# vlock -c

This TTY is now locked.

Please enter the password to unlock.
root's Password:

To now unlock this virtual terminal, you need to enter the root password.
To disable all virtual terminals and prevent switching between virtual terminals, use the
-a option.

puppy# vlock -a

The entire console display is now locked.

You will not be able to switch to another virtual console.
Please enter the password to unlock:

root's Password:

Again, to now unlock the virtual terminals, you need to enter the root password. If you are
not able to enter the root password, the only way to disable the lock is to hard reset the system.

Securing Login Screens

Your login screen is the first thing users (and attackers) see when they connect to your system.
As aresult, it is a good idea if it abides by some guidelines.

¢ It should warn against unauthorized use.

¢ It should never reveal the operating system and version of the system you are signing
onto or indeed any more information than absolutely required. I call this defense through
obscurity; the less information attackers have, the harder it is for them to penetrate your
system.

¢ It should ensure the screen is clear from previous sessions.

To do this, you need to edit the contents of the /etc/issue and /etc/issue.net files. The
issue file is displayed when you log in via a terminal session and the issue.net file when you
login via a telnet session. Most distributions use these files for this purpose, including both
Red Hat and Debian. These files can contain a combination of plain text and escape charac-
ters. I usually start my files by forcing it to clear the screen; I achieve this by redirecting the
output of the clear command to the /etc/issue and issue.net files. Enter the following:

puppy# clear > /etc/issue
puppy# clear > /etc/issue.net

This will clear the screen of anything that was on it prior to displaying the login prompt to
ensure when a user signs off no information will be left on the screen that could be used by an
attacker to gain some advantage.

CHAPTER 1 "/ HARDENING THE BASICS

You should also include a warning message stating that unauthorized access to the system
is prohibited and will be prosecuted. You can also use one of a series of escape characters in the
files to populate the login screen with data from your system. I usually use a login screen such
as the screen in Listing 1-14.

Listing 1-14. Sample Login Screen

/\[C

\d at \t

Access to this system is for authorized persons only.
Unauthorized use or access is regarded as a criminal act

and is subject to civil and criminal prosecution. User
activities on this system may be monitored without prior notice.

The \d and \t escape characters would display the current date and time on the system,
respectively. Other escape characters are available to you if you check the issue, issue.net,
and getty man pages.

Tip If you find your changes in the /etc/issue and /etc/issue.net files are being overwritten every
time you reboot, you may find that your distribution resets the content of these files automatically as part of
your boot process to content such as the output of the uname -a command. If this is happening, it is usually
handled by an entry in the rc. local file in the last stage of the boot process. You need to comment out or
remove this entry to ensure your issue and issue.net files keep the content you require.

Also, the /etc/motd file’s contents display directly after login, and you may want to
adjust them to include an Acceptable Use Policy or similar information.

You need to secure all these files to stop other people from editing them. Enter the
following:

puppy# chown root:root /etc/issue /etc/issue.net /etc/motd
puppy# chmod 0600 /etc/issue /etc/issue.net /etc/motd

Users and Groups

One of the key facets of your system security is user and password security. Ensure that only
legitimate users can log in and that attackers will not be able to penetrate your system via
a weak or easily determined login. Additionally, once logged on it is important to understand
how users gain access to resources and to protect your system from improper and unautho-
rized use of those resources by controlling them by managing user accounts and groups.

What is a user account? User accounts provide the ability for a system to verify the identity of
a particular user, to control the access of that user to the system, and to determine what resources
that user is able to access. Groups are used for collecting like types of common users for the pur-
pose of providing them access to resources. This could both include groups of users from a partic-
ular department who all need access to particular shared files or a group of users who all need

19

CHAPTER 1 " HARDENING THE BASICS

access to a particular resource such as a connection, piece of hardware such as a scanner or
printer, or an application.

Linux stores details of users, groups, and other information in three files: /etc/passwd,
/etc/shadow, and /etc/group. The first file, /etc/passwd, contains a list of all users and their
details. Listing 1-15 shows an example of some passwd entries.

Listing 1-15. Some Sample passwd Entries

root:x:0:0:100t:/ro0t:/bin/bash
daemon:x:2:2:daemon:/sbin:/sbin/nologin

The entries can be broken into their component pieces, each separated by a colon.
username:password:UID:GID:GECOS:Home Directory:Shell

The username is up to eight characters long and is case sensitive (though usually all in
lowercase). As you can see in Listing 1-15, the x in the next field is a marker for the password.
The actual password is stored in the /etc/shadow file, which I will discuss in the “Shadow
Passwording” section.

Tip Systems often have usernames that are constructed from a combination of a user’s first and last
names. Introducing random usernames instead is often a good idea. Random usernames do not link users
to personal information. Even if a user has a password that is related to personal information, an attacker
will be less likely to be able to make the connection to a random username.

Next is the User ID (or UID) and the Group ID (GID). On a Linux system each user account
and group is assigned a numeric ID. Users are assigned a UID and groups a GID. Depending on
the distribution, lower-numbered UIDs and GIDs indicate system accounts and groups such as
root or daemon. On Red Hat systems UIDs and GIDs are those IDs lower than 500, and on Debian
those IDs are lower than 100.

Note The root user has a UID and GID of 0. This should be the only user on the system with a UID and
GID of 0.

In many cases the UID and GID for a user will be identical.

Tip You can specify the range of the UIDs and GIDs for users in the /etc/login.defs file using the
UID MIN and UID_MAX range for UIDs and the GID_MIN and GID MAX range for GIDs.

CHAPTER 1 "/ HARDENING THE BASICS

The next item is the GECOS3 information that has been previously used to store finger
daemon information and can contain data such as the name of the user, office locations, and
phone numbers. If you have more than one item of data in the GECOS field, then a comma
separates each data item.

The next item is the user’s home directory. This is usually located for most users in the
/home partition.

The last item is the user’s default shell. If the default shell points to a nonexistent file, then
the user will be unable to log in. The second line in Listing 1-15 uses the shell /sbin/nologin,
which not only stops the user from logging it but logs the login attempt to syslog. This is com-
monly used on Red Hat systems to indicate that this user cannot log on. On Debian systems
the shell /bin/false is used. On more recent versions of distributions these login shells have
been binaries with the sole function of logging error messages to syslog and exiting without
allowing a login to the system.

On older Linux systems, these shells, /sbin/nologin and /bin/false, are in fact shell scripts.
This is dangerous, because there have been instances where a shell script used here has been
subverted. You should replace these shell scripts with binaries or replace them entirely with an
alternative shell.

Unfortunately, whilst a user may not be able to log in with these shells defined, this is not
always a guarantee that this user cannot be utilized for other purposes. Some versions of Samba
and File Transfer Protocol (FTP) assume that if a shell is listed in the /etc/shells file,4 then it is
acceptable to use this user for Samba and FTP purposes. This is a big risk, and I recommend set-
ting the shell of those users you do not want to log in to /dev/null or using the noshell binary
that comes with the Titan hardening application.? This will prevent the login and use of this
account for any other purposes.

Using /dev/null as a shell has a weakness, however. If a login attempt is made, then no
syslog entry is generated that records a disabled user tried to log in. The noshell binary from
the Titan hardening application is useful for this purpose. You can download the source code
and compile it on your system. Listing 1-16 shows you the commands to download and verify
the source code.

Listing 1-16. Downloadingnoshell.c

puppy# wget http://www.fish.com/titan/src1/noshell.c
puppy# md5sum noshell.c
d4909448e968e60091e0b28c149dc712 noshell.c

The current MD5 checksum for the noshell. c file is d4909448e968e60091e0b28c149dc712.

Now you need to compile noshell. You should compile the noshell command using static
libraries, and you can use the Makefile in Listing 1-17 to do this on both Red Hat and Debian
systems.

3. From the General Electric Comprehensive Operating System and also called the comment field
4. This contains a list of all the shells you can use on this system; see man shells.
5. http://www.fish.com/titan/

21

22

CHAPTER 1 " HARDENING THE BASICS

Listing 1-17. Makefile fornoshell

CC = gcc

CPPFLAGS =

CFLAGS = -static

LDFLAGS = -dn

LIBS = -static /usr/lib/libc.a -static /usr/lib/libnsl.a

noshell: noshell.o
$(CC) $(CFLAGS) -0 noshell $(LIBS) $(LDFLAGS) noshell.o

Create the Makefile from Listing 1-17 and you can now compile noshell. Enter the
following:

puppy# make noshell

Then copy the resulting noshell binary to /sbin and delete the downloaded source code,
the output, and the newly compiled binary.

puppy# cp noshell /sbin
puppy# rm -f noshell.c noshell.o noshell

Now you can use /sbin/noshell as the shell for those users for which you do not want
a shell login.

daemon:x:2:2:daemon:/sbin:/sbin/noshell

When a user with their shell set to noshell attempts a log into the system, the following
log entry will be generated to the auth facility with a log level of warning, and you can monitor
for this.

Jul 25 14:51:47 puppy -noshell[20081]: Titan warning: user bob login from a =
disabled shell

Caution Just remember to ensure the noshell binary is not added to your /etc/shells file.

Shadow Passwording

You may have noted that no password appears in /etc/passwd but rather the letter x. This is
because most (if not all) modern distributions use shadow passwording now to handle pass-
word management. Previously passwords were stored as one-way hashes in /etc/passwd,
which provided limited security and exposed your usernames and passwords to brute-force
cracking methods (especially as the passwd file needs to be world readable). This was espe-
cially dangerous when a copy of your passwd file could be stolen from your system and brute
force cracked offline. Given the weak security of this type of password when stored in the
passwd file, it can take only a matter of minutes on a modern computer to crack simple pass-
words or only days to crack harder passwords.

CHAPTER 1 "/ HARDENING THE BASICS

Tip If prompted when installing your distribution, you should always install shadow and MD5 passwords
to ensure maximum potential security.

Shadow passwording helps reduce this risk by separating the users and passwords and stor-
ing the passwords as MD5 hashes in the /etc/shadow file. The /etc/shadow file is owned by the
root user, and root is the only user that has access to the file. Additionally, implementing shadow
passwording includes the ability to add password-aging features to your user accounts and pro-
vides the login.defs file that allows you to enforce a system-wide security policy related to your
users and passwords. Listing 1-18 shows a sample of the /etc/shadow file.

Listing 1-18. Some Sample Shadow Entries

root:$1$5S5szKz9V$vDvPkkazUPIZdCheEGOUX/:12541:0:99999:7:::
daemon: 1%:12109:0:99999:7:::

You can also break down the shadow file into components, and like the passwd file, these
components are separated by colons. The components of the shadow file are as follows:

¢ Username

¢ Password

* Date password last changed

e Minimum days between password changes

¢ Password expiry time in days

¢ Password expiry warning period in days

¢ Number of days after password expiry account is disabled

¢ Date since account has been disabled

The username matches the username in the passwd file. The password itself is encrypted,
and two types of special characters can tell you about the status of the user account with which
the password field can be prefixed. If the password field is prefixed with ! or *, then the account
is locked and the user will be allowed to log in. If the password field is prefixed with ! !, then
a password has never been set and the user cannot log into the system. The remaining entries
refer to password aging, and I will cover those in the “Password Aging” section.

Groups

On Linux systems, groups are stored in the /etc/groups file. Listing 1-19 shows a sample of
this file.
Listing 1-19. Sample of the /etc/groups File

root:x:0:root
mail:x:12:mail,amavis

23

24

CHAPTER 1 " HARDENING THE BASICS

The group file is structured much like the passwd file with the data entries separated by
a colon. The file is broken into a group name, a password, the GID number, and a comma-
separated list of the members of that group.

groupname:password:GID:member,member

The password in the group file allows a user to log into that group using the newgrp com-
mand. If shadow passwording is enabled, then like the passwd file the passwords in the group
file are replaced with an x and the real passwords stored in the /etc/gshadow file. I will talk
about passwords for groups in the “Adding Groups” section.

Note | will cover permissions and file security and how they interact with users and groups in Chapter 4.

Adding Users

To add a user to the system, you use the useradd command. Listing 1-20 shows a basic user
being created.

Listing 1-20. Creating a User
puppy# useradd bob

This will create the user bob (and on Red Hat systems a corresponding private group called
bob) with a home directory of /home/bob and a shell of whatever the system’s default shell is, often
/bin/bash. You can see the results of this in the passwd, shadow, and group files.

bob:x:506:506::/home/bob:/bin/bash
bob:!1:12608:0:99999:7:::
bob:x:506:

All the home directory and shell information in the previous lines are the default settings
for the useradd command. So where does the useradd command get these defaults from? Your
distribution should contain the /etc/default/useradd file. Listing 1-21 shows a sample of
a typical Red Hat file.

Listing 1-21. The /etc/default/useradd File

puppy# cat /etc/default/useradd
useradd defaults file
GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

CHAPTER 1 "/ HARDENING THE BASICS

This file is sometimes populated by default at system installation, but you can also create
the file yourself and use your own settings. Table 1-2 shows the possible options you can
include in the useradd file.

Table 1-2. The /etc/default/useradd File

Option Description

SHELL The full path to the default shell

HOME The full path to the user’s home directory

SKEL The directory to use to provide the default contents of a user’s new home directory
GROUP The default GID

INACTIVE Maximum number of days after password expiry that a password can be changed
EXPIRE Default expiration date of user accounts

Additionally, you can change most of the options running the useradd command with the
-D option. Listing 1-22 shows you how to change the default shell for your new users, and
Table 1-3 shows the additional options available for use with the -D option.

Listing 1-22. Changinguseradd Defaults with the -D Option

puppy# useradd -D -s /bin/bash

Tip You can also change your default shell with the chsh command. Use chsh -1 to see a list of all the
available shells (which are specified in the /etc/shells file).

Table 1-3. Theuseradd -D Defaults

Option Description

-b path/to/default/home Specifies the initial path prefix of a new user’s home directory

-e date Specifies the default expiry date

-t days Specifies the number of days after a password has expired before
the account will be disabled

-g group Specifies the default group

-s shell Specifies the default shell

As T have shown in Table 1-2 another option in the /etc/defaults/useradd file, the SKEL
option, specifies a location under which you can create the required default directory and file
structure for all of your users. For example, I use Maildir-format mailboxes so I usually create
a Maildir mailbox under /etc/skel that will get copied into the new home directory of any
NEew user.

As you can see in Table 1-4 all these defaults can also be overridden on the useradd
command.

25

26

CHAPTER 1 " HARDENING THE BASICS

Table 1-4. Some useradd Command-Line Options

Option Description

-c comment The new user’s password file comment field.

-d homedir The user’s home directory.

-g initial group The group name or number of the user’s initial login group.

-G group1,group2 A list of additional groups of which the user is to be a member.

-m Create the user’s home directory if it does not exist.

-M Do not create the user’s home directory.

-n Red Hat creates a group with the same name as the user automatically
when the user is created. This option disables that behavior.

-r You can create a system account (with a UID in the range of system
accounts).

-p password Specifies the user’s password.

-s shell Specifies the shell the user will use.

Listing 1-23 shows a user addition command using some of these command-line options.

Listing 1-23. Creating a User with useradd
puppy# useradd -s /sbin/noshell -G mail,clam -d /var/spool/amavis amavis

In Listing 1-23 I am creating a user called amavis who cannot login (the shell is set to
/sbin/noshell), belongs to the additional groups mail and clam, and whose home directory
is /var/spool/amavis.

Adding Groups

To add a group to your system, you need to use the groupadd command. Listing 1-24 shows
you how to use this command.
Listing 1-24. The groupadd Command
puppy# groupadd sales
This will create the resulting group in the /etc/group file.
sales:x:508:

As shown in Table 1-5 command-line options are available with the groupadd command.

Table 1-5. The groupadd Command-Line Options

Option Description
-g GID Set the GID for the group. This must be a unique number.
-r Creates a system group (with a GID inside the system GID range).

-f Exits if the group already exists.

CHAPTER 1 "/ HARDENING THE BASICS 27

Once you have created groups, you need to assign users to these groups. You can do this
one of two ways. First, you can edit the /etc/groups file itself and add the specific user to a
group; second, you can use the gpasswd command. The gpasswd command provides a way to
add users to groups via the command line and can also assign passwords to a particular group
(storing these in the /etc/gshadow file).

To add users to a group, you would use the gpasswd command with the -a option.

puppy$ gpasswd -a bob sales

In the previous command the user bob is added to the group sales. To remove a user from
a group, you would use the -d option.

puppy$ gpasswd -d jane sales

In the previous command the user jane is removed from the group sales using the -d option.

You can also define one or more users as administrators of a particular group and allow
them to use the -a and the -d options to add and remove users to that particular group. To add
a group administrator to a group, use the following command:

puppy# gpasswd -A bob sales

This adds the user bob as an administrator of the group sales. Now bob can use the gpasswd
command to add users (jane, chris, and david) to the sales group. Or you can add both an
administrator and users at the same time to a group using this command:

puppy# gpasswd -A bob -M jane chris david sales

The -A option adds the group administer, bob, and the -M option specifies a list of users.
You can also add a password to a group. The password will be stored in the /etc/gshadow
file.

puppy# gpasswd sales

Changing the password for group sales
New Password:

Re-enter new password:

This password will allow users to use the newgrp command to temporarily add themselves
to the sales group if they know the required password.

puppy# newgrp sales
Password:

This gives them the access rights of the users of this group. The group access is removed
when the user logs off. You can use gpasswd -r to remove the password from a particular group.

Another option you can use with the gpasswd command is the -R option, which stops from
anyone adding themselves to the group using the newgrp command.

puppy# gpasswd -R sales

Tip You can use another command, grpck, to check the integrity of your /etc/group and
/etc/gshadow files. See its man page for further information.

28

CHAPTER 1 " HARDENING THE BASICS

Other tools are available for manipulating users and groups. First, if you want to delete a
user, then you can use the userdel command; for groups, you can use the groupdel command.
Second, you can modify existing users and groups with the usermod and groupmod commands,
respectively. You will look at deleting some users and groups next.

Deleting Unnecessary Users and Groups

Most distributions create a variety of default user accounts and groups. Many of these are not
required, and to enhance the security of your system you should remove them. Like with remov-
ing packages or services from your system, I recommend using common sense when removing
users and groups. For example, if you do not use Network File System (NFS), then you have no
requirement for the nfsnobody user; if you have not installed X Windows, then the gdm and xfs
users will not be required. Table 1-6 lists users, describes their purposes, and includes my rec-
ommendations regarding removing them. I have also provided a list of groups that can generally
be removed. Again, consider carefully the packages your system contains and the functions your
system will perform before removing any groups.

Tip I recommend making copies of your passwd and group files before performing multiple edits of them
to ensure you can recover if you delete a user or group that is fundamental to your system or an application.

Table 1-6. Default Users

User Purpose Remove?

adm Owns diagnostic and accounting tools Yes

backup Used by packing for backing up critical files No

bin Owns executables for user commands No

daemon Owns and runs system processes No

desktop KDE user Yes

ftp Default FTP user Yes

games Games user Yes

gdm GDM user Yes

gnats GNATS (bug tracking) user Yes

gopher Gopher user Yes

halt /sbin/halt user No

identd User for identd daemon Yes

irc Internet relay chat (IRC) user Yes

list Mailman user Yes (if not using mailman)
1p Printing user Yes (if no printing)
1pd Printing user Yes (if no printing)
mail Default user for Mail Transfer Agent (MTA) Maybe

mailnull Sendmail user Yes (if no Sendmail)

CHAPTER 1 "/ HARDENING THE BASICS

Table 1-6.

User Purpose Remove?

man Man-db user No

news Default news user Yes

nfsnobody NES User Yes

nobody Default user for Apache or NFS Maybe

nscd Name Service Cache Daemon user Yes (if not using nscd)
ntp Network Time Protocol user No

operator Ops user Yes

postgres Postgres default user Yes (if no Postgres)
proxy Default proxy user Yes

root Root user No

Ipc RPC user Yes

IpCcuser Default RPC user Yes

pm RPM user No

shutdown Shutdown user No

sshd Privilege split sshd user No

sync Sync user Yes

sys Default mounting user No

telnetd Telnetd default user Yes

uucp Default uucp user Yes

vcsa Virtual console memory No

www-data Owns www data Yes (if not Web server)
xfs X Font Server Yes

Table 1-6 contains a combined list of the typical users created when a fresh Red Hat or
Debian system is installed; thus, not all users in the table may be present on your system, as
some are specific to one distribution or the other. This is also dependent on the packages you
have installed on your system, so others may be present on your installation.

Ilabeled two users as Maybe, meaning that they are optionally removable from your
system. These were the mail and nobody users. Several packages utilize these users to run
processes after the package has dropped privileges. For example, some e-mail servers, such
as Sendmail, use the mail user for this purpose, and it is common for Apache to use the
nobody user. You should check to see if any processes or packages are utilizing these users
before you delete them. You can do this by using the ps command.

puppy# ps -U mail -u mail

PID TTY
809 ?

TIME CMD

00:00:03 fetchmail

Replace mail with the username of each user you want to check.

29

30

CHAPTER 1 " HARDENING THE BASICS

To remove a user from your system, you can use the userdel command. If you use the
userdel command in conjunction with the -1 option, you will also remove users’ home direc-
tories, any files in their home directories, and their mail spools. Be sure to check you are
removing material that should be deleted. Additional files or directories belonging to that user
outside their home directory will not be removed, and you will need to optionally find these
files and directories and remove them if required.

These are the groups that can generally be removed:

e 1p

* news

* uucp

* proxy

* postgres
* www-data
* backup

* operator
e list

e irc

* sIC

* gnats

e staff

* games

* users

e gdm

e telnetd
e gopher

e ftp

* nscd

e 1pC

* rpcuser
* nfsnobody
e xfs

e desktop

To remove a group from the system, you can use the groupdel command. This command
has no options.

puppy# groupdel sales

CHAPTER 1 "/ HARDENING THE BASICS

Passwords

As part of the user and group creation process, you need to ensure your users choose suitable
and secure passwords for their accounts and that those passwords are managed and changed on
aregular basis. I mentioned earlier in this chapter shadow passwords and using the /etc/shadow
file. Additionally, most distributions also come with support for MD5 passwords. Without MD5
your passwords are encrypted via DES (the Data Encryption Standard), which is significantly
more vulnerable to cracking attempts than MD5 passwords. You should enable both shadow
passwording and MD5 passwords as part of your install process.

Your users’ ability to choose their own passwords is one of the most frustrating and dan-
gerous parts of user administration. Almost all your users have one objective when choosing
a password: choosing one that is easy for them to remember. Security is simply not a consid-
eration. Changing their password on a regular basis for them is an inconvenience and a
chore. But it is an essential activity for the ongoing security of your system. A lot of people in
the security world believe this sort of attitude is able to be changed with education about the
risks of poor password security. I believe this is only partially true. To an extent no matter
how often most of your users are told to treat their password like the personal identification
number (PIN) to their cash card, they simply do not attach the same importance to it as they
would something valuable to them personally. This is not to say you should not attempt to
educate them, but do not count on it changing their attitudes. I recommend taking a consul-
tative but ultimately dictatorial approach to determining the characteristics of your pass-
word variables and regime. Explain the security requirements of your environment to your
end users, but do not compromise that security by making exceptions to your overall pass-
word rules.

I recommend you set your password rules, taking into consideration the following points:

* Do not allow passwords with dictionary words, such as dog, cat, or elephant. The same
applies for non-English-language words.

* Do not allow passwords with only letters or numbers, such as 12345678 or abcdefghi.

¢ Ensure users do not use personal information such as dates of birth, pet names, names
of family members, phone numbers, or post and zip codes.

¢ Set a minimum password length of ten. Longer is better.

¢ Force users to mix case; in other words, use both uppercase and lowercase letters in the
password.

¢ Force users to mix letters, numbers, and punctuation in the password.

» Ensure your users change their passwords regularly; and if the password expires without
being changed, then set a time limit after which that user account should be disabled.

¢ Ensure the new password is not the same as a number of previous passwords.

You can control the characteristics of your users’ passwords in Linux via PAM. I talk about
PAM in more detail in the “Pluggable Authentication Modules (PAM)” section later in this chap-

ter, but I will cover the PAM modules specifically designed to handle the passwd application here.

The PAM modules are defined in individual files located in the /etc/pam.d directory. The
file you want to look at in this directory is passwd and contains all the relevant PAM modules

31

32

CHAPTER 1 " HARDENING THE BASICS

used by the passwd command. Listing 1-25 shows the contents of the default Debian
/etc/pam.d/passwd file.

Listing 1-25. Debian default File
password required pam_unix.so nullok obscure min=4 max=8 md5

The entry in the line, password, indicates the module interface type of this line. In this case,
it includes password-related functions for manipulating authentication tokens. The next entry,
required, is the control flag that determines what PAM will do if the authentication succeeds or
fails. The required entry indicates the authentication module must succeed for the password to
be set or changed. The next entry, pam_unix. so, is the PAM module to be used. By default this is
located in the /1ib/security directory. The pam_unix.so module is designed to handle Unix
password authentication using the /etc/passwd and /etc/shadow files.

The last entries are arguments to be passed to the pam_unix.so module, and these argu-
ments also allow you to control the characteristics of your passwords and tell your system
whether a password is suitable for use. The first argument, nullok, allows you to change an
empty password. Without this option if the current password is blank or empty, then the
account is considered locked, and you will not be able to change the password. The next
option, obscure, performs some basic checks on the password.

Note The obscure option is the same as the OBSCURE_CHECKS_ENAB option that used to be defined
in the login.defs file.

The min=4 argument sets the minimum password length to four characters, and the max=8
argument sets the maximum password length to four characters. The last argument tells PAM
to use MD5 password encryption.

So, for the Debian distribution, the default PAM setup for passwords essentially addresses
only one of the proposed password rules, that of password length. I do not recommend this as
an acceptable password policy. But by adding additional PAM modules to the mix, you can
control additional passwords characteristics. Both Debian and Red Hat have an additional
PAM module, pam_cracklib.so, that you can use to address some of your other requirements.
You can also use the existing pam_unix.so module in another module; type account to check
that the user password has not expired or whether the account has been disabled. You first
comment out the line in Listing 1-25 in the /etc/pam.d/passwd file and instead use the lines in
Listing 1-26.

Note You may need to install the pam_cracklib.so module on your system. On Debian this is a pack-
age called 1ibpam-cracklib. On Red Hat the pam cracklib.so module comes with the pam RPM.

CHAPTER 1 "/ HARDENING THE BASICS

Listing 1-26. Using Additional PAM Modules in /etc/pam.d/passwd

account required pam_unix.so

password required pam_cracklib.so retry=3 minlen=10 dcredit=-1 ucredit=-1 =
ocredit=-1 lcredit=0 difok=3

password required pam_unix.so use_authtok remember=5 nullok md5

The construction of the PAM module declaration line in Listing 1-26 is essentially the
same as that of Listing 1-25 except you are now using what is called module stacking. With
module stacking you can combine modules together, so the results of their checks become
cumulative. The account interface of pam_unix.so is checked, and then the password inter-
faces of the pam_cracklib.so and pam_unix.so modules are checked. As I have used the con-
trol flag required for all modules, all these checks need to be successful for the password to
successfully set.

The first line shows how to use the pam_unix.so module, but I have specified an interface
type of account that checks the age, expiry, and lock status of the user account before allowing
a user to change a password. On the next line I have specified the pam_cracklib.so module
with some new arguments. The first of these arguments is retry, which specifies the number
of tries the passwd program will give the user to choose a suitable password. I have specified
three attempts here. If the user has not provided a password by this point, then the password
change will fail. The next option, minlen, specifies the proposed minimum length of the new
password, which I have set to ten characters.

The next options control what sort of characters need to be present in the password. They
work on a system of credits toward the minimum length of the password. For example, speci-
fying dcredit=1 means each digit in your password will count as one character for the purposes
of determining the minimum password length. If you specify dcredit=2, then each digit you
use in your password counts as two characters for the purposes of meeting the minimum pass-
word length. This is generally relevant only for longer passwords. With a minimum password
length of ten, you can make better use of “negative” credits. To do this, you would specify
dcredit=-1. This tells PAM that the new password must have a minimum of one digit charac-
ter in it to be a successful password. You can specify dcredit=-2, and so on, to insist on more
characters of a particular type. The four credit options available to you are dcredit for digits,
ucredit for uppercase characters, lcredit for lowercase characters, and ocredit for other
characters, such as punctuation. So in Listing 1-26 you see a password with a minimum of
ten characters that must have one digit, one uppercase character, one other character, and
one lowercase character.

The final option in Listing 1-26 is difok. This controls how many characters have to be dif-
ferent in the new password from the old password. As I have specified difok=3 in Listing 1-26,
then if at least three characters in the old password do not appear in the new password, the
new password is acceptable. Be careful using this option. If you specify that a large number of
characters in the old password cannot appear in the new password, you can make it hard for
a user to choose a new password.

You should be able to use a combination of these settings to implement a password policy
that suits your environment. In addition to these checks, the pam_cracklib.so module performs
some other checks that do not require arguments.

33

34

CHAPTER 1 " HARDENING THE BASICS

* It checks whether the password is a palindrome® of the previous password.

e It checks the password against a list of dictionary words contained in /usx/1ib/
cracklib dict.pwd on Red Hat systems and /var/cache/cracklib_dict.pwd on Debian.

¢ It checks whether the password is only a case change from the previous password
(in other words, from uppercase to lowercase, and vice versa).

After processing the pam_cracklib.so module, PAM moves onto the pam_unix.so module.
I used some new arguments for this module when I used it in Listing 1-26. In this case I am spec-
ifying the pam_unix.so module with a special argument, use_authtok. This tells the pam_unix.so
module not to prompt the user for a password but rather use the password that has already been
checked by the pam cracklib.so module as the password to be processed. I have also specified
the remember option on this line. This enables a password history function. I have specified that
PAM should check that the new password is different from the last five passwords, but you can
specify a number suitable for your environment. To enable password history, you must first cre-
ate a file to hold your old passwords.

puppy# touch /etc/security/opasswd
puppy# chown root:root /etc/security/opasswd
puppy# chmod 0644 /etc/security/opasswd

Now the last five passwords for all users will be held in the file /etc/security/opasswd in
MD5-encrypted format, and the user will not be able to use them as a new password.

Tip Other PAM modules are available for password authentication. One of the best is pam_passwdqc,
available from http://www.openwall.com/passwdqc/. It contains some additional characteristics you
can configure, including support for randomly generated passwords.

On Red Hat systems the PAM authentication works the same way but is configured differ-
ently. Listing 1-27 shows the content of the default /etc/pam.d/passwd file.

Listing 1-27. Default Red Hat File

auth required pam_stack.so service=system-auth
account required pam_stack.so service=system-auth
password required pam_stack.so service=system-auth

The /etc/pam.d/passwd file here calls the special module pam_stack.so that tells passwd
to check another file, system-auth in the /etc/pam.d directory for the required PAM modules
and authentication rules required for a password change. Listing 1-28 shows the contents of
the default system-auth file.

6. Aword or phrase that reads the same backward as forward

CHAPTER 1 "/ HARDENING THE BASICS

Listing 1-28. The Red Hat system-auth File

#%PAM-1.0
This file is autogenerated.
User changes will be destroyed the next time authconfig is run.

auth required /1ib/security/pam_env.so

auth sufficient /1ib/security/pam_unix.so likeauth nullok

auth required /1ib/security/pam_deny.so

account required /1ib/security/pam_unix.so

password required /1ib/security/pam_cracklib.so retry=3 type=

password sufficient /1ib/security/pam_unix.so nullok use_authtok md5 shadow
password required /1ib/security/pam_deny.so

session required /1ib/security/pam_limits.so

session required /1ib/security/pam_unix.so

The important lines you need to change to add your password policy here are as follows:

password required /1ib/security/pam_cracklib.so retry=3 type=
password sufficient /1ib/security/pam unix.so nullok use authtok md5 shadow

You should change these lines to match the requirements of your password policy.

Tip The message in the second two comment lines in Listing 1-28 indicates that this file is auto-
generated by running the authconfig tool and your changes will be lost. | recommend not running this
tool if you are going to manually change this file.

Password Aging

Password aging allows you to specify a time period for which a password is valid. After the
time period has expired, so will the password forcing the user to enter a new password. This
has the benefit of ensuring passwords are changed regularly and that a password that is stolen,
cracked, or known by a former employee will have a time-limited value. Unfortunately for many
users, the need to regularly change their passwords increases their desire to write down the
passwords. You need to mitigate this risk with user education about the dangers of writing
down passwords. I often use the metaphor of a cash card PIN. Writing down your password
at your desk is the same as putting your cash card PIN on a sticky note attached to your card.
You need to regularly enforce this sort of education with users; I recommend any acceptable
use policies within your organization also cite the users’ responsibilities for ensuring they do
not reveal their passwords to anyone else either through carelessness or deliberately.

Tip I recommend you use a password age between 30-60 days for most passwords depending on the
nature of the system.

35

36

CHAPTER 1 " HARDENING THE BASICS

Two ways exist to handle password aging. The first uses the command-line tool chage to
set or change the password expiry of a user account individually. Listing 1-29 shows this com-
mand working.

Listing 1-29. The chage Command
puppy# chage -M 30 bob
Listing 1-29 uses the -M option to set the password expiry period for the user bob to 30 days.

Table 1-7 shows several other variables you can set.

Table 1-7. Command-Line Options for the chage Command

Option Description

-m days Sets the minimum number of days between password changes. Zero allows the user
to change it at any time.

-M Sets the maximum number of days for which a password stays valid.

-E Sets a date on which the user account will expire and automatically be deactivated.

-W days Sets the number of days before the password expires that the user will be warned to
change it.

-d days Sets the number of days since Jan. 1, 1970, that the password was last changed.

-1 days Sets the number of days after password expiry that the account is locked.

First, the -m option allows you to specify the minimum amount of time between pass-
word changes. A setting of 0 allows the user to change the password at any time. Second, the
next option, -W, specifies the number of days before a user’s password expires that they will
get a warning that their password is about to expire. The -d option is principally useful to
immediately expire a password. By setting the -d option to 0, the user’s last password change
date becomes Jan. 1, 1970, and if the -M option is greater than 0, then the user must change
their password at the next login. The last option, -I, provides a time frame in days after
which user accounts with expired and unchanged passwords are locked and thus unable to
be used to log in. If you run chage without any options and specify only the user, then it will
launch an interactive series of prompts to set the required values. Listing 1-30 shows this.
The values between the [] brackets indicate the current values to which this user’s password
aging is set.

Listing 1-30. Running chage Without Options

puppy# chage bob

Changing the aging information for bob

Enter the new value, or press return for the default
Minimum Password Age [0]:

Maximum Password Age [30]:

Last Password Change (YYYY-MM-DD) [2004-06-27]:
Password Expiration Warning [7]:

Password Inactive [-1]:

Account Expiration Date (YYYY-MM-DD) [2004-07-28]:

CHAPTER 1 "/ HARDENING THE BASICS

Users can also utilize the chage command with the -1 option to show when a password is
due to expire.

puppy# chage -1 bob

The other method to handle password aging is to set defaults for all users in the
/etc/login.defs file.

Tip The /etc/login.defs file is used to also control password lengths. On both Debian and Red Hat
(and other distributions), PAM has taken over this function.

Listing 1-31 shows the controls available for password aging in /etc/login.defs.

Listing 1-31. The login.defs Password-Aging Controls

PASS MAX DAYS 60
PASS MIN DAYS 0
PASS WARN AGE 7

As you can see, you can set the core password-aging controls here, and I have set the maxi-
mum password age to 60 days, allowing users to change their passwords at any time and pro-
viding a warning to users that their passwords will expire seven days before password expiry.

sudo

One of the first things most system administrators are told is not to use the root user to per-
form activities that do not require it. This is inconvenient for administration purposes but
greatly enhances the security of the system. This enhancement reduces the risk of the root
user being compromised or used by unauthorized people and the risk of accidental misuse
of the root user privileges.

One of the ways you can reduce the inconvenience this causes whilst not increasing the
security exposure is to use the sudo function, which is a variation on the su function. I will
cover securing this in the “Pluggable Authentication Modules (PAM)” section. The sudo func-
tion allows selected non-root users to execute particular commands as if they were root. The
sudo command is a setuid binary that is owned by root to which all users have execute per-
missions. If you are authorized to do so, you can run sudo and effectively become the root
user. sudo is a complicated package, and I will take you through the basics of configuring it.

Note Most distributions come with sudo installed, but you may need to install it. On both Debian and
Red Hat, the package is called sudo.

37

38

CHAPTER 1 " HARDENING THE BASICS

The sudo command checks the /etc/sudoers file for the authorization to run commands.
You can configure the sudoers file to restrict access to particular users, to certain commands,
and on particular hosts.

Let’s look at Listing 1-32 to see how to use sudo. I am logged onto the system as the user bob.

Listing 1-32. Using sudo

puppy$ cat /var/log/secure

cat: /var/log/secure: Permission denied
puppy$ sudo cat /var/log/secure
Password:

In the first command in Listing 1-32, I try to cat the /var/log/secure, which would normally
be accessible only by root. As you can see, I get a permission-denied error, which is the result
I expect. Then I try again, prefixing the command with the sudo command. You will be prompted
for your password (not the root password). If you have been authorized to use sudo and author-
ized to use the cat command as root on this system, then you would be able to view the file.

Note You can also run sudo using a time limit. You can specify that for a defined time period after execut-
ing the sudo command the user can act as root. | do not recommend configuring sudo this way because it
creates similar issues to simply using the root user for administration. But if you want to configure it like this,
you can see how to do it in the sudo man page.

Let’s look at what you need to add to the /etc/sudoers file to get Listing 1-32 to work. You
need to use the command visudo to edit the /etc/sudoers file. The visudo command is the
safest way to edit the sudoers file. The command locks the file against multiple simultaneous
edits, provides basic sanity checks, and checks for any parse errors. If the file is currently being
edited, you will receive a message to try again later. I have added the content of Listing 1-33 to
the sudoers file.

Listing 1-33. Sample sudoers Line
bob ALL=/bin/cat
We can break this line down into its component parts.

username host = command

Listing 1-33 shows the user bob is allowed to, on all hosts (using the variable ALL), use the
command /bin/cat as if he were root. Any command you specify in the command option must
be defined with its full path. You can also specify more than one command, each separated by
commas, to be authorized for use, as you can see on the next line:

bob ALL=/bin/cat,/sbin/shutdown,/sbin/poweroff

CHAPTER 1 "/ HARDENING THE BASICS

In the previous line bob is now authorized to use the cat, shutdown, and poweroff com-
mands as if he were the root user. All configuration lines in the sudoers file must be on one
line only, and you can use the \ to indicate the configuration continues on the next line.

A single sudoers file is designed to be used on multiple systems. Thus, it allows host
specific access controls. You would change your sudoers file on a central system and distrib-
ute the updated file to all your systems. With host access controls you can define different
authorizations for different systems, as you can see in Listing 1-34.

Listing 1-34. Different sudo Authorization on Multiple Systems

bob puppy=/bin/cat,/sbin/shutdown
bob kitten=ALL

In Listing 1-34 the user bob is allowed to use only the cat and shutdown commands on the
system puppy, but on the system kitten he is allowed to use ALL possible commands. You should
be careful when using the ALL variable to define access to all commands on a system. The ALL
variable allows no granularity of authorization configuration. You can be somewhat more
selective with your authorization by granting access to the commands in a particular direc-
tory, as you can see on the next line:

bob puppy=/bin/*

This applies only to the directory defined and not to any subdirectories. For example, if
you authorized to the /bin/* directory, then you will not be able to run any commands in the
/bin/extra/ directory unless you explicitly define access to that directory like the configura-
tion on the next line:

bob puppy=/bin/*,/bin/extra/*

Sometimes you want to grant access to a particular command to a user, but you want that
command to be run as another user. For example, you need to start and stop some daemons
as specific users, such as the MySQL or named daemon. You can specify the user you want the
command to be started as by placing it in parentheses in front of the command, like so:

bob puppy=(mysql) /usr/local/bin/mysqgld, (named) /usr/local/sbin/named

As you can imagine, lists of authorized commands, users, and hosts can become quite
long. The sudo command also comes with the option of defining aliases. Aliases are collections
of like users, commands, and hosts. Generally you define aliases at the start of the sudoers file.

Let’s look at some aliases. The first type of alias is User Alias. AUser Alias groups like users.

User Alias OPERATORS = bob,jane,paul,mary

You start an alias with the name of the alias type you are using, in this case User_Alias, and
then the name of the particular alias you are defining, here OPERATORS. Then you specify a list of
the users who belong to this alias. You can then refer to this alias in a configuration line.

OPERATORS ALL=/bin/mount,/sbin/raidstop,/sbin/raidstart, \
(named) /usr/local/sbin/named

39

CHAPTER 1 " HARDENING THE BASICS

In the previous line I have specified that the users in User_Alias OPERATORS (bob, jane,
paul, and mary) are able to use the mount, raidstart, and raidstop commands and the named
command.

The next type of alias you can define is a command alias, Cmnd_Alias, which groups
collections of commands.

Cmnd_Alias DNS_COMMANDS = /usr/local/sbin/rndc, (named) /usr/local/sbin/named
You can use this alias in conjunction with the previous alias.
OPERATORS ALL=/bin/mount,DNS_COMMANDS

Now all users defined in the alias OPERATORS can use the commands /bin/mount and all
those commands defined in the command alias DNS_COMMANDS on ALL hosts.

You can also specify an alias that groups a collection of hosts. The Host_Alias alias can
specify lists of host names, IP addresses, and networks.

Host_Alias DNS_SERVERS = elephant,tiger,bear
You can combine this alias with the preceding ones you have defined.
OPERATORS DNS_SERVERS=DNS_COMMANDS

Now all users specified in the OPERATORS alias can run the commands specified in
DNS_COMMANDS on the hosts defined in the DNS_SERVERS alias group.

You can also negate aliases by placing an exclamation (!) mark in front of them. Let’s look
at an example of this. First you define a command alias with some commands you do not want
users to use, and then you can use that alias in conjunction with a sudo configuration line.

Cmnd_Alias DENIED COMMANDS = /bin/su,/bin/mount,/bin/umount
bob puppy=/bin/*, IDENIED _COMMANDS

Here the user bob can use all the commands in the /bin directory on the puppy host except
those defined in the DENIED COMMANDS command alias.

Caution This looks like a great method of securing commands via sudo, but unfortunately it is relatively
easy to get around negating commands simply by copying or moving the denied command from the direc-
tory you have denied it in to another location. You should be aware of this risk when using negated aliases.

Let’s look at one of the other ways you can authorize users to sudo. Inside the sudoers file
you can define another type of alias based on the group information in your system by prefix-
ing the group name with %.

%groupname ALL=(ALL) ALL

Replace groupname with the name of a group defined on your system. This means all mem-
bers of the defined group are able to execute whatever commands you authorize for them, in
this case ALL commands on ALL hosts. On Red Hat a group called wheel already exists for this

CHAPTER 1 "/ HARDENING THE BASICS

purpose, and if you uncomment the following line on your Red Hat system, then any users
added to the wheel group will have root privileges on your system.

%wheel ALL=(ALL) ALL

Additionally, the sudoers file itself also has a number of options and defaults you can
define to change the behavior of the sudo command. For example, you can configure sudo to
send e-mail when the sudo command is used. To define who to send that e-mail to, you can
use the option on the following line:

mailto "admin@puppy.yourdomain.com"
You can then modify when sudo sends that e-mail using further options.
mail_always on
To give you an idea of the sort of defaults and options available to you, Table 1-8 defines

alist of the e-mail-related options.

Table 1-8. Send E-mail When sudo Runs

Option Description Default
mail_always Sends e-mail every time a user runs sudo. This flag is set of f by default.
mail_badpass Sends e-mail if the user running sudo does not enter the correct password. This

flag is set to off by default.

mail no_user Sends e-mail if the user running sudo does not exist in the sudoers file. This flag
is set to on by default.

mail no host Sends e-mail if the user running sudo exists in the sudoers file but is not
authorized to run commands on this host. This flag is set to off by default.

mail no_perms Sends e-mail if the user running sudo exists in the sudoers file but they do not
have authority to the command they have tried to run. This flag is set to off by
default.

There are a number of other options and defaults you can see in the sudoers man page.
The sudo command itself can also have some command-line options you can issue with
it. Table 1-9 shows some of the most useful options.

Table 1-9. sudo Command-Line Options

Option Description

-1 Prints a list out the allowed (and forbidden) commands for the current user on the
current host

-L Lists any default options set in the sudoers file

-b Runs the given command in the background

-u user Runs the specified command as a user other than root

The -1 option is particularly useful to allow you to determine what commands the cur-
rent user on the current host is authorized and forbidden to run.

4

42

CHAPTER 1 " HARDENING THE BASICS

puppy# sudo -1

Password:

User bob may run the following commands on this host:
(root) ALL

The sudo command is complicated and if improperly implemented can open your system
to security exposures. I recommend you carefully test any sudo configuration before you imple-
ment it and you thoroughly explore the contents of the sudo and sudoers man pages.

User Accounting

Keeping track of what your users are doing is an important part of user management. In Chapter 5
I will talk about logging onto your system, and indeed one of the first resources you will use to
keep track of the actions of your users is the content of your syslog log files. But also other
commands and sources are useful for keeping track of your users and their activities.

Caution The data used to populate the output of these commands is often one of the first targets of
an attacker. You should secure the integrity of this data by ensuring only root can read the log files.

The first command I will cover is the who command. This command displays all those users
logged onto the system currently, together with the terminal they are logged on to and if they
have connected remotely then the IP address or hostname from which they have connected.
Listing 1-35 shows the default output of the who command.

Listing 1-35. The Output of thewho Command

puppy# who
root tty1 Jul 3 12:32
bob pts/0 Jul 8 11:39 (host002.yourdomain.com)

You can also modify the output of the who command. Table 1-10 shows the command-line
options available to modify its output.

Table 1-10. Thewho Command-Line Options

Option Description

-a Displays all options in verbose mode

-b Displays the time of the last system boot

-d Displays any dead processes

-H Prints a line of column headings

--login Prints the system login processes

-p Prints all active processes spawned by init

-q Generates a count of all login names and number of users logged on
-T Prints the current run level

-t Prints the last system clock change

CHAPTER 1 "/ HARDENING THE BASICS

These options are mostly self-explanatory, but you should note the -a option that com-
bines a variety of the command-line options to provide a detailed overview of who is logged
into your system, the login processes, and the system reboot and run level details.

The next commands you will learn about are the last and lastb commands, which dis-
play a record of when users last logged into the system and a record of bad user logins, respec-
tively. To start collecting the data required to populate the output of these commands, you
need to create a couple of files to hold the data. Some distributions automatically create these
files, but others require them to be created manually. Once they are created, you do not need
to do anything else. The system will automatically detect the created files and begin logging
the required information. The two files you will require are /var/log/wtmp and /var/log/btmp.
If these files exist in the /var/log/ directory, then you can proceed to using the commands. If
not, then you need to create them and secure them from non-root users.

puppy# touch /var/log/wtmp /var/log/btmp
puppy# chown root:root /var/log/wtmp /var/log/btmp
puppy# chmod 0644 /var/log/wtmp /var/log/btmp

The /var/log/wtmp file contains the data for the last command, and the /var/log/btmp
file contains the data for the lastb command.

If you execute the last command without any options, it will print a report of the last
logins to the system. Listing 1-36 shows the results of this command.

Listing 1-36. Running the Last Command

puppy# last

root tty1 Sat Jul 3 12:32 still logged in
bob pts/0 192.168.0.23 Sat Jul 3 14:25 - 14:26 (00:01)
reboot system boot 2.4.20-28.8 Sat Jul 3 12:31 (4+05:40)

Asyou can see, the last command tells you that root is logged into tty1 and is still logged
in. The list also shows the user bob, who logged in from the IP address 192.168.0.23 and stayed
logged on for one second. The last entry shows a reboot entry. Every time the system is rebooted,
an entry is logged to the wtmp file, giving the time of the reboot and the version of the kernel into
which the system was booted.

The lastb produces the same style of report but lists only those logins that were “bad.”

In other words, it lists those logins in which an incorrect password was entered, or some other
error resulted in a failure to log in.

Both the last and lastb commands have some additional command-line options you
can use. Table 1-11 shows these additional options.

Table 1-11. Additional last and lastb Command-Line Options

Option Description

-n num Lists num of lines in the output

-t YYYYMMDDHHMMSS Displays the login status at the time specified
-X Displays the shutdown and run level changes

-f file Specifies another file to read for the last information

43

CHAPTER 1 " HARDENING THE BASICS

Related to the last and lastb commands is the lastlog command. The lastlog command
displays a report that is based on information in the /var/log/lastlog file that shows the login
status of all users on your system including those users who have never logged in. Like the wtmp
and btmp files, you may need to create the lastlog file.

puppy# touch /var/log/lastlog
puppy# chown root:root /var/log/lastlog
puppy# chmod 0644 /var/log/lastlog

This displays a list of all users and their last login date and time. Or it displays a message
indicating **Never Logged In**if thatuser has never logged in. You can also specify only the
lastlog record for a particular user by using the -u command-line option. Or you can use the
-t days option to specify only those logins more recent than days be displayed. Using the -t
flag overrides the use of the -u flag.

puppy# lastlog -u bob
puppy# lastlog -t 30

Tip Many systems also come with the ac command that provides statistics about the amount of time users
have been connected to your system, which can often provide useful information. The ac command uses the
contents of the /var/log/wtmp file to produce these reports; you can see its options in the sa man page.

Process Accounting

Another useful tool in tracking the activities on your system is process accounting. Process
accounting is a method of tracking every command issued on your system, the process or
user initiating that command, and the amount of processing time used, amongst other infor-
mation. All modern distributions have process accounting enabled in their kernels, and you
simply need to add some utilities for turning on and manipulating that data on your system.

If you have Red Hat, you can install the package psacct, which contains the required tools.
For Debian systems you can use the acct package. If you cannot find a suitable process account-
ing package for your distribution, then you can also download and compile the Acct utilities from
http://www.ibiblio.org/pub/linux/system/admin/accounts/acct-1-3.73.tar.gz. Thisis an old
release of the tools and, although stable, does not have the full functionality of the utilities avail-
able in the Red Hat and Debian packages, so some of the functions I will describe may not work.

If you installed a package, then skip down until you reach the section on the discussion of
starting process accounting. If you downloaded the utilities, then unpack the archive and change
into the resulting directory. This directory contains some kernel patches (which you will not all
need, as all modern kernels include process accounting code) and two directories, utils and
scripts. Change into the utils directory, and compile the programs in this directory. Enter the
following:

puppy# make

Then copy the compiled binaries to a program directory in your path; the recommended
default path is /usr/local/sbin.

CHAPTER 1 "/ HARDENING THE BASICS

puppy# cp acctentries accton accttrim dumpact lastcomm /usr/local/sbin

You can also refer to the man pages for each of these commands in this directory you can
install.

To get process accounting running, first create a file in /var/log to hold your process
accounting information. I usually create a file called pacct.

puppy# touch /var/log/pacct

As this file is going to contain some sensitive data, you need to secure it, and you must
ensure only root has privileges to it.

puppy# chown root:root /var/log/pacct
puppy# chmod 0644 /var/log/pacct

Now to turn on process accounting, you need to run the accton command and provide it
with the name of the file you have nominated to hold your process accounting information.

puppy# /usr/local/sbin/accton /var/log/pacct

If you want run process accounting all the time, you need to add this into the startup process
of your system also to ensure process accounting is started every time you reboot. You also need
to tell process accounting to stop when the system is shut down. If you execute the accton com-
mand without any options, this will turn off process accounting.

puppy# /usr/local/sbin/accton

Now you have process accounting collecting information. You can query this information
and find out who has been running what on your system. The easiest and fastest way to do
this is to use the lastcomm command, which summarizes the last commands used on the sys-
tem in reverse order. To run lastcomm and display all the commands run on the system in the
current process accounting file, you simply need to specify the file to be read.

puppy# lastcomm -f /var/log/pacct
1s root stdout 0.01 secs Wed Jul 7 17:49
accton S root stdout 0.01 secs Wed Jul 7 17:49

This shows the root user has started the accton command and also has performed the 1s
command. Each entry contains the command name of the process that has been run, some
flags (for example, in the previous accton entry the flag S indicates that the command was exe-
cuted by a superuser, and other flags are documented in the 1astcomm man page), the name of
the user who ran the process, where the output of the process was directed, and the time the
process ended. You can also filter the information by telling 1lastcomm to specify only some
commands executed or only those commands executed by a specific user or from a specific
device.

puppy# lastcomm -f /var/log/pacct --user bob

The previous line tells 1astcomm to display only those commands issued by the user bob.
You can also specify the option --command commandname to list all occurrences of that specific
command or the --tty ttyname option to specify only those commands issued on the speci-
fied TTY. You can also specify a combination of these options to further narrow your search.

45

CHAPTER 1 " HARDENING THE BASICS

The Red Hat and Debian packages also include the sa tool. The sa tool is capable of pro-
ducing detailed reports and summaries of your process accounting information. This includes
generating output reports of all processes and commands sorted by user or by command. You
can get more information about sa from its man page.

Process accounting can accumulate a lot of data quickly, especially on big systems with
a large number of users. To keep this manageable, you should trim down the size of your pro-
cess accounting file. In the Acct utilities, which are available to download, the scripts direc-
tory contains a script called handleacct.sh, which is an automated shell script for trimming
the size of your pacct file. You could easily modify this and run it regularly through cron to do
this trimming of files.

Pluggable Authentication Modules (PAM)

Sun Microsystems designed PAM to provide a plug-in authentication framework. It is heavily
used and developed in the Linux world, and a large number of PAM modules exist to perform
a variety of authentication functions. PAM is designed to integrate authentication into serv-
ices without changing those services. It means developers merely need to make applications
PAM aware without having to develop a custom authentication module or scheme for that
application. A suitable PAM module can be integrated and used to provide the authentication.

On most Linux distributions you have two possible locations to look for PAM configura-
tion. The legacy file /etc/pam.conf used to hold PAM configuration information on Linux dis-
tributions but now is generally deprecated and has been replaced by the /etc/pam.d directory.
This directory holds a collection of configuration file for PAM-aware services. The service
shares the same name as the application it is designed to authenticate; for example, the PAM
configuration for the passwd command is contained in a file called /etc/pam.d/passwd. I call
these files service configuration files.

The service configuration files themselves have four major directives, and Listing 1-37
shows a sample of a PAM service configuration file from the system-auth service on a Red Hat
system.

Note The system-auth service provides a default authentication process for a variety of system func-
tions such as logins or changing passwords. | talk about it further in the “PAM Module Stacking” section.

Listing 1-37. Sample Red Hat system-auth Line
auth required pam_unix.so nullok

The first of the four directives is the interface type. In Listing 1-37 you can see the inter-
face type is auth. There are four major interface types available in PAM.

¢ auth: These modules perform user authentication using permissions, for example, and
can also set credentials such as group assignments or Kerberos tickets.

¢ account: These modules confirm access is available by checking the user’s account, for
example, confirming that the user account is unlocked or if only a root user can perform
an action.

CHAPTER 1 "/ HARDENING THE BASICS

* password: These modules verify and test passwords and can update authentication
tokens such as passwords.

¢ session: These modules check, manage, and configure user sessions.

You can use some modules for more than one interface type. For example, you can use
the pam_unix.so module to authenticate password, auth, account, and session interface types.

auth sufficient /1ib/security/pam_unix.so likeauth nullok

account required /1ib/security/pam_unix.so

password sufficient /1ib/security/pam_unix.so nullok use_authtok md5 shadow
session required /1ib/security/pam_unix.so

It is also possible to stack modules of the same interface type together to allow more than
one form of authentication for that interface type. For example, on the next line I have stacked
together the pam_cracklib.so and pam_unix.so modules to perform password interface type
authentication.

password required /1ib/security/pam_cracklib.so retry=3 type=
password sufficient /1ib/security/pam_unix.so nullok use authtok md5 shadow

This is described as a stack, and I talk about module stacking in the “PAM Module Stack-
ing” section.

The next directive, required in Listing 1-37, is a control flag that tells PAM what to do with
the module’s results. Processing a PAM module ends in either a success or a failure result. The
controls flags tell PAM what to do with the success or failure results and how that result impacts
the overall authentication process. The required flag means the module result must be a suc-
cess in order for the authentication process to succeed. If the result of this module is a failure,
then the overall authentication is also a failure. If more than one module is stacked together, the
other modules in the stack will also be processed but the overall authentication will still fail.

Three other possible control flags exist. The requisite flag indicates that the module result
must be successful for authentication to be successful. Additionally, unlike the required flag,
the success or failure of this module will be immediately notified to the service requesting
authentication, and the authentication process will complete. This means that if any modules
are stacked together and a module with a requisite control flag fails, then the modules remain-
ing to be processed will not be executed. But with the required control flag, the remaining
modules in the stack would continue to be processed.

The next control flag is sufficient. The sufficient flag means that the success of this
module is sufficient for the authentication process to be successful or if modules are stacked
for the stack to succeed. This is dependent on no other required modules, processed prior to
this module, failing. If a sufficient module fails, then the overall stack does not fail.

The last control flag is optional. An optional module is not critical to the overall success
and failure of the authentication process or the module stack. Its success or failure will not
determine the success or failure of the overall authentication process.

The next directive from Listing 1-37, pam_unix. so, indicates what PAM module will be used
and its location. If you specify a PAM module without a path such as shown in Listing 1-37, then
the module is assumed to be located in the /1ib/security directory. You can also specify a mod-
ule from another location here by providing the path to it, as you can see in the following line:

auth required /usr/local/pamlib/pam_local.so id=-1 root=1

47

CHAPTER 1 " HARDENING THE BASICS

The last directive from Listing 1-37, nullok, is an argument to be passed to the PAM mod-
ule. In the previous line, for example, you can see two arguments, id=-1 and root=1, being
passed to the module pam_local.so. Most modules will ignore invalid or incorrect arguments
passed to them, and the module will continue to be processed though some modules do gen-
erate an error message or fail.

Tip You can find documentation on your Red Hat system for PAM and all the PAM modules supplied with
the pam RPM at /usr/share/doc/pam-version/txts, replacing version with the version number of your
pam RPM, or at http://www.kernel.org/pub/linux/1ibs/pam/.

PAM Module Stacking

As I mentioned earlier, you can stack modules for processing, with multiple modules being
used to authenticate each interface type of a particular service. If modules are stacked, then
they are processed in the order they appear in the PAM service configuration file. As you can
specify a variety of control flags when stacking modules, it is important to carefully consider
how to stack your modules and what dependencies to configure. In Listing 1-38, you will see
the Debian login PAM configuration file.

Listing 1-38. The Debian Login /etc/pam.d Configuration File

password required pam_cracklib.so retry=3 minlen=6 difok=3
password required pam_unix.so use_authtok nullok md5

Here I am first running the pam_cracklib.so module to check the strength of a new or
changed password and then the pam_unix.so module. Both are using a control flag of required,
which means both modules need to succeed for the password to be successfully changed and
both modules would be tested. If you changed the pam_cracklib.so control flag to requisite
and the pam_cracklib.so module failed, then the password change process would immediately
fail and the pam_unix.so module would not be checked at all.

Additionally, if you specified a module as sufficient that was not adequately secure, then if
this module check is successful the entire module stack is considered successful and you have
authenticated something without adequate authentication. For example:

auth sufficient pam notsosecure.so
auth required pam_secure.so

In this case, if the check of pamnotsosecure. so was successful, then the authentication
process would be halted and authentication would be successful. If this module does not in
reality provide a sufficient security check for authentication, then this is a serious security
risk. Thus, it is important to ensure you order your modules and control flags in your PAM
configuration files.

Additionally on Red Hat systems, you can use a special module called pam_stack. so. This
module allows you to include another list of modules contained in an external file into a serv-
ice configuration file. For example, Red Hat systems use a special service called system-auth to

CHAPTER 1 "/ HARDENING THE BASICS

perform the default authentication for most services. In Listing 1-39 you will see the Red Hat
service configuration file for the passwd function.

Listing 1-39. The Red Hat passwd Function Service Configuration File

auth required /1ib/security/pam_stack.so service=system-auth
account Tequired /1ib/security/pam_stack.so service=system-auth
password required /1ib/security/pam_warn.so

password required /1ib/security/pam_stack.so service=system-auth

Instead of defining the particular PAM modules to be used for authentication, the service
configuration file defines the pam_stack.so module with an option of service=system-auth.
This tells PAM to use the service configuration file called system-auth and the modules defined
in it for the authentication process. This is especially useful for maintaining a single, central-
ized authentication method that you refer to in a number of services. If you want to change the
authentication process, you have to change it in only one place—not in all the service configu-
ration files.

Finally, you should check the contents of all your PAM module stacks and configuration
to ensure you fully understand the sequence in which authentication occurs. Additionally, you
should check for the presence of the pam_rhosts_auth.so module. This module is designed to
allow access using .rhosts files, which are used by the so-called r-tools, rlogin, rsh, and so on.
These tools and this authentication model are not secure, and I strongly recommend you remove
all references to this module from your PAM configuration. I will talk about the r-tools and
their security weaknesses further in Chapter 3.

The PAM “Other” Service

One of the advantages of implementing PAM on your system is that it comes with a catchall

authentication service that handles the authentication for any PAM-aware service that does

not have a specific service configuration file. The PAM configuration for this is located in the
/etc/pam.d/other file, and in Listing 1-40 you can see the default Red Hat other file.

Listing 1-40. Default Red Hat /etc/pam.d/other File

#%PAM-1-0

auth required /1ib/security/pam deny.so
account required /1ib/security/pam deny.so
password required /1ib/security/pam deny.so
session required /1ib/security/pam deny.so

Listing 1-40 shows a very strong other file. Each of the possible interface types is repre-
sented here with a control flag of required, which means each authentication request must
succeed for the service to authenticate and that all interface types will be checked. The speci-
fied module, pam_deny.so, does exactly what the name suggests and denies any request made
to it. So this is a good configuration for security purposes because the authentication in List-
ing 1-40 will never succeed, thus stopping any PAM-aware service from being inadvertently
authenticated.

This configuration does pose a risk, though, if you or someone else accidentally deletes
one of the service configuration files from the /etc/pam.d directory, for example, the login file.

49

50

CHAPTER 1 " HARDENING THE BASICS

Then the login command will default to using the other configuration and deny all logins to
the system. The other risk is that when the pam_unix.so module denies a request, it does not
log any record of that denial. This can sometimes make it hard to both spot any intrusion
attempts or to determine for diagnostic purposes where an authentication attempt is failing.
Listing 1-41 shows a way around this by using the additional PAM module, pam_wazrn.so.

Listing 1-41. Updated Red Hat /etc/pam.d/other File

#%PAM-1-0

auth required /1ib/security/pam warn.so
auth required /1ib/security/pam_deny.so
account required /1ib/security/pam warn.so
account required /1ib/security/pam_deny.so
password required /1ib/security/pam warn.so
password required /1ib/security/pam_deny.so
session required /1ib/security/pam_warn.so
session required /1lib/security/pam_deny.so

The pam_warn.so module will log a warning message to syslog every time an authentica-
tion request is made using the syslog facility of auth and a log level of warning.

Tip On Red Hat system this usually logs to the /var/log/secure file with a program ID of PAM-warn
if you want to use your log filtering tools to highlight these messages as | will describe in Chapter 5.

Irecommend reviewing the current contents of your /etc/pam.d/other file to see if it meets
your security requirements. I strongly recommend that the default PAM authentication response
be to deny any request from a service that is not explicitly configured with its own PAM service
configuration file.

Restricting su Using PAM

The su command allows you to log into a new shell as another user.

puppy$ su jane
Password:

This would log into a new shell as the user jane with the privileges of that user (if you
entered that user’s correct password). If you use the su command without specifying a user,
then the system will attempt to log in as the root user. For example, you can also use the su
command to log in as the root user if you know the root password.

puppy$ su
Password:

Tip You can find more about su using man su.

CHAPTER 1 "/ HARDENING THE BASICS

As you can imagine, this is a powerful tool but also a dangerous one to which you should
restrict access. PAM offers a way to easily secure access to this tool to only those users you want.
To configure for access restriction, review the contents of the su PAM service configuration
files inside your /etc/pam.d directory. On both Debian and Red Hat systems, you should find
the following line:

auth required /1ib/security/pam_wheel.so use uid

Uncomment this line, so PAM will allow su to be used only by members of the wheel group.

Note The wheel group may exist on your system already, or you may need to create it and add the
required members to it.

The use_uid option tells PAM to check the UID of the current user trying to use su to log in.
You can also specify the group= option to indicate that a group other than wheel is allowed to
use su to log in. See the following line:

auth required /1ib/security/pam wheel.so use_uid group=allowsu

Now only those users belonging to the allowsu group will be able to use the su command.

Tip Some other useful configuration models for su are documented in the /etc/pam.d/su service and
are worth examining. These may also give you ideas for some other uses of PAM.

Setting Limits with PAM

The PAM module pam_limits.so is designed to prevent internal- and some external-style Denial
of Service attacks. An internal Denial of Service attack can occur when internal users either delib-
erately or inadvertently cause a system or application outage by consuming too many resources
such as memory, disk space, or CPU. External Denial of Service attacks occur in the same manner
but originate from outside the host.

To enable limits on functionality, you need to add or enable the pam_limits.so module in
the services for which you require limiting to operate. On a Debian system, for example, an entry
exists for the pam_limits.so functionality in the login service configuration file in /etc/pam.d.

session required pam_limits.so

By default on Debian, this entry is commented out. Uncomment it to enable limits. As
you can see, the pam_limits.so module is used for the session interface type.

Note On the Red Hat system the default system-auth service contains an entry for the pam_limits.so
module.

51

52

CHAPTER 1 " HARDENING THE BASICS

You can also add it to other services, for example, adding it to the imap service to provide
limits to users accessing IMAP resources.

The pam_limits.so module is controlled by a configuration file called 1imits.conf that is
located in /etc/security. Listing 1-42 shows an example of this file.

Listing 1-42. Sample limits.conf File

domain type item value
* soft core 0
* hard core 0

Here the limits. conf file is controlling the size of any core dumps generated. This is one
of the most common uses of the pam_limits.so module. Let’s examine the structure of the file.
It is broken into four elements: domain, type, item, and value.

The domain is the scope of the limit and who it effects, for example, a particular user, group
of users, or a wildcard entry (*), which indicates all users. The type is either soft or hard. A soft
limit is a warning point and can be exceeded but will trigger a warning syslog entry. A hard limit
is the maximum possible limit. A resource cannot exceed this hard limit. Thus, you should set
your soft limits as a smaller size or number than your hard limits.

The type of limit describes what is being limited, and the value is the size of that limit.
Table 1-12 lists all the possible types of resources you can limit with the pam limits.so module.

Table 1-12. Limits You Can Impose

Limit Description Value
core Limits the core file size Kilobytes
data Limits the maximum data size Kilobytes
fsize Limits the maximum file size Kilobytes
memlock Defines the maximum locked-in-memory address space Kilobytes
nofile Limits the number of open files Number
1ss Limits the maximum resident set size Kilobytes
stack Limits the maximum stack size Kilobytes
cpu Limits the maximum CPU time Minutes
nproc Limits the maximum number of processes Number
as Specifies the address space limit Number
maxlogins Limits the maximum number of logins for a user Number
priority Limits the priority with which to run a user’s process Number

I also show the type of value you can use for a resource limit. For example, the maxlogins
limit type is expressed as number that indicates the maximum number of times a user or users
can simultaneously log in. cpu is expressed as the maximum number of minutes of CPU time
that a user can consume.

Where the value is set to 0, this indicates the specified user or users (or all users) are unable
to use any of that resource. For example, setting the core limit to 0 will result in no core dump
files being created.

CHAPTER 1 "/ HARDENING THE BASICS

bob soft core 0
bob hard core 0

So, in the previous two lines, the user bob is prevented from creating any core dump files.

Tip Even if you do not use any other type of limit, you should set the core dump size limit to 0 to prevent the
creation of core dump files. Core dump files often contain valuable or dangerous information, and unless you
have a requirement for them (for example developers need them), then | recommend you limit their creation.

You can also restrict this to a particular group by prefixing the group name with an at (@)
character

@sales soft core 0
@sales hard core 0

or to everyone on the system using the * wildcard, as you saw in Listing 1-42.

Note You can also control the limits being set with the ulimit command.

Restricting Users to Specific Login Times with PAM

Most distributions come with the pam_time.so module. This allows you to control when and
where from users can log onto the system. It is defined as an account interface type. You can
add it to the login service in the so file like this:

account required /lib/security/pam time.so

If you have more than one module stacked, then you should add the pam_time.so module
before all the other account interface type modules. In the previous line, I added it as a required
module, which means the check must be successful for authentication to succeed.

The pam_time.so module is configured using the file time.conf, which is stored in the
/etc/security directory. Listing 1-43 shows a line from this file.

Listing 1-43. Thetime.conf File

login;*;bob|jane; !A12100-0600

I will break this rather confusing piece of configuration down and explain its component
elements. Each element is separated by a semicolon. Each of these elements is a logic list, and
you can use logical operators and tokens to control it further.

service;terminal;users;times

So the first element is service. In Listing 1-43 you can see that login is the service. If you
specify a line in this file that refers to a service, you must also define the pam_time.so module

53

54

CHAPTER 1 " HARDENING THE BASICS

in that service’s configuration file in /etc/pam.d. You can add the pam_time.so module to
almost any one of the services defined in the /etc/pam.d directory.

The next element is the terminal to which this time restriction applies. Here I have speci-
fied the wildcard operator * for all terminals. You can use a wildcard in any element except
service but only once per element. You could also specify a list of terminals separated by a
|, tty1|tty2|ttys3, or a type of terminal suffixed with a * wildcard such as ttyp*.

In the next element I specify which users this time restriction applies to, and I have used
alogical operator here. The first user is bob. I have then used the logical or separator, |, to spec-
ify a second user, jane. In this example this means the time restrictions apply to either bob or
jane. You could also use the logical operator & here to represent and. For example, time restric-
tions apply to both bob and jane as in bob&jane.

The last element is the time restriction itself. The time here is prefixed with !. This means
“anything but.” The next two letters Al is short for “all,” which indicates all days of the week.
The next eight digits are start and finish times in 24-hour time format separated by a hyphen
(-). In Listing 1-43, you saw that the start and finish times are 21:00 (or 9 p.m.) and 06:00 (or
6 a.m.), respectively. If the finish time is lower than the start time (as is the case in Listing 1-43),
then the finish time is deemed to be during the next day. So, putting this all together means
that bob and jane can log onto any terminal at any time except between 9 p.m. and 6 a.m.

Let’s look at another example.

login;ttyp*; !root; IWd0000-2400

Here I block logins from all pseudo-terminals on the weekends for all users except root.
In the time element I have used the Wd entry, which indicates weekends. You can also use Wk,
which stands for weekdays, or the entries for the individual days of the week, which are Mo, Tu,
We, Th, Fr, Sa, Su.

Logging an Alert on User Login with PAM

The next PAM module is called pam_login_alert.so and alerts via e-mail or syslog when
a particular user (or users) logs onto the system. You can download the module at http://
www . kernel.org/pub/linux/1ibs/pam/pre/modules/pam login alert-0.10.tar.gz.

Tip A variety of other PAM modules are also available at this site that you may find useful.

Create a temporary directory, and unpack the tar file into it. The package contains a num-
ber of files, including the source for the module. To create the module, you need to make and
install it.

puppy$ make
puppy# make install

This will results in a file called pam_login alert.so, which is installed by default to the
/1ib/security directory. Also, two configuration files are created and copied to /etc. They are
login alert.conf and login.alert.users.

CHAPTER 1 "/ HARDENING THE BASICS

Let’s have a look at these configuration files first. Listing 1-44 shows the login_alert.conf
file.

Listing 1-44. Thelogin_alert.conf File

PAM_login_alert configuration file
Specify e-mail support

mail on

Specify the user to e-mail the alert
email admin@puppy.yourdomain.com

Specify syslog support

syslog off

Specify the syslog facility

syslog facility LOG_AUTHPRIV

Specify the syslog priority

syslog priority LOG_INFO

Specify the user list

user list /etc/login alert.users

Its contents are fairly self-explanatory. You can send an alert either by e-mail or by syslog
(with e-mail being the default). The e-mail is sent by default to root. You specify the list of users
to alert on in the /etc/login alert.users file. Let's add some users to this file.

puppy# echo 'bob' >> /etc/login_alert.users
puppy# echo 'jane' >> /etc/login_alert.users

I have added the users bob and jane to the file. Now I need to define the new module to
the PAM configuration. As I am sending an alert on the login of a user, I need to add the mod-
ule to the login service in the /etc/pam.d directory. Currently on my Red Hat system, the login
service looks like this:

auth required pam_securetty.so

auth required pam_stack.so service=system-auth
auth required pam_nologin.so

account required pam_stack.so service=system-auth
password required pam_stack.so service=system-auth
session required pam_stack.so service=system-auth
sess