

Chapter 1. The vi Text Editor

UNIX has a number of editors that can process the contents of text
files, whether those files contain data, source code, or sentences.
There are line editors, such as ed and ex, which display a line of the
file on the screen; and there are screen editors, such as vi and
emacs, which display a part of the file on your terminal screen. Text
editors based on the X Window System are also commonly
available, and are becoming increasing popular. Both GNU emacs
and its derivative xemacs provide multiple X windows; an
interesting alternative is the sam editor from Bell Labs. All but one
of the vi clones described in Part II of this book also provide X-
based interfaces.

vi is the most useful standard text editor on your system. (vi is
short for visual editor and is pronounced "vee-eye.") Unlike emacs,
it is available in nearly identical form on almost every UNIX system,
thus providing a kind of text-editing lingua franca.[1] The same might
be said of ed and ex, but screen editors are generally much easier
to use. With a screen editor, you can scroll the page, move the
cursor, delete lines, insert characters, and more, while seeing the
results of your edits as you make them. Screen editors are very
popular, since they allow you to make changes as you read through
a file, like you would edit a printed copy, only faster.

[1] Actually, these days, GNU emacs is pretty much the universal version of emacs; the only problem is it
doesn't come standard with most commercial UNIX systems; you must retrieve and install it yourself.

To many beginners, vi looks unintuitive and cumbersome—instead
of using special control keys for word processing functions and just
letting you type normally, it uses all of the regular keyboard keys
for issuing commands. When the keyboard keys are issuing
commands, vi is said to be in command mode. You must be in a
special insert mode before you can type actual text on the screen.
In addition, there seem to be so many commands.

Once you start learning, however, you realize that vi is well
designed. You need only a few keystrokes to tell vi to do complex
tasks. As you learn vi, you learn shortcuts that transfer more and
more of the editing work to the computer—where it belongs.

vi (like any text editor) is not a "what you see is what you get" word
processor. If you want to produce formatted documents, you must
type in codes that are used by another formatting program to
control the appearance of the printed copy. If you want to indent
several paragraphs, for instance, you put a code where the indent
begins and ends. Formatting codes allow you to experiment with or

change the appearance of your printed files, and in many ways,
give you much more control over the appearance of your
documents than a word processor. UNIX supports the troff
formatting package.[2] The and formatters are popular, commonly
available alternatives.

[2] troff is for laser printers and typesetters. Its "twin brother" is nroff, for line printers and terminals. Both
accept the same input language. Following common UNIX convention, we refer to both with the name troff.

(vi does support some simple formatting mechanisms. For example,
you can tell it to automatically wrap when you come to the end of a
line, or to automatically indent new lines.)

As with any skill, the more editing you do, the easier the basics
become, and the more you can accomplish. Once you are used to all
the powers you have while editing with vi, you may never want to
return to any "simpler" editor.

What are the components of editing? First, you want to insert text
(a forgotten word or a missing sentence), and you want to delete
text (a stray character or an entire paragraph). You also need to
change letters and words (to correct misspellings or to reflect a
change of mind about a term). You might want to move text from
one place to another part of your file. And, on occasion, you want to
copy text to duplicate it in another part of your file.

Unlike many word processors, vi's command mode is the initial or
"default" mode. Complex, interactive edits can be performed with
only a few keystrokes. (And to insert raw text, you simply give any
of the several "insert" commands and then type away.)

One or two characters are used for the basic commands. For
example:

i

insert

cw

change word

Using letters as commands, you can edit a file with great speed.
You don't have to memorize banks of function keys or stretch your
fingers to reach awkward combinations of keys. Most of the
commands can be remembered by the letter that performs them,
and nearly all commands follow similar patterns and are related to
each other.

In general, vi commands:

• Are case-sensitive (uppercase and lowercase keystrokes mean
different things; I is different from i).

• Are not shown (or "echoed") on the screen when you type
them.

• Do not require a RETURN after the command.

There is also a group of commands that echo on the bottom line of
the screen. Bottom-line commands are preceded by different
symbols. The slash (/) and the question mark (?) begin search
commands, and are discussed in Chapter 3. A colon (:) begins all
ex commands. ex commands are those that are used by the ex line
editor. The ex editor is available to you when you use vi, because
ex is the underlying editor, and vi is really just its "visual" mode. ex
commands and concepts are discussed fully in Chapter 5, but this
chapter introduces you to the ex commands to quit a file without
saving edits.

1.1 Opening and Closing Files

You can use vi to edit any text file. vi copies the file to be edited
into a buffer (an area temporarily set aside in memory), displays
the buffer (though you can see only one screenful at a time), and
lets you add, delete, and change text. When you save your edits, vi
copies the edited buffer back into a permanent file, replacing the old
file of the same name. Remember that you are always working on a
copy of your file in the buffer, and that your edits will not affect
your original file until you save the buffer. Saving your edits is also
called "writing the buffer," or more commonly, "writing your file."

1.1.1 Opening a File

vi is the UNIX command that invokes the vi editor for an
existing file or for a brand new file. The syntax for the vi command
is:

$ vi [filename]

The brackets shown on the above command line indicate that the
filename is optional. The brackets should not be typed. The $ is the
UNIX prompt. If the filename is omitted, vi will open an unnamed
buffer. You can assign the name when you write the buffer into a
file. For right now, though, let's stick to naming the file on the
command line.

A filename must be unique inside its directory. On older System V
UNIX systems, it cannot exceed 14 characters in length (most
common UNIX systems allow much longer names). A filename can
include any 8-bit character except a slash (/), which is reserved as
the separator between files and directories in a pathname, and
ASCII NUL, the character with all zero bits. You can even include
spaces in a filename by typing a backslash (\) before the space. In
practice, though, filenames generally consist of any combination of
uppercase and lowercase letters, numbers, and the characters dot
(.) and underscore (_). Remember that UNIX is case-sensitive:
lowercase letters are distinct from uppercase letters. Also remember
that you must press RETURN to tell UNIX that you are finished
issuing your command.

When you want to open a new file in a directory, give a new
filename with the vi command. For example, if you want to open a
new file called practice in the current directory, you would enter:

$ vi practice

Since this is a new file, the buffer is empty and the screen appears
as follows:

~
~
~
"practice" [New file].

The tildes (~) down the left-hand column of the screen indicate that
there is no text in the file, not even blank lines. The prompt line
(also called the status line) at the bottom of the screen echoes the
name and status of the file.

You can also edit any existing text file in a directory by specifying
its filename. Suppose that there is a UNIX file with the pathname
/home/john/letter. If you are already in the /home/john directory,
use the relative pathname. For example:

$ vi letter

brings a copy of the file letter to the screen.

If you are in another directory, give the full pathname to begin
editing:

$ vi /home/john/letter

1.1.2 Problems Opening Files

• When you invoke vi, the message [open mode] appears.

Your terminal type is probably incorrectly identified. Quit the
editing session immediately by typing :q. Check the
environment variable $TERM. It should be set to the name of
your terminal. Or ask your system administrator to provide an
adequate terminal type setting.

• You see one of the following messages:
• Visual needs addressable cursor or upline

capability
• Bad termcap entry
• Termcap entry too long
• terminal: Unknown terminal type
• Block device required

 Not a typewriter

Your terminal type is either undefined, or there's probably
something wrong with your terminfo or termcap entry. Enter
:q to quit. Check your $TERM environment variable, or ask
your system administrator to select a terminal type for your
environment.

• A [new file] message appears when you think a file already
exists.

You are probably in the wrong directory. Enter :q to quit.
Then check to see that you are in the correct directory for
that file (enter pwd at the UNIX prompt). If you are in the
right directory, check the list of files in the directory (with ls)
to see whether the file exists under a slightly different name.

• You invoke vi, but you get a colon prompt (indicating that
you're in ex line-editing mode).

You probably typed an interrupt before vi could draw the
screen. Enter vi by typing vi at the ex prompt (:).

• One of the following messages appears:
• [Read only]
• File is read only

 Permission denied

"Read only" means that you can only look at the file; you
cannot save any changes you make. You may have invoked vi

in view mode (with view or vi -R), or you do not have write
permission for the file. See Section 1.2.1 below.

• One of the following messages appears:
• Bad file number
• Block special file
• Character special file
• Directory
• Executable
• Non-ascii file

 file non-ASCII

The file you've called up to edit is not a regular text file. Type
:q! to quit, then check the file you wish to edit, perhaps with
the file command.

• When you type :q because of one of the above difficulties, the
message appears:

 No write since last change (:quit! overrides).

You have modified the file without realizing it. Type :q! to
leave vi. Your changes from this session will not be saved in
the file.

1.1.3 Modus Operandi

As mentioned earlier, the concept of the current "mode" is
fundamental to the way vi works. There are two modes, command
mode and insert mode. You start out in command mode, where
every keystroke represents a command. In insert mode, everything
you type becomes text in your file.

Sometimes, you can accidentally enter insert mode, or conversely,
leave insert mode accidentally. In either case, what you type will
likely affect your files in ways you did not intend.

Press the ESC key to force vi to enter command mode. If you are
already in command mode, vi will beep at you when you press the
ESC key. (Command mode is thus sometimes referred to as "beep
mode.")

Once you are safely in command mode, you can proceed to repair
any accidental changes, and then continue editing your text.

1.1.4 Saving and Quitting a File

You can quit working on a file at any time, save your edits and
return to the UNIX prompt. The vi command to quit and save edits
is ZZ. Note that ZZ is capitalized.

Let's assume that you do create a file called practice to practice vi
commands, and that you type in six lines of text. To save the file,
first check that you are in command mode by pressing ESC and
then enter ZZ.

Keystrokes Results

ZZ

Give the write and save command, ZZ. Your file is saved as a regular
UNIX file.

ls

Listing the files in the directory shows the new file practice that you
created.

You can also save your edits with ex commands. Type :w to save
your file but not quit vi; type :q to quit if you haven't made any
edits; and type :wq to both save your edits and quit. (:wq is
equivalent to ZZ.) We'll explain fully how to use commands in
Chapter 5, Introducing the ex Editor; for now, you should just
memorize a few commands for writing and saving files.

1.2 Quitting Without Saving Edits

When you are first learning vi, especially if you are an intrepid
experimenter, there are two other ex commands that are handy for
getting out of any mess that you might create.

What if you want to wipe out all of the edits you have made in a
session and then return to the original file? The command:

:e! RETURN

returns you to the last saved version of the file, so you can start
over.

Suppose, however, that you want to wipe out your edits and then
just quit vi? The command:

:q! RETURN

quits the file you're editing and returns you to the UNIX prompt.
With both of these commands, you lose all edits made in the buffer
since the last time you saved the file. vi normally won't let you
throw away your edits. The exclamation point added to the :e or :q
command causes vi to override this prohibition, performing the
operation even though the buffer has been modified.

1.2.1 Problems Saving Files

• You try to write your file, but you get one of the following
messages:

• File exists
• File file exists - use w!
• [Existing file]

File is read only

Type :w! file to overwrite the existing file, or type :w
newfile to save the edited version in a new file.

• You want to write a file, but you don't have write permission
for it. You get the message "Permission denied."

Use :w newfile to write out the buffer into a new file. If you
have write permission for the directory, you can use mv to
replace the original version with your copy of it. If you don't
have write permission for the directory, type :w
pathname/file to write out the buffer to a directory in which
you do have write permission (such as your home directory,
or /tmp).

• You try to write your file, but you get a message telling you
that the file system is full.

Type :!rm junkfile to delete a (large) unneeded file and free
some space. (Starting an ex command with an exclamation
point gives you access to UNIX.)

Or type :!df to see whether there's any space on another file
system. If there is, choose a directory on that file system and
write your file to it with :w pathname. (df is the UNIX
command to check a disk's free space.)

• The system puts you into open mode and tells you that the
file system is full.

The disk with vi's temporary files is filled up. Type :!ls /tmp
to see whether there are any files you can remove to gain

some disk space.[3] If there are, create a temporary UNIX shell
from which you can remove files or issue other UNIX
commands. You can create a shell by typing :sh; type CTRL-D
or exit to terminate the shell and return to vi. (On most UNIX
systems, when using a job-control shell, you can simply type
CTRL-Z to suspend vi and return to the UNIX prompt; type fg
to return to vi.) Once you've freed up some space, write your
file with :w!.

[3] Your vi may keep its temporary files in /usr/tmp, /var/tmp, or your current directory; you may
need to poke around a bit to figure out where exactly you've run out of room.

• You try to write your file, but you get a message telling you
that your disk quota has been reached.

Try to force the system to save your buffer with the ex
command :pre (short for :preserve). If that doesn't work,
look for some files to remove. Use :sh (or CTRL-Z if you are
using a job-control system) to move out of vi and remove
files. Use CTRL-D (or fg) to return to vi when you're done.
Then write your file with :w!.

1.2.2 Exercises

The only way to learn vi is to practice. You now know enough to
create a new file and to return to the UNIX prompt. Create a file
called practice, insert some text, and then save and quit the file.

Open a file called practice in the current directory: vi practice
Insert text: i any text you like
Return to command mode: ESC
Quit vi, saving edits: ZZ

Chapter 2. Simple Editing

This chapter introduces you to editing with vi, and it is set up to be
read as a tutorial. In it you will learn how to move the cursor and
how to make some simple edits. If you've never worked with vi, you
should read the entire chapter.

Later chapters show you how to expand your skills to perform faster
and more powerful edits. One of the biggest advantages for an
adept user of vi is that there are so many options to choose from.
(One of the biggest disadvantages for a newcomer to vi is that there
are so many different editor commands.)

You can't learn vi by memorizing every single vi command. Start
out by learning the basic commands introduced in this chapter. Note
the patterns of use that the commands have in common.

As you learn vi, be on the lookout for more tasks that you can
delegate to the editor, and then find the command that
accomplishes it. In later chapters you will learn more advanced
features of vi, but before you can handle the advanced, you must
master the simple.

This chapter covers:

• Moving the cursor
• Adding and changing text
• Deleting, moving, and copying text
• More ways to enter insert mode

2.1 vi Commands

vi has two modes: command mode and insert mode. As soon as you
enter a file, you are in command mode, and the editor is waiting for
you to enter a command. Commands enable you to move anywhere
in the file, to perform edits, or to enter insert mode to add new
text. Commands can also be given to exit the file (saving or
ignoring your edits) in order to return to the UNIX prompt.

You can think of the different modes as representing two different
keyboards. In insert mode, your keyboard functions like a
typewriter. In command mode, each key has a new meaning or
initiates some instruction.

There are several ways to tell vi that you want to begin insert
mode. One of the most common is to press i. The i doesn't appear

on the screen, but after you press it, whatever you type will appear
on the screen and will be entered into the buffer. The cursor marks
the current insertion point. To tell vi that you want to stop inserting
text, press ESC. Pressing ESC moves the cursor back one space (so
that it is on the last character you typed) and returns vi to
command mode.

For example, suppose you have opened a new file and want to
insert the word "introduction". If you type the keystrokes
iintroduction, what appears on the screen is:

introduction

When you open a new file, vi starts in command mode and
interprets the first keystroke (i) as the insert command. All
keystrokes made after the insert command are considered text until
you press ESC. If you need to correct a mistake while in insert
mode, backspace and type over the error. Depending on the type of
terminal you are using, backspacing may erase what you've
previously typed or may just back up over it. In either case,
whatever you back up over will be deleted. Note that you can't use
the backspace key to back up beyond the point where you entered
insert mode.

vi has an option that lets you define a right margin and provides a
carriage return automatically when you reach it. For right now,
while you are inserting text, press RETURN to break the lines.

Sometimes you don't know whether you are in insert mode or
command mode. Whenever vi does not respond as you expect,
press ESC once or twice to check which mode you are in. When you
hear the beep, you are in command mode.

2.2 Moving the Cursor

You may spend only a small amount of time in an editing session
adding new text in insert mode; much of the time you will be
making edits to existing text.

In command mode you can position the cursor anywhere in the file.
Since you begin all basic edits (changing, deleting, and copying
text) by placing the cursor at the text that you want to change, you
want to be able to move the cursor to that place as quickly as
possible.

There are vi commands to move the cursor:

• Up, down, left, or right—one character at a time

• Forward or backward by blocks of text such as words,
sentences, or paragraphs

• Forward or backward through a file, one screen at a time

In Figure 2.1, an underscore marks the present cursor position.
Circles show movement of the cursor from its current position to the
position that would result from various vi commands.

Figure 2.1. Sample movement commands

2.2.1 Single Movements

The keys h, j, k, and l, right under your fingertips, will move the
cursor:

h

left, one space

j

down, one line

k

up, one line

l

right, one space

You can also use the cursor arrow keys (, , ,), + and - to
go up and down, or the RETURN and BACKSPACE keys, but they are
out of the way, and the arrow keys are not supported by all
terminals. At first, it may seem awkward to use letter keys instead
of arrows for cursor movement. After a short while, though, you'll
find it is one of the things you'll like best about vi—you can move
around without ever taking your fingers off the center of the
keyboard.

Before you move the cursor, press ESC to make sure that you are in
command mode. Use h, j, k, and l to move forward or backward in
the file from the current cursor position. When you have gone as far
as possible in one direction, you hear a beep and the cursor stops.
For example, once you're at the beginning or end of a line, you
cannot use h or l to wrap around to the previous or next line; you
have to use j or k.[1] Similarly, you cannot move the cursor past a
tilde (~) representing a line without text, nor can you move the
cursor above the first line of text.

[1] vim version 4.x, and vim version 5.x with nocompatible set, allow you to "space past" the end of the line
to the next one with l or the spacebar.

2.2.2 Numeric Arguments

You can precede movement commands with numbers. Figure 2.2
shows how the command 4l moves the cursor four spaces to the
right, just as if you had typed l four times (llll).

Figure 2.2. Multiplying commands by numbers

The ability to multiply commands gives you more options and power
for each command you learn. Keep it in mind as you are introduced
to additional commands.

2.2.3 Movement Within a Line

When you saved the file practice, vi displayed a message telling you
how many lines are in that file. A line is not necessarily the same
length as the visible line (often limited to 80 characters) that
appears on the screen. A line is any text entered between newlines.
(A newline character is inserted into the file when you press the
RETURN key in insert mode.) If you type 200 characters before
pressing RETURN, vi regards all 200 characters as a single line
(even though those 200 characters visibly take up several lines on
the screen).

As we mentioned, vi has an option that allows you to set a distance
from the right margin at which vi will automatically insert a newline
character. This option is wrapmargin (its abbreviation is wm). You
can set a wrapmargin at 10 characters:

:set wm=10

This command doesn't affect lines that you've already typed. We'll
talk more about setting options in Chapter 7. (This one really
couldn't wait!)

If you do not use vi's automatic wrapmargin option, you should
break lines with carriage returns to keep the lines of manageable
length.

Two useful commands that involve movement within a line are:

0

Move to beginning of line.

$

Move to end of line.

In the example below, line numbers are displayed. (Line numbers
can be displayed in vi by using the number option, which is enabled
by typing :set nu in command mode. This operation is described in
Chapter 7.)

The number of logical lines (3) does not correspond to the
number of visible lines (6) that you see on the screen. If the cursor
were positioned on the d in the word delete, and you entered $, the
cursor would move to the period following the word them. If you
entered 0, the cursor would move back to the letter m in the word
move, at the beginning of line two.

2.2.4 Movement by Text Blocks

You can also move the cursor by blocks of text: words,
sentences, paragraphs, etc. The w command moves the cursor
forward one word at a time, counting symbols and punctuation as
equivalent to words. The line below shows cursor movement by w:

cursor, delete lines, insert characters,

You can also move by word, not counting symbols and punctuation,
using the W command. (You can think of this as a "large" or "capital"
Word.)

Cursor movement using W looks like this:

cursor, delete lines, insert characters,

To move backward by word, use the b command. Capital B allows
you to move backward by word, not counting punctuation.

As mentioned previously, movement commands take numeric
arguments; so, with either the w or b commands you can multiply
the movement with numbers. 2w moves forward two words; 5B
moves back five words, not counting punctuation.

We'll discuss movement by sentences and by paragraphs in Chapter
3. For now, practice using the cursor movement commands that you
know, combining them with numeric multipliers.

2.3 Simple Edits

When you enter text in your file, it is rarely perfect. You find typos
or want to improve on a phrase; sometimes your program has a
bug. Once you enter text, you have to be able to change it, delete
it, move it, or copy it. Figure 2.3 shows the kinds of edits you might
want to make to a file. The edits are indicated by proofreading
marks.

Figure 2.3. Proofreading edits

In vi you can perform any of these edits with a few basic
keystrokes: i for insert (which you've already seen); a for append;
c for change; and d for delete. To move or copy text, you use a pair
of commands. You move text with a d for delete, then a p for put;
you copy text with a y for "yank," then a p for put. Each type of edit
is described in this section. Figure 2.4 shows the vi commands you
use to make the edits marked in Figure 2.3.

Figure 2.4. Edits with vi commands

2.3.1 Inserting New Text

You have already seen the insert command used to enter text into a
new file. You also use the insert command while editing existing
text to add missing characters, words, and sentences. In the file
practice, suppose you have the sentence:

with the cursor positioned as shown. To insert With a screen editor
at the beginning of the sentence, enter the following:

Keystrokes Results

2k

Move the cursor up two lines with the k command, to the line
where you want to make the insertion.

iWith a

Press i to enter insert mode and begin inserting text.

screen
editorESC

Finish inserting text, and press ESC to end the insert and return to
command mode.

On the screen shown in the example above, vi pushes existing text
to the right as the new text is inserted. That is because we are
assuming that you are using vi on an "intelligent" terminal that can
rewrite the screen with each character you type. An insert on a
"dumb" terminal (such as an adm3a) will look different. The
terminal itself cannot handle the overhead of updating the screen
for each character typed (without a tremendous sacrifice of speed),
so vi doesn't rewrite the screen until after you press ESC. On a
dumb terminal, the same insert would appear:

Keystrokes Result

iWith a

Press i to enter insert mode and begin inserting text. The dumb
terminal appears to overwrite the existing text on the line.

screen
editor

The insertion appears to have overwritten existing text.

ESC

After you have finished inserting text, press ESC to end the insert and
return to command mode. vi now rewrites the line, so that you see all
existing text.

2.3.2 Appending Text

You can append text at any place in your file with the append
command a. a works in almost the same way as i, except that text
is inserted after the cursor rather than before the cursor. You may
have noticed that when you press i to enter insert mode, the cursor
doesn't move until after you enter some text. On the other hand,
when you press a to enter insert mode, the cursor moves one space
to the right. When you enter text, it appears after the original
cursor position.

2.3.3 Changing Text

You can replace any text in your file with the change command,
c. In order to tell c how much text to change, you combine c with a
movement command. In this way, a movement command serves as
a text object for the c command to affect. For example, c can be
used to change text from the cursor:

cw

to the end of a word.

c2b

back two words

c$

to the end of line

c0

to the beginning of line.

After issuing a change command, you can replace the identified text
with any amount of new text, with no characters at all, with one
word, or with hundreds of lines. c, like i and a, leaves you in insert
mode until you press the ESC key.

When the change only affects the current line, vi marks the end of
the text that will be changed with a $, so that you can see what part
of the line is affected. (See the example for cw, below.)

2.3.3.1 Words

To change a word, combine the c (change) command with w
for word. You can replace a word (cw) with a longer or shorter word
(or any amount of text). cw can be thought of as "delete the word
marked and insert new text until ESC is pressed."

Suppose you have the following line in your file practice:

With an editor you can scroll the page,

and want to change an to a screen. You need to change only one
word:

Keystrokes Results

w

Move with w to the place you want the edit to begin.

cw

Give the change word command. The end of the text to be changed will
be marked with a $ (dollar sign).

a
screen

Type in the replacement text, and then press ESC to return to
command mode.

cw also works on a portion of a word. For example, to change
spelling to spelled, you can position the cursor on the i, type cw,
then type ed, and finish with ESC.

General Form of vi Commands

In the change commands we've mentioned up to this point,
you may have noticed the following pattern:

(command)(text object)

command is the change command c, and text object is a

movement command (you don't type the parentheses). But c
is not the only command that requires a text object. The d
command (delete) and the y command (yank) follow this
pattern as well.

Remember also that movement commands take numeric
arguments, so numbers can be added to the text objects of
c, d, and y commands. For example, d2w and 2dw are
commands to delete two words. With this in mind, you can
see that most vi commands follow a general pattern:

(command)(number)(text object)

or the equivalent form:

(number)(command)(text object)

Here's how this works. number and command are optional.
Without them, you simply have a movement command. If
you add a number, you have a multiple movement. On the
other hand, combine a command (c, d, or y) with a text
object to get an editing command.

When you realize how many combinations are possible in this
way, vi becomes a powerful editor indeed!

2.3.3.2 Lines

To replace the entire current line, there is the special change
command, cc. cc changes an entire line, replacing that line with
any amount of text entered before pressing ESC. It doesn't matter
where the cursor is located on the line; cc replaces the entire line of
text.

A command like cw works differently from a command like cc. In
using cw, the old text remains until you type over it, and any old
text that is left over (up to the $) goes away when you press ESC.
In using cc, though, the old text is wiped out first, leaving you a
blank line on which to insert text.

The "type over" approach happens with any change command that
affects less than a whole line, whereas the "blank line" approach
happens with any change command that affects one or more lines.

C replaces characters from the current cursor position to the end
of the line. It has the same effect as combining c with the special
end-of-line indicator $ (c$).

The commands cc and C are really shortcuts for other commands,
so they don't follow the general form of vi commands. You'll see
other shortcuts when we discuss the delete and yank commands.

2.3.3.3 Characters

One other replacement edit is given by the r command. r
replaces a single character with another single character. You do
not have to press ESC to return to command mode after making the
edit. There is a misspelling in the line below:

Only one letter needs to be corrected. You don't want to use cw in
this instance because you would have to retype the entire word. Use
r to replace a single character at the cursor:

Keystrokes Results

rW

Give the replace command r, followed by the replacement character W.

2.3.3.4 Substituting text

Suppose you want to change just a few characters, and not a
whole word. The substitute command (s), by itself, replaces a single
character. With a preceding count, you can replace that many
characters. As with the change command (c), the last character of
the text will be marked with a $ so that you can see how much text
will be changed.

The S command, as is usually the case with uppercase
commands, lets you change whole lines. In contrast to the C
command, which changes the rest of the line from the current
cursor position, the S command deletes the entire line, no matter
where the cursor is. vi puts you in insert mode at the beginning of
the line. A preceding count replaces that many lines.

Both s and S put you in insert mode; when you are finished
entering new text, press ESC.

The R command, like its lowercase counterpart, replaces text.
The difference is that it simply enters overstrike mode. The
characters you type replace what's on the screen, character by
character, until you type ESC. You can only overstrike a maximum
of one line; as you type RETURN, vi will open a new line, effectively
putting you into insert mode.

2.3.4 Changing Case

Changing the case of a letter is a special form of replacement.
The tilde (~) command will change a lowercase letter to uppercase,
or an uppercase letter to lowercase. Position the cursor on the letter
whose case you want to change, and type a ~. The case of the letter
will change, and the cursor will move to the next character.

In older versions of vi, you cannot specify a numeric prefix or text
object for the ~ to affect. Modern versions do allow a numeric
prefix.

If you want to change the case of more than one line at a time, you
must filter the text through a UNIX command like tr, as described
in Chapter 7.

2.3.5 Deleting Text

You can also delete any text in your file with the delete
command d. Like the change command, the delete command
requires a text object (the amount of text to be operated on). You
can delete by word (dw), by line (dd and D), or by other movement
commands that you will learn later.

With all deletions, you move to where you want the edit to take
place, then give the delete command (d) and the text object, such
as w for word.

2.3.5.1 Words

Suppose you have the following text in the file:

with the cursor positioned as shown. You want to delete one are in
the first line.

Keystrokes Results

2w

Move the cursor to where you want the edit to begin (are).

dw

Give the delete word command (dw) to delete the word are.

dw deletes a word beginning where the cursor is positioned. Notice
that the space following the word is deleted.

dw can also be used to delete a portion of a word. In this example:

you want to delete the ed from the end of allowed.

Keystrokes Results

dw

Give the delete word command (dw) to delete the word, beginning with
the position of the cursor.

dw always deletes the space before the next word on a line, but we
don't want to do that in the previous example. To retain the space
between words, use de, which will delete only to the end of a word.
Typing dE will delete to the end of a word, including punctuation.

You can also delete backward (db) or to the end or beginning of a
line (d$ or d0).

2.3.5.2 Lines

The dd command deletes the entire line that the cursor is
on. dd will not delete part of a line. Like its complement cc, dd is a
special command. Using the same text as in the previous example,
with the cursor positioned on the first line as shown below:

you can delete the first two lines:

Keystrokes Results

2dd

Give the command to delete two lines (2dd). Note that even though the
cursor was not positioned on the beginning of the line, the entire line is
deleted.

If you are using a "dumb" terminal[2] (or a very slow one), line
deletions look different. The dumb terminal will not redraw the
screen until you scroll past the bottom of the screen. On a dumb
terminal the deletion looks like this:

[2] Dumb terminals are rather rare these days. Most of the time, you will run vi inside a terminal emulator on
a bitmapped screen.

Keystrokes Results

2dd

Give the command to delete two lines (2dd). An @ symbol "holds the
place" of the deleted line, until vi redraws the entire screen.

The D command deletes from the cursor position to the end of
the line. (D is a shortcut for d$.) For example, with the cursor
positioned as shown:

you can delete the portion of the line to the right of the cursor.

Keystrokes Results

D

Give the command to delete the portion of the line to the right of the
cursor (D).

2.3.5.3 Characters

Often you want to delete only one or two characters. Just as r is
a special change command to replace a single character, x is a
special delete command to delete a single character. x deletes only
the character the cursor is on. In the line below:

zYou can move text by deleting text and then

you can delete the letter z by pressing x.[3] A capital X deletes the
character before the cursor. Prefix either of these commands with a
number to delete that number of characters. For example, 5x will
delete the five characters under and to the right of the cursor.

[3] The mnemonic for x is that it is supposedly like "x-ing out" mistakes with a typewriter. Of course, who
uses a typewriter any more?

2.3.5.4 Problems with deletions

• You've deleted the wrong text and you want to get it back.

There are several ways to recover deleted text. If you've just
deleted something and you realize you want it back, simply
type u to undo the last command (for example, a dd). This
works only if you haven't given any further commands, since
u only undoes the most recent command. On the other hand,
a U will restore the line to its pristine state; the way it was
before any changes were applied to it.

You can still recover a recent deletion, however, by using the
p command, since vi saves the last nine deletions in nine
numbered deletion buffers. If you know, for example, that the
third deletion back is the one you want to restore, type:

 "3p

to "put" the contents of buffer number 3 on the line below the
cursor.

This works only for a deleted line. Words, or a portion of a
line, are not saved in a buffer. If you want to restore a
deleted word or line fragment, and u won't work, use the p
command by itself. This restores whatever you've last
deleted. The next few subsections will talk more about the
commands u and p.

2.3.6 Moving Text

In vi, you move text by deleting it and then placing that deleted
text elsewhere in the file, like a "cut and paste." Each time you
delete a text block, that deletion is temporarily saved in a special
buffer. Move to another position in your file and use the put
command (p) to place that text in the new position. You can move
any block of text, although moving is more useful with lines than
with words.

The put command (p) puts the text that is in the buffer after the
cursor position. The uppercase version of the command, P, puts the
text before the cursor. If you delete one or more lines, p puts the
deleted text on a new line(s) below the cursor. If you delete less
than an entire line, p puts the deleted text on the current line, after
the cursor.

Suppose in your file practice you have the text:

and want to move the second line, like a "cut and paste", below the
third line. Using delete, you can make this edit.

Keystrokes Results

dd

With the cursor on the second line, delete that line. The text is placed
in a buffer (reserved memory).

p

Give the put command, p, to restore the deleted line at the next line
below the cursor. To finish reordering this sentence, you would also
have to change the capitalization and punctuation (with r) to match the
new structure.

Once you delete text, you must restore it before the
next change command or delete command. If you
make another edit that affects the buffer, your
deleted text will be lost. You can repeat the put
over and over, so long as you don't make a new
edit. In Chapter 4, you will learn how to save text
you delete in a named buffer so you can retrieve it
later.

2.3.6.1 Transposing two letters

You can use xp (delete character and put after cursor) to transpose
two letters. For example, in the word mvoe, the letters vo are
transposed (reversed). To correct a transposition, place the cursor
on v and press x, then p. By coincidence, the word transpose helps
you remember the sequence xp; x stands for trans, and p stands for
pose.

There is no command to transpose words. The section "More
Examples of Mapping Keys" in Chapter 7 discusses a short sequence
of commands that transposes two words.

2.3.7 Copying Text

Often you can save editing time (and keystrokes) by copying a
part of your file to use in other places. With the two commands y
(for yank) and p (for put), you can copy any amount of text and put
that copied text in another place in the file. A yank command copies
the selected text into a special buffer, where it is held until another
yank (or deletion) occurs. You can then place this copy elsewhere in
the file with the put command.

As with change and delete, the yank command can be combined
with any movement command (yw, y$, 4yy). Yank is most
frequently used with a line (or more) of text, because to yank and
put a word usually takes longer than simply to insert the word.

The shortcut yy operates on an entire line, just as dd and cc do. But
the shortcut Y, for some reason, does not operate the way D and C

do. Instead of yanking from the current position to the end of the
line, Y yanks the whole line. Y does the same thing as yy.

Suppose you have in your file practice the text:

You want to make three complete sentences, beginning each with
With a screen editor you can. Instead of moving through the file,
making this edit over and over, you can use a yank and put to copy
the text to be added.

Keystrokes Results

yy

Yank the line of text that you want to copy into the buffer. The cursor
can be anywhere on the line you want to yank (or on the first line of a
series of lines).

2j

Move the cursor to where you want to put the yanked text.

P

Put the yanked text above the cursor line with P.

jp

Move the cursor down a line and put the yanked text below the cursor
line with p.

Yanking uses the same buffer as deleting. Each new deletion or
yank replaces the previous contents of the yank buffer. As we'll see
in Chapter 4, up to nine previous yanks or deletions can be recalled
with put commands. You can also yank or delete directly into up to

26 named buffers, which allows you to juggle multiple text blocks at
once.

2.3.8 Repeating or Undoing Your Last Command

Each edit command that you give is stored in a temporary buffer
until you give the next command. For example, if you insert the
after a word in your file, the command used to insert the text, along
with the text that you entered, is temporarily saved.

2.3.8.1 Repeat

Any time you make the same editing command over and over,
you can save time by duplicating it with the repeat command, the
period (.). Position the cursor where you want to repeat the editing
command, and type a period.

Suppose you have the following lines in your file:

You can delete one line, and then, to delete another line, simply
type a period.

Keystrokes Results

dd

Delete a line with the command dd.

.

Repeat the deletion.

Older versions of vi had problems repeating commands. For
example, such versions may have difficulty repeating a long
insertion when wrapmargin is set. If you have such a version, this
bug will probably bite you sooner or later. There's not a lot you can
do about it after the fact, but it helps to be forewarned. (Modern
versions do not seem to have this problem.) There are two ways
you can guard against a potential problem when repeating long
insertions. You can write your file (:w) before repeating the

insertion (returning to this copy if the insertion doesn't work
correctly). You can also turn off wrapmargin like this:

:set wm=0

In Section 7.3.5, we'll show you an easy way to ause the
wrapmargin solution. In some versions of vi, the command CTRL-@
repeats the most recent insertion. CTRL-@ is typed in insert mode
and returns you to command mode.

2.3.8.2 Undo

As mentioned earlier, you can undo your last command if you
make an error. Simply press u. The cursor need not be on the line
where the original edit was made.

To continue the example above, showing deletion of lines in the file
practice:

Keystrokes Results

u

u undoes the last command and restores the deleted line.

U, the uppercase version of u, undoes all edits on a single line, as
long as the cursor remains on that line. Once you move off a line,
you can no longer use U.

Note that you can undo your last undo with u, toggling between two
versions of text. u will also undo U, and U will undo any changes to a
line, including those made with u. (A tip: the fact that u can undo
itself leads to a nifty way to get around in a file. If you ever want to
get back to the site of your last edit, simply undo it. You will pop
back to the appropriate line. When you undo the undo, you'll stay
on that line.)

2.4 More Ways to Insert Text

You have inserted text before the cursor with the sequence:

itext to be insertedESC

You've also inserted text after the cursor with the a command.
There are other insert commands for inserting text at different
positions relative to the cursor:

A

Append text to end of current line.

I

Insert text at beginning of line.

o

Open blank line below cursor for text.

O

Open blank line above cursor for text.

s

Delete character at cursor and substitute text.

S

Delete line and substitute text.

R

Overstrike existing characters with new characters.

All of these commands place you in insert mode. After inserting
text, remember to press ESC to escape back to command mode.

A (append) and I (insert) save you from having to move your
cursor to the end or beginning of the line before invoking insert
mode. (The A command saves one keystroke over $a. Although one
keystroke might not seem like much of a saving, the more adept—
and impatient—an editor you become, the more keystrokes you will
want to omit.)

o and O (open) save you from having to insert a carriage return.
You can type these commands from anywhere within the line.

s and S (substitute) allow you to delete a character or a whole line
and replace the deletion with any amount of new text. s is the
equivalent of the two-stroke command c SPACE and S is the same

as cc. One of the best uses for s is to change one character to
several characters.

R ("large" replace) is useful when you want to start changing text,
but you don't know exactly how much. For example, instead of
guessing whether to say 3cw or 4cw, just type R and then enter your
replacement text.

2.4.1 Numeric Arguments for Insert Commands

Except for o and O, the above insert commands (plus i and a) take
numeric prefixes. With numeric prefixes, you might use the
commands i, I, a, and A to insert a row of underlines or alternating
characters. For example, typing 50i*ESC inserts 50 asterisks, and
typing 25a*- ESC appends 50 characters (25 pairs of asterisk and
hyphen). It's better to repeat only a small string of characters.[4]

[4] Very old versions of vi have difficulty repeating the insertion of more than one line's worth of text.

With a numeric prefix, r replaces that many characters with a
repeated instance of a single character. For example, in C or C++
code, to change || to &&, you would place the cursor on the first
pipe character, and type 2r&.

You can use a numeric prefix with S to substitute several lines. It's
quicker and more flexible, though, to use c with a movement
command.

A good case for using the s command with a numeric prefix is when
you want to change a few characters in the middle of a word.
Typing r wouldn't be correct, but typing cw would change too much
text. Using s with a numeric prefix is usually the same as typing R.

There are other combinations of commands that work naturally
together. For example, ea is useful for appending new text to the
end of a word. It helps to train yourself to recognize such frequent
combinations so that they become automatic.

2.5 Joining Two Lines with J

Sometimes while editing a file you will end up with a series of
short lines that are difficult to scan. When you want to merge two
lines into one, position the cursor anywhere on the first line, and
press J to join the two lines.

Suppose your file practice reads:

Keystrokes Results

J

J joins the line the cursor is on with the line below.

.

Repeat the last command (J) with the . to join the next line with the
current line.

Using a numeric argument with J joins that number of consecutive
lines. In the example above, you could have joined three lines by
using the command 3J.

2.5.1 Problem Checklist

• When you type commands, text jumps around on the screen
and nothing works the way it's supposed to.

Make sure you're not typing the J command when you mean
j.

You may have hit the CAPS LOCK key without noticing it. vi is
case-sensitive. That is, uppercase commands (I, A, J, etc.)
are different from lowercase commands (i, a, j), so all your
commands are being interpreted not as lowercase but as
uppercase commands. Press the CAPS LOCK key again to
return to lowercase, press ESC to ensure that you are in
command mode, then type either U to restore the last line
changed or u to undo the last command. You'll probably also
have to do some additional editing to fully restore the garbled
part of your file.

2.6 Review of Basic vi Commands

Table 2.1 presents a few of the commands you can perform by
combining the commands c, d, and y with various text objects. The
last two rows show additional commands for editing. Table 2.2 and
Table 2.3 list some other basic commands. Table 2.4 summarizes
the rest of the commands described in this chapter.

Table 2.1. Edit Commands
Text Object Change Delete Copy

1 word cw dw yw
2 words, not counting punctuation 2cW or c2W 2dW or d2W 2yW or y2W
3 words back 3cb or c3b 3db or d3b 3yb or y3b
1 line cc dd yy or Y
To end of line c$ or C d$ or D y$
To beginning of line c0 d0 y0
Single character r x or X yl or yh
Five characters 5s 5x 5yl

Table 2.2. Movement
Movement Commands

, , , h, j, k, l

To first character of next line +
To first character of previous line -
To end of word e or E
Forward by word w or W
Backward by word b or B
To end of line $
To beginning of line 0

Table 2.3. Other Operations
Operations Commands

Place text from buffer P or p
Start vi, open file if specified vi file
Save edits, quit file ZZ
No saving of edits, quit file :q!

Table 2.4. Text Creation and Manipulation Commands
Editing Action Command

Insert text at current position i
Insert text at beginning of line I
Append text at current position a
Append text at beginning of line A
Open new line below cursor for new text o
Open new line above cursor for new text O
Delete line and substitute text S
Overstrike existing characters with new text R
Join current and next line J
Toggle case ~
Repeat last action .
Undo last change u

Restore line to original state U

You can get by in vi using only the commands listed in these tables.
However, in order to harness the real power of vi (and increase
your own productivity), you will need more tools. The following
chapters describe those tools.

Chapter 3. Moving Around in a Hurry

You will not use vi just to create new files. You'll spend a lot of your
time in vi editing existing files. You rarely want to simply open to
the first line in the file and move through it line by line. You want to
get to a specific place in a file and start work.

All edits begin by moving the cursor to where you want to begin the
edit (or, with ex line editor commands, by identifying the line
numbers to be edited). This chapter shows you how to think about
movement in a variety of ways (by screens, by text, by patterns, or
by line numbers). There are many ways to move in vi, since editing
speed depends on getting to your destination with only a few
keystrokes.

This chapter covers:

• Movement by screens
• Movement by text blocks
• Movement by searches for patterns
• Movement by line number

3.1 Movement by Screens

When you read a book, you think of "places" in the book by page:
the page where you stopped reading or the page number in an
index. You don't have this convenience when you're editing files.
Some files take up only a few lines, and you can see the whole file
at once. But many files have hundreds of lines.

You can think of a file as text on a long roll of paper. The screen is a
window of (usually) 24 lines of text on that long roll.

In insert mode, as you fill up the screen with text, you will end up
typing on the bottom line of the screen. When you reach the end
and press RETURN, the top line rolls out of sight, and a blank line
appears on the bottom of the screen for new text. This is called
scrolling.

In command mode, you can move through a file to see any text in it
by scrolling the screen ahead or back. And, since cursor movements
can be multiplied by numeric prefixes, you can move quickly to
anywhere in your file.

3.1.1 Scrolling the Screen

There are vi commands to scroll forward and backward
through the file by full and half screens:

^F

Scroll forward one screen.

^B

Scroll backward one screen.

^D

Scroll forward half screen (down).

^U

Scroll backward half screen (up).

(In the list of commands above, the ^ symbol represents the CTRL
key. ^F means to hold down the CTRL key and press the f key
simultaneously.)

There are also commands to scroll the screen up one line (^E) and
down one line (^Y). However, these two commands do not send the
cursor to the beginning of the line. The cursor remains at the same
point in the line as when the command was issued.

3.1.2 Repositioning the Screen with z

If you want to scroll the screen up or down, but you want the
cursor to remain on the line where you left it, use the z command.

zRETURN Move current line to top of screen and scroll.
z. Move current line to center of screen and scroll.
z- Move current line to bottom of screen and scroll.

With the z command, using a numeric prefix as a multiplier makes
no sense. (After all, you would need to reposition the cursor to the
top of the screen only once. Repeating the same z command
wouldn't move anything.) Instead, z understands a numeric prefix
as a line number that it will use in place of the current line. For

example, z RETURN moves the current line to the top of the screen,
but 200z RETURN moves line 200 to the top of the screen.

3.1.3 Redrawing the Screen

Sometimes while you're editing, messages from your
computer system will display on your screen. These messages don't
become part of your editing buffer, but they do interfere with your
work. When system messages appear on your screen, you need to
redisplay, or redraw, the screen.

Whenever you scroll, you redraw part of (or all of) the screen, so
you can always get rid of unwanted messages by scrolling them off
the screen and then returning to your previous position. But you
can also redraw the screen without scrolling, by typing CTRL-L.

3.1.4 Movement Within a Screen

You can also keep your current screen, or view of the file, and
move around within the screen using:

H

Move to home—top line on screen.

M

Move to middle line on screen.

L

Move to last line on screen.

nH

Move to n lines below top line.

nL

Move to n lines above last line.

H moves the cursor from anywhere on the screen to the first, or
"home," line. M moves to the middle line, L to the last. To move to
the line below the first line, use 2H.

Keystrokes Results

L

Move to the last line of the screen with the L command.

2H

Move to the second line of the screen with the 2H command. (H alone
moves to the top line of the screen.)

3.1.5 Movement by Line

Within the current screen there are also commands to
move by line. You've already seen j and k. You can also use:

RETURN Move to first character of next line.
+ Move to first character of next line.
- Move to first character of previous line.

The above three commands move down or up to the first character
of the line, ignoring any spaces or tabs. j and k, by contrast, move
the cursor down or up to the first position of a line, even if that
position is blank (and assuming that the cursor started at the first
position).

3.1.5.1 Movement on the current line

Don't forget that h and l move the cursor to the left and right and
that 0 and $ move the cursor to the beginning or end of the line.
You can also use:

^

Move to first non-blank character of current line.

n|

Move to column n of current line.

As with the line movement commands above, ^ moves to the first
character of the line, ignoring any spaces or tabs. 0, by contrast,
moves to the first position of the line, even if that position is blank.

3.2 Movement by Text Blocks

Another way that you can think of moving through a vi file is by
text blocks—words, sentences, paragraphs, or sections.

You have already learned to move forward and backward by word
(w, W, b or B). In addition, you can use these commands:

e

Move to end of word.

E

Move to end of word (ignore punctuation).

(

Move to beginning of current sentence.

)

Move to beginning of next sentence.

{

Move to beginning of current paragraph.

}

Move to beginning of next paragraph.

[[

Move to beginning of current section.

]]

Move to beginning of next section.

To find the end of a sentence, vi looks for one of the punctuation
marks ? . !. vi locates the end of a sentence when the punctuation
is followed by at least two spaces or when it appears as the last

non-blank character on a line. If you have left only a single space
following a period, or if the sentence ends with a quotation mark, vi
won't recognize the sentence.

A paragraph is defined as text up to the next blank line, or up to
one of the default paragraph macros (.IP, .PP, .LP, or .QP) from the
troff MS macro package. Similarly, a section is defined as text up to
the next default section macro (.NH, .SH, .H 1, .HU). The macros
that are recognized as paragraph or section separators can be
customized with the :set command, as described in Chapter 7.

Remember that you can combine numbers with movement. For
example, 3) moves ahead three sentences. Also remember that you
can edit using movement commands: d) deletes to the end of the
current sentence, 2y} copies (yanks) two paragraphs ahead.

3.3 Movement by Searches

One of the most useful ways to move around in a large file
quickly is by searching for text, or more properly, a pattern of
characters. Sometimes a search can be performed to find a
misspelled word or to find each occurrence of a variable in a
program.

The search command is the special character / (slash). When you
enter a slash, it appears on the bottom line of the screen; you then
type in the pattern that you want to find: /pattern.

A pattern can be a whole word or any other sequence of characters
(called a "character string"). For example, if you search for the
characters red, you will match red as a whole word, but you'll also
match occurred. If you include a space before or after pattern, the
spaces will be treated as part of the word. As with all bottom-line
commands, press RETURN to finish. vi, like all other UNIX editors,
has a special pattern-matching language that allows you to look for
variable text patterns; for example, any word beginning with a
capital letter, or the word The at the beginning of a line.

We'll talk about this more powerful pattern-matching syntax in
Chapter 6. For right now, think of pattern simply as a word or
phrase.

vi begins the search at the cursor and searches forward, wrapping
around to the start of the file if necessary. The cursor will move to
the first occurrence of the pattern. If there is no match, the
message "Pattern not found" will be shown on the status line.[1]

[1] The exact messages will vary with different vi clones, but their meanings will be the same. In general, we
won't bother noting everywhere that the text of a message may be different; in all cases the information
conveyed will be the same.

Using the file practice, here's how to move the cursor by searches:

Keystrokes Results

/edits

Search for the pattern edits. Press RETURN to enter. The cursor moves
directly to that pattern.

/scr

Search for the pattern scr. Press RETURN to enter. Note that there is no
space after scr.

The search wraps around to the front of the file. Note that you can
give any combination of characters; a search does not have to be
for a complete word.

To search backward, type a ? instead of a /:

?pattern

In both cases, the search wraps around to the beginning or end of
the file, if necessary.

3.3.1 Repeating Searches

The last pattern that you searched for stays available
throughout your editing session. After a search, instead of repeating
your original keystrokes, you can use a command to search again
for the last pattern.

n Repeat search in same direction.
N Repeat search in opposite direction.
/ RETURN Repeat search forward.
?RETURN Repeat search backward.

Since the last pattern stays available, you can search for a pattern,
do some work, and then search again for the same pattern without
retyping it by using n, N, / or ?. The direction of your search (/ is

forward, ? is backward) is displayed at the bottom left of the
screen.[2]

[2] nvi 1.79 does not show the direction for the n and N commands. vim 5.x puts the search text into the
command line too.

To continue with the example above, since the pattern scr is still
available for search, you can:

Keystrokes Results

n

Move to the next instance of the pattern scr (from screen to scroll) with
the n (next) command.

?you

Search backward with ? from the cursor to the first occurrence of you.
You need to press RETURN after typing the pattern.

N

Repeat previous search for you but in the opposite direction (forward).

Sometimes you want to find a word only if it is further ahead; you
don't want the search to wrap around earlier in the file. vi has an
option, wrapscan, that controls whether searches wrap. You can
disable wrapping like this:

:set nowrapscan

When nowrapscan is set and a forward search fails, the status line
displays the message:

Address search hit BOTTOM without matching pattern

When nowrapscan is set and a backward search fails, the message
displays "TOP" instead of "BOTTOM".

This section has given only the barest introduction to searching for
patterns. Chapter 6 will teach you more about pattern matching and
its use in making global changes to a file.

3.3.1.1 Changing through searching

You can combine the / and ? search operators with the commands
that change text, such as c and d. Continuing with the previous
example:

Keystrokes Results

d?move

Delete from before the cursor up to and through the word move.

Note how the deletion occurs on a character basis, whole lines are
not deleted.

3.3.2 Current Line Searches

There are also miniature versions of the search commands that
operate within the current line. The command fx moves the cursor
to the next instance of the character x (where x stands for any
character). The command tx moves the cursor to the character
before the next instance of x. Semicolons can then be used
repeatedly to "find" your way along.

The in-line search commands are summarized below. None of these
commands will move the cursor to the next line.

fx Find (move cursor to) next occurrence of x in the line, where x stands for any
character.

Fx Find (move cursor to) previous occurrence of x in the line.
tx Find (move cursor to) character before next occurrence of x in the line.
Tx Find (move cursor to) character after previous occurrence of x in the line.
; Repeat previous find command in same direction.
, Repeat previous find command in opposite direction.

With any of these commands, a numeric prefix n will locate the nth
occurrence. Suppose you are editing in practice, on this line:

Keystrokes Results

fo

Find the first occurrence of o in your current line with f.

;

Move to the next occurrence of o with the ; command (find next o).

dfx deletes up to and including the named character x. This
command is useful in deleting or yanking partial lines. You might
need to use dfx instead of dw if there were symbols or punctuation
within the line that made counting words difficult. The t command
works just like f, except that it positions the cursor before the
character searched for. For example, the command ct. could be
used to change text up to the end of a sentence, leaving the period.

3.4 Movement by Line Number

Lines in a file are numbered sequentially, and you can move
through a file by specifying line numbers.

Line numbers are useful for identifying the beginning and end of
large blocks of text you want to edit. Line numbers are also useful
for programmers, since compiler error messages refer to line
numbers. Line numbers are also used by ex commands, which you
will learn in the next chapters.

If you are going to move by line numbers, you must have a way to
identify them. Line numbers can be displayed on the screen using
the :set nu option described in Chapter 7. In vi, you can also
display the current line number on the bottom of the screen.

The command CTRL-G causes the following to be displayed at the
bottom of your screen: the current line number, the total number of
lines in the file, and what percentage of the total the present line
number represents. For example, for the file practice, CTRL-G might
display:

"practice" line 3 of 6 --50%--

CTRL-G is useful either for displaying the line number to use in a
command or for orienting yourself if you have been distracted from
your editing session.

Depending upon the implementation of vi you're using, you may see
additional information, such as what column the cursor is on, and
an indication as to whether or not the file has been modified but not
yet written out. The exact format of the message will vary as well.

3.4.1 The G (Go To) Command

You can use line numbers to move the cursor through a file. The
G (go to) command uses a line number as a numeric argument and
moves directly to that line. For instance, 44G moves the cursor to
the beginning of line 44. G without a line number moves the cursor
to the last line of the file.

Typing two backquotes (` `) returns you to your original position
(the position where you issued the last G command), unless you
have done some edits in the meantime. If you have made an edit,
and then moved the cursor using some command other than G, ` `
will return the cursor to the site of your last edit. If you have issued
a search command (/ or ?), ` ` will return the cursor to its position
when you started the search. A pair of apostrophes (' ') works
much like two backquotes, except that it returns the cursor to the
beginning of the line instead of the exact position on that line where
your cursor had been.

The total number of lines shown with CTRL-G can be used to give
yourself a rough idea of how many lines to move. If you are on line
10 of a 1,000 line file:

"practice" line 10 of 1000 --1%--

and know that you want to begin editing near the end of that file,
you could give an approximation of your destination with 800G.

Movement by line number is a tool that can move you quickly from
place to place through a large file.

3.5 Review of vi Motion Commands

Table 3.1 summarizes the commands covered in this chapter.

Table 3.1. Movement Commands
Movement Command

Scroll forward one screen. ^F
Scroll backward one screen. ^B
Scroll forward half screen. ^D
Scroll backward half screen. ^U
Scroll forward one line. ^E
Scroll backward one line. ^Y
Move current line to top of screen and scroll. z RETURN
Move current line to center of screen and scroll. z.

Move current line to bottom of screen and scroll. z-
Redraw the screen. ^L
Move to home—top line of screen. H
Move to middle line of screen. M
Move to bottom line of screen. L
Move to first character of next line. RETURN
Move to first character of next line. +
Move to first character of previous line. -
Move to first non-blank character of current line. ^
Move to column n of current line. n|
Move to end of word. e
Move to end of word (ignore punctuation). E
Move to beginning of current sentence. (
Move to beginning of next sentence.)
Move to beginning of current paragraph. {
Move to beginning of next paragraph. }
Move to beginning of current section. [[
Move to beginning of next section.]]
Search forward for pattern. /pattern
Search backward for pattern. ?pattern
Repeat last search. n
Repeat last search in opposite direction. N
Repeat last search forward. /
Repeat last search backward. ?
Move to next occurrence of x in current line. fx
Move to previous occurrence of x in current line. Fx
Move to just before next occurrence of x in current line. tx
Move to just after previous occurrence of x in current line. Tx
Repeat previous find command in same direction. ;
Repeat previous find command in opposite direction. ,
Go to given line n. nG
Go to end of file. G
Return to previous mark or context. ` `
Return to beginning of line containing previous mark. ' '
Show current line (not a movement command). ^G

Chapter 4. Beyond the Basics

You have already been introduced to the basic vi editing commands,
i, a, c, d, and y. This chapter expands on what you already know
about editing. It covers:

• Description of additional editing facilities, with a review of
general command form

• Additional ways to enter vi
• Making use of buffers that store yanks and deletions
• Marking your place in a file

4.1 More Command Combinations

In Chapter 2, you learned the edit commands c, d, and y, as well as
how to combine them with movements and numbers (such as 2cw
or 4dd). In Chapter 3, you added many more movement commands
to your repertoire. Although the fact that you can combine edit
commands with movement is not a new concept to you, Table 4.1
gives you a feel for the many editing options you now have.

Table 4.1. More Editing Commands
Change Delete Copy from Cursor to ...

cH dH yH top of screen
cL dL yL bottom of screen
c+ d+ y+ next line
c5| d5| y5| column 5 of current line
2c) 2d) 2y) second sentence following
c{ d{ y{ previous paragraph
c/pattern d/pattern y/pattern pattern
cn dn yn next pattern
cG dG yG end of file
c13G d13G y13G line number 13

Notice how all of the above sequences follow the general pattern:

(number)(command)(text object)

number is the optional numeric argument. command in this case is
one of c, d, or y. text object is a movement command.

The general form of a vi command is discussed in Chapter 2. You
may wish to review Table 2.1 and Table 2.2 as well.

4.2 Options When Starting vi

In this handbook, you have invoked the vi editor with the
command:

$ vi file

There are other options to the vi command that can be helpful. You
can open a file directly to a specific line number or pattern. You can
also open a file in read-only mode. Another option recovers all
changes to a file that you were editing when the system crashed.

4.2.1 Advancing to a Specific Place

When you begin editing an existing file, you can call the file in and
then move to the first occurrence of a pattern or to a specific line
number. You can also specify your first movement by search or by
line number right on the command line:[1]

[1] According to the POSIX standard, vi should use -c command instead of +command as shown here. Typically,
for backwards compatibility, both versions are accepted.

$
vi +
n file

Opens file at line number n.

$
vi +
file

Opens file at last line.

$
vi +/
pattern file

Opens file at the first occurrence of pattern.

In the file practice, to open the file and advance directly to the line
containing the word Screen, enter:

Keystrokes Results

vi +/Screen practice

Give the vi command with the option +/pattern to go
directly to the line containing Screen.

As you see in the example above, your search pattern will not
necessarily be positioned at the top of the screen. If you include
spaces in the pattern, you must enclose the whole pattern within
single or double quotes:[2]

[2] It is the shell that imposes the quoting requirement, not vi.

+/"you make"

or escape the space with a backslash:

+/you\ make

In addition, if you want to use the general pattern-matching syntax
described in Chapter 6, you may need to protect one or more
special characters from interpretation by the shell with either single
quotes or backslashes.

Using +/pattern is helpful if you have to leave an editing session in
the middle. You can mark your place by inserting a pattern such as
ZZZ or HERE. Then when you return to the file, all you have to
remember is /ZZZ or /HERE.

Normally, when you're editing in vi, the wrapscan
option is enabled. If you've customized your
environment so that wrapscan is always disabled
(see Section 3.3.1), you might not be able to use
+/pattern. If you try to open a file this way, vi
opens the file at the last line and displays the
message "Address search hit BOTTOM without
matching pattern."

4.2.2 Read-only Mode

There will be times when you want to look at a file but want to
protect that file from inadvertent keystrokes and changes. (You

might want to call in a lengthy file to practice vi movements, or you
might want to scroll through a command file or program). You can
enter a file in read-only mode and use all the vi movement
commands, but you won't be able to change the file.

To look at a file in read-only mode, enter either:

$ vi -R file

or:

$ view file

(The view command, like the vi command, can use any of the
command-line options for advancing to a specific place in the file.)[3]
If you do decide to make some edits to the file, you can override
read-only mode by adding an exclamation point to the write
command:

[3] Typically view is just a link to vi.

:w!

or:

:wq!

If you have a problem writing out the file, see the problem
checklists summarized in Appendix D.

4.2.3 Recovering a Buffer

Occasionally there is a system failure while you are editing a file.
Ordinarily, any edits made after your last write (save) are lost.
However, there is an option, -r, which lets you recover the edited
buffer at the time of a system crash.

When you first log on after the system is running again, you will
receive a mail message stating that your buffer has been saved. In
addition, if you type the command:

$ ex -r

or:

$ vi -r

you will get a list of any files that the system has saved.

Use the -r option with a file name to recover the edited buffer. For
example, to recover the edited buffer of the file practice after a
system crash, enter:

$ vi -r practice

It is wise to recover the file immediately, lest you inadvertently
make edits to the file, and then have to resolve a version skew
between the preserved buffer and the newly edited file.

You can force the system to preserve your buffer even when there
is not a crash by using the command :pre. You may find it useful if
you have made edits to a file, then discover that you can't save
your edits because you don't have write permission. (You could also
just write out a copy of the file under another name or into a
directory where you do have write permission. See Section 1.2.1.)

Recovery for the various clones may work
differently, and can change from version to version.
It is best to check your local documentation. vile
does not support any kind of recovery. The vile
documentation recommends the use of the
autowrite and autosave options. How to do this is
described in Section 7.1.

4.3 Making Use of Buffers

You have seen that while you are editing, your last deletion (d or x)
or yank (y) is saved in a buffer (a place in stored memory). You can
access the contents of that buffer and put the saved text back in
your file with the put command (p or P).

The last nine deletions are stored by vi in numbered buffers. You
can access any of these numbered buffers to restore any (or all) of
the last nine deletions. (Small deletions, of only parts of lines, are
not saved in numbered buffers, however. These deletions can only
be recovered by using the p or P command immediately after you've
made the deletion.)

vi also allows you to place yanks (copied text) in buffers identified
by letters. You can fill up to 26 (a-z) buffers with yanked text and
restore that text with a put command at any time in your editing
session.

4.3.1 Recovering Deletions

Being able to delete large blocks of text at a single bound is all very
well and good, but what if you mistakenly delete 53 lines that you
need? There is a way to recover any of your past nine deletions, for
they are saved in numbered buffers. The last delete is saved in
buffer 1, the second-to-last in buffer 2, and so on.

To recover a deletion, type " (double quote), identify the buffered
text by number, then give the put command. To recover your
second-to-last deletion from buffer 2:

"2p

The deletion in buffer 2 is placed after the cursor.

If you're not sure which buffer contains the deletion you want to
restore, you don't have to keep typing "np over and over again. If
you use the repeat command (.) with p after u, it automatically
increments the buffer number. As a result, you can search through
the numbered buffers as follows:

"1pu.u.u
etc.

to put the contents of each succeeding buffer in the file one after
the other. Each time you type u, the restored text is removed; when
you type a dot (.), the contents of the next buffer is restored to
your file. Keep typing u and . until you've recovered the text you're
looking for.

4.3.2 Yanking to Named Buffers

You have seen that you must put (p or P) the contents of the
unnamed buffer before you make any other edit, or the buffer will
be overwritten. You can also use y and d with a set of 26 named
buffers (a-z) which are specifically available for copying and moving
text. If you name a buffer to store the yanked text, you can retrieve
the contents of the named buffer at any time during your editing
session.

To yank into a named buffer, precede the yank command with a
double quote (") and the character for the name of the buffer you
want to load. For example:

"dyy
Yank current line into buffer d.

"a7yy
Yank next seven lines into buffer a.

After loading the named buffers and moving to the new position,
use p or P to put the text back:

"dP
Put the contents of buffer d before cursor.

"ap
Put the contents of buffer a after cursor.

There is no way to put part of a buffer into the text—it is all or
nothing.

In the next chapter, you'll learn to edit multiple files. Once you
know how to travel between files without leaving vi, you can use
named buffers to selectively transfer text between files.

You can also delete text into named buffers using much the same
procedure:

"a5dd
Delete five lines into buffer a.

If you specify a buffer name with a capital letter, your yanked or
deleted text will be appended to the current contents of that buffer.
This allows you to be selective in what you move or copy. For
example:

"zd)

Delete from cursor to end of current sentence and save in
buffer z.

2)

Move two sentences further on.

"Zy)

Add the next sentence to buffer z. You can continue adding
more text to a named buffer for as long as you like—but be
warned: if you once forget, and yank or delete to the buffer
without specifying its name in capitalized form, you'll
overwrite the buffer, losing whatever you had accumulated in
it.

4.4 Marking Your Place

During a vi session, you can mark your place in the file with an
invisible "bookmark," perform edits elsewhere, then return to your
marked place. In command mode:

m x

Marks the current position with x (x can be any letter).

' x

(apostrophe) Moves the cursor to the first character of the
line marked by x.

` x

(backquote) Moves the cursor to the character marked by x.

``

(backquotes) Returns to the exact position of the previous
mark or context after a move.

''

(apostrophes) Returns to the beginning of the line of the
previous mark or context.

Place markers are set only during the current vi
session; they are not stored in the file.

4.5 Other Advanced Edits

There are other advanced edits that you can execute with vi, but to
use them you must first learn a bit more about the ex editor by
reading the next chapter.

4.6 Review of vi Buffer and Marking Commands

Table 4.2 summarizes the command-line options common to all
versions of vi. Table 4.3 and Table 4.4 summarize the buffer and
marking commands.

Table 4.2. Command-Line Options
Option Meaning

+n file Open file at line number n.
+file Open file at last line.
+/pattern
file Open file at first occurrence of pattern.

-c command
file

Run command after opening file; usually a line number or search
(POSIX version of +).

-R Operate in read-only mode (same as using view instead of vi).
-r Recover files after a crash.

Table 4.3. Buffer Names
Buffer
Names Buffer Use

1-9 The last nine deletions, from most to least recent.

a-z Named buffers for you to use as needed. Uppercase letters append to
the buffer.

Table 4.4. Buffer and Marking Commands
Command Meaning

"bcommand Do command with buffer b.
mx Mark current position with x.
'x Move cursor to first character of line marked by x.
`x Move cursor to character marked by x.
`` Return to exact position of previous mark or context.
'' Return to beginning of the line of previous mark or context.

Chapter 5. Introducing the ex Editor

If this is a handbook on vi, why would we include a chapter on
another editor? ex is not really another editor. vi is the visual mode
of the more general, underlying line editor, ex. Some ex commands
can be useful to you while you are working in vi, since they can
save you a lot of editing time. Most of these commands can be used
without ever leaving vi.[1]

[1] vile is different from the other clones. Many of the more advanced ex commands simply don't work.
Instead of noting each one, more details are provided in Chapter 12.

You already know how to think of files as a sequence of numbered
lines. ex gives you editing commands with greater mobility and
scope. With ex you can move easily between files and transfer text
from one file to another in a variety of ways. You can quickly edit
blocks of text larger than a single screen. And with global
replacement you can make substitutions throughout a file for a
given pattern.

This chapter introduces ex and its commands. You will learn how to:

• Move around a file by using line numbers
• Use ex commands to copy, move, and delete blocks of text
• Save files and parts of files
• Work with multiple files (reading in text or commands,

traveling between files)

5.1 ex Commands

Long before vi or any other screen editor was invented, people
communicated with computers on printing terminals, rather than on
today's CRTs (or bitmapped screens with pointing devices and
terminal emulation programs). Line numbers were a way to quickly
identify a part of a file to be worked on, and line editors evolved to
edit those files. A programmer or other computer user would
typically print out a line (or lines) on the printing terminal, give the
editing commands to change just that line, then reprint to check the
edited line.

People don't edit files on printing terminals any more, but some ex
line editor commands are still useful to users of the more
sophisticated visual editor built on top of ex. Although it is simpler
to make most edits with vi, the line orientation of ex gives it an
advantage when you want to make large-scale changes to more
than one part of a file.

Many of the commands we'll see in this chapter
have filename arguments. Although it's possible, it
is usually a very bad idea to have spaces in your
files' names. ex will be confused to no end, and you
will go to more trouble than it's worth trying to get
the filenames to be accepted. Use underscores,
dashes, or periods to separate the components of
your file names, and you'll be much happier.

Before you start off simply memorizing ex commands (or worse,
ignoring them), let's first take some of the mystery out of line
editors. Seeing how ex works when it is invoked directly will help
make sense of the sometimes obscure command syntax.

Open a file that is familiar to you and try a few ex commands. Just
as you can invoke the vi editor on a file, you can invoke the ex line
editor on a file. If you invoke ex, you will see a message about the
total number of lines in the file, and a colon command prompt.

For example:

$ ex practice
"practice" 6 lines, 320 characters
:

You won't see any lines in the file unless you give an ex command
that causes one or more lines to be displayed.

ex commands consist of a line address (which can simply be a line
number) plus a command; they are finished with a carriage return.
One of the most basic commands is p for print (to the screen). So,
for example, if you type 1p at the prompt, you will see the first line
of the file:

:1p
 With a screen editor you can
 :

In fact, you can leave off the p, because a line number by itself is
equivalent to a print command for that line. To print more than one
line, you can specify a range of line numbers (for example, 1,3—
two numbers separated by a comma, with or without spaces in
between). For example:

:1,3
 With a screen editor you can

 scroll the page, move the cursor,
 delete lines, insert characters, and more,

A command without a line number is assumed to affect the current
line. So, for example, the substitute command (s), which allows you
to substitute one word for another, could be entered like this:

:1
 With a screen editor you can
 :s/screen/line/
 With a line editor you can

Notice that the changed line is reprinted after the command is
issued. You could also make the same change like this:

:1s/screen/line/
 With a line editor you can

Even though you will be invoking ex commands from vi and will not
be using them directly, it is worthwhile to spend a few minutes in ex
itself. You will get a feel for how you need to tell the editor which
line (or lines) to work on, as well as which command to execute.

After you have given a few ex commands on your practice file, you
should invoke vi on that same file, so that you can see it in the
more familiar visual mode. The command :vi will get you from ex
to vi.

To invoke an ex command from vi, you must type the special
bottom line character : (colon). Then type the command and press
RETURN to execute it. So, for example, in the ex editor you move to
a line simply by typing the number of the line at the colon prompt.
To move to line 6 of a file using this command from within vi, enter:

:6

Press RETURN.

Following the exercise, we will discuss ex commands only as they
are executed from vi.

5.1.1 Exercise: The ex Editor
At the UNIX prompt, invoke ex editor on a file
called practice:

ex practice

A message appears:
"practice" 6 lines, 320
characters

Go to and print (display) first line: :1
Print (display) lines 1 through 3: :1,3

Substitute screen for line on line 1: :1s/screen/line
Invoke vi editor on file: :vi
Go to first line: :1

5.1.2 Problem Checklist

• While editing in vi, you accidentally end up in the ex editor.

A Q in the command mode of vi invokes ex. Any time you are
in ex, the command vi returns you to the vi editor.

5.2 Editing with ex

Many ex commands that perform normal editing operations have an
equivalent in vi that does the job more simply. Obviously, you will
use dw or dd to delete a single word or line rather than using the
delete command in ex. However, when you want to make changes
that affect numerous lines, you will find the ex commands more
useful. They allow you to modify large blocks of text with a single
command.

These ex commands are listed below, along with abbreviations for
those commands. Remember that in vi each ex command must be
preceded with a colon. You can use the full command name or the
abbreviation, whichever is easier to remember.

delete d Delete lines.
move m Move lines.
copy co Copy lines.
 t Copy lines (a synonym for co).

You can separate the different elements of an ex command with
spaces, if you find the command easier to read that way. For
example, you can separate line addresses, patterns, and commands
in this way. You cannot, however, use a space as a separator inside
a pattern or at the end of a substitute command.

5.2.1 Line Addresses

For each ex editing command, you have to tell ex which line
number(s) to edit. And for the ex move and copy commands, you
also need to tell ex where to move or copy the text to.

You can specify line addresses in several ways:

• With explicit line numbers

• With symbols that help you specify line numbers relative to
your current position in the file

• With search patterns as addresses that identify the lines to be
affected

Let's look at some examples.

5.2.2 Defining a Range of Lines

You can use line numbers to explicitly define a line or range of lines.
Addresses that use explicit numbers are called absolute line
addresses. For example:

:3,18d Delete lines 3 through 18.

:160,224m23 Move lines 160 through 224 to follow line 23. (Like delete and put
in vi.)

:23,29co100 Copy lines 23 through 29 and put after line 100. (Like yank and put
in vi.)

To make editing with line numbers easier, you can also display all
line numbers on the left of the screen. The command:

:set number

or its abbreviation:

:set nu

displays line numbers. The file practice then appears:

1 With a screen editor
 2 you can scroll the page,
 3 move the cursor, delete lines,
 4 insert characters and more

The displayed line numbers are not saved when you write a file, and
they do not print if you print the file. Line numbers are displayed
either until you quit the vi session or until you disable the set
option:

:set nonumber

or:

:set nonu

To temporarily display the line numbers for a set of lines, you can
use the # sign. For example:

:1,10#

would display the line numbers from line one to line ten.

As described in Chapter 3, you can also use the CTRL-G command
to display the current line number. You can thus identify the line
numbers corresponding to the start and end of a block of text by
moving to the start of the block, typing CTRL-G, then moving to the
end of the block and typing CTRL-G again.

Yet another way to identify line numbers is with the ex = command:

:=

Print the total number of lines.

:.=

Print the line number of the current line.

:/ pattern/=

Print the line number of the first line that matches pattern.

5.2.3 Line Addressing Symbols

You can also use symbols for line addresses. A dot (.) stands for
the current line; $ stands for the last line of the file. % stands for
every line in the file; it's the same as the combination 1,$. These
symbols can also be combined with absolute line addresses. For
example:

:.,$d

Delete from current line to end of file.

:20,.m$

Move from line 20 through the current line to the end of the
file.

:%d

Delete all the lines in a file.

:%t$

Copy all lines and place them at the end of the file (making a
consecutive duplicate).

In addition to an absolute line address, you can specify an address
relative to the current line. The symbols + and - work like
arithmetic operators. When placed before a number, these symbols
add or subtract the value that follows. For example:

:.,.+20d

Delete from current line through the next 20 lines.

:226,$m.-2

Move lines 226 through the end of the file to two lines above
the current line.

:.,+20#

Display line numbers from the current line to 20 lines further
on in the file.

In fact, you don't need to type the dot (.) when you use + or -,
because the current line is the assumed starting position.

Without a number following them, + and - are equivalent to +1 and
-1, respectively.[2] Similarly, ++ and -- each extend the range by an
additional line, and so on. The + and - can also be used with search
patterns, as shown in the next section.

[2] In a relative address, you shouldn't separate the plus or minus symbol from the number that follows it.
For example, +10 means "10 lines following," but + 10 means "11 lines following (1 + 10)," which is probably
not what you mean (or want).

The number 0 stands for the top of the file (imaginary line 0). 0 is
equivalent to 1-, and both allow you to move or copy lines to the
very start of a file, before the first line of existing text. For example:

:-,+t0

Copy three lines (the line above the cursor through the line
below the cursor) and put them at the top of the file.

5.2.4 Search Patterns

Another way that ex can address lines is by using search patterns.
For example:

:/ pattern/d

Delete the next line containing pattern.

: /pattern/+d

Delete the line below the next line containing pattern. (You
could also use +1 instead of + alone.)

: /pattern1/,/ pattern2/d

Delete from the first line containing pattern1 through the first
line containing pattern2.

:.,/ pattern/m23

Take the text from the current line (.) through the first line
containing pattern and put it after line 23.

Note that patterns are delimited by a slash both before and after.

If you make deletions by pattern with vi and ex, there is a
difference in the way the two editors operate. Suppose your file
practice contains the lines:

Keystrokes Results

d/while

The vi delete to pattern command deletes from the cursor up to the
word while, but leaves the remainder of both lines.

:.,/while/d

The ex command deletes the entire range of addressed lines; in this
case both the current line and the line containing the pattern. All
lines are deleted in their entirety.

5.2.5 Redefining the Current Line Position

Sometimes, using a relative line address in a command can give
you unexpected results. For example, suppose the cursor is on line

1, and you want to print line 100 plus the five lines below it. If you
type:

:100,+5 p

you'll get an error message saying, "First address exceeds second."
The reason the command fails is that the second address is
calculated relative to the current cursor position (line 1), so your
command is really saying this:

:100,6 p

What you need is some way to tell the command to think of line 100
as the "current line," even though the cursor is on line 1.

ex provides such a way. When you use a semicolon instead of a
comma, the first line address is recalculated as the current line. For
example, the command:

:100;+5 p

prints the desired lines. The +5 is now calculated relative to line
100. A semicolon is useful with search patterns as well as absolute
addresses. For example, to print the next line containing pattern,
plus the 10 lines that follow it, enter the command:

:/pattern/;+10 p

5.2.6 Global Searches

You already know how to use / (slash) in vi to search for patterns of
characters in your files. ex has a global command, g, that lets you
search for a pattern and display all lines containing the pattern
when it finds them. The command :g! does the opposite of :g. Use
:g! (or its synonym :v) to search for all lines that do not contain
pattern.

You can use the global command on all lines in the file, or you can
use line addresses to limit a global search to specified lines or to a
range of lines.

:g/ pattern

Finds (moves to) the last occurrence of pattern in the file.

:g/ pattern/p

Finds and displays all lines in the file containing pattern.

:g!/ pattern/nu

Finds and displays all lines in the file that don't contain
pattern; also displays the line number for each line found.

:60,124g/ pattern/p

Finds and displays any lines between lines 60 and 124
containing pattern.

As you might expect, g can also be used for global replacements.
We'll talk about that in Chapter 6.

5.2.7 Combining ex Commands

You don't always need to type a colon to begin a new ex command.
In ex, the vertical bar (|) is a command separator, allowing you to
combine multiple commands from the same ex prompt (in much the
same way that a semicolon separates multiple commands at the
UNIX shell prompt). When you use the |, keep track of the line
addresses you specify. If one command affects the order of lines in
the file, the next command does its work using the new line
positions. For example:

:1,3d | s/thier/their/

Delete lines 1 through 3 (leaving you now on the top line of
the file); then make a substitution on the current line (which
was line 4 before you invoked the ex prompt).

:1,5 m 10 | g/pattern/nu

Move lines 1 through 5 after line 10, and then display all lines
(with numbers) containing pattern.

Note the use of spaces to make the commands easier to read.

5.3 Saving and Exiting Files

You have learned the vi command ZZ to quit and write (save) your
file. But you will frequently want to exit a file using ex commands,
because these commands give you greater control. We've already
mentioned some of these commands in passing. Now let's take a
more formal look.

:w

Writes (saves) the buffer to the file but does not exit. You can
(and should) use :w throughout your editing session to
protect your edits against system failure or a major editing
error.

:q

Quits the editor (and returns to the UNIX prompt).

:wq

Both writes the file and quits the editor. The write happens
unconditionally, even if the file was not changed.

:x

Both writes the file and quits (exits) the editor. The file is
written only if it has been modified.[3]

[3] The difference between :wq and :x is important when editing source code and using make, which
performs actions based upon file modification times.

vi protects existing files and your edits in the buffer. For example, if
you want to write your buffer to an existing file, vi gives you a
warning. Likewise, if you have invoked vi on a file, made edits, and
want to quit without saving the edits, vi gives you an error message
such as:

No write since last change.

These warnings can prevent costly mistakes, but sometimes you
want to proceed with the command anyway. An exclamation point
(!) after your command overrides the warning:

:w!
:q!

:w! can also be used to save edits in a file that was opened in read-
only mode with vi -R or view (assuming you have write permission
for the file).

:q! is an essential editing command that allows you to quit without
affecting the original file, regardless of any changes you made in
this session. The contents of the buffer are discarded.

5.3.1 Renaming the Buffer

You can also use :w to save the entire buffer (the copy of the file
you are editing) under a new filename.

Suppose you have a file practice, which contains 600 lines. You
open the file and make extensive edits. You want to quit but save
both the old version of practice and your new edits for comparison.
To save the edited buffer in a file called practice.new, give the
command:

:w practice.new

Your old version, in the file practice, remains unchanged (provided
that you didn't previously use :w). You can now quit editing the new
version by typing :q.

5.3.2 Saving Part of a File

While editing, you will sometimes want to save just part of your file
as a separate, new file. For example, you might have entered
formatting codes and text that you want to use as a header for
several files.

You can combine ex line addressing with the write command, w, to
save part of a file. For example, if you are in the file practice and
want to save part of practice as the file newfile, you could enter:

:230,$w newfile

Saves from line 230 to end of file in newfile.

:.,600w newfile

Saves from the current line to line 600 in newfile.

5.3.3 Appending to a Saved File

You can use the UNIX redirect and append operator (>>) with w to
append all or part of the contents of the buffer to an existing file.
For example, if you entered:

:1,10w newfile

then:

:340,$w >>newfile

newfile would contain lines 1-10 and from line 340 to the end of the
buffer.

5.4 Copying a File into Another File

Sometimes you want to copy text or data already entered on the
system into the file you are editing. In vi you can read in the
contents of another file with the ex command:

:read filename

or its abbreviation:

:r filename

This command inserts the contents of filename starting on the line
after the cursor position in the file. If you want to specify a line
other than the one the cursor's on, simply type the line number (or
other line address) you want before the read or r command.

Let's suppose you are editing the file practice and want to read in a
file called data from another directory called /home/tim. Position
the cursor one line above the line where you want the new data
inserted, and enter:

:r /home/tim/data

The entire contents of /home/tim/data are read into practice,
beginning below the line with the cursor.

To read in the same file and place it after line 185, you would enter:

:185r /home/tim/data

Here are other ways to read in a file:

:$r /home/tim/data

Place the read-in file at the end of the current file.

:0r /home/tim/data

Place the read-in file at the very beginning of the current file.

:/ pattern/r /home/tim/data

Place the read-in file in the current file, after the line
containing pattern.

5.5 Editing Multiple Files

ex commands enable you to switch between multiple files. The
advantage to editing multiple files is speed. If you are sharing the
system with other users, it takes time to exit and reenter vi for each
file you want to edit. Staying in the same editing session and
traveling between files is not only faster for access, but you also
save abbreviations and command sequences that you have defined
(see Chapter 7), and you keep yank buffers so that you can copy
text from one file to another.

5.5.1 Invoking vi on Multiple Files

When you first invoke vi, you can name more than one file to edit,
and then use ex commands to travel between the files. For
example:

$ vi file1 file2

edits file1 first. After you have finished editing the first file, the ex
command :w writes (saves) file1 and :n calls in the next file (file2).

Suppose you want to edit two files, practice and note.

Keystrokes Results

vi
practice
note

Open the two files practice and note. The first-named file, practice,
appears on your screen. Perform any edits.

:w

Save the edited file practice with the ex command w. Press RETURN.

:n

Call in the next file, note, with the ex command n. Press RETURN.
Perform any edits.

:x

Save the second file, note, and quit the editing session.

5.5.2 Using the Argument List

ex actually lets you do more than just move to the next file in the
argument list with :n. The :args command (abbreviated :ar) lists
the files named on the command line, with the current file enclosed
in brackets.

Keystrokes Results

vi practice
note

Open the two files practice and note. The first-named file, practice,
appears on your screen.

:args

vi displays the argument list in the status line, with brackets
around the current filename.

The :rewind (:rew) command resets the current file to be the first
file named on the command line. elvis and vim provide a
corresponding :last command to move to the last file on the
command line.

5.5.3 Calling in New Files

You don't have to call in multiple files at the beginning of your
editing session. You can switch to another file at any time with the
ex command :e. If you want to edit another file within vi, you first
need to save your current file (:w), then give the command:

:e filename

Suppose you are editing the file practice and want to edit the file
letter, then return to practice.

Keystrokes Results

:w

Save practice with w and press RETURN. practice is saved and remains
on the screen. You can now switch to another file, because your edits
are saved.

:e
letter

Call in the file letter with e and press RETURN. Perform any edits.

vi "remembers" two filenames at a time as the current and alternate
filenames. These can be referred to by the symbols % (current
filename) and # (alternate filename). # is particularly useful with :e,
since it allows you to switch easily back and forth between two files.
In the example given just above, you could return to the first file,
practice, by typing the command :e #. You could also read the file
practice into the current file by typing :r #.

If you have not first saved the current file, vi will not allow you to
switch files with :e or :n unless you tell it imperatively to do so by
adding an exclamation point after the command.

For example, if after making some edits to letter, you wanted to
discard the edits and return to practice, you could type :e! #.

The following command is also useful. It discards your edits and
returns to the last saved version of the current file:

:e!

In contrast to the # symbol, % is useful mainly when writing out the
contents of the current buffer to a new file. For example, a few
pages earlier, in the section "Renaming the Buffer," we showed how
to save a second version of the file practice with the command:

:w practice.new

Since % stands for the current filename, that line could also have
been typed:

:w %.new

5.5.4 Switching Files from vi

Since switching back to the previous file is something that
tends to happen a lot, you don't have to move to the ex command
line to do it. The vi command ^^ (the "control" key with the caret
key) will do this for you. Using this command is the same as typing
:e #. As with the :e command, if the current buffer has not been
saved, vi will not let you switch back to the previous file.

5.5.5 Edits Between Files

When you give a yank buffer a one-letter name, you have a
convenient way to move text from one file to another. Named
buffers are not cleared when a new file is loaded into the vi buffer

with the :e command. Thus, by yanking or deleting text from one
file (into multiple named buffers if necessary), calling in a new file
with :e, and putting the named buffer(s) into the new file, you can
transfer material between files.

The following example illustrates how to transfer text from one file
to another.

Keystrokes Results

"f4yy

Yank four lines into buffer f.

:w

Save the file.

:e
letter

Enter the file letter with :e. Move the cursor to where the copied text
will be placed.

"fp

Place yanked text from named buffer f below the cursor.

Another way to move text from one file to another is to use the ex
commands :ya (yank) and :pu (put). These commands work the
same way as the equivalent vi commands y and p, but they are
used with ex's line-addressing capability and named buffers.

For example:

:160,224ya a

would yank (copy) lines 160 through 224 into buffer a. Next you
would move with :e to the file where you want to put these lines.

Place the cursor on the line where you want to put the yanked lines.
Then type:

:pu a

to put the contents of buffer a after the current line.

Chapter 6. Global Replacement

Sometimes, halfway through a document or at the end of a draft,
you may recognize inconsistencies in the way that you refer to
certain things. Or, in a manual, some product whose name appears
throughout your file is suddenly renamed (marketing!). Often
enough it happens that you have to go back and change what
you've already written, and you need to make the changes in
several places.

The way to make these changes is with a powerful change
command called global replacement. With one command you can
automatically replace a word (or a string of characters) wherever it
occurs in the file.

In a global replacement, the ex editor checks each line of a file for a
given pattern of characters. On all lines where the pattern is found,
ex replaces the pattern with a new string of characters. For right
now, we'll treat the search pattern as if it were a simple string; later
in the chapter we'll look at the powerful pattern-matching language
known as regular expressions.

Global replacement really uses two ex commands: :g (global) and
:s (substitute). Since the syntax of global replacement commands
can get fairly complex, let's look at it in stages.

The substitute command has the syntax:

:s/old/new/

This changes the first occurrence of the pattern old to new on the
current line. The / (slash) is the delimiter between the various parts
of the command. (The slash is optional when it is the last character
on the line.)

A substitute command with the syntax:

:s/old/new/g

changes every occurrence of old to new on the current line, not just
the first occurrence. The :s command allows options following the
substitution string. The g option in the syntax above stands for
global. (The g option affects each pattern on a line; don't confuse it
with the :g command, which affects each line of a file.)

By prefixing the :s command with addresses, you can extend its
range to more than one line. For example, this line will change
every occurrence of old to new from line 50 to line 100:

:50,100s/old/new/g

This command will change every occurrence of old to new within the
entire file:

:1,$s/old/new/g

You can also use % instead of 1,$ to specify every line in a file. Thus
the last command could also be given like this:

:%s/old/new/g

Global replacement is much faster than finding each instance of a
string and replacing it individually. Because the command can be
used to make many different kinds of changes, and because it is so
powerful, we will first illustrate simple replacements and then build
up to complex, context-sensitive replacements.

6.1 Confirming Substitutions

It makes sense to be overly careful when using a search and
replace command. It sometimes happens that what you get is not
what you expect. You can undo any search and replacement
command by entering u, provided that the command was the most
recent edit you made. But you don't always catch undesired
changes until it is too late to undo them. Another way to protect
your edited file is to save the file with :w before performing a global
replacement. Then at least you can quit the file without saving your
edits and go back to where you were before the change was made.
You can also read the previous version of the buffer back in with
:e!.

It's wise to be cautious and know exactly what is going to be
changed in your file. If you'd like to see what the search turns up
and confirm each replacement before it is made, add the c option
(for confirm) at the end of the substitute command:

:1,30s/his/the/gc

It will display the entire line where the string has been located, and
the string will be marked by a series of carets (^^^^):

copyists at his school
 ^^^_

If you want to make the replacement, you must enter y (for yes)
and press RETURN. If you don't want to make a change, simply
press RETURN.[1]

[1] elvis 2.0 doesn't support this feature. In the other clones, the actual appearance and prompt differ, but
the effect is still the same, allowing you to choose whether or not to do the substitution in each case.

this can be used for invitations, signs, and menus.
 ^^^_

The combination of the vi commands n (repeat last search) and dot
(.) (repeat last command) is also an extraordinarily useful and
quick way to page through a file and make repetitive changes that
you may not want to make globally. So, for example, if your editor
has told you that you're using which when you should be using that,
you can spot-check every occurrence of which, changing only those
that are incorrect:

/which Search for which.
cwthat ESC Change to that.
n Repeat search.
n Repeat search, skip a change.
. Repeat change (if appropriate).
 .
 .
 .

6.2 Context-Sensitive Replacement

The simplest global replacements substitute one word (or a phrase)
for another. If you have typed a file with several misspellings
(editer for editor), you can do the global replacement:

:%s/editer/editor/g

This substitutes editor for every occurrence of editer throughout the
file.

There is a second, slightly more complex syntax for global
replacement. This syntax lets you search for a pattern, and then,
once you find the line with the pattern, make a substitution on a
string different from the pattern. You can think of this as context-
sensitive replacement.

The syntax is as follows:

:g/pattern/s/old/new/g

The first g tells the command to operate on all lines of a file. pattern
identifies the lines on which a substitution is to take place. On those
lines containing pattern, ex is to substitute (s) for old the characters
in new. The last g indicates that the substitution is to occur globally
on that line.

For example, in this book, the SGML directives <keycap> and
</keycap> place a box around ESC to show the ESCAPE key. You
want ESC to be all in caps, but you don't want to change any
instances of Escape that might be in the text. To change instances
of Esc to ESC only when Esc is on a line that contains the <keycap>
directive, you could enter:

:g/<keycap>/s/Esc/ESC/g

If the pattern being used to find the line is the same as the one you
want to change, you don't have to repeat it. The command:

:g/string/s//new/g

would search for lines containing string and substitute for that same
string.

Note that:

:g/editer/s//editor/g

has the same effect as:

:%s/editer/editor/g

You can save some typing by using the second form. It is also
possible to combine the :g command with :d, :mo, :co and other ex
commands besides :s. As we'll show, you can thus make global
deletions, moves, and copies.

6.3 Pattern-Matching Rules

In making global replacements, UNIX editors such as vi allow you to
search not just for fixed strings of characters, but also for variable
patterns of words, referred to as regular expressions.

When you specify a literal string of characters, the search might
turn up other occurrences that you didn't want to match. The
problem with searching for words in a file is that a word can be used
in different ways. Regular expressions help you conduct a search for
words in context. Note that regular expressions can be used with

the vi search commands / and ? as well as in the ex :g and :s
commands.

For the most part, the same regular expressions work with other
UNIX programs such as grep, sed, and awk.[2]

[2] Much more information on regular expressions can be found in the two O'Reilly books sed & awk, by Dale
Dougherty and Arnold Robbins, and Mastering Regular Expressions, by Jeffrey E.F. Friedl.

Regular expressions are made up by combining normal characters
with a number of special characters called metacharacters.[3] The
metacharacters and their uses are listed below.

[3] Technically speaking, we should probably call these metasequences, since sometimes two characters
together have special meaning, and not just single characters. Nevertheless, the term metacharacters is in
common use in UNIX literature, so we follow that convention here.

6.3.1 Metacharacters Used in Search Patterns
.

Matches any single character except a newline. Remember
that spaces are treated as characters. For example, p.p
matches character strings such as pep, pip, and pcp.

*

Matches zero or more (as many as there are) of the single
character that immediately precedes it. For example, bugs*
will match bugs (one s) or bug (no s's).

The * can follow a metacharacter. For example, since . (dot)
means any character, .* means "match any number of any
character."

Here's a specific example of this. The command
:s/End.*/End/ removes all characters after End (it replaces
the remainder of the line with nothing).

^

When used at the start of a regular expression, requires that
the following regular expression be found at the beginning of
the line; for example, ^Part matches Part when it occurs at
the beginning of a line, and ^... matches the first three
characters of a line. When not at the beginning of a regular
expression, ^ stands for itself.

$

When used at the end of a regular expression, requires that
the preceding regular expression be found at the end of the
line; for example, here:$ matches only when here: occurs at
the end of a line. When not at the end of a regular expression,
$ stands for itself.

\

Treats the following special character as an ordinary
character. For example, \. matches an actual period instead
of "any single character," and * matches an actual asterisk
instead of "any number of a character." The \ (backslash)
prevents the interpretation of a special character. This
prevention is called "escaping the character." (Use \\ to get a
literal backslash.)

[]

Matches any one of the characters enclosed between the
brackets. For example, [AB] matches either A or B, and
p[aeiou]t matches pat, pet, pit, pot, or put. A range of
consecutive characters can be specified by separating the first
and last characters in the range with a hyphen. For example,
[A-Z] will match any uppercase letter from A to Z, and [0-9]
will match any digit from 0 to 9.

You can include more than one range inside brackets, and you
can specify a mix of ranges and separate characters. For
example, [:;A-Za-z()] will match four different punctuation
marks, plus all letters.

Most metacharacters lose their special meaning inside
brackets, so you don't need to escape them if you want to use
them as ordinary characters. Within brackets, the three
metacharacters you still need to escape are \ -]. The hyphen
(-) acquires meaning as a range specifier; to use an actual
hyphen, you can also place it as the first character inside the
brackets.

A caret (^) has special meaning only when it is the first
character inside the brackets, but in this case the meaning
differs from that of the normal ^ metacharacter. As the first
character within brackets, a ^ reverses their sense: the
brackets will match any one character not in the list. For
example, [^a-z] matches any character that is not a
lowercase letter.

\(\)

Saves the pattern enclosed between \(and \) into a special
holding space or "hold buffer." Up to nine patterns can be
saved in this way on a single line. For example, the pattern:

\(That\) or \(this\)

saves That in hold buffer number 1 and saves this in hold
buffer number 2. The patterns held can be "replayed" in
substitutions by the sequences \1 to \9. For example, to
rephrase That or this to read this or That, you could enter:

:%s/\(That\) or \(this\)/\2 or \1/

You can also use the \n notation within a search or substitute
string:

:s/\(abcd\)\1/alphabet-soup/
changes abcdabcd into alphabet-soup.[4]

[4] This works with vi, nvi, and vim, but not with elvis 2.0, vile 7.4, or vile 8.0.

\< \>

Matches characters at the beginning (\<) or at the end (\>) of
a word. The end or beginning of a word is determined either
by a punctuation mark or by a space. For example, the
expression \<ac will match only words that begin with ac,
such as action. The expression ac\> will match only words
that end with ac, such as maniac. Neither expression will
match react. Note that unlike \(...\), these do not have to
be used in matched pairs.

~

Matches whatever regular expression was used in the last
search. For example, if you searched for The, you could
search for Then with /~n. Note that you can use this pattern
only in a regular search (with /).[5] It won't work as the
pattern in a substitute command. It does, however, have a
similar meaning in the replacement portion of a substitute
command.

[5] This is a rather flaky feature of the original vi. After using it, the saved search pattern is set to
the new text typed after the ~, not the combined new pattern, as one might expect. Also, none of
the clones behaves this way. So, while this feature exists, it has little to recommend its use.

Several of the clones support optional, extended regular expression
syntaxes. See Section 8.4 for more information.

6.3.2 POSIX Bracket Expressions

We have just described the use of brackets for matching any one of
the enclosed characters, such as [a-z]. The POSIX standard
introduced additional facilities for matching characters that are not
in the English alphabet. For example, the French è is an alphabetic
character, but the typical character class [a-z] would not match it.
Additionally, the standard provides for sequences of characters that
should be treated as a single unit when matching and collating
(sorting) string data.

POSIX also formalizes the terminology. Groups of characters within
brackets are called a "bracket expression" in the POSIX standard.
Within bracket expressions, beside literal characters such as a, !,
and so on, you can have additional components. These are:

• Character classes. A POSIX character class consists of
keywords bracketed by [: and :]. The keywords describe
different classes of characters such as alphabetic characters,
control characters, and so on (see Table 6.1).

• Collating symbols. A collating symbol is a multi-character
sequence that should be treated as a unit. It consists of the
characters bracketed by [. and .].

• Equivalence classes. An equivalence class lists a set of
characters that should be considered equivalent, such as e
and è. It consists of a named element from the locale,
bracketed by [= and =].

All three of these constructs must appear inside the square brackets
of a bracket expression. For example [[:alpha:]!] matches any
single alphabetic character or the exclamation point, [[.ch.]]
matches the collating element ch, but does not match just the letter
c or the letter h. In a French locale, [[=e=]] might match any of e,
è, or é. Classes and matching characters are shown in Table 6.1.

Table 6.1. POSIX Character Classes
Class Matching Characters

[:alnum:] Alphanumeric characters
[:alpha:] Alphabetic characters
[:blank:] Space and tab characters
[:cntrl:] Control characters
[:digit:] Numeric characters

[:graph:] Printable and visible (non-space) characters
[:lower:] Lowercase characters
[:print:] Printable characters (includes whitespace)
[:punct:] Punctuation characters
[:space:] Whitespace characters
[:upper:] Uppercase characters
[:xdigit:] Hexadecimal digits

You will have to do some research to determine if you have this
facility in your version of vi. You may need to use a special option to
enable POSIX compliance, have a particular environment variable
set, or use a version of vi that is in an unusual directory.

vi on HP-UX 9.x (and newer) systems support POSIX bracket
expressions, as does /usr/xpg4/bin/vi, on Solaris (but not
/usr/bin/vi). This facility is also available in nvi, and in elvis 2.1. As
commercial UNIX vendors become standards-compliant, expect to
see this feature become more widespread.

6.3.3 Metacharacters Used in Replacement Strings

When you make global replacements, the regular expressions above
carry their special meaning only within the search portion (the first
part) of the command.

For example, when you type this:

:%s/1\. Start/2. Next, start with $100/

note that the replacement string treats the characters . and $
literally, without your having to escape them. By the same token,
let's say you enter:

:%s/[ABC]/[abc]/g

If you're hoping to replace A with a, B with b, and C with c, you'll be
surprised. Since brackets behave like ordinary characters in a
replacement string, this command will change every occurrence of
A, B, or C to the five-character string [abc].

To solve problems like this, you need a way to specify variable
replacement strings. Fortunately, there are additional
metacharacters that have special meaning in a replacement string.

\ n

Is replaced with text matched by the nth pattern previously
saved by \(and \), where n is a number from 1 to 9, and
previously saved patterns (kept in hold buffers) are counted
from the left on the line. See the explanation for \(and \)
earlier in this chapter.

\

Treats the following special character as an ordinary
character. Backslashes are metacharacters in replacement
strings as well as in search patterns. To specify a real
backslash, type two in a row (\\).

&

Is replaced with the entire text matched by the search pattern
when used in a replacement string. This is useful when you
want to avoid retyping text:

:%s/Yazstremski/&, Carl/

The replacement will say Yazstremski, Carl. The & can also
replace a variable pattern (as specified by a regular
expression). For example, to surround each line from 1 to 10
with parentheses, type:

:1,10s/.*/(&)/

The search pattern matches the whole line, and the &
"replays" the line, followed by your text.

~

Has a similar meaning as when it is used in a search pattern;
the string found is replaced with the replacement text
specified in the last substitute command. This is useful for
repeating an edit. For example, you could say
:s/thier/their/ on one line and repeat the change on
another with :s/thier/~/. The search pattern doesn't need
to be the same, though.

For example, you could say :s/his/their/ on one line and
repeat the replacement on another with :s/her/~/.[6]

[6] Modern versions of the ed editor use % as the sole character in the replacement text to mean
"the replacement text of the last substitute command."

\u or \l

Causes the next character in the replacement string to be
changed to uppercase or lowercase, respectively. For
example, to change yes, doctor into Yes, Doctor, you could
say:

:%s/yes, doctor/\uyes, \udoctor/

This is a pointless example, though, since it's easier just to
type the replacement string with initial caps in the first place.
As with any regular expression, \u and \l are most useful
with a variable string. Take, for example, the command we
used earlier:

:%s/\(That\) or \(this\)/\2 or \1/

The result is this or That, but we need to adjust the cases.
We'll use \u to uppercase the first letter in this (currently
saved in hold buffer 2); we'll use \l to lowercase the first
letter in That (currently saved in hold buffer 1):

:s/\(That\) or \(this\)/\u\2 or \l\1/

The result is This or that. (Don't confuse the number one with
the lowercase l; the one comes after.)

\U or \L and \e or \E

\U and \L are similar to \u or \l, but all following characters
are converted to uppercase or lowercase until the end of the
replacement string or until \e or \E is reached. If there is no
\e or \E, all characters of the replacement text are affected
by the \U or \L. For example, to uppercase Fortran, you could
say:

:%s/Fortran/\UFortran/

or, using the & character to repeat the search string:

:%s/Fortran/\U&/

All pattern searches are case-sensitive. That is, a search for the will
not find The. You can get around this by specifying both uppercase
and lowercase in the pattern:

/[Tt]he

You can also instruct vi to ignore case by typing :set ic. See
Chapter 7, for additional details.

6.3.4 More Substitution Tricks

You should know some additional important facts about the
substitute command:

1. A simple :s is the same as :s//~/. In other words, repeat the
last substitution. This can save enormous amounts of time
and typing when you are working your way through a
document making the same change repeatedly, but you don't
want to use a global substitution.

2. If you think of the & as meaning "the same thing" (as in what
was just matched), this command is relatively mnemonic. You
can follow the & with a g, to make the substitution globally on
the line, and even use it with a line range:

:%&g
repeat the last substitution everywhere

3. The & key can be used as a vi command to perform the :&
command, i.e., to repeat the last substitution. This can save
even more typing than :sRETURN; one keystroke versus
three.

4. The :~ command is similar to the :& command, but with a
subtle difference. The search pattern used is the last regular
expression used in any command, not necessarily the one
used in the last substitute command.

For example,[7] in the sequence:

[7] Thanks to Keith Bostic, in the nvi documentation, for this example.

:s/red/blue/
:/green
:~

The :~ is equivalent to :s/green/blue/.

5. Besides the / character, you may use any non-alphanumeric,
non-whitespace character as your delimiter, except backslash,
double-quote, and the vertical bar (\, ", and |). This is
particularly handy when you have to make a change to a
pathname.

:%s;/user1/tim;/home/tim;g

6. When the edcompatible option is enabled, vi remembers the
flags (g for global and c for confirmation) used on the last
substitute, and applies them to the next one.

This is most useful when you are moving through a file and
you wish to make global substitutions. You can make the first
change:

:s/old/new/g
:set edcompatible

After that, subsequent substitute commands will be global.

Despite the name, no known version of UNIX ed actually
works this way.

6.4 Pattern-Matching Examples

Unless you are already familiar with regular expressions, the
discussion of special characters above probably looks forbiddingly
complex. A few more examples should make things clearer. In the
examples that follow, a square () is used to mark a space; it is not
a special character.

Let's work through how you might use some special characters in a
replacement. Suppose that you have a long file and that you want
to substitute the word child with the word children throughout that
file. You first save the edited buffer with :w, then try the global
replacement:

:%s/child/children/g

When you continue editing, you notice occurrences of words such as
childrenish. You have unintentionally matched the word childish.
Returning to the last saved buffer with :e!, you now try:

:%s/child

/children

/g

(Note that there is a space after child.) But this command misses
the occurrences child., child,, child: and so on. After some thought,
you remember that brackets allow you to specify one character
from among a list, so you realize a solution:

:%s/child[

,.;:!?]/children[

,.;:!?]/g

This searches for child followed by either a space (indicated by) or
any one of the punctuation characters ,.;:!?. You expect to
replace this with children followed by the corresponding space or
punctuation mark, but you've ended up with a bunch of punctuation
marks after every occurrence of children. You need to save the
space and punctuation marks inside a \(and \). Then you can
"replay" them with a \1. Here's the next attempt:

:%s/child\([

,.;:!?]\)/children\1/g

When the search matches a character inside the \(and \), the \1
on the right-hand side restores the same character. The syntax may
seem awfully complicated, but this command sequence can save
you a lot of work! Any time you spend learning regular expression
syntax will be repaid a thousandfold!

The command is still not perfect, though. You've noticed that
occurrences of Fairchild have been changed, so you need a way to
match child when it isn't part of another word.

As it turns out, vi (but not all other programs that use regular
expressions) has a special syntax for saying "only if the pattern is a
complete word." The character sequence \< requires the pattern to
match at the beginning of a word, whereas \> requires the pattern
to match at the end of a word. Using both will restrict the match to
a whole word. So, in the task given above, \<child\> will find all
instances of the word child, whether followed by punctuation or
spaces. Here's the substitution command you should use:

:%s/\<child\>/children/g

6.4.1 Search for General Class of Words

Suppose your subroutine names begin with the prefixes: mgi, mgr,
and mga.

If you want to save the prefixes, but want to change the name box
to square, either of the following replacement commands will do the
trick. The first example illustrates how \(and \) can be used to
save whatever pattern was actually matched. The second example
shows how you can search for one pattern but change another:

:g/mg\([ira]\)box/s//mg\1square/g

The global replacement keeps track of whether an i, r or a is saved. In that way,
box is changed to square only when box is part of the routine's name.
:g/mg[ira]box/s/box/square/g

This has the same effect as the previous command, but it is a little less safe
since it could change other instances of box on the same line, not just those
within the routine names.

6.4.2 Block Move by Patterns

You can also move blocks of text delimited by patterns. For
example, assume you have a 150-page reference manual. Each
page is organized into three paragraphs with the same three
headings: SYNTAX, DESCRIPTION, and PARAMETERS. A sample of
one reference page follows:

.Rh 0 "Get status of named file" "STAT"
 .Rh "SYNTAX"
 .nf
 integer*4 stat, retval
 integer*4 status(11)
 character*123 filename
 ...
 retval = stat (filename, status)
 .fi
 .Rh "DESCRIPTION"
 Writes the fields of a system data structure into the
 status array.
 These fields contain (among other
 things) information about the file's location, access
 privileges, owner, and time of last modification.
 .Rh "PARAMETERS"
 .IP "\fBfilename\fR" 15n
 A character string variable or constant containing
 the UNIX pathname for the file whose status you want
 to retrieve.
 You can give the ...

Suppose that it is decided to move DESCRIPTION above the
SYNTAX paragraph. With pattern matching, you can move blocks of
text on all 150 pages with one command!

:g /SYNTAX/.,/DESCRIPTION/-1 move /PARAMETERS/-1

This command works as follows. First, ex finds and marks each line
that matches the first pattern (i.e., that contains the word SYNTAX).
Second, for each marked line, it sets . (dot, the current line) to that
line, and executes the command. Using the move command, the
command moves the block of lines from the current line (dot) to the
line before the one containing the word DESCRIPTION
(/DESCRIPTION/-1) to just before the line containing PARAMETERS
(/PARAMETERS/-1).

Note that ex can place text only below the line specified. To tell ex
to place text above a line, you first subtract one with -1, and then
ex places your text below the previous line. In a case like this, one
command saves literally hours of work. (This is a real-life example—
we once used a pattern match like this to rearrange a reference
manual containing hundreds of pages.)

Block definition by patterns can be used equally well with other ex
commands. For example, if you wanted to delete all DESCRIPTION
paragraphs in the reference chapter, you could enter:

:g/DESCRIPTION/,/PARAMETERS/-1d

This very powerful kind of change is implicit in ex's line addressing
syntax, but it is not readily apparent even to experienced users. For
this reason, whenever you are faced with a complex, repetitive
editing task, take the time to analyze the problem and find out if
you can apply pattern-matching tools to get the job done.

6.4.3 More Examples

Since the best way to learn pattern matching is by example, here is
a list of pattern-matching examples, with explanations. Study the
syntax carefully, so that you understand the principles at work. You
should then be able to adapt these examples to your own situation.

1. Put troff italicization codes around the word RETURN:

:%s/RETURN/\\fI&\\fP/g

Notice that two backslashes (\\) are needed in the
replacement, because the backslash in the troff italicization
code will be interpreted as a special character. (\fI alone
would be interpreted as fI; you must type \\fI to get \fI.)

2. Modify a list of pathnames in a file:

:%s/\/home\/tim/\/home\/linda/g

A slash (used as a delimiter in the global replacement
sequence) must be escaped with a backslash when it is part of
the pattern or replacement; use \/ to get /. An alternate way
to achieve this same effect is to use a different character as
the pattern delimiter. For example, you could make the above
replacement using colons as delimiters. (The delimiter colons
and the ex command colon are separate entities.) Thus:

:%s:/home/tim:/home/linda:g

This is much more readable.

3. Put HTML italicization codes around the word RETURN:

:%s:RETURN:<I>&</I>:g

Notice here the use of & to represent the text that was
actually matched, and, as just described, the use of colons as
delimiters instead of slashes.

4. Change all periods to semicolons in lines 1 to 10:

:1,10s/\./;/g

A dot has special meaning in regular expression syntax and
must be escaped with a backslash (\.).

5. Change all occurrences of the word help (or Help) to HELP:

:%s/[Hh]elp/HELP/g

or:

:%s/[Hh]elp/\U&/g

The \U changes the pattern that follows to all uppercase. The
pattern that follows is the repeated search pattern, which is
either help or Help.

6. Replace one or more spaces with a single space:

:%s/

*/

/g

Make sure you understand how the asterisk works as a special
character. An asterisk following any character (or following
any regular expression that matches a single character, such
as . or [a-z]) matches zero or more instances of that
character. Therefore, you must specify two spaces followed by
an asterisk to match one or more spaces (one space, plus
zero or more spaces).

7. Replace one or more spaces following a colon with two
spaces:

:%s/:

*/:

/g

8. Replace one or more spaces following a period or a colon with
two spaces:

:%s/\([:.]\)

*/\1

/g

Either of the two characters within brackets can be matched.
This character is saved into a hold buffer, using \(and \),
and restored on the right-hand side by the \1. Note that
within brackets a special character such as a dot does not
need to be escaped.

9. Standardize various uses of a word or heading:

:%s/^Note[

:s]*/Notes:

/g

The brackets enclose three characters: a space, a colon, and
the letter s. Therefore, the pattern Note[s:] will match
Note , Notes or Note:. An asterisk is added to the pattern so
that it also matches Note (with zero spaces after it) and
Notes: (the already correct spelling). Without the asterisk,

Note would be missed entirely and Notes: would be incorrectly
changed to Notes: :.

10. Delete all blank lines:

:g/^$/d

What you are actually matching here is the beginning of the
line (^) followed by the end of the line ($), with nothing in
between.

11. Delete all blank lines, plus any lines that contain only
whitespace:

:g/^[

tab]*$/d

(In the line above, a tab is shown as tab.) A line may appear
to be blank, but may in fact contain spaces or tabs. The
previous example will not delete such a line. This example,
like the one above it, searches for the beginning and end of
the line. But instead of having nothing in between, the pattern
tries to find any number of spaces or tabs. If no spaces or
tabs are matched, the line is blank. To delete lines that
contain whitespace but that aren't empty, you would have to
match lines with at least one space or tab:

:g/^[

tab][

tab]*$/d

12. Delete all leading spaces on every line:

:%s/^

\(.\)/\1/

Use ^ * to search for one or more spaces at the beginning
of each line; then use \(.*\) to save the rest of the line into
the first hold buffer. Restore the line without leading spaces,
using \1.

13. Delete all spaces at the end of every line:

:%s/\(.*\)

*$/\1/

For each line, use \(.*\) to save all the text on the line, but
only up until one or more spaces at the end of the line.
Restore the saved text without the spaces.

The substitutions in this example and the previous one will
happen only once on any given line, so the g option doesn't
need to follow the replacement string.

14. Insert a > at the start of every line in a file:

:%s/^/>

/

What we're really doing here is "replacing" the start of the line
with > . Of course, the start of the line (being a logical
construct, not an actual character) isn't really replaced!

This command is useful when replying to mail or USENET
news postings. Frequently, it is desirable to include part of the
original message in your reply. By convention, the inclusion is
distinguished from your reply by setting off the included text
with a right angle bracket and a couple of spaces at the start
of the line. This can be done easily as shown above.
(Typically, only part of the original message will be included.
Unneeded text can be deleted either before or after the above
replacement.) Advanced mail systems do this automatically.
However, if you're using vi to edit your mail, you can do it
with this command.

15. Add a period to the end of the next six lines:

:.,+5s/$/./

The line address indicates the current line plus five lines. The
$ indicates the end of line. As in the previous example, the $
is a logical construct. You aren't really replacing the end of the
line.

16. Reverse the order of all hyphen-separated items in a
list:

:%s/\(.*\)

-

\(.*\)/\2

-

\1/

Use \(.*\) to save text on the line into the first hold buffer,
but only until you find - . Then use \(.*\) to save the rest
of the line into the second hold buffer. Restore the saved
portions of the line, reversing the order of the two hold
buffers. The effect of this command on several items is shown
below.

more - display files

becomes:

display files - more

and:

lp - print files

becomes:

print files - lp

17. Change every word in a file to uppercase:

:%s/.*/\U&/

or:

:%s/./\U&/g

The \U flag at the start of the replacement string tells vi to
change the replacement to uppercase. The & character replays
the text matched by the search pattern as the replacement.
These two commands are equivalent; however, the first form
is considerably faster, since it results in only one substitution
per line (.* matches the entire line, once per line), whereas
the second form results in repeated substitutions on each line
(. matches only a single character, with the replacement
repeated on account of the trailing g).

18. Reverse the order of lines in a file:[8]

[8] From an article by Walter Zintz in UNIX World, May 1990.

:g/.*/mo0

The search pattern matches all lines (a line contains zero or
more characters). Each line is moved, one by one, to the top
of the file (that is, moved after imaginary line 0). As each
matched line is placed at the top, it pushes the previously
moved lines down, one by one, until the last line is on top.
Since all lines have a beginning, the same result can be
achieved more succinctly:

:g/^/mo0

19. In a database, on all lines not marked Paid in full,
append the phrase Overdue:

:g!/Paid

in

full/s/$/Overdue/

or the equivalent:

:v/Paid

in

full/s/$/Overdue/

To affect all lines except those matching your pattern, add a !
to the g command, or simply use the v command.

20. For any line that doesn't begin with a number, move the
line to the end of the file:

:g!/^[0-9]/m$

or:

:g/^[^0-9]/m$

As the first character within brackets, a caret negates the
sense, so the two commands have the same effect. The first
one says, "Don't match lines that begin with a number," and

the second one says, "Match lines that don't begin with a
number."

21. Change manually numbered section heads (e.g., 1.1,
1.2, etc.) to a troff macro (e.g., .Ah for an A-level heading):

:%s/^[1-9]\.[1-9]/.Ah/

The search string matches a digit other than zero, followed by
a period, followed by another non-zero digit. Notice that the
period doesn't need to be escaped in the replacement (though
a \ would have no effect, either). The command above won't
find chapter numbers containing two or more digits. To do so,
modify the command like this:

:%s/^[1-9][0-9]*\.[1-9]/.Ah/

Now it will match chapters 10 to 99 (digits 1 to 9, followed by
a digit), 100 to 999 (digits 1 to 9, followed by two digits), etc.
The command still finds chapters 1 to 9 (digits 1 to 9,
followed by no digit).

22. Remove numbering from section headings in a
document. You want to change the sample lines:

23. 2.1 Introduction
10.3.8 New Functions

into the lines:

Introduction
New Functions

Here's the command to do this:

:%s/^[1-9][0-9]*\.[1-9][0-9.]*

//

The search pattern resembles the one in the previous
example, but now the numbers vary in length. At a minimum,
the headings contain number, period, number, so you start
with the search pattern from the previous example:

[1-9][0-9]*\.[1-9]

But in this example, the heading may continue with any
number of digits or periods:

[0-9.]*

24. Change the word Fortran to the phrase FORTRAN
(acronym of FORmula TRANslation):

:%s/\(For\)\(tran\)/\U\1\2\E

(acronym

of

\U\1\Emula

\U\2\Eslation)/g

First, since we notice that the words FORmula and
TRANslation use portions of the original word, we decide to
save the search pattern in two pieces: \(For\) and \(tran\).
The first time we restore it, we use both pieces together,
converting all characters to uppercase: \U\1\2. Next, we
undo the uppercase with \E; otherwise the remaining
replacement text would all be uppercase. The replacement
continues with actual typed words, then we restore the first
hold buffer. This buffer still contains For, so again we convert
to uppercase first: \U\1. Immediately after, we lowercase the
rest of the word: \Emula. Finally, we restore the second hold
buffer. This contains tran, so we precede the "replay" with
uppercase, follow it with lowercase, and type out the rest of
the word: \U\2\Eslation).

6.5 A Final Look at Pattern Matching

We conclude this chapter by presenting sample tasks that involve
complex pattern-matching concepts. Rather than solve the
problems right away, we'll work toward the solutions step by step.

6.5.1 Deleting an Unknown Block of Text

Suppose you have a few lines with this general form:

the best of times; the worst of times: moving
The coolest of times; the worst of times: moving

The lines that you're concerned with always end with moving, but
you never know what the first two words might be. You want to
change any line that ends with moving to read:

The greatest of times; the worst of times: moving

Since the changes must occur on certain lines, you need to specify a
context-sensitive global replacement. Using :g/moving$/ will match
lines that end with moving. Next, you realize that your search
pattern could be any number of any character, so the
metacharacters .* come to mind. But these will match the whole
line unless you somehow restrict the match. Here's your first
attempt:

:g/moving$/s/.*of/The

greatest

of/

This search string, you decide, will match from the beginning of the
line to the first of. Since you needed to specify the word of to
restrict the search, you simply repeat it in the replacement. Here's
the resulting line:

The greatest of times: moving

Something went wrong. The replacement gobbled the line up to the
second of instead of the first. Here's why. When given a choice, the
action of "match any number of any character" will match as much
text as possible. In this case, since the word of appears twice, your
search string finds:

the best of times; the worst of

rather than:

the best of

Your search pattern needs to be more restrictive:

:g/moving$/s/.*of times;/The greatest of times;/

Now the .* will match all characters up to the instance of the
phrase of times;. Since there's only one instance, it has to be the
first.

There are cases, though, when it is inconvenient, or even incorrect,
to use the .* metacharacters. For example, you might find yourself
typing many words to restrict your search pattern, or you might be
unable to restrict the pattern by specific words (if the text in the
lines varies widely). The next section presents such a case.

6.5.2 Switching Items in a Database

Suppose you want to switch the order of all last names and first
names in a (text) database. The lines look like this:

Name: Feld, Ray; Areas: PC, UNIX; Phone: 123-4567
Name: Joy, Susan S.; Areas: Graphics; Phone: 999-3333

The name of each field ends with a colon, and each field is
separated by a semicolon. Using the top line as an example, you
want to change Feld, Ray to Ray Feld. We'll present some
commands that look promising but don't work. After each
command, we show you the line the way it looked before the
change and after the change.

:%s/: \(.*\), \(.*\);/: \2 \1;/

Name: Feld, Ray; Areas: PC, UNIX; Phone: 123-4567
Before

Name: UNIX Feld, Ray; Areas: PC; Phone: 123-4567
After

We've highlighted the contents of the first hold buffer in bold and
the contents of the second hold buffer in italic. Note that the first
hold buffer contains more than you want. Since it was not
sufficiently restricted by the pattern that follows it, the hold buffer
was able to save up to the second comma. Now you try to restrict
the contents of the first hold buffer:

:%s/: \(....\), \(.*\);/: \2 \1;/

Name: Feld, Ray; Areas: PC, UNIX; Phone: 123-4567
Before

Name: Ray; Areas: PC, UNIX Feld; Phone: 123-4567
After

Here you've managed to save the last name in the first hold buffer,
but now the second hold buffer will save anything up to the last
semicolon on the line. Now you restrict the second hold buffer, too:

:%s/: \(....\), \(...\);/: \2 \1;/

Name: Feld, Ray; Areas: PC, UNIX; Phone: 123-4567
Before

Name: Ray Feld; Areas: PC, UNIX; Phone: 123-4567
After

This gives you what you want, but only in the specific case of a
four-letter last name and a three-letter first name. (The previous
attempt included the same mistake.) Why not just return to the first
attempt, but this time be more selective about the end of the
search pattern?

:%s/: \(.*\), \(.*\); Area/: \2 \1; Area/

Name: Feld, Ray; Areas: PC, UNIX; Phone: 123-4567
Before

Name: Ray Feld; Areas: PC, UNIX; Phone: 123-4567
After

This works, but we'll continue the discussion by introducing an
additional concern. Suppose that the Area field isn't always present
or isn't always the second field. The above command won't work on
such lines.

We introduce this problem to make a point. Whenever you rethink a
pattern match, it's usually better to work toward refining the
variables (the metacharacters), rather than using specific text to
restrict patterns. The more variables you use in your patterns, the
more powerful your commands will be.

In the current example, think again about the patterns you want to
switch. Each word starts with an uppercase letter and is followed by
any number of lowercase letters, so you can match the names like
this:

[A-Z][a-z]*

A last name might also have more than one uppercase letter (McFly,
for example), so you'd want to search for this possibility in the
second and succeeding letters:

[A-Z][A-Za-z]*

It doesn't hurt to use this for the first name, too (you never know
when McGeorge Bundy will turn up). Your command now becomes:

:%s/: \([A-Z][A-Za-z]*\), \([A-Z][A-Za-z]*\);/: \2 \1;/

Quite forbidding, isn't it? It still doesn't cover the case of a name
like Joy, Susan S. Since the first-name field might include a middle
initial, you need to add a space and a period within the second pair
of brackets. But enough is enough. Sometimes, specifying exactly
what you want is more difficult than specifying what you don't want.

In your sample database, the last names end with a comma, so a
last-name field can be thought of as a string of characters that are
not commas:

[^,]*

This pattern matches characters up until the first comma. Similarly,
the first-name field is a string of characters that are not semicolons:

[^;]*

Putting these more efficient patterns back into your previous
command, you get:

:%s/: \([^,]*\), \([^;]*\);/: \2 \1;/

The same command could also be entered as a context-sensitive
replacement. If all lines begin with Name, you can say:

:g/^Name/s/: \([^,]*\), \([^;]*\);/: \2 \1;/

You can also add an asterisk after the first space, in order to match
a colon that has extra spaces (or no spaces) after it:

:g/^Name/s/: *\([^,]*\), \([^;]*\);/: \2 \1;/

6.5.3 Using :g to Repeat a Command

As we've usually seen the :g command used, it selects lines that
are typically then edited by subsequent commands on the same
line—for example, we select lines with g, and then make
substitutions on them, or select them and delete them:

:g/mg[ira]box/s/box/square/g
:g/^$/d

However, in his two-part tutorial in UNIX World,[9] Walter Zintz
makes an interesting point about the g command. This command
selects lines—but the associated editing commands need not
actually affect the lines that are selected.

[9] Part 1, "vi Tips for Power Users," appears in the April 1990 issue of UNIX World. Part 2, "Using vi to
Automate Complex Edits," appears in the May 1990 issue. The examples presented are from Part 2.

Instead, he demonstrates a technique by which you can repeat ex
commands some arbitrary number of times. For example, suppose
you want to place ten copies of lines 12 through 17 of your file at
the end of your current file. You could type:

:1,10g/^/ 12,17t$

This is a very unexpected use of g, but it works! The g command
selects line 1, executes the specified t command, then goes on to
line 2, to execute the next copy command. When line 10 is reached,
ex will have made ten copies.

6.5.4 Collecting Lines

Here's another advanced g example, again building on suggestions
provided in Zintz's article. Suppose you're editing a document that
consists of several parts. Part 2 of this file is shown below, using
ellipses to show omitted text and displaying line numbers for
reference:

Part 2
Capability Reference
.LP
Chapter 7
Introduction to the Capabilities
This and the next three chapters ...

... and a complete index at the end.
.LP
Chapter 8
Screen Dimensions
Before you can do anything useful
on the screen, you need to know ...

.LP
Chapter 9
Editing the Screen
This chapter discusses ...

.LP
Part 3:
Advanced Features
.LP
Chapter 10

The chapter numbers appear on one line, their titles appear on the
line below, and the chapter text (highlighted for emphasis) begins
on the line below that. The first thing you'd like to do is copy the
beginning line of each chapter, sending it to an already existing file
called begin.

Here's the command that does this:

:g /^Chapter/ .+2w >> begin

You must be at the top of your file before issuing this command.
First you search for Chapter at the start of a line, but then you want
to run the command on the beginning line of each chapter—the
second line below Chapter. Because a line beginning with Chapter is
now selected as the current line, the line address .+2 will indicate
the second line below it. The equivalent line addresses +2 or ++
work as well. You want to write these lines to an existing file named
begin, so you issue the w command with the append operator >>.

Suppose you want to send the beginnings of chapters that are only
within Part 2. You need to restrict the lines selected by g, so you
change your command to this:

:/^Part 2/,/^Part 3/g /^Chapter/ .+2w >> begin

Here, the g command selects the lines that begin with Chapter, but
it searches only that portion of the file from a line starting with Part
2 through a line starting with Part 3. If you issue the above
command, the last lines of the file begin will read as follows:

This and the next three chapters ...
Before you can do anything useful
This chapter discusses ...

These are the lines that begin Chapters 7, 8, and 9.

In addition to the lines you've just sent, you'd like to copy chapter
titles to the end of the document, in preparation for making a table
of contents. You can use the vertical bar to tack a second command
after your first command, like so:

:/^Part 2/,/^Part 3/g /^Chapter/ .+2w >> begin | +t$

Remember that with any subsequent command, line addresses are
relative to the previous command. The first command has marked
lines (within Part 2) that start with Chapter, and the chapter titles
appear on a line below such lines. Therefore, to access chapter titles
in the second command, the line address is + (or the equivalents +1
or .+1). Then use t$ to copy the chapter titles to the end of the file.

As these examples illustrate, thought and experimentation may lead
you to some unusual editing solutions. Don't be afraid to try things!
Just be sure to back up your file first!

Chapter 7. Advanced Editing

This chapter introduces you to some of the more advanced
capabilities of the vi and ex editors. You should be reasonably
familiar with the material presented in the earlier chapters of this
book before you start working with the concepts presented in this
chapter.

This chapter is divided into five parts. The first part discusses a
number of ways to set options that allow you to customize your
editing environment. You'll learn how to use the set command and
how to create a number of different editing environments using
.exrc files.

The second part discusses how you can execute UNIX commands
from within vi, and how you can use vi to filter text through UNIX
commands.

The third part discusses various ways to save long sequences of
commands by reducing them to abbreviations, or even to
commands that use only one keystroke (this is called mapping
keys). It also includes a section on @-functions, which allow you to
store command sequences in a buffer.

The fourth part discusses the use of ex scripts from the UNIX
command line or from within shell scripts. Scripting provides a
powerful way to make repetitive edits.

The fifth part discusses some features of vi that are especially
useful to programmers. vi has options that control line indentation
and an option to display invisible characters (specifically tabs and
newlines). There are search commands that are useful with program
code blocks or with C functions.

7.1 Customizing vi

You have seen that vi operates differently on various terminals. (For
instance, on "dumb" terminals, vi inserts @ symbols in place of
deleted lines; on intelligent terminals, vi redraws the screen with
each edit.) On modern UNIX systems, vi gets operating instructions
about your terminal type from the terminfo terminal database. (On
older systems, vi uses the original termcap database.)[1]

[1] The location of these two databases varies from vendor to vendor. Try the commands man terminfo and
man termcap to get more information about your specific system.

There are also a number of options that you can set from within vi
that affect how it operates. For example, you can set a right margin

that will cause vi to wrap lines automatically, so you don't need to
hit RETURN.

You can change options from within vi by using the ex command
:set. In addition, whenever vi is started up, it reads a file in your
home directory called .exrc for further operating instructions. By
placing :set commands in this file, you can modify the way vi acts
whenever you use it.

You can also set up .exrc files in local directories to initialize various
options that you want to use in different environments. For
example, you might define one set of options for editing English
text, but another set for editing source programs. The .exrc file in
your home directory will be executed first, then the one in your
current directory.

Finally, any commands stored in the shell variable EXINIT will be
executed by vi on startup. The settings in EXINIT take precedence
over those in the home directory .exrc file.

7.1.1 The :set Command

There are two types of options that can be changed with the :set
command: toggle options, which are either on or off, and options
that take a numeric or string value (such as the location of a margin
or the name of a file).

Toggle options may be on or off by default. To turn a toggle option
on, the command is:

:set option

To turn a toggle option off, the command is:

:set nooption

For example, to specify that pattern searches should ignore case,
type:

:set ic

If you want vi to return to being case-sensitive in searches, give the
command:

:set noic

Some options have a value assigned to them. For example, the
window option sets the number of lines shown in the screen's
"window." You set values for these options with an equal sign (=):

:set window=20

During a vi session, you can check which options vi is using. The
command:

:set all

displays the complete list of options, including options that you have
set and defaults that vi has "chosen." The display should look
something like this:[2]

[2] The result of :set all depends very much on the version of vi you have. This is typical of UNIX vi; what
comes out of the various clones will be different.

autoindent nomodelines
noshowmode
autoprint nonumber
noslowopen
noautowrite nonovice
tabstop=8
beautify nooptimize
taglength=0
directory=/var/tmp paragraphs=IPLPPPQPP LIpplpipnpbp
tags=tags /usr/lib/tags
noedcompatible prompt
tagstack
errorbells noreadonly
term=vt102
noexrc redraw
noterse
flash remap
timeout
hardtabs=8 report=3
ttytype=vt102
noignorecase scroll=11 warn
nolisp sections=NHSHH HUuhsh+c
window=23
nolist shell=/bin/ksh
wrapscan
magic shiftwidth=8
wrapmargin=0
nomesg showmatch
nowriteany

You can find out the current value of any individual option by name,
using the command:

:set option?

The command:

:set

shows options that you have specifically changed, or set, either in
your .exrc file or during the current session.

For example, the display might look like this:

number sect=AhBhChDh window=20 wrapmargin=10

7.1.2 The .exrc File

The .exrc file that controls your own vi environment is in your home
directory (the directory you are in when you first log on). You can
modify the .exrc file with the vi editor, just as you can any other
text file.

If you don't yet have an .exrc file, simply use vi to create one. Enter
into this file the set, ab, and map commands that you want to have
in effect whenever you use vi or ex. (ab and map are discussed later
in this chapter.) A sample .exrc file might look like this:

set nowrapscan wrapmargin=7
set sections=SeAhBhChDh nomesg
map q :w^M:n^M
map v dwElp
ab ORA O'Reilly & Associates, Inc.

Since the file is actually read by ex before it enters visual mode (vi),
commands in .exrc need not have a preceding colon.

7.1.3 Alternate Environments

In addition to reading the .exrc file in your home directory, you can
allow vi to read a file called .exrc in the current directory. This
allows you to set options that are appropriate to a particular
project.

For example, you might want to have one set of options in a
directory mainly used for programming:

set number autoindent sw=4 terse
set tags=/usr/lib/tags

and another set of options in a directory used for text editing:

set wrapmargin=15 ignorecase

Note that you can set certain options in the .exrc file in your home
directory and unset them in a local directory.

You can also define alternate vi environments by saving option
settings in a file other than .exrc and reading in that file with the
:so command. (so is short for source.)

For example:

:so .progoptions

Local .exrc files are also useful for defining abbreviations and key
mappings (described later in this chapter). When we write a book or
manual, we save all abbreviations to be used in that book in an
.exrc file in the directory in which the book is being created.

In all modern versions of vi, you have to first set
the exrc option in your home directory's .exrc file
before vi will read the .exrc file in the current
directory:

set exrc

This mechanism prevents other people from placing,
in your working directory, an .exrc file whose
commands might jeopardize the security of your
system.[3]

[3] The original versions of vi automatically read both files, if they existed. The exrc
option closes a potential security hole.

7.1.4 Some Useful Options

As you can see when you type :set all, there are an awful lot of
options that can be set. Many of them are used internally by vi and
aren't usually changed. Others are important in certain cases, but
not in others (for example, noredraw and window can be useful on a
dialup line at a low baud rate). The table in Section C.1 contains a
brief description of each option. We recommend that you take some
time to play with setting options—if an option looks interesting, try
setting it (or unsetting it) and watch what happens while you edit.
You may find some surprisingly useful tools.

As discussed earlier in this book, one option, wrapmargin, is
essential for editing non-program text. wrapmargin specifies the

size of the right margin that will be used to autowrap text as you
type. (This saves manually typing carriage returns.) A typical value
is 7 to 15:

:set wrapmargin=10

Three other options control how vi acts when conducting a search.
Normally, a search differentiates between uppercase and lowercase
(foo does not match Foo), wraps around to the beginning of the file
(meaning that you can begin your search anywhere in the file and
still find all occurrences), and recognizes wildcard characters when
pattern matching. The default settings that control these options
are noignorecase, wrapscan, and magic, respectively. To change
any of these defaults, you would set the opposite toggle options:
ignorecase, nowrapscan, and nomagic.

Options that may be of particular interest to programmers include:
autoindent, showmatch, tabstop, shiftwidth, number, and list,
as well as their opposite toggle options.

Finally, consider using the autowrite option. When set, vi will
automatically write out the contents of a changed buffer when you
issue the :n (next) command to move to the next file to be edited,
and before running a shell command with :!.

7.2 Executing UNIX Commands

You can display or read in the results of any UNIX command while
you are editing in vi. An exclamation mark (!) tells ex to create a
shell and to regard what follows as a UNIX command:

:!command

So if you are editing and you want to check the time or date without
exiting vi, you can enter:

:!date

The time and date will appear on your screen; press RETURN to
continue editing at the same place in your file.

If you want to give several UNIX commands in a row without
returning to vi editing in between, you can create a shell with the ex
command:

:sh

When you want to exit the shell and return to vi, press CTRL-D.

You can combine :read with a call to UNIX, to read the results of a
UNIX command into your file. As a very simple example:

:r !date

will read in the system's date information into the text of your file.
By preceding the :r command with a line address, you can read the
result of the command in at any desired point in your file. By
default, it will appear after the current line.

Suppose you are editing a file and want to read in four phone
numbers from a file called phone, but in alphabetical order. phone
reads:

Willing, Sue 333-4444
 Walsh, Linda 555-6666
 Quercia, Valerie 777-8888
 Dougherty, Nancy 999-0000

The command:

:r !sort phone

reads in the contents of phone after they have been passed through
the sort filter:

Dougherty, Nancy 999-0000
 Quercia, Valerie 777-8888
 Walsh, Linda 555-6666
 Willing, Sue 333-4444

Suppose you are editing a file and want to insert text from another
file in the directory, but you can't remember the new file's name.
You could perform this task the long way: exit your file, give the ls
command, note the correct filename, reenter your file, and search
for your place.

Or you could do the task in fewer steps:

Keystrokes Results

:!ls

Display a list of files in the current directory. Note the correct
filename. Press RETURN to continue editing.

:r
newfile

Read in the new file.

7.2.1 Filtering Text Through a Command

You can also send a block of text as standard input to a UNIX
command. The output from this command replaces the block of text
in the buffer. You can filter text through a command from either ex
or vi. The main difference between the two methods is that you
indicate the block of text with line addresses in ex and with text
objects (movement commands) in vi.

7.2.1.1 Filtering text with ex

The first example demonstrates how to filter text with ex. Assume
that the list of names in the preceding example, instead of being
contained in a separate file called phone, is already contained in the
current file on lines 96 through 99. You simply type the addresses
of the lines you want to filter, followed by an exclamation mark and
the UNIX command to be executed. For example, the command:

:96,99!sort

will pass lines 96 through 99 through the sort filter and replace
those lines with the output of sort.

7.2.1.2 Filtering text with vi

In vi, text is filtered through a UNIX command by typing an
exclamation mark followed by any of vi's movement keystrokes that
indicate a block of text, and then by the UNIX command line to be
executed. For example:

!)command

will pass the next sentence through command.

There are a few unusual features about how vi acts when you use
this feature:

• The exclamation mark doesn't appear on your screen right
away. When you type the keystroke(s) for the text object you
want to filter, the exclamation mark appears at the bottom of
the screen, but the character you type to reference the object
does not.

• Text blocks must be more than one line, so you can use only
the keystrokes that would move more than one line (G, { },
(), [[]], +, -). To repeat the effect, a number may

precede either the exclamation mark or the text object. (For
example, both !10+ and 10!+ would indicate the next ten
lines.) Objects such as w do not work unless enough of them
are specified so as to exceed a single line. You can also use a
slash (/) followed by a pattern and a carriage return to
specify the object. This takes the text up to the pattern as
input to the command.

• Entire lines are affected. For example, if your cursor is in the
middle of a line and you issue a command to go to the end of
the next sentence, the entire lines containing the beginning
and end of the sentence will be changed, not just the
sentence itself.[4]

[4] Of course, there's always an exception. In this example, vim 5.0 changes only the current line.

• There is a special text object that can be used only with this
command syntax: you can specify the current line by entering
a second exclamation mark:

!!command

Remember that either the entire sequence or the text object
can be preceded by a number to repeat the effect. For
instance, to change lines 96 through 99 as in the above
example, you could position the cursor on line 96 and enter
either:

4!!sort

or:

!4!sort

As another example, assume you have a portion of text in a file that
you want to change from lowercase to uppercase letters. You could
process that portion with the tr command to change the case. In
this example, the second sentence is the block of text that will be
filtered through the command.

Keystrokes Results

!)

An exclamation mark appears on the last line to prompt you for the
UNIX command. The) indicates that a sentence is the unit of text to
be filtered.

tr '[a-z]'
'[A-Z]'

Enter the UNIX command and press RETURN. The input is replaced
by the output.

To repeat the previous command, the syntax is:

! object !

It is sometimes useful to send sections of a coded document to nroff
to be replaced by formatted output. (Or when editing electronic
mail, you might use the fmt program to "beautify" your text before
sending the message.) Remember that the "original" input is
replaced by the output. Fortunately, if there is a mistake, such as
an error message being sent instead of the expected output, you
can undo the command and restore the lines.

7.3 Saving Commands

Often you type the same long phrases over and over in a file. vi and
ex have a number of different ways of saving long sequences of
commands, both in command mode and in insert mode. When you
call up one of these saved sequences to execute it, all you do is
type a few characters (or even only one), and the entire sequence is
executed as if you had entered the whole sequence of commands
one by one.

7.3.1 Word Abbreviation

You can define abbreviations that vi will automatically expand into
the full text whenever you type the abbreviation in insert mode. To
define an abbreviation, use the ex command:

:ab abbr phrase

abbr is an abbreviation for the specified phrase. The sequence of
characters that make up the abbreviation will be expanded in insert
mode only if you type it as a full word; abbr will not be expanded
within a word.

Suppose in the file practice you want to enter text that contains a
frequently recurring phrase such as a difficult product or company
name. The command:

:ab imrc International Materials Research Center
abbreviates International Materials Research Center to the initials
imrc. Now whenever you type imrc in insert mode, imrc expands to
the full text.

Keystrokes Results

ithe imrc

Abbreviations expand as soon as you press a non-alphanumeric
character (e.g., punctuation), a space, a carriage return, or ESC
(returning to command mode). When you are choosing
abbreviations, choose combinations of characters that don't
ordinarily occur while you are typing text. If you create an
abbreviation that ends up expanding in places where you don't want
it to, you can disable the abbreviation by typing:

:unab abbr

To list your currently defined abbreviations, type:

:ab

The characters that compose your abbreviation cannot also appear
at the end of your phrase. For example, if you issue the command:

:ab PG This movie is rated PG

you'll get the message "No tail recursion," and the abbreviation
won't be set. The message means that you have tried to define
something that will expand itself repeatedly, creating an infinite
loop. If you issue the command:

:ab PG the PG rating system

you may or may not produce an infinite loop, but in either case you
won't get a warning message. For example, when the above
command was tested on a System V version of UNIX, the expansion
worked. Circa 1990 on a Berkeley version, the abbreviation
expanded repeatedly, like this:

the the the the the ...

until a memory error occurred and vi quit.

When tested, we obtained the following results on these vi versions:

Solaris 2.6 vi

The tail recursive version is not allowed, while the version
with the name in the middle of the expansion only expands
once.

nvi 1.79

Both versions exceed an internal expansion limit, the
expansion stops, and nvi produces an error message.

elvis 2.0

The tail recursive version runs infinitely until the editor is
interrupted. The version with the name in the middle
eventually stops expanding, but without any error message.

vim 5.0 and 5.1

Both forms are detected and only expand once.

vile 7.4 and 8.0

Both forms are detected and only expand once.

We recommend that you avoid repeating your abbreviation as part
of the defined phrase.

7.3.2 Using the map Command

While you're editing, you may find that you are using a command
sequence frequently, or you may occasionally use a very complex
command sequence. To save yourself keystrokes, or the time that it
takes to remember the sequence, you can assign the sequence to
an unused key by using the map command.

The map command acts a lot like ab except that you define a macro
for vi's command mode instead of for insert mode.

:map x sequence

Define character x as a sequence of editing commands.

:unmap x

Disable the sequence defined for x.

:map

List the characters that are currently mapped.

Before you can start creating your own maps, you need to know the
keys not used in command mode that are available for user-defined
commands:

Letters

g K q V v

Control keys

^A ^K ^O ^W ^X

Symbols

_ * \ =

The = is used by vi if Lisp mode is set, and to do
text formatting by several of the clones. In many
modern versions of vi, the _ is equivalent to the ^
command, and elvis and vim have a "visual mode"
that uses the v, V, and ^V keys. The moral is to test
your version carefully.

Depending on your terminal, you may also be able to associate map
sequences with special function keys.

With maps you can create simple or complex command sequences.
As a simple example, you could define a command to reverse the
order of words. In vi, with the cursor as shown:

you can the scroll page

the sequence to put the after scroll would be dwelp: delete word,
dw; move to the end of next word, e; move one space to the right,
l; put the deleted word there, p. Saving this sequence:

:map v dwelp

enables you to reverse the order of two words at any time in the
editing session with the single keystroke v.

7.3.3 Protecting Keys from Interpretation by ex

Note that when defining a map, you cannot simply type certain
keys, such as RETURN, ESC, BACKSPACE, and DELETE as part of
the command to be mapped, because these keys already have
meaning within ex. If you want to include one of these keys as part
of the command sequence, you must escape the normal meaning by
preceding the key with CTRL-V. The keystroke ^V appears in the
map as the ^ character. Characters following the ^V also do not
appear as you expect. For example, a carriage return appears as
^M, escape as ^[, backspace as ^H, and so on.

On the other hand, if you want to use a control character as the
character to be mapped, in most cases all you have to do is hold
down the CTRL key and press the letter key at the same time. So,
for example, all you need to do in order to map ^A is to type:

:map CTRL-A sequence

There are, however, three control characters that must be escaped
with a ^V. They are ^T, ^W, and ^X. So, for example, if you want to
map ^T, you must type:

:map CTRL-V CTRL-T sequence

The use of CTRL-V applies to any ex command, not just a map
command. This means that you can type a carriage return in an
abbreviation or a substitution command. For example, the
abbreviation:

:ab 123 one^Mtwo^Mthree

expands to this:

one
two
three

(Here we show the sequence CTRL-V RETURN as ^M, the way it
would appear on your screen.)

You can also globally add lines at certain locations. The command:

:g/^Section/s//As you recall, in^M&/

inserts, before all lines beginning with the word Section, a phrase
on a separate line. The & restores the search pattern.

Unfortunately, one character always has special meaning in ex
commands, even if you try to quote it with CTRL-V. Recall that the
vertical bar (|) has special meaning as a separator of multiple ex
commands. You cannot use a vertical bar in insert mode maps.

Now that you've seen how to use CTRL-V to protect certain keys
inside ex commands, you're ready to define some powerful map
sequences.

7.3.4 Complex Mapping Example

Assume that you have a glossary with entries like this:

map - an ex command which allows you to associate
a complex command sequence with a single key.

You would like to convert this glossary list to troff format, so that it
looks like this:

.IP "map" 10 n
An ex command...

The best way to define a complex map is to do the edit once
manually, writing down each keystroke that you have to type. Then
recreate these keystrokes as a map. You want to:

1. Insert the MS macro for an indented paragraph at the
beginning of the line. Insert the first quotation mark as well
(I.IP ").

2. Press ESC to terminate insert mode.
3. Move to the end of the first word (e) and add a second

quotation mark, followed by a space and the size of the indent
(a" 10n).

4. Press RETURN to insert a new line.
5. Press ESC to terminate insert mode.
6. Remove the hyphen and two surrounding spaces (3x) and

capitalize the next word (~).

That will be quite an editing chore if you have to repeat it more
than just a few times.

With :map you can save the entire sequence so that it can be re-
executed with a single keystroke:

:map g I.IP "^[ea" 10n^M^[3x~

Note that you have to "quote" both the ESC and RETURN characters
with CTRL-V. ^[is the sequence that appears when you type CTRL-
V followed by ESC. ^M is the sequence shown when you type CTRL-V
RETURN.

Now, simply typing g will perform the entire series of edits. At a
slow baud rate you can actually see the edits happening
individually. At a fast baud rate it will seem to happen by magic.

Don't be discouraged if your first attempt at key mapping fails. A
small error in defining the map can give very different results from
the ones you expect. Type u to undo the edit, and try again.

7.3.5 More Examples of Mapping Keys

These examples will give you an idea of the clever shortcuts
possible when defining keyboard maps:

1. Add text whenever you move to the end of a word:

:map e ea

Most of the time, the only reason you want to move to the
end of a word is to add text. This map sequence puts you in
insert mode automatically. Note that the mapped key, e, has
meaning in vi. You're allowed to map a key that is already
used by vi, but the key's normal function will be unavailable
as long as the map is in effect. This isn't so bad in this case,
since the E command is often identical to e.

2. Transpose two words:

:map K dwElp

We discussed this sequence earlier in the chapter, but now
you need to use E (assume here, and in the remaining
examples, that the e command is mapped to ea). Remember
that the cursor begins on the first of the two words.
Unfortunately, because of the l command, this sequence (and
the earlier version) doesn't work if the two words are at the
end of a line: during the sequence, the cursor ends up at the
end of the line, and l cannot move further right. Here's a
better solution:

:map K dwwP

You could also use W instead of w.

3. Save a file and edit the next one in a series:

:map q :w^M:n^M

Notice that you can map keys to ex commands, but be sure to
finish each ex command with a carriage return. This sequence
makes it easy to move from one file to the next and is useful
when you've opened many short files with one vi command.
Mapping the letter q helps you remember that the sequence is
similar to a "quit."

4. Put troff emboldening codes around a word:

:map v i\fB^[e\fP^[

This sequence assumes that the cursor is at the beginning of
the word. First, you enter insert mode, then you type the
code for the bold font. In map commands, you don't need to
type two backslashes to produce one backslash. Next, you
return to command mode by typing a "quoted" ESC. Finally,
you append the closing troff code at the end of the word, and
you return to command mode. Notice that when we appended
to the end of the word, we didn't need to use ea, since this
sequence is itself mapped to the single letter e. This shows
you that map sequences are allowed to contain other mapped
commands. (The ability to use nested map sequences is
controlled by vi's remap option, which is normally enabled.)

5. Put troff emboldening codes around a word, even when the
cursor is not at the beginning of the word:

:map V lbi\fB^[e\fP^[

This sequence is the same as the previous one, except that it
uses lb to handle the additional task of positioning the cursor
at the beginning of the word. The cursor might be in the
middle of the word, so you want to move to the beginning
with the b command. But if the cursor were already at the
beginning of the word, the b command would move the cursor
to the previous word instead. To guard against that case, type
an l before moving back with b, so that the cursor never
starts on the first letter of the word. You can define variations
of this sequence by replacing the b with B and the e with Ea.
In all cases, though, the l command prevents this sequence

from working if the cursor is at the end of a line. (You could
append a space to get around this.)

6. Repeatedly find and remove parentheses from around a word
or phrase: [5]

[5] From the article by Walter Zintz, in UNIX World, April 1990.

:map = xf)xn

This sequence assumes that you first found an open
parenthesis, by typing /(followed by RETURN.

If you choose to remove the parentheses, then use the map
command: delete the open parenthesis with x, find the closing
one with f), delete it with x, and then repeat your search for
an open parenthesis with n.

If you don't want to remove the parentheses (for example, if
they're being used correctly), then don't use the map
command: press n instead to find the next open parenthesis.

You could also modify the map sequence above to handle
matching pairs of quotes.

7. Place C/C++ comments around an entire line:

:map g I/* ^[A */^[

This sequence inserts /* at the line's beginning and appends
*/ at the line's end. You could also map a substitute
command to do the same thing:

:map g :s;.*;/* & */;^M

Here, you match the entire line (with .*), and when you
replay it (with &), you surround the line with the comment
symbols. Note the use of semicolon delimiters, to avoid
having to escape the / in the comment.

8. Safely repeat a long insertion:

:map ^J :set wm=0^M.:set wm=10^M

We mentioned in Chapter 2, that vi occasionally has difficulty
repeating long insertions of text when wrapmargin is set. This
map command is a useful workaround. It temporarily turns off
the wrapmargin (by setting it to 0), gives the repeat

command, and then restores the wrapmargin. Note that a
map sequence can combine ex and vi commands.

In the previous example, even though ^J is a vi command (it moves
the cursor down a line), this key is safe to map because it's really
the same as the j command. There are many keys that either
perform the same tasks as other keys or that are rarely used.
However, you should be familiar with the vi commands before you
boldly disable their normal use by using them in map definitions.

7.3.6 Mapping Keys for Insert Mode

Normally, maps apply only to command mode—after all, in insert
mode, keys stand for themselves and shouldn't be mapped as
commands. However, by adding an exclamation mark (!) to the map
command, you can force it to override the ordinary meaning of a
key and produce the map in insert mode. This feature is useful
when you find yourself in insert mode but need to escape briefly to
command mode, run a command, and then return to insert mode.

For example, suppose you just typed a word but forgot to italicize it
(or place quotes around it, etc.). You can define this map:

:map! + ^[bi<I>^[ea</I>

Now, when you type a + at the end of a word, you will surround the
word with HTML italicization codes. The + won't show up in the text.

The sequence above escapes to command mode (^[), backs up to
insert the first code (bi<I>), escapes again (^[), and moves ahead
to append the second code (ea</I>). Since the map sequence
begins and ends in insert mode, you can continue entering text
after marking the word.

Here's another example. Suppose that you've been typing your text,
and you realize that the previous line should have ended with a
colon. You can correct that by defining this map sequence:[6]

[6] From an article by Walter Zintz, in UNIX World, April 1990.

:map! % ^[kA:^[jA

Now, if you type a % anywhere along your current line, you'll
append a colon to the end of the previous line. This command
escapes to command mode, moves up a line, and appends the colon
(^[kA:). The command then escapes again, moves down to the line
you were on, and leaves you in insert mode (^[jA).

Note that we wanted to use uncommon characters (% and +) for the
previous map commands. When a character is mapped for insert
mode, you can no longer type that character as text.

To reinstate a character for normal typing, use the command:

:unmap! x

where x is the character that was previously mapped for insert
mode. (Although vi will expand x on the command line as you type
it, making it look like you are unmapping the expanded text, it will
correctly unmap the character.)

Insert-mode mapping is often more appropriate for tying character
strings to special keys that you wouldn't otherwise use. It is
especially useful with programmable function keys.

7.3.7 Mapping Function Keys

Many terminals have programmable function keys (which are
faithfully emulated by today's terminal emulators on bitmapped
workstations). You can usually set up these keys to print whatever
character or characters you want using a special setup mode on the
terminal. However, keys programmed using a terminal's setup
mode only work on that terminal; they may also limit the action of
programs that want to set up those function keys themselves.

ex allows you to map function keys by number, using the syntax:

:map #1 commands

for function key number 1, and so on. (It can do this because the
editor has access to the entry for that terminal found in either the
terminfo or termcap database and knows the escape sequence
normally put out by the function key.)

As with other keys, maps apply by default to command mode, but
by using the map! commands as well, you can define two separate
values for a function key—one to be used in command mode, the
other in insert mode. For example, if you are an HTML user, you
might want to put font-switch codes on function keys. For example:

:map #1 i<I>^[
:map! #1 <I>

If you are in command mode, the first function key will enter insert
mode, type in the three characters <I>, and return to command

mode. If you are already in insert mode, the key will simply type
the three-character HTML code.

If function keys have been redefined in the
terminal's setup mode, the #n syntax might not
work since the function keys no longer put out the
expected control or escape sequence as described in
its terminal database entry. You will need to
examine the terminfo source (or termcap entry) for
your terminal and check the definitions for the
function keys. In addition, there are some terminals
whose function keys perform only local actions and
don't actually send any characters to the computer.
Such function keys can't be mapped.

The terminal capabilities k1, k2 through k0 describe the first ten
function keys. The capabilities l1, l2 through l0 describe the
remaining function keys. Using your terminal's setup mode, you can
change the control or escape sequence output by the function key
to correspond with the terminfo or termcap entry. (For more
information, see termcap & terminfo, published by O'Reilly &
Associates.)

If the sequence contains ^M, which is a carriage return, press CTRL-
M. For instance, in order to have function key 1 available for
mapping, the terminal database entry for your terminal must have a
definition of k1, such as:

k1=^A@^M

In turn, the definition:

^A@^M

must be what is output when you press that key.

To see what the function key puts out, use the od (octal dump)
command with the -c option (show each character). You will need
to press RETURN after the function key, and then CTRL-D to get od
to print the information. For example:

$ od -c
^[[[A
^D
0000000 033 [[A \n
0000005

Here, the function key sent Escape, two left brackets, and an A.

7.3.8 Mapping Other Special Keys

Many keyboards have special keys, such as HOME, END, PAGE UP,
and PAGE DOWN that duplicate commands in vi. If the terminal's
terminfo or termcap description is complete, vi will be able to
recognize these keys. But if it isn't, you can use the map command
to make them available to vi. These keys generally send an escape
sequence to the computer—an escape character followed by a string
of one or more other characters. In order to trap the escape, you
should press ^V before pressing the special key in the map. For
example, to map the HOME key on the keyboard of an IBM PC to a
reasonable vi equivalent, you might define the following map:

:map CTRL-V HOME 1G

This appears on your screen as:

:map ^[[H 1G

Similar map commands display as follows:

:map CTRL-V END G
displays
 :map ^[[Y G
:map CTRL-V PAGE UP ^F
displays
 :map ^[[V ^F
:map CTRL-V PAGE DOWN ^B
displays
 :map ^[[U ^B

You'll probably want to place these maps in your .exrc file. Note
that if a special key generates a long escape sequence (containing
multiple non-printing characters), ^V quotes only the initial escape
character, and the map doesn't work. You will have to find the
entire escape sequence (perhaps from the terminal manual) and
type it in manually, quoting at the appropriate points, rather than
simply pressing ^V and then the key.

7.3.9 Mapping Multiple Input Keys

Mapping multiple key strokes is not restricted just to function keys.
You can also map sequences of regular keystrokes. This can help
make it easier to enter certain kinds of text, such as SGML or HTML.

Here are some :map commands, thanks to Jerry Peek, co-author of
O'Reilly's Learning the UNIX Operating System, which make it
easier to enter SGML markup. (The lines beginning with a double
quote are comments. This is discussed below in Section 7.4.4.)

" ADR: need this
:set noremap
" bold:
map! =b </emphasis>^[F<i<emphasis role=bold>
map =B i<emphasis role=bold>^[
map =b a</emphasis>^[
" Move to end of next tag:
map! =e ^[f>a
map =e f>
" footnote (tacks opening tag directly after cursor in
text-input mode):
map! =f <footnote>^M<para>^M</para>^M</footnote>^[kO
" Italics ("emphasis"):
map! =i </emphasis>^[F<i<emphasis>
map =I i<emphasis>^[
map =i a</emphasis>^[
" paragraphs:
map! =p ^[jo<para>^M</para>^[O
map =P O<para>^[
map =p o</para>^[
" less-than:
map! *l <
...

Using these commands, to enter a footnote you would enter insert
mode, and type =f. vi would then insert the opening and closing
tags, and leave you in insert mode between them:

All the world's a stage.<footnote>
<para>
_
</para>
</footnote>

Needless to say, these macros proved quite useful during the
development of this book.

7.3.10 @-Functions

Named buffers provide yet another way to create "macros"—
complex command sequences that you can repeat with only a few
keystrokes.

If you type a command line in your text (either a vi sequence or an
ex command preceded by a colon), then delete it into a named
buffer, you can execute the contents of that buffer with the @
command. For example, open a new line and enter:

This will appear as:

cwgadfly^[

on your screen. Press ESC again to exit insert mode, then delete the
line into buffer g by typing "gdd. Now whenever you place the
cursor at the beginning of a word and type @g, that word in your
text will be changed to gadfly.

Since @ is interpreted as a vi command, a dot (.) will repeat the
entire sequence, even if the buffer contains an ex command. @@
repeats the last @, and u or U can be used to undo the effect of @.

This is a simple example. @-functions are useful because they can
be adapted to very specific commands. They are especially useful
when you are editing between files, because you can store the
commands in their named buffers and access them from any file
you edit. @-functions are also useful in combination with the global
replacement commands discussed in Chapter 6.

7.3.11 Executing Buffers from ex

You can also execute text saved in a buffer from ex mode. In this
case, you would enter an ex command, delete it into a named
buffer, and then use the @ command from the ex colon prompt. For
example, enter the following text:

ORA publishes great books.
ORA is my favorite publisher.
1,$s/ORA/O'Reilly \& Associates/g

With your cursor on the last line, delete the command into the g
buffer: "gdd. Move your cursor to the first line: kk. Then execute
the buffer from the colon command line: :@gRETURN. Your screen
should now look like this:

O'Reilly & Associates publishes great books.
O'Reilly & Associates is my favorite publisher.

Some versions treat * identically to @ when used from the ex
command line. In addition, if the buffer character supplied after the
@ or * command is *, the command will be taken from the default
(unnamed) buffer.

7.4 Using ex Scripts

Certain ex commands you use only within vi, such as maps,
abbreviations, and so on. If you store these commands in your .exrc
file, the commands will automatically be executed when you invoke
vi. Any file that contains commands to execute is called a script.

The commands in a typical .exrc script are of no use outside vi.
However, you can save other ex commands in a script, and then
execute the script on a file or on multiple files. Mostly you'll use
substitute commands in these external scripts.

For a writer, a useful application of ex scripts is to ensure
consistency of terminology—or even of spelling—across a document
set. For example, let's assume that you've run the UNIX spell
command on two files and that the command has printed out the
following list of misspellings:

$ spell sect1 sect2
chmod
ditroff
myfile
thier
writeable

As is often the case, spell has flagged a few technical terms and
special cases it doesn't recognize, but it has also identified two
genuine spelling errors.

Because we checked two files at once, we don't know which files the
errors occurred in or where they are in the files. Although there are
ways to find this out, and the job wouldn't be too hard for only two
errors in two files, you can easily imagine how time-consuming the
job could grow to be for a poor speller or for a typist proofing many
files at once.

To make the job easier, you could write an ex script containing the
following commands:

%s/thier/their/g
%s/writeable/writable/g
wq

Assume you've saved these lines in a file named exscript. The script
could be executed from within vi with the command:

:so exscript

or the script can be applied to a file right from the command line.
Then you could edit the files sect1 and sect2 as follows:

$ ex - sect1 < exscript
$ ex - sect2 < exscript

The minus sign following the invocation of ex tells it to suppress the
normal terminal messages.[7]

[7] According to the POSIX standard, ex should use -s instead of - as shown here. Typically, for backwards
compatibility, both versions are accepted.

If the script were longer than the one in our simple example, we
would already have saved a fair amount of time. However, you
might wonder if there isn't some way to avoid repeating the process
for each file to be edited. Sure enough, we can write a shell script
that includes, but generalizes, the invocation of ex, so that it can be
used on any number of files.

7.4.1 Looping in a Shell Script

You may know that the shell is a programming language as well as
a command-line interpreter. To invoke ex on a number of files, we
use a simple type of shell script command called the for loop. A for
loop allows you to apply a sequence of commands for each
argument given to the script. (The for loop is probably the single
most useful piece of shell programming for beginners. You'll want to
remember it even if you don't write any other shell programs.)

Here's the syntax of a for loop:

for variable in list
 do
 command(s)
 done

For example:

for file in $*
 do
 ex - $file < exscript
 done

(The command doesn't need to be indented; we indented it for
clarity.) After we create this shell script, we save it in a file called
correct and make it executable with the chmod command. (If you
aren't familiar with the chmod command and the procedures for
adding a command to your UNIX search path, see Learning the
UNIX Operating System, published by O'Reilly & Associates.) Now
type:

$ correct sect1 sect2

The for loop in correct will assign each argument (each file in the
list specified by $*, which stands for all arguments) to the variable
file and execute the ex script on the contents of that variable.

It may be easier to grasp how the for loop works with an example
whose output is more visible. Let's look at a script to rename files:

for file in $*
do
 mv $file $file.x
done

Assuming this script is in an executable file called move, here's
what we can do:

$ ls
ch01 ch02 ch03 move
$ move ch??
$ ls
ch01.x ch02.x ch03.x move

With creativity, you could rewrite the script to rename the files
more specifically:

for nn in $*
do
 mv ch$nn sect$nn
done

With the script written this way, you'd specify numbers instead of
filenames on the command line:

$ ls
ch01 ch02 ch03 move
$ move 01 02 03
$ ls
sect01 sect02 sect03 move

The for loop need not take $* (all arguments) as the list of values
to be substituted. You can specify an explicit list as well. For
example:

for variable in a b c d

will assign variable to a, b, c, and d in turn. Or you can substitute
the output of a command. For example:

for variable in `grep -l "Alcuin" *`

will assign variable in turn to the name of each file in which grep
finds the string Alcuin.

If no list is specified:

for variable

the variable will be assigned to each command-line argument in
turn, much as it was in our initial example. This is actually not
equivalent to:

for variable in $*

but to:

for variable in "$@"

which has a slightly different meaning. The symbol $* expands to
$1, $2, $3, etc., but the four-character sequence "$@" expands to
"$1", "$2", "$3", etc. Quotation marks prevent further
interpretation of special characters.

Let's return to our main point and our original script:

for file in $*
do
 ex - $file < exscript
done

It may seem a little inelegant to have to use two scripts—the shell
script and the ex script. And in fact, the shell does provide a way to
include an editing script inside a shell script.

7.4.2 Here Documents

In a shell script, the operator << means to take the following lines,
up to a specified string, as input to a command. (This is often called

a here document.) Using this syntax, we could include our editing
commands in correct like this:

for file in $*
do
ex - $file << end-of-script
g/thier/s//their/g
g/writeable/s//writable/g
wq
end-of-script
done

The string end-of-script is entirely arbitrary—it just needs to be a
string that won't otherwise appear in the input and can be used by
the shell to recognize when the here document is finished. By
convention, many users specify the end of a here document with
the string EOF, or E_O_F, to indicate the end of the file.

There are advantages and disadvantages to each approach shown.
If you want to make a one-time series of edits and don't mind
rewriting the script each time, the here document provides an
effective way to do the job.

However, it's more flexible to write the editing commands in a
separate file from the shell script. For example, you could establish
the convention that you will always put editing commands in a file
called exscript. Then you only need to write the correct script once.
You can store it away in your personal "tools" directory (which
you've added to your search path) and use it whenever you like.

7.4.3 Sorting Text Blocks: A Sample ex Script

Suppose you want to alphabetize a file of troff-encoded glossary
definitions. Each term begins with an .IP macro. In addition, each
entry is surrounded by the .KS/.KE macro pair. (This ensures that
the term and its definition will print as a block and will not be split
across a new page.) The glossary file looks something like this:

.KS

.IP "TTY_ARGV" 2n
The command, specified as an argument vector,
that the TTY subwindow executes.
.KE
.KS
.IP "ICON_IMAGE" 2n
Sets or gets the remote image for icon's image.
.KE
.KS
.IP "XV_LABEL" 2n

Specifies a frame's header or an icon's label.
.KE
.KS
.IP "SERVER_SYNC" 2n
Synchronizes with the server once.
Does not set synchronous mode.
.KE

You can alphabetize a file by running the lines through the UNIX
sort command, but you don't really want to sort every line. You
want to sort only the glossary terms, moving each definition—
untouched—along with its corresponding term. As it turns out, you
can treat each text block as a unit by joining the block into one line.
Here's the first version of your ex script:

g/^\.KS/,/^\.KE/j
%!sort

Each glossary entry is found between a .KS and .KE macro. j is the
ex command to join a line (the equivalent in vi is J). So, the first
command joins every glossary entry into one "line." The second
command then sorts the file, producing lines like this:

.KS .IP "ICON_IMAGE" 2n Sets or gets ... image. .KE

.KS .IP "SERVER_SYNC" 2n Synchronizes with ... mode.
 .KE
.KS .IP "TTY_ARGV" 2n The command, ... executes. .KE
.KS .IP "XV_LABEL" 2n Specifies a ... icon's label. .KE

The lines are now sorted by glossary entry; unfortunately, each line
also has macros and text mixed in (we've used ellipses [...] to show
omitted text). Somehow, you need to insert newlines to "un-join"
the lines. You can do this by modifying your ex script: mark the
joining points of the text blocks before you join them, and then
replace the markers with newlines. Here's the expanded ex script:

g/^\.KS/,/^\.KE/-1s/$/@@/
g/^\.KS/,/^\.KE/j
%!sort
%s/@@ /^M/g

The first three commands produce lines like this:

.KS@@ .IP "ICON_IMAGE" 2nn@@ Sets or gets ... image. @@

.KE

.KS@@ .IP "SERVER_SYNC" 2nn@@ Synchronizes with ... mode.
@@ .KE
.KS@@ .IP "TTY_ARGV" 2nn@@ The ... vector, @@ that ...
.@@ .KE

.KS@@ .IP "XV_LABEL" 2nn@@ Specifies a ... icon's label.
@@ .KE

Note the extra space following the @@. The spaces result from the j
command, because it converts each newline into a space.

The first command marks the original line breaks with @@. You don't
need to mark the end of the block (after the .KE), so the first
command uses a -1 to move back up one line at the end of each
block. The fourth command restores the line breaks by replacing the
markers (plus the extra space) with newlines. Now your file is
sorted by blocks.

7.4.4 Comments in ex Scripts

You may want to reuse such a script, adapting it to a new situation.
With a complex script like this, it is wise to add comments so that
it's easier for someone else (or even yourself!) to reconstruct how it
works. In ex scripts, anything following a double quote is ignored
during execution, so a double quote can mark the beginning of a
comment. Comments can go on their own line. They can also go at
the end of any command that doesn't interpret a quote as part of
the command. (For example, a quote has meaning to map
commands and shell escapes, so you can't end such lines with a
comment.)

Besides using comments, you can specify a command by its full
name, something that would ordinarily be too time consuming from
within vi. Finally, if you add spaces, the ex script above becomes
this more readable one:

" Mark lines between each KS/KE block
global /^\.KS/,/^\.KE/-1 s /$/@@/
" Now join the blocks into one line
global /^\.KS/,/^\.KE/ join
" Sort each block--now really one line each
%!sort
" Restore the joined lines to original blocks
% s /@@ /^M/g

Surprisingly, the substitute command does not work in ex, even
though the full names for the other commands do.

7.4.5 Beyond ex

If this discussion has whetted your appetite for even more editing
power, you should be aware that UNIX provides editors even more
powerful than ex: the sed stream editor and the awk data

manipulation language. There is also the extremely popular Perl
programming language. For information on these programs, see the
O'Reilly books sed & awk, Learning Perl, and Programming Perl.

7.5 Editing Program Source Code

All of the features discussed so far are of interest whether you are
editing English text or program source code. However, there are a
number of additional features that are of interest chiefly to
programmers. These include indentation control, searching for the
beginning and end of procedures, and using ctags.

The following discussion is adapted from documentation provided by
Mortice Kern Systems with their excellent implementation of vi for
DOS and Windows-based systems, available as a part of the MKS
Toolkit or separately as MKS Vi. It is reprinted by permission of
Mortice Kern Systems.

7.5.1 Indentation Control

The source code for a program differs from ordinary text in a
number of ways. One of the most important of these is the way in
which source code uses indentation. Indentation shows the logical
structure of the program: the way in which statements are grouped
into blocks. vi provides automatic indentation control. To use it,
issue the command:

:set autoindent

Now, when you indent a line with spaces or tabs, the following lines
will automatically be indented by the same amount. When you press
RETURN after typing the first indented line, the cursor goes to the
next line and automatically indents the same distance as the
previous line.

As a programmer, you will find this saves you quite a bit of work
getting the indentation right, especially when you have several
levels of indentation.

When you are entering code with autoindent enabled, typing CTRL-T
at the start of a line gives you another level of indentation and
typing CTRL-D takes one away.

We should point out that CTRL-T and CTRL-D are typed while you
are in insert mode, unlike most other commands, which are typed in
command mode.

There are two additional variants of the CTRL-D command.[8]

[8] These do not work in elvis 2.0.

^ ^D

When you type ^ ^D (^ CTRL-D), vi shifts the cursor back to
the beginning of the line, but only for the current line. The
next line you enter will start at the current auto-indent level.
This is particularly useful for entering C preprocessor
commands while typing in C/C++ source code.

0 ^D

When you type 0 ^D, vi shifts the cursor back to the
beginning of the line. In addition, the current auto-indent
level is reset to zero; the next line you enter will not be auto-
indented.[9]

[9] The nvi 1.79 documentation has these two commands switched, but the program actually
behaves as described here.

Try using the autoindent option when you are entering source
code. It simplifies the job of getting indentation correct. It can even
sometimes help you avoid bugs (e.g., in C source code, where you
usually need one closing curly brace (}) for every level of
indentation you go backwards).

The << and >> commands are also helpful when indenting source
code. By default, >> shifts a line right eight spaces (i.e., adds eight
spaces of indentation) and << shifts a line left eight spaces. For
example, move the cursor to the beginning of a line and press the >
key twice (>>). You will see the line move right. If you now press
the < key twice (<<), the line will move back again.

You can shift a number of lines by typing the number followed by >>
or <<. For example, move the cursor to the first line of a good-size
paragraph and type 5>>. You will shift the first five lines in the
paragraph.

The default shift is eight spaces (right or left). This default can be
changed with a command like:

:set shiftwidth=4

You will find it convenient to have a shiftwidth that is the same size
as the width between tab stops.

vi attempts to be smart when doing indenting. Usually, when you
see text indented by eight spaces at a time, vi will actually insert

tab characters into the file, since tabs usually expand to eight
spaces. This is the UNIX default; it is most noticable when you type
a tab during normal input, and when files are sent to a printer—
UNIX expands them with a tab stop of eight spaces.

If you wish, you can change how vi represents tabs on your screen,
by changing the tabstop option. For example, if you have
something that is deeply indented, you might wish to have use a
tab stop setting of every four characters, so that the lines will not
wrap. The following command will make this change:

:set tabstop=4

Changing your tab stops is not recommended.
Although vi will display the file using an arbitrary
tabstop setting, the tab characters in your files will
still be expanded using an eight-character tab stop
by every other UNIX program. Eight-character tab
stops are one of the facts of life on UNIX, and you
should just get used to them.

Sometimes indentation won't work the way you expect, because
what you believe to be a tab character is actually one or more
spaces. Normally, your screen displays both a tab and a space as
whitespace, making the two indistinguishable. You can, however,
issue the command:

:set list

This alters your display so that a tab appears as the control
character ^I and an end-of-line appears as a $. This way, you can
spot a true space, and you can see extra spaces at the end of a line.
A temporary equivalent is the :l command. For example, the
command:

:5,20 l

displays lines 5 through 20, showing tab characters and end-of-line
characters.

7.5.2 A Special Search Command

The characters (, [, {, and < can all be called opening brackets.
When the cursor is resting on one of these characters, pressing the
% key moves the cursor from the opening bracket forward to the
corresponding closing bracket—),], }, or >—keeping in mind the

usual rules for nesting brackets.[10] For example, if you were to move
the cursor to the first (in:

[10] Of the versions tested, only nvi supported matching < and > with %. vile lets you set an option with the
sets of pairs of characters that match for %.

if (cos(a[i]) > sin(b[i]+c[i]))
{
 printf("cos and sin equal!\n");
}

and press %, you would see that the cursor jumps to the parenthesis
at the end of the line. This is the closing parenthesis that matches
the opening one.

Similarly if the cursor is on one of the closing bracket characters,
pressing % will move the cursor backwards to the corresponding
opening bracket character. For example, move the cursor to the
closing brace after the printf line above and press %.

vi is even smart enough to find a bracket character for you. If the
cursor is not on a bracket character, when you press %, vi will
search forward on the current line to the first open or close bracket
character it finds, and then move to the matching bracket! For
instance, with the cursor on the > in the first line of the example
above, % will find the open parenthesis, and then move to the close
parenthesis.

Not only does this search character help you move forward and
backward through a program in long jumps, it lets you check the
nesting of brackets and parentheses in source code. For example, if
you put the cursor on the first { at the beginning of a C function,
pressing % should move you to the } that (you think) ends the
function. If it's the wrong one, something has gone wrong
somewhere. If there is no matching } in the file, vi will beep at you.

Another technique for finding matching brackets is to turn on the
following option:

:set showmatch

Unlike %, setting showmatch (or its abbreviation sm) helps you while
you're in insert mode. When you type a) or a },[11] the cursor will
briefly move back to the matching (or { before returning to your
current position. If the match doesn't exist, the terminal beeps. If
the match is merely off-screen, vi silently keeps going.

[11] In elvis, vim, and vile, showmatch also shows you matching square brackets ([and]).

7.5.3 Using Tags

The source code for a large C or C++ program will usually be
spread over several files. Sometimes, it is difficult to keep track of
which file contains which function definitions. To simplify matters, a
UNIX command called ctags can be used together with the :tag
command of vi.

UNIX versions of ctags handle the C language, and
often Pascal and Fortran 77. Sometimes they even
handle assembly language. Almost universally,
however, they do not handle C++. Other versions
are available that can generate tags files for C++,
and for other languages and file types.

The ctags command is issued at the UNIX command line. Its
purpose is to create an information file that vi can use later to
determine which files define which functions. By default, this file is
called tags. From within vi, a command of the form:

:!ctags file.c

will create a file named tags in your current directory that contains
information on the functions defined in file.c. A command like:

:!ctags *.c

will create a tags file describing all the C source files in the
directory.

Now suppose your tags file contains information on all the source
files that make up a C program. Also suppose that you want to look
at or edit a function in the program, but do not know where the
function is. From within vi, the command:

:tag name

will look at the tags file to find out which file contains the definition
of the function name. It will then read in the file and position the
cursor on the line where the name is defined. In this way, you don't
have to know which file you have to edit; you only have to decide
which function you want to edit.

You can use the tag facility from vi's command mode as well. Place
the cursor on the identifier you wish to look up, and then type ^]. vi
will perform the tag lookup and move to the file that defines the

identifier. Be careful where you place the cursor; vi uses the "word"
under the cursor starting at the current cursor position, not the
entire word containing the cursor.

If you try to use the :tag command to read in a
new file and you haven't saved your current text
since the last time you changed it, vi will not let you
go to the new file. You must either write out your
current file with the :w command and then issue
:tag, or else type:

:tag! name

to override vi's reluctance to discard edits.

The Solaris 2.6 version of vi actually supports tag stacks. It
appears, however, to be completely undocumented in the Solaris
man pages. Because many, if not most, versions of UNIX vi don't do
tag stacking, we have moved the discussion of this feature to
Section 8.5.3, where tag stacking is introduced.

Chapter 8. vi Clones Feature Summary

8.1 And These Are My Brothers,
Darrell, Darrell, and Darrell

There are a number of freely available "clones" of the vi editor. Appendix E,
provides a pointer to a web site that lists all known vi clones. We have chosen to
cover four of the most popular ones. They are:

• Version 1.79 of Keith Bostic's nvi
• Version 2.0 of Steve Kirkendall's elvis
• Version 5.0 of Bram Moolenaar's vim
• Version 7.4 of vile, by Kevin Buettner, Tom Dickey, and Paul Fox

The clones were written because the source code for vi is not freely available,
making it impossible to either port vi to a non-UNIX environment or to study the
code, and/or because UNIX vi (or another clone!) did not provide desired
functionality. For example, UNIX vi often has limits on the maximum length of a
line, and it cannot edit binary files. (The chapters on the various programs
present more information about each one's history.)

Each program provides a large number of extensions to UNIX vi; often, several of
the clones provide the same extensions, although usually not in an identical way.
Instead of repeating the treatment of each common feature in each program's
chapter, we have centralized the discussion here. You can think of this chapter as
presenting "what the clones do," with each clone's chapter presenting "how the
clone does it."

This chapter covers the following topics:

Multiwindow editing

This is the ability to split the screen into multiple "windows."[1] You can edit
a different file in each window, or have several views into the same file.
This is perhaps the single most important extension over regular vi.

[1] Note that these are not the windows that you find on X Window-based UNIX workstations, or
under MS-Windows or the Apple Macintosh.

GUI interfaces

All of the clones except nvi can be compiled to support an X Window
interface. If you have a system running X, use of the GUI version may be
preferable to splitting the screen of an xterm (or other terminal emulator);
the GUI versions generally provide such nice features as scrollbars and
multiple fonts. The native GUIs of other operating systems may also be
supported.

Extended regular expressions

All of the clones make it possible to match text using regular expressions
that are similar or identical to those provided by the UNIX egrep(1)
command.

Enhanced tags

As described in Section 7.5.3 in Chapter 7, you can use the ctags program
to build up a searchable database of your files. The clones make it possible
to "stack" tags, by saving your current location when you do a tag search.
You can then return to that location. Multiple locations can be saved in a
Last In First Out (LIFO) order, producing a stack of locations.

Several of the vi clone authors and the author of at least one ctags clone
have gotten together to define a standard form for an enhanced version of
the ctags format. In particular, it is now easier to use the tags
functionality with programs written in C++, which allows overloaded
function names.

Improved editing facilities

All of the clones provide the ability to edit the ex command line, "infinite
undo" capability, arbitrary length lines and eight-bit data, incremental
searching, (at least an option) to scroll the screen left to right for long
lines instead of wrapping long lines, and mode indicators, as well as other
features.

Programming assistance

Several of the editors provide features that allow you to stay within the
editor during the typical "edit-compile-debug" cycle of software
development.

Syntax highlighting

In elvis, vim, and vile, you can arrange to display different parts of a file in
different colors and/or fonts. This is particularly useful for editing program
source code.

There is one additional feature in the clones that we have chosen not to cover:
extension languages. As of May 1998, nvi has preliminary support for Perl and Tcl
integration, elvis has its own C-like expression evaluator,[2] vim has a C-like
expression evaluator, plus support for Perl, Python, and Tcl integration, and vile,
which has always had its own built-in extension language, has preliminary
support for Perl integration. The extension language integration and support are
very recent for all of the programs and will undoubtedly change significantly. For
this reason, any discussion of the extension language facilities would be obsolete
almost as soon as this book goes to press.

[2] The elvis 2.0 documentation mentions that "someday" elvis will have a true extension language, most
likely Perl, but probably not for version 2.1. Steve Kirkendall doesn't really consider the expression evaluator
to be an extension language.

We recommend that you check the online documentation for your clone if you're
interested in programming your editor with an extension language.[3] Extension
languages are a feature worth watching; they promise to bring a new dimension
of power to vi users. The use of well-known programming languages, such as
Perl, Python, and Tcl, is an additional advantage, since it is likely that users will
already know one or more of them.

[3] emacs users have been doing this since the beginning; it is one of the reasons that many are rather
fanatic about their editor.

8.2 Multiwindow Editing

Perhaps the single most important feature that the clones offer over standard vi
is the ability to edit files in multiple "windows." This makes it possible to easily
work on more than one file at the same time, and to "cut and paste" text from
one file to another via yanking and putting.[4]

[4] In the clones, you need not split the screen to yank and put between files; only the original vi discards the
cut buffers when switching between files.

There are two fundamental concepts underlying each editor's multiwindow
implementation, buffers and windows.

A buffer holds text to be edited. The text may come from a file, or it may be
brand new text to eventually be written to a file. Any given file has only one
buffer associated with it.

A window provides a view into a buffer, allowing you to see and modify the text in
the buffer. There may be multiple windows associated with the same buffer.
Changes made to the buffer in one window are reflected in any other windows
open on the same buffer. A buffer may also have no windows associated with it.
In this case, you can't do a whole lot with the buffer, although you can open a
window on it later. Closing the last window open on a buffer effectively "hides"
the file. If the buffer has been modified but not written to disk, the editor may or
may not let you close the last window that's open on it.

When you create a new window, the editor splits the current screen. For most of
the editors, you create a new window which shows another view on the file you're
currently editing. You then switch to the window where you wish to edit the next
file, and instruct the editor to start editing the file there. Each editor provides vi
and ex commands to switch back and forth between windows, as well as the
ability to change the window size, and hide and restore windows.

In each editor's chapter, we show a sample split screen (editing the same two
files), and describe how to split the screen and move between windows.

8.3 GUI Interfaces

elvis, vim, and vile also provide graphical user interface (GUI) versions that can
take advantage of a bit-mapped display and mouse. Besides supporting X
Windows under UNIX, support for MS-Windows or other windowing systems may
also be available. Table 8.1 summarizes the available GUIs for the different
clones.

Table 8.1. Available GUIs
Editor X11 MS-Windows OS/2 BeOS Macintosh Amiga

elvis
vim
vile

8.4 Extended Regular Expressions

The metacharacters available in vi's search and substitution regular expressions
are described in Section 6.3.1 in Chapter 6. Each of the clones provides some
form of extended regular expressions, either as an option or always available.
Typically these are the same (or almost the same) as what's provided by egrep.
Unfortunately, each one's extended flavor is slightly different from the others'.

To give you a feel for what extended regular expressions can do, we present
them in the context of nvi. Each clone's chapter then describes that editor's
extended syntax, without repeating the examples.

nvi extended regular expressions are the Extended Regular Expressions (EREs) as
defined by the POSIX standard. In order to enable this feature, use set extended
from either your .nexrc file or from the ex colon prompt.

Besides the standard metacharacters described in Chapter 6, and the POSIX
bracket expressions mentioned in Section 6.3.2 in the same chapter, the
following metacharacters are available:

|

Indicates alternation. For example, a|b matches either a or b. However,
this construct is not limited to single characters: house|home matches
either of the strings house or home.

(...)

Used for grouping, to allow the application of additional regular expression
operators. For example, house|home can be shortened (if not simplified) to
ho(use|me). The * operator can be applied to text in parentheses:
(house|home)* matches home, homehouse, househomehousehouse and
so on.

When extended is set, text grouped with parentheses acts like text
grouped in \(...\) in regular vi; the actual text matched can be retrieved
in the replacement part of a substitute command with \1, \2, etc. In this
case, \(represents a literal left parenthesis.

+

Matches one or more of the preceding regular expressions. This is either a
single character, or a group of characters enclosed in parentheses. Note
the difference between + and *. The * is allowed to match nothing, but
with + there must be at least one match. For example, ho(use|me)*
matches ho as well as home and house, but ho(use|me)+ will not match
ho.

?

Matches zero or one occurrence of the preceding regular expression. This
indicates "optional" text that is either present or not present. For example,
free?d will match either fred or freed, but nothing else.

{...}

Defines an interval expression. Interval expressions describe counted
numbers of repetitions. In the description below, n and m represent
integer constants.

{ n}

Matches exactly n repetitions of the previous regular expression. For
example, (home|house){2} matches homehome, homehouse, househome,
and househouse, but nothing else.

{ n,}

Matches n or more repetitions of the previous regular expression. Think of
it as "as least n" repititions.

{ n, m}

Matches n to m repititions. The bounding is important, since it controls
how much text would be replaced during a substitute command.[5]

[5] The *, +, and ? operators can be reduced to {0,}, {1,} and {0,1} respectively, but they are
much more convenient to use.

When extended is not set, nvi provides the same functionality with \{ and
\}.

8.5 Enhanced Tags

The "Exuberant ctags" program is a ctags clone that is considerably more capable
than UNIX ctags. It produces an extended tags file format that makes tag
searching and matching a more flexible and capable process. We describe it first,
since it is supported by several of the vi clones.

This section also describes tag stacks: the ability to save multiple locations visited
with the :tag or ^] commands. All of the clones provide tag stacking.

8.5.1 Exuberant ctags

The "Exuberant ctags" program was written by Darren Hiebert. Its home page is
http://home.hiwaay.net/~darren/ctags/. As of this writing, the current version is
2.0.3. The following list of the program's features is adapted from the README
file in the ctags distribution:

• It is capable of generating tags for all types of C and C++ language tags,
including class names, macro definitions, enum names, enumerators
(values inside an enumeration), function (method) definitions, function
(method) prototypes/declarations, structure members and class data
members, struct names, typedefs, union names and variables.

• It supports both C and C++ code.
• It is very robust in parsing code and is far less easily fooled by code

containing #if preprocessor conditional constructs.

• It can be used to print out a human-readable list of selected objects found
in source files.

• It supports generation of GNU emacs-style tag files (etags).
• It works on UNIX, QNX, MS-DOS, Windows 95/NT, OS/2, and the Amiga.

Some precompiled binaries are available on the web site.

Exuberant ctags produces tags files in the form described in the next subsection.

8.5.2 The New tags Format

Traditionally, a tags file has three tab-separated fields: the tag name (typically an
identifier), the source file containing the tag, and an indication of where to find
the identifier. This indication is either a simple line number, or a nomagic search
pattern enclosed either in slashes or question marks. Furthermore, the tags file is
always sorted.

This is the format generated by the UNIX ctags program. In fact, many versions
of vi allowed any command in the search pattern field (a rather gaping security
hole). Furthermore, due to an undocumented implementation quirk, if the line
ended with a semicolon and then a double-quote (;"), anything following those
two characters would be ignored. (The double-quote starts a comment, as it does
in .exrc files.)

The new format is backwards-compatible with the traditional one. The first three
fields are the same: tag, filename, and search pattern. Exuberant ctags only
generates search patterns, not arbitrary commands. Extended attributes are
placed after a separating ;". Each attribute is separated from the next by a tab
character, and consists of two colon-separated subfields. The first subfield is a
keyword describing the attribute, the second is the actual value. Table 8.2 lists
the supported keywords.

Table 8.2. Extended ctags Keywords
Keyword Meaning

kind

The value is a single letter that indicates the lexical type of the tag. It
can be f for a function, v for a variable, and so on. Since the default
attribute name is kind, a solitary letter can denote the tag's type (e.g., f
for a function).

file

For tags that are "static", i.e., local to the file. The value should be the
name of the file.

If the value is given as an empty string (just file:), it is understood to
be the same as the filename field; this special case was added partly for
the sake of compactness, and partly to provide an easy way to handle
tags files that aren't in the current directory. The value of the filename
field is always relative to the directory in which the tags file itself
resides.

function
For local tags. The value is the name of function in which they're
defined.

struct For fields in a struct. The value is the name of the structure.

enum For values in an enum data type. The value is the name of the enum type.

class For C++ member functions and variables. The value is the name of the

class.

scope
Intended mostly for C++ class member functions. It will usually be
private for private members or omitted for public members, so users
can restrict tag searches to only public members.

arity For functions. The number of arguments.

If the field does not contain a colon, it is assumed to be of type kind. Here are
some examples:

ARRAYMAXED awk.h 427;" d
AVG_CHAIN_MAX array.c 38;" d file:
array.c array.c 1;" F

ARRAYMAXED is a C #define macro defined in awk.h. AVG_CHAIN_MAX is also a C
macro but it is used only in array.c. The third line is a bit different: it is a tag for
the actual source file! This is generated with the -i F option to Exuberant ctags,
and allows you to give the command :tag array.c. More usefully, you can put
the cursor over a filename and use the ^] command to go to that file.

Within the value part of each attribute, the characters backslash, tab, carriage
return and newline should be encoded as \\, \t, \r, and \n, respectively.

Extended tags files may have some number of initial tags that begin with !_TAG_.
These tags usually sort to the front of the file, and are useful for identifying which
program created the file. Here is what Exuberant ctags generates:

!_TAG_FILE_FORMAT 2 /extended format;/
!_TAG_FILE_SORTED 1 /0=unsorted, 1=sorted/
!_TAG_PROGRAM_AUTHOR Darren Hiebert /darren@hiebert.com/
!_TAG_PROGRAM_NAME Exuberant Ctags //
!_TAG_PROGRAM_URL http://home.hiwaay.net/~darren/ctags /.../
!_TAG_PROGRAM_VERSION 2.0.3 /with C++ support/

Editors may take advantage of these special tags to implement special features.
For example, vim pays attention to the !_TAG_FILE_SORTED tag and will use a
binary search to search the tags file instead of a linear search if the file is indeed
sorted.

If you use tags files, we recommend that you get and install Exuberant ctags.

8.5.3 Tag Stacks

The :tag ex command and the ^] vi mode command provide a limited means of
finding identifiers, based on the information provided in a tags file. Each of the
clones extends this ability by maintaining a stack of tag locations. Each time you
issue the :tag ex command, or use the ^] vi mode command, the editor saves
the current location before searching for the specified tag. You may then return to
a saved location using (usually) the ^T command or an ex command.

Solaris vi tag stacking and an example are presented below. The way each clone
handles tag stacking is described in each editor's respective chapter.

8.5.3.1 Solaris vi

Surprisingly enough, the Solaris 2.6 version of vi supports tag stacking. Perhaps
not so surprisingly, this feature is completely undocumented in the Solaris ex(1)
and vi(1) manual pages. For completeness, we summarize Solaris vi tag stacking
in Table 8.3, Table 8.4, and Table 8.5. Tag stacking in Solaris vi is quite simple.[6]

[6] This information was discovered based on experimentation. YMMV (your mileage may vary).

Table 8.3. Solaris vi Tag Commands
Command Function

ta[g][!]
tagstring

Edit the file containing tagstring as defined in the tags file. The !
forces vi to switch to the new file if the current buffer has been
modified but not saved.

po[p][!] Pop the tag stack by one element.

Table 8.4. Solaris vi Command Mode Tag Commands
Command Function

^]
Look up the location of the identifier under the cursor in the tags file,
and move to that location. If tag stacking is enabled, the current
location is automatically pushed onto the tag stack.

^T Return to the previous location in the tag stack, i.e., pop off one
element.

Table 8.5. Solaris vi Options for Tag Management
Option Function

taglength,
tl

Controls the number of significant characters in a tag that is to be
looked up. The default value of zero indicates that all characters are
significant.

tags,
tagpath

The value is a list of filenames in which to look for tags. The default
value is "tags /usr/lib/tags".

tagstack When set to true, vi stacks each location on the tag stack. Use :set
notagstack to disable tag stacking.

To give you a feel for using tag stacks, we present a short example, using
Exuberant ctags and vim.

Suppose you are working with a program that uses the GNU getopt_long function,
and that you need to understand more about it.

GNU getopt consists of three files, getopt.h, getopt.c, and getopt1.c.

First, you create the tags file, then you start by editing the main program, found
in main.c:

$ ctags *.[ch]
$ ls
Makefile getopt.c getopt.h getopt1.c main.c tags
$ vim main.c
Keystrokes Results

/getopt

Edit main.c and move to the call to getopt_long.

^]

Do a tag lookup on getopt_long. vim moves to getopt1.c, placing the
cursor on the definition of getopt_long.

It turns out that getopt_long is a "wrapper" function for _getopt_internal. You
place the cursor on _getopt_internal and do another tag search.

Keystrokes Results

8jf_ ^]

You have now moved to getopt.c. To find out more about struct
option, move the cursor to option and do another tag search.

5jfo;
^]

The editor moves to the definition of struct option in getopt.h. You
may now look over the comments explaining how it's used.

:tags

The :tags command in vim displays the tag stack.

Typing ^T three times would move you back to main.c, where you started. The
tag facilities make it easy to move around as you edit source code.

8.6 Improved Facilities

The four clones all provide additional features that make simple text editing
easier and more powerful.

Editing the ex command line

The ability to edit ex mode commands as you type them, possibly
including a saved history of ex commands. Also, the ability to complete
filenames and possibly other things, such as commands and options.

No line length limit

The ability to edit lines of essentially arbitrary length. Also, the ability to
edit files containing any 8-bit character.

Infinite undo

The ability to successively undo all of the changes you've made to a file.

Incremental searching

The ability to search for text while you are typing the search pattern.

Left/right scrolling

The ability to let long lines trail off the edge of screen instead of wrapping.

Visual mode

The ability to select arbitrary contiguous chunks of texts upon which some
operation will be done.

Mode indicators

A visible indication of insert mode versus command mode, as well as
indicators of the current line and column.

8.6.1 Command-Line History and Completion

Users of the csh, tcsh, ksh, and bash shells have known for years that being able
to recall previous commands, edit them slightly, and resubmit them makes them
more productive.

This is no less true for editor users than it is for shell users; unfortunately, UNIX
vi does not have any facility to save and recall ex commands.

This lack is remedied in each of the clones. Although each one provides a
different way of saving and recalling the command history, each one's mechanism
is usable and useful.

In addition to a command history, all of the editors can do some kind of
completion. This is where you type the beginning of, for example, a filename. You
then type a special character (such as tab), and the editor completes the filename
for you. All of the editors can do filename completion, some of them can complete
other things as well. Details are provided in each editor's chapter.

8.6.2 Arbitrary Length Lines and Binary Data

All four clones can handle lines of any length.[7] Historic versions of vi often had
limits of around 1,000 characters per line; longer lines would be truncated.

[7] Well, up to the maximum value of a C long, 2,147,483,647.

All four are also 8-bit clean, meaning that they can edit files containing any 8-bit
character. It is even possible to edit binary and/or executable files, if necessary.
This can be really useful, at times. You may or may not have to tell each editor
that a file is binary.

nvi

Automatically handles binary data. No special command-line or ex options
are required.

elvis

Under UNIX, does not treat a binary file differently from any other file. On
other systems, it uses the elvis.brf file to set the binary option, to avoid
newline translation issues. (The elvis.brf file and hex display modes are
described in Section 10.10.)

vim

Does not have a limit on the length of a line. When binary is not set, vim
is like nvi, and automatically handles binary data. However, when editing a
binary file, you should either use the -b command-line option or :set
binary. These set several other vim options that make it easier to edit
binary files.

vile

Automatically handles binary data. No special command-line or ex options
are required.

Finally, there is one tricky detail. Traditional vi always writes the file with a final
newline appended. When editing a binary file, this might add one character to the
file and cause problems. nvi and vim are compatible with vi by default, and add

that newline. In vim you can set the binary option, so this doesn't happen. elvis
and vile never append the extra newline.

8.6.3 Infinite Undo

UNIX vi allows you to undo only your last change, or to restore the current line to
the state it was in before you started making any changes. All of the clones
provide "infinite undo," the ability to keep undoing your changes, all the way back
to the state the file was in before you started any editing.

8.6.4 Incremental Searching

When incremental searching is used, the editor moves the cursor through the file,
matching text as you type the search pattern. When you finally type RETURN, the
search is finished.[8] If you've never seen it before, it is rather disconcerting at
first, but after a while you get used to it.

[8] emacs has always had incremental searching.

elvis does not support incremental searching. nvi and vim enable incremental
searching with an option, and vile uses two special vi mode commands. vile can
be compiled with incremental searching disabled, but it is enabled by default.
Table 8.6 shows the options each editor provides.

Table 8.6. Incremental Searching
Editor Option Command Action

nvi searchincr
The cursor moves through the file as you type,
always being placed on the first character of the text
that matches.

vim incsearch
The cursor moves through the file as you type. vim
highlights the text that matches what you've typed
so far.

vile ^X S, ^X
R

The cursor moves through the file as you type,
always being placed on the first character of the text
that matches. ^X S incrementally searches forward
through the file, while ^X R incrementally searches
backward.

8.6.5 Left-Right Scrolling

By default, vi and most of the clones wrap long lines around the screen. Thus, a
single logical line of the file may occupy multiple physical lines on your screen.

There are times when it might be preferable if a long line simply disappeared off
the right-hand edge of the screen, instead of wrapping. Moving onto that line and
then moving to the right would "scroll" the screen sideways. This feature is
available in all of the clones. Typically, a numeric option controls how much to
scroll the screen, and a Boolean option controls whether lines wrap or disappear
off the edge of the screen. vile also has command keys to perform sideways
scrolling of the entire screen. Table 8.7 shows how to use horizontal scrolling with
each editor.

Table 8.7. Sideways Scrolling
Editor Scroll Amount Option Action

nvi sidescroll
= 16 leftright

Off by default. When set, long lines simply go off
the edge of the screen. The screen scrolls left or
right by 16 characters at a time.

elvis sidescroll = 8 wrap
Off by default. When set, long lines simply go off
the edge of the screen. The screen scrolls left or
right by 8 characters at a time.

vim sidescroll
= 0 wrap

Off by default. When set, long lines simply go off
the edge of the screen. With sidescroll set to
zero, each scroll puts the cursor in the middle of
the screen. Otherwise the screen scrolls by the
desired number of characters.

vile sideways =
0 linewrap

Off by default. When set, long lines wrap. Thus,
the default is to have long lines go off the edge
of the screen. Long lines are marked at the left
and right edges with < and >. With sideways set

to zero, each scroll moves the screen by .
Otherwise the screen scrolls by the desired
number of characters.

 horizscroll

On by default. When set, moving the cursor
along a long line off-screen shifts the whole
screen. When not set, only the current line
shifts; this may be desirable on slower displays.

vile has two additional commands, ^X ^R and ^X ^L. These two commands scroll
the screen right and left, respectively, leaving the cursor in its current location on
the line. You cannot scroll so far that the cursor position would go off the screen.

8.6.6 Visual Mode

Typically, operations in vi apply to units of text such lines, words, or characters,
or to sections of text from the current cursor position to a position specified by a
search command. For example, d/^} deletes up to the next line that starts with a
right brace. elvis, vim, and vile all provide a mechanism to explicitly select a
region of text to which an operation will apply. In particular, it is possible to
select a rectangular block of text and apply an operation to all the text within the
rectangle! See each editor's respective chapter for the details.

8.6.7 Mode Indicators

As you know by now, vi has two modes, command mode and insert mode.
Usually, you can't tell by looking at the screen which mode you're in.
Furthermore, often it's useful to know where in the file you are, without having to
use the ^G or ex := commands.

Two options address these issues, showmode and ruler. All four clones agree on
the option names and meanings, and even Solaris vi has the showmode option.

Table 8.8 lists the special features in each editor.

Table 8.8. Position and Mode Indicators
Editor With ruler, displays With showmode, displays
nvi row and column insert, change, replace, and command mode indicators

elvis row and column input and command mode indicators

vim row and column insert, replace, and visual mode indicators

vile row, column, and
percent of file insert, replace, and overwrite mode indicators

vi N/A
separate mode indicators for open, input, insert,
append, change, replace, replace one character, and
substitute modes

The GUI versions of elvis and vim change the cursor shape depending upon the
current mode.

8.7 Programming Assistance

vi was developed primarily as a programmer's editor. It has features that make
things especially easy for the UNIX programmer—someone writing C programs
and troff documentation. (Real Programmers write Real Documentation in troff.)
Several of the clones are proud bearers of this tradition, adding a number of
features that make them even more usable and capable for the "power user."[9]

[9] In contrast to the What You See Is What You Get (WYSIWYG) philosophy, UNIX is the You Asked For It,
You Got It operating system. (With thanks to Scott Lee.)

Two features (among many) most deserve discussion:

Edit-compile speedup

elvis, vim, and vile allow you to easily invoke make(1), capture the errors
from your compiler, and automatically move to the lines containing the
errors. You can then fix the errors and re-run make, all from within the
editor.

Syntax highlighting

elvis, vim, and vile have the ability to highlight and/or change the color of
different syntactic elements in different kinds of files.

8.7.1 Edit-Compile Speedup

Programming often consists of a "compile-test-debug" cycle. You make changes,
compile the new code, and then test and debug it. When learning a new
language, syntax errors are especially common, and it is frustrating to be
constantly stopping and restarting (or suspending and resuming) the editor in
between compiles.

elvis, vim, and vile all provide facilities that allow you to stay within the editor
while compiling your program. Furthermore, they capture the compiler's output
and use it to automatically go to each line that contains an error.[10] Consistent
use of this ability can save time and improve programmer productivity.

[10] Yet another feature that emacs users are accustomed to comes to vi.

Here is an example, using elvis. You are beginning to learn C++, so you start out
with the obligatory first program:

Keystrokes Results

:w
hello.C

You enter the program, forgetting the closing quote, and then write
the program to hello.C.

:make
hello

You type the :make command to run make, which in turn runs the
C++ compiler. (In this case, g++.)

:errlist

The :errlist command moves to the line with the error and displays
the first compiler error message in the status line.

You can fix the error, resave the file, re-run :make and eventually compile your
program without errors.

All of the editors have similar facilities. They will all compensate for changes in
the file, correctly moving you to subsequent lines with errors. More details are
provided in each editor's chapter.

8.7.2 Syntax Highlighting

elvis, vim, and vile all provide some form of syntax highlighting. All three also
provide syntax coloring, changing the color of different parts of the file on
displays that can do so (such as under X11 or the Linux console). See each
editor's chapter for more information.

8.8 Editor Comparison Summary

Most of the clones support most or all of the features described above. Table 8.9
summarizes what each editor supports. Of course, the table does not tell the full
story; the details are provided in each one's individual chapter.

Table 8.9. Feature Summary Chart
Feature nvi elvis vim vile

Multiwindow editing
GUI
Extended regular expressions
Enhanced tags
Tag stacks
Arbitrary length lines
8-bit data
Infinite undo
Incremental searching
Left-right scrolling
Mode indicators
Visual mode
Edit-Compile Speedup
Syntax Highlighting
Multiple OS support

8.9 A Look Ahead

The next four chapters cover nvi, elvis, vim, and vile, in that order. Each chapter
has the following outline:

1. Who wrote the editor, and why.
2. Important command-line arguments.
3. Online help and other documentation.
4. Initialization—what files and environment variables the program reads,

and in what order.
5. Multiwindow editing.
6. GUI interface(s), if any.
7. Extended regular expressions.
8. Improved editing facilities (tag stacks, infinite undo, etc.).
9. Programming assistance (edit-compile speedup, syntax highlighting).
10. Interesting features unique to the program.
11. Where to get the sources, and what operating systems the editor runs on.

All of the distributions are compressed with gzip, GNU zip. If you don't
already have it, you can get gzip from ftp://ftp.gnu.org/pub/gnu/gzip-
1.2.4.tar The untar.c program available from the elvis ftp site is a very
portable, simple program for unpacking gzip'ed tar files on non-UNIX
systems.

Because each of these programs continues to undergo development, we have not
attempted an exhaustive treatment of each one's features. Such would quickly
become outdated. Instead, we have "hit the highlights," covering the features
that you are most likely to need to know about and that are least likely to change

as the program evolves. You should supplement this book with each one's online
documentation if you need to know how to use every last feature of your editor.

Chapter 9. nvi—New vi

nvi is short for "new vi." It was developed initially at the University
of California at Berkeley (UCB), home of the famous BSD (Berkeley
Software Distribution) versions of UNIX. It was used for writing this
chapter.

9.1 Author and History

The original vi was developed at UCB in the late 1970s by Bill Joy, then a
computer science graduate student, and now a founder and vice president of Sun
Microsystems.

Bill Joy first built ex, starting with and heavily enhancing the Sixth Edition ed
editor. The first enhancement was open mode, done with Chuck Haley. Between
1976 and 1979 ex evolved into vi. Mark Horton then came to Berkeley, added
macros "and other features,"[1] and did much of the work on vi to make it work on
a large number of terminals and UNIX systems. By 4.1BSD (1981), the editor
already had essentially all of the features described in Part I of this book.

[1] From the nvi reference manual. Unfortunately, it does not say which features.

Despite all of the changes, vi's core was (and is) the original UNIX ed editor. As
such, it was code that could not be freely distributed. By the early 1990s, when
they were working on 4.4BSD, the BSD developers wanted a version of vi that
could be freely distributed in source code form.

Keith Bostic of UCB started with elvis 1.8,[2] which was a freely distributable vi
clone, and began turning it into a "bug for bug compatible" clone of vi. nvi also
complies with the POSIX Command Language and Utilities Standard (IEEE
P1003.2) where it makes sense to do so.

[2] Although little or no original elvis code is left.

Although no longer affiliated with UCB, Keith Bostic continues to maintain,
enhance, and distribute nvi. The version current at the time of this writing is nvi
1.79.

nvi is important because it is the "official" Berkeley version of vi. It is part of
4.4BSD-Lite II, and is the vi version used on the various popular BSD variants
such as NetBSD and FreeBSD.

9.2 Important Command-Line Arguments

In a pure BSD environment, nvi is installed under the names ex, vi, and view.
Typically they are all links to the same executable, and nvi looks at how it is
invoked to determine its behavior. (UNIX vi works this way too.) It allows the Q
command from vi mode to switch into ex mode. The view variant is like vi, except
that the readonly option is set initially.

nvi has a number of command-line options. The most useful are described here:

-c command

Execute command upon startup. This is the POSIX version of the historical
+command syntax, but nvi is not limited to positioning commands. (The
old syntax is also accepted.)

-F

Don't copy the entire file when starting to edit. This may be faster, but
allows the possibility of someone else changing the file while you're
working on it.

-R

Start in read-only mode, setting the readonly option.

-r

Recover specified files, or if no files are listed on the command line, list all
the files that can be recovered.

-S

Run with the secure option set, disallowing access to external programs.[3]

[3] As with anything labelled "secure," blind trust is usually inappropriate. Keith Bostic says, though,
that you can trust nvi's secure option.

-s

Enter batch (script) mode. This is only for ex, and is intended for running
editing scripts. Prompts and non-error messages are disabled. This is the
POSIX version of the historic "-" argument; nvi supports both.

-t tag

Start editing at the specified tag.

-w size

Set the initial window size to size lines.

9.3 Online Help and Other Documentation

nvi comes with quite comprehensive printable documentation. In particular, it
comes with troff source, formatted ASCII, and formatted PostScript for the
following documents:

The vi Reference Manual

The reference manual for nvi. This manual describes all of the nvi
command line options, commands, options, and ex commands.

The vi Man Page

The man page for nvi.

The vi Tutorial

This document is a tutorial introduction to editing with vi.

The ex Reference Manual

The reference manual for ex. This manual is the original one for ex; it is a
bit out-of-date with respect to the facilities in nvi.

Also included are ASCII files that document some of the nvi internals, and provide
a list of features that should be implemented, and files that can be used as an
online tutorial to vi.

The actual online help built in to nvi is minimal, consisting of two commands,
:exusage and :viusage. These commands provide one-line summaries of each
ex and vi command. This is usually sufficient to remind you about how something
works, but not very good for learning about new or obscure features in nvi.

You can give a command as an argument to the :exusage and :viusage
commands, in which case nvi will display the help just for that command. nvi
prints one line explaining what the command does, and a one-line summary of
the command's usage.

9.4 Initialization

If the -s or "-" options have been specified, then nvi will bypass all initializations.
Otherwise, nvi performs the following steps:

1. Read and execute the file /etc/vi.exrc. It must be owned either by root or
by you.

2. Execute the value of the NEXINIT environment variable if it exists,
otherwise use EXINIT if it exists. Only one will be used, not both. Bypass
executing $HOME/.nexrc or $HOME/.exrc.

3. If $HOME/.nexrc exists, read and execute it. Otherwise, if $HOME/.exrc
exists, read and execute it. Only one will be used.

4. If the exrc option has been set, then look for and execute either ./.nexrc if
it exists, or ./.exrc. Only one will be used.

nvi will not execute any file that is writable by anyone other than the file's owner.

The nvi documentation suggests putting common initialization actions into your
.exrc file (i.e., options and commands for UNIX vi), and having your .nexrc file
execute :source .exrc before or after the nvi-specific initializations.

9.5 Multiwindow Editing

To create a new window in nvi, you use a capitalized version of one of the ex
editing commands: Edit, Fg, Next, Previous, Tag or Visual. (As usual, these
commands can be abbreviated.) If your cursor is in the top half of the screen, the
new window is created on the bottom half, and vice versa. You then switch to
another window with CTRL-W:

<preface id="VI6-CH-0">
<title>Preface </title>

<para>
Text editing is one of the most common uses of any computer system,
and
<command>vi</command> is one of the most useful standard text editors
on your system.
With <command>vi</command> you can create new files, or edit any
existing
UNIX text file.
</para>

ch00.sgm: unmodified: line 1
Makefile for vi book

Arnold Robbins

CHAPTERS = ch00_6.sgm ch00_5.sgm ch00.sgm ch01.sgm ch02.sgm ch03.sgm
\
 ch04.sgm ch05.sgm ch06.sgm ch07.sgm ch08.sgm
APPENDICES = appa.sgm appb.sgm appc.sgm appd.sgm

POSTSCRIPT = ch00_6.ps ch00_5.ps ch00.ps ch01.ps ch02.ps ch03.ps \
 ch04.ps ch05.ps ch06.ps ch07.ps ch08.ps \

Makefile: unmodified: line 1

This example shows nvi editing two files, ch00.sgm and Makefile. The split screen
is the result of typing nvi ch00.sgm followed by :Edit Makefile. The last line of
each window acts as the status line, and is where colon commands are executed
for that window. The status lines are highlighted in reverse video.

The windowing ex mode commands and what they do are described in Table 9.1.

Table 9.1. nvi Window Management Commands
Command Function

bg Hide the current window. It can be recalled with the fg and Fg
commands.

di[splay]
b[uffers]

Display all buffers, including named, un-named, and numeric
buffers.

di[splay]
s[creens] Display the filenames of all backgrounded windows.

Edit
filename Edit filename in a new window.

Edit /tmp Create a new window editing an empty buffer. /tmp is interpreted
specially to create a new temporary file.

fg filename Uncover filename into the current window. The previous file moves
to the background.

Fg filename Uncover filename in a new window. The current window is split,
instead of redistributing the screen space among all open windows.

Next Edit the next file in the argument list in a new window.

Previous Edit the previous file in the argument list in a new window. (The
corresponding previous command, which moves back to the

previous file, exists in nvi; it is not in UNIX vi.)
resize
±nrows

Increase or decrease the size of the current window by nrows
rows.

Tag
tagstring Edit the file containing tagstring in a new window.

The CTRL-W command cycles between windows, top to bottom. The :q and ZZ
commands exit the current window.

You may have multiple windows open on the same file. Changes made in one
window are reflected in the other, although changes made in nvi's insert mode
are not seen in the other window until after you finalize the change by typing
ESC. You will not be prompted to save your changes until you issue a command
that would cause nvi to leave the last window open upon a file.

9.6 GUI Interfaces

nvi does not provide a graphical user interface (GUI) version.

9.7 Extended Regular Expressions

Extended regular expressions were introduced in Section 8.4. Here, we just
summarize the metacharacters that nvi provides. nvi also supports the POSIX
bracket expressions, [[:alnum:]], and so on.

You use :set extended to enable extended regular expression matching.

|

Indicates alternation. The left and right sides need not be just single
characters.

(...)

Used for grouping, to allow the application of additional regular expression
operators.

When extended is set, text grouped with parentheses acts like text
grouped in \(...\) in regular vi; the actual text matched can be retrieved
in the replacement part of a substitute command with \1, \2, etc. In this
case, \(represents a literal left parenthesis.

+

Matches one or more of the preceding regular expressions. This is either a
single character or a group of characters enclosed in parentheses.

?

Matches zero or one occurrence of the preceding regular expression.

{...}

Defines an interval expression. Interval expressions describe counted
numbers of repetitions. In the description below, n and m represent
integer constants.

{ n}

Matches exactly n repetitions of the previous regular expression.

{ n,}

Matches n or more repetitions of the previous regular expression.

{ n, m}

Matches n to m repetitions.

When extended is not set, nvi provides the same functionality with \{ and
\}.

As might be expected, when extended is set, you should precede the above
metacharacters with a backslash in order to match them literally.

9.8 Improvements for Editing

This section describes the features of nvi that make simple text editing easier and
more powerful.

9.8.1 Command-Line History and Completion

nvi saves your ex command lines, and makes it possible to edit them for
resubmission.

This facility is controlled with the cedit option.

When you type the first character of this string on the colon command line, nvi
opens a new window on the command history that you can then edit. When you
hit RETURN on any given line, nvi executes that line. ESC is a good choice for this
option. (Use ^V ^[to enter it.)

Because the RETURN key actually executes the command, be careful to use either

the j or keys to move down from one line to the next.

In addition to being able to edit your command line, you can also do filename
expansion. This feature is controlled with the filec option.

When you type the first character of this string on the colon command line, nvi
treats the blank delimited word in front of the cursor as if it had an * appended to
it and does shell-style filename expansion. ESC is also a good choice for this
option.[4] (Use ^V ^[to enter it.) When this character is the same as for the
cedit option, the command-line editing is performed only when it is entered as
the first character on the colon command line.

[4] Although the nvi documentation indicates that TAB is another common choice, we could not get that to
work. In practice, using ESC for both options works well.

It is easiest to set these options in your .nexrc file:

set cedit=^[
set filec=^[

9.8.2 Tag Stacks

Tag stacking is described in Section 8.5.3. nvi's tag stack is the simplest of the
four clones. Table 9.2 and Table 9.3 show the commands it uses.

Table 9.2. nvi Tag Commands
Command Function

di[splay]
t[ags] Display the tag stack.

ta[g][!]
tagstring

Edit the file containing tagstring as defined in the tags file. The !
forces nvi to switch to the new file if the current buffer has been
modified but not saved.

Ta[g][!]
tagstring Just like :tag, except that the file is edited in a new window.

tagp[op][!]
tagloc

Pop to the given tag, or to the most recently used tag if no tagloc
is supplied. The location may be either a filename of the tag of
interest or a number indicating a position in the stack.

tagt[op][!] Pop to the oldest tag in the stack, clearing the stack in the
process.

Table 9.3. nvi Command Mode Tag Commands
Command Function

^]
Look up the location of the identifier under the cursor in the tags file,
and move to that location. The current location is automatically pushed
onto the tag stack.

^T Return to the previous location in the tag stack, i.e., pop off one
element.

You can set the tags option to a list of file names where nvi should look for a tag.
This provides a simplistic search path mechanism. The default value is "tags
/var/db/libc.tags /sys/kern/tags", which on a 4.4BSD system looks in the
current directory, and then in the files for the C library and the operating system
source code.

The taglength option controls how many characters in a tagstring are significant.
The default value of zero means to use all the characters.

nvi behaves like vi; it uses the "word" under the cursor starting at the current
cursor position. If your cursor is on the i in main, nvi will search for the identifier
in, not main.

nvi relies on the traditional tags file format. Unfortunately, this format is very
limited. In particular, it has no concept of programming language scope, which

allows the same identifier to be used in different contexts to mean different
things. The problem is exacerbated by C++, which explicitly allows function name
overloading, i.e., the use of the same name for different functions.

nvi gets around the tags file limitations by using a different mechanism entirely:
the cscope program. cscope is a proprietary but relatively inexpensive program
available from the Bell Labs Software Toolchest. It reads C source files and builds
a database describing the program. nvi provides commands that query the
database and allow you to process the results. Because cscope is not universally
available, we do not cover its use here. Details of the nvi commands are provided
in the nvi documentation.

The extended tags file format produced by Exuberant ctags does not produce any
errors with nvi 1.79; however, nvi does not take advantage of this format either.

9.8.3 Infinite Undo

In vi, the dot (.) command generally acts as the "do again" command; it repeats
the last editing action you performed, be it a deletion, insertion, or replacement.

nvi generalizes the dot command into a full "redo" command, applying it even if
the last command was u for "undo."

Thus, to begin a series of "undo" commands, first type a u. Then, for each . (dot)
that you type, nvi will continue to undo changes, moving the file progressively
closer to its original state.

Eventually, you will reach the initial state of your file. At that point, typing . will
just ring the bell (or flash the screen). You can now begin redoing by typing u to
"undo the undos" and then using . to reapply successive changes.

nvi does not allow you to provide a count to either the u or . command.

9.8.4 Arbitrary Length Lines and Binary Data

nvi can edit files with arbitrary length lines and with an arbitrary number of lines.

nvi automatically handles binary data. No special command-line options or ex
options are required. You use ^X followed by one or two hexadecimal digits to
enter any 8-bit character into your file.

9.8.5 Incremental Searching

As mentioned in Section 8.6.4, you enable incremental searching in nvi using
:set searchincr.

The cursor moves through the file as you type, always being placed on the first
character of the text that matches.

9.8.6 Left-Right Scrolling

As mentioned in Section 8.6.5, you enable left-right scrolling in nvi using :set
leftright. The value of sidescroll controls the number of characters by which
nvi shifts the screen when scrolling left to right.

9.9 Programming Assistance

nvi does not provide specific programming assistance facilities.

9.10 Interesting Features

nvi is the most minimal of the clones, without a large number of additional
features that have not yet been covered. Yet it does have several important
features worthy of mention.

Internationalization support

Most of the informational and warning messages in nvi can be replaced
with translations into a different language, using a facility known as a
"message catalog." nvi implements this facility itself, using a
straightforward mechanism documented in the file catalog/README in the
nvi distribution. Message catalogs are provided for Dutch, English, French,
German, Russian, Spanish, and Swedish.

Arbitrary buffer names

Historically, vi buffer names are limited to the 26 characters of the
alphabet. nvi allows you to use any character as a buffer name.

Special interpretation of /tmp

For any ex command that needs a filename argument, if you use the
special name /tmp, nvi will replace it with the name of a unique temporary
file.

9.11 Sources and Supported
Operating Systems

nvi can be obtained from http://www.bostic.com/vi . This is a web page from
which you can download the current version, and also ask to be added to a
mailing list that is notified about new versions of nvi and/or new features.

The source code for nvi is freely distributable. The licensing terms are described
in the LICENSE file in the distribution, and they permit distribution in source and
binary form.

nvi builds and runs under UNIX. It also can be built to run under LynxOS 2.4.0,
and possibly later versions. It may build and run on other POSIX compliant
systems as well, but the documentation does not contain a specific list of known
operating systems.

Compiling nvi is straightforward. Retrieve the distribution via ftp. Uncompress
and untar it, run the configure program, and then run make.

$ gzip -d < nvi.tar.gz | tar -xvpf -
...
$ cd nvi-1.79; ./configure
...
$ make
...

nvi should configure and build with no problems. Use make install to install it.

Should you need to report a bug or problem in nvi, the person to contact is Keith
Bostic, at bostic@bostic.com .

Chapter 10. elvis

elvis was written and is maintained by Steve Kirkendall. An earlier
version became the basis for nvi. This chapter was written using
elvis.

10.1 Author and History

With our thanks for his help, we'll let Steve Kirkendall give the history in his own
words:

I started writing elvis 1.0 after an early clone called stevie crashed on me,
causing me to lose a few hours' work and totally destroying my confidence in that
program. Also, stevie stored the edit buffer in RAM which simply wasn't practical
in Minix. So I started writing my own clone, which stored its edit buffer in a file.
And even if my editor crashed, the edited text could still be retrieved from that
file.

elvis 2.x is almost completely separate from 1.x. I wrote this, my second vi clone,
because my first one inherited too many limitations from the real vi, and from
Minix. The biggest change is the support for multiple edit buffers and multiple
windows, neither of which could be retrofitted into 1.x very easily. I also wanted
to shed the line-length limitation, and have online help written in HTML.

As to the name "elvis," Steve says that at least part of the reason he chose the
name was to see how many people would ask him why he chose the name![1] It is
also common for vi clones to have the letters "vi" somewhere in their names.

[1] In around eight years, I was only number four! A.R.

10.2 Important Command-Line Arguments

elvis is not typically installed as vi, though it can be. If invoked as ex, it operates
as a line editor and allows the Q command from vi mode to switch into ex mode.

elvis has a number of command-line options. The most useful are described here:

-a

Load each file named on the command line into a separate window.

-r

Perform recovery after a crash.

-R

Start editing each file in read-only mode.

-i

Start editing in input mode instead of in command mode. This may be
easier for novice users.

-s

Set the safer option for the whole session, not just execution of .exrc
files. This adds a certain amount of security, but should not necessarily be
trusted blindly. In elvis 2.1, this option is renamed -S, and (following the
POSIX standard) -s provides ex scripting.

-f filename

Use filename for the session file instead of the default name. Session files
are discussed below.

-G gui

Use the given interface. The default is the termcap interface. Other
choices include x11, win32, curses, open, and quit. Not all the interfaces
may be compiled into your version of elvis.

-c command

Execute command upon start-up. This is the POSIX version of the
historical +command syntax. (The old syntax is also accepted.)

-t tag

Start editing at the specified tag.

-V

Output more verbose status information. Useful for diagnosing problems
with initialization files.

-?

Print a summary of the possible options.

10.3 Online Help and Other Documentation

elvis is very interesting in this department. The online help is comprehensive, and
written entirely in HTML. This makes is easy to view in your favorite Web
browser. elvis also has an HTML display mode (discussed below), making it easy
and pleasant to view the online help from within elvis itself.

When viewing HTML files, you use the tag commands (^] and ^T) to go to
different topics and then return, making it easy to browse the help files. We
applaud this innovation in online help.

Of course, elvis also comes with UNIX man pages.

10.4 Initialization

This section describes elvis's session files and itemizes the steps it takes during
initialization.

10.4.1 The Session File

elvis is intended to eventually meet COSE (Common Open System Environment)
standards. These require that programs be able to save their state and return to
that saved state at a later time.

To be able to do this, elvis maintains all its state in a session file. Normally elvis
creates the session file when it starts, and removes it when it exits, but if elvis
crashes, a left-over session file can be used to implement recovery of the edited
files.

10.4.2 Initialization Steps

elvis performs the following initialization steps. Interestingly, much of the
customization for elvis is moved out of editor options and into initialization files.

1. Initialize all hardcoded options.
2. Select an interface from those compiled into elvis. elvis will choose the

"best" of the ones that are compiled in and that can work. For example,
the X11 interface is considered to be better than the termcap interface,
but it may not be usable if X Windows is not currently running.

The selected interface can process the command line for initialization
options that are specific to it.

3. Create the session file if it doesn't exist; otherwise, read it (in preparation
for recovery).

4. Initialize the elvispath option from the ELVISPATH environment variable.
Otherwise, give it a default value. "~/.elvislib:/usr/local/lib/
elvis" is a typical value, but the actual value will depend upon how elvis
was configured and built.

5. Search elvispath for an ex script named elvis.ini and run it. The default
elvis.ini file performs the following actions:

o Chooses a digraph table based on the current operating system.
(Digraphs are a way to define the system's extended ASCII
character set and how characters from the extended set should be
entered.)

o Sets options based on the program's name (for example, ex vs. vi
mode).

o Handles system-dependent tweaks, such as setting the colors for
X11 and adding menus to the interface.

o Picks an initialization filename, either .exrc for UNIX, or elvis.rc for
non-UNIX systems. Call this file f.

o If the EXINIT environment variable exists, executes its value.
Otherwise, :source ~/f, where f is the filename chosen previously.

o If the exrc option has been set, then runs the :safer command on
f in the current directory.

o For X11, sets the normal, bold, and italic fonts, if they have not
been set already.

6. Load the pre- and post-read and pre- and post-write command files, if
they exist. Also load the elvis.msg file. All of these files are described later
in this chapter.

7. Load and display the first file named on the command line.
8. If the -a option was given, load and display the rest of the files, each in its

own window.

10.5 Multiwindow Editing

To create a new window in elvis, you use the ex :split command. You then use
one of the regular ex commands, such as :e filename or :n to edit a new file.
This is the simplest method; other, shorter methods are described below. You can
switch back and forth between windows with CTRL-WCTRL-W.

<preface id="VI6-CH-0">
<title>Preface </title>

<para>
Text editing is one of the most common uses of any computer system,
and
<command>vi</command> is one of the most useful standard text editors
on your system.
With <command>vi</command> you can create new files, or edit any
existing UNIX text file.

Makefile for vi book

Arnold Robbins

CHAPTERS = ch00_6.sgm ch00_5.sgm ch00.sgm ch01.sgm ch02.sgm ch03.sgm
\
 ch04.sgm ch05.sgm ch06.sgm ch07.sgm ch08.sgm
APPENDICES = appa.sgm appb.sgm appc.sgm appd.sgm

POSTSCRIPT = ch00_6.ps ch00_5.ps ch00.ps ch01.ps ch02.ps ch03.ps \
 ch04.ps ch05.ps ch06.ps ch07.ps ch08.ps \
 appa.ps appb.ps appc.ps appd.ps

The split screen is the result of typing elvis ch00.sgm followed by :split
Makefile.

Like nvi, elvis gives each window its own status line. elvis is unique in that it uses
a highlighted line of underscores, instead of reverse video, for the status line. ex
colon commands are carried out on each window's status line.

Table 10.1 describes the windowing ex mode commands and what they do.

Table 10.1. elvis Window Management Commands
Command Function

sp[lit]
[file]

Create a new window; load it with file if supplied. Otherwise, the
new window shows the current file.

new
sne[w]

Create a new empty buffer, and then create a new window to
show that buffer.

sn[ext] Create a new window, showing the next file in the argument list.

[file...] The current file is not affected.

sN[ext] Create a new window, showing the previous file in the argument
list. The current file is not affected.

sre[wind][!]
Create a new window, showing the first file in the argument list.
Reset the "current" file to be the first one with respect to the
:next command. The current file is not affected.

sl[ast] Create a new window, showing the last file in the argument list.
The current file is not affected.

sta[g][!] tag Create a new window showing the file where the requested tag is
found.

sa[ll] Create a new window for any files named in the argument list that
don't already have a window.

wi[ndow]
[target]

With no target, list all windows. The possible values for target are
described in Table 10.2.

close
Close the current window. The buffer that the window was
displaying remains intact. If it was modified, the other elvis
commands that quit will prevent you from quitting until you
explicitly save or discard the buffer.

wquit Write the buffer back to the file and close the window. The file is
saved whether or not it has been modified.

qall Issues a :q command for each window. Buffers without windows
are not affected.

Table 10.2 describes the windowing ex arguments and their meanings.

Table 10.2. Arguments to the elvis Window command
Argument Meaning

+ Switch to the next window, like ^W k.

++ Switch to the next window, wrapping like ^W ^W.

- Switch to the previous window, like ^W j.
-- Switch to the previous window, wrapping.
num Switch to the window whose windowid=num.
buffer-name Switch to the window editing the named buffer.

elvis provides a number of vi mode commands for moving between windows.
They are summarized in Table 10.3.

Table 10.3. elvis Window Commands from vi Command Mode
Command Function

^W c Hide the buffer and close the window. This is identical to the :close
command.

^W d
Toggle the display mode between "normal" and the buffer's usual
display mode. This is a per-window option. Display modes are
discussed in Section 10.10.1.

^W j Move down to the next window.
^W k Move up to the previous window.
^W n Create a new window, and create a new buffer to be displayed in the

window. It is similar to the :snew command.

^W q Save the buffer and close the window, identical to ZZ.

^W s Split the current window, equivalent to :split.

^W S
Toggle the wrap option. This option controls whether long lines wrap,
or whether the whole screen scrolls to the right. This is a per-window
option. This option is discussed in Section 10.8.5 later in this chapter.

^W] Create a new window, then look up the tag underneath the cursor. It
is similar to the :stag command.

[count]
^W ^W Move to next window, or to the countth window.

^W + Increase the size of the current window (termcap interface only).
^W - Reduce the size of the current window (termcap interface only).

^W \ Make the current window as large as possible (termcap interface
only).

10.6 GUI Interfaces

The screen shots and explanation for this section were supplied by Steve
Kirkendall. We thank him.

elvis's X11 interface provides a scrollbar and mouse support, and allows you to
select which fonts to use. There is no way to change fonts after elvis has created
the first window. The fonts must all be monospace fonts, typically some variation
of a Courier or "fixed" font.

elvis 2.0's X11 interface supports multiple fonts and colors, a blinking cursor that
changes shape to indicate your editing mode (insert vs. command), a scrollbar,
and mouse actions. The mouse can be used for selecting text, cutting and pasting
between applications, and performing tag searches.

elvis 2.1 adds a configurable toolbar, dialogue windows, a status bar, and the -
client flag. It also works better on monochrome X terminals.

Because elvis 2.1 has a significantly improved X11 interface over 2.0, and
because it should be released by the time this book is published, details in the
rest of this section apply to it. A number of features, several command-line
options, and the ability to configure elvis via X resources are all missing from
Version 2.0.

10.6.1 The Basic Window

The basic elvis window is shown in Figure 10.1.

Figure 10.1. The elvis GUI window

elvis provides a separate text search pop-up dialogue box, which is shown in
Figure 10.2.

Figure 10.2. The elvis search dialogue

The look and feel are intended to resemble Motif, but elvis doesn't actually use
the Motif libraries.

Command-line options let you choose the four different fonts that elvis uses,
normal, italic, bold, and "control," which is the font for the toolbar text and button
labels. You may also specify foreground and background colors, the initial window
geometry, and whether elvis should start out iconified.

The new -client option causes elvis to look for an already running elvis process,
and send it a message requesting it to start editing the files named on the
command line. Doing it this way allows you to share yanked text and other
information between the files elvis is currently editing and the new files.

Besides the toolbar, there is also a status bar that displays status messages and
any available information about toolbar buttons.

10.6.2 Mouse Behavior

The mouse behavior tries to strike a balance between xterm(1) and what makes
sense for an editor. To do this correctly, elvis distinguishes between clicking and
dragging.

Dragging the mouse always selects text. Dragging with button 1 pressed (usually
the left button) selects characters, dragging with button 2 (the middle button)
selects a rectangular area, and dragging with button 3 (usually the right button)
selects whole lines. These operations correspond to elvis' v, ^V, and V commands,
respectively. (These commands are described later in this chapter.) When you
release the button at the end of the drag, the selected text is immediately copied
into an X11 cut buffer, so you can paste it into another application such as xterm.
The text remains selected, so you can apply an operator command to it.

Clicking button 1 cancels any pending selection, and moves the cursor to the
clicked-on character. Clicking button 3 moves the cursor without canceling the
pending selection; you use this to extend a pending selection.

Clicking button 2 "pastes" text from the X11 cut buffer (like xterm). If you're
entering an ex command line, the text will be pasted into the command line as
though you had typed it. If you're in visual command mode or input mode, the
text will be pasted into your edit buffer. When pasting, it doesn't matter where
you click in the window; elvis always inserts the text at the position of the text
cursor.

Double-clicking button 1 simulates a ^] keystroke, causing elvis to perform tag
lookup on the clicked-on word. If elvis happens to be displaying an HTML
document, then tag lookup pursues hypertext links, so you can double-click on
any underlined text to view the topic that describes that text. Double-clicking
button 3 simulates a ^T keystroke, taking you back to where you did the last tag
lookup.

10.6.3 The Toolbar

The X11 interface supports a user-configurable toolbar. By default, the toolbar is
enabled unless your ~/.exrc file has a set notoolbar command.

The default toolbar already has some buttons defined. You use the :gui
command to reconfigure the toolbar.

There are a number of commands. In particular, you can reconfigure the toolbar
to suit your tastes, deleting one or all of the existing buttons, adding new ones,
and controlling the spacing between buttons or groups of buttons. Here is a
simple example:

:gui Make:make
:gui Make " Rebuild the program
:gui Quit:q
:gui Quit?!modified

These commands add two new buttons. The first line adds a button named
"Make," which will execute the :make command when pressed. (The :make
command is described later in this chapter.) The second line adds descriptive text

for the "Make" button that shows up in the status line when the button is pressed.
In this case, the " does not start a comment; rather it is an operator for the :gui
command.

The second button, named "Quit," is created by the third line. It exits the
program. The fourth line changes its behavior. If the condition (!modified) is
true, the button will behave normally. But if it's false, the button will ignore any
mouse clicks, and it will also be displayed as being "flat," instead of having the
normal 3-D appearance. Thus, if the current file is modified, you won't be able to
use the "Quit" button to exit.

You can create pop-up dialogues that appear when a toolbar button is pressed.
The dialogue can set the value(s) of pre-defined variables (options) that can then
be tested from the ex command associated with the button. There are 26 pre-
defined variables, named a-z, that are set aside for user "programs" of this sort
to use. This example associates a dialogue with a new button named "Split":

:gui Split"Create a new window, showing a given file
:gui Split;"File to load:" (file) f = filename
:gui Split:split (f)

The first command associates descriptive text with the "Split" button. The second
command creates the pop-up dialogue: its prompt is File to load: and it will set
the filename option. The (file) indicates that any string may be entered, but
that the TAB key may be used for filename completion. The f = filename copies
the value of filename into f. Finally, the third command actually executes the
:split command on the value of f, which will be the new filename supplied by
the user.

The facility is quite flexible; see the online help for the full details.

10.6.4 Options

A large number of options control the X11 interface. You typically set these in
your .exrc file. There are options and abbreviations for setting the various fonts,
enabling and configuring the toolbar, status bar, scrollbars, and the cursor. Other
options control the cursor's behavior when you switch windows with ^W ^W and
whether the cursor goes back to the original xterm when elvis exits.

The online documentation describes all of the X11-related ex options. Here, we
describe some of the more interesting ones:

autoiconify

Normally, when the ^W ^W command switches focus to an iconified
window, that window is de-iconified. When autoiconify is true, elvis will
iconify the old window, so that the number of open elvis windows remains
constant.

blinktime

The value is a number between 1 and 10 that indicates for how many
tenths of a second the cursor should be visible and then invisible. A value
of 0 disables blinking.

firstx , firsty , stagger

firstx and firsty control the position of the first window that elvis
creates. If not set, the -geometry option or the window manager controls
placement. If stagger is set to a non-zero value, any new windows are
created that many pixels down and to the right of the current window.
Setting it to zero lets the window manager to do the placement.

outlinemono

When set, elvis provides a white outline around characters when using a
monochrome X display. This makes text easier to read. The value can
range from 0 for no outline to 3 for the heaviest; the default is 2. This
option has no effect on color displays.

stopshell

Stores a command which runs an interactive shell, for the :shell and
:stop ex commands, and the ^Z visual command. The default value is
xterm &, which starts an interactive terminal emulator in another window.

xscrollbar

Values left and right place the scrollbar on the indicated side of the
window, while none disables the scrollbar. The default is right.

elvis 2.1 adds the ability to be configured via X resources. The resource values
can be overridden by command-line flags, or by explicit :set or :color
commands in the initialization scripts. elvis's resources are listed in Table 10.4.

Table 10.4. elvis X Resources
Resource Class Default

(Name is lowercase of class) Type Value
Elvis.Toolbar Boolean true
Elvis.Statusbar Boolean true
Elvis.Font Font fixed
Elvis.Geometry Geometry 80x34
Elvis.Foreground Color black
Elvis.Background Color gray90
Elvis.MultiClickTimeout Timeout 3
Elvis.Control.Font Font variable
Elvis.Cursor.Foreground Color red
Elvis.Cursor.Selected Color red
Elvis.Cursor.BlinkTime Timeout 3
Elvis.Tool.Foreground Color black
Elvis.Tool.Background Color gray75
Elvis.Scrollbar.Foreground Color gray75
Elvis.Scrollbar.Background Color gray60
Elvis.Scrollbar.Width Number 11

Elvis.Scrollbar.Repeat Timeout 4
Elvis.Scrollbar.Position Edge right

The "Timeout" type gives a time value, in tenths of a second. The "Edge" type
gives a scrollbar position, one of left, right, or none.

For example, if your X resource database contains the line elvis.font: 10x20,
the default text font would be 10x20. This value would be used if the normalfont
option was unset.

10.7 Extended Regular Expressions

Extended regular expressions were introduced in Section 8.4. The additional
metacharacters available in elvis are:

\+

Matches one or more of the preceding regular expressions.

\?

Matches zero or one of the preceding regular expressions.

\@

Matches the word under the cursor.

\=

Indicates where to put the cursor when the text is matched. For instance,
hel\=lo would put the cursor on the second l in the next occurrence of
hello.

\{...\}

Describes an interval expression, such as x\{1,3\} to match x, xx, or xxx.

POSIX bracket expressions (character classes, etc.) are not available,[2] nor is
alternation with the | character or grouping with parentheses.

[2] Well, in elvis 2.0 they're there, they just don't work. This is fixed in elvis 2.1.

10.8 Improved Editing Facilities

This section describes the features of elvis that make simple text editing easier
and more powerful.

10.8.1 Command-Line History and Completion

Everything you type on the ex command line is saved in a buffer named Elvis
ex history. This is accessible like any other elvis buffer, but is not directly useful
when just viewed in a window.

In order to access the history, you use the arrow keys on your terminal to display

previous commands and to edit them. Use and to page through the list, and
and to move around on a command line. You can insert characters by typing

and erase them by backspacing over them. Much as when editing in a regular vi
buffer, the backspace does remove the characters, but the line is not updated as
you type, so be careful!

When entering text into the Elvis ex history buffer (i.e., on the colon
command line), the TAB key can be used for filename expansion. The preceding
word is assumed to be a partial filename, and elvis searches for all matching files.
If there are multiple matches, it fills in as many characters of the name as
possible, and then beeps; or, if no additional characters are implied by the
matching filenames, elvis lists all matching names and redisplays the command
line. If there is a single match, elvis completes the name and appends a tab
character. If there are no matches, elvis simply inserts a tab character.

To get a real tab character, precede it with a ^V. You can also disable filename
completion entirely by setting the Elvis ex history buffer's inputtab option to
tab, via the following command:

:(Elvis ex history)set inputtab=tab

10.8.2 Tag Stacks

Tag stacking is described in Section 8.5.3. In elvis, tag stacking is very
straightforward, as shown in Table 10.5 and Table 10.6.

Table 10.5. elvis Tag Commands
Command Function

ta[g][!]
[tagstring]

Edit the file containing tagstring as defined in the tags file. The !
forces elvis to switch to the new file if the current buffer has
been modified but not saved.

stac[k] Display the current tag stack.

po[p][!] Pop a cursor position off the stack, restoring the cursor to its
previous position.

Table 10.6. elvis Command Mode Tag Commands
Command Function

^]
Look up the location of the identifier under the cursor in the tags file,
and move to that location. The current location is automatically pushed
onto the tag stack.

^T Return to the previous location in the tag stack, i.e., pop off one
element.

Unlike traditional vi, when you type ^], elvis looks up the entire word containing
the cursor, not just the part of the word from the cursor location forward.

In HTML mode (discussed in Section 10.10.1), the commands all work the same
except that :tag expects to be given a URL instead of a tag name. URLs don't
depend on having a tags file, so the tags file is ignored when in HTML mode. elvis

2.0 doesn't support any network protocols,[3] so its URLs can only consist of a file
name and/or an HTML #label.

[3] This is no longer true in elvis 2.1; see Section 10.11 for details.

Several :set options affect how elvis works with tags, as described in Table 10.7.

Table 10.7. elvis Options for Tag Management
Option Function

taglength,
tl

Control the number of significant characters in a tag that is to be
looked up. The default value of zero indicates that all characters are
significant.

tags,
tagpath

The value is a list of directory and/or filenames in which to look for
tags files. elvis looks for a file named tags in any entry that is a
directory. Entries in the list are colon-separated (or semicolon on
DOS/Windows), in order to allow spaces in directory names. The
default value is just "tags", which looks for a file named tags in the
current directory. This can be overridden by setting the TAGPATH
environment variable.

tagstack When set to true, elvis stacks each location on the tag stack. Use
:set notagstack to disable tag stacking.

Version 2.1 of elvis (in beta test as of this writing) supports the extended tags file
format described earlier. elvis comes with its own version of ctags. The version in
elvis 2.1 generates the enhanced format described earlier. Here is an example of
the special !_TAG_ lines it produces:

!_TAG_FILE_FORMAT 2 /supported features/
!_TAG_FILE_SORTED 1 /0=unsorted, 1=sorted/
!_TAG_PROGRAM_AUTHOR Steve Kirkendall /kirkenda@cs.pdx.edu/
!_TAG_PROGRAM_NAME Elvis Ctags //
!_TAG_PROGRAM_URL ftp://ftp.cs.pdx.edu/pub/elvis/README.html
//
!_TAG_PROGRAM_VERSION 2.1 //

Finally, in elvis, each window has its own tag stack.

10.8.3 Infinite Undo

With elvis, before being able to undo and redo multiple levels of changes, you
must first set the undolevels option to the number of levels of "undo" that elvis
should allow. A negative value disallows any undoing (which is not terribly
useful). The elvis documentation warns that each level of undo uses around 6K
bytes of the session file (the file that describes your editing session), and thus
can eat up disk space rather quickly. It recommends not setting undolevels any
higher than 100 and "probably much lower."

Once you've set undolevels to a non-zero value, you enter text as normal. Then
each successive u command undoes one change. To redo (undo the undo), you
use the (rather mnemonic) CTRL-R command.

In elvis, the default value of undolevels is zero, which causes elvis to mimic
UNIX vi. The option applies per buffer being edited; see Section 10.4.2 for a
description of how to set it for every file that you edit.

Once undolevels has been set, a count to either the u or ^R commands undoes
or redoes the given number of changes.

10.8.4 Arbitrary Length Lines and Binary Data

elvis can edit files with arbitrary length lines, and with an arbitrary number of
lines.

Under UNIX, elvis does not treat a binary file differently from any other file. On
other systems, it uses the elvis.brf file to set the binary option. This avoids
newline translation issues. You can enter eight-bit text by typing ^X followed by
two hexadecimal digits. Using the hex display mode is an excellent way to edit
binary files. (The elvis.brf file and the hex display mode are described in Section
10.10.)

10.8.5 Left-Right Scrolling

As mentioned in Section 8.6.4, you enable left-right scrolling in elvis using :set
nowrap. The value of sidescroll controls the number of characters by which
elvis shifts the screen when scrolling left to right. The ^W S command toggles the
value of this option.

10.8.6 Visual Mode

elvis allows you to select regions one character at a time, one line at a time, or
rectangularly, using the commands shown in Table 10.8.

Table 10.8. elvis Block Mode Command Characters
Command Function

v Start region selection, character at a time mode.
V Start region selection, line at a time mode.
^V Start region selection, rectangular mode.

elvis highlights (using reverse video) the text as you are selecting. To make your
selection, simply use the normal motion keys. The screen below shows a
rectangular region:

The 6th edition of <citetitle>Learning the vi Editor</citetitle>
brings the book into the late 1990’s.

In particular, besides the “original” version of

<command>vi</command> that comes as a standard part of every UNIX

system, there are now a number of freely available
“clones”
or work-alike editors.

elvis only permits a few operations on selected areas of text. Some operations
work only on whole lines, even if you've selected a region that does not contain
whole lines (see Table 10.9).

Table 10.9. elvis Block Mode Operations
Command Operation
c, d, y Change, delete, or yank text. Only d works exactly on rectangles.

<, >, ! Shift text left or right, filter text. These operate on the whole lines
containing the marked region.

After using the d command to delete the region, the screen now looks like this:

The 6th edition of <citetitle>Learning the vi Editor</citetitle>
brings the 90’s.
In particulo;original” version of
<command>vi as a standard part of every
system, there are n available “clones”
or work-alike editors.

10.9 Programming Assistance

elvis' programming assistance capabilities are described in this section.

10.9.1 Edit-Compile Speedup

elvis provides commands that make it easier to stay within the editor while
working on a program. You can recompile a single file, rebuild your entire
program, and work through compiler errors one at a time. The elvis commands
are summarized in Table 10.10.

Table 10.10. elvis Program Development Commands
Command Option Function

cc[!] [args] ccprg Run the C compiler. Useful for recompiling an
individual file.

mak[e][!] [args] makeprg Recompile everything that needs recompiling (usually
via make(1)).

er[rlist][!]
[file] Move to the next error's location.

The cc command recompiles an individual source file. You run it from the colon
command line. For example, if you are editing the file hello.c, and you type :cc,
elvis will compile hello.c for you.

If you supply additional arguments to the :cc command, those arguments will be
passed on to the C compiler. In this case, you need to supply all the arguments,
including the filename.

The :cc command works by executing the text of the ccprg option. The default
value is "cc ($1?$1:$2)". elvis sets $2 to the name of the current source file,
and $1 to the arguments you give to the :cc command. The value of ccprg thus
uses your arguments if they are present; otherwise, it just passes the current
file's name to the system cc command. (You can, of course, change ccprg to suit
your taste.)

Similarly, the :make command is intended to recompile everything that needs
recompiling. It does this by executing the contents of the makeprg option, which
by default is "make $1". Thus, you could type :make hello to make just the hello
program, or just :make to make everything.

elvis captures the output of the compile or make, and looks for things that look
like filenames and line numbers. When it finds likely candidates, it treats them as
such, and moves to the location of the first error. The :errlist command moves
to each successive error location, in turn. elvis displays the error message text in
the status line as you move to each location.

If you supply a filename argument to :errlist, elvis will load a fresh batch of
error messages from that file, and move to the location of the first error.

The vi mode command * (asterisk) is equivalent to :errlist. This is more
convenient to use when you have a lot of errors to step through.

Finally, one really nice feature is that elvis compensates for changes in the file. As
you add or delete lines, elvis keeps track, so that when you go to the next error,
you end up on the correct line, which is not necessarily the one with the same
absolute line number as in the compiler's error message.

10.9.2 Syntax Highlighting

To cause elvis to do syntax highlighting, use the :display syntax command.
This is a per-window command. (The other elvis display modes are described in
Section 10.10.1.) elvis displays text in up to six different fonts: normal, bold,
italic, underlined, emphasized, and fixed. (These can be abbreviated to a single
letter.) The syntax display modes use the following options to associate fonts with
various parts of the syntax:

• commentfont: The font (normal, italic, etc.) to use for programming
language comments

• functionfont: The font to use for identifiers that are function names
• keywordfont: The font to use for programming language keywords
• prepfont: The font to use for C and C++ preprocessor directives
• stringfont: The font to use for string constants (such as "Don't panic!"

in Awk)
• variablefont: The font to use for variables, fields, and so on
• otherfont: The font to use for things that don't fall into the other

categories but that should not be displayed in the normal font (e.g., type
names defined with the C typedef keyword)

The description of each language's comments, functions, keywords, etc., is stored
in the elvis.syn file. This file comes with a number of specifications in it already.
As an example, here is the syntax specification for Awk:

Awk. This is actually for Thompson Automation's AWK compiler,
which is
somewhat beefier than the standard AWK interpreter.
language tawk awk
extension .awk
keyword BEGIN BEGINFILE END ENDFILE INIT break continue do else for
function
keyword global if in local next return while
comment #
function (
string "
regexp /
useregexp (,~
other allcaps

The format is mostly self-explanatory, and is fully documented in the elvis online
documentation.

The reason elvis associates fonts with different parts of a file's syntax is its ability
to print files as they're shown on the screen (see the discussion of the :lpr
command in Section 10.10.1).

In addition to specifying the font to use for each kind of item, you can associate a
color with each kind of font (normal, italic, and so on). This is done with the
:color command.

On a non-bitmapped display such as the Linux console, all of the fonts map into
the one used by the console driver. This makes it rather difficult to distinguish
normal from italic, for example. However, on some displays (such as the Linux
console), you can still change the color of the different fonts. If you have a Linux
system with elvis, use it to edit a convenient C source file, and then issue the
following commands:

:display syntax
:color normal white
:color bold yellow
:color emphasized green
:color italic cyan
:color fixed red

Your screen will change to highlight C keywords in yellow, comments in light blue,
preprocessor directives in green, and character and string constants in red. We
regret that we can't reproduce the effect here in print.

In elvis, the syntax colors are per-window attributes. You can change the color for
the italic font in one window, and it will not affect the color for the italic font in
another window. This is true even if both windows are showing the same file.

Syntax coloring makes program editing much more interesting and lively. But you
have to be careful in your choice of colors!

10.10 Interesting Features

elvis has a number of interesting features:

Internationalization support

Like nvi, elvis also has a home-grown method for allowing translations of
messages into different languages. The elvis.msg file is searched for along
the elvispath and loaded into a buffer named Elvis messages.

Messages have the form "terse message:long message." Before printing a
message, elvis looks up the terse form, and if there is a corresponding
long form, that message is used. Otherwise, the terse message is used.

Display modes

This is perhaps the most interesting of elvis' features. For certain kinds of
files, elvis formats the file content on the screen, giving a surprisingly
good approximation of a WYSIWYG effect. elvis can also use the same
formatting for printing the buffer to several kinds of printers. Display
modes get their own subsection, below.

Pre- and post-operation command files

elvis loads four files (if they exist), that allow you to customize its
behavior before and after reading and writing a file. This feature also gets
its own subsection, below.

Open mode

elvis is the only one of the clones that actually implements vi's open
mode. (Think of open mode as like vi, but with only a one-line window.
The "advantage" to open mode is that it can be used on terminals that
don't have cursor motion capabilities.)

Security

The :safer command sets the safer option for execution of non-home-
directory .exrc files, or any other untrusted files. When safer is set,
"certain commands are disabled, wildcard expansion in filenames is
disabled, and certain options are locked (including the safer option
itself)". The elvis documentation is no more specific than this; don't blindly
trust elvis to provide complete security for you.

Built-in calculator

elvis extends the ex command language with a built-in calculator
(sometimes referred to as an expression evaluator in the documentation).
It understands C expression syntax, and is most used in the :if, :calc,
and :eval commands. See the online help for the details, as well as the
sample initialization files in the elvis distribution for examples.

Macro debugger (2.1)

elvis 2.1 has a debugger for vi macros (the :map command). This can be
useful when writing complicated input or command maps.

10.10.1 Display Modes

elvis has several display modes. Depending on the kind of file, elvis produces a
formatted version of the file, producing a WYSIWYG effect. The display modes are
outlined in Table 10.11.

Table 10.11. elvis Display Modes
Mode Display Appearance
normal No formatting, displays your text as it exists in the file.
syntax Like normal, but with syntax coloring turned on.

hex An interactive hex dump, reminiscent of mainframe hex dumps. This is
good for editing binary files.

html A simple Web page formatter. The tag commands can be used to follow
links and return.

man Simple man page formatter. Like the output of nroff -man.

The :normal command will switch the display from one of the formatted views to
normal mode. Use :display mode to switch back. As a shortcut, the ^W d
command will toggle the display modes for the window.

Of the available modes, html and man are the most WYSIWYG in nature. The
online documentation clearly defines the subset of both markup languages that
elvis understands.

elvis uses the html mode for displaying its online help, which is written in HTML
and has many cross-referencing links within it.

The example below shows elvis editing one of the HTML help files. The screen is
split. Both windows show the same buffer; the bottom window is using the html
display mode, while the top is using the normal display mode:

<html><head>
<title>Elvis 2.0 Sessions</title>
</head><body>

<h1>10. SESSIONS, INITIALIZATION, AND RECOVERY</h1>

This section of the manual describes the life-cycle of an
edit session. We begin with the definition of an
edit session and
what that means to elvis.
This is followed by sections discussing
initialization
and recovery after a crash.

10.0 SESSIONS, INITIALIZATION, AND RECOVERY

 This section of the manual describes the life-cycle of an

 edit session. We begin with the definition of an edit
 session and what that means to elvis. This is
 followed by sections discussing initialization and
 recovery after a crash.

 10.1 Sessions

The man mode is also interesting, since normally you have to format and print a
man page to be sure you've done a decent job of laying it out. The following
quote from the online help seems appropriate.

Troff source was never designed to be interactively edited, and although I did the
best I could, attempting to edit in man mode is still a disorienting experience. I
suggest you get in the habit of using normal mode when making changes, and
man mode to preview the effect of those changes. The ^W d command makes
switching between modes a pretty easy thing to do.

As an interesting adjunct, both the html and man modes also work with the
:color command described in Section 10.9.2. This is particularly nice with man
mode. For example, by default on a Linux console, only bold text (.B) is
distinguishable from normal text. But with syntax coloring on, both bold and italic
(.I) text become distinct. The mode commands are summarized in Table 10.12.

Table 10.12. elvis Display Mode Commands
Command Function

di[splay] [mode
[lang]]

Change the display mode to mode. Use lang for syntax
mode.

no[rmal] Same as :display normal, but much easier to type.

Associated with each window is the bufdisplay option, which should be set to
one of the supported display modes. The standard elvis.arf file (see the next
subsection) will look at the extension of the buffer's filename and attempt to set
the display to a more interesting mode than normal.

Finally, elvis can also apply its WYSIWYG formatting to printing the contents of a
buffer. The :lpr command formats a line range (or the whole buffer, by default)
for printing. You can print to a file or down a pipe to a command. By default, elvis
prints to a pipe that executes the system print spooling command.

The :lpr command is controlled by several options, described in Table 10.13.

Table 10.13. elvis Options for Print Management
Option Function

lptype, lp The printer type.

lpconvert,
lpcvt If set, convert Latin-8 extended ASCII to PC-8 extended ASCII.

lpcrlf, lpc The printer needs CR-LF to end each line.

lpout, lpo The file or command to print to.

lpcolumns, The printer's width.

lpcols
lpwrap, lpw Simulate line wrapping.

lplines, lprows The length of the printer's page.

lpformfeed,
lpff Send a form-feed after the last page.

lppaper, lpp The size of the paper (letter, a4, etc.). This only matters for
PostScript printers.

Most of the options are self-explanatory. elvis supports several printer types, as
described in Table 10.14.

Table 10.14. Values for the lptype Option
Name Printer Type
ps PostScript, one logical page per sheet of paper.
ps2 PostScript, two logical pages per sheet of paper.
epson Most dot-matrix printers, no graphic characters supported.
pana Panasonic dot-matrix printers.
ibm Dot-matrix printers with IBM graphic characters.
hp Hewlett-Packard printers, and most non-PostScript laser printers.
cr Line printers, overtyping is done with carriage-return.

bs Overtyping is done via backspace characters. This setting is the closest to
traditional UNIX nroff.

dumb Plain ASCII, no font control.

If you have a PostScript printer, by all means use an lptype of ps or ps2. Use the
latter to save paper, which is particularly handy when printing drafts.

10.10.2 Pre- and Post-Operation Control Files

elvis gives you the ability to control its actions at four points when reading and
writing files: before and after reading a file, and before and after writing a file. It
does this by executing the contents of four ex scripts at those respective points.
These scripts are searched for using the directories listed in the elvispath
option.

elvis.brf

This file is executed Before Reading a File. The default version looks at the
file's extension, and attempts to guess whether or not the file is binary. If
it is, the binary option is turned on, to prevent elvis from converting
newlines (which may be actual CR-LF pairs in the file) into linefeeds
internally.

elvis.arf

This file is executed After Reading a File. The default version examines the
file's extension in order to turn on syntax highlighting.

elvis.bwf

This file is executed Before Writing a File, in particular, before completely
replacing an original file with the contents of the buffer. The default
version implements copying the original file to a file with a .bak extension.
You must set the backup option for this to work.

elvis.awf

This file is executed After Writing a File. There is no default file for this,
although it might be a good place to add hooks into a source code control
system.

The use of command files to control these actions is quite powerful. It allows you
to easily tailor elvis' behavior to suit your needs; in other editors these kinds of
features are much more hardwired into the code.

10.11 elvis Futures

At the time of this writing, elvis 2.1 is in late beta-test, and it will probably be
released by the time this book hits the bookstore. Steve Kirkendall has graciously
supplied the following list of changes and new features that will be in elvis 2.1:

• Under Windows 95 and Windows/NT, there is now a graphical version of
elvis. This is in addition to the text-mode port that was included in 2.0.

• A text-mode OS/2 port has been added.
• In X Windows, there is now a status bar and a configurable toolbar. The

toolbar can invoke configurable dialogue windows. Also, many of the X
features take their defaults from the standard X resource database. New
command-line flags include -mono, -fork, and -client.

• The DOS version offers mouse support, similar to that of X Windows.
• elvis 2.1 supports the enhanced tags format described at length in Section

8.5.1.

elvis 2.1 does some innovative things with tags. When reading overloaded
tags, it tries to guess which one you're looking for, and presents the most
likely one first. If you reject it (by hitting ^] again, or typing :tag again),
then it presents you with the next most likely match, and so on. It also
notes the attributes of the tags that you reject or accept, and uses those
to improve its guessing heuristic for later searches.

The :tag command's syntax has been extended to allow you to search for
tags by features other than just the tag name. This is powerful, but too
complex to describe here [in Steve Kirkendall's email message]. There's a
whole chapter in the manual [online help] that describes the use of tags.

There is also a :browse command which finds all matching tags at once,
and builds an HTML table from them. From this table, you can follow
hypertext links to any matching tags you want.

Finally, elvis 2.1 has a new tagprg option which, if set, discards the built-
in tag searching algorithm and instead runs an external program to
perform the search.

• The visual % command has been extended to recognize #if, #else, and
#endif directives if you're using the syntax display mode.

• A new tex display mode has been added. It is not programmable, but is
still somewhat useful.

• The ^W d command is a little smarter in 2.1 than it was in 2.0. Now it will
toggle between syntax and any of the fancy formatting display modes
(html, man, tex) if that's appropriate. This makes editing web pages a
little more convenient.

• elvis can fetch files via HTTP or FTP. It can also write via FTP. Simply give
a URL wherever elvis expects a filename. To access your own account on
an FTP site (instead of the anonymous account), the directory name
portion of the URL must begin with /~—elvis will read your ~/.netrc file to
find the right name and password. The html display mode makes good use
of these features! (By the way, the network functions work in Windows
and OS/2, too.)

• For the sake of POSIX compliance, the command-line flags have changed.
-s used to set the safer flag for extra security, but now it causes elvis to
read a script from stdin and execute it. [This matches nvi. A.R.] Use an
uppercase -S to set safer now.

• A new -o filename flag has been added so you can redirect the startup
messages out to a file, instead of stdout/stderr. This is of critical
importance to Windows 95 and Windows NT users because Windows
discards anything written to stdout/stderr, which made WinElvis
configuration problems almost impossible to diagnose. With -o filename
you can send the diagnostic info to a file and view it later.

• A new :alias command has been added, for defining ex macros. It is
intended to resemble the csh alias command.

• elvis 2.0 implemented the POSIX named character classes (in regular
expressions) incorrectly. elvis 2.1 fixes that. For example, you can search
for a C identifier via /\<[[:alpha:]_][[:alnum:]_]*.

10.12 Sources and Supported
Operating Systems

The official WWW location for elvis is ftp://ftp.cs.pdx.edu/pub/elvis/README.html
. From there, you can download the elvis distribution or get it directly using ftp
from ftp://ftp.cs.pdx.edu/pub/elvis/elvis-2.0.tgz .

The source code for elvis is freely distributable. The licensing terms are described
in the COPYING file in the distribution, and they permit distribution in source and
binary form. elvis 2.1 will be distributed under the terms of perl's Artisitc License.

elvis works under UNIX, MS-DOS, Windows 95, and Windows NT. As of this
writing, a port to OS/2 is in progress, but is not yet integrated into the sources
(but see the previous section).

Compiling elvis is straightforward. Retrieve the distribution via ftp or via a web
browser. Uncompress and untar it,[4] run the configure program, and then run
make:

[4] The untar.c program available from the elvis ftp site is a very portable, simple program for unpacking
gzip'ed tar files on non-UNIX systems.

$ gzip -d < elvis-2.0.tgz | tar -xvpf -
...
$ cd elvis-2.0; ./configure
...

$ make
...

elvis should configure and build with no problems. Use make install to install it.

In elvis 2.0, on Linux systems using GCC, you
should recompile the file lp.c without optimization.
Otherwise, at least in our experience, elvis tends to
core dump when using the :lpr command to format
and print the contents of an edit buffer.

Should you need to report a bug or problem in elvis, the person to contact is
Steve Kirkendall, at kirkenda@cs.pdx.edu .

Chapter 11. vim—vi Improved

vim stands for "Vi Improved." It was written by Bram Moolenaar,
who continues to maintain it. Today, vim is perhaps the most widely
used vi clone, and there exists a separate Internet domain
(vim.org) dedicated to it. Various versions of vim were used for
most of the work updating this book; much of the later work was
done with Version 5.0. Version 5.1 became current as the updates
were finishing; this is mostly a bug fix release.

11.1 Author and History

This section is adapted from material supplied by Bram Moolenaar,
vim's author. We thank him.

Work on vim started when the author bought an Amiga computer.
Coming from the UNIX world, he started using a vi-like editor called
stevie. But it was far from perfect. Fortunately, it came with the
source code. This is where work on vim started. At first it was a
matter of making the editor more vi compatible and fixing bugs.
After a while the program became very usable, and vim Version
1.14 was published on Fred Fish disk 591 (a collection of free
software for the Amiga).

Other people began to use the program, liked it, and started helping
development. A port to UNIX was done, then later to MS-DOS and
other systems. vim became one of the most widely available vi
clones. More features were added gradually: multi-level undo,
multiwindowing, etc. Some features were unique to vim, but many
were inspired by other vi clones. The goal has always been to
provide the best for the user.

Today vim is one of the most full-featured of the vi-style editors
anywhere. The online help is extensive. (It is described in more
detail below.)

One of the more obscure features of vim is to be able to type from
right to left. This is useful for languages like Hebrew and Farsi. This
illustrates vim's versatility. In Version 5.0 the vi compatibility was
also improved, and the performance was further tuned. Being a
rock-stable editor, on which professional software developers can
rely, is another of vim's design goals. Crashing with vim is rare, and
when it happens you can recover your changes.

The development on vim continues. Plans for vim 6.0 include
support for folding (being able to hide part of the text, e.g., the
body of a function). The group of people helping to add features and

port vim to more platforms is growing. The quality of the ports to
different computer systems is increasing. The MS-Windows version
will get dialogues and a file-selector. This opens up the hard-to-
learn vi commands to a large group of users.

11.2 Important Command-Line Arguments

vim looks at how it was invoked to decide how it should behave. If
invoked as ex, it will operate as a line editor. It also allows the Q
command from vi mode to switch into ex mode. If invoked as view,
it will start in vi mode, but mark each file initially as being read-
only.

When invoked as gvim or gview, vim will start the GUI version,
under X Windows or in whatever other graphical interface is
appropriate. If a leading r is prepended to any of the names, vim
enters "restricted" mode, where certain actions are disabled.

vim has a large number of command-line options. The most useful
are described here:

-c command

Execute command upon startup. This is the POSIX version of
the historical +command syntax, but vim is not limited to
positioning commands. (The old syntax is also accepted.) You
can give up to ten -c commands.

-R

Start in read-only mode, setting the readonly option.

-r

Recover specified files, or if no files are listed on the
command line, list all the files that can be recovered.

-s

Enter batch (script) mode. This is only for ex, and is intended
for running editing scripts. This is the POSIX version of the
historic "-" argument.

-b

Start in binary mode. This sets a few options that make it
possible to edit a binary file.

-f

For the GUI version, stay in the foreground. This should be
used by programs that invoke vim and wait for it to finish,
such as mail handling programs.

-g

Start the GUI version of vim, if it has been compiled in.

-o [N]

Open N windows, if given, otherwise open one window for
each file argument.

-i viminfo

Read the given viminfo file for initialization, instead of the
default viminfo file.

-n

Do not create a swap file. Recovery will not be possible, but
this is useful for editing files on slow media, such as floppies.

-q filename

Treat filename as the "quick fix" file. This file should contain a
list of error messages that vim will use for navigating to the
location of each error in your program. Quick fix mode is
discussed in Section 11.9.1.

-u vimrc

Read the given vimrc file for initialization, and skip all other
normal initialization steps.

-U gvimrc

Read the given gvimrc file for GUI initialization, and skip all
other normal GUI initialization steps.

-Z

Enter restricted mode (same as having a leading r in the
name). You cannot start shell commands or suspend the
editor when this is in effect.

The -i, -n, -u and -U options are discussed in more detail below.
There are several more options; the interested reader is referred to
the online documentation for the full details.

11.3 Online Help and Other Documentation

vim comes with extensive and comprehensive online help. This help
is comprised of over 50 ASCII text files, totalling almost 25,500
lines of text!

The online help is hypertextual in nature; you use the tag
commands ^] and ^T to follow a reference and to go back to a
previous position. If you have a color display, using the help with
syntax coloring is particularly pleasant and effective.

The hypertext format is unique to vim; however the doc directory
contains a Makefile and awk scripts that convert the files into HTML
for perusal with a Web browser. (The html display mode in elvis
works just fine.) The point to start from would be help.html,
generated from help.txt, the starting point for the online help.

Also included, of course, is a UNIX man page for vim.

To start the help system, give the :help command. This splits the
screen. With no arguments, vim displays the help.txt file. With an
argument to :help, vim does its best to find the help on that topic.
In our experience, it does an excellent job. (This facility seems to
be built on top of the tags mechanism, which has been applied to
the text of the help files.)

11.4 Initialization

This section describes vim's initialization steps, including those
taken for the GUI versions of vim.

11.4.1 Initialization for All vim Invocations

vim performs the following initialization steps:

1. Set the shell and term options from the SHELL and TERM
environment variables, respectively. On MS-DOS and Win32,
use COMSPEC to set shell if SHELL is not set.

2. If -u was supplied, execute the given file, and skip the rest of
the startup file based initializations. The -s option has the
same effect for ex mode; only the -u option will be
interpreted. Use of -u NONE causes vim to skip all further
initializations.

3. Execute the system-wide vimrc file. The exact path is set
when vim is compiled. A typical value is
/usr/local/share/vim/vimrc.

4. Execute instructions in the first place that exists of the
following four:

o The environment variable VIMINIT.
o The user vimrc file, $HOME/.vimrc under UNIX (or

Linux). The location will be different on non-UNIX
systems. If .vimrc does not exist, vim looks for _vimrc.
On the non-UNIX systems, the order is reversed.

o The environment variable EXINIT.
o The user exrc file, $HOME/.exrc. On non-UNIX systems,

_exrc is tried. However, in this case, vim only looks for
one or the other, not both.

5. If the exrc option has been set, then vim looks in the current
directory for the first file that exists of the following four. The
others are ignored.

o .vimrc
o _vimrc
o .exrc
o _exrc

On MS-DOS and Win32 systems, the _xxxrc files are looked
for before the .xxxrc files.

6. If they have not yet been set, the shellpipe and shellredir
options are initialized based on the value of the shell option.
The shellredir option is discussed in Section 11.9.1.

7. If -n was given on the command line, updatecount is set to
zero. (This option controls how often the swap file is updated.
The more often, the more the swap file is synchronized with
all your changes, but possibly with decreased performance.
Zero means never.)

8. If -b was supplied, set the appropriate options for editing
binary files.

9. Perform GUI initializations. See the next subsection.
10. If viminfo is set, read the file indicated there.
11. If -q was supplied, read the named quick fix file. The

quick fix facility is described in Section 11.9.1.
12. Open and fill all windows, as per the -o option. If -q

was supplied, go to the first error.
13. Jump to the tag given by the -t option, if supplied.

Execute any commands given with -c.

That's a lot of steps. As in other areas, vim's extra facilities also
provide extra flexibility and customizability.

As for nvi, you can place common initialization actions into your
.exrc file (i.e., options and commands for UNIX vi and/or the other
clones), and have your .vimrc file execute :source .exrc before or
after the vim-specific initializations.

The viminfo file is much like the elvis session file. It can be used to
save a large part of the state of your editing session in between
logins. The viminfo file stores the following items:

• The command-line history
• The search string history
• Contents of registers
• File marks, pointing to locations in files
• Last search/substitute pattern (for n and &)

vim reads this file at startup, and when exiting, merges its current
state with the contents of the file and then rewrites it.

11.4.2 Initialization for the GUI

If running the GUI version of vim, usually vim will fork a new
process in order to run in the background, so that you can continue
to give commands to the parent shell. The -f option disables this
behavior.

If -U was supplied, vim executes the given file and skips the rest of
the GUI startup file based initializations. Use of -U NONE causes vim
to skip all further initializations.

Without -U, vim reads the system-wide gvimrc file (typically
/usr/local/share/vim/ gvimrc) and then the user gvimrc file,
$HOME/.gvimrc.

These files can be used to configure the GUI. In particular, you can
set up your own menus at this point.

11.5 Multiwindow Editing

There are a large number of vi mode commands for manipulating windows, as
well as a number of ex mode commands that correspond to most of the vi mode
commands.

As in elvis, the :split command will create a new window, and then you can use
the ex command :e filename to edit a new file in the new window. Also as in
elvis, CTRL-WCTRL-W will let you switch back and forth between windows.

<preface id="VI6-CH-0">
<title>Preface </title>

<para>
Text editing is one of the most common uses of any computer system,
and
<command>vi</command> is one of the most useful standard text editors
on your system.
With <command>vi</command> you can create new files, or edit any
existing UNIX text
file.

ch00.sgm
Makefile for vi book

Arnold Robbins

CHAPTERS = ch00_6.sgm ch00_5.sgm ch00.sgm ch01.sgm ch02.sgm ch03.sgm
\
 ch04.sgm ch05.sgm ch06.sgm ch07.sgm ch08.sgm
APPENDICES = appa.sgm appb.sgm appc.sgm appd.sgm

POSTSCRIPT = ch00_6.ps ch00_5.ps ch00.ps ch01.ps ch02.ps ch03.ps \
 ch04.ps ch05.ps ch06.ps ch07.ps ch08.ps \

Makefile

The split screen is the result of typing vim ch00.sgm followed by :split
Makefile.

Unlike nvi and elvis, all windows share the bottom line of the screen for execution
of ex commands. However, the status line for each file displays [+] if that file has
been modified. Options control the use of reverse video versus highlighting for
the status line, as well as whether the bottom window even has one. By default,
the bottom window has a status line when there's more than one window.

Table 11.1 describes the most important vim window management commands.

Table 11.1. vim Window Management Commands
Command Function

[N]sp[lit]
[position]
[file]

Splits the current window into two. N is the height of the new
window. position indicates where in the file to position the cursor.
If file is given, edit it in the new window, instead of the current
file.

[N]new
[position]
[file]

Creates a new window, editing an empty buffer. If file is given,
edit it instead of the empty buffer. N and position are the same
as for :split.

[N]sv[iew]
[position]
[file]

Same as :split, but set the readonly option for the buffer.

q[uit][!]

Quit the current window (exit if given in the last window). If this
is the last window on a changed buffer, the command fails,
unless the ! is given, in which case the changes are lost. When
the hidden option is set, the buffer is not freed, even with !.

clo[se][!]
Close the current window. Setting the hidden option will just hide
an unsaved buffer; if not set, the command fails. If supplied, the
trailing ! forces the window to be closed, even if it is the last

window and the buffer was modified.

hid[e]
Close the current window, if it is not the last one on the screen.
The buffer becomes hidden if this was the last window open upon
the buffer.

on[ly][!]

Make this window the only one on the screen. Other windows
with changes are not closed, unless hidden is set or ! is used. In
any case, changes are never lost; the other buffers become
hidden, but they are not discarded.

res[ize] [±n] Increase or decrease the current window height by n.

res[ize] [n] Set the current window height to n if supplied, otherwise, set it
to the largest size possible without hiding the other windows.

qa[ll][!] Exit vim. The ! forces an exit, even if some buffers have been
modified but not saved.

wqa[ll][!]

xa[ll][!]

Write all changed buffers and exit. The ! forces a write of
readonly buffers. vim will not exit if any buffer cannot be
written.

wa[ll][!] Write all modified buffers that have filenames. The ! forces a
write of readonly buffers.

[N]sn[ext] Split the window and move to the next file in the argument list,
or to the Nth file if a count is supplied.

sta[g]
[tagname]

Split the window and then run the :tag command as appropriate
in the new window.

There are many more commands for managing the argument list and the list of
open buffers. For example, the :all command creates one window for each
command line argument. See the vim online help for details. We have included
just the most useful of the commands in the above table.

As vim has the most ex commands, so too it has the most vi mode commands, as
shown in Table 11.2. As with most vi commands, you can prefix many of the
windowing commands with a count.

Table 11.2. vim Window Commands from vi Mode
Command Function
^W s
^W S
^W ^S

Same as :split without a file argument. ^W ^S may not work on all
terminals.

^W n
^W ^N Same as :new without a file argument.

^W ^
^W ^^

Perform :split #, split the window and edit the alternate file. With a
count, edit the nth buffer.

^W q
^W ^Q Same as the :quit command. ^W ^Q may not work on all terminals.

^W c Same as the :close command.
^W o
^W ^O Like the :only command.

^W
<DOWN>
^W ^J

Move cursor to nth window below the current one. n is supplied as a
prefix argument.

^W j
^W <UP>
^W ^K
^W k

Move cursor to nth window above the current one. n is supplied as a
prefix argument.

^W w
^W ^W

With count, go to nth window. Otherwise, move to the window below
the current one. If in the bottom window, move to the top one.

^W W With count, go to nth window. Otherwise, move to window above the
current one. If in the top window, move to the bottom one.

^W t
^W ^T Move the cursor to the top window.

^W b
^W ^B Move the cursor to the bottom window.

^W p
^W ^P Go to the most recently accessed (previous) window.

^W r
^W ^R

Rotate all the windows downwards. The cursor stays in the same
window.

^W R Rotate all the windows upwards. The cursor stays in the same
window.

^W x

^W ^X

Without count, exchange the current window with the next one. If
there is no next window, exchange with the previous window. With
count, exchange the current window with the nth window (first
window is 1). The cursor is put in the other window.

^W = Make all windows the same height.

^W - Decrease current window height. A preceding count indicates by how
much.

^W + Increase current window height. A preceding count indicates by how
much.

^W _

^W ^_

Set the current window size to the value given in a preceding count.
This is like :resize with an absolute count. Without a count, the
window is made as large as possible.

zNRETURN Set the current window height to N.
^W]

^W ^]

Split the current window. In the new upper window, use the identifier
under the cursor as a tag and go to it. A preceding count indicates the
new window's height.

^W f

^W ^F

Split the current window, and edit the file name under the cursor in
the new window. Rather complicated file searching is done for this
command, see :help ^W_f for details.

^W i

^W ^I

Open a new window and in it, move the cursor to the first line that
matches the keyword under the cursor. The search starts at the
beginning of the file, and lines that look like comments are ignored.
With a preceding count, go to the nth matching line, and don't ignore
comments.

^W d

^W ^D

Open a new window, with the cursor on the first macro definition line
that contains the keyword under the cursor. The search starts from
the beginning of the file. If a count is given, the countth matching line
is jumped to.

Miscellaneous remarks: The command ^W ^C does not close the current window,
since usually ^C is the interrupt character, which ends up cancelling the
command. If mouse support is enabled and you are using the GUI version of vim,
you can resize a window by dragging on its status line with the mouse. Finally,

vim has many options that control the behavior of the various commands. In
particular, check out the hidden, splitbelow, equalalways, winheight, and
cmdheight options. See the online help for full details.

11.6 GUI Interfaces

The screen shot and the explanation for this section were supplied by Bram
Moolenaar. We thank him.

The vim GUI is available for UNIX, with Athena and Motif interfaces, Windows 95
and Windows NT, and BeOS. GUI versions for the Amiga, VMS, and the Macintosh
are being worked on. A screen shot is shown in Figure 11.1.

Figure 11.1. The vim GUI window

The main advantage of the GUI version is that all colors can be used, without the
configuration problems that many terminal emulators have with color. The picture
shows the Motif version. What you can't see in the monochrome picture are the
various colors that are used to highlight items in the text. For example, the
comments are blue and strings are magenta.

The GUI window contains a menu at the top, one scrollbar for each window at the
right, and a scrollbar at the bottom for horizontal scrolling. Not only do the
scrollbars make it easy to browse through the file, they also give an indication of
the current position in the file.

The cursor is after the /free at the bottom line, which is a search command that
is being typed. The cursor is bright green, and is blinking. This makes it easy to

spot in between the colored text. The color and the blinking are configurable with
the guicursor option. When in insert mode, the cursor changes shape to a
vertical bar. In replace mode it becomes a half-height cursor. This makes it very
easy to recognize the current mode.

The top window contains a shell script, the middle a Makefile, the lower a C
program. They are all highlighted automatically when the file is opened. These
are three of the about 70 syntaxes that are supported by the distribution (see
Section 11.9.2).

All occurrences of to in the text are highlighted with a yellow background. This is
the hlsearch option in action. It shows matches of the last used search pattern.
This is very useful when you are searching for the places where a variable in your
source code is used. All matches are easily spotted, and the n command jumps to
each next match.

The reverse video free in the top window is the current match for the search
pattern that is being typed in the commandline. This shows the incsearch option
in action. Each time a character is typed for the pattern, the match will be
adjusted. The text is scrolled when necessary, to reveal a match further away.
Using this, you can directly see where the search command is taking you, and
adjust the pattern until you can see that it gets you where you wanted to go. This
is especially useful in noticing typing mistakes in the pattern.

What you don't see in the picture are the file browser and dialogues, which are
used when a command is selected from a menu. This is a new feature in vim
Version 5.2.[1] For example, the File/Save as menu will pop up a file browser,
where you can select the name of the file you want to write. If the file already
exists, a dialogue pops up which asks you if you want to overwrite the file or not.
This is much nicer than getting the Use ! to override error message. A
disadvantage is that you have to grab the mouse, and thus move your hand
between the keyboard and the mouse. If you don't want this, just don't use the
menus. You can disable the menu (and make space for some extra text) by
removing the m flag from the guioptions option.

[1] Version 5.2 is in beta release as this book goes to press. A.R.

One nice specialty of vim is that almost everything is configurable. This also
includes the menus. If you don't like the menus provided, you can define your
own. This works almost like defining a mapping. For example, this adds an
IDE/Make-n menu, to execute the :make -n command:

:amenu IDE.Make-n :make -n<CR>

To include a dot or space in a menu name, precede it with a backslash. To get the
same menu entry, but with a space before the -n:

:amenu IDE.Make\ -n :make -n<CR>

As you can see, the backslash is not needed in the argument, only in the menu
name. All this makes a nice GUI environment, while all the good old vi commands
still work as in the terminal version.

The online help fully describes all of the GUI options, and how to create your own
menus.

11.7 Extended Regular Expressions

Of all the clones, vim provides the richest set of regular expression matching
facilities. Much of the descriptive text in the list below is borrowed from the vim
documentation:

\|

Indicates alternation, house\|home.

\+

Matches one or more of the preceding regular expression.

\=

Matches zero or one of the preceding regular expression.

\{ n, m}

Matches n to m of the preceding regular expression, as much as possible.
n and m are numbers between 0 and 32000; vim requires only the left
brace to be preceded by a backslash, not the right brace.

\{ n}

Matches n of the preceding regular expression.

\{ n,}

Matches at least n of the preceding regular expression, as much as
possible.

\{, m}

Matches 0 to m of the preceding regular expression, as much as possible.

\{}

Matches 0 or more of the preceding regular expression, as much as
possible (same as *).

\{- n, m}

Matches n to m of the preceding regular expression, as few as possible.

\{- n}

Matches n of the preceding regular expression.

\{- n,}

Matches at least n of the preceding regular expression, as few as possible.

\{-, m}

Matches 0 to m of the preceding regular expression, as few as possible.

\i

Matches any identifier character, as defined by the isident option.

\I

Like \i, but excluding digits.

\k

Matches any keyword character, as defined by the iskeyword option.

\K

Like \k, but excluding digits.

\f

Matches any filename character, as defined by the isfname option.

\F

Like \f, but excluding digits.

\p

Matches any printable character, as defined by the isprint option.

\P

Like \p, but excluding digits.

\s

Matches a whitespace character (exactly space and tab).

\S

Matches anything that isn't a space or a tab.

\b

Backspace.

\e

Escape.

\r

Carriage return.

\t

Tab.

\n

Reserved for future use. Eventually, it will be used for matching multi-line
patterns. See the vim documentation for more details.

~

Matches the last given substitute (i.e., replacement) string.

\(...\)

Provides grouping for *, \+, and \=, as well as making matched sub-texts
available in the replacement part of a substitute command (\1, \2, etc.).

\1

Matches the same string that was matched by the first sub-expression in
\(and \). For example: \([a-z]\).\1 matches ata, ehe, tot, etc. \2, \3,
and so on may be used to represent the second, third, and so forth
subexpressions.

The isident, iskeyword, isfname, and isprint options define the characters
that appear in identifiers, keywords, and filenames, and that are printable. Use of
these options makes regular expression matching very flexible.

11.8 Improved Editing Facilities

This section describes the features of vim that make simple text editing easier
and more powerful.

11.8.1 Command-Line History and Completion

vim keeps a history of your ex commands, search strings, and expressions in its
extended command language. These are three separate histories. The size of
each is controlled by the history option; the default is 20. You may wish to
increase it in your .vimrc file, although vim does take steps to maintain only
unique commands.

To access the history, use the cursor key on the colon command line. This will

move backwards through the saved commands (most recent first). The key will
move forwards. You can move around on the command line using the and
keys. By default, text that you type is inserted into the command line. You can

use the INS (Insert) key on your keyboard to toggle this mode, in which case
what you type will replace what's on the command line. The BACKSPACE key will
erase characters.

You can use the SHIFT or CTRL key in combination with the and keys to
move the cursor left or right one word at time. This may or may not work on all
keyboards, though. You can use ^B or HOME to move the cursor to the beginning
of the command line, and ^E or END to move to the end of the command line.
The control key versions should always work.

The behavior of the ESC character can vary. If vim is in vi compatibility mode,
ESC acts likes RETURN and executes the command. When vi-compatibility is
turned off, ESC will exit the command line without executing anything.

vim also provides completion facilities on the ex command line. The wildchar
option contains the character that you type when you want vim to do a
completion. The default value is the tab character. You can use completion for all
of the following:

Command names

Available at the start of the command line.

Tag values

After you've typed :tag.

Filenames

When typing a command that takes a filename argument. When multiple
files match a pattern during filename completion, the value of the
suffixes option sets a priority among them, in order to pick the one vim
will actually use. (See :help suffixes for the details.)

Option values

When entering a :set command. This has two features: when typing the
name of the option itself, hitting TAB will complete the option name. You
can then type the = sign and hit TAB again, and vim will fill in the current
value of the variable.

Besides just the TAB key to do an expansion, a number of other control keys
provide additional functionality. Table 11.3 describes the commands and what
they do.

Table 11.3. vim Command-Line Completion Commands
Command Function

^D Lists the names that match the pattern. For filenames, directories
will be highlighted.

Value of
wildchar

(Default: tab) Performs a match, inserting the generated text. For
multiple matches, the first match is inserted. Hitting TAB
successively cycles among all the matches.

^N Go to next of multiple wildchar matches, if any; otherwise, recall
more recent history line.

^P Go to previous of multiple wildchar matches, if any; otherwise,
recall older history line.

^A Insert all names that match the pattern.

^L If there is exactly one match, insert it; otherwise, expand to the
longest common prefix of the multiple matches.

The completion facilities are extensive; see :help cmdline for the full details.
Besides command-line completion, vim also provides insert mode completion.

When typing text, especially in programs, the same words appear quite often.
vim has commands that search backwards or forwards for a match with a half-
finished word. For example, if you were typing this text and had entered ex,
giving the ^P command would have completed it to example. This is a nice way to
reduce the number of typed characters and to avoid spelling mistakes.

Completion works not only with words in the text where you are typing, you can
also fetch words from much further away. Table 11.4 shows an overview of the
relevant commands.

Table 11.4. vim Insert Mode Completion Commands
Command Function

^N Complete a word from the current buffer, searching forward
(mnemonic: next).

^P Complete a word from the current buffer, searching backward
(mnemonic: previous).

^X ^K Complete words from a dictionary.
^X ^I Complete words from included files.
^X ^D Complete a macro (defined word) from included files.
^X ^] Complete words from a tags file.
^X ^F Complete a filename.
^X ^L Complete a whole line from the current buffer.

See :help ins-completion for more details.

11.8.2 Tag Stacks

Tag stacking is described in Section 8.5.3. vim provides the richest set of facilities
for working with tags. Besides just the ability to stack tags, if there are multiple
matching tags, you can choose among them. You can also do a tag selection and
window splitting operation in one command. See Table 11.5 for a list of vim tag
commands.

Table 11.5. vim Tag Commands
Command Function

ta[g][!] [tagstring] Edit the file containing tagstring as defined in the tags
file. The ! forces vim to switch to the new file if the

current buffer has been modified but not saved. The file
may or may not be written out depending upon the
setting of the autowrite option.

[count]ta[g][!] Jump to the countth newer entry in the tag stack.

[count]po[p][!]
Pops a cursor position off the stack, restoring the cursor
to its previous position. If supplied, go to the countth
older entry.

tags Display the contents of the tag stack.

ts[elect][!]
[tagstring]

List the tags that match tagstring, using the information
in the tags file(s). If no tagstring is given, the last tag
name from the tag stack is used.

sts[elect][!]
[tagstring]

Like :tselect, but splits the window for the selected
tag.

[count]tn[ext][!] Jump to the countth next matching tag (default 1).

[count]tp[revious][!]
[count]tN[ext][!]

Jump to the countth previous matching tag (default 1).

[count]tr[ewind][!] Jump to the first matching tag. With count, jump to the
countth matching tag.

tl[ast][!] Jump to the last matching tag.

Normally, vim shows you which matching tag, out of how many, has been jumped
to:

tag 1 of >3

It uses a greater-than sign (>) to indicate that it has not yet tried all the matches.
You can use :tnext or :tlast to try more matches. If this message is not
displayed because of some other message, use :0tn to see it.

The output of the :tags command is shown below. The current location is marked
with a greater than sign (>):

TO tag FROM line in file
 1 1 main 1 harddisk2:text/vim/test
 > 2 2 FuncA 58 -current-
 3 1 FuncC 357 harddisk2:text/vim/src/amiga.c

The :tselect command lets you pick from more than one matching tag. The
"priority" (pri field) indicates the quality of the match (global versus static, exact
case versus case-independent, etc.); this is described more fully in the vim
documentation.

nr pri kind tag file ~
 1 F f mch_delay os_amiga.c
 mch_delay(msec, ignoreinput)
 > 2 F f mch_delay os_msdos.c
 mch_delay(msec, ignoreinput)
 3 F f mch_delay os_unix.c
 mch_delay(msec, ignoreinput)
Enter nr of choice (<CR> to abort):

The :tag and :tselect commands can be given an argument that starts with /.
In that case, this argument is treated as a regular expression. vim will find all the

tags that match the given regular expression.[2] For example, :tag /normal will
find the macro NORMAL, the function normal_cmd, and so on. Use :tselect
/normal and enter the number of the tag you want.

[2] Prior to Version 5.1, vim keyed its treatment of the :tag or :tselect argument as a regular expression
based on the presence or absence of special characters. The use of / disambiguates the process.

The vi command mode commands are described in Table 11.6. Besides using the
keyboard, as in the other editors, you can also use the mouse, if mouse support
is enabled in your version of vim.

Table 11.6. vim Command Mode Tag Commands
Command Function

^]
 g
<LeftMouse>
 CTRL-
<LeftMouse>

Look up the location of the identifier under the cursor in the tags
file, and move to that location. The current location is
automatically pushed onto the tag stack.

^T
Return to the previous location in the tag stack, i.e., pop off one
element. A preceding count specifies how many elements to pop
off the stack.

The vim options that affect tag searching are described in Table 11.7.

Table 11.7. vim Options for Tag Management
Option Function

taglength,
tl

Controls the number of significant characters in a tag that is to be
looked up. The default value of zero indicates that all characters
are significant.

tags

The value is a list of filenames in which to look for tags. As a
special case, if a filename starts with ./, the dot is replaced with
the directory part of the current file's pathname, making it possible
to use tags files in a different directory. The default value is
"./tags,tags".

tagrelative
When set to true (the default), and using a tags file in another
directory, filenames in that tags file are considered to be relative to
the directory where the tags file is.

The vim 5.1 distribution comes with Version 2.0.3 of the Exuberant ctags
program. As of this writing, this is the current version of Exuberant ctags.

vim can use emacs style etags files, but this is only for backwards compatibility;
the format is not documented in the vim documentation, nor is the use of etags
files encouraged.

Finally, like elvis, vim also looks up the entire word containing the cursor, not just
the part of the word from the cursor location forward.

11.8.3 Infinite Undo

In vim, being able to undo and redo multiple levels of changes is controlled by
the undolevels option. This option is a number indicating how many levels of
"undo" that vim should allow. A negative value disallows any undoing (which is
not terribly useful).

When undolevels is set to a non-zero value, you enter text as normal. Then each
successive u command undoes one change. To redo (undo the undo), you use the
(rather mnemonic) CTRL-R command.

vim is different from elvis; it starts out with a default value for undolevels of
1,000, which should be close enough to infinite for any given editing session.
Also, the option is global, and not per buffer.

Once undolevels has been set, a count to either the u or ^R commands undoes
or redoes the given number of changes.

vim actually implements undoing and redoing in two different ways. When the
cpoptions (compatibility options) option contains the letter u, the u command
works like in vi, and ^R repeats the previous action (like . in nvi). When u is
absent from cpoptions, u undoes one step and ^R redoes one step. This is easier
to use, but not vi-compatible.

11.8.4 Arbitrary Length Lines and Binary Data

vim does not have a limit on the number or lengths of lines. When editing a
binary file, you should either use the -b command-line option or :set binary.
These set several other vim options that make it easier to edit binary files. To
enter 8-bit text, use ^V followed by three decimal digits.

11.8.5 Incremental Searching

As mentioned in Section 8.6.4, you enable incremental searching in vim using
:set incsearch.

The cursor moves through the file as you type. vim highlights the text that
matches what you've typed so far.

You may wish to use this with the hlsearch option, which highlights all matches
of the most recent search pattern. This option is particularly useful when looking
for all uses of a particular variable or function in program source code.

11.8.6 Left-Right Scrolling

As mentioned in Section 8.6.5, you enable left-right scrolling in vim using :set
nowrap. The value of sidescroll controls the number of characters by which vim
shifts the screen when scrolling left to right. With sidescroll set to zero, each
scroll puts the cursor in the middle of the screen. Otherwise, the screen scrolls by
the desired number of characters.

vim also has several commands that scroll the window sideways, shown in Table
11.8.

Table 11.8. vim Sideways Scrolling Commands
Command Function
zl Scroll the window left.
zh Scroll the window right.
zs Scroll the window to put the cursor at the left (start) of the screen.
ze Scroll the window to put the cursor at the right (end) of the screen.

11.8.7 Visual Mode

vim allows you to select regions one character at a time, one line at a time, or
rectangularly, using the commands shown in Table 11.9.

Table 11.9. vim Block Mode Command Characters
Command Function

v Start region selection, character at a time mode.
V Start region selection, line at a time mode.
^V Start region selection, rectangular mode.

vim highlights (using reverse video) the text as you are selecting. To make your
selection, simply use the normal motion keys. If showmode is set, vim will indicate
the mode as one of visual, visual line, or visual block. If vim is running inside an
xterm, you can also use the mouse to select text (see :help mouse-using for the
details). This also works in the GUI versions. The screen below shows a
rectangular region:

The 6th edition of <citetitle>Learning the vi Editor</citetitle>
brings the book into the late 1990’s.

In particular, besides the “original” version of

<command>vi</command> that comes as a standard part of every UNIX

system, there are now a number of freely available
“clones”
or work-alike editors.

After applying the ~ operator, the screen looks like this:

The 6th edition of <citetitle>Learning the vi Editor</citetitle>
brings the BOOK INTO THE LATE 1990’s.
In particulAR, BESIDES THE &LDQUo;original” version of
<command>vi</COMMAND> THAT COMES as a standard part of every UNIX
system,
there are nOW A NUMBER OF FREELY available “clones”

or work-alike editors.

vim permits many operations on the selected text. Some operations work only on
whole lines, even if you've selected a region that does not contain whole lines.

vim has special commands for increasing the "swept out" area, and it allows you
to apply almost any vi mode command to the highlighted text, as well as some
commands that are unique to visual mode.

When defining the area to be operated on, a number of commands make it easy
to treat words, sentences, or blocks of C/C++ code as single objects. These are
described in Table 11.10. These commands can be used by themselves to extend
the region, or they can be used in conjunction with an operator. For example, daB
deletes a brace-enclosed block of text, including the braces.

Table 11.10. vim Block Mode Object Selectors
Command Selects

aw A word (with whitespace)
iw An inner word (without whitespace)
aW A WORD (with whitespace)
iW An inner WORD (without whitespace)
as A sentence (with whitespace)
is An inner sentence (without whitespace)
ap A paragraph (with whitespace)
ip An inner paragraph (without whitespace)
ab A (...) block (includes parentheses)

ib An inner (...) block (not including the parentheses)

aB A {...} block (includes braces)

iB An inner {...} block (not including the braces)

The terms "word" and "WORD" have the same meaning as for the w and W motion
commands.

vim allows you to use many operators on highlighted text. The available
operators are summarized in Table 11.11.

Table 11.11. vim Block Mode Operations
Command Operation
~ Flip the case of the selected text.

o, O

Move to the other end of the highlighted text. o moves from the start of
the highlighted area to end, and vice versa. O in block mode moves to
the other end of the text on the current line. You can continue sweeping
out the area from the new position.

<, >, !
Shift text left or right, filter text. These operate on the whole lines
containing the marked region. In the future, for a block, only the block
will be shifted.

= Filters text through the program named by the equalprg option.

(Typically a simple text formatter such as fmt.) This operates on the
whole lines containing the marked region.

gq
Formats the lines containing the marked region to be no longer that
what's set in textwidth. This operates on the whole lines containing
the marked region.

: Start an ex command for the highlighted lines. This operates on the
whole lines containing the marked region.

c, d, y Change, delete, or yank text. These work even on rectangular text,
although the c command only enters text on the first line in the block.

c, r, s Change the highlighted text.

C, S, R If using CTRL-V, the rectangle is deleted and insert mode is entered in
the first line. Otherwise, whole lines are replaced.

x Delete the highlighted text.

X, Y Delete or yank the whole lines containing the highlighted area.

D
Delete to the end of the line. When using CTRL-V, the highlighted block
and the rest of the text to end of each line is deleted. If not using CTRL-
V, the whole line is deleted.

J Join the highlighted lines. This operates on the whole lines containing
the marked region.

U Make uppercase. This command is unique to visual mode.
u Make lowercase. This command is unique to visual mode.
^] Use the highlighted text as the tag to find in a tag search.

11.9 Programming Assistance

vim has extensive facilities for both the edit-compile-debug cycle and syntax
highlighting.

11.9.1 Edit-Compile Speedup

The facilities in vim were inspired by the "quick fix" mode of the Manx Aztec C
compiler for the Amiga. In fact, the vim documentation refers to this feature as
"quick fix" mode. The features are quite flexible, allowing you to tailor them to
your programming environment (see Table 11.12).

Table 11.12. vim Program Development Commands
Command Function

mak[e] [arguments] Run make, based on the settings of several options as
described below, then go to the location of the first error.

cf[ile][!]
[errorfile]

Read the error file and jump to the first error. With an
errorfile, use that file for errors and set the errorfile
option to it. The ! forces vim to move to another buffer if
the current one has been modified but not saved.

cl[ist][!] List the errors that include a filename. With !, list all
errors.

[count]cn[ext][!]
Display the countth next error that includes a filename. If
there are no filenames at all, go to the countth next
error.

[count]cN[ext][!]

[count]cp[revious][!]

Display the countth previous error that includes a
filename. If there are no filenames at all, go to the
countth previous error.

clast[!] [n] Display error n if supplied. Otherwise, display the last
error.

crewind[!] [n] Display error n if supplied. Otherwise, display the first
error.

cc[!] [n] Displays error n if supplied, otherwise redisplays the
current error.

cq[uit]
Quit with an error code, so that the compiler will not
compile the same file again. This is intended primarily for
use with the Amiga compiler.

Like elvis, as you move through the errors vim also compensates for changes in
the file, so that when you go to the next error, you end up on the correct line.

The vim options that control the :make command are presented in Table 11.13.

Table 11.13. vim Program Development Options
Option Value Function

shell /bin/sh The shell to use to execute the command for
rebuilding your program.

makeprg make The program that will actually handle all the
recompilation.

shellpipe 2>&1| tee
Whatever is needed to cause the shell to save
both standard output and standard error from the
compilation in the error file.

makeef /tmp/vim##.err
The name of a file which will contain the compiler
output. The ## causes vim to create unique
filenames.

errorformat %f:%l:\ %m
A description of what error messages from the
compiler look like. This example value is for GCC,
the GNU C compiler.

When you execute :make, vim constructs a command by concatenating the
various pieces described above. Any arguments you supply are passed to make in
the appropriate place. It then echoes this command to your screen. For example,
if you type :make -k, you might see something like this:

:!make -k 2>&1| tee /tmp/vim34215.err
...

By using the tee(1) program, the output from make and the compiler is saved in
the error file (/tmp/vim34215.err), and also sent to standard output, in this case
your screen.

When the make finishes, vim reads the error file, and goes to the location of the
first error. It uses the value of the errorformat option to parse the contents of
the error file, in order to find file names and line numbers. (The format of this
variable is described in full in :help errorformat.) You can then use the :cc

command to see the error messages, and the :cnext command to move to the
next error.

11.9.2 Syntax Highlighting

Highlighting in vim is based primarily on colors. To enable syntax highlighting, put
syntax on into your .vimrc file. This will cause vim to read the syntax.vim file,
which defines the default highlight coloring and then sets things up to use
highlighting appropriate to each language.

vim has a very powerful sub-language for defining syntax highlighting. The
syntax.txt help file in vim 5.1 that describes it is over 1,500 lines long. Therefore,
we won't attempt to give all the details here. Instead, the sample file below
should give you some taste for what vim can do. The example consists of portions
of the syntax file for Awk:

" Vim syntax file
" Language: awk, nawk, gawk, mawk
" Maintainer: Antonio Colombo <antonio.colombo@jrc.org>
" Last change: 1997 November 29

" Remove any old syntax stuff hanging around
syn clear

" A bunch of useful Awk keywords
syn keyword awkStatement break continue delete exit
...

syn keyword awkFunction atan2 close cos exp int log rand sin
\
 sqrt srand
...

syn keyword awkConditional if else
syn keyword awkRepeat while for do

syn keyword awkPatterns BEGIN END
syn keyword awkVariables ARGC ARGV FILENAME FNR FS NF NR
...

" Octal format character.
syn match awkSpecialCharacter contained "\\[0-7]\{1,3\}"
" Hex format character.
syn match awkSpecialCharacter contained "\\x[0-9A-Fa-f]\+"

syn match awkFieldVars "\$[0-9]\+"

syn match awkCharClass contained "\[:[^:\]]*:\]"
syn match awkRegExp contained "/\^"ms=s+1
syn match awkRegExp contained "\$/"me=e-1
syn match awkRegExp contained "[?.*{}|+]"
...

" Numbers, allowing signs (both -, and +)
" Integer number.
syn match awkNumber "[+-]\=\<[0-9]\+\>"
" Floating point number.
syn match awkFloat "[+-]\=\<[0-9]\+\.[0-9]+\>"
...

syn match awkComment "#.*" contains=awkTodo

if !exists("did_awk_syntax_inits")
 let did_awk_syntax_inits = 1
 " The default methods for highlighting. Can be overridden later
 hi link awkConditional Conditional
 hi link awkFunction Function
 hi link awkRepeat Repeat
 hi link awkStatement Statement
 ...
 hi link awkNumber Number
 hi link awkFloat Float
 ...

 hi link awkComment Comment
 ...
endif

let b:current_syntax = "awk"

The file above uses syntax keyword to give names to certain classes of keywords
(such as real Awk keywords and built-in functions), and syntax match to give
names to regular expressions that match certain kinds of objects (such as
numbers). Then the hi link statements link the named classes of objects to the
predefined highlighting conventions.

The syntax.vim file predefines the standard conventions, with a number of lines
like these:

hi Comment term=bold ctermfg=Cyan guifg=#80a0ff
hi Constant term=underline ctermfg=Magenta guifg=#ffa0a0
hi Special term=bold ctermfg=LightRed guifg=Orange
hi Identifier term=underline ctermfg=DarkCyan guifg=#40ffff
...

The first argument defines the class, and the rest define what kind of highlighting
to do on what kind of terminal. term is for a normal terminal, cterm is for a color
terminal (in this case, the ForeGround color), and gui is for vim's GUI interface.

In vim, the syntax colors are global attributes. Changing the Comment color
changes the color for all comments in all windows, no matter what programming
language you're editing.

Since the syntax descriptions use attribute linking, you can make language-
specific changes. For example, to change the comment color for Awk, you can
define attributes for awkComment, like this:

hi awkComment guifg=Green

vim comes with a large number of syntax descriptions for different languages.
The coloring for Awk is slightly psychedelic (lots of red and pink), although the
coloring for context diffs is actually rather pleasant, as is the color scheme for
UNIX mailbox files. The HTML mode is also pretty interesting. Overall, it's quite a
lot of fun to use.

11.10 Interesting Features

vim is a very featureful editor. We cannot describe everything in full detail here.
Instead, we've chosen to discuss several of the most important and unique
features that it has.

Automatic file type detection

vim will notice how the lines of a text file end. It sets the fileformat
variable to one of dos (CR-LF), unix (LF), or mac (CR) to indicate the file's
current mode. By default, vim will write the file back out in the same
format, but if you change the value of fileformat, vim will use that
convention. This is an easy way to convert between Linux (or UNIX) and
MS-DOS files, and makes editing DOS files under UNIX or Linux very easy.
(In contrast, the other clones all display a ^M at the end of each line.)

vim is "charityware"

The licensing terms are described later in this chapter; they are fairly
liberal. However, the author encourages users who like vim to send a
donation to a children's center in Uganda.

Significant C programming extensions

vim has a large set of features for working with C and C++ programs.

The "auto command" facility

vim defines a large number of events, such as before or after reading a
file, entering or leaving a window, and so on. For each event, you can set
up an "auto command," i.e., a command to be executed when that event
occurs.

11.10.1 vim Is Charityware

With vim, Bram Moolenaar has taken a different approach from the usual
shareware or freeware author. If you use vim and you like it, Mr. Moolenaar
requests that you send a donation to help orphans in Uganda. We applaud his
efforts.

Mr. Moolenaar spent a year as a volunteer at Kibaale Children's Centre (KCC),
located in Kibaale, a small town in the south of Uganda, near Tanzania. The KCC
works to provide food, medical care, and education for children in this area, which
is suffering from AIDS more than in any other part of the world. Because of the
high incidence of AIDS, many of the children are orphans.

In order to continue supporting KCC, Mr. Moolenaar is trying to raise funds and
organize sponsorship. You can find a much longer explanation in the file
uganda.txt in the vim distribution. This includes directions for sending donations.
You can also look at http://www.vim.org/iccf/ .

11.10.2 C and C++ Programming Features

vim, in the grand tradition of vi, is first and foremost a programmer's editor. In
particular, it is a C programmer's editor, and happily, C++ programmers can take
advantage of it too. There are lots of features that make the C programmer's life
easier. We describe the most significant ones here.

11.10.2.1 Smart indenting

All versions of vi have the autoindent option, which, when set, automatically
indents the current line by the same amount as the one next to it. This is handy
for C programmers who indent their code, and for anyone else who may need to
indicate some kind of structure in their text via indentation.

vim carries this feature further, with two options, smartindent and cindent. The
cindent option is the more interesting of the two, and is the topic of this
subsection. See Table 11.14 for a list of vim indentation and formatting options.

Table 11.14. vim Indentation and Formatting Options
Option Function

autoindent Simple-minded indentation, uses that of the previous line.

smartindent Similar to autoindent, but knows a little about C syntax.
Deprecated in favor of cindent.

cindent Enables automatic indenting for C programs, and is quite smart.
C formatting is affected by the rest of the options in this table.

cinkeys Input keys that trigger indentation options.
cinoptions Allows you to tailor your preferred indentation style.
cinwords Keywords that start an extra indentation on the following line.

formatoptions
Made up of a number of single letter flags that control several
behaviors, notably how comments are formatted as you type
them.

comments
Describes different formatting options for different kinds of
comments, both those with starting and ending delimiters, as in
C, and those that start with a single symbol and go to the end of
the line, such as in a Makefile or shell program.

When set up appropriately, vim automatically rearranges the indentation of your
C program as you type. For instance, after an if, vim automatically indents the
next line. If the body of the if is enclosed in braces, when you type the right
brace, vim will automatically indent it back one tab stop, to line up underneath
the if. As another example, with the settings shown below, upon typing the
colon that goes with a case, vim will shift the line with the case left one tab stop
to line up under the switch.

The following .vimrc produces, in our opinion, very nicely formatted C code:

set nocp incsearch
set cinoptions=:0,p0,t0
set cinwords=if,else,while,do,for,switch,case
set formatoptions=tcqr
set cindent

syntax on
source ~/.exrc

The nocp option turns off strict vi compatibility. The incsearch option turns on
incremental searching. The settings for cinoptions, cinwords, and
formatoptions differ from the defaults; the result is to produce a fairly strict
"K&R" C formatting style. Finally, syntax coloring is turned on, and then the rest
of the vi options are read in from the user's .exrc file.

We recommend that you start up vim, set these options as shown, and then
spend some time working on a C or C++ program. Five minutes of playing with
this facility will give you a better feel for it than whatever static examples we
could present on the printed page. We think you'll find the facility really enjoyable
to use.

11.10.2.2 Include file searching

Often, when working with large C programs, it is helpful to be able to see where a
particular type name, function, variable or macro is defined. The tag facility can
help with this, but doing a tag lookup actually moves you to the found location,
which may be more than you need.

vim has a number of commands that search through the current file and through
included files to find other occurrences of a keyword. We summarize them here.

The vi and ex commands fall into four categories: those that display the first
occurrence of a particular object (in the status line), those that display all
occurrences of a particular object, those that jump to the location of the first
occurrence, and those that open a new window and jump to the first occurrence.
Commands that do all four exist to look for keywords, usually the identifier under
the cursor, and to look for macro definitions of the identifier under the cursor.

These commands use the smart syntax facilities (the comments variable described
earlier) to ignore occurrences of the searched-for identifier inside comments. With
a preceding count, they go to the countth occurrence. The search for the
identifier starts at the beginning of the file, unless otherwise noted.

See Table 11.15 for a list of the vim identifier searching commands.

Table 11.15. vim Identifier Search Commands
Command Function
[i Display the first line that contains the keyword under the cursor.

]i
Display the first line that contains the keyword under the cursor, but
start the search at the current position in the file. This command is
most effective when given a count.

[I Display all lines that contain the keyword under the cursor. Filenames
and line numbers are displayed.

]I Display all lines that contain the keyword under the cursor, but start
from the current position in the file.

[^I Jump to the first occurrence of the keyword under the cursor. (Note
that ^I is a TAB.)

] ^I Jump to the first occurrence of the keyword under the cursor, but start

the search from the current position.
^W i
^W ^I

Open a new window showing the location of the first (or countth)
occurrence of the identifier under the cursor.

[d Display the first macro definition for the identifier under the cursor.

]d Display the first macro definition for the identifier under the cursor, but
start the search from the current position.

[D Display all macro definitions for the identifier under the cursor.
Filenames and line numbers are displayed.

]D Display all macro definitions for the identifier under the cursor, but start
the search from the current position.

[^D Jump to the first macro definition for the identifier under the cursor.

] ^D Jump to the first macro definition for the identifier under the cursor, but
start the search from the current position.

^W d
^W ^D

Open a new window showing the location of the first (or countth) macro
definition of the identifier under the cursor.

Two options, define and include, describe the source code lines that define
macros and include source files. They have default values appropriate for C, but
can be changed to suit your programming language (e.g., the value
^\(#\s*define\|[a-z]*\s*const\s*[a-z]*\) for define could be used to also
look for definitions of C++ named constants).

The same facilities are also available as ex commands, shown in Table 11.16.

Table 11.16. vim Identifier Search Commands from ex Mode
Command Function

[range]is[earch][!]
[count] [/]pattern[/]

Like [i and]i, but searches in range lines. The default
is the whole file. The !, if supplied, forces comments to
be searched also. Without the /'s, a word search is
done. With them, a regular expression search is done.

[range]il[ist][!]
[/]pattern[/]

Like [I and]I, but searches in range lines. The default
is the whole file.

[range]ij[ump][!]
[count] [/]pattern[/]

Like [^I and] ^I, but searches in range lines. The
default is the whole file.

[range]isp[lit][!]
[count] [/]pattern[/]

Like ^W i and ^W ^I, but searches in range lines. The
default is the whole file.

[range]ds[earch][!]
[count] [/]pattern[/]

Like [d and]d, but searches in range lines. The default
is the whole file.

[range]dl[ist][!]
[/]pattern[/]

Like [D and]D, but searches in range lines. The default
is the whole file.

[range]dj[ump][!]
[count] [/]pattern[/]

Like [^D and] ^D, but searches in range lines. The
default is the whole file.

[range]dsp[lit][!]
[count] [/]pattern[/]

Like ^W d and ^W ^D, but searches in range lines. The
default is the whole file.

che[ckpath][!] List all the included files that could not be found. With
the !, list all the included files.

The path option is used to search for included files that do not have an absolute
pathname. Its default value is .,/usr/include,,, which looks in the directory
where the edited file resides, in /usr/include, and in the current directory.

11.10.2.3 Cursor motion commands for programming

A number of enhanced and new cursor motion commands make it easier to find
the opposite ends of matching constructs, as well as to find unmatched constructs
that should be matched, for example, #if statements that do not have a
corresponding #endif. Most of these commands may be preceded by a count,
which defaults to one if not given.

See Table 11.17 for a list of the extending matching commands.

Table 11.17. vim Extended Matching Commands
Command Function

%
Extended to match the /* and */ of C comments, nd also the C
preprocessor conditionals, #if, #ifdef, #ifndef, #elif, #else, and
#endif.

[(Move to the countth previous unmatched (.

[) Move to the countth next unmatched).

[{ Move to the countth previous unmatched {.

[} Move to the countth next unmatched }.

[# Move to the countth previous unmatched #if or #else.

]# Move to the countth next unmatched #else or #endif.

[*, [/ Move to the countth previous unmatched start of a C comment, /*.

]*,]/ Move to the countth next unmatched end of a C comment, */.

11.10.3 Autocommands

vim allows you to specify actions that should be executed when a particular event
occurs. This facility gives you a great deal of flexibility and control. As always
though, with power comes responsibility; the vim documentation warns that you
should be careful with the autocommand facility so that you don't accidentally
destroy your text!

The facility is complicated and detailed. In this section we outline its general
capabilities, and provide an example to give you a sense of its flavor.

The autocommand command is named :autocmd. The general syntax is:

:au event filepat command

The event is the kind of event to which this command applies, for example,
before and after reading a file (FileReadPre and FileReadPost), before and after
writing a file (FileWritePre and FileWritePost), and upon entering or leaving a
window (WinEnter and Winleave). There are more defined events, and case in
the event name does not matter.

The filepat is a shell-style wildcard pattern that vim applies to filenames. If they
match, then the autocommand will be applied for this file.

The command is any ex mode command. vim has a special syntax for retrieving
the different parts of filenames, such as the file's extension, or the name without
the extension. These can be used in any ex command, but are very useful with
autocommands.

Multiple autocommands for the same events and file patterns add commands
onto the list. Autocommands can be removed for a particular combination of
events and file patterns by appending ! to the :autocmd command.

A particularly elegant example allows you to edit files compressed with the gzip
program. The file is automatically decompressed when editing starts, and then
recompressed when the file is written out (the fourth line is broken for
readability):

:autocmd! BufReadPre,FileReadPre *.gz set bin
:autocmd! BufReadPost,FileReadPost *.gz '[,']!gunzip
:autocmd BufReadPost,FileReadPost *.gz set nobin
:autocmd BufReadPost,FileReadPost *.gz \
 execute ":doautocmd BufReadPost " . expand("%:r")

:autocmd! BufWritePost,FileWritePost *.gz !mv <afile> <afile>:r
:autocmd BufWritePost,FileWritePost *.gz !gzip <afile>:r

:autocmd! FileAppendPre *.gz !gunzip <afile>
:autocmd FileAppendPre *.gz !mv <afile>:r <afile>

:autocmd! FileAppendPost *.gz !mv <afile> <afile>:r
:autocmd FileAppendPost *.gz !gzip <afile>:r

The first four commands are for reading compressed files. The first two in this set
use ! to remove any previously defined autocommands for compressed files
(*.gz). The compressed file is read into the buffer as a binary file, so the first
command turns on the bin (short for binary) option.

vim sets the marks '[and '] to the first and last lines of the just read text. The
second command uses this to uncompress the just read file in the buffer.

The next two lines unset the binary option, and then apply any autocommands
that apply to the uncompressed version of the file (e.g., syntax highlighting). The
%:r is the current filename without the extension.

The next two lines are for writing the compressed file. The first one in this set
first removes any previously defined autocommands for compressed files (*.gz),
with these events. The commands invoke a shell to rename the file to not have
the .gz extension, and then run gzip to compress the file. The <afile>:r is the
filename without the extension. (The use of <afile>:r is restricted to
autocommands.) vim writes the uncompressed buffer to the file with the .gz
extension, thus the need for the renaming.

The second line in this set runs gzip to compress the file. gzip automatically
renames the file, adding the .gz extension.

The last four lines handle the case of appending to a compressed file. The first
two of these lines uncompress the file and rename it before appending the
contents to the file.

Finally, the last two lines recompress the file after writing to it, so that the
uncompressed file is not left laying around.

This section just touches the tip of the iceberg of autocommands. For example,
autocommands can be placed into groups, so that they can all be executed or
removed together. All of the syntax coloring commands described in Section
11.9.2 are placed into the highlight group. An autocommand then executes all
of them together when an appropriate file is read.

As an example, instead of having your .vimrc file always execute set cindent for
smart C indenting, you might use an autocommand to do it just for C source
code, like this:

autocmd BufReadPre,FileReadPre *.[chy] set cindent

11.11 Sources and Supported
Operating Systems

vim has its own Internet domain. The best thing to do is start from the home
page at http://www.vim.org/ . There is a FAQ (Frequently Asked Questions) for
vim, at http://www.vim.org/faq/ . Of particular interest are several vim-related
mailing lists; start with http://www.vim.org/mail.html .

Instead of just one or two distribution points, there are a number of ftp sites that
mirror the main vim distribution site. These are all available as
ftp.country.vim.org. Replace country with a two-letter code from Table 11.18.
More details, including other mirror sites, are available via links on the web page,
and in the file ftp://ftp.nl.vim.org/pub/vim/MIRRORS . The other sites are all
mirrors of ftp.nl.vim.org . When retrieving files via ftp, try to use the one that is
closest to you.

Table 11.18. vim Distribution Site Country Codes
Code Country

au Australia
ca Canada
gr Greece
hu Hungary
jp Japan
kr Korea
nl The Netherlands
pl Poland
us United States

The source code for vim is freely distributable. Distribution is permitted in source
and binary form, but if you modify vim and distribute it, you must make your

changes available to the maintainer for possible inclusion in a subsequent release.
vim is also "charityware." This was discussed earlier in this chapter.

vim has been ported to the following systems:

• The Amiga. (This is where vim was born.)
• The Acorn Archimedes. The last working port was done with Version 2.0. A

new port is being done. It will be included in Version 5.2.
• BeOS. As of vim Version 5.1, both Intel and non-Intel CPUs are supported.
• MS-DOS.
• The Apple Macintosh. The original port to the Macintosh was for Version

3.0. The 5.x port is still marked as being in an Alpha state.
• MiNT on Atari microcomputers.
• OS/2.
• UNIX. Essentially any UNIX variant should work; vim uses GNU Autoconf

for configuration.
• VMS.
• Windows 95 and Windows NT. Both console and GUI versions are

available. Under Windows 3.1, use the 32-bit DOS version.

The online help documents the peculiarities of the vim port to each operating
system.

Compiling vim is straightforward. Retrieve the distribution via ftp. Uncompress
and untar it, run the configure program, and then run make:

$ gzip -d < vim-5.1.tar.gz | tar -xvpf -
...
$ cd vim-5.1; ./configure
...
$ make
...

vim should configure and build with no problems. Use make install to install it.

Should you need to report a bug or problem in vim, the person to contact is Bram
Moolenaar, at Bram@vim.org .

Chapter 12. vile—vi Like Emacs

vile stands for "vi Like Emacs." It started out as a copy of Version
3.9 of MicroEMACS that was modified to have the "finger feel" of vi.
There are currently three maintainers: Paul Fox, Tom Dickey, and
Kevin Buettner. The current version is 8.0; it is essentially the same
as 7.4, but with bug fixes. This chapter was written using vile.

12.1 Authors and History

Paul Fox describes the early vile history this way:

vile's design goal has always been a little different than that of the other clones.
vile has never really attempted to be a "clone" at all, though most people find it
close enough. I started it because in 1990 I wanted to to be able to edit multiple
files in multiple windows, I had been using vi for 10 years already, and the
sources to Micro-EMACS came floating past my newsreader at a job where I had
too much time on my hands. I started by changing the existing keymaps in the
obvious way, and ran full-tilt into the "Hey! Where's `insert' mode?" problem. So
I hacked a little more, and hacked a little more, and eventually released in '91 or
'92. (Starting soon thereafter, major version numbers tracked the year of
release: 7.3 was the third release in '97.)

But my goal has always been to preserve finger-feel (as opposed to the display
visuals), and, selfishly, to preserve finger-feel most for the commands I use.
vile has quite an amazing ex mode, that works very well—it just looks really odd,
and a couple of commands which are beyond the scope of the current parser are
missing. For the same reasons, vile also won't fully parse existing .exrc files,
since I don't really think that's so important—it does simple ones, but more
sophisticated ones need some tweaking. But when you toss in vile's built-in
command/macro language, you quickly forget you ever cared about .exrc.

Tom Dickey started working on vile in December of 1992, initially just
contributing patches, and later doing more significant features and extensions,
such as line numbering, name completion, and animating the buffer list window.
Tom states that "Integrating features together is more important to my design
goals than implementing a large number of features."

In February of 1994, Kevin Buettner started working on vile. Initially, he supplied
bug fixes for the X11 version, xvile, and then improvements, such as scrollbars.
This evolved into support for the Motif, OpenLook, and Athena widget sets.
Because, surprisingly, the Athena widgets were not "universally available in a
bugfree form," he wrote a version that used the raw Xt toolkit. This version ended
up providing superior functionality to the Athena version. Kevin also contributed
the initial support in vile for GNU Autoconf.

Currently, vile maintenance is done "by committee," with Tom Dickey being the
primary maintainer. Paul manages the mailing lists.

For the near term, future work will focus on improving the Perl integration, and
enhancing the major mode concept (discussed below).

12.2 Important Command-Line Arguments

Although vile does not expect to be invoked as either vi or ex, it can be invoked
as view, in which case it will treat each file as read-only. Unlike the other clones,
it does not have a line-editor mode.

Here are the important vile command-line arguments:

-?

vile prints a short usage summary and then exits.

-g N

vile will begin editing on the first file at the specified line number. This can
also be given as +N.

-s pattern

In the first file, vile will execute an initial search for the given pattern. This
can also be given as +/pattern.

-t tag

Start editing at the specified tag. The -T option is equivalent, and can be
used when X11 option parsing eats the -t.

-h

Invokes vile on the help file.

-R

Invokes vile in "readonly" mode, no writes are permitted while in this
mode. (This will also be true if vile is invoked as view, or if readonly mode
is set in the startup file.)

-v

Invokes vile in "view" mode, no changes are permitted to any buffer while
in this mode.

@ cmdfile

vile will run the specified file as its startup file, and will bypass any normal
startup file (i.e., .vilerc) or environment variable (i.e., VILEINIT).

12.3 Online Help and Other Documentation

vile currently comes with a single (rather large) ASCII text file, vile.hlp. The
:help command (which can be abbreviated to :h) will open a new window on
that file. You can then search for information on a particular topic, using standard

vi search techniques. Because it is a flat ASCII file, it is also easy to print out and
read through.

In addition to the help file, vile has a number of built-in commands for displaying
information about the facilities and state of the editor. Some of the most useful
commands are:

:show-commands

Creates a new window that shows a complete list of all vile commands,
with a brief description of each one. The information is placed in its own
buffer that can be treated just like any other vile buffer. In particular, it is
easy to write it out to a file for later printing.

:apropos

Shows all commands whose names contain a given substring. This is
easier than just randomly searching through the help file to find
information on a particular topic.

:describe-key

Prompts you for a key or key sequence, and then shows the description of
that command. For instance, the x key will implement the delete-next-
character function.

:describe-function

Prompts you for a function name, and then shows the description of that
function. For instance, the delete-next-character function deletes a
given number of characters to the right of the current cursor position.

The :apropos, :describe-function, and :describe-key commands all give the
descriptive information, plus all other synonyms (since a function may have more
than one name, for convenience), all other keys that are bound to it (since many
key sequences may be bound to the same function), and whether the command
is a "motion" or an "operator." A good example of this is the output of
:describe-function next-line:

"next-line" ^J j #-B
 or "down-arrow"
 or "down-line"
 or "forward-line"
 (motion: move down CNT lines)

This shows all four of its names and its three key-bindings. (The sequence #-B is
vile's terminal-independent representation of the up-arrow—a complete list of
those names is in the help file.)

The VILE_STARTUP_PATH environment variable can be set to a colon-separated
search path for the help file.[1] The VILE_HELP_FILE environment variable can be
used to override the name of the help file (typically vile.hlp).

[1] Although the help file says that this path is also used when searching for the startup file, the version 7.4
source code disagrees. It is actually the search path used for the :source command. In version 8.0, this is
fixed—the startup file and :source command use the same mechanism.

The combination of online searchable help, built-in command and key
descriptions, and command completion makes the help facility straightforward to
use.

12.4 Initialization

vile and xvile perform the following initializations:

1. (xvile only) Use the value of the XVILE_MENU environment variable for the
name of the menu description file, if provided. Otherwise, it uses
.vilemenu. The purpose of this file is to set the default menus for the X11
interface. You can then add to or override any of these menus in the other
startup files.

2. Execute the file named on the command line with @cmdfile, if any. Bypass
any other initialization steps that would otherwise be done.

3. If the VILEINIT environment variable exists, execute its value. Otherwise,
look for an initialization file.

4. If the VILE_STARTUP_FILE environment variable exists, use that as the
name of the startup file. If not, on UNIX use .vilerc, on other systems use
vile.rc.

5. Look for the startup file in the current directory, and then in the user's
home directory. Use whichever one is found first.

As for nvi and vim, you can place common initialization actions into your .exrc file
(i.e., options and commands for UNIX vi, and/or the other clones), and have your
.vilerc file execute :source .exrc before or after the vile-specific initializations.

12.5 Multiwindow Editing

vile is somewhat different from the other clones. It started life as a version of
Micro-Emacs, and then was modified into an editor with the "finger-feel" of vi.

One of the things that versions of emacs have always done is handle multiple
windows and multiple files; as such, vile was the first vi-like program to provide
multiple windows and editing buffers.

As in elvis and vim, the :split command[2] will create a new window, and then
you can use the ex command :e filename to edit a new file in the new window.
After that, things become different, in particular the vi command mode keys to
switch among windows are very different.

[2] That this works is an artifact of the fact that vile allows you to abbreviate commands. The actual
command name is split-current-window.

<preface id="VI6-CH-0">
<title>Preface </title>

<para>
Text editing is one of the most common uses of any computer system,
and
<command>vi</command> is one of the most useful standard text
editors>

With <command>vi</command> you can create new files, or edit any
exist>
file.
</para>

 ch00.sgm top
Makefile for vi book
Arnold Robbins

CHAPTERS = ch00_6.sgm ch00_5.sgm ch00.sgm ch01.sgm ch02.sgm ch03.sgm
\
 ch04.sgm ch05.sgm ch06.sgm ch07.sgm ch08.sgm
APPENDICES = appa.sgm appb.sgm appc.sgm appd.sgm

POSTSCRIPT = ch00_6.ps ch00_5.ps ch00.ps ch01.ps ch02.ps ch03.ps \
 ch04.ps ch05.ps ch06.ps ch07.ps ch08.ps \

=== Makefile =[modified]=== top
==

The split screen is the result of typing vile ch00.sgm followed by :split and :e
Makefile.

Like vim, all windows share the bottom line for execution of ex commands. Each
window has its own status line, with the current window indicated by having its
status line filled with equal signs. The status line also acquires an I in the second
column when in insert mode, and [modified] is appended after the filename
when the file has been changed but not yet written out.

vile is also like emacs in that commands are bound to key sequences. Table 12.1
presents the commands and their key sequences. In some cases, two sets of key
sequences do the same operation, for example, the delete-other-windows
command.

Table 12.1. vile Window Management Commands

Command Key
Sequence(s) Function

delete-other-
windows ^O, ^X 1 Eliminate all windows except the current one.

delete-window ^K, ^X 0 Destroy the current window, unless it is the last
one.

edit-file, E, e
find-file

^X e Bring given (or under-cursor, for ^X e) file or
existing buffer into window.

grow-window V Increase the size of the current window by count
lines.

move-next-
window-down ^A ^E Move next window down (or buffer up) by count

lines.
move-next-
window-up ^A ^Y Move next window up (or buffer down) by count

lines.
move-window-
left ^X ^L Scroll window to left by count columns, half

screen if count unspecified.

move-window-
right ^X ^R Scroll window to right by count columns, half

screen if count unspecified.
next-window ^X o Move to the next window.

position-window z where
Reframe with cursor specified by where, as
follows: center (., M, m), top (RETURN, H, t), or
bottom (-, L, b).

previous-window ^X O Move to the previous window.

resize-window Change the current window to count lines. count
is supplied as a prefix argument.

restore-window Return to window saved with save-window.

save-window Mark a window for later return with restore-
window.

scroll-next-
window-down ^A ^D Move next window down by count half screens.

count is supplied as a prefix argument.
scroll-next-
window-up ^A ^U Move next window up by count half screens. count

is supplied as a prefix argument.

shrink-window v Decrease the size of the current window by count
lines. count is supplied as a prefix argument.

split-current-
window ^X 2

Split the window in half; a count of 1 or 2 chooses
which becomes current. count is supplied as a
prefix argument.

view-file Bring given file or existing buffer into window,
mark it "view-only."

historical-
buffer _

Display a list of the first nine buffers. A digit
moves to the given buffer, __ moves to the most
recently edited file.

toggle-buffer-
list * Pop up/down a window showing all the vile

buffers.

12.6 GUI Interfaces

The screen shots and the explanation in this section were supplied by Kevin
Buettner, Tom Dickey, and Paul Fox. We thank them.

There are several X11 interfaces for vile, each utilizing a different toolkit based on
the Xt library. There is a plain "No Toolkit" version which does not use a toolkit,
but has custom scrollbars and a bulletin board widget for geometry management.
There are versions which use the Motif, Athena, or OpenLook toolkits. Of these,
the "No Toolkit" version is probably best supported since that is the version that
some of vile's authors most frequently use. But the Motif and Athena versions
have more features, such as menu support.

Fortunately, the basic interface is the same for each of these versions. There is a
single top level window which may be split into two or more panes. The panes, in
turn, may be used to display multiple views of a buffer or multiple buffers or
mixture of both. In vile parlance these panes are called "windows," but to avoid
confusion, we will continue to call them "panes" in the following discussion.

12.6.1 Building xvile

To build xvile, you have to choose which toolkit version to use. This is done when
you configure vile with the configure command. The relevant options are:

--with -screen=value

Specify terminal driver. The default is tcap, for the termcap/terminfo
driver. Other values include ncurses (a special case of terminfo), X11,
OpenLook, Motif, Athena, Xaw, Xaw3d, neXtaw, and ansi.

--with -scr=value

Same as --with-screen.

--with -x

Use the X Window System. This is the "No Toolkit" version.

--with -Xaw3d

Link with Xaw 3-D library.

--with -neXtaw

Link with neXt Athena library.

--with -Xaw -scrollbars

Use Xaw scrollbars rather than the vile custom scrollbars.

12.6.2 Basic Appearance and Functionality

The figures show xvile's Motif interface. It is similar to the Athena interface.

Figure 12.1. The vile GUI window

Figure 12.1 shows three panes:

1. The man page for vile, which shows the use of underlining and boldface.
2. A buffer misc.c, from tin, which shows syntax highlighting (again,

underlining, this time for preprocessor statements, and boldface, for
quoted strings).

3. A three-line pane, which is active (noted by a darker status line), named
[Completions], for filename completions. The pane is coordinated with
the minibuffer (the colon command line): the first line reads Completions
prefixed by /tmp/m:, and the minibuffer reads Find file: m. The rest of the
pane contains the actual filenames which match. The first line of
[Completions] and the contents change as the user completes the
filename (and presses TAB to tell vile to show the reduced set of
choices).

Figure 12.2. Buffers and completions in vile

Figure 12.2 also shows three panes:

1. The [Help] pane, which of course shows the most important feature of an
editor (how to exit without modifying your files).

2. The [Buffer List], which indicates that [Help] is the # (previous)
buffer. The % (current) buffer is not shown on the list, since only the
"visible" buffers are displayed in this copy of [Buffer List]. Supplying an
argument to the * command would have shown the invisible buffers as
well. Buffers 1 and 2 are charset.c and misc.c. They have been loaded,
so their sizes (8931 and 54866) are displayed in the [Buffer List].
Buffers 3, 4, and 5 (color.c, config.c, and curses.c) have not been
loaded, so a u is displayed in the first column, and the size is shown as
zero.

3. The [Completions] buffer is active. This time it displays tag completions
for the partial match co, and the Completions prefixed message is not
shown because the buffer is scrolled down, which is another side effect of
pressing TAB: vile cycles through a scrolling action so that all of the
choices will be shown even when the window is small. (The v/V commands
don't do anything to the [Completions] buffer while the cursor is in the
minibuffer; the [Completions] buffer is automatically sized.)

12.6.2.1 Scrollbars

At the right of each pane is a scrollbar which may be used in the customary
fashion to move about in the buffer. Note, however, that the customary fashion

varies from toolkit to toolkit. In the Athena and "No Toolkit" version, the middle
mouse button may be used to drag the "thumb" or visible indicator around. The
left and right mouse buttons move down or up (respectively) in the buffer. The
amount moved depends on the location of the mouse cursor on the scrollbar.
Placing it near the top will scroll by as little as one line. When placed near the
bottom, the text will scroll by as much as a full paneful.

The Motif and OpenLook scrollbars are probably more familiar. The left-most
mouse button is used for all operations. Clicking on the little arrows will move up
or down by one line. The scrollbar indicator may be dragged in order to move
about and scrolling up or down by an entire pane may be accomplished by
clicking above or below the indicator. The OpenLook scrollbars provide additional
mechanisms for quickly moving to the top or bottom of the buffer.

In each version, there is a small handle above or below (i.e., between) scrollbars
which may be used to adjust the size of two adjacent panes. In the "No Toolkit"
version of xvile, the pane resize handle blends in with the mode line of two
adjacent panes. In the other versions, the resize handle is more distinguishable.
But in each case, the mouse cursor will change to a heavy vertical double arrow
when placed above the resize handle. The windows may be resized by clicking on
and dragging the handle.

A pane may be split into two by holding the control key down and clicking the left
mouse button on a scrollbar. Then you will have two views of a particular buffer.
Other vile commands may be used to replace one of the views with another
buffer if desired. A pane may be deleted by holding the control key down and
clicking the middle mouse button. Sometimes after creating a lot of panes, you
find yourself wanting to use all of the window real estate for just one pane. To do
this, control-click the right mouse button; all other panes will be removed,
leaving the entire xvile window containing only the pane on which you clicked.

12.6.2.2 Setting the cursor position and mouse motions

Within the text area of a pane, the cursor may be set by clicking the left mouse
button. This not only sets the cursor position, but also sets the pane in which
editing is being done. In order to set just the pane but preserve the old position,
click on the mode line below the text you wish to edit.

A mouse click is viewed as a motion just like 4j is considered a motion. To delete
five lines, you could enter d4j which will delete the current line and the four
below it. You can do the same thing with a mouse click. Position your cursor at
the place you want to start deleting from and then press d. After this, click in the
buffer at the point to which you wish to delete to. Mouse clicks are real motions
and may be used with other operators as well.

12.6.2.3 Selections

Selections may be made by holding the left mouse button down and dragging
with the mouse. Release of the mouse button will cause the selection to be
yanked and made available (if desired) for pasting. You can force the selected
region to be rectangular by holding the control key down while dragging with the
left button depressed. If the dragging motion goes out of the current window,
text will be scrolled in the appropriate direction, if possible, to accommodate
selections larger than the window. The speed at which the scrolling occurs will

increase with the passage of time, making it practical to select large regions of
text quickly.

Individual words or lines may be selected by double- or triple-clicking on them.

A selection may be extended by clicking the right mouse button. As with button
one, the selection may be adjusted or scrolled by holding the right button down
and dragging with it. Selections may be extended in any window open to the
same buffer as the one in which the selection was started. That is, if you have
two views of a buffer (in two different panes), one containing the start of the
buffer, and the other the end, it is possible to select the entire buffer by clicking
the left button at the beginning of the pane showing the beginning of the buffer
and then clicking the right button in the pane showing the end of the buffer. Also,
selections may be extended in a rectangular fashion by holding the control key
down in conjunction with the use of the right mouse button.

The middle button is used for pasting the selection. By default, it pastes at the
last text cursor position. If the shift key is held down while clicking the middle
button, the paste occurs at the position of the mouse cursor.

A selection may be cleared (if owned by xvile) by double-clicking on one of the
mode lines.

12.6.2.4 Clipboard

Data may be exchanged between many X applications via the PRIMARY selection.
This selection is set and manipulated as described above.

Other applications, most notably OpenLook applications, use the CLIPBOARD
selection to exchange data between applications. On many Sun keyboards,
selected text is moved to the clipboard by pressing the COPY key and pasted by
pressing the PASTE key. If you find that you cannot paste text selected in xvile
into other applications or vice versa, it may well be that these applications use
the CLIPBOARD selection instead of the PRIMARY selection. (The other
mechanism used among really old applications involves the use of a ring of cut
buffers.)

xvile provides two commands for manipulating the clipboard. These are copy-to-
clipboard and paste-from-clipboard. When copy-to-clipboard is executed,
the contents of the current selection are copied to the special clipboard kill
register (denoted by ; in the register list). When an application requests the
clipboard selection, xvile gives it the contents of this kill register. The paste-
from-clipboard command requests clipboard data from the current owner of the
CLIPBOARD selection.

Users of Sun systems may want to put the following key bindings in their .vilerc
file in order to make use of the COPY and PASTE keys found on their keyboards:

bind-key copy-to-clipboard #-^
bind-key paste-from-clipboard #-*

Key bindings are described in detail later in this chapter.

12.6.2.5 Resources

xvile has many resources which may be used to control appearance and behavior.
Font choice is particularly important if you want italic or oblique fonts to be
displayed properly. vile's documentation has a complete list of resources as well a
sample set of .Xdefault entries.

12.6.3 Adding Menus

The Motif and Athena versions have menu support. Menu items, which are user-
definable, are read from the .vilemenu file, in the current or home directory.

xvile allows three types of menu items:

• Built-in, i.e., specific to the menuing system, such as rereading the .vilerc
file, or spawning a new copy of xvile

• Direct invocation of built-in commands (e.g., displaying the [Buffer
List])

• Invocation of arbitrary command strings (e.g., running interactive macros
such as a search command)

The distinction between the last two is made because the authors prefer making
vile able to check the validity of commands before they are executed.

The sidebar in this chapter contains an annotated sample .vilemenu file.

12.7 Extended Regular Expressions

Extended regular expressions were introduced in Section 8.4. vile provides
essentially the same facilities as nvi's extended option. The syntax is somewhat
different though, relying upon additional backslash-escaped characters:

\|

Indicates alternation, house\|home.

\+

Matches one or more of the preceding regular expression.

\?

Matches zero or one of the preceding regular expression.

\(...\)

Provides grouping for *, \+, and \?, as well as making matched sub-texts
available in the replacement part of a substitute command (\1, \2, etc.).

\s \S

Match whitespace and non-whitespace characters, respectively.

\w \W

Match "word-constituent" characters (alphanumerics and the underscore,
`_') and non-word-constituent characters, respectively. For example, \w\+
would match C/C++ identifiers and keywords.[3]

[3] For the pedantic among you, it also matches identifiers that start with a leading digit; usually
this isn't much of a problem.

\d \D

Match digits and non-digits, respectively.

\p \P

Match printable and non-printable characters respectively. Whitespace is
considered to be printable.

vile allows the escape sequences \b, \f, \r, \t, and \n to appear in the
replacement part of a substitute command. They stand for backspace, formfeed,
carriage return, tab and newline, respectively. Also, from the vile documentation:

Note that vile mimics perl's handling of \u\L\1\E instead of vi's. Given
:s/\(abc\)/\u\L\1\E/ vi will replace with abc whereas vile and perl will replace
with Abc. This is somewhat more useful for capitalizing words.

Example .vilemenu File

lines beginning with 'C' define a menu heading
C:Xvile
the following four entries are Buttons invoking menu
system builtins
B:New:new_xvile
B:Edit .vilerc:edit_rc
B:Parse .vilerc:parse_rc
B:Edit .vilemenu:edit_mrc
B:Quit:quit

C:Editing
B:Search Forward...:cmd search-forward
B:Search Backward...:cmd search-reverse
lines beginning with S are separators
S
B:Manual for...:29
S
where the command to be executed is given as a number,
like the
two above and the three below, the menu system will
translate
this to an invocation of the command execute-macro-
<number>.
B:Indent Level...:31
B:Window Title...:35

B:Font...:36

C:Buffers
run a command name (in this case "toggle-buffer") by
simply
naming it
B:Toggle Show:toggle-buffer
one line starting with 'L' is allowed, at the end of a
menu --
it causes a buffer list menu to be created.
L:list_buff

C:Fonts
B:5x8:setv $font 5x8
B:7x14:setv $font 7x14
B:8x13:setv $font 8x13
B:8x16:setv $font 8x16
B:9x15:setv $font 9x15
B:10x20:setv $font 10x20
B:12x24:setv $font 12x24

C:Attributes
B:C/C++:30
B:Pascal:32
C:Help:help
B:About:version
S
B:General:help
B:Bindings:describe-bindings
B:Motions:describe-motions
B:Operators:describe-operators
S
prefixing a command with "cmd" will force it to be run
as from
the ':' line, so that it can prompt for input
correctly.
B:Apropos...:cmd apropos
B:Apropos...:apropos set
B:On Function...:cmd describe-function
B:On Key...:describe-key >s
S
B:Settings:setall
B:Variables:show-variables
B:Registers:show-registers

12.8 Improved Editing Facilities

This section describes the features of vile that make simple text editing easier
and more powerful.

12.8.1 Command-Line History and Completion

vile stores all your ex commands in a buffer named [History]. This feature is
controlled with the history option, which is true by default. Turning it off
disables the history feature and removes the [History] buffer. The command
show-history will split the screen and display the [History] buffer in a new
window.

Starting with vile 7.4, the colon command line is really a minibuffer. You can use
it to recall lines from the [History] buffer and edit them.

You use the and keys to scroll backward and forward in the history, and
and to move around within the line. Your current delete character (usually
BACKSPACE) can be used to delete characters. Any other characters you type will
be inserted at the current cursor postion.

You can toggle the minibuffer into vi mode by typing the mini-edit character (by
default, ^G). When you do this, vile will highlight the minibuffer using the
mechanism specified by the mini-hilite option. The default is reverse, for
reverse video. In vi mode, you can use vi style commands for positioning. In
Version 8.0, you can also use the i, I, a, and A vi commands.

An interesting feature is that vile will use the history to show you previous data
that corresponds to the command you're entering. For instance, after typing :set
followed by a space, vile will prompt you with Global value:. At that point, you

can use to see previous global variables that you've set, should you wish to
change one of them.

The ex command line provides completion of various sorts. As you type the name
of a command, you can hit the TAB key at any point. vile will fill out the rest of
the command name as much as possible. If you type a TAB a second time, vile
will create a new window showing you all the possible completions.

Completion applies to built-in and user-defined vile commands, tags, filenames,
modes (described later in this chapter), variables, and to the terminal characters
(the character settings such as backspace, suspend, and so on, derived from your
stty settings).

As a side point, this leads to an interesting phenomenon. In vi-style editors,
commands may have long names, but they tend to be unique in the first few
characters, since abbreviations are accepted. In emacs-style editors, command
names often are not unique in the first several characters, but command
completion still allows you to get away with less typing.

12.8.2 Tag Stacks

Tag stacking is described in Section 8.5.3. In vile, tag stacking is available and
straightforward. It is somewhat different than the other clones, most notably in
the vi mode commands that are used for tag searching and popping the tag
stack. Table 12.2 shows the vile tag commands.

Table 12.2. vile Tag Commands
Command Function

ta[g][!]
[tagstring]

Edit the file containing tagstring as defined in the tags file. The !
forces vile to switch to the new file if the current buffer has been
modified but not saved.

pop[!] Pops a cursor position off the stack, restoring the cursor to its
previous position.

next-tag Continues searching through the tags file for more matches.

show-tagstack Creates a new window that displays the tag stack. The display
changes as tags are pushed onto or popped off of the stack.

The vi mode commands are described in Table 12.3.

Table 12.3. vile Command Mode Tag Commands
Command Function

^]
Look up the location of the identifier under the cursor in the tags file,
and move to that location. The current location is automatically
pushed onto the tag stack.

^T ^X
^]

Return to the previous location in the tag stack, i.e., pop off one
element.

^A ^] Same as the :next-tag command.

As in the other editors, options control how vile manages the tag related
commands, as shown in Table 12.4.

Table 12.4. vile Options for Tag Management
Option Function

taglength
Controls the number of significant characters in a tag that is to
be looked up. The default value of zero indicates that all
characters are significant.

tagignorecase Makes tag searches ignore case. By default this option is false.

tagrelative
When using a tags file in another directory, filenames in that tags
file are considered to be relative to the directory where the tags
file is.

tags
Can be set to a whitespace separated list of tags files to use for
looking up tags. vile loads all tags files into separate buffers that
are hidden by default, but that can be edited if you wish. You can
place environment variables and shell wildcards into tags.

tagword
Uses the whole word under the cursor for the tag lookup, not just
the sub-word starting at the current cursor position. This option
is disabled by default, which keeps vile compatible with vi.

12.8.3 Infinite Undo

vile is similar in principle but different in practice from the other editors. Like elvis
and vim, there is an undo limit you can set, but like nvi, the . command will do

the next undo or redo, as appropriate it. Separate vi mode commands implement
successive undo and redo.

vile uses the undolimit option to control how many changes it will store. The
default is 10, meaning that you can undo up to the 10 most recent changes.
Setting it to zero allows true "infinite undo," but this may consume a lot of
memory.

To start an undo, first use either the u or ^X u commands. Then each successive
. command will do another undo. Like vi, two u commands just toggle the state
of the change; however, each ^X u command does another undo.

The ^X r command does a redo. Typing . after the first ^X r will do successive
redos. You can provide a count to the ^X u and ^X r commands, in which case
vile will perform the requested number of undos or redos.

12.8.4 Arbitrary Length Lines and Binary Data

vile can edit files with arbitrary length lines, and with an arbitrary number of
lines.

vile automatically handles binary data. No special command lines or options are
required. To enter 8-bit text, type ^V followed by an x and two hexadecimal
digits, or a 0 and three octal digits, or three decimal digits.

12.8.5 Incremental Searching

As mentioned in Section 8.6.4, you perform incremental searching in vile using
the ^X S and ^X R commands. It is not necessary to set an option to enable
incremental searching.

The cursor moves through the file as you type, always being placed on the first
character of the text that matches. ^X S incrementally searches forward through
the file, while ^X R incrementally searches backwards.

You may wish to add these commands (described below) to your .vilerc file to
make the more familiar / and ? search commands work incrementally:

bind-key incremental-search /
bind-key reverse-incremental-search ?

Also of interest is the "visual match" facility, which will highlight all occurrences of
the matched expression. For a .vilerc file:

set visual-matches reverse

This command directs vile to use reverse video for visual matching. Since the
highlighting can sometimes be visually distracting, the = command will turn off
any current highlighting until you enter a new search pattern.

12.8.6 Left-Right Scrolling

As mentioned in Section 8.6.5 in Chapter 8, you enable left-right scrolling in vile
using :set nolinewrap. Unlike the other editors, left-right scrolling is the
default. Long lines are marked at the left and right edges with < and >. The value
of sideways controls the number of characters by which vile shifts the screen
when scrolling left to right. With sideways set to zero, each scroll moves the
screen by one third. Otherwise the screen scrolls by the desired number of
characters.

12.8.7 Visual Mode

vile is different from elvis and vim in the way you highlight the text you want to
operate on. It uses the "quoted motion" command, q.

You enter q at the beginning of the region, any other vi motions to get to the
opposite end of the region, and then another q to end the quoted motion. vile
highlights the marked text.

Arguments to the q command determine what kind of highlighting it will do. 1q
(same as q) does an exact highlighting, 2q does line-at-a-time highlighting, and
3q does rectangular highlighting.

Typically, you use a quoted motion in conjunction with an operator, such as d or
y. Thus, d3qjjwq deletes the rectangle indicated by the motions. When used
without an operator, the region is left highlighted. It can be referred to later using
^S. Thus, d ^S will delete the highlighted region.

In addition, rectangular regions can be indicated through the use of marks.[4] As
you know, a mark can be used to refer to either a specific character (when
referred to with `) or a specific line (when referred to with '). In addition,
referring to the mark (say a mark set with mb) with `b instead of 'b can change
the nature of the operation being done—d'b will delete a set of lines, and d`b will
delete two partial lines and the lines in between. Using the ` form of mark
reference gives a more "exact" region than the ' form of mark reference.

[4] Thanks to Paul Fox for this explanation.

vile adds a third form of mark reference. The \ command can be used as another
way of referring to a mark. By itself, it behaves just like ` and moves the cursor
to the character at which the mark was set. When combined with an operator,
however, the behavior is quite different. The mark reference becomes
"rectangular," such that the action d\b will delete the rectangle of characters
whose corners are marked by the cursor and the character which holds mark b.

Keystrokes
ma

Results
Set mark a at the b in book.

Keystrokes
3jfr

Results

Move the cursor to the r in number to mark the opposite corner.
Keystrokes

^A ~\a

Results

Toggle the case of rectangle bounded with mark a.

The commands which define arbitrary regions and operate upon them are
summarized in Table 12.5.

Table 12.5. vile Block Mode Operations
Command Operation
q Start and end a quoted motion.
^A r Open up a rectangle.
> Shift text to the right. Same as ^A r when the region is rectangular.

< Shift text to the left. Same as d when the region is rectangular.
y Yank the whole region. vile remembers that it was rectangular.

c
Change the region. For a non-rectangular region, delete all the text
between the end points and enter insert mode. For a rectangular
region, prompt for the text to fill the lines.

^A u Change the case of the region to all uppercase.
^A l Change the case of the region to all lowercase.
^A ~ Toggle the case of all alphabetic characters in the region.

^A SPACE Fill the region with spaces.

p, P Put the text back. vile does a rectangular put if the original text was
rectangular.

^A p, ^A
P

Force previously yanked text to be put back as if it were rectangular.
The width of the longest yanked line is used for the rectangle's width.

12.9 Programming Assistance

vile's programming assistance capabilities are discussed in this section.

12.9.1 Edit-Compile Speedup

vile uses two straightforward vi mode commands to manage program
development, shown in Table 12.6.

Table 12.6. vile Program Development vi Mode Commands
Command Function

^X
!commandRETURN

Run command, saving the output in a buffer named
[Output].

^X ^X Find the next error. vile parses the output and moves to the
location of each successive error.

vile understands the Entering directory XXX and Leaving directory XXX messages
that GNU make generates, allowing it to find the correct file, even if it's in a
different directory.

The error messages are parsed using regular expressions in the buffer [Error
Expressions]. vile automatically creates this buffer, and then it uses the buffer
when you use ^X ^X. You can add expressions to it as needed, and it has an
extended syntax that allows you to specify where filenames, line numbers,
columns and so on appear in the error messages. Full details are provided in the
online help, but you probably won't need to make any changes, as it works pretty
well "out of the box."

vile's error finder also compensates for changes in the file, keeping track of
additions and deletions as you progress to each error.

The error finder applies to the most recent buffer created by reading from a shell
command. For example, ^X!command produces a buffer named [Output], and :e
!command produces a buffer named [!command]. The error finder will be set
appropriately.

You can point the error finder at an arbitrary buffer (not just the output of shell
commands) using the :error-buffer command. This lets you use the error
finder on the output of previous compiler or egrep runs.

12.9.2 Syntax Highlighting

vile relies on help from an external program to provide syntax coloring. In fact,
there are three programs: one for C programs, one for Pascal programs, and one
for UNIX man pages. The vile documentation provides this sample macro for use
in a .vilerc file:

30 store-macro
 write-message "[Attaching C/C++ attributes...]"
 set-variable %savcol $curcol
 set-variable %savline $curline
 set-variable %modified $modified
 goto-beginning-of-file
 filter-til end-of-file "vile-c-filt"
 goto-beginning-of-file
 attribute-cntl_a-sequences-til end-of-file

 ~if ¬ %modified
 unmark-buffer
 ~endif
 %savline goto-line
 %savcol goto-column
 write-message "[Attaching C/C++ attributes...done]"
~endm
bind-key execute-macro-30 ^X-q

This runs vile-c-filt over the C source code. This program in turn relies upon the
contents of $HOME/.vile.keywords, which specifies the attributes to provide to
different text. (B for bold, U for underlined, I for italic, and C for one of 16
different colors.) This is Kevin Buettner's version:

Comments:C2
Literal:U
Cpp:CB
if:B
else:B
for:B
return:B
while:B
switch:B
case:B
do:B
goto:B
break:B

Syntax coloring works on the X11 interface with both Versions 7.4 and 8.0 of vile.
Getting it to work on a Linux console is a bit more complicated. It depends upon
which screen handling interface it was compiled with.

The ncurses library

Configure vile with - -with-screen=ncurses and rebuild. This will then
work out of the box.

The termcap library

This is the default way that vile is configured. Using this version requires
you to have a correct /etc/termcap entry for the Linux console. The
following termcap entry works:[5]

console|linux|con80x25|dumb:\
 :do=^J:co#80:li#25:cl=\E[H\E[J:sf=\ED:sb=\EM:\
 :le=^H:bs:am:cm=\E[%i%d;%dH:nd=\E[C:up=\E[A:\
 :ce=\E[K:cd=\E[J:so=\E[7m:se=\E[27m:us=\E[4m:ue=\E[24m:\
 :md=\E[1m:mr=\E[7m:mb=\E[5m:me=\E[m:is=\E[1;25r\E[25;1H:\
 :ll=\E[1;25r\E[25;1H:al=\E[L:dc=\E[P:dl=\E[M:\
 :it#8:ku=\E[A:kd=\E[B:kr=\E[C:kl=\E[D:kb=^H:ti=\E[r\E[H:\
 :ho=\E[H:kP=\E[5~:kN=\E[6~:kH=\E[4~:kh=\E[1~:kD=\E[3~:kI=\E[2
~:\
 :k1=\E[[A:k2=\E[[B:k3=\E[[C:k4=\E[[D:k5=\E[[E:k6=\E[17~:\
 :k7=\E[18~:k8=\E[19~:k9=\E[20~:k0=\E[21~:K1=\E[1~:K2=\E[5~:\
 :K4=\E[4~:K5=\E[6~:\
 :pt:sr=\EM:vt#3:xn:km:bl=^G:vi=\E[?25l:ve=\E[?25h:vs=\E[?25h:
\
 :sc=\E7:rc=\E8:cs=\E[%i%d;%dr:\

 :r1=\Ec:r2=\Ec:r3=\Ec:\
 :vb=\E[?5h\E[?5l:\
 :ut:\
 :Co#8:\
 :AF=\E[%a+c\036%dm:\
 :AB=\E[%a+c\050%dm:

[5] This entry courtesy of Kevin Buettner. Note that Linux distributions will vary. This was tested
under Redhat Linux 4.2; you may not need to change your /etc/termcap file.

On the one hand, because syntax highlighting is accomplished with an external
program, it should be possible to write any number of highlighters for different
languages. On the other hand, because the facilities are rather low-level, doing so
is not for non-programmers. The online help describes how the highlight filters
should work.

The directory ftp://ftp.clark.net/pub/dickey/vile/utilities contains user-contributed
filters for coloring makefiles, input, Perl, HTML, and troff. It even contains a
macro that will color the lines in RCS files according to their age!

12.10 Interesting Features

vile has a number of interesting features that are the topic of this section.

The vile editing model

vile's editing model is somewhat different from vi's. Based on concepts
from emacs, it provides key rebinding and a more dynamic command line.

Major modes

vile supports editing "modes." These are groups of option settings that
make it convenient for editing different kinds of files.

The procedure language

vile's procedure language allows you to define functions and macros that
make the editor more programmable and flexible.

Miscellaneous small features

A number of smaller features make day-to-day editing easier.

12.10.1 The vile Editing Model

In vi and the other clones, editing functionality is "hardwired" into the editor. The
association between command characters and what they do is built into the code.
For example, the x key deletes characters, and the i key enters insert mode.
Without resorting to severe trickery, you cannot switch the functionality of the
two keys (if it can even be done at all).

vile's editing model, derived from emacs through MicroEMACS, is different. The
editor has defined, named functions, each of which performs a single editing task,
such as delete-next-character or delete-previous-character. Many of the

functions are then bound to keystrokes, such as binding delete-next-character
to x.

Changing bindings is very easy to do. You use the :bind-key command. As
arguments, you give it the name of the function, and then the key sequence to
bind the function to. You might put the following commands into your .vilerc file:

bind-key incremental-search /
bind-key reverse-incremental-search ?

These commands change the / and ? search commands to do incremental
searching.

In addition to pre-defined functions, vile contains a simple programming language
that allows you to write procedures. You may then bind the command for
executing a procedure to a keystroke sequence. GNU emacs uses a variant of Lisp
for its language, which is extremely powerful. vile has a somewhat simpler, less
general-purpose language.

Also, as in emacs, the vile command line is very interactive. Many commands
display a default value for their operand, which you can edit if not appropriate, or
select by hitting RETURN. As you type vi mode editing commands, such as those
that change or delete characters, you will see feedback about the operation in the
status line.

The "amazing" ex mode that Paul referred to earlier is best reflected in the
behavior of the :s (substitute) command. It prompts for each part of the
command: the search pattern, the replacement text, and any flags.

As an example, let's assume you wish to change all instances of perl to awk
everywhere in your file. In the other editors, you'd simply type
:1,$s/perl/awk/gRETURN, and that's what would appear on the command line.
The following set of screens describes what you see on the vile colon command
line as you type:

Keystrokes Results
:1,$s The first part of the substitute command.

/

substitute pattern: _

vile prompts you for the pattern to search for. Any previous pattern is
placed there for you to re-use.

perl/

replacement string: _

At the next / delimiter, vile prompts you for the replacement text. Any
previous text is placed there for you to re-use.

awk/

(g)lobally, ([1-9])th occurrence on line,
(c)onfirm, and/or (p)rint result: _

At the final delimiter, vile prompts for the optional flags. Enter any
desired flags, then RETURN.

The last prompt line is broken for readability. vile prints it all on one line.

vile follows through with this style of behavior on all appropriate ex commands.
For example, the read command (:r) will prompt you with the name of the last
file you read. To read that file again, just hit RETURN.

Finally, vile's ex command parser is weaker than in the other editors. For
example, you cannot use search patterns to specify line ranges
(:/now/,/forever/s/perl/awk/g), and the move command (m) is not
implemented. In practice, what's not implemented does not seem to hinder you
very much.

12.10.2 Major Modes

A major mode is a collection of option settings that apply when editing a certain
class of file. Many of these options apply on a per-buffer basis, such as the tab-
stop settings. The major mode concept was first introduced in vile 7.2, and is
more fully developed in 7.4 and 8.0.

vile has one pre-defined major mode, cmode, for editing C and C++ programs.
With cmode, you can use % to match C preprocessor conditionals (#if, #else, and
#endif). vile will do automatic source code indentation based on the placement
of braces ({ and }). And it will do smart formatting of C comments. The tabstop
and shiftwidth options are set on a per-major-mode basis as well.

Using major modes, you can apply the same features to programs written in
other languages. This example, courtesy of Tom Dickey, defines a new major
mode, shmode, for editing Bourne shell scripts. (This is useful for any Bourne-
style shell, such as ksh, bash, or zsh.)

define-mode sh
set shsuf "\.sh$"
set shpre "^#!\\s*\/.*sh\\>$"
define-submode sh comment-prefix "^\\s*/[:#]"
define-submode sh comments "^\\s*/\\?[:#]\\s+/\\?\\s*$"
define-submode sh fence-if "^\\s*\\<if\\>"
define-submode sh fence-elif "^\\s*\\<elif\\>"
define-submode sh fence-else "^\\s*\\<else\\>"
define-submode sh fence-fi "^\\s*\\<fi\\>"

The shsuf (shell suffix) variable describes the file name suffix that indicates a file
is a shell script. The shpre (shell preamble) variable describes a first line of the
file that indicates that the file contains shell code. The define-submode
commands then add options that apply only to buffers where the corresponding
major mode is set. The examples here set up the smart comment formatting and
the smart % command matching for shell programs.

12.10.3 The Procedure Language

vile's procedure language is almost unchanged from that of MicroEMACS.
Comments begin with a semi-colon or a double quote character. Environment
variable names (editor options) start with a $, user variable names start with %. A
number of built-in functions exist for doing comparisons and testing conditions;
their names all begin with &. Flow control commands and certain others begin
with ~. An @ with a string prompts the user for input, and the user's answer is

returned. This rather whimsical example from the macros.doc file should give you
a taste of the language's flavor:

~if &sequal %curplace "timespace vortex"
 insert-string "First, rematerialize\n"
~endif
~if &sequal %planet "earth" ;If we have landed on earth...
 ~if &sequal %time "late 20th century" ;and we are then
 write-message "Contact U.N.I.T."
 ~else
 insert-string "Investigate the situation....\n"
 insert-string "(SAY 'stay here Sara')\n"
 ~endif
~elseif &sequal %planet "luna" ;If we have landed on our neighbor...
 write-message "Keep the door closed"
~else
 setv %conditions @"Atmosphere conditions outside? "
 ~if &sequal %conditions "safe"
 insert-string &cat "Go outside......" "\n"
 insert-string "lock the door\n"
 ~else
 insert-string "Dematerialize..try somewhen else"
 newline
 ~endif
~endif

You can store these procedures into a numbered macro, or give them names that
can be bound to keystrokes. The above procedure is most useful when using the
Tardis vile port.

This more realistic example from Paul Fox runs grep, searching for the word
under the cursor in all C source files. It then puts the results in a buffer named
after the word, and sets things up so that the built-in error finder (^X ^X) will use
this output as its list of lines to visit. Finally, the macro is bound to ^A g. The
~force command allows the following command to fail without generating an
error message:

14 store-macro
 set-variable %grepfor $identifier
 edit-file &cat "!egrep -n " &cat %grepfor " *.[ch]"
 ~force rename-buffer %grepfor
 error-buffer $cbufname
~endm
bind-key execute-macro-14 ^A-g

Finally, the read-hook and write-hook variables can be set to names of
procedures to run after reading and before writing a file, respectively. This allows
you to do things similar to pre- and post-operation files in elvis and the
autocommand facility in vim.

The language is quite capable, including flow control and comparison features,
and variables that provide access to a large amount of vile's internal state. The
macros.doc file in the vile distribution describes the language in detail.

12.10.4 Miscellaneous Small Features

Several other, smaller features are worth mentioning:

Piping into vile

If you make vile the last command in a pipeline, it will create a buffer
named [Standard Input] and edit that buffer for you. This is perhaps the
"pager to end all pagers."

Editing DOS files

When set to true, the dos option causes vile to strip carriage returns at the
end of a line in files when reading, and to write them back out again. This
makes it easy to edit DOS files on a UNIX or Linux system.

Text reformatting

The ^A f command reformats text, performing word wrapping on selected
text. It understands C and shell comments (lines with a leading * or #)
and quoted email (a leading >). It is similar to the UNIX fmt command, but
faster.

Formatting the information line

The modeline-format variable is a string which controls the way vile
formats the mode line. This is the line at the bottom of each window that
describes the buffer's status, such as its name, current major mode,
modification status, insert versus command mode, and so on.

The string consists of printf(3) style percent-sequences. For example, %b
for the buffer name, %m for the major mode, and %l for the line number if
ruler has been set. Characters in the string which are not part of a format
specifier are output verbatim.

vile has many other features. The vi finger-feel makes it easy to move to. The
programmability provides flexibility, and its interactive nature and use of defaults
is perhaps friendlier for the novice than traditional vi.

12.11 Sources and Supported
Operating Systems

The official WWW location for vile is
http://www.clark.net/pub/dickey/vile/vile.html . The ftp location is
ftp://ftp.clark.net/pub/dickey/vile/vile.tar.gz . The file vile.tar.gz is always a
symbolic link to the current version.

vile is written in ANSI C. It builds and runs on UNIX, VMS (with both VAX C and
DEC C), MS-DOS, Win32 console and Win32 GUI, and OS/2.

Compiling vile is straightforward. Retrieve the distribution via ftp or from the web
page. Uncompress and untar it, run the configure program, and then run make:

$ gzip -d < vile.tar.gz | tar -xvpf -
...
$ cd vile-8.0; ./configure
...
$ make

...

vile should configure and build with no problems. Use make install to install it.

If you intend to use a Linux console and want
syntax coloring to work, you may wish to run
configure with the following option: --with-
screen=ncurses.

Should you need to report a bug or problem in vile, send email to the address
vile-bugs@foxharp.boston.ma.us . This is the preferred way to report bugs. If
necessary, you can contact Tom Dickey directly at dickey@clark.net .

Appendix A. Quick Reference

This appendix lists vi commands and ex commands according to
their use.

Table A.1. Movement Commands
Command Function

Character
h,j,k,l Left, down, up, right (, , ,).
Text
w,W,b,B Forward, backward by word.
e,E End of word.
),(Beginning of next, previous sentence.
},{ Beginning of next, previous paragraph.
]],[[Beginning of next, previous section.
Lines
RETURN First non-blank character of next line.
0, $ First, last position of current line.
^ First non-blank character of current line.
+, - First non-blank character of next, previous line.
n| Column n of current line.
H Top line of screen.
M Middle line of screen.
L Last line of screen.
nH n (number) of lines after top line.
nL n (number) of lines before last line.
Scrolling
CTRL-F, CTRL-B Scroll forward, backward one screen.
CTRL-D, CTRL-U Scroll down, up one-half screen.
CTRL-E, CTRL-Y Show one more line at bottom, top of window.
z RETURN Reposition line with cursor: to top of screen.
z. Reposition line with cursor: to middle of screen.
z- Reposition line with cursor: to bottom of screen.
CTRL-L Redraw screen (without scrolling).
Searches
/pattern Search forward for pattern.
?pattern Search backward for pattern.
n, N Repeat last search in same, opposite direction.
/, ? Repeat previous search forward, backward.
fx Search forward for character x in current line.
Fx Search backward for character x in current line.
tx Search forward to character before x in current line.
Tx Search backward to character after x in current line.

; Repeat previous current-line search.
, Repeat previous current-line search in opposite direction.
Line number
CTRL-G Display current line number.
nG Move to line number n.
G Move to last line in file.
:n Move to line n in file.
Marking position
mx Mark current position as x.
`x Move cursor to mark x.
` ` Return to previous mark or context.
'x Move to beginning of line containing mark x.
'' Return to beginning of line containing previous mark.

Table A.2. Editing Commands
Command Function

Insert
i, a Insert text before, after cursor.
I, A Insert text before beginning, after end of line.
o, O Open new line for text below, above cursor.
Change
r Replace character.
cw Change word.
cc Change current line.
cmotion Change text between the cursor and the target of motion.
C Change to end of line.
R Type over (overwrite) characters.
s Substitute: delete character and insert new text.
S Substitute: delete current line and insert new text.
Delete, move
x Delete character under cursor.
X Delete character before cursor.
dw Delete word.
dd Delete current line.
dmotion Delete text between the cursor and the target of motion.
D Delete to end of line.
p, P Put deleted text after, before cursor.

"np Put text from delete buffer number n after cursor (for last nine
deletions).

Yank
yw Yank (copy) word.
yy Yank current line.

"ayy Yank current line into named buffer a (a-z). Uppercase names
append text.

ymotion Yank text between the cursor and the target of motion.

p, P Put yanked text after, before cursor.
"aP Put text from buffer a before cursor (a-z).
Other commands
. Repeat last edit command.
u, U Undo last edit; restore current line.
J Join two lines.
ex edit
commands

:d Delete lines.
:m Move lines.
:co or :t Copy lines.
:.,$d Delete from current line to end of file.
:30,60m0 Move lines 30 through 60 to top of file.

:.,/pattern/co$ Copy from current line through line containing pattern to end
of file.

Table A.3. Exit Commands
Command Function

ZZ Write (save) the file if modified, and quit file.
:x Write (save) the file if modified, and quit file.
:wq Write (save) the file unconditionally, and quit file.
:w Write (save) file.
:w! Write (save) file, overriding protection.
:30,60w newfile Write from line 30 through line 60 as newfile.
:30,60w>> file Write from line 30 through line 60 and append to file.
:w %.new Write current buffer named file as file.new.
:q Quit file.
:q! Quit file, overriding protection.
Q Quit vi and invoke ex.
:e file2 Edit file2 without leaving vi.
:r newfile Read contents of newfile into current file.
:n Edit next file.
:e! Return to version of current file at time of last write (save).
:e # Edit alternate file.
:vi Invoke vi editor from ex.
: Invoke one ex command from vi editor.
% Current filename (substitutes into ex command line).
Alternate filename (substitutes into ex command line).

Table A.4. Solaris vi Command Mode Tag Commands
Command Function

^]
Look up the location of the identifier under the cursor in the tags file,
and move to that location. If tag stacking is enabled, the current
location is automatically pushed onto the tag stack.

^T Return to the previous location in the tag stack, i.e., pop off one
element.

Table A.5. Command-Line Options
Command Function

vi file Invoke vi editor on file.
vi file1 file2 Invoke vi editor on files sequentially.
view file Invoke vi editor on file in read-only mode.
vi -R file Invoke vi editor on file in read-only mode.
vi -r file Recover file and recent edits after a crash.
vi -t tag Look up tag and start editing at its definition.
vi -w n Set the window size to n; useful over a slow connection.
vi + file Open file at last line.
vi +n file Open file directly at line number n.
vi -c command
file

Open file, execute command, which is usually a search
command or line number (POSIX).

vi +/pattern
file Open file directly at pattern.

ex file Invoke ex editor on file.
ex - file <
script

Invoke ex editor on file, taking commands from script; suppress
informative messages and prompts.

ex -s file <
script

Invoke ex editor on file, taking commands from script; suppress
informative messages and prompts (POSIX).

Table A.6. Other ex Commands
Command Function

Abbreviations [A]

:map x sequence Define keystroke x as a command sequence. x can be
multiple characters.

:map! x sequence Define x as command sequence for insert mode.
:unmap x Disable the map x.
:unmap! x Disable the insert mode map x.

:ab abbr phrase Abbreviate phrase as abbr; when abbr is typed in insert
mode, it expands to full words or phrases.

:unab abbr Disable abbreviation abbr.
Customizing
environment: [A]

:set option Activate option.
:set option=value Assign value to option.
:set nooption Deactivate option.
:set Display options set by user.

:set all Display list of all current option settings, both default and
those set by the user.

:set option? Display value of option.
Accessing UNIX
:sh Invoke shell.
^D Return to editor from shell.
:! command Give UNIX command.
:n,m! command Filter lines n to m through UNIX command.

:r !command Read output of UNIX command into current file.

[A] In .exrc files, omit the colon at the start of ex commands.

Appendix B. ex Commands

This appendix describes the syntax of ex commands and then
presents an alphabetical list of ex commands.

B.1 Command Syntax

To enter an ex command from vi, use this form:

:[address]command[options]

address is the line number or range of lines that are the object of
command. If no address is given, the current line is (usually) the
object of the command.

B.1.1 Address Symbols

In ex command syntax, address can be specified in any of the forms
shown in Table B.1.

Table B.1. ex Address Syntax
Address Includes

1,$ All lines in the file
x,y Lines x through y
x;y Lines x through y, with current line reset to x
0 Top of file
. Current line
n Absolute line number n
$ Last line
% All lines; same as 1,$
x-n n lines before x
x+n n lines after x
-[n] One or n lines previous
+[n] One or n lines ahead
'x Line marked with x
'' Previous mark
/pat/ or ?pat? Ahead or back to line where pat matches

B.1.2 Option Symbols

In ex command syntax, options might be any of the following:

!

Indicates a variant form of the command, overriding the
normal behavior.

count

The number of times the command is to be repeated. count
cannot precede the command, because a number preceding
an ex command is treated as a line address. d3 deletes three
lines beginning with the current line; 3d deletes line 3.

file

The name of a file that is affected by the command. % stands
for current file; # stands for previous file.

B.2 Alphabetical List of Commands

In this section, the full name of the ex command is listed as the
keyword. To the right of or below each keyword is the syntax, using
the shortest abbreviation possible for that command. A brief
description follows the syntax.

abbrev

ab [string text]

Define string when typed to be translated into text. If string
and text are not specified, list all current abbreviations.

append

[address] a[!]

text

.

Append text at specified address, or at present address if one
is not specified. Add a ! to switch the autoindent setting that
will be used during input. That is, if autoindent was enabled,
! disables it.

args

ar

Print the members of the argument list (files named on the
command line), with the current argument printed within
brackets ([]).

change

[address] c[!]

text

.

Replace the specified lines with text. Add a ! to switch the
autoindent setting during input of text.

copy

[address] co destination

Copy the lines included in address to the specified destination
address. The command t (short for "to") is a synonym for
copy.

delete

[address] d [buffer]

Delete the lines included in address. If buffer is specified,
save or append the text to the named buffer. Buffer names
are the lowercase letters a-z. Uppercase names append text
to the buffer.

edit

e [!][+n] [filename]

Begin editing on filename. If no filename is given, start over
with a copy of the current file. Add a ! to edit the new file
even if the current file has not been saved since the last
change. With the +n argument, begin editing on line n. Or n
may be a pattern, of the form /pattern.

file

f [filename]

Change the name of the current file to filename, which is
considered "not edited." If no filename is specified, print the
current status of the file.

global

[address]g[!]/pattern/[commands]

Execute commands on all lines which contain pattern, or if
address is specified, all lines within that range. If commands
are not specified, print all such lines. Add a ! to execute
commands on all lines not containing pattern.

insert

[address]i[!]

text

.

Insert text at line before the specified address, or at present
address if none is specified. Add a ! to switch the autoindent
setting during input of text.

join

[address]j[!][count]

Place the text in the specified range on one line, with
whitespace adjusted to provide two space characters after a
period (.), no space characters after a), and one space
character otherwise. Add a ! to prevent whitespace
adjustment.

k

[address] k char

Mark the given address with char, a single lowercase letter.
Return later to the line with 'x. k is equivalent to mark.

list

[address] l [count]

Print the specified lines so that tabs display as ^I and the
ends of lines display as $.

map

map char commands

Define a macro named char in visual mode with the specified
sequence of commands. char is usually the sequence #n,
representing a function key on the keyboard, or one or more
characters.

mark

[address] ma char

Mark the specified line with char, a single lowercase letter.
Return later to the line with 'x.

move

[address] m destination

Move the lines specified by address to the destination
address.

next

n[!] [[+n] filelist]

Edit the next file from the command-line argument list. Use
args to list these files. If filelist is provided, replace the
current argument list with filelist and begin editing on the first
file. With the +n argument, begin editing on line n. Or n may
be a pattern, of the form /pattern.

number

[address] nu [count]

Print each line specified by address, preceded by its buffer line
number. Use # as an alternate abbreviation for number.

open

[address] o [/pattern/]

Enter open mode (vi) at the lines specified by address, or at
the lines matching pattern. Exit open mode with Q.

preserve

pre

Save the current editor buffer as though the system was
about to crash.

print

[address] p [count]

Print the lines specified by address. P is another abbreviation.

put

[address] pu [char]

Restore previously deleted or yanked lines, from named buffer
specified by char, to the line specified by address; if char is
not specified, the last deleted or yanked text is restored.

quit

q[!]

Terminate current editing session. Use ! to discard changes
made since the last save. If the editing session includes
additional files in the argument list that have not yet been
accessed, quit by typing q! or by typing q twice.

read

[address] r filename

Copy the text of filename after the line specified by address.
If filename is not specified, the current filename is used.

read

[address] r ! command

Read the output of command into the text after the line
specified by address.

recover

rec [filename]

Recover filename from system save area.

rewind

rew[!]

Rewind argument list and begin editing the first file in the list.
Add a ! to rewind even if the current file has not been saved
since the last change.

set

se parameter parameter2

Set a value to an option with each parameter, or if no
parameter is supplied, print all options that have been
changed from their defaults. For toggle options, each
parameter can be phrased as "option" or "nooption," other
options can be assigned with the syntax, "option=value". The
form set option? displays the value of option.

shell

sh

Create a new shell. Resume editing when the shell is
terminated.

source

so filename

Read and execute ex commands from filename.

substitute

[address] s [/pattern/repl/][options]

Replace each instance of pattern on the specified lines with
repl. If pattern and repl are omitted, repeat last substitution.
An option of g substitutes all instances of pattern on the line.
An option of c prompts for confirmation before each change.
(Spelling out the command name does not work in Solaris 2.6
vi.) See Chapter 6, for full details.

t

[address] t destination

Copy the lines included in address to the specified destination
address. t is equivalent to copy.

tag

[address] ta tag

Switch the focus of editing to tag.

unabbreviate

una word

Remove word from the list of abbreviations.

undo

u

Reverse the changes made by the last editing command.

unmap

unm char

Remove char from the list of macros.

v

[address] v/ pattern/[commands]

Execute commands on all lines not containing pattern. If
commands are not specified, print all such lines. v is
equivalent to g!.

version

ve

Print the current version number of the editor and the date
the editor was last changed. Each clone prints something
appropriate.

visual

[address] vi [type] [count]

Enter visual mode at the line specified by address. Exit with Q.
type can be one of -, ^, or . (See the z command). count
specifies an initial window size.

visual

vi [+n] [filename]

Begin editing on filename in visual mode.

write

[address] w[!] [[>>]filename]

Write lines specified by address to filename, or full contents of
buffer if address is not specified. If filename is also omitted,
save the contents of the buffer to the current filename. If >>
filename is used, write contents to the end of the specified
filename. Add a ! to force the editor to write over any current
contents of filename.

write

[address] w !command

Write lines specified by address to command.

wq

wq[!]

Write and quit the file in one movement. The file is always
written.

xit

x

Write file if changes have been made to the buffer since last
write, then quit.

yank

[address] y [char] [count]

Place lines specified by address in named buffer indicated by
char, or if no char is specified place in general buffer.

z

[address] z [type] [count]

Print a window of text with line specified by address at the
top. type can be one of:

+

Place specified line at the top of the window (default).

-

Place specified line at the bottom of the window.

.

Place specified line in the center of the window.

^

Print the previous window.

=

Place specified line in the center of the window and leave the
current line at this line.

count specifies the number of lines to be displayed.

!

[address] !command

Execute command in a shell. If address is specified, apply the
lines contained in address as standard input to command, and
replace the lines with the output and error output. (This is
called filtering the text through the command.)

=

[address] =

Print the line number of the line indicated by address. Default
is line number of last line.

<>

[address] < [count]

or

[address] > [count]

Shift lines specified by address in specified direction. Only
leading spaces and tabs are added or removed when shifting
lines. The shiftwidth option controls the number of columns
that are shifted. Repeating the < or > increases the shift
amount. For example, :>>> shifts three times as much as :>.

address

address

Print the lines specified in address.

RETURN

RETURN

Print the next line in the file.

&

[address] & [options] [count]

Repeat the previous substitute command.

~

[address] ~ [count]

Replace the last used regular expression (even if from a
search, and not from an s command) with the replacement
pattern from the most recent s (substitute) command. See
Section 6.3.4 in Chapter 6 for details.

Appendix C. Setting Options

This appendix describes the important set command options for
Solaris 2.6 vi, nvi 1.79, elvis 2.0, vim 5.1, and vile 8.0.

C.1 Solaris 2.6 vi Options

Table C.1 contains brief descriptions of the important set command options. In
the first column, options are listed in alphabetical order; if the option can be
abbreviated, that abbreviation is shown in parentheses. The second column
shows the default setting that vi uses unless you issue an explicit set command
(either manually or in the .exrc file). The last column describes what the option
does, when enabled.

Table C.1. Solaris 2.6 vi Set Options
Option Default Description

autoindent
(ai) noai

In insert mode, indents each line to the same
level as the line above or below. Use with the
shiftwidth option.

autoprint
(ap) ap

Displays changes after each editor command.
(For global replacement, displays last
replacement.)

autowrite
(aw) noaw

Automatically writes (saves) the file if changed
before opening another file with :n or before
giving UNIX command with :!.

beautify
(bf) nobf Ignores all control characters during input

(except tab, newline, or formfeed).
directory
(dir) /tmp Names directory in which ex/vi stores buffer

files. (Directory must be writable.)

edcompatible noedcompatible

Remember the flags used with the most recent
substitute command (global, confirming), and
use them for the next substitute command.
Despite the name, no actual version of ed
actually behaved this way.

errorbells
(eb) errorbells Sounds bell when an error occurs.

exrc (ex) noexrc Allows the execution of .exrc files that reside
outside the user's home directory.

hardtabs
(ht) 8 Defines boundaries for terminal hardware tabs.

ignorecase
(ic) noic Disregards case during a search.

lisp nolisp
Inserts indents in appropriate lisp format. (),
{ }, [[, and]] are modified to have meaning
for lisp.

list nolist
Prints tabs as ^I; marks ends of lines with $.
(Use list to tell if end character is a tab or a
space.)

magic magic Wildcard characters . (dot), * (asterisk), and []

(brackets) have special meaning in patterns.

mesg mesg Permits system messages to display on terminal
while editing in vi.

novice nonovice Requires the use of long ex command names,
such as copy or read.

number (nu) nonu Displays line numbers on left of screen during
editing session.

open open
Allows entry to open or visual mode from ex.
Although not in Solaris 2.6 vi, this option has
traditionally been in vi, and may be in your
UNIX's version of vi.

optimize
(opt) noopt

Abolishes carriage returns at the end of lines
when printing multiple lines, speeds output on
dumb terminals when printing lines with leading
whitespace (spaces or tabs).

paragraphs
(para)

IPLPPPQP
LIpplpipbp

Defines paragraph delimiters for movement by
{ or }. The pairs of characters in the value are
the names of troff macros that begin
paragraphs.

prompt prompt Displays the ex prompt (:) when vi's Q
command is given.

readonly
(ro) noro

Any writes (saves) of a file will fail unless you
use ! after the write (works with w, ZZ, or
autowrite).

redraw (re)

vi redraws the screen whenever edits are made
(in other words, insert mode pushes over
existing characters, and deleted lines
immediately close up). Default depends on line
speed and terminal type. noredraw is useful at
slow speeds on a dumb terminal: deleted lines
show up as @, and inserted text appears to
overwrite existing text until you press ESC.

remap remap Allows nested map sequences.

report 5
Displays a message on the status line whenever
you make an edit that affects at least a certain
number of lines. For example, 6dd reports the
message "6 lines deleted."

scroll [window] Number of lines to scroll with ^D and ^U
commands.

sections
(sect) SHNHH HU

Defines section delimiters for [[and]]
movement. The pairs of characters in the value
are the names of troff macros that begin
sections.

shell (sh) /bin/sh

Pathname of shell used for shell escape (:!)
and shell command (:sh). Default value is
derived from shell environment, which varies on
different systems.

shiftwidth
(sw) 8

Defines number of spaces in backward (^D) tabs
when using the autoindent option, and for the
<< and >> commands.

showmatch
(sm) nosm In vi, when) or } is entered, cursor moves

briefly to matching (or {. (If no match, rings
the error message bell.) Very useful for
programming.

showmode noshowmode
In insert mode, displays a message on the
prompt line indicating the type of insert you are
making. For example, "OPEN MODE," or
"APPEND MODE."

slowopen
(slow) Holds off display during insert. Default depends

on line speed and terminal type.

tabstop (ts) 8
Defines number of spaces that a TAB indents
during editing session. (Printer still uses system
tab of 8.)

taglength
(tl) 0

Defines number of characters that are
significant for tags. Default (zero) means that
all characters are significant.

tags tags /usr/lib/tags

Defines pathname of files containing tags. (See
the UNIX ctags command.) (By default, vi
searches the file tags in the current directory
and /usr/lib/tags.)

tagstack tagstack Enables stacking of tag locations on a stack.

term Sets terminal type.
terse noterse Displays shorter error messages.
timeout (to) timeout Keyboard maps time out after 1 second.[A]

ttytype
Sets terminal type. This is just another name
for term.

warn warn Displays the warning message, "No write since
last change."

window (w)
Shows a certain number of lines of the file on
the screen. Default depends on line speed and
terminal type.

wrapscan
(ws) ws Searches wrap around either end of file.

wrapmargin
(wm) 0

Defines right margin. If greater than zero,
automatically inserts carriage returns to break
lines.

writeany
(wa) nowa Allows saving to any file.

[A] When you have mappings of several keys (for example, :map zzz 3dw), you probably want to use
notimeout. Otherwise you need to type zzz within 1 second. When you have an insert mode mapping for a
cursor key (for example, :map! ^[OB ^[ja), you should use timeout. Otherwise, vi won't react to ESC until
you type another key.

C.2 nvi 1.79 Options

nvi 1.79 has a total of 78 options that affect its behavior. Table C.2 summarizes
the most important ones. Most options described in Table C.1 are not repeated
here.

Table C.2. nvi 1.79 Set Options
Option Default Description

backup

A string describing a backup filename to use.
The current contents of a file are saved in
this file before writing the new data out. For
example, a value of "N%.bak" causes nvi to
include a version number at the end of the
file; version numbers are always
incremented.

cdpath
environment variable
CDPATH, or current
directory

A search path for the :cd command.

cedit

When the first character of this string is
entered on the colon command line, nvi
opens a new window on the command
history that you can then edit. Hitting
RETURN on any given line executes that line.
ESC is a good choice for this option. (Use ^V
^[to enter it.)

comment nocomment
If the first non-empty line begins with /*,
//, or #, nvi skips the comment text before
displaying the file. This avoids displaying
long, boring legal notices.

directory
(dir)

environment variable
TMPDIR, or /tmp

The directory where nvi puts its temporary
files.

extended noextended Searches use egrep-style extended regular
expressions.

filec

When the first character of this string is
entered on the colon command line, nvi
treats the blank delimited word in front of
the cursor as if it had an * appended to it
and does shell-style filename expansion. ESC
is a also good choice for this option. (Use ^V
^[to enter it.) When this character is the
same as for the cedit option, command line
editing is performed only when the character
is entered as the first character on the colon
command line.

iclower noiclower
Make all regular expression searches case
insensitive, as long as the search pattern
contains no uppercase letters.

leftright noleftright Long lines scroll the screen left to right,
instead of wrapping.

lock lock
nvi attempts to get an exclusive lock on the
file. Editing a file that cannot be locked
creates a read-only session.

octal nooctal Displays unknown characters in octal,
instead of in hexadecimal.

path A colon-separated list of directories in which
nvi will look for the file to be edited.

recdir /var/tmp/vi.recover The directory where recovery files are
stored.

ruler noruler Displays the row and column of the cursor.
searchincr nosearchincr Searches are done incrementally.

secure nosecure

Turns off access to external programs via
text filtering (:r!, :w!), disables the vi mode
! and ^Z commands, and the ex mode !,
shell, stop, and suspend commands. Once
set, it cannot be changed.

shellmeta ~{[*?$`'"\
When any of these characters appear in a
filename argument to an ex command, the
argument is expanded by the program
named by the shell option.

showmode
(smd) noshowmode

Displays a string in the status line showing
the current mode. Displays an * if the file
has been modified.

sidescroll 16
The number of columns by which the screen
is shifted left or right when leftright is
true.

taglength
(tl) 0

Defines number of characters that are
significant for tags. Default (zero) means
that all characters are significant.

tags (tag) tags /var/db/libc.tags
/sys/kern/tags

The list of possible tag files.

tildeop notildeop The ~ command takes an associated motion,
not just a preceding count.

wraplen
(wl) 0

Identical to the wrapmargin option, except
that it specifies the number of characters
from the left margin at which the line will be
split. The value of wrapmargin overrides
wraplen.

C.3 elvis 2.0 Options

elvis 2.0 has a total of 144 options that affect its behavior. Table C.3 summarizes
the most important ones. Most options described in Table C.1 are not repeated
here.

Table C.3. elvis 2.0 Set Options
Option Default Description

autoiconify
(aic) noautoiconify Iconify the old window when de-iconifying a new

one.

backup (bk) nobackup Make a backup file (xxx.bak) before writing the
current file out to disk.

binary (bin) The buffer's data is not text. This option is set
automatically.

boldfont
(xfb) The name of the bold font.

bufdisplay
(bd) normal The default display mode for the buffer (hex,

html, man, normal, or syntax).

ccprg (cp) cc ($1?$1:$2) The shell command for :cc.
commentfont
(cfont) The name of the font used for comments.

directory
(dir) Where to store temporary files. The default is

system dependent.
display
(mode) normal The name of current display mode, set by the

:display command.

elvispath
(epath)

A list of directories in which to search for
configuration files. The default is system
dependent.

focusnew
(fn) focusnew Force keyboard focus into the new window.

functionfont
(ffont) The name of the font used for function names.

gdefault
(gd) nogdefault Causes the substitute command to change all

instances.
home (home) $HOME The home directory for ~ in filenames.
italicfont
(xfi) The name of the italic font.

keywordfont
(kfont) The name of the font used for reserved words.

lpcolumns
(lpcols) 80 The width of a printer page; for :lpr.

lpcrlf (lpc) nolpcrlf The printer needs CR-LF for newline in the file;
for :lpr.

lpformfeed
(lpff) nolpformfeed Send a form-feed after the last page; for :lpr.

lplines
(lprows) 60 The length of a printer page; for :lpr.

lppaper
(lpp) letter The paper size (letter, a4, ...) for PostScript

printers; for :lpr.

lpout (lpo)
The printer file or filter, for :lpr. A typical value
might be !lpr. The default is system dependent.

lptype (lpt) dumb
The printer type, for :lpr. The value should be
one of: ps, ps2, epson, pana, ibm, hp, cr, bs, or
dumb.

lpwrap (lpw) lpwrap Simulate line-wrap; for :lpr.

makeprg (mp) make $1 The shell command for :make.
normalfont
(xfn) The name of the normal font.

otherfont
(ofont) The font used for other symbols.

prepfont
(pfont) The font used for preprocessor commands.

ruler (ru) noruler Display the cursor's line and column.
safer
(trapunsafe) nosafer Be paranoid; use the :safer command to set

this, don't do it directly.
showmarkups
(smu) noshowmarkups For the man and html modes, show the markup at

the cursor position, but not elsewhere.
sidescroll
(ss) 0 The sideways scrolling amount. Zero mimics vi,

making lines wrap.
stringfont
(sfont) The font used for strings.

taglength 0 Defines number of characters that are significant

(tl) for tags. Default (zero) means that all characters
are significant.

tags
(tagpath) tags The list of possible tag files.

tagstack
(tsk) tagstack Remember the origin of tag searches on a stack.

undolevels
(ul) 0

The number of undoable commands. Zero mimics
vi. You probably want to set this to a bigger
number.

variablefont
(vfont) The font used for variables.

warpback
(wb) nowarpback Upon exit, move the pointer back to the xterm

which started elvis.

warpto (wt) don't

How ^W ^W forces pointer movement: don't for
no movement, scrollbar moves the pointer to
the scrollbar, origin moves the pointer to the
upper left corner, and corners moves it to the
corners furthest from and nearest to the current
cursor position. This forces the X display to pan,
to make sure the window is entirely onscreen.

C.4 vim 5.1 Options

vim 5.1 has a total of 170 options that affect its behavior. Table C.4 summarizes
the most important ones. Most options described in Table C.1 are not repeated
here.

The summaries in the table here are of necessity very brief. Much more
information about each option may be found in the vim online help.

Table C.4. vim 5.1 Set Options
Option Default Description

background
(bg) dark or light

vim tries to use background and foreground
colors that are appropriate to the particular
terminal.

backspace
(bs) 0

Controls whether you can backspace over a
newline and/or over the start of insert.
Values are: 0 for vi compatibility, 1 to
backspace over newlines, and 2 to
backspace over the start of insert. Using a
value of 3 allows both.

backup (bk) nobackup

Make a backup before overwriting a file,
then leave it around after the file has been
successfully written. To have a backup file
just while the file is being written, use the
writebackup option.

backupdir
(bdir) ., ~/tmp/, ~/

A list of directories for the backup file,
separated with commas. The backup file will
be created in the first directory in the list
where this is possible. If empty, you cannot

create a backup file. The name . (dot)
means the same directory as where the
edited file is.

backupext
(bex) ~ The string which is appended to a file name

to make the name of the backup file.

binary (bin) nobinary

Changes a number of other options to make
it easier to edit binary files. The previous
values of these options are remembered and
restored when bin is switched back off. Each
buffer has its own set of saved option
values. This option should be set before
editing a binary file. You can also use the -b
command line option.

cindent (cin) nocindent Enables automatic smart C program
indenting.

cinkeys
(cink)

0{,0},:,0#,!^F,
o,O,e

A list of keys that, when typed in insert
mode, cause reindenting of the current line.
Only happens if cindent is on.

cinoptions
(cino) Affects the way cindent reindents lines in a

C program. See the online help for details.

cinwords
(cinw)

if, else, while,
do, for, switch

These keywords start an extra indent in the
next line when smartindent or cindent is
set. For cindent this is only done at an
appropriate place (inside {...}).

comments
(com)

A comma-separated list of strings that can
start a comment line. See the online help for
details.

compatible
(cp)

cp; nocp when a
.vimrc file is found

Makes vim behave more like vi in too many
ways to describe here. It is on by default, to
avoid surprises. Having a .vimrc turns off the
vi compatibility; usually this is a desirable
side effect.

cpoptions
(cpo) aABceFs

A sequence of single character flags, each
one indicating a different way in which vim
will or will not exactly mimic vi. When
empty, the vim defaults are used. See the
on-line help for details.

define (def) ^#\s*define

A search pattern that describes macro
definitions. The default value is for C
programs. For C++, use ^\(#\s*define\
|[a-z]*\s*const\s*[a-z]*\). When using
the :set command, you need to double the
backslashes.

directory
(dir) ., ~/tmp, /tmp

A list of directory names for the swap file,
separated with commas. The swap file will
be created in the first directory where this is
possible. If empty, no swap file will be used
and recovery is impossible! The name .
(dot) means to put the swap file in the same
directory as the edited file. Using . first in
the list is recommended so that editing the
same file twice will result in a warning.

equalprg (ep) External program to use for = command.

When this option is empty the internal
formatting functions are used.

errorfile
(ef) errors.err

Name of the errorfile for the quickfix mode.
When the -q command line argument is
used, errorfile is set to the following
argument.

errorformat
(efm) (too long to print)

Scanf-like description of the format for the
lines in the error file.

expandtab
(et) noexpandtab When inserting a tab, expand it to the

appropriate number of spaces.

fileformat
(ff) unix

Describes the convention to terminate lines
when reading/writing the current buffer.
Possible values are dos (CR-LF), unix (LF),
and mac (CR). vim will usually set this
automatically.

fileformats
(ffs) dos,unix

Lists the line-terminating conventions that
vim will try to apply to a file when reading.
Multiple names enable automatic end-of-line
detection when reading a file.

formatoptions
(fo)

vim default: tcq, vi
default: vt

A sequence of letters which describes how
automatic formatting is to be done. See the
online help for details.

gdefault (gd) nogdefault Causes the substitute command to change
all instances.

guifont (gfn) A comma-separated list of fonts to try when
starting the GUI version of vim.

hidden (hid) nohidden Hides the current buffer when it is unloaded
from a window, instead of abandoning it.

hlsearch
(hls) nohlsearch Highlight all matches of the most recent

search pattern.

history (hi) vim default: 20, vi
default: 0

Controls how many ex commands, search
strings and expressions are remembered in
the command history.

icon noicon

vim attempts to change the name of the icon
associated with the window where it is
running. Overridden by the iconstring
option.

iconstring String value used for the icon name of the
window.

include (inc) ^#\s*include
Defines a search pattern for finding include
commands. The default value is for C
programs.

incsearch
(is) noincsearch Enables incremental searching.

isfname (isf) @,48-57,/,.,-,_, +,,,$,:,~

A list of characters that can be included in
file and path names. Non-UNIX systems
have different default values. The @
character stands for any alphabetic
character. It is also used in the other isXXX
options, below.

isident (isi) @,48-57,_,192-255
A list of characters that can be included in
identifiers. Non-UNIX systems may have

different default values.

iskeyword
(isk)

@,48-57,_,192-
255

A list of characters that can be included in
keywords. Non-UNIX systems may have
different default values. Keywords are used
in searching and recognizing with many
commands, such as w, [i, and many more.

isprint (isp) @,161-255
A list of characters that can be displayed
directly to the screen. Non-UNIX systems
may have different default values.

makeef (mef) /tmp/vim##.err

The errorfile name for the :make command.
Non-UNIX systems have different default
values. The ## is replaced by a number to
make the name unique.

makeprg (mp) make The program to use for the :make command.
% and # in the value are expanded.

mouse
Enable the mouse in non-GUI versions of
vim. This works for MS-DOS, Win32, and
xterm. See the online help for details.

mousehide
(mh) nomousehide

Hides the mouse pointer during typing.
Restores the pointer when the mouse is
moved.

paste nopaste

Changes a large number of options so that
pasting into a vim window with a mouse
does not mangle the pasted text. Turning it
off restores those options to their previous
values. See the online help for details.

ruler (ru) noruler Shows the line and column number of the
cursor position.

secure nosecure
Disables certain kinds of commands in the
startup file. Automatically enabled if you
don't own the .vimrc and .exrc files.

shellpipe
(sp)

The shell string to use for capturing the
output from :make into a file. The default
value depends upon the shell.

shellredir
(srr)

The shell string for capturing the output of a
filter into a temporary file. The default value
depends upon the shell.

showmode
(smd)

vim default: smd, vi
default: nosmd

Put a message in the status line for insert,
replace, and visual modes.

sidescroll
(ss) 0

How many columns to scroll horizontally.
The value zero puts the cursor in the middle
of the screen.

smartcase
(scs) nosmartcase

Overrides the ignorecase option if the
search pattern contains uppercase
characters.

suffixes *.bak,~,.o,.h,
.info,.swp

When multiple files match a pattern during
filename completion, the value of this
variable sets a priority among them, in order
to pick the one vim will actually use.

taglength
(tl) 0

Defines number of characters that are
significant for tags. Default (zero) means
that all characters are significant.

tagrelative
(tr)

vim default: tr, vi
default: notr

Filenames in a tags file from another
directory are taken to be relative to the
directory where the tags file is.

tags (tag) ./tags,tags

Filenames for the :tag command, i.e., add
the colon and put the whole thing in courier,
separated by spaces or commas. The leading
./ is replaced with the full path to the
current file.

tildeop (top) notildeop Makes the ~ command behave like an
operator.

undolevels
(ul) 1000

The maximum number of changes that can
be undone. A value of 0 means vi
compatibility: one level of undo and u
undoes itself. Non-UNIX systems may have
different default values.

viminfo (vi)

Reads the viminfo file upon startup and
writes it upon exiting. The value is complex;
it controls the different kinds of information
that vim will store in the file. See the online
help for details.

writebackup
(wb) writebackup

Make a backup before overwriting a file. The
backup is removed after the file was
successfully written, unless the backup
option is also on.

C.5 vile 8.0 Options

vile 8.0 has a total of 92 options that affect its behavior. Table C.5 summarizes
the most important ones. Most options described in Table C.1 are not repeated
here.

Table C.5. vile 8.0 Set Options
Option Default Description

alt-tabpos noatp
Controls whether the cursor sits at the
left or right end of the whitespace
representing a TAB character.

animated animated
Automatically updates the contents of
scratch buffers when their contents
would change.

autobuffer (ab) autobuffer

Uses "most-recently-used" style
buffering; the buffers are sorted in
order of use. Otherwise, buffers remain
in the order in which they were edited.

autosave (as) noautosave
Automatic file saving. Writes the file
after every autosavecnt characters of
inserted text.

autosavecnt
(ascnt) 256 Specifies after how many inserted

characters automatic saves take place.
backspacelimit
(bl) backspacelimit If disabled, then in insert mode you can

backspace past the point at which the

insert began.

backup-style off

Controls how backup files are created
when writing a file. Possible values are
off for no backups, .bak for DOS style
backups, and tilde for emacs style
hello.c~ backups under UNIX.

bcolor Sets the background color on systems
that support it.

check-modtime nocheck-modtime
Issues a file newer than buffer warning
if the file has changed since last read or
written, and prompts for confirmation.

cmode off A built-in major mode for C code.

comment-prefix ^\s*\(\s*[#*>]\)\+

Describes the leading part of a line that
should be left alone when reformatting
comments. The default value is good for
Makefile, shell and C comments, and
email.

comments ^\s*/\?\(\s*[#*>]
\)\+/\?\s*$

A regular expression defining
commented paragraph delimiters. Its
purpose is to preserve paragraphs
inside comments when reformatting.

dirc nodirc

vile checks each name when scanning
directories for filename completion. This
allows you to distinguish between
directory names and filenames in the
prompt.

dos nodos

Strips out the CR from CR-LF pairs
when reading files, and puts them back
when writing. New buffers for non-
existent files inherit the line-style of the
operating system, whatever the value
of dos.

fcolor Sets the foreground color on systems
that support it.

fence-begin /*

fence-end */

Regular expressions for the start and
end of simple, non-nestable fences,
such as C comments.

fence-if ^\s*#\s*if
fence-elif ^\s*#\s*elif\>
fence-else ^\s*#\s*else\>
fence-fi ^\s*#\s*endif\>

Regular expression marking the start,
"else if," "else," and end of line-
oriented, nested fences, such as C-
preprocessor control lines.

fence-pairs { }()[] Each pair of characters denotes a set of
"fences" that should be matched with %.

glob !echo %s

Controls how wildcard characters (e.g.,
* and ?) are treated in prompts for
filenames. A value of off disables
expansion, and on uses the internal
globber, which can handle normal shell
wildcards and ~ notation. The default
value for UNIX guarantees compatibility
with your shell.

history (hi) history Logs commands from the colon

command line in the [History] buffer.

horizscroll
(hs) horizscroll

Moving off the end of a long line shifts
the whole screen sideways. If not set,
only the current line shifts.

linewrap (lw) nolinewrap Wraps long logical lines onto multiple
screen lines.

maplonger nomaplonger
The map facility matches against the
longest possible mapped sequence, not
the shortest.

meta-insert-
bindings (mib) nomib

Controls behavior of 8-bit characters
during insert. Normally, key-bindings
are only operational when in command
mode: when in insert mode, all
characters are self-inserting. If this
mode is on, and a meta-character (i.e.,
a character with the eighth bit set) is
typed which is bound to a function, then
that function binding will be honored
and executed from within insert mode.
Any unbound meta-characters will
remain self-inserting.

mini-edit ^G The character that toggles the editing
mode in the minibuffer.

mini-hilite
(mh) reverse

Defines the highlight attribute to use
when the user toggles the editing mode
in the minibuffer.

popup-choices
(pc) delayed

Controls the use of a pop-up window for
help in doing completion. The value is
one of off for no window, immediate
for an immediate pop-up, and delayed
to wait for a second TAB key.

preamble (pre)
A regular expression describing the first
line of filenames for which the
corresponding major mode will be set.

resolve-links noresolve-links

If set, vile fully resolves filenames in
cases where some path components are
symbolic links. This helps avoid multiple
unintentional edits of the same physical
file via different pathnames.

ruler noruler

Shows the current line and column in
the status line, as well as what
percentage of the current buffer's lines
lie in front of the cursor.

showmode (smd) noshowmode Display an indicator on the modeline for
insert and replace modes.

sideways 0

Prompts for a new value for the
sideways scroll offset, which controls by
how many characters the screen scrolls
to the left or right. The value of 0
moves the screen by one third.

suffixes (suf)
A regular expression describing
filenames for which the corresponding
major mode will be set. Used as part of

the major mode facility, not by itself.

tabinsert (ti) tabinsert

Allow the physical insertion of tab
characters into the buffer. If turned off
(notabinsert), vile will never insert a
TAB into a buffer; instead it will always
insert the appropriate number of
spaces.

tagignorecase
(tc) notagignorecase Makes tag searches ignore case.

taglength (tl) 0

Defines number of characters that are
significant for tags. Default (zero)
means that all characters are
significant. This does not effect tags
picked up from the cursor, they are
always matched exactly. (This is
different from the other editors.)

tagrelative
(tr) tagrelative

When using a tags file in another
directory, filenames in that tags file are
considered to be relative to the
directory where the tags file is.

tags tags
A space separated list of files in which
to look up tag references.

tagword (tw) notagword

Uses the whole word under the cursor
for the tag lookup, not just the sub-
word starting at the current cursor
position.

undolimit (ul) 10
Limits how many changes may be
undone. The value zero means "no
limit."

unprintable-as-
octal (uo)

nounprintable-as-
octal

Displays non-printing characters with
the eighth bit set in octal. Otherwise,
uses hexadecimal. Non-printing
characters whose eighth bit is not set
are always displayed in control
character notation.

visual-matches none

Controls highlighting of all matching
occurrences of a search pattern. The
possible values are none for no
highlighting, or underline, bold, and
reverse for those kinds of highlighting.
Colors may also be used on systems
that support it.

xterm-mouse noxterm-mouse Allows use of the mouse from inside an
xterm. See the online help for details.

Appendix D. Problem Checklists

This appendix consolidates the problem checklists that are provided
throughout the text. Here they are presented in one place for ease
of reference.

D.1 Problems Opening Files

• When you invoke vi, the message [open mode] appears.

Your terminal type is probably incorrectly identified. Quit the editing
session immediately by typing :q Check the environment variable $TERM.
It should be set to the name of your terminal. Or ask your system
administrator to provide an adequate terminal type setting.

• You see one of the following messages:
• Visual needs addressable cursor or upline capability
• Bad termcap entry
• Termcap entry too long
• terminal: Unknown terminal type
• Block device required

 Not a typewriter

Your terminal type is either undefined, or there's probably something
wrong with your terminfo or termcap entry. Enter :q to quit. Check your
$TERM environment variable, or ask your system administrator to select a
terminal type for your environment.

• A [new file] message appears when you think a file already exists.

You are probably in the wrong directory. Enter :q to quit. Then check to
see that you are in the correct directory for that file (enter pwd at the
UNIX prompt). If you are in the right directory, check the list of files in the
directory (with ls) to see whether the file exists under a slightly different
name.

• You invoke vi, but you get a colon prompt (indicating that you're in ex
line-editing mode).

You probably typed an interrupt before vi could draw the screen. Enter vi
by typing vi at the ex prompt (:).

• One of the following messages appears:
• [Read only]
• File is read only

 Permission denied

"Read only" means that you can only look at the file; you cannot save any
changes you make. You may have invoked vi in view mode (with view or
vi -R), or you do not have write permission for the file. See the section
"Problems Saving Files" below.

• One of the following messages appears:
• Bad file number
• Block special file
• Character special file
• Directory
• Executable
• Non-ascii file

 file non-ASCII

The file you've called up to edit is not a regular text file. Type :q! to quit,
then check the file you wish to edit, perhaps with the file command.

• When you type :q because of one of the above difficulties, the message
appears:

 No write since last change (:quit! overrides).

You have modified the file without realizing it. Type :q! to leave vi. Your
changes from this session will not be saved in the file.

D.2 Problems Saving Files

• You try to write your file, but you get one of the following messages:
• File exists
• File file exists - use w!
• [Existing file]

File is read only

Type :w! file to overwrite the existing file, or type :w newfile to save
the edited version in a new file.

• You want to write a file, but you don't have write permission for it. You get
the message "Permission denied."

Use :w newfile to write out the buffer into a new file. If you have write
permission for the directory, you can use mv to replace the original version
with your copy of it. If you don't have write permission for the directory,
type :w pathname/file to write out the buffer to a directory in which you
do have write permission (such as your home directory, or /tmp).

• You try to write your file, but you get a message telling you that the file
system is full.

Type :!rm junkfile to delete a (large) unneeded file and free some
space. (Starting an ex command with an exclamation point gives you
access to UNIX.)

Or type :!df to see whether there's any space on another file system. If
there is, choose a directory on that file system and write your file to it with
:w pathname. (df is the UNIX command to check a disk's free space.)

• The system puts you into open mode and tells you that the file system is
full.

The disk with vi's temporary files is filled up. Type :!ls /tmp to see
whether there are any files you can remove to gain some disk space.[A] If
there are, create a temporary UNIX shell from which you can remove files
or issue other UNIX commands. You can create a shell by typing :sh; type
CTRL-D or exit to terminate the shell and return to vi. (On most UNIX
systems, when using a job-control shell, you can simply type CTRL-Z to
suspend vi and return to the UNIX prompt; type fg to return to vi.) Once
you've freed up some space, write your file with :w!.

[A] Your vi may keep its temporary files in /usr/tmp, /var/tmp, or your current directory; you may
need to poke around a bit to figure out where exactly you've run out of room.

• You try to write your file, but you get a message telling you that your disk
quota has been reached.

Try to force the system to save your buffer with the ex command :pre
(short for :preserve). If that doesn't work, look for some files to remove.
Use :sh (or CTRL-Z if you are using a job-control system) to move out of
vi and remove files. Use CTRL-D (or fg) to return to vi when you're done.
Then write your file with :w!.

D.3 Problems Getting to Visual Mode

• While editing in vi, you accidentally end up in the ex editor.

A Q in the command mode of vi invokes ex. Any time you are in ex, the
command vi returns you to the vi editor.

D.4 Problems with vi Commands

• When you type commands, text jumps around on the screen and nothing
works the way it's supposed to.

Make sure you're not typing the J command when you mean j.

You may have hit the CAPS LOCK key without noticing it. vi is case-
sensitive. That is, uppercase commands (I, A, J, etc.) are different from
lowercase commands (i, a, j), so all your commands are being
interpreted not as lowercase but as uppercase commands. Press the
CAPS LOCK key again to return to lowercase, press ESC to ensure that you
are in command mode, then type either U to restore the last line changed
or u to undo the last command. You'll probably also have to do some
additional editing to fully restore the garbled part of your file.

D.5 Problems with Deletions

• You've deleted the wrong text and you want to get it back.

There are several ways to recover deleted text. If you've just deleted
something and you realize you want it back, simply type u to undo the last
command (for example, a dd). This works only if you haven't given any
further commands, since u only undoes the most recent command. On the

other hand, a U will restore the line to its pristine state; the way it was
before any changes were applied to it.

You can still recover a recent deletion, however, by using the p command,
since vi saves the last nine deletions in nine numbered deletion buffers. If
you know, for example, that the third deletion back is the one you want to
restore, type:

"3p

to "put" the contents of buffer number 3 on the line below the cursor. This
works only for a deleted line. Words, or a portion of a line, are not saved
in a buffer. If you want to restore a deleted word or line fragment, and u
won't work, use the p command by itself. This restores whatever you've
last deleted.

Appendix E. vi and the Internet

Sure, vi is friendly. It's just particular about who it makes friends
with.

Being the "standard" UNIX screen editor since at least 1980 has
enshrined vi firmly in UNIX culture.

vi helped build UNIX, and UNIX in turn built the foundation for
today's Internet. Thus, it was inevitable that there be at least one
Internet web site devoted to vi. This appendix describes some of
the vi resources that are available for the vi connoisseur.

Where to start: There is surely no activity with more built-in
obsolescence than publishing World Wide Web sites in a printed
book. We have tried to publish URLs that we hope will have a
reasonable lifetime.

In the meantime, the "Tips" section of the elvis documentation lists
interesting vi-related web sites (that's where we started), and the
USENET comp.editors newsgroup is also a good place to look.

E.1 vi Web Sites

There are two primary vi-related web sites, the vi Lover's Home Page, by Thomer
M. Gil, and the Vi Pages, by Sven Guckes. Each contains a large number of links
to interesting vi-related items.

E.1.1 The vi Lover's Home Page

The vi Lover's Home Page can be found at
http://www.thorner.com/thorner/vi/vi.html. This site contains the following
items:

• A table of all known vi clones, with links to the source code or binary
distributions

• Links to other vi sites, including the Vi Pages, by Sven Guckes
• A large number of links to vi documentation, manuals, help, and tutorials,

at a number of different levels
• vi macros for writing HTML documents and solving the Towers of Hanoi,

and ftp sites for other macro sets
• Miscellaneous vi links: poems, a story about the "real history" of vi, vi

versus emacs discussions, and vi coffee mugs (see below)

There are other things there too; this makes a great starting point.

E.1.2 The Vi Pages

The Vi Pages can be found at http://www.math.fu-berlin.de/~guckes/vi. This site
contains the following items:

• A detailed comparison of options and features among different vi clones
• Screen shots of different versions of vi
• A table listing many vi clones, as well as a list with contact information

(name, address, URL) for the clones
• Pointers to several FAQ (Frequently Asked Questions) files
• Some cute quotes about vi, such as the one that opened this chapter
• Other links, including a link to the vi coffee mugs

The vi Lover's Home Page refers to this web site as "the only Vi site on this planet
better than the one you're looking at." This site too is well worth checking out.

E.1.3 VI Powered!

One of the cuter items we found is the VI Powered logo (Figure E.1). This is a
small GIF file you can add to your personal web page to show that you used vi to
create it.

Figure E.1. VI Powered!

The original home page for the VI Powered logo is
http://www.abast.es/~avelle/vi.html. This page is written in Spanish. The English
home page is at http://www.darryl.com/vi.html. Instructions for adding the logo
are at http://www.darryl.com/addlogo.html. Doing so consists of several simple
steps:

1. Download the logo. Enter http://www.darryl.com/vipower.gif into your
(graphical) web browser, and then save it to a file.

2. Add the following code to your web page in an appropriate place:
3.
4.

This puts the logo into your page and makes it into a hypertext link, that
when selected will go to the VI Powered home page. You may wish to add
an ALT="This Web Page is vi Powered" attribute to the tag, for
users of non-graphical browsers.

5. Add the following code to the <HEAD> section of your web page:

<META name="editor" content="/usr/bin/vi">

Just as the Real Programmer will eschew a WYSIWYG word processor in favor of
troff, so too, Real Webmasters eschew fancy HTML authoring tools in favor of vi.
You can use the VI Powered logo to display this fact with pride.

You can find additional logos at http://www.vim.org/pics.html ("made in vi,"
"designed in vi," and so on). One of these may suit your fancy better than the VI
Powered logo.

E.1.4 vi for Java Lovers

Despite the title, this subsection is about the java you drink, not the Java you
program in.[A]

[A] Although it's fitting, somehow, that Java came from Sun Microsystems, where Bill Joy, vi's original author,
is a founder and vice president.

Our hypothetical Real Programmer, while using vi to write her C++ code, her troff
documentation, and her web page, undoubtedly will want a cup of coffee now and
then. She can now drink her coffee from a mug with a vi command reference
printed on it!

The URL is http://www.vireference.com/vimug.htm. The mugs come in sets of
four, with a concise vi command summary printed on the mug. The web site has
pricing and shipping information; you might want to split a set of four with one or
more friends.

E.1.5 Online vi Tutorial

The two home pages have a large number of links to documentation on vi. Of
special note, though, is a nine-part online tutorial from Unix World magazine, by
Walter Zintz. The starting off point is
http://www.wcmh.com/uworld/archives/95/tutorial/009/009.html. (You're
probably better off just following the link from one of two vi home pages.) The
tutorial covers the following topics:

• Editor fundamentals
• Line-mode addresses
• The g (global) command
• The substitute command
• The editing environment (the set command, tags, and EXINIT and .exrc)
• Addresses and columns
• The replacement commands, r and R
• Automatic indentation
• Macros

Also available with the tutorial is an online quiz that you can use to see how well
you've absorbed the material in the tutorial. Or you can just try the quiz directly,
to see how well we've done with this book!

E.2 Amaze Your Friends!

In the long term, perhaps the most useful items are in the collection of vi related
information in the alf.uib.no ftp archives. The original archives are at
ftp://afl.uib.no/pub/vi. We had little success with this site, however the archives
are mirrored at ftp://ftp.uu.net/pub/text-processing/vi. The file INDEX in that
directory describes what's in the archives, and lists additional mirrors that may be
geographically closer to you.

Unfortunately, these files were last updated in May of 1995. Fortunately, vi's
basic functionality has not changed, and the information and macros in the
archive are still useful. The archive has four subdirectories:

docs

Documentation on vi, also some comp.editors postings.

macros

vi macros.

comp.editors

Various materials posted to comp.editors.

programs

Source code for vi clones for various platforms (and other programs). Take
things from here with caution, as much of it is out of date.

The docs and macros are the most interesting. The docs directory has a large
number of articles and references, ranging from beginner's guides, explanations
of bugs, quick references, and many short "how to" kinds of articles (e.g., how to
capitalize just the first letter of a sentence in vi). There's even a song about vi!

The macros directory has over 50 files in it that do different things. We mention
just three of them. (Files whose names end in .Z are compressed with the UNIX
compress program. They can be uncompressed with either uncompress or
gunzip.)

evi.tar.Z

An emacs "emulator." The idea behind it is to turn vi into a modeless
editor (one that is always in input mode, with commands done with control
keys). It is actually done with a shell script that replaces the EXINIT
environment variable.

hanoi.Z

This is perhaps the most famous of the unusual uses of vi; a set of macros
that solve the Towers of Hanoi programming problem. This program
simply displays the moves, it does not actually draw the disks. For fun, we
have reprinted it in the sidebar.

turing.tar.Z

This program uses vi to implement an actual Turing machine! It's rather
amazing to watch it execute the programs.

There are many, many more interesting macros, including Perl and RCS modes
and even a Word Star emulator.

The Towers of Hanoi, vi Version

" From: gregm@otc.otca.oz.au (Greg McFarlane)
" Newsgroups: comp.sources.d,alt.sources,comp.editors

" Subject: VI SOLVES HANOI
" Date: 19 Feb 91 01:32:14 GMT
"
" Submitted-by: gregm@otc.otca.oz.au
" Archive-name: hanoi.vi.macros/part01
"
" Everyone seems to be writing stupid Tower of Hanoi
programs.
" Well, here is the stupidest of them all: the hanoi solving
" vi macros.
"
" Save this article, unshar it, and run uudecode on
" hanoi.vi.macros.uu. This will give you the macro file
" hanoi.vi.macros.
" Then run vi (with no file: just type "vi") and type:
" :so hanoi.vi.macros
" g
" and watch it go.
"
" The default height of the tower is 7 but can be easily
changed
" by editing the macro file.
"
" The disks aren't actually shown in this version, only
numbers
" representing each disk, but I believe it is possible to
write
" some macros to show the disks moving about as well. Any
takers?
"
" (For maze solving macros, see alt.sources or comp.editors)
"
" Greg
"
" ------------ REAL FILE STARTS HERE ---------------
set remap
set noterse
set wrapscan
" to set the height of the tower, change the digit in the
following
" two lines to the height you want (select from 1 to 9)
map t 7
map! t 7
map L
1G/t^MX/^0^M$P1GJ$An$BGC0e$X0E0F$X/T^M@f^M@h^M$A1GJ@f0lXnPU
map g IL
map I KMYNOQNOSkRTV
map J /^0[^t]*$^M
map X x
map P p

map U L
map A
map B "hyl
map C "fp
map e "fy2l
map E "hp
map F "hy2l
map K 1Go^[
map M dG
map N yy
map O p
map q tllD
map Y o0123456789Z^[0q
map Q 0iT^[
map R $rn
map S r
map T ko0^M0^M^M^[
map V Go/^[

E.3 Tastes Great, Less Filling

We can't discuss vi as part of UNIX culture without acknowledging what is
perhaps the longest running debate in the UNIX community,[B] vi versus emacs.

[B] OK, it's really a religious war, but we're trying to be nice. (The other religious war, BSD vs. System V, was

settled by POSIX. System V won, although BSD received significant concessions.)

Discussions about which is better have cropped up on comp.editors (and other
newsgroups) for years and years. You will find summaries of some of these
discussions in the ftp archives described above. You will find pointers to more
recent versions on the web pages.

Some of the better arguments in favor of vi are:

• vi is available on every UNIX system. If you are installing systems, or
moving from system to system, you might have to use vi anyway.

• You can usually keep your fingers on the home row of the keyboard. This
is a big plus for touch typists.

• Commands are one (or sometimes two) regular characters; they are much
easier to type than the all of the control- and meta-characters that emacs
requires.

• vi is generally smaller and less resource intensive than emacs. Startup
times are appreciably faster, sometimes up to a factor of 10.

• Now that the vi clones have added features like incremental searching,
multiple windows and buffers, GUI interfaces, syntax highlighting and
smart indenting, and programmability via extension languages, the
functional gap between the two editors has narrowed significantly, if not
disappeared entirely.

To be complete, two more items should be mentioned. First, there are actually
two versions of emacs that are popular: the original GNU emacs, and xemacs,

which is derived from an earlier version of GNU emacs. Both have advantages
and disadvantages, and their own sets of devotees.[C]

[C] Who undoubtedly share a joint distaste for vi!

Second, while GNU emacs has always had vi-emulation packages, until recently,
they have not been very good. This has changed. The "viper mode" is reputed to
be an excellent vi emulation. It can serve as a bridge for learning emacs for those
who are interested in doing so.

To conclude, always remember that you are the final judge of a program's utility.
You should use the tools that make you the most productive, and for many tasks,
vi and its clones are excellent tools.

E.4 vi Quotes

Finally, here are some more vi quotes, courtesy of Bram Moolenaar, vim's author:

THEOREM: vi is perfect.

PROOF: VI in roman numerals is 6. The natural numbers less than 6 which divide
6 are 1, 2, and 3. 1 + 2 + 3 = 6. So 6 is a perfect number. Therefore, vi is
perfect.

— Arthur Tateishi

A reaction from Nathan T. Oelger:

So, where does the above leave vim? VIM in roman numerals might be: (1000 -
(5 + 1)) = 994, which happens to be equal to 2*496+2. 496 is divisible by 1, 2,
4, 8, 16, 31, 62, 124, and 248 and 1+2+4+8+16+31+62+124+248 = 496. So,
496 is a perfect number. Therefore, vim is twice as perfect as vi, plus a couple
extra bits of goodies.

That is, vim is better than perfect.

This quote seems to sum it up for the true vi lover.

To me vi is zen. To use vi is to practice zen. Every command is a koan. Profound
to the user, unintelligible to the uninitiated. You discover truth every time you use
it.

— Satish Reddy

