Linux Network Administrators Guide

Table of Contents
Preface

Purpose and Audience for This Book

Sources of Information
Documentation Available via FTP
Documentation Available via WWW
Documentation Available Commercially
Linux Journal and Linux Magazine
Linux Usenet Newsgroups

Linux Mailing Lists

Online Linux Support

Linux User Groups

Obtaining Linux
File System Standards
Standard Linux Base
About This Book
The Official Printed Version
Overview
Conventions Used in This Book
Submitting Changes
Acknowledgments
The Hall of Fame
1. Introduction to Networking
History
TCP/IP Networks
Introduction to TCP/IP Networks
Ethernets
Other Types of Hardware
The Internet Protocol
|P Over Serial Lines

The Transmission Control Protocol

The User Datagram Protocol

More on Ports
The Socket Library
UUCP Networks
Linux Networking
Different Streaks of Development
Where to Get the Code
Maintaining Y our System
System Security
2. Issues of TCP/IP Networking
Networking Interfaces
|P Addresses
Address Resolution
| P Routing
| P Networks
Subnetworks
Gateways
The Routing Table
Metric Values
The Internet Control M essage Protocol

Resolving Host Names

3. Configuringthe NetworkingHardware

Kernel Configuration
Kernel Optionsin Linux 2.0 and Higher
Kernel Networking Options in Linux 2.0.0 and Higher

A Tour of Linux Network Devices
Ethernet Installation
Ethernet Autoprobing
The PLIP Driver
The PPP and SLIP Drivers
Other Network Types
4. Configuring the Serial Hardware

Communications Software for Modem Links

Introduction to Serial Devices

Accessing Serial Devices

The Serial Device Specia Files
Serial Hardware
Using the Configuration Utilities

The setserial Command

The stty Command

Serial Devices and the login: Prompt

Configuring the mgetty Daemon
5. Configuring TCP/IP Networking
M ounting the /proc Filesystem

Installing the Binaries

Setting the Hosthame

Assigning IP Addresses

Creating Subnets

Writing hosts and networks Files

Interface Confiquration for |P

The Loopback Interface

Ethernet Interfaces

Routing Through a Gateway
Configuring a Gateway
The PLIP Interface
The SLIP and PPP Interfaces
The Dummy Interface
IP Alias
All About ifconfig
The netstat Command
Displaying the Routing Table

Displaying I nterface Statistics

Displaying Connections
Checking the ARP Tables
6. Name Service and Resolver Configuration

The Resolver Library
The host.conf File
The nsswitch.conf File

Configuring Name Server L ookups Using resolv.conf

Resolver Robustness
How DNS Works

Name L ookups with DNS

Types of Name Servers

The DNS Database

Reverse L ookups

Running named
The named.boot File
The BIND 8 host.conf File
The DNS Database Files
Caching-only named Configuration
Writing the Master Files
Verifying the Name Server Setup
Other Useful Tools

7. Seria LinelP

General Reguirements

SLIP Operation

Dealing with Private |P Networks

Using dip
A Sample Script
A dip Reference

Running in Server Mode
8. The Point-to-Point Protocol

PPP on Linux

Running pppd

Using Options Files
Using chat to Automate Dialing
| P Configuration Options

Choosing | P Addresses

Routing Through a PPP Link
Link Control Options

General Security Considerations
Authentication with PPP
PAP Versus CHAP
The CHAP Secrets File
The PAP Secrets File
Debugging Y our PPP Setup
More Advanced PPP Configurations
PPP Server
Demand Dialing
Persistent Dialing
9. TCP/IP Firewall
Methods of Attack
What IsaFirewall?
What Is P Filtering?
Setting Up Linux for Firewalling
Kernel Configured with IP Firewall

The ipfwadm Utility
The ipchains Utility
The iptables Utility
Three Ways We Can Do Filtering
Origina IP Firewall (2.0 Kernels)
Using ipfwadm

A More Complex Example

Summary of ipfwadm Arguments
IP Firewall Chains (2.2 Kernels)
Using ipchains

ipchains Command Syntax

Our Naive Example Revisited

Listing Our Rules with ipchains
Making Good Use of Chains
Netfilter and |P Tables (2.4 Kernels)

Backward Compatability with ipfwadmand ipchains
Using iptables
Our Naive Example Revisited, Yet Again

TOS Bit Manipulation
Setting the TOS Bits Using ipfwadm or ipchains
Setting the TOS Bits Using iptables

Testing a Firewall Configuration

A Sample Firewall Configuration

10. IP Accounting

Configuring the Kerndl for IP Accounting

Configuring | P Accounting

Accounting by Address
Accounting by Service Port
Accounting of ICMP Datagrams

Accounting by Protocol

Using | P Accounting Results

Listing Accounting Data with ipfwadm

Listing Accounting Data with ipchains
Listing Accounting Data with iptables
Resetting the Counters
Flushing the Rul eset
Passive Collection of Accounting Data
11. IP Masguerade and Network Address Translation
Side Effects and Fringe Benefits
Configuring the Kernel for IP Masguerade
Configuring IP Masquerade

Setting Timing Parameters for |P Masquerade

Handling Name Server L ookups

More About Network Address Translation
12. ImportantNetwork Features

The inetd Super Server

The tcpd Access Control Facility

The Services and Protocols Files

Remote Procedure Call

Configuring Remote L oginand Execution
Disabling the r; Commands
Installing and Configuring ssh

13. The Network Information System

Getting Acquainted with NIS

NIS Versus NIS+

The Client Side of NIS

Running an NIS Server

NIS Server Security

Setting Up an NIS Client with GNU libc

Choosing the Right Maps

Using the passwd and group Maps
Using NIS with Shadow Support
14. The NetworkFile System
Preparing NFS
Mounting an NFS Volume
The NFS Daemons
The exports File
Kernel-Based NFSv2 Server Support
Kernel-Based NFSv3 Server Support
15. IPX and the NCP Filesystem
Xerox, Novell, and History
|PX and Linux
Caldera Support
More on NDS Support
Configuring the Kernel for IPXand NCPFS
Configuring IPX Interfaces

Network Devices Supporting | PX

IPX Interface Configuration Tools

Theipx configure Command

Theipx interface Command

Configuring an | PX Router

Static IPX Routing Using the ipx route Command
Internal 1PX Networks and Routing
M ounting a Remote NetWare Volume

A Simple ncpmount Example

The ncpmount Command in Detail

Hiding Y our NetWare Login Password

A More Complex ncpmount Example
Exploring Some of the Other IPX Tools

Server List

Send Messages to NetWare Users

Browsing and Manipulating Bindery Data
Printing to a NetWare Print Queue

Using nprint with the Line Printer Daemon

Managing Print Queues

NetWare Server Emulation

16. ManagingTaylor UUCP

UUCP Transfers and Remote Execution
The Inner Workings of uucico
uucico Command-line Options

UUCP Configuration Files
A Gentle Introduction to Taylor UUCP
What UUCP Needs to Know
Site Naming
Taylor Configuration Files
General Configuration Options Using the config File
How to Tell UUCP About Other Systems Using the sys File
|dentifying Available Devices Through the port File
How to Dial a Number Using the dial File
UUCP Over TCP
Using a Direct Connection

Controlling Access to UUCP Features
Command Execution

File Transfers

Forwarding

Setting Up Your System for Dialing In
Providing UUCP Accounts
Protecting Y ourself Against Swindlers
Be Paranoid: Call Sequence Checks
Anonymous UUCP

UUCP Low-L evel Protocols
Protocol Overview

Tuning the Transmission Protocol
Selecting Specific Protocols

Troubleshooting
uucico Keeps Saying Wrong Time to Call
uucico Complains That the Site Is Already L ocked
Y ou Can Connect to the Remote Site, but the Chat Script Fails
Y our Modem Does Not Dial
Your Modem Triesto Dial but Doesn't Get Out
L ogin Succeeds, but the Handshake Fails

Log Files and Debugging

17. Electronic Malil

What |saMail Message?

How Is Mail Delivered?

Email Addresses
RFC-822
Obsolete Mail Formats
Mixing Different Mail Formats

How Does Mail Routing Work?
Mail Routing on the Internet
Mail Routing in the UUCP World
Mixing UUCP and RFC-822

Configuring elm
Global elm Options
National Character Sets

18. Sendmail

Introduction to sendmail

Installing sendmail

Overview of Configuration Files

The sendmail.cf and sendmail.mc Files

Two Example sendmail.mc Files

Typically Used sendmail.mc Parameters

Generating the sendmail .cf File

Interpreting and Writing Rewrite Rules

sendmail.cf R and S Commands
Some Useful Macro Definitions
The Lefthand Side
The Righthand Side
A Simple Rule Pattern Example
Ruleset Semantics

Configuring sendmail Options

Some Useful sendmail Configurations
Trusting Usersto Set the From: Field
Managing Mail Aliases
Using a Smart Host
Managing Unwanted or Unsolicited Mail (Spam)
Configuring Virtual Email Hosting

Testing Y our Configuration

Running sendmail

Tipsand Tricks
Managing the Mail Spool
Forcing a Remote Host to Process its Mail Queue
Analyzing Mail Statistics

19. Getting EximUp and Running

Running Exim

If Your Mail Doesn't Get Through

Compiling Exim

Mail Delivery Modes

Miscellaneous config Options

Message Routing and Delivery
Routing Messages
Delivering Messages to Local Addresses
Alias Files
Mailing Lists
Protecting Against Mail Spam
UUCP Setup
20. Nethews
Usenet History
What Is Usenet, Anyway?
How Does Usenet Handle News?
21. C News
Delivering News
Installation
ThesysFile
The active File
Article Batching
Expiring News

Miscellaneous Files
Control Messages
The cancel Message

newqgroup and rmagroup

The checkgroups M essage

sendsys, version, and senduuname

C Newsin an NFS Environment

Maintenance Tools and Tasks
22. NNTP and thenntpd Daemon
The NNTP Protocol
Connecting to the News Server

Pushing a News Article onto a Server
Changing to NNRP Reader Mode
Listing Available Groups

Listing Active Groups

Posting an Article
Listing New Articles

Selecting a Group on Which to Operate

Listing Articlesin a Group
Retrieving an Article Header Only
Retrieving an Article Body Only

Reading an Article from a Group
Installing the NNTP Server
Restricting NNTP Access
NNTP Authorization
nntpd Interaction with C News

23. Internet News
Some INN Internals
Newsreaders and INN
Installing INN
Configuring INN: the Basic Setup
INN Configuration Files
Global Parameters
Configuring Newsgroups

Configuring Newsfeeds

Controlling Newsreader Access

Expiring News Articles

Handling Control Messages
Running INN
Managing INN: The ctlinnd Command
Add aNew Group
Change a Group

Remove a Group

Renumber a Group
Allow/Disallow Newsreaders
Reject Newsfeed Connections

Allow Newsfeed Connections
Disable News Server

Restart News Server
Display Status of a Newsfeed
Drop a Newsfeed
Begin a Newsfeed
Cancel an Article
24. Newsreader Configuration
tin Configuration

trn Configuration

nn Configuration
A. Example Network:The Virtual Brewery
Connecting the Virtual Subsidiary Network
B. Useful Cable Configurations
A PLIP Pardlel Cable
A Serial NULL Modem Cable
C. Linux Network Administrator's Guide, Second Edition Copyright Information
0. Preamble
1. Applicability and Definitions
2. Verbatim Copying
3. Copying in Quantity
4. Modifications
5. Combining Documents

6. Collections of Documents

7. Aggregation with Independent Works
8. Trandation
9. Termination

10. Future Revisions of this License
D. SAGE: The SystemAdministrators Guild

Next
Preface

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Next

Preface

Table of Contents
Purpose and Audience for This Book

Sources of Information

File System Standards

Standard Linux Base

About This Book

The Officia Printed Version
Overview

Conventions Used in This Book
Submitting Changes

Acknowledgments

The Internet is now a household term in many countries. With otherwise serious people beginning to
joyride along the Information Superhighway, computer networking seems to be moving toward the status
of TV sets and microwave ovens. The Internet has unusually high media coverage, and social science
majors are descending on Usenet newsgroups, online virtual reality environments, and the Web to
conduct research on the new Internet Culture.

Of course, networking has been around for a long time. Connecting computers to form local area
networks has been common practice, even at small installations, and so have long-haul links using
transmission lines provided by telecommunications companies. A rapidly growing conglomerate of
world-wide networks has, however, made joining the global village a perfectly reasonable option for
even small non-profit organizations of private computer users. Setting up an Internet host with mail and
news capabilities offering dialup and ISDN access has become affordable, and the advent of DSL
(Digital Subscriber Line) and Cable Modem technologies will doubtlessly continue this trend.

Talking about computer networks often means talking about Unix. Of course, Unix is not the only
operating system with network capabilities, nor will it remain afrontrunner forever, but it has been in the
networking business for along time, and will surely continue to be for some time to come.

What makes Unix particularly interesting to private usersis that there has been much activity to bring
free Unix-like operating systems to the PC, such as 386BSD, FreeBSD, and Linux.

Linux isafredly distributable Unix clone for personal computers. It currently runs on avariety of
machines that includes the Intel family of processors, but also Motorola 680x0 machines, such as the
Commodore Amiga and Apple Macintosh; Sun SPARC and Ultra-SPARC machines, Compag Alphas;

MIPS; PowerPCs, such as the new generation of Apple Macintosh; and StrongARM, like the rebel.com
Netwinder and 3Com Palm machines. Linux has been ported to some relatively obscure platforms, like
the Fujitsu AP-1000 and the IBM System 3/90. Ports to other interesting architectures are currently in
progress in developers' labs, and the quest to move Linux into the embedded controller space promises
success.

Linux was developed by alarge team of volunteers across the Internet. The project was started in 1990
by Linus Torvalds, a Finnish college student, as an operating systems course project. Since that time,
Linux has snowballed into a full-featured Unix clone capable of running applications as diverse as
simulation and modeling programs, word processors, speech recognition systems, World Wide Web
browsers, and a horde of other software, including a variety of excellent games. A great deal of hardware
Is supported, and Linux contains a complete implementation of TCP/IP networking, including SLIP,
PPP, firewalls, afull IPX implementation, and many features and some protocols not found in any other
operating system. Linux is powerful, fast, and free, and its popularity in the world beyond the Internet is

growing rapidly.

The Linux operating system itself is covered by the GNU General Public License, the same copyright
license used by software devel oped by the Free Software Foundation. This license allows anyone to
redistribute or modify the software (free of charge or for a profit) aslong as all modifications and
distributions are freely distributable aswell. The term free software refers to freedom of application, not
freedom of cost.

Purpose and Audience for This Book

This book was written to provide a single reference for network administration in aLinux environment.
Beginners and experienced users alike should find the information they need to cover nearly all

important administration activities required to manage a Linux network configuration. The possible
range of topics to cover is nearly limitless, so of course it has been impossible to include everything there
Isto say on al subjects. We'vetried to cover the most important and common ones. We've found that
beginnersto Linux networking, even those with no prior exposure to Unix-like operating systems, have
found this book good enough to help them successfully get their Linux network configurations up and
running and get them ready to learn more.

There are many books and other sources of information from which you can learn any of the topics
covered in this book (with the possible exception of some of the truly Linux-specific features, such asthe
new Linux firewall interface, which is not well documented elsewhere) in greater depth. We've provided
a bibliography for you to use when you are ready to explore more.

Prev Home Next
Linux Network Administrators Sources of Information
Guide

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Preface Next

Sources of Information

If you are new to the world of Linux, there are a number of resources to explore and become familiar
with. Having access to the Internet is helpful, but not essential.

Linux Documentation Project guides

The Linux Documentation Project is a group of volunteers who have worked to produce books
(guides), HOWTO documents, and manual pages on topics ranging from installation to kernel
programming. The LDP works include:

Linux Installation and Getting Sarted

By Matt Welsh, et al. Thisbook describes how to obtain, install, and use Linux. It includes
an introductory Unix tutorial and information on systems administration, the X Window
System, and networking.

Linux System Administrators Guide

By Lars Wirzenius and Joanna Oja. This book is aguide to general Linux system
administration and covers topics such as creating and configuring users, performing system
backups, configuration of major software packages, and installing and upgrading software.

Linux System Adminstration Made Easy

By Steve Frampton. This book describes day-to-day administration and maintenance issues
of relevance to Linux users.

Linux Programmers Guide

By B. Scott Burkett, Sven Goldt, John D. Harper, Sven van der Meer, and Matt Welsh. This
book covers topics of interest to people who wish to devel op application software for Linux.

The Linux Kernel

By David A. Rusling. This book provides an introduction to the Linux Kernel, how it is
constructed, and how it works. Take atour of your kernel.

The Linux Kernel Module Programming Guide
By Ori Pomerantz. This guide explains how to write Linux kernel modules.

More manuals are in development. For more information about the LDP you should consult their
World Wide Web server at http://www.linuxdoc.org/ or one of its many mirrors.

HOWTO documents

The Linux HOWTQOs are a comprehensive series of papers detailing various aspects of the system
such as installation and configuration of the X Window System software, or how to write in

assembly language programming under Linux. These are generally located in the HOM O
subdirectory of the FTP sites listed later, or they are available on the World Wide Web at one of
the many Linux Documentation Project mirror sites. See the Bibliography at the end of this book,
or the file HOM O- | NDEX for alist of what's available,

Y ou might want to obtain the Installation HOWTO, which describes how to install Linux on your
system; the Hardware Compatibility HOWTO, which contains alist of hardware known to work
with Linux; and the Distribution HOWTO, which lists software vendors selling Linux on diskette
and CD-ROM.

The bibliography of this book includes references to the HOWTO documents that are related to
Linux networking.

Linux Frequently Asked Questions

The Linux Frequently Asked Questions with Answers (FAQ) contains a wide assortment of
guestions and answers about the system. It is a must-read for all newcomers.

Documentation Available via FTP

If you have access to anonymous FTP, you can obtain all Linux documentation listed above from various
sites, including metalab.unc.edu:/pub/Linux/docs and tsx-11.mit.edu:/pub/linux/docs.

These sites are mirrored by a number of sites around the world.

Documentation Available via WWW

There are many Linux-based WWW sites available. The home site for the Linux Documentation Project
can be accessed at http://www.linuxdoc.org/.

The Open Source Writers Guild (OSWG) is a project that has a scope that extends beyond Linux. The
OSWG, like this book, is committed to advocating and facilitating the production of OpenSource
documentation. The OSWG home siteis at http://www.oswg.org:8080/oswg.

Both of these sites contain hypertext (and other) versions of many Linux related documents.

Documentation Available Commercially

A number of publishing companies and software vendors publish the works of the Linux Documentation
Project. Two such vendors are:

Specialized Systems Consultants, Inc. (SSC)
http://www.ssc.com/

P.O. Box 55549 Seattle, WA 98155-0549
1-206-782-7733

1-206-782-7191 (FAX)

sales@ssc.com

and:

Linux Systems Labs
http://www.lsl.com/

18300 TaraDrive

Clinton Township, M1 48036
1-810-987-8807
1-810-987-3562 (FAX)
sales@lsl.com

Both companies sell compendiums of Linux HOWTO documents and other Linux documentation in
printed and bound form.

O'Reilly & Associates publishes a series of Linux books. Thisoneisawork of the Linux Documentation
Project, but most have been independently authored. Their range includes:

Running Linux

Aninstallation and user guide to the system describing how to get the most out of personal
computing with Linux.

Learning Debian GNU/Linux, Learning Red Hat Linux

More basic than Running Linux, these books contain popular distributions on CD-ROM and offer
robust directions for setting them up and using them.

Linux in a Nutshell

Another in the successful "in aNutshell” series, this book focuses on providing a broad reference
text for Linux.

Linux Journal and Linux Magazine

Linux Journal and Linux Magazine are monthly magazines for the Linux community, written and
published by a number of Linux activists. They contain articles ranging from novice questions and
answers to kernel programming internals. Even if you have Usenet access, these magazines are a good
way to stay in touch with the Linux community.

Linux Journal isthe oldest magazine and is published by S.S.C. Incorporated, for which details were
listed previously. You can also find the magazine on the World Wide Web at
http://www.linuxjournal .com/.

Linux Magazine is a newer, independent publication. The home web site for the magazineis
http://www.linuxmagazine.con.

Linux Usenet Newsgroups

If you have access to Usenet news, the following Linux-related newsgroups are available:
comp.os.linux.announce

A moderated newsgroup containing announcements of new software, distributions, bug reports,
and goings-on in the Linux community. All Linux users should read this group. Submissions may
be mailed to linux-announce@news.ornl.gov.

comp.os.linux.help

General questions and answers about installing or using Linux.
comp.os.linux.admin

Discussions relating to systems administration under Linux.
comp.os.linux.networking

Discussions relating to networking with Linux.
comp.os.linux.development

Discussions about developing the Linux kernel and system itself.
comp.os.linux.misc

A catch-all newsgroup for miscellaneous discussions that don't fall under the previous categories.

There are also several newsgroups devoted to Linux in languages other than English, such as
fr.comp.os.linux in French and de.comp.os.linux in German.

Linux Mailing Lists

Thereisalarge number of specialist Linux mailing lists on which you will find many people willing to
help with questions you might have.

The best-known of these are the lists hosted by Rutgers University. Y ou may subscribe to these lists by
sending an email message formatted as follows:

To: maj ordono@ger.rutgers. edu
Subj ect: anything at all
Body:

subscri be |1 stnane

Some of the available listsrelated to Linux networking are:
linux-net

Discussion relating to Linux networking
linux-ppp

Discussion relating to the Linux PPP implementation
linux-kernel

Discussion relating to Linux kernel development

Online Linux Support

There are many ways of obtaining help online, where volunteers from around the world offer expertise
and services to assist users with questions and problems.

The OpenProjects IRC Network isan IRC network devoted entirely to Open Projects Open Source and
Open Hardware alike. Some of its channels are designed to provide online Linux support services. IRC
stands for Internet Relay Chat, and is a network service that allows you to talk interactively on the
Internet to other users. IRC networks support multiple channels on which groups of people talk.
Whatever you typein a channel is seen by al other users of that channel.

There are anumber of active channels on the OpenProjects IRC network where you will find users 24
hours a day, 7 days aweek who are willing and able to help you solve any Linux problems you may
have, or just chat. Y ou can use this service by installing an IRC client like irc-11, connecting to
servername irc.openprojects.org:6667, and joining the #l i npeopl e channel.

Linux User Groups

Many Linux User Groups around the world offer direct support to users. Many Linux User Groups
engage in activities such asinstallation days, talks and seminars, demonstration nights, and other
completely social events. Linux User Groups are a great way of meeting other Linux usersin your area.
There are anumber of published lists of Linux User Groups. Some of the better-known ones are:

Groups of Linux Users Everywhere

http://www.ssc.com/glue/groups/
LUG list project

http://www.nllgg.nl/lugww/
LUG registry

http://www.linux.org/users/

Obtaining Linux

There is no single distribution of the Linux software; instead, there are many distributions, such as
Debian, RedHat, Caldera, Corel, SUSE, and Slackware. Each distribution contains everything you need to
run a complete Linux system: the kernel, basic utilities, libraries, support files, and applications software.

Linux distributions may be obtained viaa number of online sources, such asthe Internet. Each of the
major distributions has its own FTP and web site. Some of these sites are:

Caldera

http://www.cal dera.com/ftp://ftp.caldera.com/
Cord

http://www.corel .com/ftp://ftp.corel.com/
Debian

http://www.debian.org/ftp://ftp.debian.org/
RedHat

http://www.redhat.com/ftp://ftp.redhat.com/
Slackware

http://www.slackware.com/ftp://ftp.d ackware.com/
SuSE

http://www.suse.com/ftp://ftp.suse.com/

Many of the popular general FTP archive sites also mirror various Linux distributions. The best-known
of these sites are:

metal ab.unc.edu:/pub/Linux/distributions/
ftp.funet.fi:/pub/Linux/mirrors/
tsx-11.mit.edu:/pub/linux/distributions/
mirror.aarnet.edu.au:/pub/linux/distributions/

Many of the modern distributions can be installed directly from the Internet. Thereisalot of software to
download for atypical installation, though, so you'd probably want to do this only if you have a
high-speed, permanent network connection, or if you just need to update an existing installation.[1]

Linux may be purchased on CD-ROM from an increasing number of software vendors. If your local
computer store doesn't have it, perhaps you should ask them to stock it! Most of the popular distributions
can be obtained on CD-ROM . Some vendors produce products containing multiple CD-ROMs, each of
which provides adifferent Linux distribution. Thisis an ideal way to try a number of different
distributions before you settle on your favorite one.

Notes
[1] & or you are extremely impatient and know that the 24 hours it might take to download the

software from the Internet is faster than the 72 hours it might take to wait for a CD-ROM to be
delivered!

Prev Home Next
Preface Up File System Standards

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where

user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Preface Next

File System Standards

In the past, one of the problems that afflicted Linux distributions, as well as the packages of software
running on Linux, was the lack of a single accepted filesystem layout. This resulted in incompatibilities
between different packages, and confronted users and administrators with the task of locating various
files and programs.

To improve this situation, in August 1993, several people formed the Linux File System Standard Group
(FSSTND). After six months of discussion, the group created a draft that presents a coherent file sytem
structure and defines the location of the most essential programs and configuration files.

This standard was supposed to have been implemented by most major Linux distributions and packages.
It isalittle unfortunate that, while most distributions have made some attempt to work toward the
FSSTND, thereisavery small number of distributions that has actually adopted it fully. Throughout this
book, we will assume that any files discussed reside in the location specified by the standard; alternative
locations will be mentioned only when thereis along tradition that conflicts with this specification.

The Linux FSSTND continued to develop, but was replaced by the Linux File Hierarchy Standard (FHS)
in 1997. The FHS addresses the multi-architecture issues that the FSSTND did not. The FHS can be
obtained from the Linux documentation directory of all major Linux FTP sites and their mirrors, or at its
home site at http://www.pathname.com/fhs/. Daniel Quinlan, the coordinator of the FHS group, can be
reached at quinlan@transmeta.com.

Prev Home Next
Sources of Information Up Standard Linux Base

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Preface Next

Standard Linux Base

The vast number of different Linux distributions, while providing lots of healthy choice for Linux users,
has created a problem for software devel opers particularly developers of non-free software.

Each distribution packages and supplies certain base libraries, configuration tools, system applications,
and configuration files. Unfortunately, differencesin their versions, names, and locations make it very
difficult to know what will exist on any distribution. This makes it hard to develop binary applications
that will work reliably on all Linux distribution bases.

To help overcome this problem, anew project sprang up called the Linux Standard Base. It aimsto
describe a standard base distribution that complying distributions will use. If a developer designs an
application to work against the standard base platform, the application will work, and be portable to, any
complying Linux distribution.

Y ou can find information on the status of the Linux Standard Base project at its home web site at
http://www.linuxbase.org/.

If you're concerned about interoperability, particularly of software from commercia vendors, you should
ensure that your Linux distribution is making an effort to participate in the standardization project.

Prev Home Next
File System Standards Up About This Book

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Preface Next

About This Book

When Olaf joined the Linux Documentation Project in 1992, he wrote two small chapters on UUCP and
smail, which he meant to contribute to the System Administrator's Guide. Development of TCP/IP
networking was just beginning, and when those small chapters started to grow, he wondered aloud
whether it would be nice to have a Networking Guide. Great! everyonesaid. Go for it! So he went for
it and wrote the first version of the Networking Guide, which was released in September 1993,

Olaf continued work on the Networking Guide and eventually produced a much enhanced version of the
guide. Vince Skahan contributed the original sendmail mail chapter, which was completely replaced in
this edition because of a new interface to the sendmail configuration.

The version of the guide that you are reading now is arevision and update prompted by O'Rellly &
Associates and undertaken by Terry Dawson.[1] Terry has been an amateur radio operator for over 20
years and has worked in the telecommunications industry for over 15 of those. He was co-author of the
origina NET-FAQ, and has since authored and maintained various networking-related HOWTO
documents. Terry has always been an enthusiastic supporter of the Network Administrators Guide
project, and added afew new chapters to this version describing features of Linux networking that have
been developed since the first edition, plus a bunch of changes to bring the rest of the book up to date.

The exim chapter was contributed by Philip Hazel,[2] who is alead developer and maintainer of the
package.

The book is organized roughly along the sequence of steps you have to take to configure your system for
networking. It starts by discussing basic concepts of networks, and TCP/I P-based networks in particular.
It then slowly works its way up from configuring TCP/IP at the device level to firewall, accounting, and
masguerade configuration, to the setup of common applications such as rlogin and friends, the Network
File System, and the Network Information System. Thisis followed by a chapter on how to set up your
machine as a UUCP node. Most of the remaining sections is dedicated to two major applications that run
on top of TCP/IP and UUCP: electronic mail and news. A special chapter has been devoted to the IPX
protocol and the NCP filesystem, because these are used in many corporate environments where Linux is
finding a home.

The emall part features an introduction to the more intimate parts of mail transport and routing, and the
myriad of addressing schemes you may be confronted with. It describes the configuration and
management of exim, amail transport agent ideal for use in most situations not requiring UUCP, and
sendmail, which is for people who have to do more complicated routing involving UUCP.

The news part gives you an overview of how Usenet news works. It covers INN and C News, the two
most widely used news transport software packages at the moment, and the use of NNTP to provide
newsreading access to alocal network. The book closes with a chapter on the care and feeding of the
most popular newsreaders on Linux.

Of course, abook can never exhaustively answer al questions you might have. So if you follow the
instructions in this book and something still does not work, please be patient. Some of your problems
may be due to mistakes on our part (see the section the section called Submitting Changes', later in this
Preface), but they also may be caused by changes in the networking software. Therefore, you should
check the listed information resources first. There's a good chance that you are not alone with your
problems, so afix or at least a proposed workaround is likely to be known. If you have the opportunity,
you should also try to get the latest kernel and network release from one of the Linux FTP sitesor aBBS
near you. Many problems are caused by software from different stages of development, which fail to
work together properly. After al, Linux isa work in progress.

Notes

[1] Terry Dawson can be reached at terry @linux.org.au.
[2] Philip Hazel can be reached at phl0@cus.cam.ac.uk.

Prev Home Next
Standard Linux Base Up The Officia Printed Version

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Preface Next

The Official Printed Version

In Autumn 1993, Andy Oram, who had been around the LDP mailing list from almost the very
beginning, asked Olaf about publishing this book at O'Reilly & Associates. He was excited about this
book, never having imagined that it would become this successful. He and Andy finally agreed that
O'Reilly would produce an enhanced Officia Printed Version of the Networking Guide, while Olaf
retained the original copyright so that the source of the book could be freely distributed. This means that
you can choose freely: you can get the various free forms of the document from your nearest Linux
Documentation Project mirror site and print it out, or you can purchase the official printed version from
O'Reilly.

Why, then, would you want to pay money for something you can get for free? Is Tim O'Reilly out of his
mind for publishing something everyone can print and even sell themselves? 1] Isthere any difference

between these versions?

The answers are it depends, no, definitely not, and yesand no. O'Reilly & Associates does take arisk
in publishing the Networking Guide, and it seems to have paid off for them (they've asked usto do it
again). We believe this project serves as a fine example of how the free software world and companies
can cooperate to produce something both can benefit from. In our view, the great service O'Reilly is
providing to the Linux community (apart from the book becoming readily available in your local
bookstore) isthat it has helped Linux become recognized as something to be taken seriously: a viable and
useful aternative to other commercial operating systems. It's a sad technical bookstore that doesn't have
at least one shelf stacked with O'Reilly Linux books.

Why are they publishing it? They seeit as their kind of book. It's what they'd hope to produce if they
contracted with an author to write about Linux. The pace, level of detail, and style fit in well with their
other offerings.

The point of the LDP license is to make sure no one gets shut out. Other people can print out copies of
this book, and no one will blame you if you get one of these copies. But if you haven't gotten a chance to
see the O'Rellly version, try to get to a bookstore or look at afriend's copy. We think you'll like what you
see, and will want to buy it for yourself.

So what about the differences between the printed and online versions? Andy Oram has made great
efforts at transforming our ramblings into something actually worth printing. (He has also reviewed afew
other books produced by the Linux Documentation Project, contributing whatever professional skills he
can to the Linux community.)

Since Andy started reviewing the Networking Guide and editing the copies sent to him, the book has
improved vastly from its original form, and with every round of submission and feedback it improves
again. The opportunity to take advantage of a professional editor's skill is one not to be wasted. In many
ways, Andy's contribution has been as important as that of the authors. The same is also true of the

copyeditors, who got the book into the shape you see now. All these edits have been fed back into the
online version, so there is no difference in content.

Still, the O'Rellly version will be different. It will be professionally bound, and while you may go to the
trouble to print the free version, it is unlikely that you will get the same quality result, and even then it is
more unlikely that you'll do it for the price. Secondly, our amateurish attempts at illustration will have
been replaced with nicely redone figures by O'Reilly's professional artists. Indexers have generated an
improved index, which makes locating information in the book a much simpler process. If thisbook is
something you intend to read from start to finish, you should consider reading the official printed
version.

Notes

[1] Notethat while you are allowed to print out the online version, you may not run the O'Reilly book
through a photocopier, much less sell any of its (hypothetical) copies.

Prev Home Next
About This Book Up Overview

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Preface Next

Overview

Chapter 1, discusses the history of Linux and covers basic networking information on UUCP, TCP/IP,

various protocols, hardware, and security. The next few chapters deal with configuring Linux for TCP/IP
networking and running some major applications. We examine IP alittle more closely in Chapter 2,

before getting our hands dirty with file editing and the like. If you already know how [P routing works
and how address resolution is performed, you can skip this chapter.

Chapter 3, deals with very basic configuration issues, such as building a kernel and setting up your
Ethernet card. The configuration of your serial portsis covered separately in Chapter 4, because the
discussion does not apply to TCP/IP networking only, but is also relevant for UUCP.

Chapter 5, helps you set up your machine for TCP/IP networking. It containsinstallation hints for

standal one hosts with loopback enabled only, and hosts connected to an Ethernet. It also introduces you
to afew useful tools you can use to test and debug your setup. Chapter 6, discusses how to configure

hostname resolution and explains how to set up a name server.

Chapter 7, explains how to establish SLIP connections and gives a detailed reference for dip, atool that
allows you to automate most of the necessary steps. Chapter 8, covers PPP and pppd, the PPP daemon.

Chapter 9, extends our discussion on network security and describes the Linux TCP/IP firewall and its

configuration tools: ipfwadm, ipchains, and iptables. IP firewalling provides a means of controlling
who can access your network and hosts very precisely.

Chapter 10, explains how to configure IP Accounting in Linux so you can keep track of how much traffic
Is going where and who is generating it.

Chapter 11, covers afeature of the Linux networking software called |P masquerade, which allows whole

| P networks to connect to and use the Internet through a single | P address, hiding internal systems from
outsidersin the process.

Chapter 12, gives a short introduction to setting up some of the most important network applications,

such asrlogin, ssh, etc. This chapter also covers how services are managed by the inetd superuser, and
how you may restrict certain security-relevant servicesto a set of trusted hosts.

Chapter 13, and Chapter 14, discuss NIS and NFS. NISisatool used to distribute administative

information, such as user passwords in alocal area network. NFS allows you to share filesystems
between several hostsin your network.

In Chapter 15, we discuss the IPX protocol and the NCP filesystem. These allow Linux to be integrated
into aNovell NetWare environment, sharing files and printers with non-Linux machines.

Chapter 16, gives you an extensive introduction to the administration of Taylor UUCP, afree
implementation of the UUCP suite.

The remainder of the book istaken up by a detailed tour of electronic mail and Usenet news. Chapter 17,

introduces you to the central concepts of electronic mail, like what a mail address looks like, and how the
mail handling system manages to get your message to the recipient.

Chapter 18, and Chapter 19, cover the configuration of sendmail and exim, two mail transport agents

you can use for Linux. Thisbook explains both of them, because exim is easier to install for the
beginner, while sendmail provides support for UUCP.

Chapter 20, through Chapter 23, explain the way news is managed in Usenet and how you install and use
C News, nntpd, and INN: three popular software packages for managing Usenet news. After the brief
introduction in Chapter 20, you can read Chapter 21, if you want to transfer news using C News, a

traditional service generally used with UUCP. The following chapters discuss more modern alternatives
to C News that use the Internet-based protocol NNTP (Network News Transfer Protocol). Chapter 22

covers how to set up asimple NNTP daemon, nntpd, to provide news reading access for alocal network,
while Chapter 23 describes a more robust server for more extensive NetNews transfers, the InterNet

News daemon (INN). And finally, Chapter 24, shows you how to configure and maintain various
newsreaders.

Prev Home Next
The Official Printed Version Up Conventions Used in This Book

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Preface Next

Conventions Used Iin This Book

All examples presented in this book assume you are using a sh compatible shell. The bash shell issh
compatible and is the standard shell of al Linux distributions. If you happen to be a csh user, you will
have to make appropriate adjustments.

Thefollowing isalist of the typographical conventions used in this book:

Italic
Used for file and directory names, program and command names, command-line options, email
addresses and pathnames, URLSs, and for emphasizing new terms.

Boldface

Used for machine names, hostnames, site names, usernames and IDs, and for occasional emphasis.
Constant W dth

Used in examples to show the contents of code files or the output from commands and to indicate
environment variables and keywords that appear in code.

Constant Wdth Italic

Used to indicate variable options, keywords, or text that the user isto replace with an actual value.
Constant Wdth Bold

Used in examples to show commands or other text that should be typed literally by the user.

Warning

Text appearing in this manner offers awarning. Y ou can make a mistake here that hurts your system or
is hard to recover from.

Prev Home Next
Overview Up Submitting Changes

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Preface Next

Submitting Changes

We have tested and verified the information in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes!). Please let us know about any errors you
find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (FAX)

Y ou can send us messages electronically. To be put on the mailing list or request a catalog, send email
to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have aweb site for the book, where we'll list examples, errata, and any plans for future editions. Y ou
can access this page at:

http://www.oreilly.com/catal og/linag2
For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

Prev Home Next
Conventions Used in This Book Up Acknowledgments

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Preface Next

Acknowledgments

This edition of the Networking Guide owes almost everything to the outstanding work of Olaf and Vince.
It is difficult to appreciate the effort that goes into researching and writing a book of this nature until
you've had a chance to work on one yourself. Updating the book was a challenging task, but with an
excellent base to work from, it was an enjoyable one.

This book owes very much to the numerous people who took the time to proof-read it and help iron out
many mistakes, both technical and grammatical (never knew that there was such athing as a dangling
participle). Phil Hughes, John Macdonald, and Erik Ratcliffe all provided very helpful (and on the whole,
guite consistent) feedback on the content of the book.

We also owe many thanks to the people at O'Rellly we've had the pleasure to work with: Sarah Jane
Shangraw, who got the book into the shape you can see now; Maureen Dempsey, who copyedited the
text; Rob Romano, Rhon Porter, and Chris Reilley, who created all the figures, Hanna Dyer, who
designed the cover; Alicia Cech, David Futato, and Jennifer Niedherst for the internal layout; Lars
Kaufman for suggesting old woodcuts as a visual theme; Judy Hoer for the index; and finally, Tim
O'Reilly for the courage to take up such a project.

We are greatly indebted to Andres Sepulveda, Wolfgang Michaelis, Michael K. Johnson, and all
developers who spared the time to check the information provided in the Networking Guide. Phil

Hughes, John MacDonald, and Eric Ratcliffe contributed invaluable comments on the second edition. We
also wish to thank all those who read the first version of the Networking Guide and sent corrections and
suggestions. Y ou can find a hopefully complete list of contributorsin the file Thanks in the online
distribution. Finaly, this book would not have been possible without the support of Holger Grothe, who
provided Olaf with the Internet connectivity he needed to make the original version happen.

Olaf would also like to thank the following groups and companies that printed the first edition of the
Networking Guide and have donated money either to him or to the Linux Documentation Project as a
whole: Linux Support Team, Erlangen, Germany; S.u.S.E. GmbH, Fuerth, Germany; and Linux System
Labs, Inc., Clinton Twp., United States, RedHat Software, North Carolina, United States.

Terry thanks hiswife, Maggie, who patiently supported him throughout his participation in the project
despite the challenges presented by the birth of their first child, Jack. Additionally, he thanks the many
people of the Linux community who either nurtured or suffered him to the point at which he could
actually take part and actively contribute. I'll help you if you promise to help someone elsein return.

The Hall of Fame

Besides those we have already mentioned, alarge number of people have contributed to the Networking
Guide, by reviewing it and sending us corrections and suggestions. We are very grateful.

Hereis alist of those whose contributions left atrace in our mail folders.

Al Longyear, Alan Cox, Andres Sepulveda, Ben Cooper, Cameron Spitzer, Colin McCormack, D.J.
Roberts, Emilio Lopes, Fred N. van Kempen, Gert Doering, Greg Hankins, Heiko Eissfeldt, J.P. Szikora,
Johannes Stille, Karl Eichwalder, Les Johnson, Ludger Kunz, Marc van Diest, Michael K. Johnson,
Michael Nebel, Michael Wing, Mitch D'Souza, Paul Gortmaker, Peter Brouwer, Peter Eriksson, Phil
Hughes, Raul Deluth Miller, Rich Braun, Rick Sladkey, Ronald Aarts, Swen Thiemmler, Terry Dawson,
Thomas Quinot, and Y ury Shevchuk.

Prev Home Next
Submitting Changes Up Introduction to Networking

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 1. Introduction to Networking

Table of Contents

History
TCP/IP Networks

UUCP Networks
Linux Networking

Maintaining Y our System

History

The idea of networking is probably as old as telecommunications itself. Consider people living in the
Stone Age, when drums may have been used to transmit messages between individuals. Suppose
caveman A wantsto invite caveman B over for agame of hurling rocks at each other, but they live too
far apart for B to hear A banging hisdrum. What are A's options? He could 1) walk over to B's place, 2)
get abigger drum, or 3) ask C, who lives halfway between them, to forward the message. The last option
Is called networking.

Of course, we have come along way from the primitive pursuits and devices of our forebears.
Nowadays, we have computers talk to each other over vast assemblages of wires, fiber optics,
microwaves, and the like, to make an appointment for Saturday's soccer match.[1] In the following

description, we will deal with the means and ways by which thisis accomplished, but leave out the wires,
aswell as the soccer part.

We will describe three types of networks in this guide. We will focus on TCP/IP most heavily because it
Is the most popular protocol suite in use on both Local Area Networks (LANSs) and Wide Area Networks
(WANSs), such asthe Internet. We will also take alook at UUCP and IPX. UUCP was once commonly
used to transport news and mail messages over dialup telephone connections. It is less common today,
but is still useful in avariety of situations. The IPX protocol is used most commonly in the Novell
NetWare environment and we'll describe how to use it to connect your Linux machine into aNovell
network. Each of these protocols are networking protocols and are used to carry data between host
computers. We'll discuss how they are used and introduce you to their underlying principles.

We define a network as a collection of hosts that are able to communicate with each other, often by
relying on the services of anumber of dedicated hosts that relay data between the participants. Hosts are
often computers, but need not be; one can aso think of X terminals or intelligent printers as hosts. Small
agglomerations of hosts are also called sites.

Communication is impossible without some sort of language or code. In computer networks, these
languages are collectively referred to as protocols. However, you shouldn't think of written protocols
here, but rather of the highly formalized code of behavior observed when heads of state meet, for
instance. In avery similar fashion, the protocols used in computer networks are nothing but very strict
rules for the exchange of messages between two or more hosts.

Notes

[1] Theorigina spirit of which (see above) still shows on some occasionsin Europe.

Prev Home Next
Acknowledgments TCP/IP Networks

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 1. Introduction to Networking Next

TCP/IP Networks

Modern networking applications require a sophisticated approach to carrying data from one machine to
another. If you are managing a Linux machine that has many users, each of whom may wish to
simultaneously connect to remote hosts on a network, you need away of allowing them to share your
network connection without interfering with each other. The approach that alarge number of modern
networking protocols usesis called packet-switching. A packet isasmall chunk of datathat is transferred
from one machine to another across the network. The switching occurs as the datagram is carried across
each link in the network. A packet-switched network shares a single network link among many users by
alternately sending packets from one user to another across that link.

The solution that Unix systems, and subsequently many non-Unix systems, have adopted is known as
TCP/IP. When talking about TCP/IP networks you will hear the term datagram, which technically has a
gpecial meaning but is often used interchangeably with packet. In this section, we will have alook at
underlying concepts of the TCP/IP protocols.

Introduction to TCP/IP Networks

TCP/IP tracesits origins to a research project funded by the United States Defense Advanced Research
Projects Agency (DARPA) in 1969. The ARPANET was an experimental network that was converted
into an operational onein 1975 after it had proven to be a success.

In 1983, the new protocol suite TCP/IP was adopted as a standard, and all hosts on the network were
required to use it. When ARPANET finally grew into the Internet (with ARPANET itself passing out of
existence in 1990), the use of TCP/IP had spread to networks beyond the Internet itself. Many companies
have now built corporate TCP/IP networks, and the Internet has grown to a point at which it could almost
be considered a mainstream consumer technology. It is difficult to read a newspaper or magazine now
without seeing reference to the Internet; amost everyone can now use it.

For something concrete to look at as we discuss TCP/IP throughout the following sections, we will
consider Groucho Marx University (GMU), situated somewhere in Fredland, as an example. Most
departments run their own Local Area Networks, while some share one and others run several of them.
They are al interconnected and hooked to the Internet through a single high-speed link.

Suppose your Linux box is connected to aL AN of Unix hosts at the Mathematics department, and its
name is erdos. To access a host at the Physics department, say quark, you enter the following command:

$ rlogin quark. physics
Wl cone to the Physics Departnent at GVJ
(ttyqg2) | ogin:

At the prompt, you enter your login name, say andres, and your password. Y ou are then given ashell[1]

on quark, to which you can type as if you were sitting at the system's console. After you exit the shell,
you are returned to your own machine's prompt. Y ou have just used one of the instantaneous, interactive
applications that TCP/IP provides. remote login.

While being logged into quark, you might also want to run a graphical user interface application, like a
word processing program, a graphics drawing program, or even a World Wide Web browser. The X
windows system is a fully network-aware graphical user environment, and it is available for many
different computing systems. To tell this application that you want to have its windows displayed on your
host's screen, you have to set the DISPLAY environment variable:

$ DI SPLAY=er dos. mat hs: 0.0
$ export DI SPLAY

If you now start your application, it will contact your X server instead of quark's, and display all its
windows on your screen. Of course, this requires that you have X 11 runnning on erdos. The point hereis
that TCP/IP alows quark and erdos to send X 11 packets back and forth to give you the illusion that
you're on a single system. The network is almost transparent here.

Another very important application in TCP/IP networks is NFS, which stands for Network File System. It
is another form of making the network transparent, because it basically allows you to treat directory
hierarchies from other hosts asif they were local file systems and look like any other directories on your
host. For example, all users' home directories can be kept on a central server machine from which all
other hosts on the LAN mount them. The effect is that users can log in to any machine and find
themselves in the same home directory. Similarly, it is possible to share large amounts of data (such asa
database, documentation or application programs) among many hosts by maintaining one copy of the
data on a server and alowing other hosts to accessit. We will come back to NFS in Chapter 14.

Of course, these are only examples of what you can do with TCP/IP networks. The possibilities are
amost limitless, and we'll introduce you to more as you read on through the book.

We will now have acloser look at the way TCP/IP works. This information will help you understand
how and why you have to configure your machine. We will start by examining the hardware, and slowly
work our way up.

Ethernets

The most common type of LAN hardware is known as Ethernet. In its ssmplest form, it consists of a
single cable with hosts attached to it through connectors, taps, or transceivers. Simple Ethernets are
relatively inexpensive to install, which together with a net transfer rate of 10, 100, or even 1,000
Megabits per second, accounts for much of its popularity.

Ethernets come in three flavors: thick, thin, and twisted pair. Thin and thick Ethernet each use a coaxial
cable, differing in diameter and the way you may attach a host to this cable. Thin Ethernet uses a
T-shaped BNC connector, which you insert into the cable and twist onto a plug on the back of your
computer. Thick Ethernet requires that you drill asmall hole into the cable, and attach atransceiver using
a vampire tap. One or more hosts can then be connected to the transceiver. Thin and thick Ethernet
cable can run for amaximum of 200 and 500 meters respectively, and are also called 10base-2 and

10base-5. The base refersto baseband modulation and simply means that the datais directly fed onto
the cable without any modem. The number at the start refers to the speed in Megabits per second, and the
number at the end is the maximum length of the cable in hundreds of metres. Twisted pair uses a cable
made of two pairs of copper wires and usually requires additional hardware known as active hubs.
Twisted pair isalso known as 10base-T, the T meaning twisted pair. The 100 Megabits per second
version is known as 100base-T.

To add a host to athin Ethernet installation, you have to disrupt network service for at least afew
minutes because you have to cut the cable to insert the connector. Although adding a host to athick
Ethernet system is alittle complicated, it does not typically bring down the network. Twisted pair
Ethernet is even simpler. It usesadevice called a hub, which serves as an interconnection point. Y ou
can insert and remove hosts from a hub without interrupting any other users at all.

Many people prefer thin Ethernet for small networks because it is very inexpensive; PC cards come for
aslittle as US $30 (many companies are literally throwing them out now), and cable isin the range of a
few cents per meter. However, for large-scale install ations, either thick Ethernet or twisted pair is more
appropriate. For example, the Ethernet at GMU's Mathematics Department originally chose thick
Ethernet because it is along route that the cable must take so traffic will not be disrupted each time a
host is added to the network. Twisted pair installations are now very common in a variety of installations.
The Hub hardware is dropping in price and small units are now available at a price that is attractive to
even small domestic networks. Twisted pair cabling can be significantly cheaper for large installations,
and the cable itself is much more flexible than the coaxial cables used for the other Ethernet systems. The
network administratorsin GMU's mathematics department are planning to replace the existing network
with atwisted pair network in the coming finanical year because it will bring them up to date with
current technology and will save them significant time when installing new host computers and moving
existing computers around.

One of the drawbacks of Ethernet technology isitslimited cable length, which precludes any use of it
other than for LANs. However, severa Ethernet segments can be linked to one another using repeaters,
bridges, or routers. Repeaters simply copy the signals between two or more segments so that all segments
together will act asif they are one Ethernet. Due to timing requirements, there may not be more than four
repeaters between any two hosts on the network. Bridges and routers are more sophisticated. They
analyze incoming data and forward it only when the recipient host is not on the local Ethernet.

Ethernet works like a bus system, where a host may send packets (or frames) of up to 1,500 bytesto
another host on the same Ethernet. A host is addressed by a six-byte address hardcoded into the firmware
of its Ethernet network interface card (NIC). These addresses are usually written as a sequence of
two-digit hex numbers separated by colons, asin aa:bb:cc:dd:eeff.

A frame sent by one station is seen by all attached stations, but only the destination host actually picksit
up and processesiit. If two stations try to send at the same time, a collision occurs. Collisionson an
Ethernet are detected very quickly by the electronics of the interface cards and are resolved by the two
stations aborting the send, each waiting a random interval and re-attempting the transmission. Y ou'll hear
lots of stories about collisions on Ethernet being a problem and that utilization of Ethernetsis only about
30 percent of the available bandwidth because of them. Collisions on Ethernet are a normal phenomenon,
and on avery busy Ethernet network you shouldn't be surprised to see collision rates of up to about 30
percent. Utilization of Ethernet networks is more realistically limited to about 60 percent before you need

to start worrying about it.[2]

Other Types of Hardware

In larger installations, such as Groucho Marx University, Ethernet is usually not the only type of
eguipment used. There are many other data communications protocols available and in use. All of the
protocols listed are supported by Linux, but due to space constraints we'll describe them briefly. Many of
the protocols have HOWTO documents that describe them in detail, so you should refer to those if you're
interested in exploring those that we don't describe in this book.

At Groucho Marx University, each department's LAN islinked to the campus high-speed backbone
network, which is afiber optic cable running a network technology called Fiber Distributed Data
Interface (FDDI). FDDI uses an entirely different approach to transmitting data, which basically involves
sending around a number of tokens, with a station being allowed to send aframe only if it captures a
token. The main advantage of atoken-passing protocol is areduction in collisions. Therefore, the
protocol can more easily attain the full speed of the transmission medium, up to 100 Mbps in the case of
FDDI. FDDI, being based on optical fiber, offers a significant advantage because its maximum cable
length is much greater than wire-based technologies. It has limits of up to around 200 km, which makes it
ideal for linking many buildingsin acity, or asin GMU's case, many buildings on a campus.

Similarly, if thereisany IBM computing equipment around, an IBM Token Ring network is quite likely
to beinstalled. Token Ring is used as an alternative to Ethernet in some LAN environments, and offers
the same sorts of advantages as FDDI in terms of achieving full wire speed, but at lower speeds (4 Mbps
or 16 Mbps), and lower cost because it is based on wire rather than fiber. In Linux, Token Ring
networking is configured in amost precisely the same way as Ethernet, so we don't cover it specificaly.

Although it is much less likely today than in the past, other LAN technologies, such as ArcNet and
DECNEet, might be installed. Linux supports these too, but we don't cover them here.

Many national networks operated by Telecommunications companies support packet switching
protocols. Probably the most popular of these is a standard named X.25. Many Public Data Networks,
like Tymnet inthe U.S,, Austpac in Australia, and Datex-P in Germany offer this service. X.25 definesa
set of networking protocols that describes how data termina equipment, such as a host, communicates
with data communications equipment (an X.25 switch). X.25 requires a synchronous data link, and
therefore special synchronous seria port hardware. It is possible to use X.25 with normal serial ports if
you use a special device called a PAD (Packet Assembler Disassembler). The PAD is a standalone
device that provides asynchronous serial ports and a synchronous serial port. It manages the X.25
protocol so that ssmple terminal devices can make and accept X.25 connections. X.25 is often used to
carry other network protocols, such as TCP/IP. Since I P datagrams cannot simply be mapped onto X.25
(or vice versa), they are encapsulated in X.25 packets and sent over the network. Thereisan
experimental implementation of the X.25 protocol available for Linux.

A more recent protocol commonly offered by telecommunications companiesis called Frame Relay. The
Frame Relay protocol shares a number of technical features with the X.25 protocol, but is much more
like the IP protocol in behavior. Like X.25, Frame Relay requires special synchronous serial hardware.
Because of their similarities, many cards support both of these protocols. An alternative is available that
requires no special internal hardware, again relying on an external device called a Frame Relay Access

Device (FRAD) to manage the encapsulation of Ethernet packets into Frame Relay packets for
transmission across a network. Frame Relay isideal for carrying TCP/IP between sites. Linux provides
drivers that support some types of internal Frame Relay devices.

If you need higher speed networking that can carry many different types of data, such as digitized voice
and video, alongside your usual data, ATM (Asynchronous Transfer Mode) is probably what you'll be
interested in. ATM is anew network technology that has been specifically designed to provide a
manageable, high-speed, low-latency means of carrying data, and provide control over the Quality of
Service (Q.S.). Many telecommunications companies are deploying ATM network infrastructure because
it allows the convergence of a number of different network services into one platform, in the hope of
achieving savings in management and support costs. ATM is often used to carry TCP/IP. The
Networking-HOWTO offers information on the Linux support available for ATM.

Frequently, radio amateurs use their radio equipment to network their computers; thisis commonly
called packet radio. One of the protocols used by amateur radio operatorsis called AX.25 and isloosely
derived from X.25. Amateur radio operators use the AX.25 protocol to carry TCP/IP and other protocols,
too. AX.25, like X.25, requires serial hardware capable of synchronous operation, or an external device
called a Terminal Node Controller to convert packets transmitted via an asynchronous serial link into
packets transmitted synchronously. There are a variety of different sorts of interface cards available to
support packet radio operation; these cards are generally referred to as being Z8530 SCC based, and are
named after the most popular type of communications controller used in the designs. Two of the other
protocols that are commonly carried by AX.25 are the NetRom and Rose protocols, which are network
layer protocols. Since these protocols run over AX.25, they have the same hardware requirements. Linux
supports afully featured implementation of the AX.25, NetRom, and Rose protocols. The
AX25-HOWTO isagood source of information on the Linux implementation of these protocols.

Other types of Internet access involve dialing up a central system over slow but cheap serial lines
(telephone, ISDN, and so on). These require yet another protocol for transmission of packets, such as
SLIP or PPP, which will be described later.

The Internet Protocol

Of course, you wouldn't want your networking to be limited to one Ethernet or one point-to-point data
link. Ideally, you would want to be able to communicate with a host computer regardless of what type of
physical network it is connected to. For example, in larger installations such as Groucho Marx
University, you usually have a number of separate networks that have to be connected in some way. At
GMU, the Math department runs two Ethernets. one with fast machines for professors and graduates, and
another with slow machines for students. Both are linked to the FDDI campus backbone network.

This connection is handled by a dedicated host called a gateway that handles incoming and outgoing
packets by copying them between the two Ethernets and the FDDI fiber optic cable. For example, if you
are at the Math department and want to access quark on the Physics department's LAN from your Linux
box, the networking software will not send packets to quark directly because it is not on the same
Ethernet. Therefore, it hasto rely on the gateway to act as aforwarder. The gateway (named sophus) then
forwards these packets to its peer gateway niels at the Physics department, using the backbone network,
with niels delivering it to the destination machine. Data flow between erdos and quark is shown in Figure

1-1.

Figure 1-1. Thethree steps of sending a datagram from erdosto quark

FOOICampus Backbona

e meEmemEmEmsEmssmssms s esme .. —————————

iv- e AR
i
2]
£ (I

This scheme of directing datato aremote host is called routing, and packets are often referred to as
datagrams in this context. To facilitate things, datagram exchange is governed by a single protocol that is
independent of the hardware used: IP, or Internet Protocol. In Chapter 2, we will cover IP and the issues
of routing in greater detail.

The main benefit of IPisthat it turns physically dissimilar networks into one apparently homogeneous
network. Thisis called internetworking, and the resulting meta-network is called an internet. Note the
subtle difference here between an internet and the Internet. The latter is the official name of one
particular global internet.

Of course, 1P aso requires a hardware-independent addressing scheme. This is achieved by assigning
each host a unique 32-bit number called the IP address. An |P address is usualy written as four decimal
numbers, one for each 8-bit portion, separated by dots. For example, quark might have an |P address of
0x954C0C04, which would be written as 149.76.12.4. Thisformat is also called dotted decimal notation
and sometimes dotted quad notation. It isincreasingly going under the name IPv4 (for Internet Protocol,
Version 4) because a new standard called 1Pv6 offers much more flexible addressing, as well as other
modern features. It will be at |east a year after the release of this edition before IPv6 isin use.

Y ou will notice that we now have three different types of addresses: first there is the host's name, like
guark, then there are IP addresses, and finally, there are hardware addresses, like the 6-byte Ethernet
address. All these addresses somehow have to match so that when you typerlogin quark, the
networking software can be given quark's | P address; and when |P delivers any data to the Physics
department's Ethernet, it somehow has to find out what Ethernet address corresponds to the | P address.

We will deal with these situations in Chapter 2. For now, it's enough to remember that these steps of
finding addresses are called hostname resolution, for mapping hostnames onto | P addresses, and address

resolution, for mapping the latter to hardware addresses.

IP Over Serial Lines

On serial lines, a defacto standard exists known as SLIP, or Serial Line IP. A modification of SLIP
known as CSLIP, or Compressed SLIP, performs compression of |1P headers to make better use of the
relatively low bandwidth provided by most serial links. Another serial protocol is PPP, or the
Point-to-Point Protocol. PPP is more modern than SLIP and includes a number of features that make it
more attractive. Its main advantage over SLIP isthat it isn't limited to transporting | P datagrams, but is
designed to allow just about any protocol to be carried acrossit.

The Transmission Control Protocol

Sending datagrams from one host to another is not the whole story. If you log in to quark, you want to
have a reliable connection between your rlogin process on erdos and the shell process on quark. Thus,
the information sent to and fro must be split up into packets by the sender and reassembled into a
character stream by the receiver. Trivia asit seems, thisinvolves a number of complicated tasks.

A very important thing to know about IP is that, by intent, it is not reliable. Assume that ten people on
your Ethernet started downloading the latest release of Netscape's web browser source code from GMU's
FTP server. The amount of traffic generated might be too much for the gateway to handle, because it's
too slow and it's tight on memory. Now if you happen to send a packet to quark, sophus might be out of
buffer space for amoment and therefore unable to forward it. IP solves this problem by ssmply
discarding it. The packet isirrevocably lost. It is therefore the responsibility of the communicating hosts
to check the integrity and completeness of the data and retransmit it in case of error.

This process is performed by yet another protocol, Transmission Control Protocol (TCP), which builds a
reliable service on top of IP. The essential property of TCPisthat it uses IP to give you theillusion of a
simple connection between the two processes on your host and the remote machine, so you don't have to
care about how and along which route your data actually travels. A TCP connection works essentially
like atwo-way pipe that both processes may write to and read from. Think of it as atelephone
conversation.

TCP identifies the end points of such a connection by the | P addresses of the two hosts involved and the
number of a port on each host. Ports may be viewed as attachment points for network connections. If we
are to strain the telephone example a little more, and you imagine that cities are like hosts, one might
compare | P addresses to area codes (where numbers map to cities), and port numbersto local codes
(where numbers map to individual people's telephones). Anindividual host may support many different
services, each distinguished by its own port number.

In the rlogin example, the client application (rlogin) opens a port on erdos and connects to port 513 on
guark, to which the rlogind server is known to listen. This action establishes a TCP connection. Using
this connection, rlogind performs the authorization procedure and then spawns the shell. The shell's
standard input and output are redirected to the TCP connection, so that anything you type to rlogin on
your machine will be passed through the TCP stream and be given to the shell as standard inpui.

The User Datagram Protocol

Of course, TCPisn't the only user protocol in TCP/IP networking. Although suitable for applications like
rlogin, the overhead involved is prohibitive for applications like NFS, which instead uses a sibling
protocol of TCP called UDP, or User Datagram Protocol. Just like TCP, UDP alows an application to
contact a service on a certain port of the remote machine, but it doesn't establish a connection for this.
Instead, you use it to send single packets to the destination service hence its name.

Assume you want to request a small amount of data from a database server. It takes at |east three
datagrams to establish a TCP connection, another three to send and confirm a small amount of data each
way, and another three to close the connection. UDP provides us with a means of using only two
datagrams to achieve amost the same result. UDP is said to be connectionless, and it doesn't require us to
establish and close a session. We simply put our datainto a datagram and send it to the server; the server
formulatesits reply, puts the data into a datagram addressed back to us, and transmitsit back. While this
Is both faster and more efficient than TCP for simple transactions, UDP was not designed to deal with
datagram loss. It is up to the application, a name server for example, to take care of this.

More on Ports

Ports may be viewed as attachment points for network connections. If an application wants to offer a
certain service, it attaches itself to a port and waits for clients (thisis also called listening on the port). A
client who wants to use this service allocates a port on its local host and connects to the server's port on
the remote host. The same port may be open on many different machines, but on each machine only one
process can open a port at any one time.

An important property of portsis that once a connection has been established between the client and the
server, another copy of the server may attach to the server port and listen for more clients. This property
permits, for instance, several concurrent remote logins to the same host, all using the same port 513. TCP
Is able to tell these connections from one another because they all come from different ports or hosts. For
example, if you log in twice to quark from erdos, thefirst rlogin client will use the local port 1023, and
the second one will use port 1022. Both, however, will connect to the same port 513 on quark. The two
connections will be distinguished by use of the port numbers used at erdos.

This example shows the use of ports as rendezvous points, where a client contacts a specific port to
obtain a specific service. In order for aclient to know the proper port number, an agreement hasto be
reached between the administrators of both systems on the assignment of these numbers. For services
that are widely used, such as rlogin, these numbers have to be administered centrally. Thisis done by the
|ETF (Internet Engineering Task Force), which regularly releases an RFC titled Assigned Numbers
(RFC-1700). It describes, among other things, the port numbers assigned to well-known services. Linux
usesafilecalled/ et c/ ser vi ces that maps service names to numbers.

It isworth noting that although both TCP and UDP connections rely on ports, these numbers do not
conflict. Thismeans that TCP port 513, for example, is different from UDP port 513. In fact, these ports
serve as access points for two different services, namely rlogin (TCP) and rwho (UDP).

The Socket Library

In Unix operating systems, the software performing all the tasks and protocols described above is usually
part of the kernel, and so it isin Linux. The programming interface most common in the Unix world is
the Berkeley Socket Library. Its name derives from a popular analogy that views ports as sockets and
connecting to a port as plugging in. It provides the bi nd call to specify aremote host, a transport
protocol, and a service that a program can connect or listen to (using connect , | i st en, and

accept). The socket library is somewhat more general in that it provides not only a class of
TCP/1P-based sockets (the AF_| NET sockets), but also a class that handles connections local to the
machine (the AF_UNI X class). Some implementations can also handle other classes, like the XNS
(Xerox Networking System) protocol or X.25.

In Linux, the socket library is part of the standard | i bc C library. It supportsthe AF | NET and

AF | NET6 sockets for TCP/IP and AF_UNI X for Unix domain sockets. It also supports AF_| PX for
Novell's network protocols, AF_X25 for the X.25 network protocol, AF_ ATMPVC and AF_ ATMSVC for
the ATM network protocol and AF_AX25, AF_NETROM and AF_ ROSE sockets for Amateur Radio
protocol support. Other protocol families are being developed and will be added in time.

Notes

[1] The shell isacommand-line interface to the Unix operating system. It's similar to the DOS prompt
in a Microsoft Windows environment, albeit much more powerful.

[2] The Ethernet FAQ at http://www.fags.org/faqs/L ANS/ethernet-fag/ talks about thisissue, and a

wealth of detailed historical and technical information is available at Charles Spurgeon's Ethernet
web site at http://wwwhost.ots.utexas.edu/ethernet/.

Prev Home Next
Introduction to Networking Up UUCP Networks

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 1. Introduction to Networking Next

UUCP Networks

Unix-to-Unix Copy (UUCP) started out as a package of programs that transferred files over serial lines,
scheduled those transfers, and initiated execution of programs on remote sites. It has undergone major
changes since its first implementation in the late seventies, but it is still rather spartan in the services it
offers. Its main application is still in Wide Area Networks, based on periodic dialup telephone links.

UUCP was first developed by Bell Laboratoriesin 1977 for communication between their Unix
development sites. In mid-1978, this network already connected over 80 sites. It was running email as an
application, as well as remote printing. However, the system's central use was in distributing new
software and bug fixes. Today, UUCP is not confined solely to the Unix environment. There are free and
commercial ports available for avariety of platforms, including AmigaOS, DOS, and Atari's TOS.

One of the main disadvantages of UUCP networks is that they operate in batches. Rather than having a
permanent connection established between hosts, it uses temporary connections. A UUCP host machine
might dial in to another UUCP host only once a day, and then only for a short period of time. Whileitis
connected, it will transfer all of the news, email, and files that have been queued, and then disconnect. It
Is this queuing that limits the sorts of applications that UUCP can be applied to. In the case of email, a
user may prepare an email message and post it. The message will stay queued on the UUCP host
machine until it dials in to another UUCP host to transfer the message. Thisisfine for network services
such as email, but isno use at all for services such asrlogin.

Despite these limitations, there are still many UUCP networks operating all over the world, run mainly
by hobbyists, which offer private users network access at reasonable prices. The main reason for the
longtime popularity of UUCP was that it was very cheap compared to having your computer directly
connected to the Internet. To make your computer a UUCP node, al you needed was a modem, a
working UUCP implementation, and another UUCP node that was willing to feed you mail and news.
Many people were prepared to provide UUCP feeds to individual s because such connections didn't place
much demand on their existing network.

We cover the configuration of UUCP in a chapter of its own later in the book, but we won't focus on it
too heavily, asit's being replaced rapidly with TCP/IP, now that cheap Internet access has become
commonly available in most parts of the world.

Prev Home Next
TCP/IP Networks Up Linux Networking

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 1. Introduction to Networking Next

Linux Networking

Asitistheresult of aconcerted effort of programmers around the world, Linux wouldn't have been
possible without the global network. So it's not surprising that in the early stages of development, severa
people started to work on providing it with network capabilities. A UUCP implementation was running
on Linux almost from the very beginning, and work on TCP/IP-based networking started around autumn
1992, when Ross Biro and others created what has now become known as Net-1.

After Ross quit active development in May 1993, Fred van Kempen began to work on anew
implementation, rewriting major parts of the code. This project was known as Net-2. The first public
release, Net-2d, was made in the summer of 1993 (as part of the 0.99.10 kernel), and has since been
maintained and expanded by several people, most notably Alan Cox.[1] Alan's original work was known
as Net-2Debugged. After heavy debugging and numerous improvements to the code, he changed its
name to Net-3 after Linux 1.0 was released. The Net-3 code was further developed for Linux 1.2 and
Linux 2.0. The 2.2 and later kernels use the Net-4 version network support, which remains the standard
official offering today.

The Net-4 Linux Network code offers awide variety of device drivers and advanced features. Standard
Net-4 protocols include SLIP and PPP (for sending network traffic over serial lines), PLIP (for parallel
lines), IPX (for Novell compatible networks, which we'll discuss in Chapter 15), Appletalk (for Apple
networks) and AX.25, NetRom, and Rose (for amateur radio networks). Other standard Net-4 features
include IP firewalling, IP accounting (discussed later in Chapter 9 and Chapter 10), and |P Masquerade
(discussed later in Chapter 11. IP tunnelling in a couple of different flavors and advanced policy routing
are supported. A very large variety of Ethernet devicesis supported, in addition to support for some
FDDI, Token Ring, Frame Relay, and ISDN, and ATM cards.

Additionally, there are a number of other features that greatly enhance the flexibility of Linux. These
features include an implementation of the SMB filesystem, which interoperates with applications like
lanmanager and Microsoft Windows, called Samba, written by Andrew Tridgell, and an implementation
of the Novell NCP (NetWare Core Protocol).[2]

Different Streaks of Development

There have been, at various times, varying network development efforts active for Linux.

Fred continued development after Net-2Debugged was made the official network implementation. This
development led to the Net-2e, which featured a much revised design of the networking layer. Fred was
working toward a standardized Device Driver Interface (DDI), but the Net-2e work has ended now.

Y et another implementation of TCP/IP networking came from Matthias Urlichs, who wrote an ISDN
driver for Linux and FreeBSD. For this driver, he integrated some of the BSD networking code in the

Linux kernel. That project, too is no longer being worked on.

There has been alot of rapid change in the Linux kernel networking implementation, and change is still
the watchword as devel opment continues. Sometimes this means that changes also have to occur in other
software, such as the network configuration tools. While thisis no longer as large a problem asit once
was, you may still find that upgrading your kernel to alater version means that you must upgrade your
network configuration tools, too. Fortunately, with the large number of Linux distributions available
today, thisis a quite simple task.

The Net-4 network implementation is now quite mature and isin use at avery large number of sites
around the world. Much work has been done on improving the performance of the Net-4 implementation,
and it now competes with the best implementations available for the same hardware platforms. Linux is
proliferating in the Internet Service Provider environment, and is often used to build cheap and reliable
World Wide Web servers, mail servers, and news servers for these sorts of organizations. Thereis now
sufficient development interest in Linux that it is managing to keep abreast of networking technology as
it changes, and current releases of the Linux kernel offer the next generation of the IP protocol, IPv6, as a
standard offering.

Where to Get the Code

It seems odd now to remember that in the early days of the Linux network code development, the
standard kernel required a huge patch kit to add the networking support to it. Today, network
development occurs as part of the mainstream Linux kernel development process. The latest stable Linux
kernels can be found on ftp.kernel.orgin/ pub/ | i nux/ ker nel / v2. x/ , where x is an even number.
The latest experimental Linux kernels can be found on ftp.kernel.orgin

/ pub/1'i nux/ kernel /v2.y/,whereyisanodd number. There are Linux kernel source mirrors al
over the world. It isnow hard to imagine Linux without standard network support.

Notes

[1] Alan can bereached at alan@lxorguk.ukuu.org.uk
[2] NCPisthe protocol on which Novell file and print services are based.

Prev Home Next
UUCP Networks Up Maintaining Y our System

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 1. Introduction to Networking Next

Maintaining Your System

Throughout this book, we will mainly deal with installation and configuration issues. Administration is,
however, much more than that after setting up a service, you have to keep it running, too. For most
services, only alittle attendance will be necessary, while some, like mail and news, require that you
perform routine tasks to keep your system up to date. We will discuss these tasksin later chapters.

The absolute minimum in maintenance is to check system and per-application log files regularly for error
conditions and unusual events. Often, you will want to do this by writing a couple of administrative shell
scripts and periodically running them from cron. The source distributions of some major applications,
likeinn or C News, contain such scripts. Y ou only have to tailor them to suit your needs and preferences.

The output from any of your cron jobs should be mailed to an administrative account. By default, many
applications will send error reports, usage statistics, or log file summaries to the root account. This makes
sense only if you log in as root frequently; a much better ideaisto forward root's mail to your personal
account by setting up amail alias as described in Chapter 19 or Chapter 18.

However carefully you have configured your site, Murphy's law guarantees that some problem will
surface eventually. Therefore, maintaining a system also means being available for complaints. Usually,
people expect that the system administrator can at |east be reached via email asroot, but there are also
other addresses that are commonly used to reach the person responsible for a specific aspect of
maintenence. For instance, complaints about a malfunctioning mail configuration will usually be
addressed to postmaster, and problems with the news system may be reported to newsmaster or usenet.
Mail to hostmaster should be redirected to the person in charge of the host's basic network services, and
the DNS name service if you run a name server.

System Security

Another very important aspect of system administration in a network environment is protecting your
system and users from intruders. Carelessly managed systems offer malicious people many targets.
Attacks range from password guessing to Ethernet snooping, and the damage caused may range from
faked mail messages to data loss or violation of your users privacy. We will mention some particular
problems when discussing the context in which they may occur and some common defenses against
them.

This section will discuss afew examples and basic techniques for dealing with system security. Of
course, the topics covered cannot treat all security issues you may be faced with in detail; they merely
serveto illustrate the problems that may arise. Therefore, reading a good book on security is an absolute
must, especialy in anetworked system.

System security starts with good system administration. This includes checking the ownership and

permissions of all vital files and directories and monitoring use of privileged accounts. The COPS
program, for instance, will check your file system and common configuration files for unusual
permissions or other anomalies. It is aso wise to use a password suite that enforces certain rules on the
users passwords that make them hard to guess. The shadow password suite, for instance, requires a
password to have at least five letters and to contain both upper- and lowercase numbers, aswell as
non-al phabetic characters.

When making a service accessible to the network, make sure to giveit least privilege ; don't permit it to
do things that aren't required for it to work as designed. For example, you should make programs setuid
to root or some other privileged account only when necessary. Also, if you want to use a service for only
avery limited application, don't hesitate to configure it as restrictively as your special application allows.
For instance, if you want to alow diskless hosts to boot from your machine, you must provide Trivial
File Transfer Protocol (TFTP) so that they can download basic configuration files from the/ boot
directory. However, when used unrestrictively, TFTP allows users anywhere in the world to download
any world-readable file from your system. If thisis not what you want, restrict TFTP service to the

/ boot directory.[1]

Y ou might also want to restrict certain services to users from certain hosts, say from your local network.
In Chapter 12, we introduce tcpd, which does this for avariety of network applications. More

sophisticated methods of restricting access to particular hosts or services will be explored later in Chapter
9.

Another important point isto avoid dangerous software. Of course, any software you use can be
dangerous because software may have bugs that clever people might exploit to gain access to your
system. Things like this happen, and there's no compl ete protection against it. This problem affects free
software and commercial products alike.[2] However, programs that require special privilege are

inherently more dangerous than others, because any loophole can have drastic consequences.[3] If you

install a setuid program for network purposes, be doubly careful to check the documentation so that you
don't create a security breach by accident.

Another source of concern should be programs that enable login or command execution with limited
authentication. Therlogin, rsh, and rexec commands are all very useful, but offer very limited
authentication of the calling party. Authentication is based on trust of the calling host name obtained
from aname server (we'll talk about these later), which can be faked. Today it should be standard
practice to disable the r commands completely and replace them with the ssh suite of tools. The ssh tools
use a much more reliable authentication method and provide other services, such as encryption and
compression, as well.

Y ou can never rule out the possibility that your precautions might fail, regardless of how careful you
have been. Y ou should therefore make sure you detect intruders early. Checking the system log filesisa
good starting point, but the intruder is probably clever enough to anticipate this action and will delete any
obvious traces he or she left. However, there are tools like tripwir e, written by Gene Kim and Gene
Spafford, that allow you to check vital system filesto seeif their contents or permissions have been
changed. tripwire computes various strong checksums over these files and stores them in a database.
During subsequent runs, the checksums are recomputed and compared to the stored ones to detect any
modifications.

Notes

[1] Wewill come back to thistopic in Chapter 12.

[2] There have been commercia Unix systems (that you have to pay lots of money for) that came with
a setuid-root shell script, which allowed users to gain root privilege using a simple standard trick.

[3] 1n 1988, the RTM worm brought much of the Internet to a grinding halt, partly by exploiting a
gaping hole in some programs including the sendmail program. This hole has long since been
fixed.

Prev Home Next
Linux Networking Up Issues of TCP/IP Networking

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 15. IPX and the NCP Filesystem

Table of Contents
Xerox, Novell, and History

IPX and Linux
Configuring the Kernel for |1PXand NCPFS
Configuring | PX Interfaces

Configuring an |PX Router

Mounting a Remote NetWare Volume
Exploring Some of the Other IPX Tools
Printing to a NetWare Print Queue
NetWare Server Emulation

Long before Microsoft |earned about networking, and even before the Internet was known outside
academic circles, corporate environments shared files and printers using file and print servers based on
the Novell NetWare operating system and associated protocols.[1] Many of these corporate users still
have legacy networks using these protocols and want to integrate this support with their new TCP/IP
support.

Linux supports not only the TCP/IP protocols, but also the suite of protocols used by the Novell
Corporation's NetWare operating system. These protocols are distant cousins of TCP/IP, and while they
perform similar sorts of functions, they differ in a number of ways and are unfortunately incompatible.

Linux has both free and commercial software offerings to provide support for integration with the Novell
products.

WE'll provide a brief description of the protocols themselvesin this chapter, but we focus on how to
configure and use free software to allow Linux to interoperate with Novell products.

Xerox, Novell, and History

First, let'slook at where the protocols came from and what they look like. In the late 1970s, the Xerox
Corporation developed and published an open standard called the Xerox Network Specification (XNS).
The Xerox Network Specification described a series of protocols designed for general purpose
internetworking, with a strong emphasis on the use of local area networks. There were two primary
networking protocols involved: the Internet Datagram Protocol (IDP), which provided a connectionless
and unreliable transport of datagrams from one host to another, and the Sequenced Packet Protocol

(SPP), which was amodified form of IDP that was connection-based and reliable. The datagrams of an
XNS network were individually addressed. The addressing scheme used a combination of a 4-byte IDP
network address (which was uniquely assigned to each Ethernet LAN segment), and the 6-byte node
address (the address of the NIC card). Routers were devices that switched datagrams between two or
more separate | DP networks. IDP has no notion of subnetworks; any new collection of hosts requires
another network address to be assigned. Network addresses are chosen such that they are unique on the
internetwork in question. Sometimes administrators devel op conventions by having each byte encode
some other information, such as geographic location, so that network addresses are allocated in a
systemic way; it isn't a protocol requirement, however.

The Novell Corporation chose to base their own networking suite on the XNS suite. Novell made small
enhancements to |DP and SPP and renamed them IPX (Internet Packet eXchange) and SPX (Sequenced
Packet eXchange). Novell added new protocols, such as the NetWare Core Protocol (NCP), which
provided file and printer sharing features that ran over I|PX, and the Service Advertisement Protocol
(SAP), which enabled hosts on a Novell network to know which hosts provided which services.

Table 15-1 maps the relationship between the XNS, Novell, and TCP/IP suites in terms of function. The

relationships are an approximation only, but should help you understand what is happening when we
refer to these protocols later on.

Table 15-1. XNS, Novell, and TCP/IP Protocol Relationships

XNS|Novell |[TCP/IP |Features

IDP |IPX |UDP/IP |Connectionless, unreliable transport

SPP [SPX [TCP |Connection-based, reliable transport

NCP |NFS |Fileservices

RIP |RIP Routing information exchange

SAP Service availability information exchange

Notes

[1] Novell and NetWare are trademarks of the Novell Corporation.

Prev Home Next
Kernel-Based NFSv3 Server IPX and Linux
Support

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 9. TCP/IP Firewall

Table of Contents
M ethods of Attack

What IsaFirewall?
What Is |P Filtering?
Setting Up Linux for Firewalling

Three Ways We Can Do Filtering
Origina IP Firewall (2.0 Kernels)
|P Firewall Chains (2.2 Kernels)
Netfilter and IP Tables (2.4 Kernels)
TOS Bit Manipulation

Testing a Firewall Configuration

A Sample Firewall Configuration

Security isincreasingly important for companies and individuals alike. The Internet has provided them
with a powerful tool to distribute information about themselves and obtain information from others, but it
has also exposed them to dangers that they have previously been exempt from. Computer crime,
information theft, and malicious damage are al potential dangers.

An unauthorized and unscrupul ous person who gains access to a computer system may guess system
passwords or exploit the bugs and idiosyncratic behavior of certain programs to obtain a working account
on that machine. Once they are able to log in to the machine, they may have access to information that
may be damaging, such as commercially sensitive information like marketing plans, new project details,
or customer information databases. Damaging or modifying this type of data can cause severe setbacks to
the company.

The safest way to avoid such widespread damage is to prevent unauthorized people from gaining
network accessto the machine. Thisiswhere firewalls comein.

Warning

Constructing secure firewallsis an art. It involves a good understanding of technology, but equally
important, it requires an understanding of the philosophy behind firewall designs. We won't cover
everything you need to know in this book; we strongly recommend you do some additional research
before trusting any particular firewall design, including any we present here.

There is enough material on firewall configuration and design to fill awhole book, and indeed there are

some good resources that you might like to read to expand your knowledge on the subject. Two of these
are:

Building Internet Firewalls

by D. Chapman and E. Zwicky (O'Rellly). A guide explaining how to design and install firewalls
for Unix, Linux, and Windows NT, and how to configure Internet services to work with the
firewalls.

Firewalls and Internet Security

by W. Cheswick and S. Bellovin (Addison Wesley). This book covers the philosophy of firewall
design and implementation.

We will focus on the Linux-specific technical issues in this chapter. Later we will present a sample
firewall configuration that should serve as a useful starting point in your own configuration, but as with
all security-related matters, trust no one. Double check the design, make sure you understand it, and then
modify it to suit your requirements. To be safe, be sure.

Methods of Attack

As anetwork administrator, it isimportant that you understand the nature of potential attacks on
computer security. We'll briefly describe the most important types of attacks so that you can better
understand precisely what the Linux IP firewall will protect you against. Y ou should do some additional
reading to ensure that you are able to protect your network against other types of attacks. Here are some
of the more important methods of attack and ways of protecting yourself against them:

Unauthorized access

This ssmply means that people who shouldn't use your computer services are able to connect and
use them. For example, people outside your company might try to connect to your company
accounting machine or to your NFS server.

There are various ways to avoid this attack by carefully specifying who can gain access through
these services. Y ou can prevent network access to all except the intended users.

Exploitation of known weaknesses in programs

Some programs and network services were not originally designed with strong security in mind
and are inherently vulnerable to attack. The BSD remote services (rlogin, rexec, etc.) are an
example.

The best way to protect yourself against this type of attack is to disable any vulnerable services or
find alternatives. With Open Source, it is sometimes possible to repair the weaknesses in the
software.

Denial of service
Denial of service attacks cause the service or program to cease functioning or prevent others from

making use of the service or program. These may be performed at the network layer by sending
carefully crafted and malicious datagrams that cause network connections to fail. They may also

be performed at the application layer, where carefully crafted application commands are givento a
program that cause it to become extremely busy or stop functioning.

Preventing suspicious network traffic from reaching your hosts and preventing suspicious program
commands and requests are the best ways of minimizing the risk of adenia of service attack. It's
useful to know the details of the attack method, so you should educate yourself about each new
attack as it gets publicized.

Spoofing

Thistype of attack causes a host or application to mimic the actions of another. Typically the
attacker pretends to be an innocent host by following | P addresses in network packets. For
example, a well-documented exploit of the BSD rlogin service can use this method to mimic a
TCP connection from another host by guessing TCP sequence numbers.

To protect against this type of attack, verify the authenticity of datagrams and commands. Prevent
datagram routing with invalid source addresses. Introduce unpredictablility into connection control
mechanisms, such as TCP sequence numbers and the allocation of dynamic port addresses.

Eavesdropping

Thisisthe ssimplest type of attack. A host is configured to "listen" to and capture data not
belonging to it. Carefully written eavesdropping programs can take usernames and passwords from
user login network connections. Broadcast networks like Ethernet are especially vulnerable to this
type of attack.

To protect against this type of threat, avoid use of broadcast network technol ogies and enforce the
use of data encryption.

IP firewalling is very useful in preventing or reducing unauthorized access, network layer denial of
service, and IP spoofing attacks. It not very useful in avoiding exploitation of weaknesses in network
services or programs and eavesdropping.

Prev Home Next

More Advanced PPP What IsaFirewall?
Configurations

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 10. IP Accounting

Table of Contents
Configuring the Kerndl for IP Accounting

Configuring |P Accounting

Using | P Accounting Results

Resetting the Counters

Flushing the Ruleset

Passive Collection of Accounting Data

In today sworld of commercial Internet service, it is becoming increasingly important to know how
much data you are transmitting and receiving on your network connections. If you are an Internet Service
Provider and you charge your customers by volume, thiswill be essential to your business. If you are a
customer of an Internet Service Provider that charges by data volume, you will find it useful to collect
your own data to ensure the accuracy of your Internet charges.

There are other uses for network accounting that have nothing to do with dollars and bills. If you manage
aserver that offers a number of different types of network services, it might be useful to you to know
exactly how much datais being generated by each one. This sort of information could assist you in
making decisions, such as what hardware to buy or how many serversto run.

The Linux kernel provides afacility that allows you to collect all sorts of useful information about the
network traffic it sees. Thisfacility is called IP accounting.

Configuring the Kernel for IP Accounting

The Linux IP accounting feature is very closely related to the Linux firewall software. The places you
want to collect accounting data are the same places that you would be interested in performing firewall
filtering: into and out of a network host, and in the software that does the routing of datagrams. If you
haven't read the section on firewalls, now is probably a good time to do so, as we will be using some of
the concepts described in Chapter 9.

To activate the Linux | P accounting feature, you should first see if your Linux kernel is configured for it.
Check toseeif the/ proc/ net/i p_acct fileexists. If it does, your kernel already supports |P
accounting. If it doesn't, you must build a new kernel, ensuring that you answer Y to the optionsin 2.0
and 2.2 series kernels:

Net wor ki ng options --->
[*] Network firewalls
[*] TCP/ 1P networking

[*] I P: accounting

or in 2.4 serieskerndls;

Net wor ki ng options --->
[*] Network packet filtering (replaces ipchains)

Prev Home Next
A Sample Firewall Configuration Configuring IP Accounting

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 11. IP Masquerade and Network
Address Translation

Table of Contents
Side Effects and Fringe Benefits

Configuring the Kernel for |P Masquerade

Configuring | P Masquerade

Handling Name Server L ookups
More About Network Address Trandlation

Y ou don't have to have a good memory to remember a time when only large organizations could afford
to have a number of computers networked together by aLAN. Today network technology has dropped so
much in price that two things have happened. First, LANs are now commonplace, even in many
household environments. Certainly many Linux users will have two or more computers connected by
some Ethernet. Second, network resources, particularly | P addresses, are now a scarce resource and while
they used to be free, they are now being bought and sold.

Most people with a LAN will probably also want an Internet connection that every computer on the LAN
can use. The IP routing rules are quite strict in how they deal with this situation. Traditional solutionsto
this problem would have involved requesting an | P network address, perhaps a class C address for small
sites, assigning each host on the LAN an address from this network and using a router to connect the
LAN to the Internet.

In acommercialized Internet environment, thisis quite an expensive proposition. First, you'd be required
to pay for the network address that is assigned to you. Second, you'd probably have to pay your Internet
Service Provider for the privilege of having a suitable route to your network put in place so that the rest
of the Internet knows how to reach you. This might still be practical for companies, but domestic
installations don't usually justify the cost.

Fortunately, Linux provides an answer to this dilemma. This answer involves a component of a group of
advanced networking features called Network Address Translation (NAT). NAT describes the process of
modifying the network addresses contained with datagram headers while they are in transit. This might
sound odd at first, but we'll show that it isideal for solving the problem we've just described and many
have encountered. |P masquerade is the name given to one type of network address trandlation that
allowsall of the hosts on a private network to use the Internet at the price of asingle IP address.

| P masguerading allows you to use a private (reserved) IP network address on your LAN and have your
Linux-based router perform some clever, real-time translation of 1P addresses and ports. When it receives
adatagram from a computer on the LAN, it takes note of the type of datagramitis, TCP, UDP, ICMP,

etc., and modifies the datagram so that it looks like it was generated by the router machine itself (and
remembers that it has done so). It then transmits the datagram onto the Internet with its single connected
| P address. When the destination host receives this datagram, it believes the datagram has come from the
routing host and sends any reply datagrams back to that address. When the Linux masguerade router
receives a datagram from its Internet connection, it looksin its table of established masqueraded
connectionsto seeif this datagram actually belongs to a computer on the LAN, and if it does, it reverses
the modification it did on the forward path and transmits the datagram to the LAN computer.

A simple exampleisillustrated in Figure 11-1.
Figure 11-1. A typical | P masquer ade configuration

192 1B, 15255230
1= 1m. 12 .|
FRFC : stho T
et zanzt (B 1mimin §
PPR Lirl.nl—l'nlasq.rmde 1= 1813 i]
Acuter —
Masqeraded request Crigna rquest
From: 21023 1 pat 135 Fran: 152 188, 1.3 pat 124
Tandated by masquerade nouler at
b [l
Crignal redy Cemamueraded redy
Ta 2. 0.3 1 port 1035 T 192 168, 1.3 pat 1224

We have a small Ethernet network using one of the reserved network addresses. The network has a
Linux-based masquerade router providing access to the Internet. One of the workstations on the network
(192.168.1.3) wishes to establish a connection to the remote host 209.1.106.178 on port 8888. The
workstation routes its datagram to the masquerade router, which identifies this connection request as
requiring masguerade services. It accepts the datagram and allocates a port number to use (1035),
substitutes its own | P address and port number for those of the originating host, and transmits the
datagram to the destination host. The destination host believesit has received a connection request from
the Linux masquerade host and generates areply datagram. The masquerade host, upon receiving this
datagram, finds the association in its masguerade table and reverses the substution it performed on the
outgoing datagram. It then transmits the reply datagram to the originating host.

Thelocal host believesit is speaking directly to the remote host. The remote host knows nothing about
the local host at all and believesit has received a connection from the Linux masguerade host. The Linux
masquerade host knows these two hosts are speaking to each other, and on what ports, and performs the
address and port translations necessary to allow communication.

This might all seem alittle confusing, and it can be, but it works and is really quite ssimple to configure.
So don't worry if you don't understand all the details yet.

Side Effects and Fringe Benefits

The IP masquerade facility comes with its own set of side effects, some of which are useful and some of
which might become bothersome.

None of the hosts on the supported network behind the masgquerade router are ever directly seen;
consequently, you need only one valid and routable | P address to allow all hosts to make network
connections out onto the Internet. This has a downside; none of those hosts are visible from the Internet
and you can't directly connect to them from the Internet; the only host visible on a masgueraded network
Is the masquerade machine itself. Thisisimportant when you consider services such as mail or FTP. It
hel ps determine what services should be provided by the masguerade host and what servicesit should
proxy or otherwise treat specially.

Second, because none of the masqueraded hosts are visible, they are relatively protected from attacks
from outside; this could simplify or even remove the need for firewall configuration on the masquerade
host. Y ou shouldn't rely too heavily on this, though. Y our whole network will be only as safe as your
masquerade host, so you should use firewall to protect it if security is aconcern.

Third, IP masguerade will have some impact on the performance of your networking. In typical
configurations this will probably be barely measurable. If you have large numbers of active masquerade
sessions, though, you may find that the processing required at the masquerade machine begins to impact
your network throughput. |P masguerade must do a good deal of work for each datagram compared to the
process of conventional routing. That 386SX 16 machine you have been planning on using as a
masguerade machine supporting adial-up link to the Internet might be fine, but don't expect too much if
you decide you want to use it as arouter in your corporate network at Ethernet speeds.

Last, some network services just won't work through masquerade, or at least not without a lot of help.
Typicaly, these are services that rely on incoming sessions to work, such as some types of Direct
Communications Channels (DCC), features in IRC, or certain types of video and audio multicasting
services. Some of these services have specially devel oped kernel modules to provide solutions for these,
and we'll talk about those in a moment. For others, it is possible that you will find no support, so be
aware,it won't be suitable in all situations.

Prev Home Next
Passive Collection of Accounting Configuring the Kernel for IP
Data Masguerade

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 14. The NetworkFile System

Table of Contents
Preparing NFS

Mounting an NFS Volume

The NFS Daemons

The exports File

Kernel-Based NFSv2 Server Support
Kernel-Based NFSv3 Server Support

The Network File System (NFS) is probably the most prominent network service using RPC. It allows
you to access files on remote hosts in exactly the same way you would access local files. A mixture of
kernel support and user-space daemons on the client side, along with an NFS server on the server side,
makes this possible. Thisfile accessis completely transparent to the client and works across a variety of
server and host architectures.

NFS offers a number of useful features:

« Dataaccessed by all users can be kept on a central host, with clients mounting this directory at
boot time. For example, you can keep all user accounts on one host and have al hosts on your
network mount / home from that host. If NFSisinstalled beside NIS, users can log into any
system and still work on one set of files.

» Data consuming large amounts of disk space can be kept on a single host. For example, al files
and programs relating to LaTeX and METAFONT can be kept and maintained in one place.

« Administrative data can be kept on asingle host. There isno need to usercp to install the same
stupid file on 20 different machines.

It's not too hard to set up basic NFS operation on both the client and server; this chapter tells you how.

Linux NFSislargely the work of Rick Sladkey, who wrote the NFS kernel code and large parts of the
NFS server.[1] The latter is derived from the unfsd user space NFS server, originally written by Mark

Shand, and the hnfs Harris NFS server, written by Donald Becker.

Let's have alook at how NFS works. First, a client tries to mount a directory from aremote host on a
local directory just the same way it does a physical device. However, the syntax used to specify the
remote directory is different. For example, to mount / homre from host vliager to/ user s onvale, the
administrator issues the following command on vale:[2]

nmount -t nfs vlager:/honme /users

mount will try to connect to the r pc.mountd mount daemon on vliager via RPC. The server will check if
valeis permitted to mount the directory in question, and if so, return it afile handle. This file handle will
be used in al subsequent requeststo filesbelow / user s.

When someone accesses afile over NFS, the kernel places an RPC call to rpc.nfsd (the NFS daemon) on
the server machine. This call takes the file handle, the name of the file to be accessed, and the user and
group IDs of the user as parameters. These are used in determining access rights to the specified file. In
order to prevent unauthorized users from reading or modifying files, user and group |Ds must be the
same on both hosts.

On most Unix implementations, the NFS functionality of both client and server isimplemented as
kernel-level daemons that are started from user space at system boot. These are the NFS Daemon
(rpc.nfsd) on the server host, and the Block I/O Daemon (biod) on the client host. To improve
throughput, biod performs asynchronous 1/0 using read-ahead and write-behind; also, several rpc.nfsd
daemons are usually run concurrently.

The current NFS implementation of Linux isalittle different from the classic NFS in that the server code
runs entirely in user space, so running multiple copies simultaneously is more complicated. The current
rpc.nfsd implementation offers an experimental feature that alows limited support for multiple servers.
Olaf Kirch developed kernel-based NFS server support featured in 2.2 Version Linux kernels. Its
performance is significantly better than the existing userspace implementation. We'll describe it later in
this chapter.

Preparing NFS

Before you can use NFS, beit as server or client, you must make sure your kernel has NFS support
compiled in. Newer kernels have a simple interface on the pr oc filesystem for this, the
/ proc/fil esystens file, which you can display using cat:

$ cat /proc/filesystens
m ni x
ext 2
nsdos

nodev pr oc

nodev nfs

If nfsismissing from thislist, you have to compile your own kernel with NFS enabled, or perhaps you
will need to load the kernel module if your NFS support was compiled as a module. Configuring the
kernel network optionsis explained in the Kernel Configuration section of Chapter 3.

Notes

[1] Rick can be reached at jrs@world.std.com.

[2] Actudly, youcanomitthe t nfs argument because mount seesfrom the colon that this
specifies an NFS volume.

Prev Home Next
Using NIS with Shadow Support Mounting an NFS Volume

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 13. The Network Information System Next

Using NIS with Shadow Support

Using NIS in conjunction with shadow password files is somewhat problematic. First we have some bad
news: using NIS defeats the goals of shadow passwords. The shadow password scheme was designed to
prevent nonroot users from having access to the encrypted form of the login passwords. Using NIS to
share shadow data by necessity makes the encrypted passwords available to any user who can listen to
the NIS server replies on the network. A policy to enforce users to choose good passwords is arguably
better than trying to shadow passwords in an NIS environment. Let's take a quick look at how you do it,
should you decide to forge on ahead.

In libc5 there is no real solution to sharing shadow data using NIS. The only way to distribute password
and user information by NIS isthrough the standard passwd. * maps. If you do have shadow passwords
installed, the easiest way to share them isto generate a proper passwd filefrom/ et ¢/ shadowusing
tools like pwuncov, and create the NI'S maps from that file.

Of course, there are some hacks necessary to use NI'S and shadow passwords at the same time, for
instance, by installing an/ et ¢/ shadowfile on each host in the network, while distributing user
information, through NIS. However, this hack isreally crude and defies the goal of NIS, which isto ease
system administration.

The NIS support in the GNU libc library (libc6) provides support for shadow password databases. It does
not provide any real solution to making your passwords accessible, but it does ssimplify password
management in environments in which you do want to use NIS with shadow passwords. To useit, you
must create ashadow. bynane database and add the following lineto your / et ¢/ nsswi t ch. conf

Shadow password support
shadow: conpat

If you use shadow passwords along with NIS, you must try to maintain some security by restricting
access to your NIS database. See the section called NIS Server Security earlier in this chapter.

Prev Home Next
Using the passwd and group Maps Up The NetworkFile System

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 13. The Network Information System Next

Using the passwd and group Maps

One of the major applications of NIS is synchronizing user and account information on all hostsin an
NIS domain. Consequently, you usually keep only asmall local / et ¢/ passwd file, to which site-wide
information from the NIS maps is appended. However, simply enabling NIS lookups for this servicein
nssw t ch. conf isnot nearly enough.

When relying on the password information distributed by NIS, you first have to make sure that the
numeric user IDs of any users you havein your local passwd file match the NIS server'sidea of user
IDs. Consistency in user IDsisimportant for other purposes as well, like mounting NFS volumes from
other hosts in your network.

If any of the numeric IDsin/ et ¢/ passwd or/ et ¢/ gr oup differ from those in the maps, you have
to adjust file ownerships for all files that belong to that user. First, you should change all uids and gidsin
passwd and gr oup to the new values, then find that al files that belong to the usersjust changed and
change their ownership. Assume news used to have auser ID of 9 and okir had auser ID of 103, which
were changed to some other value; you could then issue the following commands as root:

find / -uid 9 -print >/tnp/uid.9
find / -uid 103 -print >/tnp/uid. 103
cat /tnp/uid.9 | xargs chown news
cat /tnp/uid.103 | xargs chown okir

It isimportant that you execute these commands with the new passwd fileinstalled, and that you collect
al filenames before you change the ownership of any of them. To update the group ownerships of files,
use a similar method with the gid instead of the uid, and chgrp instead of chown.

Once you do this, the numerical uids and gids on your system will agree with those on all other hostsin
your NIS domain. The next step isto add configuration linestonsswi t ch. conf that enable NIS
lookups for user and group information:

/etc/nssw tch.conf - passwd and group treatnent
passwd: nis files
group: nis files

This affects where the login command and all its friends look for user information. When a user triesto
log in, login queriesthe NIS mapsfirst, and if thislookup fails, falls back to the local files. Usually, you
will remove amost all users from your local files, and only leave entries for root and generic accounts
likemail init. Thisis because some vital system tasks may have to map uids to usernames or vice versa.
For example, administrative cron jobs may execute the su command to temporarily become news, or the
UUCP subsystem may mail a status report. If news and uucp don't have entriesin the local passwd file,
these jobs will fail miserably during an NIS brownout.

Lastly, if you are using either the old NIS implementation (supported by the compat mode for the
passwd and gr oup filesinthe NY S or glibc implementations), you must insert the unwieldy special
entries into them. These entries represent where the NI'S derived records will be inserted into the
database of information. The entries can be added anywhere, but are usually just added to the end. The
entriesto add for the/ et ¢/ passwd file are:

and for the/ et c/ gr oups file:
+:0

With both glibc 2.x and NY S you can override parameters in a user srecord received from the NIS server
by creating entrieswith a + prepended to the login name, and exclude specified users by creating entries
with a - prepended to the login name. For example the entries:

+stuart::::::/bin/jacl

would override the shell specified for the user stuart supplied by the NIS server, and would disallow the
user jedd from logging in on this machine. Any fields left blank use the information supplied by the NIS
server.

There are two big caveatsin order here. First, the setup as described up to here works only for login
suites that don't use shadow passwords. The intricacies of using shadow passwords with NIS will be
discussed in the next section. Second, the login commands are not the only ones that access the passwd
filelook at the |s command, which most people use almost constantly. Whenever compiling along
listing, Is displays the symbolic names for user and group owners of afile; that is, for each uid and gid it
encounters, it has to query the NIS server. An NIS query takes dlightly longer to perform than the
equivalent lookup in alocal file. Y ou may find that sharing your passwd and gr oup information using
NIS causes a noticable reduction in the performance of some programs that use this information
frequently.

Still, thisis not the whole story. Imagine what happens if a user wants to change her password. Usually,
she will invoke passwd, which reads the new password and updates the local passwd file. Thisis
impossible with NIS, since that file isn't available locally anymore, but having userslog into the NIS
server whenever they want to change their passwords is not an option, either. Therefore, NIS provides a
drop-in replacement for passwd called yppasswd, which handles password changes under NIS. To
change the password on the server hogt, it contacts the yppasswdd daemon on that host via RPC, and
provides it with the updated password information. Usually you install yppasswd over the normal
program by doing something like this:

cd /bin
mv passwd passwd. ol d
| n yppasswd passwd

At the same time, you have to install rpc.yppasswdd on the server and start it from a network script.
Thiswill effectively hide any of the contortions of NIS from your users.

Prev Home Next

Choosing the Right Maps Up Using NIS with Shadow Support

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 13. The Network Information System Next

NIS Server Security

NIS used to have amajor security flaw: it left your password file readable by virtually anyone in the
entire Internet, which made for quite a number of possible intruders. Aslong as an intruder knew your
NIS domain name and the address of your server, he could smply send it arequest for the

passwd. bynanme map and instantly receive all your system's encrypted passwords. With a fast
password-cracking program like crack and a good dictionary, guessing at least afew of your users
passwordsisrarely a problem.

Thisiswhat the securenets option is al about. It smply restricts access to your NIS server to certain
hosts, based on their |P addresses or network numbers. The latest version of ypserv implements this
feature in two ways. Thefirst relies on a specia configuration file called

/ et c/ ypserv. secur enet s and the second conveniently usesthe/ et c/ host s. al | owand

/ et c/ host s. deny fileswe already encountered in Chapter 12.[1] Thus, to restrict access to hosts

from within the Brewery, their network manager would add the following lineto host s. al | ow :
ypserv: 172.16. 2.

Thiswould let all hosts from IP network 172.16.2.0 access the NIS server. To shut out all other hosts, a
corresponding entry in host s. deny would have to read:

ypserv: ALL

| P numbers are not the only way you can specify hosts or networksin host s. al | owand

host s. deny. Pleaserefer tothehost s_access(5) manua page on your system for details.
However, be warned that you cannot use host or domain names for the ypserv entry. If you specify a
hostname, the server tries to resolve this hostname but the resolver in turn calls ypserv, and you fall into
an endless |oop.

To configure securenets security using the/ et ¢/ ypser v. secur enet s method, you need to create
its configuration file, / et c/ ypser v. secur enet s. This configuration fileis simplein structure.
Each line describes a host or network of hosts that will be allowed accessto the server. Any address not
described by an entry in thisfile will be refused access. A line beginning with a# will be treated as a
comment. Example 13-1 showswhat asimple/ et ¢/ ypser v. secur enet s would look like:

Example 13-1. Sample ypserv.securenets File

all ow connections fromlocal host -- necessary

host 127.0.0.1

same as 255. 255.255.255 127.0.0.1

#

all ow connections fromany host on the Virtual Brewery network
255. 255. 255. 0 172.16.1.0

#

Thefirst entry on each line is the netmask to use for the entry, with host being treated as a special
keyword meaning netmask 255.255.255.255. The second entry on each line isthe I P address to which to
apply the netmask.

A third option is to use the secure portmapper instead of thesecur enet s option in ypserv. The secure
portmapper (por t map- 5. 0) usesthehost s. al | owscheme aswell, but offersthisfor all RPC
servers, not just ypserv.[2] However, you should not use both the secur enet s option and the secure

portmapper at the same time, because of the overhead this authorization incurs.
Notes

[1] Toenableuseof the/ et c/ hosts. al | owmethod, you may have to recompile the server.
Please read the instructions in the README included in the distribution.

[2] The secure portmapper is available via anonymous FTP from ftp.win.tue.nl below the
[pub/ security/ directory.

Prev Home Next
Running an NIS Server Up Setting Up an NIS Client with
GNU libc

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 13. The Network Information
System

Table of Contents
Getting Acquainted with NIS

NIS Versus NIS+

The Client Side of NIS

Running an NIS Server

NIS Server Security

Setting Up an NIS Client with GNU libc
Choosing the Right Maps

Using the passwd and group M aps
Using NIS with Shadow Support

When you're running alocal area network, your overall goal is usualy to provide an environment for
your users that makes the network transparent. An important stepping stone is keeping vital data such as
user account information synchronized among al hosts. This provides users with the freedom to move
from machine to machine without the inconvenience of having to remember different passwords and
copy data from one machine to another. Datathat is centrally stored doesn't need to be replicated, so long
as there is some convenient means of accessing it from a network-connected host. By storing important
administrative information centrally, you can make ensure consistency of that data, increase flexibility
for the users by allowing them to move from host to host in atransparent way, and make the system
administrator's life much easier by maintaining a single copy of information to maintain when required.

We previously discussed an important example of this concept that is used on the Internet the Domain
Name System (DNS). DNS serves a limited range of information, the most important being the mapping
between hostname and | P address. For other types of information, there is no such specialized service.
Moreover, if you manage only asmall LAN with no Internet connectivity, setting up DNS may not seem
to be worth the trouble.

Thisiswhy Sun devel oped the Network Information System (NIS). NIS provides generic database access
facilities that can be used to distribute, for example, information contained in the passwd and gr oups
filesto all hosts on your network. This makes the network appear as a single system, with the same
accounts on al hosts. Similarly, you can use NIS to distribute the hosthame information from

/ et ¢/ host s to al machines on the network.

NISisbased on RPC, and comprises a server, aclient-side library, and several administrative tools.

Originally, NISwas called Yellow Pages, or Y P, which is still used to refer to it. Unfortunately, the name
isatrademark of British Telecom, which required Sun to drop that name. As things go, some names stick
with people, and so YP lives on as a prefix to the names of most NIS-related commands such as ypserv
and ypbind.

Today, NISisavailable for virtually all Unixes, and there are even free implementations. BSD Net-2
released one that has been derived from a public domain reference implementation donated by Sun. The
library client code from this release had beeninthe Linux | i bc for along time, and the administrative
programs were ported to Linux by Swen Thimmler.[1] An NIS server is missing from the reference

implementation, though.

Peter Eriksson developed a new implementation called NY S.[2] It supports both plain NIS and Sun's

much enhanced NIS+. NY S not only provides a set of NIStools and a server, but also adds awhole new
set of library functions that need to be compiled into your | i bc if you wish to useit. Thisincludes a
new configuration scheme for hostname resolution that replaces the current scheme using host . conf .

The GNU libc, known as| i bc6 inthe Linux community, includes an updated version of the traditional
NIS support developed by Thorsten Kukuk.[3] It supports al of the library functions that NY S provided
and also uses the enhanced configuration scheme of NY S. Y ou still need the tools and server, but using
GNU | i bc savesyou the trouble of having to meddle with patching and recompiling the library.

This chapter focuses on the NIS support included inthe GNU | i bc rather than the other two packages.
If you do want to run any of these packages, the instructions in this chapter may or may not be enough.

For additional information, refer to the NISSHOWTO or a book such as Managing NFSand NISby Hal
Stern (O'Reilly).

Getting Acquainted with NIS

NIS keeps database information in files called maps, which contain key-value pairs. An example of a
key-value pair is auser's login name and the encrypted form of their login password. Maps are stored on
acentral host running the NIS server, from which clients may retrieve the information through various
RPC calls. Quite frequently, maps are stored in DBM files.[4]

The maps themselves are usually generated from master text filessuch as/ et ¢/ host s or

/ et c/ passwd. For somefiles, several maps are created, one for each search key type. For instance,
you may search the host s file for a hostname as well asfor an |P address. Accordingly, two NIS maps
are derived fromiit, called host s. bynane and host s. byaddr . Table 13-1 lists common maps and

the files from which they are generated.
Table 13-1. Some Standard NIS Maps and Corresponding Files

Master File Map(s) Description
/ etc/ hosts host s. bynane, host s. byaddr Maps | P addresses to host
names

/ et ¢/ net wor ks

net wor ks. bynane, net wor ks. byaddr

Maps | P network
addresses to network
names

/ et c/ passwd

passwd. bynane, passwd. byui d

Maps encrypted
passwords to user login
names

[etc/ group

gr oup. bynane, gr oup. bygi d

Maps Group IDs to group
names

/[etc/ services

servi ces. bynane, servi ces. bynunber

Maps service descriptions
to service names

/etclrpc

rpc. byname, r pc. bynunber

Maps Sun RPC service
numbersto RPC service
names

[et c/ protocol s

pr ot ocol s. bynane, pr ot ocol s. bynunber

Maps protocol numbers
to protocol names

fusr/libl/aliases

mai | . al i ases

Maps mail aliasesto mail
alias names

Y ou may find support for other files and mapsin other NIS packages. These usually contain information
for applications not discussed in this book, such asthe boot par ans map that is used by Sun's

bootparamd server.

For some maps, people commonly use nicknames, which are shorter and therefore easier to type. Note
that these nicknames are understood only by ypcat and ypmatch, two tools for checking your NIS
configuration. To obtain afull list of nicknames understood by these toals, run the following command:

$ ypcat -x
Use "passwd" for

Use "group" for "

"passwd. bynanme"
gr oup. bynane"

Use "networks" for "networks. byaddr”

Use "hosts" for "

host s. byaddr "

Use "protocols" for "protocols. bynunber™
Use "services" for "services. bynang”

Use "aliases" for

Use "ethers" for

“"mai | . al i ases”
"et hers. bynanme"

The NIS server program is traditionally called ypserv. For an average network, asingle server usually
suffices; large networks may choose to run severa of these on different machines and different segments
of the network to relieve the load on the server machines and routers. These servers are synchronized by
making one of them the master server, and the others slave servers. Maps are created only on the master
server's host. From there, they are distributed to all slaves.

We have been talking very vaguely about networks. There's adistinctive term in NIS that refersto a
collection of al hosts that share part of their system configuration data through NIS: the NIS domain.
Unfortunately, NIS domains have absolutely nothing in common with the domains we encountered in

DNS. To avoid any ambiguity throughout this chapter, we will therefore always specify which type of
domain we mean.

NIS domains have a purely administrative function. They are mostly invisible to users, except for the
sharing of passwords between all machines in the domain. Therefore, the name given to an NIS domain
isrelevant only to the administrators. Usually, any name will do, aslong asit is different from any other
NIS domain name on your local network. For instance, the administrator at the Virtual Brewery may
choose to create two NIS domains, one for the Brewery itself, and one for the Winery, which she names
brewery and winery respectively. Another quite common scheme isto simply use the DNS domain name
for NISaswell.

To set and display the NIS domain name of your host, you can use the domainname command. When
invoked without any argument, it prints the current NIS domain name; to set the domain name, you must
become the superuser:

domai nnane brewery

NIS domains determine which NIS server an application will query. For instance, the login program on a
host at the Winery should, of course, query only the Winery's NIS server (or one of them, if there are
several) for auser's password information, while an application on a Brewery host should stick with the
Brewery's server.

One mystery now remains to be solved: how does a client find out which server to connect to? The
simplest approach would use a configuration file that names the host on which to find the server.
However, this approach is rather inflexible because it doesn't allow clientsto use different servers (from
the same domain, of course) depending on their availability. Therefore, NIS implementations rely on a
special daemon called ypbind to detect a suitable NIS server in their NIS domain. Before performing any
NIS queries, an application first finds out from ypbind which server to use.

ypbind probes for servers by broadcasting to the local |P network; the first to respond is assumed to be
the fastest one and isused in all subsequent NIS queries. After acertain interval has elapsed, or if the
server becomes unavailable, ypbind probes for active servers again.

Dynamic binding is useful only when your network provides more than one NIS server. Dynamic
binding also introduces a security problem. ypbind blindly believes whoever answers, whether it be a
humble NIS server or amalicious intruder. Needless to say, this becomes especially troublesome if you
manage your password databases over NIS. To guard against this, the Linux ypbind program provides
you with the option of probing the local network to find the local NIS server, or configuring the NIS
server hostname in a configuration file.

Notes

[1] Swen can bereached at swen@uni-paderborn.de. The NIS clients are available as
yp- 1 i nux. tar. gz from metalab.unc.eduinsyst eni Net wor k.

[2] Peter may bereached at pen@lysator.liu.se. The current version of NYSis 1.2.8.
[3] Thorsten may be reached at kukuk @uni-paderborn.de.

[4] DBM isasimple database management library that uses hashing techniques to speed up search
operations. There's afree DBM implementation from the GNU project called gdbm which is part

of most Linux distributions.

Prev Home Next
Configuring Remote L oginand NIS Versus NIS+
Execution

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 14. The NetworkFile System Next

Mounting an NFS Volume

The mounting of NFS volumes closely resembles regular file systems. Invoke mount using the following
syntax:[1]
mount -t nfs nfs_volune | ocal _dir options

nfs_vol une isgivenasr enot e_host :r enot e_di r . Since this notation is unique to NFS
filesystems, you can leaveout the t nf s option.

There are a number of additional options that you can specify to mount upon mounting an NFS volume.
These may be given either following the o switch on the command line or in the options field of the

/ et c/ f st ab entry for the volume. In both cases, multiple options are separated by commas and must
not contain any whitespace characters. Options specified on the command line always override those
giveninthef st ab file.

Hereisasample entry from/ et c/ f st ab :

vol une nmount poi nt type options
news: /var/spool / news /var/spool/news nfs timeo=14,intr

This volume can then be mounted using this command:
nmount news:/var/spool / news

In the absence of anf st ab entry, NFS mount invocations ook alot uglier. For instance, suppose you
mount your users home directories from a machine named moonshot, which uses a default block size of
4 K for read/write operations. Y ou might increase the block size to 8 K to obtain better performance by
Issuing the command:

nmount noonshot:/ hone /home -0 rsize=8192, wsi ze=8192

Thelist of al valid optionsis described in its entirety inthenf s(5) manual page. The followingisa
partial list of optionsyou would probably want to use:

rsize=n and wsize=n

These specify the datagram size used by the NFS clients on read and write requests, respectively.
The default depends on the version of kernel, but is normally 1,024 bytes.

timeo=n
This sets the time (in tenths of a second) the NFS client will wait for arequest to complete. The

default valueis 7 (0.7 seconds). What happens after a timeout depends on whether you use the
hard or soft option.

hard

Explicitly mark this volume as hard-mounted. Thisis on by default. This option causes the server
to report a message to the console when amaor timeout occurs and continues trying indefinitely.

soft

Soft-mount (as opposed to hard-mount) the driver. This option causes an 1/O error to be reported to
the process attempting a file operation when amajor timeout occurs.

intr
Allow signals to interrupt an NFS call. Useful for aborting when the server doesn't respond.

Except for rsize and wsize, all of these options apply to the client's behavior if the server should become
temporarily inaccessible. They work together in the following way: Whenever the client sends a request
to the NFS server, it expects the operation to have finished after a given interval (specified in the timeout
option). If no confirmation is received within this time, a so-called minor timeout occurs, and the
operation is retried with the timeout interval doubled. After reaching a maximum timeout of 60 seconds,
amajor timeout occurs.

By default, a major timeout causes the client to print a message to the console and start all over again,
thistime with an initial timeout interval twice that of the previous cascade. Potentially, this may go on
forever. Volumes that stubbornly retry an operation until the server becomes available again are called
hard-mounted. The opposite variety, called soft-mounted, generate an I/O error for the calling process
whenever amajor timeout occurs. Because of the write-behind introduced by the buffer cache, this error
condition is not propagated to the process itself beforeit callsthewr i t e function the next time, so a
program can never be sure that a write operation to a soft-mounted volume has succeeded at all.

Whether you hard- or soft-mount a volume depends partly on taste but also on the type of information
you want to access from avolume. For example, if you mount your X programs by NFS, you certainly
would not want your X session to go berserk just because someone brought the network to a grinding halt
by firing up seven copies of Doom at the same time or by pulling the Ethernet plug for a moment. By
hard-mounting the directory containing these programs, you make sure that your computer waits until it
Is able to re-establish contact with your NFS server. On the other hand, non-critical data such as
NFS-mounted news partitions or FTP archives may also be soft-mounted, so if the remote machineis
temporarily unreachable or down, it doesn't hang your session. If your network connection to the server
isflaky or goes through aloaded router, you may either increase the initial timeout using the timeo
option or hard-mount the volumes. NFS volumes are hard-mounted by default.

Hard mounts present a problem because, by default, the file operations are not interruptible. Thus, if a
process attempts, for example, awrite to aremote server and that server is unreachable, the user's
application hangs and the user can't do anything to abort the operation. If you use the intr optionin
conjuction with a hard mount, any signals received by the process interrupt the NFS call so that users can
still abort hanging file accesses and resume work (athough without saving the file).

Usually, the rpc.mountd daemon in some way or other keeps track of which directories have been
mounted by what hosts. Thisinformation can be displayed using the showmount program, which is also
included in the NFS server package:

shownmount -e nponshot
Export list for |ocal host:
/[hone <anon cl nt>

showmount -d nponshot
Directories on | ocal host:
[hone

shownmount -a npbonshot

Al'l nount points on | ocal host:
| ocal host : / home

Notes

[1] Onedoesn't say filesystem because these are not proper filesystems.

Prev Home Next
The NetworkFile System Up The NFS Daemons

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 14. The NetworkFile System Next

The NFS Daemons

If you want to provide NFS service to other hosts, you have to run the rpc.nfsd and r pc.mountd
daemons on your machine. As RPC-based programs, they are not managed by inetd, but are started up at
boot time and register themselves with the portmapper; therefore, you have to make sure to start them
only after rpc.portmap isrunning. Usually, you'd use something like the following example in one of
your network boot scripts:

if [-x /fusr/sbin/rpc.nountd]; then
[usr/sbin/rpc. mountd; echo -n " nountd"

fi

if [-x /usr/sbin/rpc.nfsd]; then
/usr/sbin/rpc.nfsd; echo -n " nfsd"

fi

The ownership information of the files an NFS daemon provides to its clients usually contains only
numerical user and group IDs. If both client and server associate the same user and group names with
these numerical 1Ds, they are said to their share uid/gid space. For example, thisis the case when you use
NIS to distribute the passwd information to all hosts on your LAN.

On some occasions, however, the IDs on different hosts do not match. Rather than updating the uids and
gids of the client to match those of the server, you can use the r pc.ugidd mapping daemon to work
around the disparity. Using the map_daemon option explained alittle |later, you can tell rpc.nfsd to map
the server's uid/gid space to the client's uid/gid space with the aid of the rpc.ugidd on the client.
Unfortunately, the rpc.ugidd daemon isn't supplied on al modern Linux distributions, so if you need it
and yours doesn't have it, you will need to compile it from source.

rpc.ugidd is an RPC-based server that is started from your network boot scripts, just like rpc.nfsd and
rpc.mountd:

If [-x /fusr/sbin/rpc.ugidd]; then
/usr/sbin/rpc.ugidd; echo -n " ugi dd"
fi

Prev Home Next
Mounting an NFS Volume Up The exports File

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 14. The NetworkFile System Next

The exports File

Now well look at how we configure the NFS server. Specifically, we'll look at how we tell the NFS
server what filesystems it should make available for mounting, and the various parameters that control
the access clients will have to the filesystem. The server determines the type of access that is allowed to
the server'sfiles. The/ et c/ expor t s filelists the filesystems that the server will make available for
clientsto mount and use.

By default, rpc.mountd disallows all directory mounts, which is arather sensible attitude. If you wish to
permit one or more hosts to NFS-mount a directory, you must export it, that is, specify it in the
export s file. A samplefile may look like this:

exports file for vlager

/ hone vale(rw) vstout(rw) vlight(rw
/usr/ X11R6 val e(ro) vstout(ro) vlight(ro)
[usr/ TeX val e(ro) vstout(ro) vlight(ro)
/ val e(rw, no_r oot squash)

/[home/ftp (ro)

Each line defines a directory and the hosts that are allowed to mount it. A hosthame is usually afully
gualified domain name but may additionally contain the * and ? wildcards, which act the way they do
with the Bourne shell. For instance, | ab*. f oo. commatches |ab01.foo.com aswell as
|aboratory.foo.com. The host may also be specified using an | P address range in the form

addr ess/net nmask. If no hostname is given, aswith the/ hone/ f t p directory in the previous
example, any host matches and is allowed to mount the directory.

When checking a client host against the expor t s file, rpx.mountd looks up the client's hostname using
the get host byaddr call. With DNS, this call returns the client's canonical hostname, so you must
make sure not to use aliasesin expor t s. In an NIS environment the returned name is the first match
from the hosts database, and with neither DNS or NIS, the returned name is the first hosthame found in
the host s file that matches the client's address.

The hostname is followed by an optional comma-separated list of flags, enclosed in parentheses. Some of
the values these flags may take are:
secure
Thisflag insists that requests be made from areserved source port, i.e., one that is less than 1,024.
Thisflag is set by default.
insecure

Thisflag reverses the effect of the secure flag.
ro

This flag causes the NFS mount to be read-only. Thisflag is enabled by defauilt.
rw

This option mounts file hierarchy read-write.
root_sguash

This security feature denies the superusers on the specified hosts any special access rights by
mapping requests from uid 0 on the client to the uid 65534 (that is, -2) on the server. Thisuid
should be associated with the user nobody.

no_root_squash

Don't map requests from uid 0. This option is on by default, so superusers have superuser access to
your system's exported directories.

link_relative

This option converts absolute symbolic links (where the link contents start with a slash) into
relative links. This option makes sense only when a host's entire filesystem is mounted; otherwise,
some of the links might point to nowhere, or even worse, to files they were never meant to point
to. Thisoption is on by default.

link_absolute

This option leaves all symbolic links as they are (the normal behavior for Sun-supplied NFS
servers).

map_identity
This option tells the server to assume that the client uses the same uids and gids as the server. This
option is on by default.

map_daemon

This option tells the NFS server to assume that client and server do not share the same uid/gid
space. rpc.nfsd then builds alist that maps IDs between client and server by querying the client's
rpc.ugidd daemon.

map_static
This option allows you to specify the name of afile that contains a static map of uids and gids. For
example, map_stati c=/ et c/ nfs/vlight. map would specify the

[etc/ nfs/vlight. map fileasauid/gid map. The syntax of the map file is described in the
export s(5) manua page.

map_nis

This option causes the NIS server to do the uid and gid mapping.
anonuid and anongid

These options allow you to specify the uid and gid of the anonymous account. Thisis useful if you
have a volume exported for public mounts.

Any error in parsing theexpor t s fileisreported to syslogd 's daemon facility at level notice whenever

rpc.nfsd or rpc.mountd is started up.

Note that hostnames are obtained from the client's | P address by reverse mapping, so the resolver must be
configured properly. If you use BIND and are very security conscious, you should enable spoof checking
inyour host . conf file. We discuss these topics in Chapter 6.

Prev Home Next
The NFS Daemons Up Kernel-Based NFSv2 Server
Support

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 14. The NetworkFile System Next

Kernel-Based NFSv2 Server Support

The user-space NFS server traditionally used in Linux works reliably but suffers performance problems
when overworked. Thisis primarily because of the overhead the system call interface adds to its
operation, and because it must compete for time with other, potentially less important, user-space
processes.

The 2.2.0 kernel supports an experimental kernel-based NFS server developed by Olaf Kirch and further
developed by H.J. Lu, G. Allan Morris, and Trond Myklebust. The kernel-based NFS support provides a
significant boost in server performance.

In current release distributions, you may find the server tools available in prepackaged form. If not, you
can locate them at http://csua.berkeley.edu/~gam3/knfsd/. Y ou need to build a 2.2.0 kernel with the
kernel-based NFS daemon included in order to make use of the tools. Y ou can check if your kernel has
the NFS daemon included by looking to seeif the/ pr oc/ sys/ sunr pc/ nf sd_debug fileexists. If
it's not there, you may have to load the r pc.nfsd module using the modpr obe utility.

The kernel-based NFS daemon uses astandard / et ¢/ expor t s configuration file. The package
supplies replacement versions of the rpc.mountd and rpc.nfsd daemons that you start much the same
way as their userspace daemon counterparts.

Prev Home Next
The exports File Up Kernel-Based NFSv3 Server
Support

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 14. The NetworkFile System Next

Kernel-Based NFSv3 Server Support

The version of NFS that has been most commonly used is NFS Version 2. Technology has rolled on
ahead and it has begun to show weaknesses that only arevision of the protocol could overcome. Version
3 of the Network File System supports larger files and filesystems, adds significantly enhanced security,
and offers a number of performance improvements that most users will find useful.

Olaf Kirch and Trond Myklebust are developing an experimental NFSv3 server. It isfeatured in the
developer Version 2.3 kernels and a patch is available against the 2.2 kernel source. It builds on the
Version 2 kernel-based NFS daemon.

The patches are available from the Linux Kernel based NFS server home page at
http://csua.berkel ey.edu/~gam3/knfsd/.

Prev Home Next
Kernel-Based NFSv2 Server Up |PX and the NCP Filesystem
Support

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 3. Configuringthe
NetworkingHardware

Table of Contents
Kernel Confiquration

A Tour of Linux Network Devices
Ethernet Installation

The PLIP Driver

The PPP and SLIP Drivers

Other Network Types

We've been talking quite a bit about network interfaces and general TCP/IP issues, but we haven't really covered
what happens when the networking code in the kernel accesses a piece of hardware. In order to describe this
accurately, we have to talk alittle about the concept of interfaces and drivers.

First, of course, there's the hardware itself, for example an Ethernet, FDDI or Token Ring card: thisisadlice of
Epoxy cluttered with lots of tiny chips with strange numbers on them, sitting in aslot of your PC. Thisiswhat
we generally call aphysical device.

For you to use a network card, special functions have to be present in your Linux kernel that understand the
particular way this device is accessed. The software that implements these functions is called a device driver.
Linux has device drivers for many different types of network interface cards: ISA, PCI, MCA, EISA, Paradlel
port, PCMCIA, and more recently, USB.

But what do we mean when we say adriver handles adevice? Let's consider an Ethernet card. The driver hasto
be able to communicate with the peripheral’s on-card logic somehow: it has to send commands and data to the
card, while the card should deliver any datareceived to the driver.

In IBM-style personal computers, this communication takes place through a cluster of I/O addresses that are
mapped to registers on the card and/or through shared or direct memory transfers. All commands and data the
kernel sends to the card have to go to these addresses. |/O and memory addresses are generally described by
providing the starting or base address. Typical base addresses for | SA bus Ethernet cards are 0x280 or 0x300.
PCI bus network cards generally have their 1/O address automatically assigned.

Usually you don't have to worry about any hardware issues such as the base address because the kernel makes an
attempt at boot time to detect a card's location. Thisis called auto probing, which means that the kernel reads
several memory or 1/O locations and compares the data it reads there with what it would expect to seeif acertain
network card were installed at that location. However, there may be network cards it cannot detect
automatically; this is sometimes the case with cheap network cards that are not-quite clones of standard cards
from other manufacturers. Also, the kernel will normally attempt to detect only one network device when
booting. If you're using more than one card, you have to tell the kernel about the other cards explicitly.

Another parameter that you might have to tell the kernel about is the interrupt request line. Hardware

components usually interrupt the kernel when they need to be taken care of for example, when data has arrived
or aspecia condition occurs. In an ISA bus PC, interrupts may occur on one of 15 interrupt channels numbered
0, 1, and 3 through 15. The interrupt number assigned to a hardware component is called its interrupt request
number (IRQ).[1]

As described in Chapter 2, the kernel accesses a piece of network hardware through a software construct called

an interface. Interfaces offer an abstract set of functions that are the same across all types of hardware, such as
sending or receiving a datagram.

Interfaces are identified by means of names. In many other Unix-like operating systems, the network interfaceis
implemented as a special devicefileinthe/ dev/ directory. If you typethel s -1 as /dev/ command, you
will see what these device fileslook like. In the file permissions (second) column you will see that device files
begin with aletter rather than the hyphen seen for normal files. This character indicates the device type. The
most common device types are b, which indicates the device is a block device and handles whole blocks of data
with each read and write, and ¢, which indicates the device is a character device and handles data one character
at atime. Where you would normally see the file length in the Is output, you instead see two numbers, called the
major and minor device numbers. These numbers indicate the actual device with which the devicefileis
associated.

Each device driver registers a uniqgue major number with the kernel. Each instance of that device registers a
unique minor number for that major device. Thet t y interfaces, / dev/ t t y*, are acharacter mode device
indicated by the ¢ , and each have a major number of 4, but / dev/ t t y1 hasaminor number of 1, and

/ dev/ t t y2 hasaminor number of 2. Device files are very useful for many types of devices, but can be
clumsy to use when trying to find an unused device to open.

Linux interface names are defined internally in the kernel and are not devicefilesinthe/ dev directory. Some
typical device names are listed later in the section called A Tour of Linux Network Devices. The assignment of
interfaces to devices usually depends on the order in which devices are configured. For instance, the first
Ethernet card installed will become et h0, and the next will be et h1. SLIP interfaces are handled differently
from others because they are assigned dynamically. Whenever a SLIP connection is established, an interfaceis
assigned to the serial port.

Figure 3-1 illustrates the relationship between the hardware, device drivers, and interfaces.

Figure 3-1. Therelationship between drivers, interfaces, and hardware

Kear nal Netwaor king Goda
Mebwork
Inbariace
Dmsice
Oriver SHC Oriver 3Com Oriver
e [+ |HI |HI|H

When booting, the kernel displays the devices it detects and the interfaces it installs. The following is an excerpt
from typical boot messages:

Thi s processor honors the WP bit even when in supervisor node./
Good.

Swansea Uni versity Conputer Society NET3.035 for Linux 2.0

NET3: Uni x domain sockets 0.13 for Linux NET3.035.

Swansea Uni versity Conputer Society TCP/IP for NET3.034

| P Protocols: 1GW, | CwW, UDP, TCP

Swansea University Conputer Society |IPX 0.34 for NET3.035

| PX Portions Copyright (c) 1995 Cal dera, Inc.

Serial driver version 4.13 with no serial options enabl ed

tty0OO at Ox03f8 (irg = 4) is a 16550A

ttyOl at 0x02f8 (irg = 3) is a 16550A

CSLI P: code copyright 1989 Regents of the University of California

PPP: Version 2.2.0 (dynam c channel all ocati on)

PPP Dynam c channel allocation code copyright 1995 Cal dera, Inc.

PPP |ine discipline registered.

et hO: 3c509 at O0x300 tag 1, 10ObaseT port, address 00 a0 24 Oe e4 eO,/
| RQ 10.

3c509.c:1.12 6/4/97 becker @esdi s. gsfc. nasa. gov

Li nux Version 2.0.32 (root @erf) (gcc Version 2.7.2.1)

#1 Tue Cct 21 15:30:44 EST 1997

This example shows that the kernel has been compiled with TCP/IP enabled, and it includes driversfor SLIP,
CSLIP, and PPP. The third line from the bottom says that a 3C509 Ethernet card was detected and installed as
interface et hO. If you have some other type of network card perhaps a D-Link pocket adaptor, for example the
kernel will usualy print aline starting with its device name dl O in the D-Link example followed by the type of
card detected. If you have a network card installed but don't see any similar message, the kernel is unable to
detect your card properly. This situation will be discussed later in the section Ethernet Autoprobing.

Kernel Configuration

Most Linux distributions are supplied with boot disks that work for all common types of PC hardware.
Generally, the supplied kernel is highly modularized and includes nearly every possible driver. Thisisagreat
idea for boot disks, but is probably not what you'd want for long-term use. There isn't much point in having
drivers cluttering up your disk that you will never use. Therefore, you will generally roll your own kernel and
include only those drivers you actually need or want; that way you save alittle disk space and reduce thetime it
takes to compile anew kernel.

In any case, when running a Linux system, you should be familiar with building akernel. Think of it asaright of
passage, an affirmation of the one thing that makes free software as powerful asit is you have the source. It isn't
acase of, | haveto compile akernel, rather it'sacaseof, | can compile akernel. The basics of compiling a
Linux kernel are explained in Matt Welsh's book, Running Linux (O'Reilly). Therefore, we will discuss only
configuration options that affect networking in this section.

One important point that does bear repeating here is the way the kernel version numbering scheme works. Linux
kernels are numbered in the following format: 2. 2. 14. Thefirst digit indicates the major version number. This

digit changes when there are large and significant changes to the kernel design. For example, the kernel changed
from major 1 to 2 when the kernel obtained support for machines other than Intel machines. The second number
isthe minor version number. In many respects, this number is the most important number to look at. The Linux
development community has adopted a standard at which even minor version numbers indicate production, or
stable, kernels and odd minor version numbers indicate development, or unstable, kernels. The stable kernels are
what you should use on a machine that is important to you, as they have been more thoroughly tested. The
development kernels are what you should use if you are interested in experimenting with the newest features of
Linux, but they may have problems that haven't yet been found and fixed. The third number is simply
incremented for each release of aminor version.[2]

When running make menuconfig, you are presented with a text-based menu that offerslists of configuration
guestions, such as whether you want kernel math emulation. One of these queries asks you whether you want
TCP/IP networking support. Y ou must answer thiswith y to get akernel capable of networking.

Kernel Options in Linux 2.0 and Higher

After the general option section is complete, the configuration will go on to ask whether you want to include
support for various features, such as SCSI drivers or sound cards. The prompt will indicate what options are
available. You can press ? to obtain a description of what the option is actually offering. You'll aways have the
option of yes (y) to statically include the component in the kernel, or no (n) to exclude the component
completely. You'll also see the module (m) option for those components that may be compiled as a run-time
|oadable module. Modules need to be loaded before they can be used, and are useful for drivers of components
that you use infrequently.

The subsequent list of questions deal with networking support. The exact set of configuration optionsisin
constant flux due to ongoing development. A typical list of options offered by most kernel versions around 2.0
and 2.1 looks like this:

*

* Networ k devi ce support
*

Net wor k devi ce support (CONFI G NETDEVI CES) [Y/n/?]

Y ou must answer this question with y if you want to use any type of networking devices, whether they are
Ethernet, SLIP, PPP, or whatever. When you answer the question with y, support for Ethernet-type devicesis
enabled automatically. Y ou must answer additional questionsif you want to enable support for other types of
network drivers:

PLIP (parallel port) support (CONFIGPLIP) [Ny/m?] vy
PPP (point-to-point) support (CONFIG PPP) [Ny/m?] vy

* CCP conpressors for PPP are only built as nodul es.

SLIP (serial line) support (CONFIG SLIP) [Ny/m?] m
CSLI P conpressed headers (CONFI G SLI P_COVWPRESSED) [Ny/?] (NEW vy
Keepalive and linefill (CONFIG SLIP _SMART) [Ny/?] (NEW vy
Six bit SLIP encapsulation (CONFI G SLIP_MODE SLIP6) [Ny/?] (NEW vy

These questions concern the various link layer protocols that Linux supports. Both PPP and SLIP allow you to
transport | P datagrams across seria lines. PPP is actually a suite of protocols used to send network traffic across

serial lines. Some of the protocols that form PPP manage the way that you authenticate yourself to the dial-in
server, while others manage the way certain protocols are carried across the link PPP is not limited to carrying
TCP/IP datagrams; it may also carry other protocol such as IPX.

If you answer y or mto SLIP support, you will be prompted to answer the three questions that appear below it.
The compressed header option provides support for CSLIP, atechnique that compresses TCP/IP headersto as
little as three bytes. Note that this kernel option does not turn on CSLIP automatically; it merely provides the
necessary kernel functionsfor it. The Keepal i ve and |i nefil | option causesthe SLIP support to
periodically generate activity on the SLIP line to avoid it being dropped by an inactivity timer. The Si x bi t
SLI P encapsul ati on option allows you to run SLIP over lines and circuits that are not capable of
transmitting the whole 8-bit data set cleanly. Thisis similar to the uuencoding or binhex technique used to send
binary files by electronic mail.

PLIP provides away to send | P datagrams across a parallel port connection. It is mostly used to communicate
with PCs running DOS. On typical PC hardware, PLIP can be faster than PPP or SLIP, but it requires much
more CPU overhead to perform, so while the transfer rate might be good, other tasks on the machine may be
slow.

The following questions address network cards from various vendors. As more drivers are being developed, you
arelikely to see questions added to this section. If you want to build akernel you can use on a number of
different machines, or if your machine has more than one type of network card installed, you can enable more
than one driver:

Et hernet (10 or 100Moit) (CONFI G NET_ETHERNET) [Y/ n/?]

3COM cards (CONFI G_NET_VENDOR 3COM [Y/n/?]

3¢c501 support (CONFI G EL1) [Ny/m?]

3¢c503 support (CONFI G EL2) [Ny/ m ?]

3¢c509/ 3¢c579 support (CONFI G EL3) [Y/ i n/?]

3¢c590/ 3¢c900 series (592/595/597/900/905) "Vort ex/ Boonerang" support/
(CONFI G_VORTEX) [N y/m ?]

AVD LANCE and PCnet (AT1500 and NE2100) support (CONFI G LANCE) [N y/?]

AMD PCl net32 (VLB and PCl) support (CONFI G LANCE32) [N y/?] (NEW

Western Digital/SMC cards (CONFI G NET_VENDOR SMC) [N y/?]

WD80* 3 support (CONFI G WD80x3) [N y/m ?] (NEW

SMC Utra support (CONFIG ULTRA) [Ny/m ?] (NEW

SMC U tra32 support (CONFI G ULTRA32) [Ny/nm?] (NEW

SMC 9194 support (CONFI G SMC9194) [N y/m ?] (NEW

O her |1SA cards (CONFI G NET I SA) [N y/?]

Cabl etron E21xx support (CONFI G E2100) [N y/m?] (NEW

DEPCA, DE10x, DE200, DE201, DE202, DE422 support (CONFI G DEPCA) [Ny/m ?]/
(NEW

Et her WORKS 3 (DE203, DE204, DE205) support (CONFI G EWRK3) [N y/m ?] (NEW

Et her Express 16 support (CONFI G EEXPRESS) [N y/m ?] (NEW

HP PCLAN+ (27247B and 27252A) support (CONFI G HPLAN PLUS) [N y/m ?] (NEW

HP PCLAN (27245 and ot her 27xxx series) support (CONFI G HPLAN) [Ny/m ?]/
(NEW

HP 10/ 100VG PCLAN (1 SA, EISA, PCl) support (CONFI G HP100) [Ny/m ?] (NEW

NE2000/ NE100O support (CONFI G_NE2000) [Ny/m ?] (NEW

SK Gl6 support (CONFI G SK G16) [Ny/?] (NEW

El SA, VLB, PCl and on card controllers (CONFI G NET_EI SA) [Ny/?]
Apricot Xen-11 on card ethernet (CONFIG APRICOT) [Ny/m?] (NEW
I ntel EtherExpress/Pro 100B support (CONFI G_EEXPRESS PROLO0OB) [Ny/ i ?]/
(NEW

DE425, DE434, DE435, DE450, DE500 support (CONFI G DE4X5) [Ny/nml?] (NEW
DECchip Tulip (dc21x4x) PCl support (CONFI G DEC ELCP) [Ny/m ?] (NEW
Digi Intl. RghtSwtch SE-X support (CONFI G DGRS) [Ny/m?] (NEW
Pocket and portabl e adaptors (CONFI G NET_POCKET) [N y/?]
AT- LAN- TEC/ Real Tek pocket adaptor support (CONFI G ATP) [Ny/?] (NEW
D-Li nk DE600 pocket adaptor support (CONFI G DE600) [Ny/m ?] (NEW
D-Li nk DE620 pocket adaptor support (CONFI G DE620) [Ny/m ?] (NEW
Token Ring driver support (CONFIG TR) [Ny/?]
| BM Tropi ¢ chi pset based adaptor support (CONFIG IBMIR) [N y/m?] (NEW
FDDI driver support (CONFIG FDDI) [Ny/?]
Di gital DEFEA and DEFPA adapter support (CONFI G DEFXX) [Ny/?] (NEW
ARCnet support (CONFI G ARCNET) [N y/ m ?]

Enabl e arcOe (ARCnet "Ether-Encap" packet format) (CONFI G ARCNET _ETH)/

[N'y/?] (NEW
Enabl e arcOs (ARCnet RFC1051 packet format) (CONFI G ARCNET _1051)/

[Ny/?] (NEW

Finally, in the file system section, the configuration script will ask you whether you want support for NFS, the
networking file system. NFS lets you export file systems to severa hosts, which makes the files appear asif they
were on an ordinary hard disk attached to the host:

NFS file system support (CONFI G NFS FS) [vy]
We describe NFSin detail in Chapter 14.

Kernel Networking Options in Linux 2.0.0 and Higher

Linux 2.0.0 marked a significant change in Linux Networking. Many features were made a standard part of the
Kernel, such as support for IPX. A number of options were aso added and made configurable. Many of these
options are used only in very specia circumstances and we won't cover them in detail. The Networking
HOWTO probably addresses what is not covered here. Welll list a number of useful optionsin this section, and
explain when you'd want to use each one:

Basics
To use TCP/IP networking, you must answer this question withy. If you answer with n, however, you
will still be able to compile the kernel with IPX support:

Net wor ki ng options --->
[*] TCP/ 1P networking

Gateways

Y ou have to enable this option if your system acts as a gateway between two networks or between a LAN
and aSLIPlink, etc. It doesn't hurt to enable this by default, but you may want to disable it to configure a
host as a so-called firewall. Firewalls are hosts that are connected to two or more networks, but don't route

traffic between them. They're commonly used to provide users with Internet access at minimal risk to the
internal network. Users are allowed to log in to the firewall and use Internet services, but the company's
machines are protected from outside attacks because incoming connections can't cross the firewall
(firewalls are covered in detail in Chapter 9):

[*] 1P: forwarding/gatewaying
Virtual hosting

These options together allow to you configure more than one |P address onto an interface. Thisis
sometimes useful if you want to do virtual hosting, through which a single machine can be configured to
look and act as though it were actually many separate machines, each with its own network personality.
WEe'I talk more about IP aliasing in a moment:

[*] Network aliasing
<*> | P. aliasing support

Accounting

This option enables you to collect data on the volume of IP traffic leaving and arriving at your machine
(we cover thisis detail in Chapter 10):

[*] I P: accounting
PC hug

This option works around an incompatibility with some versions of PC/TCP, acommercial TCP/IP
implementation for DOS-based PCs. If you enable this option, you will still be able to communicate with
normal Unix machines, but performance may be hurt over slow links;

--- (it 1s safe to | eave these untouched)
[*] I P: PC/ITCP conpatibility node

Diskless booting

This function enables Rever se Address Resolution Protocol (RARP). RARP is used by diskless clients and
X terminals to request their | P address when booting. Y ou should enable RARP if you plan to serve this
sort of client. A small program called rarp, included with the standard networking utilities, is used to add
entries to the kernel RARP table:

<*> | P: Reverse ARP
MTU

When sending data over TCP, the kernel has to break up the stream into blocks of datato passto IP. The
size of the block is called the Maximum Transmission Unit, or MTU. For hosts that can be reached over a
local network such as an Ethernet, it istypical to use an MTU as large as the maximum length of an
Ethernet packet 1,500 bytes. When routing | P over a Wide Area Network like the Internet, it is preferable
to use smaller-sized datagrams to ensure that they don't need to be further broken down along the route
through a process called I P fragmentation.[3] The kernel is able to automatically determine the smallest

MTU of an IP route and to automatically configure a TCP connection to useit. This behavior is on by
default. If you answer y to this option this feature will be disabled.

If you do want to use smaller packet sizes for data sent to specific hosts (because, for example, the data
goes through a SLIP link), you can do so using the mss option of the route command, which is briefly
discussed at the end of this chapter:

[] IP. Dsable Path MU Di scovery (normally enabl ed)

Security feature

The IP protocol supports a feature called Source Routing. Source routing allows you to specify the route a
datagram should follow by coding the route into the datagram itself. This was once probably useful before
routing protocols such as RIP and OSPF became commonplace. But today it's considered a security threat
because it can provide clever attackers with away of circumventing certain types of firewall protection by
bypassing the routing table of arouter. Y ou would normally want to filter out source routed datagrams, so
this option is normally enabled:

[*] IP: Drop source routed franes

Novell support

This option enables support for IPX, the transport protocol Novell Networking uses. Linux will function
quite happily as an IPX router and this support is useful in environments where you have Novell
fileservers. The NCP filesystem also requires |PX support enabled in your kernel; if you wish to attach to
and mount your Novell filesystems you must have this option enabled (we'll dicuss IPX and the NCP

filesystem in Chapter 15):
<*> The | PX protocol

Amateur radio

These three options select support for the three Amateur Radio protocols supported by Linux: AX.25,
NetRom and Rose (we don't describe them in this book, but they are covered in detail in the AX25
HOWTO):

<*> Amat eur Radi o AX. 25 Level 2
<*> Amat eur Radi o NET/ ROM
<*> Amat eur Radio X. 25 PLP (Rose)

Linux supports another driver type: the dummy driver. The following question appears toward the start of
the device-driver section:

<*> Dummy net driver support

The dummy driver doesn't really do much, but it is quite useful on standalone or PPP/SLIP hosts. It is
basically a masqueraded loopback interface. On hosts that offer PPP/SLIP but have no other network
interface, you want to have an interface that bears your IP address all the time. Thisis discussed in alittle
more detail in the section called The Dummy Interface in Chapter 5" in Chapter 5. Note that today you can
achieve the same result by using the IP alias feature and configuring your IP address as an alias on the
loopback interface.

Notes

[
[2]

IRQs 2 and 9 are the same because the IBM PC design has two cascaded interrupt processors with
eight IRQs each; the secondary processor is connected to IRQ 2 of the primary one.

People should use development kernels and report bugs if they are found; thisis avery useful
thing to do if you have a machine you can use as a test machine. Instructions on how to report bugs
aredetailed in/ usr/ src/ | i nux/ REPORTI NG BUGS in the Linux kernel source.

[3] Remember, the IP protocol can be carried over many different types of network, and not all
network types will support packet sizes as large as Ethernet.

Prev Home Next
Resolving Host Names A Tour of Linux Network Devices

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 6. Name Service and Resolver
Configuration

Table of Contents
The Resolver Library

How DNS Works
Running named

Aswe discussed in Chapter 2, TCP/IP networking may rely on different schemes to convert names into

addresses. The simplest way isahost table stored in/ et ¢/ host s. Thisisuseful only for small LANs
that are run by one single administrator and otherwise have no IP traffic with the outside world. The
format of the host s file has already been described in Chapter 5.

Alternatively, you can use the Berkeley Internet Name Domain service (BIND) for resolving hostnames
to IP addresses. Configuring BIND can be areal chore, but once you've done it, you can easily make
changes in the network topology. On Linux, as on many other Unixish systems, name serviceis provided
through a program called named. At startup, it loads a set of master filesinto itsinternal cache and waits
for queries from remote or local user processes. There are different ways to set up BIND, and not all
require you to run aname server on every host.

This chapter can do little more than give a rough sketch of how DNS works and how to operate a name
server. It should be sufficient if you have asmall LAN and an Internet uplink. For the most current
information, you may want to check the documentation contained in the BIND source package, which
supplies manual pages, release notes, and the BIND Operator's Guide (BOG). Don't let this name scare
you off; it's actually avery useful document. For a more comprehensive coverage of DNS and associated
issues, you may find DNSand BIND by Paul Albitz and Cricket Liu (O'Reilly) auseful reference. DNS
guestions may be answered in a newsgroup called comp.protocols.tcp-ip.domains. For technical details,
the Domain Name System is defined by RFC numbers 1033, 1034, and 1035.

The Resolver Library

The term resolver refers not to a specia application, but to the resolver library. Thisis a collection of
functions that can be found in the standard C library. The central routines are get host bynane(2)
and get host byaddr (2) , whichlook up all 1P addresses associated with a host name, and vice
versa. They may be configured to ssimply look up the information in host s, to query anumber of DNS
name servers, or to use the hosts database of Network Information Service (NIS).

The resolver functions read configuration files when they are invoked. From these configuration files,

they determine what databases to query, in which order, and other details relevant to how you've
configured your environment. The older Linux standard library, libc, used/ et ¢/ host . conf asits
master configuration file, but Version 2 of the GNU standard library, glibc, uses

/ et c/ nsswi t ch. conf . Well describe each in turn, since both are commonly used.

The host.conf File

The/ et c/ host . conf tellsthe older Linux standard library resolver functions which servicesto use,
and in what order.

Optionsin host . conf must appear on separate lines. Fields may be separated by white space (spaces
or tabs). A hash sign (#) introduces a comment that extends to the next newline. The following options
are available:

order

This option determines the order in which the resolving services are tried. Valid options are bind
for querying the name server, host s for lookupsin/ et ¢/ host s, and nisfor NIS lookups. Any
or al of them may be specified. The order in which they appear on the line determines the order in
which the respective services are tried.

multi

mul ti takeson or off asoptions. This determinesif ahost in/ et ¢/ host s isallowed to have
severa |P addresses, which is usually referred to as being multi-homed. The default is off. This
flag has no effect on DNS or NIS queries.

nospoof

Aswelll explain in the section the section called Reverse Lookups, DNS allows you to find the

hostname belonging to an IP address by using the in-addr.arpa domain. Attempts by name servers
to supply afalse hostname are called spoofing. To guard against this, the resolver can be
configured to check whether the original IP addressisin fact associated with the obtained
hostname. If not, the name isregjected and an error isreturned. This behavior isturned on by
setting nospoof on.

dert

This option takes on or off as arguments. If it isturned on, any spoof attempts will cause the
resolver to log a message to the syslog facility.

trim

This option takes an argument specifying a domain name that will be removed from hostnames
before lookup. Thisisuseful for host s entries, for which you might only want to specify
hostnames without alocal domain. If you specify your local domain name here, it will be removed
from alookup of a host with the local domain name appended, thus allowing the lookup in

/ et ¢/ host s to succeed. The domain name you add must end with the (.) character (e.g.,

11 nux. org. au.) iftri mistowork correctly.

trim options accumulate; you can consider your host as being local to several domains.

A samplefilefor vliager is shown in Example 6-1.

Example 6-1. Sample host.conf File

[etc/ host. conf

We have naned running, but no NIS (yet)
or der bi nd, host s

Allow nultiple addrs

mul t i on

Quard agai nst spoof attenpts

nospoof on

Triml ocal domain (not really necessary).
trim vbrew. com

Resolver environment variables

The settings from host . conf may be overridden using a number of environment variables:
RESOLV_HOST_CONF

Thisvariable specifiesafile to beread instead of / et ¢/ host . conf.
RESOLV_SERV_ORDER

This variable overrides the order option givenin host . conf . Services are given as hosts, bind,
and nis, separated by a space, comma, colon, or semicolon.

RESOLV_SPOOF CHECK

This variable determines the measures taken against spoofing. It is completely disabled by off. The
values warn and warn off enable spoof checking by turning logging on and off, respectively. A
value of * turns on spoof checks, but leaves the logging facility as defined in host . conf .

RESOLV_MULTI

This variable uses a value of on or off to override the multi options from host . conf .
RESOLV_OVERRIDE_TRIM_DOMAINS

This variable specifies alist of trim domains that override those givenin host . conf . Trim

domains were explained earlier when we discussed the trim keyword.
RESOLV_ADD_TRIM_DOMAINS

This variable specifiesalist of trim domains that are added to those givenin host . conf .

The nsswitch.conf File

Version 2 of the GNU standard library includes a more powerful and flexible replacement for the older
host . conf mechanism. The concept of the name service has been extended to include avariety of
different types of information. Configuration options for al of the different functions that query these
databases have been brought back into a single configuration file; thensswi t ch. conf file.

Thensswi t ch. conf fileallowsthe system administrator to configure awide variety of different
databases. We'll limit our discussion to options that relate to host and network | P address resolution. Y ou
can easily find more information about the other features by reading the GNU standard library
documentation.

Optionsinnsswi t ch. conf must appear on separate lines. Fields may be separated by whitespace
(spaces or tabs). A hash sign (#) introduces a comment that extends to the next newline. Each line
describes a particular service; hostname resolution is one of these. Thefirst field in each line is the name
of the database, ending with a colon. The database name associated with host address resolution is hosts.
A related database is networks, which is used for resolution of network names into network addresses.
The remainder of each line stores options that determine the way lookups for that database are
performed.

The following options are available:
dns

Use the Domain Name System (DNS) service to resolve the address. This makes sense only for
host address resolution, not network address resolution. This mechanism uses the
/ et c/ resol v. conf filethat we'll describe later in the chapter.

files
Search alocal file for the host or network name and its corresponding address. This option uses the
traditional / et ¢/ host s and/ et ¢/ net wor k files.

nis or nisplus

Use the Network Information System (NIS) to resolve the host or network address. NIS and NI S+
are discussed in detail in Chapter 13.

The order in which the services to be queried are listed determines the order in which they are queried
when attempting to resolve a name. The query-order list isin the service description in the

/ et c/ nssw tch. conf file. The services are queried from left to right and by default searching stops
when aresolution is successful.

A simple example of host and network database specification that would mimic our configuration using
the older libc standard library is shown in Example 6-2.

Example 6-2. Sample nsswitch.conf File
[etc/nssw tch. conf

#

Exanpl e configuration of GNU Nane Service Switch functionality.

Information about this file is available in the "|ibc6-doc' package.
host s: dns files

net wor ks: files

This example causes the system to look up hosts first in the Domain Name System, and the
/ et c/ host s file, if that can't find them. Network name lookups would be attempted using only the

/ et ¢/ net wor ks file.

Y ou are able to control the lookup behavior more precisely using action items that describe what action
to take given the result of the previous lookup attempt. Action items appear between service
specifications, and are enclosed within square brackets, []. The general syntax of the action statement is:

[[!] status = action ...]

There are two possible actions:
return

Controls returns to the program that attempted the name resolution. If alookup attempt was
successful, the resolver will return with the details, otherwise it will return a zero result.

continue

The resolver will move on to the next servicein the list and attempt resolution using it.

The optional (!) character specifies that the status value should be inverted before testing; that is, it
means not.

The available status values on which we can act are:
success

The requested entry was found without error. The default action for this statusis return.
notfound

There was no error in the lookup, but the target host or network could not be found. The default
action for this status is continue.

unavail
The service queried was unavailable. This could mean that the host s or net wor ks filewas

unreadable for the files service or that a name server or NIS server did not respond for the dns or
nis services. The default action for this status is continue.

tryagain

This status means the service is temporarily unavailable. For the files files service, this would
usually indicate that the relevant file was locked by some process. For other services, it may mean
the server was temporarily unable to accept connections. The default action for this statusis
continue.

A simple example of how you might use this mechanism is shown in Example 6-3.

Example 6-3. Sample nsswitch.conf File Using an Action Statement

[/ etc/ nssw tch. conf

#

Exanpl e configuration of GNU Nane Service Switch functionality.

Information about this file is available in the "|ibc6-doc' package.
host s: dns [! UNAVAI L=return] files

net wor ks: files

This example attempts host resolution using the Domain Name Service system. If the return statusis
anything other than unavailable, the resolver returns whatever it has found. If, and only if, the DNS
lookup attempt returns an unavailable status, the resolver attemptsto usethelocal / et ¢/ host s. This
means that we should use the host s file only if our name server is unavailable for some reason.

Configuring Name Server Lookups Using
resolv.conf

When configuring the resolver library to use the BIND name service for host lookups, you also have to
tell it which name serversto use. Thereis a separate file for thiscalled r esol v. conf . If thisfile does
not exist or is empty, the resolver assumes the name server is on your local host.

To run aname server on your local host, you have to set it up separately, aswill be explained in the
following section. If you are on alocal network and have the opportunity to use an existing name server,
this should always be preferred. If you use adialup IP connection to the Internet, you would normally
specify the name server of your service provider inther esol v. conf file.

The most important optioninr esol v. conf isname server, which gives the IP address of aname
server to use. If you specify several name servers by giving the name server option several times, they
aretried in the order given. Y ou should therefore put the most reliable server first. The current
implementation allows you to have up to three name server statementsinr esol v. conf . If no name
server option is given, the resolver attempts to connect to the name server on the local host.

Two other options, domain and search, let you use shortcut names for hosts in your local domain.
Usually, when just telnetting to another host in your local domain, you don't want to type in the fully
gualified hostname, but use a name like gauss on the command line and have the resolver tack on the
mathematics.groucho.edu part.

Thisisjust the domain statement's purpose. It lets you specify a default domain name to be appended
when DNSfailsto look up a hostname. For instance, when given the name gauss, the resolver failsto
find gauss. in DNS, because there is no such top-level domain. When given mathematics.groucho.edu as
adefault domain, the resolver repeats the query for gauss with the default domain appended, thistime
succeeding.

That'sjust fine, you may think, but as soon you get out of the Math department's domain, you're back to
those fully qualified domain names. Of course, you would also want to have shorthands like
guark.physics for hosts in the Physics department's domain.

Thisiswhen the search list comesin. A search list can be specified using the search option, whichisa
generaization of the domain statement. Where the latter gives a single default domain, the former
specifies awhole list of them, each to be tried in turn until alookup succeeds. This list must be separated
by blanks or tabs.

The search and domain statements are mutually exclusive and may not appear more than once. If neither
option is given, the resolver will try to guess the default domain from the local hostname using the

get domai nnane(2) system call. If the local hostname doesn't have a domain part, the default domain
will be assumed to be the root domain.

If you decide to put a search statement into r esol v. conf , you should be careful about what domains
you add to thislist. Resolver libraries prior to BIND 4.9 used to construct a default search list from the
domain name when no search list was given. This default list was made up of the default domain itself,
plus al of its parent domains up to the root. This caused some problems because DNS requests wound up
at name servers that were never meant to see them.

Assume you're at the Virtual Brewery and want to log in to foot.groucho.edu. By a slip of your fingers,
you mistype foot as foo, which doesn't exist. GMU's name server will therefore tell you that it knows no
such host. With the old-style search list, the resolver would now go on trying the name with vbrew.com
and com appended. The latter is problematic because groucho.edu.com might actually be avalid domain
name. Their name server might then even find foo in their domain, pointing you to one of their hosts
which clearly was not intended.

For some applications, these bogus host |ookups can be a security problem. Therefore, you should
usually limit the domains on your search list to your local organization, or something comparable. At the
Mathematics department of Groucho Marx University, the search list would commonly be set to
maths.groucho.edu and groucho.edu.

If default domains sound confusing to you, consider this sampler esol v. conf filefor the Virtual
Brewery:

[etc/resolv. conf
Qur donmi n

domai n vbrew. com

#

We use vl ager as central nane server:
nane server 172.16.1.1

When resolving the name vale, the resolver looks up vale and, failing this, vale.vbrew.com.

Resolver Robustness

When running a LAN inside alarger network, you definitely should use central name serversif they are
available. The name servers develop rich caches that speed up repeat queries, since all queries are
forwarded to them. However, this scheme has a drawback: when afire destroyed the backbone cable at
Olaf's university, no more work was possible on his department's LAN because the resolver could no
longer reach any of the name servers. This situation caused difficulties with most network services, such

as X terminal logins and printing.

Although it is not very common for campus backbones to go down in flames, one might want to take
precautions against cases like this.

One option isto set up alocal name server that resolves hostnames from your local domain and forwards
all queriesfor other hostnames to the main servers. Of course, thisis applicable only if you are running
your own domain.

Alternatively, you can maintain a backup host table for your domainor LAN in/ et ¢/ host s. Thisis
very ssimple to do. You simply ensure that the resolver library queries DNSfirst, and the hosts file next.
Inan/ et ¢/ host . conf fileyou'd use order bind,hosts, andinan/ et ¢/ nsswi t ch. conf file
you'd use hosts: dnsfiles, to make the resolver fall back to the hosts file if the central name server is
unreachable.

Prev Home Next
Checking the ARP Tables How DNS Works

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 2. Issues of TCP/IP Networking Next

Resolving Host Names

As described previously, addressing in TCP/IP networking, at least for IP Version 4, revolves around
32-bit numbers. However, you will have a hard time remembering more than afew of these numbers.
Therefore, hosts are generally known by ordinary names such as gauss or strange. It becomes the
application’s duty to find the I P address corresponding to this name. This processis called hostname
resolution.

When an application needs to find the IP address of a given host, it relies on the library functions

get host bynane(3) and get host byaddr (3) . Traditionally, these and a number of related
procedures were grouped in a separate library called the resolverlibrary ; on Linux, these functions are
part of the standard | i bc. Colloguially, this collection of functionsistherefore referred to as the
resolver. Resolver name configuration is detailed in Chapter 6.

On asmall network like an Ethernet or even a cluster of Ethernets, it is not very difficult to maintain
tables mapping hostnames to addresses. Thisinformation is usually kept in afilenamed/ et ¢/ host s.
When adding or removing hosts, or reassigning addresses, all you have to do is update the host s fileon
al hosts. Obvioudly, thiswill become burdensome with networks that comprise more than a handful of
machines,

One solution to this problem is the Network Information System (NIS), developed by Sun Microsystems,
colloquially called YP or Y ellow Pages. NIS storesthe host s file (and other information) in a database
on amaster host from which clients may retrieve it as needed. Still, this approach is suitable only for
medium-sized networks such as LANS, because it involves maintaining the entire host s database
centrally and distributing it to all servers. NIS installation and configuration is discussed in detail in

Chapter 13.

On the Internet, address information was initially stored in asingle HOSTS. TXT database, too. Thisfile
was maintained at the Network Information Center (NIC), and had to be downloaded and installed by all
participating sites. When the network grew, several problems with this scheme arose. Besides the
administrative overhead involved in installing HOSTS. TXT regularly, the load on the servers that
distributed it became too high. Even more severe, all names had to be registered with the NIC, which
made sure that no name was issued twice.

Thisiswhy a new name resolution scheme was adopted in 1994: the Domain Name System. DNS was
designed by Paul Mockapetris and addresses both problems simultaneously. We discuss the Domain
Name System in detail in Chapter 6.

Prev Home Next

The Internet Control Message Up Configuringthe
Protocol NetworkingHardware

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 3. Configuringthe NetworkingHardware Next

A Tour of Linux Network Devices

The Linux kernel supports a number of hardware drivers for various types of equipment. This section
gives a short overview of the driver families available and the interface names they use.

Thereisanumber of standard names for interfacesin Linux, which are listed here. Most drivers support
more than one interface, in which case the interfaces are numbered, asinet hO and et h1:

| o
Thisisthelocal loopback interface. It is used for testing purposes, as well as a couple of network
applications. It works like a closed circuit in that any datagram written to it will immediately be

returned to the host's networking layer. There's always one loopback device present in the kernel,
and there'slittle sense in having more.

et hO,et hl, &

These are the Ethernet card interfaces. They are used for most Ethernet cards, including many of
the parallel port Ethernet cards.

trO,trl, &
These are the Token Ring card interfaces. They are used for most Token Ring cards, including
non-1BM manufactured cards.

sl0,sl1,&

These arethe SLIP interfaces. SLIP interfaces are associated with serial linesin the order in which
they are allocated for SLIP.

pPppO, pppl, &

These are the PPP interfaces. Just like SLIP interfaces, a PPP interface is associated with a seria
line onceit is converted to PPP mode.

plip0,plipl,&

These are the PLIP interfaces. PLIP transports | P datagrams over paralel lines. The interfaces are
allocated by the PLIP driver at system boot time and are mapped onto parallel ports. In the 2.0.x
kernels there is adirect relationship between the device name and the I/O port of the parallel port,
but in later kernels the device names are allocated sequentially, just as for SL1P and PPP devices.

ax0, axl, &

These arethe AX.25 interfaces. AX.25 isthe primary protocol used by amateur radio operators.
AX.25 interfaces are allocated and mapped in asimilar fashion to SLIP devices.

There are many other types of interfaces available for other network drivers. We've listed only the most
COMIMon ONes.

During the next few sections, we will discuss the details of using the drivers described previously. The
Networking HOWTO provides details on how to configure most of the others, and the AX25 HOWTO
explains how to configure the Amateur Radio network devices.

Prev Home Next

Configuringthe Up Ethernet Installation
NetworkingHardware

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 3. Configuringthe NetworkingHardware Next

Ethernet Installation

The current Linux network code supports alarge variety of Ethernet cards. Most drivers were written by
Donald Becker, who authored afamily of drivers for cards based on the National Semiconductor 8390
chip; these have become known as the Becker Series Drivers. Many other devel opers have contributed
drivers, and today there are few common Ethernet cards that aren't supported by Linux. The list of
supported Ethernet cardsis growing all thetime, so if your card isn't supported yet, chances are it will be
soon.

Sometime earlier in Linux's history we would have attempted to list all supported Ethernet cards, but that
would now take too much time and space. Fortunately, Paul Gortmaker maintains the Ethernet HOWTO,
which lists each of the supported cards and provides useful information about getting each of them
running under Linux.[1] It is posted monthly to the comp.os.linux.answers newsgroup, and is al'so

available on any of the Linux Documentation Project mirror sites.

Even if you are confident you know how to install a particular type of Ethernet card in your machine, it is
often worthwhile taking alook at what the Ethernet HOWTO has to say about it. Y ou will find
information that extends beyond simple configuration issues. For example, it could save you alot of
headaches to know the behavior of some DMA-based Ethernet cards that use the same DMA channel as
the Adaptec 1542 SCSI controller by default. Unless you move one of them to adifferent DMA channel,
you will wind up with the Ethernet card writing packet data to arbitrary locations on your hard disk.

To use any of the supported Ethernet cards with Linux, you may use a precompiled kernel from one of
the major Linux distributions. These generally have modules available for all of the supported drivers,
and the installation process usually allows you to select which drivers you want loaded. In the long term,
however, it's better to build your own kernel and compile only those drivers you actually need; this saves
disk space and memory.

Ethernet Autoprobing

Many of the Linux Ethernet drivers are smart enough to know how to search for the location of your
Ethernet card. This saves you having to tell the kernel where it is manually. The Ethernet HOWTO lists
whether a particular driver uses autoprobing and in which order it searches the I/O address for the card.

There are three limitations to the autoprobing code. First, it may not recognize all cards properly. Thisis
especially true for some of the cheaper clones of common cards. Second, the kernel won't autoprobe for
more than one card unless specifically instructed. This was a conscious design decision, asit is assumed
you will want to have control over which card is assigned to which interface. The best way to do this
reliably isto manually configure the Ethernet cards in your machine. Third, the driver may not probe at
the address that your card is configured for. Generally speaking, the drivers will autoprobe at the
addresses that the particular device is capable of being configured for, but sometimes certain addresses

areignored to avoid hardware conflicts with other types of cards that commonly use that same address.

PCI network cards should be reliably detected. But if you are using more than one card, or if the
autoprobe should fail to detect your card, you have away to explicitly tell the kernel about the card's base
address and name.

At boot time you can supply arguments and information to the kernel that any of the kernel components
may read. This mechanism allows you to pass information to the kernel that Ethernet drivers can use to
locate your Ethernet hardware without making the driver probe.

If you use lilo to boot your system, you can pass parameters to the kernel by specifying them through the
append optioninthel i | 0. conf file. To inform the kernel about an Ethernet device, you can pass the
following parameters:

et her=irq, base_addr, [parani,] [par an2,] nane

Thefirst four parameters are numeric, while the last is the device name. Thei r q, base_addr, and
name parameters are required, but the two par amparameters are optional. Any of the numeric values
may be set to zero, which causes the kernel to determine the value by probing.

Thefirst parameter sets the IRQ assigned to the device. By default, the kernel will try to autodetect the
device's IRQ channel. The 3c503 driver, for example, has a special feature that selects afree IRQ from
thelist 5, 9, 3, 4 and configures the card to use thisline. Thebase_addr parameter givesthe 1/O base
address of the card; avalue of zero tells the kernel to probe the addresses listed above.

Different drivers use the next two parameters differently. For shared-memory cards, such asthe
WD80x3, they specify starting and ending addresses of the shared memory area. Other cards commonly
use par amll to set the level at which debugging information is displayed. Values of 1 through 7 denote
increasing levels of verbosity, while 8 turns them off altogether; O denotes the default. The 3c503 driver
uses par ant to choose between the internal transceiver (default) or an external transceiver (avalue of
1). The former uses the card's BNC connector; the latter usesits AUI port. The par amarguments need
not be included at al if you don't have anything special to configure.

The first non-numeric argument is interpreted by the kernel as the device name. Y ou must specify a
device name for each Ethernet card you describe.

If you have two Ethernet cards, you can have Linux autodetect one card and pass the second card's
parameters with lilo, but you'll probably want to manually configure both cards. If you decide to have the
kernel probe for one and manually configure the second, you must make sure the kernel doesn't
accidentally find the second card first, or else the other one won't be registered at all. Y ou do this by
passing lilo areserve option, which explicitly tells the kernel to avoid probing the I/O space taken up by
the second card. For instance, to make Linux install a second Ethernet card at 0x300 aset h1, you
would pass the following parameters to the kernel:

reserve=0x300, 32 et her =0, 0x300, et hl

The reserve option makes sure no driver accesses the second card's 1/O space when probing for some
device. Y ou may also use the kernel parametersto override autoprobing for et hO :

reser ve=0x340, 32 et her =0, 0x340, et hO

Y ou can turn off autoprobing altogether. Y ou might do this, for example, to stop akernel probing for an
Ethernet card you might have temporarily removed. Disabling autoprobing is as ssmple as specifying a
base addr argument of 1:

et her=0, -1, ethO

To supply these parametersto the kernel at boot time, you enter the parameters at the lilo "boot:" prompt.
To havelilo giveyou the"boot : " at the prompt, you must press any one of the Control, Alt or Shift
keyswhilelilo isbooting. If you press the Tab key at the prompt, you will be presented with alist of
kernels that you may boot. To boot a kernel with parameters supplied, enter the name of the kernel you
wish to boot, followed by a space, then followed by the parameters you wish to supply. When you press
the Enter key, lilo will load that kernel and boot it with the parameters you've supplied.

To make this change occur automatically on each reboot, enter the parametersinto the
[etc/lilo.conf usingtheappend= keyword. An example might look like this:

boot =/ dev/ hda

r oot =/ dev/ hda2

I nstal | =/ boot/boot. b
map=/ boot / map

vga=nor nal

del ay=20
append="et her =10, 300, et h0"

| mge=/ boot/vm i nuz-2.2.14
| abel =2. 2. 14
read-only

After you'veedited | i | 0. conf , you must rerun the lilo command to activate the change.
Notes

[1] Paul can be reached at gpgl09@rsphyl.anu.edu.au.

Prev Home Next
A Tour of Linux Network Devices Up The PLIP Driver

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 3. Configuringthe NetworkingHardware Next

The PLIP Driver

Parallel LineIP (PLIP) is acheap way to network when you want to connect only two machines. It uses
aparallel port and a special cable, achieving speeds of 10 kilobytes per second to 20 kilobytes per
second.

PLIP was originally developed by Crynwr, Inc. Its design at the time was rather ingenious (or, if you
prefer, a hack), because the original paralel ports on IBM PCs were designed to spend their time being
unidirectional printer ports; the eight data lines could be used only to send data from the PC to the
peripheral device, but not the other way around.[1] The Cyrnwr PLIP design worked around this
limitation by using the port's five status lines for input, which limited it to transferring all data as nibbles
(half bytes) only, but allowed for bidirectiona transfer. This mode of operation was called PLIP mode O.

Today, the parallel ports supplied on PC hardware cater to full bidirectional 8-bit data transfer, and
PLIP has been extended to accomodate this with the addition of PLIP mode 1.

Linux kernels up to and including Version 2.0 support PLIP mode 0 only, and an enhanced parallel port
driver exists as a patch against the 2.0 kernel and as a standard part of the 2.2 kernel code to provide
PLIP mode 1 operation, too. [2] Unlike earlier versions of the PLIP code, the driver now attempts to be

compatible with the PLIP implementations from Crynwr, aswell asthe PLIP driver in NCSA telnet.[3]

To connect two machines using PLIP, you need a special cable sold at some shops as a Null Printer or
Turbo Laplink cable. Y ou can, however, make one yourself fairly easily; Appendix B shows you how.

The PLIP driver for Linux isthe work of almost countless persons. It is currently maintained by Niibe

Y utaka.[4] If compiled into the kernel, it sets up a network interface for each of the possible printer ports,
with pl i pO corresponding to parallel port | pO, pl i p1 correspondingtol pl, etc. The mapping of
interfaces to ports differsin the 2.0 kernels and the 2.2 kernels. In the 2.0 kernel's, the mapping was
hardwired inthedr i ver s/ net / Spacd. c filein the kernel source. The default mappingsin thisfile
are:

Interface(l/O Port |IRQ
plip0 |0x3BC |7
plipl |0x378 |7
plip2 |0x278 |5

If you configured your printer port in adifferent way, you must change these valuesin
dri vers/ net/ Space. c intheLinux kernel source and build a new kernel.

In the 2.2 kernels, the PLIP driver usesthe parport parallel port sharing driver developed by Philip
Blundell.[5] The new driver allocates the PLIP network device names serially, just asfor the Ethernet or

PPP drivers, so thefirst PLIP device created ispl | pO, thesecond ispl i p1, and so on. The physica

parallel port hardware is also allocated serialy. By default, the parallel port driver will attempt to detect
your parallel port hardware with an autoprobe routine, recording the physical device information in the
order found. It is better practice to explicitly tell the kernel the physical 1/0 parameters. Y ou can do this
by supplying argumentsto the par port _pc. o module asyou load it, or if you have compiled the
driver into your kernel, using lilo to supply arguments to the kernel at boot time. The IRQ setting of any
device may be changed later by writing the new IRQ valueto therelated / pr oc/ parport/*/irq
file.

Configuring the physical 1/0 parametersin a 2.2 kernel when loading the module is straightforward. For
instance, to tell the driver that you have two PC-style parallel portsat I/0O addresses 0x278 and 0c378
and IRQs 5 and 7, respectively, you would load the module with the following arguments:

nodpr obe parport_pc i0=0x278, 0x378 irg=5,7
The corresponding arguments to pass to the kernel for a compiled-in driver are:
par port =0x278, 5 par port=0x378, 7

Y ou would use the lilo append keyword to have these arguments passed to the kernel automatically at
boot time.

When the PLIP driver isinitialized, either at boot time if it is built-in, or when the pl i p. o moduleis
loaded, each of the parallel portswill haveapl i p network device associated with it. pl i pO will be
assigned to the first parallel port device, pl i p1 the second, and so on. Y ou can manually override this
automatic assignment using another set of kernel arguments. For instance, to assign par port O to
network device pl i p0O, and par port 1 to network devicepl i p1, you would use kernel arguments of:

pli p=parportl plip=parportO

This mapping does not mean, however, that you cannot use these parallel ports for printing or other
purposes. The physical parallel port devices are used by the PLIP driver only when the corresponding
interface is configured up.

Notes

[1] Fight to clear the hacking name! Always use cracker when you are referring to people who are
consciously trying to defeat the security of a system, and hacker when you are referring to people
who have found a clever way of solving a problem. Hackers can be crackers, but the two should
never be confused. Consult the New Hackers Dictionary (popularly found as the Jargon file) for a
more compl ete understanding of the terms.

[2] Theenhanced parallel port adaptor patch for 2.0 kernel is available from
http://www.cyberel k.demon.co.uk/parport.html.

[3] NCSA telnet isapopular program for DOS that runs TCP/IP over Ethernet or PLIP, and supports
telnet and FTP.

[4] Niibe can be reached at gniibe@mri.co.jp.

[5] You can reach Philip at Philip.Blundell @pobox.com.

Prev Home Next

Ethernet Installation Up The PPP and SLIP Drivers

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 3. Configuringthe NetworkingHardware Next

The PPP and SLIP Drivers

Point-to-Point Protocol (PPP) and Serial Line IP (SLIP) are widely used protocols for carrying I P packets
over aseria link. A number of institutions offer dialup PPP and SLIP access to machines that are on the
Internet, thus providing IP connectivity to private persons (something that's otherwise hardly affordable).

No hardware modifications are necessary to run PPP or SLIP; you can use any seria port. Since seria
port configuration is not specific to TCP/IP networking, we have devoted a separate chapter to this.
Please refer to Chapter 4, for more information. We cover PPP in detail in Chapter 8, and SLIP in

Chapter 7.

Prev Home Next
The PLIP Driver Up Other Network Types

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 3. Configuringthe NetworkingHardware Next

Other Network Types

Most other network types are configured similarly to Ethernet. The arguments passed to the |loadable
modules will be different and some drivers may not support more than one card, but just about
everything else is the same. Documentation for these cards is generally available in the
fusr/src/linux/Docunmentation/ networking/ directory of the Linux kernel source.

Prev Home Next
The PPP and SLIP Drivers Up Configuring the Serial Hardware

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 2. Issues of TCP/IP Networking

Table of Contents
Networking Interfaces

|P Addresses
Address Resolution

| P Routing
The Internet Control Message Protocol

Resolving Host Names

In this chapter we turn to the configuration decisions you'll need to make when connecting your Linux
machine to a TCP/IP network, including dealing with IP addresses, hostnames, and routing issues. This
chapter gives you the background you need in order to understand what your setup requires, while the
next chapters cover the tools you will use.

To learn more about TCP/IP and the reasons behind it, refer to the three-volume set I nter networking with
TCP/IP, by Douglas R. Comer (Prentice Hall). For a more detailed guide to managing a TCP/IP network,
see TCP/IP Network Administration by Craig Hunt (O'Reilly).

Networking Interfaces

To hide the diversity of equipment that may be used in a networking environment, TCP/IP defines an
abstract interface through which the hardware is accessed. Thisinterface offers a set of operationsthat is
the same for all types of hardware and basically deals with sending and receiving packets.

For each peripheral networking device, a corresponding interface has to be present in the kernel. For
example, Ethernet interfacesin Linux are called by such namesaset hO and et h1; PPP (discussed in
Chapter 8) interfaces are named ppp0 and ppp1l; and FDDI interfaces are given names like f ddi 0 and
f ddi 1. Theseinterface names are used for configuration purposes when you want to specify a particular
physical device in a configuration command, and they have no meaning beyond this use.

Before being used by TCP/IP networking, an interface must be assigned an |P address that serves asits
identification when communicating with the rest of the world. This addressis different from the interface
name mentioned previoudly; if you compare an interface to a door, the address is like the nameplate
pinned on it.

Other device parameters may be set, like the maximum size of datagrams that can be processed by a
particular piece of hardware, which isreferred to as Maximum Transfer Unit (MTU). Other attributes

will be introduced later. Fortunately, most attributes have sensible defaults.

Prev Home Next
Maintaining Y our System IP Addresses

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 5. Configuring TCP/IP Networking Next

Interface Configuration for IP

After setting up your hardware as explained in Chapter 4, you have to make these devices known to the

kernel networking software. A couple of commands are used to configure the network interfaces and
initialize the routing table. These tasks are usually performed from the network initialization script each
time you boot the system. The basic tools for this process are called ifconfig (where if standsfor
interface) and route.

ifconfig is used to make an interface accessible to the kernel networking layer. Thisinvolves the
assignment of an |P address and other parameters, and activation of the interface, a'so known as
bringing up the interface. Being active here means that the kernel will send and receive | P datagrams
through the interface. The ssimplest way to invoke it iswith:

| fconfig interface ip-address

Thiscommand assignsi p- addr ess toi nt er f ace and activatesit. All other parameters are set to
default values. For instance, the default network mask is derived from the network class of the IP
address, such as 255.255.0.0 for a class B address. ifconfig is described in detail in the section the section

called All About ifconfig.

route alows you to add or remove routes from the kernel routing table. It can be invoked as:

route [add|del] [-net|-host] target [if]

Theadd and del arguments determine whether to add or delete theroutetot ar get . The- net and
- host argumentstell the route command whether the target is a network or ahost (a host is assumed if
you don't specify). Thei f argument is again optional, and allows you to specify to which network

interface the route should be directed the Linux kernel makes a sensible guessif you don't supply this
information. Thistopic will be explained in more detail in succeeding sections.

The Loopback Interface

The very first interface to be activated is the loopback interface:

ifconfig lo 127.0.0.1

Occasionally, you will see the dummy hostname localhost being used instead of the IP address. ifconfig
will ook up the namein the host s file, where an entry should declare it as the hostname for 127.0.0.1:
Sanple /etc/hosts entry for | ocal host

| ocal host 127.0.0.1

To view the configuration of an interface, you invoke ifconfig, giving it only the interface name as

argument:

$ ifconfiglo

| o Li nk encap: Local Loopback
I net addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNI NG MrU: 3924 Metric:1
RX packets: 0 errors: 0 dropped: 0 overruns: 0 frane: 0
TX packets: 0 errors: 0 dropped: 0 overruns:0 carrier:0
Col l'isions: 0

Asyou can see, the loopback interface has been assigned a netmask of 255.0.0.0, since 127.0.0.1isa
class A address.

Now you can amost start playing with your mini-network. What is still missing is an entry in the routing
table that tells I P that it may use this interface as a route to destination 127.0.0.1. Thisis accomplished by
using:

route add 127.0.0.1

Again, you can use localhost instead of the IP address, provided you've entered it into your
/ et c/ hosts.

Next, you should check that everything works fine, for example by using ping. ping is the networking
equivalent of a sonar device.[1] The command is used to verify that a given addressis actually reachable,

and to measure the delay that occurs when sending a datagram to it and back again. The time required for
this processis often referred to as the round-trip time :

ping | ocal host

PI NG | ocal host (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: icnp_seq=0 ttl =255 tine=0.4
64 bytes from 127.0.0.1: icnp_seq=1 ttl =255 tine=0.4
64 bytes from 127.0.0.1: icnp_seq=2 ttl =255 tine=0.4
"C

--- local host ping statistics ---

3 packets transmtted, 3 packets received, 0% packet | oss
round-trip mn/avg/max = 0.4/0.4/0.4 ns

#

I

When you invoke ping as shown here, it will continue emitting packets forever, unless interrupted by the
user. The * C marks the place where we pressed Ctrl-C.

The previous example shows that packets for 127.0.0.1 are properly delivered and areply isreturned to
ping amost instantaneously. This shows that you have successfully set up your first network interface.

If the output you get from ping does not resemble that shown in the previous example, you are in trouble.
Check any errorsif they indicate that some file hasn't been installed properly. Check that the ifconfig and
route binaries you use are compatible with the kernel release you run, and above all, that the kernel has
been compiled with networking enabled (you see this from the presence of the/ pr oc/ net directory).
If you get an error message saying Network unreachable, you probably got the r oute command wrong.

Make sure you use the same address you gave to ifconfig.

The steps previously described are enough to use networking applications on a standalone host. After
adding the lines mentioned earlier to your network initialization script and making sure it will be
executed at boot time, you may reboot your machine and try out various applications. For instance, telnet
localhost should establish atelnet connection to your host, giving you al ogi n: prompt.

However, the loopback interface is useful not only as an example in networking books, or as a test bed
during development, but is actually used by some applications during normal operation.[2] Therefore,

you always have to configure it, regardless of whether your machine is attached to a network or not.

Ethernet Interfaces

Configuring an Ethernet interface is pretty much the same as the loopback interface; it just requires afew
more parameters when you are using subnetting.

At the Virtual Brewery, we have subnetted the | P network, which was originally a class B network, into
class C subnetworks. To make the interface recognize this, the ifconfig incantation would look like this:

ifconfig ethO vstout netnmask 255.255.255.0

This command assigns the et hO interface the IP address of vstout (172.16.1.2). If we omitted the
netmask, ifconfig would deduce the netmask from the | P network class, which would result in an
incorrect netmask of 255.255.0.0. Now a quick check shows:

ifconfig ethO
et hO Li nk encap 10Mps Et hernet HWaddr 00: 00: CO: 90: B3: 42
I net addr 172.16.1.2 Bcast 172.16. 1. 255 Mask 255. 255. 255.0
UP BROADCAST RUNNI NG MruU 1500 Metric 1
RX packets O errors O dropped O overrun O
TX packets O errors O dropped O overrun O

Y ou can see that ifconfig automatically sets the broadcast address (the Bcast field) to the usual value,
which is the host's network number with all the host bits set. Also, the maximum transmission unit (the
maximum size of |P datagrams the kernel will generate for thisinterface) has been set to the maximum
size of Ethernet packets: 1,500 bytes. The defaults are usually what you will use, but all these values can
be overidden if required, with special options that will be described under the section called All About

ifconfig .
Just as for the loopback interface, you now haveto install arouting entry that informs the kernel about
the network that can be reached through et h0. For the Virtual Brewery, you might invoke route as.

route add -net 172.16.1.0

At first this looks alittle like magic, because it's not really clear how route detects which interface to
route through. However, thetrick is rather simple: the kernel checks all interfaces that have been
configured so far and compares the destination address (172.16.1.0 in this case) to the network part of the
interface address (that is, the bitwise AND of the interface address and the netmask). The only interface

that matchesiset hO.

Now, what'sthat net option for? Thisis used because route can handle both routes to networks and
routes to single hosts (as you saw before with localhost). When given an address in dotted quad notation,
route attempts to guess whether it is a network or a hostname by looking at the host part bits. If the
address's host part is zero, route assumes it denotes a network; otherwise, route takesit as a host
address. Therefore, route would think that 172.16.1.0 is a host address rather than a network number,
because it cannot know that we use subnetting. We have to tell route explicitly that it denotes a network,
sowegiveitthe net flag.

Of course, the route command is alittle tedious to type, and it's prone to spelling mistakes. A more
convenient approach is to use the network names we defined in/ et ¢/ net wor ks. This approach
makes the command much more readable; even the net flag can be omitted because r oute knows that
172.16.1.0 denotes a network:

route add brew net

Now that you've finished the basic configuration steps, we want to make sure that your Ethernet interface
Isindeed running happily. Choose a host from your Ethernet, for instance vlager, and type:

ping vl ager

PI NG vl ager: 64 byte packets

64 bytes from 172.16.1.1: icnp_seq=0. tine=11. ns
64 bytes from 172.16.1.1: icnp_seq=1. tine=7. ns
64 bytes from 172.16.1.1: icnp_seq=2. tine=12. ns
64 bytes from 172.16.1.1: icnp_seq=3. tine=3. ns
"C

----vstout.vbrew.comPING Statistics----

4 packets transmtted, 4 packets received, O
round-trip (nms) mn/avg/ max = 3/8/12

If you don't see similar output, something is broken. If you encounter unusual packet loss rates, this hints
at a hardware problem, like bad or missing terminators. If you don't receive any replies at all, you should
check the interface configuration with netstat described later in the section called The netstat Command .

The packet statistics displayed by ifconfig should tell you whether any packets have been sent out on the
interface at all. If you have access to the remote host too, you should go over to that machine and check
the interface statistics. Thisway you can determine exactly where the packets got dropped. In addition,
you should display the routing information with route to see if both hosts have the correct routing entry.
route prints out the complete kernel routing table when invoked without any arguments (n just makes it
print addresses as dotted quad instead of using the hostname):

route -n
Kernel routing table

Destinati on Gateway Genmask Flags Metric Ref Use | face
127.0.0.1 * 255. 255. 255. 255 UH 1 0 112 lo
172.16.1.0 * 255. 255. 255. 0 U 1 0 10 et hO

The detailed meaning of these fields is explained later in the section called The netstat Command.” The

Flags column contains alist of flags set for each interface. U is always set for active interfaces, and H
says the destination address denotes a host. If the H flag is set for aroute that you meant to be a network
route, you have to reissue the route command with the net option. To check whether aroute you have
entered isused at al, check to see if the Use field in the second to last column increases between two
invocations of ping.

Routing Through a Gateway

In the previous section, we covered only the case of setting up a host on a single Ethernet. Quite
frequently, however, one encounters networks connected to one another by gateways. These gateways
may simply link two or more Ethernets, but may also provide alink to the outside world, such asthe
Internet. In order to use a gateway, you have to provide additional routing information to the networking

layer.

The Ethernets of the Virtual Brewery and the Virtual Winery are linked through such a gateway, namely
the host vlager. Assuming that vliager has aready been configured, we just have to add another entry to
vstout's routing table that tells the kernel it can reach all hosts on the Winery's network through vlager.
The appropriate incantation of route is shown below; the gw keyword tells it that the next argument
denotes a gateway:

route add w ne-net gw vl ager

Of course, any host on the Winery network you wish to talk to must have a routing entry for the
Brewery's network. Otherwise you would only be able to send data to the Winery network from the
Brewery network, but the hosts on the Winery would be unable to reply.

This example describes only a gateway that switches packets between two isolated Ethernets. Now
assume that vlager also has a connection to the Internet (say, through an additional SLIP link). Then we
would want datagrams to any destination network other than the Brewery to be handed to viager. This
action can be accomplished by making it the default gateway for vstout:

route add default gw vl ager

The network name default is a shorthand for 0.0.0.0, which denotes the default route. The default route
matches every destination and will be used if there is no more specific route that matches. Y ou do not
have to add thisnameto/ et ¢/ net wor ks becauseit is built into route.

If you see high packet loss rates when pinging a host behind one or more gateways, thismay hint at a
very congested network. Packet lossis not so much due to technical deficiencies asto temporary excess
loads on forwarding hosts, which makes them delay or even drop incoming datagrams.

Configuring a Gateway

Configuring a machine to switch packets between two Ethernets is pretty straightforward. Assume we're
back at vlager, which is equipped with two Ethernet cards, each connected to one of the two networks.
All you have to do is configure both interfaces separately, giving them their respective | P addresses and
matching routes, and that's it.

It is quite useful to add information on the two interfaces to the host s file as shown in the following
example, so we have handy names for them, too:

172.16.1.1 vl ager. vbrew. com vl ager vlager-ifl
172.16.2.1 vl ager-if2

The sequence of commands to set up the two interfacesis then:

ifconfig ethO vliager-ifl
route add brew net
ifconfig ethl vliager-if2
route add w ne-net

If this sequence doesn't work, make sure your kernel has been compiled with support for IP forwarding
enabled. One good way to do thisisto ensure that the first number on the second line of
/ proc/ net/snnpissettol.

The PLIP Interface

A PLIP link used to connect two machinesis alittle different from an Ethernet. PLIP links are an
example of what are called point-to-point links, meaning that there is a single host at each end of the link.
Networks like Ethernet are called broadcast networks. Configuration of point-to-point linksis different
because unlike broadcast networks, point-to-point links don't support a network of their own.

PLIP provides very cheap and portable links between computers. As an example, we'll consider the
laptop computer of an employee at the Virtual Brewery that is connected to viager via PLIP. The laptop
itself is called vlite and has only one parallel port. At boot time, this port will beregistered aspl i p1. To
activate the link, you have to configure the pl i p1 interface using the following commands:[3]

ifconfig plipl vlite pointopoint vlager
route add default gw vl ager

The first command configures the interface, telling the kernel that this is a point-to-point link, with the
remote side having the address of vlager. The second installs the default route, using vlager as gateway.
On vlager, asimilar ifconfig command is necessary to activate the link (aroute invocation is not
needed):

ifconfig plipl vlager pointopoint vlite

Note that the pl i p1 interface on vliager does not need a separate | P address, but may also be given the
address 172.16.1.1. Point-to-point networks don't support a network directly, so the interfaces don't
require an address on any supported network. The kernel uses the interface information in the routing
table to avoid any possible confusion.[4]

Now we have configured routing from the laptop to the Brewery's network; what's still missing is away
to route from any of the Brewery's hosts to vlite. One particularly cumbersome way isto add a specific
route to every host's routing table that names vlager as a gateway to vlite:

route add vlite gw vl ager

Dynamic routing offers a much better option for temporary routes. Y ou could use gated, arouting
daemon, which you would have to install on each host in the network in order to distribute routing
information dynamically. The easiest option, however, isto use proxy ARP (Address Resolution
Protocol). With proxy ARP, vliager will respond to any ARP query for vlite by sending its own Ethernet
address. All packets for vlite will wind up at vliager, which then forwards them to the laptop. We will
come back to proxy ARP in the section the section called Checking the ARP Tables.

Current net - t ool s releases contain atool called plipconfig, which allows you to set certain PLIP
timing parameters. The IRQ to be used for the printer port can be set using the ifconfig command.

The SLIP and PPP Interfaces

Although SLIP and PPP links are only simple point-to-point links like PLIP connections, there is much
more to be said about them. Usually, establishing a SLIP connection involves dialing up aremote site
through your modem and setting the serial lineto SLIP mode. PPP is used in asimilar fashion. We
discuss SLIP and PPP in detail in Chapter 7 and Chapter 8.

The Dummy Interface

The dummy interface is alittle exotic, but rather useful nevertheless. Its main benefit is with standalone
hosts and machines whose only P network connection isadialup link. In fact, the latter are standalone
hosts most of the time, too.

The dilemma with standalone hosts is that they only have a single network device active, the loopback
device, which is usually assigned the address 127.0.0.1. On some occasions, however, you must send
datato the official |P address of thelocal host. For instance, consider the laptop vlite, which was
disconnected from a network for the duration of this example. An application on vlite may now want to
send data to another application on the same host. Looking up vlitein/ et ¢/ host s yieldsan IP
address of 172.16.1.65, so the application tries to send to this address. As the loopback interfaceis
currently the only active interface on the machine, the kernel has no ideathat 172.16.1.65 actually refers
to itself | Consequently, the kernel discards the datagram and returns an error to the application.

Thisiswhere the dummy device stepsin. It solves the dilemma by simply serving as the alter ego of the
loopback interface. In the case of vlite, you ssimply giveit the address 172.16.1.65 and add a host route
pointing to it. Every datagram for 172.16.1.65 is then delivered locally. The proper invocation is.[5]

ifconfig dummy vlite
route add vlite

IP Alias

New kernels support afeature that can completely replace the dummy interface and serve other useful
functions. IP Alias allows you to configure multiple I P addresses onto a physical device. In the simplest
case, you could replicate the function of the dummy interface by configuring the host address as an alias

onto the loopback interface and completely avoid using the dummy interface. In more complex uses, you
could configure your host to look like many different hosts, each with its own IP address. This
configuration is sometimes called Virtual Hosting, although technically it is also used for avariety of
other techniques.[6]

To configure an alias for an interface, you must first ensure that your kernel has been compiled with
support for IP Alias (check that you havea/ proc/ net /i p_al i as file; if not, you will haveto
recompile your kernel). Configuration of an IP aliasisvirtually identical to configuring areal network
device; you use a special name to indicate it's an alias that you want. For example:

ifconfig lo:0 172.16.1.1

This command would produce an alias for the loopback interface with the address 172. 16. 1. 1. IP
aliases are referred to by appending :n to the actual network device, in which n isan integer. In our
example, the network device we are creating the dliasonis| o, and we are creating an alias numbered
zero for it. Thisway, asingle physical device may support a number of aliases.

Each alias may be treated asthough it is a separate device, and as far asthe kernel 1P softwareis
concerned, it will be; however, it will be sharing its hardware with another interface.

Notes

[1] Anyoneremember Pink Floyd's Echoes ?

For example, all applications based on RPC use the loopback interface to register themselves with
the portmapper daemon at startup. These applicationsinclude NIS and NFS.

[2]
[3] Notethat poi nt opoi nt isnot atypo. It'sreally spelled like this.
[4]

Asamatter of caution, you should configurea PLIP or SLIP link only after you have completely
set up the routing table entries for your Ethernets. With some older kernels, your network route
might otherwise end up pointing at the point-to-point link.

[5] Thedummy deviceiscaled dumryO if you have loaded it as a module rather than choosing it as
an inbuilt kernel option. Thisis because you are able to load multiple modules and have more than
one dummy device.

More correctly, using IP aliasing is known as network layer virtual hosting. It is more commonin
the WWW and STMP worlds to use application layer virtual hosting, in which the same | P address
isused for each virtual host, but a different hostname is passed with each application layer request.
Services like FTP are not capable of operating in this way, and they demand network layer virtual
hosting.

B

Prev Home Next
Writing hosts and networks Files Up All About ifconfig

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 5. Configuring TCP/IP
Networking

Table of Contents
M ounting the /proc Filesystem

Installing the Binaries

Setting the Hosthame

Assigning |P Addresses
Creating Subnets

Writing hosts and networks Files

Interface Configuration for |P
All About ifconfig

The netstat Command
Checking the ARP Tables

In this chapter, we walk you through all the necessary stepsto set up TCP/IP networking on your
machine. Starting with the assignment of |P addresses, we slowly work our way through the
configuration of TCP/IP network interfaces and introduce afew tools that come in handy when hunting
down network installation problems.

Most of the tasks covered in this chapter will generally have to be done only once. Afterward, you have
to touch most configuration files only when adding a new system to your network or when you
reconfigure your system entirely. Some of the commands used to configure TCP/IP, however, have to be
executed each time the system is booted. Thisis usually done by invoking them from the system

/ etcl/rc* scripts.

Commonly, the network-specific part of this procedure is contained in a script. The name of this script
variesin different Linux distributions. In many older Linux distributions, it isknown asr c. net or

rc. i net.Sometimesyou will also seetwo scriptsnamedr c. i net 1 andrc. i net 2 ; theformer
initializes the kernel part of networking and the latter starts basic networking services and applications.
In modern distributions, ther ¢ files are structured in a more sophisticated arrangement; here you may
find scriptsinthe/ etc/init.d/ (or/etc/rc.d/init.d/)directory that create the network
devices and other r ¢ files that run the network application programs. This book's examples are based on
the latter arrangement.

This chapter discusses parts of the script that configure your network interfaces, while applications will
be covered in later chapters. After finishing this chapter, you should have established a sequence of

commands that properly configure TCP/IP networking on your computer. Y ou should then replace any
sample commands in your configuration scripts with your commands, make sure the script is executed
from thebasicr ¢ script at startup time, and reboot your machine. The networking r ¢ scripts that come
along with your favorite Linux distribution should provide a solid example from which to work.

Mounting the /proc Filesystem

Some of the configuration tools of the Linux NET-2 and NET-3 release rely on the/ pr oc filesystem for
communicating with the kernel. Thisinterface permits access to kernel runtime information through a
filesystem-like mechanism. When mounted, you can list itsfiles like any other filesystem, or display
their contents. Typical itemsincludethel oadavg file, which contains the system load average, and
mem nf o, which shows current core memory and swap usage.

To this, the networking code adds the net directory. It contains a number of files that show thingslike
the kernel ARP tables, the state of TCP connections, and the routing tables. Most network administration
tools get their information from these files.

The pr oc filesystem (or pr ocf s, asit isaso known) is usualy mounted on/ pr oc at system boot
time. The best method isto add the following lineto/ et ¢/ f st ab :

procfs nount point:
none / proc proc defaults

Then execute mount /proc from your / et ¢/ r ¢ script.

The pr ocf s isnow configured into most kernels by default. If the pr ocf s isnot in your kernel, you
will get amessagesuchas. nount: fs type procfs not supported by kernel.Youwill
then have to recompile the kernel and answer yes when asked for pr ocf s support.

Prev Home Next
Serial Devices and the login: Installing the Binaries
Prompt

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Networ k Administrators Guide
Prev Next

Chapter 19. Getting EximUp and Running

Table of Contents

Running Exim

If Your Mail Doesn't Get Through
Compiling Exim

Mail Delivery Modes
Miscellaneous config Options

M essage Routing and Delivery

Protecting Against Mail Spam
UUCP Setup

This chapter gives you a quick introduction to setting up Exim and an overview of its functionality.
Although Exim is largely compatible with sendmail in its behavior, its configuration files are completely
different.

The main configuration fileisusually called/ et ¢/ exi m conf or/ et ¢/ exi ml confi g inmost Linux
distributions, or / usr/ 1 i b/ exi ml confi g inolder configurations. Y ou can find out where the
configuration fileis by running the command:

$ exim-bP configure file

Y ou may have to edit the configuration file to reflect values specific to your site. In most common
configurations there isn't agreat deal to change, and a working configuration should rarely have to be
modified.

By default, Exim processes and delivers al incoming mail immediately. If you have relatively high traffic,
you may instead have Exim collect all messages in the so-called queue, and process them at regular
intervals only.

When handling mail within a TCP/IP network, Exim is frequently run in daemon mode: at system boot time,
itisinvoked from/ et c/i ni t. d/ exi n{1] and putsitself in the background, where it waits for incoming
TCP connections on the SMTP port (usually port 25). Thisis beneficial whenever you expect to have a
significant amount of traffic because Exim doesn't have to start up for every incoming connection.
Alternatively, inetd could manage the SMTP port and have it spawn Exim whenever there is a connection
on this port. This configuration might be useful when you have limited memory and low mail traffic
volumes.

Exim has a complicated set of command-line options, including many that match those of sendmail. Instead
of trying to put together exactly the right options for your needs, you can implement the most common types
of operation by invoking traditional commands like rmail or rsmtp. These are symbolic links to Exim (or if

they're not, you can easily link them to it). When you run one of the commands, Exim checks the name you
used to invoke it and sets the proper options itself.

There are two links to Exim that you should have under all circumstances: /usr/bin/rmail and
/usr/shin/sendmail.[2] When you compose and send a mail message with a user agent like elm, the

message is piped to sendmail or rmail for delivery, which iswhy both /usr/sbin/sendmail and
/usr/bin/rmail should point to Exim. The list of recipients for the message is passed to Exim on the
command line.[3] The same happens with mail coming in viaUUCP. Y ou can set up the required

pathnames to point to Exim by typing the following at a shell prompt:

$In -s /usr/sbin/exim/usr/bin/rmil
$In -s /usr/sbin/exim/usr/sbin/sendmail

If you want to dig further into the details of configuring Exim, you should consult the full Exim
specification. If thisisn't included in your favorite Linux distribution, you can get it from the source to
Exim, or read it online from Exim's web site at http://www.exim.org.

Running Exim

To run Exim, you must first decide whether you want it to handle incoming SM TP messages by running as
a separate daemon, or whether to have inetd manage the SMTP port and invoke Exim only whenever an
SMTP connection is requested from a client. Usually, you will prefer daemon operation on the mail server
because it |oads the machine far less than spawning Exim over and over again for each connection. Asthe
mail server also delivers most incoming mail directly to the users, you should choose inetd operation on
most other hosts.

Whatever mode of operation you choose for each individual host, you have to make sure you have the
following entry inyour / et ¢/ ser vi ces file:

snt p 25/tcp # Sinple Mail Transfer Protocol

This defines the TCP port number that is used for SMTP conversations. Port number 25 is the standard
defined by the Assigned Numbers RFC (RFC-1700).

When run in daemon mode, Exim puts itself in the background and waits for connections on the SMTP port.
When a connection occurs, it forks, and the child process conducts an SM TP conversation with the peer
process on the calling host. The Exim daemon is usually started by invoking it from ther ¢ script at boot
time using the following command:

/usr/sbin/exim-bd -gql5m

The bd flag turns on daemon mode, and q15m makesit process whatever messages have accumulated in
the message queue every 15 minutes.

If you want to useinetd instead, your / et ¢/ i net d. conf file should contain aline like this:

snt p stream tcp nowait root /usr/sbin/exim in.exim-Dbs

Remember you have to make inetd re-read i net d. conf by sending it an HUP signal after making any
changes.[4]

Daemon and inetd modes are mutually exclusive. If you run Exim in daemon mode, you should make sure
to comment out any lineini net d. conf for the smtp service. Equivalently, when having inetd manage
Exim, make sure that no r ¢ script starts the Exim daemon.

Y ou can check that Exim is correctly set up for receiving incoming SMTP messages by telnetting to the
SMTP port on your machine. Thisiswhat a successful connect to the SMTP server looks like:

$ telnet |ocal host sntp

Trying 127.0.0.1...

Connected to | ocal host.

Escape character is '~]".

220 richard. vbrew. com ESMIP Exi m 3. 13 #1 Sun, 30 Jan 2000 16:23:55 +0600
qui t

221 richard. brew. com cl osi ng connection

Connection cl osed by foreign host.

If this test doesn't produce the SMTP banner (the line starting with the 220 code), check that you are either
running an Exim daemon process or have inetd correctly configured. If that doesn't reveal the problem, |ook
in the Exim log files (described next) in case thereis an error in Exim's configuration file.

Notes

[1] Other possiblelocationsare/ et c/rc.d/init.dandrc.inet 2. Thelatter iscommon on
systems using a BSD-style structure for system administration filesin the/ et ¢ directory.

[2] Thisisthe new standard location of sendmail according to the Linux File System Standard.
Another common locationis/ usr/ 1i b/ sendmai | , which islikely to be used by mail
programs that are not specially configured for Linux. Y ou can define both filenames as symbolic
links to Exim so that programs and scripts invoking sendmail will instead invoke Exim to do the
same things.

[3] Some user agents, however, use the SMTP protocol to pass messages to the transport agent, calling
it with the bs option.

[4] Usekill HUPpid, for whichpi distheprocess|D of theinetd process retrieved from aps
listing.

Prev Home Next
Tipsand Tricks If Your Mail Doesn't Get Through

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page |

Linux Network Administrators Guide
Prev Next

Chapter 18. Sendmail

Table of Contents
I ntroduction to sendmail

Installing sendmail

Overview of Configuration Files

The sendmail.cf and sendmail.mc Files

Generating the sendmail.cf File

Interpreting and Writing Rewrite Rules

Configuring sendmail Options

Some Useful sendmail Configurations

Testing Y our Configuration

Running sendmail

Tips and Tricks

Introduction to sendmail

It's been said that you aren't areal Unix system administrator until you've edited asendnai | . cf file.
It's al'so been said that you're crazy if you've attempted to do so twice.

sendmail is an incredibly powerful mail program. It's also incredibly difficult to learn and understand.
Any program whose definitive reference (sendmail, by Bryan Costales and Eric Allman, published by
O'Reilly) is 1,050 pages long scares most people off. Information on the sendmail reference is contained
in the bibliography at the end of this book.

Fortunately, new versions of sendmail are different. Y ou no longer need to directly edit the cryptic
sendnai | . cf file; the new version provides a configuration utility that will create thesendnai | . cf
file for you based on much simpler macro files. Y ou do not need to understand the complex syntax of the
sendmai | . cf file; the macro files don't require you to. Instead, you need only list items, such asthe
name of features you wish to include in your configuration, and specify some of the parameters that
determine how that feature operates. A traditional Unix utility called m4 then takes your macro
configuration data and mixes it with the data it reads from template files containing the actual

sendmai | . cf syntax, to produce your sendmai | . cf file.

In this chapter we introduce sendmail and describe how to install, configure and test it, using the Virtual
Brewery as an example. If the information presented here helps make the task of configuring sendmail

less daunting for you, we hope you'll gain the confidence to tackle more complex configurations on your
own.

Prev Home Next
Configuring elm Installing sendmail

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 12. ImportantNetwork Features

Table of Contents
The inetd Super Server

The tcpd Access Control Facility

The Services and Protocols Files
Remote Procedure Call
Configuring Remote L oginand Execution

After successfully setting up I P and the resolver, you then must look at the services you want to provide over
the network. This chapter covers the configuration of afew simple network applications, including the inetd
server and the programs from the rlogin family. We'll also deal briefly with the Remote Procedure Call
interface, upon which services like the Network File System (NFS) and the Network Information System (NIS)
are based. The configuration of NFS and NIS, however, is more complex and are described in separate
chapters, as are electronic mail and network news.

Of course, we can't cover all network applicationsin this book. If you want to install one that's not discussed
here, like talk, gopher, or http, please refer to the manual pages of the server for details.

The inetd Super Server

Programs that provide application services viathe network are called network daemons. A daemonisa
program that opens a port, most commonly a well-known service port, and waits for incoming connections on
it. If one occurs, the daemon creates a child process that accepts the connection, while the parent continuesto
listen for further requests. This mechanism works well, but has afew disadvantages; at |east one instance of
every possible service you wish to provide must be active in memory at al times. In addition, the software
routines that do the listening and port handling must be replicated in every network daemon.

To overcome these inefficiencies, most Unix installations run a specia network daemon, what you might
consider a super server. This daemon creates sockets on behalf of a number of services and listens on all of
them simultaneously. When an incoming connection is received on any of these sockets, the super server
accepts the connection and spawns the server specified for this port, passing the socket acrossto the child to
manage. The server then returns to listening.

The most common super server is called inetd, the Internet Daemon. It is started at system boot time and takes
the list of servicesit isto manage from a startup filenamed / et ¢/ i net d. conf . In addition to those servers,
there are a number of trivial services performed by inetd itself called internal services. They include chargen,
which simply generates a string of characters, and daytime, which returns the system's idea of the time of day.

An entry in thisfile consists of asingle line made up of the following fields:
service type protocol wait user server cndline

Each of the fieldsis described in the following list:
service

Givesthe service name. The service name has to be translated to a port number by looking it up in the
/ et c/ servi ces file. Thisfile will be described later in this chapter in the section the section called
The Services and Protocols Files.

type

Specifies a socket type, either stream (for connection-oriented protocols) or dgram (for datagram
protocols). TCP-based services should therefore always use stream, while UDP-based services should
always use dgram.

pr ot ocol

Names the transport protocol used by the service. This must be avalid protocol name found in the
pr ot ocol s file, explained |ater.

wai t
This option applies only to dgram sockets. It can be either wait or nowait. If wait is specified, inetd

executes only one server for the specified port at any time. Otherwise, it immediately continuesto listen
on the port after executing the server.

Thisisuseful for single-threaded serversthat read all incoming datagrams until no more arrive, and
then exit. Most RPC servers are of this type and should therefore specify wait. The opposite type,
multi-threaded servers, allow an unlimited number of instances to run concurrently. These servers
should specify nowait.

stream sockets should always use nowait.
user

Thisisthelogin ID of the user who will own the process when it is executing. Thiswill frequently be the
root user, but some services may use different accounts. It is avery good ideato apply the principle of
least privilege here, which states that you shouldn't run acommand under a privileged account if the
program doesn't require this for proper functioning. For example, the NNTP news server runs as news,
while services that may pose a security risk (such astftp or finger) are often run as nobody.

server

Givesthe full pathname of the server program to be executed. Internal services are marked by the
keyword internal.

cndl i ne

Thisisthe command line to be passed to the server. It starts with the name of the server to be executed
and can include any arguments that need to be passed to it. If you are using the TCP wrapper, you
specify the full pathname to the server here. If not, then you just specify the server name asyou'd like it
to appear in aprocess list. Welll talk about the TCP wrapper shortly.

Thisfield isempty for internal services.

A samplei net d. conf fileisshownin Example 12-1. Thefinger serviceis commented out so that it is not

available. Thisis often done for security reasons, because it can be used by attackers to obtain names and other
details of users on your system.

Example 12-1. A Sample/etc/inetd.conf File

#

inetd services

ftp

t el net
#f i nger
#tftp
#tftp
#l ogi n
#shel |
#exec

#

#

#

dayti ne
dayti ne
time
time
echo
echo

di scard
di scard
char gen
char gen

streamtcp
streamtcp
streamtcp
dgram udp
dgram udp
streamtcp
streamtcp
streamtcp

netd i nternal

streamtcp
dgram udp
streamtcp
dgram udp
streamtcp
dgram udp
streamtcp
dgram udp
streamtcp
dgram udp

nowai t
nowai t
nowai t
wai t

wai t

nowai t
nowai t
nowai t

nowai t
nowai t
nowai t
nowai t
nowai t
nowai t
nowai t
nowai t
nowai t
nowai t

r oot
r oot
bi n
nobody
nobody
r oot
r oot
r oot

servi ces

r oot
r oot
r oot
r oot
r oot
r oot
r oot
r oot
r oot
r oot

[usr/ sbi
[usr/ sbi
[usr/ sbi
[usr/ sbi
[usr/ sbi
[usr/ sbi
[usr/ sbi
[usr/ sbi

nt er nal
nt er nal
nt er nal
nt er nal
nt er nal
nt er nal
nt er nal
nt er nal
nt er nal
nt er nal

n/ftpd

n/tel netd
n/fingerd

n/tftpd
n/tftpd

n/rl ogi nd

n/ rshd

n/ rexecd

5 53 353 35335 35 35 5

ftpd -

.telnetd -b/etc/issue
.fingerd

.tftpd

.tftpd /boot/di skl ess

rl ogi nd
rshd
rexecd

The tftp daemon is shown commented out as well. tftp implements the Trivial File Transfer Protocol (TFTP),
which allows someone to transfer any world-readable files from your system without password checking. This
isespecialy harmful with the/ et ¢/ passwd file, and even more so when you don't use shadow passwords.

TFTPis commonly used by diskless clients and Xterminals to download their code from a boot server. If you
need to run tftpd for this reason, make sure to limit its scope to those directories from which clients will
retrieve files; you will need to add those directory namesto tftpd's command line. Thisis shown in the second
tftp linein the example.

Prev

More About Network Address

Trandation

Home

Next

The tcpd Access Control Facility

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page |

Linux Network Administrators Guide
Prev Chapter 2. Issues of TCP/IP Networking Next

IP Addresses

As mentioned in Chapter 1, the IP networking protocol understands addresses as 32-bit numbers. Each
machine must be assigned a number unique to the networking environment.[1] If you are running alocal
network that does not have TCF/IP traffic with other networks, you may assign these numbers according
to your personal preferences. There are some | P address ranges that have been reserved for such private
networks. These ranges are listed in Table 2-1. However, for sites on the Internet, numbers are assigned
by a central authority, the Network Information Center (NIC).[2]

| P addresses are split up into four eight-bit numbers called octets for readability. For example,
guark.physics.groucho.edu has an | P address of 0x954C0C04, which iswritten as 149.76.12.4. This
format is often referred to as dotted quad notation.

Another reason for this notation is that | P addresses are split into a network number, which is contained
in the leading octets, and a host number, which is the remainder. When applying to the NIC for IP
addresses, you are not assigned an address for each single host you plan to use. Instead, you are given a
network number and allowed to assign all valid I P addresses within this range to hosts on your network
according to your preferences.

The size of the host part depends on the size of the network. To accommodate different needs, several
classes of networks, defining different places to split IP addresses, have been defined. The class networks
are described here:

Class A

Class A comprises networks 1.0.0.0 through 127.0.0.0. The network number is contained in the
first octet. This class provides for a 24-bit host part, allowing roughly 1.6 million hosts per
network.

ClassB

Class B contains networks 128.0.0.0 through 191.255.0.0; the network number isin the first two
octets. Thisclass allows for 16,320 nets with 65,024 hosts each.

ClassC

Class C networks range from 192.0.0.0 through 223.255.255.0, with the network number
contained in the first three octets. This class allows for nearly 2 million networks with up to 254
hosts.

ClassesD, E, and F
Addresses falling into the range of 224.0.0.0 through 254.0.0.0 are either experimental or are

reserved for specia purpose use and don't specify any network. IP Multicast, which is a service
that allows material to be transmitted to many points on an internet at one time, has been assigned

addresses from within this range.

If we go back to the example in Chapter 1, we find that 149.76.12.4, the address of quark, refers to host
12.4 on the class B network 149.76.0.0.

Y ou may have noticed that not all possible valuesin the previous list were allowed for each octet in the
host part. Thisis because octets 0 and 255 are reserved for specia purposes. An address where all host
part bits are O refers to the network, and an address where all bits of the host part are 1 iscalled a
broadcast address. Thisrefersto all hosts on the specified network simultaneously. Thus,
149.76.255.255 is not avalid host address, but refersto all hosts on network 149.76.0.0.

A number of network addresses are reserved for special purposes. 0.0.0.0 and 127.0.0.0 are two such
addresses. Thefirst is called the default route, and the latter is the loopback address. The default route
has to do with the way the IP routes datagrams.

Network 127.0.0.0 isreserved for IP traffic local to your host. Usually, address 127.0.0.1 will be
assigned to a special interface on your host, the loopback interface, which acts like a closed circuit. Any

| P packet handed to this interface from TCP or UDP will be returned to them asiif it had just arrived from
some network. This allows you to develop and test networking software without ever using a real
network. The loopback network also allows you to use networking software on a standalone host. This
may not be as uncommon as it sounds; for instance, many UUCP sites don't have | P connectivity at all,
but still want to run the INN news system. For proper operation on Linux, INN requires the loopback
interface.

Some address ranges from each of the network classes have been set aside and designated reserved or
private address ranges. These addresses are reserved for use by private networks and are not routed on
the Internet. They are commonly used by organizations building their own intranet, but even small
networks often find them useful. The reserved network addresses appear in Table 2-1.

Table 2-1. IP Address Ranges Reserved for Private Use

Class|Networks

A 10.0.0.0 through 10.255.255.255

B 172.16.0.0 through 172.31.0.0

C 192.168.0.0 through 192.168.255.0

Notes

[1] Theversion of the Internet Protocol most frequently used on the Internet isVersion 4. A lot of
effort has been expended in designing a replacement called IP Version 6. |Pv6 uses a different
addressing scheme and larger addresses. Linux has an implementation of IPv6, but it isn't ready to
document it in this book yet. The Linux kernel support for IPv6 is good, but alarge number of
network applications need to be modified to support it as well. Stay tuned.

[2] Frequently, IP addresses will be assigned to you by the provider from whom you buy your |P
connectivity. However, you may also apply to the NIC directly for an IP address for your network
by sending email to hostmaster @internic.net, or by using the form at http://www.internic.net/.

Prev Home Next
| ssues of TCP/IP Networking Up Address Resolution

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 2. Issues of TCP/IP Networking Next

Address Resolution

Now that you've seen how | P addresses are composed, you may be wondering how they are used on an
Ethernet or Token Ring network to address different hosts. After all, these protocols have their own
addresses to identify hosts that have absolutely nothing in common with an IP address, don't they? Right.

A mechanism is needed to map | P addresses onto the addresses of the underlying network. The
mechanism used is the Address Resolution Protocol (ARP). In fact, ARP is not confined to Ethernet or
Token Ring, but is used on other types of networks, such as the amateur radio AX.25 protocol. The idea
underlying ARP is exactly what most people do when they have to find Mr. X in athrong of 150 people:
the person who wants him calls out loudly enough that everyone in the room can hear them, expecting
him to respond if he is there. When he responds, we know which person heis.

When ARP wants to find the Ethernet address corresponding to a given IP address, it uses an Ethernet
feature called broadcasting, in which a datagram is addressed to all stations on the network
simultaneously. The broadcast datagram sent by ARP contains a query for the IP address. Each receiving
host compares this query to itsown IP address and if it matches, returns an ARP reply to the inquiring
host. The inquiring host can now extract the sender's Ethernet address from the reply.

Y ou may wonder how a host can reach an Internet address that may be on a different network halfway
around the world. The answer to this question involves routing, namely finding the physical location of a
host in anetwork. We will discuss thisissue further in the next section.

Let'stalk alittle more about ARP. Once a host has discovered an Ethernet address, it storesit in its ARP
cache so that it doesn't have to query for it again the next time it wants to send a datagram to the host in
guestion. However, it is unwise to keep this information forever; the remote host's Ethernet card may be
replaced because of technical problems, so the ARP entry becomes invalid. Therefore, entriesin the ARP
cache are discarded after some time to force another query for the |P address.

Sometimesit is also necessary to find the | P address associated with a given Ethernet address. This
happens when a diskless machine wants to boot from a server on the network, which isacommon
situation on Local Area Networks. A diskless client, however, has virtually no information about itself
except for its Ethernet address! So it broadcasts a message containing a request asking a boot server to
provide it with an IP address. There's another protocol for this situation named Reverse Address
Resolution Protocol (RARP). Along with the BOOTP protocol, it serves to define a procedure for
bootstrapping diskless clients over the network.

Prev Home Next
P Addresses Up IP Routing

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where

user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 2. Issues of TCP/IP Networking Next

IP Routing

We now take up the question of finding the host that datagrams go to based on the | P address. Different
parts of the address are handled in different ways; it is your job to set up the files that indicate how to
treat each part.

IP Networks

When you write a letter to someone, you usually put a complete address on the envel ope specifying the
country, state, and Zip Code. After you put it in the mailbox, the post office will deliver it to its
destination: it will be sent to the country indicated, where the national service will dispatch it to the
proper state and region. The advantage of this hierarchical scheme is obvious: wherever you post the
letter, the local postmaster knows roughly which direction to forward the letter, but the postmaster
doesn't care which way the letter will travel once it reaches its country of destination.

| P networks are structured similarly. The whole Internet consists of a number of proper networks, called
autonomous systems. Each system performs routing between its member hosts internally so that the task
of delivering a datagram is reduced to finding a path to the destination host's network. As soon as the
datagram is handed to any host on that particular network, further processing is done exclusively by the
network itself.

Subnetworks

This structure is reflected by splitting | P addresses into a host and network part, as explained previoudly.
By default, the destination network is derived from the network part of the IP address. Thus, hosts with
identical IP network numbers should be found within the same network.[1]

It makes sense to offer a similar scheme inside the network, too, since it may consist of a collection of
hundreds of smaller networks, with the smallest units being physical networks like Ethernets. Therefore,
IP allows you to subdivide an IP network into several subnets.

A subnet takes responsibility for delivering datagramsto a certain range of |P addresses. It isan
extension of the concept of splitting bit fields, asin the A, B, and C classes. However, the network part is
now extended to include some bits from the host part. The number of bits that are interpreted as the
subnet number is given by the so-called subnet mask, or netmask. Thisis a 32-bit number too, which
specifies the bit mask for the network part of the IP address.

The campus network of Groucho Marx University is an example of such a network. It hasaclass B
network number of 149.76.0.0, and its netmask is therefore 255.255.0.0.

Internally, GMU's campus network consists of several smaller networks, such various departments

LANS. So the range of IP addressesis broken up into 254 subnets, 149.76.1.0 through 149.76.254.0. For
example, the department of Theoretical Physics has been assigned 149.76.12.0. The campus backbone is
anetwork in its own right, and is given 149.76.1.0. These subnets share the same I P network number,
while the third octet is used to distinguish between them. They will thus use a subnet mask of
255.255.255.0.

Figure 2-1 shows how 149.76.12.4, the address of quark, isinterpreted differently when the addressis
taken as an ordinary class B network and when used with subnetting.

Figure 2-1. Subnetting a class B network

Cla=sB

Metwork Fad Haoxt Padt

Class B with Subnet

It is worth noting that subnetting (the technique of generating subnets) is only an internal division of the
network. Subnets are generated by the network owner (or the administrators). Frequently, subnets are
created to reflect existing boundaries, be they physical (between two Ethernets), administrative (between
two departments), or geographical (between two locations), and authority over each subnet is delegated
to some contact person. However, this structure affects only the network's internal behavior, and is
completely invisible to the outside world.

Gateways

Subnetting is not only a benefit to the organization; it is frequently a natural consequence of hardware
boundaries. The viewpoint of a host on a given physical network, such as an Ethernet, isavery limited
one: it can only talk to the host of the network it ison. All other hosts can be accessed only through
special-purpose machines called gateways. A gateway is ahost that is connected to two or more physical
networks simultaneously and is configured to switch packets between them.

Figure 2-2 shows part of the network topology at Groucho Marx University (GMU). Hosts that are on
two subnets at the same time are shown with both addresses.

Figure 2-2. A part of the net topology at Groucho Marx University

Mathematics m S Theoretical
Department J_L A Phrysics

Department
) 4.0 B W 12.0 L}
Juss o quark
4.2 (4.1 {124)

nids

FOO|Campos Backbone

= 20 =
Gn:l.h:h_:l
e

[Y

Different physical networks have to belong to different |P networks for IP to be able to recognizeif a
host is on alocal network. For example, the network number 149.76.4.0 is reserved for hosts on the
mathematics LAN. When sending a datagram to quark, the network software on erdos immediately sees
from the |P address 149.76.12.4 that the destination host is on a different physical network, and therefore
can be reached only through a gateway (sophus by default).

sophus itself is connected to two distinct subnets: the Mathematics department and the campus backbone.
It accesses each through a different interface, et hO and f ddi O, respectively. Now, what |P address do
we assign it? Should we give it one on subnet 149.76.1.0, or on 149.76.4.0?

The answer is. both. sophus has been assigned the address 149.76.1.1 for use on the 149.76.1.0 network
and address 149.76.4.1 for use on the 149.76.4.0 network. A gateway must be assigned one | P address
for each network it belongs to. These addresses along with the corresponding netmask are tied to the
interface through which the subnet is accessed. Thus, the interface and address mapping for sophus
would look like this:
Interface|/Address |Netmask

et hO 149.76.4.1|255.255.255.0
fddi 0 |149.76.1.1|255.255.255.0

| o 127.0.0.1 |255.0.0.0

The last entry describes the loopback interface | o, which we talked about earlier.

Generally, you can ignore the subtle difference between attaching an address to a host or its interface.

For hosts that are on one network only, like erdos, you would generally refer to the host as having
this-and-that | P address, although strictly speaking, it's the Ethernet interface that has this |P address. The
distinction is really important only when you refer to a gateway.

The Routing Table

We now focus our attention on how | P chooses a gateway to use to deliver a datagram to aremote
network.

We have seen that erdos, when given a datagram for quark, checks the destination address and finds that
it isnot on the local network. erdos therefore sends the datagram to the default gateway sophus, which is
now faced with the same task. sophus recognizes that quark is not on any of the networks it is connected
to directly, so it hasto find yet another gateway to forward it through. The correct choice would be niels,
the gateway to the Physics department. sophus thus needs information to associate a destination network
with a suitable gateway.

|P uses atable for this task that associates networks with the gateways by which they may be reached. A
catch-all entry (the default route) must generally be supplied too; thisis the gateway associated with
network 0.0.0.0. All destination addresses match this route, since none of the 32 bits are required to
match, and therefore packets to an unknown network are sent through the default route. On sophus, the
table might look like this:

Network |Netmask Gateway [Interface
149.76.1.0|255.255.255.0 fddi 0
149.76.2.0(255.255.255.0|149.76.1.2|f ddi O
149.76.3.0|255.255.255.0(149.76.1.3|f ddi O
149.76.4.0 255.255.255.0 et hO
149.76.5.0|255.255.255.0(149.76.1.5|f ddi O
& & & &

0.0.00 |0.0.0.0 149.76.1.2|f ddi O

If you need to use aroute to a network that sophusis directly connected to, you don't need a gateway; the
gateway column here contains a hyphen.

The process for identifying whether a particular destination address matches a route is a mathematical
operation. The process is quite simple, but it requires an understanding of binary arithmetic and logic: A
route matches a destination if the network address logically ANDed with the netmask precisely equals
the destination address |logically ANDed with the netmask.

Trangdlation: aroute matches if the number of bits of the network address specified by the netmask
(starting from the left-most bit, the high order bit of byte one of the address) match that same number of
bitsin the destination address.

When the | P implementation is searching for the best route to a destination, it may find a number of

routing entries that match the target address. For example, we know that the default route matches every
destination, but datagrams destined for locally attached networks will match their local route, too. How
does IP know which route to use? It is here that the netmask plays an important role. While both routes
match the destination, one of the routes has alarger netmask than the other. We previously mentioned
that the netmask was used to break up our address space into smaller networks. The larger anetmask is,
the more specifically atarget address is matched; when routing datagrams, we should always choose the
route that has the largest netmask. The default route has a netmask of zero bits, and in the configuration
presented above, the locally attached networks have a 24-bit netmask. If a datagram matches alocally
attached network, it will be routed to the appropriate device in preference to following the default route
because the local network route matches with a greater number of bits. The only datagrams that will be
routed via the default route are those that don't match any other route.

Y ou can build routing tables by avariety of means. For small LANS, it isusually most efficient to
construct them by hand and feed them to IP using the r oute command at boot time (see Chapter 5). For
larger networks, they are built and adjusted at runtime by routing daemons; these daemons run on central
hosts of the network and exchange routing information to compute optimal routes between the member
networks.

Depending on the size of the network, you'll need to use different routing protocols. For routing inside
autonomous systems (such as the Groucho Marx campus), the internal routing protocols are used. The
most prominent one of these is the Routing Information Protocol (RIP), which isimplemented by the
BSD routed daemon. For routing between autonomous systems, external routing protocols like External
Gateway Protocol (EGP) or Border Gateway Protocol (BGP) have to be used; these protocols, including
RIP, have been implemented in the University of Cornell's gated daemon.

Metric Values

We depend on dynamic routing to choose the best route to a destination host or network based on the
number of hops. Hops are the gateways a datagram has to pass before reaching a host or network. The
shorter arouteis, the better RIP ratesit. Very long routes with 16 or more hops are regarded as unusable
and are discarded.

RIP manages routing information internal to your local network, but you have to run gated on all hosts.
At boot time, gated checks for all active network interfaces. If there is more than one active interface
(not counting the loopback interface), it assumes the host is switching packets between several networks
and will actively exchange and broadcast routing information. Otherwise, it will only passively receive
RIP updates and update the local routing table.

When broadcasting information from the local routing table, gated computes the length of the route from
the so-called metric value associated with the routing table entry. This metric value is set by the system
administrator when configuring the route, and should reflect the actual route cost.[2] Therefore, the
metric of aroute to a subnet that the host is directly connected to should aways be zero, while aroute
going through two gateways should have a metric of two. Y ou don't have to bother with metricsif you
don't use RIP or gated.

Notes

[1] Autonomous systems are slightly more general. They may comprise more than one | P network.

[2] Thecost of aroute can be thought of, in asimple case, as the number of hops required to reach the
destination. Proper calculation of route costs can be afine art in complex network designs.

Prev Home Next
Address Resolution Up The Internet Control Message
Protocol

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 2. Issues of TCP/IP Networking Next

The Internet Control Message Protocol

| P has a companion protocol that we haven't talked about yet. Thisis the Internet Control Message
Protocol (ICMP), used by the kernel networking code to communicate error messages to other hosts. For
Instance, assume that you are on erdos again and want to telnet to port 12345 on quark, but there's no
process listening on that port. When the first TCP packet for this port arrives on quark, the networking
layer will recognize this arrival and immediately return an ICMP message to erdos stating Port
Unreachable.

The ICMP protocol provides several different messages, many of which deal with error conditions.
However, there is one very interesting message called the Redirect message. It is generated by the
routing module when it detects that another host isusing it as a gateway, even though a much shorter
route exists. For example, after booting, the routing table of sophus may be incomplete. It might contain
the routes to the Mathematics network, to the FDDI backbone, and the default route pointing at the
Groucho Computing Center's gateway (gccl). Thus, packets for quark would be sent to gccl rather than
to niels, the gateway to the Physics department. \When receiving such a datagram, gccl will notice that
thisis a poor choice of route and will forward the packet to niels, meanwhile returning an ICMP Redirect
message to sophustelling it of the superior route.

This seems to be avery clever way to avoid manually setting up any but the most basic routes. However,
be warned that relying on dynamic routing schemes, be it RIP or ICMP Redirect messages, is not always
agood idea. ICMP Redirect and RIP offer you little or no choice in verifying that some routing
information is indeed authentic. This situation allows malicious good-for-nothings to disrupt your entire
network traffic, or even worse. Consequently, the Linux networking code treats Network Redirect
messages as if they were Host Redirects. This minimizes the damage of an attack by restricting it to just
one host, rather than the whole network. On the flip side, it means that a little more traffic is generated in
the event of alegitimate condition, as each host causes the generation of an ICMP Redirect message. It is
generally considered bad practice to rely on ICMP redirects for anything these days.

Prev Home Next
| P Routing Up Resolving Host Names

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Next

Chapter 8. The Point-to-Point Protocol

Table of Contents
PPP on Linux

Running pppd

Using Options Files
Using chat to Automate Dialing
| P Configuration Options

Link Control Options

General Security Considerations
Authentication with PPP

Debugaing Y our PPP Setup

More Advanced PPP Configurations

Like SLIP, PPPisaprotocol used to send datagrams across a serial connection; however, it addresses a
couple of the deficiencies of SLIP. First, it can carry alarge number of protocols and is thus not limited
to the IP protocal. It provides error detection on the link itself, while SLIP accepts and forwards
corrupted datagrams as long as the corruption does not occur in the header. Equally important, it lets the
communicating sides negotiate options, such as the | P address and the maximum datagram size at startup
time, and provides client authorization. This built-in negotiation allows reliable automation of the
connection establishment, while the authentication removes the need for the clumsy user login accounts
that SLIP requires. For each of these capabilities, PPP has a separate protocol. In this chapter, we briefly
cover these basic building blocks of PPP. This discussion of PPP is far from complete; if you want to
know more about PPP, we urge you to read its RFC specification and the dozen or so companion
RFCs.[1] Thereisaso acomprehensive O'Reilly book on the topic of Using & Managing PPP, by

Andrew Sun.

At the very bottom of PPP isthe High-Level Data Link Control (HDLC) protocol, which defines the
boundaries around the individual PPP frames and provides a 16-bit checksum.[2] As opposed to the more
primitive SLIP encapsulation, a PPP frame is capable of holding packets from protocols other than IP,
such as Novell's IPX or Appletalk. PPP achieves this by adding a protocol field to the basic HDLC frame
that identifies the type of packet carried by the frame.

The Link Control Protocol, (LCP) is used on top of HDL C to negotiate options pertaining to the data
link. For instance, the Maximum Receive Unit (MRU), states the maximum datagram size that one side of
the link agreesto receive.

An important step at the configuration stage of a PPP link is client authorization. Although it is not

mandatory, it isreally amust for dialup linesin order to keep out intruders. Usually the called host (the
server) asks the client to authorize itself by proving it knows some secret key. If the caller failsto
produce the correct secret, the connection is terminated. With PPP, authorization works both ways; the
caller may also ask the server to authenticate itself. These authentication procedures are totally
independent of each other. There are two protocols for different types of authorization, which we will
discuss further in this chapter: Password Authentication Protocol (PAP) and Challenge Handshake
Authentication Protocol (CHAP).

Each network protocol that is routed across the data link (like IP and AppleTalk) is configured
dynamically using a corresponding Network Control Protocol (NCP). To send I P datagrams across the
link, both sides running PPP must first negotiate which | P address each of them uses. The control
protocol used for this negotiation is the Internet Protocol Control Protocol (1PCP).

Besides sending standard | P datagrams across the link, PPP also supports Van Jacobson header
compression of |P datagrams. This technique shrinks the headers of TCP packetsto aslittle as three
bytes. It isalso used in CSLIP, and is more colloquially referred to as VJ header compression. The use of
compression may be negotiated at startup time through I1PCP, as well.

PPP on Linux

On Linux, PPP functionality is split into two parts. a kernel component that handles the low-level
protocols (HDLC, IPCP, IPXCP, etc.) and the user space pppd daemon that handles the various
higher-level protocols, such as PAP and CHAP. The current release of the PPP software for Linux
contains the PPP daemon pppd and a program named chat that automates the dialing of the remote
System.

The PPP kernel driver was written by Michael Callahan and reworked by Paul Mackerras. pppd was
derived from afree PPP implementation[3] for Sun and 386BSD machines that was written by Drew
Perkins and others, and is maintained by Paul Mackerras. It was ported to Linux by Al Longyear. chat
was written by Karl Fox.[4]

Like SLIP, PPP isimplemented by a special line discipline. To use aseria line asaPPP link, you first
establish the connection over your modem as usual, and subsequently convert the line to PPP mode. In
thismode, all incoming data is passed to the PPP driver, which checks the incoming HDLC frames for
validity (each HDLC frame carries a 16-bit checksum), and unwraps and dispatches them. Currently,
PPP is able to transport both the I P protocol, optionally using Van Jacobson header compression, and the
IPX protocol.

pppd aids the kernel driver, performing the initialization and authentication phase that is necessary
before actual network traffic can be sent across the link. pppd 's behavior may be fine-tuned using a
number of options. As PPP is rather complex, it isimpossible to explain al of them in a single chapter.
This book therefore cannot cover all aspects of pppd, but only gives you an introduction. For more
information, consult Using & Managing PPP or the pppd manual pages, and READVE sin the pppd
source distribution, which should help you sort out most questions this chapter fails to discuss. The
PPP-HOWTO might also be of use.

Probably the greatest help you will find in configuring PPP will come from other users of the same Linux
distribution. PPP configuration questions are very common, so try your local usergroup mailing list or
the IRC Linux channel. If your problems persist even after reading the documentation, you could try the

comp.protocols.ppp newsgroup. Thisis the place where you can find most of the people involved in
pppd development.

Notes

[1] Relevant RFCsare listed in the Bibiliography at the end of this book.
[2] Infact, HDLC isamuch more general protocol devised by the International Standards
Organization (I1SO) and is also an essential component of the X.25 specification.

[3] If you have any general questions about PPP, ask the people on the Linux-net mailing list at
vger.rutgers.edu.

[4] Karl can bereached at karl@morningstar.com.

Prev Home Next
Running in Server Mode Running pppd

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 7. Seria Line IP Next

Running in Server Mode

Setting up your SLIP client was the hard part. Configuring your host to act asa SLIP server is much
easier.
There are two ways of configuring a SLIP server. Both ways require that you set up one login account

per SLIP client. Assume you provide SLIP service to Arthur Dent at dent.beta.com. Y ou might create an
account named dent by adding the following line to your passwd file:

dent:*:501: 60: Art hur Dent's SLIP account:/tnp:/usr/sbin/diplogin

Afterwards, you would set dent's password using the passwd utility.

The dip command can be used in server mode by invoking it as diplogin. Usually diplogin isalink to
dip. Itsmain configuration fileis/ et ¢/ di phost s, which iswhere you specify what |P address a
SLIP user will be assigned when he or she diasin. Alternatively, you can also use the sliplogin
command, a BSD-derived tool featuring a more flexible configuration scheme that lets you execute shell
scripts whenever a host connects and disconnects.

When our SLIP user dent logsin, dip startsup asaserver. To find out if he isindeed permitted to use
SLIP, it looks up the usernamein/ et ¢/ di phost s. Thisfile details the access rights and connection
parameter for each SLIP user. The general format for an/ et ¢/ di phost s entry looks like:

[etc/di phosts
user: password: rem addr: | oc- addr: net mask: conment s: pr ot ocol , MTU
#

Each of the fieldsis described in Table 7-2.

Table 7-2. /etc/diphosts Field Description

Field Description

user The username of
the user invoking
dip that this entry

will apply to.

password

Field 2 of the

/ et c/ di phost s
fileisused to add
an extralayer of
password-based
security on the
connection. You
can place a
password in
encrypted form
here (just asin

/ et c/ passwd)
and diplogin will
prompt for the user
to enter the
password before
allowing SLIP
access. Note that
this password is
used in addition to
the normal
login-based
password the user
will enter.

rem addr

The address that
will be assigned to
the remote
machine. This
address may be
specified either as
a hostname that
will be resolved or
an |P addressin
dotted quad
notation.

| oc-addr

The IP address that
will be used for
this end of the
SLIPlink. This
may also be
specified asa
resolvable
hostname or in
dotted quad
format.

'net mask

'The netmask that

will be used for
routing purposes.
Many people are
confused by this
entry. The netmask
doesn't apply to the
SLIPlink itself,
butisused in
combination with
ther em addr
field to produce a
route to the remote
site. The netmask
should be that used
by the network
supported by that
of the remote host.

comment s

Thisfieldis
free-form text that
you may use to
help document the
/ et c/ di phosts
file. It servesno
other purpose.

pr ot ocol

Thisfield iswhere
you specify what
protocol or line
discipline you
want applied to
this connection.
Valid entries here
are the same as
those valid for the
p argument to the
dattach command.

MIU The maximum
transmission unit
that thislink will
carry. Thisfield
describes the
largest datagram
that will be
transmitted across
thelink. Any
datagram routed to
the SLIP device
that islarger than
the MTU will be
fragmented into
datagrams no
larger than this
value. Usudly, the
MTU is configured
identically at both
ends of the link.

A sample entry for dent could look like this:
dent: : dent. bet a. com vbrew. com 255. 255. 255. 0: Art hur Dent: CSLI P, 296

Our example gives our user dent access to SLIP with no additional password required. He will be
assigned the | P address associated with dent.beta.com with a netmask of 255. 255. 255. 0. His default
route should be directed to the | P address of vbrew.com, and he will use the CSLIP protocol with an
MTU of 296 bytes.

When dent logsin, diplogin extracts the information on him from the di phost s file. If the second field
contains avalue, diplogin will prompt for an external security password. The string entered by the user
Is encrypted and compared to the password from di phost s. If they do not match, the login attempt is
rejected. If the password field contains the string s'key, and dip was compiled with S/Key support, S'Key
authentication will take place. S'Key authentication is described in the documentation that comes in the
dip source package.

After asuccessful login, diplogin proceeds by flipping the serial lineto CSLIP or SLIP mode, and sets
up the interface and route. This connection remains established until the user disconnects and the modem
dropsthe line. diplogin then returns the line to normal line discipline and exits.

diplogin requires superuser privilege. If you don't have dip running setuid root, you should make
diplogin a separate copy of dip instead of asimple link. diplogin can then safely be made setuid without
affecting the status of dip itself.

Prev Home Next
Using dip Up The Point-to-Point Protocol

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 8. The Point-to-Point Protocol Next

Running pppd

When you want to connect to the Internet through a PPP link, you have to set up basic networking
capabilities, such as the loopback device and the resolver. Both have been covered in Chapter 5, and

Chapter 6. You can simply configure the name server of your Internet Service Provider in the

/ et c/resol v. conf file, but thiswill mean that every DNS request is sent across your serial link.
This situation is not optimal; the closer (network-wise) you are to your name server, the faster the name
lookups will be. An aternative solution is to configure a caching-only name server at a host on your
network. This means that the first time you make a DNS query for a particular host, your request will be
sent across your seria link, but every subsequent request will be answered directly by your local name
server, and will be much faster. This configuration is described in Chapter 6, in the section called

Caching-only named Configuration in Chapter 6.

As an introductory example of how to establish a PPP connection with pppd, assume you are at vlager
again. First, dial in to the PPP server c3po and log in to the ppp account. c3po will execute its PPP driver.
After exiting the communications program you used for dialing, execute the following command,
substituting the name of the serial device you used for thet t y S3 shown here:

pppd /dev/ttyS3 38400 crtscts defaultroute

This command flipsthe seria linet t y S3 to the PPP line discipline and negotiates an IP link with c3po.
The transfer speed used on the serial port will be 38,400 bps. The crtscts option turns on hardware
handshake on the port, which is an absolute must at speeds above 9,600 bps.

The first thing pppd does after starting up is negotiate several link characteristics with the remote end
using LCP. Usually, the default set of options pppd tries to negotiate will work, so we won't go into this
here. Expect to say that part of this negotiation involves requesting or assigning the IP addresses at each
end of the link.

For the time being, we also assume that c3po doesn't require any authentication from us, so the
configuration phase is completed successfully.

pppd will then negotiate the | P parameters with its peer using IPCP, the I P control protocol. Since we
didn't specify any particular IP address to pppd earlier, it will try to use the address obtained by having
the resolver look up the local hosthame. Both will then announce their addresses to each other.

Usually, there's nothing wrong with these defaults. Even if your machine is on an Ethernet, you can use
the same | P address for both the Ethernet and the PPP interface. Nevertheless, pppd alows you to use a
different address, or even to ask your peer to use some specific address. These options are discussed later
in the the section called | P Configuration Options section.

After going through the I|PCP setup phase, pppd will prepare your host's networking layer to use the PPP

link. It first configures the PPP network interface as a point-to-point link, using ppp0 for the first PPP
link that is active, pppl for the second, and so on. Next, it sets up arouting table entry that points to the
host at the other end of the link. In the previous example, pppd made the default network route point to
c3po, because we gave it the defaultroute option.[1] The default route simplifies your routing by causing
any | P datagram destined to a nonlocal host to be sent to c3po; this makes sense since it is the only way
they can be reached. There are a number of different routing schemes pppd supports, which we will
cover in detail later in this chapter.

Notes

[1] The default network routeisinstalled only if noneis already present.

Prev Home Next
The Point-to-Point Protocol Up Using Options Files

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 8. The Point-to-Point Protocol Next

Using Options Files

Before pppd parses its command-line arguments, it scans several files for default options. These files
may contain any valid command-line arguments spread out across an arbitrary number of lines. Hash
signs introduce comments.

Thefirst optionsfileis/ et ¢/ ppp/ opt i ons, which is always scanned when pppd starts up. Using it
to set some global defaultsis agood idea, because it allows you to keep your users from doing severa
things that may compromise security. For instance, to make pppd require some kind of authentication
(either PAP or CHAP) from the peer, you add the aut h option to thisfile. This option cannot be
overridden by the user, so it becomes impossible to establish a PPP connection with any system that is
not in your authentication databases. Note, however, that some options can be overridden; the connect
string is a good example.

The other optionsfile, which isread after / et ¢/ ppp/ opti ons,is. pppr ¢ inthe user's home
directory. It allows each user to specify her own set of default options.

A sample/ et c/ ppp/ opt i ons file might look like this:
G obal options for pppd running on vl ager.vbrew com

| ock # use UUCP-styl e device | ocking
aut h # require authentication
usehost nane # use | ocal hostnane for CHAP
domai n vbrew. com # our donmi n nane

The lock keyword makes pppd comply to the standard UUCP method of device locking. With this
convention, each process that accesses a serial device, say / dev/ t t yS3, creates alock file with aname
like LCK. . t t yS3 inaspecial lock-file directory to signal that the deviceisin use. Thisis necessary to
prevent signal other programs, such as minicom or uucico, from opening the serial device whileitis
used by PPP.

The next three options relate to authentication and, therefore, to system security. The authentication
options are best placed in the global configuration file because they are privileged and cannot be
overridden by users ~/ . pppr ¢ optionsfiles.

Prev Home Next
Running pppd Up Using chat to Automate Dialing

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 8. The Point-to-Point Protocol Next

Using chat to Automate Dialing

One of the things that may have struck you as inconvenient in the previous exampleis that you had to
establish the connection manually before you could fire up pppd. Unlike dip, pppd does not have its
own scripting language for dialing the remote system and logging in, but relies on an external program or
shell script to do this. The command to be executed can be given to pppd with the connect
command-line option. pppd will redirect the command's standard input and output to the serial line.

The pppd software package is supplied with a very ssmple program called chat, which is capable of
being used in this way to automate simple login sequences. We'll talk about this command in some detail.

If your login sequence is complex, you will need something more powerful than chat. One useful
alternative you might consider is expect, written by Don Libes. It has avery powerful language based on
Tcl, and was designed exactly for this sort of application. Those of you whose login sequence requires,
for example, challenge/response authentication involving calculator-like key generators will find expect
powerful enough to handle the task. Since there are so many possible variations on this theme, we won't
describe how to develop an appropriate expect script in this book. Sufficeit to say, you'd call your expect
script by specifying its name using the pppd connect option. It's also important to note that when the
script is running, the standard input and output will be attached to the modem, not to the terminal that
invoked pppd. If you require user interaction, you should manage it by opening a spare virtual terminal,
or arrange some other means.

The chat command lets you specify a UUCP-style chat script. Basically, a chat script consists of an
alternating sequence of strings that we expect to receive from the remote system, and the answers we are
to send. We will call them expect and send strings, respectively. Thisisatypica excerpt from achat
script:

ogin: blff ssword: s3|<rilt

This script tells chat to wait for the remote system to send the login prompt and return the login name
b1ff. We wait only for ogin: so that it doesn't matter if the login prompt starts with an uppercase or
lowercasel, or if it arrives garbled. The following string is another expect string that makes chat wait for
the password prompt and send our response password.

Thisisbasically what chat scripts are all about. A complete script to dial up a PPP server would, of
course, aso have to include the appropriate modem commands. Assume that your modem understands
the Hayes command set, and the server's telephone number is 318714. The complete chat invocation to
establish a connection with c3po would then be:

$ chat -v '' ATZ OK ATDT318714 CONNECT '' ogin: ppp word: GaGari N

By definition, the first string must be an expect string, but as the modem won't say anything before we
have kicked it, we make chat skip the first expect by specifying an empty string. We then send ATZ, the

reset command for Hayes-compatible modems, and wait for its response (OK). The next string sends the
dial command along with the phone number to chat, and expects the CONNECT message in response.
Thisisfollowed by an empty string again because we don't want to send anything now, but rather wait
for the login prompt. The remainder of the chat script works exactly as described previoudy. This
description probably looks a bit confusing, but we'll seein a moment that there is away to make chat
scripts alot easier to understand.

The v option makes chat log all activitiesto the syslog daemon local 2 facility.[1]

Specifying the chat script on the command line bears a certain risk because users can view a process's
command line with the ps command. Y ou can avoid thisrisk by putting the chat script in afile like

di al - c3po. You make chat read the script from the file instead of the command line by giving it the
f option, followed by the filename. This action has the added benefit of making our chat expect
sequences easier to understand. To convert our example, our di al - c3po filewould look like:

e ATZ

K ATDT318714
CONNECT "

ogi n: ppp

wor d: GaGari N

When we use a chat script file in thisway, the string we expect to receive is on the left and the response
we will send is on the right. They are much easier to read and understand when presented this way.

The complete pppd incantation would now look like this:

pppd connect "chat -f dial-c3po" /dev/ttyS3 38400 -detach \
crtscts nodem defaul troute

Besides the connect option that specifies the dialup script, we have added two more options to the
command line: detach, which tells pppd not to detach from the console and become a background
process, and the modem keyword, which makes it perform modem-specific actions on the serial device,
like disconnecting the line before and after the call. If you don't use this keyword, pppd will not monitor
the port's DCD line and will therefore not detect whether the remote end hangs up unexpectedly.

The examples we have shown are rather simple; chat allows for much more complex scripts. For
instance, it can specify strings on which to abort the chat with an error. Typical abort strings are
messages like BUSY or NO CARRIER that your modem usually generates when the called number is
busy or doesn't answer. To make chat recognize these messages immediately rather than timing out, you
can specify them at the beginning of the script using the ABORT keyword:

$ chat -v ABORT BUSY ABORT 'NO CARRIER '' ATZ X ...

Similarly, you can change the timeout value for parts of the chat scripts by inserting TIMEOUT options.

Sometimes you also need to have conditional execution for parts of the chat script: when you don't
receive the remote end's login prompt, you might want to send a BREAK or a carriage return. Y ou can
achieve this by appending a subscript to an expect string. The subscript consists of a sequence of send
and expect strings, just like the overall script itself, which are separated by hyphens. The subscript is
executed whenever the expected string it is appended to is not received in time. In the example above, we

would modify the chat script as follows:
ogi n: - BREAK- ogi n: ppp ssword: GaGari N
When chat doesn't see the remote system send the login prompt, the subscript is executed by first

sending a BREAK, and then waiting for the login prompt again. If the prompt now appears, the script
continues as usual; otherwise, it will terminate with an error.

Notes

[1] If youeditsysl og. conf to redirect these log messagesto afile, make sure thisfileisn't world
readable, as chat also logs the entire chat script by default including passwords.

Prev Home Next
Using Options Files Up | P Configuration Options

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 8. The Point-to-Point Protocol Next

IP Configuration Options

IPCP is used to negotiate a number of |P parameters at link configuration time. Usually, each peer sends
an |PCP Configuration Request packet, indicating which values it wants to change from the defaults and
the new value. Upon receipt, the remote end inspects each option in turn and either acknowledges or
rejectsiit.

pppd givesyou alot of control over which IPCP options it will try to negotiate. Y ou can tune it through
various command-line options that we will discuss in this section.

Choosing IP Addresses

All IP interfaces require | P addresses assigned to them; a PPP device aways has an | P address. The PPP
suite of protocols provides a mechanism that allows the automatic assignment of |P addresses to PPP
interfaces. It is possible for the PPP program at one end of a point-to-point link to assign an |P address
for the remote end to use, or each may use its own.

Some PPP serversthat handle alot of client sites assign addresses dynamically; addresses are assigned to
systems only when calling in and are reclaimed after they have logged off again. This allows the number
of 1P addresses required to be limited to the number of dialup lines. While limitation is convenient for
managers of the PPP dialup server, it is often less convenient for users who are dialing in. We discussed
the way that hostnames are mapped to | P addresses by use of a database in Chapter 6. In order for people
to connect to your host, they must know your | P address or the hostname associated with it. If you are a
user of a PPP service that assigns you an | P address dynamically, this knowledge is difficult without
providing some means of allowing the DNS database to be updated after you are assigned an |P address.
Such systems do exist, but we won't cover them in detail here; instead, we will ook at the more
preferable approach, which involves you being able to use the same | P address each time you establish
your network connection.[1]

In the previous example, we had pppd dial up c3po and establish an IP link. No provisions were taken to
choose a particular IP address on either end of the link. Instead, we let pppd take its default action. It
attempts to resolve the local hostname, vlager in our example, to an |P address, which it uses for the local
end, while letting the remote machine, c3po, provide its own. PPP supports several alternativesto this
arrangement.

To ask for particular addresses, you generally provide pppd with the following option:
| ocal _addr: renote_addr

| ocal _addr andr enot e_addr may be specified either in dotted quad notation or as hostnames.[2]
This option makes pppd attempt to use the first address supplied asits own | P address, and the second as

the peer's. If the peer regjects either of the addresses during IPCP negotiation, no IP link will be
established.[3]

If you aredialing in to a server and expect it to assign you an | P address, you should ensure that pppd
does not attempt to negotiate one for itself. To do this, usethe noi pdef aul t option and leave the

| ocal _addr blank. The noi pdef aul t option will stop pppd from trying to use the IP address
associated with the hostname as the local address.

If you want to set only the local address but accept any address the peer uses, ssimply leave out the
renot e_addr part. To make vlager use the IP address 130.83.4.27 instead of its own, giveit

130. 83. 4. 27: onthe command line. Similarly, to set the remote address only, leave the

| ocal _addr field blank. By default, pppd will then use the address associated with your hostname.

Routing Through a PPP Link

After setting up the network interface, pppd will usually set up a host route to its peer only. If the remote
host ison aLAN, you certainly want to be able to connect to hosts behind your peer aswell; in that
case, a network route must be set up.

We have already seen that pppd can be asked to set the default route using the def aul t r out e option.
Thisoption isvery useful if the PPP server you dialed up acts as your Internet gateway.

The reverse case, in which your system acts as a gateway for asingle host, is also relatively easy to
accomplish. For example, take some employee at the Virtual Brewery whose home machineis called
oneshot. Let's also assume that we've configured viager as adialin PPP server. If we've configured vliager
to dynamically assign an |P address that belongs to the Brewery's subnet, then we can use the

pr oxyar p option with pppd, which will install a proxy ARP entry for oneshot. This automatically
makes oneshot accessible from all hosts at the Brewery and the Winery.

However, things aren't aways that smple. Linking two local area networks usually requires adding a
specific network route because these networks may have their own default routes. Besides, having both
peers use the PPP link as the default route would generate a loop, through which packets to unknown
destinations would ping-pong between the peers until their time to live expired.

Suppose the Virtual Brewery opens a branch in another city. The subsidiary runs an Ethernet of its own
using the IP network number 172.16.3.0, which is subnet 3 of the Brewery's class B network. The
subsidiary wants to connect to the Brewery's network via PPP to update customer databases. Again,
vlager acts as the gateway for the brewery network and will support the PPP link; its peer at the new
branch is called vbourbon and has an | P address of 172.16.3.1. This network isillustrated in Figure A-2

in Appendix A.

When vbourbon connects to vlager, it makes the default route point to viager as usual. On vlager,
however, we will have only the point-to-point route to vbourbon and will have to specialy configure a
network route for subnet 3 that uses vbourbon asits gateway. We could do this manually using the route
command by hand after the PPP link is established, but thisis not avery practical solution. Fortunately,
we can configure the route automatically by using afeature of pppd that we haven't discussed yet the
ip-up command. This command is a shell script or program located in/ et ¢/ ppp that is executed by

pppd after the PPP interface has been configured. When present, it is invoked with the following
parameters:

| p-up iface device speed | ocal addr renote_addr

The following table summarizes the meaning of each of the arguments (in the first column, we show the
number used by the shell script to refer to each argument):

Argument |IName Purpose

$1 i face The network
interface
used, eqg.,
ppp0

$2 devi ce The
pathname of
the seria
devicefile
used (
/dev/tty,
if
stdin/stdout
are used)

$3 speed The speed of
the serial
devicein
bits per
second

$4 | ocal _addr |[ThelP
address of
thelink's
remote end
In dotted
quad
notation

$5 renot e_addr [ThelP
address of
the remote
end of the
link in
dotted quad
notation

In our case, the ip-up script may contain the following code fragment:[4]

#! / bi n/ sh
case $5 in
172.16.3.1) # this is vbourbon
route add -net 172.16.3.0 gw 172.16.3.1;;
esac
exit O
Similarly, /etc/ppp/ip-down can be used to undo any actions of ip-up after the PPP link has been taken

down again. So in our /etc/ppp/ip-down script we would have aroute command that removed the route
we created in the /etc/ppp/ip-up script.

However, the routing scheme is not yet complete. We have set up routing table entries on both PPP hosts,
but so far none of the hosts on either network knows anything about the PPP link. Thisisnot abig
problem if all hosts at the subsidiary have their default route pointing at vbourbon, and all Brewery hosts
route to vlager by default. If thisis not the case, your only option is usually to use a routing daemon like
gated. After creating the network route on vlager, the routing daemon broadcasts the new route to all
hosts on the attached subnets.

Notes

[1] Moreinformation on two dynamic host assignment mechanisms can be found at
http://www.dynip.com/ and http://www.justlinux.com/dynamic_dns.html.

[2] Using hostnamesin this option has consequences for CHAP authentication. Please refer to the the
section called Authentication with PPP section later in this chapter.

[3] Thei pcp-accept-1ocal andi pcp-accept - r enot e options instruct your pppd to accept
the local and remote | P addresses being offered by the remote PPP, even if you've supplied some

in your configuration. If these options are not configured, your pppd will reject any attempt to
negotiate the | P addresses used.

[4] If wewanted to have routes for other sites created when they dial in, we'd add appropriate case

statementsto cover those in which the. . . appearsin the example.
Prev Home Next
Using chat to Automate Dialing Up Link Control Options

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 8. The Point-to-Point Protocol Next

Link Control Options

We aready encountered the Link Control Protocol (LCP), which is used to negotiate link characteristics
and test the link.

The two most important options negotiated by L CP are the Asynchronous Control Character Map and
the Maximum Receive Unit. There are anumber of other LCP configuration options, but they are far too
specialized to discuss here.

The Asynchronous Control Character Map, colloquially called the async map, is used on asynchronous
links, such as telephone lines, to identify control characters that must be escaped (replaced by a specific
two-character sequence) to avoid them being interpreted by equipment used to establish the link. For
instance, you may want to avoid the XON and X OFF characters used for software handshake because a
misconfigured modem might choke upon receipt of an XOFF. Other candidates include Ctrl-I (the telnet
escape character). PPP alows you to escape any of the characters with ASCII codes O through 31 by
specifying them in the async map.

The async map is a 32-bit-wide bitmap expressed in hexadecimal. The least significant bit corresponds to
the ASCII NULL character, and the most significant bit corresponds to ASCII 31 decimal. These 32
ASCII characters are the control characters. If abit isset in the bitmap, it signals that the corresponding
character must be escaped before it is transmitted across the link.

To tell your peer that it doesn't have to escape all control characters, but only afew of them, you can
specify an async map to pppd using the asyncmap option. For example, if only #S and *Q(ASCII 17
and 19, commonly used for XON and X OFF) must be escaped, use the following option:

asyncmap 0x000AO0000

The conversion is simple as long as you can convert binary to hex. Lay out 32 bitsin front of you. The
right-most bit corresponds to ASCII 00 (NULL), and the left-most bit corresponds to ASCII 32 decimal.
Set the bits corresponding to the characters you want escaped to one, and al othersto zero. To convert
that into the hexadecimal number pppd expects, simply take each set of 4 bits and convert them into hex.
Y ou should end up with eight hexadecimal figures. String them all together and preprend Ox to signify it
is a hexadecimal number, and you are done.

Initially, theasync mapissettoOxf f f ff f f f thatis, all control characters will be escaped. Thisisa
safe default, but is usually much more than you need. Each character that appears in the async map
results in two characters being transmitted across the link, so escaping comes at the cost of increased link
utilization and a corresponding performance reduction.

In most circumstances, an async map of 0x0 works fine. No escaping is performed.

The Maximum Receive Unit (MRU), signals to the peer the maximum size of HDL C frames we want to

Linux Network Administrators Guide
Prev Chapter 8. The Point-to-Point Protocol Next

General Security Considerations

A misconfigured PPP daemon can be a devastating security breach. It can be as bad as | etting anyone
plug their machine into your Ethernet (and that can be very bad). In this section, we discuss afew
measures that should make your PPP configuration safe.

Note: Root privilegeisrequired to configure the network device and routing table. Y ou will
usually solve this by running pppd setuid root. However, pppd alows usersto set various
security-relevant options.

To protect against any attacks a user may launch by manipulating pppd options, you should set a couple
of default valuesin the global / et ¢/ ppp/ opt i ons file, like those shown in the sample filein the

section called Using Options Files, earlier in this chapter. Some of them, such as the authentication

options, cannot be overridden by the user, and thus provide reasonabl e protection against manipulations.
An important option to protect is the connect option. If you intend to allow non-root users to invoke
pppd to connect to the Internet, you should always add the connect and noaut h optionsto the global
optionsfile/ et c/ ppp/ opt i ons. If you fail to do this, userswill be able to execute arbitrary
commands with r oot privileges by specifying the command as their connect command on the pppd line
or in their personal optionsfile.

Another good idea isto restrict which users may execute pppd by creating agroupin/ et ¢/ gr oup and
adding only those users who you wish to have the ability to execute the PPP daemon. Y ou should then
change group ownership of the pppd daemon to that group and remove the world execute privileges. To
do this, assuming you've called your group dialout, you could use something like:

chown root /usr/sbin/pppd
chgrp dial out /usr/sbin/pppd
chnod 4750 /usr/sbin/ pppd

Of course, you have to protect yourself from the systems you speak PPP with, too. To fend off hosts
posing as someone else, you should always require some sort of authentication from your peer.
Additionally, you should not allow foreign hosts to use any |P address they choose, but restrict them to at
most afew. The following section will deal with these topicsin detail.

Prev Home Next
Link Control Options Up Authentication with PPP

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 8. The Point-to-Point Protocol Next

Authentication with PPP

With PPP, each system may require its peer to authenticate itself using one of two authentication protocols:
the Password Authentication Protocol (PAP), and the Challenge Handshake Authentication Protocol
(CHAP). When a connection is established, each end can request the other to authenticate itself, regardless of
whether it isthe caller or the callee. In the description that follows, we will loosely talk of client and server
when we want to distinguish between the system sending authentication requests and the system responding
to them. A PPP daemon can ask its peer for authentication by sending yet another L CP configuration request
identifying the desired authentication protocol.

PAP Versus CHAP

PAP, which is offered by many Internet Service Providers, works basically the same way as the normal login
procedure. The client authenticatesitself by sending a username and a (optionally encrypted) password to the
server, which the server compares to its secrets database.[1] Thistechnique is vulnerable to eavesdroppers,

who may try to obtain the password by listening in on the serial line, and to repeated trial and error attacks.

CHAP does not have these deficiencies. With CHAP, the server sends arandomly generated challenge string
to the client, along with its hostname. The client uses the hostname to ook up the appropriate secret,
combines it with the challenge, and encrypts the string using a one-way hashing function. The result is
returned to the server along with the client's hostname. The server now performs the same computation, and
acknowledges the client if it arrives at the same resullt.

CHAP aso doesn't require the client to authenticate itself only at startup time, but sends challenges at regular
intervals to make sure the client hasn't been replaced by an intruder, for instance by switching phone lines, or
because of a modem configuration error that causes the PPP daemon not to notice that the original phone call
has dropped out and someone else has dialed in.

pppd keeps the secret keys for PAP and CHAP in two separatefilescalled / et ¢/ ppp/ pap- secr et s and
/ et c/ ppp/ chap- secr et s. By entering aremote host in one or the other file, you have fine control over
whether PAP or CHAP is used to authenticate yourself with your peer, and vice versa.

By default, pppd doesn't require authentication from the remote host, but it will agree to authenticate itself
when requested by the remote host. Since CHAP is so much stronger than PAP, pppd tries to use the former
whenever possible. If the peer does not support it, or if pppd can't find a CHAP secret for the remote system
initschap- secr et s file, it revertsto PAP. If it doesn't have a PAP secret for its peer either, it refusesto
authenticate altogether. As a consegquence, the connection is shut down.

Y ou can modify this behavior in several ways. When given the aut h keyword, pppd requires the peer to
authenticate itself. pppd agreesto use either CHAP or PAP aslong asit has a secret for the peer in its CHAP
or PAP database. There are other options to turn a particular authentication protocol on or off, but | won't
describe them here.

If all systemsyou talk to with PPP agree to authenticate themselves with you, you should put the aut h

optionintheglobal / et ¢/ ppp/ opt i ons file and define passwords for each system in the
chap- secr et s file. If asystem doesn't support CHAP, add an entry for it to the pap- secr et s file. That
way, you can make sure no unauthenticated system connects to your host.

The next two sections discuss the two PPP secretsfiles, pap- secr et s and chap- secrets. They are
located in/ et ¢/ ppp and contain triplets of clients, servers, and passwords, optionally followed by alist of
| P addresses. The interpretation of the client and server fields is different for CHAP and PAP, and also
depends on whether we authenticate oursel ves with the peer, or whether we require the server to authenticate
itself with us.

The CHAP Secrets File

When it hasto authenticate itself with a server using CHAP, pppd searchesthe chap- secr et s filefor an
entry with the client field equal to the local hostname, and the server field equal to the remote hostname sent
in the CHAP challenge. When requiring the peer to authenticate itself, the roles are ssimply reversed: pppd
then looks for an entry with the client field equal to the remote hostname (sent in the client's CHAP
response), and the server field equal to the local hostname.

Thefollowing isasample chap- secr et s filefor viager:[2]

CHAP secrets for vlager.vbrew com

#

client server secr et addr s
e S

vl ager.vbrew.com c3po.lucas.com "Use The Source Luke" vl ager.vbrew com
c3po. | ucas. com vl ager.vbrew. com "arttoo! arttoo!" c3po. | ucas. com

* vl ager.vbrew. com " TuXdrinksVicBitter" pub.vbrew com

When vlager establishes a PPP connection with c3po, c3po asks vlager to authenticate itself by sending a
CHAP challenge. pppd on viager then scans chap- secr et s for an entry with the client field equal to
vlager.vbrew.com and the server field equal to c3po.lucas.com, and finds the first line shown in the
example.[3] It then produces the CHAP response from the challenge string and the secret (Use The

Sour ce Luke), and sendsit off to c3po.

pppd also composes a CHAP challenge for c3po containing a unique challenge string and its fully qualified
hostname, vlager.vbrew.com. c3po constructs a CHAP response in the way we discussed, and returnsit to
vlager. pppd then extracts the client hostname (c3po.vbrew.com) from the response and searches the

chap- secr et s filefor aline matching c3po as a client and vlager asthe server. The second line does this,
so pppd combines the CHAP challenge and the secret art t oo! artt oo! , encrypts them, and compares
the result to c3po's CHAP response.

The optional fourth field lists the IP addresses that are acceptable for the client named in thefirst field. The
addresses can be given in dotted quad notation or as hostnames that are looked up with the resolver. For
instance, if c3po asksto use an IP address during |PCP negotiation that is not in this list, the request is
rejected, and IPCP is shut down. In the sample file shown above, c3po is therefore limited to using its own IP
address. If the address field is empty, any addresses are allowed; avaue of - preventsthe use of IP with that
client altogether.

The third line of the sample chap- secr et s file alows any host to establish a PPP link with vliager because

aclient or server field of * isawildcard matching any hostname. The only requirements are that the
connecting host must know the secret and that it must use the | P address associated with pub.vbrew.com.
Entries with wildcard hostnames may appear anywhere in the secretsfile, since pppd will always use the best
match it can find for the server/client pair.

pppd may need some help forming hostnames. As explained before, the remote hostname is aways provided
by the peer in the CHAP challenge or response packet. The local hostname is obtained by calling the

get host nane(2) function by default. If you have set the system name to your unqualified hostname, you
aso haveto provide pppd with the domain name using the domai n option:

pppd & domai n vbrew com

This provision appends the Brewery's domain name to vlager for al authentication related activities. Other
options that modify pppd 's idea of the local hosthame are usehost nane and nane. When you give the
local |P address on the command lineusing | ocal :r enot e and| ocal asaname instead of a dotted quad,
pppd uses this as the local hostname.

The PAP Secrets File

The PAP secretsfileisvery similar to CHAP's. Thefirst two fields always contain a username and a server
name; the third holds the PAP secret. When the remote host sends its authentication information, pppd uses
the entry that has a server field equal to the local hostname, and a user field equal to the username sent in the
request. When it is necessary for us to send our credentials to the peer, pppd uses the secret that has a user
field equal to the local username and the server field equal to the remote hostname.

A sample PAP secrets file might look like this:
[etc/ ppp/ pap-secrets

#

user server secr et addr s

vl ager - pap c3po cr esspabhl vl ager. vbrew. com
c3po vl ager Donal dGNUt h c3po. | ucas. com

Thefirst line is used to authenticate ourselves when talking to c3po. The second line describes how a user
named c3po has to authenticate itself with us.

The name vlager-pap in the first column is the username we send to c3po. By default, pppd picks the local
hostname as the username, but you can aso specify adifferent name by giving the user option followed by
that name.

When picking an entry from the pap- secr et s fileto identify us to aremote host, pppd must know the
remote host's name. Asit has no way of finding that out, you must specify it on the command line using the
r enot enane keyword followed by the peer's hostname. To use the above entry for authentication with
c3po, for example, we must add the following option to pppd 's command line;

pppd ... renotenane c3po user vl ager-pap

In the fourth field of the PAP secretsfile (and all following fields), you can specify what |P addresses are
allowed for that particular host, just as in the CHAP secretsfile. The peer will be alowed to request only
addresses from that list. In the samplefile, the entry that c3po will use when it dialsin the line where c3pois
the client allowsit to useitsreal 1P address and no other.

Note that PAP is arather weak authentication method, you should use CHAP instead whenever possible. We
will therefore not cover PAP in greater detail here; if you are interested in using it, you will find more PAP
featuresin the pppd(8) manual page.

Notes

[1] Secret isjust the PPP name for passwords. PPP secrets don't have the same length limitation as
Linux login passwords.

[2] The double quotes are not part of the secret; they merely serve to protect the whitespace within it.
[3] Thishostnameistaken from the CHAP challenge.

Prev Home Next
General Security Considerations Up Debugging Y our PPP Setup

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 8. The Point-to-Point Protocol Next

Debugging Your PPP Setup

By default, pppd logs any warnings and error messages to syslog 's daemon facility. Y ou have to add an
entry tosysl og. conf that redirects these messagesto afile or even the console; otherwise, syslog
simply discards them. The following entry sends all messagesto/ var/ | og/ ppp- | og:

daenon. * /var /| og/ ppp- | og

If your PPP setup doesn't work right away, you should look in thislog file. If the log messages don't help,
you can also turn on extra debugging output using the debug option. This output makes pppd log the
contents of all control packets sent or received to syslog. All messages then go to the daemon facility.

Finally, the most drastic way to check a problem is to enable kernel-level debugging by invoking pppd
with the kdebug option. It is followed by a numeric argument that is the sum of the following values: 1
for general debug messages, 2 for printing the contents of all incoming HDLC frames, and 4 to make the
driver print all outgoing HDL C frames. To capture kernel debugging messages, you must either run a
syslogd daemon that readsthe/ pr oc/ ks g file, or the klogd daemon. Either of them directs kernel
debugging to the syslog kernel facility.

Prev Home Next

Authentication with PPP Up More Advanced PPP
Configurations

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 8. The Point-to-Point Protocol Next

More Advanced PPP Configurations

While configuring PPP to dial in to anetwork like the Internet is the most common application, there are
those of you who have more advanced requirements. In this section we'll talk about afew of the more
advanced configurations possible with PPP under Linux.

PPP Server

Running pppd as a server isjust amatter of configuring a serial tty device to invoke pppd with appropriate
options when an incoming data call has been received. One way to do thisisto create a special account, say
ppp, and give it a script or program as alogin shell that invokes pppd with these options. Alternatively, if
you intend to support PAP or CHAP authentication, you can use the mgetty program to support your
modem and exploit its /AutoPPP/ feature.

To build a server using the login method, you add aline similar to the following to your / et ¢/ passwd
file[1]
ppp: X: 500: 200: Publ ic PPP Account:/tnp:/etc/ppp/pppl ogin

If your system supports shadow passwords, you also need to add an entry to the/ et ¢/ shadowfile:
ppp:!:10913: 0: 99999: 7: : :

Of course, the UID and GID you use depends on which user you wish to own the connection, and how
you've created it. Y ou also have to set the password for the mentioned account using the passwd command.

The ppplogin script might look like this:

#! / bi n/ sh

ppplogin - script to fire up pppd on login
mesg n

stty -echo

exec pppd -detach silent nodemcrtscts

The mesg command disables other users from writing to the tty by using, for instance, the write command.
The stty command turns off character echoing. This command is necessary; otherwise, everything the peer
sends would be echoed back to it. The most important pppd option given is detach because it prevents
pppd from detaching from the controlling tty. If we didn't specify this option, it would go to the
background, making the shell script exit. Thisin turn would cause the serial line to hang up and the
connection to be dropped. The silent option causes pppd to wait until it receives a packet from the calling
system before it starts sending. This option prevents transmit timeouts from occurring when the calling
systemisslow in firing up its PPP client. The modem option makes pppd drive the modem control lines of
the serial port. Y ou should always turn this option on when using pppd with amodem. Thecrt sct s
option turns on hardware handshake.

Besides these options, you might want to force some sort of authentication, for example, by specifying
aut h on pppd 's command line or in the global optionsfile. The manual page also discusses more specific
options for turning individual authentication protocols on and off.

If you wish to use mgetty, all you need to do is configure mgetty to support the serial device your modem
is connected to (see the section called Configuring the mgetty Daemon in Chapter 4 for details), configure
pppd for either PAP or CHAP authentication with appropriate optionsinitsopt i ons file, and finaly, add
asection similar to the following to your / et ¢/ nget t y/ | ogi n. confi g file:

Configure ngetty to autonatically detect incomng PPP calls and invoke
the pppd daenon to handl e the connecti on.

#

/ Aut oPPP/ - ppp [usr/sbin/pppd auth -chap +pap |ogin

Thefirst field is a special piece of magic used to detect that an incoming call isa PPP one. Y ou must not
change the case of this string; it is case sensitive. The third column is the username that appears in who
listings when someone has logged in. The rest of the line is the command to invoke. In our example, we've
ensured that PAP authentication is required, disabled CHAP, and specified that the system passwd file
should be used for authenticating users. Thisis probably similar to what you'll want. Remember, you can
specify the options in the opt i ons file or on the command line if you prefer.

Hereisasmall checklist of tasks to perform and the sequence you should perform them to get PPP dial in
working on your machine. Make sure each step works before moving on to the next:

1. Configure the modem for auto-answer mode. On Hayes-compatible modems, thisis performed using
acommand like ATS0=3. If you're going to be using the mgetty daemon, thisisn't necessary.

2. Configure the serial device with a getty type of command to answer incoming calls. A commonly
used getty variant is mgetty.

3. Consider authentication. Will your callers authenticate using PAP, CHAP, or system login?
4. Configure pppd as server as described in this section.

5. Consider routing. Will you need to provide a network route to callers? Routing can be performed
using thei p- up script.

Demand Dialing

When there is | P traffic to be carried across the link, demand dialing causes your tel ephone modem to dial
and to establish a connection to aremote host. Demand dialing is most useful when you can't leave your
telephone line permanently switched to your Internet provider. For example, you might have to pay timed
local calls, so it might be cheaper to have the telephone line switched on only when you need it and
disconnected when you aren't using the Internet.

Traditional Linux solutions have used the diald command, which worked well but was fairly tricky to
configure. Versions 2.3.0 and later of the PPP daemon have built-in support for demand dialing and make it
very simple to configure. Y ou must use a modern kernel for this to work, too. Any of the later 2.0 kernels
will work just fine.

To configure pppd for demand dialing, all you need to do is add optionsto your opt i ons file or the pppd
command line. The following table summarizes the options related to demand dialing:

Option Description

demand This option
specifies that
the PPP link
should be
placed in
demand dial
mode. The
PPP network
device will
be created,
but the
connect
command
will not be
used until a
datagramis
transmitted
by the local
host. This
option is
mandatory
for demand
dialing to
work.

active-filter |Thisoption
expr essi on allowsyouto
specify
which data
packets are to
be considered
active traffic.
Any traffic
matching the
specified rule
will restart
the demand
dia idle
timer,
ensuring that
pppd waits
again before
closing the
link. The

filter syntax
has been
borrowed
from the
tcpdump
command.
The default
filter matches
all

datagrams.

hol dof f n

This option
alowsyouto
specify the
minimum
amount of
time, in
seconds, to
wait before
reconnecting
thislink if it
terminates. If
the
connection
failswhile
pppd
believesitis
in active use,
it will be
re-established
after this
timer has
expired. This
timer does
not apply to
reconnections
after anidle

timeout.

idlen If this option
Is configured,
pppd will
disconnect
the link
whenever
this timer
expires. Idle
times are
specified in
seconds.
Each new
active data
packet will
reset the
timer.

A simple demand dialing configuration would therefore look something like this:

denmand
hol dof f 60
idle 180

This configuration would enable demand dialing, wait 60 seconds before re-establishing a failed connection,
and drop the link if 180 seconds pass without any active data on the link.

Persistent Dialing

Persistent dialing is what people who have permanent dialup connections to a network will want to use.
There is a subtle difference between demand dialing and persistent dialing. With persistent dialing, the
connection is automatically established as soon as the PPP daemon is started, and the persistent aspect
comes into play whenever the telephone call supporting the link fails. Persistent dialing ensures that the link
is always available by automatically rebuilding the connection if it fails.

Y ou might be fortunate to not have to pay for your telephone calls; perhaps they are local and free, or
perhaps they're paid by your company. The persistent dialing option is extremely useful in this situation. If
you do have to pay for your telephone calls, then you have to be alittle careful. If you pay for your
telephone calls on atime-charged basis, persistent dialing is almost certainly not what you want, unless
you're very sure you'll be using the connection fairly steadily twenty-four hours aday. If you do pay for
calls, but they are not time charged, you need to be careful to protect yourself against situations that might
cause the modem to endlessly redial. The pppd daemon provides an option that can help reduce the effects
of this problem.

To enable persistent dialing, you must include the persist option in one of your pppd options files. Including
thisoption aloneisall you need to have pppd automatically invoke the command specified by the connect
option to rebuild the connection when the link fails. If you are concerned about the modem redialing too
rapidly (in the case of modem or server fault at the other end of the connection), you can use the holdoff
option to set the minimum amount of time that pppd will wait before attempting to reconnect. This option

won't solve the problem of afault costing you money in wasted phone calls, but it will at least serve to
reduce the impact of one.

A typica configuration might have persistent dialing options that look like this:

per si st
hol dof f 600

The holdoff time is specified in seconds. In our example, pppd waits afull five minutes before redialing
after the call drops out.

It is possible to combine persistent dialing with demand dialing, using idle to drop the link if it has been idle
for a specified period of time. We doubt many users would want to do so, but this scenario is described
briefly in the pppd manual page, if you'd like to pursueit.

Notes

[1] Theuseradd or adduser utility, if you haveit, will ssimplify this task.

Prev Home Next
Debugging Y our PPP Setup Up TCP/IP Firewall

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 15. IPX and the NCP Filesystem Next

IPX and LinuX

Alan Cox first developed IPX support for the Linux kernel in 1985.[1] Initialy it was useful for little
more than routing I1PX datagrams. Since then, other people, notably Greg Page, have provided additional
support.[2] Greg developed the IPX configuration utilities that we'll use in this chapter to configure our
interfaces. Volker Lendecke developed support for the NCP filesystem to allow Linux to mount volumes
on network-connected NetWare fileservers.[3] He also created tools that alow printing to and from
Linux. Ales Dryak and Martin Stover each independently developed NCP fileserver daemons for Linux
that allow network-connected NetWare clients to mount Linux directories exported as NCP volumes, just
as the NFS daemon allows Linux to serve filesystemsto clients using the NFS protocol.[4] Caldera

Systems, Inc. offers acommercial and fully licensed NetWare client and server that supports the |atest
Novell standards, including support for the NetWare Directory Service (NDS).[5]

Today, therefore, Linux supports awide range of servicesthat allow systems to be integrated with
existing Novell-based networks.

Caldera Support

Although we don't detail the Caldera NetWare support in this chapter, it isimportant that we talk about
it. Calderawas founded by Ray Noorda, the former CEO of Novell. The Caldera NetWare support is a
commercia product and fully supported by Caldera. Caldera provides the NetWare support as a
component of their own Linux distribution called Caldera OpenLinux. The Caldera solution isan ideal
way of introducing Linux into environments that demand both commercial support and the ability to
integrate into existing or new Novell networks.

The Caldera NetWare support isfully licensed by Novell, providing a high degree of certainty that the
two companies products will be interoperable. The two exceptions to this certainty are "pure [P"
operation for the client, and NDS server, though neither of these were available at the time of writing.
NetWare client and NetWare server are both available. A suite of management toolsis also provided that
can simplify management of not only your Linux-based NetWare machines, but your Novell NetWare
machines, too, by bringing the power of Unix scripting languages to the task. More information on
Caldera can be found at their web site.

More on NDS Support

Along with Version 4 of NetWare, Novell introduced a feature called the NetWare Directory Service
(NDS). The NDS specifications are not available without a nondisclosure agreement, a restriction that
hampers development of free support. Only Version 2.2.0 or later of the ncpf s package, which welll
discuss later, has any support for NDS. This support was developed by reverse engineering the NDS

protocol. The support seems to work, but is still officially considered experimental. Y ou can use the
non-NDS tools with NetWare 4 servers, provided they have bindery emulation mode enabled.

The Caldera software has full support for NDS because their implementation is licensed from Novell.
Thisimplementation is not free, however. So you will not have access to the source code and will not be
able to freely copy and distribute the software.

Notes

Alan can be reached at alan@Ilxorguk.ukuu.org.uk.

Greg can be reached at gpage@sovereign.org.

Volker can be reached at |lendecke@namu0l.gwdg.de.

Ales can bereached at A.Dryak@sh.cvut.cz. Martin can be reached at mstover @freeway.de.
Information on Caldera can be found at http://www.caldera.cony.

bl NE

Prev Home Next

IPX and the NCP Filesystem Up Configuring the Kernel for
|PXand NCPFS

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 15. IPX and the NCP Filesystem Next

Configuring the Kernel for IPXand
NCPFS

Configuring the kernel for IPX and the NCP filesystem is simply a matter of selecting the appropriate
kernel options at kernel build time. As with many other parts of the kernel, IPX and NCPFS kernel
components can be built into the kernel, or compiled as modules and loaded using the insmod command
when you need them.

The following options must be selected if you want to have Linux support and route the IPX protocol:

General setup --->
[*] Networking support

Net wor ki ng options --->
<*> The | PX protocol

Net wor k devi ce support --->
[*] Ethernet (10 or 100Mbit)
and appropri ate Ethernet device drivers

If you want Linux to support the NCP filesystem so it can mount remote NetWare volumes, you must
additionally select these options:

Fil esystens --->
[*] /proc filesystem support
<*> NCP fil esystem support (to nount NetWare vol unes)

When you've compiled and installed your new kernel, you're ready to run IPX.

Prev Home Next
IPX and Linux Up Configuring IPX Interfaces

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 15. IPX and the NCP Filesystem Next

Configuring IPX Interfaces

Just as with TCP/IP, you must configure your 1PX interfaces before you can use them. The IPX protocol
has some unique requirements; consequently, a special set of configuration tools was devel oped. We will
use these tools to configure our 1PX interfaces and routes.

Network Devices Supporting IPX

The IPX protocol assumes that any collection of hosts that can transmit datagrams to each other without
routing belong to the same IPX network. All hosts belonging to a single Ethernet segment would all
belong to the same IPX network. Similarly (but less intuitively), both hosts supporting a PPP-based serial
link must belong to the IPX network that is the serial link itself. In an Ethernet environment, there are a
number of different frame types that may be used to carry IPX datagrams. The frame types represent
different Ethernet protocols and describe differing ways of carrying multiple protocols on the same
Ethernet network. The most common frame types you will encounter are 802. 2 andet hernet | 1.
Welll talk more about frame types in the next section.

The Linux network devices that currently support the IPX protocol are the Ethernet and PPP drivers. The
Ethernet or PPP interface must be active before it can be configured for IPX use. Typicaly, you
configure an Ethernet device with both IP and IPX, so the device already exists, but if your network is
IPX only, you need to use the ifconfig to change the Ethernet device status to the following:

ifconfig ethO up

IPX Interface Configuration Tools

Greg Page developed a set of configuration tools for IPX interfaces, which is a precompiled package in
modern distributions and may also be obtained in source form by anonymous FTP from
http://metalab.unc.edu/ inthe/ pub/ Li nux/ systeni fil esyst ens/ ncpfs/i px.tgzfile

Anr c script file usually runsthe IPX tools at boot time. Y our distribution may already do thisfor you if
you have installed the prepackaged software.

The ipx_configure Command

Each IPX interface must know which IPX network it belongs to and which frame type to use for IPX.
Each host supporting IPX has at least one interface that the rest of the network will use to refer to it,
known as the primary interface. The Linux kernel 1PX support provides a means of automatically
configuring these parameters; the ipx_configure command enables or disables this automatic

configuration feature.

With no arguments, the ipx_configure command displays the current setting of the automatic
configuration flags:

1 px_configure
Auto Primary Select is OFF
Auto Interface Create is OFF

Both the Auto Primary and Auto Interface flags are off by default. To set them and enable automatic
configuration, you simply supply arguments like these:

i px_configure --auto_interface=on --auto_primary=on

Whenthe- -auto_primary argumentissettoon, the kernel will automatically ensure that at least
one active interface operates as the primary interface for the host.

Whenthe- -auto_interface argumentissettoon,thekerne IPX driver will listen to al of the
frames received on the active network interfaces and attempt to determine the IPX network address and
frame type used.

The auto-detection mechanism works well on properly managed networks. Sometimes network
administrators take shortcuts and break rules, and this can cause problems for the Linux auto-detection
code. The most common example of thisiswhen one IPX network is configured to run over the same
Ethernet with multiple frame types. Thisistechnically an invalid configuration, as an 802.2 host cannot
directly communicate with an Ethernet-11 host and therefore they cannot be on the same IPX network.
The Linux IPX network software listens on the segment to IPX datagrams transmitted on it. From these,
it attempts to identify which network addresses are in use and which frame type is associated with each.
If the same network addressisin use with multiple frame types or on multiple interfaces, the Linux code
detects this as a network address collision and is unable to determine which is the correct frame type.

Y ou will know thisis occurring if you see messages in your system log that look like:

| PX: Network nunber collision 0x3901ab00
ethO etherll and et hO 802. 3

If you see this problem, disable the auto-detection feature and configure the interfaces manually using the
ipX_inter face command described in the next section.

The ipx_interface Command

The ipx_interface command is used to manually add, modify, and delete IPX capability from an existing
network device. Y ou should use ipx_inter face when the automatic configuration method just described
does not work for you, or if you don't want to leave your interface configuration to chance. ipx_interface
allows you to specify the IPX network address, primary interface status, and IPX frame type that a
network device will use. If you are creating multiple |PX interfaces, you need one ipx_interface for
each.

The command syntax to add IPX to an existing device is straightforward and best explained with an
example. Let's add IPX to an existing Ethernet device:

ipx_interface add -p ethO etherll 0x32a10103
The parameters in turn mean:
P

This parameter specifies that this interface should be a primary interface. This parameter is
optional.

eth0

Thisis the name of the network device to which we are adding IPX support.
etherll

This parameter is the frame type, in this case Ethernet-11. This value may also be coded as 802. 2,
802. 3, or SNAP.

0x32a10103
Thisisthe IPX network address to which this interface belongs.

The following command removes | PX from an interface:
ipx_interface del ethO etherll

Lastly, to display the current IPX configuration of a network device, use:
ipx_interface check ethO etherll

The ipx_interface command is explained more fully in its manual page.

Prev Home Next
Configuring the Kernel for Up Configuring an IPX Router
IPXand NCPFS

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 15. IPX and the NCP Filesystem Next

Configuring an IPX Router

Y ou will recall from our short discussion of the protocols used in an IPX environment that IPX isa
routable protocol and that the Routing Information Protocol (RIP) is used to propagate routing
information. The IPX version of RIP is quite similar to the IP version. They operate in essentially the
same way; routers periodically broadcast the contents of their routing tables and other routers learn of
them by listening and integrating the information they receive. Hosts need only know who their local
network is and be sure to send datagrams for all other destinations viatheir local router. The router is
responsible for carrying these datagrams and forwarding them on to the next hop in the route.

In an IPX environment, a second class of information must be propagated around the network. The
Service Advertisement Protocol (SAP) carries information relating to which services are available at
which hosts around the network. It is the SAP protocol, for example, that allows users to obtain lists of
file or print servers on the network. The SAP protocol works by having hosts that provide services
periodically broadcast the list of servicesthey offer. The IPX network routers collect thisinformation and
propagate it throughout the network alongside the network routing information. To be a compliant I1PX
router, you must propagate both RIP and SAP information.

Just like IP, IPX on Linux provides a routing daemon named ipxd to perform the tasks associated with
managing routing. Again, just aswith IP, it is actually the kernel that manages the forwarding of
datagrams between |PX network interfaces, but it performs this according to a set of rules called the IPX
routing table. The ipxd daemon keeps that set of rules up to date by listening on each of the active
network interfaces and analyzing when a routing change is necessary. The ipxd daemon also answers
requests from hosts on adirectly connected network that ask for routing information.

The ipxd command is available prepackaged in some distributions, and in source form by anonymous
FTP from http://metalab.unc.edu/ in the
/ pub/ Li nux/ systenm fil esystens/ ncpfs/ipxripd-x.xx.tgzfile

No configuration is necessary for the ipxd daemon. When it starts, it automatically manages routing
among the IPX devices that have been configured. The key isto ensure that you have your IPX devices
configured correctly using the ipx_interface command before you start ipxd. While auto-detection may
work, when you're performing arouting function it's best not to take chances, so manually configure the
interfaces and save yourself the pain of nasty routing problems. Every 30 seconds, ipxd rediscovers all of
the locally attached |PX networks and automatically manages them. This provides a means of managing
networks on interfaces that may not be active all of the time, such as PPP interfaces.

The ipxd would normally be started at boot time from an r ¢ boot script like this:
[usr/sbin/ipxd

No & character is necessary because ipxd will move itself into the background by default. While the ipxd
daemon is most useful on machines acting as IPX routers, it is also useful to hosts on segments where

there are multiple routers present. When you specify the p argument, ipxd will act passively, listening
to routing information from the segment and updating the routing tables, but it will not transmit any
routing information. Thisway, a host can keep its routing tables up to date without having to request
routes each time it wants to contact a remote host.

Static IPX Routing Using the ipx_route Command

There are occasions when we might want to hardcode an IPX route. Just as with IP, we can do this with
IPX. The ipx_route command writes aroute into the IPX routing table without it needing to have been
learned by the ipxd routing daemon. The routing syntax is very simple (since |PX does not support
subnetworking) and looks like:

i px_route add 203a4lbc 31a10103 00002a02b102

The command shown would add a route to the remote IPX network 203a41bc viathe router on our local
network 31a10103 with node address 00002a02b102.

Y ou can find the node address of arouter by making judicious use of the tcpdump command with the
e argument to display link level headers and look for traffic from the router. If the router is a Linux
machine, you can more simply use the ifconfig command to display it.

Y ou can delete aroute using the ipx_route command:
i px_route del 203a4lbc

Y ou can list the routes that are active in the kernel by looking at the/ pr oc/ net /i px_r out e file.
Our routing table so far lookslike this:

cat ipx_route

Net wor k Rout er _Net Rout er _Node
203A41BC 31A10103 00002a02b102
31A10103 Directly Connect ed

The route to the 31A10103 network was automatically created when we configured the IPX interface.
Each of our local networks will be represented by an/ pr oc/ net /i px_r out e entry like this one.
Naturally, if our machineisto act asarouter, it will need at least one other interface.

Internal IPX Networks and Routing

IPX hosts with more than one IPX interface have a unique network/node address combination for each of
their interfaces. To connect to such ahost, you may use any of these network/node address combinations.
When SAP advertizes services, it supplies the network/node address associated with the service that is
offered. On hosts with multiple interfaces, this means that one of the interfaces must be chosen as the one
to propagate; thisisthe function of the primary interface flag we talked about earlier. But this presents a
problem: the route to this interface may not always be the optimal one, and if a network failure occurs
that isolates that network from the rest of the network, the host will become unreachable even though
there are other possible routes to the other interfaces. The other routes are never known to other hosts
because they are never propagated, and the kernel has no way of knowing that it should choose another

primary interface. To avoid this problem, a device was devel oped that allows an IPX host to be known by
a single route-independent network/node address for the purposes of SAP propagation. This solves our
problem because this new network/node address is reachable via all of the host interfaces, and is the one
that is advertised by SAP.

To illustrate the problem and its solution, Figure 15-1 shows a server attached to two IPX networks. The
first network has no internal network, but the second does. The host in diagram Figure 15-1 would

choose one of itsinterfaces asits primary interface, let's assume 0000001a: 0800000010aa, and that is
what would be advertised asits service access point. Thisworkswell for hosts on the 0000001a network,
but means that users on the 0000002c network will route via the network to reach that port, despite the
server having a port directly on that network if they've discovered this server from the SAP broadcasts.

Figure 15-1. IPX internal networ k

A fle sarver altachad o byo FX networkewihout aninbemal netyork.

Q0K kaa |, 000 10

& file server attadned o by FXnetworks with an inkemal netsork.

B — e,

!- — _.1';- -
_ R EECETETER
0% 00 0 00;1 (kaa - P—— OB A0 10 b oxooonio :

% I RO - LR e bk

- u
'.‘\'-'u g
——
DO 13 kOO0 ey

Allowing such hosts to have a virtual network with virtual host addresses that are entirely a software
construct solves this problem. This virtual network is best thought of as being inside the IPX host. The
SAP information then needs only to be propagated for this virtual network/node address combination.
Thisvirtual network is known as an internal network. But how do other hosts know how to reach this
internal network? Remote hosts route to the internal network viathe directly connected networks of the
host. This means that you see routing entries that refer to the internal network of hosts supporting
multiple IPX interfaces. Those routes should choose the optimal route available at the time, and should
one fail, the routing is automatically updated to the next best interface and route. In Figure 15-1, we've
configured an internal 1PX network of address 0x10000010 and used a host address of
00:00:00:00:00:01. It isthis address that will be our primary interface and will be advertised via SAP.
Our routing will reflect this network as being reachable via either of our real network ports, so hosts will

always use the best network route to connect to our server.

To create thisinternal network, use the ipx_internal _net command included in Greg Page's IPX tools
package. Again, a simple example demonstrates its use:

i px_internal _net add 10000010 000000000001

This command would create an I1PX internal network with address 10000010 and a node address of
000000000001. The network address, just like any other IPX network address, must be unique on your
network. The node address is completely arbitrary, as there will normally be only one node on the
network. Each host may have only one IPX Internal Network, and if configured, the Internal Network
will always be the primary network.

To delete an IPX Internal Network, use:

i px_internal net del

Aninternal IPX network is of absolutely no use to you unless your host both provides a service and has
more than one IPX interface active.

Prev Home Next
Configuring IPX Interfaces Up Mounting a Remote NetWare
Volume

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 15. IPX and the NCP Filesystem Next

Mounting a Remote NetWare Volume

IPX is commonly used to mount NetWare volumesin the Linux filesystem. This allows file-based data
sharing between other operating systems and Linux. Volker Lendecke developed the NCP client for Linux
and a suite of associated tools that make data sharing possible.

In an NFS environment, we'd use the Linux mount command to mount the remote filesystem.
Unfortunately, the NCP filesystem has unique requirements that make it impractical to build it into the
normal mount. Linux has an ncpmount command that we will use instead. The ncpmount command is one
of thetoolsin Volker'sncpf s package, which is available prepackaged in most modern distributions or in
source form from ftp.gwdg.deinthe/ pub/ | i nux/ m sc/ ncpf s/ directory. The version current at the
time of writing is 2.2.0.

Before you can mount remote NetWare volumes, you must ensure your |PX network interface is configured
correctly (as described earlier). Next, you must know your login details on the NetWare server you wish to
mount; thisincludes the user ID and password. Lastly, you need to know which volume you wish to mount
and what local directory you wish to mount it under.

A Simple ncpmount Example

A simple example of ncpmount usage looks like this:
ncprmount -S ALES F1 -U rick -P d00-b-gud /mt/brewery

This command mounts all volumes of the ALES F1 fileserver under the/ rmt / br ewer y directory, using
the NetWareloginr i ck with the password d00O- b- gud.

The ncpmount command is normally setuid to root and may therefore be used by any Linux user. By
default, that user owns the connection and only he or the root user will be able to unmount it.

NetWare embodies the notion of avolume, which is analogous to a filesystem in Linux. A NetWare volume
isthe logical representation of a NetWare filesystem, which might be a single disk partition be spread across
many partitions. By default, the Linux NCPFS support treats volumes as subdirectories of alarger logical
filesystem represented by the whole fileserver. The ncpmount command causes each of the NetWare
volumes of the mounted fileserver to appear as a subdirectory under the mount point. Thisis convenient if
you want access to the whole server, but for complex technical reasons you will be unable to re-export these
directories using NFS, should you wish to do so. We'll discuss a more complex alternative that works
around this problem in a moment.

The ncpmount Command in Detail

The ncpmount has alarge number of command line options that allow you quite alot of flexibility in how
you manage your NCP mounts. The most important of these are described in Table 15-2.

Table 15-2. ncpmount Command Arguments

Argument Description

Sserver The name of
the fileserver
to mount.

U The NetWare
user _nane |useriDto
use when
logging in to
the
fileserver.

Ppassword |[The
password to
use for the
NetWare
login.

n Thisoption
must be used
for NetWare
logins that
don't have a
password
associated
with them.

C This
argument
disables
automatic
conversion

of passwords
to uppercase.

c
client _nane

This option
alowsyouto
specify who
ownsthe
connection to
the
fileserver.
Thisis useful
for NetWare
printing,
which we
will discuss
in more
detail later.

uuid

The Linux
user ID that
should be
shown as the
owner of
filesin the
mounted
directory. If
thisis not
specified, it
defaultsto
the user ID
of the user
who invokes
the
ncpmount
command.

ggid

The Linux
group ID that
should be
shown as the
owner of
filesin the
mounted
directory. If
thisis not
specified, it
will default
to the group
ID of the
user who
invokes the

ncpmount
command.

ffile node

This option
alowsyouto
specify the
file mode
(permissions)
that filesin
the mounted
directory
should have.
The value
should be
specified in
octd, e.g.,
0664. The
permissions
that you will
actualy have
arethefile
mode
permissions
specified
with this
option
masked with
the
permissions
that your
NetWare
login ID has
for thefiles
on the
fileserver.

Y ou must
have rights
on the server
and rights
specified by
thisoptionin
order to
access afile.
The default
valueis
derived from
the current
umask.

ddir_node [Thisoption

alowsyouto
specify the
directory
permissions
in the
mounted
directory. It
behavesin
the same way
asthe f
option,
except that
the default
permissions
are derived
from the
current
umask.
Execute
permissions
are granted
where read
accessis
granted.

V vol une

This option
alowsyou to
specify the
name of a
single
NetWare
volumeto
mount under
the mount
point, rather
than
mounting all
volumes of
the target
server. This
option is
necessary if
you wish to
re-export a
mounted
NetWare

volume using
NFS.

tti me_out

This option
alowsyouto
specify the
time that the
NCPFS
client will
wait for a
response
froma
server. The
default value
is 60mS and
the timeout
is specified
in
hundredths
of asecond.
If you
experience
any stability
problems
with NCP
mounts, you
should try
increasing
this value.

r

retry_count

The NCP
client code
attempts to
resend
datagramsto
the server a
number of
times before
deciding the
connectionis
dead. This
option allows
you to
change the
retry count
from the
default of 5.

Hiding Your NetWare Login Password

It is somewhat of a security risk to be putting a password on the command line, as we did with the
ncpmount command. Other active, concurrent users could see the password if they happen to be running a
program like top or ps. To reduce the risk of others seeing and stealing NetWare login passwords,
ncpmount is able to read certain details from afile in auser's home directory. In thisfile, the user keeps the
login name and password associated with each of the fileservers he or she intends to mount. Thefileis
caled ~/ . nwcl i ent and it must have permissions of 0600 to ensure that others cannot read it. If the
permissions are not correct, the ncpmount command will refuse to useit.

Thefile has avery simple syntax. Any lines beginning with a# character are treated as comments and
ignored. The remainder of the lines have the syntax:

fileserver/userid password

Thefi | eserver isthe name of the fileserver supporting the volumes you wish to mount. Theuseri dis
the login name of your account on that server. The passwor d field isoptional. If it is not supplied, the
ncpmount command prompts users for the password when they attempt the mount. If the passwor d field
is specified asthe character, no password is used; thisis equivalent to the n command-line argument.

Y ou can supply any number of entries, but the fileserver field must be unique. The first fileserver entry has
specia significance. The ncpmount command usesthe S command-line argument to determine which of
theentriesin~/ . nwecl i ent touse. If no server is specified using the S argument, the first server entry

in~/ . nwcl i ent isassumed, and istreated as your preferred server. Y ou should place the fileserver you

mount most frequently in the first position in the file.

A More Complex ncpmount Example

Let'slook at a more complex ncpmount example involving a number of the features we've described. First,
let'sbuildasmple~/ . nwcl i ent file:

NetWare login details for the Virtual Brewery and W nery
#

Brewery Login

ALES F1/ MATT staoicl

#

Wnery Login

REDSO1/ MATT st aoi cl

#

Make sure its permissions are correct:

$ chnod 600 ~/.nwclient

L et's mount one volume of the Winery's server under a subdirectory of a shared directory, specifying thefile
and directory permissions such that others may share the data from there:

$ ncpnount -S REDSO1 -V RESEARCH -f 0664 -d 0775 /usr/share/w nery/ data/

This command, in combination with the~/ . nwecl i ent file shown, would mount the RESEARCH volume

of the REDSO1 server onto the/ usr/ shar e/ wi nery/ dat a/ directory using the NetWare login ID of
MATT and the password retrieved from the~/ . nwcl i ent file. The permissions of the mounted files are
0664 and the directory permissionsare 0775.

Prev Home Next
Configuring an IPX Router Up Exploring Some of the Other IPX
Tools

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 15. IPX and the NCP Filesystem Next

Exploring Some of the Other IPX Tools

The ncpf s package contains a number of useful tools that we haven't described yet. Many of these tools
emul ate the tools that are supplied with NetWare. We'll ook at the most useful onesin this section.

Server List

The dist command lists al of the fileservers accessible to the host. The information is actually retrieved
from the nearest IPX router. This command was probably originally intended to allow usersto see what
fileservers were available to mount. But it has become useful as a network diagnosis tool, allowing
network adminsto see where SAP information is being propagated:

$ slist

NPPWR- 31- CDO1 23A91330 000000000001
V242X-14- FO2 A3062DBO0 000000000001
Q TG 284ELI 05 _F4 78A20430 000000000001
QRWWVA- 04- F16 B2030D6A 000000000001
VWPDE- 02- FO8 35540430 000000000001
NMCS 33PARKO8 F2 248B0530 000000000001
NCCRD- 00- CDO1 21790430 000000000001
NVWGNG- FO7 53171002 000000000001
QCON_7TOMLI 04_F7 72760630 000000000001
W639W FO4 D1014DOE 000000000001
QCON_481GYMIG_F1 77690130 000000000001
VI TG_SCE- MAI L_F4R 33200C30 000000000001

dlist accepts no arguments. The output displays the fileserver name, the IPX network address, and the
host address.

Send Messages to NetWare Users

NetWare supports a mechanism to send messages to logged-in users. The nsend command implements
thisfeature in Linux. Y ou must be logged in to the server to send messages, so you need to supply the
fileserver name and login details on the command line with the destination user and the message to send:

nsend -S vbrew f1 -U gary -P jOyj Oy supervisor
Join nme for a | ager before we do the print queues!

Here a user with login name gar y sends atempting invitation to the person using the super vi sor
account on the ALES_F1 fileserver. Our default fileserver and login credentials will be used if we don't

supply them.

Browsing and Manipulating Bindery Data

Each NetWare fileserver maintains a database of information about its users and configuration. This
database is called the bindery. Linux supports a set of tools that allow you to read it, and if you have
supervisor permissions on the server, to set and remove it. A summary of thesetoolsislisted in Table

15-3.

Table 15-3. Linux Bindery Manipulation Tools

Command [Command
Name Description

nwfstime |Display or
Seta
NetWare
server's date
and time

nwuserlist |List users
logged in at
aNetWare
server

nwvolinfo |Display
info about
NetWare
volumes

nwbocr eate |Create a
NetWare
bindery
object
nwbols List
NetWare
bindery
objects

nwboprops |List
properties
of a
NetWare
bindery
object

nwborm Remove a
NetWare
bindery
object
nwbpcreate|Create a
NetWare
bindery
property
nwbpvalues|Print a
NetWare
bindery
property's
contents

nwbpadd |Set the
value of a
NetWare
bindery
property
nwbprm Remove a
NetWare
bindery
property

Prev Home Next

Mounting a Remote NetWare Up Printing to a NetWare Print Queue
Volume

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 15. IPX and the NCP Filesystem Next

Printing to a NetWare Print Queue

The ncpf s package contains asmall utility called nprint that sends print jobs across an NCP connection to a NetWare print
gueue. This command creates the connection if it doesn't currently exist and usesthe ~/ . nwcl i ent file that we described
earlier to hide the username and password from prying eyes. The command-line arguments used to manage the login process
are the same as those used by the ncpmount, so we won't go through those again here. We will cover the most important
command-line options in our examples; refer to thenpri nt (1) manua page for details.

The only required option for nprint is the name of the file to print. If the filename specifiedis or if no filename is specified at
al, nprint will accept the print job from st di n. The most important nprint options specify the fileserver and print queue to
which you wish the job to be sent. Table 15-4 lists the most important options.

Table 15-4. nprint Command-Line Options

Option Description

-Sserver_nanme |The name of the
NetWare
fileserver

supporting the
print queue to
which you wish
to print. Usually
it is convenient
for the server to
have an entry in
~/ . nwclient.
Thisoptionis
mandatory.

-qqueue_nane The print queue
to which to send
the print job.
Thisoptionis
mandatory.

-d Text that will
j ob_descri pti on |appear inthe
print console
utility when
displaying the
list of queued
jobs.

-I1'i nes The number of
lines per printed
page. This
defaults to 66.

-r col unms The number of
columns per
printed page.
This defaultsto
80.

-ccopi es The number of
copies of the job
that will be
printed. The
default is 1.

A simple example using nprint would look like:
$ nprint -S REDSO1 -q PSLASER -c 2 /hone/ matt/ethyl ene. ps

This command would print two copies of thefile/ hone/ mat t / et hyl ene. ps to the printer named PSLASER on the
REDSO1 fileserver using a username and password obtained fromthe~/ . nwcl i ent file.

Using nprint with the Line Printer Daemon

Y ou will recall we previously mentioned that the ¢ option for the ncpmount isuseful for printing. At last we'll explain why
and how.

Linux usually uses BSD-style line printer software. The line printer daemon (Ipd) is a daemon that checks alocal spool
directory for queued jobs that are to be printed. Ipd reads the printer name and some other parameters from the specially
formatted spool file and writes the data to the printer, optionally passing the data through afilter to transform or manipulate it
in some way.

The Ipd daemon uses a simple database called / et ¢/ pri nt cap to store printer configuration information, including what
filtersare to be run. Ipd usually runs with the permissions of a special system user called Ip.

Y ou could configure nprint as afilter for the Ipd to use, which allows users of your Linux machine to output directly to
remote printers hosted by a NetWare fileserver. To do this, the Ip user must be able to write NCP requests to the NCP
connection to the server.

An easy way to achieve this without requiring the Ip user to establish its own connection and login is to specify Ip as the owner
of a connection established by another user. A complete example of how to set up the Linux printing system to handle print
jobs from clients over NetWareislisted in three steps:

1. Write awrapper script.

The/ et ¢/ pri nt cap file doesn't permit options to be supplied to filters. Therefore, you need to write a short script
that invokes the command you want along with its options. The wrapper script could be as ssimple as:

#!/ bi n/ sh
p2pslaser - sinple script to redirect stdin to the

PSLASER queue on the REDSO1 server
#

fusr/bin/nprint -S REDSO1 -U stuart -qgq PSLASER
#

Store the script inthefile/ usr/ 1 ocal / bi n/ p2psl aser.
2. Writethe/ et ¢/ pri nt cap entry.

WEe'll need to configure the p2ps| aser script we created as the output filter inthe/ et ¢/ pri nt cap. Thiswould
look something like:

psl aser| Postscri pt Laser Printer hosted by NetWare server:\
I p=/dev/null :\

: sd=/ var/ spool /| pd/ psl aser:\
;i f=/usr/local /bin/p2pslaser:\
caf=/var/l og/l p-acct:\

1 f=/var/log/lp-errs:\

. pl #66: \

 pw#80: \

 pc#150:\

D mx#0:\

: sh:

3. Addthe c option to the ncpmount.
ncpmount -S REDSO1 -c Ilp

Our local user stuart must specify the Ip user as the owner of the connection when he mounts the remote NetWare
server.

Now any Linux user may choose to specify psl aser asthe printer name when invoking Ip. The print job will be sent to the
specified NetWare server and spooled for printing.

Managing Print Queues

The pglist command lists al of the print queues available to you on the specified server. If you do not specify afileserver on
the command line using the - S option, or alogin name and password, these will be taken from the default entry in your
~/ . nwcl i ent file:

pglist -S vbrew f1 -U guest -n
Server: ALES F1

Print queue nane Queue 1D
TEST AA02009E
Q EF0200D9
NPI 223761 _P1 DA03007C
Q F1060004
| - DATA 0DOAO03B
NPl 223761 _P3 D80A0031

Our example shows alist of the print queues availableto theguest user onthe ALES F1 fileserver.[1]

To view the print jobs on a print queue, use the pgstat command. It takes the print queue name as an argument and lists all of
the jobs in that queue. Y ou may optionally supply another argument indicating how many of the jobsin the queue you'd like to
list. The following sample output has been compressed a bit to fit the width of this book's page:

$ pgstat -S ALES F1 NPl 223761 _P1

Server: ALES F1 Queue: NPI 223761 _P1 Queue I D: 6A0EOOO0C
Seq Nane Descri ption St at us Form Job ID
1 TOTRAN LyX docunent - proposal.lyx Active 0 02660001

We can seejust one print job in the queue, owned by user TOTRAN. The rest of the options include a description of the job, its
status, and its job identifier.

The pgrm command is used to remove print jobs from a specified print queue. To remove the job in the queue we've just
obtained the status of, we'd use:

$ pgrm-S ALES F1 NPl 223761_P1 02660001

The command is pretty straightforward but is clumsy to usein ahurry. It would be a worthwhile project to write a basic script
to simplify this operation.

Notes

[1] Itlookslike the system administrators had been sampling some of the Virtual Brewery's wares
before they chose some of those print queue names. Hopefully your print queue names are more

meaningful!
Prev Home Next
Exploring Some of the Other IPX Up NetWare Server Emulation
Tools

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 15. IPX and the NCP Filesystem Next

NetWare Server Emulation

There are two free software emulators for NetWare fileservers under Linux. lwar ed was developed by
Ales Dryak and mars_nwe was developed by Martin Stover. Both of these packages provide el ementary
NetWare fileserver emulation under Linux, allowing NetWare clients to mount Linux directories
exported as NetWare volumes. While the Iwar ed server is simpler to configure, the mars_nwe server is
more fully featured. The installation and configuration of these packages is beyond the scope of this
chapter, but both are described in the IPX-HOWTO.

Prev Home Next
Printing to a NetWare Print Queue Up ManagingTaylor UUCF

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 9. TCP/IP Firewall Next

What Is a Firewall?

A firewall is a secure and trusted machine that sits between a private network and a public network.[1]

The firewall machine is configured with a set of rules that determine which network traffic will be
allowed to pass and which will be blocked or refused. In some large organizations, you may even find a
firewall located inside their corporate network to segregate sensitive areas of the organization from other
employees. Many cases of computer crime occur from within an organization, not just from outside.

Firewalls can be constructed in quite a variety of ways. The most sophisticated arrangement involves a
number of separate machines and is known as a perimeter network. Two machines act as "filters’ called
chokes to allow only certain types of network traffic to pass, and between these chokes reside network
servers such asamail gateway or a World Wide Web proxy server. This configuration can be very safe
and easily allows quite a great range of control over who can connect both from the inside to the outside,
and from the outside to the inside. This sort of configuration might be used by large organizations.

Typically though, firewalls are single machines that serve al of these functions. These are alittle less
secure, because if there is some weakness in the firewall machine itself that allows people to gain access
to it, the whole network security has been breached. Nevertheless, these types of firewalls are cheaper
and easier to manage than the more sophisticated arrangement just described. Figure 9-1 illustrates the

two most common firewall configurations.

Figure 9-1. Thetwo major classes of firewall design

=l
|=]
dication
o FeEr
kerret I LAN I Irkraret
IP Fik=r =]
=]
Application
Sarser
et = Irtraret
IP Fker and
Application S

The Linux kernel provides arange of built-in features that allow it to function quite nicely asan IP
firewall. The network implementation includes code to do IP filtering in a number of different ways, and
provides a mechanism to quite accurately configure what sort of rules you'd like to put in place. The
Linux firewall is flexible enough to make it very useful in either of the configurationsillustrated in

Figure 9-1. Linux firewall software provides two other useful features that we'll discussin separate
chapters: IP Accounting (Chapter 10) and |P masquerade (Chapter 11).

Notes

[1] Theterm firewall comesfrom adevice used to protect people from fire. The firewall is a shield of
material resistant to fire that is placed between a potential fire and the people it is protecting.

Prev Home Next
TCP/IP Firewall Up What Is IP Filtering?

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 9. TCP/IP Firewall Next

What Is IP Filtering?

I P filtering is simply a mechanism that decides which types of |P datagrams will be processed normally
and which will be discarded. By discarded we mean that the datagram is deleted and completely ignored,
asif it had never been received. Y ou can apply many different sorts of criteriato determine which
datagrams you wish to filter; some examples of these are:

Protocol type: TCP, UDP, ICMP, etc.
Socket number (for TCP/UPD)

Datagram type: SYN/ACK, data, ICMP Echo Request, etc.

» Datagram source address: where it came from
« Datagram destination address: where it is going to

It isimportant to understand at this point that I P filtering is a network layer facility. This means it doesn't
understand anything about the application using the network connections, only about the connections
themselves. For example, you may deny users access to your internal network on the default telnet port,
but if you rely on IP filtering alone, you can't stop them from using the telnet program with a port that
you do allow to pass trhough your firewall. Y ou can prevent this sort of problem by using proxy servers
for each service that you allow across your firewall. The proxy servers understand the application they
were designed to proxy and can therefore prevent abuses, such as using the telnet program to get past a
firewall by using the World Wide Web port. If your firewall supports a World Wide Web proxy, their
telnet connection will always be answered by the proxy and will allow only HTTP requests to pass. A
large number of proxy-server programs exist. Some are free software and many others are commercial
products. The Firewall-HOWTO discusses one popular set of these, but they are beyond the scope of this
book.

The IP filtering ruleset is made up of many combinations of the criteria listed previously. For example,
let's imagine that you wanted to allow World Wide Web users within the Virtual Brewery network to
have no access to the Internet except to use other sites web servers. Y ou would configure your firewall
to alow forwarding of:

« datagrams with a source address on Virtual Brewery network, a destination address of anywhere,
and with a destination port of 80 (WWW)

« datagrams with a destination address of Virtual Brewery network and a source port of 80 (WWW)
from a source address of anywhere

Note that we've used two rules here. We have to alow our data to go out, but also the corresponding
reply datato come back in. In practice, as we'll see shortly, Linux simplifies this and allows us to specify
thisin one command.

Prev Home Next
What IsaFirewall? Up Setting Up Linux for Firewalling

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 9. TCP/IP Firewall Next

Setting Up Linux for Firewalling

To build aLinux IP firewall, it is necessary to have a kernel built with IP firewall support and the
appropriate configuration utility. In all production kernels prior to the 2.2 series, you would use the
ipfwadm utility. The 2.2.x kernels marked the release of the third generation of IP firewall for Linux
called IP Chains. IP chains use a program similar to ipfwadm called ipchains. Linux kernels 2.3.15 and
later support the fourth generation of Linux IP firewall called netfilter. The netfilter code isthe result of a
large redesign of the packet handling flow in Linux. The netfilter is a multifaceted creature, providing
direct backward-compatible support for both ipfwadm and ipchains aswell as anew alternative
command called iptables. Well talk about the differences between the three in the next few sections.

Kernel Configured with IP Firewall

The Linux kernel must be configured to support IP firewalling. There isn't much moreto it than selecting
the appropriate options when performing anake nenuconf i g of your kernel.[1] We described how

to do thisisin Chapter 3. In 2.2 kernels you should select the following options:

Net wor ki ng options --->
[*] Network firewalls
[*] TCP/ I P networking
[*] IP: firewalling
[*] IP. firewall packet | ogging

In kernels 2.4.0 and later you should select this option instead:

Net wor ki ng options --->
[*] Network packet filtering (replaces ipchains)
| P: Netfilter Configuration --->

<M> User space queuei ng via NETLI NK (EXPERI MENTAL)
<M> | P tables support (required for filtering/ msq/ NAT)
<M> limt match support

<M MAC address match support

<MW netfilter MARK match support

<M> Mul ti ple port match support

<M TOS mat ch support

<MW Connection state match support

<w> Uncl ean mat ch support (EXPERI MENTAL)

<M Omer match support (EXPERI MENTAL)

<MW Packet filtering

<M> REJECT target support

<MW M RROR target support (EXPERI MENTAL)

<MW Packet mangling

<M TOS target support

<M> MARK t arget support

<M LOG target support

<M> i pchains (2.2-style) support
<M> | pfwadm (2. 0-style) support

The ipfwadm Utility

The ipfwadm (IP Firewall Administration) utility isthe tool used to build the firewall rulesfor all
kernels prior to 2.2.0. Its command syntax can be very confusing because it can do such a complicated
range of things, but we'll provide some common examples that will illustrate the most important
variations of these.

Theipfwadm utility isincluded in most modern Linux distributions, but perhaps not by default. There
may be a specific software package for it that you have to install. If your distribution does not include it,
you can obtain the source package from ftp.xos.nl inthe/ pub/ | i nux/ i pf wadm directory, and
compileit yourself.

The ipchains Utility

Just as for the ipfwadm utility, the ipchains utility can be somewhat baffling to use at first. It provides
al of the flexibility of ipfwadm with a simplified command syntax, and additionally provides a chaining

mechanism that allows you to manage multiple rulesets and link them together. We'll cover rule
chaining in a separate section near the end of the chapter, because for most situations it is an advanced
concept.

The ipchains command appears in most Linux distributions based on the 2.2 kernels. If you want to
compileit yourself, you can find the source package from its developer's site at

http: //www.rustcor p.convlinux/ipchaing/. Included in the source package is a wrapper script called
ipfwadm-wr apper that mimics the ipfwadm command, but actually invokes the ipchains command.
Migration of an existing firewall configuration is much more painless with this addition.

The iptables Utility

The syntax of the iptables utility is quite similar to that of the ipchains syntax. The changes are
improvements and a result of the tool being redesigned to be extensible through shared libraries. Just as
for ipchains, we'll present iptables equivalents of the examples so you can compare and contrast its
syntax with the others.

The iptables utility isincluded in the netfilter source package available at

http://www.samba.org/netfilter/. It will also be included in any Linux distribution based on the 2.4 series
kernels.

WEe'll talk a bit about netfilter's huge step forward in a section of its own later in this chapter.
Notes

[1] Firewall packet logging is aspecial feature that writes aline of information about each datagram
that matches a particular firewall rule out to a special device so you can see them.

Prev Home Next
What Is IP Filtering? Up Three Ways We Can Do Filtering

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the/ in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 9. TCP/IP Firewall Next

Three Ways We Can Do Filtering

Consider how a Unix machine, or in fact any machine capable of |P routing, processes | P datagrams. The
basic steps, shown in Figure 9-2 are:

Figure 9-2. The stages of | P datagram processing

Restef ems
s Hetwerk Sodkts
- TEPILDP protoo s 4 | Cther probcds
s 5
P routing scftwans
=
1 Eh=mat Driver | PPP Criver 5 | Other Criver
X -

o ThelP datagram isreceived. (1)
« Theincoming IP datagram is examined to determine if it is destined for a process on this machine.
« If the datagram isfor this machine, it is processed locally. (2)

« If itisnot destined for this machine, a search is made of the routing table for an appropriate route
and the datagram is forwarded to the appropriate interface or dropped if no route can be found. (3)

« Datagramsfrom local processes are sent to the routing software for forwarding to the appropriate
interface. (4)

« Theoutgoing IP datagram is examined to determineif thereisavalid route for it to take, if not, it
IS dropped.

« ThelP datagram is transmitted. (5)

In our diagram, the flow 1’ 3'5 represents our machine routing data between a host on our Ethernet
network to a host reachable via our PPP link. The flows 1'2 and 4’5 represent the data input and output
flows of a network program running on our local host. The flow 4’3’2 would represent data flow viaa
loopback connection. Naturally data flows both into and out of network devices. The question marks on
the diagram represent the points where the I P layer makes routing decisions.

The Linux kernel 1P firewall is capable of applying filtering at various stages in this process. That is, you
can filter the IP datagrams that come in to your machine, filter those datagrams being forwarded across
your machine, and filter those datagrams that are ready to be transmitted.

In ipfwadm and ipchains, an Input rule appliesto flow 1 on the diagram, a Forwarding rule to flow 3,
and an Output rule to flow 5. We'll see when we discuss netfilter later that the points of interception have
changed so that an Input rule is applied at flow 2, and an Output ruleis applied at flow 4. This has
important implications for how you structure your rulesets, but the general principle holds true for al
versions of Linux firewalling.

This may seem unnecessarily complicated at first, but it provides flexibility that allows some very
sophisticated and powerful configurations to be built.

Prev Home Next
Setting Up Linux for Firewalling Up Original IP Firewall (2.0 Kernels)

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 9. TCP/IP Firewall Next

Original IP Firewall (2.0 Kernels)

The first generation IP firewall support for Linux appeared in the 1.1 series kernel. It was a port of the BSD ipfw firewall
support to Linux by Alan Cox. The firewall support that appeared in the 2.0 series kernels and is the second generation was
enhanced by Jos Vos, Pauline Middelink, and others.

Using ipfwadm

The ipfwadm command was the configuration tool for the second generation Linux IP firewall. Perhaps the simplest way
to describe the use of the ipfwadm command is by example. To begin, let's code the example we presented earlier.

A naive example

Let's suppose that we have a network in our organization and that we are using a Linux-based firewall machine to connect
our network to the Internet. Additionally, let's suppose that we wish the users of that network to be able to access web
servers on the Internet, but to allow no other traffic to be passed.

We will put in place aforwarding rule to allow datagrams with a source address on our network and a destination socket of
port 80 to be forwarded out, and for the corresponding reply datagrams to be forwarded back viathe firewall.

Assume our network has a 24-bit network mask (Class C) and an address of 172.16.1.0. The rules we might use are:
i pfwadm -F -f

i pfwadm -F -p deny

i pfwadm -F -a accept -P tcp -S 172.16.1.0/24 -D 0/0 80

i pfwadm -F -a accept -Ptcp -S 0/0 80 -D 172.16.1.0/ 24

The - F command-line argument tellsipfwadm that thisis aforwarding rule. The first command instructs ipfwadm to
"flusn™ all of the forwarding rules. This ensures we are working from a known state before we begin adding specific rules.

The second rule sets our default forwarding policy. Wetell the kernel to deny or disallow forwarding of I1P datagrams. It is
very important to set the default policy, because this describes what will happen to any datagrams that are not specifically
handled by any other rule. In most firewall configurations, you will want to set your default policy to "deny," as shown, to
be sure that only the traffic you specifically alow past your firewall is forwarded.

The third and fourth rules are the ones that implement our requirement. The third command allows our datagrams out, and
the fourth rule allows the responses back.

Let's review each of the arguments:
-F

ThisisaForwarding rule.
-a accept

Append this rule with the policy set to "accept,” meaning we will forward any datagrams that match thisrule.
-Ptcp

Thisrule applies to tcp datagrams (as opposed to UDP or ICMP).
-S172.16.1.0/24

The Source address must have the first 24 bits matching those of the network address 172.16.1.0.

-D 0/0 80

The destination address must have zero bits matching the address 0.0.0.0. Thisis really a shorthand notation for
"anything." The 80 isthe destination port, in this case WWW. Y ou may also use any entry that appearsin the
/ et c/ servi ces fileto describe the port, so- D 0/ 0 wwwwould have worked just as well.

ipfwadm accepts network masks in aform with which you may not be familiar. The/ nn notation is a means of describing
how many bits of the supplied address are significant, or the size of the mask. The bits are always counted from left to
right; some common examples are listed in Table 9-1.

Table 9-1. Common Netmask Bit Values

Netmask Bits
255.0.0.0 8
255.255.0.0 16
255.255.255.0 |24
’255.255.255. 128 ’25
’255.255.255.192 ’26
’255.255.255.224 ’27
’255.255.255.240 ’28
’255.255.255.248 ’29
255.255.255.252 |30

We mentioned earlier that ipfwadm implements a small trick that makes adding these sorts of rules easier. Thistrick isan
option called -b, which makes the command a bidirectional rule.

The bidirectional flag allows usto collapse our two rules into one as follows:
ipfwadm -F -a accept -P tcp -S 172.16.1.0/24 -D 0/0 80 -b

An important refinement

Take acloser look at our ruleset. Can you see that there is still one method of attack that someone outside could use to
defeat our firewall?

Our ruleset alows all datagrams from outside our network with a source port of 80 to pass. Thiswill include those
datagrams with the SY N bit set! The SYN bit iswhat declares a TCP datagram to be a connection request. If a person on
the outside had privileged access to a host, they could make a connection through our firewall to any of our hosts, provided
they use port 80 at their end. Thisis not what we intended.

Fortunately there is a solution to this problem. The ipfwadm command provides another flag that allows us to build rules
that will match datagrams with the SYN bit set. Let's change our example to include such arule:

ipfwadm -F -a deny -P tcp -S 0/0 80 -D 172.16.10.0/24 -y
i pfwadm -F -a accept -Ptcp -S 172.16.1.0/24 -D 0/0 80 -b

The - y flag causes the rule to match only if the SYN flag is set in the datagram. So our new rule says. "Deny any TCP
datagrams destined for our network from anywhere with a source port of 80 and the SYN bit set," or "Deny any connection
requests from hosts using port 80."

Why have we placed this special rule before the main rule? IP firewall rules operate so that the first match isthe rule that is
used. Both rules would match the datagrams we want to stop, so we must be sure to put the deny rule before the accept
rule.

Listing our rules

After we've entered our rules, we ask ipfwadm to list them for us using the command:
i pfwadm -F -|
This command will list al of the configured forwarding rules. The output should look something like this:

i pfwadm -F -1
IP firewall forward rules, default policy: accept

type prot source destination ports
deny tcp anywhere 172.16. 10. 0/ 24 WW - > any
acc tcp 172.16.1.0/24 anywher e any -> Ww

The ipfwadm command will attempt to translate the port number into a service name using the/ et ¢/ ser vi ces if an
entry exists there.

The default output is lacking in some important detail for us. In the default listing output, we can't see the effect of the - y
argument. The ipfwadm command is able to produce a more detailed listing output if you specify the - e (extended output)
argument too. We won't show the whole output here because it is too wide for the page, but it includes an opt (options)
column that shows the - y option controlling SYN packets:

i pfwadm -F -1 -e
Pfirewall forward rules, default policy: accept
pkts bytes type prot opt tosa tosx ifnane ifaddress sour ce
0 0 deny tcp --y- OxFF O0x00 any any anywher e
0 0 acc tcp b--- OxFF 0x00 any any 172.16.1.0/ 24 ...

A More Complex Example

The previous example was a simple one. Not all network services are as ssimple as the WWW service to configure; in
practice, atypical firewall configuration would be much more complex. Let'slook at another common example, thistime
FTP. We want our internal network usersto be able to log into FTP servers on the Internet to read and write files. But we
don't want people on the Internet to be able to log into our FTP servers.

We know that FTP uses two TCP ports: port 20 (ftp-data) and port 21 (ftp), so:

i pfwadm -a deny -P tcp -S 0/0 20 -D 172.16.1.0/24 -y
1 pfwadm -a accept -P tcp -S 172.16.1.0/24 -D 0/0 20 -b
#

i pfwadm -a deny -P tcp -S 0/0 21 -D 172.16.1.0/24 -y
i pfwadm -a accept -P tcp -S 172.16.1.0/24 -D 0/0 21 -b

Right? Well, not necessarily. FTP servers can operate in two different modes: passive mode and active mode.[1] In passive

mode, the FTP server listens for a connection from the client. In active mode, the server actually makes the connection to
the client. Active mode is usually the default. The differences are illustrated in Figure 9-3.

Figure 9-3. FTP server modes

FTP P OR T active]) mods

Pad 777 Foz 21
| - FTP Command | ==
t 5

|

| ==

Cient Pz 777 ot 77 Serer

FIP P SV passive) mods

Poust 277 Foo 21
I FTP Canmand | —
Ml =
| —
I | —
= |

e, |
Qlient FTP Caa. -
Pact 727 Fot 2 Lol
Connmction ragues

Many FTP servers make their data connection from port 20 when operating in active mode, which simplifies things for usa
little, but unfortunately not all do.[2]

But how does this affect us? Take alook at our rule for port 20, the FTP-data port. The rule as we have it now assumes that
the connection will be made by our client to the server. Thiswill work if we use passive mode. But it is very difficult for us
to configure a satisfactory rule to allow FTP active mode, because we may not know in advance what ports will be used. If
we open up our firewall to allow incoming connections on any port, we are exposing our network to attack on all services
that accept connections.

The dilemnais most safely resolved by insisting that our users operate in passive mode. Most FTP servers and many FTP
clients will operate thisway. The popular ncftp client also supports passive mode, but it may require a small configuration
change to make it default to passive mode. Many World Wide Web browsers such as the Netscape browser also support
passive mode FTP, so it shouldn't be too hard to find appropriate software to use. Alternatively, you can avoid the issue
entirely by using an FTP proxy server that accepts a connection from the internal network and establishes connections to
the outside network.

In building your firewall, you will probably find a number of these sorts of problems. Y ou should always give careful
thought to how a service actually operates to be sure you have put in place an appropriate ruleset for it. A real firewall
configuration can be quite complex.

Summary of ipfwadm Arguments

The ipfwadm has many different arguments that relate to IP firewall configuration. The general syntax is:
i pf wadm cat egory comrand paraneters [options]

Let'stake alook at each of these.

Categories
One and only one of the following must be supplied. The category tells the firewall what sort of firewall rule you are
configuring:
-1
Input rule
-O

Output rule
-F

Forwarding rule

Commands

At least one of the following must be supplied and applies only to those rules that relate to the supplied category. The
command tells the firewall what action to take.
-a[policy]
Append anew rule
-i [policy]
Insert anew rule
-d [policy]
Delete an existing rule
-p policy
Set the default policy

List all existing rules

Flush all existing rules

The policiesrelevant to IP firewall and their meanings are:
accept

Allows matching datagrams to be received, forwarded, or transmitted
deny

Blocks matching datagrams from being received, forwarded, or transmitted

reject
Blocks matching datagrams from being received, forwarded, or transmitted, and sends the host that sent the
datagram and ICMP error message

Parameters

At least one of the following must be supplied. Use the parameters to specify to which datagrams this rule applies:
-P protocol

Can be TCP, UDP, ICMP, or all. Example:

-P tcp
-S address[/mask] [port]

Source | P address that this rule will match. A netmask of /32 will be assumed if you don't supply one. Y ou may
optionally specify which ports this rule will apply to. Y ou must also specify the protocol using the - P argument
described above for this to work. If you don't specify a port or port range, al portswill be assumed to match. Ports
may be specified by name, using their / et ¢/ ser vi ces entry if you wish. In the case of the ICMP protocol, the
port field is used to indicate the ICMP datagram types. Port ranges may be described; use the general syntax:

| owpor t :hi ghport . Hereisan example:

-S 172.29.16.1/24 ftp:ftp-data
-D address[/mask] [port]

Specify the destination |P address that this rule will match. The destination address is coded with the same rules as
the source address described previously. Hereis an example:

-D 172.29.16.1/24 sntp
-V address

Specify the address of the network interface on which the packet isreceived (- |) or isbeing sent (- O). Thisallows
us to create rules that apply only to certain network interfaces on our machine. Here is an example:

-V 172.29.16.1
-W name

Specify the name of the network interface. This argument works in the same way as the - V argument, except you
supply the device name instead of its address. Here is an example:

- W ppp0
Optional arguments

These arguments are sometimes very useful:

-b
Thisisused for bidirectional mode. This flag matches traffic flowing in either direction between the specified source
and destination. This saves you from having to create two rules: one for the forward direction of a connection and
one for the reverse.

-0
This enables logging of matching datagrams to the kernel log. Any datagram that matches this rule will be logged as
akernel message. Thisis useful to enable you to detect unauthorized access.

-y
Thisis used to match TCP connect datagrams. The option causes the rule to match only datagrams that attempt to
establish TCP connections. Only datagrams that have their SYN bit set, but their ACK bit unset, will match. Thisis
useful to filter TCP connection attempts and is ignored for other protocols.

-k

Thisis used to match TCP acknowledgement datagrams. This option causes the rule to match only datagrams that
are acknowledgements to packets attempting to establish TCP connections. Only datagrams that have their ACK bit
set will match. Thisis useful to filter TCP connection attempts and isignored for all other protocols.

ICMP datagram types

Each of the firewall configuration commands allows you to specify ICMP datagram types. Unlike TCP and UDP ports,
there is no convenient configuration file that lists the datagram types and their meanings. The ICMP datagram types are
defined in RFC-1700, the Assigned Numbers RFC. The ICMP datagram types are also listed in one of the standard C
library header files. The/ usr /i ncl ude/ netinet/i p_i cnp. h file, which belongs to the GNU standard library
package and is used by C programmers when writing network software that uses the ICMP protocol, also defines the ICMP
datagram types. For your convenience, we've listed them in Table 9-2. The iptables command interface allows you to

specify ICMP types by name, so we've listed the mnemonics it uses, as well.

Table 9-2. ICMP Datagram Types

Type Number |iptables Mnemonic]Type Description

0 echo-reply]Echo Reply

3 destinati on-unreachable]Destination Unreachable

]4]sourcequench |Source Quench

’5 ’redi rect |Redi rect

’8 ’echo-requ%t |Echo Request

’11 ’ti me-exceeded |Ti me Exceeded

’12 ’parameter-problem |Parameter Problem
13 timestamp-request Timestamp Request
14 timestamp-reply Timestamp Reply
15 none |Information Request
16 none |Information Reply
’17 ’address—mask-requeﬂ |Addr%s Mask Request
’18 ’addr%s—mask-reply |Addr&ss Mask Reply
Notes

[1] FTP active mode is somewhat nonintuitively enabled using the PORT command. FTP passive
mode is enabled using the PASV command.

[2] TheProFTPd daemon isagood example of an FTP server that doesn't, at |east in older versions.

Prev Home Next
Three Ways We Can Do Filtering Up IP Firewall Chains (2.2 Kernels)

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 9. TCP/IP Firewall Next

IP Firewall Chains (2.2 Kernels)

Most aspects of Linux are evolving to meet the increasing demands of its users; IP firewall is no exception. The
traditional |P firewall implementation is fine for most applications, but can be clumsy and inefficient to configure
for complex environments. To solve this problem, a new method of configuring IP firewall and related features was
developed. This new method was called IP Firewall Chains and wasfirst released for general usein the 2.2.0
Linux kernel.

The IP Firewall Chains support was developed by Paul Russell and Michael Neuling.[1] Paul has documented the
IP Firewall Chains software in the IPCHAINS-HOWTO.

IP Firewall Chains allows you to develop classes of firewall rulesto which you may then add and remove hosts or
networks. An artifact of firewall rule chaining is that it may improve firewall performance in configurationsin
which there are lots of rules.

IP Firewall Chains are supported by the 2.2 series kernels and are also available as a patch against the 2.0.* kernels.
The HOWTO describes where to obtain the patch and provides lots of useful hints about how to effectively use the
ipchains configuration utility.

Using ipchains

There are two ways you can use the ipchains utility. The first way isto make use of the ipfwadm-wrapper shell
script, which is mostly a drop-in replacement for ipfwadm that drives the ipchains program in the background. If
you want to do this, then read no further. Instead, reread the previous sections describing ipfwadm, and substitute
ipfwadm-wrapper in its place. Thiswill work, but there is no guarantee that the script will be maintained, and you
will not be taking advantage of any of the advanced features that the |P Firewall Chains have to offer.

The second way to use ipchainsisto learn its new syntax and modify any existing configurations you have to use
the new syntax instead of the old. With some careful consideration, you may find you can optimize your
configuration as you convert. The ipchains syntax is easier to learn than the ipfwadm, so thisis a good option.

The ipfwadm manipulated three rulesets for the purpose of configuring firewalling. With IP Firewall Chains you
can create arbitrary numbers of rulesets, each linked to one another, but there are three rulesets related to
firewalling that are always present. The standard rulesets are direct equivalents of those used with ipfwadm, except
they have names: i nput , f or war d and out put .

Let'sfirst look at the general syntax of the ipchains command, then we'll look at how we'd use ipchains instead of
ipfwadm without worrying about any of the advanced chaining features. We'll do this by revisiting our previous
examples.

Ipchains Command Syntax

The ipchains command syntax is straightforward. We'll now look at the most important of those. The general
syntax of most ipchains commandsis:

I pchai ns conmand rul e-specification options

Commands

There are anumber of ways we can manipulate rules and rulesets with the ipchains command. Those relevant to |P
firewalling are:

-A chain
Append one or more rules to the end of the nominated chain. If a hostname is supplied as either source or
destination and it resolves to more than one | P address, arule will be added for each address.

-I chain rulenum

Insert one or more rules to the start of the nominated chain. Again, if ahostname is supplied in the rule
specification, arule will be added for each of the addressesiit resolves to.

-D chan

Delete one or more rules from the specified chain that matches the rule specification.

-D chain rulenum
Delete the rule residing at position r ul enumin the specified chain. Rule positions start at one for the first
rulein the chain.

-R chain rulenum

Replace the ruleresiding at position r ul enumin the specific chain with the supplied rule specification.
-C chain
Check the datagram described by the rule specification against the specific chain. This command will return a

message describing how the datagram was processed by the chain. Thisis very useful for testing your
firewall configuration, and we look at it in detail alittle later.

-L [chain]

List the rules of the specified chain, or for all chainsif no chainis specified.
-F [chain]

Flush the rules of the specified chain, or for all chainsif no chain is specified.

-Z [chain]
Zero the datagram and byte counters for all rules of the specified chain, or for all chainsif no chainis
specified.

-N chain
Create a new chain with the specified name. A chain of the same name must not already exist. Thisis how
user-defined chains are created.

-X [chain]
Delete the specified user-defined chain, or all user-defined chains if no chain is specified. For this command
to be successful, there must be no references to the specified chain from any other rules chain.

-P chain policy
Set the default policy of the specified chain to the specified policy. Valid firewalling policies are ACCEPT,
DENY, REJECT, REDI R, or RETURN. ACCEPT, DENY, and REJECT have the same meanings as those for

the tradition IP firewall implementation. REDI R specifies that the datagram should be transparently
redirected to a port on the firewall host. The RETURN target causes the IP firewall code to return to the

Firewall Chain that called the one containing this rule and continues starting at the rule after the calling rule.

Rule specification parameters

A number of ipchains parameters create a rule specification by determining what types of packets match. If any of
these parameters is omitted from a rule specification, its default is assumed:

-p [!]protocal

Specifies the protocol of the datagram that will match thisrule. Valid protocol namesaret cp, udp, i cnp,
or al | . You may also specify a protocol number here to match other protocols. For example, you might use
4 to match thei pi p encapsulation protocol. If the! issupplied, the rule is negated and the datagram will
match any protocol other than the protocol specified. If this parameter isn't supplied, it will defaulttoal | .

-s[!]address[/mask] [!] [port]

Specifies the source address and port of the datagram that will match this rule. The address may be supplied
as ahostname, a network name, or an |P address. The optiona mask isthe netmask to use and may be
supplied either in the traditional form (e.g., /255.255.255.0) or the modern form (e.g., /24). The optional

por t specifiesthe TCP or UDP port, or the ICMP datagram type that will match. Y ou may supply a port
specification only if you've supplied the - p parameter with one of thet cp, udp, or i cnp protocols. Ports
may be specified as a range by specifying the upper and lower limits of the range with a colon as a delimiter.
For example, 20: 25 described all of the ports numbered from 20 up to and including 25. Again, the'!
character may be used to negate the values.

-d [!]address[/mask] [!] [port]
Specifies the destination address and port of the datagram that will match thisrule. The coding of this
parameter is the same as that of the - s parameter.

-j target

Specifies the action to take when this rule matches. Y ou can think of this parameter as meaning jump to.
Valid targets are ACCEPT, DENY, REJECT, REDI R, and RETURN. We described the meanings of each of
these targets earlier. However, you may also specify the name of a user-defined chain where processing will
continue. If this parameter is omitted, no action is taken on matching rule datagrams at al other than to
update the datagram and byte counters.

- [!]interface-name
Specifies the interface on which the datagram was received or isto be transmitted. Again, the! invertsthe
result of the match. If the interface name ends with +, then any interface that begins with the supplied string

will match. For example, -1 ppp+ would match any PPP network deviceand-i ! et h+ would match
all interfaces except Ethernet devices.

['] -f
Specifies that this rule appliesto everything but the first fragment of a fragmented datagram.

Options

The following ipchains options are more general in nature. Some of them control rather esoteric features of the IP
chains software:

-b

Causes the command to generate two rules. One rule matches the parameters supplied, and the other rule
added matches the corresponding parameters in the reverse direction.

Causes ipchainsto be verbose in its output. It will supply more information.

Causes ipchainsto display | P address and ports as numbers without attempting to resolve them to their
corresponding names.

Enables kernel logging of matching datagrams. Any datagram that matches the rule will be logged by the
kernel usingitspri nt k() function, which isusually handled by the sysklogd program and written to a
log file. Thisis useful for making unusual datagrams visible.

-0[maxsize]

Causes the I P chains software to copy any datagrams matching the rule to the userspace netlink device. The
maxsize argument limits the number of bytes from each datagram that are passed to the netlink device. This
option is of most use to software developers, but may be exploited by software packagesin the future.

-m markvalue

Causes matching datagrams to be marked with avalue. Mark values are unsigned 32-bit numbers. In existing
implementations this does nothing, but at some point in the future, it may determine how the datagram is
handled by other software such as the routing code. If a markvalue beginswith a+ or - , the value is added or
subtracted from the existing markval ue.

-t andmask xormask

Enables you to manipulate the type of service bitsin the IP header of any datagram that matches this rule.
The type of service bits are used by intelligent routers to prioritize datagrams before forwarding them. The
Linux routing software is capable of this sort prioritization. Theandmask and xor mask represent bit
masks that will be logically ANDed and ORed with the type of service bits of the datagram respectively. This
is an advanced feature that is discussed in more detail in the IPCHAINS-HOWTO.

Causes any numbersin the ipchains output to be expanded to their exact values with no rounding.

Causes the rule to match any TCP datagram with the SYN bit set and the ACK and FIN bits clear. Thisis
used to filter TCP connection requests.

Our Naive Example Revisited

Let's again suppose that we have a network in our organization and that we are using a Linux-based firewall
machine to allow our users access to WWW servers on the Internet, but to allow no other traffic to be passed.

If our network has a 24-bit network mask (class C) and has an address of 172.16.1.0, we'd use the following
ipchainsrules:

ipchains -F forward

ipchains -P forward DENY

ipchains -A forward -s 0/0 80 -d 172.16.1.0/24 -p tcp -y -] DENY
ipchains -A forward -s 172.16.1.0/24 -d 0/0 80 -p tcp -b -j ACCEPT

The first of the commands flushes all of the rules from the f or war d rulesets and the second set of commands sets

the default policy of thef or war d ruleset to DENY. Finaly, the third and fourth commands do the specific filtering
we want. The fourth command allows datagrams to and from web servers on the outside of our network to pass, and
the third prevents incoming TCP connections with a source port of 80.

If we now wanted to add rules that allowed passive mode only accessto FTP serversin the outside network, we'd
add these rules:

ipchains -A forward -s 0/0 20 -d 172.16.1.0/24 -p tcp -y -] DENY
ipchains -A forward -s 172.16.1.0/24 -d 0/0 20 -p tcp -b -j ACCEPT
ipchains -A forward -s 0/0 21 -d 172.16.1.0/24 -p tcp -y -j DENY
ipchains -A forward -s 172.16.1.0/24 -d 0/0 21 -p tcp -b -j ACCEPT

Listing Our Rules with ipchains

To list our ruleswith ipchains, we useits - L argument. Just as with ipfwadm, there are arguments that control the
amount of detail in the output. Inits ssimplest form, ipchains produces output that looks like:

ipchains -L -n
Chai n i nput (policy ACCEPT):
Chain forward (policy DENY):

t ar get prot opt sour ce destination ports

DENY tcp -y---- 0.0.0.0/0 172.16. 1.0/ 24 80 -> *
ACCEPT tcp ------ 172.16. 1.0/ 24 0.0.0.0/0 * -> 80
ACCEPT tcp ------ 0.0.0.0/0 172.16. 1.0/ 24 80 -> *
ACCEPT tcp ------ 172.16. 1.0/ 24 0.0.0.0/0 * -> 20
ACCEPT tcp ------ 0.0.0.0/0 172.16.1.0/ 24 20 -> %
ACCEPT tcp ------ 172.16.1.0/ 24 0.0.0.0/0 * o> 21
ACCEPT tcp ------ 0.0.0.0/0 172.16.1.0/ 24 21 -> %

Chai n out put (policy ACCEPT):

If you don't supply the name of achain to list, ipchainswill list al rulesin al chains. The - n argument in our
example tellsipchains not to attempt to convert any address or ports into names. The information presented should
be self-explanatory.

A verbose form, invoked by the - u option, provides much more detail. Its output adds fields for the datagram and
byte counters, Type of Service AND and XOR flags, the interface name, the mark, and the outsize.

All rules created with ipchains have datagram and byte counters associated with them. Thisis how IP Accounting
isimplemented and will be discussed in detail in Chapter 10. By default these counters are presented in a rounded
form using the suffixes K and Mto represent units of one thousand and one million, respectively. If the - x argument
is supplied, the counters are expanded to their full unrounded form.

Making Good Use of Chains

Y ou now know that the ipchains command is a replacement for the ipfwadm with a ssmpler command-line syntax
and some interesting enhancements, but you're no doubt wanting to know where you'd use the user-defined chains
and why. You'll also probably want to know how to use the support scripts that accompany the ipchains command
in its software package. We'll now explore these subjects and address the questions.

User-defined chains

The three rulesets of the traditional |P firewall code provided a mechanism for building firewall configurations that
were fairly simple to understand and manage for small networks with simple firewalling requirements. When the
configuration requirements are not simple, a number of problems become apparent. Firstly, large networks often
require much more than the small number of firewalling rules we've seen so far; inevitably needs arise that require
firewalling rules added to cover specia case scenarios. As the number of rules grows, the performance of the
firewall deterioriates as more and more tests are conducted on each datagram and managability becomes an issue.
Secondly, it is not possible to enable and disable sets of rules atomically; instead, you are forced to expose yourself
to attack while you are in the middle of rebuilding your ruleset.

The design of IP Firewall Chains helpsto alleviate these problems by allowing the network administrator to create
arbitrary sets of firwewall rules that we can link to the three inbuilt rulesets. We can use the - N option of ipchains
to create a new chain with any name we please of eight characters or less. (Restricting the name to lowercase letters
only is probably agood idea.) The -] option configures the action to take when a datagram matches the rule
specification. The - j option specifiesthat if a datagram matches arule, further testing should be performed against
auser-defined chain. Well illustrate this with a diagram.

Consider the following ipchains commands:

i pchai ns -P i nput DENY

I pchains -N tcpin

i pchains -A tcpin -s ! 172.16.0.0/ 16

i pchains -A tcpin -p tcp -d 172.16.0.0/16 ssh -j ACCEPT
i pchains -Atcpin -p tcp -d 172.16.0.0/16 ww -] ACCEPT
i pchains -A input -p tcp -j tcpin

I pchains -A input -p all

We set the default input chain policy to deny. The second command creates a user-defined chain called tcpin.

The third command adds arule to thet cpi n chain that matches any datagram that was sourced from outside our
local network; the rule takes no action. Thisrule is an accounting rule and will be discussed in more detail in
Chapter 10. The next two rules match any datagram that is destined for our local network and either of thessh or
www ports; datagrams matching these rules are accepted. The next rule is when the real ipchains magic begins. It
causes the firewall software to check any datagram of protocol TCP against the tcpin user-defined chain. Lastly, we
add aruleto our i nput chain that matches any datagram; thisis another accounting rule. They will produce the
following Firewall Chains shown in Figure 9-4.

Figure 9-4. A simple|P chain ruleset

Input bzpin

—F icmp —j ACCERT -2 ! 172.16.0.0/1%6

- tep —j tepin — tep —d 172.15.0.0/16 22h —§ AGCERT
- all — bep —d 172.16.0.0/16 www —f AGCEFT

Our i nput andt cpi n chains are populated with our rules. Datagram processing always beings at one of the
inbuilt chains. We'll see how our user-defined chain is called into play by following the processing path of different
types of datagrams.

First, let'slook at what happens when a UDP datagram for one of our hostsis received. Figure 9-5 illustrates the

flow through the rules.

Figure 9-5. The sequence of rulestested for areceived UDP datagram

Irput | bopin
; W i
-p i2mp —j ACCEFT —= ! 173 16.0.0/18
—F t2p —j E2pEin —F k2 —d 172.16.0.0/16 24h —j ACCERT
—F all —F t2p —d L72.16.0.0/16 s —j ACCERT
|

'

OELN

The datagram isreceived by thei nput chain and falls through the first two rules because they match ICMP and
TCP protocols, respectively. It matches the third rule in thei nput chain, but it doesn't specify atarget, soits
datagram and byte counters are updated, but no other action takes place. The datagram reaches the end of the

I nput chain, meets with the default i nput chain policy, and is denied.

To see our user-defined chain in operation, let's now consider what happens when we receive a TCP datagram
destined for the ssh port of one of our hosts. The sequence is shown in Figure 9-6.

Figure 9-6. Therulesflow for areceived TCP datagram for ssh

Irput | bepin
-p igmg —5j ACCEFT —2 ! 172.16.0.0/16
—J '
- t2p 5 tepian— —F t2p —d L172.16.0.0/16 24h —j ACCERT
— all - t2p —d 172.16.0.0/16 www —j ACCERT

Thistimethe second rule in thei nput chain does match and it specifies atarget of t cpi n, our user-defined
chain. Specifying a user-defined chain as atarget causes the datagram to be tested against the rulesin that chain, so
the next rule tested isthefirst rulein thet cpi n chain. The first rule matches any datagram that has a source
address outside our local network and specifies no target, so it too is an accounting rule and testing falls through to
the next rule. The second rulein our t cpi n chain does match and specifies atarget of ACCEPT. We have arrived
at target, so no further firewall processing occurs. The datagram is accepted.

Finally, let'slook at what happens when we reach the end of a user-defined chain. To see this, we'll map the flow
for a TCP datagram destined for a port other than than the two we are handling specifically, as shown in Figure 9-7.

Figure9-7. Therulesflow for areceived TCP datagram for telnet

It

bopin

OEEN

- iemp $j MHCCEPT -2 ! 172.16.0.0/18
- tep —j topin 4 —p kep —d 172.16.0.0/16 24h —j ACCEPT
e all —p tep —d L172.16.0.0/16 wwe —§ RCCERT
| |
L

The user-defined chains do not have default policies. When all rules in a user-defined chain have been tested, and
none have matched, the firewall code acts as though a RETURN rule were present, so if thisisn't what you want,
you should ensure you supply arule at the end of the user-defined chain that takes whatever action you wish. In our
example, our testing returnsto therulein thei nput ruleset immediately following the one that moved us to our
user-defined chain. Eventually we reach the end of thei nput chain, which does have a default policy and our
datagram is denied.

This exampleis very simple, but illustrates our point. A more practical use of 1P chains would be much more
complex. A slightly more sophisticated exampleis provided in the following list of commands:

#

Set default forwarding policy to REJECT

I pchai ns
#

create
I pchai ns
I pchai ns
I pchai ns
i pchai ns
#

Ensure
I pchai ns
I pchai ns
I pchai ns
i pchai ns
#

Ensure
I pchai ns
I pchai ns
I pchai ns
I pchai ns
#

divert
I pchai ns
I pchai ns
I pchai ns
I pchai ns
#

I nsert
I pchai ns
I pchai ns

-P forward REJECT

our user-defined chains

-N sshin

- N sshout

-N wwi n

- N wwwout

we reject connections com ng the wong way

-Awwin -p tcp -s 172.16.0.0/16 -y -] REJECT

-A wwout -p tcp -d 172.16.0.0/16 -y -j REJECT

-A sshin -p tcp -s 172.16.0.0/16 -y -] REJECT

-A sshout -p tcp -d 172.16.0.0/16 -y -j REJECT

that anything reaching the end of a user-defined chain is rejected.
-A sshin -j REJECT

-A sshout -] REJECT

-A wwin -j REJECT

-A wwout -j REJECT

ww and ssh services to the rel evant user-defined chain
-A forward -p tcp -d 172.16.0.0/16 ssh -b -j sshin

-A forward -p tcp -s 172.16.0.0/16 -d 0/0 ssh -b -] sshout
-A forward -p tcp -d 172.16.0.0/16 ww -b -j ww n

-A forward -p tcp -s 172.16.0.0/16 -d 0/0 ww -b -] wwwwout

our rules to natch hosts

at position two in our user-defined chains.
wwin 2 -d 172.16.1.2 -b -j ACCEPT
wwwout 2 -s 172.16.1.0/24 -b -] ACCEPT

i pchains -1 sshin 2 -d 172.16.1.4 -b -] ACCEPT
i pchains -1 sshout 2 -s 172.16.1.4 -b -j ACCEPT
i pchains -1 sshout 2 -s 172.16.1.6 -b -j ACCEPT
#

In this example, we've used a selection of user-defined chains both to simplify management of our firewall
configuration and improve the efficiency of our firewall as compared to a solution involving only the built-in
chains.

Our example creates user-defined chains for each of the ssh and www services in each connection direction. The
chain called wwwout iswhere we place rules for hosts that are allowed to make outgoing World Wide Web
connections, and sshi n iswhere we define rules for hosts to which we want to allow incoming ssh connections.
We've assumed that we have arequirement to allow and deny individual hosts on our network the ability to make or
receive ssh and www connections. The simplication occurs because the user-defined chains allow usto neatly
group the rules for the host incoming and outgoing permissions rather than muddling them all together. The
improvement in efficiency occurs because for any particular datagram, we have reduced the average number of
tests required before atarget is found. The efficiency gain increases as we add more hosts. If we hadn't used
user-defined chains, we'd potentially have to search the whole list of rulesto determine what action to take with
each and every datagram received. Even if we assume that each of the rulesin our list matches an equal proportion
of the total number of datagrams processed, we'd still be searching half the list on average. User-defined chains
allow usto avoid testing large numbers of rulesif the datagram being tested doesn't match the ssmple rule in the
built-in chain that jumps to them.

The ipchains support scripts

The ipchains software package is supplied with three support scripts. The first of these we've discussed briefly
already, while the remaining two provide an easy and convenient means of saving and restoring your firewall
configuration.

The ipfwadm-wrapper script emulates the command-line syntax of the ipfwadm command, but drives the
ipchains command to build the firewall rules. Thisis a convenient way to migrate your existing firewall
configuration to the kernel or an aternative to learning the ipchains syntax. The ipfwadm-wr apper script behaves
differently from the ipfwadm command in two ways: firstly, because the ipchains command doesn't support
gpecification of an interface by address, the ipfwadm-wrapper script accepts an argument of - V but attempts to
convert it into the ipchains equivalent of a- Why searching for the interface name configured with the supplied
address. The ipfwadm-wr apper script will always provide awarning when you use the - V option to remind you of
this. Secondly, fragment accounting rules are not translated correctly.

The ipchains-save and ipchains-r estor e scripts make building and modifying afirewall configuration much
simpler. The ipchains-save command reads the current firewall configuration and writes a ssimplified form to the
standard output. The ipchains-restor e command reads data in the output format of the ipchains-save command
and configuresthe IP firewall with these rules. The advantage of using these scripts over directly modifying your
firewall configuration script and testing the configuration is the ability to dynamically build your configuration
once and then save it. Y ou can then restore that configuration, modify it, and resave it as you please.

To use the scripts, you'd enter something like:

i pchai ns-save >/var/state/ipchains/firewall.state

to save your current firewall configuration. Y ou'd restore it, perhaps at boot time, with:

I pchai ns-restore </var/state/ipchains/firewall.state

Theipchains-restore script checksif any user-defined chain listed in its input already exists. If you've supplied the

- f argument, it will automatically flush the rules from the user-defined chain before configuring those in the input.
The default behavior asks you whether to skip this chain or to flush it.

Notes

[1] Paul can be reached at Paul.Russell @rustcorp.com.au.

Prev Home Next
Origina IP Firewall (2.0 Kernels) Up Netfilter and IP Tables (2.4
Kernels)

[Please note that the University of Edinburgh is not responsible for the content of
these WWW pages. For queries please contact user @ph.ed.ac.uk where
user appears after the ~ and before the / in the URL for this page]

Linux Network Administrators Guide
Prev Chapter 9. TCP/IP Firewall Next

Netfilter and IP Tables (2.4 Kernels)

While developing IP Firewall Chains, Paul Russell decided that IP firewalling should be less difficult; he soon
set about the task of simplifying aspects of datagram processing in the kernel firewalling code and produced a
filtering framework that was both much cleaner and much more flexible. He called this new framework netfilter.

Note: At the time of preparation of thisbook the netfilter design had not yet stabilized. We hope
you'll forgive any errors in the description of netfilter or its associated configuration tools that result
from changes that occurred after preparation of this material. We considered the netfilter work
important enough to justify the inclusion of this material, despite parts of it being speculativein
nature. If you're in any doubt, the relevant HOWTO documents will contain the most accurate and
up-to-date information on the detailed issues associated with the netfilter configuration.

So what was wrong with | P chains? They vastly improved the efficiency and management of firewall rules. But
the way they processed datagrams was still complex, especially in conjunction with firewall-related features like
I P masguerade (discussed in Chapter 11) and other forms of address trandlation. Part of this complexity existed
because | P masguerade and Network Address Translation were developed independently of the IP firewalling
code and integrated later, rather than having been designed as atrue part of the firewall code from the start. If a
developer wanted to add yet more features in the datagram processing sequence, he would have had difficulty
finding a place to insert the code and would have been forced to make changes in the kernel in order to do so.

Still, there were other problems. In particular, the input chain described input to the IP networking layer as a
whole. The input chain affected both datagrams to be destined for this host and datagrams to be routed by this
host. This was somewhat counterintuitive because it confused the function of the input chain with that of the
forward chain, which applied only to datagrams to be forwarded, but which always followed the input chain. If
you wanted to treat datagrams for this host differently from datagrams to be forwarded, it was necessary to build
complex rules that excluded one or the other. The same problem applied to the output chain.

Inevitably some of this complexity spilled over into the system administrator's job because it was reflected in the
way that rulesets had to be designed. Moreover, any extensions to filtering required direct modifications to the
kernel, because all filtering policies were implemented there and there was no way of providing a transparent
interface into it. netfilter addresses both the complexity and the rigidity of older solutions by implementing a
generic framework in the kernel that streamlines the way datagrams are processed and provides a capability to
extend filtering policy without having to modify the kernel.

Let'stake alook at two of the key changes made. Figure 9-8 illustrates how datagrams are processed in the IP
chains implementation, while Figure 9-9 illustrates how they are processed in the netfilter implementation. The
key differences are the removal of the masquerading function from the core code and a change in the locations

of the input and output chains. To accompany these changes, a new and extensible configuration tool called
iptables was created.

In IP chains, the input chain appliesto all datagrams received by the host, irrespective of whether they are
destined for the local host or routed to some other host. In netfilter, the input chain applies only to datagrams
destined for the local host, and the forward chain applies only to datagrams destined for another host. Similarly,
in 1P chains, the output chain appliesto al datagrams leaving the local host, irrespective of whether the

datagram is generated on the local host or routed from some other host. In netfilter, the output chain applies only
to datagrams generated on this host and does not apply to datagrams being routed from another host. This
change alone offers a huge simplification of many firewall configurations.

Figure 9-8. Datagram processing chain in | P chains

4-(»-:191;5:1“ —-|» sarity :.E-; v—+l:|emsE|:|?
]

-

L2
moLting forward 4 outpLE
decidon ;T M chan chan

poCEss

In Figure 9-8, the components labeled demasg and masq are separate kernel components responsible for the

incoming and outgoing processing of masqueraded datagrams. These have been reimplemented as netfilter
modules.

Consider the case of a configuration for which the default policy for each of the input, forward, and output
chainsisdeny. In IP chains, six rules would be needed to allow any session through afirewall host: two each in
the input, forward, and output chains (one would cover each forward path and one would cover each return
path). Y ou can imagine how this could easily become extremely complex and difficult to manage when you
want to mix sessions that could be routed and sessions that could connect to the local host without being routed.
I P chains allow you to create chains that would simplify thistask alittle, but the design isn't obvious and
requires a certain level of expertise.

In the netfilter implementation with iptables, this complexity disappears completely. For a service to be routed
across the firewall host, but not terminate on the local host, only two rules are required: one each for the forward
and the reverse directionsin the forward chain. Thisis the obvious way to design firewalling rules, and will
serve to ssimplify the design of firewall configurations immensely.

Figure 9-9. Datagram processing chain in netfilter

s erian| ary
roLting || forwamd I| routing |
decidon chain decidon

|

rput autpLt
chan chaln

lozal

The PACKET-FILTERING-HOWTO offers adetailed list of the changes that have been made, so let's focus on
the more practical aspects here.

Backward Compatability with ipfwadmand ipchains

The remarkable flexibility of Linux netfilter isillustrated by its ability to emulate the ipfwadm and ipchains
interfaces. Emulation makes transition to the new generation of firewall software alittle easier.

The two netfilter kernel modulescalled i pf wadm o and i pchai ns. o provide backward compatibility for
ipfwadm and ipchains. Y ou may load only one of these modules at atime, and use one only if the

| p_t abl es. o moduleisnot loaded. When the appropriate module is loaded, netfilter works exactly like the
former firewall implementation.

netfilter mimics the ipchains interface with the following commands:

romod i p_tables
nodpr obe i pchai ns
i pchains ...

Using iptables

The iptables utility is used to configure netfilter filtering rules. Its syntax borrows heavily from the ipchains
command, but differsin one very significant respect: it is extensible. What this means is that its functionality can
be extended without recompiling it. It manages thistrick by using shared libraries. There are standard extensions
and we'll explore some of them in a moment.

Before you can use the iptables command, you must load the netfilter kernel module that provides support for it.
The easiest way to do thisis to use the modpr obe command as follows:

nodpr obe i p_tables

The iptables command is used to configure both IP filtering and Network Address Translation. To facilitate this,
there are two tables of rules called filter and nat. The filter table is assumed if you do not specify the-t option
to override it. Five built-in chains are aso provided. The | NPUT and FORWARD chains are available for the

filter table the PREROUTI NGand POSTROUTI NGchains are available for the nat table, and the OQUTPUT
chainisavailable for both tables. In this chapter we'll discuss only thefilter table. We'll ook at the nat table in

Chapter 11

The general syntax of most iptables commandsis:
I pt abl es conmmand rul e-speci fication extensions

Now welll take alook at some optionsin detail, after which we'll review some examples.

Commands

There are anumber of ways we can manipulate rules and rulesets with the iptables command. Those relevant to
IPfirewalling are:

-A chan

Append one or more rules to the end of the nominated chain. If a hostname is supplied as either a source

or destination and it resolves to more than one I P address, arule will be added for each address.

-1 chain rulenum
Insert one or more rules to the start of the nominated chain. Again, if ahostname is supplied inthe rule
specification, arule will be added for each of the addresses to which it resolves.

-D chain

Delete one or more rules from the specified chain matching the rule specification.
-D chain rulenum

Delete the rule residing at position r ul enumin the specified chain. Rule positions start at 1 for the first
rulein the chain.

-R chain rulenum

Replace the rule residing at position r ul enumin the specific chain with the supplied rule specification.
-Cchain
Check the datagram described by the rule specification against the specific chain. This command will

return a message describing how the chain processed the datagram. Thisis very useful for testing your
firewall configuration and we will look at it in detail |ater.

-L [chain]

List the rules of the specified chain, or for al chainsif no chain is specified.
-F [chain]

Flush the rules of the specified chain, or for all chains if no chain is specified.

-Z [chain]
Zero the datagram and byte counters for all rules of the specified chain, or for al chainsif no chainis
specified.

-N chain

Create a new chain with the specified name. A chain of the same name must not already exist. Thisis how
user-defined chains are created.

-X [chain]

Delete the specified user-defined chain, or all user-defined chainsif no chain is specified. For this
command to be successful, there must be no references to the specified chain from any other rules chain.

-P chain policy

Set the default policy of the specified chain to the specified policy. Valid firewalling policies are
ACCEPT, DROP, QUEUE, and RETURN. ACCEPT allows the datagram to pass. DROP causes the datagram
to be discarded. QUEUE causes the datagram to be passed to userspace for further processing. The
RETURN target causes the | P firewall code to return to the Firewall Chain that called the one containing
thisrule, and continue starting at the rule after the calling rule.

Rule specification parameters

There are anumber of iptables parameters that constitute a rule specification. Wherever arule specification is
required, each of these parameters must be supplied or their default will be assumed.

-p [!]protocol

Specifies the protocol of the datagram that will match thisrule. Valid protocol namesaret cp, udp,
I cnp, or anumber, if you know the IP protocol number.[1] For example, you might use 4 to match the

I pi p encapsulation protocol. If the! character is supplied, the rule is negated and the datagram will
match any protocol other than the specified protocol. If this parameter isn't supplied, it will default to
match al protocols.

-s [!]address]/mask]
Specifies the source address of the datagram that will match this rule. The address may be supplied as a

hostname, a network name, or an |P address. The optional mask is the netmask to use and may be
supplied either in the traditional form (e.g., /255.255.255.0) or in the modern form (e.g., /24).

-d [!]address]/mask]
Specifies the destination address and port of the datagram that will match thisrule. The coding of this
parameter isthe same as that of the - s parameter.

-j target
Specifies what action to take when this rule matches. Y ou can think of this parameter as meaning jump
to. Valid targets are ACCEPT, DROP, QUEUE, and RETURN. We described the meanings of each of these
previoudly in the "Commands' section. Y ou may also specify the name of a user-defined chain where
processing will continue. Y ou may also supply the name