.
ABSOLUTE

FREEBSD

2ND EDITION

PRAISE FOR THE FIRST EDITION, ABSOLUTE BSD

“Even longtime users of FreeBSD may be surprised at the power and features
it can bring to bear as a server platform, and Absolute BSD is an excellent guide
to harnessing that power.”

—UNIXREVIEW.COM

«

... provides beautifully written tutorials and reference material to help you
make the most of the strengths of this OS.”
—LINUXUSER & DEVELOPER MAGAZINE

«

... a great resource for people new to BSD and those who have been using
it for years. Michael Lucas has a writing style which is very easy to read and
absorb.”

—FRESHMEAT

“Avery fine piece of work, it isn’t about how to implement BSD solutions, but
it is about managing systems in situ.”
—LOGIN:

... packed with a lot of information.”
—DAEMON NEWS

PRAISE FOR ABSOLUTE OPENBSD BY MICHAEL LUCAS

“Absolute OpenBSD by Michael Lucas is a broad and mostly gentle introduction
into the world of the OpenBSD operating system. It is sufficiently complete
and deep to give someone new to OpenBSD a solid footing for doing real
work and the mental tools for further exploration. . . . The potentially boring
topic of systems administration is made very readable and even fun by the
light tone that Lucas uses.”

—CHRIS PALMER, PRESIDENT, SAN FRANCISCO OPENBSD USERS GROUP

«

.. . a well-written book that hits its market squarely on target. Those new to
OpenBSD will appreciate the comprehensive approach that takes them from
concept to functional execution. Existing and advanced users will benefit from
the discussion of OpenBSD-specific topics such as the security features and
pf administration.”

—SLASHDOT

“I recommend Absolute OpenBSD to all programmers and administrators
working with the OpenBSD operating system (OS), or considering it.”
—UNIXREVIEW.COM

PRAISE FOR PGP & GPG BY MICHAEL LUCAS

“PGP & GPGis another excellent book by Michael Lucas. I thoroughly enjoyed
his other books due to their content and style. PGP & GPG continues in this
fine tradition. If you are trying to learn how to use PGP or GPG, or at least
want to ensure you are using them properly, read PGP & GPG.”
—TAOSECURITY

“The world’s first user-friendly book on email privacy. Unless you're a
cryptographer, or never use email, you should read this book.”
—LEN SASSAMAN, CODECON FOUNDER

“ Excellent tutorial, quick read, and enough humor to make it enjoyable.”
—INFOWORLD

“An excellent book that shows the end-user in an easy to read and often
entertaining style just about everything they need to know to effectively and
properly use PGP and OpenPGP.”

—SLASHDOT

PRAISE FOR CISCO ROUTERS FOR THE DESPERATE BY MICHAEL LUCAS

2

‘... this book isn’t a reference—it’s a survival guide, a ‘break glass in case
of emergency’ safety harness. . . . What I found remarkable was how it was
obviously written for people like me—those of us who have little interest in
router management but whose jobs depend on the consistent, trusted func-
tioning of such infrastructure.

—ASP.NETPRO

“If only Cisco Routers for the Desperate had been on my bookshelf a few years
ago! It would have definitely saved me many hours of searching for config-
uration help on my Cisco routers. . . . I would strongly recommend this book
for both IT Professionals looking to get started with Cisco routers, as well as
anyone who has to deal with a Cisco router from time to time but doesn’t
have the time or technological know-how to tackle a more in-depth book
on the subject.”

—BLOGCRITICS MAGAZINE

ABSOLUTE
FREEBSD

2ND EDITION

THE COMPLETE GUIDETO FREEBSD

by Michael W. Lucas

==

NO STARCH
PRESS

San Francisco

ABSOLUTE FREEBSD, 2ND EDITION. Copyright © 2008 by Michael W. Lucas.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

{5 Printed on recycled paper in the United States of America

111009 08 07 123456789

ISBN-10: 1-59327-151-4
ISBN-13: 978-1-59327-151-0

Publisher: William Pollock

Production Editors: Christina Samuell and Megan Dunchak
Cover and Interior Design: Octopod Studios
Developmental Editor: William Pollock

Technical Reviewer: John Baldwin

Copyeditor: Dmitry Kirsanov

Compositor: Riley Hoffman

Proofreader: Alina Kirsanova

Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Lucas, Michael, 1967-

Absolute FreeBSD : the complete guide to FreeBSD / Michael W. Lucas. -- 2nd ed.

p. cm.

Includes index.

ISBN-13: 978-1-59327-145-9

ISBN-10: 1-59327-145-X

1. FreeBSD. 2. UNIX (Computer file) 3. Internet service providers--Computer programs. 4. Web
servers--Computer programs. 5. Client/server computing. I. Title.
QA76.76.063L83 2007
004'.36--dc22

2007036190

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The mark “FreeBSD” is a registered trademark of The FreeBSD Foundation and is used by Michael W. Lucas with the
permission of The FreeBSD Foundation.

The FreeBSD Logo is a trademark of The FreeBSD Foundation and is used by Michael W. Lucas with the permission
of The FreeBSD Foundation.

The BSD Daemon is copyright Marshall Kirk McKusick and is used with permission.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

For Liz. With luck, this one is the right size to plug that dang gopher hole.

BRIEF CONTENTS

Foreword by Robert N.M. Watsoncoiiiiiiiiiiiiiieie e Xxvii
Acknowledgmentsccooiiiiiiii i XXiX
INHTOAUCHON ..t e ettt et ettt ettt saee e e 1
Chapter 1: Getting More Helpoooiiiii e 19
Chapter 2: Installing FreeBSDc.eiiiiiieiiit ittt 33
Chapter 3: Start Me Up! The Boot ProCess...........eoiuiiiiiieiiiieeiiie et 61
Chapter 4: Read This Before You Break Something Else! (Backup and Recovery................... 89
Chapter 5: Kernel Gamesc..oiiiiiiiii it 17
Chapter 6: The NEWOTKcouiiiiiiiii e 145
Chapter 7: Securing YOUr SYSIEMooiiiiiiiiieeiiie ettt ettt 177
Chapter 8: Disks and Filesystemsccuoiriiiiiiiiiiiiie e 209
Chapter 9: Advanced Security FEAtUIesoooviiiiiiiiiiie et 261
Chapter T0: EXPlOring /€1Coouuiiiiiie et 301
Chapter 11: Making Your System Useful...........cccooiiiiiiiiii e 315
Chapter 12: Advanced Software Managementc.cciuiiiiiiieiiciie e 343

Chapter 13: Upgrading FreeBSDcooiiiiiiiiiii e 371

Chapter 14: The Internet Road Map: DNScooiiiiiiiiiiiiii e 411
Chapter 15: Small System SErviCesoouuiiiiiiiiiiie et 439
Chapter 16: Spam, Worms, and Viruses (Plus Email, If You Insist)cocoiiiiiiiiiinne. 467
Chapter 17: Web and FTP SErviCes.couiiiiiiiiiiiiiie ittt 499
Chapter 18: Disk Tricks with GEOM.......cccciiiiiiiiiiiici e 529
Chapter 19: System Performance and Monitoringccceovuieviiiiiiiiiee e 569
Chapter 20: The Fringe of FreeBSDooiiiiiiiiii e 603
Chapter 21: System (and Sysadmin) Panics and Crashescccoooiiiiiiiiiiiiiiii e, 637
AFEIWOTT .. 655
Appendix: Some Interesting sysctl MIBsc.ooiiiiiiiiiii e 661
INABX 1.t et et e et en 675

viii Brief Contents

CONTENTS IN DETAIL

FOREWORD BY ROBERT N.M. WATSON XXVii
ACKNOWLEDGMENTS XXiX
INTRODUCTION 1
What IS FrEeBSD2 ... e 2
BSD: FreeBSD’s Granddaddycccooiiiiiiiiiiiiiiii 2
The BSD LICENSE ..o, 3
The AT&T/CSRG/BSDi Iron Cage Matchcooiiiiiiiiiiii 4
The Birth of FreeBSD ... e 4
FreeBSD Developmentoouiiiiiie et 5
COMMITEIS it 5
CONIBUTIOTS . e 6
U S BrS ottt e e 7
OFhEr BSDS ..o e 7
N B S D . 7
OPENBSD .. 7
AC O X oo 8
FreeBSD s Childreno e, 8
OFEE UNIXES e e e 8
Solaris/OPENSOIATISeieiiie et 8
A DK 9
L U e 9
IRIX, HP/UX, and SO ON ..o, 9
FreeBSD's SIrengthsooiiiiiii e 10
POrtability ..o 10
P OW T e 10
Simplified Software Managementccccoiiiiiiiiiiii e 10
Optimized Upgrade Processcooiiiiiiiiiiieeiiie et 11
Advanced Filesystemccooiiiiiiiiiiiie e 11
Who Should Use FreeBSD2 ..o 11
Who Should Run Another BSD2 ... 11
Who Should Run a Proprietary Operating System@ccceviuienieniiiiieenieiie e 12
How to Read This BooKcooiiiiee e e, 12
What MUst YOU KNOWS ... e 12
For the New System Administratorccccoiiiiiiiiiiiiiiie e 13
Desktop FreeBSDoiiiiiieiie ettt 13
How to Think ABout UniXee e, 14
Notes on the SEcond EdIfIONcooieime e, 16
Contents of This BOOKoiii e 16
1
GETTING MORE HELP 19
Why Not Just Email for Help®cooooiiiiiiiii 20
The FreeBSD AHIUAE oo 20

SUPPOTT OPHONS ettt 20

AN PAGES . 21

Manual SECHONSoiieiiiiii et 22
Navigating Man Pages ..o 23
Finding Man Pagesc.eoiiiiiiiii it 23
Section Numbers and Manccociiiiiiii e 24
Man Page Contentseeuuieiiiiiiniiiit e e 24
FrE@BSD.ONG .ottt 25
Web DOCUMENESiiiiieciii it 25
The Mailing List Archivescccoiiiiiiiiii i 26
Oher WEbBSIESeiiiiie ettt 26
Using FreeBSD Problem-Solving ReSourcesccceiiuiiiiiiiiiiiiiie e 26
Checking the Handbook/FAQcooiiiiiiiiiiiii et 27
Checking the Man Pagescooiuiiiiiiiiiiie e 27
Checking the Mailing List Archivesccccciiiiiiiiiiiii e 28
USING YOUI ANSWEToiiiiiiiiiiiii e 28
Emailing for Help ..oooeeie e 29
Writing Your Email c...oooooiiiiiii 29
Sending Your Emailooiiiiiii e 30
Responding 1o EMailccooiiiiiiiiii e 31
EMQil Is FOreVeroouiiiiiiiiie e 31
2
INSTALLING FREEBSD 33
FreeBSD HardWarec.ooooiiiiiiiieiie et 34
Sample HardWarecccoooiiiiiiiiiiiiii e 35
Proprietary Hardwareccociiiiiiiiiiiiiiie e 35
What We Wont COVEN ...ouiiiiiiiiiiiie et 36
Hardware Requirementscouiviiiiiiiiiiiie e 36
Preinstall DECISIONSooiiieiiiie ettt 37
PArtiIONING «.eeveiiieiiiti e 37
Multiple Hard DFiVesoooiuiiiiieeeiie e 40
Partition BIock SIzeoooviiiiiieeii e 41
Choosing Your Distribution(s)ceeriiiriiiiiiii e 42
The FreeBSD FTP SHE ...cvuiiiiiiiiite ettt 43
FTP Server ConeNntc.civiiiiiiiiiiiit et 43
The INSHAll ProCESS . ..eeiiiiieiiie et 45
Choosing Boot Mediacciiiiiiiiiiie e 45
Choosing Installation Mediaoocuiiiiiiiiii e 46
Preparing Boot FIOPPIESiviieiiiie ittt 47
Preparing Boot CDsc.iiiiiiiiiiiiiiiit et 47
FTP Media SETUP .. eueiie ettt ettt 48
Actually Installing FreeBSDoiiiiiiiiiie it 49
Configuring the Networkccccoiiiiiiiiii e 54
Miscellaneous Network Servicescccoviiiiiiiiiiiiiiiiie e, 56
TIME ZONE .iiiiiiiiiiiiii e 56
LINUX MOTE . 56
PS/2 MOUSE ..o e 56
Adding Packagesc..eieiiiiiiii i 56
AAING USEs ..ot 57
ROOE PASSWOR ...t 58
PostInstallation SETUPcoiiiiiiii it 58
RESTAM] .o 59

X Contents in Detail

3

START ME UP! THE BOOT PROCESS 61
Power-On and the Loaderccoiiiiiiiiii e 62
SINGle-USer MOdeviiiiie e 63
Disks in Single-User Modecccoiiiiiiiiiiii e 64
Programs Available in Single-User Modeoooiiiiiiiiiiiiii 64
The Network in Single-User Modeccoceeviiiiiiiiiiii 65
Uses for Single-User Modeccooiiiiiiiiiiiiii e 65
The Loader Promptooiiiiiie et 66
DefQUI FIIES .eiti et 68
Loader Configurationoouiiiiiie e 69
Serial CONSOIESouiiiiiiii ittt 70
Hardware Serial Consolesooiiiiiiiiiiiic i 71
Software Serial Consolesccoviiiiiiiiiiiiiiii 71
Serial Console Physical SEtUpc.ooiiiiiiiiiii e 73
Serial Console Useccccoiiiiiiiiiiiiiiiii ittt 73
Serial Console DisCONNECHONccoiciiiiiiiiii it 75
SHAMUP MESSAGES .. 76
MUBIHUSEE SEQIIUP ettt 79
Jetc/rc.conf and /etc/defaults/rc.confeeen e, 79
The rc.d SIArtUP SYSTEmM ...eoiiiieiiii et 87
SRUKOWN . e 88
4
READ THIS BEFORE YOU BREAK SOMETHING ELSE!
(BACKUP AND RECOVERY) 89
SYSIEM BACKUPS ..t 90
BACKUP TPES -ttt ettt ettt 90
Tape Drive Device Nodes, Rewinding, and Ejectingcccoocevviinninninnenne. 91
The $TAPE Variablecocoiiiiiiic e 91
Tape Status With MH{T) .oooiiii 92
Other Tape Drive Commandscooiieiiiiiiiiieeeiie et 93
To Rewind or NOZ ...iiiiiiiiiii it 93
BACKUP PrOGrams ...c...eiiiiii ittt 94
B0 e 94
HAr MOAES .o 94
OHher 1ar FEATUIESoiuiiiiiiiitie ittt e 96
ZIP et ettt et e et e e s e 97
UMD e e 98
USEr CONIOl ...iviiiiiiii ettt 98
dUMP LeVelS ..o 98
dump, Tape Drives, and Filesccooiiiiiiiie 99
dump and Live Filesystemsccooiiiiiiiiiii e 99
Timestamps and dUMP ...oiiiiiiie e 100
RUNNING dUMP <ot 100
Throwing Data Overboard with nodumpccccciiiiiniiiii e, 101
Restoring from @ dumpeooiiii i 101
Checking the Contents of an Archiveccccooiiiiiiiiiiii 101
Restoring dump Datac.uiiiiiiiiiiiie et 102
Multiple Backups 0n One TAPEccueiiiiiiiiie ettt 105

Contents in Detail

xi

REVISION CONITOl ..o e e, 106

Initializing Revision Controlcccoiiiiiiiiiiie e 107
Editing Files in RCS ..ooiiii e 108
Checking Back Inooiiiiiiie e 108
Viewing RCS LOgs ...oooiiiiiiiiiiiiie e 109
Reviewing a File’s Revision Historycccccovviiiiiiiiniiiiiiiecice e 110
Getting Older VErsionscccocuiiiiiiriiiiiiiiiitiit et 111
Breaking Locksoiieieeii e 112
Recording What Happenedcoccoiiiiiiiiiii e 114
The FiXit DISK ...eeuviiiiiii et 114
5
KERNEL GAMES 117
What Is the Kernel2cooiiiiiiiii e 118
YO e 119
SYSCH MIBS e 120
SYSCH VAlUBS ..eiiiie 121
VIBWING SYSCHS vttt ettt 121
Changing SYSCHSvviiiiiie ettt 122
Kernel Modulesooiiiiiiiiiii e 124
Viewing Loaded Modulesccooiiiiiiiiiiiiiiiii 124
Loading and Unloading Modulesccooooiiiiiiiii e 125
Loading Modules at BOOtcouiiiiiiiiiiee et 125
Build Your Own Kernelcocuiiiiiiiiii i e 126
Preparalionsccoooviiiiiiiie et 126
Buses and Attachmentscoocoiiiiiiiiiii 127
Back Up Your Working Kernelccooiiiiiiiiiiiiiiiicii e 128
Configuration File Formatccccoiiiiiiiiiii e 128
Configuration Filesooiiiiiiiiiii e 129
Trimming @ Kerneloooiiiii e 131
CPU TYPES ottt 131
Basic OPHONSuviiiiiiiie it 131
MUMPlE ProCESSOTSiiieiiiiecie ettt 134
Device DIIVETScooiiiiiiiiiiii e 134
PSeUdOdEVICESo.viiiiiiiiiiee 135
Removable Hardwarecccooiiiiiiiiiiiiii 136
Building @ Kernelooiiii e 136
Troubleshooting Kernel Buildsoocoiiiiiiiiiiiiii e 137
Booting an Alternate Kernelccccoiiiiiiiiiiii e 137
Inclusions, Exclusions, and Expanding the Kernelcccoooociiiiiiiiiiii, 138
INOTES .ttt e 138
Inclusions and EXCIUSIONSccuiiiiiiiiiiiiiie i e 139
How Kernel Options Fix Problemscccccooiiiiiiiiiiiii e 139
Sharing KEMMeIscovviiiiiiii e 140
Testing Kernels Remotelyouoiiiiiiiiiiii e 141
Kernel Stuff You Should Knowcccociiiiiiiiiiiiiiii e 142
ACPL ..o 142
P A e e s 142
Symmetric MUKIProCesSINgoeiiiiviiiiie et 143
Lock Order Reversalscocueiiiiiiiiiiiiieiccc e 143

Xii Contents in Detail

6

THE NETWORK 145
INEIWOTK LAYEIS ...ttt 146
The Physical Layercccoiiiiiiie e 146
Datalink: The Physical Protocolcccooiuiiiiiieiiieie e 146
The Network Layeroooiiiiiiiii i 147
Heavy Lifting: The Transport Layerccccviiiiiiiiireiie e 147
APPlICAIONS ..o 148
The Network in Prachcecocioiiiiiiiiiiiici e 148
Getting Bits and HEXESc..iiiiiiiiiiiie e 150
REMEIA TCP /1P e e e, 152
IP Addresses and Netmaskscoccoeviiriiiiiiniineie e 152
ICMP e 155
U P e e 155
TP e e 156
How Protocols Fit Togetherccccoiiiiiiiiiiiiiiiicie e 157
Transport Protocol POrtsoeiuiiiiiie e 157
Understanding Ethernetcooooiiiiiiiii e 158
Protocol and Hardwarec.cccoociiiiiiiiiiiiiiie e, 159
Ethernet Speed and Duplexcoooiiiiiiiiiiiiii e 160
MAC AQAIESSES ...ttt 160
Configuring Your Ethernet Connectionccceeiiiiiiiiiiie et 161
HfConfig(8) et 161
Adding an IP to an Interfaceccooiiiiiiiiiiie e 162
Testing Your Inferfaceoooiiiiiiiii e 163
Set Default ROUEcouiiiiiiiiiiiiiie e 163
Multiple IP Addresses on One Inferfacecoocoeiiiiiiiiiiiiiiiie 163
Renaming INferfacesoooiiiiiiiiiiie e 164
DHECP e 165
REDOO! .. 166
INEIWOTK ACHVITY 1.ttt 166
Current Network ACtiVlyeorieiiiiiiiiie e 166
What's Listening on What Port8 ..ot 167
Port Listeners in Detailcccoooiiiiiiiiiiiiii e 168
Network Capacity in the Kernelccccoociiiiiiiiiiiiiii e 169
Optimizing Network Performancecccooiiiiiiiiiiiiiii e 170
Optimizing Network Hardwarec.ccoooiiiiiiiiiiniinicc 170
MEMOTY USAGE .ooiiiiiiiiiiiiii e 171
Maximum Incoming CONNECHONSuuuuuririis e 173
POIIING ettt 174
Changing Window SiZecccccimiiiiiiiiiiiiie e 174
Other OPHMIZAHONS ..oeiiiieiiii it 175
Network Adapter TEAMINGcc..coiiiiiiiiiieiiiee e 175
Aggregation Protocolsccceiiiiiiiiieiiiiii e 175
Configuring laggl4) ...oocvvveiieiiie e 176
7
SECURING YOUR SYSTEM 177
WHho s the ENemMy@oiiiiiiiiiiiic e 178
Script Kiddies ...oovveieiiii e 178
BOMNELS ... 179

Contents in Detail

xiii

Disaffected USErscooioime e 179

Motivated Skilled Attackerscccooiiiiiiiiiiiii 179
FreeBSD Security ANNOUNCEMENTSciciiiiiiiiiiiitieiie it 180
USET SECUMTY ettt ettt e ettt ee e s e 181
Creating User ACCOUNTSuuiiiiiiiiiiiiiiiiiic et 181
Editing Users: passwd(1), chpass(1), and Friendscccevviiiiiiiniinennen. 183
Shells and /etC/Shells ..o e e e 188
root, Groups, and ManA@EMEN!c..iiiiiiiiiie it 189
The root Passwordccoiiiiiiiiiiiiit ettt 189
Groups O USEISeiiiiiiiiiie ittt 190
Using Groups 1o Avoid ROOEcoviiiiiiiiiiie i 191
Tweaking USer SECUMTYcueiriiiiiiiiiiit ittt 195
Restricting Login Abilityocoiiiiiiii i 195
Restricting System Usagevuvieiiiiiiiiniiiiiice e 197
File Flags ..oeeoiie oot 201
Setting and Viewing File Flagsc.cccoviiiiiniiiiiiii e, 203
SECUFEIBVELS ...viiiiiiiiit it 204
Securelevel Definiionscccoociiiiiiiiiiiii 204
Which Securelevel Do You Need?ccccooiiiiiiiiiiiiiicic e 205
What Won't Securelevels and File Flags Accomplish? ..o, 206
Living with Securelevelsc.c.cociiiiiiiiii 206
NEIWOTK TAIGETS .. 207
Putting It All TOGEhero..eiii et 208
8
DISKS AND FILESYSTEMS 209
Disk DIIVES TOT ottt ettt et et 209
DEVICE INOAES ...t e 210
Hard Disks and Partiionsccuciiiiiiiiiiiiiiiicie e e 211
The Filesystem Table: /etc/fstabc.ooooiiiiiiii 212
What's Mounted NOW2 ...t 214
Mounting and Unmounting Diskscccoiiiiiiiiiiiiiii e 214
Mounting Standard Filesystemsccccoiiiiiiiiiiii e 214
Mounting at Nonstandard Locationsccouieieiiieiiciieieccee e, 215
Unmounting @ Partiiono.ooiiiiiiiiiiiiiniii e 215
How Full Is @ Partiioncoiiiiiiiiiie e 215
The Fast File SyStemooiiiiiiiie e 217
VNOGES ittt e 218
FFES MOUNE TYPES et 218
FFS Mount OPHONSccoiiiiiiiiiiiiiiie e 220
Soft Updates and Journaling with FFS ... 220
Wrrite CAChingveiviiieiii e 221
SNAPSNOIS e 222
Dirty DiSKS o.veeeeeie et 222
Forcing Read-Write Mounts on Dirty Disksccccccoviiviiininiiiniiie, 224
FFS Syncer at SRUIOWNo.iiiiiiiiiiiiici e 224
Background fsck, fsck -y, Foreground fsck, Oy Vey!ccocooviiiiiniinnn, 225
Using Foreign Filesystemscociiiiiiiiiiee i 225
Supported Foreign Filesystemsccccoeiiiiiiiiiiiiie e 226
Permissions and Foreign Filesystemsccccoiiiiiiiiiiieice e 228

Xiv Contents in Detail

Removable-Media Filesystemscccooiiiiiiiiiii e 228

Formatting FAT32 Mediaccuoiiiiiiiiiiiiei e 228
Using Removable Mediaoooiiiiiiiiiii i 230
Ejecting Removable Media ..o 231
Removable Media and /etc/fstab ...ooonnieieiee e 231
Other FreeBSD Filesystemscoiiiiiiiiiiiie et 231
Memory Filesystemsccoiiiiiiiiiiie e 232
Mounting Disk IMagescccveiiuiiiiiiiiiie e 235
Filesystems in Filesoooiiiiii e 235
Miscellaneous Filesystemscooiiiiiiiiiiie e 238
Wiring Down DeVicescooiiiiiiiiiiiiiiiii e 238
Adding New Hard Disksccooouiiiiiiiiiiiiii ittt 240
Creahing SHCES ...eiiiii ittt 240
Creating Partitionsooiioiiiiiiiie e 241
Configuring /etc/fstab ..o 241
Installing Existing Files onto New Disksccoeiiiiiiiiiiiiiiie e 241
Stackable MOUNTSo..iiiiiiiiiiiii e 242
Network Filesystemsc.ooiiiiiiiiiiiii e 243
FreeBSD and CIFS ...c.iiiiiiiie ittt e 248
PrereqUISIEs ...oooiiiiiiiiiii e 248
Kernel SUPPOTT .. e 249
Configuring CIFS ..ot 249
nsmb.conf Keywordscooiiiiiiiiiii e 249
CIFS Name Resolutionccceeiiiiiiiiiiiie i 250
Other smbutil[1) FUNCHONSovviiiiiiiiii et 250
Mounting @ SRAreoviiiiiiiiie e 251
Other mount_smbfs Optionsccueeiiiiiiiiiie e 251
Sample nsmb.conf ERtriesccoiiiiiiiiiiii e 252
CIFS File OWNETShip ...coviiiiiiiiiii ittt 252
Serving CIFS SRAresooiiiiiiii et 252
ABVES o 253
devfs at Boot: devfs.confcccoiiiiiiiiii 253
Global devfs Rulesc.cooiiiiiiiiii e, 255
Dynamic Device Management with devd(8)cccoeiiiiiiiii 256
9
ADVANCED SECURITY FEATURES 261
Unprivileged USErSoouiiiiiiiiiiie et 261
The Nobody ACCOUNTviiiiie e 263
A Sample Unprivileged USercccooiiiiiiiiiiiii i 263
Network Traffic Controloiiiiiiii i e 263
Default Accept vs. Default Denyccoooiiiiiiiiiie e 264
TCP WIAPPETS .. e e 265
Configuring WIGPPETSooiuiiiiiiiiiiitie e 265
Wrapping Up WIAPPErScoooiiiiiiiiiiiiiiic e 271
Packet FIHErING . ..eeeiiie et 272
Enabling PF ..o 273
Default Accept and Default Deny in Packet Filteringcccoovviiiiiiiinnnene, 273
Basic Packet Filtering and Stateful Inspectionccoooiiiiiiiiiii 274
Configuring PF ..o 275
Complete PF Rule Sampleccooiiiiiiiiiii e 278
Activating PF RUlesooiiiiiiii e 279

Contents in Detail XV

Public Key ENCryptionooiiiiiiie e 280

Configuring OPenSSLoiiiiiiiiie e 281
CertifICAIES ... 282
SSL Trick: Connecting to SSL-Protected Portsccceeiiiiiiiiiiciiiiiie e 285
JAILS 286
Jail Host Server SEtUPoouiiiiii it 287
Jail and the Kernel ..o, 289
ClENt SEIUP vttt 290
Decorating Your Cell: In-Jail SEtup ...cooovvviiiiiiiiiiii e 291
JAil AN /etC/T1C.CONF .o e 293
Jail Startup and ShUtdowncuiiiiiiiiii e 293
Managing Jailsooiiiiiiie e 294
JAl SRUTOWN e 295
What's Wrong with Jailscoocoiiiiii 295
Preparing for Intrusions with miree (1)cccuiiiiiiiiiiiiiii e 296
RUNNING MIFEE(T) vttt 297
Saving the Spec Fileooiiiiii 298
Reacting to an INfrusioncoooviiiiiiiiiiie e 299
Monitoring System SECUTYciiiiiiiiiiiiiiiiie i 299
IFYou're Hacked ... e e 300
10
EXPLORING /ETC 301
/et ACross UnixX SPECIESoivuiiiiiiieiiiieeii ettt 302
7010/ AAAUSEI.CONE .o e e 302
/€1C/AMAIMAP o 302
/etc/bluetooth, /etc/bluetooth.device.conf, and
/etc/defaults/bluetooth.device.confeeeeee e 302
JOIC/ CTONIAD oo 302
I OO . ™ e 303
010/ VA . CONT e e 303
/etc/devfs.conf, /etc/devfs.rules, and
Jetc/defaults/deVES.TUIES oo 303
/etC/ ANClENt.CONE e 303
J0IC/ AISKEAD e 303
/etc/freebsd-update.conf ... 304
OIS O e 304
LB D e 304
JEEC/ GTOUP ittt 304
JBIC NOSES e 304
710/ ROSES.AlOW <. 304
/€1 /NOSES.EQUIV 1.t 304
/€tC/ROSES.IPA .o 305
J1C/INEIA. CONT e e 305
J1C/10CAIME e e e 305
JOIC/ IOCAIETC e 305
JOEC/ OGN e 306
/etc/mMail/MAIlEr.CONF .o 306

XVi Contents in Detail

10/ MAKE.CONE e 306

CFLAGS e e 307
COPTFLAGS ..o 307
CXXFLAGS e 307
CPUTYPESZIOBO ... e e 307
INSTALL=INStall <C e, 308
/€1C/ MASIEI.PASSWA ..ottt 308
I MO D e 308
JOIC MITEE e 308
10/ NAMEAD oo 309
JOIC/ NEESTATT .o 309
/et /NEtWOTK. SUDT e 309
Jetc/newsyslog.conf 309
J01C/ NSCA.CONE oo e 309
/etC/ NS .CONE e e 309
/etC/NSSWItCR.CONE o e 309
JBIC/ OPIE™ .o 309
J1C/ PAM.A/® oo 310
/etc/PeCard_etheroviiiii e 310
/etc/periodic.conf and /etc/defaults/periodic.conf ... 310
daily_OUIPUIE"TOOM ..o 310
daily_show_success="YES"cciiiiiiiiii e 310
daily_show_info="YES" ... i 310
daily_show_badconfig="NO"cccciiiiiiiiiii i 311
daily_local="/etc/daily.local”oooiiiiiiii 311
Jetc/pEconf o 311
JEIC/ PE.OS o 311
JEIC/ PRONES e 311
/etc/POortsNaP.CONF ..o 311
] (o7 4)= < SR PP UUUPIUPRRN 311
JEEC/ PIINCAP -ttt 312
J€1C/ PrOfile ..o 312
JE1C/ PrOtOCONS ..o 312
B T e 312
JBIC TEIMOIE e e e 312
JBEC/ TP e e 313
JEYC/ SECUTIIY/ oot 313
JBIC/ SEIVICES oo 313
1T SNEIIS e 313
/€tC/SAMPA.CONFIG ..ttt 313
JOIC STC.CONE e e e e 313
Jete/syscll.conf ..o 313
/etc/syslog.conf oo 313
JEIC/HEIMCAP .ottt 314
JBIC/RYS e e e 314
11
MAKING YOUR SYSTEM USEFUL 315
Making SOFWAIEeciiiiiiiie e 316
Source Code and SOWATEo e 316

Contents in Detail

xvii

The Ports and Packages Systemcoooiiiiiiiiii i 317

POMES e 318
FINAING SOMWAIE ...ttt e s 320
Finding by NGMEcoviiiiiiiiii i 321
Finding by Keywordccoccoiiiiiiiiiii 321
Legal RESIICHONSieeiiii it 322
USING PACKAGES -+ evti ittt 322
CD PACKAGES ..ttt 323
FTP PACKAGES .ottt 324
Installing Packagescccooiiiiiiiiie i 325
pkg_add(1) Environment SEHINGSccoviiiiiiiiiieeiie et 326
What Does a Package Install2 ... 327
Uninstalling Packagescooiiiiiiiiiiii e 328
Package Informationcooiiiiiiiiiiie e 329
Package Problemsccoiiiiiii 330
USING POMTS ettt e e 331
Installing @ POrteoiie e 332
Integrated Port Customizationsccccoouiiiiiiiieiiie it 334
Port Makefilescouiiiiiiiiiie e 336
Uninstalling and Reinstallingc.oooiiiiiiiiiii 337
Tracking Port Build SIQtUSeeiiiiiiiiie e 338
Cleaning Up POrtsuioiiiiiii it 338
Building Packagesccviiiiiiiiie i 339
Changing the Install Path ..o 339
Setting make Options Permanentlyccccoiiiiiiiiiiiiii e 340
Ports and Package SECUtYcooiiiiiiiiiiiiiiie e 340
12
ADVANCED SOFTWARE MANAGEMENT 343
Using Multiple Processors: SMP ...t 344
Kernel ASSUMPHONS ...eeiiiiiieiie it 344
SMP: The First Try .ooeeieeee et 345
Today's SMP .o 346
Processors and SMPc.cooiiiiiiiiiiii 347
USING SMP e 348
SChEAUIETS ...t 349
Startup and Shutdown SCrPESooiiiiiiiei e 350
rC SCript Orderingveeiiiiieeit ettt 350
A Typical 1o SCrIPt oot 351
Special rc Script Providersccuviiiiiiiiiioe e 352
Using Scripts to Manage Running Programscccccovviiiiiiiiiiiniinninieneen. 353
Vendor Startup/Shutdown Scriptscccceoviiiiiiiiiniiiiie e 353
Debugging CuStom rc SCRIPESeovvieeiiieiiieeeeiie et 353
Managing Shared Librariesccooiiiiiiiiii e 354
Shared Library Versions and Filesccocccoiiiiiiiniiiiiiic 354
Attaching Shared Libraries to Programsccccooeeiiiiiieiiiiiiie e, 355
LD_LIBRARY_PATH ..ottt 357
What a Program Wantscoccoriiiiiiieiiiie e 358
Threads, Threads, and More Threadscooooioime e 358
Userland Threading Librariescccoiiiiiiiiiii e 359
Remapping Shared LIbrariesooccoiiiiiiiiiii e 360

Xviii Contents in Detail

Running Software from the Wrong OSc..oiiiiiiiiiiiiiiii e 361

ReCOMPIlGHON ..o 362
EMUIGHON ..ot 363
ABI Reimplementationceeiiiiiiiii i 363
Binary Brandingc.ooooiiiiiii e 364
SUPPOMtEd ABISoiiiiiii i 364
Foreign Software Librariesc.ccoiiiiiiiiiiiiii e 365
Using LINUX MOdeeiiiiii i 365
The Linuxulator Userlandc.ccooiiiiiiiiiiii 366
Testing Linux Modeccuuiiiiiiiiiiie e 366
Identifying and Sefting Brandscccoooiiiiiiiiii 367
[INPFOCES ..o 367
Debugging Linux Mode with truss(1)cocoeviiiiiiniiiiii 368
Running Software from the Wrong Architecturecoceoiuiiiiiiiiiiiiiiiciicie e 369
13
UPGRADING FREEBSD 371
FreeBSD VErsionsccoociiiiiiiiiii i 372
REIEASES ... 372
FreeBSD-CUITENT ..ottt 373
FreeBSD-stableccooiiiiiiiiiii e 374
SNAPSNOIS .o 375
FreeBSD and TestNgooeoovieeiiieciie et 376
Which Version Should You Use2c.ccoiiiiiiiiiiiiiiieiiciie e, 376
Upgrade Methodscueiiiiiiii e 377
BINAry UPAaEseoueiiiiiie ittt 378
/etc/freebsd-update.conf ... 378
Running freebsd-update(8)oouiiiiiiiiiiiie e 379
Scheduling Binary Updatescc.uiiiiiiiiiiiiie et 380
Upgrading via sysinstall ..o 380
UpGrading ViG SOUFCEuieiiieeiiit ettt ettt ettt 382
Selecting Your Supfileoooiiiiiii 383
Modifying Your Supfilecccoooiiiiiii 384
A Complete Supfile ...o..ooiiiii 386
Blocking Updates: The Refuse Filecocoooiiiiiiiiiiii 386
Updating System Source Codeccciiiuiiiiiiiaiiieiiie et 387
Using csup to Get the Whole Source Treecccovceeiiiiieiiiiiiiiceie e 387
Building FreeBSD from Sourceoooiiiiiiiiiiie et 388
Build the Worldcc.ooiiiie 388
Build, Install, and Test a Kernel ... 389
Optimization with Parallel Buildscc.cooviiiiiinii 390
Prepare to Install the New World ..o, 390
Installing the World ..o 393
mergemaster Revisitedccoooiiiiiiiiiii e 395
Upgrades and Single-User Modecooiiiiiiiiiiiiicce e 395
Shrinking FreeBSDviiiiiiiiiiiii e 396
Updating with csup and makeoociiiiiiiii 398
Cross-Building FreeBSDoiiiiiiiiit et 399
Building a Local CVSUP SEIVETcouuiiiiiiiiiiic i 399
ControlliNg ACCESS ..ottt ettt 402

Contents in Detail

Xix

Upgrading the Ports Collectionoocuiiiiiiiiiiii e 403

Configuring POMSNAPvieiiie ettt 403
Using POrtsnap(8)ceeieeiriiiiiiiiiiie et 404
Updating Installed Portsoooiiiiiiii e 404
Initial portmaster SEIUPoeiiiiiiiit et 405
Identifying Unneeded Softwareccoocooiiiiiiiiiiiniii 406
Identifying and Upgrading Softwarecc.ccooiiiiiiiiniiiiiiiecic e, 406
Forcing a Rebuildooiiiii 407
Rebuilding Upward Dependenciesc.ocooviiiiiniiniiiiiiicee, 408
Changing Dependenciescoiuiiiiieiiiiiieeiie et 408
IGNOTING POMS vt 408
Other portmaster FEaturesoouiiiiiiiiiiiiiie et 409
Reducing the Size of the Ports Treeccoiiiiiiiiiiiii e 409
14
THE INTERNET ROAD MAP: DNS 411
HOW DINS WOTKS .. 412
Basic DNS TOOIS ..ottt 413
The host(1) CommaNndcc.ooiiiiiiiiii e 413
Digging for Detailoooiiiiiiiii e 414
Finding Hostnames with digc.cooiiiiiiiiiiii e 416
More dig OPHONSocveieeiiie ittt 417
IN-Addr.arPa .o 418
Configuring the Resolveroooiiiiiiii e 419
Host/IP Information SOUMCESeeeee e 419
Setting Local Domain NAmesccociiriiriiiiiiiiiiiicct e 420
The NamMeServer Listcooviiiiiiiiiiie e 421
Local DNS Overrides With /€1c/hOStS ... oeeiee e 422
Building @ NAMESEIVErciiiiiiiiiiiiiie e 422
Masters and SIavesccciiiiiiiiiii e 423
BIND Configuration Filesc.cecuuiiiiiiiiiiiiie it 423
Configuring BIND with named.confccociiiiiiiiiiiii e 424
OPHONS e 424
Zones in NAMed.CoNfooiiiiii i 425
Configuring a Slave Domainccoeiiiiiiiiiie e 426
Configuring a Master Domainoooiiiiiiiiiiiie et 427
Master and Slave File Storageooooiiiiiiiiiie i 427
Z0NE FIlES ..ot 428
A Real SAMPIE ZONE ..covviiiiiiiiicie e 432
Dots and Termination in Zone Filesccccooviiiiiiiiiiiiiiie e 433
Reverse DNS ZONEscooviiiiiiiiiiiiiiieiiii e 433
Managing NAMEdc.eiiiiiiiii e 434
Configuring MAC ...eiiii e 434
USING FNAC <ot 435
Checking DINS ..o it 436
Nameserver SECUTITYcouuiiiiiiiii e 436
Controlling Zone Transfersoociiiiiiiiiiii e 436
Securing NAMEd(8)oiiiiiiiiii i 437
MOre 0N BINDoiiiiiiiii e 437

XX Contents in Detail

15
SMALL SYSTEM SERVICES

The SSH Server: sshd(8)ccccvvviiviiiiiiiiiiiieieeii,
Configuring the SSH Daemoncccoociiiiiiineen,
Managing SSH User ACcessccoovvuuiviiiiieiiinnnnis
SSH Clientseoeiieiiii e
NEtWOrk TIME ...eveiiiiiiie et
Setting the Time Zoneccccooiiiiiiiiiiiiecce e,
Network Time Protocolcccccovviiiiiniciiiiiciee,
Name Service Switching and Cachingcccccoeeviininnn.
Jetc/nsswitch.conf ...,
Name Query Caching with nscd(8)cccceveiienne.

/etc/inetd.conf ...
Configuring inetd Serversccccoevviiiiiiiiee,
Starting inetd(8)eeiiiiiiiie e
Changing inetd’s Behaviorccccoiiiiiiiiiinin,

How DHCP Workscovvivniiniiiiiiiiieecceeen
Managing dhepd(8)oovvieiiiiiiiee
Configuring dhepd(8) .vvvveiiiiiiii
Printing and Print Serverscccocoiiiiiiiiaiiiieii e
/€tC/PrINTCAP et

RoOt DIrectoryoevuviiiiiiiiiiiiiiiiiiii e
tfpd and Filescccooiiiiii
File Ownership ...c.oooiiieiiii e
tfpd(8) Configurationccccoiiiiiiiiei
Scheduling Tasksoeiiiiiiiiiiic e
User Crontabs vs. /etc/crontabcoooveeeviiiniieaiii,
cron and Environmentccoiiiiiiiii
Crontab Formatcooviiiiiiiiiii e

16
SPAM, WORMS, AND VIRUSES
(PLUS EMAIL, IF YOU INSIST)

Email OVerviewocooiiiiiiiiiieiie e
Finding Mail Servers for a Domaincccceeviiiiiiennn.
Undeliverable Emailcocoiiiiiiii
The SMTP Protocolooouviiiiiiiiiee e
Relay Controlcooviiiiiiiiii e
Stopping Bad Email ..o

Sendmail c..oooii
MAiwrapper(8)cocccviiiiiiiiie
Submission vs. Receptioncccceeeviiiiiiiiiniiiieice
Sendmail Logging ...ooovvieiiiiiiiiiie e

Configuring Sendmailooooiiiiiiii
The access Fileoooveiiiiii
The aliases Filecooooiiiiiiiii

Contents in Detail

xxi

The mailertable File ... e 479

The relay-domains Filecccoooiiiiiiiii e 480
Making Changes Take Effectoociiiiiiiiiiii e 480
Virtu@l DOMQINS ..ttt ettt e 481
The /etc/mail/local-host-names Fileoooeeeeeeiiee e 481
USEr MAPPING ettt 481
Changing sendmail.cf . ..o 483
Custom .MC FIlES ..eviiiiiiiiieiie e 484
Rejecting Spam SOUICESoc.uviiiiiiiiiiiiiiii e 485
Gy iSHNG ..eeieeie ettt 487
Configuring milter-greylistcooiiiiiiiii e 488
Attaching milter-sendmail to Sendmail ... 490
Sendmail Authentication With SASLccciiiiiiiiiiiii e 491
SASIAUTAA(B) . 492
mailer.conf and Your New Sendmailcc.ccooiiiiiiiiniiiiiic e, 492
Building sendmail.cf ... 492
Testing SASL .. 493
IMAP and POP3 ..o 493
INStAlliNG DOVECO!ieieiciii ittt 494
Configuring DOVECO! ...t 494
Creating a Dovecot SSL Certificateocoooiiiiiiiiie i 495
RUNNING DOVECOL ...t 496
Testing POP3S ..o 496
Testing IMAPS oo 497
17
WEB AND FTP SERVICES 499
How a Web Server Workscocooiiiiiiiiiiiciic e 500
The Apache Web Serverc.cccciiiiiiiiiiiiiiiiii it 500
Apache Configuration Filescoooiiiiiiiiii e 501
Core Apache Configurationoociiiiiiiiiiii e 501
APACHE LOGS ..iiiiiit e 503
ApPAche Modulescoiiiiiiiii e 505
Directories and PErmMissionscoueiiiiiienieiie et 507
Controlling Access by IP Addresscccooouiiiiiiiiiii e 507
Directory OPHONScoiiiiiiiiiiiiiiiie e 508
Configuration by Usersccooiiiiiiiiiii e 510
Other Directory SEHINGSc..veiuiiiiitie ettt 511
Password Protection and Apacheccccooviiiiiiiiii 512
Including Other Configuration Filesccccooiiiiiiiiii e 515
VIrtUQL HOSHNG . cei it 517
Configuring Virtual HOstscoviiiiiiiiiieii e, 517
Tuning Virtual HOSES ...o.eviiiiiiii it e 518
HTTPS WEDSIIES ... 520
Controlling APACheeiiii i 521
File TranSTEr ...ooeeie e s 522
FTP SECUIIY i 522
The FTP CHENt c.viiiiiii ittt 522
Binary and ASCIl Transferscueioiiiiiiiee e 523
ThE FTP SEIVET ..cuviiiiiiit ettt ettt 524
FTP User CONMOlviiiiiiiiiiiiie et 524

XXii Contents in Detail

FTP Server MEssagesccooivuiiiiiiiiiiie i 525

Setting Up Anonymous FTP Serverscccooiiiiiiiiiiii e, 526
Chrooting sftp(1) and scp(T) ..eooveiiiiiiieeee e 527
18
DISK TRICKS WITH GEOM 529
GEOM EsSentialscoviiiiiiiiiiie e 530
Disk DFIVES TO2 .ottt et et e 530
SHEING DISKS .ttt 531

Viewing the Slice Table with fdisk(8)cccoiiiiiiiini, 532

Backing Up the Slice Tableooiiiiiiiic e 533

Changing the Slice Tablecoooiiiiii 533

Partitioning SHICESouvveiiiiiieie e 536

Reading Disklabelscooiiiiiiii i 537

Backing Up and Restoring Disklabelsccooooiiiiii 538

Editing Disklabels ..o 538

Replicating Drive Slicing and Partitioningcccccoeiiiiiiiieiiie e 539

Missing Disklabelscccooiiiiiiiiii 540
Building Filesystemsc.ooiiiiiiiiiii e 540
RAID et e s 541

Hardware vs. Software RAIDoooiiiiiiiiiiiciie e 541

GEOM RAID and Disk Sizecocveeiiiiiiiiiiiieiiieee 542

Parity and SHiIpe SiZeco.iioiiiiiiie et 542

RAID TYPES ettt ettt 543
Generic GEOM CommMANGScouviiiiiiiiieiiie e 544
SHIPING DISKS .ttt 545

Creating a Striped Providerocciiiiiiiiiiiiie e 546

gStripe DEStrUCHION .ooeiiiiiiiiicie e 546

Daily Status Checkcoouiiiiiiiiiie e 547
MIFTOFING DISKS ..ot 547

Creating @ MIITOT «...ooiiiiiiiii e 547

RePAIriNg MIrTOTSoviiiiiiiiiiiiiiiei et 548

Mirrored Boot Diskscooueeriiiriiiiiiiiieeece e 549

Destroying Mirrored Disksccooeiiiiiiiiiiiiie e 550

Daily Status Checkcouiiiiiiiie e 550
RAID-3 ettt e s 550

Creating @ RAID-3 .. oot 551

Repairing @ RAID-3 ..o 551

Destroying @ RAID-3 ...ooiiiiiiiiiii e 553
RAID-TO ottt ettt e 553

RAID-TO SEIUP vttt e e 553

RAID-TO SHAIUS ..ot 554

Destroying @ RAID-TO ..oooiiiiiiiiiiii e 554
Journaling Filesystems with gjournal(8)cccoiiiiiiiiiii e 554

Configuring gjournal(8)ooiiiiii e 556

Using a Separate Journal Devicecccovviiiiiiiiiieiiiiiie e 557

DeJournaling Partifionscc..cooiiuiiiiiiiiiee e 557
Filesystem ENCrypHONooioiiriiiiie ettt 558

Kernel Configurationcccooeiiiiiiiiiiie e 559

Generating and Using a Cryptographic Keyccccooiiiiiiiiiiniiii, 559

Filesystems on Encrypted Devicescccoeeviiraiiieiiiiieiie e 560

Contents in Detail XXiii

Deactivating Encrypted Diskscccoiiiiiiiiiiiieiiie e 560

Encrypting Swap Space with geli(8)ccueiiiiiiiiiiiiiiiiiicr e 561
Disk Device Network EXPOrtsccuiiiiiiiiniiiie i 561
GEOM_GAte SECUMIY ettt 562
geom_gate SErver SEIUPc.ciiiiiiiiiiiiiiie e 562
geom_gate Client SEIUPoiiiiiiiiiie et 563
Identifying geom_gate Devicescccviiiiiiiiiiiiiie e 564
Shutting Down geom_gatec.ceeoiuiiriiiiiiiiiieeee e 564
Oops! Rescuing geomM_gateccoeeiiiiiiiiiiiiiieiiiniiiie e 564
Mirroring Disks Across the Networkcoocooviiiiiiiiiiiiie 565
BaCkUP Server SETUPooiiiiiiieiiiie et 565
Primary Server SEtUPcoooiiiiiiiiiii i 566
Mirror Failover and RECOVEryccoiiiiiiiiiiiiieiiie e 567
19
SYSTEM PERFORMANCE AND MONITORING 569
COMPUIET RESOUITES ..ottt 570
Checking the Networkooiiiiiiiiii e 571
General Bottleneck Analysis with vmstat(8)ccccooviiiiiiiiiiiiicicce e, 571
PrOCESSES ..iiiiiiiiii e 572
IMBMOTY e 572
PAGING ettt 572
SRS ettt 573
FQUIS o 573
CPU e 573
USING VMSTAE «eeeitiitiiiiieie ettt e e et 573
ContiNUOUS VMSIAT ..eeiiiiiiiiicie et 574
DSk 1/ e 574
CPU, Memory, and 1/O With 1op(1) ...coveeiieiiiiiieiie e 575
PID VAIUES ... 576
LOAA AVEIAGE ...ttt 576
URHME e e e e e e e e e e e e e e eeaeeaeaas 576
Process COUNESvuiiiiiiieiteiti e 576
Process TYPES ..o e 577
IMBMOTY e 577
SWAD e 578
Process List ..c..ooeeriiiiiiiieie e 578
1OP(1) AN 1/O o 579
FOlIOWING PrOCESSESiiviiiieciie et e 580
PAGing aNd SWOPPINGveeiiiiiiieeitie ittt e 581
PAGING ettt 582
SWAPPING ettt 582
Performance TUNINGoi oot 582
MEMOTY USAGE .eiiiiiiiiiiiiii e 583
SWAP SPACE USAGE ...vvviiiiiieiiiiiiiii e 583
CPU USOGE oo 583
ReSChedUlINg . ..ooiiiiiiie i 584
Reprioritizing with NIiCENessooiiiiiiiiiiiiii e 584
INvestigating SOfWATEc.uiiiiiiiiiiie it 586
SEATUS ML oo s 586

XXiV Contents in Detail

Logging With syslogdcoiiiiiiiiii e 587

FOCHIES vttt 587
LEVEIS oot 588
Processing Messages with syslogd(8)c.ccooviiiiiiiiniiiiiiii e 589
syslogd CustomizZationcooiiiiiiiiiiie e 592
Log File Mana@ementcooiiiiiiiiiiiie e 593
Log File Path ..o 594
OWNET ANA GIOUP ..ttt 594
PErMISSIONS .eeiiiiiiiiitie e 594
COUNE 1ttt e 594
SHZE e 595
THMIE ettt 595
o To TSP P U PR PPRIP 596
PIdFlE oo 597
SIGNGAL L 597
Sample newsyslog.conf Entrycocooiiiiiiiiiiiii 597
FreeBSD and SNIMP ..o i 598
SNIMP TOT Lo e 598
Configuring bsnmpdoiiiiiii e 600
20
THE FRINGE OF FREEBSD 603
JEIC/RYS e 604
/etC/Hys FOrMQE «.ouiiiiiiie e 604
INsecUre ConSOlEoiiiiiiiit i 605
Diskless FreeBSDoiiiiiiiiie et 606
Diskless CIentsooeiiiiiiiit e 607
DHCP SErVer SEIUP ...ceiieiiiiiiiiieii e 607
tfipd and the Boot Loadercoouiiiiiiiiiiiiiciieee e 609
The NFS Server and the Diskless Client Userlandoccoiiiiiiin. 609
Diskless Farm Configurationccciiiiiiiiiiiie et 611
The /conf/base DIireCtoryccceeiiiiiiiiiiiie et 611
The /conf/default DIirectorycooiiiiiiiiie et 612
Per-Subnet and Per-Client Directoriesccccveeiiieiiiiiiiieeiie e 612
Diskless Packages and Filesoccciiiiiiiiiiiii e 613
Installing Packagescccoiiiiiiiiiii e 613
Diskless Configuration Filescoooiiiiiiiiii e 613
NanoBSD: Building Your Own Appliancesccecuviiiiiiiiiiiiiieiieiie e 615
What Is NanoBSD2 ..ot 616
Your Hardware and Your Flash Drivecccccooiiiiiiiiiiiiiece e 617
The NANOBSD TOOIKIteiieiiit ittt 618
Expanding FlashDevice.subccooiiiiiiiiiii e 618
NanoBSD Configuration OpHOnscccuueiieiiieiienieiie e 619
A Sample NanoBSD Configurationccoecevrierieniinnieiieie e 621
Building NANOBSDiiiiiiiiiiiiie ettt 624
Customizing NanoBSD ..ot 627
Using NanoBSD ... 629
Live Media with FreeSBIE ..ottt 630
Installing the FreeSBIE Toolkitcooiiiiiiieiie e 631
Configuring Fre@SBIEcciiiiiiiiiie et 631
Fre@SBIE PIUGrins ...ooveieeieie et 634

Contents in Detail

XXV

Choosing Packagescoouiiiuiiiiiie et 635

Building @ FreeSBIE IMagecoovvvieiiieiiiie e 636
Rebuilding Fre@SBIEciiiiiiiiieiiie ittt 636
21
SYSTEM (AND SYSADMIN) PANICS AND CRASHES 637
What Causes PANICs2c.oiiiiiiiiiiii ittt 637
RecogniZINg PANICSouiiiiiiiiiiiiiiiie e 638
Responding 10 @ PANICuiiiiiii it 639
Preparalionscoooiiiiiiiiie et 640
The Crash Dump in ACHONoiiiiiiiiiie et 640
Configuring Crash DUMPSccuiiiiiiiiiie e 640
Debugging Kernelscoooiiiiiiiiiiiie e 641
When Panic Strikes: Manual Crash DUmPscociiiiiiiiiiiiiieiccce e 642
USING the DUMP .ot 643
Getting @ BACKITACEvviieeiiii e 643
VMEOre AN SECUTITY ..oiiiiiiiiiie ettt 645
Submitting Problem Reportsccoooiiiiiiiiii e 646
Before Filing @ PR ...oveiieii e 647
BAA PRS . s 648
GOOM PRS ..ttt e e 649
A Sample PR oo 652
Submitting the PR ..o 653
After Submitting the PR ..ot 653
AFTERWORD 655
The COMMURITY .eiiiiiie ettt et et e e ettt e e eeee e enes 655
WHhy Do We Do 112 ..o 656
WHhat €Can You D2 ...c..oiiiiiiiiiiiie e 657
[FNOhInG EISe . . . oot 658
Getting ThiNGs DONEc..iiiiiii ittt 658
APPENDIX
SOME INTERESTING SYSCTL MIBS 661
INDEX 675

XXVi Contents in Detail

FOREWORD

It gives me great pleasure to write the foreword to
Michael Lucas’s Absolute FreeBSD. For five years, Michael’s
Absoluteseries has provided the definitive guide to BSD

software, not just as a reference, but also as a narrative for real human beings.
This is an important distinction, because while there is no lack of excellent

reference material on FreeBSD, this book provides a nuts-and-bolts tutorial

that readers will find an invaluable companion.

Michael is an active long-term contributor in the FreeBSD community.
Absolute FreeBSD draws on his experience with the many ways in which people
use FreeBSD in the real world—what they want to do, what works, and what
doesn’t. Apart from covering the use of FreeBSD, Michael will tell you about
the thousands of software developers—from hobbyists to professional devel-
opers and university professors—who write FreeBSD and about the evolution
of this community and its software. What I would like to do is invite you to
become a part of that community.

FreeBSD is a powerful network operating system with state-of-the-art
features that make it not only one of the most widely used pieces of software
in the world, but also an easy and practical tool on which to build and
provision services. From the Yahoo! and Verio websites to NetApp storage

XXviii

Foreword

products, from Cisco anti-spam appliances and Juniper routers to the root
nameservers—it’s hard to throw a rock on the Internet without hitting
FreeBSD. However, FreeBSD is not the product of any one company, but of a
large open source community: the FreeBSD Project, made up of developers,
users, and countless supporters and advocates. While you can, as many people
do, use FreeBSD simply as a piece of software without ever interacting with
that community, you can significantly enrich your FreeBSD experience by
becoming a part of that community.

Whether you are a first-time user or a kernel hacker, the resources avail-
able via the http://www.freebsd.org website, countless mailing lists, regional
user groups, and conferences can be invaluable. Have a question? Just email
questions@FreeBSD.org, and one or more of the hundreds of volunteers will
undoubtedly answer it. Want to learn more about the exciting new features
coming in future FreeBSD versions? Read the Project’s quarterly status
reports, development mailing lists, or attend one of the many regional BSD
conferences taking place around the world; at the time of writing, the most
recent addition is the first BSDConTR in Istanbul, Turkey.

These resources are a product of the FreeBSD Project and its community,
a large number of collaborating individuals and companies, as well as the
FreeBSD Foundation, a nonprofit organization coordinating funding, legal
resources, and support for development work and community activities.
Michael’s easy-to-use book provides a gateway for newbies to benefit from
this community’s expertise and to become active users of FreeBSD themselves.

FreeBSD is open source software, available for you to use and distribute
at no charge. By helping to support, advocate, or even develop FreeBSD, you
can give back to the FreeBSD Project and help this community grow.

Whether you are a new user of FreeBSD or an experienced one, I am
confident you will find Absolute FreeBSD a book you want to keep close at hand.

Robert N.M. Watson

FreeBSD Core Team Member
President, FreeBSD Foundation
Cambridge, UK

September 2007

ACKNOWLEDGMENTS

I would like to thank all the members of the FreeBSD
community for their hard work, dedication, and

friendship. FreeBSD has saved my hide on numerous
occasions, and I'm delighted to give something back. In that community,
however, there are a few people who I want to specifically thank by name.

Doug Barton, Ceri Davies, Alex Dupre, Max Laier, Alexander Leidinger,
Remko Lodder, Benno Rice, Tom Rhodes, Gleb Smirnoff, and Robert Watson
all provided valuable feedback on this book. Some of them read individual
chapters that they have special expertise in, while others read the whole
manuscript, whether they knew about the topics or not. Wilko Bulte not
only did a review of this book, he volunteered to do so after reviewing the
entire first edition of this book back in 2001. He certainly deserves some
sort of “iron man” award! John Baldwin did an excellent final technical
review, catching an astonishing variety of errors ranging from subtle to
blatant. Any errors in this book were introduced by myself despite these
people’s best efforts.

I’d like to thank David Boyd, David O’Brien, and Wilko Bulte for donating
a variety of hardware that made it possible for me to write this book. I'd
especially like to thank Matt Olander of iXSystems, who sent me a complete

XXX

amd64 server when I really, really needed one. Speaking of hardware, as I was
finishing this book, I was wondering where I would find a good kernel panic
to write about in the last chapter. FreeBSD obliged me. Thanks to Scott Long
for fixing that panic, so I could actually write Chapter 18.

As always, the folks at No Starch Press have worked their butts off to
bring this to you. You all deserve a long vacation after putting up with me—
tell Bill I said it’s okay. Similarly, the fine staff at the School of Chinese
Martial Arts deserve a vacation from me. Sadly, now that this book is done
I’ll be spending some quality time on the mats, so they don’t get any time
off. Sorry, folks.

And, as always, I'm grateful that my wife did not succumb to the tempta-
tion to bash me over the head with a shovel and bury me and my laptop
behind the garage while I was finishing this book. She’s been more than
patient waiting for me to finish up so I could take out the trash. Last March’s
trash, thatis. . .

Michael Lucas
St. Clair Shores, Michigan
September 2007

Acknowledgments

INTRODUCTION

Welcome to Absolute FreeBSD! This book is
a one-stop shop for system administrators
who want to build, configure, and manage

FreeBSD servers. It will also be useful for those folks
who want to run FreeBSD on their desktops, servers,

diskless system farms, and so on. By the time you finish
this book, you should be able to use FreeBSD to provide network services.
You should also understand how to manage, patch, and maintain your
FreeBSD systems and have a basic understanding of networking, system
security, and software management. We'll discuss FreeBSD version 7, which
is the version recommended for production use at the time this book is
being released; however, most of this book applies to earlier and later
versions as well.

2

What Is FreeBSD?

Introduction

FreeBSD is a freely available Unix-like operating system, used widely by
Internet service providers, in appliances and embedded systems, and
anywhere that reliability on commodity hardware is paramount. One day
last week, FreeBSD miraculously appeared on the Internet, fully formed,
extruded directly from the mutant brain of its heroic creator’s lofty intellect.
Just kidding; the truth is far more impressive. FreeBSD is a result of almost
three decades of continuous development, research, and refinement. The
story of FreeBSD begins in 1979, with BSD.

BSD: FreeBSD’s Granddaddy

Many years ago, AT&T needed a lot of specialized, custom-written computer
software to run its business. It was not allowed to compete in the computer
industry, however, so it could not sell its software. Instead, AT&T licensed
various pieces of software and the source code for that software to universities
at low, low prices. The universities could save money by using this software
instead of commercial equivalents with pricey licenses, and university students
with access to this nifty technology could read the source code to see how
everything worked. In return, AT&T got exposure, some pocket change, and
a generation of computer scientists who had cut their teeth on AT&T tech-
nology. Everyone got something out of the deal. The best-known software
distributed under this licensing plan was Unix.

Compared with modern operating systems, the original Unix had alot of
problems. Thousands of students had access to its source code, however, and
hundreds of teachers needed interesting projects for their students. If a pro-
gram behaved oddly, or if the operating system itself had a problem, the
people who lived with the system on a day-to-day basis had the tools and the
motivation to fix it. Their efforts quickly improved Unix and created many
features we now take for granted. Students added the ability to control
running processes, also known as job control. The Unix S51K filesystem made
system administrators cry like small children, so they replaced it with the Fast
File System, whose features have spread into every modern filesystem. Many
small, useful programs were written over the years, gradually replacing entire
swaths of Unix.

The Computer Science Research Group (CSRG) at the University of
California, Berkeley, participated in these improvements and also acted as
a central clearinghouse for Unix code improvements. The CSRG collected
changes from other universities, evaluated them, packaged them, and
distributed the compilation for free to anyone with a valid AT&T UNIX
license. The CSRG also contracted with the Defense Advanced Research
Projects Agency (DARPA) to implement various features in Unix, such as
TCP/IP. The resulting collection of software came to be known as the
Berkeley Software Distribution, or BSD.

BSD users took the software and improved it further, then fed their
enhancements back into BSD. Today, we consider this to be a fairly standard
way for an open source project to run, but in 1979 it was revolutionary. BSD
was also quite successful; if you check the copyright statement on an old BSD
system, you’ll see this:

Copyright 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University of California. ALl rights reserved.

Yep, 15 years of work—a lifetime in software development. How many
other pieces of software are not only still in use, but still in active development,
15 years after work began? In fact, so many enhancements and improvements
went into BSD that the CSRG found that over the years, it had replaced almost
all of the original Unix with code created by the CSRG and its contributors.
You had to look hard to find any original AT&T code.

Eventually, the CSRG’s funding ebbed, and it became clear that the BSD
project would end. After some political wrangling within the University of
California, in 1992 the BSD code was released to the general public under
what became known as the BSD license.

The BSD License

BSD code is available for anyone to use under what is probably the most
liberal license in the history of software development. The license can be
summarized as follows:

¢ Don’t claim you wrote this.
e Don’t blame us if it breaks.

o Don’t use our name to promote your product.

This means that you can do almost anything you want with BSD code.
(The original BSD license did require that users be notified if a software
product included BSD-licensed code, but that requirement was later
dropped.) There’s not even a requirement that you share your changes
with the original authors! People were free to take BSD and include it in
proprietary products, open source products, or free products—they could
even print it out on punch cards and cover the lawn with it. You want to run
off 10,000 BSD CDs and distribute them to your friends? Enjoy. Instead of
copyright, the BSD license is sometimes referred to as copycenter, as in Take this
down to the copy center and run off a few for yourself. Not surprisingly, companies
such as Sun Microsystems jumped right on it: It was free, it worked, and plenty
of new graduates had experience with the technology. One company, BSDi,
was formed specifically to take advantage of BSD Unix.

Introduction 3

4

Introduction

The AT&T/CSRG/BSDi Iron Cage Match

At AT&T, UNIX work continued apace even as the CSRG went on its merry
way. AT&T took parts of the BSD Unix distribution and integrated them with
its UNIX, then relicensed the result back to the universities that provided
those improvements. This worked well for AT&T until the company was
broken up and the resulting companies were permitted to compete in the
computer software business. AT&T had one particularly valuable property: a
high-end operating system that had been extensively debugged by thousands of
people. This operating system had many useful features, such as a variety of
small but powerful commands, a modern filesystem, job control, and TCP/IP.
AT&T started a subsidiary, Unix Systems Laboratories (USL), which happily
started selling Unix to enterprises and charging very high fees for it, all the
while maintaining the university relationship that had given it such an
advanced operating system in the first place.

Berkeley’s public release of the BSD code in 1992 was met with great
displeasure from USL. Almost immediately, USL sued the university and the
software companies that had taken advantage of the software, particularly
BSDi. The University of California claimed that the CSRG had compiled BSD
from thousands of third-party contributors unrelated to AT&T, and so it was
the CSRG’s intellectual property to dispose of as it saw fit.

This lawsuit motivated many people to grab a copy of BSD to see what all
the fuss was about, while others started building products on top of it. One of
these products was 386BSD, which would eventually be used as the core of
FreeBSD 1.0.

In 1994, after two years of legal wrangling, the University of California
lawyers proved that the majority of AT&T UNIX was actually taken in its
entirety from BSD, rather than the other way around. To add insult to injury,
AT&T had actually violated the BSD license by stripping the CSRG copyright
from files it had assimilated. (Only a very special company can violate the
world’s most liberal software license!) A half-dozen files were the only sources
of contention, and to resolve these outstanding issues, USL donated some of
them to BSD while retaining some as proprietary information.

Once the dust settled, a new version of BSD Unix was released to the
world as BSD 4.4-Lite. A subsequent update, BSD 4.4-Lite2, is the grandfather
of the current FreeBSD, as well as ancestor to every other BSD variant in use
today.

The Birth of FreeBSD

One early result of BSD was 386BSD, a version of BSD designed to run on the
cheap 386 processor.1 The 386BSD project successfully ported BSD to Intel’s
386 processor, but it stalled. After a period of neglect, a group of 386BSD
users decided to branch out on their own and create FreeBSD so that they

! At the time, several thousand dollars for a computer was dirt cheap. You young punks have no
idea how good you have it.

could keep the operating system up to date. (Several other groups started
their own branches off of 386BSD around the same time, of which only
NetBSD remains.)

386BSD and FreeBSD 1 were derived from 1992’s BSD release, the
subject of AT&T’s wrath. As a result of the lawsuit, all users of the original
BSD were requested to base any further work on BSD 4.4-Lite2. BSD 4.4-Lite2
was not a complete operating system—in particular, those few files AT&T
had retained as proprietary were vital to the system’s function. (After all, if
those files hadn’t been vital, AT&T wouldn’t have bothered!) The FreeBSD
development team worked frantically to replace those missing files, and
FreeBSD 2.0 was released shortly afterward. Development has continued
ever since.

Today, FreeBSD is used across the Internet by some of the most vital
and visible Internet-oriented companies. Yahoo! runs almost entirely on
FreeBSD. IBM, Nokia, Juniper, NetApp, and many other hardware com-
panies use FreeBSD in embedded systems where you’d never even know it
unless someone told you. The fact is, if a company needs to pump serious
Internet bandwidth, it’s probably running FreeBSD or one of its BSD relatives.
Like smog, spiders, and corn syrup, FreeBSD is all around you; you simply
don’t see it because FreeBSD just works. The key to FreeBSD’s reliability is
the development team and user community—which are really the same thing.

FreeBSD Development

There’s an old saying that managing programmers is like herding cats. Despite
the fact that the FreeBSD development team is scattered across the world
and speaks dozens of languages, for the most part, the members work well
together as parts of the FreeBSD team. They’'re more like a pride of lions
than a collection of house cats. Unlike some other projects, all FreeBSD
development happens in public. Three groups of people are responsible
for FreeBSD’s progress: committers, contributors, and users.

Committers

FreeBSD has about 500 developers, or committers. Committers have read-and-
write access to the FreeBSD master source code repository and can develop,
debug, or enhance any piece of the system. (The term committer comes from
their ability to commit changes to the source code.) Because these commits
can break the operating system in both subtle and obvious ways, committers
carry a heavy responsibility. Committers are responsible for keeping FreeBSD
working or, at worst, not breaking it as they add new features and evaluate
patches from contributors. Most of these developers are volunteers; only a
handful are actually paid to do this painstaking work, and most of those
people are paid only as it relates to other work. For example, Intel employs
a committer to ensure that FreeBSD properly supports its network cards.
FreeBSD has a high profile in the Internet’s heavy-lifting crowd, so Intel
needs its cards to work on FreeBSD.

Introduction 5

6

Introduction

To plug yourself into the beehive of FreeBSD development, consider
subscribing to the mailing list FreeBSD-hackers@FreeBSD.org, which contains
most of the technical discussion. Some of the technical talk is broken out
into more specific mailing lists—for example, fine details of the networking
implementation are discussed in FreeBSD-net@FreeBSD. org.

Every few years, the committer team elects a small number of its members
to serve as a core team, or Core. Core’s work is simultaneously vital, underrated,
and misunderstood. Coreis theoretically responsible for the overall manage-
ment of FreeBSD, but in practice, it manages little other than resolving
personality disputes and procedural conflicts among committers. Core also
approves new committers and delegates responsibility for large parts of
FreeBSD to individuals or groups. For example, it delegates authority over
the ports and packages system to the ports management team. Core does
not set architectural direction for FreeBSD, nor does it dictate processes or
procedures; that’s up to the committers, who must agree en masse. Core
does suggest, cajole, mediate, and inspire, however.

Core also experiences the worst part of management. Some of the key
functions of management in a company are oversight, motivation, and
handling problems between people. Oversight is provided by the millions
of users who will complain loudly when anything breaks or behaves unex-
pectedly, and FreeBSD committers are self-motivated. The ugly part of
management is settling a squabble between two people, and that’s the part
that Core has its hands full of. The status one gets from saying, “I'm in Core”
is an insufficient reward for having to manage an argument between two
talented developers who have gotten on each other’s nerves.

Contributors

In addition to the committer team, FreeBSD has thousands of contributors.
Contributors don’t have to worry about breaking the main operating system
source code repository; they just submit patches for consideration by
committers. Committers evaluate contributor submissions and decide what
to accept and what to reject. A contributor who submits many high-quality
patches is often asked to become a committer himself.

For example, I spent several years contributing to FreeBSD whenever
the urge struck me. Any time I feel that I’'ve wasted my life, I can look at the
FreeBSD website and see where my work was accepted by the committers and
distributed to thousands of people. After I submitted the first edition of this
book to the publisher, I spent my spare time submitting patches to the FreeBSD
FAQ. Eventually, some members of the FreeBSD Documentation Project
approached me and asked me to become a committer. As a reward, I got an
email address and the opportunity to humiliate myself before thousands of
people, once again demonstrating that no good deed goes unpunished.

If I had never contributed anything, I'd remain a user. Nothing’s wrong
with that, either.

Users

Users are the people who run FreeBSD systems. It’s impossible to realistically
estimate the number of FreeBSD users, although organizations such as the
BSDstats Project (http://www.bsdstats.org) are making an effort. After all,
you can download the whole of FreeBSD for free and never register, upgrade,
or email a mailing list. Companies such as Netcraft estimate that between 5
and 15 percent of all computers attached to the Internet are BSD-based. If
you remove all the Windows boxes on corporate desktops, the percentage
rises considerably.

Since FreeBSD is by far the most popular open source BSD, that’s not
an inconsiderable number of machines. And since one FreeBSD server can
handle hundreds of thousands of Internet domains, a disproportionate
number of sites use FreeBSD as their supporting operating system. This
means that there are hundreds of thousands, if not millions, of FreeBSD
system administrators out in the world today.

Other BSDs

FreeBSD might be the most popular BSD, but it’s not the only one.

BSD 4.4-Lite2 spawned several different projects, each with its own focus
and purpose. Those projects in turn had their own offspring, several of
which thrive today.

NetBSD

NetBSD is similar to FreeBSD in many ways, and NetBSD and FreeBSD share
developers and code. NetBSD’s main goal is to provide a secure and reliable
operating system that can be ported to any hardware platform with minimal
effort. As such, NetBSD runs on VAXes, PocketPC devices, and high-end
SPARC and Alpha servers. I run NetBSD on my HP Jornada handheld
computer.2

OpenBSD

OpenBSD branched off from NetBSD in 1996 with the goal of becoming the
most secure BSD. OpenBSD was the first to support hardware-accelerated
cryptography, and its developers are rightfully proud of the fact that their
default installation was largely immune to remote exploits for several years.
The OpenBSD team has contributed several valuable pieces of software to
the world, the most notable being the OpenSSH suite used by almost every
operating system and hardware vendor today.

21f you're ever in a position where you need to prove that you are Alpha Geek amongst the pack,
running Unix on your palmtop will almost certainly do it.

Introduction 7

8

Mac 0S X

Mac OS X? That’s right. Apple incorporates large chunks of FreeBSD into
its Mac OS X on an ongoing basis. If you're looking for a stable operating
system with a friendly face and a powerful core, Mac OS X is unquestionably
for you. While FreeBSD makes an excellent desktop for a computer pro-
fessional, I wouldn’t put it in front of Grandma. I would put Mac OS X in
front of Grandma without a second thought, however, and I'd even feel that
I was doing the right thing. But Mac OS X includes many things that aren’t
at all necessary for an Internet server, and it only runs on Apple hardware,
so I don’t recommend it as an inexpensive general-purpose server.

What’s more, code goes both ways. FreeBSD has incorporated code
originally developed for Mac OS X. And while you cannot view the user
interface source code for Mac OS X, you can get the source code to its BSD
core and Mach kernel. Apple has released both under the code name
Darwin.

FreeBSD’s Children

Several projects have taken FreeBSD and built other projects or products
on top of it. The award-winning FreeNAS transforms an x86 system into a
network fileserver with just a simple menu. FreeSBIE is a bootable CD that
lets you run FreeBSD without installing it. The mOnOwall project is also a
bootable CD, but it transforms your system into a firewall with a nice web
management interface. PC-BSD puts a friendly face on FreeBSD, trying to
make FreeBSD usable by Grandma. Other projects like this appear from time
to time; while not all are successful, I'm sure by the time this book comes out,
we’ll have one or two more solid members of this group.

Other Unixes

Introduction

Several other operating systems derive from or emulate primordial Unix in
one way or another. This list is by no means exhaustive, but I'll touch on the
high points.

Solaris /OpenSolaris

The best-known Unix is Sun Microsystems’ Solaris and its new offspring,
OpenSolaris. Solaris runs on high-end hardware that supports dozens of
processors and gobs of disk. (Yes, gobsis a technical term, meaning more than
you could possibly ever need, and I know very well that you need more disk than I
think you need.) Solaris, especially early versions of Solaris, had strong BSD
roots. Many enterprise-level applications run on Solaris. Solaris runs mainly
on the SPARC hardware platform manufactured by Sun, which allows Sun to
support interesting features such as hot-swappable memory and mainboards.
OpenSolaris increasingly targets commodity hardware, however.

WHY UNIX-LIKE?

One thing fo note is that FreeBSD, Linux, and so on are called Unixike instead of
Unix. The term Unix is a trademark of The Open Group. For an operating system fo
receive the right fo call itself Unix, the vendor must prove that the OS complies with the
current version of the Single Unix Specification. While FreeBSD generally meets the
standard, continuous festing and re-certification cost money, which the FreeBSD
Project doesn’t have to spare. Certification as Unix also requires that someone sign
a paper stating that not only is he or she responsible for FreeBSD’s conformance to
the Single Unix Specification, but that he or she will fix any deviations from the
standard that are found in the future. FreeBSD's development model makes this even
more difficult—bugs are found and deviations are fixed, but there’s nobody who
can sign a piece of paper that guarantees 100 percent standards compliance.

AIX

Another Unix contender is IBM’s entry, AIX. AIX’s main claim to fame is its
journaling filesystem, which records all disk transactions as they happen and
allows for fast recovery from a crash. It was also IBM’s standard Unix for
many years, and anything backed by Big Blue shows up all over the place.
AIX is largely based on BSD.

Linux

Linux is a close cousin of Unix, written from the ground up. Linux is similar
to FreeBSD in many ways, though FreeBSD has a much longer heritage and
is more friendly to commercial use than Linux. Linux includes a requirement
that any user who distributes Linux must make his or her changes available
to the end user, while BSD has no such restriction. Of course, a Linux fan
would say, “FreeBSD is more vulnerable to exploitation than Linux.” Linux
developers believe in share-and-share-alike, while BSD developers offer a no-
strings-attached gift to everyone. It all depends on what’s important to you.

Many new Unix users have a perception of conflict between the BSD and
Linux camps. If you dig a little deeper, however, you’ll find that most of the
developers of these operating systems communicate and cooperate in a friendly
and open manner. It’s just a hard fringe of users and developers that generate
friction, much like different soccer teams’ hooligans or fans of different Star
Trek series.

IRIX, HP/UX, and So On

Other Unixes include Silicon Graphics’ IRIX, a solid Unix for graphics
applications, and Hewlett-Packard’s HP/UX, popular in large enterprises.
A quick web search uncovers many smaller contenders, such as Tru64 Unix
and the suicidal SCO Group’s UnixWare. You’ll also find old castoffs such as
Apple’s A/UX and Microsoft’s Xenix. (Yes, Microsoft was a licensed Unix
vendor, back in that age when dinosaurs watched the skies nervously and my

Introduction 9

10

dad hunted mammoth for tribal rituals.) Many high-end applications are
designed to run best on one particular flavor of Unix. All modern Unixes
have learned lessons from these older operating systems, and today’s Unixes
and Unix-like operating systems are remarkably similar.

FreeBSD’s Strengths

Introduction

After all this, what makes FreeBSD unique?

Portability

The FreeBSD Project’s goal is to provide a freely redistributable, stable, and
secure operating system that runs on the computer hardware that people are
most likely to have access to. Today this means Intel x86-compatible systems
such as the 486, the various Pentiums, AMD, and so on, as well as AMD’s
amd64 architecture (copied by Intel as EM64T). Older x86 systems no
longer work out of the box with newer versions of FreeBSD, but most of
those systems are either long dysfunctional or aren’t about to change
operating systems any time soon.

The ARM platform used in embedded devices is a new addition to
FreeBSD and is well supported on specific embedded boards. FreeBSD also
supports Sun’s SPARC systems and Intel’s Itanium (IA64), as well as the
PowerPC processor recently used by Apple. While these other platforms
are not afterthoughts, they don’t receive the same level of attention that
x86 and amd64 do.

Power

Since FreeBSD runs adequately on 386 hardware, it runs extremely well on
modern computers. It’s rather nice to have an operating system that doesn’t
demand a Pentium III and half a gig of RAM just to run the user interface. As
aresult, you can actually dedicate your hardware to accomplishing real work
rather than tasks you don’t care about. If you choose to run a pretty graphical
interface with all sorts of spinning geegaws and fancy whistles, FreeBSD will
support you; it just won’t penalize you if you don’t want that. FreeBSD will
also support you on the latest n-CPU hardware.

Simplified Software Management

FreeBSD also simplifies software management through the Ports Collection.
Traditionally, running software on a Unix-like system required a great deal
of expertise. The Ports Collection simplifies this considerably by automating
and documenting the install, uninstall, and configuration processes for
thousands of software packages.

Optimized Upgrade Process

Unlike operating systems that require painful and risky upgrade procedures,
FreeBSD’s simple upgrade process builds an operating system optimized for
your hardware and applications. This lets FreeBSD use every feature supported
by your hardware, instead of just the lowest common denominator. If you
change hardware, you can rebuild your operating system to best handle that
particular hardware. Vendors such as Sun and Apple do exactly this, but they
control both the hardware and the software; FreeBSD pulls off the same trick
on commodity hardware.

Advanced Filesystem

A filesystem is how information is stored on the physical disk—it is what maps
the file My Resume to a series of zeroes and ones on a hard drive. FreeBSD
supports very sophisticated filesystems and can support files up to a petabyte
(one thousand thousand gigabytes). Its default filesystem is highly damage
resistant and reads and writes files extremely quickly. The BSD filesystem is
advanced enough that many commercial Unix vendors have used it as a basis
for their own filesystems.

Who Should Use FreeBSD?

While FreeBSD can be used as a powerful desktop or development machine,
its history shows a strong bias towards web, mail, file, and support services.
FreeBSD is most famous for its strengths as an Internet server, and it is an
excellent choice as an underlying platform for any network service. If major
firms such as Yahoo! count on FreeBSD to provide reliable service, it will
work as well for you.

If you’re thinking of running FreeBSD (or any Unix) on your desktop,
you’ll need to understand how your computer works. FreeBSD is not your
best choice if you need point-and-click simplicity. If that’s your goal, get a
Mac so you can use the power of Unix when you need it and not worry about
it the rest of the time. If you want to learn FreeBSD, though, running it on
your desktop is the best way—as we’ll discuss later.

Who Should Run Another BSD?

NetBSD and OpenBSD are FreeBSD’s closest competitors. Unlike competitors
in the commercial world, this competition is mostly friendly. FreeBSD,
NetBSD, and OpenBSD freely share code and developers; some people
even maintain the same subsystems in multiple operating systems.

If you want to use old or oddball hardware, NetBSD is a good choice for
you. For several years I ran NetBSD on an ancient SGI workstation that I used
as a Domain Name System (DNS) and fileserver. It did the job well until the
hardware finally released a cloud of smoke and stopped working.

Introduction 11

12

OpenBSD has implemented an impressive variety of security features.
Many of the tools are eventually integrated into FreeBSD, but that takes
months or years. If you have real security concerns but don’t need sophis-
ticated multiprocessor support, you might look at OpenBSD.

If you’re just experimenting to see what’s out there, any BSD is good!

Who Should Run a Proprietary Operating System?

Operating systems such as Solaris, Windows, AIX, and their ilk are still quite
popular, despite the open source operating systems gnawing at their market
share. High-end enterprises are pretty tightly shackled to these operating
systems. While this is slowly changing, you’re probably stuck with commercial
operating systems in such environments. But slipping in an occasional
FreeBSD machine to handle basic services such as monitoring and depart-
ment file serving can make your life much easier at much lower cost. Yahoo!
and NetApp have built entire businesses using FreeBSD instead of commercial
operating systems.

Of course, if the software you need only runs on a proprietary operating
system, your choice is pretty clear. Still, always ask a vendor if a FreeBSD
version is available; you might be pleasantly surprised.

How to Read This Book

Many computer books are thick and heavy enough to stun an ox, if you have
the strength to lift them high enough. Plus, they’re either encyclopedic in
scope or so painfully detailed that they’re difficult to actually read. Do you
really need to reference a screenshot when you’re told click OK or accept the
license agreement? And when was the last time you actually sat down to read
the encyclopedia?

Absolute FreeBSD is a little different. It’s designed to be read once, from
front to back. You can skip around if you want to, but each chapter builds on
what comes before it. While this isn’t a small book, it’s smaller than many
popular computer books. After you’ve read it once, it makes a decent
reference.

If you’re a frequent buyer of computer books, please feel free to insert
all that usual crud about “read a chapter at a time for best learning” and so
on. I’'m not going to coddle you—if you picked up this book, you either have
two brain cells to rub together or you’re visiting someone who does. (If it’s
the latter, hopefully your host is smart enough to take this book away from
you before you learn enough to become dangerous.)

What Must You Know?

Introduction

This book is aimed at the new Unix administrator. Two decades ago, the
average Unix administrator had kernel programming experience and was
working on his master’s degree in computer science. Even a decade ago, he
was already a skilled Unix user with real programming skills and most of a
bachelor’s degree in comp sci. Today, Unix-like operating systems are freely

available, computers are cheaper than food, and even 12-year-old children
can run Unix, read the source code, and learn enough to intimidate older
folks. As such, I don’t expect you to know a huge amount about Unix before
firing it up.

To use this book to its full potential, you need to have familiarity with
some basic tasks, such as how to change directories, list files in a directory,
and log in with a username and password. If you’re not familiar with basic
commands and the Unix shell, I recommend you begin with a book like
UNIX System Administration Handbook by Evi Nemeth and friends (Prentice
Hall PTR, 2006). To make things easier on newer system administrators,

I include the exact commands needed to produce the desired results. If you
learn best by example, you should have everything you need right here.

You’ll also need to know something about computer hardware—not a
huge amount, mind you, but something. For example, it helps to know how
to recognize an IDE, SCSI, or SATA cable. Your need for this knowledge
depends on the hardware you’re using, but if you’re interested enough to
pick up this book and read this far, you probably know enough.

For the New System Administrator

If you’re new to Unix, the best way to learn is to eat your own dog food. No,
I’'m not suggesting that you dine with Rover. If you ran a dog food company,
you’d want to make a product that your own dog eats happily. If your dog
turns his nose up at your latest recipe, you have a problem. The point here is
that if you work with a tool or create something, you should actually use it.
The same thing applies to any Unix-ike operating system, including FreeBSD.

Desktop FreeBSD

If you’re serious about learning FreeBSD, I suggest wiping out the operating
system on your main computer and running FreeBSD instead. Yes, I know,
now that dog food doesn’t sound so bad. But learning an operating system is
like learning a language; total immersion is the quickest and most powerful
way to learn. That’s what I did, and today I can make a Unix-like system do
anything I want. In fact, this book was composed entirely on a FreeBSD
laptop, using the open source text editor XEmacs and the OpenOffice.org
business suite. I also use FreeBSD to watch movies, rip and listen to MP3s,
balance my bank accounts, process my email, and surf the Web. As I write
this, I have a dozen animated BSD daemons running around on top of my
desktop windows, and I occasionally take a break to zap them with my mouse.
If this doesn’t count as a Stupid Desktop Trick, I don’t know what does.?
Many Unix system administrators these days come from a Windows
background. They’re beavering away in their little world when management
swoops by and says, “You can handle one more system, can’t you? Glad to

%In the first edition of this book, I neglected to mention exactly how to do a similar Stupid
Desktop Trick, which generated more questioning email than any other topic in the whole
book. That’s a mistake I won’t make again!

Introduction 13

14

Introduction

hear it! It’s a Unix box, by the way,” and then vanishes into the managerial
ether. Once the new Unix administrator decides to not slit his wrists, the
boss’s wrists, or start a fresh and exciting career as a whale autopsy technician,
he tentatively pokes at the system. He learns that 1s is like dir and that cd is
the same on both platforms. He can learn the commands by rote, reading,
and experience. What he cannotlearn, coming from this background, is how
a Unix machine thinks. Unix will not adjust to you; you must adjust to it.
Windows and OS X require similar adjustments, but they hide this behind a
glittering facade. With that in mind, let’s spend a little time learning how to
think about Unix.

How to Think About Unix

These days, most Unix systems come with pretty GUIs out of the box, but
they’re just eye candy. The real work happens on the command line, no
matter how many tools purport to hide it. The command line is actually
one of Unix’s strengths, and it is responsible for its unparalleled flexibility.
Unix’s underlying philosophy is many small tools, each of which does a
single job well. My laptop’s local programs directory (/usr/local/bin) has
662 programs in it. I have installed every one of them, either directly or
indirectly. Most are small, simple programs that only do one task, with
occasional exceptions, such as the office suite. This array of small tools
makes Unix extremely flexible and adaptable. Many commercial software
packages try to do everything; they wind up with all sorts of capabilities but
only mediocre performance in their core functions. Remember, at one time
you needed to be a programmer to use a Unix system, let alone run one.
Programmers don’t mind building their own tools. The Unix concept of
channels encouraged this.

Channels of Communication

People used to GUI environments such as Windows and Mac OS X are
probably unfamiliar with how Unix handles output and input. They’re used
to clicking something and seeing either an OK message, an error, nothing,
or (all too often) a pretty blue screen with nifty high-tech letters explaining
in the language called Geek why the system crashed. Unix does things a little
differently.

Unix programs have three channels of communication: standard input,
standard output, and standard error. Once you understand how each of
these channels works, you’re a good way along to understanding the whole
system.

Standard input is the source of information. When you’re at the console
typing a command, the standard input is the data coming from the keyboard.
If a program is listening to the network, the standard input is the network.
Many programs can rearrange standard input to accept data from the
network, a file, another program, the keyboard, or any other source.

The standard outputis where the program’s output is displayed. This is
frequently the console (screen). Network programs usually return their

output to the network. Programs might send their output to a file, another
program, over the network, or anywhere else available to the computer.

Finally, standard erroris where the program sends its error messages.
Frequently, console programs return their errors to the console; others log
errors in a file. If you set up a program incorrectly, it just might discard all
error information.

These three channels can be arbitrarily arranged, a concept that is
perhaps the biggest hurdle for new Unix users and administrators. For
example, if you don’t like the error messages appearing on the terminal,
you can redirect them to a file. If you don’t want to repeatedly type a lot
of information into a command, you can put the information into a file
(so you can reuse it) and dump the file into the command’s standard input.
Or, better still, you can run a command to generate that information and put
itin a file, or just pipe (send) the output of the first command directly to the
second, without even bothering with a file.

Small Programs, Channels, and the Command Line

Taken to its logical extreme, these input/output channels and the variety of
tools seem overwhelming. When I saw a sysadmin type something like the
following during my initial Unix training session, I gave serious consideration
to changing careers.

$ tail -f /var/log/messages | grep -v popper | grep -v named &

Lines of incomprehensible text began spilling across the screen, and
they kept coming. And worse still, my mentor kept typing as gibberish
poured out! If you’re from a point-and-click computing environment, a long
string of commands like this is definitely intimidating. What do all those
funky words mean? And an ampersand? You want me to learn what?

Think of learning to use the command line as learning a language.
When learning a language, we start with simple words. As we increase our
vocabulary, we also learn how to string the words together. We learn that
placing words in a certain order makes sense, and that a different order
makes no sense at all. You didn’t speak that well at three years old—give
yourself some slack and you’ll get there.

Smaller, simpler programs and channels of communication provide
almost unlimited flexibility. Have you ever wished you could use a function
from one program in another program? By using a variety of smaller pro-
grams and arranging the inputs and outputs as you like, you can make
a Unix system behave in any manner that amuses you. Eventually, you’ll
feel positively crippled if you can’t just run a command’s output through
| sort -znk 6 | less.?

* This ugly thing takes the output of the last command, sorts it in reverse order by the contents
of the sixth column, and presents it one screen at a time. If you have hundreds of lines of output,
and you want to know which entries have the highest values in the sixth column, this is how you
do it. Or, if you have lots of time, you can dump the output to a spreadsheet and fiddle with
equally obscure commands for a much longer time.

Introduction 15

Everything Is a File

You can’t be around Unix for very long before hearing that everything is a
file. Programs, account information, and system configuration are all stored
in files. Unix has no Windows-style registry; if you back up the files, you have
the whole system.

What’s more, the system identifies system hardware as files! Your CD-ROM
drive is a file, /dev/acd0. Network cards appear as files in /dev/net. Even virtual
devices, such as packet sniffers and partitions on hard drives, are files.

When you have a problem, keep this fact in mind. Everything is a file or
is in a file, somewhere on your system. All you have to do is find it!

Notes on the Second Edition

When I wrote my first technical book, the members of the BSD family had
huge amounts in common. A system administrator familiar with one BSD
could sit down at a different one and have the environment tuned nicely in
an hour or two. Some tools were in a different place, the boot sequences
were slightly different, and some features didn’t quite match, but on the
whole, each was just another derivative of BSD 4.4. That was five years ago,
and in the meantime each BSD has marched down a different path. While
they still have a lot in common, the differences are broad enough that I no
longer feel comfortable saying that much of this book is largely applicable to
all three BSDs. As such, this is Absolute FreeBSD, 2nd Edition, instead of just
Absolute BSD, 2nd Edition.

You’ll find other changes from the first edition, of course. The differences
between FreeBSD 4 and FreeBSD 7 vary from the dramatic to the subtle, and
either can trip you up if you’re not careful. Many tools for making Sendmail
manageable and friendly have been integrated into the system, so I cover
Sendmail instead of Postfix. (I still like Postfix, but this is a FreeBSD book.)
In 2000, it was unthinkable to have a computer without a floppy disk drive;
now, some computers ship without any integrated removable-media drives
whatsoever. This makes diskless work much more important, because for
some hardware, it’s the only way to get an operating system on the machine!
Lastly, FreeBSD has evolved greatly in the last five years, and I've learned more
in that time than I would have believed possible. Hopefully, this combination
makes Absolute FreeBSD, 2nd Edition a quantum leap better than its predecessor.

Contents of This Book

Introduction

Absolute FreeBSD, 2nd Edition contains the following chapters.

Chapter 1: Getting More Help
This chapter discusses the information resources the FreeBSD Project
and its devotees provide for users. No one book can cover everything,
but knowing how to use the many FreeBSD resources on the Internet
helps fill any gaps you find here.

Chapter 2: Installing FreeBSD
This chapter gives you an overview of installing FreeBSD and offers
advice on an optimal install.

Chapter 3: Start Me Up! The Boot Process
This chapter teaches you about the FreeBSD boot process and how to
make your system start, stop, and reboot in different configurations.

Chapter 4: Read This Before You Break Something Else!
Here we discuss how to back up your data on both a system-wide and a
file-by-file level, and how to make your changes so that they can be easily
undone.

Chapter 5: Kernel Games
This chapter describes configuring the FreeBSD kernel. Unlike some
other operating systems, you are expected to tune FreeBSD’s kernel to
best suit your purposes. This gives you tremendous flexibility and lets you
optimize your hardware’s potential.

Chapter 6: The Network
Here we discuss the network and how it works in FreeBSD.

Chapter 7: Securing Your System
This chapter teaches you how to make your computer resist attackers
and intruders.

Chapter 8: Disks and Filesystems
This chapter covers some of the details of working with hard drives in
FreeBSD, support for other filesystems, and a few network filesystems.

Chapter 9: Advanced Security Features
Here we discuss some of the more interesting security features found in
FreeBSD.

Chapter 10: Exploring /etc
This chapter describes the many configuration files in FreeBSD and how
they operate.

Chapter 11: Making Your System Useful
Here I describe the ports and packages system that FreeBSD uses to
manage add-on software.

Chapter 12: Advanced Software Management
This chapter discusses some of the finer points of running software on
FreeBSD systems.

Chapter 13: Upgrading FreeBSD
This chapter teaches you how to use FreeBSD’s upgrade process. The
upgrade system is among the most remarkable and smooth of any oper-
ating system.

Chapter 14: The Internet Road Map: DNS
This chapter describes DNS and teaches you how to install and trouble-
shoot it.

Introduction 17

Introduction

Chapter 15: Small System Services
Here we discuss some of the small programs you’ll need to manage in
order to use FreeBSD properly.

Chapter 16: Spam, Worms, and Viruses (Plus Email, If You Insist)
This chapter describes how to set up an email system on FreeBSD to reli-
ably deliver mail and repel spam and viruses.

Chapter 17: Web and FTP Services
This chapter teaches you how to set up and secure these two vital
Internet services.

Chapter 18: Disk Tricks with GEOM
This chapter goes over some of the fancy techniques FreeBSD supports
for mirroring disks, exporting disk devices across the network, and gen-
erally having a good old time protecting and manipulating your data.

Chapter 19: System Performance and Monitoring
This chapter covers some of FreeBSD’s performance-testing and trouble-
shooting tools and shows you how to interpret the results. We also discuss
system logging and FreeBSD’s SNMP implementation.

Chapter 20: The Fringe of FreeBSD
This chapter teaches you some of the more interesting tricks you can do
with FreeBSD, such as running systems without disks and with tiny disks,
as well as some live failover and redundancy setups.

Chapter 21: System (and Sysadmin) Panics and Crashes
This chapter teaches you how to deal with those rare occasions when a
FreeBSD system fails, how to debug problems, and how to create a useful
problem report.

Appendix: Some Interesting sysctl MIBs
This appendix provides basic information about some of the kernel-
tuning options available for your use.

Okay, enough with the introductory stuff. Onward!

GETTING MORE HELP

As thick as this book is, it still can’t possibly
cover everything you must know about
FreeBSD. After all, Unix has been kicking

around for close to four decades, BSD is over a
quarter-century old, and FreeBSD is already a teenager.

Even if you memorize this book, it won’t cover every
situation you might encounter—especially when FreeBSD starts acting like a
typical teenager and needs a good smack. The FreeBSD Project supports a
huge variety of information resources, including numerous mailing lists and
the FreeBSD website, not to mention the official manual and Handbook. Its
users maintain even more documentation. The flood of information can be
overwhelming in itself, and it can make you want to just email the world and
beg for help. But before you send a question to a mailing list, confirm that

the information you need isn’t already available.

20

Why Not Just Email for Help?

Chapter 1

The FreeBSD mailing lists are the best-known support resources. Many mail-
ing list participants are very knowledgeable and can answer your questions
very quickly. But remember, when you mail a question to a FreeBSD mailing
list, you are asking tens of thousands of people all over the world to take a
moment to read your email. You’re also asking that one or more of them
take the time to help you instead of watching a favorite movie, enjoying
dinner with their families, or catching up on sleep. Problems arise when
these experts answer the same question 10, 50, or even hundreds of times.
They become grumpy. Some get downright tetchy.

What makes matters worse is that these same people have spent a
great deal of time and effort making the answers to most of these questions
available elsewhere. If you make it clear that you have already searched the
resources and your answer really doesn’t appear therein, you will probably
receive a polite, helpful answer. If you ask a question that has already been
asked several hundred times, however, the expert on that subject just might
snap and go ballistic on you. Do your homework, and chances are you’ll get
an answer more quickly than a fresh call to the mailing list could provide.

The FreeBSD Attitude

“Homework? What do you mean? Am I back in school? What do you want,
burnt offerings on bended knee?” Yes, you are in school. The information
technology business is nothing but lifelong, self-guided learning. Get used
to it or get out. Burnt offerings, on the other hand, are difficult to transmit
via email and are not quite so useful today.

Most commercial operating systems conceal their inner workings. The
only access you have to them is through the options presented by the vendor.
Even if you want to learn how something works, you probably can’t. When
something breaks, you have no choice but to call the vendor and grovel for
help. Worse, the people paid to help you frequently know little more than
you do.

If you’ve never worked with open source software vendors, FreeBSD’s
support mechanism might surprise you. There is no toll-free number to call
and no vendor to escalate within. No, you may not speak to a manager, for a
good reason: You are the manager. Congratulations on your promotion!

Support Options

Having said that, you're not entirely on your own. The FreeBSD community
includes numerous developers, contributors, and users who care very deeply
about FreeBSD’s quality, and they’re happy to work with you. FreeBSD
provides everything you need: complete access to the source code used to
create the system, the tools needed to turn that source code into programs,
and the same debuggers used by the developers. Nothing is hidden; you can
see the innards, warts and all. You can view FreeBSD’s development history

since the beginning, including every change ever made and the reason for it.
These tools might be beyond your abilities, but that’s not the Project’s prob-
lem. Various community members are even happy to provide guidance as you
develop your own skills so you can use those tools yourself. You’ll have lots of

help fulfilling your responsibilities.

As a grossly overgeneralized rule, people help those like themselves.

If you want to use FreeBSD, you must make the jump from eating what the
vendor gives you to learning how to cook. Every member of the FreeBSD
user community learned how to use it, and they welcome interested new
users with open arms. If you just want to know what to type without really
understanding what’s going on behind the scenes, you'll be better off
reading the documentation: The general FreeBSD support community
simply isn’t motivated to help those who won’t help themselves or who
can’t follow instructions.

If you want to use FreeBSD but have neither the time nor the inclination
to learn more, invest in a commercial support contract. It might not be able to
put you in touch with FreeBSD’s owner, but at least you’ll have someone
to yell at. You’ll find several commercial support providers listed on the
FreeBSD website.

It’s also important to remember that the FreeBSD Project only main-
tains FreeBSD. If you're having trouble with some other piece of software, a
FreeBSD mailing list is not the place to ask for help. FreeBSD developers are
generally proficient in a variety of software, but that doesn’t mean that they
want to help you, say, configure KDE.

The first part of your homework, then, is to learn about the resources
available beyond this book. These include the integrated manual, the
FreeBSD website, the mailing list archives, and other websites.

Man Pages

Man pages (short for manual pages) are the primordial way of presenting
Unix documentation. While man pages have a reputation for being obtuse,
difficult, or even incomprehensible, they’re actually quite friendly—for
particular users. When man pages were first created, the average system
administrator was a C programmer and, as a result, the pages were written
by programmers, for programmers. If you can think like a programmer, man
pages are perfect for you. I've tried thinking like a programmer, but I only
achieved real success after remaining awake for two days straight. (Lots of
caffeine and a high fever help.)

Over the last several years, the skill level required for system administra-
tion has dropped; no longer must you be a programmer. Similarly, man pages
have become more and more readable. Man pages are not tutorials, however;
they explain the behavior of one particular program, not how to achieve a
desired effect. While they’re neither friendly nor comforting, they should be
your first line of defense. If you send a question to a mailing list without
checking the manual, you're likely to get a terse man whatever in response.

Getting More Help 21

22

Chapter 1

Manuval Sections

The FreeBSD manual is divided into nine sections. Roughly speaking, the
sections are:

General user commands Game instructions

System calls and error numbers Miscellaneous information

C programming libraries System maintenance commands

© X o

Devices and device drivers Kernel interfaces

Otk 0 o=

File formats

Each man page starts with the name of the command it documents
followed by its section number in parenthesis, like this: reboot(8). When you
see something in this format in other documents, it’s telling you to read that
man page in that section of the manual. Almost every topic has a man page.
For example, to see the man page for the editor vi, type this command:

$ man vi

In response, you should see the following:

VI(1) VI(1)

NAME
ex, vi, view - text editors

SYNOPSIS
ex [-eFGRrSsv] [-c cmd] [-t tag] [-w size] [file ...]
vi [-eFGIRrSv] [-c cmd] [-t tag] [-w size] [file ...]
view [-eFGRrSv] [-c cmd] [-t tag] [-w size] [file ...]

LICENSE
The vi program is freely redistributable. You are welcome to copy,
modify and share it with others under the conditions listed in the
LICENSE file. If any company (not individual!) finds vi sufficiently
useful that you would have purchased it, or if any company wishes to
redistribute it, contributions to the authors would be appreciated.

DESCRIPTION
Vi is a screen oriented text editor. Ex is a line-oriented text editor
Ex and vi are different interfaces to the same program, and it is
possible to switch back and forth during an edit session. View is the

The page starts with the title of the man page (vi) and the section
number (1), and then it gives the name of the page. This particular page
has three names: ex, vi, and view. Typing man ex or man view would take you
to this same page.

Navigating Man Pages

Once you’re in a man page, pressing the spacebar or the PGDN key takes you
forward one full screen. If you don’t want to go that far, pressing ENTER or the
down arrow scrolls down one line. Typing B or pressing the PGUP key takes
you back one screen. To search within a man page, type / followed by the word
you’re searching for. You’ll jump down to the first appearance of the word,
which will be highlighted. Typing N subsequently takes you to the next
occurrence of the word.

This assumes that you’re using the default BSD pager, more(1). If you’re
using a different pager, use that pager’s syntax. Of course, if you know so
much about Unix that you’ve already set your preferred default pager, you’ve
probably skipped this part of the book entirely.

Finding Man Pages

New users often say that they’d be happy to read the man pages, if they
could find the right one. You can perform basic keyword searches on the
man pages with apropos(1) and whatis(1). apropos(1) searches for any man page
name or description that includes the word you specify. whatis(1) does the
same search, but only matches whole words. For example, if you’re interested
in the vi command, you might try the following:

$ apropos vi

BUS_ADD_CHILD(9) - add a device node to the tree with a given priority
BUS_PRINT_CHILD(9) - print information about a device

BUS_READ_IVAR(9), BUS_WRITE_IVAR(9) - manipulate bus-specific device instance
variables

DEVICE_ATTACH(9) - attach a device

This continues for a total of 581 entries, which is probably far more
than you want to look at. Most of these have nothing to do with vi(1),
however; the letters v just appear in the name or description. Device driver is
a fairly common term in the manual, so that’s not surprising. On the other
hand, whatis(1) gives more useful results in this case.

$ whatis vi

ex(1), vi(1), view(1) - text editors
etags(1), ctags(1) - generate tag file for Emacs, vi
$

There are only two results, and both clearly have relevance to vi(1). On
other searches, apropos(1) gives better results than whatis(1). Experiment with
both and you’ll quickly learn how they fit your style.

Getting More Help 23

2%

Chapter 1

Section Numbers and Man

You might find cases where a single command appears in multiple parts of

the manual. For example, every man section has an introductory man page

that explains the contents of the section. To specify a section to search for a
man page, give the number immediately after the man command.

$ man 3 intro

This pulls up the introduction to section 3 of the manual. I recommend
you read the intro pages to each section of the manual, if only to help you
understand the breadth and depth of information available.

Man Page Contents

Man pages are divided into sections. While the author can put just about any
heading he likes into a man page, several are standard. See mdoc(7) for a
partial list of these headings as well as other man page standards:

¢ NAME gives the name(s) of a program or utility. Some programs have
multiple names—for example, the vi(1) text editor is also available as
ex(1) and view(1).

¢ SYNOPSIS lists the possible command-line options and their arguments,
or how a library call is accessed. If I'm already familiar with a program
but just can’t remember the option I’'m looking for, I find that this
header is sufficient to remind me of what I need.

¢ DESCRIPTION contains a brief description of the program, library, or
feature. The contents of this section vary widely depending on the topic,
as programs, files, and libraries all have very different documentation
requirements.

¢ OPTIONS gives a program’s command-line options and their effects.

¢ BUGS describes known problems with the code and can frequently save
a lot of headaches. How many times have you wrestled with a computer
problem only to learn that it doesn’t work the way you would expect
under those circumstances? The goal of the BUGS section is to save you
time and describe known errors and other weirdness.'

¢ SEE ALSO is traditionally the last section of a man page. Remember that
Unix is like a language, and the system is an interrelated whole. Like duct
tape, the SEE ALSO links hold everything together.

If you don’t have access to the manual pages at the moment, many
websites offer them. Among them is the main FreeBSD website.

t’s called honesty. IT professionals may find this term unfamiliar, but a dictionary can help.

FreeBSD.org

The FreeBSD website (Attp://www.freebsd.org) contains a variety of informa-
tion about general FreeBSD administration, installation, and management.
The most useful portions are the Handbook, the FAQ, and the mailing list
archives, but you’ll also find a wide number of articles on dozens of topics.
In addition to documents about FreeBSD, the website also contains a great
deal of information about the FreeBSD Project’s internal management and
the status of various parts of the Project.

If you find that the main website works slowly for you, try using a mirror
site. The main site offers a drop-down box with a choice of national mirrors,
or you can just try http://www.<countrycode>.freebsd.org. Almost every country
has a local site that provides a duplicate of the FreeBSD website. I frequently
find that a mirror is more responsive than the main website.

Web Documents

The FreeBSD documentation is divided into articles and books. The difference
between the two is highly arbitrary: As a rule, books are longer than articles
and cover broader topics, while articles are short and focus on a single topic.
The two books that should most interest new users are the Handbook and
the Frequently Asked Questions (FAQ).

The Handbook is the FreeBSD Project’s tutorial-style manual. It is con-
tinuously updated, describes how to perform basic system tasks, and is an
excellent reference when you’re first starting on a project. In fact, I have
deliberately chosen not to include some topics in this book because they
have adequate coverage in the Handbook.

The FAQ is designed to provide quick answers to the questions most
frequently asked on the FreeBSD mailing lists. Some of the answers aren’t
suitable for inclusion in the Handbook, while others just point to the proper
Handbook chapter or article.

Several other books cover a variety of topics, from kernel debugging to
Project organization.

Of the 50 or so articles available, some are kept only for historical reasons
(such as the road map to releasing FreeBSD version 5), while others discuss
the subtleties of specific parts of the system such as serial ports or GVSup.

A few are old enough that they’re retained for only a handful of users who
are still stuck with 20th-century systems.

These documents are very formal, and they require preparation. As such,
they always lag a bit behind the real world. When a new feature is first rolled
out, the appropriate Handbook entry might not appear for weeks or months.
If the web documentation seems out of date, your best resource for up-to-the-
minute answers is the mailing list archive.

Getting More Help 25

The Mailing List Archives

Unless you’re really on the bleeding edge, someone has probably struggled
with your problem before and posted a question about it to the mailing lists.
After all, the archives go back to 1994 and contain close to two million mes-
sages. The only problem is that there are two million pieces of email, any one
of which might contain the answer you seek. (When the first edition of this
book came out, the archives contained only one million messages; they have
nearly doubled in size in the last few years!)

While FreeBSD provides a search facility for its web pages and the
mailing list archive, it pales beside the one offered by Google. Google has
a BSD-specific search site at http://www.google.com/bsd. Search for your error
message on Google, both in the regular web search and the Groups search.
Google Groups also indexes the FreeBSD mailing lists, and you can search
the FreeBSD.org website on Google by including the search term site:freebsd.org
in your query. Additionally, the Rambler search engine has a very good
FreeBSD-specific search engine at http://freebsd.rambler.ru. Rambler runs on
FreeBSD, and it employs at least one FreeBSD committer.

Other Websites

FreeBSD’s users have built a plethora of websites that you might check for
answers, help, education, products, and general hobnobbing. Here are some
of my favorites:

Daemon News (http://bsdnews.com)
This site provides links to news postings on all BSD topics, not just
FreeBSD.

FreeBSD Mall (http://wwuw.freebsdmall.com)
The people who run FreeBSD Mall have been commercial supporters of
FreeBSD since the beginning. They sell FreeBSD on CD and DVD and
offer training and support contracts, as well as FreeBSD paraphernalia
such as clothes and toys. FreeBSD Mall is owned by IX Systems.

O’Reilly Network BSD Developer Center (http://www.onlamp.com/bsd)
This site hosts a variety of BSD articles, as well as content of interest to
BSD users. In my utterly unbiased opinion, the most fascinating thing
on the site is the Big Scary Daemons column on BSD, but everything else
there is also pretty good.

Using FreeBSD Problem-Solving Resources

OkXkay, let’s pick a common problem and use the FreeBSD resources to solve it.
I’ve seen this question more than once, on several different FreeBSD mailing
lists, so we’ll start with it.

26 Chapter 1

I've just installed FreeBSD on my 486 and the network isn’t
working. When I try to ping anything, the console shows
edo: timeout. What’s wrong?

We'll use several different methods to find an answer.

Checking the Handbook /FAQ

The Handbook doesn’t have anything relevant to the problem. In the FAQ),
however, this entry appears under Troubleshooting:

I keep seeing messages like "ed1: timeout". What's wrong?

That looks pretty darn close. Read the entry and try the solution presented.

Checking the Man Pages

As we go on, you'll see that the numbers after device names are simply
instances of a particular device. If you see edo, it just means device ed, unit
number 0. Every device driver has a man page, so if you type man ed to bring
up the manual entry for this device, you’ll see the following:

ED(1) FreeBSD General Commands Manual ED(1)
NAME

ed, red -- text editor
SYNOPSIS

ed [-] [-sx] [-p string] [file]
red [-] [-sx] [-p string] [file]

DESCRIPTION
The ed utility is a line-oriented text editor. It is used to create,

A text editor? What? My text editor is fine! Something obviously isn’t
right. Look closely at this man page; it’s from section 1 of the manual, the
General Commands section. You need to search the manual for other entries
containing ed. As the letters ed appear in an awful lot of manual pages, use
the more specific whatis(1) search.

$ whatis ed
ed(1), red(1) - text editor
ed(4) - NE-2000 and WD-80x3 Ethernet driver

Bingo! The text editor ed (1) is a general-purpose command. We want
the ed in section 4 of the manual. Type man 4 ed to bring up the manual page
for the network device. It’s pretty long, though, about 500 lines. Being lazy,

Getting More Help 27

28

Chapter 1

I’d rather not read the whole thing—I’d rather just search for the part that
has the information I need. Looking at the error message, I guess that timeout
might be a good keyword to look for. Type /timeout and press ENTER.

ed%d: device timeout Indicates that an expected transmitter interrupt
did not occur. Usually caused by an interrupt conflict with another card
on the ISA bus.

Bingo again! Here we have a terse explanation of the problem and a
probable cause (interrupt timeout). We have a good old-fashioned IRQ
conflict, and if you're actually on a 486, you know more about this problem
than you want to.

Checking the Mailing List Archives

You could use the FreeBSD website search engine to search the mailing list
archives, but I prefer either Google or Rambler. A search for ed0: timeout
site:FreeBSD.org spits out a whole bunch of results. Some of them date from
1994. When I did this right now, the first response answered the question.
When I did this for the first edition, the first result was correct then, as well.
Now, isn’t that faster than composing an email to a mailing list?

Using Your Answer

Any answer you get for our edo timeout example assumes that you know what
an IRQ is and how to adjust one on your hardware. This is fairly typical of the
level of expertise required for basic problems. If you get an answer that is
beyond your comprehension, you need to do the research to understand it.
While an experienced developer or system administrator is probably not
going to be interested in explaining IRQs to you, he or she might be willing
to point you to a web page that explains them, if you ask nicely.

ASKING AGAIN . . « AND AGAIN . . .
AND AGAIN . . .

Some of the emails answering this problem date from 1994. Yes, that's right, over a
dozen years ago! Remember when | mentioned people being sick of answering the
same questions over and over again? Some of these questions have been asked
many times over the years. Be sure you've checked all the resources where you
might find assistance for your problem. If you truly can’t find any other help, then
perhaps your problem is unique enough to warrant broadcasting it to the world.

Emailing for Help

When you finally decide to ask for help, do so in a way that allows people to
actually provide the assistance you need. You must include all the information
you have at your disposal, as we will soon discuss. There’s a lot of suggested
information to include, and you can choose to skip some or all of it. If you
slack off and fail to provide all the necessary information, one of the following
things will happen:

¢ Your question will be ignored.

¢ You will receive a barrage of email asking you to gather this information.

On the other hand, if you actually want help solving your problem,
include the following pieces of information in your message:

¢ A complete problem description. A message like How do I make my modem
work ? only generates a multitude of questions: What do you want your
modem to do? What kind of modem is it? What are the symptoms? What
happens when you try to use it? How are you trying to use it?

¢ The output of uname -a. This gives the operating system version and
platform.

¢ Ifyou have upgraded your system via csup, give the date and time of your
last update. (This is the date of the newest files in /usr/src.)

¢ Any error output. Be as complete as possible, and include any messages
from the console or from your logs, especially /var/log/messages and any
application-specific logs. Messages about hardware problems should
include a copy of /var/run/dmesg.boot.

It’s much better to start with a message like My modem isn’t dialing my ISP.
The modem is a BastardCorp v. 90 model BOFH667. My OS is version 7.2 on a dual-
core Opteron. There are no error messages in /var/log/messages or /var/log/ppp.log.
You’ll skip a whole round of email with a message like this, and you’ll get
better results more quickly.

Writing Your Email

First, be polite. People often say things in email that they wouldn’t dream

of saying to someone’s face. These lists are staffed by volunteers who are
answering your message out of sheer kindness. Before you click that Send
button, ask yourself, Would I be late for my date with the hot twins down the hall

to answer this message?2 The fierce attitude that is occasionally necessary when
working with corporate telephone-based support only makes these knowledge-
able people delete your emails unread. Their world doesn’t have to include

?Several developers have assured me that they absolutely would accept a date with said hot twins
in lieu of politeness. Large sacks of money also suffice, preferably large, unmarked bills.

Getting More Help 29

30

Chapter 1

surly jerks. Screaming until someone helps you is a valuable skill when deal-
ing with commercial software support, but it will actively hurt your ability to
get FreeBSD support.

Send your email in plaintext, not HTML. Many FreeBSD developers read
their email with a text-only email program such as mutt or elm. These are
very powerful tools for handling large amounts of email, but they do not
display HTML messages without contortions. To see for yourself what this is
like, install /usr/ports/mail/mutt and read some HTML email with it. If you
are using a graphic mail client such as Microsoft Outlook, either send your
email in plaintext or make sure that your messages include both a plaintext
and an HTML version. All mail clients can do this; it’s just a question of
discovering where your GUT hides the buttons. What’s more, be sure to wrap
your text at 72 characters. Sending email in HTML, or without decent line-
wrapping, is an invitation to have your email discarded unread.

Harsh? Not at all, once you understand whom you’re writing to. Most
email clients are poorly suited to handling thousands of messages a day,
scattered across dozens of mailing lists, each containing a score of simul-
taneous conversations. The most popular email clients make reading email
easy, but they do not make it efficient; when you get that much email, effi-
ciency is far more important than ease. As most people on those mailing lists
are in a similar situation, plaintext mail is very much the standard for them.

On a similar note, most attachments are unnecessary. You do not need
to use OpenPGP on messages sent to a public mailing list, and those business-
card attachments just demonstrate that you aren’t a system administrator.
Don’t use a long email signature. The standard for email signatures is four
lines. That’s it; four lines, each no longer than 72 characters. Long ASCII
art signatures are definitely out.

Second, stay on topic. If you are having a problem with X.org, check the
X.org website. If your window manager isn’t working, ask the people respon-
sible for the window manager. Asking the FreeBSD folks to help you with
your Java Application Server configuration is like complaining to hardware
salespeople about your fast-food lunch. They might have an extra ketchup
packet, but it’s not really their problem. On the other hand, if you want
your FreeBSD system to no longer start the mail system at boot time, that’s
a FreeBSD issue.

Sending Your Email

When you’ve composed your nicely detailed and polite question, send it to
FreeBSD-questions@FreeBSD.org. Yes, there are other FreeBSD mailing lists,
some of which are probably dedicated to what you’re having trouble with.
As a new user, however, your question is almost certainly best suited to the
general questions mailing list. I've lurked on many of the other mailing lists
for a decade now, and have yet to see a new user ask a question on any of
them that wouldn’t have been better served by FreeBSD-questions. Generally, the
questioner is referred back to FreeBSD-questions anyway.

This goes back to the first point about politeness. Sending a message to
the architectural mailing list asking about what architectures FreeBSD runs
on is only going to annoy the people who are trying to work on architectural
issues. You might get an answer, but you won’t make any friends. Conversely,
the people on FreeBSD-questions are there because they are volunteering to
help people just like you. They want to hear your intelligent, well-researched,
well-documented questions. Quite a few are FreeBSD developers, and some
are even Core members. Others are slightly more experienced users who
have transcended what you’re going through now and are willing to give
you a hand up, as well.

Responding to Email

Your answer might be a brief note with a URL, or even just two words: man
such-and-such. If that’s what you get, that’s where you need to go. Don’t ask
for more details until you’ve actually checked that resource. If you have a
question about the contents of the reference you’re given, or if you’re
confused by the reference, treat it as another problem. Narrow down the
source of your confusion, be specific, and ask about that. Man pages and
tutorials are not perfect, and some parts appear contradictory or mutually
exclusive until you understand them.

Finally, follow through. If someone asks you for more information,
provide it. If you don’t know how to provide it, learn how. If you develop
a bad reputation, nobody will want to help you.

Email Is Forever

Those of us who were on the Internet back in the ’80s remember when we
treated it as a private playground. We could say whatever we wanted, to whom-
ever we wanted. After all, it was purely ephemeral. Nobody was keeping this
stuff; like CB radio, you could be a total jackass and get away with it.

That’s no longer true. In fact, it’s the exact opposite of true. Potential
employers, potential dates, even family members might scan the Internet for
your postings to mailing lists or message boards, trying to learn what sort of
person you are. I have rejected hiring more than one person based on their
postings to a mailing list. I want to work with a system administrator who sends
polite, professional messages to support forums, not childish and incoherent
rants without sufficient detail to offer any sort of guidance. And I'd think a
lot less of my in-laws if I stumbled across a message from one of them on
some message board where they acted like fools. The FreeBSD mailing lists
are widely archived; choose your words well, because they will haunt you for
decades.

Now that you know how to get more help when things go wrong, let’s
install FreeBSD.

Getting More Help 31

INSTALLING FREEBSD

Just getting FreeBSD running on your
computer isn’t enough, no matter how
satisfying it might be the first time. It’s impor-
tant that your install be successful. Successful means
that your system must be configured appropriately for
its purpose. A web server, an email server, a desktop

system, or a database server all have different operational requirements, and

meeting those requirements can be greatly eased by planning before you
ever boot the hardware. Proper planning makes installing FreeBSD much
less painful. On the downside, you’ll get much less experience in reinstalling
FreeBSD, because you’ll only have to do it once. If mastering the installation
program is your only goal, you can skip all this boring stuff about “thinking
ahead” and go right to the middle of this chapter.

I’'m assuming that you want to run FreeBSD in the real world, doing real
work, in a real environment. This environment might even be your laptop—
while you might argue that your laptop isn’t a real production system, I
challenge you to erase all the data on it without backing it up and tell me

34

that again. If you’re just using a test machine that you truly don’t care about,
then I still recommend following the best practices so that you develop good
habits.

Consider what hardware you need or have. Then, decide how to best use
that hardware, what parts of FreeBSD you need to install, and how to divide
your hard disk. Only after all of that can you actually boot your computer
and install FreeBSD. Finally, do some brief post-install setup, and your system
is ready to go!

FreeBSD Hardware

Chapter 2

FreeBSD supports a lot of different hardware, including both different
architectures and devices for each architecture. One of the project’s goals is
to support the most widely available hardware, and the list of that hardware
has broadened over the last few years to include far more than the “personal
computer.” Today, the supported hardware includes:

amd64 AMD’s 64-bit extensions to the 32-bit i386, copied by Intel as
EM64T, and sometimes called x64. This hardware can run both the
32-bit 1386 and 64-bit amd64 versions of FreeBSD. (Linux calls this the
x86-64 platform.)

i386 The good old-fashioned Intel-compatible personal computer.

powerpc The PowerPC processor found in older Apple computers and
many embedded devices.

pc98 Similar to i386, but popular in Japan.
sparc64 Used in high-end servers from Sun Microsystems.

xbox Yes, FreeBSD can run on Microsoft’s Xbox.

FreeBSD supports many network cards, hard drive controllers, and other
add-ons for each architecture. Since many of these architectures use similar
interfaces and hardware, this isn’t as much of a challenge as you might think:
SCSIis SCSI anywhere, and an Intel Ethernet card doesn’t become magically
different just by putting it in a sparc64 machine.

For the most part, FreeBSD doesn’t care about the supporting hardware
so long as it works. Most readers are primarily familiar with the 1386 archi-
tecture, so that’s where we’ll spend a fair amount of time. The amd64
platform is quickly becoming popular, however, so we’ll touch on that, as
well as sparc64.

FreeBSD has been ported to a variety of other platforms, such as the ARM
architecture and Intel’s Itanium. These ports are either incomplete or of little
utility to anyone except a developer. While it’s nifty that many ARM boards
run FreeBSD, you can’t go to a computer shop and buy one to play with.

Although FreeBSD runs just fine on ancient hardware, that hardware
must be in acceptable condition. If your old Pentium crashes because it has
bad RAM, using FreeBSD won’t stop the crashes.

Sample Hardware

This book was written using the following sample hardware:

e Dual-core amd64 SATA Sager 9750 o Soekris net4801 board

laptop and case
¢ Dual-CPU Opteron rackmount e Sun Ultra 1
¢ Pentium 800 i386 system ¢ External SCSI array

BUY DRINKS FOR THESE PEOPLE

Much of this hardware was a gift from people who liked the first edition of this book.
Their names all appear in the opening credits. If you find this book useful, | heartily
encourage you to buy any of them a drink, a meal, or a Maserati. | would have had
no crash boxes without them. Without crash boxes to test to destruction, | wouldn’t
have had the ability to learn FreeBSD's real limits, especially after my boss forcefully
explained to me that paying customers do not appreciate being research subjects.

Proprietary Hardware

Some hardware vendors believe that keeping their hardware interfaces
secret prevents competitors from copying their designs and breaking into
their market. This has generally been proven to be a bad idea, especially
as the flood of generic parts has largely trampled these secretive hardware
manufacturers over the last few years. Yet a few vendors, especially video
and sound card makers, still cling to this strategy.

Developing device drivers for a piece of hardware without its interface
specifications is quite difficult. Some hardware can be well-supported without
full documentation and is common enough to make struggling through this
lack of documentation worthwhile. The FreeBSD sound driver team, in parti-
cular, has done an excellent job of reverse-engineering sound cards’ interfaces
and now provides generic sound card infrastructure that works well even for
poorly documented cards. Other hardware, such as the chipset used on the
PCI bus in Sun UltraSPARC III systems, cannot be supported without full
and complete documentation.

If a FreeBSD developer has specifications for a piece of hardware and
interest in that hardware, he’ll probably implement support for it. If not,
that hardware won’t work with FreeBSD. In most cases, unsupported pro-
prietary hardware can be replaced with less expensive and more open
options.

Some hardware vendors provide closed-source binary drivers for
their hardware. For example, Nvidia offers a binary-only driver for their
video hardware. FreeBSD also employs some clever tricks to use Windows

Installing FreeBSD 35

36

Chapter 2

network drivers, notably those for the wireless Ethernet cards supported by
“Project Evil.”! For the most part, however, the best support comes from
open-source FreeBSD drivers.

IS MY HARDWARE SUPPORTED?

The easiest way to tell if your particular hardware is supported is fo check the
release notes for the release of FreeBSD you plan to install. The release notes are
available at http://www.freebsd.org.

What We Won’t Cover

We won’t cover ISA cards; PCI has been around for a decade now, and I
strenuously doubt that anyone uses ISA cards in a production setting.2 The
FreeBSD Handbook has decent instructions for making your ISA cards work.

PowerPC and pc98 are all older systems, generally in decline, so we won’t
bother discussing them specifically. Like a dinosaur, older server-grade hard-
ware tends to be difficult to kill with anything short of a meteor strike. And
running FreeBSD on an Xbox, while fun, is more of a stunt than an idea
worth implementing in production.

Hardware Requirements

While FreeBSD has minuscule hardware requirements, you'll get the best
results out of it if you give it enough to work with. The following recommen-
dations are for 1386 systems, but other platforms have similar requirements.

Chapter 19 discusses how to measure your system’s performance so that
you can maximize your hardware utilization.

Processor

Your brand of CPU is irrelevant. FreeBSD doesn’t care if you’re running an
Intel, AMD, IBM, or Cyrix/Via CPU. During the boot process, the FreeBSD
kernel probes the CPU and uses whatever chip features it finds. I’ve run
effective servers on 486 machines before—in fact, I've filled an Internet T1
with a 486. For you folks who are just learning, I recommend that you get a
Pentium or faster system. Some of the techniques in this book take days on a
486, and I’'m no longer that patient. Those same operations take less than an
hour on my dual-core laptop.

!Yes, this really is called Project Evil. And implementing the Windows kernel interface in the
FreeBSD kernel makes the project worthy of the name.

2 And if you are, you either have been in this business long enough that you probably aren’t even
reading this book, or you are a total nut job. Mind you, the latter is not a disadvantage in this
field.

Memory

Memory (as in RAM) is good. Adding more RAM accelerates a system better
than anything else. I recommend at least 64MB of RAM, but if you have a
system with 256MB or greater you’ll find FreeBSD easier going. If you are
really trying to shrink your system, you can run a carefully crafted kernel in
16MB—but you can’t run the installer in that amount of memory.

Hard Drives

Hard drives can be a big performance bottleneck. While IDE drives are dirt
cheap, they don’t perform as well as SAS, SCSI, or even SATA drives. A SAS
or old-fashioned SCSI system transfers data to and from each drive at the full
controller speed, while IDE and SATA drives split their throughput between
all of the drives on the channel. A SCSI controller can have up to 15 drives
on a channel, while a standard IDE controller can have no more than 2.
SATA controllers tend to put only one drive on a channel, taking the easy
route to good throughput. While you can use splitters to attach more than
one drive to a SATA channel, multiple SATA drives on a single channel have
no greater throughput than a single drive. 15 drives, each running at full
speed, versus 2 drives averaging half speed, make a huge difference in the
amount of data throughput!

If you have IDE or SATA drives, put your hard disks on separate con-
trollers if possible. Many systems now have a hard drive on one IDE controller
and a CD drive on the other. When you add a second hard drive, put it on
the same controller as the CD drive. Most likely, you won’t be using the CD
nearly as often as the hard drive, and this way each drive will have a dedicated
controller.

The base FreeBSD system can fit into 500MB, and stripped-down versions
can fit into 32MB. You’'ll be happiest with at least 5GB of disk space on your
test system, although I’m assuming that you have at least 10GB. Some add-on
software requires far more disk space—building the OpenOffice.org suite,
for example, takes 10GB of /usrall on its own! Again, any hard drive new
enough to be workable will probably be at least that large.

Preinstall Decisions

Before installing your server, decide what you’ll use it for. Is this a web server?
Database server? Network logging server? We’ll discuss the requirements for
each in the appropriate section.

Partitioning

Partitions are logical divisions of a hard drive. FreeBSD can handle different
partitions in different ways, and can even allow different filesystems or dif-
ferent operating systems on different partitions. If you’re doing your first
FreeBSD install, and you really don’t know how you want to partition your
disk, you can just use the automated partitioning suggested by the installer.
If you have more complicated needs, I suggest that you write down your
desired partitioning on a piece of paper before you begin.

Installing FreeBSD 37

38

Chapter 2

Partitioning might seem like a pain. If you’re familiar with some other
Unix-like operating systems, such as some distributions of Linux, you might
want to create a single large root partition and put everything on it. If Windows
or Linux let you dump everything on one big disk, why divide your FreeBSD
disk into smaller, less flexible pieces? What are the advantages of partitioning?

On a physical level, different parts of the disk move at different speeds.
By putting frequently accessed data on the fastest parts of the disk, you
optimize system performance. The only way to arrange this is by using
partitions. On a logical level, FreeBSD handles each partition separately.
This means that you can set each partition to have different operating rules.
Partitions that contain user data should not have setuid programs (programs
that run as root), and you might not want them to have programs at all. You
can enforce that easily with partitions.

If the disk is damaged, chances are the damage is limited to a single
partition. You can boot the system from an intact partition and attempt to
recover data from the damaged partition. With a single large partition, any
damage to that partition becomes damage to your entire system, reducing or
eliminating chances of recovery.

Partitions can limit problems caused by poor system administration.
Unattended programs can completely fill a hard drive with logs. Larger hard
drives don’t mean that the problem takes longer to show up; they just mean
that software writes more logs. While Chapter 19 discusses ways to contain logs,
a full hard drive can even prevent you from connecting to the system to fix the
problem! Partitioning confines such problems to a subset of the system.

Finally, many backup programs—i.e., dump(8)—work at the partition
level. On a production system, you’ll want to set different backup strategies
for different types of data. FreeBSD’s standard partitions are / (root), swap
space, /var, /tmp, and /usr.

/ (root)

The root partition holds the core system configuration files, the kernel, and
the most essential Unix utilities. Every other partition lies “under” the root
partition or is subordinate to it. With an intact root partition, you can boot
the system to the bare-bones single-user mode and perform repairs on the
rest of the system. Your system needs fast access to the root partition, so put it
first on the disk. Because root holds only the basic utilities and configuration
files, it doesn’t need to be large; FreeBSD defaults to configuring 512MB for
a root partition, which is more than sufficient.

Swap Space

The next partition on your drive should be the swap space—the disk space
used by virtual memory. When FreeBSD uses up all the physical RAM, it
moves information that has been sitting idle from memory into swap. If
things go well, your system doesn’t need swap space—but if you do need
swap, it must be fast.

So, how much swap space do you need? This is a matter of long debates
between system administrators. The short answer is, “it depends.” Long-
running wisdom says that you should have at least twice as much swap as you
have physical memory. Long-running wisdom has become obsolete, however,

and the capacity of modern systems has invalidated this rule of thumb.
When a process runs out of control and starts allocating memory (say, in an
infinite loop), the kernel will kill the process once the system runs out of
virtual memory. If your system has 6GB RAM and 9GB swap, this process
will need to consume 15GB of memory before the kernel Kkills it! i386
systems have about 3GB of virtual address space, and they must share that
with the kernel, shared libraries, the stack, and so on. The 1386 platform
limits memory usage to 512MB per process, which means that the kernel
will stop a runaway process fairly quickly. 64-bit systems, like amd64, have
vast virtual memory space and a process could conceivably devour gigabytes
of memory. If a system is thrashing gigabytes of memory between disk and
RAM, it will be unresponsive, slow, and generally troubled. Today, you
should have enough swap to do your work. I recommend provisioning as
much swap space as you have RAM, perhaps even a few megabytes more.

The main use for swap on modern systems is for a dump in case of a
system panic and crash. For maximum safety, you want enough swap space
to dump the entire contents of your RAM to swap. This is a worst-case crash
dump. FreeBSD 7.0 and later defaults to using a kernel minidump, however,
which only dumps the kernel memory. A minidump is much smaller than a
full dump—a system with 8GB RAM has an average minidump size of about
250MB. You can probably get away with only providing 1GB of swap, which
leaves plenty of room for even a bloated kernel minidump.

/tmp

The /tmp directory is the system-wide temporary space, open to all system
users. If you do not create a separate /tmp partition, it will be included on
your root partition. This means that your system-wide temporary space will
be subject to the same conditions as the rest of your root drive. This probably
isn’t what you want, especially if you plan to mount your root partition
read-only.

Requirements for a /tmp directory are generally a matter of opinion—
after all, you can always just use a chunk of space in your home directory as
temporary space, and there’s always the /var/tmp directory if you have large
files that you need to work with temporarily. On a modern hard drive, I like
to have at least 512MB in a /tmp directory. Automated software installers
frequently want to extract files in /tmp, and having to work around these
installers when /tmp fills up is possible but tedious.

On systems where you don’t expect /tmp to use much space (for example,
web servers and database servers), you might want to use a memory filesystem
for /tmp. We’ll discuss memory filesystems in Chapter 8. If you intend to use a
memory filesystem, do not create a separate /tmp partition.

/var

The /varpartition contains frequently changing logs, mail spools, temporary
run files, upgrade files from tools such as portsnap and FreeBSD-update,
and so on. If your server is a web server, your website logs go to this partition.
You might need to make it 2GB or more. On a small “generic” mail server or
web server I'd use a third of my remaining disk space for /var. If the server

Installing FreeBSD 39

40

Chapter 2

handles only email, databases, or logs, I'd kick this up to 70 percent or more,
or just assign sufficient space to the other partitions and throw everything
left on /var. If you're really cramped for space, you might assign as little as
30MB to /var.

Make /varlarger than physical memory. By default, FreeBSD writes crash
dumps to /var/crash. We’ll discuss crash dumps in Chapter 21, but for now,
take my word for it; if you have enough empty space in /var to write the
contents of your physical memory, that will help should you ever start having
serious system trouble.

/usr

The /usrpartition holds the operating system programs, system source code,
compilers and libraries, add-on software, and all the other little details that
make the system actually do anything. Much of this changes only when you
upgrade your system. It also holds users’ home directories, which change
regularly and rapidly. If you have many users, consider creating a separate
/home partition. While you can assign quotas to control disk space, a separate
partition will protect your all-important OS files.

On a modern hard drive, I recommend using at least 6GB for /usr. This
provides enough room to run the operating system, store the main system
source code, and build upgrades to the next version of FreeBSD. On a web
server where users upload website files to their home directories, I suggest
giving this partition the majority of your hard drive.

Other Partitions

Experienced system administrators always have their favorite partitions;
also, some companies have standards on how systems should be partitioned.
Different Unix vendors have attempted to impose their partitioning standards
on the world. You'll see partitions like /opt and /ul on different Unix systems.

If you have a preferred partitioning scheme, use it. You can steer FreeBSD
to install add-on software in a different partition if you like. Or, you can have
users’ home directories in /gerbil if it makes you happy. The best advice 1
have to offer to readers whom I'll never meet and whose systems I will never
log on to is this: You are the one who must live with your partitioning, so
think first!

Multiple Hard Drives

If you have more than one hard drive of comparable quality, and you are not
using them for RAID, you can still make excellent use of them: Put your data
on one hard drive and the operating system on another. One of your parti-
tions will contain the information that makes your server special. Database
servers store their data in /var, so put /var on its own hard drive. If it’s a web
server, put /usr on the second hard drive.

If you have a special function for this server, consider making a private
partition just for that function. There’s nothing wrong with creating a /home,
/www, or /data partition on the second hard drive and dedicating that entire
drive to the system’s primary purpose.

In general, segregating your operating system from your data increases
system efficiency. Like all rules of thumb, this is debatable. But no system
administrator will tell you that this is an actively bad idea.

With multiple hard drives, you can improve the efficiency of your swap
space by splitting it amongst the drives. Put the first swap partition on the
second slot of the drive with your root partition, and the other swap parti-
tions on the first slots of the other drives. This splits reads and writes among
multiple disk controllers and thus gives you some redundancy at the controller
level. Remember, however, that a crash dump must fit entirely within a single
swap partition.

For swap splitting to work best, however, the drives must be SAS or SCSI.
If you have IDE or SATA drives, they must be on different IDE controllers for
best results. Remember that each IDE controller splits its total data throughput
among all the hard drives connected to it. If you have two hard drives on the
same IDE controller and you’re accessing both drives simultaneously, each
disk works, on average, only half as fast as it would work alone on the same
channel. The major bottleneck in using swap space is disk speed, and you
won’t gain anything by creating contention on your IDE bus.

Another option is to gain some resiliency by implementing a software-
based RAID. This provides protection against a hard drive failure by sharing
and mirroring the data amongst multiple hard drives. We discuss FreeBSD’s
RAID features in Chapter 18. Your slices on each drive must be of identical
size to use software RAID. This is easiest to accomplish if all your drives are
the same size, but that’s not strictly necessary.

Partition Block Size

This section describes options that can really impair system performance.

If you’re new to FreeBSD, read this section only for your information—don’t
actually try it! This is for experienced Unix administrators who know exactly
what they’re doing, or at least know enough to be leery of the whole topic.

Block size refers to the size of the filesystem building blocks used to store
files. Each block can be divided into fragments. FreeBSD defaults to 16KB
block sizes (16,384 bytes) and 2KB (2,048 bytes) fragments. Files use a com-
bination of fragments and blocks. For example, a 15KB file would be assigned
to one block, while a 17KB file would be assigned to one block and one frag-
ment. We’ll discuss blocks and fragments in Chapter 18.

If you know exactly what you’re doing, and you want to change the
block size, you can do that in the installer. Be warned that FreeBSD behaves
optimally if each block contains eight fragments; you can choose ratios other
than 1:8 but only at a performance cost.

Installing FreeBSD 41

Y]

Chapter 2

Choosing Your Distribution(s)

A distribution is a particular subset of FreeBSD. You’ll choose one or more
distributions during the installation process. While you can add pieces later,
it’s best and easiest just to make the right choice in the beginning. The
installer offers nine distribution sets:

All This contains absolutely everything that is considered part of
FreeBSD, including the X Window System. (FreeBSD uses the X.org
implentation of X.) If this is a test machine, definitely choose this option.

Developer This includes everything except the games and X.
X-Developer This includes everything except the games.

Kern-Developer This includes the FreeBSD programs and documenta-
tion, but only the kernel source code.

X-Kern-Developer This is the Kern-Developer distribution plus the X
Window System.

User This includes the FreeBSD operating system programs and
documentation only—no source code, no X.

X-User This is the User distribution plus X.

Minimal This contains only the core FreeBSD programs, without
documentation or source code of any sort. This is a good choice if your
disk is really, really small.

Custom Define your own distribution set.

If you’re installing a test machine to learn FreeBSD on, definitely choose
All. An Internet server is probably best served by the User distribution, or
perhaps X-User if you’re already familiar with the X Window System. Power
users might want the Custom distribution.

Games?

Yes, FreeBSD includes very simple games. These are small, text-based games
that were typical on systems of 20 years ago. New users will find the FreeBSD
tips provided by fortune(6) useful, but if you want to play modern games
look in /usr/ports/games and read Chapter 11.

X WINDOW SYSTEM

The X Window System is the standard graphic interface for Unix-like operating
systems. If you expect to sit at the console of your machine on a regular basis and
do day-to-day work, you probably want the X Window System. If you don't expect
to be using this system to browse the Web or perform other graphics-oriented tasks,
you probably don’t need the X Window System. You can always add the X Window
System later.

The FreeBSD FTP Site

Just as the main source of information about FreeBSD is the FreeBSD
website, the main source of FreeBSD itself is the FreeBSD FTP server. You
can purchase CDs of FreeBSD, and while they’re a decent investment, many
people prefer to just use the Internet to grab what they need. Even if you
have a CD, you’ll interact with the FTP servers eventually.

The primary FreeBSD FTP server is fip.freebsd.org, but many servers
mirror it to reduce the load on the primary server and provide speedy,
reliable access. You’ll find a comprehensive list of FreeBSD FTP servers
at http://wwuw.freebsd.org, although you can also pick mirrors easily enough
without the list. Every mirror server has a name following this pattern:

ftp<number>.<country>.freebsd.org

The country code is optional; if there’s no country code, it’s usually
assumed to be in the continental United States. For example, we have
ftp14.freebsd.org, fth2.uk.freebsd.org, fip5.ru.freebsd.org, and so on.

As arule, the FTP mirrors with lower numbers are more heavily loaded
than those with higher numbers. Try a site around fip12.freebsd.org, or some
high-numbered server under your country code, to see if you can get a speedy
connection.

FTP Server Content

Many FreeBSD mirrors also mirror other software, but all FreeBSD content
can be found under /pub/FreeBSD. While the contents of the FTP server vary
over time, let’s take a look at the important files found there:

CERT

ERRATA
I1S0-IMAGES-amd64
IS0-IMAGES-1386
1S0-IMAGES-ia64
ISO-IMAGES-pc98
IS0-IMAGES-ppc
ISO-IMAGES-sparc64
README. TXT
distfiles

doc

ports

releases
snapshots

tools

torrents

Installing FreeBSD 43

44

Chapter 2

Lot of stuff, isn’t it? Fortunately, you don’t have to dig through all this to

get everything you need to install, but a few directories merit particular
attention:

CERT This directory contains all FreeBSD security advisories since the
project’s inception. We’ll discuss security advisories in Chapter 7.

ERRATA This directory contains all errata for different releases of
FreeBSD. We’ll discuss errata in Chapter 13.

ISO-IMAGES All of the directories that begin with ISO-IMAGES con-
tain CD disc images for different architectures of FreeBSD. For example,
ISO-IMAGES-i386 contains ISO images for installing FreeBSD on the
1386 architecture. You can burn these images to CD to perform a CD
install. (See your CD recorder documentation for help in doing so.)

README.TXT These are the various subdirectories on the FTP site
and their contents. You might want to consult this file for the changes
since this book was written.

distfiles This directory contains quite a few source code and binary
files for the many third-party applications that run on FreeBSD. This is
definitely the largest directory on the FreeBSD.org FTP server; don’t just
download everything here or your hard drive might burst.

doc This directory contains the latest set of FreeBSD documentation,
subdivided by language. If you’re reading this book in English, you prob-
ably want the en (English) subdirectory. You’ll find all the articles and
books there in a variety of formats, compressed for easy downloading.

ports Within this directory you’ll find all the infrastructure and pack-
ages for the ports system. We’ll discuss ports in Chapter 11.

releases This directory contains the most recent versions of FreeBSD
released along each development track. Older versions can be found
on the server fip-archive.freebsd.org. We’ll discuss development tracks in
Chapter 13.

snapshots This directory contains recent versions of FreeBSD-current
and FreeBSD-stable. This is where you’ll find the latest testing release of
the bleeding-edge and production versions of FreeBSD.

tools Here you’ll find various Windows programs that can be used to
prepare a multiboot system to run FreeBSD.

torrents BitTorrent users will find this directory useful; it contains tor-
rent seeds for the most recent release (s) of FreeBSD. (If you don’t use
BitTorrent yet, you should check it out.)

Now that you know how to find everything you’ll need, let’s go on to the

install process itself.

WHICH VERSION DO | WANT?

FreeBSD has released many different versions, and more are coming. We'll
discuss FreeBSD versions and release numbers in detail in Chapter 13. In the
meantime, | suggest that you check out http://www.freebsd.org. On its front
page you'll see a note that says Production Release and gives a version number.
Use that version.

The Install Process

One of the more interesting3 parts of a new operating system is figuring out
how to get the OS running on your computer in the first place. On many
modern systems it’s pretty straightforward: throw the CD into the system and
boot from it. However, FreeBSD can be used on systems so old that they don’t
support booting from CD. That’s no problem; you can boot just as well from
floppy disk. FreeBSD can also be used on systems so new that they don’t have
either floppy or CD drives. What then?

Any OS installation process has three parts: booting the installer program,
accessing the installation media, and copying the software onto the hard
drive. Even a Windows installer boots a “mini-Windows” to install Windows
proper. FreeBSD provides options for each of these stages. Once your com-
puter is booted and you have a usable installation media, running through
the program to install the software to disk is straightforward.

Choosing Boot Media

If you have a system that boots from CD, this is probably the easiest way to go.
You can get FreeBSD CDs from a variety of vendors or from the FTP site. Make
sure that your computer’s BIOS is set to boot from CD before the hard disk
and reboot your computer with the FreeBSD disc in the CD drive. If you need
help with configuring your computer’s BIOS, check the manufacturer’s
documentation.

If your computer cannot boot from CD but can boot from floppy disk,
download floppy disk images from the Internet and boot from those. Many
older computers have CD drives that will not work as boot devices, but once
the system is running you can use them for installation media.

Some modern computers have neither a floppy disk nor a CD drive. This
is often the case with small rackmount servers, where space is expensive. With
such a system, you can either install a CD drive or use PXE installation, as
discussed in Chapter 20. (PXE installation requires bootstrapping from an
existing FreeBSD machine, however.)

% The ancient Chinese curse “May you live in interesting times” certainly applies here.

Installing FreeBSD 45

46

Chapter 2

NO REMOVABLE-MEDIA DRIVES?

If your soon-to-be-FreeBSD machine lacks both a CD drive and a floppy, doesn't

have the power cables or physical space to install a CD drive, cannot boot off a USB
device for whatever reason, and you don't yet have the knowledge to set up a PXE
installer (this is a lot of “ifs,” but a whole slew of older small rackmount servers fit this
description), don’t despair. You can get a CD drive on your computer for the install.

The safest thing to do is remove your hard drive and install it on a system with a
removable-media drive. Unlike some other operating systems, FreeBSD will let you
install on one machine and run on another.

If that's not an option, here’s a trick I've used more than once. (It might electrocute
the hardware or yourself, and will certainly invalidate your warranty. The author is
not responsible for barbecued hardware or system administrators!)

Find an old computer running any operating system with an IDE CD drive. Put the
old machine next to your FreeBSD box, unplug it, and open the case. Open the case
of your FreeBSD machine. On the old computer, detach the CD drive’s IDE cable at
the controller end. Leave the power attached to the CD drive. Attach the dangling IDE
cable from the old machine to an open port on your FreeBSD system'’s IDE controller.
Turn on the old computer; the CD will power up even though it's not attached to the
old computer’s IDE controller. Now turn on the new computer, and it will pick up the
CD as an attached device.

After the install, put everything back just the way you found it, and nobody will
ever know.

Choosing Installation Media

The two most common sources of installation media are CD and FTP.

CDs are great when you have many machines to install and these machines
have CD drives. They're fast and easy, and work even if the network is down.
A variety of vendors produce FreeBSD CDs and DVDs. iX Systems, in par-
ticular, has supported FreeBSD for many years, and recently purchased
FreeBSD Mall, the original producer of FreeBSD CDs. The DVD sets have far
more content, including many files that can be downloaded separately from
the Internet, but the CD sets have everything you truly need. From now on
I’'m going to only mention CDs, but everything that applies to a CD is also
true of a DVD. If you don’t want to purchase a CD, you can fetch an ISO
image from the FreeBSD FTP server and burn it to CD yourself.

Several dozen FTP servers carry FreeBSD ISO images, installation media,
and related materials. The FreeBSD installer can FTP the software directly
from these servers. To use the FTP installation method, however, you must
have a working Internet connection, and the installation speed will be largely
dependent upon the network between you and your chosen FTP server.
There is also a chance that an intruder has hacked into the FTP server and
uploaded a bad version of FreeBSD for the unsuspecting public, but the

FreeBSD team watches carefully for such events and deals with them swiftly.
The FreeBSD release team also provides cryptographic checksums for every
release in the release announcement, which you can use to verify releases.

Preparing Boot Floppies

You will need several floppy disks (four as of this writing, but possibly more in
the future). Find the release directory for the architecture and version you
want to install. You’ll find a floppies subdirectory there. For example, for an
1386 system and FreeBSD release 7.0, look in fip://fip. freebsd.org/pub/freebsd/
releases/i386/7.0-RELEASE/ floppies. (You’ll also find this directory in the root
directory of a FreeBSD CD.) You’'ll find several files with the .flp extension,
one named boot.flp and several numbered kernX.flp files, such as kernl.flp and
kern2.flp. These files are floppy disk images. Download them all.

You need to put these images onto floppy disks. The catch is, you cannot
use basic file-level copying, such as drag-and-drop in Windows. An image file
must be copied onto the disk in a particular way.

If you’re already running a Unix-like system, the dd(1) command does
everything you need. You’ll need to know your floppy drive’s device name,
which is probably /dev/fd0, /dev/floppy, or /dev/rfd0. If the device name is
/dev/fd0, as it is on BSD systems, you’d enter

dd if=kerni.flp of=/dev/fdo

to write the kernl.flpimage to the floppy disk. Copy each disk image to a
separate floppy disk.

If you’re running Microsoft Windows, you’ll need a special utility to copy
disk images. Microsoft doesn’t provide one, but FreeBSD does, and you’ll
find it in the tools subdirectory of the main site. It’s called fdimage.exe.

This is a free Windows program to copy disk images, and it’s quite easy to
use. It takes only two arguments: the name of the image file and the name of
the drive the disk is in. For example, to copy the image boot.fIp to the floppy
in your a: drive, open a DOS prompt and enter the following:

c:> fdimage boot.flp a:

Once the floppy drive finishes churning (which may take a while), repeat
the process for all other disk images you have downloaded.

Preparing Boot CDs

If you’ve purchased an official FreeBSD CD, your install media is ready. If

not, you need to choose an ISO image from the FTP site and burn it. The first
step is to find your image directory. Go to the FTP site and choose the ISO
image for your architecture. In that directory you’ll find a directory for each

Installing FreeBSD 47

48

current release. For example, ISO images for FreeBSD 7.0 for 1386 can be
found at ftp://fip. freebsd.org/pub/freebsd/ISO-IMAGES-i386/7.0. You'll find
multiple images there.

The name of an ISO image is composed of the release number, the label
RELEASE, the architecture, and a comment, all separated by hyphens. For
example, these are the names of the ISO images available for 7.0:

7.0-RELEASE-1386-bootonly.iso
7.0-RELEASE-i386-disc1.iso
7.0-RELEASE-i386-disc2.iso

The image labeled discI contains the entire FreeBSD distribution, the
X Window System, a few basic packages, and a live filesystem that can be used
to perform repairs when your server goes bad.

The image labeled disc2 contains the most popular pieces of software for
FreeBSD precompiled and ready for use with this release.

The bootonly image boots the FreeBSD installer so that you can do an FTP
install. Many people ask, “If you already have a CD drive, why would you want
to do an FTP install?” The standard FreeBSD ISO image contains a lot of stuff.
If you’re not installing the full distribution, you won’t need a lot of it. Not
everyone has unlimited, unmetered bandwidth on tap.4

Once you’ve chosen your image, burn it to CD. CD burning methods vary
widely among operating systems; even within the Unix-like world, different
operating systems have chosen different ways to burn CDs. On Windows,
many CD burning programs are available, such as Nero and Stomp. Here’s
how you would burn an image to disc on a FreeBSD system with a standard
IDE CD burner:

burncd -f /dev/acdo data imagename fixate

Check your operating system’s instructions on burning an image file to
physical media. Be sure to burn this file as an image, not as a regular file.
One clear hint that you’re doing it wrong is if your burning software complains
that the file won’t fit on a single CD. The image file will overflow a single CD
if you’re burning it as a regular file, but not if you burn it as an image.

FTP Media Setup

Chapter 2

If you’re installing from CD, the install media is ready—it’s the same disk
you’re booting from. But to do an FTP install, you must choose an FTP server
and understand how to connect your machine to the local network.
Choosing an FTP server is half guesswork. Find the list of FTP mirror
sites and start pinging them. You’re looking for an FTP server with low ping
times—that’s a good sign that it’s fairly accessible from your location. Once
you have a couple of candidates, FTP to them from your desktop machine.

* And those of us who do have it must learn to refrain from taunting those of you who don’t.

See how responsive they are. Pick one that feels snappy, and make sure that
it has the release you want to install. Take note of the FTP server’s name for
use in the install process.

If your local network uses Dynamic Host Configuration Protocol (DHCP)
to assign IP addresses and other network information, you’re ready to go.
Otherwise, if your network administrators assign IP addresses by hand, get
the following information from them:

¢ IP address for your FreeBSD system

¢ Netmask for your FreeBSD system

¢ IP addresses of nameservers for your network
¢ [P address of your default gateway

¢ Proxy server information (if necessary)

Without this information—and without DHCP—you will be unable to
connect to a network to perform an FTP install.

Actually Installing FreeBSD

Now that you’ve made all the decisions about how you’re going to install
FreeBSD, all that remains is the grunt work of walking through the installer.
Put your boot media in the drive and power up the computer. You’ll see a
series of startup screens and system debugging information, which we cover
in Chapter 3.

The first menu you see will offer you a chance to choose your keyboard
layout. This includes a list of all the keyboard maps supported by FreeBSD.
Note that this does not affect the language of the installer, merely the key-
board layout.

FreeBSD next presents you with the first installation screen (Figure 2-1).

Welcome to the FreeBSD installation and configuration tool. Please
select one of the options below by using the arrow keys or typing the
first character of the option name you're interested in. Inuvoke an
option with [SPACE] or [ENTER]. To exit, use [TAB] to move to Exit.

Quick start — How to use this menu systen

Begin a standard installation (recommended)
Begin a gquick installation (for experts)
Begin a custom installation (for experts)
Do post-install configuration of FreeBSD
Installation instructions, README, etc.
Select keyboard type

ViewsSet various installation options
Repair mode with CDROM-DUD-floppy or start shell
Upgrade an existing system

Load default install configuration
Glossary of functions

| Usage]
3
E
c
D
K
0
F
u
L
I

[Select 1 ¥ Exit Install

Figure 2-1: The main sysinstall screen

Installing FreeBSD 49

50

Chapter 2

This is sysinstall(8), the notoriously ugly FreeBSD installer. While other
operating systems have pretty graphical installers with mouse-driven menus
and multicolor pie charts, FreeBSD’s looks like an old DOS program. While
replacements have been promised time and time again, as I write this it looks
like sysinstall will be with us for the foreseeable future.

Use the spacebar to select options from sysinstall menus, not the
ENTER key.

Use the arrow keys to go down to the Standard installation, and press
ENTER. You'll see the fdisk warning with some simple instructions (Figure 2-2).

In the next menu, you will need to set up a DOS—style ("fdisk") partitioning
schene for your hard disk. If you simply wish to deuvote all disk space
to FreeBSD (overuriting anything else that might be on the disk(s) selected)
then use the (A)1]l command to select the default partitioning scheme folloued
by a ((Juit. If you wish to allocate only free space to FreeB5D, move to a
partition marked “"unused"” and use the (Clreate command.

(100:2)

Figure 2-2: The fdisk instructions

Skim the instructions to be sure they haven’t changed since this was
printed, and then press ENTER.

If you have multiple hard drives, FreeBSD will let you choose which drive
you want to install on. Press the spacebar to select a drive (Figure 2-3).

Please select the drive, or drives, on vhich you wish to perforn
this operation. If you are attempting to install a boot partitiom
on a drive other than the first one or have nultiple operating
systems on your machine, you will have the option to install a boot
nanager later. To select a drive, use the arrow keys to nouve to it
and press [SPACE] or [ENTER]1. To de-zelect it, press it again.

Use [TAB] to get to the buttons and leave this menu.

[14 dad

ONIEE Cancel

Figure 2-3: Selecting an installation drive

Some hard drives will flash up a scary-looking warning about disk
geometry at this point. It is not a concern on most modern hardware. We will
talk about disk geometry in Chapters 8 and 18; you can look there if you’re
interested. Just press ENTER to continue to the fdisk screen (Figure 2-4).

Disk name: FDISK Partition Editor|
DISK Geometry: 19457 cylsrs255 heads-63 sectors = 312576705 sectors (152625MB)

Size(ST) End Name PType Desc Subtype Flags

0 312581808 312581807 = 12 unused 0]

following commands are supported (in upper or lower case):
= Use Entire Disk = set Drive Geometry C = Create Slice F ‘DD’ mode

]
Delete Slice Z = Togyle Size Units 5 = 3et Bootable 1 Wizard m.
Change Type U = Undo All Changes W = Urite Changes

F1 or 7 to get more help, arrow keys to select.

Figure 2-4: The fdisk menu

Here you determine how much of your hard drive you want to use for
FreeBSD. For a server, you want to use the entire hard drive. Press A to
allocate the whole hard drive to FreeBSD, and then press Q to finish. The
installer will drop you into the MBR selector, shown in Figure 2-5.

FreeBSD comes with a boot selector that allows you to easily

select between FreeBSD and any other operating systems on your machine
at boot time. If you have more than one drive and want to boot

from the second one, the boot selector will also make it possible

to do so (limitations in the PC BIOS usually prevent this otheruise).
If you do not want a boot selector, or wish to replace an existing
one, select “standard”. If you would prefer your Master Boot

Record to remain untouched then select "None".

NOTE: PC-DOS users will almost certainly require "Mone"t

B Install the FreeBSD Boot Manager

andar nstall a standar no boot manager
tandard@Install tandard MBR (no boot ger)
N Leave the Master Boot Record untouched

ONIEE Cancel

Figure 2-5: The MBR installer

Installing FreeBSD 51

52

Chapter 2

Arrow down to Standard, then TAB to highlight OK. This installs a
standard master boot record (MBR), which removes any existing boot
manager that your computer could use if it booted any other operating
system. (We’'re building Internet servers and won’t be sharing the hard
drive with, say, Windows Vista.) Press ENTER to proceed.

If you have multiple hard drives, the installer will return you to the hard
drive selection screen. Choose your next hard drive, or use the TAB key to
take you down to the OK button and proceed to the next step of the install;
sysinstall then displays instructions for using the partitioning tool (Figure 2-6).

Now you need to create BSD partitions inside of the fdisk partition(s)
just created. If you have a reasonable amount of disk space (1GB or more)
and don’t have any special requirements, simply use the (Aluto command to
allocate space automatically. If you have more specific needs or just don't
care for the layout chosen by (Aduto, press F1 for more information on
manual layout.

(100:2)

Figure 2-6: Partitioning instructions

Read the instructions to be sure they haven’t changed since this was
printed, then press ENTER to continue.

You should now have the partitioning menu. We talked about partition-
ing earlier in this chapter, and you should have already made your decisions
on how to partition your drive. This is where you implement your choices
(Figure 2-7).

To take FreeBSD’s default, generic partition recommendations, press A.
Otherwise, press C to create a partition. You’ll get a box asking for the size of
your partition. Enter the desired partition size, using M for megabytes and G
for gigabytes. The installer will then ask you if this is a filesystem or a swap
space. If you say it’s a partition, it will ask you for the partition mount point
(/, /usr, /var, and so on).

When you have created all your partitions, press Q to exit the partition
editor.

FreeBSD Disklabel Editor

Disk: adO Partition name: ad0sl Free: 0 blocks (OMB)

Mount Size Newfs Part Mount Size Newfs

512MB UFSZ Y
405ZMB SUAP
3050MB UFSZ+3 Y

512MB UFSZ+3 Y

141GB UF32+3 Y

following commands are valid here (upper or lower case):

Create D = Delete M = Mount pt. W = Urite

Newfs Opts Q = Finish 3 = Toggle SoftUpdates Z = Custom Neuwfs
Toggle Newfs U = Undo A = Auto Defaults R = Delete+Merge

F1 or 7 to get more help, arrow keys to select.

Figure 2-7: The partition editor

Now you’ll be asked for an installation source (Figure 2-8).

FreeBSD can be installed from a variety of different installation
media, ranging from floppies to an Internet FIP seruver. If you're
installing FreeBSD from a supported CD/DUD drive then this is generally
the best media to use if you have no overriding reason for using other
media.

Install from a FreeBSD CD-DUD

Install from an FTP server

Install from an FTP server through a firewall
Install from an FTP server through a http proxy
Install from a DOS partition

Install over NF3

Install from an existing filesystem

Install from a floppy disk set

Install from SCSI or QIC tape

Go to the Options screen

000 -] N L

ONCEE Cancel

Figure 2-8: Installation media choices

Arrow down to highlight your installation media, and press ENTER to
select it. FreeBSD will either spin up your CD to confirm it’s usable, ask you
to select your FTP server, or ask you to configure whatever other installation
media you’ve chosen. I recommend using either FTP or CD.

Installing FreeBSD 53

54

Chapter 2

The next menu asks how much of FreeBSD you would like to install
(Figure 2-9). While FreeBSD offers many stripped-down versions for limited
hard drives, these days hard drives are much, much larger than FreeBSD.
On a vaguely modern machine I recommend always installing everything,
especially if you're just learning about FreeBSD. Arrow down to highlight All
and use ENTER to select it.

fis a convenience, we prouide several "camned" distribution sets.

These select what we consider to be the most reasonable defaults for the
type of system in question. If you would prefer to pick and choose the
list of distributions yourself, =simply select “"Custom”. You can also
pick a canned distribution set and then fine-tune it with the Custom item.

Choose an item by pressing [SPACE] or [ENTER]. When finished, choose the
Exit item or move to the OK button with [TABI.

Exit this menu (returning to previous)

All system sources, binaries and X Window System
Reset selected distribution list to nothing

Full sources, binaries and doc but no games

Same as above + X Window System

Full binaries and doc, kernel sources only

Same as above + X Window System

Average user — binaries and doc only

-
— e e
(== = - =

ONCEE Cancel

Figure 2-9: Choosing a distribution set

sysinstall then asks if you want to install the Ports Collection. You do,
even though you don’t know what it is yet. Select Yes.

You’ll be brought back to the distribution selection menu. Arrow up to
Exit this menu and press ENTER.

sysinstall offers you a last chance to change your mind before installing.
Once you say Yes, install, sysinstall will format your hard drive, your CD drive
will light up, and in a few minutes you’ll have a FreeBSD install.

The installer will then ask several questions to set up basic system services
for you.

Configuring the Network

The installer asks if you want to set up a network device. Say Yes.

You’ll get a whole choice of network interfaces to configure (Figure 2-10).
Yes, FreeBSD can run TCP/IP over FireWire! It can also run TCP/IP over a
parallel port. Neither is terribly common, but it can be done. Look for an
entry that looks like an Ethernet card and choose it. In Figure 2-10, we see
an Intel EtherExpress Pro/100B PCI Fast Ethernet card that looks about right.
Scroll down and press ENTER to configure it.

If you are using PPP over a serial device, as opposed to a direct
ethernet commection, then you may first need to dial your Internet
Service Provider using the ppp utility we provide for that purpose.
If you're using SLIP ouver a serial deuvice then the expectation is
that you have a HARDWIRED comnection.

You can also install over a parallel port using a special "laplink"
cable to another machine ruming FreeBSD.

FireWire Ethernet emulation

IP over FireWire

Intel EtherExpress Pro-100B PCI Fast Ethernet card
Lucent WaveLAN-IEEE 802.11 wireless adapter

SLIP interface on device ~devscuad® (COM1)

PPP interface on device rsdev-cuad® (COM1)

ONCEE Cancel

Figure 2-10: The network interfaces menu

You’ll be asked if you want to try IPv6 configuration of this interface. You
probably don’t. You’ll then be asked if you want to try DHCP configuration.
As this is a server, you probably don’t. This will take you to the Network Con-
figuration screen shown in Figure 2-11.

Network Configuration 7

Host: Domain:
IPud Gateway: Name seruver:

= a0 B

Configuration for Interface fxpO
IPu4 Address: Netmask:

S|

Extra options to ifconfig (usually emptyl:

|
CANCEL |

]

Figure 2-11: Network configuration

Here you fill in your hostname and domain name, as well as the network
information you got from your network administrator.

Even if you use DHCP configuration, you must still set a host and a
domain. Otherwise, your system will boot calling itself Amnesiac. (You can
use a DHCP server to set a hostname, but that’s an advanced topic most
environments aren’t equipped to provide.)

Installing FreeBSD 55

56

Chapter 2

Miscellaneous Network Services

The installer then asks you several questions related to the system function.
Unless you are an experienced system administrator, you don’t want most of
these functions to start. We will enable some of them as we proceed through
the book. Once you understand the systems described, you can enable them
for later installs.

For example, the installer asks if this is a network gateway, or if you want to
configure inetd. Answer No to both. When asked if you want to enable SSH
login, say Yes—that is a secure, safe service required on almost all systems.
Do not enable the anonymous FTP server, the NFS server, the NFS client,
or customize syscons at this time.

Time Zone

The installer prompts you to set your time zone. You’ll be asked if the system
clock is set to UTC: Answer No and walk through the screens presented.
You’ll be asked to choose a continent, a country, and then a time zone.

Linux Mode

Now the installer will ask you if you want to enable Linux mode. I suggest you
answer No at this point. If you need Linux mode, we’ll learn how to activate
itin Chapter 12.

PS/2 Mouse

USB mice work automatically, but PS/2 and older mice need special setup.
The installer will offer to set up a PS/2 mouse for you. If you have a standard
two- or three-button PS/2 mouse plugged in, answer Yes and choose Enable
from the menu. You should see a mouse pointer on your screen, and it
should wiggle when you move it.

sysinstall will ask if your mouse is working. If the mouse pointer wiggles
when you move the mouse, you can answer Yes. In all honesty, I haven’t had
a PS/2 mouse fail on me in the last 10 years. Older types of mice can be
difficult, but are increasingly uncommon.

Adding Packages

The installer asks if you want to install any additional software packages.
If you’re an experienced system administrator, you probably know what
software you want to install. You probably have a favorite shell, and it’s
probably not installed on FreeBSD by default.

FreeBSD divides software packages into categories. Find the category
that you think should include your desired software, and select the category
to bring up a list of all the software on your install media in that category.
Find the software you want, and press the spacebar to select it. For example,

to install the popular Bash shell, scroll down to the Shells category, press
ENTER, scroll down to Bash, and press the spacebar. Then press ENTER to go
back to the Package Selection menu.

When you have chosen all the packages you want to install, return to
the main Package Selection menu. Press TAB to move the cursor from OK to
Install, then press ENTER. Your system will install the selected packages.

Adding Users

Whenever possible, you should do everything while signed on as a regular
user and only use the root account when you must change the system. That
will happen frequently at first, but will grow less common as time passes.
Before you can sign on as a regular user, however, you must create a regular
user account. The installer gives you a chance to create users during the
installation process. Say Yes when asked and you’ll see Figure 2-12.

User and Group Management
Add a new user

Login ID: UID: Group: Passuword:

| = |

Full name: Member groups:

User &]]

Home directory: Login shell:

sbinssh

(1) 4 | CANCEL |

Figure 2-12: Adding a user

Your first selection in this screen should be the Login ID, or username.
Your company might have a standard for usernames. I prefer the first and
middle initial and full last name (not using the middle initial creates a
surprising number of duplicates).

FreeBSD assigns the UID.

The FreeBSD default is to have the user in a group of the same name as
the username; for example, the user mwlucas is automatically in the group
mwlucas. Experienced system administrators can change this.

Full nameis the user’s full name. Other system users can see this name
when they log in, so don’t set it arbitrarily. I've seen new system administrators
get in trouble when they give a customer a full name of, say, Pain in the
Tuckus.

Installing FreeBSD 57

58

Chapter 2

Member groups is just a list of other system groups this account is part of. If
you want this user to be able to use the root password and become root, add
the group wheel in the Member groups space. Only system administrators
need to be in the wheel group.

The Home directory is where the users’ files are kept. The default is
generally fine.

Finally, choose a shell for your new user. Older admins and greybeards-
in-training frequently prefer /bin/sh. The examples in this book are written in
the BSD standard shell /bin/tcsh, which I find a very friendly shell. If you have
a preferred choice, use it.

Select OK when you’re done to create your user.

Root Password

Now the installer tells you to set your root password. If your machine doesn’t
have a root password, anyone can log in without using any password. As root
has absolute control over your hardware and software, this would be bad.
FreeBSD will ask you to enter your root password twice. Remember your root
password, as recovering it is a bit of an annoyance. We talk about the root
password and security in Chapter 7.

Post-Installation Setup

Finally, you’re asked if you want to do any post-installation setup of your
FreeBSD server. The FreeBSD Configuration Menu (Figure 2-13) provides
an easy way to do basic initial setup on your computer.

If you've already installed FreeBSD, you may use this menu to customize
it somewhat to swit your particular configuration. Most importantly,
you can use the Packages utility to load extra "3rd party”

software not provided in the base distributions.

Exit this menu (returning to previous)

Install additional distribution sets
Install pre-packaged software for FreeBSD
Set the system manager’s password

The disk Slice (PC-style partition) Editor
The disk Label editor

Add user and group information

Customize system console behavior

Set which time zone you're in

Change the installation media type
Configure your mouse

Configure additional network services

ONCEE Cancel

Figure 2-13: Postinstallation configuration

Restart!

In this menu you’ll be able to enable or disable everything the installer
asked during earlier parts of the install, as well as set all sorts of interesting
network functions. If you have an NTP server on your network, for example,
you can use the menus here to enable it on your FreeBSD machine. We will
see how to enable all of these services later in this book, but if you already
know what you’re doing you can configure them here as well.

Once you've finished your post-install configuration, go back to the main
sysinstall menu and select Exit. Your computer will then reboot into a fully
installed FreeBSD system, ready to perform all of the examples in this book.
If you want to use sysinstall(8) later to configure your system, you can
run it at any time. By the end of this book, you’ll learn how to do everything
that sysinstall can do quicker and more flexibly at the command line.
Now let’s see what actually happened at that reboot.

Installing FreeBSD 59

START ME UP!
THE BOOT PROCESS

While FreeBSD will boot easily and auto-
matically when you turn on the power,
understanding exactly what happens at each
stage will make you a better system administrator.

Intervention during the boot process is rarely necessary,
but one day you’ll be glad you know how to do it. And once you’re comfortable
with adjusting the boot process, you’ll find you can solve problems you’ve
previously accepted and endured.

We’ll start by discussing how the system loader starts, then look at some
interesting changes you can make and the information you can gather from
the boot loader’s command line, including booting alternate kernels and
starting in single-user mode. We’ll cover serial consoles, a standard system
management tool. The FreeBSD multi-user startup process is responsible for
starting all the various services that make your computer useful, and we’ll
give attention to that as well. In addition, we’ll cover the information FreeBSD
records about the boot process and how FreeBSD turns itself off without
corrupting data.

62

RECURSION WARNING!

Some of the topics in this chapter reference material found in later chapters. Those
later chapters, in turn, require that you understand this chapter first. There’s no good
place to begin learning. If you don't quite understand a part of this chapter, just skim
over it and continue reading; it really will coalesce in your mind as you proceed.

The boot process itself can be divided into three main parts: the loader,
single-user startup, and multi-user startup.

Power-On and the Loader

Chapter 3

Every 1386 computer has a Basic Input/Output System (BIOS) with just
enough brains to look for an operating system somewhere on a disk. (Other
hardware platforms have console firmware or bootroms that perform the
same function.) If the BIOS finds an operating system on a disk, it hands
control of the computer to that operating system. If the BIOS doesn’t find
an operating system, it complains and gives up. Most BIOSes are rather dumb
and can only recognize operating systems by very simple indicators. The boot
blocks are sections of the disk that are specifically designed to be recognized
as an operating system by the BIOS. On those boot blocks, FreeBSD installs
software that is only smart enough to load the main FreeBSD startup program,
loader(8). The loader presents you with a FreeBSD logo on the right and a
menu of seven options on the left. These are the options:

Boot FreeBSD [default]

Boot FreeBSD with ACPI disabled
Boot FreeBSD in safe mode

Boot FreeBSD in single-user mode
Boot FreeBSD with verbose logging
Escape to loader prompt

Reboot

N o Otk o=

If you wait 10 seconds, the loader will automatically boot FreeBSD by
default. Several other options are only needed for debugging or trouble-
shooting. While you don’t have to memorize all these options, you should be
comfortable with using the basic ones when required.

Boot FreeBSD with ACPI disabled
ACPI is the Advanced Configuration and Power Interface, an Intel/
Toshiba/Microsoft standard for configuring hardware. It replaces the
legacy standards APM (Advanced Power Managementl), PnPBIOS, the
MP table, the $PIR table, and a whole bunch of other standards even

! The lesson here is: Never name anything advanced. One day, it won’t be.

more obscure. We discuss ACPI in Chapter 5. ACPI provides many
benefits to modern hardware, but some hardware has troublesome
ACPI implementations. On the other hand, much new SMP hardware
absolutely requires ACPIL.

If your newly installed system will not boot normally, try booting it
with ACPI disabled. If your system has worked well for some time, but
suddenly has trouble booting, disabling ACPI probably won’t help.

Boot FreeBSD in safe mode
FreeBSD’s safe mode turns on just about every conservative option in the
operating system. ATA hard disks run without DMA or write caching,
limiting their speed but increasing their reliability by working around
cabling issues and other physical problems. EISA slots are not probed,
and ACPI is disabled. On 1386 systems, SMP is disabled. USB keyboards
will no longer work in single-user mode. This option is useful for disaster
recovery and debugging older or otherwise troublesome hardware.

Boot FreeBSD in single-user mode
Single-user mode is a minimal startup mode that is very useful on damaged
systems, even when the damage was self-inflicted. It’s the earliest point
where FreeBSD can provide a command prompt, and is important
enough to have its own section later in this chapter.

Boot FreeBSD with verbose logging
FreeBSD learns a lot about a computer as it boots. Much of this informa-
tion is irrelevant to day-to-day use, but very helpful when debugging.
When you boot in verbose mode, FreeBSD prints all the details it can
about every system setting and attached device. (This information will
be available afterwards in /var/run/dmesg.boot, as discussed later in this
chapter.) You might try verbose mode once on each of your machines,
just to glimpse the complexity within your computers.

Escape to loader prompt
The loader includes a command-line interpreter, where you can issue
commands to tweak your system to boot exactly the way you need. We’ll
cover this in detail in “The Loader Prompt” on page 66.

Reboot
Once more, this time with feeling! Of these options, the most important
are single-user mode and the loader prompt.

Single-User Mode

FreeBSD can perform a minimal boot, called single-user mode, that loads the
kernel and finds devices but doesn’t automatically set up your filesystems,
start the network, enable security, or run any standard Unix services. Single-
user mode is the first point at which the system can possibly give you a
command prompt, however, and you can perform any or all of those non-
automated activities yourself.

Start Me Up! The Boot Process 63

64

Chapter 3

When you choose a single-user mode boot, you’ll see the regular system
startup messages flow past. Before any programs start, however, the kernel
offers you a chance to choose a shell. You can enter any shell on the root
partition; I usually just take the default of /bin/sh, but use /bin/tcsh if you
prefer.

Disks in Single-User Mode

In single-user mode, the root partition is mounted read-only and no other
disks are mounted. (We’ll discuss disks and filesystems in Chapter 8, but for
now just follow along.)

Many of the programs that you’ll want to use are on partitions other than
the root, so you’ll want them all mounted read-write and available. To make
sure that your filesystems are in a usable state, run the following commands:

fsck -p
mount -a

The fsck(8) program “cleans” the filesystems, confirms that they are
internally consistent and that all the files that a disk thinks it has are actually
present and accounted for. Make the filesystems accessible with mount(8).

The -a flag mounts every filesystem listed in /etc/fstab (see Chapter 8),
but if one of these filesystems is causing your problems, you can mount the
desired filesystems individually by specifying them on the command line
(for example, mount /usr). If you’re an advanced user with NFS filesystems
configured (see Chapter 8), you’ll see error messages for those filesystems at
this point because the network isn’t up yet.

If you have trouble mounting partitions by name, try using the device
name instead. The device name for the root partition is probably either
/dev/ad0Os1a (for IDE disks) or /dev/daOs1a (for SCSI disks). You’ll also need to
specify a mount point for this partition. For example, to mount your first IDE
disk partition as root, enter the command:

mount /dev/adosia /

If you have network filesystems on your server but your network is not yet
up, you can mount all your local partitions by specifying the filesystem type.
Here, we mount all of the local filesystems of type UFS, FreeBSD’s default
filesystem type:

mount -a -t ufs

Programs Available in Single-User Mode

The commands available for your use depend on which partitions are
mounted. Some basic commands are available in /bin and /sbin, on the root
partition, and are available even if root is mounted read-only. Others live in

NOTE

NOTE

NOTE

/usrand are inaccessible until you mount that partition. (Take a look at /bin
and /sbin on your system to get an idea of what you’ll have to work with
when things go bad.)

If youve scrambled your shared library system (see Chapter 12), none of these programs
will work. If you’re that unlucky, FreeBSD provides statically-linked versions of many
core ulilities in the /rescue directory.

The Network in Single-User Mode

If you want to have network connectivity in single-user mode, use the shell
script /etc/netstart. This script calls the appropriate scripts to start the network,
gives IP addresses to interfaces, and enables packet filtering and routing. If
you want some, but not all, of these services, you’ll need to read that shell
script and execute the appropriate commands manually.

Uses for Single-User Mode

In single-user mode, your access to the system is only limited by your
knowledge of FreeBSD and Unix.

For example, if you’ve forgotten your root password you can reset it
from single-user mode:

passwd

Changing local password for root
New Password:

Retype New Password:

#

Note that you weren’t asked for the old root password. In single-user mode, you'’re auto-
malically root, and passwd(8) doesn’t ask root for any password.

Or, if you find that there’s a typo in /etc/fstab that confuses the system
and makes it unbootable, you can mount the root partition with the device
name, then edit /etc/fstab to resolve the issue.

Or, if you have a program that panics the system on boot and you need
to stop that program from starting again, you can either edit /etc/rc.conf to
disable the program, or just set the permissions on the startup script so that
it cannot execute.

chmod 444 /usr/local/etc/rc.d/program.sh

We’ll discuss third-party programs (ports and packages) in Chapter 11.

There’s a reason all of these examples involve recovering from human errors. Hardware
Jailures are not common, and FreeBSD failures even less so. If it wasn’t for human
error, our compulers would almost never let us down. As you learn more about FreeBSD,
you ll be more and more capable in single-user mode.

Start Me Up! The Boot Process 65

66

We'll refer to single-user mode throughout this book, but for now, let’s
look at the loader prompt.

The Loader Prompt

The loader prompt is a small computing environment that allows you to
make basic changes to your computer’s boot environment and the variables
that must be configured early in the boot process. When you escape to a
loader prompt (option 6 in the boot menu), you’ll see the following:

0K

This is the loader prompt. While the word OK might be friendly and
reassuring, it’s one of the few friendly things about the loader environment.
This is not a full-featured operating system; it’s a tool for configuring a system
boot which is not intended for the ignorant nor the faint of heart. Any changes
you make at the loader prompt only affect the current boot. To undo changes,
reboot again. (We’ll see how to make loader changes permanent in the next
section.)

To see all the commands available to the loader, enter a question mark.

oK ?

Available commands:
heap show heap usage
reboot reboot the system

bcachestat get disk block cache stats

The first three commands in the loader, listed above, are pretty much
useless to anyone except a developer. Instead, we’ll focus on the commands
useful to a system administrator.

To view the disks that the loader knows about, use 1sdev.

0K lsdev
® cd devices:
disk devices:
disko: @BIOS drive C:
©diskosia: FFS
diskosib: swap
diskosid: FFS
diskosie: FFS
diskos1if: FFS
diski: @BIOS drive D:
diskisia: FFS
diskisib: swap
pxe devices:

The loader checks for CD drives @ and doesn’t find any. (The loader
will only find CD drives if you boot from a CD, so don’t be alarmed at this.)
It finds two hard drives, known to the BIOS as drives C ® and D ®. It then

Chapter 3

describes the partitions it finds on these hard drives. As we’ll see in Chapter 8,
the root partition generally ends in a. This means that the only root partition
here is shown as diskosia @. On an unfamiliar system that’s having trouble
booting, you might find this knowledge useful.

The loader has variables set within the kernel and by a configuration file.
View these variables and their settings with the show command.

0K show

LINES=24
acpi_load=YES
autoboot_delay=NO

The spacebar advances to the next page. These values include IRQ and
memory addresses for old ISA cards, low-level kernel tunables, and informa-
tion gleaned from the BIOS. We’ll see a partial list of loader variables in
“Loader Configuration” on page 69, and additional values will be brought
up throughout the book in the appropriate sections.

You can change these values for a single boot with the set command. For
example, to change the value console to comconsole, you would enter:

0K set console=comconsole

By the time the loader gives you a command prompt, it has already
loaded the system kernel into memory. The kernel is the heart of FreeBSD
and is detailed in Chapter 5. If you’ve never worked with a kernel before, just
file these tidbits away until you get to that chapter. Use the 1smod command to
view the kernel and kernel modules currently in memory.

0K 1smod

0x400000: @ /boot/kernel/kernel (elf kernel, 0x6a978c)

®modules: ©elink.1 io.1 splash.1 agp.1 nfsserver.1 nfslock.1 nfs.1 nfs4.1
wlan.1 if gif.1 if_faith.1 ether.1 sysvshm.1 sysvsem.1 sysvmsg.1l cd9660.1
isa.1 pseudofs.1 procfs.1 msdosfs.1 usb.1 cdce.0 random.1 ppbus.1 pci.1
pccard.1 null.1 mpt_raid.1 mpt.1 mpt_cam.1 mpt_core.1 miibus.1 mem.1 isp.1
sbp.1 fwe.1 firewire.1 exca.1 cardbus.1 ast.1 afd.1 acd.1 ataraid.1 atapci.1
ad.1 ata.1 ahc.1 ahd.1 ahd_pci.1 ahc_pci.1 ahc_isa.1 ahc_eisa.1 scsi_low.1
Ocam.1

0xaaa000: @/boot/kernel/snd_via8233.ko (elf module, 0x6228)

modules: snd_via8233.1

0xab1000: @®/boot/kernel/sound.ko (elf module, 0x23898)

modules: sound.1

0xad5000: @/boot/kernel/atapicam.ko (elf module, Ox4bac)

modules: atapicam.1

While some of this information is of value only to developers, a system
administrator can still learn a lot. Perhaps the most obviously useful informa-
tion is the path to the loaded kernel @. This should always be /boot/kernel/kernel
unless you configured the loader to look elsewhere.

Start Me Up! The Boot Process 67

68

You'll also get a list of the modules included in each loaded kernel file ®.
The example lists modules from the main kernel itself, ranging from elink @ to
cam @. The loader has also pulled in the files snd_via8233 @, sound ®, and
atapicam @, with their respective modules.

To completely erase the loaded kernel and all modules from memory,
use the unload command.

0K unload

You won’t get any confirmation, but a subsequent 1smod will show that the
loader no longer remembers any kernel files.
To load a different kernel, use load.

0K load boot/kernel.good/kernel
boot/kernel.good/kernel text=0x4a6324 data=0x84020+0x9908c
syms=[0x4+0x67220+0x4+0x7e178]

The loader will respond with the name of the file and some low-level
information about it.

While I touch on loading alternate kernels here, before doing this you
really need to understand why you would want to and how to do it safely.
Go read the discussion on “Booting an Alternate Kernel” on page 137.

Once your system boots just the way you need it to, you’ll probably want
to make those settings permanent. FreeBSD lets you do this through the
loader configuration file, /boot/loader.conf. Before you can make changes,
however, you must understand FreeBSD’s default configuration filesystem.

Default Files

Chapter 3

FreeBSD separates configuration files into default files and customization
files. The default files contain variable assignments and are not intended to
be edited; instead, they’re designed to be overridden by another file of the
same name. Default configurations are kept in a directory called default.

For example, the boot loader configuration file is /boot/loader.conf, and
the default configuration file is /boot/defaults/loader.conf. If you want to see a
comprehensive list of loader variables, check the default configuration file.

During upgrades, the installer replaces the default configuration files but
does not touch your local configuration files. This separation ensures that
your local changes remain intact while still allowing new values to be added to
the system. FreeBSD adds features with every release, and its developers go to
great lengths to ensure that changes to these files are backward compatible.
This means that you won’t have to go through the upgraded configuration
and manually merge in your changes; at most you’ll have to check out the
new defaults file for nifty configuration opportunities and new system
features.

The loader configuration file is a good example of these files. The /boot/
defaults/loader.conffile contains dozens of entries much like this:

verbose_loading="N0" # Set to YES for verbose loader output

The variable verbose_loading defaults to NO. To change this setting, do not
edit /boot/defaults/loader.conf—instead, add the line to /boot/loader.confand
change it there. Your /boot/loader.confentries override the default setting,
and your local configuration contains only your local changes. A sysadmin
can easily see what changes have been made and how this system differs from
the out-of-the-box configuration.

DON’'T COPY THE DEFAULT CONFIG!

One common mistake is to copy the default configuration to the override file and
then make changes there directly. Such copying will cause major problems in certain
parts of the system. You might get away with it in one or two places, but eventually
it will bite you. Copying /etc/defaults/rc.conf to /etc/rc.conf, for example, will
prevent your system from booting. You have been warned.

The default configuration mechanism appears throughout FreeBSD,
especially in the core system configuration.

Loader Configuration

To make loader setting changes permanent, use the configuration file /boot/
loader.conf. Settings in this file are fed directly into the boot loader at system
startup. (Of course, if you enjoy being at your console every time the system
boots, then you don’t have to bother with this!)

If you look at the default loader configuration, you’ll see many options
that resemble variables listed in the loader. For example, here we can set the
name of the console device:

console="vidconsole"

Throughout the FreeBSD documentation, you’ll see references to boot-
time tunables and loader settings. All of these are set in loader.conf. This includes
many sysctl values that are read-only once the system is up and kicking.
(For more on this, see Chapter 5. I present a list of popular kernel sysctls
in Appendix A.) Here, we set the kernel variable kern.maxusers to 32.

kern.maxusers="32"

Start Me Up! The Boot Process 69

70

Some of these variables do not have a specific value set in loader.conf,
instead, they appear as empty quotes. This means that the loader normally
lets the kernel set this value, but if you want to override the kernel you can.

kern.nbuf=""

The kernel has an idea of what the value of kern.nbuf should be, but you
can have the loader dictate a different value if you must.

We’ll discuss system tuning via the boot loader in the appropriate
section—for example, kernel values will be discussed in Chapter 5, where
they will make something resembling sense—but here are some commonly
used loader values that affect the appearance and operation of the loader
itself and basic boot functionality. As FreeBSD matures, the developers intro-
duce new loader values and alter the functionality of old ones, so be sure to
check /boot/defaults/loader.conf on your installation for the current list.

boot_verbose="N0O"
This toggles the verbose boot mode that you can reach through the boot
menu. In a standard boot, the kernel prints out a few basic notes about
each device as it identifies system hardware. When you boot in verbose
mode, the kernel tells each device driver to print out any and all infor-
mation it can about each device as well as display assorted kernel-related
setup details. This is useful for debugging and development, but not
generally for day-to-day use.

autoboot_delay="10"
This is the number of seconds between the display of the boot menu and
the automatic boot. I frequently turn this down to 2 or 3 seconds, as I
want my machines to come up as quickly as possible.

beastie_disable="NO"
This controls the appearance of the boot menu (originally, an ASCII art
image of the BSD “Beastie” mascot decorated the boot menu). If set to
YES, the boot menu will not appear.

loader_logo="fbsdbw"
You can choose which logo appears to the right of the boot menu.
The default “FreeBSD” in ASCII art is the fbsdbw option. Other options
include beastiebw (the original logo), beastie (the logo in color), and
none (to have the menu appear without any logo).

Serial Consoles

Chapter 3

All this console stuff is nice, but it can be a problem when your FreeBSD
system is in a co-location facility on the other side of the country or on
another continent. A keyboard and monitor are nice, too, but in many data
centers you won’t have room for them. And how do you reset the machine
remotely when it won’t respond to the network? A serial console solves all
these problems and more.

A serial console simply redirects the computer’s keyboard input and
video to the serial port instead of the keyboard and monitor. Serial consoles
appear on all sorts of network equipment, from Cisco routers and Ethernet
switches to network-based KVM switches. Many physical security systems,
such as keypad-based door locks, also have serial consoles. By hooking up a
standard null modem cable to the serial port and attaching the other end to
another computer’s serial port, you can access the first system’s boot messages
from the second computer. This is especially useful if the machines are at a
remote location. Your system must have a serial port to have a serial console.
An increasing number of systems are arriving “legacy-free,” meaning that they
lack such basic features as serial ports or PS/2 keyboard and mouse ports.

Serial consoles can occur in both hardware and software.

Hardware Serial Consoles

Real Unix hardware (such as Sparc64 systems) has hardware serial console
capability. On these boxes, you can attach a serial cable to the serial console
port and have unfettered access to the hardware configuration, boot messages,
and startup messages. Most x86 hardware does not allow this; you must be
at the keyboard looking at the monitor to control the BIOS, and you must
press the spacebar to interrupt the loader. A few x86 and amd64 mother-
boards do have this functionality, and more and more vendors such as Dell
and HP are offering serial port consoles as a feature on their higher-end
machines—but this is a special feature you must search for. (The HP RILOE
serial console support even lets you control power over the serial console,
which is very nice.)

If your machine doesn’t have a serial console, nothing any operating
system can do will give you access to the PC-style BIOS messages across the
serial port. Boot messages all appear before the operating system starts and
even before the hard drive is accessed. Fortunately, hardware exists to work
around this. The best I've seen is the PC Weasel (http://www.realweasel.com).
It’s a video card with a serial port instead of a video port. The PC Weasel lets
you access the BIOS, interrupt the boot to come up in single-user mode, and
in general do whatever you like with the system as if you were at the console.

Hardware serial consoles do not require any operating system support.

Software Serial Consoles

If you don’t need early access to the BIOS messages but only to the boot
loader, FreeBSD’s software serial console will suffice. As FreeBSD boots,
the loader decides where to print console messages and from where to
accept input. While this defaults to the monitor and keyboard, with a few
tweaks you can redirect the console to a serial port. You cannot access the
BIOS, but this serial console gives you the ability to tweak your boot in
almost any way. FreeBSD lets you set the console in two different places.
For production systems, it’s best to set the console in the file /boot/config.
This gives you access to the first stage of the boot process. You have three
choices: Use the standard keyboard/video/mouse as a console, use a serial

Start Me Up! The Boot Process 71

72

Chapter 3

port as a console, or use a dual console. The standard console is the default,
so choosing this setup requires no action. To force FreeBSD to use a serial
console, enter -h all by itself in /boot/config.

Dual consoles let you use either the standard or the serial console as
needed. You must pick one console to be the primary console, however.
There are certain low-level tasks, such as booting from an alternate loader or
breaking into the debugger, which you can only perform from the primary
console, but otherwise the consoles are functionally identical. Enter -D in
/boot/config to enable a dual console with the standard console as primary.
Enter -Dh in /boot/config to enable a dual console with the serial console as
primary. I recommend using a dual console.

You can also control consoles from /boot/loader.conf. These entries take
effect slightly later in the boot process, during the final stage of the kernel
bootstrapping process. To use the serial console exclusively, add this entry
to /boot/loader.conf:

console="comconsole"

To switch back to the default video console, remove this line or comment
it out. You can also set the keyboard and video console in /boot/loader.conf
explicitly with this line:

console="vidconsole"

You can specify a dual console configuration by listing both comconsole
and vidconsole, with the preferred console first. Here, we prefer the serial
console:

console="comconsole vidconsole"

If you’re in a server-room situation, you might want to switch back and
forth between a standard console and a serial console. I generally manage
large arrays of FreeBSD systems via the serial console.

KEYBOARD AUTODETECTION

In some FreeBSD documentation found on the Web, you'll see references to using
keyboard autodetection to choose a console. The idea is that you want to use the
serial console unless you have a keyboard plugged in. This worked just fine in the
days of AT and PS/2 keyboards, but autodetection of USB keyboards is prone to
failure. You're better off choosing a dual-console configuration rather than relying
on keyboard autodetection.

Serial Console Physical Setup

No matter what sort of serial console you have, you’ll need to plug into it
correctly to make it work. You’ll need a null modem cable, available at any
computer store or from online vendors. While the gold-plated serial cables
are not worth the money, don’t buy the cheapest model you can find either;
if you have an emergency and need the serial console, you’re probably not in
the mood to deal with line noise!

Plug one end of the null modem cable into the serial console port
on your FreeBSD server—by default the first serial port (COM1 or sio0,
depending on what operating system you’re used to). You can change this
with a kernel recompile, but it’s generally simplest to just use the default
Oon a server.

Plug the other end of your null modem cable into an open serial port on
another system. I recommend either another FreeBSD (or other Unix) system
or a terminal server, but you can use a Windows box if that’s all you have.

If you have two FreeBSD machines at a remote location, make sure that
they each have two serial ports. Get two null modem cables and plug the first
serial port on each box into the second serial port of the other machine.
That way, you can use each machine as the console client for the other.

If you have three machines, daisy-chain them into a loop. By combining
twos and threes, you can get serial consoles on any number of systems.
I’'ve worked data centers with 30 or 40 FreeBSD machines, where installing
monitors was simply not practical, and we used serial consoles to great effect.
Once you have a rack or two of servers, however, investing in a terminal
server is a really good idea. You can find them cheaply on eBay.

Another option is to use two DB9-to-RJ45 converters, one standard
and one crossover. These allow you to run your console connections over
a standard CAT) cable. If you have a lights-out data center where human
beings are not allowed, you can have your serial consoles come out near
your desk, in your warm room, or anywhere else your standard Ethernet-
style patch panels reach. Most modern data facilities are better equipped
to handle Ethernet than serial cables.

Serial Console Use

Now that you’re all set up, configure your client to access the serial console.
The key to using a serial console is to remember the following settings:

e 9600 baud

e 8 bits

e no parity

e 1 stop bit

Start Me Up! The Boot Process 73

74

Chapter 3

Enter these values into any terminal emulator on a client computer,
and the serial console will “just work.” You can find terminal emulators for
Microsoft platforms (HyperTerm being the most famous), Macintosh, and
almost any other operating system. A few years ago, I frequently used a Palm
handheld with a serial cable to access serial consoles.

FreeBSD accesses serial lines with tip(1), a program that allows you to
connect to remote systems in a manner similar to telnet. To run tip, do this
as root:

tip portname

A port name is shorthand for specifying the serial port number and
speed to be used on a serial port. The file /etc/remote contains a list of port
names. Most of the entries in this file are relics of the eon when UUCP was
the major data-transfer protocol and serial lines were the norm instead of the
exception.2 At the end of this file, you’ll see a few entries like:

Finger friendly shortcuts

s100| com1:dv=/dev/cuado:br#9600:pa=none:
sio1|com2:dv=/dev/cuad1:br#9600:pa=none:
sio2|com3:dv=/dev/cuad2:br#9600:pa=none:
sio3|com4:dv=/dev/cuad3:br#9600:pa=none:
sio4|com5:dv=/dev/cuad4:br#9600:pa=none:
sio5|com6:dv=/dev/cuads5:br#9600:pa=none:
sio06|com7:dv=/dev/cuad6:br#9600:pa=none:
sio7|com8:dv=/dev/cuad7:br#9600:pa=none:

The sio entries are the standard Unix-type device names, while the
com names were added for the convenience of people who grew up on x86
hardware. Assume that you have two FreeBSD boxes wired back-to-back, with
each one’s serial port 1 null-modemed into serial port 2. Both machines are
configured to use a serial console. You’ll want to connect to your local serial
port 2 to talk to the other system’s serial console:

tip siol
connected

You won’t see anything else, no matter what you type.
If you log into the other system and reboot it, you’ll abruptly see action
in your tip window:

Shutting down daemon processes:.
Stopping cron.

Shutting down local daemons:.
Writing entropy file:.
Terminated

Waiting (max 60 seconds) for system process 'vnlru' to stop...done
Waiting (max 60 seconds) for system process 'bufdaemon' to stop...done

2 This might not predate dinosaurs, but it was before spam. Imagine that.

Waiting (max 60 seconds) for system process 'syncer' to stop...
Syncing disks, vnodes remaining...1 0 0 done

A1l buffers synced.

Uptime: 1mis

Shutting down ACPI

Rebooting...

There will be a long pause while the system runs its BIOS routines and
hands control over to the serial console. Eventually you’ll see something
like this:

/boot/kernel/kernel text=0x4a6324 data=0x84020+0x9908c
syms=[0x4+0x67220+0x4+0x7e178]

/boot/kernel/snd via8233.ko text=0x3a14 data=0x328 syms=[0x4+0xal0+0x4+0xac5]
loading required module 'sound'

/boot/kernel/sound.ko text=0x17974 data=0x37a8+0x10d8
syms=[0x4+0x3290+0x4+0x3d7d]

/boot/kernel/atapicam.ko text=0x2a30 data=0x1d8+0x4 syms=[0x4+0x7b0+0x4+0x7d6]

This indicates that the loader initially found and read the kernel files
before showing the loader menu. Congratulations! You're using a serial
console. Press the spacebar to interrupt the boot just as if you were at the
keyboard. It doesn’t matter how far away the system is; you can change
your booting kernel, get a verbose boot, bring it up in single-user mode,
or manually fsck the hard drive—whatever. A software serial console might
not show you the BIOS, but chances are that’s set up correctly already. Once
you’ve used a serial console for a while, it won’t matter if the machine is on
the other side of the world or the other side of the room; getting out of your
chair just to access the console will feel like too much work.

If you allow the boot to continue, however, you’ll get to a point where
the boot messages stop and the serial console freezes. This is because it’s a
console; it’s not a logon device. (Being able to log onto a machine via the
serial console is quite useful on occasion; see Chapter 20 for details.)

If a system in a remote location entirely locks up, you can connect to your
serial console and have the “remote hands” at the colocation facility power-
cycle the system. It might not be good for your computer, but it’s also not
good for it to be locked up. With the serial console, you can boot into single-
user mode and fix the problem by digging through the logs and whatever
other troubleshooting you feel capable of. We’ll discuss troubleshooting this
sort of problems in Chapter 21.

Serial Console Disconnection

The tip(1) program uses the tilde (~) as a control character. To disconnect
the serial console, press ENTER and then type the disconnect sequence
“tilde-dot” at any time:

You’ll be gracefully disconnected.

Start Me Up! The Boot Process 75

76

Startup Messages

Chapter 3

o

A booting FreeBSD system displays messages indicating the hardware attached
to the system, the operating system version, and the status of various programs
and services as they start. These messages are important when you first install
your system or when you do troubleshooting. The boot messages always start
off the same way, with a statement listing the copyrights for the FreeBSD
Project and the Regents of the University of California:

Copyright (c) 1992-2007 The FreeBSD Project.

Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University of California. ALl rights reserved.

FreeBSD 7.0-CURRENT-SNAP010 #0: Tue Dec 13 11:25:44 UTC 2005
root@harlow.cse.buffalo.edu:/usr/obj/usr/src/sys/GENERIC

We also get a notice of the version of FreeBSD that’s booting, along with
the date and time it was compiled. You can also see who compiled this kernel,
what machine it was built on, and even where in the filesystem this kernel was
built. If you build a lot of kernels, this information can be invaluable when
trying to identify exactly what system features are available.

WARNING: WITNESS option enabled, expect reduced performance.

The kernel will print out diagnostic messages throughout the boot
process. The message shown above means that I have debugging and fault-
identifying code enabled in this particular kernel, and my performance will
suffer as a result. In this case I don’t care about the performance impact, for
reasons which will become clear momentarily.

Timecounter "i8254" frequency 1193182 Hz quality o

This message identifies a particular piece of hardware. The timecounter,
or hardware clock, is a special piece of hardware, and while your computer
needs one, it’s such a low-level device that the end user really can’t do much
with it directly. Now and then, you’ll see messages like this for hardware that
isn’t directly visible to the user but is vital to the system. FreeBSD errs on the
side of printing too much information, rather than obscuring details that
might be critical. For example, it’ll also show all the information it can about
the CPU in the system:

CPU: AMD Athlon(tm) 64 X2 @Dual Core Processor 4200+ (©2200.10-MHz 686-class CPU)
Origin = "AuthenticAMD" Id = ox20fb1 Stepping = 1

Features=0x178bfbff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,APIC,SEP,MTRR, PGE,MCA,C
MV, PAT,PSE36,CLFLUSH,MMX, FXSR,SSE,SSE2,HTT>

Features2=0x1<SSE3>

AMD Features=0xe2500800<SYSCALL,NX,MMX+,FFXSR, LM, 3DNow+, 3DNow>

AMD Features2=0x3<LAHF,CMP>

Cores per package: 2

You probably didn’t know that a simple CPU could have so many details
and features, did you? Here’s why I'm not worried about the performance hit
caused by the WITNESS option shown earlier: This box has a dual-core pro-
cessor @, each core is pretty darn fast @ and supports a whole bunch of
features important to modern CPUs @ as well as a few AMD-specific features @.
I have CPU power to spare3 and a fair amount of memory as well.

Orcal memory = 1072693248 (1023 MB)
®avail memory = 1040453632 (©992 MB)

The real memory @ is the amount of RAM physically installed in the
computer, while the avail memory @ is the amount of memory left over after
the kernel is loaded. I have 992 MB of RAM ® available for real work, which
more than suffices for the load on this system.

FreeBSD/SMP: Multiprocessor System Detected: 2 CPUs

The kernel also prints messages about the hardware it finds and how it’s
going to handle that hardware. For example, in the snippet above, the kernel
announces that it’s found both cores of the CPU and is ready to manage them.

@ioapico <Version 0.3> @®irgs 0-23 on motherboard
©ioapicl <Version 0.3> irgs 24-47 on motherboard

Here’s a fairly typical device driver entry. This device is known as ioapic,
and the kernel has found that this hardware is version 0.3 and has extra
information associated with it ®. What’s more, we’ve found two devices of
that type, numbered 0 @ and 1 ©. (All device drivers are numbered starting
with zero.) You can find out more about the device handled by a given driver
by reading the manual page for the driver. Almost all—but not all—device
drivers have manual pages.

npx0: [FAST]
npx0: <math processor> on motherboard
npx0: INT 16 interface

Not all device drivers printall their information on a single line. Here we
have a single device, npx0, that takes up three lines with just a single instance
of the device. The only way to know that this is a single math processor rather
than three separate ones is to check the number of the device. All of these
are for device number zero, so it’s a single device.

Q®acpio: <PTLTD RSDT> on motherboard
®pcibo: <ACPI Host-PCI bridge> port Oxcf8-oxcff @on acpio
Opcio: <ACPI PCI bus> on ©pcibo

*1 would say, “Eat your heart out,” except that by the time this book hits the shelves, this laptop
will be sadly out of date.

Start Me Up! The Boot Process 77

78

Chapter 3

One interesting thing about the boot messages is that they display how
your computer’s components are attached to one another. Here, we have
an ACPI system directly on the motherboard @ and a PCI bridge @ attached
to acpi0 ©. We also find a PCI bus @ attached to the PCI bridge @, and as
you read on, you’ll find individual devices attached to that bus. You might
not be equipped to do much with this information now, but you’ll find that
having it available will be valuable when you have to troubleshoot a problem.

This is all good, but too esoteric to be of use at the moment. How about
something usable right now?

©firewire0: <IEEE1394(FireWire) bus> on fwohcio
@ fwe0: <Ethernet over FireWire> on firewireo

This system has FireWire @, and FreeBSD can identify and use it! Now
that’s useful, at least if you have FireWire equipment. And FreeBSD can do
Ethernet over FireWire ®? That’s kind of cool.*

Even if you don’t have FireWire, chances are you have a network
connection of some sort.

@re0: <RealTek 8169SB Single-chip @®Gigabit Ethernet> port 0x1000-0x10ff mem
0xd2206800-0xd22068ff irq 19 at device 8.0 on pcio

This entry shows that a network card is assigned to the interface re0 @,
and that the card speaks gigabit Ethernet ®. We also see all sorts of infor-
mation about its memory address, IRQ, and its PCI bus attachment.

Every device on your computer has one or more entries like the above.
Taken as a whole, they describe your computer’s hardware in reasonable
detail. If you boot in verbose mode, you’ll see even more detail—probably
far more than you want.

DMESG.BOOT

While the boot information is handy, chances are it will disappear from the screen
by the time you need it. For future reference, the boot messages are stored in the file
/var/run/dmesg.boot. This means that you can inspect your kernel’s hardware
messages even after your system has been up and running for months.

One key thing that the kernel displays in the boot messages is the device
name for each piece of hardware. This is critical information for managing
your system. Every piece of hardware has a device node name, and to con-
figure it, you’ll need to know that name. For example, earlier we saw an entry

*FreeBSD’s default Ethernet-over-FireWire driver uses a method only supported by FreeBSD,
mainly because we were here first. To use the Ethernet over FireWire compatible with Mac OS X
and Windows XP, look at fwip(4).

for an Ethernet card called re(. The card uses the re(4) driver, and the first
instance of this driver has number zero. Your second card of this type would
be rel, then re2, and so on.

Most devices that can be configured or managed have a device node
entry somewhere under /dev. For example, our network card is represented
by the file /dev/net/re0. These files are called device nodes, and are a con-
venient way to address a particular piece of hardware. Most device nodes
cannot be directly accessed as a regular file; you can’t cat(1l) a device node
or copy another file to it. However, device nodes are used as arguments to
specialized programs. For example, the hard drive that showed up at boot as
ad4 is the same as the device node /dev/ad4. When you want to mount that
hard drive, you can use the device node name and be sure you’re getting
that exact piece of hardware.

Multi-User Startup

Beyond single-user mode you’ll find multi-user mode. This is the standard
operating mode for a Unix-like OS. If you’re doing real work, your system is
in multi-user mode.

When FreeBSD finishes inspecting the hardware and attaching all the
device drivers appropriately, it runs the shell script /etc/rc. This script mounts
all filesystems, brings up the network interfaces, configures device nodes,
identifies available shared libraries, and does all the other work necessary
to make a system ready for normal work. Most systems have different
startup requirements; while almost every server needs to mount a hard
drive, a web server’s operating requirements are very different from those
of a database server even if it’s running on absolutely identical hardware.
This means that /etc/rc must be extremely flexible. It achieves this flexibility
by delegating everything to other shell scripts responsible for specific aspects
of the system.

The /etc/rc script is controlled by the files /etc/defaults/rc.conf and
/etc/rc.conf.

/etc/re.conf and /etc/defaults/re.conf

Much like the loader configuration file, the configuration of /etc/rcis split
between two files: the default setting file /etc/defaults/rc.conf and the local
settings file /etc/rc.conf. Settings in /etc/rc.confoverride any values given in

/etc/defaults/rc.conf, exactly as with the loader.

The /etc/defaults/rc.conffile is huge and contains quite a few variables,
frequently called knobs or tunables. We aren’t going to discuss all of them,
not only because knobs are added continually and such a list would be
immediately obsolete, but because quite a few knobs aren’t commonly used
on servers. Almost everything in a standard FreeBSD system has one or more
re.conf knobs, from your keyboard map to TCP/IP behavior. For a complete,
up-to-date list, read the rc.conf(5) manual page on your system.

Start Me Up! The Boot Process 79

80

Chapter 3

In the next few sections, we’ll examine some common entries from
/Jetc/rc.conf. Each of these appears in /etc/defaults/rc.conf and can be edited
by placing an override in /etc/rc.conf. Each variable appears with its default
setting.

Startup Options

The following 7¢c.confoptions control how FreeBSD configures itself and
starts other programs. These far-reaching settings affect how all other system
programs and services run.

If you’re having a problem with the startup scripts themselves, you might
enable debugging on /etc/rc and its subordinate scripts. This can provide
additional information about why a script is or isn’t starting.

rc_debug="N0"

If you don’t need the full debugging output, but would like some
additional information about the /etc/rc process, enable informational
messages with rc_info:

rc_info="NO"

One common problem with systems that have little memory is a shortage
of swap space. We’ll go into the details of swap usage in Chapter 19, but you
can configure a file for use as additional swap immediately at system boot:

swapfile="NO"

Filesystem Options

FreeBSD can use memory as a filesystem, as we will discuss in Chapter 8.
One common use for this feature is to make /tmp really fast by using memory
rather than a hard drive as its back end. Once you’ve read Chapter 8, you
might consider implementing this. rc.conf has variables to let you enable a
memory-backed /tmp and set its size transparently and painlessly. You can
also choose the options FreeBSD will use to complete the filesystem. (The
impatient among you are probably wondering what the flag -S means. It
means disable soft updates. If you have no idea what this means, either, wait
for Chapter 8.) If you want to use a memory filesystem /tmp, set tmpmfs to
YES and set tmpsize to the desired size of your /tmp.

tmpmfs="AUTO"
tmpsize="20m"
tmpmfs_flags="-S"

Another popular FreeBSD filesystem feature is its integrated encrypted
partitions. FreeBSD supports two different filesystem encryption systems out
of the box: GBDE and GELI. Geom Based Disk Encryption (GBDE)was FreeBSD’s

first encrypted filesystem designed for military-grade use. GELI is a little
more friendly and complies with different standards than GBDE. (You
definitely want to read Chapter 18 before enabling either of these!)

gbde_autoattach_all="NO"

gbde_devices="NO"

gbde_attach_attempts="3"
gbde_lockdir="/etc"

geli devices=""

geli tries=""

geli default flags=""

geli autodetach="YES"

geli swap flags="-a aes -1 256 -s 4096 -d"

By default, FreeBSD mounts the root partition read/write upon achieving
multi-user mode. If you want to run in read-only mode instead, you can set
the following variable to NO. Many people consider this more secure, but it
might interfere with operation of certain software, and it will certainly
prevent you from editing any files on the root partition!

root_rw_mount="YES"

When a booting FreeBSD attempts to mount its filesystems, it checks
them for internal consistency. If the kernel finds major filesystem problems,
it can try to fix them automatically with fsck -y. While this is necessary in
certain situations, it’s not entirely safe. (Be sure to read Chapter 8 very
carefully before enabling this!)

fsck_y enable="NO"

The kernel might also find minor filesystem problems which it resolves
on-the-fly using a background fsck while the system is running in multi-user
mode, as discussed in Chapter 8. There are legitimate concerns about the
safety of using this feature in certain circumstances. You can control the use
of background fsck and set how long the system will wait before beginning
the background fsck.

background_fsck="YES"
background_fsck_delay="60"

Miscellaneous Network Daemons

FreeBSD includes many smaller programs (or daemons) that run in the
background to provide specific services. We’ll cover quite a few of these
integrated services throughout the book, but here are a few specific ones
that will be of interest to experienced system administrators. One popular

Start Me Up! The Boot Process 81

82

Chapter 3

daemon is syslogd (8). Logs are a Good Thing. Logs are so very, very good
that large parts of Chapter 20 are devoted to the topic of logging with, for,
by, and on FreeBSD.

syslogd_enable="YES"

Once you have decided to run the logging daemon, you can choose
exactly how it will run by setting command-line flags for it. FreeBSD will use
these flags when starting the daemon. For all the programs included in
rc.confthat can take command-line flags, these flags are given in this format.

syslogd flags="-s"

Another popular daemon is inetd (8), the server for small network services.
(We cover inetd in Chapter 15.)

inetd_enable="NO"

One job commonly run with FreeBSD is Domain Name System, or DNS,
with the industry-standard daemon named (8). DNS is the road map of the
Internet and makes it possible for mere humans to use the network. Because
DNS must be configured in order to be useful, FreeBSD ships with it disabled
by default. We cover DNS in Chapter 14.

named_enable="NO"

Most facilities use the Secure Shell (SSH) daemon for remote logins.
If you want to connect to your system remotely over the network, you’ll
almost certainly need SSH services.

sshd_enable="NO"

While the SSH daemon can be configured via the command line,
you’re generally be better off using the configuration files in /etc/ssh/.
See Chapter 15 for details.

sshd_flags=""

FreeBSD also incorporates extensive time-keeping software and functions
to ensure that the system clock remains synchronized with the rest of the
world. You’ll need to configure this for it to be useful; we will cover that in
Chapter 15.

ntpd_enable="NO"
ntpd_flags="-p /var/run/ntpd.pid -f /var/db/ntpd.drift"

FreeBSD also includes a small SNMP daemon for use in facilities with
SNMP-based management tools. We’ll cover configuring SNMP in Chapter 19.

bsnmpd_enable="NO"

Network Options

These knobs control how FreeBSD configures its network facilities
during boot.

Every machine on the Internet needs a hostname. The hostname is the
fully qualified domain name of the system, such as www.absolutefreebsd.org.
Many programs will not run properly without this.

hostname=

FreeBSD includes a few different integrated firewall packages. We’re
going to briefly cover PF, the Packet Filter, in Chapter 9. PF is enabled and
disabled in 7c.conf.

pf_enable="NO"

TCP/IP is an old networking protocol and has been extended and
modified several times. Some of these modifications have been lumped
together as TCP extensions, as covered in Chapter 6. Most operating systems
can take advantage of TCP extensions, but many older ones can’t. If you have
trouble communicating with much older hosts, disable TCP extensions.

tcp_extensions="YES"

You might be interested in failed attempts to connect to your system over
the network. This will help detect port scans and network intrusion attempts,
but will also collect a lot of garbage. It’s interesting to set this for a short
period of time just to see what really happens on your network. (Then again,
knowing what’s really going on tends to cause heartburn.) Set this to 1 to log
failed connection attempts.

log_in_vain="0"

Routers use ICMP redirects to inform client machines of the proper
network gateways for particular routes. While this is completely legitimate,
on some networks intruders can use this to capture data. If you don’t need
ICMP redirects on your network, you can set this option for an extremely tiny
measure of added security. If you’re not sure if you’re using them, ask your
network administrator.

icmp_drop_redirect="NO"

Start Me Up! The Boot Process 83

84

Chapter 3

If you are the network administrator and you’re not sure if your network
uses ICMP redirects, there’s an easy way to find out—just log all redirects
received by your system to /var/log/ messages.5 Note that if your server is under
attack, this can fill your hard drive with redirect logs fairly quickly.

icmp_log_redirect="NO"

To get on the network, you’ll need to assign each interface an IP address.
We’ll discuss this in some detail in Chapter 6. You can get a list of your network
interfaces with the ifconfig(8) command. List each network interface on its
own line, with its network configuration information in quotes. For example,
to give your em0 network card an IP address of 172.18.11.3 and a netmask of
255.255.254.0, you would use:

ifconfig_emo="inet 172.18.11.3 netmask 255.255.254.0"

If your network uses DHCP, use the value dhcp as an IP address.

ifconfig_emo="dhcp"

Similarly, you can assign aliases to a network card. An alias is not the
card’s actual IP address, but the card answers for that IP address, as discussed
in Chapter 6. FreeBSD supports hundreds of aliases on a single card, with
rc.confentries in the following form:

ifconfig_em0_aliasnumber="address netmask 255.255.255.255"

The alias numbers must be continuous, starting with 0. If there’s a
break in numbering, aliases above the break will not be installed at boot
time. (This is a common problem, and when you see it, check your list of
aliases.) For example, an alias of 192.168.3.4 would be listed as:

ifconfig_emo0_alias0="192.168.3.4 netmask 255.255.255.255"

Network Routing Options

FreeBSD’s network stack includes many features for routing Internet traffic.
These start with the very basic, such as configuring an IP for your default
gateway. While an IP address will get you on the network, a default router
will give you access to everything beyond your LAN.

defaultrouter=

% And if you've never heard of ICMP redirects, run, do not walk, to your nearest book pusher
and get a copy of The TCP/IP Guide by Charles M. Kozierok (No Starch Press, 2005). Once you
have it, read it.

Network control devices such as firewalls must pass traffic between
different interfaces. While FreeBSD won’t do this by default, it’s simple to
enable. Just tell the system that it’s a gateway and it will connect multiple
networks for you.

gateway_enable="NO"

If your system needs to speak Routing Information Protocol, use the
router_enable knob to start it at boot. I would argue that this knob is
misnamed—many routers use routing protocols other than RIP, but the
knob has had this name for decades now. If you don’t specifically need
the RIP protocol, then leave this knob alone!

router_enable="NO"

Console Options

The console options control how the monitor and keyboard behave. You
can change the language of your keyboard, the monitor’s font size, or just
about anything else you like. For example, the keyboard map defaults to
the standard US keyboard, frequently called QWERTY. You'll find all sorts
of keymaps in the directory /usr/share/syscons/keymaps. 1 prefer the Dvorak
keyboard layout, which has an entry there as us.dvorak. By changing the
keymap knob to us.dvorak, my system will use a Dvorak keyboard once it
boots to multi-user mode.

keymap="N0O"

FreeBSD turns the monitor dark when the keyboard has been idle for a
time specified in the blanktime knob. If you set this to NO, FreeBSD will not
dim the screen. Mind you, new hardware will dim the monitor after some
time as well, to conserve power. If your screen goes blank even if you’ve set
the blanktime knob to NO, check your BIOS and your monitor manual.

blanktime="300"

FreeBSD can also use a variety of fonts on the console. While the default
font is fine for servers, you might want a different font on your desktop or
laptop. My laptop has one of those 17-inch screens proportioned for watch-
ing movies, and the default fonts look kind of silly at that size. You can choose
a new font from the directory /usr/share/syscons/fonts. Try a few to see how
they look on your systems. The font’s name includes the size, so you can set
the appropriate variable. For example, the font swiss-8x8./nt is the Swiss font,
8 pixels by 8 pixels. To use it, you would set the font8x8 knob.

font8x16="N0"
font8x14="N0"
font8x8="NO"

Start Me Up! The Boot Process 85

86

Chapter 3

You can use a mouse on the console, even without a GUI. By default,
FreeBSD will try to autodetect your mouse type. If you have a PS/2 or USB
mouse, chances are that it will just work when you enable the mouse daemon,
without any special configuration. Some older and more unusual types of
mice require manual configuration, as documented in moused (8).

moused_enable="NO"
moused_type="AUTO"

You can also change the display on your monitor to fit your needs. If you
have an odd-sized monitor, you can change the number of lines of text and
their length to fit, change text colors, change your cursor and cursor behavior,
and do all sorts of other little tweaks. You can get a full list of different options
in man vidcontrol(8).

allscreens_flags=

Similarly, you can adjust your keyboard behavior almost arbitrarily. Every-
thing from key repeat speed to the effect of function keys can be configured,
as documented in kbdcontrol(8).

allscreens_kbdflags=

Other Options

This final potpourri of knobs might or might not be useful in any given
environment, but they are needed frequently enough to deserve mention.
For example, not all systems have access to a printer, but those that do will
want to run the printing daemon lpd(8). We brush up against printer
configuration in Chapter 15.

ldp_enable="NO"

The sendmail(8) daemon manages transmission and receipt of email
between systems. While almost all systems need to transmit email, most
FreeBSD machines don’t need to receive email. The sendmail_enable knob
specifically handles incoming mail, while sendmail_outbound_enable allows
the machine to transmit mail. See Chapter 16 for more details.

sendmail_enable="NO"
sendmail_outbound_enable="YES"

One of FreeBSD’s more interesting features is its ability to run software
built for other operating systems. The most common compatibility mode is
for Linux software, but FreeBSD also supports SCO Unix binaries and SVR4
software. We will discuss this feature in Chapter 12. Don’t enable any of these
compatibility modes without reading that chapter first!

linux_enable="NO"

A vital part of any Unix-like operating system is shared libraries.
You can control where FreeBSD looks for shared libraries. Although the
default setting is usually adequate, if you find yourself regularly setting the
LD_LIBRARY_PATH environment variable for your users, you should consider
adjusting the library path instead. See Chapter 12 for more advice on this.

ldconfig_paths="/usr/1ib /usr/X11R6/1ib /usr/local/lib"

FreeBSD has a security profile system that allows the administrator to
control basic system features. You can globally disallow mounting hard disks,
accessing particular TCP/IP ports, and even changing files. See Chapter 7
for details on how to use these.

kern_securelevel enable="NO"
kern_securelevel="-1"

Now that you know a smattering of the configuration knobs FreeBSD
supports out of the box, let’s see how they’re used.

The re.d Startup System

FreeBSD bridges the gap between single-user mode and multi-user mode
via the shell script /etc/rc. This script reads in the configuration files
Jetc/defaults/rc.confand /etc/rc.confand runs a collection of other scripts
based on what it finds there. For example, if you have enabled the USB
daemon, /etc/rc runs a script written specifically for starting that daemon.
FreeBSD includes scripts for starting services, mounting disks, configuring
the network, and setting security parameters. You can use these scripts to
stop and restart services exactly as the system does at boot, ensuring system
integrity and making your life generally easier. These scripts live in /etc/rc.d.

WHAT IS rcNG?

Once upon a time, FreeBSD included a handful of monolithic /etc/rc scripts that
configured the entire system. Each specific daemon or service was started by a
few lines buried inside one of these scripts. While this worked well for the majority
of systems, it wasn't very flexible and couldn’t accommodate all users. NetBSD
developed the current system of small shell scripts for specific services, and FreeBSD
quickly adopted it. The current startup method is the next generation RC scripts,
or reNG. This system is currently the only one used in any production version

of FreeBSD, and any references you may see to reNG are leftovers from the
transition era.

Start Me Up! The Boot Process 87

838

Chapter 3

Once you have a feature enabled in rc.conf, you can control it via an rc.d
script. For example, suppose you realized you had to run the SSH daemon
on a system that previously hadn’t run it. Set sshd_enable to YES, and go to the
directory /etc/rc.d. There you’ll find a script called sshd.

#./sshd start
Starting sshd.
#

No re.d script runs unless enabled in rc.conf, however. This ensures that
everything that was running before will still be running after a reboot. You
can also stop a service with the stop command, check its state with the status
command, and reload it with restart. If you really do want to start a program
just once with its 7¢.d script, and you don’t want it to run after the next reboot,
you can use the forcestart command.

We’ll look at re.d in more detail in Chapter 12, when we discuss custom-
izing and writing your own 7c.d scripts.

Shutdown

FreeBSD makes the rc.d startup system do double duty; not only must it
handle system startup, it must shut all those programs down when it’s time to
power down. Something has to unmount all those hard drives, shut down the
daemons, and clean up after doing all the work. Some programs don’t care
if they’re unceremoniously killed when the system closes up for the night—
after all, after the system goes down any clients connected over SSH will be
knocked off and any web pages that are being requested aren’t going to be
delivered. Database software, however, cares very much about how it’s turned
off, and just killing the process will damage your data. Many other programs
that manage actual data are just as particular, and if you don’t let them clean
up after themselves you will regret it.

When you shut down FreeBSD with either the shutdown (8) or reboot(8)
commands, the system calls the shell script /etc/rc.shutdown. This script calls
each rc.d script in turn with the stop option, reversing the order they were
called during startup, thereby allowing server programs to terminate gracefully
and disks to tidy themselves up before the power dies.

Now that you understand how FreeBSD starts up and shuts down, let’s
look at some basic tools you can use to ensure that your system will continue
to boot even after you’ve been experimenting with it.

READ THIS BEFORE YOU BREAK
SOMETHING ELSE!
(BACKUP AND RECOVERY)

The most common cause of system failure
is those pesky humans, but hardware and
operating systems also fail. Hackers learn new

ways to disrupt networks and penetrate applica-
tions, and you’ll inevitably need to upgrade and patch

your system on a regular basis. (Whether or not you
will upgrade and patch is an entirely separate question.) Any time you touch
a system there’s a chance you’ll make a mistake, misconfigure a vital service,
or otherwise totally ruin your system. Just think of how many times you’ve
patched a computer running any OS and found something behaving oddly
afterward! Even small system changes can damage data. You should therefore
always assume that the worst is about to happen. In our case, this means that
if either the hardware or a human being destroys the data on your hard

drive, you must be able to restore that data.

Worse still, if you're reading this book, you’re probably justlearning how
to configure your FreeBSD system and therefore aren’t well prepared for a
disaster. As a new user, you’ll need to test a variety of configurations and

90

review the history of what you’ve done. There’s little more frustrating than
saying, “But this worked last month, what did I change?” Will you really
recall every change you’ve made over the last weeks, or months, or years?
What about changes made by your co-workers? In fact, if you’re experimenting
hard enough you might even utterly destroy your system, so you’ll need a way
to recover your important data.

This chapter begins with the large-scale approach of backing up the
entire computer. This approach won’t work well if you only want to back up
individual files, so we’ll handle these separately. If a file can change three
times a day, and you take weekly backups, you will lose valuable information
when the file disappears. Finally, should you suffer a partial or near-total
disaster, we’ll consider recovering and rebuilding with single-user mode and
the fixit disk.

System Backups

You only need a system backup if you care about your data. That isn’t as
inane as it sounds. The real question is, “How much would it cost to replace
my data?” A low-end tape backup system can run several hundred dollars.
How much is your time worth, and how long will it take to restore your
system from the install media? If the most important data on your hard disk
is your web browser’s bookmarks file, a backup system probably isn’t worth
the investment. But if your server is your company’s backbone, you’ll want to
take this investment very seriously.

A complete backup and restore operation requires a tape drive and media.
You can also back up to files, across the network, or to removable media
such as CDs or DVDs. Today’s industry standard, however, is tape, so we’ll
focus on that. To use a tape drive you’ll need a backup program, and we’ll
discuss the standard backup programs shipped with FreeBSD.

Backup Tapes

Chapter 4

FreeBSD supports SCSI, USB, and IDE tape drives. SCSI drives are faster and
more reliable than IDE drives, although IDE drives are cheaper. USB tape
drives are not always standards-compliant and hence not always compatible
with FreeBSD. Definitely check the release notes or the FreeBSD mailing list
archives to confirm that your tape drive is compatible with FreeBSD.

Once you've physically installed your tape drive, you need to confirm
that FreeBSD recognizes it. The simplest way is to check the /var/run/dmesg
.boot file, as discussed in Chapter 3. SCSI and USB tapes show up as sa devices
while IDE tape drives show up as ast. For example, the following three lines
from dmesg.boot describe the SCSI tape device in this machine:

©®sa0 at @ahco bus 0 target ©9 lun 0
sa0: <SONY @SDT-10000 0110> Removable Sequential Access SCSI-2 device
sa0: ©40.000MB/s transfers (20.000MHz, offset 8, 16bit)

NOTE

Of all the information we have on this tape drive, the most important is
that your FreeBSD system knows this device as sa0 @. We also see that it’s
attached to the SCSI card ahc0 ® at SCSI ID 9 ©, what the drive’s model
number is @, and it can run at 40MB per second ©.

Tape Drive Device Nodes, Rewinding, and Ejecting

Before you can use your tape drive for backups you have to know how to
control it. As with many Unix devices with decades worth of history, the way
you access a tape drive controls how it behaves. Tape drives have several
different device nodes, and each one makes the tape drive behave differently.
The most basic tape-control mechanism is the device node used to access it.

For your average SCSI tape drive, you only need worry about three nodes:
/dev/esa0, /dev/nsa0, and /dev/sa0. Similarly, IDE tapes mainly use /dev/east0,
/dev/nast0, and /dev/ast0.

Tapes are sequential access devices, meaning that data is stored on the
tape linearly. A particular section of tape contains certain data, and to access
that data you must roll the tape to expose that section. To rewind or not to
rewind is an important question.

The behavior of different tape device nodes varies between operating systems. Different
versions of Unix, with different tape management software, handle tapes differently.
Do not make assumptions with your backup tapes!

If you use the node name that matches the device name, the tape drive
will automatically rewind when your command finishes. Our sample SCSI
tape drive has a device name of sa0, so if you run a command using /dev/sa0
as the device node, the tape will rewind when the command finishes.

If you don’t want the tape to automatically rewind when the command
completes, stop it from rewinding by using the node name that starts with n.
Perhaps you need to append a second backup from a different machine onto
the tape, or you want to catalog the tape before rewinding and ejecting. In
our example, use /dev/nsa0 to run your command without rewinding.

To automatically eject a tape when a command finishes, use the node
that begins with e. For example, if you’re running a full system backup, you
probably want the tape to eject when the command finishes so the operator
can put the tape in a case to ship off-site or place in storage. Our example
uses the /dev/esa0 device name to eject the tape when the command finishes.
Some older tape drives might not support automatic ejection; they’ll require
you to push the physical button to work the lever that winches the tape out
of the drive. The easiest way to identify such a drive is to try to eject it via the
device node and see what happens.

The STAPE Variable

Many programs assume that your tape drive is /dev/sa0, but that isn’t always
correct. Even if you have only one SCSI tape drive, you might want it to eject
automatically (/dev/esa0) or to rewind it upon completion (/dev/nsa0). Or,
you might have an IDE tape drive which goes by an entirely different name.

Read This Before You Break Something Else! (Backup and Recovery) 91

92

Chapter 4

Many (but not all) backup-related programs use the environment variable
$TAPE to control which device node they use by default. You can always over-
ride $TAPE on the command line, but setting it to your most commonly used
choice can save you some annoyances later.

If you’re using the default FreeBSD shell, set $TAPE with the following
command:

setenv TAPE /dev/sa0

Tape Status with mt(1)

Now that you know how to find your tape drive, you can perform basic
actions on it—such as rewinding, retensioning, erasing, and so on—with
mt(1). One basic thing mt does is checking a tape drive’s status, as follows:

#mt status

Mode Density Blocksize bpi Compression
Current: @0x25:DDS-3 variable 97000 @DCLZ
————————— available modes---------

0: 0x25:DDS-3 variable 97000 DCLZ

1: 0x25:DDS-3 variable 97000 DCLZ

2: 0x25:DDS-3 variable 97000 DCLZ

3 0x25:DDS-3 variable 97000 DCLZ

Current Driver State: at rest.

File Number: 0 Record Number: o Residual Count 0

You don’t have to worry about most of the information here, but if you
want to go through it line-by-line, the mt(1) man page contains a good
description of all the features. At the very least, if the command returns
anything useful, this means mt(1) can find your tape drive.

One of the first things we see is the drive density @. Older drives can
have tapes of different densities for different purposes, but modern tape
drives pack data as tightly as possible. This particular tape drive is a DDS-3
model; while you could choose to use another density, all the choices it offers
are DDS-3. We also see that this tape drive offers hardware compression with
the DCLZ algorithm . Near the bottom, we see what the tape drive is doing
right now ©.

The status command might give you different sorts of messages. The most
problematic is the one that tells you that your tape drive is not configured:

#mt status
mt: /dev/nsa0: Device not configured

This means that you don’t actually have a tape at the device node that
your $TAPE variable points at. You can experiment with device nodes and
mt(1) by using the -f flag to specify a device node (for example, mt -f
/dev/nsa1 status), although you should get this information from dmesg.boot.

If you’re sure that your device node is correct, perhaps you don’t have a tape
inserted into the drive, or the tape drive needs cleaning.

Another response you might get from mt status ismt: /dev/nsa0: Device
busy. You asked for the status of your tape, and it replied, “I can’t talk now,
I’'m busy.” Try again later, or check ps -ax to see what commands are using
the tape drive. When you’re working with actual tape, only one program
instance can access it at a time. You cannot list the contents of a tape while
you’re extracting a file from that tape.

Other Tape Drive Commands

You can do more with a tape drive than just check to see if it’s alive. The
mt(1l) subcommands I use most frequently are retension, erase, rewind, and
offline.

Tapes tend to stretch, especially after they’re used the first time. (I know
perfectly well that modern tape vendors all claim that they prestretch their
tapes, or that their tapes cannot be stretched, but that claim and two slices of
bread will get you a bologna sandwich.) Retensioning a tape is simply running
the tape completely through, both forwards and back, with the command
mt retension. Retensioning takes all the slack out of the tape and makes
backups more reliable.

Erasing removes all data from a tape. This isn’t a solidly reliable erasure
which you’d need to conceal data from a data recovery firm or the IRS;
mt erase simply rolls through the tape and overwrites everything once. This
can take a very long time. If you want to erase the tape quickly, you can use
mt erase 0 to simply mark the tape as blank.

The mt rewind command rolls a tape back to the beginning, same as
accessing the device through its default device node.

When you offline a tape, you rewind and eject it so that you can put a
new tape in. The command is, oddly enough, mt offline.

TAPE DRIVE TEMPERAMENT

Not all tape drives support all functions. Older tape drives in particular are quite
touchy, even crotchety, requiring very specific settings to work acceptably. If you
have a problem with a particular drive, check the FreeBSD-questions mailing list
archive for messages from others with the same problem. You'll probably find your
answer there.

To Rewind or Not?

One thing to remember about tape is that it’s a linear storage medium. Each
section of tape holds a particular piece of data. If you back up multiple chunks
of data to tape, avoid rewinding after each backup operation. Imagine that
you wrote a backup of one system to tape, rewound the tape, and backed up
another system. The second backup would overwrite the first, because it used
the same chunk of tape. When you run multiple backups on a single tape, use
the appropriate device node to ensure you don’t rewind the tape between tasks.

Read This Before You Break Something Else! (Backup and Recovery) 93

94

Backup Programs

tar

Chapter 4

Two popular packages for backing up systems are tar(1) and dump(8). You’ll
certainly encounter other backup tools too, such as pax and cpio. You'll also
find network-based backup software for FreeBSD, such as Amanda and
Bacula, that can back up an entire network. These tools are well suited for
certain environments, but aren’t as universal as dump and tar. Once you
learn dump and tar, however, you will find it easy to master any other
backup software.

tar (1) was designed for files, and you can restore tar backups on almost
any operating system. dump(8) works on partitions and filesystems, and can
only be restored on the same operating system that the dump was taken on.
If you’re backing up an entire computer, use dump. If you’re backing up
individual files, or might want to restore your backup to a foreign computer,
use tar.

The tar (short for tape archiver) utility can back up anything from a single file
to your whole computer. Unlike dump, tar works on the files and directories
only and has no knowledge of the underlying filesystem, which has its
advantages and disadvantages. tar is a common standard recognized by
almost every operating system vendor; you can find tar for Windows, Linux,
Unix, BSD, Mac OS X, AS/400, VMS, Atari, Commodore 64, QNX, and just
about everything else you might encounter.

tar(1) can back up files to tape or to a file. A backup file containing
tarred files is known as a tarball. Since tar works on files, it’s very easy to
restore just one file from a tarball.

FreeBSD uses a version of tar written from scratch to replace the older
GNU tar, called bsdtar. bsdtar can behave completely consistently with GNU
tar, and can also behave in strict accordance with POSIX tar. If you’re at all
concerned about the differences between GNU tar, POSIX tar, and bsdtar,
read man tar (1) for all the gory details. bsdtar is actually built on libarchive (3),
a library that developers use to add support for backup archives into other
programs. tar(1) can be dumb. If your filesystem is corrupt in any way, tar
will back up what it thinks you asked for. It will then happily restore files that
were damaged during the original backup, overwriting working-but-incorrect
files with not-working-and-still-incorrect versions. These sorts of problems
rarely happen, but tend to be unforgettable when they do.

tar Modes

tar(1) can perform several different actions, controlled by the command-line
flags. These different actions are called modes. You’ll need to read the manual
page for a complete description of all tar modes, but the most commonly
used ones are listed below.

Create an Archive

Use create mode (-c) to create a new archive. Unless you specify otherwise, this
flag backs up everything to your tape drive ($TAPE, or /dev/sa0 if you haven’t
set $TAPE). To back up your entire system, you’d tell tar to archive everything
from the root directory down:

tar -c /

In response, your tape drive should light up and, if your tape is big
enough, eventually present you with a complete system backup. Many
modern hard drives are bigger than tape drives can hold, however, so it
makes sense to only back up the vital portions of your system. For example,
if the only files on your computer that you need are on the partitions
/home and /var, you could specify those directories on the command line:

tar -c /home /var

List Archive Contents

List mode (-t) lists all the files in an archive. Once you’ve created an archive,
you can use this mode to list the tape’s contents.

tar -t

.snap
dev
tmp

This lists all the files in your backup and might take a while to run. Note
that the initial slashes are missing from filenames; for example, /tmp shows
up as ¢mp. This becomes important during restores.

Extract Files from Backup

In extract mode, tar retrieves files from the archive and copies them to the
disk. (This is also called untarring.) tar extracts files in your current location;
if you want to overwrite the existing /etc directory of your system with files
from your backup, go to the root directory first. On the other hand, to restore
a copy of /etc in my home directory, I would go to my home directory first.

cd /home/mwlucas
tar -x etc

Remember when I said that the missing initial slash would be important?
Here’s why. If the backup included that initial slash, tar would always extract
files relative to the root directory. The restored backup of /etc/rc.confwould
always be written to /etc/rc.conf. Without the leading /, you can recover the
file anywhere you want; the restored /etc/rc.conf can be /home/mwlucas/etc/
re.conf. If I’'m restoring files from a machine that’s been decommissioned,
I don’t want them to overwrite files on the current machine; I want them
placed elsewhere so they won’t interfere with my system.

Read This Before You Break Something Else! (Backup and Recovery) 95

96

Chapter 4

Verify Backups

Once you have a backup, you probably want to confirm that it matches your
system. Diff mode (-d) compares the files on tape to the files on disk. If every-
thing on the tape matches the system, tar -d will run silently. A perfect match
between tape and system is not normal, however. Log files usually grow during
the backup process, so the log files on tape should not match the files on disk.
Similarly, if you have a database server running, the database files might not
match. If you truly want a perfect backup (also called a cold backup), you’ll
need to shut down to single-user mode before taking the backup. You must
decide which errors you can live with and which need correction.

Other tar Features

tar has several other features that can make it more friendly or useful. These
include verbose behavior, different types of compression, permissions restore,
and the most popular option, using a file instead of a tape device.

Use a File Instead of Tape

The -f flag allows you to specify another device or file as the destination for
your archive. In all of the preceding examples I'm either using the default
tape drive /dev/sa0, or I have set $TAPE. If I have neither of these, I'd need to
specify a tape drive with -f:

tar -c -f /dev/easto /

Instead of using a tape at all, you can use a tar file, or tarball. Source code
distributed via the Internet is frequently distributed as tarballs. Use the -f
flag to specify a filename. For example, to back up the chapters of this book
as they were written, I ran the following every so often to create the tarball
bookbackup.tar.

#tar -cf bookbackup.tar /home/mwlucas/absolutefreebsd/

This file can easily be backed up on machines elsewhere—so even if my
house burns down, the book would be safe. I could then run phone and power
lines to the neighbor’s house, borrow a laptop, find an open wireless access
point, run tar -xf bookbackup.tar, and work amidst the charred timbers while
waiting for the insurance company. (I couldn’t do much else at the time,

anyway.)
Verbose

The -v flag makes tar verbose. Normally, tar runs silently, except when it
encounters an error. This is good most of the time (who wants to read the
complete list of files on the server every time a backup runs?), but sometimes
you like to have the warm fuzzy feeling of watching a program do its work.
Adding the -v flag makes tar print the name of each file it processes. You can
use the verbose flag to create a complete list of all the files that are being
backed up or restored. In a routine backup or restore, this verbosity makes
errors difficult to see.

9zip

The gzip flag (-z) runs the files through the gzip(1) compression program
on their way to or from the archive. Compressed tarballs usually have the
extension .fargz or .tgz, and on rare occasion .{az. Compression can greatly
reduce the size of an archive; many backups shrink by 50 percent or more
with compression. While all modern versions of tar support gzip, older
versions don’t, so if you want absolutely everybody to be able to read your
backup, don’t use -z.

Compression

In contrast, all Unix versions of tar can use the -Z flag to compress files with
compress(1). The compress program isn’t as efficient as gzip, but it does
reduce file size. Tarballs compressed with -Z have the extension .tarZ

hzip Compression

FreeBSD’s tar supports bzip compression, which shrinks files even more
tightly than gzip, with the -y flag. bzip uses more CPU time than gzip, but
these days CPU time is not nearly as limited as when gzip came out. Not all
versions of tar support bzip compression, either. If you’ll only be reading
your files on a FreeBSD machine, or are comfortable installing bzip on other
platforms, use the -y flag.

COMPRESSION AND FREEBSD TAR

FreeBSD's libarchive autodetects compression types used in backups. While you
must specify your desired compression when creating an archive, when extracting
an archive you can let tar(1) determine the compression type and let it Do The Right
Thing automatically.

Permissions Restore

The -p flag restores the original permissions on extracted files. By default, tar
sets the owner of an extracted file to the username that’s extracting the file.
This is fine for source code, but for system restores you really want to restore
the file’s original permissions. (Try to restore these permissions by hand
some time; you’ll learn quite a bit about why you should have done it right
the first time.)

And More, More, More . . .

Tar has many, many more functions to accommodate decades of changes in
backups, files, filesystems, and disks. For a complete list of functions, read
man tar(1).

Read This Before You Break Something Else! (Backup and Recovery) 97

98

dump

Chapter 4

dump (8) is a disk-block backup tool. In some ways, it looks similar to tar(1),
but the significant difference is that dump is aware of the underlying file-
system and takes advantage of the filesystem layout. We’ll talk more about
filesystems in Chapter 8, but for now, all you need to know is that a filesystem
is the scheme by which zeroes and ones are arranged on the physical hard
drive. dump is specifically integrated with FreeBSD’s UFS2 filesystem. New
sysadmins aren’t as likely to be familiar with dump as with tar, but dump is
more efficient and safer than tar. When you have a choice, use dump.1

One drawback of dump is that it works on filesystems, not on files. You
can’t dump /etc unless you want to dump all of the root partition. You can
restore individual files, however.

On the positive side, dump uses separate programs for backup and
recovery (dump(8) and restore(8), respectively). This means that you don’t
have to worry about confusing your flags and accidentally overwriting the file
you’re trying to recover from. dump is considerably faster than tar, too.

User Control

One significant advantage of dump(8) is that users can offer a certain
amount of advice to the program. For example, they can mark a file as
“do not dump,” and it won’t be backed up. Many users have stuff that they
don’t care about, and they will happily agree to not back those things up if
it means that the data they do care about is backed up.

To set the nodump flag on a file, use chflags(1):

#chflags nodump filename

When you set the nodump flag on a directory, everything in or below that
directory is not backed up. For example, I use chflags to avoid backing up my
downloads directory to save time and space during backups, because I can
always download those items again.

dump Levels

One of dump’s more interesting features is its ability to do very specific
incremental backups via dump level, a number from 0 to 9. The default
dump level is 0, which tells dump to copy everything that isn’t marked nodump.
Higher levels of dump mean, “Back up any files that have been changed or
created since a dump of any lower level.” This level pattern means that you
can do full backups, differential backups since a full backup, or incremental
backups—just by changing the dump level.

! Some sysadmins will disagree and insist that tar(1) is better. This is an argument of epic
proportions in the Unix community, and any recommendation I make will undoubtedly anger
the people devoted to the other tool. I firmly believe that the only way to finally settle this is for
all the people who are fanatic devotees of one tool or the other to meet on the field of honor at
dawn and settle it with their weapon of choice. The rest of us will just get on with our lives.

For example, say you start each Monday with a level 0 dump. On Tuesday
you could do a level 1 dump, and only files that changed since Monday will
be backed up. If you perform a level 2 dump on Wednesday, everything that
changed since Tuesday will be backed up. On the following Thursday, you
run another level 1 dump. Any files that were changed since Monday will be
backed up, including files that were backed up on Wednesday.

I recommend using only level 0 dumps because they are far, far easier to
restore from than a series of incremental backups. Level 0 dumps take longer
to run than incremental dumps, however, and take up more tape space, but
in most cases reducing recovery time is more important than the cost of tape.
With proper planning, you can run level 0 dumps overnight.

Specify the desired dump level as a command-line argument; for example,
run a level 2 dump with dump -2.

dump, Tape Drives, and Files

Unfortunately, dump(8) and restore (8) don’t recognize $TAPE and just send
everything to /dev/sa0. You can specify a particular tape drive with -f. Similar
to tar, dump lets you point -f at a file. While dump files are not generally
suitable for distribution in the same way tar files are, it’s a great way to
experiment and become familiar with dump.

Before dump runs a backup, it attempts to calculate how many tapes it
will need for the backup. Unfortunately, dump’s ability to automatically detect
the size of a tape has weakened over time. When dump was new, a IMB tape
drive was serious business and every vendor had their own standards for tape
formats. Today, tape drives are much more generic and standardized, and
vendors must interoperate more freely. The size of tapes has also dramatically
changed: For example, I'm writing this book using a 40GB tape drive discarded
by a previous employer for the blameless but irremediable crime of being too
small to bother keeping. Between enhanced standardization and dramatically
expanded capacity, dump has a really hard time figuring out how large a
tape is. The best way to deal with this problem is to tell dump to not bother
calculating the size of the tape; instead, just run until the tape hits the end,
and request another tape then. Use the -a flag for this.

dump and Live Filesystems

One problem with backups is that on a working machine, the filesystem tends
to change while the backup is running. This isn’t a problem with filesystems
where the data is fairly static, or where changes in one part don’t affect
changes in another, but it is a serious issue when your data is highly dynamic,
volatile, and/or interrelated. Many databases have this problem. You probably
don’t want to shut down your database server just to get a good backup, and
you might not even be able to dump the database to a file so you can get a cold
backup. Dump takes advantage of UFS2’s snapshot facility to get around this
and ensure that a backup is internally consistent. We’ll cover snapshots in
Chapter 8, but for now, just remember that a snapshot is an image of a disk at
an exact moment in time. Even as the data on the disk changes, the snapshot
remains unchanged and static, so you can back it up easily.

Read This Before You Break Something Else! (Backup and Recovery) 99

100

Chapter 4

o000

o

©9

Specify -L to dump a snapshot. If you back up a live UFS2 filesystem
without using this flag, dump will complain and tell you to use -L.

This will not eliminate the “live database” problem, of course; just because
the filesystem is consistent doesn’t mean that the database on the filesystem
will be consistent as well. But you can shut down the database for a moment,
start the dump, and start the database again, letting dump copy the snapshot
taken while the database was shut down. This reduces the downtime window
for backups to only a second or two.

Timestamps and dump

The file /etc/dumpdates records everything you’ve dumped on your system
along with the dates when it was dumped. This is especially important if you
do incremental backups. Use -u to update this record whenever you dump a
filesystem.

Running dump

Putting all this together, we can back up a filesystem. Here I tell dump to
not calculate the number of tapes required, use a snapshot to back up a live
filesystem, and run a level 0 dump of my /usr partition.

dump -aul /usr
DUMP: Date of this level 0O dump: Sat Apr 5 08:26:03 2008
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping snapshot of /dev/adosif (/usr) to /dev/sa0
DUMP: mapping (Pass I) [regular files]
DUMP: mapping (Pass II) [directories]
DUMP: estimated 3944900 tape blocks.
DUMP: dumping (Pass III) [directories]
DUMP: dumping (Pass IV) [regular files]
DUMP: 11.54% done, finished in 0:38 at Sat Apr
DUMP: 28.12% done, finished in 0:25 at Sat Apr
DUMP: 40.69% done, finished in 0:21 at Sat Apr
DUMP: 57.26% done, finished in 0:14 at Sat Apr
DUMP: 72.60% done, finished in 0:09 at Sat Apr
DUMP: 87.49% done, finished in 0:04 at Sat Apr
DUMP: 99.99% done, finished soon
DUMP: DUMP: 4095026 tape blocks on 1 volume
DUMP: finished in 2130 seconds, throughput 1922 KBytes/sec
DUMP: level 0 dump on Sat Apr 5 08:26:03 2008
DUMP: Closing /dev/sa0
DUMP: DUMP IS DONE

09:09:25 2008
09:01:40 2008
09:02:58 2008
09:01:02 2008
09:00:33 2008
09:00:24 2008

o O O ©O O
vl Ul Ul Ul

There’s a whole bunch of important stuff here. First, dump prints the
current date @ and the date of the last backup @. The date shown here, the
epoch, is just a fancy way of saying from the beginning of time. As far as Unix is
concerned, time began in 1970, so this isn’t as far back as you might think.
What this really means is that /etc/dumpdates says that this partition has never
been backed up, which isn’t necessarily the same as never.

Before doing any work, dump reminds you which partition you’re backing
up and which tape drive it will use ©.

dump then performs a preliminary analysis of the target partition,
measuring the targeted files and directory structure so it can estimate how
much tape it will need @. Once it has this number, dump tells you about it ©
and proceeds to actually back up the files @. Every few minutes, dump prints
out how far it’s gotten and how much longer it expects to take, so you won’t
think that the machine has gone to sleep on you. Note that the percentages
and estimated time of completion slide around a bit—the lesson here is that
any software timers telling a user how much time remains on a job have never
worked right and probably never will, no matter what operating system you’re
running.

Once the job finishes, dump will tell you how much data it archived
and how fast it worked @, then print the date once again . This isn’t the
time the job finished, but rather the date of the backup. Although this job
finished around 9 AM, you’re backing up a snapshot of the filesystem from
8:26 AM.

Finally, dump announces it’s really done @. You can eject the tape now.

Throwing Data Overboard with nodump

The system administrator can use the -h flag to decide when to honor the
nodump flag. This flag takes a dump level as an argument.

By default, a level 0 dump archives any files marked nodump. At dump
level 1 or higher, the nodump flag is honored. The -h flag changes this behavior
by specifying the minimum dump level to start obeying the nodump flag. Any
dumps of levels below that given by -h will archive everything, regardless of
the nodump flag.

This gives you an easy way to stretch your backup capacity, if you’re
doing level 0 dumps. When your backups suddenly overflow the tape, start
honoring the nodump flag to shrink your backups. This will buy you a couple
of days, giving you a little breathing room to order new tapes.

Restoring from a dump

Archives are useless unless you can recover from them. dump’s recovery
utility, restore(8), can recover either complete filesystems or individual

files. As with tar and dump, the -f flag lets you choose the device or file

you wish to restore from.

Checking the Contents of an Archive

To list the contents of your dump, use restore’s -t flag:

#restore -t

® Dump date: Sat Apr 5 08:26:03 2008
Dumped from: the epoch

® Level 0 dump of /usr on testi.blackhelicopters.org:/dev/ados1if
Label: none

Read This Before You Break Something Else! (Backup and Recovery) 101

102

Chapter 4

2 0.
3 ./.snap
94208 ./bin
97995 ©./bin/bc

restore lets us know when this backup was taken @, what exactly was
backed up 8, and what dump level was used. It then starts to print the names
of all files in the backup and their locations in the filesystem. Each file is
listed with its inode number ©. (We’ll talk about inodes in Chapter 8).

One thing to note is that the files are listed relative to their point in
the original filesystem. We’ve backed up the root directory, listed here as a
single dot @. This directory is actually the root of the /usrfilesystem, or /usr.
The file ./bin/bc © was not actually in /bin/bc on the original system; it belongs
in /usr/bin/bc.

This is important to remember when you’re looking for a particular file
in your backups. restore’s -t flag will let you check a backup for the presence
of a particular file. Suppose I want to recover the file /usr/home/mwlucas/.cshrc.
The first thing to do is check for this file in the archive:

#restore -t /usr/home/mwlucas/.cshrc

./usr/home/mwlucas/.cshrc is not on the tape

What do you mean, this file isn’t on tape? Where’s my data? It’s time
to panic! No, hang on a moment. Remember, this archive doesn’t know
anything about /usr; paths are recorded relative to /usr. I must search for
home/mwlucas/.cshre.

restore -t home/mwlucas/.cshrc

871426 ./home/mwlucas/.cshxc

My .cshreis in the archive. Whew! Now to get it out.

Restoring dump Data

Once you know that a file is in an archive, you can recover it in two ways: on a
file-by-file basis or as a complete filesystem.

Restoring a File

If you only want a few select pieces, use -x and the filename to extract only
the named file. For example, to recover my .cshrc from tape, I’d run the
following:

#restore -x home/mwlucas/.cshrc

You have not read any tapes yet.

If you are extracting just a few files, start with the last volume
and work towards the first; restore can quickly skip tapes that
have no further files to extract. Otherwise, begin with volume 1.

® Specify next volume #: 1
® set owner/mode for '.'? [yn] y

First, restore asks you for the volume number @. This is the number of
the tape you’re using from this backup. If an archive is split among multiple
tapes, dump(8) told you the number of each tape as you shuffled them
through the backup process. (You did label your tapes, right?) If you have
only one tape, it’s volume 1.

Once restore finds the file, it confirms that you want to restore the
original permissions and owner of the file . I want this file to be owned
by me, just as it was originally, so I type y. My current directory now has a
directory home/mwlucas containing my .cshrc.

Restoring a Filesystem

Restoring an entire filesystem is easy—perhaps too easy. It is best to restore a
filesystem on an empty partition, rather than over the existing partition. If
you need extensive restoration, it’s best to erase the partition and start over.
If you need to keep a few select files from the damaged filesystem, back up
those few files individually, erase and reformat the partition, restore the
backup, and copy those select files back.

In the following example, we will completely erase a partition on a
second hard drive and recover from our backup tape. We won’t go into
details on the disk work being done here—you’ll want to read Chapter 8
for that information—but it can be summarized like this:

Build a new filesystem with newfs.
Attach that filesystem to the system, under /mnt.
Go into that directory.

0 o=

Restore the filesystem from the default tape device /dev/sa0.

This is how you accomplish all of that:

newfs /dev/adisig

mount /dev/adisig /mnt
cd /mnt

restore -r

That’s simple enough that you probably want to destroy a disk just to
restore it, don’t you?

RESTORES AND FURTHER BACKUPS

Any time you perform a full disk restore, run another level O dump before taking
another incremental dump. restore(8) rearranges data on the disk. If you take an
incremental dump of your newly restored filesystem and attempt to use it with a pre-
restore level O dump, you will get incoherent results, destroy data, and trigger a rain
of toads. Always run a level O dump immediately upon restoring a filesystem, so
further incremental backups will work. And have | mentioned how much easier life
is when you always run full backups?

Read This Before You Break Something Else! (Backup and Recovery) 103

104

Chapter 4

Interactive Restores

One of restore(8)’s more interesting features is interactive mode (-i) with
which you can crack open a dump and access it with a command-line tool,
marking files that you want to restore. Interactive mode is terribly useful
when a user says, “I accidentally erased my resume. It’s somewhere in my
home directory. I'm not sure exactly what it’s called, but the name has the
word resume somewhere in it. Can you get it back?” Obviously the -t flag
won’t help us; we don’t know the filename! Instead, we can wander around
in restore’s interactive mode until we find the file. It won’t be that hard,
and the user will owe us one.? Run restore with the -i flag, and you’ll get an
interactive dump session with a command prompt that behaves much like a
regular Unix command prompt but only supports those commands necessary
for restore. Depending on your tape drive, it might take a moment or two for
the command prompt to appear.

#restore -i
restore > ls

.snap/ bin/ games/ include/ libdata/ local/ ports/ share/
X11R6/ compat/ home/ lib/ libexec/ obj/ sbin/ src/
restore > cd home/mwlucas

This should look somewhat familiar; it’s the top-level directory of our
dump—in this case, everything under /usr. You can maneuver around the
filesystem with cd and list files with 1s, just like in a regular shell. Once you
find the file you want to restore, use the add command to add it to the list of
files to extract. When you’ve found all the files, use the extract command to
start the file recovery.

restore > add ssh.tar

restore > add .cshrc

restore > extract

You have not read any tapes yet.

The rest of the process looks just like a noninteractive restore; you’re
asked for a volume number and if you want to have restore to reset the per-
missions properly. When it’s complete, backups of your selected files will
appear in your current directory.

Once you have recovered the files, use the quit command to leave
restore.

2 Collecting that favor encourages the user to not repeat their daft mistake; it’s not just a way to
get your lawn mowed. The secret to being a successful sysadmin is a professional demeanor, a
sense of humor, and a baseball bat.

Multiple Backups on One Tape

If your tape drive has sufficient capacity, you’ll probably want to place multiple
backups on a single tape. dump(8) only backs up one partition at a time, after
all, and having separate tapes for different partitions of the same machine is
inefficient. If you’re using tar(1) for backups, you might still have several
different backups on a single tape. The key to multiple backups on a single
machine is mt(1) and controlling rewinds.

Remember, the default device node tells mt, tar, and dump to rewind
after every command. This means that your second backup will overwrite
your first. By changing the device node, you change this behavior. If you run
a backup without rewinding, then run another backup, the second backup
will appear as a second file on the tape. By controlling the tape position, you
can choose where you are writing or restoring.

For example, the following commands dump three filesystems in
succession—root, /var, and /tmp—on the same tape:

dump -f /dev/nsa0 -aulL /
dump -f /dev/nsa0 -aul /var
dump -f /dev/nsa0 -aul /tmp

The tape is now at the end of the third file. You can rewind and eject the
tape, label the tape with the files it contains and the date of the backup, and
store it safely.

If you want to see how many backups you have on the tape, just run
mt status and look at the last line.

File Number: 3 Record Number: o Residual Count 0

Note that the file number has changed to 3. You have three files on
this tape.

To access a file, position the tape drive at the file and use tar or restore to
pull data from the tape. When the tape is rewound, it’s in place to access the
first file. Advance to later files with mt(1)’s fsf command. mt fsf takes one
argument, the number of files to move forward. If you’re at the beginning of
the tape and want to move to the second file, just run this:

mt -f /dev/nsa0 fsf 1

This moves the tape forward one file. Note that we’ve specified the
-f /dev/nsa0 option, to use the “do not rewind” device node. It would do us
no good to move forward a file and automatically rewind.

Now use the -t option of your archive extraction program to view the
contents of that file. You can easily identify the backup by its contents. As
you list the contents, restore(8) even prints the date and time the backup
was taken and the partition in the backup. If you want to go backwards on
the tape, use mt bsf and the number of files you wish to move.

Read This Before You Break Something Else! (Backup and Recovery) 105

106

Tapes require a slightly different mindset than disks, but they’re really
not hard and are still the most commonly used backup media. Now let’s
consider some other methods to protect you, your data, your system, and
what we system administrators laughingly call our minds.

Revision Control

Chapter 4

Generally speaking, revision control is the process of tracking changes. In
the Unix world, this means recording changes to source code or configura-
tion files. Revision control allows a developer to see how a piece of code
looked on a specific date, and an administrator to see how the system was
configured before a program stopped working. Even a lowly writer can use
revision control to see how a manuscript has changed over time. If you’re not
using revision control, you’re making your job more difficult than it has to be.

While you’ll encounter many revision control systems, from primordial
Unix’s Source Code Control System (SCCS) to Microsoft’s glitzy Visual
SourceSafe, we’ll discuss Revision Control System, or RCS, included with
almost all Unix systems. Once you master RCS, you can apply its concepts
to almost any other revision control system.

BEST PRACTICE IN REVISION CONTROL

I've seen a lot of revision control practices in system administration at many facilities
over the years. Perhaps the most common method is saving copies of each file with
the date appended (i.e., rc.conf.20060510). This makeshift revision control is not
only not a good practice; it is actively bad practice. Nothing ensures that it records
every change made, and there’s no tracking system to record why a change was
made. As one of my minions said at one point, “RCS is like medicine that tastes bad;
you need to have it, or you'll never get better.” Become comfortable with RCS, use it
in a disciplined manner, and in a few months you'll wonder how you ever accom-
plished anything without it.

Revision control systems keep a record of all changes that happen to a
file and why the changes were made. First, you mark the file as checked out,
telling the system that you are reserving the right to change the file. You then
edit the file as you need, record the changes in the system, and check in the
file so others can edit it. RCS accomplishes this with three basic commands:
ci(1), co(1), and res(1).

Think of revision control as a library—no, not the Web—an old-
fashioned brick-and-mortar library with honest paper books. To use revision
control on a file, you must first tell RCS to keep track of it, like giving it
to the library. To use the file, you check it out, like taking a book home
from the library. Once checked out, nobody else can save or edit that file,
although any legitimate user can access, view, use, copy, or compile that file
while you have it checked out. Once you finish with the file, you check it
back in, thus releasing it for others to check out. This is the heart of any
revision control system. Any file under revision control is said to be in RCS.

Every file in RCS has a version number. Every time you return a file to
the system, RCS compares the returned file to the version you checked out.
If there is any change at all, the version number is incremented and the
changes are recorded, along with the date and the reason for the change.
You can track specific versions of a file by the version number.

Initializing Revision Control

Begin the revision control process by checking in a file with ci(1), much like
giving a book to the library. One good file to put under version control is
/etc/rc.conf, so you can track basic system changes. To start the RCS process,
enter ci filename as shown here:

#ci rc.conf

rc.conf,v <-- rc.conf

enter description, terminated with single '.' or end of file:
NOTE: This is NOT the log message!

>> @system configuration file

>» 0.

initial revision: 1.1

done

When you initially check in a file, ci creates or edits a revision control file.
This file has the same name as the original file, with a ,v extension. In this
example, rc.confbecomes rc.conf,u ®. You're then prompted for a description
of the file, which will be available to any RCS user later. The description
doesn’t have to be detailed, especially on a standard system file like rc.conf;
the brief system configuration file given here @ is fine. The description is
much more important with source code files or configuration files for custom,
complex programs. Once you’ve finished the description, enter a single
dot on a line by itself @ to exit ci. You’ll be told the revision number of
the file @, which is always 1.1 when you first check it in.

If you use 1s immediately after checking something in, you’ll notice that
the file appears to have vanished. Instead, you'll see only the revision control
file with the same name but a trailing ,v. This is the RCS file, where the file
and its revision information are stored. If you have lots of files in RCS, the ,v
files can quickly clutter a directory. You can neaten the directory by creating
a directory called RCS, in all caps. The ci program will then put the ,vfiles in
that directory, keeping the working directory clean.

While it’s fine for some files to disappear when checked in, configuration
files, web pages, and the like shouldn’t just vanish. To avoid this, when check-
ing in a file you can leave a copy in the working directory with ci -u. If a file is
checked in and has vanished, and you want to put a clean copy in the working
directory without editing it, use co(1).

#co rc.conf

rc.conf,v --> rc.conf
revision 1.1

done

Read This Before You Break Something Else! (Backup and Recovery) 107

108

Chapter 4

As the computer won’t boot properly without rc.conf, it’s important to
have it available. RCS has extracted the file rc.conffrom rc.conf,v @ so that
version 1.1 @ of this file is available for use. But if you look closely at these
files, you’ll see something that might surprise you.

#ls -1 rc.conf*
-r--r--r-- 1 root wheel 321 Apr 10 21:40 rc.conf
-r--r--r-- 1 root wheel 527 Apr 10 21:33 rc.conf,v

The user root owns these files, but the permissions have been set to read-
only (-r--r--r--). Even though I have the root password, I no longer have
permission to edit my own files! This is because the file isn’t checked out
to me. I've checked it in—handed it over to the Revision Control System
Librarian. I can view the file, but if I want to edit it, I must ask the RCS system
for it.

WARNING TO VI(1) USERS!

If you or your group owns the file, a w! will force a permission change and allow
you to write to the file without ever checking it out. Everything will look fine, but
the next person who checks out the file will overwrite your changes! Be careful
with using w! at any time, under any circumstances—it's meant as an emergency
measure, not standard practice. If vi complains that you don’t have permission fo
save a file, there’s a good reason. Ignore it at your peril.

Editing Files in RCS

To edit a file, I must check it out and lock it for my use. This prevents anyone
else from editing the file while I'm making my changes. Use co -1 to check
out and lock a file:

#co -1 rc.conf
rc.conf,v --> rc.conf
revision 1.1 @ (locked)
done

This looks much like the check-out we did before, but notice the word
locked @. This file is checked out and locked by me. I am the only one who
can edit and save this file until I unlock it. Running 1s -1 at this point will
show that the file’s permissions are now set to read and write, allowing me to
save my work (we’ll discuss permissions in Chapter 7). Anyone else who tries
to check this file out will get a warning that the file is in use, along with the
username of the person who has locked the file.

Checking Back In

When finished with my changes, I check the file in and, since I want other
people to be able to edit the file, use the -u flag to lease an unlocked copy in
the current directory.

00 o

#ici -u rc.conf
rc.conf,v <-- rc.conf
Onew revision: 1.2; previous revision: 1.1

enter log message, terminated with single '.' or end of file:
>> @clean up unneeded services

>» 0.

done

When you check something in, ci gives you the new version number of
the file ® and requests a log message @. Enter a brief description of your
changes here. On a multi-user system, you might want to enter why you are
making this change. If you have a trouble ticket system, it’s a good idea to list
your ticket number here; that way, people can reference the ticket and get
the whole story behind the change. As with the description message on the
first check-in, end your comments with a dot on a line by itself ©.

These log messages allow others to know what changes you’ve made to a
file without digging through all the changes—or, alternatively, to see what
you were trying to do when your change broke something. Your own RCS
logs can also be useful to you, months later, when you stare at something
wondering just what was going on inside your head at the time.

Now that you understand the basics of checking files in and out, let’s
examine some of the more useful functions of RCS. These include viewing
logs, getting old versions of files, breaking locks, finding differences between
file versions, and putting RCS identifiers in files.

Viewing RCS Logs

The quickest way to see the change history of a file is to view the RCS log with
rlog(1). This displays all the log messages entered for a particular file. Here
we check the RCS log for /etc/rc.conffrom a different machine:

#rlog rc.conf

RCS file: RCS/rc.conf,v

Working file: rc.conf

head: 1.3

branch:

locks: strict

access list:

symbolic names:

keyword substitution: kv

total revisions: 3; selected revisions: 3
description:

system boot config

revision 1.3

date: 2006/02/17 22:23:45; ©@author: mwlucas; state: Exp; @lines: +2 -2
rename new interfaces

revision 1.2

Read This Before You Break Something Else! (Backup and Recovery) 109

110

Chapter 4

date: 2006/02/16 20:09:46; author: mwlucas; state: Exp; lines: +4 -0
*** empty log message ***

revision 1.1

All sorts of useful information appears here. We see that the RCS file is
in a subdirectory called RCS @, and that the file is at version 1.3 @. The file
description that you entered when first checking in the file appears at the
top of the log entries ©.

Each revision then has its own entry. Revision 1.3 @ was checked in
on February 17, 2006 @, at 10:23 M. The file was checked in by the user
mwlucas @ —apparently I was working late that day. The change wasn’t very
large; I added two lines and removed two lines from this file @. Finally, the
log message tells me that I renamed two interfaces @. I have absolutely no
memory of doing any of this, which is not terribly surprising if I was working
that late!

Interestingly, I didn’t leave a message for revision 1.2. Apparently I was
feeling sloppy that day. I wonder what I changed?

Reviewing a File’s Revision History

To see what changed between two versions of a file, use rcsdiff(1). This
program takes three arguments: two revision numbers and a filename, as
shown below. I recommend adding the -u flag to make the changes more
readable and show them in context.

#ircsdiff -u -rolderversionnumber -rnewerversionnumber filename

For example, if I ran rcsdiff -u -r1.1 -r1.2 rc.conf, I would see the
following:

RCS file: RCS/rc.conf,v

retrieving revision 1.1

retrieving revision 1.2

diff -u -r1.1 -r1.2

--- rc.conf 2006/02/10 18:09:54 1.1

+++ rc.conf 2006/02/16 20:09:46 1.2

@@ -10,12 +10,16 @@
ifconfig sko="name internet inet 172.16.88.3 netmask 255.255.255.0"
ifconfig ski="name dmz inet 192.168.3.1 netmask 255.255.255.0"
ifconfig sk2="name mwlprivate inet 192.168.0.1 netmask 255.255.255.252"

0 +

+
usbd_enable="YES"
sshd_enable="YES"
ntpd_enable="YES"
-syslogd flags="-1 /var/run/log -1 /var/named/var/run/log"

moused_enable="YES"

named_enable="YES"

apache21_enable="YES"
O +snmpd_enable="YES"

The rcsdiff command just checks out the two revisions of the file you
give it and runs diff(1) on them @®. rcsdiff recognizes most diff (1) options, so
if you’re comfortable with diff, you can tweak the output as you like. Lines
beginning with a plus sign ® have been added to the file, and lines that
begin with a minus sign & have been removed. Here I added some white
space, removed my custom syslogd_flags (thus reverting to the behavior
shown in /etc/defaulls/rc.conf), and enabled snmpd @. Well, that’s okay. I wish
I had left a message for myself to make digging through the diff unnecessary,
but at least now I know what I did. This is all useful knowledge, especially on
a production system, and especially on a production system administered by
multiple people.

You can also use rcsdiff between arbitrary revision numbers, allowing you
to view all the changes made between any two revisions. In the preceding
example, we chose to view the differences between two consecutive versions,
but I could have asked for the differences between revisions 1.1 and 1.3, or
even for all the changes made over the previous year.

Getting Older Versions

If the differences between two versions are extensive enough, reading a diff
can be difficult. In some cases, the diff doesn’t provide sufficient context to
understand what’s going on. The simplest thing to do in those cases is just
get the old version of the file and read it. You can use the -r flag to pull an
old version of a file out of RCS. Specify the version number immediately after
-1, without a space:

#co -r1.1 rc.conf
rc.conf,v --> rc.conf
revision 1.1

done

We’ve checked out version 1.1, overwriting the existing rc.conf.

Wait a minute! Overwriting the existing file is probably not correct,
especially for a vital system file. To put the file elsewhere, use the -p flag to
print the file to your screen and redirect that output to a file.

#co ®-r1.1 @-p rc.conf ©> /tmp/rc.conf.original
rc.conf,v --> standard output
revision 1.1

Here we’ve checked out revision 1.1 of rc.conf ®, and used the -p flag &
to print the file directly to the terminal. The right angle bracket ® redirects
the output from the screen to a file, in this case /tmp/rc.conf.original.

Read This Before You Break Something Else! (Backup and Recovery) 111

112

Chapter 4

Breaking Locks

If you don’t check a file back in when you’re done, nobody else will be able
to check out and lock that file. If you’ve gone home for the day, they’ll be
piqued—perhaps even outright miffed. If you’ve gone on vacation, expect
your vacation to be interrupted. Fortunately, it isn’t necessary to wait for your
return to unlock the file; they can break the lock and claim it for themselves.
This is like a librarian showing up at your house with a chainsaw to claim that
overdue book.

As a potential lock breaker, you must exercise caution. If someone is
really editing a file when you break the lock, they’ll go past annoyed straight
to angry. Do your best to find the person before you break a lock! Once
you’ve decided to break the lock, however, run rcs -u on the file. RCS will
ask you to enter a message explaining why you’re breaking the lock, which
it will email to the lock holder.?

When you break the lock, the file will be available for another user to
edit. The changes made by the negligent unlocker will still be in the existing
file, however. Checking out the file again will overwrite that file and eliminate
any changes made. You might wish to copy that file to a temporary location
before you check out and lock the file again, in case those changes are
important.

AUTOMATED LOCK SEARCHES

A web search will show any number of methods for identifying all files that have
been left locked on a system. If people consistently leave files locked on your system,
you might consider running a script via cron to identify these files and the culprits
who left them locked, and automatically mailing the list to the system administration
team on a daily basis.

Multiple Check-ins

It’s not uncommon to change several files simultaneously as part of a single
change. For example, a DNS change might require changes to two or more
zone files (see Chapter 14). These files all need the same log message, and
you won’t want to type it repeatedly. The -m flag lets you specify a log
message on the command line. For example, here I'm checking in the files
blackhelicopters.org.db and absolutefreebsd.com.db with the log message update
for new mail server.

ci -u -m"update for new mail server" blackhelicopters.org.db
absolutefreebsd.com.db

% Personally, T take this message as an opportunity to insult the person who left the file locked,
but your site policy might differ.

Note the lack of a space between the -m and the quotes around your
check-in message. RCS will check in each file consecutively and use your
message in the log.

RCS and ident Strings

ident strings make it easy for someone viewing a file to see the RCS informa-
tion about that file. For example, if I have a program that began behaving
oddly a week ago, I just want to know what changed at that time. I could run
rlog(1) on all the configuration files to see when things were changed, but
that’s a bit annoying. It’s much nicer to look at the file and have the infor-
mation presented to me. That’s where ident strings come in. You can putident
strings in files stored in RCS, and when you check the file out, RCS will
automatically update them.

ident strings have the form $string$. For example, the RCS ident string
Id puts information about the last change in the file. I always put #Id in
the first line of critical configuration files, such as /etc/rc.conf. The leading
hash mark tells /etc/rc that this line is a comment and should be skipped; but
once I've checked in this file, this line appears as:

#3$Id: rc.conf,v @1.3 ©2006/04/12 ©17:12:49 @®mwlucas OExp $

The simple little ident string has expanded quite a bit! We can see ata
glance the file’s version number @, the date @ and time © of the last change,
and who last changed this file @. It’s an easy way to answer the question,
“Has this file changed lately, and who should I talk to about that change?”
The last bit of the line is the RCS state @, an arbitrary string that you can
assign with ci(1) or rcs(1). A few people use this to mark a file as experimental
or production or don’t change for any reason whatsoever. On the other hand, most
people do nothing at all with RCS state, and that’s generally the best idea in
system administration.

While Id is the most commonly used ident string, you have several
others to choose from, including $Header$ and Log. $Header$ is very similar to
$1d$, except that it gives the full path for the RCS file instead of just the file-
name. Log adds the RCS log message to the file itself; when you view the file
you will see all the RCS log messages. While the log messages can be over-
whelming on files that change frequently, they can be useful in files that change
less frequently. For example, the /etc/rc.conffiles on my servers don’t change
that often after about a month of production use. If I put this ident string in
the file, I will see all the RCS log messages every time I view the file. This
makes changes very obvious. Most other ident strings are just a subset of Id,
$Header$, or Log. For a full list, see ident(1).

Now that you can back up your system and track the work you do,
you’re able to work more freely, knowing that you can always restore your
past changes.

Read This Before You Break Something Else! (Backup and Recovery) 113

114

Recording What Happened

You can now back up your entire system, as well as track changes in a single
file. All that remains is to track what’s happening on the screen in front of
you. script(1) is one of those rarely mentioned but quite useful tools every
sysadmin should know. It logs everything you type and everything that
appears on the screen. You can record errors and log output for later
dissection and analysis. For example, if you’re running a program that
fails in the same spot every time, you can use script to copy your keystrokes
and the program’s response. This is notably useful when upgrading your
system or building software from source code; the last 30 lines or so of the
log file make a nice addition to a help request.

To start script(1), just type script. You’ll get your command prompt
back and can continue working normally. When you want the recording to
stop, just type exit or press CTRL-D. Your activity will appear in a file named
typescript. If you want the file to have a particular name or be in a particular
location just give that name as an argument to script:

script /home/mwlucas/debug.txt

This is extremely useful to record exactly what you typed, and exactly
what the system responded with, for reporting problems to FreeBSD-questions
@FreeBSD. org.

The Fixit Disk

Chapter 4

The best way to learn an operating system is to play with it, and the harder you
play the more you learn. If you play hard enough, you’ll certainly break some-
thing, which is a good thing—having to fix a badly broken system is arguably
the fastest way to learn. If you’ve just rendered your system unbootable, or
plan to learn quickly enough to risk doing that, this section is for you. If your
system is deeply hosed, you’ll learn a lot, quickly.

Single-user mode (discussed in Chapter 3) gives you access to many differ-
ent commands and tools. What if you’ve destroyed those tools, however?
Perhaps you've even damaged the statically linked programs in /rescue.
That’s where the fixit disk comes in.

A fixit disk is a “live filesystem” image of a FreeBSD system on CD. It
includes all the programs that come by default with FreeBSD. The installa-
tion CD comes with a fixit disk image. When you boot of the install media,
you can choose to enter fixit mode instead of installing.

NOTE

You must have some familiarity with system administration to use the
fixit system successfully. Essentially, the fixit disk gives you a command
prompt and a variety of Unix utilities. You get to use the boot time error
messages and that ballast you keep between your ears to fix the problem.
It’s you against the computer. Of the half-dozen times I've resorted to the
fixit disk, the computer won the first three. The time was well spent, however,
as I've developed the ability to restore a damaged system. Definitely finish
reading this book before you even try.

It’s impossible to outline a step-by-step fixit process for generic problem
situations; the exact steps you must follow depend on the exact damage
you’ve inflicted on your poor, innocent computer. If you’re really desperate,
however, fixit mode gives you a shot at recovery without reinstalling. I've
had problems where I've accidentally destroyed my /etc directory, or fried the
getty(1) program that displays a login prompt. Careful use of fixit mode can
repair these problems in a fraction of the time a reinstall would take.

1t’s important to use a fixit disk that’s roughly equivalent to the FreeBSD version you're
running. A point or two off won’t make much difference, but you won’t be happy trying
lo fix a 6.5 system with an S-current fixit disk.

Boot off the installation media. When you reach the first menu, you’ll
see a choice offering to enter fixit mode. Select it. You’ll then get a choice of
using a CD or a floppy disk. Use the CD option, as you booted off the disc.
(A fixit floppy only contains a handful of programs; while you can make one,
these days it’s much easier to just use the CD.) While it might not include
your favorite editor or shell, those are in the category of “nice to have” rather
than “absolutely needed.”

At times, all you can hope for is to get the hard drive mounted so that
you can read remaining data from it. The fixit CD contains all the tools you
need to get the system on the network so you can mount a hard drive in read-
only mode and copy any surviving data to another machine. This lets you do
a last backup before blowing away the system and reinstalling. If the fixit disk
doesn’t give you a needed tool to perform a recovery, you might also try a
bootable CD version of FreeBSD, such as FreeSBIE. We’ll touch on FreeSBIE
in Chapter 20.

Now that you can recover from almost any mistake you might make, let’s
dive into the heart of FreeBSD: the kernel.

Read This Before You Break Something Else! (Backup and Recovery) 115

KERNEL GAMES

A common first step in optimizing FreeBSD
is configuring the kernel. If you’re new to
Unix administration, the word kernel might

be intimidating. After all, the kernel is one of
those secret parts of a computer that mere mortals are
not meant to dabble in. In some versions of Unix,

kernel tampering is unthinkable. Microsoft doesn’t advertise that its oper-
ating systems even have kernels, which is like glossing over the fact that
human beings have brains.! While high-level users can access the kernel
through a variety of methods, this isn’t widely acknowledged or encouraged.
In most parts of the open source Unix-like world, however, meddling with
the kernel is a very viable and even expected way to enhance system per-
formance. It would probably be an excellent way to tune other operating
systems, if you were allowed to do so.

Yes, I could make any number of editorial comments here, but they’re all too easy. I do have
some standards, you know.

118

The FreeBSD kernel can be dynamically tuned, or changed on the fly,
and most aspects of system performance can be adjusted as needed. We’ll
discuss the kernel’s sysctl interface and how you can use it to alter a running
kernel.

At the same time, some parts of the kernel can only be altered while the
system is booting, and some kernel features require extensive reconfiguration.
For example, you might need to add support for new devices or remove
support for devices you don’t use. The best way to do this is to build your
own kernel.

FreeBSD has a modular kernel, meaning that entire chunks of the kernel
can be loaded or unloaded from the operating system, turning entire sub-
systems on or off as desired. This is highly useful in this age of removable
hardware, such as PC cards and USB devices. Loadable kernel modules can
impact performance, system behavior, and hardware support.

Finally, we’ll cover basic debugging of your kernel, including some of the
scary-looking messages it gives out as well as when and how to boot alternate
kernels.

What Is the Kernel?

Chapter 5

You’ll hear many different definitions of a kernel. Many are just flat-out con-
fusing, some are technically correct but confusing to the novice, while others
are wrong. The following definition isn’t complete, but it’ll do for most people
most of the time and it’s comprehensible: The kernel is the interface between the
hardware and the software.

The kernel lets the software write data to disk drives and to the network.
When a program wants memory, the kernel handles all the low-level details
of accessing the physical memory chip and allocating resources for the job.
It translates an MP3 file to a stream of zeros and ones that your sound card
understands. When a program requests CPU time, the kernel schedules a
time slot for it. In short, the kernel provides all the software interfaces that
programs need in order to access hardware resources.

While the kernel’s job is easy to define (at least in this simplistic manner),
it’s actually a complicated task. Different programs expect the kernel to pro-
vide different interfaces to the hardware, and different types of hardware
provide interfaces differently. For example, FreeBSD supports a few dozen
families of Ethernet cards, each with its own requirements that the kernel
must handle. If the kernel cannot talk to the network card, the system is
not on the network. Different programs request memory to be arranged in
different ways, and if you have a program that requests memory in a manner
the kernel doesn’t support, you're out of luck. The way your kernel investigates
some hardware during the boot sequence defines how the hardware behaves,
so you have to control that. Some devices identify themselves in a friendly
manner, while others lock up if you dare to ask them what they’re for.

sysctl

The kernel and its modules are files in the directory /boot/kernel. Files
elsewhere in the system are not part of the kernel, and such files are collec-
tively called the userland, meaning that they’re intended for users even if they
use kernel facilities.

Since a kernel is just a set of files, you can have alternative kernels on
hand for special situations. On systems where you’ve built your own kernel,
you will find /boot/kernel.old, a directory containing the kernel that was
installed before your current kernel. I like to copy the kernel installed with
the system into /boot/kernel.install. You can also create your own special
kernels. The FreeBSD team makes configuring and installing kernels as
simple as possible. The simplest way to alter a kernel is through the sysctl
interface.

The sysctl(8) program allows you to peek at the values used by the kernel and,
in some cases, to set them. Just to make things more confusing, these values
are also sometimes known as sysctls. sysctl is a powerful feature because, in
many cases, it will let you solve performance issues without rebuilding the
kernel or reconfiguring an application. Unfortunately, this power also gives
you the ability to sweep the legs out from under a running program and
make your users really, really unhappy.

The sysctl(8) program handles all sysctl operations. Throughout this book,
I’ll point out how particular sysctls change system behavior, but first, you need
to understand sysctls in general. Start by grabbing all the human-visible sysctls
on your system and saving them to a file so you can study them easily.

sysctl -A > sysctl.out

The file syscil.out now contains hundreds of sysctl variables and their
values, most of which will look utterly meaningless. A few of them, however,
you can interpret without knowing much:

kern.hostname: humvee.blackhelicopters.org

This particular sysctl, called kern.hostname, has the value humvee
.blackhelicopters.org. Oddly enough, the system I ran this command on has
a hostname of humvee.blackhelicopters.org, and the sysctl hints that this is the
kernel’s name for the system it’s running on. If only they were all this easy . . .

kern.ipc.msqids: Format: Length:3520
Dump: 0xe903e€903€903e903c00101001687542. ..

I have no idea what the variable kern.ipc.msqids represents, and I know
even less about what the value means. Still, if I'm having trouble, I can get this
information by asking for help from a software vendor or on a mailing list.

Kernel Games 19

120

Chapter 5

sysctl MIBs

The sysctls are organized in a tree format called a Management Information
Base, or MIB, with several broad categories such as net (network), kern
(kernel), and vm (virtual memory). Table 5-1 lists the roots of the sysctl MIB
tree on a system running the GENERIC kernel.

Table 5-1: Roots of the sysctl MIB Tree

syscil Function

kern Core kernel functions and features
vm Virtual memory system

vfs Filesystem

net Networking

debug Debugging

hw Hardware

user Userland interface information
p1003_1b POSIX behavior”

compat Kernel compatibility with foreign software (see Chapter 12)
security Security-specific kernel features
dev Device driver information

" POSIX is an infernational standard for Unix-like operating system behavior. Unfortunately, much of
POSIX has changed over the years, and occasionally in ways that make systems compliant with one ver-
sion of POSIX not compliant with another version. If you're so deeply into POSIX that you know what these
differences are, you can use these sysctls to see exactly how FreeBSD behaves and which version of the
standard it matches.

Each of these categories is divided further. For example, the net category,
covering all networking sysctls, is divided into categories such as IP, ICMP,
TCP, and UDP. The concept of a Management Information Base is used in
several other parts of system administration, as we’ll see in Chapter 20 and
you’ll see throughout your career. The terms sysctl MIB and sysctl are frequently
used interchangeably. Each category is named by stringing together the parent
category and all of its children to create a unique variable name, such as:

kern.maxfilesperproc: 11095
kern.maxprocperuid: 5547
kern.ipc.maxsockbuf: 262144
kern.ipc.sockbuf_waste_factor: 8
kern.ipc.somaxconn: 128

Here we have five sysctls plucked from the middle of the kern category.
The first two are directly beneath the kern label and have no sensible group-
ing with other values other than the fact that they’re kernel-related. The
remaining three all begin with kern.ipc; they’re part of the IPC (inter-process
communication) section of kernel sysctls. If you keep reading the sysctls you
saved, you’ll see that some sysctl variables are several categories deep.

sysctl Valves

Each MIB has a value that represents some buffer, setting, or characteristic
used by the kernel. By changing the value, you’ll change how the kernel
operates. For example, some sysctls control how much memory the kernel
allocates for each network connection. On networks with specific problems,
you might get better performance by changing these values.

Each sysctl value is either a string, or an integer, or a binary value, or an
opaque. Strings are free-form texts of arbitrary length; integers are ordinary
whole numbers; binary values are either 0 (off) or 1 (on); and opaques are
pieces of machine code that only specialized programs can interpret. Many
sysctl values are not well documented; there is no single document listing all
available sysctl MIBs and their functions. A MIB’s documentation generally
appears in a man page for the corresponding function, or sometimes only
in the source code. For example, the original documentation for the MIB
kern.securelevel (discussed in Chapter 7) is in init(8). Although sysctl docu-
mentation has expanded in recent years, many MIBs still have no documen-
tation. Appendix A lists some commonly tweaked sysctls and their uses.

Fortunately, some MIBs have obvious meanings. For example, as we
discuss later in this chapter, this is an important MIB if you frequently boot
different kernels:

kern.bootfile: /boot/kernel/kernel

If you’re debugging a problem and have to reboot with several different
kernels in succession, you can easily forget which kernel you’ve booted (not
that this has ever happened to me, really). A reminder can therefore be
helpful.

Viewing sysctls

To view all the MIBs available in a particular subtree of the MIB tree, use the
sysctl command with the name of the part of the tree you want to see. For
example, to see everything under kern, enter this command:

sysctl kern

kern.ostype: FreeBSD
kern.osrelease: 7.0-CURRENT-SNAPO10
kern.osrevision: 199506

This list goes on for quite some time. If you're just becoming familiar
with sysctls, you might use this to see what’s available. To get the exact value
of a specific sysctl, give the full MIB name as an argument:

sysctl kern.securelevel
kern.securelevel: -1

Kernel Games 121

122

Chapter 5

The MIB kern.securelevel has the integer value -1. We’ll discuss the
meaning of this sysctl and its value in Chapter 7.

An easy way to get some idea of what a sysctl does is to use the -d switch
with the full MIB. This prints a brief description of the sysctl:

sysctl -d kern.maxfilesperproc
kern.maxfilesperproc: Maximum files allowed open per process

This brief definition tells you that the sysctl controls exactly what you
might think it does. While this example is fairly easy, other MIBs might be
much more difficult to guess.

Changing sysctls

Some sysctls are read-only. For example, take a look at the hardware MIBs:

hw.model: AMD Athlon(tm) 64 X2 Dual Core Processor 4200+

The FreeBSD Project has yet to develop the technology to change AMD
hardware into sparc64 hardware via a software setting, so this sysctl is read-
only. If you were able to change it, all you’d do is crash your system. FreeBSD
protects you by not allowing you to change this value. An attempt to change
it won’t hurt anything, but you’ll get a warning. On the other hand, consider
the following MIB:

vfs.usermount: 0

This MIB determines if users can mount removable media such as
CD-ROM and floppy drives. Changing this MIB requires no extensive tweaks
within the kernel or changes to hardware; it’s only an in-kernel permissions
setting. To change this value, use the sysct1(8) command, the sysctl MIB, an
equal sign, and the desired value:

sysctl vfs.usermount=1
vfs.usermount: 0 -> 1

sysctl(8) responds by showing the sysctl name, the old value, and the new
value. This sysctl is now changed. A sysctl that can be tuned on the fly like this
is called a run-time tunable sysctl.

Setting sysctls Automatically

Once you have tweaked your kernel’s settings to your whim, you will want
those settings to remain after a reboot. You’ll use the file /etc/sysctl.conffor
this. List each sysctl you want to set and the desired value in this file. For
example, to have the same vfs.usermount sysctl set at boot, add the following
on a separate line in /etc/sysctl.conf:

vfs.usermount=1

Boot-Time Tunable sysctls

Some values are so deeply embedded in the kernel that they can only be
adjusted when initializing the kernel during boot. You’ll find many examples
of these boot-time tunable sysctls (or tunables), frequently related to low-level
hardware settings. As an example, when the kernel first probes an IDE hard
drive, the device driver must choose whether or not to use DMA, PIO, write
caching, or any other hard drive-specific settings. This decision must be made
immediately upon starting the hard drive, and you can’t change your mind
without rebooting the machine. You can set these variables in the system
loader via /boot/loader.conf, as discussed in Chapter 3.

Much like syscil.conf, setting tunable values in loader.conf will let you really
mess up a machine. The good news is that these values are easily unset.

TOO MANY TUNABLES?

Don’t become confused between sysctl values that can only be set at boot, syscil
values that can be tuned on the fly, and sysctls that can be set on the fly but have
been configured to automatically adjust at boot. Remember that boottime tunable
syscils involve low-level kernel functions, while run-time tunables involve higher-level
functions. Having sysctls adjust themselves at boot is merely an example of saving
your work—it does not change the category that the sysctl belongs to.

Dropping Hints on Device Drivers

Many device drivers need to have sysctl flags set early during boot. You’ll learn
about these by reading their man pages, this book, and other documentation.
While these have no entry in the default loader conffile, you can still add them
to your loader.confto have them set automatically at boot. For example, to
disable DMA on ATAPI devices (which we’ll discuss in Chapter 8), just put
the desired sysctl setting in loader.conf.

hw.ata.atapi_dma="0"

The kernel will set this flag at boot and the device driver will behave
accordingly.

Additionally, much old hardware requires the kernel to address it at very
specific IRQ and memory values. If you’re old enough to remember plug-
and-pray, “hardware configuration” floppy disks, and special slots for bus
master cards, you know what I’'m talking about and probably have one of
these systems polluting your hardware closet even today. (If you're too young
for that, buy one of us geezers a drink and listen to our horror stories.)
You can tell FreeBSD to probe for this hardware at any IRQ or memory
address you specify, which is very useful when you have a card with a known

2 Actually, listening is optional.

Kernel Games 123

124

00

configuration but the floppy that can change that configuration biodegraded
years ago. Look in /boot/device. hints where you’ll see lots of entries like this:

hint.®ed.®0.©disabled="1"
hint.ed.0.port="0x280"
hint.ed.0.irg="10"
hint.ed.0.maddr="0xd8000"

These entries are all hints for the ed device driver @. The entry is used
for ed device number zero @. The disabled keyword ® means that FreeBSD
won’t check for this device automatically at boot; if another ed card is found,
it can be assigned device number zero. If you enable this device, FreeBSD will
probe for a card at port 0x280 @, IRQ 10 ©, and memory address 0xd8000 @,
and if a card exists there, it will be assigned the device name ed0. Of course,
if that card isn’t supported by the ed(4) Ethernet driver, you’ll have other
problems!

sysctl(8) gives you the power to do all this with your kernel, but tuning
only takes you so far. Kernel modules will take you another leap forward.

TESTING BOOT-TIME TUNABLES

All of these hints and boottime tunable sysctls are available in the boot loader and
can be set interactively at the 0K prompt, as discussed in Chapter 3. You can test
settings without editing loader.conf, find the value that works for you, and only then
make the change permanent in a file.

Kernel Modules

Chapter 5

Kernel modules are parts of a kernel that can be started (or loaded) when
needed and unloaded when unused. Kernel modules can be loaded when
you plug in a piece of hardware and removed with that hardware. This can
save a bit of system memory and greatly expands your flexibility.

Just as the default kernel is held in the file /boot/kernel/kernel, kernel
modules are the other files under /boot/kernel. Take a look in that directory
and you’ll see hundreds of kernel module files. Each kernel module name
ends in .ko. Generally speaking, the file is named after the functionality
contained in the module. For example, the file /boot/kernel/joy.ko handles the
“joy” joystick driver documented in joy(4). This kernel module makes your
joystick show up as device joy0.

Viewing Loaded Modules

In Chapter 3, we saw how to look at kernel modules loaded before boot, but
that won’t help when the system is up and running. The kldstat(8) command
will show what kernel modules are in use at the moment.

200

kldstat

Id Refs Address Size Name

1 15 0xc0400000 6a978c kernel

2 1 0xc0aaa000 6228 snd_via8233.ko
3 2 0xc0ab1000 23898 sound. ko

This laptop has three kernel modules loaded. The first is the kernel
proper @; then, we have a sound card driver @ and the sound subsystem ©.
(As this computer is a laptop, that’s not surprising.) Each module contains
one or more submodules, which you can view using kldstat -v, but the kernel
itself has a few hundred submodules—so be ready for a lot of output.

Loading and Unloading Modules

Loading and unloading kernel modules is done with kldload(8) and
kldunload(8). For example, my laptop is usually hooked to the network via
a wired Ethernet connection. When I attach to a wireless network, I need to
load the wlan_wep.ko kernel module that handles WEP encryption. I use the
kldload command and the file containing the kernel module for that feature:

kldload /boot/kernel/wlan_wep.ko

Once I'm done with my wireless connection, I’'ll unload the module.?
For this, I don’t need to specify the filename, but just the name of the kernel
module as it is shown in kldstat’s output:

kldunload wlan_wep.ko

If all possible functions were compiled into the kernel, it would be rather
large. Using modules, you can have a smaller, more efficient kernel and only
load rarely used functionality when it’s required.

kldload (8) and kldunload(8) do not require the full path to the kernel
module, nor do they require the .ko at the end of the file. If you remember
the exact name of the kernel module, you could just use:

kldload wlan_wep
kldunload wlan_wep

Personally, my weak brain relies on tab completion in my shell to remind
me of the module’s full and proper name.

Loading Modules at Boot

Use /boot/loader.confto load modules at boot. The default loader.confincludes
many examples of loading kernel modules, but the syntax is always the same.
Take the name of the kernel module, chop off the trailing .ko, and add the

% Actually I probably won’t bother, as I'll be shutting down the laptop. But you get the idea.

Kernel Games 125

126

string _load="YES". For example, to load the module /boot/kernel/procfs.ko
automatically at boot, add this to loader.conf:

procfs_load="YES"

The hard part, of course, is knowing which module to load. The easy
ones are device drivers; if you install a new network or SCSI card that your
kernel doesn’t support, you can load the driver module instead of recon-
figuring the kernel. In this case, you’ll need to find out which driver supports
your card; the man pages and Google are your friends there. I’ll be giving
specific pointers to kernel modules to solve particular problems throughout
this book.

Wait a minute, though; why would FreeBSD make you load a device
driver to recognize hardware if it recognizes almost everything at boot?
That’s an excellent question! The answer is that you may have built your
own custom kernel and removed support for hardware you’re not using.
You don’t know how to build a kernel? Well, let’s fix that right now.

Build Your Own Kernel

Chapter 5

Eventually, you’ll find that you cannot tweak your kernel as much as you

like using only sysctl and modules, and your only solution will be to build a
customized kernel. This sounds much harder than it is; we’re not talking
about writing code here—just editing a text file and running a couple of
commands. If you follow the process, it’s perfectly safe. If you dont follow the
process, well, it’s like driving on the wrong side of the road. (Downtown.
During rush hour.) But the recovery from a bad kernel isn’t that bad, either.

The kernel shipped in a default install is called GENERIC. GENERIC is
configured to run on a wide variety of hardware, although not necessarily
optimally. GENERIC boots nicely on most hardware from the last decade
or so. Newer hardware, however, often has optimizations that GENERIC
won’t support, as it is aimed at the lowest common denominator. Even so,
it’s perfectly suitable for use in a production environment. When you
customize your kernel, you can include these optimizations, add support
for new hardware, remove support for hardware you don’t need, or enable
nifty new features.

Building a kernel is often considered a rite of passage, and the FreeBSD
support community won’t think twice about asking you to rebuild your
kernel to include or exclude a certain feature. While you shouldn’t think
that rebuilding the kernel will solve every problem, it’s a useful tool to have
in your system administration toolbox.

Preparations

You must have the kernel source code before you can build a kernel. If you
followed my advice back in Chapter 2, you’re all set. If not, you can either go
back into the installer and load the kernel sources, or download the source

o0e

® 0

code from a FreeBSD FTP mirror, or jump ahead to Chapter 13 and use
csup(8). If you don’t remember if you installed the kernel source code, look
into your /sys directory. If it contains a bunch of files and directories, you
have the kernel sources.

Before building a new kernel, you must know what hardware your system
has. This can be difficult to determine; the brand name on a component
doesn’t necessarily describe the device’s identity or abilities. Many companies
use rebranded generic components—I remember one manufacturer that
released four different network cards under the same model name and
didn’t even put a version number on the first three. The only way to tell
the difference was to keep trying different device drivers until one of them
works. Similarly, many different companies manufactured NE2000-compatible
network cards. The outside of the box had a vendor’s name on it, but the
circuits on the card said NE2000. Fortunately, some vendors use a standard
architecture for their drivers and hardware; you can be fairly sure that an
Intel network card will be recognized by the Intel device driver.

The best place to see what hardware FreeBSD found on your system is
the file /var/run/dmesg.boot, discussed in Chapter 3. Each entry represents
either a hardware or software feature in the kernel. As you work on a new
kernel for a system, keep the dmesg.boot of that system handy.

Buses and Attachments

Every device in the computer is attached to some other device. If you read
your dmesg.boot carefully, you can see these chains of attachments. Here’s an
edited set of boot messages to demonstrate:

acpio: <PTLTD RSDT> on motherboard

acpi_ecO: <Embedded Controller: GPE Oxb> port 0x62,0x66 on ©acpio
cpu0: <ACPI CPU> on acpio

cpul: <ACPI CPU> on acpio

pcibo: <ACPI Host-PCI bridge> port oxcf8-oxcff on acpio

pcio: <ACPI PCI bus> on @pcibo

Our first device on this system is acpi0 @. You probably don’t know what
that is, but you could always use man acpi to learn. (Or, if you must, you could
read the rest of this chapter.) There’s an acpi_ec device @ on this system,
and it’s attached to acpi0 ©. The CPUs @ are also attached to acpi0, as is a
PCI bridge ©. Finally, we have the first PCI bus, pci0 @, attached to the PCI
bridge @ rather than acpi0. Common PCI devices are connected to a hier-
archy of buses that are, in turn, attached to a PCI bridge to talk to the rest of
the computer. You could read dmesg.boot and draw a tree of all the devices
on the system; while that isn’t necessary, understanding what’s attached where
makes configuring a kernel much more likely to succeed.

If you’re in doubt, use pciconf(8) to see what’s actually on your system.
pciconf -1v will list every PCI device attached to the system, whether or not
the current kernel found a driver for it.

Kernel Games 127

128

Chapter 5

Back Up Your Working Kernel

A bad kernel can render your system unbootable, so you absolutely must
keep a good kernel around at all times. The kernel install process keeps your
previous kernel around for backup purposes, in the directory /boot/kernel.old.
This is nice for being able to fall back, but I recommend that you go further.

If you don’t keep a known good backup, here’s what can happen. If you
build a new kernel, find that you made a minor mistake, and have to rebuild
it again, the system-generated backup kernel is actually the first kernel you
made—the one with that minor mistake. Your working kernel has been
deleted. When you discover that your new custom kernel has the same
problem, or an even more serious error, you’ll deeply regret the loss of
that working kernel.

A common place to keep a known good kernel is /boot/kernel.good. Back
up your working, reliable kernel like this:

cp -Rp /boot/kernel /boot/kernel.good

Don’t be afraid to keep a variety of kernels on hand. Disk space is
cheaper than time. I know people who keep kernels in directories named by
date, so that they can fall back to earlier versions if necessary. Many people
also keep a current copy of the GENERIC kernel in /boot/kernel. GENERIC for
testing and debugging purposes. The only way to have too many kernels is to
fill up your hard drive.

Configuration File Format

FreeBSD’s kernel is configured via text files. There’s no graphical utility or
menu-driven system for kernel configuration; it’s still much the same as in
4.4 BSD. If you’re not comfortable with text configuration files, building a
kernel is just not for you.

Each kernel configuration entry is on a single line. You’ll see a label to
indicate what sort of entry this is, and then a term for the entry. Many entries
also have comments, set off with a hash mark—much like this entry for the
FreeBSD filesystem FFS:

options FFS # Berkeley Fast Filesystem

Every kernel configuration file is made up of five types of entries: cpu,
ident, makeoptions, options, and devices. The presence or absence of these
entries dictates how the kernel supports the associated feature or hardware:

cpu This label indicates what kind of processor this kernel supports.
The kernel configuration file for the boring old PC hardware includes
several CPU entries to cover processors such as the 486 (1486_CPU),
Pentium (I586_CPU), and Pentium Pro through modern Pentium 4
CPUs (I686_CPU). The kernel configuration for amd64/EM64T hard-
ware includes only one CPU type, as that architecture has only one CPU

family. While a kernel configuration can include multiple CPU types,
they must be of similar architectures; a kernel can run on 486 and
Pentium CPUs, but you can’t have a single kernel that will run on both
Intel-compatible and Sparc processors.

ident Every kernel has a single ident line, giving a name for the kernel.
That’s how the GENERIC kernel gets its name; it’s an arbitrary text
string.

makeoptions This string gives instructions to the kernel-building soft-
ware. The most common option is DEBUG=-g, which tells the compiler to
build a debugging kernel. Debugging kernels help developers trouble-
shoot system problems.

options These are kernel functions that don’t require particular hard-
ware. This includes filesystems, networking protocols, and in-kernel
debuggers.

devices Also known as device drivers, these provide the kernel with
instructions on how to speak to certain devices. If you want your system
to support a piece of hardware, the kernel must include the device driver
for that hardware. Some device entries, called pseudodevices, are not
tied to particular hardware, but instead support whole categories of
hardware—such as Ethernet, random number generators, or memory
disks. You might wonder what differentiates a pseudodevice from an
option. The answer is that pseudodevices appear to the system as devices
in at least some ways, while options have no device-like features. For
example, the loopback pseudodevice is a network interface that only
connects to the local machine. While no hardware exists for it, software
can connect to the loopback interface and send network traffic to other
software on the same machine.

Configuration Files

Fortunately, you don’t normally create a kernel configuration file from scratch;
instead, you copy an existing one and edit it. Start with the GENERIC kernel
for your hardware architecture. It can be found in /sys/<arch>/conf—tor
example, the 1386 kernel configuration files are in /sys/i386/conf, the amd64
kernel configuration files are in /sys/amd64/conf, and so on. This directory
contains several files, of which the most important are DEFAULTS, GENERIC,
GENERIC. hints, MAC, and NOTES:

DEFAULTS This is a list of options and devices that are enabled by
default for a given architecture. That doesn’t mean that you can compile
and run DEFAULTS, but it is a starting point should you want to build a
truly minimal kernel.

GENERIC This is the configuration for the standard kernel. It contains
all the settings needed to get standard hardware of that architecture up
and running; this is the kernel configuration used by the installer.

Kernel Games 129

130

Chapter 5

GENERIC.hints This is the hints file that is later installed as /boot/device
.hints. This file provides configuration information for older hardware.

MAC This is a kernel configuration file that supports Mandatory Access
Controls—a system for fine-grained access control used in high-security
environments. You only need this configuration file if you’'re using MAC.

NOTES This is an all-inclusive kernel configuration for that hardware
platform. Every platform-specific feature is included in NOTES. You can
find platform-independent kernel features in /usr/src/sys/conf/NOTES.

Do not edit any of the files in the configuration directory directly. Instead,
copy GENERIC to a file named after your machine and edit the copy. For
example, my laptop is called humuvee.blackhelicopters.org: 1 would copy the file
GENERIC to a file called HUMVEE and open HUMVEE in my preferred text
editor. Here’s a snippet of a configuration file—the part that covers ATA
devices:

ATA and ATAPI devices

device ata

device atadisk # ATA disk drives

device ataraid # ATA RAID drives

device atapicd # ATAPI CDROM drives
device atapifd # ATAPI floppy drives
device atapist # ATAPI tape drives
options ATA_STATIC_ID # Static device numbering

Hash marks (#) delimit comments; everything after a hash mark to the
end of line is ignored. They’re there to separate machine-friendly stuff
from human-friendly stuff. For example, the first line of this snippet tells
you that the following entries are all for ATA and ATAPI devices. Other
lines have comments that start in the middle of the line, telling you what
the entries are for.

Compare these entries to a couple of our ATA entries in /var/run/
dmesg.boot:

atal: <ATA channel 1> on atapcii
acdo: DVDR <PIONEER DVD-RW DVR-K16/1.33> at atal-master UDMA33

The kernel configuration has an ATA bus, device ata, and the dmesg
shows an ATA channel atal. The DVD-RW drive is attached to atal. Without
the device ata in the kernel config, the kernel would not recognize the ATA
bus. Even if the system figured out that a DVD drive is in the system, it wouldn’t
know how to get information to and from it. Your kernel configuration must
include all the intermediary devices for the drivers that rely on them. On the
other hand, if your system doesn’t have ATA RAID drives, floppy drives, or
tape drives, you can remove those device drivers from your kernel.

Trimming a Kernel

Once upon a time, memory was far more expensive than today and was only
available in smaller quantities. When a system has 128MB of RAM, you want
every bit of that to be available for work. It was important to have a kernel as
small as possible. Today, when even a laptop has 2GB RAM, kernel size is
almost irrelevant. Stripping unnecessary drivers out of a kernel to make it
smaller might not be vital—but it isn’t an actively dumb thing to do; it will
teach you how to build a kernel, so that when the need appears you won’t
have to learn something new. So, we’re going to use kernel trimming as a
learning exercise, but don’t consider it vital or even necessary.

Remove an entry from the kernel configuration by commenting it out.

CPU Types

On most architectures, FreeBSD supports only one or two types of CPU. The
1386 platform supports three. Removing unnecessary CPU types from your
kernel configuration will produce a kernel that takes full advantage of the
features offered by your CPU—for example, consider the Pentium versus the
Pentium II with MMX instructions. If those instructions are available on your
CPU, you want to take advantage of them. On the other hand, stripping out
unused CPU types from the kernel will produce a kernel that can only run
on one type of CPU.

You only need to include the CPU you have. If you’re not sure of the
CPU in your hardware, check dmesg.boot. My laptop’s dmesg.boot includes the
following lines:

CPU: AMD Athlon(tm) 64 X2 Dual Core Processor 4200+ (2200.10-MHz 686-class CPU)
Origin = "AuthenticAMD" Id = o0x20fb1 Stepping = 1

Features=0x178bfbff<FPU,VME,DE,PSE, TSC,MSR,PAE,MCE,CX8,APIC,SEP,MTRR, PGE ,MCA, C
MOV, PAT, PSE36, CLFLUSH,MMX, FXSR, SSE, SSE2,HTT>

As shown in bold, this is a 686-class CPU, which means that I can remove
the 1486_CPU cpu statements to make my kernel smaller and faster. As a
result, the kernel will use 686-class CPU-specific optimizations instead of
slower generic code. (Also, as it’s a 64-bit i386-style chip, I could run either
1386 or amd64 versions of FreeBSD, as discussed in Chapter 1. We’re choos-
ing to use 1386 examples, however, as that’s probably what most readers have.)

Basic Options

Following the CPU type configuration entries, we have a whole list of options
for basic FreeBSD services such as TCP/IP and filesystems. An average system
won’t require all of these, but having them present provides a great deal of
flexibility. You’ll also encounter options rarely used in your environment as
well as those you can remove from your custom kernel configuration. We

Kernel Games 131

132

Chapter 5

won’t discuss all possible kernel options, but will cover specific examples of
different option types. I'll specifically mention those that can be trimmed
from an Internet server. Consider the following:

#options SCHED_ULE # ULE scheduler
options SCHED_4BSD # 4BSD scheduler
options PREEMPTION # Enable kernel thread preemption

These options control how FreeBSD performs its internal scheduling.
We’ll discuss scheduling in Chapter 12. Preemption makes FreeBSD more
efficient at multitasking.

options INET # InterNETworking
options INET6 # IPv6 communications protocols

These options support networking. INET is the standard old-fashioned
TCP/IP, while INET6 supports IPv6. Much Unix-like software depends
on TCP/IP, so you certainly require INET. IPv6 has much more limited
deployment, however; while eventually you’ll have to understand it, that
day hasn’t come yet, so you can trim INET6 if you like.

options FFS # Berkeley Fast Filesystem
options SOFTUPDATES # Enable FFS soft updates support
options UFS_ACL # Support for access control lists
options UFS_DIRHASH # Improve performance on big
directories

FFS is the standard FreeBSD filesystem, and the other options are all
related to FFS. Soft updates is a method for ensuring disk integrity even
when your system is shut down incorrectly. UFS access control lists allow
you to grant very detailed permissions on files, and UFS_DIRHASH enables
directory hashing to make directories with thousands of files more efficient.
We discuss FFS and its options in more detail than you care for in Chapter 8.

options MD_ROOT # MD is a potential root device

This option (and all the other _R0OOT options) lets the system use some-
thing other than a standard FFS filesystem as a disk device for the root
partition. The installer uses a memory device (MD) as a root partition. If
you’re using a diskless system (Chapter 20), you’ll need an NFS root parti-
tion. If you’re running FreeBSD on a standard computer system, with a hard
drive and a keyboard and whatnot, your kernel doesn’t need any of these
features.

options NFSCLIENT # Network Filesystem Client
options NFSSERVER # Network Filesystem Server

These two options support the Network File System (see Chapter 8).
NFSCLIENT lets you mount partitions served by another machine across the
network, while NFSSERVER allows you to offer partitions for other machines
to mount.

options MSDOSFS # MSDOS filesystem

options CD9660 # ISO 9660 filesystem

options PROCFS # Process filesystem (requires PSEUDOFS)
options PSEUDOFS # Pseudo-filesystem framework

These options support rarely used filesystems such as FAT, CDs, the
process filesystem, and the pseudo-filesystem framework. We discuss these
filesystems in Chapter 8, but all the functionality they require is available via
kernel modules on those rare occasions they’re used.

options COMPAT_43TTY # BSD 4.3 TTY compat [KEEP THIS!]
options COMPAT_FREEBSD4 # Compatible with FreeBSD4
options COMPAT_FREEBSD5 # Compatible with FreeBSD5
options COMPAT_FREEBSD6 # Compatible with FreeBSD6

These compatibility options let your system run software built for older
versions of FreeBSD, or software that makes assumptions about the kernel
that were valid for older versions of FreeBSD but are no longer true. If you’re
installing a system from scratch, you probably won’t need compatibility with
FreeBSD 4, 5, or 6, but a surprising amount of software requires compatibility
with 4.3 BSD. Keep the COMPAT_43TTY option, or your system will break.

options SCSI_DELAY=5000 # Delay (in ms) before probing SCSI

The SCSI_DELAY option specifies the number of milliseconds FreeBSD
waits after finding your SCSI controllers before probing them, giving them a
chance to spin up and identify themselves to the SCSI bus. If you have no
SCSI hardware, you can remove this line. If you have ancient SCSI hardware
that starts up like an arthritic elephant, you might want to increase this to as
much as 15000 (15 seconds).

options SYSVSHM # SYSV-style shared memory
options SYSVMSG # SYSV-style message queues
options SYSVSEM # SYSV-style semaphores

These options enable System-V-style shared memory and interprocess
communication. Many database programs use this feature.

options AHC_REG_PRETTY_PRINT # Print register bitfields in debug
output. Adds ~128k to driver.
options AHD_REG_PRETTY_PRINT # Print register bitfields in debug

output. Adds ~215k to driver.

Kernel Games 133

134

Chapter 5

Options like these are only effective if you’re using the hardware they
reference. Otherwise, they’re useless and can be removed.

Multiple Processors

The following two entries enable symmetric multiprocessing (SMP) in 1386
kernels:

options SMP # Symmetric MultiProcessor Kernel
device apic # I/0 APIC

The SMP option tells the kernel to schedule processes on multiple CPUs,
while the apic handles input/output for SMP kernels. FreeBSD’s i386 SMP
implementation only supports SMP systems that fit the Intel SMP specifica-
tion, which does not include 386 or 486 SMP systems. (Other platforms, such
as sparc64, fully comply with their own standards, so SMP works just fine on
them.) FreeBSD only supports multiple processors on Pentium and newer
processors. In older versions of FreeBSD, SMP kernels performed poorly or
wouldn’t boot at all on single-CPU systems; the overhead of managing data
for multiple processors created additional drag on the system. This is no
longer the case, and FreeBSD now ships with SMP enabled by default.

Device Drivers

After all the options you’ll find device driver entries, which are grouped in
fairly sensible ways.

The first device entries are buses, such as device pci and device eisa.
Keep these, unless you truly don’t have that sort of bus in your system.

A surprising number of “legacy-free” systems have an ISA bus buried some-
where inside them.

Next, we reach what most people consider device drivers proper—entries
for floppy drives, SCSI controllers, RAID controllers, and so on. If your goal
is to reduce the size of your kernel, this is a good place to trim heavily;
remove all device drivers for hardware your computer doesn’t have. You’ll
also find a section of device drivers for such mundane things as keyboards,
video cards, PS/2 ports, and so on. You almost certainly don’t want to delete
these.

The network card device driver section is quite long and looks much like
the SCSI and IDE sections. If you’re not going to replace your network card
any time soon, you can eliminate drivers for any network cards you aren’t
using.

We won’t list all the device drivers here, as there’s very little to be
learned from such a list other than the hardware FreeBSD supported at
the time I wrote this section. Check the release notes for the version of
FreeBSD you’re running to see what hardware it supports.

Pseudodevices

You’ll find a selection of pseudodevices near the bottom of the GENERIC
kernel configuration. As the name suggests, these are created entirely out of
software. Here are some of the more commonly used pseudodevices.

device loop # Network loopback

The loopback device allows the system to communicate with itself via
network sockets and network protocols. We’ll discuss network connections
in some detail in the next chapter. You might be surprised at just how many
programs use the loopback device, so don’t remove it.

device random # Entropy device

This device provides pseudorandom numbers, required for cryptography
operations and such mission-critical applications as games. FreeBSD supports a
variety of randomness sources, and they are all aggregated transparently into
the random devices /dev/random and /dev/urandom.

device ether # Ethernet support

Ethernet has many device-like characteristics, and it’s simplest for
FreeBSD to treat it as a device. Leave this, unless you’re looking for a
learning opportunity.

device sl # Kernel SLIP
device ppp # Kernel PPP

The sl device supports SLIP (Serial Line Internet Protocol), and the
ppp device supports kernel PPP (Point to Point Protocol). Both of these are
old and obsoleted by userland PPP, unless you have specific requirements
for them.

device tun # Packet tunnel.

The tun device is a logical packet tunnel. Software can use a tunnel inter-
face to sneak packets in and out of the kernel. Such software includes userland
PPP, the most popular choice for dial-up connections.

device pty # Pseudo-ttys (telnet etc)

A pty is a pseudoterminal. When you telnet or SSH (see Chapter 15) into
the system, FreeBSD must keep track of your terminal session, send characters
to your screen, and read what you type. The system wants to treat your remote

Kernel Games 135

136

connection just as it treats the physical monitor and keyboard attached to the
system. The pseudoterminal is a terminal-like pseudodevice assigned to your
connection.

device md # Memory "disks"

Memory disks allow you to store files in memory. This is useful for very fast,
temporary data storage, as we’ll learn in Chapter 8. For most (but not all)
Internet servers, memory disks are a waste of RAM. You can also use memory
disks to mount and access disk images. If you’re not using memory disks, you
can remove them from your kernel.

Removable Hardware

At the end of the GENERIC kernel, you will find support for FireWire and
USB removable hardware. These features are all available in modules, as
befits hardware that might or might not be present.

Building a Kernel

Chapter 5

After reading through the previous section, you should be able to design a
minimal kernel configuration. Before trying to add anything, I recommend
trying to build and boot this minimal kernel to learn what your computer
really needs. Now that you have a kernel configuration file that you like,
build it.

You’ll need to specify the name of the file containing your custom
kernel configuration either on the command line, in /etc/make.conf, or in
/etc/src.conf, with the KERNCONF variable.

cd /usr/src
make KERNCONF=MYKERNEL kernel

The build process first runs config(8) to find syntactical configuration
errors. If config(8) detects a problem, it will report an error and stop. Some
errors are blatantly obvious—for example, you might have accidentally
deleted support for the Unix File System (UFS), but included support for
booting off of UFS. One requires the other, and config will tell you exactly
what’s wrong. Other messages are strange and obscure; those that may take
the longest to figure out are like this:

HUMVEE: unknown option "NET6"

NET®6 is the IPv6 option, isn’t it? No, that’s INET6. The error is perfectly
self-explanatory—once you’re familiar with all the supported kernel options.
Read these errors carefully!

Once config(8) validates your kernel, you just wait. The kernel build
process takes hours on a 486 but less than an hour on a new fast system.
The compiler sends all sorts of cryptic messages scrolling down your

screen. Once the build finishes, the system will move your current kernel
to /boot/kernel.old and install the new kernel in /boot/kernel. Once this
finishes, reboot your server and watch the boot messages.

Copyright (c) 1992-2006 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University of California. ALl rights reserved.
FreeBSD 7.0-CURRENT #0: Thu May 11 01:16:19 EDT 2006
mwlucas@humvee.blackhelicopters.org:/usr/src/sys/compile/HUMVEE

Atboot time, FreeBSD shows you exactly what kernel it’s running @ and
when that kernel was built @. Congratulations, you’ve just built a kernel!

Troubleshooting Kernel Builds

If your kernel build fails, the first troubleshooting step is to look at the last
lines of the output. Some of these errors are quite cryptic, but others will be
self-explanatory. The important thing to remember is that errors that say,
“Stop in some directory” aren’t useful; the useful error will be before these.
We talked about how to solve these problems in Chapter 1: Take the error
message and toddle off to the search engine. Compile errors are usually the
result of a configuration error.

Fortunately, FreeBSD insists upon compiling a complete kernel before
installing anything. You haven’t damaged your system by failing to build a
kernel; your aborted compile is still sitting in the compile directory.

Booting an Alternate Kernel

So, what to do if your new kernel doesn’t work, or if it works badly? Perhaps
you forgot a device driver, or accidentally cut out the ppp pseudodevice and
cannot dial out to the Internet. Don’t panic! You did keep your old kernel,
right? Here’s what to do.

Back in Chapter 3, we discussed the mechanics of booting an alternate
kernel. We’ll go through the process of what to type here, but to see some
of the in-depth details of loader management you’ll want to go back to the
earlier section. For now, we’ll focus on the reasons to boot an alternate
kernel and on how to do it correctly.

Start by deciding which kernel you want to boot. Your old kernel should
be in a directory under /boot; in this section, we’ll assume that you want to
boot the kernel in /boot/kernel.good. Reboot and interrupt the boot to get
a loader prompt. Remember that by the time you get the loader prompt,
FreeBSD has already copied the kernel into memory, so the first thing you
have to do is throw the bad kernel overboard:

ok unload

Kernel Games 137

138

Now load the kernel you want, as well as ACPI (unless you don’t use it)
and any other kernel modules you normally load at boot:

ok load /boot/kernel.good/kernel
ok load /boot/kernel.good/acpi.ko
ok boot

Your system will now boot off the old kernel.

Inclusions, Exclusions, and Expanding the Kernel

Chapter 5

Now that you can build a kernel, let’s get a little fancy and see how to use
inclusions, the various no configurations, and the NOTES file.

NOTES

FreeBSD’s kernel includes all sorts of features that aren’t included in
GENERIC. Many of these special features are intended for very specific
systems, or for weird corner cases of a special network. You can find a
complete list of hardware-specific features in the file NOTES under each
platform’s kernel configuration directory—for example, /sys/amd64/conf/
NOTES. Hardware-independent kernel features—those that work on every
platform FreeBSD supports—can be found in /sys/conf/NOTES. If you have
hardware that doesn’t appear to be completely supported in the GENERIC
kernel, take a look at NOTES. Some of these features are obscure, but if
you have the hardware, you’ll appreciate them. Let’s take a look at a typical
entry from NOTES:

CPU_SOEKRIS enables support www.soekris.com hardware.
#

options CPU_SOEKRIS

Soekris is a manufacturer of small systems perfect for homebrew embed-
ding. We’ll talk about those systems in Chapter 21; they aren’t common
enough for this entry to go into GENERIC, but if you have one of these
devices, you can use the CPU_SOEKRIS option to enable the special features of
that CPU.

If the NOTES file lists all the features for every possible device, why
not just use it as the basis for your kernel? First, such a kernel would use
up far more memory than the GENERIC kernel. While even small modern
machines have enough memory to run GENERIC without trouble, if the
kernel becomes ten times larger without the corresponding increase in
functionality, people would get annoyed. Also, many of the options are
mutually exclusive. You’ll find features for Athlon CPUs, Cyrix CPUs, IBM
CPUs, options to work around bugs in particular revisions of particular
cards, and so on.

Inclusions and Exclusions

FreeBSD’s kernel configuration has two interesting abilities that can make
maintaining a kernel easier: the no options and inclusions.

The include feature lets you pull a separate file into the kernel config-
uration. For example, if you have a kernel configuration that can be described
as “GENERIC with a couple extra tidbits,” you could include the GENERIC
kernel configuration with an include statement:

include GENERIC

So, if you want to build a kernel that has all the functionality of GENERIC
but also supports the Soekris CPU, you could create a valid kernel configura-
tion composed entirely of the following:

ident MYKERNEL
include GENERIC
options CPU_SOEKRIS

You might think that this is actually more work than copying GENERIC
to a new file and editing it, and you’d be correct. Why would you bother with
this, then? The biggest reason is that as you upgrade FreeBSD, the GENERIC
configuration can change. The GENERIC in FreeBSD 7.1 is slightly different
from that in 7.0. Your new configuration is valid for both releases, and in
both cases can be legitimately described as “GENERIC plus my options.”

This works well for including items, but isn’t very good for removing
things from the kernel. For example, all of the Soekris CPUs are in small
systems without SCSI or RAID cards. You could expand your configuration
to exclude all of those device drivers with the nodevice keyword. A nodevice
entry removes a previously included device entry. Similarly, the nooption
keyword disables included options.

For an excellent example of this, take a look at the PAE kernel config-
uration. PAE is a configuration used for 1386 systems with more than 4GB RAM,
as discussed later in this chapter. Many older devices cannot run on a machine
with this much memory, so they cannot be included in this configuration.
No matter how much you upgrade your FreeBSD system, you know that the
default PAE kernel is “GENERIC, plus the PAE feature, minus all the drivers
that don’t work with PAE.”

How Kernel Options Fix Problems

Some kernel options are only used when a problem appears. For example,
a few years ago a friend of mine had several web servers running on low-end
1386 hardware. When one machine was serving several hundred pages per
second, he started getting errors on the console:

Jun 9 16:23:17 ralph/kernel: pmap_collect: collecting pv entries --
suggest increasing PMAP_SHPGPERPROC

Kernel Games 139

140

A couple hours after this message began appearing, the system crashed.
Apparently we were supposed to take that suggestion seriously, so I did a
little research on the Internet and read through NOTES, where I found the
following entry:

Set the number of PV entries per process. Increasing this can

stop panics related to heavy use of shared memory. However, that can
(combined with large amounts of physical memory) cause panics at
boot time due the kernel running out of VM space.

If you're tweaking this, you might also want to increase the sysctls
"vm.v_free min", "vm.v_free reserved", and "vm.v_free_target".

The value below is the one more than the default.

e e]

options PMAP_SHPGPERPROC=201

This seemed simple enough. First, I backed up the old kernel to /boot/
kernel. pmap-crash. It wasn’t exactly a good kernel, but it did keep the system
running for several hours. We then increased PMAP_SHPGPERPROC to 400
and increased the system’s RAM to 192MB. (This system was serving several
hundred web pages per second on 64MB RAM, with one IDE disk and a
Celeron 433 processor!) After installing our new kernel, the crashes stopped
and the system ran for months at a time. In FreeBSD 7, this particular kernel
option happens to be a run-time tunable sysctl, but many other options in
the kernel can be changed this way.

Without this ability to tweak the kernel, we would have had no choice
but to buy more hardware. Even though this hardware is pretty low-end, it
handled the load with only a software tweak and a minor hardware addition.
FreeBSD has quite a few options like this one for special situations—and it
will tell you what it wants if you pay attention. (Mind you, if you’re merely
desperate to spend money, I happen to run a charity for homeless cash and
can honestly assure you that I will find it a new home where it will be deeply
appreciated.)

Sharing Kernels

Chapter 5

If you have several identical servers, you don’t need to build a kernel on
each; you can share your custom-built kernel across them. The kernel and its
modules are just files on disk, after all.

To share a kernel, build and install one kernel and test it every way you
can. Then, tar up /boot/kernel and copy the tarball to each of the other servers.
Back up the original kernel on each server, then extract your tarball to install
the new /boot/kernel. Reboot, and you’re done!

Testing Kernels Remotely

It’s not uncommon to have a FreeBSD system in a remote facility, such as a
co-location. You might not have a serial console, and talking a co-location
technician through the boot loader is not something you would normally
enjoy. The best you can hope for from these co-location facilities is that
you’ll get a pair of “remote hands” that can walk up to the machine and hit
the power button for you. How can you possibly test a new kernel under
those circumstances? The key here is that you want to confirm that a kernel
boots the system properly—and if it doesn’t boot properly, you want the boot
to fall back to a known working kernel. It’s a one-time test boot. That’s where
nextboot(8) comes in handy.

nextboot(8) is a way of saying, “Boot this kernel the next time you boot,
but only once.” nextboot takes at least one argument, -k, which is the directory
under /boot where the test kernel can be found. For example, I've built and
installed a new kernel; I want this new kernel to be booted once, and if it
doesn’t work I want the following boot to go back to the previous kernel.
First, I must put my test kernel some place other than /boot/kernel, and have
a good kernel in /boot/kernel.

mv /boot/kernel /boot/kernel.test
mkdir /boot/kernel
cp /boot/kernel.good/* /boot/kernel/

If you plan ahead, you can actually install your custom kernel in this
location in the first place by setting the variable INSTKERNAME when you build
the kernel. Give the name of the kernel when you do your kernel install, and
make (1) will install it appropriately:

cd /usr/src
make KERNCONF=TESTKERNEL INSTKERNAME=test kernel

This will install your test kernel as /boot/kernel.test.

Now that I have a known-good kernel as my default kernel, and my test
kernel as /boot/kernel.test, 1 tell nextboot(8) to try the test kernel with the -k
flag, giving the name of the directory under /boot where this kernel can be
found:

nextboot -k kernel.test

The next time the system is rebooted, the loader will run /boot/kernel.test
instead of /boot/kernel and also erase the configuration that told it to load this
kernel. When the system reboots once more, it will boot the standard kernel.
The trick here is to make sure that the known good kernel is in the directory
/boot/kernel. If your new kernel works correctly, you can just do:

mv /boot/kernel /boot/kernel.previous
mv /boot/kernel.test /boot/kernel

Voila! Your test kernel is now in production.

Kernel Games 141

142

NEXTBOOT WARNINGS

You'll see in the manual that nextboot(8) writes to the root filesystem before it passes
its boottime integrity check. This means that if your system shuts down uncleanly before
booting the new kernel, it is possible that nextboot will corrupt your filesystem.
nextboot(8) actually doesn’t allocate any new disk space, however, but merely edits
a file that already exists on the system. The risk of corruption is minuscule.

Kernel Stuff You Should Know About

Chapter 5

A better title for this section would be “Tidbits That You’ll Trip Over Unless
You Know What They Are.” If someone says you have a problem with ACPI,
you should know what that is. When the system spews a scary message about
“lock order reversals,” you should know if freaking out and running away
screaming is warranted. The four key areas here are ACPI, PAE, SMP, and
lock order reversals.

ACPI

The Advanced Configuration and Power management Interface handles
low-level hardware configuration, power configuration, and so on. It’s the
successor to several old protocols such as Plug-and-Play, the PCI BIOS hard-
ware configuration system, and APM (Advanced Power Management). Like
most other Unix-like operating system vendors, FreeBSD uses the reference
implementation of ACPI provided by Intel.

This is just a hardware configuration protocol, what could possibly go
wrong? Well, not all hardware vendors implement ACPI in exact accordance
with the specification—rather, they implement just enough so that their
hardware works with Microsoft operating systems and call it done. This
means that people who use non-Microsoft operating systems need to work
around this. FreeBSD includes various workarounds for these broken ACPI
implementations, but these often take a little bit of time to reach a release.

Also, the first hardware that used ACPI often uncovered issues with ACPI
itself. As with any complicated protocol, the first implementors learned a lot
about how that protocol worked in the real world. If you have hardware built
during this time, you might need to permanently disable ACPI by putting
hint.acpi.o.disabled=1 in /boot/loader.conf. If you think your hardware is
having ACPI problems, you can disable it for a single boot with the boot
menu discussed in Chapter 3.

PAE

For years, 1386 computer hardware had a built-in limit where it could handle
only up to 4GB of RAM. At that time, a system with 128MB of RAM was con-
sidered a high-end machine, but by now technology has hit the point where
breaking the limit is not only conceivable but affordable. We’ve seen this sort
of limit before, from the 640KB memory limit on the IBM PC to the 8GB limit

on hard drives. System architects must pick limits somewhere, and they just
try to aim high enough so they won’t have to worry about those limits for
another ten years or so. Physical Address Extensions (PAE) expands the
memory limit to 64GB, which should satisfy us for another few years at least.
By the time that sort of memory becomes common, most new systems will be
running in 64-bit mode which has much higher limits.

Not all devices are compatible with PAE, so PAE cannot be in the
GENERIC kernel. You'll find a PAE kernel configuration in /sys/i386/
conf/PAE. Only 1386 hardware requires PAE; amd64, sparc64, and other high-
end hardware has different memory limits that have not yet been reached.

PAE cannot be disabled at boot time or run time; it’s either in the kernel
or it isn’t.

Symmetric Multiprocessing

Symmetric Multiprocessing (SMP) is having multiple general-purpose CPUs in a
system. In theory, the operating system divides its workload evenly between
the various CPUs. This is harder than it sounds, for reasons we’ll discuss in
Chapter 12. For SMP to work on your system, your kernel must include
options SMP and device apic.

On occasion, some part of the system will have problems with SMP.
It can be useful to disable SMP temporarily to troubleshoot a problem. If a
problem exists when SMP is enabled, but disappears when SMP is disabled,
that can help identify the problem. Disable SMP at boot by setting the boot-
time tunable kern.smp.disabled to 1. Similarly, you might be asked to disable
the APIC, which disables SMP as a side effect. Disable the APIC with the
kernel hint hint.apic.0.disabled="1".

Lock Order Reversals

A key part of implementing SMP is kernel locking. While you don’t have
to worry about kernel locking as a user, if you’re running certain versions
of FreeBSD (particularly, -current), on occasion your system console will
print out a message about lock order reversals. These messages, produced
by the kernel debugging feature WITNESS (see Chapter 13), mean that
the in-kernel locking isn’t as correct as the developers would hope. For the
most part, these messages are harmless, but they do look scary and do
indicate potential problems.

When you see a lock order reversal, the best thing to do is see if this
particular LOR has been reported previously. A web search for the message
will show if it’s been previously reported. You can also search for the FreeBSD
Lock Order Reversal page (maintained by Bjoern Zeeb as of this writing)
and see if your LOR is listed there. If you can’t find mention of your LOR
anywhere on the Internet, you should let the FreeBSD developers know by
writing to FreeBSD-hackers@FreeBSD.org.

You should now have a decent grip on managing the FreeBSD kernel.
Let’s go on and see some of the things you can do with the network.

Kernel Games 143

THE NETWORK

FreeBSD is famous for its network per-
formance. The TCP/IP network protocol
suite was first developed on BSD, and BSD,

in turn, included the first major implementation
of TCP/IP. While competing network protocols were
considered more exciting in the 1980s, the wide avail-
ability, flexibility, and liberal licensing of the BSD
TCP/IP stack made it the de facto standard.

Many system administrators today have a vague familiarity with the basics
of networking, but don’t really understand how it all hangs together. Good
sysadmins understand the network, however. Knowing what an IP address
really is, how a netmask works, and how a port number differs from a protocol
number is a necessary step towards mastering your profession. We’ll cover
some of these issues in this chapter. For a start, you must understand the net-

work layers.

146

While this chapter gives a decent overview of TCP/IP, it won’t cover many
of the numerous details, gotchas, and caveats. If you need to learn more about
TCP/IP, pick up one of the big thick books on the subject. The TCP/IP Guide
by Charles M. Kozierok (No Starch Press, 2005) is an excellent place to start.

This book specifically covers TCP/IP version 4. Its successor, TCP/IP
version 6, is not widely deployed as of this writing.

Network Layers

Chapter 6

Each layer of the network handles a specific task within the network process
and interacts only with the layers above and below it. People learning TCP/IP
often laugh when they hear that all these layers simplify the network process,
but this is really true. The important thing to remember right now is that each
layer communicates only with the layer directly above it and the layer directly
beneath it.

The classic OSI network protocol stack has seven layers, is exhaustively
complete, and covers almost any situation with any network protocol and any
application. The Internet, however, is just one such situation, and this isn’t a
book about networking or networked applications in general. We’re limiting
our discussion to TCP/IP networks such as the Internet and almost all corpo-
rate networks, so we only need to consider four layers of the network stack.

The Physical Layer

At the very bottom we have the physical layer: the network card and the wire,
fiber, or radio waves leaving it. This layer includes the physical switch, hub, or
base station, cables attaching that device to the router, and the fiber that runs
from your office to the telephone company. The telephone company switch
is part of the physical layer, as are transcontinental fiber optic cables. If it can
be tripped over, dropped, or chainsawed, it’s part of the physical layer. From
this point on we’ll refer to the physical layer as the wire, although it can be just
about any sort of medium.

This is the easiest layer to understand—it’s as simple as having intact hard-
ware. If your wire meets the requirements of the physical protocol, you’re in
business. If not, you’re bankrupt. Without a physical layer, the rest of the net-
work can’t work, period, end of story. One of the functions of Internet routers
is to connect one sort of physical layer to another—for example, converting
local Ethernet into T1/E1. The physical layer has no decision-making abilities
and no intelligence; everything that runs over it is dictated by the datalink
layer.

Datalink: The Physical Protocol

The datalink layer is where things get interesting. The datalink layer, or the
physical protocol, transforms information into the actual ones and zeros that
are sent over the physical layer in the appropriate encoding for that physical
protocol. For example, Ethernet uses Media Access Control (MAC) addresses
and the Address Resolution Protocol (ARP); dial-up and wide area networks

use the Point to Point Protocol (PPP). In addition to the popular Ethernet
and PPP datalink layers, FreeBSD supports others, including Asynchronous
Transfer Mode (ATM), High Level Data Link Control (HDLC), and Inter-
network Packet Exchange (IPX), as well as combinations such as the PPP
over Ethernet (PPPoE) used by some home broadband vendors. While
FreeBSD supports all of these datalink protocols, it doesn’t support every
datalink protocol ever used. If you have unusual network requirements,
check the documentation for your version of FreeBSD to see if it’s supported.

Some physical protocols have been implemented over many different
physical layers. Ethernet, for instance, has been transmitted over twinax, coax,
CAT3, CAT5, CAT6, CAT7, optical fiber, radio waves, and carrier pigeon.
With minor changes in the device drivers, the datalink layer can address any
sort of physical layer. This is one of the ways in which layers simplify the net-
work. We’ll discuss Ethernet in detail, as it’s the most common network type
FreeBSD systems use. By understanding Ethernet on FreeBSD, you'll be able
to manage other protocols on FreeBSD as well—once you understand those
protocols, of course!

The datalink layer exchanges information with the physical layer and the
network layer.

The Network Layer

“The network layer? Isn’t the whole thing a network?”

Yes, but the network layer is more specific. It maps connectivity between
network nodes, answering questions like “Where are other hosts?” and “Can
you reach this particular host?” This logical protocol provides a consistent
interface to programs that run over the network, no matter what sort of phys-
ical layer you’re using. The network layer used on the Internet is Internet
Protocol, or IP. IP provides each host with a unique1 address, known as an
IP addpress, so that any other host on the network can find it.

The network layer talks to the datalink layer below it and the transport
layer above it.

Heavy Lifting: The Transport Layer

The transport layer deals with real data for real applications and perhaps even
real human beings. The three common transport layer protocols are ICMP,
TCP, and UDP.

Internet Control Message Protocol (ICMP) manages basic connectivity mes-
sages between hosts with IP addresses. If IP provides a road and addresses,
ICMP provides traffic lights and highway exit signs. Most of the time, ICMP
just runs in the background and you never have to think about it.

The other well-known transport protocols are User Datagram Protocol
(UDP) and Transmission Control Protocol (TCP). How common are these?

1Yes, I know about Network Address Translation, where not all IP addresses are unique. NAT is a
lie, and lying to your network is a good route to trouble—ask anyone who uses NAT on a really
large scale. But even with NAT, if you’re on the Internet you have one or more unique IP
addresses.

The Network 147

Well, the Internet Protocol suite is generally called TCP/IP. These protocols
provide services such as multiplexing via port numbers and transmission of
user data. UDPis a bare-bones transport protocol, offering the minimum
services needed to transfer data over the network. TCP provides more sophis-
ticated features such as congestion control and integrity checking.

In addition to these three, many other protocols run above IP. The file
/etc/protocols contains a fairly comprehensive list of transport protocols that
use IP as an underlying mechanism. You won’t find non-IP protocols here,
such as Digital’s LAT, but it contains many more protocols than you’ll ever
see in the real world. For example, here are the entries for IP and ICMP, the
network-layer protocols commonly used on the Internet:

®ip 6o OIp O# Internet protocol, pseudo protocol number
icmp 1 Icmp # Internet control message protocol

Each entry in /etc/protocols has three key fields: an unofficial name @, a
protocol number @, and any aliases ©. The protocol number is used within
network requests to identify traffic. You’ll see it if you ever fire up a packet
sniffer or start digging deeper into your network for any reason. As you can
see, IP is protocol 0 and ICMP is protocol 1—if that’s not the groundwork
for everything else, it’s hard to see what could be! TCP is protocol 6, and
UDP is protocol 17. You'll also see comments @ giving slightly more detail
about each protocol.

The transport layer speaks to the network layer below and to the
applications above it.

Applications

Applications are definitely a part of the network. Applications open requests
for network connectivity, send data over the network, receive data from the
network, and process that data. Web browsers, email clients, JSP servers, and
so on are all network-aware applications. Applications only have to commu-
nicate with the network protocol and the user. Problems with the user layer
are beyond the scope of this book.?

The Network in Practice

So, you understand how everything hooks together and are ready to move
on, right? Don’t think so. Let’s see how this works in the real world. Some of
this explanation touches on stuff that we’ll cover later in this chapter, but if
you’re reading this book you’re probably conversant enough with networks to
be able to follow it. If you’re having trouble, reread this section after reading
the remainder of this chapter. (Just buy a second copy of this book, cut these
pages out of the second copy, and glue them in at the end of this chapter.)
Suppose a user connected to the Internet via your network wants to

look at Yahoo! The user accesses his web browser and enters the URL.

21f my current research on reformatting and reinstalling users bears fruit, however, I will be
certain to publish my results.

148 Chapter 6

The browser application knows how to talk to the next layer down in the
network, the transport layer. After kneading the user’s request into an
appropriate form, the browser asks the transport layer for a TCP connection
to a particular IP address on port 80. (Purists might note that we’re skipping
the DNS request part of the process, but it is quite similar to what is being
described and would only confuse our example.)

The transport layer examines the browser’s request. Since the application
has requested a TCP connection, the transport layer allocates the appropriate
system resources for that sort of connection. The request is broken up into
digestible chunks and handed down to the network layer.

The network layer doesn’t care about the actual request. It’s been handed
a lump of data to be carried over the Internet. Much like your postman
delivers letters without caring about the contents, the network layer just
bundles the TCP data with the proper addressing information. The resulting
mass of data is called a packet. The network layer hands these packets down to
the datalink layer.

The datalink layer doesn’t care about the contents of the packet.

It certainly doesn’t care about IP addressing or routing. It’s been given a
lump of zeroes and ones, and it has the job of transmitting those zeros and
ones across the network. All it knows about is how to perform that trans-
mission. The datalink layer may add the appropriate header and/or footer
information to the packet for the physical medium used, creating a frame.
Finally, it hands the frame off to the physical layer for transmission on the
local wire, wave, or other media.

EACH INSIDE THE OTHER?

Yes, your original web request has been encapsulated by the TCP protocol. That
request has been encapsulated again at the transport layer by the IP protocol, and
once more by the datalink protocol. All these headers are piled on at the front and
back of your original request. Have you ever seen that picture of a small fish being
swallowed by a slightly larger fish, which is in turn being eaten by a larger fish,
and so on? It’s exactly like that. Or, if you prefer, a frame is like the outermost box
in one of those gifts that arrive wrapped in a series of successively larger gift boxes.
Unwrap one protocol and you'll find another.

The physical layer has no intelligence at all. The datalink layer hands it
abunch of zeroes and ones, and it transmits them to another physical device.
It has no idea of what protocol is being spoken or how those digits might be
echoed through a switch, hub, or repeater, but one of the hosts on this net-
work is presumably the router of the network.

When the router receives the zeroes and ones, it hands them up to the
datalink layer. The datalink layer strips its framing information and hands the
resulting packet up to the network layer within the router. The router’s net-
work layer examines the packet and decides what to do with it based on its
routing tables. It then hands the packet down to the appropriate datalink
layer. This might be another Ethernet interface, or perhaps a PPP interface
outofaTl.

The Network 149

150

Your wire can go through many physical changes as the data travels. Your
copper T1 line could be aggregated into an optical fiber DS3, which is then
transformed into an OC192 cross-country link. Thanks to the wonders of
layering and abstraction, neither your computer nor your user need to know
anything about any of these.

When the request reaches its destination, the computer at the other end
of the transaction accepts the frame and sends it all the way back up the pro-
tocol stack. The physical wire accepts the zeroes and ones and sends them up
to the datalink layer. The datalink layer strips the Ethernet headers off the
frame and hands the resulting packet up to the transport layer. The transport
layer reassembles the packets into a stream of data, which it then hands to an
application—in this case, a web server. The application processes the request
and returns an answer, which descends the protocol stack and travels across
the network, bouncing up and down through various datalink layers on the
way as necessary. This is an awful lot of work to make the machine go through
just so you can get your “404 Page Not Found” error.

This example shows why layering is so important. Each layer only knows
what it absolutely must about the layers above and below it, making it possible
to swap out the innards of layers if desired. When a new datalink protocol is
created, the other layers don’t have to change; the network protocol just hands
a properly formatted request to the datalink layer and lets that layer do its
thing. When you have a new network card, you only need a driver that inter-
faces with the datalink layer and the physical layer; you don’t have to change
anything higher in the network stack, including your application. Imagine a
device driver that had to be installed in your web browser, and your email
client, and every other application you had on your computer, including the
custom-built ones. You would quickly give up on computing and take up some-
thing sane and sensible, like skydiving with anvils.

Getting Bits and Hexes

Chapter 6

As a system administrator you’ll frequently come across terms like 48-bit address
and 18-bit netmask. I’ve seen a surprising number of sysadmins who just
nod and smile when they hear this, all the while thinking, “Yeah, whatever,
just tell me what I need to do in my job.” Unfortunately, math is a real part
of the job, and you must understand bits. While it’s not immediately intuitive,
this understanding is one of the things that separate amateurs from pro-
fessionals. You don’t read a book like this if you want to stay an amateur.

Maybe you’re muttering, “But I already know this!” Then skip it. But
don’t cheat yourself if you don’t know it.

You probably already know that a computer treats all data as zeroes and
ones, and that a single zero or one is a bit. When a protocol specifies a number
of bits, it’s talking about the number as seen by the computer. A 32-bit number
has 32 digits, each being either zero or one. You were probably introduced to
binary math, or base 2, back in elementary school and remembered it just long
enough to pass the test. It’s time to dust off those memories. Binary math is
simply a different way to work with the numbers we see every day.

We use decimal math, or base 10, every day to pay the pizza guy and
balance the checkbook. Digits run from 0 to 9. When you want to go above
the highest digit you have, you add a digit on the left and set your current
digit to zero. This is the whole “carry the one” thing you learned many years
ago, and now probably do without conscious thought. In binary math the
digits run from 0 to 1, and when you want to go above the highest digit you
have, you add a digit on the left and set your current digit to 0. It’s exactly
the same as decimal math with eight fingers missing. As an example, Table 6-1
shows the first few decimal numbers converted to binary.

Table 6-1: Decimal and Binary Numbers

Decimal Binary
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

When you have a 32-bit number, such as an IP address, you have a string
of 32 ones and zeros. Ethernet MAC addresses are 48-bit numbers and have
48 ones and zeros.

Just for fun, Unix also uses hexadecimal numbers in some cases (such as
MAC addresses and netmasks). Hexadecimal numbers are 4 bits long. The
binary number 1111, the full four bits, is equivalent to 15; this means that
the digits in hexadecimal math run from 0 to 15. At this point, a few of you
are looking at the two-digit number 15 that’s supposed to be a single digit
and wondering what I’'m smoking and where you can get your own supply.
Hexadecimal math uses the letters A through F as digits for the numbers
10 through 15. When you count up to the last digit and want to add one,
you set the current digit to zero and add a digit to the left of the number.
For example, to count to seventeen in hexadecimal, you say, “1, 2, 3, 4, 5, 6,
7,8,9,A,B,C,D,E,F, 10, 11.” Take off a shoe and count along once or
twice until you get the idea.

Hexadecimal numbers are usually marked with a Oxin front. The number
0x12 is the hexadecimal equivalent of decimal 18, while the number 18 is plain
old 18. If a hex number is not marked by a leading 0x, it’s in a place where the
output is always in hexadecimal, such as MAC addresses. The letters A to F are
also a dead giveaway, but not entirely reliable; many hex numbers have no
letters at all, just