< Day Day Up >

- Table of Contents
. Index

- Reviews

- Reader Reviews
- Errata

- Academic

High Performance Linux Clusters with OSCAR, Rocks, OpenMosix, and MPI1
ByJoseph D. Sloan

Publisher: O'Reilly

Pub Date: November 2004
ISBN: 0-596-00570-9
Pages: 360

Copyright
Preface

Audience
Organization
Conventions

How to Contact Us
Using Code Examples

Acknowledgments
Part I: An Introduction to Clusters

Chapter 1. Cluster Architecture

Section 1.1. Modern Computing and the Role of Clusters

Section 1.2. Types of Clusters

Section 1.3. Distributed Computing and Clusters

Section 1.4. Limitations

Section 1.5. My Biases

Chapter 2. Cluster Planning

Section 2.1. Design Steps

Section 2.2. Determining Your Cluster's Mission

Section 2.3. Architecture and Cluster Software
Section 2.4. Cluster Kits
Section 2.5. CD-ROM-Based Clusters

Section 2.6. Benchmarks

Chapter 3. Cluster Hardware

Section 3.1. Design Decisions

Section 3.2. Environment

Chapter 4. Linux for Clusters

Section 4.1. Installing Linux

Section 4.2. Configuring Services

Section 4.3. Cluster Security
Part Il: Getting Started Quickly

Chapter 5. openMosix

Section 5.1. What Is openMosix?

Section 5.2. How openMosix Works

Section 5.3. Selecting an Installation Approach

Section 5.4. Installing a Precompiled Kernel

Section 5.5. Using openMosix

Section 5.6. Recompiling the Kernel

Section 5.7. |Is openMosix Right for You?
Chapter 6. OSCAR

Section 6.1. Why OSCAR?

Section 6.2. What's in OSCAR

Section 6.3. Installing OSCAR

Section 6.4. Security and OSCAR

Section 6.5. Using switcher
Section 6.6. Using LAM/MPI with OSCAR

Chapter 7. Rocks
Section 7.1. Installing Rocks

Section 7.2. Managing Rocks
Section 7.3. Using MPICH with Rocks

Part I11: Building Custom Clusters

Chapter 8. Cloning Systems

Section 8.1. Configuring Systems

Section 8.2. Automating Installations
Section 8.3. Notes for OSCAR and Rocks Users

Chapter 9. Programming Software

Section 9.1. Programming Languages

Section 9.2. Selecting a Library
Section 9.3. LAM/MPI
Section 9.4. MPICH

Section 9.5. Other Programming Software
Section 9.6. Notes for OSCAR Users

Section 9.7. Notes for Rocks Users

Chapter 10. Management Software
Section 10.1. C3

Section 10.2. Ganglia
Section 10.3. Notes for OSCAR and Rocks Users

Chapter 11. Scheduling Software
Section 11.1. OpenPBS
Section 11.2. Notes for OSCAR and Rocks Users

Chapter 12. Parallel Filesystems
Section 12.1. PVFS
Section 12.2. Using PVFS
Section 12.3. Notes for OSCAR and Rocks Users

Part IV: Cluster Programming
Chapter 13. Getting Started with MPI
Section 13.1. MPI
Section 13.2. A Simple Problem
Section 13.3. An MPI Solution
Section 13.4. 1/0 with MPI

Section 13.5. Broadcast Communications
Chapter 14. Additional MPI Features

Section 14.1. More on Point-to-Point Communication

Section 14.2. More on Collective Communication

Section 14.3. Managing Communicators

Section 14.4. Packaging Data

Chapter 15. Designing Parallel Programs

Section 15.1. Overview

Section 15.2. Problem Decomposition

Section 15.3. Mapping Tasks to Processors

Section 15.4. Other Considerations

Chapter 16. Debugging Parallel Programs

Section 16.1. Debugging and Parallel Programs

Section 16.2. Avoiding Problems

Section 16.3. Programming Tools

Section 16.4. Rereading Code

Section 16.5. Tracing with printf

Section 16.6. Symbolic Debuggers
Section 16.7. Using gdb and ddd with MP1
Section 16.8. Notes for OSCAR and Rocks Users

Chapter 17. Profiling Parallel Programs
Section 17.1. Why Profile?
Section 17.2. Writing and Optimizing Code

Section 17.3. Timing Complete Programs

Section 17.4. Timing C Code Segments

Section 17.5. Profilers

Section 17.6. MPE

Section 17.7. Customized MPE Logging
Section 17.8. Notes for OSCAR and Rocks Users
Part V: Appendix
Appendix A. References
Section A.1. Books
Section A.2. URLs

Colophon
Index

< Day Day Up >

< Day Day Up >

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly Media, Inc. The Linux series designations, High Performance Linux
Clusters with OSCAR, Rocks, openMosix, and MPI, images of the American West, and related
trade dress are trademarks of O'Reilly Media, Inc.

Many of the designhations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and

author assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

4@ PREV < Day Day Up > NE=T

http://safari.oreilly.com

< Day Day Up >

Preface

Clusters built from open source software, particularly based on the GNU/Linux operating
system, are increasingly popular. Their success is not hard to explain because they can
cheaply solve an ever-widening range of number-crunching applications. A wealth of open
source or free software has emerged to make it easy to set up, administer, and program
these clusters. Each individual package is accompanied by documentation, sometimes very
rich and thorough. But knowing where to start and how to get the different pieces working
proves daunting for many programmers and administrators.

This book is an overview of the issues that new cluster administrators have to deal with in
making clusters meet their needs, ranging from the initial hardware and software choices
through long-term considerations such as performance.

This book is not a substitute for the documentation that accompanies the software that it
describes. You should download and read the documentation for the software. Most of the
documentation available online is quite good; some is truly excellent.

In writing this book, | have evaluated a large number of programs and selected for inclusion
the software | believe is the most useful for someone new to clustering. While writing
descriptions of that software, | culled through thousands of pages of documentation to fashion
a manageable introduction. This book brings together the information you'll need to get
started. After reading it, you should have a clear idea of what is possible, what is available,
and where to go to get it. While this book doesn't stand alone, it should reduce the amount of
work you'll need to do. | have tried to write the sort of book | would have wanted when | got
started with clusters.

The software described in this book is freely available, open source software. All of the
software is available for use with Linux; however, much of it should work nicely on other
platforms as well. All of the software has been installed and tested as described in this book.
However, the behavior or suitability of the software described in this book cannot be
guaranteed. While the material in this book is presented in good faith, neither the author nor
O'Reilly Media, Inc. makes any explicit or implied warranty as to the behavior or suitability of
this software. We strongly urge you to evaluate the software and information provided in this
book as appropriate for your own circumstances.

One of the more important developments in the short life of high performance clusters has
been the creation of cluster installation kits such as OSCAR and Rocks. With software
packages like these, it is possible to install everything you need and very quickly have a fully
functional cluster. For this reason, OSCAR and Rocks play a central role in this book.

OSCAR and Rocks are composed of a number of different independent packages, as well as
customizations available only with each kit. A fully functional cluster will have a number of
software packages each addressing a different need, such as programming, management,
and scheduling. OSCAR and Rocks use a best-in-category approach, selecting the best
available software for each type of cluster-related task. In addition to the core software, other
compatible packages are available as well. Consequently, you will often have several products
to choose from for any given need.

Most of the software included in OSCAR or Rocks is significant in its own right. Such software
is often nontrivial to install and takes time to learn to use to its full potential. While both
OSCAR and Rocks automate the installation process, there is still a lot to learn to effectively
use either kit. Installing OSCAR or Rocks is only the beginning.

After some basic background information, this book describes the installation of OSCAR and

then Rocks. The remainder of the book describes in greater detail much of the software found
in these packages. In each case, | describe the installation, configuration, and use of the
software apart from OSCAR or Rocks. This should provide the reader with the information he
will need to customize the software or even build a custom cluster bypassing OSCAR or Rocks
completely, if desired.

I have also included a chapter on openMosix in this book, which may seem an odd choice to
some. But there are several compelling reasons for including this information. First, not
everyone needs a world-class high-performance cluster. If you have several machines and
would like to use them together, but don't want the headaches that can come with a full
cluster, openMosix is worth investigating. Second, openMosix is a nice addition to some more
traditional clusters. Including openMosix also provides an opportunity to review recompiling
the Linux kernel and an alternative kernel that can be used to demonstrate OSCAR's
kernel_picker. Finally, | think openMosix is a really nice piece of software. In a sense, it
represents the future, or at least one possible future, for clusters.

| have described in detail (too much, some might say) exactly how | have installed the
software. Unquestionably, by the time you read, this some of the information will be dated. |
have decided not to follow the practice of many authors in such situations, and offer just
vague generalities. | feel that readers benefit from seeing the specific sorts of problems that
appear in specific installations and how to think about their solutions.

< Day Day Up >

< Day Day Up >

Audience

This book is an introduction to building high-performance clusters. It is written for the
biologist, chemist, or physicist who has just acquired two dozen recycled computers and is
wondering how she might combine them to perform that calculation that has always taken too
long to complete on her desktop machine. It is written for the computer science student who
needs help getting started building his first cluster. It is not meant to be an exhaustive
treatment of clusters, but rather attempts to introduce the basics needed to build and begin
using a cluster.

In writing this book, | have assumed that the reader is familiar with the basics of setting up
and administering a Linux system. At a number of places in this book, I provide a very quick
overview of some of the issues. These sections are meant as a review, not an exhaustive
introduction. If you need help in this area, several excellent books are available and are listed
in the Appendix of this book.

When introducing a topic as extensive as clusters, it is impossible to discuss every relevant
topic in detail without losing focus and producing an unmanageable book. Thus, | have had to
make a number of hard decisions about what to include. There are many topics that, while of
no interest to most readers, are nonetheless important to some. When faced with such topics,
I have tried to briefly describe alternatives and provide pointers to additional material. For
example, while computational grids are outside the scope of this book, I have tried to provide
pointers for those of you who wish to know more about grids.

For the chapters dealing with programming, | have assumed a basic knowledge of C. For
high-performance computing, FORTRAN and C are still the most common choices. For Linux-
based systems, C seemed a more reasonable choice.

I have limited the programming examples to MPI since | believe this is the most appropriate
parallel library for beginners. | have made a particular effort to keep the programming
examples as simple as possible. There are a number of excellent books on MPI programming.
Unfortunately, the available books on MPI all tend to use fairly complex problems as
examples. Consequently, it is all too easy to get lost in the details of an example and miss the
point. While you may become annoyed with my simplistic examples, | hope that you won't
miss the point. You can always turn to these other books for more complex, real-world
examples.

With any introductory book, there are things that must be omitted to keep the book
manageable. This problem is further compounded by the time constraints of publication. I did
not include a chapter on diskless systems because | believe the complexities introduced by
using diskless systems are best avoided by people new to clusters. Because covering
computational grids would have considerably lengthened this book, they are not included.
There simply wasn't time or space to cover some very worthwhile software, most notably PVYM
and Condor. These were hard decisions.

< Day Day Up >

< Day Day Up >

Organization

This book is composed of 17 chapters, divided into four parts. The first part addresses
background material; the second part deals with getting a cluster running quickly; the third
part goes into more depth describing how a custom cluster can be built; and the fourth part
introduces cluster programming.

Depending on your background and goals, different parts of this book are likely to be of
interest. | have tried to provide information here and at the beginning of each section that
should help you in selecting those parts of greatest interest. You should not need to read the
entire book for it to be useful.

Part I, An Introduction to Clusters

Chapter 1, is a general introduction to high-performance computing from the
perspective of clusters. It introduces basic terminology and provides a description of
various high-performance technologies. It gives a broad overview of the different
cluster architectures and discusses some of the inherent limitations of clusters.

Chapter 2, begins with a discussion of how to determine what you want your cluster to
do. It then gives a quick overview of the different types of software you may need in
your cluster.

Chapter 3, is a discussion of the hardware that goes into a cluster, including both the
individual computers and network equipment.

Chapter 4, begins with a brief discussion of Linux in general. The bulk of the chapter
covers the basics of installing and configuring Linux. This chapter assumes you are
comfortable using Linux but may need a quick review of some administrative tasks.

Part 11, Getting Started Quickly

Chapter 5, describes the installation, configuration, and use of openMosix. It also
reviews how to recompile a Linux kernel.

Chapter 6, describes installing and setting up OSCAR. It also covers a few of the basics
of using OSCAR.

Chapter 7, describes installing Rocks. It also covers a few of the basics of using Rocks.

Part 111, Building Custom Clusters

Chapter 8, describes tools you can use to replicate the software installed on one
machine onto others. Thus, once you have decided how to install and configure the
software on an individual node in your cluster, this chapter will show you how to
duplicate that installation on a number of machines quickly and efficiently.

Chapter 9, first describes programming software that you may want to consider. Next,
it describes the installation and configuration of the software, along with additional
utilities you'll need if you plan to write the application programs that will run on your

cluster.

Chapter 10, describes tools you can use to manage your cluster. Once you have a
working cluster, you face numerous administrative tasks, not the least of which is
insuring that the machines in your cluster are running properly and configured
identically. The tools in this chapter can make life much easier.

Chapter 11, describes OpenPBS, open source scheduling software. For heavily loaded
clusters, you'll need software to allocate resources, schedule jobs, and enforce
priorities. OpenPBS is one solution.

Chapter 12, describes setting up and configuring the Parallel Virtual File System (PVFS)
software, a high-performance parallel file system for clusters.

Part 1V, Cluster Programming

Chapter 13, is a tutorial on how to use the MPI library. It covers the basics. There is a
lot more to MPI than what is described in this book, but that's a topic for another book
or two. The material in this chapter will get you started.

Chapter 14, describes some of the more advanced features of MPI. The intent is not to
make you proficient with any of these features but simply to let you know that they
exist and how they might be useful.

Chapter 15, describes some techniques to break a program into pieces that can be run
in parallel. There is no silver bullet for parallel programming, but there are several
helpful ways to get started. The chapter is a quick overview.

Chapter 16, first reviews the techniques used to debug serial programs and then shows
how the more traditional approaches can be extended and used to debug parallel
programs. It also discusses a few problems that are unique to parallel programs.

Chapter 17, looks at techniques and tools that can be used to profile parallel programs.
If you want to improve the performance of a parallel program, the first step is to find
out where the program is spending its time. This chapter shows you how to get started.

Part V, Appendix

TheAppendix includes source information and documentation for the software
discussed in the book. It also includes pointers to other useful information about
clusters.

@ PREV < Day Day Up > MEXT W

< Day Day Up >

Conventions

This book uses the following typographical conventions:

Italics

Used for program names, filenames, system names, email addresses, and URLs, and for
emphasizing new terms.

Constant w dth

Used in examples showing programs, output from programs, the contents of files, or
literal information.

Constant-wi dth italics

Used for general syntax and items that should be replaced in expressions.

- Indicates a tip, suggestion, or general note.

-
[19
2

) |! Indicates a warning or caution.

< Day Day Up >

< Day Day Up >

How to Contact Us

In a sense, any book is a work in progress. If you have comments, suggestions, or
corrections, | would appreciate hearing from you. You can contact me through
booktech@oreilly.com.

We have tested and verified the information in this book to the best of our ability, but you
may find that features have changed (or even that we have made mistakes!). Please let us
know about any errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Media, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (fax)

You can send us messages electronically. To be put on the mailing list or to request a catalog,
send email to:

info@oreilly.com

To ask technical questions or to comment on the book, send email to:

bookqguestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future
editions. You can access this page at:

http ://www.oreilly.com/catalog/highperlinuxc/

For more information about this book and others, see the O'Reilly web site:

http ://www.oreilly.com

< Day Day Up >

http://www.oreilly.com/catalog/highperlinuxc/
http://www.oreilly.com

< Day Day Up >

Using Code Examples

The code developed in this book is available for download for free from the O'Reilly web site
for this book http://www.oreilly.com/catalog/highperlinuxc. (Before installing, take a look at
readme.txt in the download).

This book is here to help you get your job done. In general, you can use the code in this book
in your programs and documentation. You don't need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book doesn't require permission. Selling or distributing a CD-
ROM of examples from O'Reilly books does require permission. Answering a question by citing
this book and quoting example code doesn't require permission. Incorporating a significant
amount of example code from this book into your product's documentation does require
permission.

We appreciate, but don't require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "High Performance Linux Clusers with OSCAR, Rocks,
openMosix, and MPI, by Joseph Sloan. Copyright 2005 O'Reilly, 0-596-00570-9."

If you feel your use of code examples falls outside fair use or the permission given here, feel
free to contact us at permissions@oreilly.com.

4@ FREY < Day Day Up > NE=T

http://www.oreilly.com/catalog/

< Day Day Up >

Acknowledgments

While the cover of this book displays only my name, it is the work of a number of people. First
and foremost, credit goes to the people who created the software described in this book. The
quality of this software is truly remarkable. Anyone building a cluster owes a considerable
debt to these developers.

This book would not exist if not for the students | have worked with both at Lander University
and Wofford College. Brian Bell's interest first led me to investigate clusters. Michael Baker,
Jonathan DeBusk, Ricaye Harris, Tilisha Haywood, Robert Merting, and Robert Veasey all
suffered through courses using clusters. | can only hope they learned as much from me as |
learned from them.

Thanks also goes to the computer science department and to the staff of information
technology at Wofford College—in particular, to Angela Shiflet for finding the funds and to
Dave Whisnant for finding the computers used to build the clusters used in writing this book.
Martin Aigner, Joe Burnet, Watts Hudgens, Jim Sawyers, and Scott Sperka, among others,
provided support beyond the call of duty. Wofford is a great place to work and to write a
book. Thanks to President Bernie Dunlap, Dean Dan Maultsby, and the faculty and staff for
making Wofford one of the top liberal arts colleges in the nation.

I was very fortunate to have a number of technical reviewers for this book, including people
intimately involved with the creation of the software described here, as well as general
reviewers. Thanks goes to Kris Buytaert, a senior consultant with X-Tend and author of the
openMosix HOWTO, for reviewing the chapter on openMosix. Kris's close involvement with the
openMosix project helped provide a perspective not only on openMosix as it is today, but also
on the future of the openMosix project.

Thomas Naughton and Stephen L. Scott, both from Oak Ridge National Laboratory and
members of the OSCAR work group, reviewed the book. They provided not only many useful
corrections, but helpful insight into cluster software as well, particularly OSCAR.

Edmund J. Sutcliffe, a consultant with Thoughtful Solutions, attempted to balance my
sometimes myopic approach to clusters, arguing for a much broader perspective on clusters.
Several topics were added or discussed in greater detail at his insistence. Had time allowed,
more would have been added.

John McKowen Taylor, Jr., of Cadence Design System, Inc., also reviewed the book. In
addition to correcting many errors, he provided many kind words and encouragement that |
greatly appreciated.

Robert Bruce Thompson, author of two excellent books on PC hardware, corrected a number
of leaks in the hardware chapter. Unfortunately, developers for Rocks declined an invitation to
review the material, citing the pressures of putting together a new release.

While the reviewers unfailingly pointed out my numerous errors and misconceptions, it didn't
follow that | understood everything they said or faithfully amended this manuscript. The
blame for any errors that remain rests squarely on my shoulders.

I consider myself fortunate to be able to work with the people in the O'Reilly organization.
This is the second book | have written with them and both have gone remarkably smoothly. If
you are thinking of writing a technical book, | strongly urge you to consider O'Reilly. Unlike
some other publishers, you will be working with technically astute people from the beginning.
Particular thanks goes to Andy Oram, the technical editor for this book. Andy was constantly
looking for ways to improve this book. Producing any book requires an small army of people,
most of whom are hidden in the background and never receive proper recognition. A debt of

gratitude is owed to many others working at O'Reilly.

This book would not have been possible without the support and patience of my family. Thank
you.

< Day Day Up >

< Day Day Up >

Part I: An Introduction to Clusters

The first section of this book is a general introduction to clusters. It is largely
background material. Readers already familiar with clusters may want to quickly skim
this material and then move on to subsequent chapters. This section is divided into four
chapters.

\ . PREW < Day Day Up > MEST ‘

< Day Day Up >

Chapter 1. Cluster Architecture

Computing speed isn't just a convenience. Faster computers allow us to solve larger
problems, and to find solutions more quickly, with greater accuracy, and at a lower cost. All
this adds up to a competitive advantage. In the sciences, this may mean the difference
between being the first to publish and not publishing. In industry, it may determine who's first
to the patent office.

Traditional high-performance clusters have proved their worth in a variety of uses—from
predicting the weather to industrial design, from molecular dynamics to astronomical
modeling.High-performance computing (HPC) has created a new approach to
science—modeling is now a viable and respected alternative to the more traditional
experiential and theoretical approaches.

Clusters are also playing a greater role in business. High performance is a key issue in data
mining or in image rendering. Advances in clustering technology have led to high-availability
and load-balancing clusters. Clustering is now used for mission-critical applications such as
web and FTP servers. For example, Google uses an ever-growing cluster composed of tens of
thousands of computers.

4 FREV < Day Day Up > MEXT mp

< Day Day Up >

1.1 Modern Computing and the Role of Clusters

Because of the expanding role that clusters are playing in distributed computing, it is worth
considering this question briefly. There is a great deal of ambiguity, and the terms used to
describe clusters and distributed computing are often used inconsistently. This chapter
doesn't provide a detailed taxonomy—it doesn't include a discussion of Flynn's taxonomy or of
cluster topologies. This has been done quite well a number of times and too much of it would
be irrelevant to the purpose of this book. However, this chapter does try to explain the
language used. If you need more general information, see the Appendix A for other sources.
High Performance Computing, Second Edition (O'Reilly), by Dowd and Severance is a
particularly readable introduction.

When computing, there are three basic approaches to improving performance—use a better
algorithm, use a faster computer, or divide the calculation among multiple computers. A very
common analogy is that of a horse-drawn cart. You can lighten the load, you can get a bigger
horse, or you can get a team of horses. (We'll ignore the option of going into therapy and
learning to live with what you have.) Let's look briefly at each of these approaches.

First, consider what you are trying to calculate. All too often, improvements in computing
hardware are taken as a license to use less efficient algorithms, to write sloppy programs, or
to perform meaningless or redundant calculations rather than carefully defining the problem.
Selecting appropriate algorithms is a key way to eliminate instructions and speed up a
calculation. The quickest way to finish a task is to skip it altogether.

If you need only a modest improvement in performance, then buying a faster computer may
solve your problems, provided you can find something you can afford. But just as there is a
limit on how big a horse you can buy, there are limits on the computers you can buy. You can
expect rapidly diminishing returns when buying faster computers. While there are no hard and
fast rules, it is not unusual to see a quadratic increase in cost with a linear increase in
performance, particularly as you move away from commodity technology.

The third approach is parallelism, i.e., executing instructions simultaneously. There are a
variety of ways to achieve this. At one end of the spectrum, parallelism can be integrated into
the architecture of a single CPU (which brings us back to buying the best computer you can
afford). At the other end of the spectrum, you may be able to divide the computation up
among different computers on a network, each computer working on a part of the calculation,
all working at the same time. This book is about that approach—harnessing a team of horses.

1.1.1 Uniprocessor Computers

The traditional classification of computers based on size and performance, i.e., classifying
computers as microcomputers, workstations, minicomputers, mainframes, and
supercomputers, has become obsolete. The ever-changing capabilities of computers means
that today's microcomputers now outperform the mainframes of the not-too-distant past.
Furthermore, this traditional classification scheme does not readily extend to parallel systems
and clusters. Nonetheless, it is worth looking briefly at the capabilities and problems
associated with more traditional computers, since these will be used to assemble clusters. If
you are working with a team of horses, it is helpful to know something about a horse.

Regardless of where we place them in the traditional classification, most computers today are
based on an architecture often attributed to the Hungarian mathematician John von Neumann.
The basic structure of a von Neumann computer is a CPU connected to memory by a
communications channel or bus. Instructions and data are stored in memory and are moved
to and from the CPU across the bus. The overall speed of a computer depends on both the

speed at which its CPU can execute individual instructions and the overhead involved in
moving instructions and data between memory and the CPU.

Several technologies are currently used to speed up the processing speed of CPUs. The
development of reduced instruction set computer (RISC) architectures and post-RISC
architectures has led to more uniform instruction sets. This eliminates cycles from some
instructions and allows a higher clock-rate. The use of RISC technology and the steady
increase in chip densities provide great benefits in CPU speed.

Superscalar architectures and pipelining have also increased processor speeds. Superscalar
architectures execute two or more instructions simultaneously. For example, an addition and a
multiplication instruction, which use different parts of the CPU, might be executed at the same
time. Pipelining overlaps the different phase of instruction execution like an assembly line. For
example, while one instruction is executed, the next instruction can be fetched from memory
or the results from the previous instructions can be stored.

Memory bandwidth, basically the rate at which bits are transferred from memory over the
bus, is a different story. Improvements in memory bandwidth have not kept up with CPU
improvements. It doesn't matter how fast the CPU is theoretically capable of running if you
can't get instructions and data into or out of the CPU fast enough to keep the CPU busy.
Consequently, memory access has created a performance bottleneck for the classical von
Neumann architecture: the von Neumann bottleneck.

Computer architects and manufacturers have developed a number of techniques to minimize
the impact of this bottleneck. Computers use a hierarchy of memory technology to improve
overall performance while minimizing cost. Frequently used data is placed in very fast cache
memory, while less frequently used data is placed in slower but cheaper memory. Another
alternative is to use multiple processors so that memory operations are spread among the
processors. If each processor has its own memory and its own bus, all the processors can
access their own memory simultaneously.

1.1.2 Multiple Processors

Traditionally,supercomputers have been pipelined, superscalar processors with a single CPU.
These are the "big iron" of the past, often requiring "forklift upgrades” and multiton air
conditioners to prevent them from melting from the heat they generate. In recent years we
have come to augment that definition to include parallel computers with hundreds or
thousands of CPUs, otherwise known as multiprocessor computers. Multiprocessor computers
fall into two basic categories—centralized multiprocessors (or single enclosure
multiprocessors) and multicomputers.

1.1.2.1 Centralized multiprocessors

Withcentralized multiprocessors, there are two architectural approaches based on how
memory is managed—uniform memory access (UMA) and nonuniform memory access (NUMA)
machines. With UMA machines, also called symmetric multiprocessors (SMP), there is a
common shared memory. Identical memory addresses map, regardless of the CPU, to the
same location in physical memory. Main memory is equally accessible to all CPUs, as shown in
Figure 1-1. To improve memory performance, each processor has its own cache.

Figure 1-1. UMA architecture

There are two closely related difficulties when designing a UMA machine. The first problem is
synchronization. Communications among processes and access to peripherals must be
coordinated to avoid conflicts. The second problem is cache consistency. If two different CPUs
are accessing the same location in memory and one CPU changes the value stored in that
location, then how is the cache entry for the other CPU updated? While several techniques are
available, the most common is snooping. With snooping, each cache listens to all memory
accesses. If a cache contains a memory address that is being written to in main memory, the
cache updates its copy of the data to remain consistent with main memory.

A closely related architecture is used with NUMA machines. Roughly, with this architecture,
each CPU maintains its own piece of memory, as shown in Figure 1-2. Effectively, memory is
divided among the processors, but each process has access to all the memory. Each individual
memory address, regardless of the processor, still references the same location in memory.
Memory access is nonuniform in the sense that some parts of memory will appear to be much
slower than other parts of memory since the bank of memory "closest” to a processor can be
accessed more quickly by that processor. While this memory arrangement can simplify
synchronization, the problem of memory coherency increases.

Figure 1-2. NUMA architecture

[Pl | | Pl] ol
1

|
| Cache | | Cache i
1 |
[eroy | [y | ey
| |

Operating system support is required with either multiprocessor scheme. Fortunately, most
modern operating systems, including Linux, provide support for SMP systems, and support is
improving for NUMA architectures.

When dividing a calculation among processors, an important concern is granularity, or the
smallest piece that a computation can be broken into for purposes of sharing among different
CPUs. Architectures that allow smaller pieces of code to be shared are said to have a finer
granularity (as opposed to a coarser granularity). The granularity of each of these
architectures is the thread. That is, the operating system can place different threads from the
same process on different processors. Of course, this implies that, if your computation
generates only a single thread, then that thread can't be shared between processors but must
run on a single CPU. If the operating system has nothing else for the other processors to do,
they will remain idle and you will see no benefit from having multiple processors.

A third architecture worth mentioning in passing is processor array, which, at one time,
generated a lot of interest. A processor array is a type of vector computer built with a
collection of identical, synchronized processing elements. Each processor executes the same
instruction on a different element in a data array.

Numerous issues have arisen with respect to processor arrays. While some problems map
nicely to this architecture, most problems do not. This severely limits the general use of

processor arrays. The overall design doesn't work well for problems with large serial
components. Processor arrays are typically designed around custom VLSI processors,
resulting in much higher costs when compared to more commodity-oriented multiprocessor
designs. Furthermore, processor arrays typically are single user, adding to the inherent cost
of the system. For these and other reasons, processor arrays are no longer popular.

1.1.2.2 Multicomputers

Amulticomputer configuration, or cluster, is a group of computers that work together. A
cluster has three basic elements—a collection of individual computers, a network connecting
those computers, and software that enables a computer to share work among the other
computers via the network.

For most people, the most likely thing to come to mind when speaking of multicomputers is a
Beowulf cluster.Thomas Sterling and Don Becker at NASA's Goddard Space Flight Center built
a parallel computer out of commodity hardware and freely available software in 1994 and
named their system Beowulf.I1l While this is perhaps the best-known type of multicomputer,
a number of variants now exist.

[11 If you think back to English lit, you will recall that the epic hero Beowulf was described as having "the
strength of many."

First, both commercial multicomputers and commodity clusters are available. Commodity
clusters, including Beowulf clusters, are constructed using commodity, off-the-shelf (COTS)
computers and hardware. When constructing a commodity cluster, the norm is to use freely
available, open source software. This translates into an extremely low cost that allows people
to build a cluster when the alternatives are just too expensive. For example, the "Big Mac"
cluster built by Virginia Polytechnic Institute and State University was initially built using 1100
dual-processor Macintosh G5 PCs. It achieved speeds on the order of 10 teraflops, making it
one of the fastest supercomputers in existence. But while supercomputers in that class usually
take a couple of years to construct and cost in the range of $100 million to $250 million, Big
Mac was put together in about a month and at a cost of just over $5 million. (A list of the
fastest machines can be found at http ://www.top500.0rg. The site also maintains a list of the
top 500 clusters.)

Incommodity clusters, the software is often mix-and-match. It is not unusual for the
processors to be significantly faster than the network. The computers within a cluster can be
dedicated to that cluster or can be standalone computers that dynamically join and leave the
cluster. Typically, the term Beowulf is used to describe a cluster of dedicated computers, often
with minimal hardware. If no one is going to use a node as a standalone machine, there is no
need for that node to have a dedicated keyboard, mouse, video card, or monitor. Node
computers may or may not have individual disk drives. (Beowulf is a politically charged term
that is avoided in this book.) While a commodity cluster may consist of identical, high-
performance computers purchased specifically for the cluster, they are often a collection of
recycled cast-off computers, or a pile-of-PCs (POP).

Commercial clusters often use proprietary computers and software. For example, a SUN Ultra
is not generally thought of as a COTS computer, so an Ultra cluster would typically be
described as a proprietary cluster. With proprietary clusters, the software is often tightly
integrated into the system, and the CPU performance and network performance are well
matched. The primary disadvantage of commercial clusters is, as you no doubt guessed, their
cost. But if money is not a concern, then IBM, Sun Microsystems, or any number of other
companies will be happy to put together a cluster for you. (The salesman will probably even
take you to lunch.)

Anetwork of workstations (NOW), sometimes called a cluster of workstations (COW), is a
cluster composed of computers usable as individual workstations. A computer laboratory at a
university might become a NOW on the weekend when the laboratory is closed. Or office
machines might join a cluster in the evening after the daytime users leave.

http://www.top500.org

Software is an integral part of any cluster. A discussion of cluster software will constitute the
bulk of this book. Support for clustering can be built directly into the operating system or may
sit above the operating system at the application level, often in user space. Typically, when
clustering support is part of the operating system, all nodes in the cluster need to have
identical or nearly identical kernels; this is called a single system image (SSI). At best, the
granularity is the process. With some software, you may need to run distinct programs on
each node, resulting in even coarser granularity. Since each computer in a cluster has its own
memory (unlike a UMA or NUMA computer), identical addresses on individual CPUs map
different physical memory locations. Communication is more involved and costly.

1.1.2.3 Cluster structure

It's tempting to think of a cluster as just a bunch of interconnected machines, but when you
begin constructing a cluster, you'll need to give some thought to the internal structure of the
cluster. This will involve deciding what roles the individual machines will play and what the
interconnecting network will look like.

The simplest approach is a symmetric cluster. With a symmetric cluster (Figure 1-3) each
node can function as an individual computer. This is extremely straightforward to set up. You
just create a subnetwork with the individual machines (or simply add the computers to an
existing network) and add any cluster-specific software you'll need. You may want to add a
server or two depending on your specific needs, but this usually entails little more than adding
some additional software to one or two of the nodes. This is the architecture you would
typically expect to see in a NOW, where each machine must be independently usable.

Figure 1-3. Symmetric clusters

Cluster

=]

External
Hewtwork/|mterneat

There are several disadvantages to a symmetric cluster. Cluster management and security
can be more difficult. Workload distribution can become a problem, making it more difficult to
achieve optimal performance.

For dedicated clusters, an asymmetric architecture is more common. With asymmetric
clusters (Figure 1-4) one computer is the head node or frontend. It serves as a gateway
between the remaining nodes and the users. The remaining nodes often have very minimal
operating systems and are dedicated exclusively to the cluster. Since all traffic must pass
through the head, asymmetric clusters tend to provide a high level of security. If the
remaining nodes are physically secure and your users are trusted, you'll only need to harden
the head node.

Figure 1-4. Asymmetric clusters

Chster

External
Mewtwork/|rterneat

The head often acts as a primary server for the remainder of the clusters. Since, as a dual-
homed machine, it will be configured differently from the remaining nodes, it may be easier to
keep all customizations on that single machine. This simplifies the installation of the remaining
machines. In this book, as with most descriptions of clusters, we will use the term public
interface to refer to the network interface directly connected to the external network and the
termprivate interface to refer to the network interface directly connected to the internal
network.

The primary disadvantage of this architecture comes from the performance limitations
imposed by the cluster head. For this reason, a more powerful computer may be used for the
head. While beefing up the head may be adequate for small clusters, its limitations will
become apparent as the size of the cluster grows. An alternative is to incorporate additional
servers within the cluster. For example, one of the nodes might function as an NFS server, a
second as a management station that monitors the health of the clusters, and so on.

1/0 represents a particular challenge. It is often desirable to distribute a shared filesystem

across a number of machines within the cluster to allow parallel access. Figure 1-5 shows a
more fully specified cluster.

Figure 1-5. Expanded cluster

Cligstar

| Monitor |——| Wade |
| W o e |
Head |~ Mode |

I | I_ H
External Dserver *
HewtworksIntemet . _| Hode |

Iln'[]seruer |——[Node |

Network design is another key issue. With small clusters, a simple switched network may be
adequate. With larger clusters, a fully connected network may be prohibitively expensive.
Numerous topologies have been studied to minimize connections (costs) while maintaining
viable levels of performance. Examples include hyper-tree, hyper-cube, butterfly, and shuffle-
exchange networks. While a discussion of network topology is outside the scope of this book,
you should be aware of the issue.

Heterogeneous networks are not uncommon. Although not shown in the figure, it may be
desirable to locate the 1/0 servers on a separate parallel network. For example, some clusters

have parallel networks allowing administration and user access through a slower network,
while communications for processing and access to the 1/0 servers is done over a high-speed
network.

48 FREY < Day Day Up > MEXT o

< Day Day Up >

1.2 Types of Clusters

Originally, "clusters" and "high-performance computing” were synonymous. Today, the
meaning of the word "cluster"” has expanded beyond high-performance to include high-
availability (HA) clusters and load-balancing (LB) clusters. In practice, there is considerable
overlap among these—they are, after all, all clusters. While this book will focus primarily on
high-performance clusters, it is worth taking a brief look at high-availability and load-
balancing clusters.

High-availability clusters, also called failover clusters, are often used in mission-critical
applications. If you can't afford the lost business that will result from having your web server
go down, you may want to implement it using a HA cluster. The key to high availability is
redundancy. An HA cluster is composed of multiple machines, a subset of which can provide
the appropriate service. In its purest form, only a single machine or server is directly
available—all other machines will be in standby mode. They will monitor the primary server to
insure that it remains operational. If the primary server fails, a secondary server takes its
place.

The idea behind a load-balancing cluster is to provide better performance by dividing the work
among multiple computers. For example, when a web server is implemented using LB
clustering, the different queries to the server are distributed among the computers in the
clusters. This might be accomplished using a simple round-robin algorithm. For example,
Round-Robin DNS could be used to map responses to DNS queries to the different IP
addresses. That is, when a DNS query is made, the local DNS server returns the addresses of
the next machine in the cluster, visiting machines in a round-robin fashion. However, this
approach can lead to dynamic load imbalances. More sophisticated algorithms use feedback
from the individual machines to determine which machine can best handle the next task.

Keep in mind, the term "load-balancing™ means different things to different people. A high-
performance cluster used for scientific calculation and a cluster used as a web server would
likely approach load-balancing in entirely different ways. Each application has different critical
requirements.

To some extent, any cluster can provide redundancy, scalability, and improved performance,
regardless of its classification. Since load-balancing provides greater availability, it is not
unusual to see both load-balancing and high-availability in the same cluster. The Linux Virtual
Server Project (LVSR) is an example of combining these two approaches. An LVSR server is a
high-availability server implemented by distributing tasks among a number of real servers.
Interested readers are encouraged to visit the web pages for the Linux Virtual Server Project
(http : //www.linux-vs.org) and the High-Availability Linux Project (http://www.linux-ha.orqg)
and to read the relevant HOWTOs. OSCAR users will want to visit the High-Availability OSCAR
web site http ://www.openclustergroup.org/HA-OSCAR/.

< Day Day Up >

http://www.linux-vs.org
http://www.linux-ha.org
http://www.openclustergroup.org/HA-OSCAR/

< Day Day Up >

1.3 Distributed Computing and Clusters

While the term parallel is often used to describe clusters, they are more correctly described as
a type of distributed computing. Typically, the term parallel computing refers to tightly
coupled sets of computation. Distributed computing is usually used to describe computing
that spans multiple machines or multiple locations. When several pieces of data are being
processed simultaneously in the same CPU, this might be called a parallel computation, but
would never be described as a distributed computation. Multiple CPUs within a single
enclosure might be used for parallel computing, but would not be an example of distributed
computing. When talking about systems of computers, the term parallel usually implies a
homogenous collection of computers, while distributed computing typically implies a more
heterogeneous collection. Computations that are done asynchronously are more likely to be
called distributed than parallel. Clearly, the terms parallel and distributed lie at either end of a
continuum of possible meanings. In any given instance, the exact meanings depend upon the
context. The distinction is more one of connotations than of clearly established usage.

Since cluster computing is just one type of distributed computing, it is worth briefly
mentioning the alternatives. The primary distinction between clusters and other forms of
distributed computing is the scope of the interconnecting network and the degree of coupling
among the individual machines. The differences are often ones of degree.

Clusters are generally restricted to computers on the same subnetwork or LAN. The term grid
computing is frequently used to describe computers working together across a WAN or the
Internet. The idea behind the term "grid" is to invoke a comparison between a power grid and
a computational grid. A computational grid is a collection of computers that provide
computing power as a commodity. This is an active area of research and has received
(deservedly) a lot of attention from the National Science Foundation. The most significant
differences between cluster computing and grid computing are that computing grids typically
have a much larger scale, tend to be used more asynchronously, and have much greater
access, authorization, accounting, and security concerns. From an administrative standpoint,
if you build a grid, plan on spending a lot of time dealing with security-related issues. Grid
computing has the potential of providing considerably more computing power than individual
clusters since a grid may combine a large number of clusters.

Peer-to-peer computing provides yet another approach to distributed computing. Again this is
an ambiguous term. Peer-to-peer may refer to sharing cycles, to the communications
infrastructure, or to the actual data distributed across a WAN or the Internet. Peer-to-peer
cycle sharing is best exemplified by SETI@Home, a project to analyze radio telescope data for
signs of extraterrestrial intelligence. Volunteers load software onto their Internet-connected
computers. To the casual PC or Mac user, the software looks like a screensaver. When a
computer becomes idle, the screensaver comes on and the computer begins analyzing the
data. If the user begins using the computer again, the screensaver closes and the data
analysis is suspended. This approach has served as a model for other research, including the
analysis of cancer and AIDS data.

Data or file-sharing peer-to-peer networks are best exemplified by Napster, Gnutella, or Kazaa
technologies. With some peer-to-peer file-sharing schemes, cycles may also be provided for
distributed computations. That is, by signing up and installing the software for some services,
you may be providing idle cycles to the service for other uses beyond file sharing. Be sure you
read the license before you install the software if you don't want your computers used in this
way.

Other entries in the distributed computing taxonomy include federated clusters and
constellations. Federated clusters are clusters of clusters, while constellations are clusters
where the number of CPUs is greater than the number of nodes. A four-node cluster of SGI

Altrix computers with 128 CPUs per node is a constellation. Peer-to-peer, grids, federated
clusters, and constellations are outside the scope of this book.

< Day Day Up >

< Day Day Up >

1.4 Limitations

Whileclusters have a lot to offer, they are not panaceas. There is a limit to how much adding
another computer to a problem will speed up a calculation. In the ideal situation, you might
expect a calculation to go twice as fast on two computers as it would on one. Unfortunately,
this is the limiting case and you can only approach it.

Any calculation can be broken into blocks of code or instructions that can be classified in one
of two exclusive ways. Either a block of code can be parallelized and shared among two or
more machines, or the code is essentially serial and the instructions must be executed in the
order they are written on a single machine. Any code that can't be parallelized won't benefit
from any additional processors you may have.

There are several reasons why some blocks of code can't be parallelized and must be
executed in a specific order. The most obvious example is 1/0, where the order of operations
is typically determined by the availability, order, and format of the input and the format of the
desired output. If you are generating a report at the end of a program, you won't want the
characters or lines of output printed at random.

Another reason some code can't be parallelized comes from the data dependencies within the
code. If you use the value of x to calculate the value of y, then you'll need to calculate x
before you calculate y. Otherwise, you won't know what value to use in the calculation.
Basically, to be able to parallelize two instructions, neither can depend on the other. That is,
the order in which the two instructions finish must not matter.

Thus, any program can be seen as a series of alternating sections—sections that can be
parallelized and effectively run on different machines interspersed with sections that must be
executed as written and that effectively can only be run on a single machine. If a program
spends most of its time in code that is essentially serial, parallel processing will have limited
value for this code. In this case, you will be better served with a faster computer than with
parallel computers. If you can't change the algorithm, big iron is the best approach for this
type of problem.

1.4.1 Amdahl's Law

As just noted, the amount of code that must be executed serially limits how much of a
speedup you can expect from parallel execution. This idea has been formalized by what is
known as Amdahl's Law, named after Gene Amdahl, who first stated the law in the late
sixties. In a nutshell, Amdahl's Law states that the serial portion of a program will be the
limiting factor in how much you can speed up the execution of the program using multiple
processors.[21

[21 While Amdahl's Law is the most widely known and most useful metric for describing parallel
performance, there are others. These include Gustafson-Barsus's, Sun's, and Ni's Laws and the Karp-Flat
and the Isoefficiency Metrics.

An example should help clarify Amdahl's Law. Let's assume you have a computation that
takes 10 hours to complete on a currently available computer and that 90 percent of your
code can be parallelized. In other words, you are spending one hour doing instructions that
must be done serially and nine hours doing instructions that can be done in parallel. Amdahl's
Law states that you'll never be able to run this code on this class of computers in less than
one hour, regardless of how many additional computers you have available. To see this,
imagine that you had so many computers that you could execute all the parallel code
instantaneously. You would still have the serial code to execute, which has to be done on a

single computer, and it would still take an hour.I31

[3] For those of you who love algebra, the speedup factor is equal to 1/(s + p/N), where s is the fraction
of the code that is inherently serial, p is the fraction of the code that can be parallelized, and N is the
number of processors available. Clearly, p + s = 1. As the number of processors becomes very large, p/N
becomes very small, and the speedup becomes essentially 1/s. So if s is 0.1, the largest speedup you can
expect is a factor of 10, no matter how many processors you have available.

In practice, you won't have an unlimited number of processors, so your total time will always
be longer. Figure 1-6 shows the amount of time needed for this example, depending on the
number of processors you have available.

Figure 1-6. Execution time vs. number of processors

Hours
10,

You should also remember that Amdahl's law is an ideal. In practice, there is the issue of the
overhead introduced by parallelizing the code. For example, coordinating communications
among the various processes will require additional code. This adds to the overall execution
time. And if there is contention for the network, this can stall processes, further slowing the
calculation. In other words, Amdahl's Law is the best speedup you can hope for, but not the
actual speedup you'll see.

What can you do if you need to do this calculation in less than one hour? As | noted earlier,
you have three choices when you want to speed up a calculation—better algorithms, faster
computers, or more computers. If more computers won't take you all the way, your remaining
choices are better algorithms and faster computers. If you can rework your code so that a
larger fraction can be done in parallel, you'll see an increased benefit from a parallel approach.
Otherwise, you'll need to dig deep into your pocket for faster computers.

Surprisingly, a fair amount of controversy still surrounds what should be obvious once you
think about it. This stems in large part from the misapplication of Amdahl's Law over the
years. For example, Amdahl's Law has been misused as an argument favoring faster
computers over parallel computing.

The most common misuse is based on the assumption that the amount of speedup is
independent of the size of the problem. Amdahl's Law simply does not address how problems
scale. The fraction of the code that must be executed serially usually changes as the size of
the problem changes. So, itis a mistake to assume that a problem's speedup factor will be
the same when the scale of the problem changes. For instance, if you double the length of a
simulation, you may find that the serial portions of the simulation, such as the initialization
and report phases, are basically unchanged, while the parallelizable portion of the code is
what doubles. Hence, the fraction of the time spent in the serial code will decrease and
Amdahl's Law will specify a greater speedup. This is good news! After all, it's when problems
get bigger that we most need the speedup. For most problems, the speedup factor will
depend upon the problem size. As the problem size changes, so does the speedup factor. The
amount will depend on the nature of the individual problem, but typically, the speedup will
increase as the size of the problem increases. As the problem size grows, it is not unusual to
the see a linear increase in the amount of time spent in the serial portion of the code and a

quadratic increase in the amount of time spent in the parallelizable portion of the code.
Unfortunately, if you only apply Amdahl's Law to the smaller problem size, you'll
underestimate the benefit of a parallel approach.

Having said this, it is important to remember that Amdahl's Law does clearly state a limitation
of parallel computing. But this limitation varies not only from problem to problem, but with
the size of the problem as well.

One last word about the limitations of clusters—the limitations are often tied to a particular
approach. It is often possible to mix approaches and avoid limitations. For example, in
constructing your clusters, you'll want to use the best computers you can afford. This will
lessen the impact of inherently serial code. And don't forget to look at your algorithms!

\ ‘ PREY < Day Day Up > ME==T ‘

< Day Day Up >

1.5 My Biases

The material covered in this book reflects three of my biases, of which you should be aware. |
have tried to write a book to help people get started with clusters. As such, | have focused
primarily on mainstream, high-performance computing, using open source software. Let me
explain why.

First, there are many approaches and applications for clusters. | do not believe that it is
feasible for any book to address them all, even if a less-than-exhaustive approach is used. In
selecting material for this book, | have tried to use the approaches and software that are the
most useful for the largest number of people. | feel that it is better to cover a limited number
of approaches than to try to say too much and risk losing focus. However, | have tried to
justify my decisions and point out options along the way so that if your needs don't match my
assumptions, you'll at least have an idea where to start looking.

Second, in keeping with my goal of addressing mainstream applications of clusters, the book
primarily focuses on high-performance computing. This is the application from which clusters
grew and remains one of their dominant uses. Since high availability and load balancing tend
to be used with mission-critical applications, they are beyond the scope of a book focusing on
getting started with clusters. You really should have some basic experience with generic
clusters before moving on to such mission-critical applications. And, of course, improved
performance lies at the core of all the other uses for clusters.

Finally, I have focused on open source software. There are a number of proprietary solutions
available, some of which are excellent. But given the choice between comparable open source
software and proprietary software, my preference is for open source. For clustering, | believe
that high-quality, robust open source software is readily available and that there is little
justification for considering proprietary software for most applications.

While I'll cover the basics of clusters here, you would do well to study the specifics of clusters
that closely match your applications as well. There are a number of well-known clusters that
have been described in detail. A prime example is Google, with literally tens of thousands of
computers. Others include clusters at Fermilab, Argonne National Laboratory (Chiba City
cluster), and Oak Ridge National Laboratory. Studying the architecture of clusters similar to
what you want to build should provide additional insight. Hopefully, this book will leave you
well prepared to do just that.

One last comment—if you keep reading, | promise not to mention horses again.

4 FREV < Day Day Up > MEXT mp

< Day Day Up >

Chapter 2. Cluster Planning

This chapter is an overview of cluster planning. It begins by introducing four key steps in
developing a design for a cluster. Next, it presents several questions you can ask to help you
determine what you want and need in a cluster. Finally, it briefly describes some of the
software decisions you'll make and how these decisions impact the overall architecture of the
cluster. In addition to helping people new to clustering plan the critical foundations of their
cluster, the chapter serves as an overview of the software described in the book and its uses.

4@ PREV < Day Day Up > ME=T

< Day Day Up >

2.1 Design Steps

Designing a cluster entails four sets of design decisions. You should:

1. Determine the overall mission for your cluster.

2. Select a general architecture for your cluster.

3. Select the operating system, cluster software, and other system software you will use.
4. Select the hardware for the cluster.

While each of these tasks, in part, depends on the others, the first step is crucial. If at all
possible, the cluster's mission should drive all other design decisions. At the very least, the
other design decisions must be made in the context of the cluster's mission and be consistent
with it.

Selecting the hardware should be the final step in the design, but often you won't have as
much choice as you would like. A number of constraints may drive you to select the hardware
early in the design process. The most obvious is the need to use recycled hardware or similar
budget constraints. Chapter 3 describes hardware consideration is greater detail.

‘ ‘, PREY < Day Day Up > ME=ST I‘

< Day Day Up >

2.2 Determining Your Cluster's Mission

Defining what you want to do with the cluster is really the first step in designing it. For many
clusters, the mission will be clearly understood in advance. This is particularly true if the
cluster has a single use or a few clearly defined uses. However, if your cluster will be an open
resource, then you'll need to anticipate potential uses. In that case, the place to start is with
your users.

While you may think you have a clear idea of what your users will need, there may be little
semblance between what you think they should need and what they think they need. And
while your assessment may be the correct one, your users are still apt to be disappointed if
the cluster doesn't live up to their expectations. Talk to your users.

You should also keep in mind that clusters have a way of evolving. What may be a reasonable
assessment of needs today may not be tomorrow. Good design is often the art of balancing
today's resources with tomorrow's needs. If you are unsure about your cluster's mission,
answering the following questions should help.

2.2.1 What Is Your User Base?

In designing a cluster, you must take into consideration the needs of all users. Ideally this will
include both the potential users as well as the obvious early adopters. You will need to
anticipate any potential conflicting needs and find appropriate compromises.

The best way to avoid nasty surprises is to include representative users in the design process.
If you have only a few users, you can easily poll the users to see what you need.

If you have a large user base, particularly one that is in flux, you will need to anticipate all
reasonable, likely needs. Generally, this will mean supporting a wider range of software. For
example, if you are the sole user and you only use one programming language and parallel
programming library, there is no point in installing others. If you have dozens of users, you'll
probably need to install multiple programming languages and parallel programming libraries.

2.2.2 How Heavily Will the Cluster Be Used?

Will the cluster be in constant use, with users fighting over it, or will it be used on an
occasional basis as large problems arise? Will some of your jobs have higher priorities than
others? Will you have a mix of jobs, some requiring the full capabilities of the cluster while
others will need only a subset?

If you have a large user base with lots of potential conflicts, you will need some form of
scheduling software. If your cluster will be lightly used or have very few users who are willing
to work around each other, you may be able to postpone installing scheduling software.

2.2.3 What Kinds of Software Will You Run on the Cluster?

There are several levels at which this question can be asked. At a cluster management level,
you'll need to decide which systems software you want, e.g., BSD, Linux, or Windows, and
you'll need to decide what clustering software you'll need. Both of these choices will be
addressed later in this chapter.

From a user perspective, you'll need to determine what application-level software to use. Will
your users be using canned applications? If so, what are these applications and what are their
requirements? Will your users be developing software? If so, what tools will they need? What
is the nature of the software they will write and what demands will this make on your cluster?
For example, if your users will be developing massive databases, will you have adequate
storage? Will the 1/0 subsystem be adequate? If your users will carry out massive
calculations, do you have adequate computational resources?

2.2.4 How Much Control Do You Need?

Closely related to the types of code you will be running is the question of how much control

you will need over the code. There are a range of possible answers. If you need tight control
over resources, you will probably have to write your own applications. User-developed code
can make explicit use of the available resources.

For some uses, explicit control isn't necessary. If you have calculations that split nicely into
separate processes and you'd just like them to run faster, software that provides transparent
control may be the best solution. For example, suppose you have a script that invokes a file
compression utility on a large number of files. It would be convenient if you could divide these
file compression tasks among a number of processes, but you don't care about the details of
how this is done.

openMosix, code that extends the Linux kernel, provides this type of transparent support.
Processes automatically migrate among cluster computers. The advantage is that you may
need to rewrite user code. However, the transparent control provided by openMosix will not
work if the application uses shared memory or runs as a single process.

2.2.5 Will This Be a Dedicated or Shared Cluster?

Will the machines that comprise the cluster be dedicated to the cluster, or will they be used
for other tasks? For example, a number of clusters have been built from office machines.
During the day, the administrative staff uses the machines. In the evening and over the
weekend, they are elements of a cluster. University computing laboratories have been used in
the same way.

Obviously, if you have a dedicated cluster, you are free to configure the nodes as you see fit.
With a shared cluster, you'll be limited by the requirements of the computers' day jobs. If this
is the case, you may want to consider whether a dual-boot approach is feasible.

2.2.6 What Resources Do You Have?

Will you be buying equipment or using existing equipment? Will you be using recycled
equipment? Recycled equipment can certainly reduce your costs, but it will severely constrain
what you can do. At the very least, you'll need a small budget to adapt and maintain the
equipment you have. You may need to purchase networking equipment such as a switch and
cables, or you may need to replace failing parts such as disk drives and network cards. (See
Chapter 3 for more information about hardware.)

2.2.7 How Will Cluster Access Be Managed?

Will you need local or remote access or both? Will you need to provide Internet access, or can
you limit it to the local or campus network? Can you isolate the cluster? If you must provide
remote access, what will be the nature of that access? For example, will you need to install
software to provide a graphical interface for remote users? If you can isolate your network,

security becomes less of an issue. If you must provide remote access, you'll need to consider
tools like SSH and VNC. Or is serial port access by a terminal server sufficient?

2.2.8 What Is the Extent of Your Cluster?

The term cluster usually applies to computers that are all on the same subnet. If you will be
using computers on different networks, you are building a grid. With a grid you'll face greater
communications overhead and more security issues. Maintaining the grid will also be more
involved and should be addressed early in the design process. This book doesn't cover the
special considerations needed for grids.

2.2.9 What Security Concerns Do You Have?

Can you trust your users? If the answer is yes, this greatly simplifies cluster design. You can
focus on controlling access to the cluster. If you can't trust your users, you'll need to harden
each machine and develop secure communications. A closely related question is whether you
can control physical access to your computers. Again, controlling physical access will simplify
securing your cluster since you can focus on access points, e.g., the head node rather than
the cluster as a whole. Finally, do you deal with sensitive data? Often the value of the data
you work with determines the security measures you must take.

\ * PREY < Day Day Up > ME®=T ‘

< Day Day Up >

2.3 Architecture and Cluster Software

Once you have established the mission for your cluster, you can focus on its architecture and
select the software. Most high-performance clusters use an architecture similar to that shown
inFigure 1-5. The software described in this book is generally compatible with that basic
architecture. If this does not match the mission of your cluster, you still may be able to use
many of the packages described in this book, but you may need to make a few adaptations.

Putting together a cluster involves the selection of a variety of software. The possibilities are
described briefly here. Each is discussed in greater detail in subsequent chapters in this book.

2.3.1 System Software

One of the first selections you will probably want to make is the operating system, but this is
actually the final software decision you should make. When selecting an operating system, the
fundamental question is compatibility. If you have a compelling reason to use a particular
piece of software and it will run only under a single operating system, the choice has been
made for you. For example, openMosix uses extensions to the Linux kernel, so if you want
openMosix, you must use Linux. Provided the basic issue of compatibility has been met, the
primary reasons to select a particular operating system are familiarity and support. Stick with
what you know and what's supported.

All the software described in this book is compatible with Linux. Most, but not all, of the
software will also work nicely with other Unix systems. In this book, we'll be assuming the use
of Linux. If you'd rather use BSD or Solaris, you'll probably be OK with most of the software,
but be sure to check its compatibility before you make a commitment. Some of the software,
such as MPICH, even works with Windows.

There is a natural human tendency to want to go with the latest available version of an
operating system, and there are some obvious advantages to using the latest release.
However, compatibility should drive this decision as well. Don't expect clustering software to
be immediately compatible with the latest operating system release. Compatibility may
require that you use an older release. (For more on Linux, see Chapter 4.)

In addition to the operating system itself, you may need additional utilities or extensions to
the basic services provided by the operating system. For example, to create a cluster you'll
need to install the operating system and software on a large number of machines. While you
could do this manually with a small cluster, it's an error-prone and tedious task. Fortunately,
you can automate the process with cloning software. Cloning is described in detail in Chapter
8.

High-performance systems frequently require extensive 1/0. To optimize performance, parallel
file systems may be used. Chapter 12 looks at the Parallel Virtual File System (PVFS), an open
source high-performance file system.

2.3.2 Programming Software

There are two basic decisions you'll need to make with respect to programming software—the
programming languages you want to support and the libraries you want to use. If you have a
small user base, you may be able to standardize on a single language and a single library. If
you can pull this off, go for it; life will be much simpler. However, if you need to support a
number of different users and applications, you may be forced to support a wider variety of

programming software.

Theparallel programming libraries provide a mechanism that allows you to easily coordinate
computing and exchange data among programs running on the cluster. Without this software,
you'll be forced to rely on operating system primitives to program your cluster. While it is
certainly possible to use sockets to build parallel programs, it is a lot more work and more
error prone. The most common libraries are the Message Passing Interface (MPI) and Parallel
Virtual Machine (PVM) libraries.

The choice of program languages depends on the parallel libraries you want to use. Typically,
the libraries provide bindings for only a small number of programming languages. There is no
point in installing Ada if you can't link it to the parallel library you want to use. Traditionally,
parallel programming libraries support C and FORTRAN, and C++ is growing in popularity.
Libraries and languages are discussed in greater detail in Chapter 9.

2.3.3 Control and Management

In addition to the programming software, you'll need to keep your cluster running. This
includes scheduling and management software.

Cluster management includes both routine system administration tasks and monitoring the
health of your cluster. With a cluster, even a simple task can become cumbersome if it has to
be replicated over a large number of systems. Just checking which systems are available can
be a considerable time sink if done on a regular basis. Fortunately, there are several packages
that can be used to simplify these tasks. Cluster Command and Control (C3) provides a
command-line interface that extends across a cluster, allowing easy replication of tasks on
each machine in a cluster or on a subset of the cluster. Ganglia provides web-based
monitoring in a single interface. Both C3 and Ganglia can be used with federated clusters as
well as simple clusters. C3 and Ganglia are described in Chapter 10.

Scheduling software determines when your users' jobs will be executed. Typically, scheduling
software can allocate resources, establish priorities, and do basic accounting. For Linux
clusters there are two likely choices—Condor and Portable Batch System (PBS). If you have
needs for an advanced scheduler, you might also consider Maui. PBS is available as a
commercial product, PBSPro, and as open source software, OpenPBS. OpenPBS is described

inChapter 11.

& FREV < Day Day Up > MEXT mp

< Day Day Up >

2.4 Cluster Kits

If installing all of this software sounds daunting, don't panic. There are a couple of options you
can consider. For permanent clusters there are, for lack of a better name, cluster kits,
software packages that automate the installation process. A cluster kit provides all the
software you are likely to need in a single distribution.

Cluster kits tend to be very complete. For example, the OSCAR distribution contains both PVM
and two versions of MPI. If some software isn't included, you can probably get by without it.
Another option, described in the next section, is a CD-ROM-based cluster.

Cluster kits are designed to be turnkey solutions. Short of purchasing a prebuilt, preinstalled
proprietary cluster, a cluster kit is the simplest approach to setting up a full cluster.
Configuration parameters are largely preset by people who are familiar with the software and
how the different pieces may interact. Once you have installed the kit, you have a functioning
cluster. You can focus on using the software rather than installing it. Support groups and
mailing lists are generally available.

Some Kits have a Linux distribution included in the package (e.g., Rocks), while others are
installed on top of an existing Linux installation (e.g., OSCAR). Even if Linux must be installed
first, most of the configuration and the installation of needed packages will be done for you.

There are two problems with using cluster kits. First, cluster kits do so much for you that you
can lose touch with your cluster, particularly if everything is new to you. Initially, you may not
understand how the cluster is configured, what customizations have been made or are
possible, or even what has been installed. Even making minor changes after installing a kit
can create problems if you don't understand what you have. Ironically, the more these kits do
for you, the worse this problem may be. With a kit, you may get software you don't want to
deal with—software your users may expect you to maintain and support. And when something
goes wrong, as it will, you may be at a loss about how to deal with it.

A second problem is that, in making everything work together, kit builders occasionally have
to do things a little differently. So when you look at the original documentation for the
individual components in a kit, you may find that the software hasn't been installed as
described. When you learn more about the software, you'll come to understand and
appreciate why the changes were made. But in the short term, these changes can add to the
confusion.

So while a cluster kit can get you up and running quickly, you will still need to learn the
details of the individual software. You should follow up the installation with a thorough study
of how the individual pieces in the kit work. For most beginners, the single advantage of being
able to get a cluster up and running quickly probably outweighs all of the disadvantages.

While other cluster kits are available, the three most common kits for Linux clusters are NPACI
Rocks, OSCAR, and Scyld Beowulf.[1] While Scyld Beowulf is a commercial product available
from Penguin Computing, an earlier, unsupported version is available for a very nominal cost
fromhttp : //www.linuxcentral.com/.Donald Becker, one of the original Beowulf developers,
founded Scyld Computing, which was subsequently acquired by Penguin Computing. Scyld is
built on top of Red Hat Linux and includes an enhanced kernel, tools, and utilities. While Scyld
Beowulf is a solid system, you face the choice of using an expensive commercial product or a
somewhat dated, unsupported product. Furthermore, variants of both Rocks and OSCAR are
available. For example, BioBrew (http://bioinformatics.org/biobrew/) is a Rocks-based system
that contains a number of packages for analyzing bioinformatics information. For these
reasons, either Rocks or OSCAR is arguably a better choice than Scyld Beowulf.

[1] For grid computing, which is outside the scope of this book, the Globus Toolkit is a likely choice.

http://www.linuxcentral.com/
http://bioinformatics.org/biobrew/

NPACI (National Partnership for Advanced Computational Infrastructure) Rocks is a collection
of open source software for creating a cluster built on top of Red Hat Linux. Rocks takes a
cookie-cutter approach. To install Rocks, begin by downloading a set of ISO images from

http ://rocks.npaci.edu/Rocks/ and use them to create installation CD-ROMs. Next, boot to the
first CD-ROM and answer a few questions as the cluster is built. Both Linux and the clustering
software are installed. (This is a mixed blessing—it simplifies the installation but you won't
have any control over how Linux is installed.) The installation should go very quickly. In fact,
part of the Rocks' management strategy is that, if you have problems with a node, the best
solution is to reinstall the node rather than try to diagnose and fix the problem. Depending on
hardware, it may be possible to reinstall a node in under 10 minutes. When a Rocks
installation goes as expected, you can be up and running in a very short amount of time.
However, because the installation of the cluster software is tied to the installation of the
operating system, if the installation fails, you can be left staring at a dead system and little
idea of what to do. Fortunately, this rarely happens.

OSCAR, from the Open Cluster Group, uses a different installation strategy. With OSCAR, you
first install Linux (but only on the head node) and then install OSCAR—the installations of the
two are separate. This makes the installation more involved, but it gives you more control
over the configuration of your system, and it is somewhat easier (that's easier, not easy) to
recover when you encounter installation problems. And because the OSCAR installation is
separate from the Linux installation, you are not tied to a single Linux distribution.

Rocks uses a variant of Red Hat's Anaconda and Kickstart programs to install the compute
nodes. Thus, Rocks is able to probe the system to see what hardware is present. To be
included in Rocks, software must be available as an RPM and configuration must be entirely
automatic. As a result, with Rocks it is very straightforward to set up a cluster using
heterogeneous hardware. OSCAR, in contrast, uses a system image cloning strategy to
distribute the disk image to the compute nodes. With OSCAR it is best to use the same
hardware throughout your cluster. Rocks requires systems with hard disks. Although not
discussed in this book, OSCAR's thin client model is designed for diskless systems.

Both Rocks and OSCAR include a variety of software and build complete clusters. In fact, most
of the core software is the same for both OSCAR and Rocks. However, there are a few
packages that are available for one but not the other. For example, Condor is readily available
for Rocks while LAM/MPI is included in OSCAR.

Clearly, Rocks and OSCAR take orthogonal approaches to building clusters. Cluster kits are
difficult to build. OSCAR scales well over Linux distributions. Rocks scales well with
heterogeneous hardware. No one approach is better in every situation.

Rocks and OSCAR are at the core of this book. The installation, configuration, and use of
OSCAR are described in detail in Chapter 6. The installation, configuration, and use of Rocks is
described in Chapter 7. Rocks and OSCAR heavily influenced the selection of the individual
tools described in this book. Most of the software described in this book is included in Rocks
and OSCAR or is compatible with them. However, to keep the discussions of different software
clean, the book includes separate chapters for the various software packages included in
Rocks and OSCAR.

This book also describes many of the customizations made by these kits. At the end of many
of the chapters, there is a brief section for Rocks and OSCAR users summarizing the
difference between the default, standalone installation of the software and how these Kits
install it. Hopefully, therefore, this book addresses both of the potential difficulties you might
encounter with a cluster—learning the details of the software and discovering the differences
that cluster kits introduce.

Putting aside other constraints such as the need for diskless systems or heterogeneous
hardware, if all goes well, a novice can probably build a Rocks cluster a little faster than an
OSCAR cluster. But if you want greater control over how your cluster is configured, you may
be happier with OSCAR in the long run. Typically, OSCAR provides better documentation,
although Rocks documentation has been improving. You shouldn't go far wrong with either.

http://rocks.npaci.edu/Rocks/

< Day Day Up >

2.5 CD-ROM-Based Clusters

If you just want to learn about clusters, only need a cluster occasionally, or can't permanently
install a cluster, you might consider one of the CD-ROM-based clusters. With these, you
create a set of bootable CD-ROMs, sometimes called "live filesystem" CDs. When you need the
cluster, you reboot your available systems using the CD-ROMs, do a few configuration tasks,
and start using your cluster. The cluster software is all available from the CD-ROM and the
computers' hard disks are unchanged. When you are done, you simply remove the CD-ROM
and reboot the system to return to the operating system installed on the hard disk. Your
cluster persists until you reboot.

Clearly, this is not an approach to use for a high-availability or mission-critical cluster, but it is
a way to get started and learn about clusters. It is a viable way to create a cluster for short-
term use. For example, if a computer lab is otherwise idle over the weekend, you could do
some serious calculations using this approach.

There are some significant difficulties with this approach, most notably problems with storage.
It is possible to work around this problem by using a hybrid approach—setting up a dedicated
system for storage and using the CD-ROM-based systems as compute-only nodes.

Several CD-ROM-based systems are available. You might look at ClusterKnoppix,

http ://bofh.be/clusterknoppix/, or Bootable Cluster CD (BCCD), http://bccd.cs.uni.edu/. The
next subsection, a very brief description of BCCD, should give you the basic idea of how these
systems work.

2.5.1 BCCD

BCCD was developed by Paul Gray as an educational tool. If you want to play around with a
small cluster, BCCD is a very straightforward way to get started. On an occasional basis, it is
a viable alternative. What follows is a general overview of running BCCD for the first time.

The first step is to visit the BCCD download site, download an ISO image for a CD-ROM, and
use it to burn a CD-ROM for each system. (Creating CD-ROMs from ISO images is briefly
discussed in Chapter 4.) Next, boot each machine in your cluster from the CD-ROM. You'll
need to answer a few questions as the system boots. First, you'll enter a password for the
default user, bced. Next, you'll answer some questions about your network. The system
should autodetect your network card. Then it will prompt you for the appropriate driver. If you
know the driver, select it from the list BCCD displays. Otherwise, select "auto" from the menu
to have the system load drivers until a match is found. If you have a DHCP and DNS server
available on your network, this will go much faster. Otherwise, you'll need to enter the usual
network configuration information—IP address, netmask, gateway, etc.

Once the system boots, log in to complete the configuration process. When prompted, start
the BCCD heartbeat process. Next, run the utilities bccd-allowall and bececd-snarfhosts. The first
of these collects hosts' keys used by SSH and the second creates the machines file used by
MPI. You are now ready to use the system.

Admittedly, this is a pretty brief description, but it should give you some idea as to what's
involved in using BCCD. The boot process is described in greater detail at the project's web
site. To perform this on a regular basis with a number of machines would be an annoying
process. But for a few machines on an occasional basis, it is very straightforward.

4@ FREY < Day Day Up > MEXT mjp

http://bofh.be/clusterknoppix/
http://bccd.cs.uni.edu/

< Day Day Up >

2.6 Benchmarks

Once you have your cluster running, you'll probably want to run a benchmark or two just to
see how well it performs. Unfortunately, benchmarking is, at best, a dark art. In practice,
sheep entrails may give better results.

Often the motivation for benchmarks is hubris—the desire to prove your system is the best.
This can be crucial if funding is involved, but otherwise is probably a meaningless activity and
a waste of time. You'll have to judge for yourself.

Keep in mind that a benchmark supplies a single set of numbers that is very difficult to
interpret in isolation. Benchmarks are mostly useful when making comparisons between two
or more closely related configurations on your own cluster.

There are at least three reasons you might run benchmarks. First, a benchmark will provide
you with a baseline. If you make changes to your cluster or if you suspect problems with your
cluster, you can rerun the benchmark to see if performance is really any different. Second,
benchmarks are useful when comparing systems or cluster configurations. They can provide a
reasonable basis for selecting between alternatives. Finally, benchmarks can be helpful with
planning. If you can run several with differently sized clusters, etc., you should be able to
make better estimates of the impact of scaling your cluster.

Benchmarks are not infallible. Consider the following rather simplistic example: Suppose you
are comparing two clusters with the goal of estimating how well a particular cluster design
scales. Cluster B is twice the size of cluster A. Your goal is to project the overall performance
for a new cluster C, which is twice the size of B. If you rely on a simple linear extrapolation
based on the overall performance of A and B, you could be grossly misled. For instance, if
cluster A has a 30% network utilization and cluster B has a 60% network utilization, the
network shouldn't have a telling impact on overall performance for either cluster. But if the
trend continues, you'll have a difficult time meeting cluster C's need for 120% network
utilization.

There are several things to keep in mind when selecting benchmarks. A variety of different
things affect the overall performance of a cluster, including the configuration of the individual
systems and the network, the job mix on the cluster, and the instruction mix in the cluster
applications. Benchmarks attempt to characterize performance by measuring, in some sense,
the performance of CPU, memory, or communications. Thus, there is no exact
correspondence between what may affect a cluster's performance and what a benchmark
actually measures.

Furthermore, since several factors are involved, different benchmarks may weight different
factors. Thus, it is generally meaningless to compare the results of one benchmark on one
system with a different set of benchmarks on a different system, even when the benchmarks
reputedly measure the same thing.

When you select a benchmark, first decide why you need it and how it will be used. For many
purposes, the best benchmark is the actual applications that you will run on your cluster. It
doesn't matter how well your cluster does with memory benchmarks if your applications are
constantly thrashing. The primary difficulty in using actual applications is running them in a
consistent manner so that you have repeatable results. This can be a real bear! Even small
changes in data can produce significant changes in performance. If you do decide to use your
applications, be consistent.

If you don't want to use your applications, there are a number of cluster benchmarks
available. Here are a few that you might consider:

Hierarchical Integration (HINT)

The HINT benchmark, developed at the U.S. Department of Energy's Ames Research
Laboratory, is used to test subsystem performance. It can be used to compare both
processor performance and memory subsystem performance. It is now supported by
Brigham Young University. (http://hint.byu.edu)

High Performance Linpack

Linpack was written by Jack Dongarra and is probably the best known and most widely
used benchmark in high-performance computing. The HPL version of Linpack is used to
rank computers on the TOP500 Supercomputer Site. HPL differs from its predecessor in
that the user can specify the problem size. (http://www.netlib.org/benchmark/hpl/)

lozone

lozone is an I/0 and filesystem benchmark tool. It generates and performs a variety of
file operations and can be used to access filesystem performance.
(http : //www.iozone.orQ)

Iperf

Iperf was developed to measure network performance. It measures TCP and UDP
bandwidth performance, reporting delay jitter and datagram loss as well as bandwidth.
(http://dast.nlanr.net/Projects/Iperf/)

NAS Parallel Benchmarks

TheNumerical Aerodynamic Simulation (NAS) Parallel Benchmarks (NPB) are
application-centric benchmarks that have been widely used to compare the performance
of parallel computers. NPB is actually a suite of eight programs.
(http://science.nas.nasa.gov/Software/NPB/)

There are many other benchmarks available. The Netlib Repository is a good place to start if
you need additional benchmarks, http://www.netlib.org.

@ PREV < Day Day Up > MEXT W

http://hint.byu.edu
http://www.netlib.org/benchmark/hpl/
http://www.iozone.org
http://dast.nlanr.net/Projects/Iperf/
http://science.nas.nasa.gov/Software/NPB/
http://www.netlib.org

< Day Day Up >

Chapter 3. Cluster Hardware

It is tempting to let the hardware dictate the architecture of your cluster. However, unless you
are just playing around, you should let the potential uses of the cluster dictate its
architecture. This in turn will determine, in large part, the hardware you use. At least, that is
how it works in ideal, parallel universes.

In practice, there are often reasons why a less ideal approach might be necessary. Ultimately,
most of them boil down to budgetary constraints. First-time clusters are often created from
recycled equipment. After all, being able to use existing equipment is often the initial rationale
for creating a cluster. Perhaps your cluster will need to serve more than one purpose. Maybe
you are just exploring the possibilities. In some cases, such as learning about clusters,
selecting the hardware first won't matter too much.

If you are building a cluster using existing, cast-off computers and have a very limited
budget, then your hardware selection has already been made for you. But even if this is the
case, you will still need to make a number of decisions on how to use your hardware. On the
other hand, if you are fortunate enough to have a realistic budget to buy new equipment or
just some money to augment existing equipment, you should begin by carefully considering
your goals. The aim of this chapter is to guide you through the basic hardware decisions and
to remind you of issues you might overlook. For more detailed information on PC hardware,
you might consult PC Hardware in a Nutshell (O'Reilly).

@ PREV < Day Day Up > MEXT mp

< Day Day Up >

3.1 Design Decisions

While you may have some idea of what you want, it is still worthwhile to review the
implications of your choices. There are several closely related, overlapping key issues to
consider when acquiring PCs for the nodes in your cluster:

e Will you have identical systems or a mixture of hardware?

e Will you scrounge for existing computers, buy assembled computers, or buy the parts
and assemble your own computers?

¢ Will you have full systems with monitors, keyboards, and mice, minimal systems, or
something in between?

e Will you have dedicated computers, or will you share your computers with other users?
e Do you have a broad or shallow user base?

This is this most important thing I'll say in this chapter—if at all possible, use identical
systems for your nodes. Life will be much simpler. You'll need to develop and test only one
configuration and then you can clone the remaining machines. When programming your
cluster, you won't have to consider different hardware capabilities as you attempt to balance
the workload among machines. Also, maintenance and repair will be easier since you will have
less to become familiar with and will need to keep fewer parts on hand. You can certainly use
heterogeneous hardware, but it will be more work.

In constructing a cluster, you can scrounge for existing computers, buy assembled
computers, or buy the parts and assemble your own. Scrounging is the cheapest way to go,
but this approach is often the most time consuming. Usually, using scrounged systems means
you'll end up with a wide variety of hardware, which creates both hardware and software
problems. With older scrounged systems, you are also more likely to have even more
hardware problems. If this is your only option, try to standardize hardware as much as
possible. Look around for folks doing bulk upgrades when acquiring computers. If you can find
someone replacing a number of computers at one time, there is a good chance the computers
being replaced will have been a similar bulk purchase and will be very similar or identical.
These could come from a computer laboratory at a college or university or from an IT
department doing a periodic upgrade.

Buying new, preassembled computers may be the simplest approach if money isn't the
primary concern. This is often the best approach for mission-critical applications or when time
is a critical factor. Buying new is also the safest way to go if you are uncomfortable
assembling computers. Most system integrators will allow considerable latitude over what to
include with your systems, particularly if you are buying in bulk. If you are using a system
integrator, try to have the integrator provide a list of MAC addresses and label each machine.

Building your own system is cheaper, provides higher performance and reliability, and allows
for customization. Assembling your own computers may seem daunting, but it isn't that
difficult. You'll need time, personnel, space, and a few tools. It's a good idea to build a single
system and test it for hardware and software compatibility before you commit to a large bulk
order. Even if you do buy preassembled computers, you will still need to do some testing and
maintenance. Unfortunately, even new computers are occasionally DOA.IL]l So the extra time
may be less than you'd think. And by building your own, you'll probably be able to afford
more computers.

[1] Dead on arrival: nonfunctional when first installed.

If you are constructing a dedicated cluster, you will not need full systems. The more you can
leave out of each computer, the more computers you will be able to afford, and the less you
will need to maintain on individual computers. For example, with dedicated clusters you can
probably do without monitors, keyboards, and mice for each individual compute node. Minimal
machines have the smallest footprint, allowing larger clusters when space is limited and have
smaller power and air conditioning requirements. With a minimal configuration, wiring is
usually significantly easier, particularly if you use rack-mounted equipment. (However, heat
dissipation can be a serious problem with rack-mounted systems.) Minimal machines also
have the advantage of being less likely to be reallocated by middle management.

The size of your user base will also affect your cluster design. With a broad user base, you'll
need to prepare for a wider range of potential uses—more applications software and more
systems tools. This implies more secondary storage and, perhaps, more memory. There is
also the increased likelihood that your users will need direct access to individual nodes.

Shared machines, i.e., computers that have other uses in addition to their role as a cluster
node, may be a way of constructing a part-time cluster that would not be possible otherwise.
If your cluster is shared, then you will need complete, fully functioning machines. While this
book won't focus on such clusters, it is certainly possible to have a setup that is a computer
lab on work days and a cluster on the weekend, or office machines by day and cluster nodes
at night.

3.1.1 Node Hardware

Obviously, your computers need adequate hardware for all intended uses. If your cluster
includes workstations that are also used for other purposes, you'll need to consider those
other uses as well. This probably means acquiring a fairly standard workstation. For a
dedicated cluster, you determine your needs and there may be a lot you won't need—audio
cards and speakers, video capture cards, etc. Beyond these obvious expendables, there are
other additional parts you might want to consider omitting such as disk drives, keyboards,
mice, and displays. However, you should be aware of some of the potential problems you'll
face with a truly minimalist approach. This subsection is a quick review of the design decisions
you'll need to make.

3.1.1.1 CPUs and motherboards

While you can certainly purchase CPUs and motherboards from different sources, you need to
select each with the other in mind. These two items are the heart of your system. For optimal
performance, you'll need total compatibility between these. If you are buying your systems
piece by piece, consider buying an Intel- or ADM-compatible motherboard with an installed
CPU. However, you should be aware that some motherboards with permanently affixed CPUs
are poor performers, so choose with care.

You should also buy your equipment from a known, trusted source with a reputable warranty.
For example, in recent years a number of boards have been released with low-grade
electrolytic capacitors. While these capacitors work fine initially, the board life is
disappointingly brief. People who bought these boards from fly-by-night companies were out
of luck.

In determining the performance of a node, the most important factors are processor clock
rate, cache size, bus speed, memory capacity, disk access speed, and network latency. The
first four are determined by your selection of CPU and motherboard. And if you are using
integrated EIDE interfaces and network adapters, all six are at least influenced by your choice
of CPU and motherboard.

Clock speed can be misleading. It is best used to compare processors within the same family
since comparing processors from different families is an unreliable way to measure
performance. For example, an AMD Athlon 64 may outperform an Intel Pentium 4 when

running at the same clock rate. Processor speed is also very application dependent. If your
data set fits within the large cache in a Prescott-core Pentium 4 but won't fit in the smaller
cache in an Athlon, you may see much better performance with the Pentium.

Selecting a processor is a balancing act. Your choice will be constrained by cost, performance,
and compatibility. Remember, the rationale behind a commodity off-the-shelf (COTS) cluster
is buying machines that have the most favorable price to performance ratio, not pricey
individual machines. Typically you'll get the best ratio by purchasing a CPU that is a
generation behind the current cutting edge. This means comparing the numbers. When
comparing CPUs, you should look at the increase in performance versus the increase in the
total cost of a node. When the cost starts rising significantly faster than the performance, it's
time to back off. When a 20 percent increase in performance raises your cost by 40 percent,
you've gone too far.

Since Linux works with most major chip families, stay mainstream and you shouldn't have any
software compatibility problems. Nonetheless, it is a good idea to test a system before
committing to a bulk purchase. Since a primary rationale for building your own cluster is the
economic advantage, you'll probably want to stay away from the less common chips. While
clusters built with UltraSPARC systems may be wonderful performers, few people would
describe these as commodity systems. So unless you just happen to have a number of these
systems that you aren't otherwise using, you'll probably want to avoid them.[2]

[2]1 Radajewski and Eadline's Beowulf HOWTO refers to "Computer Shopper "-certified equipment. That is,
if equipment isn't advertised in Computer Shopper, it isn't commodity equipment.

With standalone workstations, the overall benefit of multiple processors (i.e., SMP systems) is
debatable since a second processor can remain idle much of the time. A much stronger
argument can be made for the use of multiple processor systems in clusters where heavy
utilization is assured. They add additional CPUs without requiring additional motherboards,
disk drives, power supplies, cases, etc.

When comparing motherboards, look to see what is integrated into the board. There are some
significant differences. Serial, parallel, and USB ports along with EIDE disk adapters are fairly
standard. You may also find motherboards with integrated FireWire ports, a network interface,
or even a video interface. While you may be able to save money with built-in network or
display interfaces (provided they actually meet your needs), make sure they can be disabled
should you want to install your own adapter in the future. If you are really certain that some
fully integrated motherboard meets your needs, eliminating the need for daughter cards may
allow you to go with a small case. On the other hand, expandability is a valuable hedge
against the future. In particular, having free memory slots or adapter slots can be crucial at
times.

Finally, make sure the BIOS Setup options are compatible with your intended configuration. If
you are building a minimal system without a keyboard or display, make sure the BIOS will
allow you to boot without them attached. That's not true for some BIOSs.

3.1.1.2 Memory and disks

Subject to your budget, the more cache and RAM in your system, the better. Typically, the
faster the processor, the more RAM you will need. A very crude rule of thumb is one byte of
RAM for every floating-point operation per second. So a processor capable of 100 MFLOPs
would need around 100 MB of RAM. But don't take this rule too literally.

Ultimately, what you will need depends on your applications. Paging creates a severe
performance penalty and should be avoided whenever possible. If you are paging frequently,
then you should consider adding more memory. It comes down to matching the memory size
to the cluster application. While you may be able to get some idea of what you will need by
profiling your application, if you are creating a new cluster for as yet unwritten applications,
you will have little choice but to guess what you'll need as you build the cluster and then
evaluate its performance after the fact. Having free memory slots can be essential under

these circumstances.

Which disks to include, if any, is perhaps the most controversial decision you will make in
designing your cluster. Opinions vary widely. The cases both for and against diskless systems
have been grossly overstated. This decision is one of balancing various tradeoffs. Different
contexts tip the balance in different directions. Keep in mind, diskless systems were once
much more popular than they are now. They disappeared for a reason. Despite a lot of hype a
few years ago about thin clients, the reemergence of these diskless systems was a
spectacular flop. Clusters are, however, a notable exception. Diskless clusters are a widely
used, viable approach that may be the best solution in some circumstances.

There are a number of obvious advantages to diskless systems. There is a lower cost per
machine, which means you may be able to buy a bigger cluster with better performance. With
rapidly declining disk prices, this is becoming less of an issue. A small footprint translates into
lowered power and HVAC needs. And once the initial configuration has stabilized, software
maintenance is simpler.

But the real advantage of diskless systems, at least with large clusters, is reduced
maintenance. With diskless systems, you eliminate all moving parts aside from fans. For
example, the average life (often known as mean time between failures, mean time before
failure, or mean time to failure) of one manufacturer's disks is reported to be 300,000 hours
or 34 years of continuous operation. If you have a cluster of 100 machines, you'll replace
about three of these drives a year. This is a nuisance, but doable. If you have a cluster with
12,000 nodes, then you are looking at a failure, on average, every 25 hours—roughly once a
day.

There is also a downside to consider. Diskless systems are much harder for inexperienced
administrators to configure, particularly with heterogeneous hardware. The network is often
the weak link in a cluster. In diskless systems the network will see more traffic from the
network file system, compounding the problem. Paging across a network can be devastating
to performance, so it is critical that you have adequate local memory. But while local disks can
reduce network traffic, they don't eliminate it. There will still be a need for network-accessible
file systems.

Simply put, disk-based systems are more versatile and more forgiving. If you are building a
dedicated cluster with new equipment and have experience with diskless systems, you should
definitely consider diskless systems. If you are new to clusters, a disk-based cluster is a safer
approach. (Since this book's focus is getting started with clusters, it does not describe setting
up diskless clusters.)

If you are buying hard disks, there are three issues: interface type (EIDE vs. SCSI), disk
latency (a function of rotational speed), and disk capacity. From a price-performance
perspective, EIDE is probably a better choice than SCSI since virtually all motherboards
include a built-in EIDE interface. And unless you are willing to pay a premium, you won't have
much choice with respect to disk latency. Almost all current drives rotate at 7,200 RPM. While
a few 10,000 RPM drives are available, their performance, unlike their price, is typically not all
that much higher. With respect to disk capacity, you'll need enough space for the operating
system, local paging, and the data sets you will be manipulating. Unless you have extremely
large data sets, when recycling older computers a 10 GB disk should be adequate for most
uses. Often smaller disks can be used. For new systems, you'll be hard pressed to find
anything smaller that 20 GB, which should satisfy most uses. Of course, other non-cluster
needs may dictate larger disks.

You'll probably want to include either a floppy drive or CD-ROM drive in each system. Since
CD-ROM drives can be bought for under $15 and floppy drives for under $5, you won't save
much by leaving these out. For disk-based systems, CD-ROMSs or floppies can be used to
initiate and customize network installs. For example, when installing the software on compute
nodes, you'll typically use a boot floppy for OSCAR systems and a CD-ROM on Rocks systems.
For diskless systems, CD-ROMs or floppies can be used to boot systems over the network
without special BOOT ROMs on your network adapters. The only compelling reason to not
include a CD-ROM or floppy is a lack of space in a truly minimal system.

When buying any disks, don't forget the cables.

3.1.1.3 Monitors, keyboards, and mice

Many minimal systems elect not to include monitors, keyboards, or mice but rely on the
network to provide local connectivity as needed. While this approach is viable only with a
dedicated cluster, its advantages include lower cost, less equipment to maintain, and a
smaller equipment footprint. There are also several problems you may encounter with these
headless systems. Depending on the system BIOS, you may not be able to boot a system
without a display card or keyboard attached. When such systems boot, they probe for an
attached keyboard and monitor and halt if none are found. Often, there will be a CMOS option
that will allow you to override the test, but this isn't always the case.

Another problem comes when you need to configure or test equipment. A lack of monitor and
keyboard can complicate such tasks, particularly if you have network problems. One possible
solution is the use of a crash cart—a cart with keyboard, mouse, and display that can be
wheeled to individual machines and connected temporarily. Provided the network is up and
the system is booting properly, X Windows or VNC provide a software solution.

Yet another alternative, particularly for small clusters, is the use of a keyboard-video-mouse
(KVM)switch. With these switches, you can attach a single keyboard, mouse, and monitor to
a number of different machines. The switch allows you to determine which computer is
currently connected. You'll be able to access only one of the machines at a time, but you can
easily cycle among the machines at the touch of a button. It is not too difficult to jump
between machines and perform several tasks at once. However, it is fairly easy to get
confused about which system you are logged on to. If you use a KVM switch, it is a good idea
to configure the individual systems so that each displays its name, either as part of the
prompt for command-line systems or as part of the background image for GUl-based
systems.

There are a number of different switches available. Avocet even sells a KVM switch that
operates over IP and can be used with remote clusters. Some KVM switches can be very
pricey so be sure to shop around. Don't forget to include the cost of cables when pricing KVM
switches. Frequently, these are not included with the switch and are usually overpriced. You'll
need a set for every machine you want to leave connected, but not necessarily every
machine.

The interaction between the system and the switch may provide a surprise or two. As
previously noted, some systems don't allow booting without a keyboard, i.e., there is no
CMOS override for booting without a keyboard. A KVM switch may be able to fool these
systems. Such systems may detect a keyboard when connected to a KVM switch even when
the switch is set to a different system. On the other hand, if you are installing Linux on a
computer and it probes for a monitor, unless the switch is set to that system, the monitor
won't be found.

Keep in mind, both the crash cart and the KVM switch approaches
assume that individual machines have display adapters.

For this reason, you should seriously consider including a video card even when you are going
with a headless systems. Very inexpensive cards or integrated adapters can be used since you
won't need anything fancy. Typically, embedded video will only add a few dollars to the price
of a motherboard.

One other possibility is to use serial consoles. Basically, the idea is to replace the attached
monitor and keyboard with a serial connection to a remote system. With a fair amount of
work, most Linux systems can be reconfigured to work in this manner. If you are using rack-

mount machines, many of them support serial console redirection out of the box. With this
approach, the systems use a connection to a serial port to eliminate the need for a KVM
switch. Additional hardware is available that will allow you to multiplex serial connections from
a number of machines. If this approach is of interest, consult the Remote Serial Console
HOWTO at http ://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/.

3.1.1.4 Adapters, power supplies, and cases

As just noted, you should include a video adapter. The network adapter is also a key
component. You must buy an adapter that is compatible with the cluster network. If you are
planning to boot a diskless system over the network, you'll need an adapter that supports it.
This translates into an adapter with an appropriate network BOOT ROM, i.e., one with pre-
execution environment (PXE) support. Many adapters come with a built-in (but empty) BOOT
ROM socket so that the ROM can be added. You can purchase BOOT ROMs for these cards or
burn your own. However, it may be cheaper to buy a new card with an installed BOOT ROM
than to add the BOOT ROMs. And unless you are already set up to burn ROMs, you'll need to
be using several machines before it becomes cost effective to buy an EPROM burner.

To round things out, you'll need something to put everything in and a way to supply power,
i.e., a case and power supply. With the case, you'll have to balance keeping the footprint
small and having room to expand your system. If you buy too small a power supply, it won't
meet your needs or allow you to expand your system. If you buy too large a power supply,
you waste money and space. If you add up the power requirements for your individual
components and add in another 50 percent as a fudge factor, you should be safe.

One last word about node selection—while we have considered components individually, you
should also think about the system collectively before you make a final decision. If collectively
the individual systems generate more heat that you can manage, you may need to reconsider
how you configure individual machines. For example, Google is said to use less-powerful
machines in its clusters in order to balance computation needs with total operational costs, a
judgment that includes the impact of cooling needs.

3.1.2 Cluster Head and Servers

Thus far, we have been looking at the compute nodes within the cluster. Depending on your
configuration, you will need a head node and possibly additional servers. Ideally, the head
node and most servers should be complete systems since it will add little to your overall cost
and can simplify customizing and maintaining these systems. Typically, there is no need for
these systems to use the same hardware that your compute nodes use. Go for enhancements
that will improve performance that you might not be able to afford on every node. These
machines are the place for large, fast disks and lots of fast memory. A faster processor is also
in order.

On smaller clusters, you can usually use one machine as both the head and as the network
file server. This will be a dual-homed machine (two network interfaces) that serves as an
access point for the cluster. As such, it will be configured to limit and control access as well as
provide it. When the services required by the network file systems put too great a strain on
the head node, the network file system can be moved to a separate server to improve
performance.

If you are setting up systems as 1/0 servers for a parallel file system, it is likely that you'll

want larger and faster drives on these systems. Since you may have a number of 1/0 servers
in a larger cluster, you may need to look more closely at cost and performance trade-offs.

3.1.3 Cluster Network

http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/

By definition, a cluster is a networked collection of computers. For commodity clusters,
networking is often the weak link. The two key factors to consider when designing your
network are bandwidth and latency. Your application or application mix will determine just
how important these two factors are. If you need to move large blocks of data, bandwidth will
be critical. For real-time applications or applications that have lots of interaction among
nodes, minimizing latency is critical. If you have a mix of applications, both can be critical.

It should come as no surprise that a number of approaches and products have been
developed. High-end Ethernet is probably the most common choice for clusters. But for some
low-latency applications, including many real-time applications, you may need to consider
specialized low-latency hardware. There are a number of choices. The most common
alternative to Ethernet is Myrinet from Myricom, Inc. Myrinet is a proprietary solution
providing high-speed bidirectional connectivity (currently about 2 Gbps in each direction) and
low latencies (currently under 4 microseconds). Myrinet uses a source-routing strategy and
allows arbitrary length packets.

Other competitive technologies that are emerging or are available include cLAN from Emulex,
QsNet from Quadrics, and Infiniband from the Infiniband consortium. These are high-
performance solutions and this technology is rapidly changing.

The problem with these alternative technologies is their extremely high cost. Adapters can
cost more than the combined cost of all the other hardware in a node. And once you add in
the per node cost of the switch, you can easily triple the cost of a node. Clearly, these
approaches are for the high-end systems.

Fortunately, most clusters will not need this extreme level of performance. Continuing gains in
speed and rapidly declining costs make Ethernet the network of choice for most clusters. Now
thatGigabit Ethernet is well established and 10 Gigabit Ethernet has entered the marketplace,

the highly expensive proprietary products are no longer essential for most needs.

For Gigabit Ethernet, you will be better served with an embedded adapter rather than an add-
on PCI board since Gigabit can swamp the PCI bus. Embedded adapters use workarounds that
take the traffic off the PCI bus. Conversely, with 100BaseT, you may prefer a separate
adapter rather than an embedded one since an embedded adapter may steal clock cycles
from your applications.

Unless you are just playing around, you'll probably want, at minimum, switched Fast Ethernet.
If your goal is just to experiment with clusters, almost any level of networking can be used.
For example, clusters have been created using FireWire ports. For two (or even three)
machines, you can create a cluster using crossover cables.

Very high-performance clusters may have two parallel networks. One is used for messages
passing among the nodes, while the second is used for the network file system. In the past,
elaborate technology, architectures, and topologies have been developed to optimize
communications. For example, channel bonding uses multiple interfaces to multiplex channels
for higher bandwidth. Hypercube topologies have been used to minimize communication path
length. These approaches are beyond the scope of this book. Fortunately, declining
networking prices and faster networking equipment have lessened the need for these
approaches.

< Day Day Up >

3.2 Environment

You are going to need some place to put your computers. If you are lucky enough to have a
dedicated machine room, then you probably have everything you need. Otherwise, select or
prepare a location that provides physical security, adequate power, and adequate heating and
cooling. While these might not be issues with a small cluster, proper planning and preparation
is essential for large clusters. Keep in mind, you are probably going to be so happy with your
cluster that you'll want to expand it. Since small clusters have ways of becoming large
clusters, plan for growth from the start.

3.2.1 Cluster Layout

Since the more computers you have, the more space they will need, plan your layout with
wiring, cooling, and physical access in mind. Ignore any of these at your peril. While it may be
tempting to stack computers or pack them into large shelves, this can create a lot of problems
if not handled with care. First, you may find it difficult to physically access individual
computers to make repairs. If the computers are packed too tightly, you'll create heat
dissipation problems. And while this may appear to make wiring easier, in practice it can lead
to a rat's nest of cables, making it difficult to divide your computers among different power
circuits.

From the perspective of maintenance, you'll want to have physical access to individual
computers without having to move other computers and with a minimum of physical labor.
Ideally, you should have easy access to both the front and back of your computers. If your
nodes are headless (no monitor, mouse, or keyboard), it is a good idea to assemble a crash
cart. So be sure to leave enough space to both wheel and park your crash cart (and a chair)
among your machines.

To prevent overheating, leave a small gap between computers and take care not to obstruct
any ventilation openings. (These are occasionally seen on the sides of older computers!) An
inch or two usually provides enough space between computers, but watch for signs of
overheating.

Cable management is also a concern. For the well-heeled, there are a number of cable
management systems on the market. Ideally, you want to keep power cables and data cables
separated. The traditional rule of thumb was that there should be at least a foot of separation
between parallel data cables and power cables runs, and that data cables and power cables
should cross at right angles. In practice, the 60Hz analog power signal doesn't affect high-
speed digital signals. Still, separating cables can make your cluster more manageable.

Standard equipment racks are very nice if you can afford them. Cabling is greatly simplified.
But keep in mind that equipment racks pack things very closely and heat can be a problem.
One rule of thumb is to stay under 100 W per square foot. That is about 1000 W for a 6-foot,
19-inch rack.

Otherwise, you'll probably be using standard shelving. My personal preference is metal
shelves that are open on all sides. When buying shelves, take into consideration both the size
and the weight of all the equipment you will have. Don't forget any displays, keyboards, mice,
KVM switches, network switches, or uninterruptible power supplies that you plan to use. And
leave yourself some working room.

3.2.2 Power and Air Conditioning

You'll need to make sure you have adequate power for your cluster, and to remove all the
heat generated by that power, you'll need adequate air conditioning. For small clusters, power
and air conditioning may not be immediate concerns (for now!), but it doesn't hurt to estimate
your needs. If you are building a large cluster, take these needs into account from the
beginning. Your best bet is to seek professional advice if it is readily available. Most large
organizations have heating, ventilation, and air conditioning (HVAC) personnel and electricians
on staff. While you can certainly estimate your needs yourself, if you have any problems you
will need to turn to these folks for help, so you might want to include them from the
beginning. Also, a second set of eyes can help prevent a costly mistake.

3.2.2.1 Power

In an ideal universe, you would simply know the power requirements of your cluster. But if
you haven't built it yet, this knowledge can be a little hard to come by. The only alternative is
to estimate your needs. A rough estimate is fairly straightforward: just inventory all your
equipment and then add up all the wattages. Divide the total wattage by the voltage to get
the amperage for the circuit, and then figure in an additional 50 percent or so as a safety
factor.

For a more careful analysis, you should take into account the power factor. A switching power
supply can draw more current than reported by their wattage ratings. For example, a fully
loaded 350 W power supply may draw 500 W for 70 percent of the time and be off the other
30 percent of the time. And since a power supply may be 70 percent efficient, delivering those
500 W may require around 715 W. In practice, your equipment will rarely operate at
maximum-rated capacity. Some power supplies are power-factor corrected(PFC). These
power supplies will have power factors closer to 95 percent than 70 percent.

As you can see, this can get complicated very quickly. Hopefully, you won't be working with
fully loaded systems. On the other hand, if you expect your cluster to grow, plan for more.
Having said all this, for small clusters a 20-amp circuit should be adequate, but there are no
guarantees.

When doing your inventory, the trick is remembering to include everything that enters the
environment. It is not just the computers, network equipment, monitors, etc., that make up a
cluster. It includes everything—equipment that is only used occasionally such as vacuum
cleaners, personal items such as the refrigerator under your desk, and fixtures such as lights.
(Ideally, you should keep the items that potentially draw a lot of current, such as vacuum
cleaners, floor polishers, refrigerators, and laser printers, off the circuits your cluster is on.)
Also, be careful to ensure you aren't sharing a circuit unknowingly—a potential problem in an
older building, particularly if you have remodeled and added partitions.

The quality of your power can be an issue. If in doubt, put a line monitor on your circuit to see
how it behaves. You might consider an uninterruptible power supply (UPS), particularly for
your servers or head nodes. However, the cost can be daunting when trying to provide UPSs
for an entire cluster. Moreover, UPSs should not be seen as an alternative to adequate wiring.
If you are interested in learning more about or sizing a UPS, see the UPS FAQ at the site of
the Linux Documentation Project (http://www.tldp.org/).

While you are buying UPSs, you may also want to consider buying other power management
equipment. There are several vendors that supply managed power distribution systems.
These often allow management over the Internet, through a serial connection, or via SNMP.
With this equipment, you'll be able to monitor your cluster and remotely power-down or
reboot equipment.

And one last question to the wise:

http://www.tldp.org/

|! Do you know how to kill the power to your system?

This is more than idle curiosity. There may come a time when you don't want power to your
cluster. And you may be in a big hurry when the time comes.

Knowing where the breakers are is a good start. Unfortunately, these may not be close at
hand. They may even be locked away in a utility closet. One alternative is a scram switch. A
scram switch should be installed between the UPS and your equipment. You should take care
to ensure the switch is accessible but will not inadvertently be thrown.

You should also ensure that your maintenance staff knows what a UPS is. | once had a
server/UPS setup in an office that flooded. When | came in, the UPS had been unplugged from
the wall, but the computer was still plugged into the UPS. Both computer and UPS were
drenched—a potentially deadly situation. Make sure your maintenance staff knows what they
are dealing with.

3.2.2.2 HVAC

Aswith most everything else, when it comes to electronics, heat Kills. There is no magical
temperature or temperature range that if you just keep your computers and other equipment
within that range, everything will be OK. Unfortunately, it just isn't that simple.

Failure rate is usually a nonlinear function of temperature. As the temperature rises, the
probability of failure also increases. For small changes in temperature, a rough rule of thumb
is that you can expect the failure rate to double with an 18F (10C) increase in temperature.
For larger changes, the rate of failure typically increases more rapidly than the rise in
temperature. Basically, you are playing the odds. If you operate your machine room at a
higher than average temperature, you'll probably see more failures. It is up to you to decide if
the failure rate is unacceptable.

Microenvironments also matter. It doesn't matter if it is nice and cool in your corner of the
room if your equipment rack is sitting in a corner in direct sunlight where the temperature is
15F (8C) warmer. If the individual pieces of equipment don't have adequate cooling, you'll
have problems. This means that computers that are spread out in a room with good
ventilation may be better off at a higher room temperature than those in a tightly packed
cluster that lacks ventilation, even when the room temperature is lower.

Finally, the failure rate will also depend on the actual equipment you are using. Some
equipment is designed and constructed to be more heat tolerant, e.g., military grade
equipment. Consult the specifications if in doubt.

While occasionally you'll see recommended temperature ranges for equipment or equipment
rooms, these should be taken with a grain of salt. Usually, recommended temperatures are a
little below 70F (21C). So if you are a little chilly, your machines are probably comfortable.

Maintaining a consistent temperature can be a problem, particularly if you leave your cluster
up and running at night, over the weekend, and over holidays. Heating and air conditioning
are often turned off or scaled back when people aren't around. Ordinarily, this makes good
economic sense. But when the air conditioning is cut off for a long Fourth of July weekend,
equipment can suffer. Make sure you discuss this with your HVAC folks before it becomes a
problem. Again, occasional warm spells probably won't be a problem, but you are pushing
your luck.

Humidity is also an issue. At a high humidity, condensation can become a problem; at a low
humidity, static electricity is a problem. The optimal range is somewhere in between.
Recommended ranges are typically around 40 percent to 60 percent.

Estimating your air conditioning needs is straightforward but may require information you
don't have. Among other things, proper cooling depends on the number and area of external
walls, the number of windows and their exposure to the sun, the external temperature, and
insulation. Your maintenance folks may have already calculated all this or may be able to
estimate some of it.

What you are adding is heat contributed by your equipment and staff, something that your
maintenance folks may not have been able to accurately predict. Once again, you'll start with
an inventory of your equipment. You'll want the total wattage. You can convert this to British
Thermal Units per hour by multiplying the wattage by 3.412. Add in another 300 BTU/H for
each person working in the area. Add in the load from the lights, walls, windows, etc., and
then figure in another 50 percent as a safety factor. Since air conditioning is usually
expressed in tonnage, you may need to divide the BTU/H total by 12,000 to get the tonnage
you need. (Or, just let the HVAC folks do all this for you.)

3.2.3 Physical Security

Physical security includes both controlling access to computers and protecting computers from
physical threats such as flooding. If you are concerned about someone trying to break into
your computers, the best solution is to take whatever steps you can to ensure that they don't
have physical access to the computers. If you can't limit access to the individual computers,
then you should password protect the CMOS, set the boot order so the system only boots
from the hard drive, and put a lock on each case. Otherwise, someone can open the case and
remove the battery briefly (roughly 15 to 20 minutes) to erase the information in CMOS
including the password.[31 With the password erased, the boot order can be changed. Once
this is done, it is a simple matter to boot to a floppy or CD-ROM, mount the hard drive, and
edit the password files, etc. (Even if you've removed both floppy and CD-ROM drives, an
intruder could bring one with them.) Obviously, this solution is only as good as the locks you
can put on the computers and does very little to protect you from vandals.

[31 Also, there is usually a jumper that will immediately discharge the CMOS.

Broken pipes and similar disasters can be devastating. Unfortunately, it can be difficult to
access these potential threats. Computers can be damaged when a pipe breaks on another
floor. Just because there is no pipe immediately overhead doesn't mean that you won't be
rained on as water from higher floors makes its way to the basement. Keeping equipment off
the floor and off the top of shelves can provide some protection. It is also a good idea to keep
equipment away from windows.

There are several web sites and books that deal with disaster preparedness. As the
importance of your cluster grows, disaster preparedness will become more important.

\ & FREV < Day Day Up > ME=T

< Day Day Up >

Chapter 4. Linux for Clusters

This chapter reviews some of the issues involved in setting up a Linux system for use in a
cluster. While several key services are described in detail, for the most part the focus is more
on the issues and rationales than on specifics. Even if you are an old pro at Linux system
administration, you may still want to skim this chapter for a quick overview of the issues as
they relate to clusters, particularly the section on configuring services. If you are new to Linux
system administration, this chapter will probably seem very terse. What's presented here is
the bare minimum a novice system administrator will need to get started. The Appendix A
lists additional sources.

This chapter covers material you'll need when setting up the head node and a typical cluster
node. Depending on the approach you take, much of this may be done for you. If you are
building your cluster from the ground up, you'll need to install the head node, configure the
individual services on it, and build at least one compute node. Once you have determined how
a compute node should be configured, you can turn to Chapter 8 for a discussion of how to
duplicate systems in an efficient manner. It is much simpler with kits like OSCAR and Rocks.

WithOSCAR, you'll need to install Linux on the head system, but OSCAR will configure the
services for you. It will also build the client, i.e., generate a system image and install it on the
compute nodes. OSCAR will configure and install most of the packages you'll need. The key to
using OSCAR is to use a version of Linux that is known to be compatible with OSCAR. OSCAR
is described in Chapter 6. With Rocks, described in Chapter 7, everything will be done for you.
Red Hat Linux comes as part of the Rocks distribution.

This chapter begins with a discussion of selecting a Linux distribution. A general discussion of
installing Linux follows. Next, the configuration of relevant network services is described.
Finally, there is a brief discussion of security. If you are adding clustering software to an
existing collection of workstations, presumably Linux is already installed on your machines. If
this is the case, you can probably skim the first couple of sections. But while you won't need
to install Linux, you will need to ensure that it is configured correctly and all the services you'll
need are available.

< Day Day Up >

< Day Day Up >

4.1 Installing Linux

If Linux isn't built into your cluster software, the first step is to decide what distribution and
version of Linux you want.

4.1.1 Selecting a Distribution

This decision will depend on what clustering software you want to use. It doesn't matter what
the "best" distribution of Linux (Red Hat, Debian, SUSE, Mandrake, etc.) or version (7.3, 8.0,
9.0, etc.) is in some philosophical sense if the clustering software you want to use isn't
available for that choice. This book uses the Red Hat distribution because the clustering
software being discussed was known to work with that distribution. This is not an
endorsement of Red Hat; it was just a pragmatic decision.

Keep in mind that your users typically won't be logging onto the compute nodes to develop
programs, etc., so the version of Linux used there should be largely irrelevant to the users.
While users will be logging onto the head node, this is not a general-purpose server. They
won't be reading email, writing memos, or playing games on this system (hopefully).
Consequently, many of the reasons someone might prefer a particular distribution are
irrelevant.

This same pragmatism should extend to selecting the version as well as the distribution you
use. In practice, this may mean using an older version of Linux. There are basically three
issues involved in using an older version—compatibility with newer hardware; bug fixes,
patches, and continued support; and compatibility with clustering software.

If you are using recycled hardware, using an older version shouldn't be a problem since
drivers should be readily available for your older equipment. If you are using new equipment,
however, you may run into problems with older Linux releases. The best solution, of course, is
to avoid this problem by planning ahead if you are buying new hardware. This is something
you should be able to work around by putting together a single test system before buying the
bulk of the equipment.

With older versions, many of the problems are known. For bugs, this is good news since
someone else is likely to have already developed a fix or workaround. With security holes, this
is bad news since exploits are probably well circulated. With an older version, you'll need to
review and install all appropriate security patches. If you can isolate your cluster, this will be
less of an issue.

Unfortunately, at some point you can expect support for older systems to be discontinued.
However, a system will not stop working just because it isn't supported. While not desirable,
this is also something you can live with.

The final and key issue is software compatibility. Keep in mind that it takes time to develop
software for use with a new release, particularly if you are customizing the kernel. As a result,
the clustering software you want to use may not be available for the latest version of your
favorite Linux distribution. In general, software distributed as libraries (e.g., MPI) are more
forgiving than software requiring kernel patches (e.g., openMosix) or software that builds
kernel modules (e.g., PVFS). These latter categories, by their very nature, must be system
specific. Remember that using clustering software is the raison d'étre for your cluster. If you
can't run it, you are out of business. Unless you are willing to port the software or
compromise your standards, you may be forced to use an older version of Linux. While you
may want the latest and greatest version of your favorite flavor of Linux, you need to get over
it.

If at all feasible, itis best to start your cluster installation with a clean install of Linux. Of
course, if you are adding clustering software to existing systems, this may not be feasible,
particularly if the machines are not dedicated to the cluster. If that is the case, you'll need to
tread lightly. You'll almost certainly need to make changes to these systems, changes that
may not go as smoothly as you'd like. Begin by backing up and carefully documenting these
systems.

4.1.2 Downloading Linux

With most flavors of Linux, there are several ways you can do the installation. Typically you
can install from a set of CD-ROMs, from a hard disk partition, or over a network using NFS,
FTP, or HTTP. The decision will depend in part on the hardware you have available, but for
initial experimentation it is probably easiest to use CD-ROMs. Buying a boxed set can be a real
convenience, particularly if it comes with a printed set of manuals. But if you are using an
older version of Linux, finding a set of CD-ROMs to buy can be difficult. Fortunately, you
should have no trouble finding what you need on the Internet.

Downloading is the cheapest and easiest way to go if you have a fast Internet connection and
a CD-ROM burner. Typically, you download 1SO images—disk images for CD-ROMs. These are
basically single-file archives of everything on a CD-ROM. Since 1SO images are frequently over
600 MB each and since you'll need several of them, downloading can take hours even if you
have a fast connection and days if you're using a slow modem.

If you decide to go this route, follow the installation directions from your download site. These
should help clarify exactly what you need and don't need and explain any other special
considerations. For example, for Red Hat Linux the place to start is

http : //www.redhat.com/apps/download/. This will give you a link to a set of directions with
links to download sites. Don't overlook the mirror sites; your download may go faster with
them than with Red Hat's official download site.

For Red Hat Linux 9.0, there are seven disks. (Earlier versions of Red Hat have fewer disks.)
Three of these are the installation disks and are essential. Three disks contain the source files
for the packages. Itis very unlikely you'll ever need these. If you do, you can download them
later. The last disk is a documentation disk. You'd be foolish to skip this disk. Since the files
only fill a small part of a CD, the ISO image is relatively small and the download doesn't take
very long.

Itis a good idea to check the MD5SUM for each ISO you download. Run the md5sum program
and compare the results to published checksums.

[root @s sl oanjd]# nd5sum FC2-i 386-rescuecd.i so

22f 4bf cabbaef e89f0e04166e738639f FQ2-i 386-rescuecd. i so

This will ensure both that the disk image hasn't been tampered with and that your download
wasn't corrupted.

Once you have downloaded the ISO images, you'll need to burn your CD-ROMs. If you
downloaded the ISO images to a Windows computer, you could use something like Roxio Easy
Creator Il If you already have a running Linux system, you might use X-CD-Roast.

[1] There is an appealing irony to using Windows to download Linux.

Once you have the CD-ROMs, you can do an installation by following the appropriate
directions for your software and system. Usually, this means booting to the first CD-ROM,
which, in turn, runs an installation script. If you can't boot from the CD-ROM, you'll need to
create a boot floppy using the directions supplied with the software. For Red Hat Linux, see
theREADME file on the first installation disk.

http://www.redhat.com/apps/download/

4.1.3 What to Install?

What you install will depend on how you plan to use the machine. Is this a dedicated cluster?
If so, users probably won't log onto individual machines, so you can get by with installing the
minimal software required to run applications on each compute node. Is it a cluster of
workstations that will be used in other ways? If that is the case, be sure to install X and any
other appropriate applications. Will you be writing code? Don't forget the software
development package and editors. Will you be recompiling the kernel? If so, you'll need the
kernel sources.I2l If you are building kernel modules, you'll need the kernel header files. (In
particular, these are needed if you install PVFS. PVFS is described in Chapter 12.) A custom
installation will give you the most control over what is installed, i.e., the greatest opportunity
to install software that you don't need and omit that which you do need.

[2] In general, you should avoid recompiling the kernel unless it is absolutely necessary. While you may
be able to eke out some modest performance gains, they are rarely worth the effort.

Keep in mind that you can go back and add software. You aren't trapped by what you include
at this point. At this stage, the important thing is to remember what you actually did. Take
careful notes and create a checklist as you proceed. The quickest way to get started is to take
a minimalist approach and add anything you need later, but some people find it very annoying
to have to go back and add software. If you have the extra disk space (2 GB or so0), then you
may want to copy all the packages to a directory on your server. Not having to mount disks
and search for packages greatly simplifies adding packages as needed. You only need to do
this with one system and it really doesn't take that long. Once you have worked out the
details, you can create a Kickstart configuration file to automate all this. Kickstart is described
in more detail in Chapter 8.

4@ FREY < Day Day Up > MEXT mjp

< Day Day Up >

4.2 Configuring Services

Once you have the basic installation completed, you'll need to configure the system. Many of
the tasks are no different for machines in a cluster than for any other system. For other tasks,
being part of a cluster impacts what needs to be done. The following subsections describe the
issues associated with several services that require special considerations. These subsections
briefly recap how to configure and use these services. Remember, most of this will be done
for you if you are using a package like OSCAR or Rocks. Still, it helps to understand the issues
and some of the basics.

4.2.1 DHCP

Dynamic Host Configuration Protocol (DHCP) is used to supply network configuration
parameters, including IP addresses, host names, and other information to clients as they
boot. With clusters, the head node is often configured as a DHCP server and the compute
nodes as DHCP clients. There are two reasons to do this. First, it simplifies the installation of
compute nodes since the information DHCP can supply is often the only thing that is different
among the nodes. Since a DHCP server can handle these differences, the node installation can
be standardized and automated. A second advantage of DHCP is that it is much easier to
change the configuration of the network. You simply change the configuration file on the
DHCP server, restart the server, and reboot each of the compute nodes.

The basic installation is rarely a problem. The DHCP system can be installed as a part of the
initial Linux installation or after Linux has been installed. The DHCP server configuration file,
typically/etc/dhcpd.conf, controls the information distributed to the clients. If you are going
to have problems, the configuration file is the most likely source.

The DHCP configuration file may be created or changed automatically when some cluster
software is installed. Occasionally, the changes may not be done optimally or even correctly
so you should have at least a reading knowledge of DHCP configuration files. Here is a heavily
commented sample configuration file that illustrates the basics. (Lines starting with "#" are
comments.)

A sampl e DHCP configuration file.

The first commands in this file are global,

#1i.e., they apply to all clients.
Only answer requests from known machi nes,
i.e., machi nes whose hardware addresses are given.

deny unknown-clients;

Set the subnet mask, broadcast address, and router address.

option subnet-mask 255.255. 255.0
option broadcast-address 172.16.1. 255;

option routers 172. 16. 1. 254;

This section defines individual cluster nodes
Each subnet in the network has its own section
subnet 172.16.1.0 netrmask 255. 255. 255. 0 {
group {
The first host, identified by the given MAC address,
wi |l be naned nodel.cluster.int, will be given the
| P address 172.16.1.1, and will use the default router
172.16.1. 254 (the head node in this case)
host nodel{
har dwar e et hernet 00: 08: c7:07: 68: 48;
fi xed-address 172.16.1.1;
option routers 172.16. 1. 254

option domain-name “"cluster.int";
}
host node2{
har dwar e et hernet 00:08:¢c7:07:cl:73;
fi xed-address 172.16. 1. 2;
option routers 172.16. 1. 254

option domain-name “"cluster.int";

}

Addi tional node definitions go here.

For servers with nmultiple interfaces, this entry says to ignore requests

on specified subnets.

subnet 10.0.32.0 netnask 255.255.248.0 { not authoritative; }

As shown in this example, you should include a subnet section for each subnet on your
network. If the head node has an interface for the cluster and a second interface connected to
the Internet or your organization's network, the configuration file will have a group for each
interface or subnet. Since the head node should answer DHCP requests for the cluster but not
for the organization, DHCP should be configured so that it will respond only to DHCP requests
from the compute nodes.

4.2.2 NFS

A network filesystem is a filesystem that physically resides on one computer (the file server),
which in turn shares its files over the network with other computers on the network (the
clients). The best-known and most common network filesystem is Network File System (NFS).
In setting up a cluster, designate one computer as your NFS server. This is often the head
node for the cluster, but there is no reason it has to be. In fact, under some circumstances,
you may get slightly better performance if you use different machines for the NFS server and
head node. Since the server is where your user files will reside, make sure you have enough
storage. This machine is a likely candidate for a second disk drive or raid array and a fast 1/0
subsystem. You may even what to consider mirroring the filesystem using a small high-
availability cluster.

Why use an NFS? It should come as no surprise that for parallel programming you'll need a
copy of the compiled code or executable on each machine on which it will run. You could, of
course, copy the executable over to the individual machines, but this quickly becomes
tiresome. A shared filesystem solves this problem. Another advantage to an NFS is that all the
files you will be working on will be on the same system. This greatly simplifies backups. (You
do backups, don't you?) A shared filesystem also simplifies setting up SSH, as it eliminates
the need to distribute keys. (SSH is described later in this chapter.) For this reason, you may
want to set up NFS before setting up SSH. NFS can also play an essential role in some
installation strategies.

If you have never used NFS before, setting up the client and the server are slightly different,
but neither is particularly difficult. Most Linux distributions come with most of the work
already done for you.

4.2.2.1 Running NFS

Begin with the server; you won't get anywhere with the client if the server isn't already
running. Two things need to be done to get the server running. The file /etc/exports must be
edited to specify which machines can mount which directories, and then the server software
must be started. Here is a single line from the file /etc/exports on the server amy:

/ home basil(rw) clara(rw) desnmond(rw) ernest(rw) george(rw)

This line gives the clients basil,clara,desmond,ernest, and george read/write access to the
directory/home on the server. Read access is the default. A number of other options are
available and could be included. For example, the no_r oot _squash option could be added if
you want to edit root permission files from the nodes.

|= Pay particular attention to the use of spaces in this file.

Had a space been inadvertently included between basi| and (rw), read access would have
been granted to basil and read/write access would have been granted to all other systems.
(Once you have the systems set up, it is a good idea to use the command showrount -a to

see who is mounting what.)

Once/etc/exports has been edited, you'll need to start NFS. For testing, you can use the
service command as shown here

[root @anny init.d]# /sbin/service nfs start

Starting NFS services: [&K]
Starting NFS quotas: [O]
Starting NFS nountd: [K]
Starting NFS daenon: [OK]

[root @anny init.d]# /sbin/service nfs status
rpc. mountd (pid 1652) is running...
nfsd (pid 1666 1665 1664 1663 1662 1661 1660 1657) is running...

rpc.rquotad (pid 1647) is running...

(With some Linux distributions, when restarting NFS, you may find it necessary to explicitly
stop and restart both nfslock and portmap as well.) You'll want to change the system
configuration so that this starts automatically when the system is rebooted. For example, with
Red Hat, you could use the serviceconf or chkconfig commands.

For the client, the software is probably already running on your system. You just need to tell
the client to mount the remote filesystem. You can do this several ways, but in the long run,
the easiest approach is to edit the file /etc/fstab,adding an entry for the server. Basically,
you'll add a line to the file that looks something like this:

any: / hone / hone nfs rw, soft 00

In this example, the local system mounts the /home filesystem located on amy as the /home
directory on the local machine. The filesystems may have different names. You can now
manually mount the filesystem with the mount command

[root @da /]# nmount /home

When the system reboots, this will be done automatically.

When using NFS, you should keep a couple of things in mind. The mount point, /home, must
exist on the client prior to mounting. While the remote directory is mounted, any files that
were stored on the local system in the /home directory will be inaccessible. They are still
there; you just can't get to them while the remote directory is mounted. Next, if you are
running a firewall, it will probably block NFS traffic. If you are having problems with NFS, this
is one of the first things you should check.

File ownership can also create some surprises. User and group IDs should be consistent
among systems using NFS, i.e., each user will have identical IDs on all systems. Finally, be
aware that root privileges don't extend across NFS shared systems (if you have configured
your systems correctly). So if, as root, you change the directory (cd) to a remotely mounted
filesystem, don't expect to be able to look at every file. (Of course, as root you can always

usesu to become the owner and do all the snooping you want.) Details for the syntax and
options can be found in the nfs(5),exports(5),fstab(5), and mount(8) manpages. Additional
references can be found in the Appendix A.

4.2.2.2 Automount

The preceding discussion of NFS describes editing the /etc/fstab to mount filesystems. There's
another alternative—using an automount program such as autofs or amd. An automount
daemon mounts a remote filesystem when an attempt is made to access the filesystem and
unmounts the filesystem when it is no longer needed. This is all transparent to the user.

While the most common use of automounting is to automatically mount floppy disks and CD-
ROMs on local machines, there are several advantages to automounting across a network in a
cluster. You can avoid the problem of maintaining consistent /etc/fstab files on dozens of
machines. Automounting can also lessen the impact of a server crash. Itis even possible to
replicate a filesystem on different servers for redundancy. And since a filesystem is mounted
only when needed, automounting can reduce network traffic. We'll look at a very simple
example here. There are at least two different HOWTOs (http ://www.tldp.org/) for
automounting should you need more information.

Automounting originated at Sun Microsystems, Inc. The Linux automounter autofs, which
mimics Sun's automounter, is readily available on most Linux systems. While other automount
programs are available, most notably amd, this discussion will be limited to using autofs.

Support for autofs must be compiled into the kernel before it can be used. With most Linux
releases, this has already been done. If in doubt, use the following to see if it is installed:

[root @anny root]# cat /proc/filesystens

Somewhere in the output, you should see the line

nodev aut of s

If you do, you are in business. Otherwise, you'll need a new kernel.

Next, you need to configure your systems. autofs uses the file /etc/auto.master to determine
mount points. Each line in the file specifies a mount point and a map file that defines which
filesystems will be mounted to the mount point. For example, in Rocks the auto.master file
contains the single line:

/ home auto. hone --tineout 600

In this example, /home is the mount point, i.e., where the remote filesystem will be mounted.
The file auto.home specifies what will be mounted.

In Rocks, the file /etc/auto.home will have multiple entries such as:

sloanjd frontend. | ocal :/export/hone/ sl oanjd

The first field is the name of the subdirectory that will be created under the original mount
point. In this example, the directory sloanjd will be mounted as a subdirectory of /home on
the client system. The subdirectories are created dynamically by automount and should not
exist on the client. The second field is the hostname (or server) and directory that is exported.
(Although not shown in this example, it is possible to specify mount parameters for each

http://www.tldp.org/

directory in /etc/auto.home.) NFS should be running and you may need to update your
/etc/exports file.

Once you have the configuration files copied to each system, you need to start autofs on each
system.autofs is usually located in /etc/init.d and accepts the commands start ,restart,

stat us, and r el oad. With Red Hat, it is available through the /shin/service command. After
reading the file, autofs starts an automount process with appropriate parameters for each
mount point and mounts filesystems as needed. For more information see the autofs(8) and
auto.master(5) manpages.

4.2.3 Other Cluster File System

NFS has its limitations. First, there are potential security issues. Since the idea behind NFS is
sharing, it should come as no surprise that over the years crackers have found ways to exploit
NFS. If you are going to use NFS, it is important that you use a current version, apply any
needed patches, and configure it correctly.

Also, NFS does not scale well, although there seems to be some disagreement about its
limitations. For clusters, with fewer than 100 nodes, NFS is probably a reasonable choice. For
clusters with more than 1,000 nodes, NFS is generally thought to be inadequate. Between 100
and 1,000 nodes, opinions seem to vary. This will depend in part on your hardware. It will
also depend on how your applications use NFS. For a bioinformatics clusters, many of the
applications will be read intensive. For a graphics processing cluster, rendering applications
will be write intensive. You may find that NFS works better with the former than the latter.
Other applications will have different characteristics, each stressing the filesystem in a
different way. Ultimately, it comes down to what works best for you and your applications, so
you'll probably want to do some experimenting.

Keep in mind that NFS is not meant to be a high-performance, parallel filesystem. Parallel
filesystems are designed for a different purpose. There are other filesystems you could
consider, each with its own set of characteristics. Some of these are described briefly in
Chapter 12. Additionally, there are other storage technologies such as storage area network
(SAN) technology. SANs offer greatly improve filesystem failover capabilities and are ideal for
use with high-availability clusters. Unfortunately, SANs are both expensive and difficult to set
up. iISCSI (SCSI over IP) is an emerging technology to watch.

If you need a high-performance, parallel filesystems, PVFS is a reasonable place to start, as it
is readily available for both Rocks and OSCAR. PVFS is discussed in Chapter 12.

4.2.4 SSH

To run software across a cluster, you'll need some mechanism to start processes on each
machine. In practice, a prerequisite is the ability to log onto each machine within the cluster.
If you need to enter a password for each machine each time you run a program, you won't
get very much done. What is needed is a mechanism that allows logins without passwords.

This boils down to two choices—you can use remote shell (RSH) or secure shell (SSH). If you
are a trusting soul, you may want to use RSH. It is simpler to set up with less overhead. On
the other hand, SSH network traffic is encrypted, so it is safe from snooping. Since SSH
provides greater security, it is generally the preferred approach.

SSH provides mechanisms to log onto remote machines, run programs on remote machines,
and copy files among machines. SSH is a replacement for ftp,telnet,rlogin,rsh, and rcp. A
commercial version of SSH is available from SSH Communications Security

(http ://www.ssh.com), a company founded by Tatu Ylénen, an original developer of SSH. Or
you can go with OpenSSH, an open source version from http ://www.openssh.org.

OpenSSH is the easiest since it is already included with most Linux distributions. It has other

http://www.ssh.com
http://www.openssh.org

advantages as well. By default, OpenSSH automatically forwards the DI SPLAY variable. This
greatly simplifies using the X Window System across the cluster. If you are running an SSH
connection under X on your local machine and execute an X program on the remote machine,
the X window will automatically open on the local machine. This can be disabled on the server
side, so if it isn't working, that is the first place to look.

There are two sets of SSH protocols, SSH-1 and SSH-2. Unfortunately, SSH-1 has a serious
security vulnerability. SSH-2 is now the protocol of choice. This discussion will focus on using
OpenSSH with SSH-2.

Before setting up SSH, check to see if it is already installed and running on your system. With
Red Hat, you can check to see what packages are installed using the package manager.

[root @anny root]# rpm-q -a | grep ssh

openssh- 3.5p1-6

openssh-server-3.5pl-6

openssh-clients-3.5pl-6

openssh- askpass- gnonme- 3. 5pl- 6

openssh- askpass- 3. 5pl- 6

This particular system has the SSH core package, both server and client software as well as
additional utilities. The SSH daemon is usually started as a service. As you can see, itis
already running on this machine.

[root @anny root]# /sbin/service sshd status

sshd (pid 28190 1658) is running...

Of course, it is possible that it wasn't started as a service but is still installed and running. You
can use ps to double check.

[root @anny root]# ps -aux | grep ssh

r oot 29133 0.0 0.2 3520 328 ? S Dec09 0: 02 /usr/ shi n/sshd

Again, this shows the server is running.

With some older Red Hat installations, e.g., the 7.3 workstation, only the client software is
installed by default. You'll need to manually install the server software. If using Red Hat 7.3,
go to the second install disk and copy over the file RedHat/RPMS/openssh-server-3.1p1-
3.i386.rpm. (Better yet, download the latest version of this software.) Install it with the
package manager and then start the service.

[root @ames root]# rpm -vih openssh-server-3. 1pl-3.i 386.rpm
Prepari ng. .. TR HBH BT H B R R R R R [1009
1: openssh- server TR HEH BT H R R AR R R R [1009

[root @ames root]# /sbin/service sshd start

Generating SSHL RSA host key: [K]
Cenerati ng SSH2 RSA host key: [OK]
Cenerati ng SSH2 DSA host key: [K]
Starting sshd: [&K]

When SSH is started for the first time, encryption keys for the system are generated. Be sure
to set this up so that it is done automatically when the system reboots.

Configuration files for both the server, sshd_config, and client, ssh_config, can be found in

/etc/ssh, but the default settings are usually quite reasonable. You shouldn't need to change
these files.

4.2.4.1 Using SSH

To log onto a remote machine, use the command ssh with the name or IP address of the
remote machine as an argument. The first time you connect to a remote machine, you will
receive a message with the remote machines' fingerprint, a string that identifies the machine.
You'll be asked whether to proceed or not. This is normal.

[root @anny root]# ssh any

The authenticity of host '"amy (10.0.32.139)' can't be established.

RSA key fingerprint is 98:42:51:3e:90:43: 1c:32:e6:c4:cc: 8f:4a:ee: cd: 86.

Are you sure you want to conti nue connecting (yes/no)? yes

War ni ng: Permanent |y added 'any,10.0.32.139" (RSA) to the list of known hosts.
r oot @mny' s password:

Last login: Tue Dec 9 11:24:09 2003

[root @ny root] #

The fingerprint will be recorded in a list of known hosts on the local machine. SSH wiill
compare fingerprints on subsequent logins to ensure that nothing has changed. You won't see
anything else about the fingerprint unless it changes. Then SSH will warn you and query
whether you should continue. If the remote system has changed, e.g., if it has been rebuilt or
if SSH has been reinstalled, it's OK to proceed. But if you think the remote system hasn't
changed, you should investigate further before logging in.

Notice in the last example that SSH automatically uses the same identity when logging into a
remote machine. If you want to log on as a different user, use the - | option with the

appropriate account name.

You can also use SSH to execute commands on remote systems. Here is an example of using
date remotely.

[root @anny root]# ssh -1 sloanjd hector date
sl oanjd@ector's password:

Mon Dec 22 09:28:46 EST 2003

Notice that a different account, sloanjd, was used in this example.
To copy files, you use the scp command. For example,

[root @anny root]# scp /etc/ notd george:/root/

r oot @eorge' s password:

rmtd 100%'***************************** 0 0000

Here file /etc/motd was copied from fanny to the /root directory on george.

In the examples thus far, the system has asked for a password each time a command was
run. If you want to avoid this, you'll need to do some extra work. You'll need to generate a
pair of authorization keys that will be used to control access and then store these in the
directory—~/.ssh. The ssh-keygen command is used to generate keys.

[sl oanj d@anny sloanjd] $ ssh-keygen -b1024 -trsa
Cenerating public/private rsa key pair.
Enter file in which to save the key (/hone/sl oanjd/.ssh/id_rsa):
Ent er passphrase (enpty for no passphrase):
Ent er sane passphrase agai n:
Your identification has been saved in /honme/sl oanjd/.ssh/id_rsa.
Your public key has been saved in /hone/sloanjd/.ssh/id_rsa.pub.
The key fingerprint is:
2d: ¢8:d1: el: bc: 90: b2:f 6: 6d: 2e: a5: 7f : db: 26: 60: 3f sl oanj d@ anny
[sl oanjd@anny sloanjd]$ cd . ssh
[sl oanjd@anny .ssh]$ |Is -a
idrsa id_rsa pub known _hosts
The options in this example are used to specify a 1,024-bit key and the RSA algorithm. (You
can use DSA instead of RSA if you prefer.) Notice that SSH will prompt you for a passphrase,
basically a multi-word password.
Two keys are generated, a public and a private key. The private key should never be shared

and resides only on the client machine. The public key is distributed to remote machines.
Copy the public key to each system you'll want to log onto, renaming it authorized_keys2.

[sl oanjd@anny .ssh]$ cp id_rsa.pub authorized_keys2
[sl oanjd@anny .ssh]$ chnod go-rwx aut hori zed_keys?2

[sl oanjd@anny .ssh]$ chmod 755 ~/. ssh

If you are using NFS, as shown here, all you need to do is copy and rename the file in the

current directory. Since that directory is mounted on each system in the cluster, itis
automatically available.

- If you used the NFS setup described earlier, root's home directory/root,
.f..._ is not shared. If you want to log in as root without a password, manually
w %1 copy the public keys to the target machines. You'll need to decide

whether you feel secure setting up the root account like this.

You will use two utilities supplied with SSH to manage the login process. The first is an SSH
agent program that caches private keys, ssh-agent. This program stores the keys locally and
uses them to respond to authentication queries from SSH clients. The second utility, ssh-add,
is used to manage the local key cache. Among other things, it can be used to add, list, or
remove keys.

[sl oanj d@anny .ssh]$ ssh-agent $SHELL
[sl oanj d@anny .ssh]$ ssh-add
Ent er passphrase for /hone/sloanjd/.ssh/id_rsa:

Identity added: /hone/sloanjd/.ssh/id rsa (/home/sloanjd/.ssh/id_rsa)

(While this example uses the $SHELL variable, you can substitute the actual name of the shell
you want to run if you wish.) Once this is done, you can log in to remote machines without a
password.

This process can be automated to varying degrees. For example, you can add the call to ssh-
agent as the last line of your login script so that it will be run before you make any changes to
your shell's environment. Once you have done this, you'll need to run ssh-add only when you
log in. But you should be aware that Red Hat console logins don't like this change.

You can find more information by looking at the ssh(1),ssh-agent(1), and ssh-add(1)
manpages. If you want more details on how to set up ssh-agent, you might look at SSH, The
Secure Shell by Barrett and Silverman, O'Reilly, 2001. You can also find scripts on the
Internet that will set up a persistent agent so that you won't need to rerun ssh-add each time.

One last word of warning: If you are using ssh-agent, it becomes very
important that you log off whenever you leave your machine. Otherwise,
you'll be leaving not just one system wide open, but all of your systems.

4.2.5 Other Services and Configuration Tasks

Thus far, we have taken a minimalist approach. To make like easier, there are several other
services that you'll want to install and configure. There really isn't anything special that you'll
need to do—just don't overlook these.

4.2.5.1 Apache

While an HTTP server may seem unnecessary on a cluster, several cluster management tools
such as Clumon and Ganglia use HTTP to display results. If you will monitor your cluster only
from the head node, you may be able to get by without installing a server. But if you want to
do remote monitoring, you'll need to install an HTTP server. Since most management

packages like these assume Apache will be installed, it is easiest if you just go ahead and set
it up when you install your cluster.

4.2.5.2 Network Time Protocol (NTP)

It is important to have synchronized clocks on your cluster, particularly if you want to do
performance monitoring or profiling. Of course, you don't have to synchronize your system to
the rest of the world; you just need to be internally consistent. Typically, you'll want to set up
the head node as an NTP server and the compute nodes as NTP clients. If you can, you should
sync the head node to an external timeserver. The easiest way to handle this is to select the
appropriate option when you install Linux. Then make sure that the NTP daemon is running:

[root @anny root]# /sbin/service ntpd status

ntpd (pid 1689) is running...

Start the daemon if necessary.

4.2.5.3 Virtual Network Computing (VNC)

This is a very nice package that allows remote graphical logins to your system. It is available
as a Red Hat package or from http://www.realvnc.com/. VNC can be tunneled using SSH for
greater security.

4.2.5.4 Multicasting

Several clustering utilities use multicasting to distribute data among nodes within a cluster,
either for cloning systems or when monitoring systems. In some instances, multicasting can
greatly increase performance. If you are using a utility that relies on multicasting, you'll need
to ensure that multicasting is supported. With Linux, multicasting must be enabled when the
kernel is built. With most distributions, this is not a problem. Additionally, you will need to
ensure that an appropriate multicast entry is included in your route tables. You will also need
to ensure that your networking equipment supports multicast. This won't be a problem with
hubs; this may be a problem with switches; and, should your cluster span multiple networks,
this will definitely be an issue with routers. Since networking equipment varies significantly
from device to device, you need to consult the documentation for your specific hardware. For
more general information on multicasting, you should consult the multicasting HOWTOs.

4.2.5.5 Hosts file and name services

Life will be much simpler in the long run if you provide appropriate name services. NIS is
certainly one possibility. At a minimum, don't forget to edit /etc/hosts for your cluster. At the
very least, this will reduce network traffic and speed up some software. And some packages
assume it is correctly installed. Here are a few lines from the host file for amy:

127.0.0.1 |l ocal host. | ocal donain | ocal host
10. 0. 32. 139 any. wof ford.int any

10. 0. 32. 140 basi|.wof ford.int basi |

http://www.realvnc.com/

Notice that any is not included on the line with | ocal host . Specifying the host name as an
alias for | ocal host can break some software.

\ . PREW < Day Day Up > MEST ‘

< Day Day Up >

4.3 Cluster Security

Security is always a two-edged sword. Adding security always complicates the configuration of
your systems and makes using a cluster more difficult. But if you don't have adequate
security, you run the risk of losing sensitive data, losing control of your cluster, having it
damaged, or even having to completely rebuild it. Security management is a balancing act,
one of trying to figure out just how little security you can get by with.

As previously noted, the usual architecture for a cluster is a set of machines on a dedicated
subnet. One machine, the head node, connects this network to the outside world, i.e., the
organization's network and the Internet. The only access to the cluster's dedicated subnet is
through the head node. None of the compute nodes are attached to any other network. With
this model, security typically lies with the head node. The subnet is usually a trust-based open
network.

There are several reasons for this approach. With most clusters, the communication network
is the bottleneck. Adding layers of security to this network will adversely affect performance.
By focusing on the head node, security administration is localized and thus simpler. Typically,
with most clusters, any sensitive information resides on the head node, so it is the point
where the greatest level of protection is needed. If the compute nodes are not isolated, each
one will need to be secured from attack.

This approach also simplifies setting up packet filtering, i.e., firewalls. Incorrectly configured,
packet filters can create havoc within your cluster. Determining what traffic to allow can be a
formidable challenge when using a number of different applications. With the isolated network
approach, you can configure the internal interface to allow all traffic and apply the packet filter
only to public interface.

This approach doesn't mean you have a license to be sloppy within the cluster. You should
take all reasonable precautions. Remember that you need to protect the cluster not just from
external threats but from internal ones as well—whether intentional or otherwise.

Since a thorough discussion of security could easily add a few hundred pages to this book, it
is necessary to assume that you know the basics of security. If you are a novice system
administrator, this is almost certainly not the case, and you'll need to become proficient as
quickly as possible. To get started, you should:

e Be sure to apply all appropriate security patches, at least to the head node, and
preferably to all nodes. This is a task you will need to do routinely, not just when you set
up the cluster.

¢ Know what is installed on your system. This can be a particular problem with cluster Kits.
Audit your systems regularly.

e Differentiate between what's available inside the cluster and what is available outside the
cluster. For example, don't run NFS outside the cluster. Block portmapper on the public
interface of the head node.

e Don't put too much faith in firewalls, but use one, at least on the head node's public
interface, and ensure that it is configured correctly.

e Don't run services that you don't need. Routinely check which services are running, both
withnetstat and with a port scanner like nmap.

e Your head node should be dedicated to the cluster, if at all possible. Don't set it up as a

general server.

e Use the root account only when necessary. Don't run programs as root unless it is
absolutely necessary.

There is no easy solution to the security dilemma. While you may be able to learn enough,
you'll never be able to learn it all.

48 FREY < Day Day Up > NE=T oy

< Day Day Up >

Part II: Getting Started Quickly

This section describes the installation of three software packages that, when installed,
will provide you with a complete working cluster. These packages differ radically.
openMosix provides Linux kernel extensions that transparently move processes among
machines to balance loads and optimize performance. While a truly remarkable package,
it is not what people typically think about when they hear the word "cluster.” OSCAR and
Rocks are collections of software packages that can be installed at once, providing a
more traditional Beowulf-style cluster. Whichever way you decide to go, you will be up
and running in short order.

4@ PREV < Day Day Up > MEXT mjp

< Day Day Up >

Chapter 5. openMosix

openMosix is software that extends the Linux kernel so that processes can migrate
transparently among the different machines within a cluster in order to more evenly distribute
the workload. This chapter gives the basics of setting up and using an openMosix cluster.
There is a lot more to openMosix than described here, but this should be enough to get you
started and keep you running for a while unless you have some very special needs.

< Day Day Up >

5.1 What Is openMosix?

Basically, the openMosix software includes both a set of kernel patches and support tools. The
patches extend the kernel to provide support for moving processes among machines in the
cluster. Typically, process migration is totally transparent to the user. However, by using the
tools provided with openMosix, as well as third-party tools, you can control the migration of
processes among machines.

Let's look at how openMosix might be used to speed up a set of computationally expensive
tasks. Suppose, for example, you have a dozen files to compress using a CPU-intensive
program on a machine that isn't part of an openMosix cluster. You could compress each file
one at a time, waiting for one to finish before starting the next. Or you could run all the
compressions simultaneously by starting each compression in a separate window or by
running each compression in the background (ending each command line with an &). Of
course, either way will take about the same amount of time and will load down your computer
while the programs are running.

However, if your computer is part of an openMosix cluster, here's what will happen: First, you
will start all of the processes running on your computer. With an openMosix cluster, after a
few seconds, processes will start to migrate from your heavily loaded computer to other idle
or less loaded computers in the clusters. (As explained later, because some jobs may finish
quickly, it can be counterproductive to migrate too quickly.) If you have a dozen idle
machines in the cluster, each compression should run on a different machine. Your machine
will have only one compression running on it (along with a little added overhead) so you still
may be able to use it. And the dozen compressions will take only a little longer than it would
normally take to do a single compression.

If you don't have a dozen computers, or some of your computers are slower than others, or
some are otherwise loaded, openMosix will move the jobs around as best it can to balance the
load. Once the cluster is set up, this is all done transparently by the system. Normally, you
just start your jobs. openMosix does the rest. On the other hand, if you want to control the
migration of jobs from one computer to the next, openMosixsupplies you with the tools to do
just that.

(Currently,openMosix also includes a distributed filesystem. However, this is slated for
removal in future releases. The new goal is to integrate support for a clustering filesystem
such as Intermezzo.)

< Day Day Up >

< Day Day Up >

5.2 How openMosix Works

openMosix originated as a fork from the earlier MOSIX(Multicomputer Operating System for
Unix) project. The openMosix project began when the licensing structure for MOSIX moved
away from a General Public License. Today, it has evolved into a project in its own right. The
original MOSIX project is still quite active under the direction of Amnon Barak

(http ://www.mosix.org). openMosix is the work of Moshe Bar, originally a member of the
MOSIX team, and a number of volunteers. This book focuses on openMosix, but MOSIX is a
viable alternative that can be downloaded at no cost.

As noted in Chapter 1, one approach to sharing a computation between processors in a
single-enclosure computer with multiple CPUs is symmetric multiprocessor (SMP) computing.
openMosix has been described, accurately, as turning a cluster of computers into a virtual
SMP machine, with each node providing a CPU. openMosix is potentially much cheaper and
scales much better than SMPs, but communication overhead is higher. (openMosix will work
with both single-processor systems and SMP systems.) openMosix is an example of what is
sometimes called single system image clustering (SSI) since each node in the cluster has a
copy of a single operating system kernel.

The granularity for openMosix is the process. Individual programs, as in the compression
example, may create the processes, or the processes may be the result of different forks from
a single program. However, if you have a computationally intensive task that does everything
in a single process (and even if multiple threads are used), then, since there is only one
process, it can't be shared among processors. The best you can hope for is that it will migrate
to the fastest available machine in the cluster.

Not all processes migrate. For example, if a process only lasts a few seconds (very roughly,
less than 5 seconds depending on a number of factors), it will not have time to migrate.
Currently, openMosix does not work with multiple processes using shared writable memory,
such as web servers.I1l Similarly, processes doing direct manipulation of 1/0 devices won't
migrate. And processes using real-time scheduling won't migrate. If a process has already
migrated to another processor and attempts to do any these things, the process will migrate
back to its uniqgue home node (UHN), the node where the process was initially created, before
continuing.

[1] Actually, the migration of shared memory (MigSHM) patch is an openMosix patch that implements
shared memory migration. At the time this was written, it was not part of the main openMosix tree. (Visit
http://mcaserta.com/maask/.)

To support process migration, openMosix divides processes into two parts or contexts. The
user context contains the program code, stack, data, etc., and is the part that can migrate.
Thesystem context, which contains a description of the resources the process is attached to
and the kernel stack, does not migrate but remains on the UHN.

openMosix uses an adaptive resource allocation policy. That is, each node monitors and
compares its own load with the loads on a portion of the other computers within the cluster.
When a computer finds a more lightly loaded computer (based on the overall capacity of the
computer), it will attempt to migrate a process to the more lightly loaded computer, thereby
creating a more balanced load between the two. As the loads on individual computers change,
e.d., when jobs start or finish, processes will migrate among the computers to rebalance
loads across the cluster, adapting dynamically to the changes in loads.

Individual nodes, acting as autonomous systems, decide which processes migrate. The
communications among small sets of nodes within the cluster used to compare loads is
randomized. Consequently, clusters scale well because of this random element. Since
communications is within subsets in the cluster, nodes have limited but recent information

http://www.mosix.org
http://mcaserta.com/maask/

about the state of the whole cluster. This approach reduces overhead and communication.

While load comparison and process migration are generally automatic within a cluster,
openMosix provides tools to control migration. It is possible to alter the cluster's perception of
how heavily an individual computer is loaded, to tie processes to a specific computer, or to
block the migration of processes to a computer. However, precise control for the migration of
a group of processes is not practical with openMosix at this time.[21

[2] This issue is addressed by a patch that allows the creation of process groups, available at
http://www.openmosixview.com/miggroup/.

TheopenMosix APl uses the values in the flat files in /proc/hpc to record and control the state
of the cluster. If you need information about the current configuration, want to do really low-
level management, or write management scripts, you can look at or write to these files.

< Day Day Up >

http://www.openmosixview.com/miggroup/

< Day Day Up >

5.3 Selecting an Installation Approach

SinceopenMosix is a kernel extension, it won't work with just any kernel. At this time, you are
limited to a relatively recent (at least version 2.4.17 or more recent) 1A32-compatible Linux
kernel. An 1A64 port is also available. However, don't expect openMosix to be available for a
new kernel the same day a new kernel is released. It takes time to develop patches for a
kernel. Fortunately, your choice of Linux distributions is fairly broad. Among others,
openMosix has been reported to work on Debian, Gentoo, Red Hat, and SuSe Linux. If you
just want to play with it, you might consider Bootable Cluster CD (BCCD), Knoppix, or
PlumpOS, three CD-bootable Linux distributions that include openMosix. You'll also need a
reasonably fast network and a fair amount of swap space to run openMosix.

To build your openMosix cluster, you need to install an openMosix extended kernel on each of
the nodes in the cluster. If you are using a suitable version of Linux and have no other special
needs, you may be able to download a precompiled version of the kernel. This will significantly
simplify setup. Otherwise, you'll need to obtain a clean copy of the kernel sources, apply the
openMosix patches to the kernel source code, recompile the sources, and install the patched
kernel. This isn't as difficult as it might sound, but it is certainly more involved than just
installing a precompiled kernel. Recompiling the kernel is described in detail later in this
chapter. We'll start with precompiled kernels.

While using a precompiled kernel is the easiest way to go, it has a few limitations. The
documentation is a little weak with the precompiled kernels, so you won't know exactly what
options have been compiled into the kernel without doing some digging. (However, the .config
files are available via CVS and the options seem to be reasonable.) If you already have special
needs that required recompiling your kernel, e.g., nonstandard hardware, don't expect those
needs to go away.

You'll need to use the same version of the patched kernel on all your systems, so choose
accordingly. This doesn't mean you must use the same kernel image. For example, you can
use different compiles to support different hardware. But all your kernels should have the
same version number.

The openMosix user tools should be downloaded when you download the openMosix kernel or
kernel patches. Additionally, you will also want to download and install openMosixView, third-
party tools for openMosix.

4 FREV < Day Day Up > MEXT mp

< Day Day Up >

5.4 Installing a Precompiled Kernel

The basic steps for installing a precompiled kernel are selecting and downloading the
appropriate files and packages, installing those packages, and making a few minor
configuration changes.

5.4.1 Downloading

You'll find links to available packages at http ://openmosix.sourceforge.net.I31 You'll need to
select from among several versions and compilations. At the time this was written, there were
half a dozen different kernel versions available. For each of these, there were eight possible
downloads, including a README file, a kernel patch file, a source file that contains both a
clean copy of the kernel and the patches, and five precompiled kernels for different
processors. The precompiled versions are for an Intel 386 processor, an Intel 686 processor,
an Athlon processor, Intel 686 SMP processors, or Athlon SMP processors. The Intel 386 is
said to be the safest version. The Intel 686 version is for Intel Pentium Il and later CPUs. With
the exception of the text README file and a compressed (gz) set of patches, the files are in
RPM format.

[31 And while you are at it, you should also download a copy of Kris Buytaert's openMosix HOWTO from
http://www.tldp.org/HOWTO/openMosix-HOWTO/.

The example that follows uses the package openmosix-kernel-2.4.24-openmosix.i686.rpm for
a single processor Pentium Il system running Red Hat 9. Be sure you read the README file!
While you are at it, you should also download a copy of the latest suitable version of the
openMosix user tools from the same site. Again, you'll have a number of choices. You can
download binaries in RPM or DEB format as well as the sources. For this example, the file
openmosix-tools-0.3.5-1.i386.rpm was used.

Perhaps the easiest thing to do is to download everything at once and burn it to a CD so you'll
have everything handy as you move from machine to machine. But you could use any of the
techniques described in Chapter 8, or you could use the C3 tools described in Chapter 10.
Whatever your preference, you'll need to get copies of these files on each machine in your
cluster.

There is one last thing to do before you install—create an emergency boot disk if you don't
have one. While it is unlikely that you'll run into any problems with openMosix, you are adding
a new kernel.

Don't delete the old kernel. As long as you keep it and leave it in your
boot configuration file, you should still be able to go back to it. If you do
delete it, an emergency boot disk will be your only hope.

To create a boot disk, you use the mkbootdisk command as shown here:

[root @anny root]# unane -r
2.4.20-6

[root @anny root]# nkbootdi sk \

http://openmosix.sourceforge.net
http://www.tldp.org/HOWTO/openMosix-HOWTO/

>--device /dev/fdO 2.4.20-6
Insert a disk in /dev/fdO0. Any information on the disk will be |ost.

Press <Enter> to conti nue or "Cto abort:

(The last argument to mkbootdiskis the kernel version. If you can't remember this, use the
commanduname -r first to refresh your memory.)

5.4.2 Installing

Since we are working with RPM packages, installation is a breeze. Just change to the directory
where you have the files and, as root, run rpm.

[root @anny root]# rpm -vi h opennosi x-Kkernel-2.4.24-opennosi x1.i 686. r pm

Prepari ng. .. TR HBH B HH H B R R R R R S R [1009
1: opennosi x- ker nel HEHHB R [100%

[root @anny root]# rpm -vi h opennosix-tool s-0.3.5-1.i386.rpm

Preparing.. . HHH I S | 100%

1: opennosi x-t ool s HHHH BB HHE R R R R R R R [1009

Edit /etc/opennpsix.map if you don't want to use the autodiscovery daenon.

That's it! The kernel has been installed for you in the /boot directory.

This example uses the 2.4.24-om1 release. 2.4.24-om2 should be available by the time you
read this. This newer release corrects several bugs and should be used.

You should also take care to use an openMosix tool set that is in sync with the kernel you are
using, i.e., one that has been compiled with the same kernel header files. If you are compiling
both, this shouldn't be a problem. Otherwise, you should consult the release notes for the
tools.

5.4.3 Configuration Changes

While the installation will take care of the stuff that can be automated, there are a few
changes you'll have to do manually to get openMosix running. These are very straightforward.

As currently installed, the next time you reboot your systems, your loader will give you the
option of starting openMosix but it won't be your default kernel. To boot to the new openMosix
kernel, you'll just need to select it from the menu. However, unless you set openMosix as the
default kernel, you'll need to manually select it every time you reboot a system.

If you want openMosix as the default kernel, you'll need to reconfigure your boot loader. For
example, if you are using grub, then you'll need to edit /etc/grub.conf to select the openMosix
kernel. The installation will have added openMosix to this file, but will not have set it as the
default kernel. You should see two sets of entries in this file. (You'll see more than two if you
already have other additional kernels). Change the variable def ault to select which kernel

you want as the default. The variable is indexed from 0. If openMosix is the first entry in the
file, change the line to setting def ault so that it reads def aul t =0.

If you are using LILO, the procedure is pretty much the same except that you will need to
manually create the entry in the configuration file and rerun the loader. Edit the file
/etc/lilo.conf. You can use a current entry as a template. Just copy the entry, edit it to use the
new kernel, and give it a new label. Change def ault so that it matches your new label, e.g.,
def aul t =openMbsi x. Save the file and run the command /sbin/lilo -v.

Another issue is whether your firewall will block openMosix traffic. The openMosix FAQ reports
that openMosix uses UDP ports in the 5000-5700 range, UDP port 5428, and TCP ports 723
and 4660. (You can easily confirm this by monitoring network traffic, if in doubt.) You will also
need to allow any other related traffic such as NFS or SSH traffic. Address this before you
proceed with the configuration of openMosix.

In general, security has not been a driving issue with the development of openMosix.
Consequently, it is probably best to use openMosix in a restrictive environment. You should
either locate your firewall between your openMosix cluster and all external networks, or you
should completely eliminate the external connection.

openMosix needs to know about the other machines in your cluster. You can either use the
autodiscovery tool omdiscd to dynamically create a map, or you can create a static map by
editing the file /etc/openmosix.map (or /etc/mosix.map or /etc/hpc.map on earlier versions of
openMosix).omdiscd can be run as a foreground command or as a daemon in the
background. Routing must be correctly configured for omdiscd to run correctly. For small,
static clusters, it is probably easier to edit /etc/openmosix.map once and be done with it.

For a simple cluster, this file can be very short. Its simplest form has one entry for each
machine. In this format, each entry consists of three fields—a unique device node number
(starting at 1) for each machine, the machine's IP address, and a 1 indicating that it is a
single machine. It is also possible to have a single entry for a range of machines that have
contiguous IP addresses. In that case, the first two fields are the same—the node number for
the first machine and the IP address of the first machine. The third field is the number of
machines in the range. The address can be an IP number or a device name from your
/etc/hosts file. For example, consider the following entry:

1 fanny.wofford. int 5

This says that fanny.wofford.int is the first of five nodes in a cluster. Since fanny's IP address
is 10.0.32.144, the cluster consists of the following five machines: 10.0.32.144, 10.0.32.145,
10.0.32.146, 10.0.32.147, and 10.0.32.148. Their node numbers are 1 through 5. You could
use separate entries for each machine. For example,

1 fanny.wofford.int 1
2 geor ge. wof ford. i nt 1
3 hect or. wof f ord. i nt 1
4 i da. wof ford. int 1
5 j ames.wofford.int 1

or, equivalently

1 10. 0. 32. 144 1

2 10. 0. 32. 145 1

3 10. 0. 32. 146 1
4 10. 0. 32. 147 1

5 10. 0. 32. 148 1

Again, you can use the first of these two formats only if you have entries for each machine in
/etc/hosts. If you have multiple blocks of noncontiguous machines, you will need an entry for
each contiguous block. If you use host names, be sure you have an entry in your host table
for your node that has its actual IP address, not just the local host address. That is, you need
lines that look like

127.0.0.1 | ocal host
172.16.1.1 any

not

127.0.0.1 | ocal host any

You can list the map that openMosix is using with the showmap command. (This is nice to
know if you are using autodiscovery.)

[root @anny etc]# showrap

My Node-1d: 0x0001

Base Node-ld Address Count
0x0001 10. 0. 32. 144 1
0x0002 10. 0. 32. 145 1
0x0003 10. 0. 32. 146 1
0x0004 10. 0. 32. 147 1
0x0005 10. 0. 32. 148 1

Keep in mind that the format depends on the map file format. If you use the range format for
your map file, you will see something like this instead:

[root @anny etc]# showmap

My Node-1d: 0x0001

Base Node-1d Address Count

0x0001 10. 0. 32. 144 5

While the difference is insignificant, it can be confusing if you aren't expecting it.

There is also a configuration file /etc/openmosix/openmosix.config. If you are using
autodiscovery, you can edit this to start the discovery daemon whenever openMosix is
started. This file is heavily commented, so it should be clear what you might need to change,
if anything. It can be ignored for most small clusters using a map file.

Of course, you will need to duplicate this configuration on each node on your cluster. You'll
also need to reboot each machine so that the openMosix kernel is loaded. As root, you can
turn openMosix on or off as needed. When you install the user tools package, a script called
openmosix is copied to /etc/init.d so that openMosix will be started automatically. (If you are
manually compiling the tools, you'll need to copy this script over.) The script takes the
argumentsstart ,stop,status,restart, and r el oad, as you might have guessed. For
example,

[root @anes root]# /etc/init.d/ opennosix status

This is OpenMosi x node #5

Net work protocol: 2 (AF_INET)

OpenMosi x range 1-5 begins at fanny.wofford.int
Tot al configured: 5

Use this script to control openMosix as needed. You can also use the setpe command, briefly
described later in this chapter, to control openMosix.

Congratulations, you are up and running.

\ * PREY < Day Day Up > ME®=T ‘

< Day Day Up >

5.5 Using openMosix

At its simplest, openMosix is transparent to the user. You can sit back and reap the benefits.
But at times, you'll want more control. At the very least, you may want to verify thatitis
really running properly. (You could just time applications with computers turned on and off,
but you'll probably want to be a little more sophisticated than that.) Fortunately, openMosix
provides some tools that allow you to monitor and control various jobs. If you don't like the
tools that come with openMosix, you can always install other tools such as openMosixView.

5.5.1 User Tools

You should install the openMosix user tools before you start running openMosix. This package
includes several useful management tools (migrate,mosctl,mosmon,mosrun, and setpe), an
openMosix aware version of ps and top called, suitably, mps and mtop, and a startup script
/etc/init.d/openmosix. (This is actually a link to the file /etc/rc.d/init.d/openmosix.)

5.5.1.1 mps and mtop

Bothmps and mtop will look a lot like their counterparts, ps and top. The major difference is
that each has an additional column that gives the node number on which a process is running.
Here is part of the output from mps:

[root @anny sloanjd]# nps

PID TTY NODE STAT TI ME COMVAND

19766 7 0OR 2:32 . /1 oop
19767 7 2S 1: 45 . /1 oop
19768 7 58S 3:09 ./l oop
19769 2 4 'S 2:58 ./l oop
19770 7 2S 1: 47 . /1 oop
19771 7 35S 2:59 . /1 oop
19772 7 6 S 1: 43 . /1 oop
19773 7 0R 1: 59 . /1 oop

As you can see from the third column, process 19769 is running on node 4. It is important to
note that mps must be run on the machine where the process originated. You will not see the
process if you run ps,mps,top, or mtop on any of the other machines in the cluster even if
the process has migrated to that machine. (Arguably, in this respect, openMosix is perhaps a
little too transparent. Fortunately, a couple of the other tools help.)

5.5.1.2 migrate

The tool migrate explicitly moves a process from one node to another. Since there are
circumstances under which some processes can't migrate, the system may be forced to
ignore this command. You'll need the PID and the node number of the destination machine.
Here is an example:

[sl oanjd@anny sloanjd]$ migrate 19769 5

This command will move process 19769 to node number 5. (You can use hone in place of the
node number to send a process back to the CPU where it was started.) It might be tempting
to think you are reducing the load on node number 4, the node where the process was
running, but in a balanced system with no other action, another process will likely migrate to
node 4.

5.5.1.3 mosctl

Withmosctl, you have greater control over how processes are run on individual machines. For
example, you can block the arrival of guest processes to lighten the load on a machine. You
can use mosctl with the setspeed option to override a node's idea of its own speed. This can
be used to attract or discourage process migration to the machine. mosctl can also be used to
display utilization or tune openMosix performance parameters. There are too many arguments
to go into here, but they are described in the manpage.

55.1.4 mosmon

Whilemps won't tell you if a process has migrated to your machine, you can get a good idea
of what is going across the cluster with the mosmon utility. mosmon is an ncurses-based
utility that will display a simple bar graph showing the loads on the nodes in your cluster. This
can give you a pretty good idea of what is going on. Figure 5-1 shows mosmon in action.

Figure 5-1. mosmon

M james.wolfordint - James Root - 55H Secure Shell : =8| (o] x|
File Edt ‘aw Window Help

M ak fs Rer A 90 % S8

2] Quick Connect | Prafiles

Hode § L1 23456

Connected ko james wofford.int 53Hz - ses120-che - hmac-mdS -none | @0x2¢ | (0]

In this example, eight identical processes are running on a six-node cluster. Obviously, the
second and sixth nodes have two processes each while the remaining four machines are each
running a single process. Of course, other processes could be mixed into this, affecting an
individual machine's load. You can change the view to display memory, speed, and utilization
as well as change the layout of the graph. Press h while the program is running to display the
various options. Press g to quit the program.

Incidentally,mosmon goes by several different names, including mon and, less commonly,
mmon. The original name was mon, and it is often referred to by that name in openMosix
documentation. The shift to mosmon was made to eliminate a naming conflict with the
network-monitoring tool mon. The local name is actually set by a compile-time variable.

55.1.5 mosrun

Themosrun command can also be used to advise the system to run a specific program on a
specified node. You'll need the program name and the destination node number (or use - h for

the home node). Actually, mosrun is one of a family of commands used to control node
allocation preferences. These are listed and described on the manpage for mosrun.

5.5.1.6 setpe

Thesetpe command can be used to manually configure a node. (In practice, setpe is usually
called from the script /etc/init.d/openmosix rather than used directly.) As root, you can use
setpe to start or stop openMosix. For example, you could start openMosix with a specific
configuration file with a command like

[root @da sl oanjd]# /sbin/setpe -w -f /etc/opennosi x. map

setpe takes several options including - r to read the configuration file, - ¢ to check the map's

consistency, and - of f to shut down openMosix. Consult the manpage for more information.

5.5.2 openMosixView

openMosixView extends the basic functionality of the user tools while providing a spiffy X-
based GUI. However, the basic user tools must be installed for openMosixView to work.
openMosixView is actually seven applications that can be invoked from the main
administration application.

If you want to install openMosixView, which is strongly recommended, download the package
fromhttp : //www.openmosixview.com. Look over the documentation for any dependencies
that might apply. Depending on what you have already installed on your system, you may
need to install additional packages. For example, GLUT is one of more than two dozen
dependences. Fortunately (or annoyingly), rpm will point out to you what needs to be added.

Then, as root, install the appropriate packages.

[root @anny root]# rpm-vih glut-3.7-12.i386.rpm

warni ng: glut-3.7-12.i 386.rpm V3 DSA signature: NCKEY, key | D db42a60e

Prepari ng. .. TR HBH B HH H B R R R R R R [1009
1: gl ut HEHHB R BR[| 100%

[root @anny root]# rpm -vi h opennosixvi ew-1.5-redhat 90.i 386. rpm

Preparing.. . HHH I S | 100%
1: opennosi xvi ew HH R R R [1009

As with the kernel, you'll want to repeat this on every node. This installation will install

documentation in /usr/local.

Once installed, you are basically ready to run. However, by default, openMosixView uses RSH.

It is strongly recommended that you change this to SSH. Make sure you have SSH set up on

your system. (See Chapter 4 for more information on SSH.) Then, from the main application,

select the Confi g menu.

The main applications window is shown in Figure 5-2. You get this by running the command
openmosixview in an X window environment.

Figure 5-2. openMosixView

openfosixview 1.5
Ela Wiew Config Collecior Help
|E':."r| =] |ﬂ.‘s'| ﬁl-"_'.lﬂ.Dl s |E‘? refresh B 5% opanedosicole cor satus
W custamodes lnad-nelancing eficiency overall loan ovarall used memane @l mamory &l caw
u all-nodes | srx [g0 | 20% B0 MBS
1 10032144 | > a3y o N 13% 128 1=
2 100.32145 |1 e oy IR 1 00 ;‘ 21% 125 1
. | . .
] 10.0.32.146 U T 0% 2% 128 1
4 L L e '+ o ™ % 128 1
5 100052148 { :|1||||1. Fik 128 1
onaztan | The— LT = =l
Readdy

http://www.openmosixview.com

This view displays information for each of the five nodes in this cluster. The first column
displays the node's status by node number. The background color is green if the node is
available or red if it is unavailable. The second column, buttons with IP numbers, allows you
to configure individual systems. If you click on one of these buttons, a pop-up window will
appear for that node, as shown in Figure 5-3. You'll notice that the configuration options are
very similar to those provided by the mosctl command.

Figure 5-3. openMosix configuration window

@‘: openMosix-configuration
node 10032144

an off auto-migration ondoff
yes | no falk to others nodes
yes | no local procs stay

yes | no send away guest procs
slart | stop | slanfstop

|.;‘.» apply | ._] cancel |

||E.I console | | % remote proc-ho

~display |fanny «fo oo 2

[@ clear| | clear history | [) close]

-

As you can see from the figure, you can control process migration, etc., with this window. The
third column in Figure 5-2, the sliders, controls the node efficiencies used by openMosix when
load balancing. By changing these, you alter openMosix's idea of the relative efficiencies of the
nodes in the cluster. This in turn influences how jobs migrate. Note that the slider settings do
not change the efficiency of the node, just openMosix's perception of the node's capabilities.
The remaining columns provide general information about the nodes. These should be self-
explanatory.

The buttons along the top provide access to additional applications. For example, the third

button, which looks like a gear, launches the process viewer openMosixprocs. This is shown in
Figure 5-4.

Figure 5-4. openMosixprocs

4 .nrocesses on fanm =]

H?I\gi refrash I all *'l procasses last managed process:
pid]I"nl' |Iuch]nmigs Imiggr IsTs.T]cmdline |nir.e id | I:
£ 0 0 0 0 5 init o0

M1 00w 0 5 obfs_main_server 0 D

B0 0w 0 5 oMFS_geo o0

o o0 0 5 kjoumald oo

Bz o oo0o o] 5 ol_migd 1]]

13 o o0 o 0 S oM_infoD 1] 0

M4 0 0o 0 0 R memsorer oo

£41BB3 0 0 O 0 S sshd] 0

£318330 0 W 0 5 mingetly oo

£318%40 0 0 0 5 mingefly oo

318950 0 0 0 5 mingetly oo

3890 0 0 i} 5 mingetly oo

£318370 0 O 0 5 mingety 1] 0

f3189 0 0 0 0 S mingetly] 0

#3189 0 0 0O 0 S odii-binan 0 0 [+]
|manage pracs from remole 1z Processes on iz stlem E

- -

openMosixprocs allows you to view and manage individual processes started on the node from
whichopenMosixprocs is run. (Since it won't show you processes migrated from other
systems, you'll need openMosixprocs on each node.) You can select a user in the first entry
field at the top of the window and click on r ef r esh to focus in on a single user's processes. By
double-clicking on an individual process, you can call up the openMosixprocs-Migrator, which
will provide additional statistics and allow some control of a process.

openMosixView provides a number of additional tools that aren't described here. These include
a 3D process viewer (3dmosmon), a data collection daemon (openMosixcollector), an analyzer
(openMosixanalyzer), an application for viewing process history (openMosixHistory), and a
migration monitor and controller (openMosixmigmon) that supports drag-and-drop control on
process migration.

5.5.3 Testing openMosix

It is unlikely that you will have any serious problems setting up openMosix. But you may want
to confirm that it is working. You could just start a few processes and time them with
openMosix turned on and off. Here is the simple C program that can be used to generate
some activity.

#incl ude <stdio. h>

int foo(int,int);
int main(void)

{

int i,j;

for (i=1; i<100000; i++)

for (j=1; j<100000; j++)

foo(i,j);

return O;

int foo(int x, int vy)

{

return(x+y);

This program does nothing useful, but it will take several minutes to complete on most
machines. (You can adjust the loop count if it doesn't run long enough to suit you.) By
compiling this (without optimizations) and then starting several copies running in the
background, you'll have a number of processes you can watch.

While timing will confirm that you are actually getting a speedup, you'll get a better idea of
what is going on if you run mosmon. With mosmon, you can watch process migration and
load balancing as it happens.

If you are running a firewall on your machines, the most likely problem you will have is
getting connection privileges correct. You may want to start by disconnecting your cluster
from the Internet and disabling the firewall. This will allow you to confirm that openMosix is
correctly installed and that the firewall is the problem. You can use the command netstat -a to
identify which connections you are using. This should give you some guidance in reconfiguring
your firewall.

Finally, an openMosix stress test is available for the truly adventurous. It can be downloaded
fromhttp : //www.openmosixview.com/omtest/. This web page also describes the test
(actually a test suite) and has a link to a sample report. You can download sources or an RPM.
You'll need to install expect before installing the stress test. To run the test, you should first
change to the /usr/local/omtest directory and then run the script ./openmosix_stress_test.sh.
A report is saved in the /tmp directory.

The test takes a while to run and produces a very long report. For example, it took over an
hour and a half on an otherwise idle five-node cluster of Pentium II's and produced an
18,224-line report. While most users will find this a bit of overkill for their needs, it is nice to
know it is available. Interpretation of the results is beyond the scope of this book.

4@ PREV < Day Day Up > MEXT W

http://www.openmosixview.com/omtest/

< Day Day Up >

5.6 Recompiling the Kernel

First, ask yourself why you would want to recompile the kernel. There are several valid
reasons. If you normally have to recompile your kernel, perhaps because you use less-
common hardware or need some special compile option, then you'll definitely need to
recompile for openMosix. Or maybe you just like tinkering with things. If you have a reason,
go for it. Even if you have never done it before, it is not that difficult, but the precompiled
kernels do work well. For most readers, recompiling the kernel is optional, not mandatory. (If
you are not interested in recompiling the kernel, you can skip the rest of this section.)

Before you start, do you have a recovery disk? Are you sure you can
boot from it? If not, go make one right now before you begin.

Let's begin by going over the basic steps of a fairly generic recompilation, and then we'll go
through an example. First, you'll need to decide which version of the kernel you want to use.
Check to see what is available. (You can use the uname -r command to see what you are
currently using, but you don't have to feel bound by that.)

You are going to need both a set of patches and a clean set of kernel source files. Accepted
wisdom says that you shouldn't use the source files that come with any specific Linux releases
because, as a result of customizations, the patches will not apply properly. As noted earlier in
this chapter, you can download the kernel sources and patches from

http ://openmosix.sourceforge.net or you can just download the patches. If you have
downloaded just the patches, you can go to http://www.kernel.org to get the sources. You'll
end up with the same source files either way.

If you download the source file from the openMosix web site, you'll have an RPM package to
install. When you install this, it will place compressed copies of the patches and the source
tree (in gzip or bzip2 format) as well as several sample kernel configuration files in the
directory/usr/src/redhat/SOURCES. The next step is to unpack the sources and apply the
patches.

Usinggunzip or bzip2 and then tar, unpack the files in the appropriate directory. Where you
put things is largely up to you, but it is a good idea to try to be consistent with the default

layout of your system. Move the patch files into the root directory of your source tree. Once
you have all the files in place, you can use the patch command to patch the kernel sources.

The next step is to create the appropriate configuration file. In theory, there are four ways
you can do this. You could directly edit the default configuration file, typically
/usr/src/linux/.config, or you can run one of the commands make config,make menuconfig,
ormake xconfig. In practice, you should limit yourself to the last two choices. Direct editing of
the configuration file for anything other than minor changes is for fools, experts, or foolish
experts. And while config is the most universal approach, it is also the most unforgiving and
should be used only as a last resort. It streams the configuration decisions past you and there
is no going back once you have made a decision. The remaining choices are menuconfig,
which requires the ncurses library, and xconfig, which requires X windows and TCL/TK
libraries. Both work nicely. Figure 5-5 shows the basic layout with menuconfig.

Figure 5-5. Main menuconfig menu

http://openmosix.sourceforge.net
http://www.kernel.org

File Edir View Temninal Go Help
Linux Eernel vZ.4.74-om Configuration -

Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <¥> includes, <N> excludes,
<M= modularizes features. Press <Esc><Esc> to exit, <7> for Help.
Legend: [*] built-in [] excluded <M> module < > module capable

eabosix -
ode maturity level options --->
ocadable module support ---»

rocessor type and features --->

eneral setup ---»

M mory Technology Devices (MID) =-->
arallel port suppert --->»

lug and Flay configuration ---»

lock devices ---»

M 1ti-device support (RAID and LVM) --->

Select> z Exit » < Help >

=

Configuration parameters are arranged in groups by functionality. The first group is for
openMosix. You can easily move through this menu and select the appropriate actions. You
will be given a submenu for each group. Figure 5-6 shows the openMosix submenu.

Figure 5-6. openMosix system submenu

File Edir View Terminal Go Help
Linux Eernel v2.4.24-om Configuration -

Arrow keys navigate the menu. <Enter> selects submenus --—->.
Highlighted letters are hotkeys. Pressing <¥> includes, <M> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <7> for Help.
Legend: [*] built-in [] excluded <M> module < > module capable

[*] openMosix process migration support

[1 upport clusters with a complex network topology
[*] tricter security on openMosix ports

(3) ewvel of process-identity disclosure (0-3)

[*] penMosix File-System

[*] ell/Select exceptions on pipes

[*] idisable 0OM Killer

[1 ead Limit

z Exit » < Help >

=

xconfig is very similar but has a fancy GUI.

Because there are so many decisions, this is the part of the process where you are most apt
to make a mistake. This isn't meant to discourage you, but don't be surprised if you have to
go through this process several times. For the most part, the defaults are reasonable. Be sure
you select the right processor type and all appropriate file systems. (Look at /etc/fstab, run
themount command, or examine /proc/filesystems to get an idea of what file systems you

are currently using.) If you downloaded the sources from the openMosix web page, you have
several sample configuration files. You can copy one of these over and use it as your starting
point. This will give you some reasonable defaults. You can also get a description of various
options (including openMosix options!) by looking in the Documentation/Configure.help file in
your source tree. As a general rule of thumb, if you don't need something, don't include it.

Once you have the configuration file, you are ready to build the image. You'll use the
commandsmake dep,make clean,make bzlmage,make modules, and make modules_install.
(You'll need modules enabled, since openMosix uses them.) If all goes well, you'll be left with
a file bzImage in the directory arch/i386/boot/ under your source tree.

The next to last step is to install the kernel, i.e., arrange for the system to boot from this new
kernel. You'll probably want to move it to the /boot directory and rename it. Since you are
likely to make several kernels once you get started, be sure to use a meaningful name. You
may need to create a ram-disk. You also need to configure your boot loader to find the file as
described earlier in this chapter. When copying over the new kernel, don't delete the original
kernel!

Now you are ready to reboot and test your new kernel. Pay close attention to the system
messages when you reboot. This will be your first indication of any configuration errors you
may have made. You'll need to go back to the configuration step to address these.

Of course, this is just the kernel you've installed. You'll still need to go back and install the
user tools and configure openMosix for your system. But even if you are compiling the kernel,
there is no reason you can't use the package to install the user tools.

Here is an example using Red Hat 9. Although Red Hat 9 comes with the 2.4.20 version of the
kernel, this example uses a later version of the kernel, openmosix-kernel-2.4.24-
openmosixl.src.rpm. The first step is installing this package.

[root @anny root]# rpm -vi h opennosi x- kernel-2. 4. 24- opennosi x1.src.rpm
1: opennosi x- ker nel HH TR PR R R R [1009
[root @anny root]# cd /usr/src/redhat/ SOJRCES
[root @anny SOURCES] # | s
kernel - 2. 4. 20-at hl on.confi g kernel -2. 4. 24-at hl on- snp. confi g

kernel - 2. 4. 20-at hl on-snp.config Kkernel -2.4.24-i386.config

kernel -2.4.20-i 386.config kernel -2.4.24-i 686. config
kernel-2.4.20-i686.config kernel -2.4.24-i 686-snp. config
kernel-2.4.20-i686-snp.config l'inux-2.4.24.tar. bz2

kernel -2. 4. 24-at hl on.config openMdsi x- 2. 4.24-1. bz2

As you can see, the package includes the source files, patches, and sample configuration files.
Next, unpack the files. (With some versions, you may need to use gunzip instead of bunzip2.)

[root @anny SOURCES] # bunzi p2 |inux-2.4.24.tar.bz2

[root @anny SQURCES] # bunzi p2 openMosi x- 2. 4. 24-1. bz2
[root @anny SCOURCES]# nmv |inux-2.4.24.tar /usr/src
[root @anny SOURCES]# cd /usr/src

[root @anny src]# tar -xvf linux-2.4.24. tar

The last command creates the directory linux-2.4.24 under /usr/src. If you are working with
different versions of the kernel, you probably want to give this directory a more meaningful
name.

The next step is to copy over the patch file and, if you desire, one of the sample configuration
files. Then, you can apply the patches.

[root @anny src]# cd /usr/src/redhat/ SOJRCES

[root @anny SOURCES]# cp openMosi x-2.4.24-1 [usr/src/linux-2.4.24/
[root @anny SOURCES] # cp kernel -2.4.24-i 686.config \

>/ usr/src/linux-2.4.24/.config

[root @anny SOURCES]# cd /usr/src/linux-2.4.24

[root @anny |inux-2.4.24]# cat openMosi x-2.4.24-1 | patch -Npl

You should see a list of the patched files stream by as the last command runs.

Next, you'll need to create or edit a configuration file. This example uses the supplied
configuration file that was copied over as a starting point.

[root @anny |inux-2.4.24]# nmeke nenuconfig

Make whatever changes you need and then save your new configuration.
Once configured, it is time to make the kernel.

[root @anny |inux-2.4.24]# nmake dep

[root @anny |inux-2.4.24]# meke cl ean

[root @anny |inux-2.4.24]# nmake bzl mage

[root @anny |inux-2.4.24]# meke nodul es

[root @anny |inux-2.4.24]# make nodul es_install

These commands can take a while and produce a lot of output, which has been omitted here.

The worst is over now. You need to copy your kernel to /boot, create a ram-disk, and
configure your boot loader.

[root @anny |inux-2.4.24]1# cd /usr/src/linux-2.4.24/arch/i 386/ boot/

[root @anny boot]# cp bzlmage /boot/vm inuz-8jul 04

If you haven't changed kernels, you may be able to use the existing ram-disk. Otherwise, use
themkinitrd script to create a new one.

[root @anny boot]# cd / boot

[root @anny boot]# nkinitrd /boot/initrd-2.4.24.ing 2.4.24-om

The first argument is the name for the ram-disk and the second argument is the appropriate
module directory under /lib/modules. See the manpage for details.

The last step is to change the boot loader. This system uses grub, so the file /etc/grub.conf
needs to be edited. You might add something like the following:

title My New openMosi x Ker nel
root (hdo, 0)
kernel /vm inuz-8jul 04 ro root=LABEL=/

initrd /initrd-2.4.24.iny

When the system reboots, the boot menu now has My New openMosi x Ker nel as an entry.
Select that entry to boot to the new kernel.

While these steps should be adequate for most readers, it is important to note that,
depending on your hardware, etc., additional steps may be required. Fortunately, there has
been a lot written on the general process of recompiling Linux kernels. See the Appendix A for
pointers to more information.

4@ FREY < Day Day Up > NE=T

< Day Day Up >

5.7 Is openMosix Right for You?

openMosix has a lot to recommend it. Not having to change your application code is probably
the biggest advantage. As a control mechanism, it provides both transparency to the casual
user and a high degree of control for the more experienced user. With precompiled kernels,
setup is very straightforward and goes quickly.

There is a fair amount of communication overhead with openMosix, so it works best on high-
performance networks, but that is true of any cluster. It is also more operating system-
specific than most approaches to distributed computing. For a high degree of control for
highly parallel code, MPI is probably a better choice. This is particularly true if latency
becomes an issue. But you should not overlook the advantages of using both MPI and
openMosix. At the very least, openMosix may improve performance by migrating processes to
less-loaded nodes.

There are a couple of other limitations to openMosix that are almost unfair to mention since
they are really outside the scope of the openMosix project. The first is the inherit granularity
attached to process migration. If your calculation doesn't fork off processes, much of the
advantage of openMosix is lost. The second limitation is a lack of scheduling control. Basically,
openMosix deals with processes as it encounters them. It is up to the user to manage
scheduling or just take what comes. Keep in mind that if you are using a scheduling program
to get very tight control over your resources, openMosix may compete with your scheduler in
unexpected ways.

In looking at openMosix, remember that it is a product of an ongoing and very active research
project. Any description of openMosix is likely to become dated very quickly. By the time you
have read this, it is likely that openMosix will have evolved beyond what has been described
here. This is bad news for writers like me, but great news for users. Be sure to consult the
openMosix documentation.

If you need to run a number of similar applications simultaneously and need to balance the
load among a group of computers, you should consider openMosix.

< Day Day Up >

< Day Day Up >

Chapter 6. OSCAR

Setting up a cluster can involve the installation and configuration of a lot of software as well
as reconfiguration of the system and previously installed software. OSCAR (Open Source
Cluster Application Resources) is a software package that is designed to simplify cluster
installation. A collection of open source cluster software, OSCAR includes everything that you
are likely to need for a dedicated, high-performance cluster. OSCAR takes you completely
through the installation of your cluster. If you download, install, and run OSCAR, you will have
a completely functioning cluster when you are done.

This chapter begins with an overview of why you might use OSCAR, followed by a description
of what is included in OSCAR. Next, the discussion turns to the installation and configuration
of OSCAR. This includes a description of how to customize OSCAR and the changes OSCAR
makes to your system. Finally, there are three brief sections, one on cluster security, one on
switcher, and another on using OSCAR with LAM/MPI.

Because OSCAR is an extensive collection of software, it is beyond the scope of this book to
cover every package in detail. Most of the software in OSCAR is available as standalone
versions, and many of the key packages included by OSCAR are described in later chapters in
this book. Consequently, this chapter focuses on setting up OSCAR and on software unique to
OSCAR. By the time you have finished this chapter, you should be able to judge whether
OSCAR is appropriate for your needs and know how to get started.

@ PREV < Day Day Up > MEXT mp

< Day Day Up >

6.1 Why OSCAR?

The design goals for OSCAR include using the best-of-class software, eliminating the
downloading, installation, and configuration of individual components, and moving toward the
standardization of clusters. OSCAR, it is said, reduces the need for expertise in setting up a
cluster. In practice, it might be more fitting to say that OSCAR delays the need for expertise
and allows you to create a fully functional cluster before mastering all the skills you will
eventually need. In the long run, you will want to master those packages in OSCAR that you
come to rely on. OSCAR makes it very easy to experiment with packages and dramatically
lowers the barrier to getting started.

OSCAR was created and is maintained by the Open Cluster Group

(http ://www.openclustergroup.org), an informal group dedicated to simplifying the installation
and use of clusters and broadening their use. Over the years, a number of organizations and
companies have supported the Open Cluster Group, including Dell, IBM, Intel, NCSA, and
ORNL, to mention only a few.

OSCAR is designed with high-performance computing in mind. Basically, it is designed to be
used with an asymmetric cluster (see Chapter 1). Unless you customize the installation, the
computer nodes are meant to be dedicated to the cluster. Typically, you do not log directly
onto the client nodes but rather work from the head node. (Although OSCAR sets up SSH so
that you can log onto clients without a password, this is done primarily to simplify using the
cluster software.)

While identical hardware isn't an absolute requirement, installing and
managing an OSCAR cluster is much simpler when identical hardware is
used.

Actually, OSCAR could be used for any cluster application—not just high-performance
computing. (A recently created subgroup, HA-OSCAR, is starting to look into high-availability
clusters.) While OSCAR installs a number of packages specific to high-performance computing
by default which would be of little use for some other cluster uses, e.g., MPl and PVM, itis
easy to skip the installation of these packages. It is very easy to include additional RPM
packages to an OSCAR installation. Although OSCAR does not provide a simple mechanism to
do a post-installation configuration for such packages, you can certainly include configuration
scripts if you create your own packages. There is a HOWTO on the OSCAR web site that
describes how to create custom packages. Generally, this will be easier than manually
configuring added packages after the installation. (However, by using the C3 tool set included
in OSCAR, many post-install configuration tasks shouldn't be too difficult.)

Because of the difficulty in bringing together a wide variety of software and because the
individual software packages are constantly being updated, some of the software included in
OSCAR has not always been the most current versions available. In practice, this is not a
problem. The software OSCAR includes is stable and should meet most of your needs.

WhileOSCAR was originally created using Red Hat Linux, a goal of the project is to move
beyond support for a single distribution and Mandrake Linux is now also supported. The
OSCAR project has shifted to SIS in order to eventually support most RPM-based versions of
Linux. But don't expect support for the latest Linux versions to be immediately available as
the new versions are released.

< Day Day Up >

http://www.openclustergroup.org

< Day Day Up >

6.2 What's in OSCAR

OSCAR brings together a number of software packages for clustering. Most of the packages

listed in this section are available as standalone packages and have been briefly described in
Chapter 2. Some of the more important packages are described in detail in later chapters as
well. However, there are several scripts unique to OSCAR. Most are briefly described in this

chapter.

Itis likely that everything you really need to get started with a high-performance cluster is
included either in the OSCAR tar-ball or as part of the base operating system OSCAR is
installed under. Nonetheless, OSCAR provides a script, the Oscar Package Downloader (opd)
that simplifies the download and installation of additional packages that are available from
OSCAR repositories in an OSCAR-compatible format. opd is so easy to use that for practical
purposes any package available through opd can be considered part of OSCAR. opd can be
invoked as a standalone program or from the OSCAR installation wizard, the GUI-based
OSCAR installer. Additional packages available using opd include things like Myrinet drivers
and support for thin OSCAR clients, as well as management packages like Ganglia. Use of opd
is described later in this chapter.

OSCAR packages fall into three categories. Core packages must be installed. Included
packages are distributed as part of OSCAR, but you can opt out on installing these packages.
Third-party packages are additional packages that are available for download and are
compatible with OSCAR, but aren't required. There are six core packages at the heart of
OSCAR that you must install:

Core

This is the core OSCAR package.

C3

The Cluster, Command, and Control tool suite provides a command-line administration
interface (described in Chapter 10).

Environmental Switcher
This is based on Modules, a Perl script that allows the user to make changes to the

environment of future shells. For example, Switcher allows a user to change between
MPICH and LAM/MPI.

oda

The OSCAR database application provides a central database for OSCAR.

perl-qt

This is the Perl object-oriented interface to the Qt GUI toolkit.

SIS

The System Installation Suite is used to install the operating systems on the clients
(described in Chapter 8).

OSCAR includes a number of packages and scripts that are used to build your cluster. The
installation wizard will give you the option of deciding which to include:

disable-services

This script disables unneeded services on the clients, such as kudzu,slocate, and malil
services such as sendmail.

networking

This script configures the cluster server as a caching nameserver for the clients.

ntpconfig

This script configures NTP. OSCAR uses NTP to synchronize clocks within the cluster.

kernel_picker

This is used to change the kernel used in your SIS image before building the cluster
nodes.

loghost

This configures syslog settings, e.g., it configures nodes to forward syslog messages to
the head node.

OSCAR provides additional system tools, either as part of the OSCAR distribution or through
opd, used to manage your cluster:

Autoupdate

This is a Perl script used to update clients and the server (similar to up2date or
autorpm).

clumon (by opd)

Clumon is a web-based performance-monitoring system from NCSA.

Ganglia (by opd)

Ganglia is a real-time monitoring system and execution environment (described in
Chapter 10).

MAUI

This job scheduler is used with openPBS.

Myrnet drivers (by opd)

If you have Myrnet hardware, you need to load drivers for it.

openPBS
The portable batch system is a workload management system (described in Chapter
11).

Pfilter

This package is used to generate sets of rules used for packet filtering.

PVFS (by opd)

Parallel Virtual File System is a high-performance, scalable, parallel virtual file system
(described in Chapter 12).

OPIUM

This is the OSCAR password installer and user management toolset.

thin client (by opd)

This package provides support for diskless OSCAR nodes.

Torque (by opd)

The Tera-scale Open-source Resource and QUEue manager resource manager is based
onopenPBS.

VMI (by opd)

The Virtual Machine Interface provides a middleware communications layer for SAN over
grids.

Of course, any high-performance cluster would be incomplete without programming tools. The
OSCAR distribution includes four packages, while two more (as noted) are available through
opd:

HDF5
This is a hierarchical data format library for maintaining scientific data.

LAM/MPI
This is one implementation of the message passing interface (MPI) libraries (described
inChapter 9).

MPICH

This is another implementation of the message passing interface (MPI) libraries (also

described in Chapter 9).

MPICH-GM (by opd)

This package provided MPICH with support for low-level message passing for Myrnet
networks.

MPICH-VMI (by opd)

This version of MPICH uses VMI.

PVM

This package provides the parallel virtual machine system, another message passing
library.

If you install the four included packages, the default, they should cover all your programming
needs.

Additionally, OSCAR will install and configure (or reconfigure) a number of services and
packages supplied as part of your Linux release.l1l These potentially include Apache,DHCP,
NFS,mySQL,openSSL,openSSH,rrdtool,pcp,php,python,rsync,tftp, etc. Exactly which of

these is actually installed or configured will depend on what other software you elect to install.
In the unlikely event that you are unhappy with the way OSCAR sets up any of these, you'll
need to go back and reconfigure them after the installation is completed.

[1]1 Sometimes OSCAR needs to make slight changes to packages. By convention, the replacement
packages that OSCAR uses have 0Scar as part of their names, e.g., lam-oscar-7.0-2.i586.rpm .

4 FREV < Day Day Up > MEXT mp

< Day Day Up >

6.3 Installing OSCAR

This section should provide you with a fairly complete overview of the installation process. The
goal here is to take you through a typical installation and to clarify a few potential problems
you might encounter. Some customizations you might want to consider are described briefly
at the end of this section. The OSCAR project provides a very detailed set of installation
instructions running over 60 pages, which includes a full screen-by-screen walkthrough. If you
decide OSCAR is right for you, you should download the latest version and read it very
carefully before you begin. It will be more current and complete than the overview provided
here. Go to http://oscar.openclustergroup.org and follow the documentation link.

Because OSCAR is a complex set of software that includes a large number of programs and
services, it can be very unforgiving if you make mistakes when setting it up. For some errors,
you may be able to restart the installation process. For others, you will be better served by
starting again from scratch. A standard installation, however, should not be a problem. If you
have a small cluster and the hardware is ready to go, with a little practice you can be up and
running in less than a day.

The installation described here is typical. Keep in mind, however, that your installation may
not go exactly like the one described here. It will depend on some of the decisions you make.
For example, if you select to install PVFS, you'll see an additional console window early in the
installation specific to that software.

6.3.1 Prerequisites

There are several things you need to do before you install OSCAR. First, you need to plan your
system.Figure 6-1 shows the basic architecture of an OSCAR cluster. You first install OSCAR
on the cluster's head node or server, and then OSCAR installs the remaining machines, or
clients, from the server. The client image is a disk image for the client that includes the boot
sector, operating system, and other software for the client. Since the head node is used to
build the client image, is the home for most user services, and is used to administer the
cluster, you'll need a well-provisioned machine. In particular, don't try to skimp on disk
space—OSCAR uses a lot. The installation guide states that after you have installed the
system, you will need at least 2 GB (each) of free space under both the / and /var directories
while 4 GB for each is recommended. Since the head is also the home for your users' files,
you'll need to keep this in mind as well. It is a good idea to put the /,/var, and /home
directories on separate disk partitions. This will simplify reinstalls and provide a more robust
server.

Figure 6-1. OSCAR architecture

http://oscar.openclustergroup.org

Chster

External
Network/Intermet

EE“‘EE

As you can see from the figure, the server or head is dual homed; that is, it has two network
interfaces. The interface attached to the external network is called the public interface. The
private interface attaches to the cluster's network. While you don't have to use this
configuration, be aware that OSCAR will set up a DHCP server on the private interface. If you
put everything on a public network with an existing DHCP server, you may have a war
between the two DHCP servers. The remainder of this chapter assumes you'll be using a
configuration like the one shown in Figure 6-1.

It is strongly recommended that you begin with a clean install of your operating system and
that you customize your OSCAR installation as little as possible the first time you install it.
OSCAR is a complex collection of software. With a vanilla installation, all should work well.
This isn't to say you can't do customizations, just do so with discretion. Don't be surprised if a
custom install takes a few tries to get right.

The installation documentation lists a few supported versions of Linux. Itis strongly
recommend that you stick to the list. For Red Hat, a workstation install that includes the
Software Development group and an X Windows environment should work nicely for the
server. (You may also want to add some network utilities such as VNC-server and Ethereal to
make life easier, and you may want to remove openOffice to discourage that kind of activity
on the cluster. That's your call; it won't affect your OSCAR installation either way.) You should
also do manual disk partitioning to ensure that you meet the space requirements and to
control the disk layout. (It is possible to work around some allocation problems using links,
but this is a nuisance best avoided.) Don't install any updates to your system at this point.
Doing so may break the OSCAR installation, and you can always add these after you install
OSCAR.

6.3.2 Network Configuration

Since you have two interfaces, you need to make sure that your network configuration is
correct. The configuration of the public interface, of course, will be determined by the
configuration of the external network. For example, an external DHCP server might be used to
configure the public interface when booting the server. For the cluster's network, use a private
address space distinct from the external address space. Table 6-1 lists reserved address
spaces that you might use per RFC 1918.

Table 6-1. Private IP address spaces

Address Spaces
10.0.0.0 to 10.255.255.255
172.16.0.0 to 172.31.255.255
192.168.0.0 to 192.168.255.255

By way of example, assume you have fewer than 255 computers and your organization's
internal network is already using the first address range (10. X. X X). You might select one of
the class C ranges from the third address range, e.g., 192. 168. 1. 0 through 192. 168. 1. 255.
The usual IP configuration constraints apply, e.g., don't assign the broadcast address to a
machine. In this example, you would want to avoid 192. 168. 1. 0 (and, possibly,

192. 168. 1. 255) . Once you have selected the address space, you can configure the private
interface using the tool of your choice, e.g., neat,ifconfig, or netcfg. You will need to set the
IP address, subnet mask, and default gateway. And don't forget to configure the interface to
be active on startup. In this example, you might use an IP address of 192. 168. 1. 1 with a
mask of 255. 255. 255. 0 for the private interface.[Z2l The public interface will be the gateway
for the private network. This will leave 192. 168. 1. 2 through 192. 168. 1. 254 as addresses for
your compute nodes when you set up DHCP. Of course, if you plan ahead, you can also
configure the interface during the Linux installation.

[2]1 while this is the simplest choice, a better choice is to use 192. 168. 1. 254 for the server and starting
atl92. 168. 1. 1 for the clients. The advantage is that the low-order portion of the IP addresses will
match the node numbers, at least for your first 253 machines.

Once you have the interfaces configured, reboot the server and verify that everything works.
You can use ifconfig -a to quickly confirm that both interfaces are up. If it is possible to put a
live machine on the internal network, you can confirm that routing works correctly by pinging
the machine. Do as much checking as you can at this point. Once the cluster is installed,
testing can be more difficult. You don't want to waste a lot of time trying to figure out what
went wrong with the OSCAR installation when the network was broken before you began.

Another pre-installation consideration is the security settings for the server you are building.
If you have the security set too tightly on the server, it will interfere with the client
installation. If you have customized the security settings on a system, you need to pay
particular attention. For example, if you have already installed SSH, be sure that you permit
root logins to your server (or plan to spend a lot of time at the server). If you can isolate the
cluster from the external network, you can just turn off the firewall.

Even if the installation goes well, you still may encounter problems later. For example, with
Red Hat 9, the default firewall settings may cause problems for services like Ganglia. Since
OSCAR includes pfilter, it is usually OK to just turn off Red Hat's firewall. However, this is a
call you will have to make based on your local security policies.

You should also ensure that the head node's host name is correctly set. Make sure that the
hostname command returns something other than | ocal host and that the returned name
resolves to the internal interface. For example,

[root @ny root]# /bin/host nane

any

[root @ny root]# ping -cl any

PING amy (172.16.1.254) 56(84) bytes of data.

64 bytes fromany (172.16.1.254): icnp_seq=1 ttl =64 tine=0.166 s

--- any ping statistics ---
1 packets transmtted, 1 received, 0% packet |oss, tine Ons

rtt mn/avg/ max/ ndev = 0.166/0. 166/ 0. 166/ 0. 000 ns

Notice that hostname returns any and that when amy is pinged, the name resolves to the
addressl72. 16. 1. 254.

It is also a good idea to make sure you have enough disk space before going on. You can use
thedf -h command. This is also a good point to do other basic configuration tasks, such as
setting up printers, setting the message of the day, etc.

6.3.3 Loading Software on Your Server

The next step is to get the software you will need onto the server. This consists of the OSCAR
distribution and the Linux packages you need to build the image for the client machines. For
the Linux packages, first create the directory /tftpboot/rpm and then copy over the packages.
It will be a lot simpler if you just copy everything over rather than try to figure out exactly
what is needed. For Red Hat 9, mount each of the three distribution disks and copy over the
all the RPM files from ../cdrom/RedHat/RPMS. The sequence looks like this:

[root@ny /root]# nkdir -p /tftpboot/rpm
[root @ny /root]# nmount /mmt/ cdrom

[root @ny /root]# cd / mt/cdrom RedHat / RPMS
[root @ny RPMS|# cp *.rpm /tftpboot/rpn

[root @ny RPMS| # cd /

[root@ny /]# eject cdrom

You repeat the last five steps two more times, once for each of the remaining CD-ROMs. If
your system automounts CD-ROMs, you'll skip the manual mounts. You'll copy more than
1,400 packages, so this can take a while with slower systems. (OSCAR will subsequently add
additional packages to this directory.)

If you are tight on disk space, you can install the packages on a different partition and link to
them. For example, if you've installed the packages in /var/tftpboot/rpm, you could do the
following:

[root @ny root]# nkdir /tftpboot/

[root@ny root]# In -s /var/tftpboot/rpm/tftpboot/rpm

Note that the directory, not the individual packages, is linked.

You can download the OSCAR package from http://oscar.sourceforge.net. You'll have the
option of downloading OSCAR with or without the sources (SRPMs) for most of the packages
in OSCAR. Since it is unlikely you'll need the sources and since you can download them
separately later should you need them, it is OK to skip them and go with the standard
download. We'll download to the /root directory, a safe place to install from.

Next, you will unpack the code

http://oscar.sourceforge.net

[root @ny root]# gunzip oscar-3.0.tar.gz

[root @ny root]# tar -xvf oscar-3.0.tar

This creates a directory, /root/oscar-3.0, which you should cd to for the next phase of the
installation process. You may also want to browse the subdirectories that are created.

6.3.4 A Basic OSCAR Installation

Before the installation wizard can be run the first time, it must be configured and installed.
Log in as root or use su - to become root. Change to the installation directory and run
configure and make install.

[root @ny root]# cd /root/oscar-3.0

[root @ny oscar-3.0]# ./configure

[root @ny oscar-3.0]# nmake install

Now you are ready to run the wizard.

At this point, it is generally a good idea to start another shell so the environment variables are
sourced from /etc/profile.d. To start the installation, change to the installation directory and
run the install_cluster script from a terminal window under X. The install_cluster script
expects the private interface as an argument. Be sure to adjust this parameter as needed.
Here is an example of starting the script:

[root @ny oscar-3.0]# cd $CSCAR HOME && pwd
/ opt / oscar

[root @ny oscar]# ./install_cluster ethl

The first time you run the wizard, you will be prompted for a password for the MySQL
database. Then, after a bit (depending on dependencies that need to be addressed), the
OSCAR GUI-style installation wizard will appear. It may take several minutes for the wizard to
appear. The console window from which the script was run will provide additional output, so
keep it visible. This information is also written to an install log in the OSCAR installation
directory.Figure 6-2 shows the wizard.

Figure 6-2. OSCAR Installation Wizard

Welcome to the OSCAR wizard!

Dowmload Additional OSCAR Packages... Help...
Select OSCAR Packages To Install... Help...
Configure Selected O3CAR Packages... Help...
Install OSCAR Server Packanes Help...
Build OSCAR Client Image... Help...
Defme O3CAR Chents... Help...

Setup Metworking... Help...

Belore conlinuing, nelwork bool all of your nodes.
Once they have completed installation, reboot them from
the hard drive. Once all the machines and their ethemet
adaptors are up, move on 1o the next step.

Step 7: Complete Custer Setup Help...
Step 8: Test Quster Setup Help...

The following buttons are Tor managing
your node definitions after the initial install.

Add OSCAR Qients... Helg...

Delete OSCAR Clients... Help...

Install/Uninstall 03CAR Packages... Help...
it

The Installation Wizard shows the basic steps that you will be going through to install your
cluster. You can get a helpful explanation for any step by using the adjacent Help... button.

6.3.4.1 Step 0: Downloading additional packages

Before the installation can proceed, you should download any third-party packages you'll want
usingopd. Since opd downloads packages over the Internet, you'll need a working Internet
connection to use it. Of course, if you are not interested in any of the third-party packages,
you can skip this step. Also, it is possible to add packages later. But it is generally simpler if
you do everything at once. You'll miss out on some very nice software if you skip this step.

Standalone opd

If you decide to run opd from the command line, you can find the command in the
scripts subdirectory.

[root @ny oscar]# scripts/opd

Runningopd as a standalone program the first time may prove tricky since, with a
fresh install, several Perl modules that opd needs may not be installed. If this is the
case, you'll get an error message. While you could manually install these modules, the

OSCAR installation script will also install them. If you run the wizard but stop it when
the wizard window opens, you'll get around this problem and you'll be able to run the
opd script.

Whenopd runs, after some initial output, it gives you a list of repositories for OSCAR
packages to select from. Enter the number for the repository of interest.

Please select a default repository:
1. NCSA OSCAR package repository
= => http://sponge. ncsa. uiuc.edu/ftp/oscar/repository/
2. thin-OSCAR package repository
= => http://thin-oscar. ccs. usher brooke. ca/ oscar - package/
3. GSC OSCAR package repository
= => http://ww. bcgsc. ca/ downl oads/ oscar/repository/
4. Open Systens Lab, Indiana University
= => http://ww. osl.iu. edu/ ~jsquyres/opd_repository/
5. Network & Quster Computing G oup, OCak Ridge National Laboratory
= => http://ww. csm ornl . gov/oscar/repository/
Sel ection (1-5): 1

Next, opd takes you to that repository. You should see some output as the connection
is made and then an opd> prompt. You can list the available packages with the | i st

command.

=> NCSA OSCAR package repository

= => http://sponge. ncsa. ui uc.edu/ ft p/ oscar/ repository/

=> 8 packages availabl e

opd>l i st

1. clumon 1.2.1-6 (5.2MB)

2. Myrinet Driver (GY) 2.0.9-1 (15. 4kB)
3. Maui 3.2.5p7-2 (18.5MB)

4. npich-gm 1.2.5-4 (15.4MB)

5. MPICH-W 2.0.b3pl-1 (15.7MB)

6. PVFS 1.6-3 (707. 9kB)

7. Torque 1.0.1p5-3 (5.5M)

8. VM 2.0.b3pl-1 (6.6MB)

To download a package (or packages), select the package by giving its number (or
numbers separated by commas), and then use the downl oad command to retrieve it
(or them).

opd>8
Package "W " is selected

opd>downl oad

You see a fair number of messages as the package(s) are downloaded.

10: 15:40 (157.47 KB/'s) - “/var/cachel/ oscar/ downl oads/ v 20b3pl-1.tgz. opd'
saved [6992096]

Successful!

- Checking size... K

- Checking MD5 sum .. OK

- Checking SHAL sum .. OK

- Saving to /var/cache/ oscar/dowl oads/vmi 20b3pl-1.tgz... XK

- Unpacking into /var/lib/oscar/packages/... OK

opd>qui t

Goodbye.

You can quit opd with the quit command. Other commands are listed with the hel p
command. Much of the output has been omitted in this example.

opd can be run as a separate program outside of the wizard or you can run it from the wizard
by clicking on the first button, Downloading Additional OSCAR Packages.... Generally, it is
easier to run opd from the wizard, so that's what's described here. But there are some rare
circumstances where you might want use the command-line version of opd, so there is a very
brief description in the accompanying sidebar.

When you open opd from the wizard, a window will appear as shown in Figure 6-3. Another
pop up will appear briefly displaying the message Downl oadi ng Packagel nf ormati on. . . as
the OSCAR repositories on the Internet are visited to see what packages are available. (Keep
in mind that packages are added over time, so you may see additional packages not shown or
discussed here.)

Using the downloader is straightforward. If you click on an item, it will display information
about the package in the lower pane, including a description, prerequisite packages, and
conflict. Just select the appropriate tab. In the upper pane, put a checkmark next to the
packages you want. Then click on the Download Selected Packages button. A new pop up will
appear with the message Downl oadi ng PackageFil e with a file name and a percentage. Be
patient; it may look like nothing is happening although the download is proceeding

normally I3l If you have a reasonable connection to the Internet, the download should go
quickly. The packages are downloaded to the directory /var/cache/oscar/downloads and are
unpacked in separate directories under /var/lib/oscar/packages/.

[3]1 The percentage refers not to an individual package download but to the percentage of the total number
of packages that have been downloaded. So if you are downloading five packages, the percentages will
jump by 20 percent as each package is retrieved.

6.3.4.2 Step 1. Package selection

The next step is to select the packages you want to install. When you click on the Select
OSCAR Packages to Install... button, the Oscar Package Selection window will

be displayed as shown in Figure 6-4. This displays the packages that are available (but not the
individual RPMs).

Figure 6-3. OSCAR's GUI for opd

b OSCAR Package Downloader -2 X
Flla

OSCAR Package Downloader

™ Refresh Table | By Download Selected Packages |
Package Name |Elass |"."¢r5|oﬂ | Repasitory |“
I~ cluman third-pan 1.2.1-6 NCSA OSCAR package repository

- clumon third-pan 1.2.1-6 Open Systems Lab, Indiana University

¥ ‘ganglia! third-pan 2.5.6-1 GSC OSCAR package reposiiony

™ M third-pan 3,2.5p7-, NCSA OSCAR package repository

I~ Maui third-pan 3,2.5p7-. Open Systems Lab, Indiana University

I rpich-gen third-par 1.2.54 NCSA OSCAR package repository

I~ mpich-grm third-pan 1.2.5< Network & Cluster Computing Group, Oak Ridge Mational Laboratory

™ MPICH- VR third-pan 2.0.b3pl NCSA OSCAR package repository j

SInformation Y Provides Y Conflicts Y Requires W Packager

Ganglia is a scalable distibuted monitoing system far high-pedormance computing systems such as
clusters and Grids,

lel

Exit |

Figure 6-4. OSCAR's package selector

B2 05CoR Package selecor o PR

OSCAR Package Selector
Package Set: |Default »| Manage 5et5-|

Package Mame Class Loc ation™ersion -t
o OSCAR 4.8.2-6
¥ base core OS5CAR 1-2
N Cone OSCAR 4.0.1-2
v clumon third-pamy OPD 1.2.15
Dizable Uncommon Client Mode Services included OSCAR 1.1-1
Emvironment Switcher core O5CAR 1.0.7-1
ganglia third-party OPD 2.5.6-1
% hefs Included OSCAR 1.6-2 =]

[Information Y Provides Y Conflicts W Requires Y Packager

This package contains the script cluster_update, used

of an OSCAR cluster to update the server and clients without having (o
wiorfy aboul autcupdate syntax.

3 Exit |

L >

The information provided in the lower pane is basically the same as that provided by the
OSCAR Package Downloader window, except the information is available for all the packages.
The check boxes in the upper pane determine whether the packages are to be installed. Any
package that you added with opd will also be included in the list, but by default, will not be
selected. Don't forget to select these. If you haven't downloaded any packages, you probably
won't need to change anything here, but scroll down the list and carefully look it over. If there
is something you don't need or want, disable it. But keep in mind that it is generally easier to
include something now than to go back and add it later. Don't bother trying to remove any of
OSCAR's core packages; OSCAR won't let you. And it is strongly recommended that you don't
removepfilter. (If you have a compelling reason not to include pfilter, be sure to consult the
installation manual for additional details explaining how to do this correctly.)

OSCAR constructs an image for client nodes, i.e., a copy of the operating system files and
software that will be installed on the client. With OSCAR, you can build multiple images. If you
are going to build multiple images, it is possible to define different sets of installation
packages. The drop-down box at the top of the window allows you to select among the sets
you've defined. You can define and manipulate sets by clicking on the Manage Sets button at
the top of the window. A pop-up window, shown in Figure 6-5, allows you to manipulate sets,
etc. The easiest way to create a new set is to duplicate an existing set, rename the set, and
then edit it.

Figure 6-5. Managing package sets

Default Duplic ate

L J

6.3.4.3 Step 2: Configuring packages

Step 2 is the configuration of selected OSCAR packages. All in all, the default configurations
should meet most users' needs, so you can probably skip this step. Figure 6-6 shows the
configuration menu. Most packages do not require configuration at this point and are not
included in the menu.

Figure 6-6. Package configuration

hl Oscar Package Confia [CRil=E S

P

O5CAR Package Configuration

Config... | Environment Swiltcher
Config... | ganglia

Config... | kemel_picker

Config... |mipconfig

Config... | PYFS

Daone

5 =

In this example, only five of the packages need or permit additional configuration. Each of
these, if selected, will generate a window that is self-explanatory. The Environment Switcher
allows you to select either LAM/MPI or MPICH as the default. Since a user can change the
default setting, your selection isn't crucial. The switcher script can be run on the command
line and is described later in the chapter.

Thekernel_picker is potentially a complicated option. Fortunately, if you are using the default
kernel, you can ignore it completely. Basically, the kernel_picker allows you to change kernels
used when building system images. You could use it to install a previously built kernel such as
one configured with the openMosix extensions. The kernel_picker window is shown in Figure
6-7. (See the kernel_picker(1) manpage for more information.)

Figure 6-7. GUI for kernel_picker

Configuration for kemel_picker

Select the Kernel for the Image

The default kernels (ie. vmlinux) specified in the RPM list work for most machine configurations.
However, there are accasions when you want to Install 2 custem kemel inte the image file. Here, you
can choose to use the default kemnel or a different kemel.

Choose the kernel to install in the image:

« % Default kemel from RPN

Eemel file matching the currently running kemel
- fhaotfemlimee-2.4 2005
o o fhootfvmlinuz-2.4.20-5

Alternate kernel file:

o™ |

If you selected a kernel ather than the Default, enter the fallowing information:

® Use loadsble madules: <¥es | No-—> &

[fusing loadakble modules, enter the following mformation:
* Kemel version number: 24.20-6
* Loadable modules path ; Mib/modules? 4.20-6
. S;rsmnmapﬁ.lm:uptimalﬂ

Reset Form

Default Configuration | Canced
=

=

Figure 6-8 shows the ntpconfig window. The ntpconfig option allows you to specify the
address of NTP servers used by the cluster server. While the server synchronizes to an
external source, the clients synchronize to the cluster server. There are several default NTP
servers listed with check boxes, and you can enter your own choices. In this example,
salieri.wofford.int has been added. If you have a local timeserver, you'll certainly want to use
that instead of the defaults, or if you know of a "closer” timeserver, you may prefer to use it.
But if in doubt, the defaults will work.

Figure 6-8. Configuring NTP

Configuration for ntpcontig

Select NTP Servers

The ntpconfig package sets up nip (the MNetwerk Time Protocal) en your cluster so that all of your machines
will be synchronized to the seme time. Howrever, we also would bke the OSCAR server node's time to be
synchronized with the rest of the warld. In order to do that, we need to specify at least one public NTP
server to which we can cormect

Helow are three public NTF servers that should wwork just ine for most people. However, you can
seleci/deselect these servers as you like. You can alsa 2dd ather servers to the list in the text box below. In
the text box, enter one server per line.

MNOTE: You must have at least one NTP server selectedfentered or by default you get the tree general
uge pubkc NTP gervers below.

lﬂen.em] Use Public NTP Servers

nfp-1.c80,uiuc. adu
ntpll.cormell.edu

Ot CInr.gov
Additional/Alternate NTP Servers

Enter addiionsl FQDMNe (fully qualified dormain names) or [P addresses of NTP servers that you would like
touse. Enter ane server per kne.

zsalieri. wofford. int

Resed Form

Default Configuration Cancel Sawve

= _

Pretty much everyone can expect to see the three choices just described. If you have added
additional packages, you may have other choices. In this example, the packages for Ganglia
and PVFS were both added, so there are configuration windows for each of these. (With
Ganglia you can change the naming information and the network interface used to reach the
client nodes. With PVFS you can change the number of 1/0 servers you are using.)

When you complete a step successfully, you should see a message to that effectin the
console window, as shown in Figure 6-9. For some steps, there is also a pop-up window that
tells you when the step is finished. While the first two steps are optional, in general be very
careful not to go to the next step until you are told to do so. The console window also displays
error messages. Unfortunately, the console can be a little misleading. You may see some
benign error messages, particularly from rpm and rsync, and occasionally real error messages
may get lost in the output. Nonetheless, the console is worth watching and will give you an
idea of what is going on.

Figure 6-9. Console window during installation

i .
R e - M m

Eile Edit View Teriinal Go Help

==» About to run Jopt/oscar/packages/kernel_picker/scripts/pre_configure for ker
nel_picker
warning: JStitpboot/rpm/redhat-release-9-3.1386.rpm: V3 DSA signature: MNOEEY, key
1D db42aG0e

[OSCAR: :PackageBest :: Line 407] Reading package directory

[DSCAR: :PackageBest :: Line 419] Reading cache file,

[OSCAR: :PackageBest :: Line 432) Comparing cache to directory.
[OSCAR: :PackageBest :: Line 457] Writing mew cache file.
62750 blocks

--> About to rum Jopt/oscar/packages/switcher/scripts/pre_configure for switcher
—--» About to run jvar/lib/oscar/packages/pvis/scripts/post_configure for pvfs
Building PVFS rpm...

pvfs e e s S
—-» About to run Jopt/oscar/packages/switcher/scripts/post_confipure for switche
r

Setting default for tag mpi ("lam-7.0")

Tag "mpi" does not seem o exist yet. Skipping.

-=> Step 2: Completed successfully H

-

6.3.4.4 Step 3: Installing server software

In Step 3, you will install all the packages that the server needs and configure them. There
are no fancy graphics here, but you will see a lot of activity in the console window. It will take
several minutes to set up everything. A pop-up window will appear, telling you that you were
successful or that there was an error, when this step completes. If all is well, you can close
the popup window and move on to the next step. If not, you'll need to go to the console
window and try to puzzle out the error messages, correct the problem, and begin again. You
should need to run this step only once.

6.3.4.5 Step 4: Building a client image

In Step 4, you build the client image. The client image is all the software that will be installed
on a client, including the operating system. Since it is possible to create multiple client
images, you are given the option to specify a few details as shown in Figure 6-10. You can
specify image names if you have multiple images, the location of the packages used to build
the image, and the names of the package list and disk partition files. These last two files are
described later in this chapter. The defaults are shown in the figure. If you aren't building
multiple images, you can probably stick with the defaults. You can also determine how the IP
addresses of the clients are set and the behavior of the clients once the installation completes.
Your choices are dhcp,static, and replicant. With static, the IP addresses will be assigned to
the clients once and for all at the time of the installation. This is the most reasonable choice.
dhcp used DHCP to set IP addresses, while replicant doesn't mess with addresses. The next
button allows you to turn multicasting on or off. The possible post-install actions are beep,
reboot, or shutdown. With beep, the clients will unmount the file system and beep at you until
rebooted.reboot and shutdown are just what you would expect. All in all, OSCAR's defaults
are reasonable. When you have made your selection, click on Build Image.

Figure 6-10. Creating client images

Fill out the following fields to build a System Installation
Suite image. If you need help on any field, click the help
button next to it

Image Hame: OsCAMmage Help
Packane File: Joploscaroscarsamples/ Choose a Fle... | Help
Packages Directory: fpboot/rpm Help
Digk Partition File: Soptogcaroscarsamples’ Choose a Ale... | Help
IP Assigrment Method: static Helgp
Multicasting: off Help
Post Install Action: beep Help
Reset Build Image Close

L L

OSCAR uses SIS to create the image. Unlike our example in Chapter 8, you do not need to
create a sample system. Image creation is done on the server.

This step takes a while to complete. There is a red bar that grows from left to right at the
bottom of the window that will give you some idea of your progress. However, you will be
done before the bar is complete. Another pop-up window will appear when you are done.
You'll run this step once for each different image you want to create. For most clusters, that's
one image. Keep in mind that images take a lot of space. Images are stored in the directory
/var/lib/systemimager/images.

6.3.4.6 Step 5: Defining clients

Once you have built the image, things should start going a lot faster. Step 5 defines the scope
of your network. This is done using the window shown in Figure 6-11. If you have multiple
images, you can select the image you want to use in the first field. The next five fields are
used to specify how node names will be constructed. The host name is constructed by
appending a number to the base name. That number begins at the start value and is padded
with leading zeros, if needed, as specified by the padding field. The domain name is then
appended to the node name to form the fully qualified domain name or FQDN. The number of
hosts you create is specified in the fourth field. In this example, four nodes are created with
the names nodel.oscar.int,node2.oscar.int,node3.oscar.int, and node4.oscar.int. (With
padding set to 3, you would get node0OO01l.oscar.int, etc.) OSCAR assumes that hosts are
numbered sequentially. If for some reason you aren't building a single block of sequential
hosts, you can rerun this step to build the block's hosts as needed.

The last three fields are used to set IP parameters. In this example, the four hosts will have IP
addresses from 172. 16. 1. 1 through 172. 16. 1. 4 inclusive.

Figure 6-11. Defining OSCAR clients

livvage Mo el] Helj
Domain Mame: oscarint Help
Basa Hame: e Help
Number of Hosts: |4 | Help
Starting Number: 1 Help
Pacdding; 0 Help
Starting 1P: 172.168.1.1 Help
Subnet Mask: (2552552550 Help
Default Gateway: 172.16.1.254 Help
Reset Addclients Close

L =

Once you have the fields the way you want them, click on the Addclients button. You should
see a small pop-up window indicating that you were successful. If so, you can close the pop-
up window and the client definition window and go on to the next step.

6.3.4.7 Step 6: Setting up the network

Step 6, shown in Figure 6-12, sets up the DHCP server and maps IP addresses to MAC
addresses. (It is possible to run OSCAR without configuring the head as a DHCP server, but
that isn't described here.) This step requires several substeps. First, you will need to collect
theMAC or Ethernet addresses from the adapters in each of the client machines. You can do
this manually or use OSCAR to do it. If you select the Collect MAC Addresses button and then
power on each client, OSCAR will listen to the network, capture MAC addresses from DHCP
requests, and display the captured addresses in the upper left pane. However, if no DHCP
requests are generated, the machines won't be discovered. (Be sure to turn this option off
when you have collected your addresses.) Under some circumstances, it is possible to collect
MAC addresses from machines not in your cluster. If this happens, you can use the Remove
button to get rid of the addresses you don't want. If you collect the MAC addresses, be sure
to save them to a file using the Export MACs to file... button.

Figure 6-12. Setting up networking

MAC fubdress Collection Tool. When a new MAC address is received on the
network, it will appear in the left column. To assign that MAC address to a
maching highlight the address and the machine and cick ‘Assign MAC to Node'.

Hot Ustening 1o Netvwiork. Qick "Collect MAC Addresses’ 10 start.

num:c?m:nnsﬁ I TR AR - B e Al
00:08:c7:07:75:c0 H-node? oscar.int

—ethil mac = 00:08:cF07:
—ethip = 172.16.1.2

—ethl ip = 172.16.1.3
EH-noded oscar.int

—ethl mac =
—ethlip = 172.16.1.4

Femo ue Remcoue ALl
Collect MAC Addresses Assign all MACs Cose

Aszign MAC to Node Delete MAC from Hode Configure DHCP Server
Import MACS from file... Export MACS to file... Enable MMulticasting

Helow are commands 1o create a bool environment.
You can either boot from floppy or network

L&lid Autoinstall Floppy... Setup Network, Boot o Dynamic DHCP wdate_ll

Alternately, if you know the MAC addresses, you can enter them into a file and read the file
with the Import MACs from file... button. To create the file, just put one MAC address on a line
with the fields separated by colons. Here is part of a MAC file:

00: 08:c7:07: 6e: 57
00: 08:c7:07:68: 48
00:08:¢c7:07:¢cl1.73

00: 08:c7:07: 6f: 56

OSCAR can be picky about the format of these addresses. (If you are collecting MAC
addresses rather than importing them from a file, it is a good idea to export the collected MAC
addresses. In the event you want to reinstall your clusters, this can save some work.)

Once you have the MACs, you'll need to assign them to the clients displayed in the top right
pane. You can do this all at once with the Assign all MACs button, or you can do it individually
with the Assign MAC to Node button. While the first method is quicker, you may prefer the
second method to better control which machine gets which address. With the second method,
click on a MAC address to select it, click on a client's interface, and then click the Assign MAC
to Node button. Repeat this step for each client.

If the Dynamic DHCP update checkbox is selected, then each time you assign an MAC
address, the DHCP server is refreshed. If not selected, then once you have configured your
nodes you can click on Configure DHCP Server. OSCAR creates the DHCP configuration file
/etc/dhcpd.conf and starts DHCP. If you already have a DHCP configuration file, OSCAR will
save it as dhcpd.conf.oscarbak before creating the new file.

SIS is used to push files to the nodes. By default, images are transferred using rsync. It is
also possible to distribute images using flamethrower, a multicast-based program. Because
the multicast facilities are still somewhat experimental, rsync is the recommended method for
new users. If you elect to use flamethrower, you'll need to ensure that your network is
properly configured to support multicasting. If the Enable Multicasting checkbox is selected,

flamethrower is used to push files. If it is unselected, rsync is used. Chapter 8 provides a
detailed description of SIS and rsync.

Next, you'll need to create an autoinstall diskette. When the potential client machines are
booted with this diskette, the process of downloading their image begins. Click on the button
in the lower left of the window and a new window will take you through the creation of the
floppy. Use the default standar d when prompted for a flavor. If you have a large cluster, you
should create several diskettes so you can install several systems at once.

The next step installs the software on the individual machines. This step
will overwrite the existing system! Are you sure you are ready to do this?

You are through with the Mac Addr ess Col | ecti on window but there is one more thing you
must do before going to the next step—install the image on your clients. While this sounds
formidable, it is very straightforward with OSCAR. Just insert the floppy you just created and
reboot each system.

You should see a "SYSLINUX 2.0 Screen" with a boot prompt. You can hit return at the
prompt or just wait a few seconds. The system will go to the OSCAR server and download and
install the client operating system. Repeat this process with each system. You can do all your
clients at the same time if you wish. The boot floppy is only used for a couple of minutes so
once the install is on its way, you can remove the floppy and move on to another machine. If
you have several floppies, you can get a number of installations going very quickly. The
installation will depend on how many clients you have, how fast your network is, and how
many packages went into your cluster image, but it should go fairly quickly.

"'_—‘~ You may need to go into the ROM startup menu and change the client's
s boot configuration so it will boot from a diskette. If you do, don't forget
N -
‘. 4: to change it back when you are done.

When a client's image is installed, the machine will start beeping. If you haven't already
removed the floppy, do so now and reboot the system. The filesystems on the clients will not
be mounted at this point so it is safe to just cycle the power. (Actually, you could have set the
system to automatically reboot back in Step 4, but you'll need to make sure the floppy has
been removed in a timely manner if you do so.)

6.3.4.8 Step 7: Completing the setup

Once all the clients have booted, there are a few post-install scripts that need to be run. Just
click on the button. After a few minutes, you should get the popup window shown in Figure 6-
13. Well done! But just to be on the safe side, you should test your cluster.

Figure 6-13. Success!

vll-2'x

successtully
completed
the cluster
install

Close

6.3.4.9 Step 8: Testing

Step 8 tests your cluster. Another console window opens and you see the results from a
variety of tests. Figure 6-14 shows what the output looks like early in the process. There is a
lot more output that will vary depending on what you've installed. (Note that you may see
some PBS errors because the PBS server is initially shutdown. It's OK to ignore these.)

Figure 6-14. Testing the cluster

v e _ = X |

[PASSED]
[PASSED]
[PFSED]
[PASSED]

[PASSED]
[PASSED]
[PASSED]
[|

Congratulations! You have an OSCAR cluster up and running! This probably seems like a
complicated process when you read about it here, but it all goes fairly quickly. And think for a
moment how much you have accomplished.

If something may goes wrong with your installation, OSCAR provides a start_over script that
can be used to clean up from the installation and give you another shot at installing OSCAR.
This is not an uninstaller. It will not return your machine to the pristine state it was in before
the installation but should clean things up enough so that you'll be able to reinstall OSCAR. If
you use this script, be sure to log out and back onto the system before you reinstall OSCAR.
On the other hand, you may just want to go back and do a clean install.

6.3.5 Custom Installations

As should be apparent from the installation you just went through, there are several things
you can do to customize your installation. First, you can alter the kernel using kernel_picker.
For example, if you want to install the openMosix kernel on each system, you would begin by
installing the openMosix kernel on the head node. Then, when installing OSCAR, you would
usekernel_picker to select the openMosix kernel. This is shown in Figure 6-15.

Figure 6-15. Using the openMosix kernel

Configuration Tor kemel_picker

Select the Kernel for the Image

The default kemels (ie. vmiinoe) specified in the RPM Est work for most machine configurations, Howeser,
there are occasions when you want to install & castem kemel info the image file. Here, you can chooss to use
the default kernel or a different kernel.

Choose the kermel to install in the image:

. Deeteilt kemel from REM
Eemel file matching the currently ninning kernel:
. Jooctvrmlinug-2 4 20-6
. Jhootfrmlinue-2.4.20-4
Alternate kernel file:
» #* Mootvmlinuz-2 4 24-0panmsogia

[Eyou selected a kernel other than the Default, enber the following infermation:

® [Ise loadable modules : o=Yes | No-» @
* [fuging loadable modules, enter the fallowing nfarmation:
+ Femel version nomber ;[2.4.24
[oadable modules path : Jlil'modules’z 4 23-openmosi=]
* Systernnap file (opticnal) ; bootSystemmap-2.4 24-openmasi<l

Reset Form

Defanlt Configuration cancel Save

=

Of course, for a new kernel to boot properly, you'll need to ensure that the appropriate kernel
load modules are available on each machine. For openMosix, you can do this by installing the
openMosix package.

Fortunately, it is straightforward to change the packages that OSCAR installs. For example, if
you are installing the openMosix kernel, you'll want the openMosix tools as well. If you look
back at Figure 6-10, one of the fields was Package File. In the directory
/opt/oscar/oscarsamples there are several files, one for each supported Linux distribution.
These files contain the packages that will be installed by OSCAR. For example, for Red Hat 9
the file is redhat-9-i386.rpmlist. If there are some additional packages that you would like to
install on the cluster nodes, you can make a backup copy of the desired lists and then add
those packages to the list. You should put one package per line. You need to include only the
package name, not its version number. For example, to install the openMosix tools package,
you could add a line with opennosi x-t ool s (rather than opennosi x-t ool s-0. 3. 5-

1.i 386. rpn). The package list is pretty basic, which leads to a quick install but a minimal
client. Of course, you'll need to make sure the packages are in (or linked to) the
/tftpboot/rpm directory and that you include all dependencies in the package list.

While you are in the /opt/oscar/oscarsamples directory, you can also alter the disk setup by
editing either the sample.disk.ide or sample.disk.scsi file. For example, if you have an IDE
drive and you want to use the ext3 file system rather than ext2, just change all the ext 2
entries to ext 3 in the file sample.disk.ide. Of course, unless you have a compelling reason,
you should probably skip these changes.

6.3.6 Changes OSCAR Makes

It is pretty obvious that OSCAR has just installed a number of applications on your system. As
you might expect, OSCAR made a number of additional, mostly minor, changes. It will
probably take you a while to discover everything that has changed, but these changes
shouldn't cause any problems.

While OSCAR tries to conform to standard installation practices, you won't get exactly the
same installation and file layout that you might have gotten had you installed each application
individually. The changes are really minimal, however. If you've never done individual
installations, the whole issue is probably irrelevant unless you are looking at the original
documentation that comes with the application.

You can expect to find most configuration files in the usual places—typically but not always
under the /etc directory. Configuration files that OSCAR creates or changes include c3.conf,
crontab,dhcpd.conf,gmetad.conf,gmond.conf,ntp.conf,ntp/step-tickers,pcp.conf,
pfilter.conf,ssh/ssh_config, and files in xinetd.d. OSCAR will also update /etc/hosts,
/etc/exports, and /etc/fstab as needed.

Several of the packages that are installed require accounts, which are created during the
install. Take a look at /etc/passwd to see which accounts have been added to your system.
For the global user profiles, OSCAR includes a link to a script to set up SSH keys and adds
some paths. You might want to look at /etc/profile.d/ssh-oscar.sh and /etc/profile.d/ssh-
oscar.csh. OSCAR restarts all affected services.

6.3.7 Making Changes

There are three more buttons above the Quit button on the wizard. Each does exactly what
you would expect. The Add OSCAR Clients... adds additional nodes. Adding a node involves
three, now familiar steps. When you select Add OSCAR Clients... you'll get the menu shown in

Figure 6-16.

Figure 6-16. Adding nodes

L

b Add Oscar Nodes - 00X

Perform the following steps to add nodes to your OSCAR cluster
Slep 1: Define O3CAR (ients ... Help...
Step 2: Setup Hetworking.., Help...

Before continuing, network boot all of vour nodes.
Once they have completed installation, reboot them from
the hard drive. Once all the machines and their ethemet
adaptors are up, move on o the next step.

Step 3 Complete Cluster Setup Help...

L Close =LI

The first step defines the client or range of clients. You'll get the same menu (Figure 6-11)
you used when you originally set up clients. Be sure you set every field as appropriate.
OSCAR doesn't remember what you used in the past, so it is possible to end up with
inconsistent host names and domains. (If this happens, you can just delete the new nodes
and add them again, correcting the problem, but be sure to exit and restart OSCAR after
deleting and before adding a node back.) Of course, you'll also need to set the starting node
and number of nodes you are adding. In the second step, you map the MAC address to a
machine just as you've done before (see Figure 6-12). Finally, with the last step you run the
scripts to complete the setup.

Deleting a node is even easier. Just select the Delete OSCAR Clients... button on the wizard.
You'll see a window like the one shown in Figure 6-17 listing the nodes on your cluster. Select
the nodes you want to delete and click on the Delete clients button. OSCAR will take care of
the rest. (Deleting a node only removes it from the cluster. The data on the node's hard disk
is unaffected as are services running on the node.)

Figure 6-17. Deleting nodes

In oriler to delete O5CAR clients

from your cluster, select the nodes
you wish to delete and press the

—

|

N

Delete Cients button.
nioded
noded?2
noded3
nodel4

Llhlaledhmts | unm_]u

Figure 6-18. Adding and removing packages

£ installjUninstall OSCAR Packages : == =]
Install/Uninstall Packages
|F‘a-:ka.ge MName | Class [leatlnnﬂ.ferslon =
¥ autoupdate included OSCAR 4.8.2-6
I¥ base cofe OSCAR 1-2
¥ c3 cone OSCAR 4.0.1-2
¥ clumon third-party OPD 12,16
I¥ Dizable Uncommon Client Mode Services included O5CAR 1.1-1
I¥ Environment Switcher cofe OSCAR 1.0.7-1
I¥ ganglia third-party OPD 2.5.6-1
7 hdis included OSCAR 1.62 =
[Informaricn Y Provides ' Conflicts Y Requires Y Packager)
5 Execute > Cancel |

Finally, you can install and uninstall packages using the Install/Uninstall OSCAR Packages...
button. This opens the window shown in Figure 6-18. Set the checkbox and click on the
Execute button. Any new packages you've checked will be installed, while old packages you've
unchecked will be uninstalled. This is a new feature in OSCAR and should be used with

caution.

< Day Day Up >

< Day Day Up >

6.4 Security and OSCAR

OSCAR uses a layered approach to security. The architecture used in this chapter, a single-
server node as the only connection to the external network, implies that everything must go
through the server. If you can control the placement of the server on the external network,
e.g., behind a corporate firewall, you can minimize the threat to the cluster. While outside the
scope of this discussion, this is something you should definitely investigate.

The usual advice for securing a server applies to an OSCAR server. For example, you should
disable unneeded services and delete unused accounts. With a Red Hat installation, TCP
wrappers is compiled into xinetd and available by default. You'll need to edit the
/etc/hosts.allow and /etc/hosts.deny files to configure this correctly. There are a number of
good books (and web pages) on security. Get one and read it!

6.4.1 pfilter

In an OSCAR cluster, access to the cluster is controlled through pfilter, a package included in
the OSCAR distribution. pfilter is both a firewall and a compiler for firewall rulesets. (The
pfilter software can be downloaded separately from http://pfilter.sourceforge.net/.)

pfilter is run as a service, which makes it easy to start it, stop it, or check its status.

[root @ny root]# service pfilter stop

Stopping pfilter: [XK]
[root @ny root]# service pfilter start

Starting pfilter: [&K]
[root @ny root] # service pfilter status

pfilter is running

If you are having communications problems between nodes, you may want to temporarily
disablepfilter. Just don't forget to restart it when you are done!

You can request a list of the chains or rules used by pfilter with the service command.

[root @ny root]# service pfilter chains

table filter:

This produces a lot of output that is not included here.

The configuration file for pfilter,/etc/pfilter.conf, contains the rules used by pfilter and can be
edited if you need to change them. The OSCAR installation adds some rules to the default
configuration. These appear to be quite reasonable, so it is unlikely that you'll need to make

http://pfilter.sourceforge.net/

any changes. The manpages for pfilter.conf(5) and pfilter.rulesets(5) provide detailed
instructions should you wish to make changes. While the rules use a very simple and readable
syntax, instruction in firewall rulesets is outside the scope of this book.

6.4.2 SSH and OPIUM

Within the cluster, OSCAR is designed to use the SSH protocol for communications. Use of
older protocols such as TELNET or RSH is strongly discouraged and really isn't needed.
openSSH is set up for you as part of the installation. OPIUM, the OSCAR Password Installer
and User Manager tool, handles this. OPIUM installs scripts that will automatically generate
SSH keys for users. Once OSCAR is installed, the next time a user logs in or starts a new
shell, she will see the output from the key generation script. (Actually, at any point after Step
3 in the installation of OSCAR, key generation is enabled.) Figure 6-19 shows such a login.
Note that no action is required on the part of the user. Apart from the display of a few
messages, the process is transparent to users.

Figure 6-19. Key setup upon login

b roolSamy;- - 0%
File Edit View Termminal Go Help

generating ssh file froots.ssh/id dsa ... |
Generating public/private desa key pair.

Tour identification has been saved in /root/.ssh/id_dsa.
Your public key has been saved in /root/.ssh/id_dsa.pub.
The key fingerprint is:

a5:4b:31:3d:43:e3:47 :8b:93:36:54:6e:ee:69:57: 79 rootlamy
generating ssh file froot/.ssh/identity ...

Generating public/private rsal key pair.

Your identification has been gaved in /root/.ssh/identity.
Your public key has been saved in /root/.ssh/identity.pub.
The key fingerprint is:
R5:7e:ad:ec:hi:db: 53 1dade: 53 :db :0f :05:40: 31 1 hé rootRamy
generating esh file /root/.ssh/id rsa ...

Generating public/private rsa key pair.

Your identificatiom has been saved in Sroot/.ssh/id_rsa.

Your public key has been saved in /root/.ssh/id_rsa.pub.

The key fingerprint is:

d3:70:36:ec:34:83:61:2c:ba:0b:14:08:84:20:b3:B6 roothamy
adding id to ssh file /root/.ssh/authorized_keys2

adding id ta ssh file froct/.ssh/authorized_keys

adding id to ssh file /reet/.ssh/authorized keys2
[root@any root]# I

- B

Once you set up the cluster, you should be able to use the ssh command to log onto any node
from any other node, including the server, without using a password. On first use, you will see
a warning that the host has been added to the list of known hosts. All this is normal. (The
changes are saved to the directory /etc/profile.d.)

TheopenSSH configuration was not designed to work with other systems
such as Kerberos or NIS.

In addition to setting up openSSH on the cluster, OPIUM includes a sync_users script that
synchronizes password and group files among the cluster using C3 as a transport mechanism.
By default, this is run every 15 minutes by cron. It can also be run by root with the - -f or ce

option if you don't want to wait for cron. It cannot be run by other users. OPIUM is installed in
/opt/opium with sync_users in the subdirectory bin. The configuration file for sync_users,
sync_user.conf, is in the etc subdirectory. You can edit the configuration file to change how
oftencron runs sync_user or which files are updated, among other things. (sync_users is
something of a misnomer since it can be used to update any file.)

Because the synchronization is done from the server to the clients, it is

important that passwords always be changed on the server and never on
the clients. The next time sync_user runs, password changes on client
will be lost as the password changes on the server propagate to the
clients.

| & FREYV | < Day Day Up > | MEXT w»

< Day Day Up >

6.5 Using switcher

switcher is a script that simplifies changes to a user's environment. It allows the user to
make, with a single command, all the changes to paths and environmental variables needed
to run an application. switcher is a script that uses the modules package.

Themodules package is an interesting package in its own right. It is a general utility that
allows users to dynamically modify their environment using modulefiles. Each modulefile
contains the information required to configure a shell for a specific application. A user can
easily switch to another application, making required environmental changes with a single
command. While it is not necessary to know anything about modules to use switcher, OSCAR
installs the modules system and, it is available should you need or wish to use it. modules can
be downloaded from http://modules.sourceforge.net/.

switcher is designed so that changes take effect on future shells, not the current one. This
was a conscious design decision. The disadvantage is that you will need to start a new shell to
see the benefits of your change. On the positive side, you will not need to run switcher each
time you log in. Nor will you need to edit your "dot" files such as .bashrc. You can make your
changes once and forget about them. While switcher is currently used to change between the
two MPI environments provided with OSCAR, it provides a general mechanism that can be
used for other tasks. When experimenting with switcher, it is a good idea to create a new
shell and test changes before closing the old shell. If you have problems, you can go back to
the old shell and correct them.

Withswitcher, tags are used to group similar software packages. For example, OSCAR uses
the tag npi for the included MPI systems. (You can list all available tags by invoking switcher

with just the - -1i st option.) You can easily list the attributes associated with a tag.
[sl oanj d@mny sl oanjd]$ sw tcher npi --1list
lam 7.0

lamwith-gm 7.0

npi ch-ch_p4-gcc-1.2.5.10

In this example, we see the attributes are the two available MPI implementations.
You use the - -show option to use switcher to determine the default MPI environment.
[sl oanj d@ny sl oanjd]$ sw tcher npi --show

system defaul t=lam 7.0

syst em exi st s=true

Alternately, you can use the which command:
[sl oanj d@ny sl oanjd]$ whi ch npicc

/opt/lam 7.0/ bi n/npi cc

From the path, we can see that we are set up to use LAM/MPI rather than MPICH.

http://modules.sourceforge.net/

To change the default to MPICH, simply assign the desired attribute value to the tag.
[sl oanjd@ny sl oanjd]$ switcher npi = npich-ch_p4-gcc-1.2.5.10
Attribute successfully set; new attribute setting will be effective for

future shells

The change will not take effect immediately, but you will be using MPICH the next time you
log in (and every time you log in until you run switcher again.) After the first time you make a
change,switcher will ask you to confirm tag changes. (Also, the very first time you use
switcher to change a tag, you'll receive a tag "does not exist” error message that can be
safely ignored.)

As root, you can change the default tag for everyone using the - -systemflag.

[root @ny root]# switcher mpi = lam 7.0 --system

One last word of warning! If you make a typo when entering the value for the attribute,
switcher will not catch your mistake.

\ ‘ PREY < Day Day Up > ME==T ‘

< Day Day Up >

6.6 Using LAM/MPI with OSCAR

Before we leave OSCAR, let's look at a programming example. You can use this to convince
yourself that everything is really working. You can find several LAM/MPI examples in
/usr/share/doc/lam-oscar-7.0/examples and the documentation in /opt/lam-
7.0/share/lam/doc. (For MPICH, look in /opt/mpich-1.2.5.10-ch_p4-gcc/examples for code
and/opt/mpich-1.2.5.10-ch_p4-gcc/doc for documentation.)

Log on as a user other than root and verify that LAM/MPI is selected using switcher.

[sl oanjd@ny doc]$ sw tcher npi --show

user:default=lam7.0

syst em exi st s=true

If necessary, change this and log off and back on.

If you haven't logged onto the individual machines, you need to do so now using ssh to
register each machine with ssh. You could do this with a separate command for each machine.

[sl oanj d@ny sl oanj d]$ ssh nodel

Using a shell looping command is probably better since it will ensure that you don't skip any
machines and can reduce typing. With the Bash shell, the following command will initiate your
logon to the machines nodel through node99, each in turn.

[sl oanjd@ny sloanjd]$ for ((i=1; i<100; i++))
>do

> ssh node%{i}

>done

Just adjust the loop for a different number of machines. You will need to adjust the syntax
accordingly for other shells. This goes fairly quickly and you'll need to do this only once.

Create a file that lists the individual machines in the cluster by IP address. For example, you
might create a file called myhosts like the following:

[sl oanjd@ny sl oanjd]$ cat myhosts
172.16.1.1
172.16.1. 2
172.16.1.3

172.16.1. 4

172.16.1.5

This should contain the server as well as the clients.
Next, run lamboot with the file's name as an argument.

[sl oanj d@ny sl oanj d]$ | anboot myhosts

LAM 7.0/ MPl 2 C++ ROM O - I ndi ana University

You now have a LAM/MPI daemon running on each machine in your cluster.
Copy over the example you want to run, compile it with mpicc, and then run it with mpirun.

[sl oanjd@ny sl oanjd]$ cp /usr/share/doc/| am oscar- 7.0/ exanpl es/
alltoall/alltoall.c $HOVE

[sl oanjd@ny sloanjd]$ npicc -o alltoall alltoall.c

[sl oanjd@ny sloanjd]$ npirun -np 4 alltoall

Rank 0 not sending to nysel f

Rank 1 sendi ng message "1" to rank O

Rank 2 sendi ng nessage "2" to rank O

You should see additional output. The amount will depend on the number of machines in
myhosts. Happy coding, everyone!

\ ‘ PREY < Day Day Up > MHE=T ‘

< Day Day Up >

Chapter 7. Rocks

The previous chapter showed the use of OSCAR to coordinate the many activities that go into
setting up and administering a cluster. This chapter discusses another popular kit for
accomplishing roughly the same tasks.

NPACI Rocks is a collection of open source software for building a high-performance cluster.
The primary design goal for Rocks is to make cluster installation as easy as possible.
Unquestionably, they have gone a long way toward meeting this goal. To accomplish this, the
default installation makes a number of reasonable assumptions about what software should be
included and how the cluster should be configured. Nonetheless, with a little more work, it is
possible to customize many aspects of Rocks.

When you install Rocks, you will install both the clustering software and a current version of
Red Hat Linux updated to include security patches. The Rocks installation will correctly
configure various services, so this is one less thing to worry about. Installing Rocks installs
Red Hat Linux, so you won't be able to add Rocks to an existing server or use it with some
other Linux distribution.

Default installations tend to go very quickly and very smoothly. In fact, Rocks' management
strategy assumes that you will deal with software problems on a node by reinstalling the
system on that node rather than trying to diagnose and fix the problem. Depending on
hardware, it may be possible to reinstall a node in under 10 minutes. Even if your systems
take longer, after you start the reinstall, everything is automatic, so you don't need to hang
around.

In this chapter, we'll look briefly at how to build and use a Rocks cluster. This coverage should
provide you with enough information to decide whether Rocks is right for you. If you decide to
install Rocks, be sure you download and read the current documentation. You might also want
to visit Steven Baum's site, http ://stommel.tamu.edu/~baum/npaci.html.

4@ FREY < Day Day Up > NE=T

http://stommel.tamu.edu/~baum/npaci.html

< Day Day Up >

7.1 Installing Rocks

In this section we'll look at a default Rocks installation. We won't go into the same level of
detail as we did with OSCAR, in part because Rocks offers a simpler installation. This section
should give you the basics.

7.1.1 Prerequisites

There are several things you need to do before you begin your installation. First, you need to
plan your system. A Rocks cluster has the same basic architecture as an OSCAR cluster (see
Figure 6-1). The head node or frontend is a server with two network interfaces. The public
interface is attached to the campus network or the Internet while the private interface is
attached to the cluster. With Rocks, the first interface (e.g., ethO) is the private interface and
the second (e.g., ethl) is the public interface. (This is the opposite of what was described for
OSCAR.)

You'll install the frontend first and then use it to install the compute nodes. The compute
nodes use HTTP to pull the Red Hat and cluster packages from the front-end. Because Rocks
uses Kickstart and Anaconda (described in Chapter 8), heterogeneous hardware is supported.

Diskless clusters are not an option with Rocks. It assumes you will have hard disks in all your
nodes. For a default installation, you'll want at least an 8 GB disk on the frontend. For
compute nodes, by altering the defaults, you can get by with smaller drives. It is probably
easier to install the software on the compute nodes by booting from a CD-ROM, but if your
systems don't have CD-ROM drives, you can install the software by booting from a floppy or
by doing a network boot. Compute nodes should be configured to boot without an attached
keyboard or should have a keyboard or KVM switch attached.

Rocks supports both Ethernet and Myrinet. For the cluster's private network, use a private
address space distinct from the external address space per RFC 1918. It's OK to let an
external DHCP server configure the public interface, but you should let Rocks configure the
private interface.

7.1.2 Downloading Rocks

To install Rocks, you'll first need the appropriate CD-ROMs. Typically, you'll go to the Rocks
web site http://rocks.npaci.edu/Rocks/, follow the link to the download page, download the
1SO images you want, and burn CD-ROMs from these images. (This is also a good time to
download the user manuals if you haven't already done so.) Rocks currently supports x86
(Pentium and Athlon), x86_64 (AMD Opteron), and IA-64 (Itanium) architectures.

Be sure to download the software that is appropriate for your systems. You'll need at least
two I1SO images, maybe more depending upon the software you want. Every installation will
require the Rocks Base and HPC Roll. The core install provides several flavors of MPICH,
Ganglia, and PVFS. If you want additional software that is not part of the core Rocks
installation, you'll need to download additional rolls. For example, if you want tripwire and
chkrootkit, two common security enhancements, you could download the Area 51 roll. If you
are interested in moving on to grid computing, Rocks provides rolls that ease that process
(see the sidebar, "Rocks and Grids™).

Currently available rolls include the following:

http://rocks.npaci.edu/Rocks/

Sun Grid Engine (SGE) roll

This roll includes the Sun Grid Engine, a job queuing system for grids. Think of this as a
grid-aware alternative to openPBS. This is open source distributed management
software. For more information on SGE, visit http ://gridengine.sunsource.net.

Grid roll

TheNSF Middleware Initiative (NMI) grid roll contains a full complement of grid
software, including the Globus toolkit, Condor-G, Network Weather Service, and MPICH-
G2, to name only a few. For more information on the NMI project, visit http ://www.nsf-
middleware.org.

Intel roll

This roll installs and configures the Intel C compiler and the Intel FORTRAN compiler.
(You'll still need licenses from Intel.) It also includes the MPICH environments built for
these compilers. For more information on the Intel compilers and their use with Rocks,
visithttp : //www.intel.com/software/products/distributors/rock cluster.htm.

Area 51 roll

This roll currently includes tripwire and chkrootkit.tripwire is a security auditing
package.chrootkit examines a system for any indication that a root kit has been
installed. For more information on these tools, visit the sites http ://www.tripwire.org
andhttp : //www.chkrootkit.org.

Scalable Cluster Environment (SCE) roll

This roll includes the OpenSCE software that originated at Kasetsart University,
Thailand. For more information on OpenSCE, visit http ://www.opensce.org.

Java roll

The Java roll contains the Java Virtual Machine. For more information on Java, visit
http://java.sun.com.

PBS roll

ThePortable Batch System roll includes the OpenPBS and Maui queuing and scheduling
software. For more information on these packages, see Chapter 11 or visit
http : //www.openpbs.org.

Condor roll

This roll includes the Condor workload management software. Condor provides job

http://gridengine.sunsource.net
http://www.nsf-
http://www.intel.com/software/products/distributors/rock_cluster.htm
http://www.tripwire.org
http://www.chkrootkit.org
http://www.opensce.org
http://java.sun.com
http://www.openpbs.org

queuing, scheduling, and priority management along with resource monitoring and
management. For more information on Condor, visit http : //www.cs.wisc.edu/condor/.

Some rolls are not available for all architectures. It's OK to install more than one roll, so get
what you think you may need now. Generally, you won't be able to add a roll once the cluster
is installed. (This should change in the future.)

Once you've burned CD-ROMs from the I1SO images, you are ready to start the installation.
You'll start with the frontend.

Rocks and Grids

While grids are beyond the scope of this book, it is worth mentioning that, through
its rolls mechanism, Rocks makes it particularly easy to move into grid computing.
The grid roll is particularly complete, providing pretty much everything you'll need
to get started—literally dozens of software tools and packages. Software includes:

e Globus Toolkit—a collection of modular technologies, including tools for
authentication, scheduling and file transfer that simplifies collaboration
among sites.

e Condor-G—the Condor software with grid and Globus compatibility.

e Network Weather Service—a monitoring service that dynamically forecasts
network and resource performance.

e MPICH-G2—a grid-enabled implementation of MPICH.

e Grid Packaging Tools—a collection of packaging tools built around XML. This
is a package management system.

e KX.509/KCA—technology that provides a bridge between Kerberos and PKI
infrastructure.

e GSI OpenSSH—a modified version of SSH that supports GSI authentication
(Grid Security Infrastructure).

e MyProxy—a credential repository for grids.
e Gridconfig Tools—a set of tools to configure and tune grid technologies.

These are just the core. It you are new to grids and want to get started, this is the
way to go. (The Appendix A includes the URLs for these tools.)

7.1.3 Installing the Frontend

The frontend installation should go very smoothly. After the initial boot screens, you'll see a
half dozen or so screens asking for additional information along with other screens giving
status information for the installation. If you've installed Red Hat Linux before, these screens
will look very familiar. On a blue background, you'll see the Rocks version information at the
very top of the screen and interface directions at the bottom of the screen. In the center of
the screen, you'll see a gray window with fields for user supplied information or status
information. Although you can probably ignore them, as with any Red Hat installation, the
Linux virtual consoles are available as shown in Table 7-1. If you have problems, don't forget
these.

http://www.cs.wisc.edu/condor/

Table 7-1. Virtual consoles

Console Use Keystroke
1 Installation Cntl-Alt-F1
2 Shell prompt Cntl-Alt-F2
3 Installation log Cntl-Alt-F3
4 System messages Cntl-Alt-F4
5 Other messages Cntl-Alt-F5

Boot the frontend with the Rocks Base CD and stay with the machine. After a moment, you
will see a boot screen giving you several options. Type f ront end at the boot : prompt and
press Enter. You need to do this quickly because the system will default to a compute node
installation after a few seconds and the prompt will disappear. If you miss the prompt, just
reboot the system and pay closer attention.

After a brief pause, the system prompts you to register your roll CDs. When it asks whether
you have any roll CDs, click on Yes. When the CD drive opens, replace the Rocks Base CD
with the HPC Roll CD. After a moment the system will ask if you have another roll CD. Repeat
this process until you have added all the roll CDs you have. Once you are done, click on No
and the system will prompt you for the original Rocks Base CD. Registration is now done, but
at the end of the installation you'll be prompted for these disks again for the purpose of actual
software installation.

The next screen prompts you for information that will be included in the web reports that
Ganglia creates. This includes the cluster name, the cluster owner, a contact, a URL, and the
latitude and longitude for the cluster location. You can skip any or all of this information, but it
only takes a moment to enter. You can change all this later, but it can be annoying trying to
find the right files. By default, the web interface is not accessible over the public interface, so
you don't have to worry about others outside your organization seeing this information.

The next step is partitioning the disk drive. You can select Autopartition and let Rocks
partition the disk using default values or you can manually partition the disk using Disk Druid.
The current defaults are 6 GB for / and 1 GB for swap space. /export gets the remaining
space. If you manually partition the drive, you need at least 6 GB for / and you must have a
/export partition.

The next few screens are used to configure the network. Rocks begins with the private
interface. You can choose to have DHCP configure this interface, but since this is on the
internal network, it isn't likely that you want to do this. For the internal network, use a private
address range that doesn't conflict with the external address range. For example, if your
campus LAN uses 10. X. X X, you might use 172. 16. 1. X for your internal network. When
setting up clients, Rocks numbers machines from the highest number downward, e.g.,
172.16. 1. 254,172. 16. 1. 253,. . ..

For the public interface, you can manually enter an IP address and mask or you can rely on
DHCP. If you are manually entering the information, you'll be prompted for a routing gateway
and DNS servers. If you are using DHCP, you shouldn't be asked for this information.

The last network setup screen asks for a node name. While it is possible to retrieve this
information by DHCP, it is better to set it manually. Otherwise, you'll need to edit
/etc/resolv.conf after the installation to add the frontend to the name resolution path. Choose
the frontend name carefully. It will be written to a number of files, so it is very difficult to

change. It is a very bad idea to try to change hostnames after installing Rocks.

Once you have the network parameters set, you'll be prompted for a root password. Then
Rocks will format the filesystem and begin installing the packages. As the installation
proceeds, Rocks provides a status report showing each package as it is installed, time used,
time remaining, etc. This step will take a while.

Once the Rocks Base CD has been installed, you'll be prompted for each of the roll CDs once
again. Just swap CDs when prompted to do so. When the last roll CD has been installed, the
frontend will reboot.

Your frontend is now installed. You can move onto the compute nodes or you can stop and

poke around on the frontend first. The first time you log onto the frontend, you will be
prompted for a file and passphrase for SSH.

Rocks Frontend Node - Wofford Rocks Cl uster
Rocks 3.2.0 (Shasta)

Profile built 17:10 29-Jul - 2004

Kickstarted 17:12 29-Jul -2004

It doesn't appear that you have set up your ssh key.
This process will nmake the files:
/root/.ssh/identity.pub
/root/.ssh/identity

/root/.ssh/ aut hori zed_keys

Generating public/private rsal key pair.

Enter file in which to save the key (/root/.ssh/identity):

Ent er passphrase (enpty for no passphrase):

Ent er same passphrase again:

Your identification has been saved in /root/.ssh/identity.

Your public key has been saved in /root/.ssh/identity. pub.

The key fingerprint is:

86: ad: c4: e3: a4: 3a: 90: bd: 7f: f 1: bd: 7a: df : f7: a0: 1c root @ ront end. public

The default file name is reasonable, but you really should enter a passphrase—one you can
remember.

7.1.4 Install Compute Nodes

The next step is to install the compute nodes. Before you do this, you may want to make a
few changes to the defaults. For example, you might want to change how the disks will be
partitioned, what packages will be installed, or even which kernel will be used. For now, we'll
stick with the defaults. Customizations are described in the next two sections, so you may
want to read ahead before going on. But it's really easy to reinstall the compute nodes, so
don't feel you have to master everything at once.

To install the compute nodes, you'll begin by running the program insert-ethers as root on the
frontend. Next, you'll boot a compute node using the Rocks Base CD. Since the Rocks Base
CD defaults to compute node install, you won't need to type anything on the cluster node. The
insert-ethers program listens for a DHCP query from the booting compute node, assigns it a
name and IP address, records information in its database, and begins the installation of the
client.

Let's look at the process in a little more detail. insert-ethers collects MAC address information
and enters it into the Rocks cluster database. It can also be used to replace (- -repl ace),
update (- -updat e), and remove (- -r enove) information in the database. This information is
used to generate the DHCP configuration file and the host file.

There is one potential problem you might face when using insert-ethers. If you have a
managed Ethernet switch, when booted it will issue a DHCP request. You don't want to treat it
like a compute node. Fortunately, the Rocks implementers foresaw this problem. When you
startinsert-ethers, you are given a choice of the type of appliance to install. You can select
Ethernet Switch as an option and configure your switch. When you are done, quit and restart
insert-ethers. This time select Compute. Now you are ready to boot your compute nodes. If
you aren't setting up an Ethernet switch, you can just select Compute the first time you run
insert-ethers.

The next step is to boot your compute nodes. As previously noted, you can use the Rocks
Base CD to do this. If your compute nodes don't have CD-ROM drives, you have two other
options. You can use a network boot if your network adapters support a PXE boot, or you can
create a PXE boot floppy. Consult your hardware documentation to determine how to do a PXE
boot using a network adapter. The Rocks FAQ, included in NPSCI Rocks Cluster Distribution:
Users Guide, has the details for creating a PXE boot floppy.

Wheninsert-ethers runs, it displays a window labeled Inserted Appliances. As each compute
node is booted, it displays the node's MAC address and assigned name. Typically, insert-
ethers will name the systems compute-0-0,compute-0-1, etc. (The file /etc/host defines
aliases for these, c0-0,c0-1, etc., for those of us who don't type well.) If you start insert-
ethers with the command-line option - - cabi net =1, it will generate the names compute-1-0,
compute-1-1, etc. This allows you to create a two-tier naming system, if you want. You can
change the starting point for the second number with the - -r ank. See the insert-ethers(8)
manpage for more details.

A couple of minutes after you reboot your compute node, it will eject the CD-ROM. You can
take the CD-ROM and move on to your next machine. If you have a terminal connected to the
system, you'll get a status report as the installation proceeds.

If you need to reinstall a node, you can use the shoot-node command. This is useful when
changing the configuration of a node, e.g., adding a new package. This command takes the
name of the machine or machines as an argument.

[root @rontend root]# shoot-node conpute-0-0

Since this is run on the frontend, it can be used to remotely reinstall a system. This command
is described in the shoot-node(8) manpage.

7.1.5 Customizing the Frontend

Since Rocks installs Linux for you, you will need to do a little digging to see how things are set
up. Among other services, Rocks installs and configures 411 (an NIS replacement), Apache,
DHCP, MySQL, NFS, NTP, Postfix, and SSH, as well as cluster-specific software such as
Ganglia and PVFS. Configuration files are generally where you would expect them. You'll
probably want to browse the files in /etc,/etc/init.d,/etc/ssh, and /etc/xinetd.d. Other likely
files include crontab,dhcpd.conf,exports,fstab,gmetad.conf,gmond.conf,hosts,ntp.conf,
andntp/step-tickers. You might also run the commands

[root @rontend etc]# ps -aux | nore

[root @rontend etc]# /sbin/service --status-all | nore

[root @rontend etc]# netstat -a | nore

The cluster software that Rocks installs is in /opt or /usr/share.

If you have been using Red Hat for a while, you probably have some favorite packages that
Rocks may not have installed. Probably the best way to learn what you have is to just poke
around and try things.

7.1.5.1 User management with 411

Starting with Rocks 3.1.0, 411 now replaces NIS. 411 automatically synchronizes the files
listed in /var/411/Files.mk. The password and group files are among these. When you add
users, you'll want to use useradd.

[root @rontend 411] # useradd -p xyzzy -c¢ "Joe Sloan" \

>-d /export/home/ sl oanjd sl oanjd

This automatically invokes 411. When a user changes a password, you'll need to sync the
changes with the compute nodes. You can do this with the command

[root @rontend root]# make -C /var/ 411

A more complete discussion of 411 can be found in the Rocks user's guide. At this time, there
isn't a 411 man page. To remove users, use userdel.

7.1.5.2 X Window System

You'll probably want to start the X Window System so you can run useful graphical tools such
as Ganglia. Before you can run X the first time, you'll need to run redhat-config-xfree86. If
you are comfortable setting options, go for it. If you are new to the X Window System, you'll
probably be OK just accepting the defaults. You can then start X with the xstart command. (If

you get a warning message about no screen savers, just ignore it.)

Once X is working, you'll need to do the usual local customizations such as setting up printers,
creating a message of the day, etc.

7.1.6 Customizing Compute Nodes

Rocks uses Kickstart and Anaconda to install the individual compute nodes. However, rather
than use the usual flat, text-based configuration file for Kickstart, Rocks decomposes the
Kickstart file into a set of XML files for the configuration information. The Kickstart
configuration is generated dynamically from these. These files are located in the
/export/home/install/rocks-dist/enterprise/3/en/o0s/i386/build/nodes/ directory. Don't change
these. If you need to create customization files, you can put them in the directory
/home/install/site-profiles/3.2.0/nodes/ for Rocks Version 3.2.0. There is a sample file
skeleton.xml that you can use as a template when creating new configuration files. When you
make these changes, you'll need to apply the configuration change to the distribution using
therocks-dist command. The following subsections give examples. (For more information on
rocks-dist, see the rocks-dist(1) manpage.)

7.1.6.1 Adding packages

If you want to install additional RPM packages, first copy those packages to the directory
/home/install/contrib./enterprise/3/public/arch/RPMS, where arch is the architecture you are
using, e.g., i386.

[root @rontend root]# mv ethereal -0.9.8-6.i386.rpm\

>/ hone/instal | /contrib/enterprisel 3/ public/i 386/ RPMY

[root @rontend root]# nmv et hereal -gnonme-0.9. 8-6.i386.rpm\

>/ honme/instal | /contrib/enterprisel/ 3/ public/i 386/ RPMY

Next, create a configuration file extend-compute.xml. Change to the profile directory, copy
skeleton.xml, and edit it with your favorite text editor such as vi.

[root @rontend root]# cd /hone/install/site-profiles/3.2.0/ nodes
[root @rontend nodes]# cp skel eton. xnm extend-conpute. xm

[root @rontend nodes]# vi extend-conpute. xm

Next, add a line to extend-compute.xml for each package.

<package> et hereal </package>
<package> et her eal - gnone </ package>

Notice that only the base name for a package is used; omit the version number and .rpm
suffix.

Finally, apply the configuration change to the distribution.

[root @rontend nodes]# cd /honme/install

[root @rontend install]# rocks-di st dist

You can now install the compute nodes and the desired packages will be included.

7.1.6.2 Changing disk partitions

In general, it is probably a good idea to stick to one disk-partitioning scheme. Unless you turn
the feature off as described in the next subsection, compute nodes will automatically be
reinstalled after a power outage. If you are using multiple partitioning schemes, the automatic
reinstallation could result in some drives with undesirable partitioning. Of course, the
downside of a single-partitioning scheme is that it may limit the diversity of hardware you can
use.

To change the default disk partitioning scheme used by Rocks to install compute nodes, first
create a replacement partition configuration file. Begin by changing to the directory where the
site profiles are stored. Create a configuration file replace-auto-partition.xml. Change to the
profile directory, copy skeleton.xml, and edit it.

[root @rontend root]# cd /hone/install/site-profiles/3.2.0/ nodes
[root @rontend nodes]# cp skel eton. xm replace-auto-partition.xm

[root @rontend nodes]# vi replace-auto-partition. xm

Under the main section, you'll add something like the following:

<mai n>

<part>/ --size 2048 --ondi sk hda </part>

<part> swap --size 500 --ondi sk hda </part>

<part> /nydata --size 1 --grow --ondi sk hda </part>
</ mai n>

Apart from the XML tags, this is standard Kickstart syntax. This example, a partitioning
scheme for an older machine, uses 2 GB for the root partition, 500 MB for a swap partition,
and the rest of the disk for the /mydata partition.

The last step is to apply the configuration change to the distribution.

[root @rontend nodes]# cd / honme/install

[root @rontend install]# rocks-di st dist

You can now install the system using the new partitioning scheme.

7.1.6.3 Other changes

By default, a compute node will attempt to reinstall itself whenever it does a hard restart,
e.g., after a power failure. You can disable this behavior by executing the next two
commands.

[root @rontend root]# cluster-fork '/etc/rc.d/init.d/rocks-grub stop'
conpute-0-0:

Rocks GRUB: Setting boot action to 'boot current kernel': [K]

[root @rontend root]# cluster-fork '/shin/chkconfig --del rocks-grub'

conpute-0-0:

The command cluster-fork is used to execute a command on every machine in the cluster. In
this example, the two commands enclosed in quotes will be executed on each compute node.
Of course, if you really wanted to, you could log onto each, one at a time, and execute those
commands.cluster-fork is a convenient tool to have around. Additional information can be
found in the Rocks user's guide. There is no manpage at this time.

Creating and installing custom kernels on the compute nodes, although more involved, is
nonetheless straightforward under Rocks. You'll first need to create a compute node, build a
new kernel on the compute node, package it using rpm, copy it to the frontend, rebuild the
Rocks distribution with rocks-dist, and reinstall the compute nodes. The details are provided
in the Rocks user's guide along with descriptions of other customizations you might want to
consider.

< Day Day Up >

< Day Day Up >

7.2 Managing Rocks

One of Rocks' strengths is the web-based management tools it provides. Initially, these are
available only from within the clusters since the default firewall configuration blocks HTTP
connections to the frontend's public interface. If you want to allow external access, you'll need
to change the firewall configuration. To allow access over the public interface, edit the file
/etc/sysconfig/iptables and uncomment the line:

-AINPUT -i ethl -p tcp -mtcp --dport ww -j ACCEPT

Then restart the iptables service.

[root @rontend sysconfig]# service iptables restart

Some pages, for security reasons, will still be unreachable.

To view the management page locally, log onto the frontend, start the X Window System,
start your browser, and go to http://localhost. You should get a screen that looks something

likeFigure 7-1.

Figure 7-1. Rocks' web interface

http://localhost

* pile Edit Wiew Go Bookmarks Tools Window Help
¥ é - 3 ii hetp-/localhost | & -
I Forward Reload [& o flocalhost, | || &2 Search Pring
| ZhHome | WfBockmarks ¢ Red Hat, Inc. . Red Hat Network (23 Support 25 Shop 25 Products "
/_, [a]
Wofford's Rocks Cluster \..:“)
oy
v 3200 (Shoswmi

Clusier Dl (3510 | {real-smaly)

1 r Siiys (Cgneloi
Clusser |-l‘"l_|'|.l\ IEWED
THS Job [1K
[d ES5)

x Fikes ymieim

ety
Rl Cal
Rexcks Uscrm Giukle | Referermce Guide
Make Labels - After comsmacting yowr clusior, click ths link o downliood @ PO file that coniains a shoct ior shoees) of bbels for
every moule | your clisier, The oitpul comfoms & Avery's sddres bibek sheet “Laser $ 3617,
Begisior Your Clusicr
]

The links on the page will vary depending on the software or rolls you chose to install. For
example, if you didn't install PBS, you won't see a link to the PBS Job Queue. Here is a brief
description of the links shown on this page.

Cluster Database (SSL)

Rocks maintains a MySQL database for the server. The database is used to generate
service-specific configuration files such as /etc/hosts and /etc/dhcpd.conf. This
phpMyAdmin web interface to the database can be accessed through the first link. This
page will not be accessible over the public interface even if you've changed the firewall.
Figure 7-2 shows the first screen into the database. You can follow the links on the left
side of the page to view information about the cluster.

Figure 7-2. Rocks database page

© pile Edi

i app gibmk
Ok agpplancas
O dalributons

L; e

view Go PBEockmarks Tools Window Help
'&. — # - 3 isl' i 0 S | j' - .
Back Fanward Reload g 4 hups: frontend/admin/phph :| 2. Search Print m
T Zhvome | WhBookmarks o Red Hat, Inc. o Red Hat Network (2 Suppont 2§Shop 5 Products "
e Welcome to phpMyAdmin 2.3.0
cluster (11)
¥ amsas

i mambarahips

works I -
: ,r:rll b Language [*); | English (en-150-8859-1) ud
O nodes peiE
O pcb I phpMyAdmin documentation
: hs— ™ Oiticial phpMyAdmin Homepage
iy [Changelog] [CVS] [Lists]

MySaL 3.23.58 running on localhost as apachedlocalhost

phpMyAdmin

-u.--u'g_l

Cluster Status (Ganglia)

This link provides a way into Ganglia's home page. Ganglia, a cluster monitoring
package, is described in Chapter 10.

Cluster Top (Process Viewer)

This link takes you to a page that displays the top processes running on the cluster.
This is basically the Unix top command, but provides cluster-wide information. The
columns are similar to those provided by top except for the first two. The first, TN, gives
the age of the information in seconds, and the second, HOST, is the host name for the
cluster node that the process is running on. You can look at the top(1) manpage for
information on how to interpret this page. Figure 7-3 shows the Cluster Top screen for
an idle cluster.

PBS Job Queue

PBS is described in Chapter 11. You should see the PBS link only if you've installed the
PBS roll.

News (RSS)

This is an alert system that sends RSS-style news items for events within the cluster. It
is documented in the Rocks Reference Guide.

Figure 7-3. Cluster Top

k4 Woffard's Rocks Cluster Cluster Top - Moxzills == 'x]
T OEle EMt Mew Go Bookmaks Teols Window Help

< . W a @ , f—— —] .i_@
Eack Fomaard : & hiap: o alhostiganghaaddans frock s top, php ¥|| s Search =T

T Avome whBookmarks o Red Hat, Inc. g Red Hat Mewark (25 Suppon £ Shop = Products (24 Training

=1
F N
T SR [Aee 0 ; T F -._‘
Wofford's Rocks Cluster Cluster Top ROCKS
Fr, 50 Bl 2006 16 1 +0HHHY - Physical Job Ass gnmenis \
Show only processes by user: | Go |
1
™ l HOSET | | F'ID| USER | CMD | “H’:CPU| | *aMEM l SIZE | DATA | SHARED | | WM I
2 lrontemmllocl 2316 oo Hvne 196 508 14 6572 3052 it
compute-D-1local 3727 oot greespior 131 259 516 1632 1628 4328
14 compute-D-0 local 3TH rood grecepior 1.4 244 40 LU 16 4164
fronzned. local 1572 ro greceplor (66 114 Eh1 1032 1124 3656
b
+ 1 ¥
e -) T |

Proc filesystem

This link takes you into the /proc subdirectory. The files in this subdirectory contain
dynamic information about the state of the operating system. You can examine files to
see the current configuration, and, in some cases, change the file to alter the
configuration. This page is accessible only on a local system.

Cluster Distribution

The Cluster Distribution link is a link into the /home/install directory on the frontend.
This directory holds the RPM packages used to construct the cluster. This page is
accessible only on a local system.

Kickstart Graph

This link provides a graphical representation of the information used to create the
Kickstart file. This is generated on the fly. Different display sizes are available.

Roll Call

This link returns a page that lists the various rolls that have been installed on your
cluster.

Rocks User's Guide/Reference Guide

These are online versions of the Rocks documentation that have been alluded to so
often in this chapter.

Make Labels

This link generates a PDF document containing labels for each node in the cluster. The
labels contain the cluster name, node name, MAC address, and the Rocks logo. If your
cluster name is too long, the logo will obscure it. You should be able to print the
document on a standard sheet of labels such as Avery 5260 stock.

Register Your Cluster

This will take you to the Rocks registration site, so you can add your cluster to the list of
other Rocks clusters.

Finally, there is a link to the Rocks home page.

\ ‘ PREY < Day Day Up > ME==T ‘

< Day Day Up >

7.3 Using MPICH with Rocks

Before we leave Rocks, let's look at a programming example you can use to convince yourself
that everything is really working.

While Rocks doesn't include MPI/LAM, it gives you your choice of several MPICH distributions.
The/opt directory contains subdirectories for MPICH, MPICH-MPD, and MPICH2-MPD. Under

MPICH, there is also a version of MPICH for Myrnet users. The distinctions are described
briefly in Chapter 9. We'll stick to MPICH for now.

You can begin by copying one of the examples to your home directory.
[sl oanjd@rontend sl oanjd]$ cd /opt/npi ch/gnu/ exanpl es
[sl oanjd@rontend exanples]$ cp cpi.c ~

[sl oanjd@rontend exanpl es] $ cd

Next, compile the program.

[sl oanj d@rontend sl oanjd]$ /opt/npich/gnu/bin/npicc cpi.c -0 cpi

(Clearly, you'll want to add this directory to your path once you decide which version of
MPICH to use.)

Before you can run the program, you'll want to make sure SSH is running and that no error or
warning messages are generated when you log onto the remote machines. (SSH is discussed

inChapter 4.)

Now you can run the program. (Rocks automatically creates the machines file used by the
system, so that's one less thing to worry about. But you can use the - nachi nefil efil ename
option if you wish.)

[sl oanjd@rontend sl oanjd]$ /opt/npich/gnu/bin/npirun -np 4 cpi

Process 0 on frontend. public

Process 2 on conpute-0-1.1ocal

Process 1 on conpute-0-0.l ocal

Process 3 on conpute-0-0.1ocal

pi is approximtely 3.1416009869231245, Error is 0.0000083333333314

wal | clock tine = 0.010533

That's all there is to it.

Since Rocks also includes the High-Performance Linpack (HPL) benchmark, so you might want
to run it. You'll need the HPL.dat file. With Rocks 3.2.0, you can copy it to your directory from
/var/www/html/rocks-documentation/3.2.0/. To run the benchmark, use the command

[sl oanjd@rontend sl oanjd]$ /opt/npich/gnu/bin/npirun -nol ocal \

>-np 2 /opt/ hpl/gnu/bin/xhpl

(Add a machine file if you like.) You can find more details in the Rocks user manual.

48 FREY < Day Day Up > MEXT o

< Day Day Up >

Part [ll: Building Custom Clusters

This section describes individual components and software that you should consider
when building your cluster. Most of these components are part of the OSCAR and Rocks
distribution but can be installed independently. Thus, by using the material in this
section, you could bypass OSCAR or Rocks and build a custom cluster. Or you could use
these chapters to learn more about the software that is part of OSCAR and Rocks.

These chapters are largely independent and can be read in any order with one minor
exception.Chapter 12 uses the C3 tools introduced in Chapter 10. However, you should
have little trouble understanding Chapter 12 even if you haven't read Chapter 10. In
practice, you will probably want to install the software described in Chapters 9 through
12 and then return to Chapter 8 to clone your systems. Since the other chapters
describe manually installing software, you might want to glance over Chapter 8 before
you begin those chapters so you'll know what can be automated.

4 FREV < Day Day Up > MEXT mp

< Day Day Up >

Chapter 8. Cloning Systems

Setting up a cluster means setting up machines—hopefully, lots of machines. While you
should begin with a very small number of machines as you figure out what you want,
eventually you'll get to the point where you are mindlessly installing system after system.
Fortunately, most of those machines will have identical setups. You could simply repeat the
process for each machine, but this will be both error prone and immensely boring. You need a
way to automate the process.

The approach you need depends on the number of machines to be set up and configured, the
variety of machines, how mission critical the cluster is, and your level of patience. For three or
four machines, a manual install and configuration of each machine is a reasonable approach,
particularly if you are working with an odd mix of different machines so that each setup is
different. But even with a very small number of machines, the process will go more smoothly
if you can automate some of the post-installation tasks such as copying configuration files.

Unless you have the patience of Job, with more than eight or ten machines in your cluster,
you'll want to automate as much of the process as possible. And as your cluster's continuous
operation becomes more crucial, the need for an automated approach becomes even more
important.

This chapter begins with a quick look at simple approaches to ease configuring multiple
systems after the operating system has been installed. These techniques are useful for any
size cluster. Even if you are clearly in the fully automated camp, you should still skim this
section since these techniques apply to maintaining clusters as well as setting up clusters.

Next, three tools that are useful when building larger clusters are described—Kickstart,g4u
(ghost for Unix), and Systemlmager (part of the Systems Installation Suite). These tools are
representative of three different approaches that can be used. Kickstart is a package-based
installation program that allows you to automate the installation of the operating system. g4u
is a simple image-based program that allows you to copy and distribute disk images.
Systemlmager is a more versatile set of tools with capabilities that extend beyond installing
systems. The tools in SystemImager allow you to build, clone, and configure a system. While
these tools vary in scope, each does what it was designed to do quite well. There are many
other tools not discussed here.

4@ FREY < Day Day Up > NE=T

< Day Day Up >

8.1 Configuring Systems

Cloning refers to creating a number of identical systems. In practice, you may not always
want systems that are exactly alike. If you have several different physical configurations,
you'll need to adapt to match the hardware you have. It would be pointless to use the
identical partitioning schemes on hard disks with different capacities. Furthermore, each
system will have different parameters, e.g., an IP address or host name that must be unique
to the system.

Setting up a system can be divided roughly into two stages—installing the operating system
and then customizing it to fit your needs. This division is hazy at best. Configuration changes
to the operating system could easily fall into either category. Nonetheless, many tools and
techniques fall, primarily, into one of these stages so the distinction is helpful. We'll start with
the second task first since you'll want to keep this ongoing process in mind when looking at
tools designed for installing systems.

8.1.1 Distributing Files

The major part of the post-install configuration is getting the right files onto your system and
keeping those files synchronized. This applies both to configuring the machine for the first
time and to maintaining existing systems. For example, when you add a new user to your
cluster, you won't want to log onto every machine in the cluster and repeat the process. It is
much simpler if you can push the relevant accounting files to each machine in the cluster from
your head node.

What you will want to copy will vary with your objectives, but Table 8-1 lists a few likely
categories.

Table 8-1.

Types of Files
Accounting files, e.qg., /etc/passwd,/etc/shadow,/etc/group,/etc/gshadow
Configuration files, e.g., /etc/motd,/etc/fstab,/etc/hosts,/etc/printcap.local
Security configuration files such as firewall rulesets or public keys
Packages for software you wish to install
Configuration files for installed software
User scripts

Kernal images and kernal source files

Many of these are one-time copies, but others, like the accounting files, will need to be
updated frequently.

You have a lot of options. Some approaches work best when moving sets of files but can be
tedious when dealing with just one or two files. If you are dealing with a number of files, you'll

need some form of repository. (While you could pack a collection of files into a single file using
tar, this approach works well only if the files aren't changing.) You could easily set up your
own HTTP or FTP server for both packages and customized configuration files, or you could
put them on a floppy or CD and carry the disk to each machine. If you are putting together a
repository of files, perhaps the best approach is to use NFS.

With NFS, you won't need to copy anything. But while this works nicely with user files, it can
create problems with system files. For example, you may not want to mount a single copy of
/etc using NFS since, depending on your flavor of Linux, there may be files in the /etc that are
unique to each machine, e.qg., /etc/HOSTNAME. The basic problem with NFS is that the
granularity (a directory) is too coarse. Nonetheless, NFS can be used as a first step in
distributing files. For example, you might set up a shared directory with all the distribution
RPMs along with any other software you want to add. You can then mount this directory on
the individual machines. Once mounted, you can easily copy files where you need them or
install them from that directory. For packages, this can easily be done with a shell script.

While any of these approaches will work and are viable approaches on an occasional basis,
they are a little clunky, particularly if you need to move only a file or two. Fortunately, there
are also a number of commands designed specifically to move individual files between
machines. If you have enabled the r-service commands, you could use rcp. A much better
choice is scp, the SSH equivalent. You could also consider rdist. Debian users should consider
apt-get.cpush, one of the tools supplied in C3 and described in Chapter 10, is another choice.
One particularly useful command is rsync, which will be described next.

8.1.1.1 Pushing files with rsync

rsync is GNU software written by Andrew Tridgell and Paul Mackerras. rsync is sometimes
described as a faster, more flexible replacement for rcp, but it is really much more. rsync has
several advantages. It can synchronize a set of files very quickly because it sends only the
difference in the files over the link. It can also preserve file settings. Finally, since other tools
described later in this book such as Systemlmager and C3 use it, a quick review is
worthwhile.

rsync is included in most Linux distributions. It is run as a client on the local machine and as a
server on the remote machine. With most systems, before you can start the rsync daemon on
the machine that will act as the server, you'll need to create both a configuration file and a
password file.[11

[1] Strictly speaking, the daemon is unnecessary if you have SSH or RSH.

A configuration file is composed of optional global commands followed by one or more module
sections. Each module or section begins with a module name and continues until the next
module is defined. A module name associates a symbolic name to a directory. Modules are
composed of parameter assignments in the form option = value. An example should help
clarify this.

a sanpl e rsync configuration file -- /etc/rsyncd. conf
#

[systenfiles]

source/ destination directory for files

path = /etc

authentication -- users, hosts, and password file

auth users = root, sloanjd

hosts all ow = any basil clara desnond ernest fanny george hector janes
secrets file = /etc/rsyncd. secrets

allow read/wite

read only = fal se

U D and G D for transfer

uid

r oot

gid r oot

There are no global commands in this example, only the single module [systemfiles]. The
name is an arbitrary string (hopefully not too arbitrary) enclosed in square brackets. For each
module, you must specify a pat h option, which identifies the target directory on the server
accessed through the module.

The default is for files to be accessible to all users without a password, i.e., anonymous rsync.
This is not what we want, so we use the next three commands to limit access. The aut h user
option specifies a list of users that can access a module, effectively denying access to all other
users. The host s al | ow option limits the machines that can use this module. If omitted, then
all machines will have access. In place of a list of machines, an address/mask pattern can be
used. The secrets fil e specifies the name of a password file used for authentication. The file
is used only if the aut h user option is also used. The format of the secrets file is
user:password, one entry per line. Here is an example:

r oot : RSpwo12. ..

The secrets file should be readable only by root, and should not be writable or executable.
rsync will balk otherwise.

By default, files are read only; i.e., files can be downloaded from the server but not uploaded
to the server. Set the read only option to f al se if you want to allow writing, i.e., uploading
files from clients to the server. Finally, the ui d and gi d options set the user and group
identities for the transfer. The configuration file is described in detail in the manpage
rsyncd.conf(5). As you might imagine, there are a number of other options not described
here.

rsync usually uses rsh or ssh for communications (although it is technically possible to bypass
these). Consequently, you'll need to have a working version of rsh or ssh on your system
before using rsync.

To move files between machines, you will issue an rsync command on a local machine, which
will contact an rsync daemon on a remote machine. Thus, to move files rsync must be
installed on each client and the remote server must be running the rsync daemon. The rsync
daemon is typically run by xinetd but can be run as a separate process if it is started using
the- - daenon option. To start rsync from xinetd, you need to edit the file /etc/xinetd.d/rsync,
change the line di sable = yes to disable =no, and reinitialize or restart xinetd. You can
confirm it is listening by using netstat.

[root @anny xinetd.d]# netstat -a | grep rsync

tcp 0 0 *:rsync *oox LI STEN

rsync uses TCP port 873 by default.

rsync can be used in a number of different ways. Here are a couple of examples to get you
started. In this example, the file passwd is copied from fanny to george while preserving the
group, owner, permissions, and time settings for the file.

[root @anny etc]# rsync -gopt passwd george::systenfiles

Passwor d:

Recallsyst enfi | es is the module name in the configuration file. Note that the system

prompts for the password that is stored in the /etc/rsyncd.secrets file on george. You can
avoid this step (useful in scripts) with the - -passwor d-fi | e option. This is shown in the next

example when copying the file shadow.

[root @anny etc]# rsync -gopt --password-fil e=rsyncd. secrets shadow /

george: :systenfiles

If you have the rsync daemon running on each node in your cluster, you could easily write a
script that would push the current accounting files to each node. Just be sure you get the
security right.

In the preceding examples, rsync was used to push files. It can also be used to pull files.
(fanny has the same configuration files as george.)

[root @eorge etc]# rsync -gopt fanny::systenfil es/ shadow /et c/shadow

Notice that the source file is actually /etc/shadow but the /etc is implicit because it is specified
in the configuration file.

rsync is a versatile tool. It is even possible to clone running systems with rsync. Other
command forms are described in the manpage rsync(l).

48 FREV < Day Day Up > ME=T

< Day Day Up >

8.2 Automating Installations

There are two real benefits from an automated installation—it should save you work, and it
will ensure the consistency of your installation, which will ultimately save you a lot more work.
There are several approaches you can take, but the key to any approach is documentation.
You'll first want to work through one or more manual installations to become clear on the
details. You need to determine how you want your system configured and in what order the
configuration steps must be done. Create an install and a post-install checklist.

If you are only doing a few machines, you can do the installations manually from the checklist
if you are very careful. But this can be an error-prone activity, so even small clusters can
benefit from automated installs. If you are building a large cluster, you'll definitely need some
tools. There are many. This chapter focuses on three fairly representative approaches—Red
Hat's Kickstart, g4u, and SystemImager.

Each of the tools described in this chapter has it place. Kickstart does a nice job for repetitive
installations. It is the best approach if you have different hardware. You just create and edit a
copy of the configuration file for each machine type. However, Kickstart may not be the best
tool for post-installation customizations.

With image software like g4u or Systemlmager, you can install software and reconfigure
systems to your heart's delight before cloning. If you prepare your disk before using it, g4u
images use less space than Systemlmager, and it is definitely faster. g4u is the simplest tool
to learn to use and is largely operating system independent. Systeminstaller is the more
versatile tool, but comes with a significant learning curve. Used in combination with rsync, it
provides a mechanism to maintain your systems as well as install them. In the long run, this
combination may be your best choice.

8.2.1 Kickstart

Red Hat's Kickstart is a system designed to automate the installation of a large number of
identical Linux systems. Similar programs exist for other releases, such as DrakX for
Mandrake Linux and Fully Automatic Installation (FAI) for Debian. A Kickstart installation can
be done using a local CD-ROM or hard drive, or over a network using FTP, NFS, or HTTP. We'll
look at using a local CD-ROM and using NFS over a network. NFS is preferable when working
with a large number of machines.

first thing to check is your firewall setting for your servers!

|! Warning! With any network-based approach, if you have problems, the

Anaconda is the Red Hat installation program. It is written in Python with some custom
modules in C. Anaconda is organized in stages. The first stage is an installer which loads
kernel modules needed later. It is this loader that goes to the appropriate installation source.
Finally, Anaconda has an auto-install mechanism, Kickstart, that allows installs to be scripted
via the Kickstart configuration file.

8.2.1.1 Configuration file

The first step in using Kickstart is to create a Kickstart configuration file. Once you have the

configuration file, you'll create a boot disk and start the installation. You have two options in
creating a configuration file—you can edit an existing configuration file or you can use Red
Hat'sKickstart Configurator program to create a new file. While the configuration program has
a nice GUI and is easy to use, older versions don't give you the option of reopening an
existing configuration file. So with the older version, you'll need to get everything right the
first time, start over from scratch, or manually edit the file that it creates after the fact.

Using KickstartConfigurator is straightforward. Since it provides a GUI, you'll need to be
running the X Window System. You can start it from a console window with the command
/usr/sbin/ksconfig or, if you are using gnome, from Main Menu Button ProgramsSystem
Kickstart Configurator.Figure 8-1 shows the initial window.

Figure 8-1. Kickstart Configurator

x
Basic Configuration Basic Configuration (required)
installation Method Defaul Language: English E|
Boot Loader Options K eyboard: U.5. English | w |
Parition Information
Network Configuration Mause; Generle - 3 Button Mause (PS/2) F|
Authentication [] Emulate 3 Buttons
Firewall Configuration
% Configuration Time Zane: AmencaNew_York E|
Package Selection [[] Use UTC clack

Pre-lnstallation Script
Post-Installation Scrpt

Root Password:

[+] Encrypt root password

Language SUppont [Chinese(dMainl and) *
[] Chinese(Tawan)
L] czech
] Danish
] Dutch
1 English
| French
L] Gemman
U I P T |'|
[+] Reboot system after installation
] Pedorm installation in text mode (graphical is default

| Peform installation in interactive mods

L o

Simply work your way down the lists on the left setting the fields on the right as needed. Most
of what you'll see will be familiar questions from a normal installation, although perhaps in
slightly more detail. On the second screen, Installation Method, you'll be asked for the
installation method—CD-ROM, FTP, etc. The last two screens ask for pre-installation and post-
installation scripts, allowing you to add additional tasks to the install. When you are done,
save the file.

Alternatively, you could use an existing configuration file. The Red Hat installation program
creates a Kickstart file for the options you select when you do an installation. This is saved as
/root/anaconda-ks.cfg. (There is also a template for a configuration file on the Red Hat
documentation disk called sample.ks, but it is a bit sparse.) If you have already done a test
installation, you may have something very close to what you need, although you may want to
tweak it a bit.

Once you have a configuration file, you may need to make a few changes. Often, manually
editing an existing configuration file is the easiest way to get exactly what you want. Since the
configuration is a simple text file, this is a very straightforward process. The configuration file
is divided into four sections that must be in the order they are described here.

The command section comes first and contains basic system information such as keyboard
and mouse information, the disk partition, etc. Here is part of a command section with
comments explaining each command:

Kickstart file

Do a clean install rather than an upgrade (optional).

i nstall

Install froma CD-ROM could al so be nfs, hard drive, or
a URL for FTP or HTTP (required).

cdrom

| anguage used during installation (required)

| ang en_US

| anguages to install on system (required)

| angsupport --default en_US.is0885915 en_US.i s0885915

type of keyboard (required)

keyboard us

type of nouse (required)

nouse genericps/ 2 --device psaux -enulthree

X configuration (optional)

xconfig --card "Matrox MI | enni um G200" --videoram 8192 --hsync 30.0-60.0
--vsync 47.5-125.0 --resolution 1024x768 --depth 16 --startxonboot
network setup (optional)

net work --device ethO --bootproto dhcp

root password (required)

rootpw --iscrypted 1i Z50i | INSU h7V8TkpQBOBe TH k4wGlL

firewall setup (optional)

firewal | --medium--dhcp --port ssh:tcp

system aut hentication (required)

aut hconfi g --enabl eshadow - - enabl end5

tinmezone (required)

timezone --utc Anmerica/ New_Yor k

bootl| oader (required)

boot | cader --nd5pass=1Aq9er OWE$HOYK] . adl PZyv4nGt c62W
renmove ol d partitions fromdisk (optional)

clearpart --all --drives=had

#partition information (required)

part /boot --fstype ext3 --size=50 --ondi sk=hda

part / --fstype ext3 --size=1100 --grow --ondi sk=hda
part swap --size=256 --ondi sk=hda

Other options and details can be found in the first chapter of The Official Red Hat Linux
Customization Guide on the Red Hat documentation disk.

prompt you for that information, which is not what you want for an
automatic installation.

'5 If you omit any of the required commands, the install will pause and

The second part of the configuration file lists the packages that will be installed. This section
begins with the line %packages. Here is a part of a sample listing for this section:

Y%packages

@Printing Support

@Cl assic X Wndow System

@X W ndow System

@ GNOME

@ Sound and Mul tinedia Support
@ Net wor k Support

@ Sof twar e Devel opnment

@ Wor kst ati on Conmmon

bal sa
gnuneri c- devel
esound- devel

| rageMagi ck- c++- devel

nozi | | a- chat

Often you need to list only a component, not the individual packages. In this example, the
lines starting with @are all components. The remaining lines are all individual packages.

The last two sections, the pre-install and post-install configuration sections, are optional.
These are commands that are run immediately before and immediately after installation. Here
is an example that adds a user:

%post
[usr/ sbi nfuseradd sl oanjd
chfn -f 'Joe S oan' sloanjd

/ usr/ sbin/usermod -p ' $1$1 guyUDi $oyW Si r X8l OXEI XVGXes@. ' S oanj d

Note that a pre-install section is not run in a chroot environment, while a post-install section
is.I2]1 Basically, these sections provide a primitive way of doing custom configurations. This
can be useful for small changes but is awkward for complex tasks. For more details about the
configuration file, see the Red Hat documentation.

[21 A chroot environment restricts access to the part of the filesystem you are working in, denying access
to the remainder of the filesystem.

8.2.1.2 Using Kickstart

Once you have the Kickstart file, you need to place the file where it will be available to the
system you are configuring. This can be done in several ways depending on how you will boot
the system. For a CD-ROM installation, you could simply copy the file over to a floppy.

[root @ny root]# nmount /mt/fl oppy
[root @ny root]# cp ks.cfg /mt/floppy/ ks.cfg

[root @ny root]# umount /mmt/floppy

Reboot your system from an installation CD-ROM. (If your system won't boot from a CD-ROM,
you could create a floppy boot disk and copy the configuration file onto it.) With this
approach, you'll need to tell the system where to find the configuration file. At the boot
prompt, enter the command

boot: | inux ks=fl oppy

While you will be able to complete the installation without typing anything else, you will still
need to swap CD-ROMs. This probably isn't what you had in mind, but it is a good, quick way
to test your Kickstart file.

If you want to do a network installation, you can provide the installation files via FTP, NFS, or
HTTP. You will need to set up the corresponding server, make the appropriate changes to the
Kickstart configuration file and copy it to the server, and create a network boot disk. (A
network or PXE boot is also an option.) If you want to do an unattended installation, you will
also need a DHCP server to provide both the IP address and the location of the Kickstart

configuration file. Using a boot disk with an NFS server is probably the most common
approach.

To set up a NFS server, you'll need to identify a machine with enough free space to hold all
the installation CD-ROMS, copy over the contents of the CD-ROMs, and configure the NFS
server software. For example, to install Red Hat 9, you might begin by creating the directory
/ export/ 9.0 and copying over the distribution files.

[root @anny root]# nkdir -p /export/9.0
[root @anny root]# nount /mt/cdrom

[root @anny root]# cp -arv /mt/cdrom RedHat /export/9.0

[root @anny root]# eject cdrom

You'll repeat the last three steps for each CD-ROM.

To configure NFS, you'll need to install the NFS package if it is not already installed, edit
/etc/exports so that the target can mount the directory with the files, e.g., /export/9.0, and
start or restart NFS. For example, you might add something like the following lines to
/etc/exports.

/ export/9.0 george hector ida janes

/ ki ckstart george hector ida janes

This allows the four listed machines access to the installation directory and the directory
holding the Kickstart configuration file. You'll start or restart NFS with either /sbin/service nfs
start or /sbin/service nfs restart.

Since you are doing a network install, you'll need to replace the entry COROMin ks.cfg with
information about the NFS server such as

nfs --server 10.0.32.144 --dir /export/9.0

net work --device ethO --bootproto dhcp

The second line says to use DHCP, which is the default if this information isn't provided. While
not always necessary, it may be safer in some circumstances to use IP addresses rather than
host names.

If you aren't using PXE, you'll need a network boot disk. It is tempting to think that, since we
have specified an NFS install in the Kickstart file, any boot disk should work. Not so! Put a
blank floppy in your floppy drive, mount the first distribution CD-ROM, change to the images
subdirectory, and then use the following command:

[root @ny inmages]# dd if=bootnet.ing of =/ dev/fd0 bs=1440k

If you don't need to do an unattended installation, the simplest approach is to copy the
configuration file to the boot floppy and tell the boot loader where to find the file, just as you
did with the CD-ROM installation. If you want to do an unattended installation, things are a
little more complicated.

For an unattended installation, you will need to copy the Kickstart configuration file onto your
NFS server and edit the boot disk configuration file. While you can place the file in the
installation directory of your NFS server, a more general approach is to create a separate
directory for Kickstart configuration files such as /kickstart. You'll need to export this directory
via NFS as shown earlier. If you only need one configuration file, ks.cfg is the usual choice.
However, if you create multiple Kickstart configuration files, you can use a convention
supported by Kickstart. Name each machine using the format | P- nunber -kickstart where | P-
number is replaced by the IP address of the target node such as 10.0.32.146-kickstart. This
allows you to maintain a different configuration file for each machine in your cluster.

To access the file, you need to tell the client where to find the configuration file. For testing,
you can do this manually at the boot loader. For example, you might enter something like

boot : | inux ks=nfs:10. 0. 32.144:/ ki ckstart/

This tells the loader to use the NFS server 10.0.32.144 and look in the /kickstart directory. It
will look for a file using the name format | P- nunber -kickstart. Alternatively, you could give a
complete file name.

For an unattended installation, you will need to edit syslinux.cfg on the boot disk, changing
the line

def aul t

to something like

default linux ks=nfs:10.0.32.144:/kickstart/

You might also shorten the timeout. Once done, you just insert the floppy and power up the
node. The remainder of the installation will take place over your network.

WhileKickstart does what it was designed to do quite well, there are some severe limitations
to what it can do. As a package-based installation, there is no easy way to deal with needs
that aren't packaged-based. For example, if you recompile your kernel, modify configuration
files, or install non-package software, you'll need to do some kind of scripting to deal with
these special cases. That may be OK for one or two changes, but it can become tedious very
quickly. It you need to make a number of customizations, you may be better served with an
image-based tool like g4u or Systemlmager.

8.2.2 g4u

Image copying is useful in any context where you have a large number of identical machines.
While we will be using it to clone machines in a high-performance cluster, it could also be
used in setting up a web server farm, a corporate desktop environment, or a computer
laboratory. With image copying, you begin by building a sample machine, installing all the
software needed, and doing any desired customizations. Then you copy over an image of the
disk to other machines, causing all the added software and customizations to get copied as
well.

g4u is a simple disk image installer. It allows you to copy the image of a computer’s disk to a
server and then install that image on other machines in your cluster. The design philosophy
for g4u is very simple. g4u is indifferent to what is on the disk—it just copies bits. It doesn't
matter what version of Unix or what file system you use. It doesn't care if a disk sector is
unused—it still gets copied. The image is compressed while on the server, but otherwise is an
exact copy of the disk. If the image includes configuration files that are specific to the original
machine, e.g., a static IP address or a host-name file, you will have to correct these after

installing the image. (You can avoid most problems of this sort if you use DHCP to configure
your systems.) g4u works best when used with disks with the same size and geometry but,
under limited circumstances, it may be finessed to work with other disks. Image copying is
the simplest approach to learn and to use and is usable with almost any operating system.

There are three things you will need to do before using g4u. If you don't already have an FTP
server, you will need to create one to store the images. You will need to download the g4u
software. And, while not strictly required, you should prepare your source system for cloning.
All of these are very straightforward.

To set up an FTP server, you'll need to install the software, edit the configuration files, and
start the daemon. Several FTP server implementations are available. Select and install your
favorite. The vsftpd (Very Secure FTP) package is a good choice for this purpose. You'll need
to edit the appropriate configuration files, /etc/vsftpd/vsftpd.conf, /etc/vsftpd.ftpusers, and
/etc/vsftpd.user_list. Then start the service.

[root @anny etc]# /etc/init.d/ vsftpd start

Starting vsftpd for vsftpd: [OK]

(When you are through cloning systems, you may want to disable FTP until you need it again
because it poses a security risk. Just replace start with stop in the above.) Consult the
documentation with your distribution or the appropriate manpages.

The g4u software consists of a NetBSD boot disk with the image-copying software. While it is
possible to download the sources, it is much simpler if you just download a disk image with
the software. You can download either a floppy image or a CD-ROM ISO image in either
zipped or uncompressed format from http://www.feyrer.de/g4u/. (The uncompressed 1SO
image is smaller than 1.5 MB so downloads go quickly.) Once you have downloaded the
image, unzip it if it is compressed and create your disk. With a floppy, you can use a
command similar to the following, adjusting the version number as needed:

[root @anny root]# cat g4u-1.16.fs > /dev/fdO

(With Windows, you can use rawrite.exe, which can also be downloaded from the web site.)
For a CD-ROM, use your favorite software.

Sinceg4u creates a disk image, it copies not only files but unused sectors as well. If there is a
lot of garbage in the unused sectors on the disk, they will take up space in the compressed
image, and creating that image will take longer. You can minimize this problem by writing
zeros out to the unused sectors before you capture the image. (Long strings of zeros
compress quickly and use very little space.) The g4u documentation recommends creating a
file of zeros that grows until it fills all the free space on the system, and then deleting that file.

[root @da root]# dd if=/dev/zero of =/0bits bs=20971520
dd: witing “/0bits': No space left on device

113+0 records in

11240 records out

[root@da root]# rm/0Obits

rm renove “/0Obits'?y

Once the file is deleted, the unused sectors will still contain mostly zeros and should compress
nicely. While you don't have to do this, it will significantly reduce storage needs and transfer

http://www.feyrer.de/g4u/

time.

To use g4u, you will need to capture the original disk and then copy it to the new machines.
Begin by shutting down the source machine and then booting it with the g4u disk. As the
system boots, you'll see some messages, including a list of commands, and then a command-
line prompt. To capture and upload the disk, use the uploaddisk command. For example,

#upl oaddi sk sl oanj d@ anny.wof ford.int ida. g4u

The arguments to uploaddisk are the user's FTP server and the saved images. You'll see a few
more messages and then the system will prompt you for the user's FTP password. As the disk
image is captured and uploaded to the FTP server, the software will display dots on the
screen. When the upload is complete, the software will display some statistics about the
transfer.

To create new systems from the image, the process is almost the same. Boot the new system
from the g4u disk and use the slurpdisk command, like so:

#slur pdi sk sl oanj d@ anny. wof ford.i nt ida.g4u

You'll be prompted for a password again and see similar messages. However, the download
tends to go much faster than the upload. When the user prompt returns, remove the g4u disk
and reboot the system. Log in and make any needed configuration changes. That's really all
there is to it!

8.2.3 SystemImager

Systemlmager is a part of the Systems Installation Suite (SI1S), a set of tools for building an
image for a cluster node and then copying it to other nodes. In many ways it is quite similar
to g4u. However, there are several major differences in both the way it works and in the
added functionality it provides. It is also a much more complicated tool how to learn to use.
These differences will be apparent as you read through this section.

As with g4u, with SIS you will set up a single node as a model, install the operating system
and any additional software you want, and configure the machine exactly the way you want it.
Next, copy the image of this machine to a server, and then from the server to the remaining
machines in the cluster.

Systemlmager is also useful in maintaining clusters since it provides an easy way to
synchronize files among machines. For example, if you have a security patch to install on all
the machines in the cluster, you could install it on your model computer and then update the
cluster. Since SIS uses rsync, this is very efficient. Only the files changed by the patch will be
copied.

The Systems Installation Suite is made up of three tools, SystemConfigurator,Systemlmager,
andSysteminstaller. From a pragmatic perspective, Systemlmaager is the place to begin and,
depending upon your needs, may be the only part of the suite you will need to master.

Systemlnstaller is generally used to build a pre-installation image on the image server without
having to first create a model system. For example, OSCAR uses Systemlinstaller to do just
this. But if you are happy building the model system, which is strongly recommended since it
gives you an opportunity to test your configuration before you copy it, there is no reason to
be in a hurry to learn the details of SystemInstaller.

SystemConfigurator allows you to do a post-installation configuration of your system. While it
is a useful standalone tool, it is integrated into Systemlmager so that its use is transparent to
the user. So while you will need to install SystemConfigurator, you don't need to learn the

details of SystemConfigurator to get started using SIS. Consequently, this section focuses on

Systemlmager.

SinceSystemlImager uses client-server architecture, you will need to set up two machines
initially before you can begin cloning systems. The image server manages the installation,
holds the clone image, and usually provides other needed services such as DHCP. You will also
need to set up the model node or golden client. Once you have created the golden client, its
image is copied to the server and can then be installed on the remaining machines within the
cluster.

The installation of Systemlmager can be divided into four multistep phases—setting up the
image server, setting up the golden client, transferring the image to the image server, and
copying the image to the remaining nodes in the cluster. Each of these phases is described in
turn. If you installed OSCAR, this setup has already been done for you. However, OSCAR
users may want to skim this material to get a better idea of how OSCAR works and can be
used.

8.2.3.1 Image server setup

In setting up the image server, you will need to select a server, install Linux and other system
software as needed, install the SystemlImager software on the server, and determine both
how you will assign IP addresses to clients and how you will start the download.

You'll want to take care in selecting your server. Typically, the Systemlmager server will also
act as the head node for your cluster and will provide additional network services such as
DHCP. While it is possible to distribute some of this functionality among several machines, this
isn't usually done and won't be discussed here. If you already have a server, this is a likely
choice provided it has enough space.

Unlike g4u, the images Systemlmager creates are stored as uncompressed directory trees on
the server. This has a number of advantages. First, it works nicely with rsync. And as a live
filesystem, you can chroot to it and make changes or even install packages (if you are a brave
soul). You'll only copy useful files, not unused sectors. While this approach has a number of
advantages, even a single image can take up a lot of space. Heterogeneous clusters will
require multiple images. Taken together, this implies you'll want a speedy machine with lots of
disk space for your server.

Because of dependencies, you should install all of SIS even if you plan to use only
Systemlmager. You have a couple of choices as to how you do this. There is a Perl installation
script that can be downloaded and run. It will take care of downloading and installing
everything else you need. Of course, you'll need Internet access from your cluster for this to
work. Alternatively, you can download DEB or RPM packages and install. Downloading these
packages and burning them onto a CD-ROM is one approach to setting up an isolated cluster.
This chapter describes the installation process using RPM packages.

SinceSIS supports a wide variety of different Linux releases, you'll need to select the correct
packages for your distribution, and you'll need a number of packages to install SystemImager.
These can be downloaded from SourceForge. Go to http://sisuite.sourceforge.net and follow
the links to SystemConfigurator, Systemlmager, and Systemlnstaller, as needed, to download
the individual packages. If in doubt, you can read the release notes for details on many of the
packages.

There may be additional dependencies that you'll also need to address. For a simple Red Hat
install, you'll need to install the following packages, if they are not already on your system, in
this order: rsync,perl-AppConfig,perl-XML-Simple,systemconfigurator,systemimager-
common,systemimager-server,perl-MLDBM, and systeminstaller. You'll also need a boot
package specific to your architecture. For example, you would use systemimager-boot-i386-
standard for the Intel 386 family. rsync is usually already installed. Install these as you would
install any RPM.

[root @anny sysinager]# rpm -vih perl-AppConfi g-1.52-4. noarch.rpm

http://sisuite.sourceforge.net

Prepari ng. . . HHHIHH B HHBH HHERH A H R H R R R [1009

1: perl -AppConfig HHHH B R HHE R R A R R R R [1009

Repeat the process with each package. There is also an X interface to SystemInstaller called
tksis. If you want to install this, you will need to install perl-DBI,perl-TK, and systeminstall-
x11. (If you have problems with circular dependencies, you might put the package names all
on the same line and use r pm - Wh to install them.)

The SIS installation will create a directory /etc/systemimager containing the configuration files
used by Systemlmager. By default, Systemlmager is not started. You can use the command
service systemimager start to manually start it. Systemlmager starts the rsync daemon using
the configuration file in /etc/systemimager, so if rsync is already running on your system,
you'll need to turn it off first. As with any manual start, if you restart the system, you'll need
to restart Systemlmager. (With a recent release, the names of several services have changed.
To ensure you are using the appropriate names, look in /etc/init.d to see what is installed.)

There are a couple of other things you might want to set up on your server if you don't
already have them. With SIS, there are four installation methods. You can boot the machine
you are installing the image on from a floppy, from CD-ROM, from its hard drive, or over the
network using a PXE-based network adapter. (The hard drive option is used for upgrading
systems rather than for new installs.)

If you are going to do a network boot, you will need a TFTP server. SIS includes a command,
mkbootserver, which will handle the configuration for you, but you must first install some
packages—tftp-server,tftp, and pxe. Once these packages are installed, the script
mkbootserver will take care of everything else. As needed, it will create the /tftpboot
directory, modify /etc/services, modify /etc/inetd.conf or /etc/xinetd.d/tftp, verify that the
TFTP server works, configure PXE creating /etc/pxe.conf, verify the pxe daemon is running,
verify the network interface is up, and pass control to the mkdhcpserver command to
configure a DHCP server. Once mkbootserver has been run, your server should be
appropriately configured for booting clients and installing images via PXE. Of course, you'll
need a PXE-enabled network adapter in your client.

Even if you aren't booting via PXE, you will probably still want to use DHCP to assign IP
addresses. This isn't absolutely necessary since you can create a configuration diskette for
each machine with the appropriate information, but it is probably the easiest way to go. Using
DHCP implies you'll need a DHCP server, i.e., both server software and a configuration file.
Setting up the software is usually just a matter of installing the dhcp package.

[root @anny root]# rpm -vih dhcp-3.0pl 1-23.1386.rpm

war ni ng: dhcp-3. Opl 1-23.1386.rpm V3 DSA si gnature: NOKEY, key |ID db42a60e

Prepari ng. .. HERHBH B HH R R R R R H R f R [1009
1: dhcp TR HHH R HH R R R R R a . [1009

To create a configuration file, typically /etc/dhcpd.conf, use the mkdhcpserver script. You'll

need to collect information about your network such as the IP address range, broadcast

address, network mask, DNS servers, and the network gateway before you run this script.
Here is an example of using mkdhcpserver for a simple network.

[root @anny root]# nkdhcpserver

Wel cone to the Systeni mager "nkdhcpserver” conmmand. This command wil |

prepare this conputer to be a DHCP server by creating a dhcpd.conf file

for use with your | SC DHCP server (v2 or v3).

If there is an existing file, it will be backed up with the

. bef oresyst em mager extensi on.

Continue? (y/[n]): vy

Type your response or hit <Enter> to accept [defaults]. |If you don't
have a response, such as no first or second DNS server, just hit

<Enter> and none will be used

What is your DHCP daenon mej or version nunmber (2 or 3)? [2]: 2
Use of uninitialized value in concatenation (.) or string at /usr/sbin/

nmkdhcpserver |ine 202, <STDIN> line 2.

What is the nane of your DHCP daenon config file? []: /etc/dhcpd. conf

What is your domain name? [l ocal domai n. domain]: wofford.int

What is your network number? [192.168.1.0]: 10.0.32.0

What is your netnask? [255.255.255.0]: 255.255.248.0

What is the starting | P address for your dhcp range? [192.168.1.1]: 10.0.32.145
What is the ending | P address for your dhcp range? [192.168.1.100]: 10.0.32. 146
What is the | P address of your first DNS server? []: 10.0.80.3

What is the | P address of your second DNS server? []: 10.0.80.2

What is the | P address of your third DNS server? []:

What is the I P address of your default gateway? [192.168.1.254]: 10.0.32.2

What is the | P address of your inmage server? [192.168.1.254]: 10.0.32. 144

What is the | P address of your boot server? []: 10.0.32. 144

What is the I P address of your log server? []:

WIl your clients be installed over SSH? (y/[n]): vy
What is the base URL to use for ssh installs? [http://10.0.32.144/

syst em nmager/ boot/]:

What... is the air-speed velocity of an unladen swallow? []:

Wong!!! (with a Monty Python(TM accent...)

Press <Enter> to conti nue. .

Ahh, but seriously folks...

Here are the val ues you have chosen

HHH HH AR R HH R R R R R R R R R R R R R R R R

| SC DHCP daenon ver sion: 2

DHCP daenon usi ng fi xed- address pat ch: n

| SC DHCP daenon config file: / et c/dhcpd. conf
DNS domai n nare: wof ford. int

Net wor k numnber: 10.0.32.0

Net mask: 255.255.248. 0

Starting IP address for your DHCP range: 10.0.32.145

Endi ng | P address for your DHCP range: 10. 0.32. 146
First DNS server: 10.0.80.3
Second DNS server: 10. 0.80. 2

Third DNS server:

Def ault gat eway: 10.0.32.2

| rage server: 10. 0. 32. 144
Boot server: 10. 0. 32. 144
Log server:

Log server port:

SSH fil es downl oad URL: http://10.0. 32. 144/ syst em mager / boot /

HHERH B B R R R R R R R R R R R R R R

Are you satisfied? (y/[n]): vy

The dhcp server configuration file (/etc/dhcpd.conf) file has been

created for you. Please verify it for accuracy.

If this file does not | ook satisfactory, you can run this conmand again

to re-create it: "nkdhcpserver"

WARNI NG : I f you have nultipl e physical network interfaces, be sure to
edit the init script that starts dhcpd to specify the interface that

is connected to your DHCP clients. Here's an exanpl e:

Change "/usr/sbin/dhcpd" to "/usr/shin/dhcpd ethl".

Dependi ng on your distribution, you may be able to set this with the
"I NTERFACES" variable in either "/etc/default/dhcp” or in your dhcpd

initialization script (usually "/etc/init.d/dhcpd").

Also, be sure to start or restart your dhcpd daenmon. This can usually

be done with a command |ike "/etc/init.d dhcpd restart” or simlar.

Woul d you like me to restart your DHCP server software now? (y/[n]): vy
Shut ting down dhcpd: [FAIL LED

Starting dhcpd: [OK]

As you can see, the script is very friendly. There is also important information buried in the
output, such as the warning about restarting the DHCP daemon. Be sure you read it carefully.
If you already have a DHCP configuration file, it is backed up, usually as
/etc/dhcpd.conf.beforesystemimager. You may need to merge information from your old file
into the newly created file.

As previously noted, you don't have to use DHCP. You can create a configuration disk with a
filelocal.cfg for each machine with the information provided by DHCP. Here is an example.

HOSTNAMVE=hect or

DOVAI NNAMVE=wof f ord. i nt
DEVI CE=et hO

| PADDR=10. 0. 32. 146
NETMASK=255. 255. 248. 0
NETWORK=10. 0. 32. 0
BROADCAST=10. 0. 39. 255
GATEWAY=10. 0. 32. 2

| MAGESERVER=10. 0. 32. 144

| MAGENAME=! da. i mage

Regardless of how you are booting for your install, the software will look for a floppy with this
file and use the information if provided. In this example, the client names that have been
automatically generated are not being used, so it is necessary to rename the installation
scripts on the image server. We'll come back to this.

8.2.3.2 Golden client setup

Thegolden client is a model for the other machines in your cluster. Setting up the golden
client requires installing and configuring Linux, the Systemlmager software, and any other
software you want on each client. You will also need to run the prepareclient script to collect
image information and start the rsync daemon for the image transfer.

Because you are using an image install, your image should contain everything you want on
the cluster nodes, and should be compatible with the node's hardware. In setting up the
client, think about how it will be used and what you will need. Doing as much of this as
possible will save you work in the long run. For example, if you generate SSH keys prior to
cloning systems, you won't have to worry about key distribution. However, getting the
software right from the start isn't crucial. SystemImager includes a script to update clients,
and since it uses rsync, updates go fairly quickly. Nonetheless, this is something of a
nuisance, so you'll want to minimize updates as much as possible. If possible, set up your
client and test it in the environment in which it will be used.

Getting the hardware right is more important. The hardware doesn't have to be identical on
every node, but it needs to be close. For network and video adapters, you'll want the same
chipset. Although disk sizes don't have to be identical, it is better to select for your golden
client a machine with the smallest disk size in your cluster. And you can't mix IDE and SCSI
systems. Having said all this, remember that you can have multiple images. So if you have a
cluster with three different sets of hardware, you can create three images and do three sets of
installs.[31

[31 To some extent, you can install an image configured for different hardware and use kudzu to make
corrections once the system reboots. For example, I've done this with network adapters. When the system
boots for the first time, | delete the image's adapter and configure the actual adapter in the machine.
(Actually, SystemConfigurator should be able to manage NIC detection and setup.)

Once you have built your client, you'll need to install the SystemImager client software. This

is done in much the same manner as with the server but there is less to install. For a typical
Red Hat install, you'll need perl-AppConfig,systemconfigurator,systemimager-common, and
systemimager-client packages at a minimum.

Once all the software has been installed and configured, there is one final step in preparing
the client. This involves collecting information about the client needed to build the image by
running the prepareclient script. The script is very friendly and describes in some detail what
it is doing.

[root @da sis]# prepareclient

Wel cone to the Systeni mager prepareclient command. This command nmay nodify the
follow ng files to prepare your golden client for having its inmage retrieved by
the inmageserver. It will also create the /etc/system mager directory and fill

it with infornation about your golden client. Al nodified files will be

backed up with the .before_system nager-3.0.1 extension.

/etc/services:
This file defines the port nunbers used by certain software on your system

I will add appropriate entries for rsync if necessary.

/etc/inetd. conf:
This is the configuration file for the inet daenmon, which starts up certain
server software when the associated client software connects to your
machi ne. System nager needs to run rsync as a st andal one daenon on your
golden client until it's inmage is retrieved by your inmge server. | will
comrent out the rsync entry in this file if it exists. The rsync daenon wl|

not be restarted when this nmachine i s rebooted.

/tnp/rsyncd. conf. 13129:

This is a tenporary configuration file that rsync needs on your golden client

in order to make your filesystemavail able to your inmage server.

See "prepareclient -help" for command |ine options.

Continue? (y/[n]): vy

EIE R R I R I R I R R I R I R O V\ARN NG EIE R R I R I R R R I I R I R R

This utility starts an rsync daenon that nakes all of your files accessible
by anyone who can connect to the rsync port of this machine. This is the
case until you reboot, or kill the 'rsync --daenmon' process by hand. By
default, once you use getinage to retrieve this inage on your inage server,
these contents will becone accessi ble to anyone who can connect to the rsync
port on your imageserver. See rsyncd.conf(5) for details on restricting
access to these files on the i mageserver. See the system nmager-ssh package

for a nore secure nethod of naking inmages available to clients.

EIE R R I I R R I S I O V\ARN NG EIE R R I R I I R

Conti nue? (y/[n]): vy
Signaling xinetd to restart...
Usi ng "sfdisk” to gather information about /dev/hda... done!

Starting or re-starting rsync as a daenon.....done!

This client is ready to have its inmage retrieved. You nust now run

the "geti mage" command on your imageserver.

As you can see from the output, the script runs the rsync server daemon on the client. For
this reason, you should wait to run this script until just before you are ready to transfer the
image to the image server. Also, be sure to disable this rsync server after copying the client
image to the image server.

8.2.3.3 Retrieving the image

This is perhaps the simplest phase of the process. To get started, run the getimage script.
You'll need to specify the name or address of the client and a name for the image. It should
look something like this:

[root @anny scripts]# getimge -golden-client ida -i mage ida.inmge
This programwi || get the "ida.inmge" systeminage from"ida"

maki ng the assunption that all filesystens considered part

of the systemimage are using ext2, ext3, jfs, FAT, reiserfs, or xfs.

This programwi || not get /proc, NFS, or other filesystens

not nentioned above.

LR R R R R T EREREEEEREERETEREEEEREEEEEREREEEE] \/\ARN NG LR RS R E RS EEESTERESEREREEREREEEEEREEERSE

Al'l files retrieved froma gol den client are, by default, nmade accessible to
anyone who can connect to the rsync port of this machine. See rsyncd.conf(5)
for details on restricting access to these files on the i nageserver. See the
syst em mager - ssh package for a nore secure (but | ess effecient) method of

maki ng i mages available to clients.

EE R I S S I I S V\ARN NG EEE R I R S I

See "getimage -hel p" for command |ine options.

Continue? ([yl/n): vy

Retrieving /etc/system mager/nounted filesystens fromida to check for nounted
filesystens. ..

------------- i da mounted filesystens RETRI EVAL PROGRESS -------------
receiving file list ... done

/var/lib/systenm nager/i mages/i da. i mage/ et c/ system mager/ nounted_fil esystens
wrote 138 bytes read 114 bytes 504.00 bytes/sec

total size is 332 speedup is 1.32

------------- ida mounted filesystens RETRIEVAL FIN SHED -------------

Retrieving i nage ida.i mage fromida

------------- i da. i mage | MAGE RETRI EVAL PROGRESS - --------=---

At this point you'll see the names of each of the files whiz by. After the last file has been
transferred, the script will print a summary.

wrote 92685 bytes read 2230781 bytes 10489.69 bytes/sec
total size is 1382212004 speedup is 594.89

------------- i da. i mage | MAGE RETRI EVAL FINISHED - ------------

Press <Enter> to conti nue. .

| P Addr ess Assi gnnent

There are four ways to assign | P addresses to the client systems on an

ongoi ng basi s:

A DHCP server will assign | P addresses to clients installed with
this inage. They may be assigned a different address each tine.
If you want to use DHCP, but nust ensure that your clients

receive the same IP address each tinme, see "man nkdhcpstatic".

2) STATIC

The | P address the client uses during autoinstall wll be

permanent |y assigned to that client.

3) REPLI CANT

Don't ness with the network settings in this inmage. |'musing

it as a backup and quick restore nechani smfor a single machine

Wi ch nethod do you prefer? [1]:

You have chosen method 1 for assigning |P addresses.

Are you satisfied? ([y]/n): y

Woul d you like to run the "addclients" utility now? (y/[n]): n

Unless you have edited /etc/systemimager/systemimager.conf, the image will be stored in the
directory/var/lib/systemimager/images as the subdirectory ida.image.

Thegetimage command runs mkautoinstallscript, which creates the auto-install script
/var/lib/systemimager/scripts/ida.image.master in this case, and gives you the option to
move onto the next step. But before you do, you may want to kill the rsync daemon on the
golden client.

[root @da sysconfig]# ps -aux | grep rsync | grep -v grep
r oot 13142 0.0 0.4 1664 576 ? S 15: 46 0: 00 rsync
--daenon --

[root @da sysconfig]# kill 13142

8.2.3.4 Cloning the systems

The final steps of distributing the image to the clients require creating the installation scripts
for the clients, preparing any needed boot media, and then booting the clients to initiate the
process.[41

[41 The latest release of SIS includes a program flamethrower. This is use to multicast images speeding
the file distribution process on multicast enabled networks. flamethrower is not discussed in this chapter.

As noted above, you should now have an initial auto-install script. The next script you'll run is
addclients, which does three things—it automatically generates host names for each node, it
creates symbolic links to the auto-install script, one for each client, and it populates the
/etc/hosts table.

[root @anny root]# addclients

Wel cone to the System mager "addclients" utility

A copy of the host table and the install scripts for the individual machines are located in the
directory/var/lib/systemimager/scripts. If you don't want to use the automatically generated
names, you'll need to edit /etc/hosts and /var/lib/systemimager/scripts/hosts, replacing the
automatically generated names with the names you want. You'll also need to rename the
individual install scripts in /var/lib/systemimager/scripts to match your naming scheme. Of
course, if you are happy with the generated names, you can skip all this.

If you are using a network or PXE boot, you can restart the clients now. If you are booting
from a floppy or CD-ROM, you'll first need to make a boot disk. You can use the scripts
mkautoinstalldiskette or mkautoinstallcd to make, respectively, a boot diskette or boot CD-
ROM. Here is an example of making a CD-ROM.

[root @anny root]# nkautoinstallcd -out autoinstall.iso

Here is a list of available flavors:

st andar d

Wi ch flavor would you like to use? [standard]:

Note that the default or standar d flavor was used. This was created when the package
systemimager-boot-i386-standard was installed. With the CD-ROM script, an 1SO image is
generated that can be used to burn a CD-ROM. Fortunately, this is a relatively small file, so it
can easily be moved to another system with a CD-ROM burner. If you elect to use the diskette
script instead, it will mount, format, and record the diskette for you. If you don't want to use
DHCP, put the file local.cfg on a separate diskette even if you are using a CD-ROM to boot.
When booting from a diskette, you'll need to put local.cfg on that diskette. Be warned, you
may run out of space if you use a diskette. If you aren't using a local configuration file, you
need only one boot disk. You need a diskette for each machine, however, if you are using the
local configuration file. If you upgrade Systemlmager, remember to regenerate your boot
disks as they are release dependent.

Now that you have the boot disk, all you need to do is reboot the client from it. The client will
locate the image server and then download and run the installation script. You can sit back
and watch the magic for a while. After a short time, your systems should begin to beep at
you. At this point, you can remove any diskettes or CD-ROMs and reboot the systems. Your
node is installed.

There is one last script you may want to run if you are using DHCP. The script mkdhcpstatic
can update your DHCP configuration file, associating IP addresses with MAC addresses. That
is, if you run this script, each IP address will be tied to a specific machine based on the MAC
address of the machine to which it was first assigned. Since IP addresses are handed out in

numerical order, by booting the individual machines in a specific order and then running
mkdhcpstatic, you can control IP assignments.

8.2.3.5 Other tasks

As if building your network isn't enough, SystemImager can also be used to maintain and
update your clients. The script updateclient is used to resynchronize a client with an image.
Its calling syntax is similar to getimage.

[root @ector root]# updateclient -server fanny -inmge ida.inmge
Updating image from nodul e ida.image...

receiving file list ... done

You'll see a lot of file names whiz by at this point.

wrote 271952 bytes read 72860453 bytes 190201. 31 bytes/sec

total size is 1362174476 speedup is 18.63

Runni ng boot | oader. . .

Probi ng devi ces to guess BIOS drives. This may take a long ti ne.
Installation finished. No error reported.

This is the contents of the device map /boot/ grub/devi ce. map.
Check if this is correct or not. If any of the lines is incorrect,

fix it and re-run the script “grub-install’.

(fdo) /dev/fdo0
(hdO) /dev/hda
Probi ng devices to guess BICOS drives. This nay take a long tine.
Probi ng devi ces to guess BIOS drives. This may take a long ti me.

It should be noted that the script is fairly intelligent. It will not attempt to update some
classes of files, such as log files, etc.

Systemlinstaller also provides several commands for manipulating images. The commands
cpimage,mvimage,lsimage, and rmimage are, as you might guess, analogous to cp,mv,ls,
andrm.

\ ‘ PREY < Day Day Up > MHE=T ‘

< Day Day Up >

8.3 Notes for OSCAR and Rocks Users

SinceOSCAR installs and uses SIS, much of this material probably seemed vaguely familiar to
you. OSCAR uses Systemlnstaller to build the image directly on the server rather than
capture the image from a golden client. However, once you have installed OSCAR, you can
use the SIS scripts as you see fit.

The configuration file for rsync is in /etc/systemimager/rsync. OSCAR stores the
Systemlmager files in /var/lib/systemimager. For example, the image files it creates are in
/var/lib/systemimager/images.

Rocks uses Kickstart. It uses XML files to record configuration information, dynamically
generating the Kickstart configuration file. Changing these XML files is described in Chapter 7.
You can interactively re-Kickstart a compute node with the shoot-node command. See the
manpageshoot-node(8) for more details.

@ PREV < Day Day Up > MEXT @y

< Day Day Up >

Chapter 9. Programming Software

After the operating system and other basic system software, you'll want to install the core
software as determined by the cluster’'s mission. If you are planning to develop applications,
you'll need software development tools, including libraries that support parallel processing. If
you plan to run a set of existing cluster-ready applications, you'll need to select and install
those applications as part of the image you will clone.

This chapter presupposes you'll want to develop cluster software and will need the tools to do
so. For many clusters this may not be the case. For example, if you are setting up a cluster to
process bioinformatics data, your needs may be met with the installation of applications such
as BLAST, ClustalW, FASTA, etc. If this is the path you are taking, then identifying, installing,
and learning to use these applications are the next steps you need to take.[1l For now, you
can safely skip this chapter. But don't forget that it is here. Even if you are using canned
applications, at some point you may want to go beyond what is available and you'll need the
tools in this chapter.

[1] Steven Baum's site, http://stommel.tamu.edu/—baum/npaci.html, while ostensibly about Rocks,
contains a very long list of cluster applications for those who want to write their own applications.

This chapter describes the installation and basic use of the software development tools used
to develop and run cluster applications. It also briefly mentions some tools that you are likely
to need that should already be part of your system. For clusters where you develop the
application software, the software described in this chapter is essential. In contrast, you may
be able to get by without management and scheduling software. You won't get far without the
software described here.

If you've installed OSCAR or Rocks, you will have pretty much everything you need.
Nonetheless, you'll still want to skim this chapter to learn more about how to use that
software. For cluster application developers, this is the first software you need to learn how to
use.

\ . PREY < Day Day Up > ME=ST ‘

http://stommel.tamu.edu/~baum/npaci.html

< Day Day Up >

9.1 Programming Languages

While there are hundreds of programming languages available, when it comes to writing code
for high-performance clusters, there are only a couple of realistic choices. For pragmatic
reasons, your choices are basically FORTRAN or C/C++.

Like it or not, FORTRAN has always been the lingua franca of high-performance computing.
Because of the installed base of software, this isn't likely to change soon. This doesn't mean
that you need to use FORTRAN for new projects, but if you have an existing project using
FORTRAN, then you'll need to support it. This comes down to knowing how your cluster will be
used and knowing your users' needs.

FORTRAN has changed considerably over the years, so the term can mean different things to
different people. While there are more recent versions of FORTRAN, your choice will likely be
between FORTRAN 77 and FORTRAN 90. For a variety of reasons, FORTRAN 77 is likely to get
the nod over FORTRAN 90 despite the greater functionality of FORTRAN 90. First, the GNU
implementation of FORTRAN 77 is likely to already be on your machine. If itisn't, it is freely
available and easily obtainable. If you really want FORTRAN 90, don't forget to budget for it.
But you should also realize that you may face compatibility issues. When selecting parallel
programming libraries to use with your compiler, your choices will be more limited with
FORTRAN 90.

C and C++ are the obvious alternatives to FORTRAN. For new applications that don't depend
on compatibility with legacy FORTRAN applications, C is probably the best choice. In general,
you have greater compatibility with libraries. And at this point in time, you are likely to find
more programmers trained in C than FORTRAN. So when you need help, you are more likely
to find a helpful C than FORTRAN programmer. For this and other reasons, the examples in
this book will stick to C.

With most other languages you are out of luck. With very few exceptions, the parallel
programming libraries simply don't have binding for other languages. This is changing. While
bindings for Python and Java are being developed, it is probably best to think of these as
works in progress. If you want to play it safe, you'll stick to C or FORTRAN.

4@ FREY < Day Day Up > NE=T

< Day Day Up >

9.2 Selecting a Library

Those of you who do your own dentistry will probably want to program your parallel
applications from scratch. It is certainly possible to develop your code with little more than a
good compiler. You could manually set up communication channels among processes using
standard systems calls.[21

[2] In fairness, there may be some very rare occasions where efficiency concerns might dictate this
approach.

The rest of you will probably prefer to use libraries designed to simplify parallel programming.
This really comes down to two choices—the Parallel Virtual Machine (PVM) library or the
Message Passing Interface (MPI) library. Work was begun on PVM in 1989 and continued into
the early '90s as a joint effort among Oak Ridge National Laboratory, the University of
Tennessee, Emory University, and Carnegie-Mellon University. An implementation of PVM is
available from http://www.netlib.org/pvm3/. This PVM implementation provides both libraries
and tools based on a message-passing model.

Without getting into a philosophical discussion, MPI is a newer standard that seems to be
generally preferred over PVM by many users. For this reason, this book will focus on MPI.
However, both PVM and MPI are solid, robust approaches that will potentially meet most
users' needs. You won't go too far wrong with either. OSCAR, you will recall, installs both PVM
and MPI.

MPI is an API for parallel programming based on a message-passing model for parallel
computing. MPI processes execute in parallel. Each process has a separate address space.
Sending processes specify data to be sent and a destination process. The receiving process
specifies an area in memory for the message, the identity of the source, etc.

Primarily, MPI can be thought of as a standard that specifies a library. Users can write code in
C, C++, or FORTRAN using a standard compiler and then link to the MPI library. The library
implements a predefined set of function calls to send and receive messages among
collaborating processes on the different machines in the cluster. You write your code using
these functions and link the completed code to the library.

The MPI specification was developed by the MPI Forum, a collaborative effort with support
from both academia and industry. It is suitable for both small clusters and "big-iron"
implementations. It was designed with functionality, portability, and efficiency in mind. By
providing a well-designed set of function calls, the library provides a wide range of
functionality that can be implemented in an efficient manner. As a clearly defined standard,
the library can be implemented on a variety of architectures, allowing code to move easily
among machines.

MPI has gone through a couple of revisions since it was introduced in the early '90s.
Currently, people talk of MPI-1 (typically meaning Version 1.2) and MPI-2. MPI-1 should
provide for most of your basic needs, while MPI-2 provides enhancements.

While there are several different implementations of MPI, there are two that are widely
used—LAM/MPI and MPICH. Both LAM/MPI and MPICH go beyond simply providing a library.
Both include programming and runtime environments providing mechanisms to run programs
across the cluster. Both are widely used, robust, well supported, and freely available.
Excellent documentation is provided with both. Both provide all of MPI-1 and considerable
portions of MP1-2, including ROMIO, Argonne National Laboratory's freely available high-
performance 10 system. (For more information on ROMIO, visit

http ://www.mcs.anl.gov/romio.) At this time, neither is totally thread-safe. While there are
differences, if you are just getting started, you should do well with either product. And since

http://www.netlib.org/pvm3/
http://www.mcs.anl.gov/romio

both are easy to install, with very little extra work you can install both.

< Day Day Up >

9.3 LAM/MPI

ThelLocal Area Multicomputer/Message Passing Interface (LAM/MPI) was originally developed
by the Ohio Supercomputing Center. It is now maintained by the Open Systems Laboratory at
Indiana University. As previously noted, LAM/MPI (or LAM for short) is both an MPI library and
an execution environment. Although beyond the scope of this book, LAM was designed to
include an extensible component framework known as System Service Interface (SSI), one of
its major strengths. It works well in a wide variety of environments and supports several
methods of inter-process communications using TCP/IP. LAM will run on most Unix machines
(but not Windows). New releases are tested with both Red Hat and Mandrake Linux.

Documentation can be downloaded from the LAM site, http://www.lam-mpi.org/. There are
also tutorials, a FAQ, and archived mailing lists. This chapter provides an overview of the
installation process and a description of how to use LAM. For more up-to-date and detailed
information, you should consult the LAM/MPI Installation Guide and the LAM/MPI User's
Guide.

9.3.1 Installing LAM/MPI

You have two basic choices when installing LAM. You can download and install a Red Hat
package, or you can download the source and recompile it. The package approach is very
quick, easy to automate, and uses somewhat less space. If you have a small cluster and are
manually installing the software, it will be a lot easier to use packages. Installing from the
source will allow you to customize the installation, i.e., select which features are enabled and
determine where the software is installed. It is probably a bad idea to mix installations since
you could easily end up with different versions of the software, something you'll definitely
want to avoid.

Installing from a package is done just as you'd expect. Download the package from
http : //www.lam-mpi.org/ and install it just as you would any Red Hat package.

[root @anny root]# rpm-vih lam7.0.6-1.i586.rpm
Prepari ng. .. TR HBH B HH H B R R R R R R [1009

1:lam HH R R R R R [10099

The files will be installed under the /usr directory. The space used is minimal. You can use the
laminfo command to see the details of the installation, including compiler bindings and which
modules are installed, etc.

If you need more control over the installation, you'll want to do a manual install: fetch the
source, compile, install, and configure. The manual installation is only slightly more involved.
However, it does take considerably longer, something to keep in mind if you'll be repeating
the installation on each machine in your cluster. But if you are building an image, this is a
one-time task. The installation requires a POSIX- compliant operating system, an appropriate
compiler (e.g., GNU 2.95 compiler suite) and utilities such as sed,grep, and awk, and a
modernmake. You should have no problem with most versions of Linux.

First, you'll need to decide where to put everything, a crucial step if you are installing more
than one version of MPI. If care isn't taken, you may find that part of an installation has been
overwritten. In this example, the source files are saved in /usr/local/src/lam-7.0.6 and the
installed code in /usr/local/lam-7.0.6. First, download the appropriate file from

http://www.lam-mpi.org/
http://www.lam-mpi.org/

http : //www.lam-mpi.org/ to /usr/local/src. Next, uncompress and unpack the file.

[root @anny src]# bunzip2 lam7.0.6.tar. bz2

[root @anny src]# tar -xvf lam7.0.6.tar

[root @anny src]# cd lam7.0.6

You'll see a lot of files stream by as the source is unpacked. If you want to capture this
output, you can tee it to a log file. Just append | tee tar.| og to the end of the line and the
output will be copied to the file tar.log. You can do something similar with subsequent
commands.

Next, create the directory where the executables will be installed and configure the code
specifying that directory with the - - prefi x option. You may also include any other options
you desire. The example uses a configuration option to specify SSH as well. (You could also
set this through an environmental variable LAVRSH, rather than compiling it into the
code—something you must do if you use a package installation.)

[root@anny lam 7.0.6]# nkdir /usr/local/lam7.0.6

[root @anny |am 7.0.6]# ./configure --prefix=/usr/local/lam7.0.6 \

>--wi th-rsh="ssh -x

If you don't have a FORTRAN compiler, you'll need to add - -wi t hout - f ¢ to the configure
command. A description of other configuration options can be found in the documentation.
However, the defaults are quite reasonable and will be adequate for most users. Also, if you
aren't using the GNU compilers, you need to set and export compiler variables. The
documentation advises that you use the same compiler to build LAM/MPI that you'll use when
using LAM/MPI.

Next, you'll need to make and install the code.

[root @anny | am 7. 0. 6] # make

[root @anny | am 7.0. 6] # nmake install

You'll see a lot of output with these commands, but all should go well. You may also want to
make the examples and clean up afterwards.

[root @anny | am 7. 0. 6] # make exanpl es

[root @anny | am 7. 0. 6] # nake cl ean

Again, expect a lot of output. You only need to make the examples on the cluster head.
Congratulations, you've just installed LAM/MPI. You can verify the settings and options with

http://www.lam-mpi.org/

thelaminfo command.

9.3.2 User Configuration

Before you can use LAM, you'll need to do a few more things. First, you'll need to create a
host file or schema,which is basically a file that contains a list of the machines in your cluster
that will participate in the computation. In its simplest form, it is just a text file with one
machine name per line. If you have multiple CPUs on a host, you can repeat the host name or
you can append a CPU count to a line in the form cpu=n, where n is the number of CPUs.
However, you should realize that the actual process scheduling on the node is left to the
operating system. If you need to change identities when logging into a machine, it is possible
to specify that username for a machine in the schema file, e.g., user =sm t h. You can create
as many different schemas as you want and can put them anywhere on the system. If you
have multiple users, you'll probably want to put the schema in a public directory, for example,
/etc/lamhosts.

You'll also want to set your $PATH variable to include the LAM executables, which can be
trickier than it might seem. If you are installing both LAM/MPI and MPICH, there are several
programs (e.g., mpirun,mpicc, etc.) that have the same name with both systems, and you
need to be able to distinguish between them. While you could rename these programs for one
of the packages, that is not a good idea. It will confuse your users and be a nuisance when
you upgrade software. Since it is unlikely that an individual user will want to use both
packages, the typical approach is to set the path to include one but not the other. Of course,
as the system administrator, you'll want to test both, so you'll need to be able to switch back
and forth. OSCAR's solution to this problem is a package called switcher that allows a user to
easily change between two configurations. switcher is described in Chapter 6.

A second issue is making sure the path is set properly for both interactive and noninteractive
or non-login shells. (The path you want to add is /usr/local/lam-7.0.6/bin if you are using the
same directory layout used here.) The processes that run on the compute nodes are run in
noninteractive shells. This can be particularly confusing for bash users. With bash, if the path
is setin .bash_profile and not in .bashrc, you'll be able to log onto each individual system and
run the appropriate programs, but you won't be able to run the programs remotely. Until you
realize what is going on, this can be a frustrating problem to debug. So, if you use bash, don't
forget to set your path in .bashrc. (And while you are setting paths, don't forget to add the
manpages when setting up your paths, e.g., /usr/local/lam-7.0.6/man.)

It should be downhill from here. Make sure you have ssh-agentrunning and that you can log
onto other machines without a password. Setting up and using SSH is described in Chapter 4.
You'll also need to ensure that there is no output to stderr whenever you log in using SSH.
(When LAM sees output to stderr, it thinks something bad is happening and aborts.) Since
you'll get a warning message the first time you log into a system with SSH as it adds the
remote machine to the known hosts, often the easiest thing to do (provided you don't have
too many machines in the cluster) is to manually log into each machine once to get past this
problem. You'll only need to do this once. recon, described in the subsection on testing, can
alert you to some of these problems.

Also, the directory /tmp must be writable. Don't forget to turn off or reconfigure your firewall
as needed.

9.3.3 Using LAM/MPI

The basic steps in creating and executing a program with LAM are as follows:

1. Booting the runtime system with lamboot.

2. Writing and compiling a program with the appropriate compiler, e.g., mpicc.[31
[31 Actually, you don't need to boot the system to compile code.
3. Execute the code with the mpirun command.
4. Clean up any crashed processes with lamclean if things didn't go well.
5. Shut down the runtime system with the command lamhalt.
Each of these steps will now be described.

In order to use LAM, you will need to launch the runtime environment. This is referred to as
booting LAM and is done with the lamboot command. Basically, lamboot starts the lamd
daemon, the message server, on each machine.

it is configured so that it will not run if you try to start it as root.

|! Since there are considerable security issues in running lamboot as root,

You specify the schema you want to use as an argument.

[sl oanj d@anny sloanjd]$ | anboot -v /etc/lanmhosts

LAM 7.0.6/MPI 2 C++/ ROM O - Indiana University

n-1<9677> ssi:boot: base: linear: booting n0O (fanny.wofford.int)

n-1<9677> ssi :boot: base:linear: booting nl (george.wofford.int)

n0<15402> ssi :boot: base: linear: finished

As noted above, you must be able to log onto the remote systems without a password and
without any error messages. (If this command doesn't work the first time, you might give this
a couple of tries to clear out any one time error messages.) If you don't want to see the list of
nodes, leave out the - v. You can always use the lamnodes command to list the nodes later if

you wish.
[sl oanj d@anny sloanjd]$ | ammodes
no 10. 0. 32.144: 1:origin,this_node

nl 10. 0. 32. 145: 1.

You'll only need to boot the system once at the beginning of the session. It will remain loaded
until you halt it or log out. (Also, you can omit the schema and just use the local machine.
Your code will run only on the local node, but this can be useful for initial testing.)

Once you have entered your program using your favorite editor, the next step is to compile
and link the program. You could do this directly by typing in all the compile options you'll

need. But it is much simpler to use one of the wrapper programs supplied with LAM. The
programsmpicc,mpiCC, and mpif77 will respectively invoke the C, C++, and FORTRAN 77
compilers on your system, supplying the appropriate command-line arguments for LAM. For
example, you might enter something like the following:

[sl oanjd@anny sloanjd]$ npicc -o hello hello.c

(hello.c is one of the examples that comes with LAM and can be found in /usr/local/src/lam-
7.0.6/examples/hello if you use the same directory structure used here to set up LAM.) If you
want to see which arguments are being passed to the compiler, you can use the - showne

argument. For example,

[sl oanjd@anny sloanjd]$ npicc -showre -0 hello hello.c
gcc -1/usr/local/lam7.0.6/include -pthread -o hello hello.c -L/usr/local/

lam 7.0.6/1ib -Ilammpio -llanf77mpi -Inpi -llam-lutil

With- showne, the program isn't compiled; you just see the arguments that would have been
used had it been compiled. Any other arguments that you include in the call to mpicc are
passed on to the underlying compiler unchanged. In general, you should avoid using the - g
(debug) option when it isn't needed because of the overhead it adds.

To compile the program, rerun the last command without - showre if you haven't done so. You
now have an executable program. Run the program with the mpirun command. Basically,
mpirun communicates with the remote LAM daemon to fork a new process, set environment
variables, redirect 1/0, and execute the user's command. Here is an example:

[sl oanjd@anny sloanjd]$ nmpirun -np 4 hello

Hel l o, world! | amO of 4
Hel l o, world! | am1l of 4
Hel | o, world! | am 2 of 4
Hel l o, world! | am 3 of 4

As shown in this example, the argument - np 4 specified that four processes be used when
running the program. If more machines are available, only four will be used. If fewer
machines are available, some machines will be used more than once.

Of course, you'll need the executable on each machine. If you're using NFS to mount your
home directories, this has already been taken care of if you are working in that directory. You
should also remember that mpirun can be run on a single machine, which can be helpful when
you want to test code away from a cluster.

If a program crashes, there may be extraneous processes running on remote machines. You
can clean these up with the lamclean command. This is a command you'll use only when you
are having problems. Try lamclean first and if it hangs, you can escalate to wipe. Rerun
lamboot after using wipe. This isn't necessary with lamclean. Both lamclean and wipe take a -
v for verbose output.

Once you are done, you can shut down LAM with the lamhalt command, which Kkills the lamd
daemon on each machine. If you wish, you can use - v for verbose output. Two other useful
LAM commands are mpitask and mpimsg, which are used to monitor processes across the
cluster and to monitor the message buffer, respectively.

9.3.4 Testing the Installation

LAM comes with a set of examples, tests, and tools that you can use to verify that it is
properly installed and runs correctly. We'll start with the simplest tests first.

Therecon tool verifies that LAM will boot properly. recon is not a complete test, but it
confirms that the user can execute commands on the remote machine, and that the LAM
executables can be found and executed.

[sl oanjd@anny bin]$ recon

recon has conpl eted successfully. This neans that you will nost likely
be able to boot LAM successfully with the "lanmboot" conmand (but this
is not a guarantee). See the |anboot (1) nmanual page for nore

infornmati on on the | anmboot conmand.

I f you have problenms booting LAM (with [anboot) even though recon

wor ked successfully, enable the "-d" option to | anboot to exam ne each
step of |anboot and see what fails. Mbst situations where recon
succeeds and |amboot fails have to do with the hboot (1) comrand (that

| amboot i nvokes on each host in the hostfile).

Sincelamboot is required to run the next tests, you'll need to run these tests as a non-
privileged user. Once you have booted LAM, you can use the tping command to check basic
connectivity.tping is similar to ping but uses the LAM echo server. This confirms that both
network connectivity and that the LAM daemon is listening. For example, the following
command sends two one-byte packets to the first three machines in your cluster.
[sl oanjd@anny sloanjd]$ tping n1-3 -c2

1 byte from3 renpte nodes: 0.003 secs

1 byte from3 renote nodes: 0.002 secs

2 nmessages, 2 bytes (0.002K), 0.006 secs (0.710K/sec)

roundtrip m n/avg/ max: 0.002/0.003/0.003

If you want to probe every machine, use n without a count.

The LAM test suite is the most comprehensive way to test your system. It can be used to
confirm that you have a complete and correct installation. Download the test suite that
corresponds to your installation and then uncompress and unpack it.

[sl oanjd@anny sloanjd]$ bunzip2 |antests-7.0.6.tar.bz2

[sl oanjd@anny sloanjd]$ tar -xvf lantests-7.0.6.tar

This creates the directory lamtests-7.0.6 with the tests and a set of directions in the file
README. Next, you should start LAM with lamboot if you haven't already done so. Then
change to the test directory and run configure.

[sl oanjd@anny sloanjd]$ cd | antests-7.0.6

[sl oanjd@anny | antests-7.0.6]% ./configure

Finally, run make.

[sl oanjd@anny | antests-7.0.6]$ nake -k check

You'll see lots of output scroll past. Don't be concerned about an occasional error message
while it is running. What you want is a clean bill of health when it is finally done. You can run
specific tests in the test suite by changing into the appropriate subdirectory and running
make.

< Day Day Up >

< Day Day Up >

9.4 MPICH

Message Passing Interface Chameleon (MPICH) was developed by William Gropp and Ewing
Lusk and is freely available from Argonne National Laboratory (http ://www-
unix.mcs.anl.gov/mpi/mpich/). Like LAM, it is both a library and an execution environment. It
runs on a wide variety of Unix platforms and is even available for Windows NT.

Documentation can be downloaded from the web site. There are separate manuals for each of
the communication models. This chapter provides an overview of the installation process and

a description of how to use MPICH. For more up-to-date and detailed information, you should

consult the appropriate manual for the communications model you are using.

9.4.1 Installing

There are five different "flavors” of MPICH reflecting the type of machine it will run on and
how interprocess communication has been implemented:

ch_p4

This is probably the most common version. The "ch" is for channel and the "p4" for
portable programs for parallel processors.

ch_p4mpd

This extends ch_p4 mode by including a set of daemons built to support parallel
processing. The MPD is for multipurpose daemon. MPD is a new high-performance job
launcher designed as a replacement for mpirun.

ch_shmem

This is a version for shared memory or SMP systems.

globus2

This is a version for computational grids. (See http://www.globus.org for more on the
Globus project.)

ch_nt
This is a version of MPI for Windows NT machines.

The best choice for most clusters is either the ch_p4 model or ch_p4mpd model. The
ch_p4mpd model assumes a homogenous architecture while ch_p4 works with mixed
architectures. If you have a homogenous architecture, ch_p4mpd should provide somewhat

http://www-
http://www.globus.org

better performance. This section will describe the ch_p4 since it is more versatile.

The first step in installing MPICH is to download the source code for your system. MPICH is
not available in binary (except for Windows NT). Although the available code is usually
updated with the latest patches, new patches are occasionally made available, so you'll
probably want to check the patch list at the site. If necessary, apply the patches to your
download file following the directions supplied with the patch file.

Decide where you want to install the software. This example uses /usr/local/src/mpich. Then
download the source to the appropriate directory, uncompress it, and unpack it.

[root @anny src]# gunzip npich.tar.gz

[root @anny src]# tar -xvf npich.tar

Expect lots of output! Change to the directory where the code was unpacked, make a
directory for the installation, and run configure.

[root @anny src]# cd npich-1.2.5.2
[root @anny npich-1.2.5.2]# nkdir /usr/local/npich-1.2.5.2
[root @anny npich-1.2.5.2]# ./configure --prefix=/usr/local/npich-1.2.5.2\

> -rsh=ssh

As with LAM, this installation configures MPICH to use SSH.I21 Other configuration options are
described in the installation and user's guides.

[4] Alternatively, you could use the environmental variable SRSHCOMMAND to specify SSH.
Next, you'll make, install, and clean up.

[root @anny npich-1.2.5.2]# nake

[root @anny npich-1.2.5.2]# make install

[root @anny npich-1.2.5.2]# make cl ean

Again, you'll see lots of output after each of these steps. The first make builds the software
while the make install, which is optional, puts it in a public directory. It is also a good idea to
make the tests on the head node.

MPICH on Windows Systems

For those who need to work in different environments, it is worth noting that
MPICH will run under Windows NT and 2000. (While I've never tested it in a cluster
setting, | have used MPICH on XP to compile and run programs.)

To install, download the self-extracting archive. By default, this will install the
runtime DLLs, the development libraries, jumpshot, and a PDF of the user's
manual. I've used this combination without problems with Visual Studio.NET and
CodeWarrior. It is said to work with GCC but | haven't tested it.

Installing MPICH on a laptop can be very helpful at times, even if you aren't
attaching the laptop to a cluster. You can use it to initially develop and test code.
In this mode, you would run code on a single machine as though it were a cluster.
This is not the same as running the software on a cluster, and you definitely won't
see any performance gains, but it will allow you to program when you are away
from your cluster. Of course, you can also include Windows machines in your
cluster as compute nodes. For more information, see the MPICH ch_nt manual.

Before you can use MPICH, you'll need to tell it which machines to use by editing the file
machine.archi tect ure. For Linux clusters, this is the file machine.LINUX and is located in the
directory../share under installation directory. If you use the same file layout used here, the
file is /usr/local/mpich-1.2.5.2/share/machines.LINUX. This file is just a simple list of
machines with one hostname per line. For SMP systems, you can append a :n where n is the
number of processors in the host. This file plays the same role as the schema with LAM. (You
can specify a file with a different set of machines as a command-line argument when you run
a program if desired.)

9.4.2 User Configuration

Since individual users don't set up schemas for MPICH, there is slightly less you need to do
compared to LAM. Besides this difference, the user setup is basically the same. You'll need to
set the $PATH variable appropriately (and $MANPATH, if you wish). The same concerns apply
with MPICH as with LAM—you need to distinguish between LAM and MPICH executables if you
install both, and you need to ensure the path is set for both interactive and noninteractive
logins. You'll also need to ensure that you can log onto each machine in the cluster using SSH
without a password. (For more information on these issues, see the subsection on user
configuration under LAM/MPI.)

9.4.3 Using MPICH

Unlike LAM, you don't need to boot or shut down the runtime environment when running an
MPICH program. With MPICH you'll just need to write, compile, and run your code. The
downside is, if your program crashes, you may need to manually Kill errant processes on
compute nodes. But this shouldn't be a common problem. Also, you'll be able to run programs
as root provided you distribute the binaries to all the nodes. (File access can be an issue if you
don't export root's home directory via NFS.)

The first step is to write and enter your program using your favorite text editor. Like LAM,
MPICH supplies a set of wrapper programs to simplify compilation—mpicc,mpiCC, and
mpif77, and mpif90 for C, C++, FORTRAN 77, and FORTRAN 90, respectively. Here is an
example of compiling a C program:

[sl oanjd@anny sloanjd]$ npicc -o cpi cpi.c

cpi.c is one of the sample programs included with MPICH. It can be found in the directory
../examples/basic under the source directory.

You can see the options supplied by the wrapper program without executing the code by
using the - show option. For example,

[sl oanj d@anny sloanjd]$ npicc -show -o cpi cpi.c
gcc - DUSE_STDARG - DHAVE_STDLIB_H=1 -DHAVE_STRI NG H=1 - DHAVE UN STD H=1 - DHAVE
STDARG H=1 - DUSE_STDARG=1 - DMALLOC_RET_VOI D=1 -L/opt/ npi ch-1.2.5.10-ch_p4-gcc/

lib -o cpi cpi.c -Inpich

Obviously, you'll want to use the wrapper programs rather than type in arguments manually.
To run a program, you use the mpirun command. Again, before the code will run, you must

have copies of the binaries on each machine and you must be able to log into each machine
with SSH without a password. Here is an example of running the code we just compiled.

[sl oanjd@anny sloanjd]$ npirun -np 4 cpi

Process 0 of 4 on fanny.wofford.int

pi is approxinately 3.1415926544231239, Error is 0.0000000008333307
wal | clock time = 0.008783

Process 2 of 4 on hector.wofford.int

Process 1 of 4 on george.wofford.int

Process 3 of 4 on ida. wofford.int

The argument - np 4 specified running the program with four processes. If you want to
specify a particular set of machines, use the - nachinefil e argument.

[sl oanjd@anny sloanjd]$ nmpirun -np 4-nmachinefil e nachi nes cpi

Process 0 of 4 on fanny.wofford.int

pi is approximately 3.1415926544231239, Error is 0.0000000008333307

wal | clock time = 0.007159

Process 1 of 4 on george.wofford.int

Process 2 of 4 on fanny.wofford.int

Process 3 of 4 on george.wofford.int

In this example, four processes were run on the two machines listed in the file machines.

Notice that each machine was used twice. You can view the mpicc(1) and mpirun(1) manpage
for more details.

9.4.4 Testing the Installation

You can test connectivity issues and the like with the MPICH-supplied script tstmachines,
which is located in the ../sbin directory under the MPICH installation. This script takes the
architecture as an argument. For example,

[sl oanjd@anny sloanjd]$ /usr/local/npich-1.2.5.2/sbin/tstmachi nes LINUX

If all is well, the script runs and terminates silently. If there is a problem, it makes
suggestions on how to fix the problem. If you want more reassurance that it is actually doing
something, you can run it with the - v argument.

For more thorough testing, MPICH provides a set of tests with the distribution. You'll find a
thorough collection of tests supplied with the source files. These are in the directory
../examples/test. You run these tests by executing the command:

[sloanjd@anny test]$ meke testing | tee neke.log

You'll need to do this in the test directory. This directory must be shared among all the nodes
on the cluster, so you will have to either mount this directory on all the machines or copy its
contents over to a mounted directory. When this runs, you'll see a lot of output as your
cluster is put through its paces. The output will be copied to the file make.log, so you'll be
able to peruse it at your leisure.

9.4.5 MPE

TheMulti-Processing Environment (MPE) library extends MPI. MPE provides such additional
facilities as libraries for creating log files, an X graphics library, graphical visualization tools,
routines for serializing sections of parallel code, and debugger setup routines. While
developed for use with MPICH, MPE can be used with any MPI implementation. MPE is
included with MPICH and will be built and installed. MPE includes both a library for collecting
information and a viewer for displaying the collected information. A user's guide is available
that provides greater detail. Use of MPE is described in greater detail in Chapter 17.

MPE includes four viewers—upshot,nupshot,jumpshot-2, and jumpshot-3. These are not built
automatically since the software required for the build may not be present on every machine.
Bothupshot and nupshot require Tcl/Tk and Wish. jumpshot-2 and jumpshot-3 require Java.

There are three different output formats for MPE log files—alog, an ASCII format provided for
backwards compatibility; clog,alog's binary equivalent; and slog, a scalable format capable of
handling very large files. upshot reads alog files, nupshot and jumpshot-2 read clog files, and
jumpshot-3 reads slog files. MPE includes two utilities, clog2slog and clog2alog, to convert
between formats. The basic functionality of the viewers is similar, so installing any one of
them will probably meet your basic needs.

Although the requirements are different, the compilation process is similar for each tool. You
can build the viewers collectively or individually. For example, to compile jumpshot-3, you'll
need to install Java if you don't already have it. JDK-1.1, JDK-1.2, or JDK-1.3 can be used.
(jumpshot-2 compiles only with JDK-1.1.) If you don't have the appropriate Java, you can
download it from http ://www.blackdown.org or http://java.sun.com and follow the installation
directions given at the respective site. Once Java has been installed, make sure that you add
its directory to your path. Next, change to the ../mpe/viewer/jumpshot-3 subdirectory under
the MPICH directory, for example, /usr/local/src/mpich-1.2.5.2/mpe/viewers/jumpshot-3.
Now you can configure and build jumpshot-3.

http://www.blackdown.org
http://java.sun.com

[root @anny junpshot-3]# ./configure

[root @anny j unpshot -3]# nake

[root @anny junpshot-3]# meke install

jumpshot-3 will be installed in the /usr/local/bin directory as jumpshot. (You will only need to
install it on the head node.) For details on the installation of the other viewer, see the MPE
installation and user's guide.

To test your installation, you'll need to compile a program using the - npi | og option and run
the code to create a log file.

[sl oanjd@anny sloanjd]$ npicc -npilog -0 cpi cpi.c

[sl oanjd@anny sloanjd]$ npirun cpi

When you run the code, the log file cpi.clog will be created. You'll need to convert this to a
format that jumpshot-3 can read.

[sl oanj d@anny sloanjd]$ clog2sl og cpi.clog

The conversion routines are in the directory ../mpich-1.2.5.2/bin. Now you can view the
output. Of course, you must have a graphical login for this to work. With this command,
several windows should open on your display.

[sl oanj d@anny sloanjd]$ junmpshot cpi. sl og

As noted, the use of MPE will be described in greater detail in Chapter 17.

< Day Day Up >

9.5 Other Programming Software

Keeping in mind that your head node will also serve as a software development platform,
there are other software packages that you'll want to install. One obvious utility is the
ubiquitous text editor. Fortunately, most likely choices are readily available and will be part of
your basic installation. Just don't forget them when you install the system. Because personal
preferences vary so widely, you'll want to include the full complement.

9.5.1 Debuggers

Another essential tool is a software debugger. Let's face it, using printf to debug parallel code
is usually a hopeless task. With multiple processes and buffered output, it is unlikely you'll
know where the program was executing when you actually see the output. The best solution is
a debugger designed specifically for parallel code. While commercial products such as
TotalView are available and work well with MPI, free software is wanting. At the very least,
you will want a good traditional debugger such as gdb. Programs that extend gdb, such as
ddd (the Data Display Debugger), are a nice addition. (Debugging is discussed in greater
detail in Chapter 16.) Since it is difficult to tell when they will be needed and just how
essential they will be, try to be as inclusive as possible when installing these tools. As part of
thegcc development package, gdb is pretty standard fare and should already be on your
system. However, ddd may not be installed by default.

Sinceddd provides a GUI for other debuggers such as gdb, there is no point installing it on a

system that doesn't have X Windows and gdb a or similar debugger. ddd is often included as
part of a Linux distribution; for instance, Red Hat includes it. If not, you can download it from
http : //www.gnu.org/software/ddd. The easiest way to install it is from an RPM.

[root @anny root]# rpm -vih ddd-3.3.1-23.i386.rpm

war ni ng: ddd- 3. 3.1-23.1386.rpm V3 DSA signature: NOKEY, key ID db42a60e

Prepari ng. .. TR HBH BT H B R R R R R R [1009
1: ddd TR HEH BT H R R AR R R R [1009

Depending on what is installed on your system, you may run into a few dependencies. For
example,ddd requires openmotif.

9.5.2 HDF5

Depending on the nature of the programming you do, there may be other useful libraries that
you'll want to install. One such package that OSCAR includes is Hierarchical Data Format
(Version 5) or HDF5. HDF5 is a freely available software package developed by the HDF5
group at the National Center for Supercomputing Applications (NCSA). The official web site is
http ://hdf.ncsa.uiuc.edu/HDF5/.

HDF5 is both a file format standard and a library with utilities specifically designed for storing
scientific data. It supports very large files and is designed and tuned for efficient storage on
parallel computing systems. Data is stored in two parts, a header and a data array. The
header contains the information needed to interpret the data array. That is, it describes and
annotates the data set. The data sets are essentially multidimensional arrays of items. The

http://www.gnu.org/software/ddd
http://hdf.ncsa.uiuc.edu/HDF5/

APl is available only in C. While HDF5 is beyond the scope of this book, you should be aware it
exists should you need it. An extensive tutorial, as well as other documentation, is available at
the software's web site.

9.5.3 SPRNG

Scalable Parallel Random Number Generators (SPRNG) is a library that provides six different
state-of-the-art random number generators for use with parallel programs. SPRNG integrates
nicely with MPI. Its use is described in Chapter 15.

SPRNG is freely available from http://sprng.cs.fsu.edu/. At the time this was written, the
latest version sprng2.0a.tgz. First, download the package and move it to an appropriate
directory, e.g., /usr/local/src. The next step is to unpack it.

[root @ny src]# gunzip sprng2.0a.tgz

[root@ny src]# tar -xvf sprng2.0a.tar

Then change to the directory to where you just unpacked the source. Before you can build it,
you need to edit a couple of files. In the first section of the file make.CHOICES, select the
appropriate platform. Typically, this will be INTEL for Linux clusters. Make sure the line

PLAT = | NTEL

is uncommented and the lines for other platforms are commented out. Because you want to
use it with MPI, in the second section, uncomment the line

MPI DEF = - DSPRNG_MPI

You should also comment out the two lines in the third section if libgmp.a is not available on
your system.

You should also edit the appropriate architecture file in the SRC subdirectory, typically
make.INTEL. You'll need to make two sets of changes for a Linux cluster. First, change all the
gcc optimization flags from - B to - OL. Next, change all the paths to MPI to match your
machine. For the setup shown in this chapter, the following lines were changed:

MPIDIR = -L/usr/local/nmpich-1.2.5.2/lib

and

CFLAGS = -OL -DLittl|eEndian $(PM.CGDEF) $(MPI DEF) -D$(PLAT) \
-1/usr/local/npich-1.2.5.2/include -1/usr/local/npich-1.2.5. 2/include
CLDFLAGS = -Q1

FFLAGS = -O1 $(PM.CGDEF) $(MPI DEF) -D$(PLAT) \

-1/ usr/local /npich-1.2.5.2/include -1/usr/local/nmpich-1. 2.5 2/include -1.

F77LDFLAGS = -0O1

http://sprng.cs.fsu.edu/

Once you've done this, run make from the root of the source tree. If you want to play with the
MPI examples, run make mpi in the EXAMPLES subdirectory.

To use the library, you must adjust your compile paths to include the appropriate directories.
For example, to use SPRNG with OSCAR and MPICH, the following changes should work.

MPIDIR = -L/opt/npich-1.2.5.10-ch_p4-gcc/lib

MPILIB = -l npich

Pl ease include npi header file path, if needed

CFLAGS = -OL -DLittl eEndian $(PM.CGDEF) $(MPI DEF) -D$(PLAT) -1/ opt/ npich-
1.2.5.10-ch_p4-gcc/include -1/opt/npich-1.2.5.10-ch_p4-gcc/incl ude
CLDFLAGS = -QL

FFLAGS = -O1 $(PM.CGDEF) $(MPI DEF) -D$(PLAT) -I/opt/npich-1.2.5.10-ch_p4-
gcec/include -1/opt/npich-1.2.5.10-ch_p4-gcc/include -1.

F77LDFLAGS = -0O1

Note this installation is specific to one version of MPIl. See Chapter 15 for the details of using
SPRNG.

\ ‘ PREY < Day Day Up > MHE=T ‘

< Day Day Up >

9.6 Notes for OSCAR Users

LAM/MPI, MPICH, and HDF5 are installed as part of a standard OSCAR installation under the
/opt directory to conform to the File System Hierarchy (FSH) standard

(http : //www. pathname.com/fhs/). Both MPICH and HDF5 have documentation subdirectories
doc with additional information. OSCAR does not install MPE as part of the MPICH installation.
If you want to use MPE, you'll need to go back and do a manual installation. Fortunately, this
is not particularly difficult, but it can be a bit confusing.

9.6.1 Adding MPE

First, use switcher to select your preferred version of MPI . Since you can't run LAM/MPI as
root, MPICH is probably a better choice. For example,

[root @ny root]# sw tcher npi --list

lam 7.0

lamwith-gm 7.0

nmpi ch-ch_p4-gcc-1.2.5.10

[root @ny root]# switcher npi = npich-ch_p4-gcc-1.2.5.10

Attribute successfully set; new attribute setting will be effective for

future shells

If you had to change MPI, log out and back onto the system.
Next, you'll need to retrieve and unpack a copy of MPICH.

[root @ny root]# cp npich.tar.gz /usr/local/src
[root @ny root]# cd /usr/local/src
[root @ny src]# gunzip npich.tar.gz

[root @ny src]# tar -xvf npich.tar

/usr/local/src is a reasonable location.
If you don't have it on your system, you'll need to install Java to build the jumpshot.

[root @ny src]# bunzip2 j2sdk-1.3.1-FCS-1inux-i386.tar.bz2

[root @ny src]# tar -xvf j2sdk-1.3.1-FCS-linux-i386.tar

http://www.pathname.com/fhs/

Again,/usr/local/src is a reasonable choice.
Next, you need to set your PATH to include Java and set environmental variables for MPICH.

[root @ny src]# export PATH=/usr/l ocal /src/j2sdkl. 3.1/ bin: $PATH

[root @ny src]# export MPI_INC="-1/opt/ nmpich-1.2.5.10-ch_p4-gcc/incl ude"
[root @ny src]# export MPI_LIBS="-L/opt/npich-1.2.5.10-ch_p4-gcc/lib"
[root @ny src]# export MPI_CC=npicc

[root @ny src]# export MPlI_F77=npi f 77

(Be sure these paths match your system.)
Now you can change to the MPE directory and run configure,make, and make install.

[root @ny src]# cd npich-1.2.5. 2/ npe

[root @ny npe]# ./configure

[root @ny npe]# meke

[root @ny npel# nmeke install

You should now have MPE on your system. If you used the same directories as used here, it
will be in /usr/local/src/mpich-1.2.5.2/mpe.

< Day Day Up >

< Day Day Up >

9.7 Notes for Rocks Users

Rocks does not include LAM/MPI or HDF5 but does include several different MPICH releases,
located in /opt. MPE is included as part of Rocks with each release. The MPE libraries are
included with the MPICH libraries, e.g., /opt/mpich/gnu/lib. Rocks includes the jumpshot3
script as well, e.g., /opt/mpich/gnu/share/jumpshot-3/bin for MPICH. (Rocks also includes
upshot.)

By default, Rocks does not include Java. There is, however, a Java roll for Rocks. To use
jumpshot3, you'll need to install the appropriate version of Java. You can look in the
jumpshot3 script to see what it expects. You should see something like the following near the
top of the file:

JAVA HOMVE=/ usr/j ava/j 2sdkl. 4.2_02

JWE/ usr/javalj2sdkl.4.2 02/ bin/java

You can either install j2sdk1.4.2-02 in /usr/java or you can edit these lines to match your
Java installation. For example, if you install the Java package described in the last section, you
might change these lines to

JAVA HOME=/ usr/ | ocal /src/j 2sdkl.3. 1

JWE/ usr/local/src/j2sdkl. 3.1/ bin/java

Adjust the path according to your needs.

4 FREV < Day Day Up > MEXT mp

< Day Day Up >

Chapter 10. Management Software

Now that you have a cluster, you are going to want to keep it running, which will involve a
number of routine system administration tasks. If you have done system administration
before, then for the most part you won't be doing anything new. The administrative tasks
you'll face are largely the same tasks you would face with any multiuser system. It is just that
these tasks will be multiplied by the number of machines in your cluster. While creating 25
new accounts on a server may not sound too hard, when you have to duplicate those
accounts on each node in a 200-node cluster, you'll probably want some help.

For a small cluster with only a few users, you may be able to get by doing things the way you
are used to doing them. But why bother? The tools in this chapter are easy to install and use.
Mastering them, which won't take long, will lighten your workload.

While there are a number of tools available, two representative tools (or tool sets) are
described in this chapter—the Cluster Command and Control (C3) tools set and Ganglia. C3 is
a set of utilities that can be used to automate a number of tasks across a cluster or multiple
clusters, such as executing the same command on every machine or distributing files to every
machine. Ganglia is used to monitor the health of your cluster from a single node using a
web-based interface.

< Day Day Up >

< Day Day Up >

10.1 C3

Cluster Command and Control is a set of about a dozen command-line utilities used to execute
common management tasks. These commands were designed to provide a look and feel
similar to that of issuing commands on a single machine.I1l The commands are both secure
and scale reliably. Each command is actually a Python script. C3 was developed at Oak Ridge
National Laboratory and is freely available.

[11 A Python/TK GUI known as C2G has also been developed.

10.1.1 Installing C3

There are two ways C3 can be installed. With the basic install, you'll do a full C3 installation on
a single machine, typically the head node, and issue commands on that machine. With large
clusters, this can be inefficient because that single machine must communicate with each of
the other machines in the cluster. The alternate approach is referred to as a scalable
installation. With this method, C3 is installed on all the machines and the configuration is
changed so that a tree structure is used to distribute commands. That is, commands fan out
through intermediate machines and are relayed across the cluster more efficiently. Both
installations begin the same way; you'll just need to repeat the installation with the scalable
install to alter the configuration file. This description will stick to the simple install. The simple
installation includes a file README.scale that describes the scalable installation.

Since the C3 tools are scripts, there is very little to do to install them. However, since they
rely on several other common packages and services, you will need to be sure that all the
prerequisites are met. On most systems this won't be a problem; everything you'll need will
already be in place.

Before you can install C3, make sure that rsync, Perl, SSH, and Python are installed on your
system and available. Name resolution, either through DNS or a host file, must be available as
well. Additionally, if you want to use the C3 command pushimage, Systemlmager must be
installed. Installing Systemlmager is discussed in Chapter 8.

Once you have met the prerequisites, you can download, unpack, and install C3. To download
it, go to http://www.csm.ornl.gov/torc/C3/ and follow the link to the download page. You can
download sources or an RPM package. In this example, sources are used. If you install from
RPMs, install the full install RPM and profile RPM on servers and the client RPM on clients. Note
that with the simple installation you only need to install C3 on the head node of your cluster.
However, you will need SSH and the like on every node.

Once you have unpacked the software and read the README files, you can run the install
scriptinstall-c3.

[root @anny src]# gunzip c3-4.0.1.tar.gz
[root @anny src]# tar -xvf c3-4.0.1. tar
[root @anny src]# cd c3-4.0.1

[root @anny c3-4.0.1]# ./Install-c3

The install script will copy the scripts to /opt/c3-4 (for Version 4 at least), set paths, and
install man pages. There is nothing to compile.

http://www.csm.ornl.gov/torc/C3/

The next step is creating a configuration file. The default file is /etc/c3.conf. However, you can
use other configuration files if you wish by explicitly referencing them in C3 commands using
the- f option with the file name.

Here is a very simple configuration file:

cluster |ocal {
fanny.wofford.int
geor ge. wof ford. i nt
hect or. wof f ord. i nt
i da. wof ford. int

j ames.wofford.int

This example shows a configuration for a single cluster. In fact, the configuration file can
contain information on multiple clusters. Each cluster will have its own cluster description
block, which begins with the identifier cl ust er followed by a name for a cluster. The name
can be used in C3 commands to identify the specific cluster if you have multiple cluster
description blocks. Next, the machines within the cluster are listed within curly braces. The
first machine listed is the head node. To remove ambiguity, the head node entry can consist
of two parts separated by a colon—the head node's external interface to the left of the colon
and the head node's internal interface to the right of the colon. (Since fanny has a single
interface, that format was not appropriate for this example.) The head node is followed by the
compute nodes. In this example, the compute nodes are listed one per line. It is possible to
specify a range. For example, node[01- 64] would specify 64 machines with the names nodel,
node2, etc. The cluster definition block is closed with another curly brace. Of course, all
machine names must resolve to IP addresses, typically via the /etc/hosts file. (The commands
cname and cnum, described later in this section, can be discerning the details surrounding
node indices.)

Within the compute node list, you can also use the qualifiers excl ude and dead.excl ude is
applied to range qualifiers and immediately follow a range specification. dead applies to
individual machines and precedes the machine name. For example,

node[1- 64]
excl ude 60
alice

dead bob

carol

In this list node60 and bob are designated as being unavailable. Starting with Version 3 of C3,
it is possible to use ranges in C3 commands to restrict actions to just those machines within
the range. The order of the machines in the configuration file determines their numerical
position within the range. In the example, the 67 machines defined have list positions O
through 66. If you deleted bob from the file instead of marking it as dead, carol's position
would change from 66 to 65, which could cause confusion. By using excl ude and dead, you
effectively remove a machine from a cluster without renumbering the remaining machines.
dead can also be used with a dummy machine to switch from O-indexing to 1-indexing. For

example, just add the following line to the beginning of the machine list:

dead pl ace_hol der

Once done, all the machines in the list move up one position. For more details on the
configuration file, see the c3.conf(5) and c3-scale(5) manpages.

Once you have created your configuration file, there is one last thing you need to do before
C3 is ready to go. For the command ckill to work properly, the Perl script ckillnode must be
installed on each individual machine. Fortunately, the rest of C3 is installed and functional, so
you can use it to complete the installation. Just issue these commands:

[root @anny root]# cexec nkdir /opt/c3-4

khkkkkdkkdrhkkhkhhkhkkdkkxhxkxx IOCaI khxkhkhkdkhkhkdrhkkhhhkkdkkxhxk

————————— george.wof ford.int---------

[root @anny root]# cpush /opt/c3-4/ckillnode
building file list ... building filelist ... building file list ... building

file list ... done

The first command makes the directory /opt/c3-4 on each machine in your cluster and the
second copies the file ckillnode to each machine. You should see a fair amount of output with
each command. If you are starting SSH manually, you'll need to start it before you try this.

10.1.2 Using C3 Commands

Here is a brief description of C3's more useful utilities.

10.1.2.1 cexec

This command executes a command string on each node in a cluster. For example,
[root @anny root]# cexec nkdir tnp

kkhkkhkkkhkkhkkhkhhkhkkhhkhkhkhhhkkhhkrkhkkkx IOCaI ERE Rk S S S b S I I I o I

--------- george.wofford.int---------

--------- hector.wofford.int---------

The directory tmp has been created on each machine in the local cluster. cexec has a serial
versioncexecs that can be used for testing. With the serial version, the command is executed
to completion on each machine before it is executed on the next machine. If there is any

ambiguity about the order of execution for the parts of a command, you should use double
quotes within the command. Consider:

[root @anny root]# cexec "ps | grep a.out"

The quotes are needed here so grep will be run on each individual machine rather than have
the full output from ps shipped to the head node.

10.1.2.2 cget

This command is used to retrieve a file from each machine in the cluster. Since each file will
initially have the same name, when the file is copied over, the cluster and host names are
appended. Here is an example.

[root @anny root]# cget /etc/notd
[root @anny root]# |s

not d_| ocal _geor ge. wofford. int

not d_local hector.wofford.int

not d_l| ocal _i da. wof ford. i nt

nmot d_l ocal _j ames. wof ford.int

cget ignores links and subdirectories.

10.1.2.3 ckill

This script allows you to Kill a process running on each node in your cluster. To use it, specify
the process by name, not by number, because it is unlikely that the processes will have the
same process ID on each node.

[root @anny root]# ckill -u sloanjd a.out
uid sel ected is 500
uid sel ected is 500
uid sel ected is 500
uid sel ected is 500

You may also specify an owner as shown in the example. By default, the local user name wiill
be used.

10.1.2.4 cpush

This command is used to move a file to each node on the cluster.

[root @anny root]# cpush /etc/ notd /root/ motd. bak

building file list ... done
building file list ... done
not d
not d
building file list ... done
not d

wrote 119 bytes read 36 bytes 62.00 bytes/sec
total size is 39 speedup is 0.25

wrote 119 bytes read 36 bytes 62.00 bytes/sec
total size is 39 speedup is 0.25

wrote 119 bytes read 36 bytes 62.00 bytes/sec
total size is 39 speedup is 0.25

building file list ... done

not d

wrote 119 bytes read 36 bytes 62.00 bytes/sec
total size is 39 speedup is 0.25

As you can see, statistics for each move are printed. If you only specify one file, it will use the
same name and directory for the source and the destination.

10.1.2.5crm

This routine deletes or removes files across the cluster.

[root @anny root]# crm /root/notd. bak

Like its serial counterpart, you can use the -i,-r and - v options for interactive, recursive, and
verbose deletes, respectively. Please note, the -i option only prompts once, not for each
node. Without options, crm silently deletes files.

10.1.2.6 cshutdown

This utility allows you to shut down the nodes in your cluster.

[root @anny root]# cshutdown -r t O

In this example, the time specified was 0 for an immediate reboot. (Note the absence of the

hyphen for the t option.) Additional options are supported, e.g., to include a shutdown
message.

10.1.2.7 clist, cname, and cnum

These three commands are used to query the configuration file to assist in determining the
appropriate numerical ranges to use with C3 commands. clist lists the different clusters in the
configuration file.

[root @ny root]# cli st
cluster oscar_cluster is a direct |local cluster
cluster pvfs clients is a direct local cluster

cluster pvfs_iod is a direct local cluster

cname lists the names of machines for a specified range.

[root @anny root]# cnane | ocal :0-1

nodes fromcluster: |ocal
cluster: local ; node nane: george.wofford.int
cluster: local ; node name: hector.wofford.int

Note the use of O indexing.

cnum determines the index of a machine given its name.
[root @anny root]# cnum ida.wofford.int

nodes fromcluster: | ocal

ida.wof ford.int is at index 2 in cluster | ocal

These can be very helpful because it is easy to lose track of which machine has which index.

10.1.2.8 Further examples and comments

Here is an example using a range:

[root @anny root]# cpush | ocal :2-3 data

| ocal designates which cluster is within your configuration file. Because compute nodes are
numbered from 0, this will push the file dat a to the third and fourth nodes in the cluster.
(That is, it will send the file from fanny to ida and james, skipping over george and hector.) Is
that what you expected? For more information on ranges, see the manpage c3-range(5).

Note that the name used in C3 commands must match the name used in the configuration
file. For C3, ida and ida.wofford.int are not equal even if there is an alias ida that resolves to

ida.wofford.int. For example,

[root @anny root]# cnum ida.wofford.int

nodes fromcluster: |[ocal

ida.wofford.int is at index 2 in cluster |ocal
[root @anny root]# cnum ida

nodes fromcluster: |ocal

When in doubt about what form to use, just refer back to /etc/c3.conf.

In addition to the commands just described, the C3 command cpushimage can be used with
Systemlmager to push an image from server to nodes. There are also several user-
contributed utilities. While not installed, these can be found in the C3 source tree in the
subdirectorycontrib. User-contributed scripts can be used as examples for writing other
scripts using C3 commands.

C3 commands take a number of different options not discussed here. For a brief description of
other options, use the - - hel p option with individual commands. For greater detail, consult the
manpage for the individual command.

\ . PREY < Day Day Up > ME=ST ‘

< Day Day Up >

10.2 Ganglia

With a large cluster, it can be a daunting task just to ensure that every machine is up and
running every day if you try to do it manually. Fortunately, there are several tools that you
can use to monitor the state of your cluster. In clustering circles, the better known of these
includeGanglia,Clumon, and Performance Co-Pilot (CPC). While this section will describe
Ganglia, you might reasonably consider any of these.

Ganglia is a real-time performance monitor for clusters and grids. If you are familiar with
MRTG, Ganglia uses the same round-robin database package that was developed for MRTG.
Memory efficient and robust, Ganglia scales well and has been used with clusters with
hundreds of machines. It is also straightforward to configure for use with multiple clusters so
that a single management station can monitor all the nodes within multiple clusters. It was
developed at UCB, is freely available (via a BSD license), and has been ported to a number of
different architectures.

Ganglia uses a client-server model and is composed of four parts. The monitor daemon
gmond needs to be installed on every machine in the cluster. The backend for data collection,
the daemon gmetad, and the web interface frontend are installed on a single management
station. (There is also a Python class for sorting and classifying data from large clusters.) Data
are transmitted using XML and XDR via both TCP and multicasting.

In addition to these core components, there are two command-line tools. The cluster status
toolgstat provides a way to query gmond, allowing you to create a status report for your
cluster. The metric tool gmetric allows you to easily monitor additional host metrics in addition
to Ganglia's predefined metrics. For instance, suppose you have a program (and interface)
that measures a computer's temperature on each node. gmetric can be used to request that
gmond run this program. By running the gmetric command under cron, you could track
computer temperature over time.

Finally, Ganglia also provides an execution environment. gexec allows you to run commands
across the cluster transparently and forward stdin,stdout, and stderr. This discussion will
focus of the three core elements of Ganglia—gmond,gmetad, and the web frontend.

10.2.1 Installing and Using Ganglia

Ganglia can be installed by compiling the sources or using RPM packages. The installation of
the software for the management station, i.e., the node that collects information from the
other nodes and maintains the database, is somewhat more involved. With large clusters, you
may want to use a machine as a dedicated monitor. For smaller clusters, you may be able to
get by with your head node if it is reasonably equipped. We'll look at the installation of the
management node first since it is more involved.

10.2.1.1 RRDTool

Before you begin, there are several prerequisites for installing Ganglia. First, your network
and hosts must be multicast enabled. This typically isn't a problem with most Linux
installations. Next, the management station or stations, i.e., the machine on which you'll
installgmetad and the web frontend, will also need RRDtool and Perl and a PHP-enabled web
server.I2l (Since you will install only gmond on your compute nodes, these do not require
Apache or RRDtool.)

[2] 1t appears that only the include file and library from RRDtool is needed, but I have not verified this.
Perl is required for RRDtool, not Ganglia.

RRDtool is a round-robin database. As you add information to the database, the oldest data is
dropped from the database. This allows you to store data in a compact manner that will not
expand endlessly over time. Sources can be downloaded from http ://www.rrdtool.org/. To
install it, you'll need to unpack it and run configure,make, and make install.

[root @anny src]# gunzip rrdtool-1.0.48. tar.gz

[root @anny src]# tar -vxf rrdtool-1.0.48.tar

[root @anny src]# cd rrdtool-1.0.48

[root @anny rrdtool -1.0.48]# ./configure

[root @anny rrdtool -1. 0. 48] # neke

[root @anny rrdtool -1.0. 48] # nmake install

You'll see a lot of output along the way. In this example, I've installed it under /usr/local/src.
If you want to install it in a different directory, you can use the - -pr efi x option to specify the
directory when you run configure. It doesn't really matter where you put it, but when you
build Ganglia you'll need to tell Ganglia where to find the RRDtool library and include files.

10.2.1.2 Apache and PHP

Next, check the configuration files for Apache to ensure the PHP module is loaded. For Red
Hat 9.0, the primary configuration file is httpd.conf and is located in /etc/httpd/conf/. It, in
turn, includes the configuration files in /etc/httpd/conf.d/, in particular php.conf. What you are
looking for is a configuration command that loads the PHP module somewhere in one of the
Apache configuration files. That is, one of the configuration files should have some lines like
the following:

LoadModul e php4_nodul e nodul es/ |i bphp4. so

<Fi |l es *.php>
Set Qutput Fi | ter PHP
SetlnputFilter PHP
Li m t Request Body 524288
</Fil es>

If you used the package system to set up Apache and PHP, this should have been done for
you. Finally, make sure Apache is running.

http://www.rrdtool.org/

10.2.1.3 Ganglia monitor core

Next, you'll need to download the appropriate software. Go to http://ganglia.sourceforge.net/.
You'll have a number of choices, including both source files and RPM files, for both Ganglia
and related software. The Ganglia monitor core contains both gmond and gmetad (although
by default it doesn't install gmetad). Here is an example of using the monitor core download
to install from source files. First, unpack the software.

[root @anny src]# gunzip ganglia-nmonitor-core-2.5.6.tar. gz

[root @anny src]# tar -xvf ganglia-nmonitor-core-2.5.6.tar

As always, once you have unpacked the software, be sure to read the README file.
Next, change to the installation directory and build the software.

[root @anny src]# cd ganglia-nmonitor-core-2.5.6

[root @annygangl ia-nonitor-core-2.5.6]# ./configure \
>CFLAGS="-1/usr/ 1l ocal /rrdtool -1.0.48/include" \
>CPPFLAGS="-1/usr/l ocal /rrdtool -1.0. 48/ i ncl ude" \

>LDFLAGS="-L/usr/local/rrdtool-1.0.48/1ib" --w th-gnetad

[root @anny gangli a- noni tor-core-2.5.6]# neke

[root @anny gangli a-nonitor-core-2.5. 6]# nmake install

As you can see, this is a pretty standard install with a couple of small exceptions. First, you'll
need to tell configure where to find the RRDtool to include file and library by setting the
various flags as shown above. Second, you'll need to explicitly tell configure to build gmetad.
This is done with the - -wi t h- gnet ad option.

Once you've built the software, you'll need to install and configure it. Both gmond and gmetad
have very simple configuration files. The samples files gmond/gmond.conf and
gmetad/gmetad.conf are included as part of the source tree. You should copy these to /etc
and edit them before you start either program. The sample files are well documented and
straightforward to edit. Most defaults are reasonable. Strictly speaking, the gmond.conf file is
not necessary if you are happy with the defaults. However, you will probably want to update
the cluster information at a minimum. The gmetad.conf file must be present and you'll need to
identify at least one data source. You may also want to change the identity information in it.

Forgmetad.conf, the data source entry is a list of the machines that will be monitored. The
format is the identifier dat a_sour ce followed by a unique string identifying the cluster. Next is

an optional polling interval. Finally, there is a list of machines and optional port numbers. Here
is a simple example:

dat a_source "ny cluster" 10.0.32.144 10.0.32. 145 10. 0. 32. 146 10.0.32. 147

http://ganglia.sourceforge.net/

The default sampling interval is 15 seconds and the default port is 8649.

Once you have the configuration files in place and edited to your satisfaction, copy the
initialization files and start the programs. For gmond, it will look something like this:

[root @anny gangli a-nonitor-core-2.5.6]# cp ./gmond/ gnmond.init \

> [etc/rc.d/init.d/ gnond

[root @anny gangli a-nonitor-core-2.5. 6]# chkconfig --add gnond

[root @anny ganglia-nonitor-core-2.5.6]# /etc/rc.d/init.d/gnond start

Starting GANGLI A gnond: [&K]

As shown, you'll want to ensure that gmond is started whenever you reboot.
Before you start gmetad, you'll want to create a directory for the database.

[root @anny ganglia-nmonitor-core-2.5. 6]# nkdir -p /var/lib/ganglial/rrds
[root @anny gangli a-nmoni tor-core-2.5.6]# chown -R nobody \

> [var/liblganglialrrds

Next, copy over the initialization file and start the program.

[root @anny gangli a-nonitor-core-2.5.6]# cp ./gnetad/ gnmetad.init \
>/etc/rc.d/init.d/ gnmetad

[root @anny gangli a-nonitor-core-2.5.6]# chkconfig --add gnetad

[root @anny ganglia-nmonitor-core-2.5.6]# /etc/rc.d/init.d/gmetad start
Starting CGANGLI A gnetad: [K]

Both programs should now be running. You can verify this by trying to TELNET to their

respective ports, 8649 for gmond and 8651 for gmetad. When you do this you should see a
couple of messages followed by a fair amount of XML scroll by.

[root @anny ganglia-nmonitor-core-2.5. 6]# telnet | ocal host 8649
Trying 127.0.0.1...

Connected to |ocal host.

Escape character is '""]"'.

<?xm version="1.0" encodi ng="1S0O 8859- 1" standal one="yes" ?>
<! DOCTYPE GANGI A XM |

<! ELEMENT CGANG.I A XML (GRID) *>

If you see output such as this, everything is up and running. (Since you are going to the
localhost, this should work even if your firewall is blocking TELNET.)

10.2.1.4 Web frontend

The final step in setting up the monitoring station is to install the frontend software. This is
just a matter of downloading the appropriate file and unpacking it. Keep in mind that you
must install this so that it is reachable as part of your website. Examine the Docunent Root in

your Apache configuration file and install the package under this directory. For example,

[root @anny root]# grep Docunent Root /etc/httpd/conf/httpd.conf

Docunent Root "/ var/ww/ htnl "

Now that you know where the document root is, copy the web frontend to this directory and
unpack it.

[root @anny root]# cp gangli a-webfrontend-2.5.5.tar.gz /var/ww htnl/
[root @anny root]# cd /var/ww htm
[root @anny html]# gunzip gangli a-webfrontend-2.5.5.tar. gz

[root @anny html]# tar -xvf ganglia-webfrontend-2.5.5.tar

There is nothing to build in this case. The configuration file is conf.php. Among other things,
you can use this to change the appearance of your web site by changing the display themes.

At this point, you should be able to examine the state of this machine. (You'll still need to
installgmond on the individual nodes before you can look at the rest of the cluster.) Start
your web browser and visit your site, e.g., http://localhost/ganglia-webfrontend-2.5.5/. You
should see something like Figure 10-1.

Figure 10-1. Ganglia on a single node

http://localhost/ganglia-webfrontend-2.5.5/

adng

Eile Edit View Go Bookmarks Tools Window |Help

4 . = JHE TP T r—— 3 . [
Back) Reload ., & netp:flocalhost/gang .1'-'.-:t|[luntl:l1d2.:..| w Prirt

fhHome WkBookmarks #Fed Hat Metwork 2§ Support (£ Shop (2 Products (2 Training

-

: . Cluster Report for Fri, 11 Jun 20404
‘%jmﬁ *%:, ltliaﬂ' , f;% 11:56:04 0400 _Getreshoaa |
“IP00LKIE peric [loadone *| Last [how A
Tl 1 f = 1V SEC 1w

Sorted |descending |

Grid = unspecilied = | -Choose a Node =

Overview of unspecified

CPUs Togal: 1
Hosts up:

Hosts down: i

Avg Load (13, 5, Lm):
5%, TT%. 49%

Locahime:

ZIMRIMG=1 1 11:55

e D 2 Done]

This shows the host is up. Next, we need to install gmond on the individual nodes so we can
see the rest of the cluster. You could use the same technique used above—just skip over the
prerequisites and the gnet ad steps. But it is much easier to use RPM. Just download the
package to an appropriate location and install it. For example,

[root @eorge root]# rpm -vi h ganglia-nonitor-core-gnond-2.5.6-1.i386.rpm
Preparing. .. HERHHH AR R R [1009
1: gangli a- nonit or - COr e- QM #HH R I HHHIH TR [1009

Starting GANGLI A gnmond: [OK]

gmond is installed in /usr/sbin and its configuration file in /etc. Once you've installed gmond
on a machine, it should appear on your web page when you click on refresh. Repeat the
installation for your remaining nodes.

Once you have Ganglia running, you may want to revisit the configuration files. With Ganglia
running, it will be easier to see exactly what effect a change to a configuration file has. Of
course, if you change a configuration file, you'll need to restart the appropriate services before
you will see anything different.

You should have no difficulty figuring out how to use Ganglia. There are lots of "hot spots” on
the pages, so just click and see what you get. The first page will tell you how many machines
are up and down and their loads. You can select a physical view or collect information on
individual machines. Figure 10-2 shows information for an individual machine. You can also
change the metric displayed. However, not all metrics are supported. The Ganglia
documentation supplies a list of supported metrics by architecture.

Figure 10-2. Ganglia Node View

Ganglia Cluster Toolkit: Node View - Mozilla
Eile Edit Yew Go Bookmarks Tools Window Help

- = . .
Bf;l o malond Sten .ihupmocajhosr.fganyuamhfmmu-z.s.E| 2 Search| % I

fhrome WhBockmarks #F Red Hat Metwork 2§ Supporr 2§ Shop (2 Products 2§ Training

Location: Rack 2. Rank 5, Plane -1.

Last heanbeat received 2 seconds ago. CPU Uiiligetion: 00 00 1000

Uptime O days, 1:0 _
user sys idle

Hardware Sultware

oru: 1 x 348 Mhe o5 Limux 2.4.20-6 (xB6)

Memory (RaMy: 123 MB Boated. June 14, 2004, 3401 pm

Local Bek: Using 2.15 of 3.982 GB Uptime (F days. 1:0

Mt Fal Disk Parien: 35,04 usedl, swap: Using £0.00of 251.0 MB swap.

b @& <2 (& | Done

glia £ Node View for Mon, 14 Jun 2004 16:01:47
" e 0400 Get Fresh Data
< ARoolKitE
AT oL reelirpe T Host ¥ iew
Waollord CS Grid = Bottom Cluster > 10.0.32.148
10.0.32, 148 Info
10,0.32.148 Load: 0,00 0,00 0.00
Im 5m 15m

-

As you can see, these screen captures were made when the cluster was not otherwise in use.

Otherwise the highlighted load figures would reflect that activity.

< Day Day Up >

10.3 Notes for OSCAR and Rocks Users

C3 is a core OSCAR package that is installed in /opt/c3-4 and can be used as shown in this
chapter. Both Ganglia and Clumon (which uses Performance Co-Pilot) may be available as
additional packages for OSCAR. As add-ons, these may not always be available immediately
when new versions of OSCAR are released. For example, there was a delay with both when
OSCAR 3.0 was released. When installing Ganglia using the package add option with OSCAR,
you may want to tweak the configuration files, etc.

Although not as versatile as the C3 command set, Rocks supplies the command cluster-fork
for executing commands across a cluster.

For OSCAR, the web-accessible reports for Clumon and Ganglia are installed in
/var/www/html/clumon and /var/www/html/ganglia, respectively. Thus, to access the Ganglia
web report on amy.wofford.int, the URL is http://amy.wofford.int/ganglia/. The page format
used by OSCAR is a little different, but you would use Ganglia in much the same way.

Ganglia is fully integrated into Rocks and is available as a link from the administrative home
for the frontend.

4 FREV < Day Day Up > MEXT mp

http://amy.wofford.int/ganglia/

< Day Day Up >

Chapter 11. Scheduling Software

Basically, scheduling software lets you run your cluster like a batch system, allowing you to
allocate cluster resources, such as CPU time and memory, on a job-by-job basis. Jobs are
queued and run as resources become available, subject to the priorities you establish. Your
users will be able to add and remove jobs from the job queue as well as track the progress of
their jobs. As the administrator, you will be able to establish priorities and manage the queue.

Scheduling software is not a high priority for everyone. If the cluster is under the control of a
single user, then scheduling software probably isn't needed. Similarly, if you have a small
cluster with very few users or if your cluster is very lightly used, you may not need scheduling
software. As long as you have more resources than you need, manual scheduling may be a
viable alternative—at least initially. If you have a small cluster and only occasionally wish you
had scheduling software, it may be easier to add a few more computers or build a second
cluster than deal with the problems that scheduling software introduces.

But if you have a large cluster with a growing user base, at some point you'll want to install
scheduling software. At a minimum, scheduling software helps you effectively use your
hardware and provides a more equitable sharing of resources. Scheduling software has other
uses as well, including accounting and monitoring. The information provided by good
scheduling software can be a huge help when planning for the future of your cluster.

There are several freely available scheduling systems from which you can select, including
Portable Batch System (PBS),Maui,Torque, and Condor. OSCAR includes Portable Batch
System (PBS) along with Maui. Torque is also available for OSCAR via opd. Rocks provides a
PBS roll that includes Maui and Torque and a second roll that includes Condor. Since PBS is
available for both OSCAR and Rocks, that's what's described in this chapter. (For more
information on the alternatives, visit the web sites listed in the Appendix A.)

PBS is a powerful and versatile system. While this chapter sticks to the basics, you should
keep in mind that there is a lot more to PBS than described here. Look at the Administrator
Guide to learn more, particularly if you need help with more advanced features.

\ ., FREY < Day Day Up > ME==T ‘

< Day Day Up >

11.1 OpenPBS

Before the emergence of clusters, the Unix-based Network Queuing System (NQS) from NASA
Ames Research Center was a commonly used batch-queuing system. With the emergence of
parallel distributed system, NQS began to show its limitations. Consequently, Ames led an
effort to develop requirements and specifications for a newer, cluster-compatible system.
These requirements and specifications later became the basis for the IEEE 1003.2d POSIX
standard. With NASA funding, PBS, a system conforming to those standards, was developed
by Veridian in the early 1990s.

PBS is available in two forms—OpenPBS or PBSPro. OpenPBS is the unsupported original open
source version of PBS, while PBSPro is a newer commercial product. In 2003, PBSPro was
acquired by Altair Engineering and is now marketed by Altair Grid Technologies, a subsidiary
of Altair Engineering. The web site for OpenPBS is http://www.openpbs.org; the web site for
PBSPro is http ://www.pbspro.com. Although much of the following will also apply to PBSPro,
the remainder of this chapter describes OpenPBS, which is often referred to simply as PBS.
However, if you have the resources to purchase software, it is well worth looking into PBSPro.
Academic grants have been available in the past, so if you are eligible, this is worth looking
into as well.

As an unsupported product, OpenPBS has its problems. Of the software described in this
book, it was, for me, the most difficult to install. In my opinion, it is easier to install OSCAR,
which has OpenPBS as a component, or Rocks along with the PBS roll than it is to install just
OpenPBS. With this warning in mind, we'll look at a typical installation later in this chapter.

11.1.1 Architecture

Before we install PBS, it is helpful to describe its architecture. PBS uses a client-server model
and is organized as a set of user-level commands that interact with three system-level
daemons. Jobs are submitted using the user-level commands and managed by the daemons.
PBS also includes an API.

Thepbs_server daemon, the job server, runs on the server system and is the heart of the
PBS system. It provides basic batch services such as receiving and creating batch jobs,
modifying the jobs, protecting jobs against crashes, and running the batch jobs. User
commands and the other daemons communicate with the pbs_server over the network using
TCP. The user commands need not be installed on the server.

The job server manages one or more queues. (Despite the name, queues are not restricted to
first-in, first-out scheduling.) A scheduled job waiting to be run or a job that is actually
running is said to be a member of its queue. The job server supports two types of queues,
execution and routing. A job in an execution queue is waiting to execute while a job in a
routing queue is waiting to be routed to a new destination for execution.

Thepbs_mom daemon executes the individual batch jobs. This job executor daemon is often
called the MOM because it is the "mother” of all executing jobs and must run on every system
within the cluster. It creates an execution environment that is as nearly identical to the user's
session as possible. MOM is also responsible for returning the job's output to the user.

The final daemon, pbs_sched, implements the cluster's job-scheduling policy. As such, it
communicates with the pbs_server and pbs_mom daemons to match available jobs with
available resources. By default, a first-in, first-out scheduling policy is used, but you are free
to set your own policies. The scheduler is highly extensible.

http://www.openpbs.org
http://www.pbspro.com

PBS provides both a GUI interface as well as 1003.2d-compliant command-line utilities. These
commands fall into three categories: management, operator, and user commands.
Management and operator commands are usually restricted commands. The commands are
used to submit, modify, delete, and monitor batch jobs.

11.1.2 Installing OpenPBS

While detailed installation directions can be found in the PBSAdministrator Guide, there are
enough "gotchas" that it is worth going over the process in some detail. Before you begin, be
sure you look over the Administrator Guide as well. Between the guide and this chapter, you
should be able to overcome most obstacles.

Before starting with the installation proper, there are a couple of things you need to check. As
noted, PBS provides both command-line utilities and a graphical interface. The graphical
interface requires Tcl/Tk 8.0 or later, so if you want to use it, make sure Tcl/Tk is installed.
You'll want to install Tcl/Tk before you install PBS. For a Red Hat installation, you can install
Tcl/Tk from the packages supplied with the operating system. For more information on Tcl/TKk,
visit the web site http ://www.scriptics.com/. In order to build the GUI, you'll also need the
X11 development packages, which Red Hat users can install from the supplied RPMs.

The first step in the installation proper is to download the software. Go to the OpenPBS web
site (http://www-unix.mcs.anl.gov/openpbs/) and follow the links to the download page. The
first time through, you will be redirected to a registration page. With registration, you will
receive by email an account name and password that you can use to access the actual
download page. Since you have to wait for approval before you receive the account
information, you'll want to plan ahead and register a couple of days before you plan to
download and install the software. Making your way through the registration process is a little
annoying because it keeps pushing the commercial product, but it is straightforward and
won't take more than a few minutes.

Once you reach the download page, you'll have the choice of downloading a pair of RPMs or
the patched source code. The first RPM contains the full PBS distribution and is used to set up
the server, and the second contains just the software needed by the client and is used to set
up compute nodes within a cluster. While RPMs might seem the easiest way to go, the
available RPMs are based on an older version of Tcl/Tk (Version 8.0). So unless you want to
backpedal—i.e., track down and install these older packages, a nontrivial task—installing the
source is preferable. That's what's described here.

Download the source and move it to your directory of choice. With a typical installation, you'll
end up with three directory trees—the source tree, the installation tree, and the working
directory tree. In this example, I'm setting up the source tree in the directory /usr/local/src.
Once you have the source package where you want it, unpack the code.

[root @anny src]# gunzip OpenPBS 2_3_16.tar. gz

[root @anny src]# tar -vxpf OpenPBS 2_3 16.tar

When untarring the package, use the - p option to preserve permissions bits.

Since the OpenPBS code is no longer supported, it is somewhat brittle. Before you can
compile the code, you will need to apply some patches. What you install will depend on your
configuration, so plan to spend some time on the Internet: the OpenPBS URL given above is a
good place to start. For Red Hat Linux 9.0, start by downloading the scaling patch from

http : //www-unix.mcs.anl.gov/openpbs/ and the errno and gcc patches from

http ://bellatrix.pcl.ox.ac.uk/~ben/pbs/. (Working out the details of what you need is the
annoying side of installing OpenPBS.) Once you have the patches you want, install them.

[root @anny src]# cp openpbs-gcc32.patch /usr/local/src/ QpenPBS_ 2 3 16/

http://www.scriptics.com/
http://www-unix.mcs.anl.gov/openpbs/
http://www-unix.mcs.anl.gov/openpbs/
http://bellatrix.pcl.ox.ac.uk/~ben/pbs/

[root @anny src]# cp openpbs-errno.patch /usr/local/src/ OpenPBS 2 _3 16/
[root @anny src]# cp ncsa_scaling. patch /usr/local/src/OpenPBS 2 3 16/
[root @anny src]# cd /usr/local/src/ OpenPBS 2_3 16/

[root @anny OpenPBS 2 3 16]# patch -pl -b < openpbs-gcc32. patch
patching file buildutils/exclude_script

[root @anny OpenPBS_2_3_ 16]# patch -pl -b < openpbs-errno.patch
patching file src/lib/Liblog/pbs_|og.c

patching file src/scheduler. basl/af_resnomc

[root @anny OpenPBS 2 3 16]# patch -pl -b < ncsa_scal ing. patch

patching file src/include/acct.h

patching file src/include/ cnds. h

patching file src/includel/ pbs_ifl.h

pat ching file src/include/ gnor.h

patching file src/include/server_linmts.h

The scaling patch changes built-in limits that prevent OpenPBS from working with larger

clusters. The other patches correct problems resulting from recent changes to the gcc
complier.I11

[11 Even with the patches, | found it necessary to manually edit the file srv_connect.c, adding the line
#i ncl ude<err or. h> with the other #include lines in the file. If you have this problem, you'll know
becausemake will fail when referencing this file. Just add the line and remake the file.

As noted, you'll want to keep the installation directory separate from the source tree, so
create a new directory for PBS. /usr/local/OpenPBS is a likely choice. Change to this directory
and run configure,make,make install, and make clean from it.

[root @anny src]# nkdir /usr/|ocal /OpenPBS
[root @anny src]# cd /usr/local /OpenPBS
[root @anny OpenPBS]# /usr/local/src/ OpenPBS 2 3 16/ configure \

>--set-defaul t-server=fanny --enabl e-docs --w th-scp

[root @anny OpenPBS]# cd /usr/local/src/ OpenPBS_2 3 16/

[root @anny OpenPBS- 2. 3. 16] # neke

[root @anny OpenPBS- 2. 3. 16]# /usr/local/src/ OpenPBS

[root @anny OpenPBS]# nmake install

[root @anny OpenPBS] # make cl ean

In this example, the configuration options set fanny as the server, create the documentation,
and use scp (SSH secure copy program) when moving files between remote hosts. Normally,
you'll create the documentation only on the server. The Administrator Guide contains several
pages of additional options.

By default, the procedure builds all the software. For the compute nodes, this really isn't
necessary since all you need is pbs_mom on these machines. Thus, there are several
alternatives that you might want to consider when setting up the clients. You could just go
ahead and build everything like you did for the server, or you could use different build options
to restrict what is built. For example, the option - -di sabl e-ser ver prevents the pbs_server
daemon from being built. Or you could build and then install just pbs_mom and the files it
needs. To do this, change to the MOM subdirectory, in this example
/usr/local/OpenPBS/src/resmom, and run make install to install just MOM.

[root @da OpenPBS] # cd /usr/|ocal /OpenPBSY src/resnmom

[root @da resnmoni# nmake install

Yet another possibility is to use NFS to mount the appropriate directories on the client
machines. The Administrator Guide outlines these alternatives but doesn't provide many
details. Whatever your approach, you'll need pbs_mom on every compute node.

Themake install step will create the /usr/spool/PBS working directory, and will install the user
commands in /usr/local/bin and the daemons and administrative commands in /usr/local/sbin.
make clean removes unneeded files.

11.1.3 Configuring PBS

Before you can use PBS, you'll need to create or edit the appropriate configuration files,
located in the working directory, e.g., /usr/spool/PBS, or its subdirectories. First, the server
needs the node file, a file listing the machines it will communicate with. This file provides the
list of nodes used at startup. (This list can be altered dynamically with the gmgr command.)
In the subdirectory server_priv, create the file nodes with the editor of your choice. The nodes
file should have one entry per line with the names of the machines in your cluster. (This file
can contain additional information, but this is enough to get you started.) If this file does not
exist, the server will know only about itself.

MOM will need the configuration file config, located in the subdirectory mom_priv. At a
minimum, you need an entry to start logging and an entry to identity the server to MOM. For
example, your file might look something like this:

$l ogevent Ox1ff
$cl i ent host fanny
The argument to $logevent is a mask that determines what is logged. A value of 0X0f f will log

all events excluding debug messages, while a value of 0X1f f will log all events including
debug messages. You'll need this file on every machine. There are a number of other options,

such as creating an access list.

Finally, you'll want to create a default_server file in the working directory with the fully
qualified domain name of the machine running the server daemon.

PBS uses ports 15001-15004 by default, so it is essential that your firewall doesn't block
these ports. These can be changed by editing the /etc/services file. A full list of services and
ports can be found in the Administrator Guide (along with other configuration options). If you
decide to change ports, it is essential that you do this consistently across your cluster!

Once you have the configuration files in place, the next step is to start the appropriate
daemons, which must be started as root. The first time through, you'll want to start these
manually. Once you are convinced that everything is working the way you want, configure the
daemons to start automatically when the systems boot by adding them to the appropriate
startup file, such as /etc/rc.d/rc.local. All three daemons must be started on the server, but
thepbs_mom is the only daemon needed on the compute nodes. It is best to start pbs_mom
before you start the pbs_server so that it can respond to the server's polling.

Typically, no options are needed for pbs_mom. The first time (and only the first time) you run
pbs_server, start it with the option -t create.

[root @anny OpenPBS]# pbs_server -t create

This option is used to create a new server database. Unlike pbs_mom and pbs_sched,
pbs_server can be configured dynamically after it has been started.

The options to pbs_sched will depend on your site's scheduling policies. For the default FIFO
scheduler, no options are required. For a more detailed discussion of command-line options,
see the manpages for each daemon.

11.1.4 Managing PBS

We'll begin by looking at the command-line utilities first since the GUI may not always be
available. Once you have mastered these commands, using the GUI should be
straightforward. From a manager's perspective, the first command you'll want to become
familiar with is gmgr, the queue management command. gmgr is used to create job queues
and manage their properties. It is also used to manage nodes and servers providing an
interface to the batch system. In this section we'll look at a few basic examples rather than try
to be exhaustive.

First, identify the pbs_server managers, i.e., the users who are allowed to reconfigure the
batch system. This is generally a one-time task. (Keep in mind that not all commands require
administrative privileges. Subcommands such as the list and print can be executed by all
users.) Run the gmgr command as follows, substituting your username:

[root @anny OpenPBS] # qnur

Max open servers: 4

Qngr: set server manager s=sl oanj d@anny. wof f ord. i nt

Qgr: qui t

You can specify multiple managers by adding their names to the end of the command,
separated by commas. Once done, you'll no longer need root privileges to manage PBS.

Your next task will be to create a queue. Let's look at an example.

[sl oanj d@anny PBS]$ qnyr
Max open servers: 4
Qnyr: creat e queue wor kqueue

Qngr: set queue wor kqueue queue_type = execution

ngr: set queue wor kqueue resour ces_max. cput 24:00:00

00:00:01

Qyr: set queue wor kqueue resources_min. cput

Qngr: set queue wor kqueue enabl ed true

Qngr: set queue wor kqueue started true

Qnyr: set server scheduling = true

Qngr: set server default_queue = wor kqueue

Qngr: qui t

In this example we have created a new queue named workqueue. We have limited CPU time
to between 1 second and 24 hours. The queue has been enabled, started, and set as the
default queue for the server, which must have at least one queue defined. All queues must
have a type, be enabled, and be started.

As you can see from the example, the general form of a gmgr command line is a command
(active,create,delete,set,unset,list, or print) followed by a target (server,queue, or node)
followed by an attribute assignment. These keywords can be abbreviated as long as there is
no ambiguity. In the first example in this section, we set a server attribute. In the second
example, the target was the queue that we were creating for most of the commands.

To examine the configuration of the server, use the command

Qnyr: print server

This can be used to save the configuration you are using. Use the command

[root @anny PBS]# qgngr -c "print server" > server.config

Note, that with the - ¢ flag, gmgr commands can be entered on a single line. To re-create the
queue at a later time, use the command

[root @anny PBS]# gngr < server.config

This can save a lot of typing or can be automated if needed. Other actions are described in
the documentation.

Another useful command is pbsnodes, which lists the status of the nodes on your cluster.
[sl oanj d@ny sl oanj d]$ pbsnodes -a
oscar nodel. oscar domain

state = free

np =1

properties =

al |

ntype = cluster

oscar node2. oscar donai n

state = free
np =1

properties =

al |

ntype = cluster

On a large cluster, that can create a lot of output.

11.1.5 Using PBS

From the user's perspective, the place to start is the qsub command, which submits jobs. The
only jobs that the gqsub accepts are scripts, so you'll need to package your tasks
appropriately. Here is a simple example script:

#!'/ bi n/ sh

#PBS -N denp
#PBS -0 denp. txt
#PBS -e denp. txt
#PBS -q wor kq

#PBS -1 nmenr100nb

npi exec -nachinefile /etc/ myhosts -np 4 /home/ sl oanj d/ areal ar ea

The first line specified the shell to use in interpreting the script, while the next few lines
starting with #PBS are directives that are passed to PBS. The first names the job, the next two
specify where output and error output go, the next to last identifies the queue that is used,
and the last lists a resource that will be needed, in this case 100 MB of memory. The blank
line signals the end of PBS directives. Lines that follow the blank line indicate the actual job.

Once you have created the batch script for your job, the gsub command is used to submit the

job.

[sl oanj d@ny area] $ gsub pbsdenp. sh

11. any

When run, gsub returns the job identifier as shown. A number of different options are
available, both as command-line arguments to qsub or as directives that can be included in
the script. See the gsub (1B) manpage for more details.

There are several things you should be aware of when using qsub. First, as noted, it expects a
script. Next, the target script cannot take any command-line arguments. Finally, the job is
launched on one node. The script must ensure that any parallel processes are then launched
on other nodes as needed.

In addition to gsub, there are a number of other useful commands available to the general
user. The commands gstat and qdel can be used to manage jobs. In this example, gstat is
used to determine what is on the queue:

[sl oanj d@ny area] $ gst at

Job id Nanme User Time Use S Queue
11. any pbsdeno sl oanjd 0 Q workq
12. any pbsdeno sl oanjd 0 Q workqg

qdel is used to delete jobs as shown.

[sl oanjd@ny areal $ qdel 11.any
[sl oanjd@ny area] $ qgstat

Job id Name User Time Use S Queue

12. any pbsdeno sl oanjd 0 Q wor kg

gstat can be called with the job identifier to get more information about a particular job or
with the - s option to get more details.

A few of the more useful ones include the following:

galter

This is used to modify the attributes of an existing job.

ghold

This is used to place a hold on a job.

gmove

This is used to move a job from one queue to another.

qgorder

This is used to change the order of two jobs.

grun
This is used to force a server to start a job.

If you start with the gsub (1B) manpage, other available commands are listed in the "See
Also" section.

Figure 11-1. xpbs -admin

Figure 11-2. xpbsmon

Site,. Praf.. | Autollpdate., . Help | #About.. | Clese | o[
Locial

Fanny
dudda peorpe hector | Fanmyg

Hodesi: Total:d Used:iD Awail:il Dounil lnk:?

OFREE O0HR OOFFL ORSYD ENOINFO CIHUSE/SHARED

INFO:| (04508504 10:28:38] populatesModeslithInfo: updating. .. .done, [A
[08 04 10:28:38] statModas: pbrmrr.m:t{rrm_;]: L] |
[o4/08/04 10:708:38] statMNodes: phastatnode(Fanmg):

11.1.6 PBS's GUI

PBS provides two GUIs for queue management. The command xpbs will start a general
interface. If you need to do administrative tasks, you should include the argument - adm n.
Figure 11-1 shows the xpbs GUI with the - adm n option. Without this option, the general
appearance is the same, but a number of buttons are missing. You can terminate a server;
start, stop, enable, or disable a queue; or run or rerun a job. To monitor nodes in your
cluster, you can use the xpbsmon command, shown for a few machines in Figure 11-2.

11.1.7 Maui Scheduler

If you need to go beyond the schedulers supplied with PBS, you should consider installing
Maui. In a sense, Maui picks up where PBS leaves off. It is an external scheduler—that is, it
does not include a resource manager. Rather, it can be used in conjunction with a resource
manager such as PBS to extend the resource manager's capabilities. In addition to PBS, Maui
works with a number of other resource managers.

Maui controls how, when, and where jobs will be run and can be described as a policy engine.
When used correctly, it can provide extremely high system utilization and should be
considered for any large or heavily utilized cluster that needs to optimize throughput. Maui
provides a number of very advanced scheduling options. Administration is through the master
configuration file maui.cfg and through either a text-based or a web-based interface.

Maui is installed by default as part of OSCAR and Rocks. For the most recent version of Maui
or for further documentation, you should visit the Maui web site, http ://www.supercluster.org.

< Day Day Up >

http://www.supercluster.org

< Day Day Up >

11.2 Notes for OSCAR and Rocks Users

As previously noted, both OpenPBS and Maui are installed as part of the OSCAR setup. The
installation directory for OpenPBS is /opt/pbs. You'll find the various commands in
subdirectories under this directory. The working directory for OpenPBS is /var/spool/pbs,
where you'll find the configuration and log files. The default queue, as you may have noticed
from previous examples, is workq. Under OSCAR, Maui is installed in the directory /opt/maui.
By default, the OpenPBS FIFO scheduler is disabled.

OpenPBS and Maui are available for Rocks as a separate roll. If you need OpenPBS, be sure
you include the roll when you build your cluster as it is not currently possible to add the roll
once the cluster has been installed. Once installed, the system is ready to use. The default
queue is default.

Rocks also provides a web-based interface for viewing the job queue that is available from the
frontend’'s home page. Using the web interface, you can view both the job queue and the
physical job assignments. PBS configuration files are located in /opt/torque. Manpages are in
/opt/torque/man. Maui is installed under /opt/maui.

< Day Day Up >

< Day Day Up >

Chapter 12. Parallel Filesystems

If you are certain that your cluster will only be used for computationally intensive tasks that
involve very little interaction with the filesystem, you can safely skip this chapter. But
increasingly, tasks that are computationally expensive also involve a large amount of 1/0,
frequently accessing either large data sets or large databases. If this is true for at least some
of your cluster's applications, you need to ensure that the 1/0 subsystem you are using can
keep up. For these applications to perform well, you will need a high-performance filesystem.

Selecting a filesystem for a cluster is a balancing act. There are a number of different
characteristics that can be used to compare filesystems, including robustness, failure
recovery, journaling, enhanced security, and reduced latency. With clusters, however, it often
comes down to a trade-off between convenience and performance. From the perspective of
convenience, the filesystem should be transparent to users, with files readily available across
the cluster. From the perspective of performance, data should be available to the processor
that needs it as quickly as possible. Getting the most from a high-performance filesystem
often means programming with the filesystem in mind—typically a very "inconvenient" task.
The good news is that you are not limited to a single filesystem.

TheNetwork File System (NFS) was introduced in Chapter 4. NFS is strong on convenience.
With NFS, you will recall, files reside in a directory on a single disk drive that is shared across
the network. The centralized availability provided by NFS makes it an important part of any
cluster. For example, it provides a transparent mechanism to ensure that binaries of freshly
compiled parallel programs are available on all the machines in the cluster. Unfortunately, NFS
is not very efficient. In particular, it has not been optimized for the types of 1/0 often needed
with many high-performance cluster applications.

High-performance filesystems for clusters are designed using different criteria, primarily to
optimize performance when accessing large data sets from parallel applications. With parallel
filesystems, files may be distributed across a cluster with different pieces of the file on
different machines allowing parallel access.

A parallel filesystem might not provide optimal performance for serial programs or single
tasks. Because high-performance filesystems are designed for a different purpose, they
should not be thought of as replacements for NFS. Rather, they complement the functionality
provided by NFS. Many clusters benefit from both NFS and a high-performance filesystem.

There's more good news. If you need a high-performance filesystem, there are a number of
alternatives. If you have very deep pockets, you can go for hardware-based solutions. With
network attached storage (NAS), a dedicated server is set up to service file requests for the
network. In a sense, NAS owns the filesystem. Since serving files is NAS's only role, NAS
servers tend to be highly optimized file servers. But because these are still traditional servers,
latency can still be a problem.

The next step up is a storage area network (SAN). Typically, a SAN provides direct block-level
access to the physical hardware. A SAN typically includes high-performance networking as
well. Traditionally, SANs use fibre channel (FC) technology. More recently, IP-based storage
technologies that operate at the block level have begun to emerge. This allows the creation of
a SAN using more familiar IP-based technologies.

Because of the high cost of hardware-based solutions, they are outside the scope of this book.
Fortunately, there are also a number of software-based filesystems for clusters, each with its
own set of features and limitations. While many of the following might not be considered a
high-performance filesystem, you might consider one of the following, depending upon your
needs. However, you should be very careful before adopting any of these. Like most software,

these should be regarded as works in progress. While they may be ideal for some uses, they
may be problematic for others. Caveat emptor! These packages are generally available as
both source tar balls and as RPMs.

ClusterNFS

This is a set of patches for the NFS server daemon. The clients run standard NFS
software. The patches allow multiple diskless clients to mount the same root filesystem
by "reinterpreting” file names. ClusterNFS is often used with Mosix. If you are building a
diskless cluster, this is a package you might want to consider
(http://clusternfs.sourceforge.net/).

Coda

Coda is a distributed filesystem developed at Carnegie Mellon University. It is derived
from the Andrew File System. Coda has many interesting features such as performance
enhancement through client side persistent caching, bandwidth adaptation, and robust
behavior with partial network failures. It is a well documented, ongoing project. While it
may be too early to use Coda with large, critical systems, this is definitely a distributed
filesystem worth watching (http://www.coda.cs.cmu.edu/index.html).

InterMezzo

This distributed filesystem from CMU was inspired by Coda. InterMezzo is designed for
use with high-availability clusters. Among other features, it offers automatic recovery
from network outages (http ://www.inter-mezzo.org/).

Lustre

Lustre is a cluster filesystem designed to work with very large clusters—up to 10,000
nodes. It was developed and is maintained by Cluster File Systems, Inc. and is available
under a GPL. Since Lustre patches the kernel, you'll need to be running a 2.4.X kernel
(http : //www.lustre.org/).

OpenAFS

The Andrew File System was originally created at CMU and now developed and
supported by IBM. OpenAFS is source fork released by IBM. It provides scalable client-
server-based architecture with transparent data migration. Consider OpenAFS a
potential replacement for NFS (http ://www.openafs.org/).

Parallel Virtual File System (PVFS)

PVFS provides high-performance, parallel filesystem. The remainder of this chapter
describes PVFS in detail (http://www.parl.clemson.edu/pvfs/).

This is only a partial listing of what is available. If you are looking to implement a SAN, you
might consider Open Global File System (OpenGFS) (http://opengafs.sourceforge.net/). Red
Hat markets a commercial, enterprise version of OpenGFS. If you are using IBM hardware,
you might what to look into General Parallel File System (GPFS) (http://www-

http://clusternfs.sourceforge.net/
http://www.coda.cs.cmu.edu/index.html
http://www.inter-mezzo.org/
http://www.lustre.org/
http://www.openafs.org/
http://www.parl.clemson.edu/pvfs/
http://opengfs.sourceforge.net/
http://www-

1.ibm.com/servers/eserver/clusters/software/gpfs.html). In this chapter we will look more
closely at PVFS, an open source, high-performance filesystem available for both Rocks and

OSCAR.

48 FREY < Day Day Up > MEXT o

< Day Day Up >

12.1 PVES

PVFS is a freely available, software-based solution jointly developed by Argonne National
Laboratory and Clemson University. PVFS is designed to distribute data among the disks
throughout the cluster and will work with both serial and parallel programs. In programming,
it works with traditional Unix file 1/0 semantics, with the MPI-2 ROMIO semantics, or with the
native PVFS semantics. It provides a consistent namespace and transparent access using
existing utilities along with a mechanism for programming application-specific access.
Although PVFS is developed using X-86-based Linux platforms, it runs on some other
platforms. It is available for both OSCAR and Rocks. PVFS2, a second generation PVFS, is in
the works.

On the downside, PVFS does not provide redundancy, does not support symbolic or hard
links, and it does not provide a fsck-like utility.

Figure 12-1 shows the overall architecture for a cluster using PVFS. Machines in a cluster
using PVFS fall into three possibly overlapping categories based on functionality. Each PVFS
has one metadata server. This is a filesystem management node that maintains or tracks
information about the filesystem such as file ownership, access privileges, and locations, i.e.,
the filesystem's metadata.

Figure 12-1. Internal cluster architecture

Metaserver!
SErver

| | I | I

Network
| I 1 1 |

Client mode 1 (lient node 2 Client node 3 Client mode 4 wus Client node N

/0 serverl V0 server 2 If0 server 3 was /0 server K

Because PVFS distributes files across the cluster nodes, the actual files are located on the
disks on 1/0 servers. 1/0 servers store the data using the existing hardware and filesystem on
that node. By spreading or striping a file across multiple nodes, applications have multiple
paths to data. A compute node may access a portion of the file on one machine while another
node accesses a different portion of the file located on a different 1/0 server. This eliminates
the bottleneck inherent in a single file server approach such as NFS.

The remaining nodes are the client nodes. These are the actual compute nodes within the
clusters, i.e., where the parallel jobs execute. With PVFS, client nodes and 1/0 servers can
overlap. For a small cluster, it may make sense for all nodes to be both client and 1/0 nodes.
Similarly, the metadata server can also be an 1/0 server or client node, or both. Once you
start writing data to these machines, it is difficult to change the configuration of your system.
So give some thought to what you need.

12.1.1 Installing PVFS on the Head Node

Installing and configuring PVFS is more complicated that most of the other software described
in this book for a couple of reasons. First, you will need to decide how to partition your
cluster. That is, you must decide which machine will be the metadata server, which machines
will be clients, and which machines will be 1/0 servers. For each type of machine, there is

different software to install and a different configuration. If a machine is going to be both a
client and an 1/0 server, it must be configured for each role. Second, in order to limit the
overhead of accessing the filesystem through the kernel, a kernel module is used. This may
entail further tasks such as making sure the appropriate kernel header files are available or
patching the code to account for differences among Linux kernels.

This chapter describes a simple configuration where fanny is the metadata server, a client,
and an 1/0 server, and all the remaining nodes are both clients and 1/0 servers. As such, it
should provide a fairly complete idea about how PVFS is set up. If you are configuring your
cluster differently, you won't need to do as much. For example, if some of your nodes are only
1/0 nodes, you can skip the client configuration steps on those machines.

In this example, the files are downloaded, compiled, and installed on fanny since fanny plays
all three roles. Once the software is installed on fanny, the appropriate pieces are pushed to
the remaining machines in the cluster.

The first step, then, is to download the appropriate software. To download PVFS, first go to
thePVFS home page (http ://www.parl.clemson.edu/pvfs/) and follow the link to files. This site
has links to several download sites. (You'll want to download the documentation from this site
before moving on to the software download sites.) There are two tar archives to download:
the sources for PVFS and for the kernel module.

You should also look around for any patches you might need. For example, at the time this
was written, because of customizations to the kernel, the current version of PVFS would not
compile correctly under Red Hat 9.0. Fortunately, a patch from

http : //www.mcs.anl.gov/~robl/pvfs/redhat-ntpl-fix.patch.gz was available.[1l Other patches
may also be available.

[1] Despite the URL, this was an uncompressed text file at the time this was written.
Once you have the files, copy the files to an appropriate directory and unpack them.

[root @anny src]# gunzip pvfs-1.6.2.t9z
[root @anny src]# gunzip pvfs-kernel-1.6.2-1inux-2.4.tgz

[root @anny src]# tar -xvf pvfs-1.6.2. tar

[root @anny src]# tar -xvf pvfs-kernel-1.6.2-1inux-2.4.tar

It is simpler if you install these under the same directory. In this example, the directory
/usr/local/src is used. In the documentation that comes with PVFS, a link was created to the
first directory.

[root @anny src]# In -s pvfs-1.6.0 pvfs

This will save a little typing but isn't essential.

sources.

'! Be sure to look at the README and INSTALL files that come with the

Next, apply any patches you may need. As noted, with this version the kernel module sources
need to be patched.

http://www.parl.clemson.edu/pvfs/
http://www.mcs.anl.gov/~robl/pvfs/redhat-ntpl-fix.patch.gz

[root @anny src]# nv redhat-ntpl-fix.patch pvfs-kernel-1.6.2-1inux-2.4/
[root @anny src]# cd pvfs-kernel-1.6.2-1inux-2.4

[root @anny pvfs-kernel-1.6.2-1inux-2.4]# patch -pl -b <

\ >redhat-ntpl-fix.patch

patching file config.h.in

patching file configure

patching file configure.in

patching file kpvfsd.c

patching file kpvfsdev.c

patching file pvfsdev.c

patching file pvfsdev.c

Apply any other patches that might be needed.

The next steps are compiling PVFS and the PVFS kernel module. Here are the steps for
compiling PVFS:

[root @anny pvfs-kernel-1.6.2-1inux-2.4]# cd /usr/local/src/pvfs

[root @anny pvfs]# ./configure

[root @anny pvfs]# nmake

[root @anny pvfs]# nake install

There is nothing new here.
Next, repeat the process with the kernel module.

[root @anny src]# cd /usr/local/src/pvfs-kernel-1.6.2-1inux-2.4

[root @anny pvfs-kernel-1.6.2-1inux-2.4]# ./configure

[root @anny pvfs-kernel-1.6.2-1inux-2.4]# nake

[root @anny pvfs-kernel-1.6.2-1inux-2.4]# nake install

install -c -d /usr/local/sbin

install -c nount.pvfs /usr/local/shin
install -c pvfsd /usr/local/shin
NOTE: pvfs.o nust be installed by hand!

NOTE: install mount.pvfs by hand to /sbin if you want 'nount -t pvfs' to work

This should go very quickly.

As you see from the output, the installation for the kernel requires some additional manual
steps. Specifically, you need to decide where you want to put the kernel module. The
following works for Red Hat 9.0.

[root @anny pvfs-kernel-1.6.2-1inux-2.4]# nkdir \
>/1i b/ nmodul es/ 2. 4. 20- 6/ kernel /fs/pvfs
[root @anny pvfs-kernel-1.6.2-1inux-2.4]# cp pvfs.o \

>/ 11 b/ modul es/ 2. 4. 20- 6/ kernel /fs/pvfs/pvfs.o

If you are doing something different, you may need to poke around a bit to find the right
location.

12.1.2 Configuring the Metadata Server

If you have been following along, at this point you should have all the software installed on
the head node, i.e., the node that will function as the metadata server for the filesystem. The
next step is to finish configuring the metadata server. Once this is done, the 1/0 server and
client software can be installed and configured.

Configuring the meta-server is straightforward. First, create a directory to store filesystem
data.

[root @anny pvfs-kernel-1.6.2-1inux-2.4]# nkdir /pvfs-neta

Keep in mind, this directory is used to store information about the PVFS filesystem. The actual
data is not stored in this directory. Once PVFS is running, you can ignore this directory.

Next, create the two metadata configuration files and place them in this directory.
Fortunately, PVFS provides a script to simplify the process.

[root @anny pvfs-kernel-1.6.2-1inux-2.4]# cd /pvfs-neta
[root @anny pvfs-nmeta]# /usr/local/bin/ nknmgrconf
This script will make the .iodtab and .pvfsdir files

in the netadata directory of a PVFS file system

Enter the root directory (netadata directory):

/ pvfs-net a/

Enter the user id of directory:

r oot

Enter the group id of directory:

r oot

Enter the node of the root directory:

777

Enter the hostnane that wll run the manager:
fanny

Sear chi ng for host...success

Enter the port number on the host for nmanager:
(Port nunber 3000 is the default)

3000

Enter the 1/0O nodes: (can use form nodel, node2, ... or
nodename{ #- #, #, #})

f annygeor gehect ori daj anes

Searchi ng for hosts...success

I /O nodes: fanny george hector ida janes

Enter the port nunber for the iods:

(Port nunber 7000 is the default)

7000

Done!

Running this script creates the two configuration files .pvfsdir and .iodtab. The file .pvfsdir

contains permission information for the metadata directory. Here is the file the mkmgrconf
script creates when run as shown.

84230

0

0
0040777
3000

fanny

/ pvfs-net a/

/

The first entry is the inode number of the configuration file. The remaining entries correspond
to the questions answered earlier.

The file .iodtab is a list of the 1/0 servers and their port numbers. For this example, it should
look like this:

fanny: 7000
geor ge: 7000
hect or: 7000
i da: 7000

j ames: 7000

Systems can be listed by name or by IP number. If the default port (7000) is used, it can be
omitted from the file.

The.iodtab file is an ordered list of 1/0 servers. Once PVFS is running,
you should not change the .iodtab file. Otherwise, you will almost
certainly render existing PVFS files inaccessible.

12.1.3 1/0 Server Setup

To set up the 1/0 servers, you need to create a data directory on the appropriate machines,
create a configuration file, and then push the configuration file, along with the other 1/0
server software, to the appropriate machines. In this example, all the nodes in the cluster
including the head node are 1/0 servers.

The first step is to create a directory with the appropriate ownership and permissions on all
the 1/0 servers. We start with the head node.

[root @anny /]# nkdir /pvfs-data
[root @anny /]# chnod 700 /pvfs-data

[root @anny /]1# chown nobody. nobody /pvfs-data

Keep in mind that these directories are where the actual pieces of a data file will be stored.
However, you will not access this data in these directories directly. That is done through the
filesystem at the appropriate mount point. These PVFS data directories, like the meta-server's
metadata directory, can be ignored once PVFS is running.

Next, create the configuration file /etc/iod.conf using your favorite text editor. (This is
optional, but recommended.) iod.conf describes the iod environment. Every line, apart from
comments, consists of a key and a corresponding value. Here is a simple example:

iod.conf-iod configuration file

datadir /pvfs-data
user nobody

group nobody
logdir /tnp
rootdir /

debug 0

As you can see, this specifies a directory for the data, the user and group under which the 1/0
daemoniod will run, the log and root directories, and a debug level. You can also specify
other parameters such as the port and buffer information. In general, the defaults are
reasonable, but you may want to revisit this file when fine-tuning your system.

While this takes care of the head node, the process must be repeated for each of the
remaining 1/0 servers. First, create the directory and configuration file for each of the
remaining 1/0 servers. Here is an example using the C3 utilities. (C3 is described in Chapter
10.)

[root @anny /]# cexec nkdir /pvfs-data

[root @anny /]# cexec chnmod 700 /pvfs-data

[root @anny /]# cexec chown nobody. nobody / pvfs-data

[root @anny /]# cpush /etc/iod.conf

Since the configuration file is the same, it's probably quicker to copy it to each machine, as
shown here, rather than re-create it.

Finally, since the iod daemon was created only on the head node, you'll need to copy it to
each of the remaining 1/0 servers.

[root @anny root]# cpush /usr/local/sbin/iod

While this example uses C3's cpush, you can use whatever you are comfortable with.

If you aren't configuring every machine in your cluster to be an 1/0 server, you'll need to
adapt these steps as appropriate for your cluster. This is easy to do with C3's range feature.

12.1.4 Client Setup

Client setup is a little more involved. For each client, you'll need to create a PVFS device file,

copy over the kernel module, create a mount point and a PVFS mount table, and copy over
the appropriate executable along with any other utilities you might need on the client
machine. In this example, all nodes including the head are configured as clients. But because
we have already installed software on the head node, some of the steps aren't necessary for
that particular machine.

First, a special character file needs to be created on each of the clients using the mknod
command.

[root @anny /]# cexec nknod /dev/pvfsd ¢ 60 O

/dev/pvfsd is used to communicate between the pvfsd daemon and the kernel module pvfs.o.
It allows programs to access PVFS files, once mounted, using traditional Unix filesystem
semantics.

We will need to distribute both the kernel module and the daemon to each node.

[root @anny /]# cpush /usr/| ocal /sbin/pvfsd

[root @anny /]1# cexec nkdir /1ib/nodul es/2.4.20-6/kernel/fs/pvfs/

[root @anny /]# cpush /1ib/ nmodul es/ 2.4.20-6/ kernel /fs/ pvfs/pvfs.o

The kernel module registers the filesystem with the kernel while the daemon performs
network transfers.

Next, we need to create a mount point.

[root @anny root]# nkdir /mt/pvfs

[root @anny /]# cexec nkdir /mt/pvfs

This example uses /mnt/pvfs, but /pvfs is another frequently used alternative. The mount
directory is where the files appear to be located. This is the directory you'll use to access or
reference files.

Themount.pvfs executable is used to mount a filesystem using PVFS and should be copied to
each client node.

[root @anny /]1# cpush /usr/1ocal /sbin/ mount. pvfs /shin/

mount.pvfs can be invoked by the mount command on some systems, or it can be called
directly.

Finally, create /etc/pvfstab, a mount table for the PVFS system. This needs to contain only a

single line of information as shown here:

fanny:/pvfs-neta /mt/pvfs pvfs port=3000 0 O

If you are familiar with /etc/fstab, this should look very familiar. The first field is the path to
the metadata information. The next field is the mount point. The third field is the filesystem
type, which is followed by the port number. The last two fields, traditionally used to determine
when a filesystem is dumped or checked, aren't currently used by PVFS. These fields should
be zeros. You'll probably need to change the first two fields to match your cluster, but
everything else should work as shown here.

Once you have created the mount table, push it to the remaining nodes.

[root @anny /]# cpush /etc/pvfstab

[root @anny /]# cexec chnod 644 /etc/pvfstab

Make sure the file is readable as shown.

While it isn't strictly necessary, there are some other files that you may want to push to your
client nodes. The installation of PVFS puts a number of utilities in /usr/local/bin. You'll need to
push these to the clients before you'll be able to use them effectively. The most useful include
mgr-ping,iod-ping,pvstat, and u2p.

[root @anny root]# cpush /usr/local/bin/ngr-ping

[root @anny root]# cpush /usr/l| ocal/bin/iod-ping

[root @anny root]# cpush /usr/| ocal /bin/pvstat

[root @anny pvfs]# cpush /usr/l ocal /bin/u2p

As you gain experience with PVFS, you may want to push other utilities across the cluster.

If you want to do program development using PVFS, you will need access to the PVFS header
files and libraries and the pvfstab file. By default, header and library files are installed in
/usr/local/include and /usr/local/lib, respectively. If you do program development only on
your head node, you are in good shape. But if you do program development on any of your
cluster nodes, you'll need to push these files to those nodes. (You might also want to push the
manpages as well, which are installed in /usr/local/man.)

12.1.5 Running PVFS

Finally, now that you have everything installed, you can start PVFS. You need to start the

appropriate daemons on the appropriate machines and load the kernel module. To load the
kernel module, use the insmod command.

[root @anny root]# insmod /1ib/modul es/ 2. 4. 20-6/kernel /fs/pvfs/pvfs.o

[root @anny root]# cexec insmod /1ib/ modul es/ 2. 4. 20- 6/ kernel / fs/ pvfs/pvfs.o

Next, run the mgr daemon on the metadata server. This is the management daemon.

[root @anny root]# /usr/local/sbin/ngr

On each 1/0 server, start the iod daemon.

[root @anny root]# /usr/local/sbin/iod

[root @anny root]# cexec /usr/local/sbin/iod

Next, start the pvfsd daemon on each client node.

[root @anny root]# /usr/local/sbin/pvfsd

[root @anny root]# cexec /usr/local/sbin/pvfsd

Finally, mount the filesystem on each client.

[root @anny root]# /usr/local/sbin/ nmount. pvfs fanny:/pvfs-neta / mt/pvfs

[root @anny /]# cexec /sbin/mount. pvfs fanny:/pvfs-neta / mt/pvfs

PVFS should be up and running.[21

[2] Although not described here, you'll probably want to make the necessary changes to your startup file
so that this is all done automatically. PVFS provides scripts enablemgr and enableiod for use with Red Hat
machines.

To shut PVFS down, use the umount command to unmount the filesystem, e.g., umount
/mnt/pvfs, stop the PVFS processes with Kill or killall, and unload the pvfs.o module with the
rmmod command.

12.1.5.1 Troubleshooting

There are several things you can do to quickly check whether everything is running. Perhaps
the simplest is to copy a file to the mounted directory and verify that it is accessible on other
nodes. If you have problems, there are a couple of other things you might want to try to
narrow things down.

First, use ps to ensure the daemons are running on the appropriate machines. For example,

[root @anny root]# ps -aux | grep pvfsd
r oot 15679 0.0 0.1 1700 184 7 S

Jun21 0: 00 /usr/ 1 ocal / sbin/pvfsd

Of course, mgr should be running only on the metadata server and iod should be running on
all the 170 servers (but nowhere else).

Each process will create a log file, by default in the / t np directory. Look to see if these are
present.

[root @anny root]# Is -1 /tnp

total 48

- FPWXT - XT - X 1 root r oot 354 Jun 21 11:13 iolog. OxLKkSR

- FWXTE - XTI - X 1 root r oot 0 Jun 21 11:12 ngrl og. z3tgll

- FWXT - XT - X 1 root root 119 Jun 21 11: 21 pvfsdlog. nsBr CV

The garbage at the end of the filenames is generated to produce a unique filename.
The mounted PVFS will be included in the listing given with the mount command.

[root @anny root]# nount

fanny:/pvfs-neta on /mt/pvfs type pvfs (rw)

This should work on each node.

In addition to the fairly obvious tests just listed, PVFS provides a couple of utilities you can
turn to. The utilities iod-ping and mgr-ping can be used to check whether the 1/0 and
metadata servers are running and responding on a particular machine.

Here is an example of using iod-ping:

[root @anny root]# /usr/local/bin/iod-ping

| ocal host: 7000 i s respondi ng.

[root @anny root]# cexec /usr/local/bin/iod-ping

Kok kK kR kKK Kk Kk KRk kR Rk k| gog| KA KRR KA KA K KKk kK Kk Kk Ak K
--------- george.wof ford.int---------

| ocal host: 7000 i s respondi ng.

--------- hector.wofford.int---------

| ocal host: 7000 i s respondi ng.
--------- ida.wofford.int---------

| ocal host: 7000 i s respondi ng.
————————— james.wofford.int---------
| ocal host: 7000 i s respondi ng.

Theiod daemon seems to be OK on all the clients. If you run mgr-ping, only the metadata
server should respond.

48 FREY < Day Day Up > NE=T oy

< Day Day Up >

12.2 Using PVFS

To make effective use of PVFS, you need to understand how PVFS distributes files across the
cluster.PVFS uses a simple striping scheme with three striping parameters.

base

The cluster node where the file starts, given as an index where the first 1/0 server is 0.
Typically, this defaults to O.

pcount

The number of 1/0 servers among which the file is partitioned. Typically, this defaults to
the total number of 1/0 servers.

ssize

The size of each strip, i.e., contiguous blocks of data. Typically, this defaults to 64 KB.
Figure 12-2 should help clarify how files are distributed. In the figure, the file is broken into
eight pieces and distributed among four 1/0 servers. base is the index of the first I/0 server.
pcount is the number of servers used, i.e., four in this case. ssize is the size of each of the

eight blocks. Of course, the idea is to select a block size that will optimize parallel access to
the file.

Figure 12-2. Overlap within files

/0 server 0 ¥ server 1 V0 server 11} server 3

You can examine the distribution of a file using the pvstat utility. For example,

[root @anny pvfs]# pvstat data
data: base = 0, pcount =5, ssize = 65536
[root @anny pvfs]# |s -1 data

STW-F--1-- 1 root r oot 10485760 Jun 21 12: 49 data

A little arithmetic shows this file is broken into 160 pieces with 32 blocks on each 1I/0 server.

If you copy a file to a PVFS filesystem using cp, it will be partitioned automatically for you
using what should be reasonable defaults. For more control, you can use the u2p utility. With
u2p, the command-line option - s sets the stripe size; - b specifies the base; and - n specifies
the number of nodes. Here is an example:

[root @anny /]# u2p -s16384 data / mt/data
1 node(s); ssize = 8192; buffer = 0; nanMBps (0 bytes total)
[root @anny /]# pvstat /mt/data

/ mt/data: base = 0, pcount = 1, ssize = 8192

Typically,u2p is used to convert an existing file for use with a parallel program.

While Unix system call read and write will work with the PVFS without any changes, large
numbers of small accesses will not perform well. The buffered routines from the standard 1/0
library (e.g., fread and fwrite) should work better provided an adequate buffer is used.

To make optimal use of PVFS, you will need to write your programs to use PVFS explicitly.
This can be done using the native PVFS access provided through the libpvfs.a library. Details
can be found in Using the Parallel Virtual File System, part of the documentation available at
the PVFS web site. Programming examples are included with the source in the examples
subdirectory. Clearly, you should understand your application's data requirements before you
begin programming.

Alternatively,PVFS can be used with the ROMIO interface from http://www.mcs.anl.gov. The
ROMIO is included with both MPICH and LAM/MPI. (If you compile ROMIO, you need to specify
PVES support. Typically, you use the compile flags - i b=/usr/l ocal /1i b/li bpvfs.a and -

fil e_systenmspvfs+nfs+ufs.) ROMIO provides two important optimizations, data sieving and
two-phase 1/0. Additional information is available at the ROMIO web site.

48 FREV < Day Day Up > ME=T

http://www.mcs.anl.gov

< Day Day Up >

12.3 Notes for OSCAR and Rocks Users

Both OSCAR and Rocks use NFS. Rocks uses autofs to mount home directories; OSCAR
doesn't. (Automounting and autofs is discussed briefly in Chapter 4.)

PVFS is available as an add-on package for OSCAR. By default, it installs across the first eight
available nodes using the OSCAR server as the metadata server and mount point. The OSCAR
server is not configured as an 1/0 server. OSCAR configures PVFS to start automatically when
the system is rebooted.

With OSCAR, PVFS is installed in the directory /opt/pvfs, e.qg., the libraries are in /opt/pvfs/lib
and the manpages are in /opt/pvfs/man. The manpages are not placed on the user's path but
can be with the - Moption to man. For example,

[root@ny /]# man - M/ opt/ pvfs/man/ pvfs_chnod

The PVFS utilities are in /opt/pvfs/bin and the daemons are in /opt/pvfs/sbin. The mount point
for PVFS is /mnt/pvfs. Everything else is pretty much where you would expect it to be.

PVFS is fully integrated into Rocks on all nodes. However, you will need to do several
configuration tasks. Basically, this means following the steps outlined in this chapter.
However, you'll find that some of the steps have been done for you.

On the meta-server, the directory /pvfs-meta is already in place; run /usr/bin/mkmgrconf to
create the configuration files. For the 1/0 servers, you'll need to create the data directory
/pvfs-data but the configuration file is already in place. The kernel modules are currently in
/lib/modules/2.4.21-15.EL/fs/ and are preloaded. You'll need to start the 1/0 daemon
/usr/sbin/iod, and you'll need to mount each client using /sbin/mount.pvfs. All in all it goes
quickly. Just be sure to note locations for the various commands.

4@ FREY < Day Day Up > NE=T

< Day Day Up >

Part IV: Cluster Programming

The final section of this book describes programming tools. If you will be writing your
own applications for your cluster, these chapters should get you started.

< Day Day Up >

< Day Day Up >

Chapter 13. Getting Started with MPI

This chapter takes you through the creation of a simple program that uses the MPI libraries. It
begins with a few brief comments about using MPI. Next, it looks at a program that can be
run on a single processor without MPI, i.e., a serial solution to the problem. This is followed by
an explanation of how the program can be rewritten using MPI to create a parallel program
that divides the task among the machines in a cluster. Finally, some simple ways the solution
can be extended are examined. By the time you finish this chapter, you'll know the basics of
using MPI.

Three versions of the initial solution to this problem are included in this chapter. The first
version, using C, is presented in detail. This is followed by briefer presentations showing how
the code can be rewritten, first using FORTRAN, and then using C++. While the rest of this
book sticks to C, these last two versions should give you the basic idea of what's involved if
you would rather use FORTRAN or C++. In general, it is very straightforward to switch
between C and FORTRAN. It is a little more difficult to translate code into C++, particularly if
you want to make heavy use of objects in your code. You can safely skip either or both the
FORTRAN and C++ solutions if you won't be using these languages.

< Day Day Up >

< Day Day Up >

13.1 MPI

The major difficulty in parallel programming is subdividing problems so that different parts
can be executed simultaneously on different machines. MPI is a library of routines that
provides the functionality needed to allow those parts to communicate. But it will be up to you
to determine how a problem can be broken into pieces so that it can run on different
machines.

The simplest approach is to have the number of processes match the number of machines or
processors that are available. However, this is not required. If you have a small problem that
can be easily run on a subset of your cluster, or if your problem logically decomposes in such
a way that you don't need the entire cluster, then you can (and should) execute the program
on fewer machines. It is also possible to have multiple processes running on the same
machine. This is particularly common when developing code. In this case, the operating
system will switch between processes as needed. You won't benefit from the parallelization of
the code, but the job will still complete correctly.

13.1.1 Core MPI

With most parallelizable problems, programs running on multiple computers do the bulk of the
work and then communicate their individual results to a single computer that collects these
intermediate results, combines them, and reports the final results. It is certainly possible to
write a different program for each machine in the cluster, but from a software management
perspective, it is much easier if we can write just one program. As the program executes on
each machine, it will first determine which computer it is running on and, based on that
information, tackle the appropriate part of the original problem. When the computation is
complete, one machine will act as a receiver and all the other machines will send their results
to it.

For this approach to work, each executing program or process must be able to differentiate
itself from other processes. Let's look at a very basic example that demonstrates how
processes, i.e., the program in execution on different computers, are able to differentiate
themselves. While this example doesn't accomplish anything particularly useful, it shows how
the pieces fit together. It introduces four key functions and one other useful function. And
with a few minor changes, this program will serve as a template for future programs.

#incl ude "npi.h"

#incl ude <stdio. h>

int main(int argc, char * argv[])

{
int processld; /* rank of process */
i nt noProcesses; /* nunmber of processes */
int naneSize; /* length of name */

char conputer Name[MPI _MAX_PRCCESSOR _NAME] ;

MPI I nit(&argc, &argv);
MPI _Comm si ze(MPI _COVMM WORLD, &noProcesses);

MPI _Comm r ank(MPI _COVM WORLD, &processld);

MPI _Get _processor_name(conputer Nanme, &naneSize);

fprintf(stderr,"Hello fromprocess % on %\n", processld, conputerNane);

MPI _Finalize();

return O;

This example introduces five MPI functions, defined through the inclusion of the header file for
the MPI library, mpi.h, and included when the MPI library is linked to the program. While this
example uses C, similar libraries are available for C++ and FORTRAN.

Four of these functions, MPl _I nit ,MPl _Conm si ze,MPI _Comm rank, and MPl _Finalize, are

seen in virtually every MPI program. We will look at each in turn. (Notice that all MPI
identifiers begin with MPI _.)

13.1.1.1 MPI_Init

MPl I nit is used to initialize an MPI session. All MPI programs must have a call to MPl _Ini t.
MPI _Init is called once, typically at the start of a program. You can have lots of other code
before this call, or you can even call MPl _I ni t from a subroutine, but you should call it before
any other MPI functions are called. (There is an exception: the function MPl _Initiali zed can
be called before MPl _Init.MPl _Initialized isused to see if MPl _I nit has been previously
called.)

InC, VPl _Init can be called with the addresses for argc and argv as shown in the example.

This allows the program to take advantage of command-line arguments. Alternatively, these
addresses can be replaced with a NULL.

13.1.1.2 MPI_Finalize

MPl _Finalize is called to shut down MPI. MPI _Fi nal i ze should be the last MPI call made in a

program. It is used to free memory, etc. It is the user's responsibility to ensure that all
pending communications are complete before a process calls MPl _Fi nal i ze. You must write
your code so that every process calls MPl _Final i ze. Notice that there are no arguments.

13.1.1.3 MPI_Comm_size

This routine is used to determine the total number of processes running in a communicator

(the communications group for the processes being used). It takes the communicator as the
first argument and the address of an integer variable used to return the number of processes.
For example, if you are executing a program using five processes and the default
communicator, the value returned by MPI _Conm si ze will be five, the total number of
processes being used. This is number of processes, but not necessarily the number of
machines being used.

In the example, both MPI _Comm si ze and MPl _Comm rank used the default communicator,

MPl _COVM _WDRLD. This communicator includes all the processes available at initialization and is
created automatically for you. Communicators are used to distinguish and group messages.
As such, communicators provide a powerful encapsulation mechanism. While it is possible to
create and manipulate your own communicators, the default communicator will probably
satisfy most of your initial needs.

13.1.1.4 MPI_Comm_rank

MPI _Conm rank is used to determine the rank of the current process within the communicator.
MPI _Conm rank takes a communicator as its first argument and the address of an integer
variable is used to return the value of the rank.

Basically, each process is assigned a different process number or rank within a communicator.
Ranks range from O to one less than the size returned by MPI _Comm si ze. For example, if you
are running a set of five processes, the individual processes will be numbered O, 1, 2, 3, and
4. By examining its rank, a process can distinguish itself from other processes.

The values returned by MPI _Comm si ze and MPl _Conm rank are often used to divvy up a
problem among processes. For example, suppose that for some problem you want to divide
the work among five processors. This is a decision you make when you run your program;
your choice is not coded into the program since it may not be known when the program is
written. Once the program is running, it can call MPl _Conm si ze to determine the number of
processes attacking the problem. In this example, it would return five. Each of the five
processes now knows that it needs to solve one fifth of the original problem (assuming you‘'ve
written the code this way).

Next, each individual process can examine its rank to determine its role in the calculation.
Continuing with the current example, each process needs to decide which fifth of the original
problem to work on. This is where MPI _Cormm _rank comes in. Since each process has a
different rank, it can use its rank to select its role. For example, the process with rank 0 might
work on the first part of the problem; the process with rank 1 will work on the second part of
the problem, etc.

Of course, you can divide up the problem differently if you like. For example, the process with
rank O might collect all the results from the other processes for the final report rather than
participate in the actual calculation. Or each process could use its rank as an index to an array
to discover what parameters to use in a calculation. Itis really up to you as a programmer to
determine how you want to use this information.

13.1.1.5 MPI_Get_processor_name

MPl _CGet _processor_nane is used to retrieve the host name of the node on which the
individual process is running. In the sample program, we used it to display host names. The
first argument is an array to store the name and the second is used to return the actual
length of the name.

MPI _Get _processor_nane is a nice function to have around, particularly when you want to
debug code, but otherwise it isn't used all that much. The first four MPI functions, however,
are core functions and will be used in virtually every MPI program you'll write. If you drop the
relevant declarations, the call to MPl _Get _processor_nane, and the fprintf, you'll have a

template that you can use when writing MPI programs.

Although we haven't used it, each of the C versions of these five functions returns an integer
error code. With a few exceptions, the actual code is left up to the implementers. Error codes
can be translated into meaningful messages using the MPl _Err or _string function. In order to

keep the code as simple as possible, this book has adopted the (questionable) convention of
ignoring the returned error codes.

Here is an example of compiling and running the code:
[sl oanj d@my sl oanjd]$ npicc hello.c -0 hello

[sl oanjd@ny sloanjd]$ npirun -np 5 hello

Hel o fromprocess 0 on any

Hel o from process 2 on oscarnode2. oscardomai n
Hel l o fromprocess 1 on oscarnodel. oscardomnai n
Hel | o from process 4 on oscarnode4. oscardomai n

Hel | o from process 3 on oscarnode3. oscardomai n

There are a couple of things to observe with this example. First, notice that there is no
apparent order in the output. This will depend on the speed of the individual machines, the
loads on the machines, and the speeds of the communications links. Unless you take explicit
measures to control the order of execution among processors, you should make no
assumptions about the order of execution.

Second, the role of MPl _Comm si ze should now be clearer. When running the program, the
user specifies the number of processes on the command line. MPl _Conm si ze provided a way
to get that information back into the program. Next time, if you want to use a different
number of processes, just change the command line and your code will take care of the rest.

< Day Day Up >

< Day Day Up >

13.2 A Simple Problem

Before we can continue examining MPI, we need a more interesting problem to investigate.
We will begin by looking at how you might write a program to calculate the area under a
curve, i.e., a numerical integration. This is a fairly standard problem for introducing parallel
calculations because it can be easily decomposed into parts that can be shared among the
computers in a cluster. Although in most cases it can be solved quickly on a single processor,
the parallel solution illustrates all the basics you need to get started writing MPI code. We'll
keep coming back to this problem in later chapters so you'll probably grow tired of it. But
sticking to the same problem will make it easy for us to focus on programming constructs
without getting bogged down with the details of different problems.

If you are familiar with numerical integration, you can skim this section quickly and move on
to the next. Although this problem is a bit mathematical, it is straightforward and the
mathematics shouldn't create much of a problem. Each step in the problem in this section is
carefully explained, and you don't need to worry about every detail to get the basic idea.

13.2.1 Background

Let's get started. Suppose you are driving a car whose clock and speedometer work, but
whose odometer doesn't work. How do you determine how far you have driven? If you are
traveling at a constant speed, the distance traveled is the speed that you are traveling
multiplied by the amount of time you travel. If you go 60 miles an hour for two hours, you
travel 120 miles. If your speed is changing, you'll need to do a lot of little calculations and add
up the results. For example, if you go 60 for 30 minutes, slow down to 40 for construction for
the next 30 minutes, and then hotfoot it at 70 for the next hour to make up time, your total
distance is 30 plus 20 plus 70 or 120 miles. You just calculate the distance traveled at each
speed and add up the results.

If we plot speed against time, we can see that what we are calculating is the area under the
curve. Basically, we are dividing the area into rectangles, calculating the area of each
rectangle, and then adding up the results. In our example, the first rectangle has a width of
one half (half an hour) and a height of 60, the second a width of one half and a height of 40,
and the third a width of 1 and a height of 70. If your speed changes a lot, you will just have
more rectangles. Figure 13-1 gives the basic idea.

Figure 13-1. Area is distance traveled

Of course, in practice, your speed will change smoothly rather than in steps so that you won't
be able to fit rectangles perfectly into the area. But the area under the curve does give the
exact answer to the problem, and you can approximate the area by adding up rectangles.
Generally, the more rectangles you use, the better your approximation.

InFigure 13-2, three rectangles are used to estimate the area under a curve for a similar
problem. In Figure 13-3, six rectangles are used. The shaded areas in each determine the
error in the approximation of the total area. However, since some of these areas are above
the curve and some below, they tend to cancel each other out, at least in part. Unfortunately,
this is not always the case.[1l

[1]1 Those of you who remember your calculus recognize that we are calculating definite integrals. But as a
numerical technique, this approximation will work even if you can't do the integration. (Ever run across
an integral you couldn't evaluate?) You may also be asking why we aren't using the trapezoid rule. We
are trying to keep things simple. The trapezoid rule is left as an exercise for those of you who remember
it.

Figure 13-2. Approximating with three rectangles

S — .
154
104
o
S S

Figure 13-3. Approximating with six rectangles

20— r“" !
151
104
-
0 I 1 | 1 I
Q 1) 1 4 5

We can do this calculation without bothering to do the graph. All we need are the heights and
widths of the rectangles. Widths are easy—we just divide the trip duration by however many
rectangles we want. For the heights, we will need a way to calculate the speed during the
rectangle. What we really want is the average speed. As an approximation, the simplest

approach is to use the speed at the middle of a rectangle. For most problems of this general
type, some function or rule is used to calculate this value.

Let's turn this into to a more generic problem. Suppose you want to know the area under the
curvef(x) = x2 between 2 and 5. This is the shaded region in Figure 13-4, which shows what
the graph of this problem would look like if we use three rectangles.

Figure 13-4. Area under x2 from 2 to 5 with three rectangles
25
20

15

To

With three rectangles, the width of each will be 1. To find the height, we take the center of
each rectangle (2.5, 3.5, and 4.5) and evaluate the function (2.52 = 6.25, 352 = 12.25, and
4.52 = 20.25). Multiplying height by width for each rectangle and adding the results gives an
area of 38.75. (Using calculus, we know the exact answer is 39.0, so we aren't far off.)

13.2.2 Single-Processor Program

Being computer types, we'll want to write a program to do the calculation. This will allow us to
easily use many more rectangles to get better results and will allow us to easily change the
endpoints and functions we use. Here is the code in C:

#incl ude <stdio. h>

/* problemparaneters */

#define f(x) ((x) * (x))
#def i ne nunberRect s 50

#define | owerLimt 2.0
#define upperLimt 5.0

int main (int argc, char * argv[])

{

i nt i;

doubl e area, at, height, width;

area = 0.0;

width = (upperLimt - lowerLimt) / nunberRects;
for (i = 0; i < nunberRects; i ++)

{ at =1lowerLimt + i * width + width / 2.0;

hei ght = f(at);

area = area + width * height;

printf("The area from% to % is: %\n", lowerLimt, upperLimt, area);

return O;

After entering the code with our favorite text editor, we can compile and run it.

[sl oanjd@s sloanjd]$ gcc rect.c -0 rect
[sl oanjd@s sloanjd]$./rect

The area from 2. 000000 to 5.000000 is: 38.999100

This is a much better answer.

This code should be self-explanatory, but a few comments can't hurt. First, macros are used
to define the problem parameters, including the function that we are looking at. For the
parameters, this lets us avoid the 1/0 issue when we code the MPI solution. The macro for the
function is used to gain the greater efficiency of inline code while maintaining the clarity of a
separate function. While this isn't much of an issue here, it is good to get in the habit of using
macros. The heart of the code is a loop that, for each rectangle, first calculates the height of
the rectangle and then calculates the area of the rectangle, adding it to a running total. Since
we want to calculate the height of the rectangle at the middle of the interval, we add

wi dt h/ 2. 0 when calculating at, the location we feed into the function. Obviously, there are a
few things we can do to tighten up this code, but let's not worry about that right now

4m PREV | < Day Day Up > | NEXT wp

< Day Day Up >

13.3 An MPI Solution

Now that we've seen how to create a serial solution, let's look at a parallel solution. We'll look
at the solution first in C and then in FORTRAN and C++.

13.3.1 A C Solution

The reason this area problem is both interesting and commonly used is that it is very
straightforward to subdivide this problem. We can let different computers calculate the areas
for different rectangles. Along the way, we'll introduce two new functions, MPl _Send and

MPl _Recei ve, used to exchange information among processes.

Basically,MPI _Comm si ze and MPl _Conm rank are used to divide the problem among
processors.MPl _Send is used to send the intermediate results back to the process with rank
0, which collects the results with MPl _Recv and prints the final answer. Here is the program:

#include "npi.h"

#incl ude <stdio. h>

/* probl emparaneters */

#define f(x) ((x) * (x))
#def i ne numberRect s 50
#define | owerLimt 2.0
#define upperLimt 5.0

int main(int argc, char * argv[])
{
/* MPl variables */
i nt dest, noProcesses, processld, src, tag;

MPI _St at us st at us;

/* problemvariables */
i nt i;

doubl e area, at, height, lower, width, total, range;

/[* MPl setup */
MPI _I nit(&argc, &argv);
MPI _Comm si ze(MPlI _COVMM WORLD, &noProcesses);

MPI _Comm r ank(MPI _COVM WORLD, &processld);

/* adjust problemsize for subproblent/

range (upperLimt - lowerLimt) / noProcesses;

wi dth = range / nunmberRects;

| ower | owerLimt + range * processld;

/* cal cul ate area for subprobl em*/

area = 0.0;
for (i = 0; i < nunberRects; i++)
{ at =lower + i * width + width / 2.0;

hei ght = f(at);

area = area + width * height;

/* collect infornmation and print results */

tag = O;
if (processld = = 0) /* if rank is O, collect results */
{ total = area;

for (src=1; src < noProcesses; src++)
{ WMI_Recv(&area, 1, MPI _DOUBLE, src, tag, Ml _COVM WORLD, &status);
total = total + area;

}

fprintf(stderr, "The area from% to % is: %\n",

owerLimt, upperLimt, total);

el se /* all other processes only send */

{ dest = 0

MPlI _Send(&area, 1, MPI_DOUBLE, dest, tag, MPI_COW WORLD) ;

[* finish */
MPI _Finalize();

return O;

This code is fairly straightforward, and you've already seen most of it. As before, we begin
with the definition of the problem function and parameters. This is followed by the declaration
of the variable that we'll need, first for the MPI calls and then for the problem. There are a few
MPI variables whose use will be described shortly. Next comes the section that sets up MPI,
but there is nothing new here.

The first real change comes in the next section where we adjust the problem size. In this
example, we are calculating the area between 2 and 5. Since each process only needs to do
part of this calculation, we need to divide the problem among the processes so that each
process gets a different part (and all the parts are accounted for.) MPl _Conm si ze is used to
determine the number of parts the problem will be broken into, noPr ocesses. That is, we
divide the total range (2 to 5) equally among the processes and adjust the start of the range
for an individual process based on its rank. For example, with four processes, one process
could calculate from 2 to 2.75, one from 2.75 to 3.5, one from 3.5 to 4.25, and one from 4.25
to 5.

In the next section of code, each process calculates the area for its part of the problem. This
code keeps the number of rectangles fixed in this example rather than adjust it to the number
of processes. That is, regardless of the number of processes used, each will use the same
number of rectangles to solve its portion of the problem. Thus, if the number of processes
increases from one run to the next, the answer won't come back any quicker but, up to a
point, the answer should be more accurate. If your goal is speed, you could easily set the
total number of rectangles for the problem, and then, in each process, divide that number by
the number of processes or use some similar strategy.

Once we have completed this section, we need to collect and combine all our individual
results. This is the new stuff. One process will act as a collector to which the remaining
processes will send their results. Using the process with rank O as the receiver is the logical
choice. The remaining processes act as senders. There is nothing magical about this choice
apart from the fact that there will always be a process of rank 0. If a different process is
selected, you'll need to ensure that a process with that rank exists. A fair amount of MPI code
development can be done on a single processor system and then moved to a multiprocessor
environment, so this isn't, as it might seem, a moot point.

The test (Processld = = 0) determines what will be done by the collector process and what
will be done by all the remaining processes. The first branch following this test will be
executed by the single process with a rank of 0. The second branch will be executed by each
of the remaining processes. It is just this sort of test that allows us to write a single program
that will execute correctly on each machine in the cluster with different processes doing
different things.

13.3.2 Transferring Data

The defining characteristic of message passing is that the transfer of data from one process to
another requires operations to be performed by both processes. This is handled by MPl _Send
andMPl _Recv. The first branch after this test contains a loop that will execute once for each of
the remaining nodes in the cluster. At each execution of the body of the loop, the rank O
process collects information from one of the other processes. This is done with the call to

MPI _Recv. Each of the other processes executes the second branch after the test once. Each
process uses the call to MPl _Send to pass its results back to process 0. For example, for 100
processes, there are 99 calls to MPI _Send and 99 calls to MPI _Recv. (Process 0 already knows
what it calculated.) Let's look at these two functions more closely.

13.3.2.1 MPI_Send

MPl _Send is used to send information from one process to another process.[2l A call to

MPI _Send must be matched with a corresponding call to MPI _Recv in the receiving process.
Information is both typed and tagged. Typing is needed to support communications in a
heterogeneous environment. The type information is used to insure that the necessary
conversions to data representation are applied as data moves among machines in a
transparent manner.

[2] Actually, a process can send a message to itself, but this possibility can get tricky so we'll ignore it.

The first three arguments to MPl _Send, collectively, are used to specify the transmitted data.
The first argument gives the address of the data, the second gives the number of items to be
sent, and the third gives the data type. In this sample code, we are sending the area, a single
doubl e, so we specify MPIl _DCQUBLE as the type. In addition to MPI _DQOUBLE, the other possible
types are MPl _BYTE,MPl _CHAR,MPl _UNSI GNED_CHAR, MPI _SHORT,MPI _UNSI GNED_SHORT,

MPI _ | NT,MPl _UNSI GNED_| NT,MPl _LONG,MPl _UNSI GNED_LONG MPI _LONG_DOUBLE, MPI _FLOAT,
andVPl _ PACKED.

The next argument is the destination. This is just the rank of the receiver. The destination is
followed by a tag. Since MPI provides buffering, several messages can be outstanding. The
tag is used to distinguish among multiple messages. This is a moot point in this example.
MPI _COVM WDRLD is the default communicator, which has already been described.

13.3.2.2 MPI_Recv

The arguments to MPl _Recv are similar but include one addition, a status field. MPl _STATUS is
a type definition for a structure that holds information about the actual message size, its
source, and its tag. In C, the status variable is a structure composed of three

fields—MPI _SOURCE,MPI _TAG, and MPI _ ERROR—that contain the source, tag, and error code,
respectively. With MPl _Recv, you can use a wildcard for either or both the source and the
tag—MPl _ANY_SOURCE and MPI _ANY_TAG. The status field allows you to determine the actual
source and tag in this situation.

You should be aware that MPl _Send and MPl _Recv are both blocking calls. For example, if you
try to receive information that hasn't been sent, your process will be blocked or wait until it is
sent before it can continue executing. While this is what you might expect, it can lead to nasty
surprises if your code isn't properly written since you may have two processes waiting for
each other.

Here is the output:

[sl oanj d@ny sl oanjd]$ npicc npi-rect.c -o npi-rect

[sl oanjd@ny sloanjd]$ npirun -np 5 npi-rect

The area from 2. 000000 to 5.000000 is: 38.999964

Of course, all of this assumed you wanted to program in C. The next two sections provide
alternatives to C.

13.3.3 MPI Using FORTRAN

Let's take a look at the same program written in FORTRAN.
program nai n

i ncl ude "npif.h"

parameter (NCRECS = 50, DLIMT = 2.00, ULIMT = 5.00)
i nteger dst, err, i, noprocs, procid, src, tag
i nt eger status(MPl _STATUS_ SI ZE)

doubl e precision area, at, height, lower, width, total, range

f(x) =x* X

kkhkkkkhkkxk NPI Setup *kkkkkkkkk*k

call MPI_INIT(err)
cal | MI_COWM SI ZE(MPl _COVM WORLD, noprocs, err)

cal | MPI_COVM RANK(MPl _COMM WORLD, procid, err)

*rxkxkxkxk gdjust probl emsize for subprobl em **x*x*x*xx*

range = (ULIMT - DLIMT) / noprocs

wi dt h range / NORECS

| ower DLIMT + range * procid
*rRxkxkxkxk cglculate area for subprobl em **x**x%xx*
area = 0.0;
do 10 i =0, NORECS - 1
at = lower + i * width + width / 2.0
hei ght = f (at)

area = area + width * hei ght

10 conti nue

*rxkxkxkxk collect infornmation and print results ***x**kxxx*
tag = 0
*rkxxkkxkxx i f rank is 0, collect results ***x**xkxx
if (procid .eq. 0) then
total = area
do 20 src = 1, noprocs - 1
call MPI_RECV(area, 1, MPI_DOUBLE PRECI SION, src, tag,
+ MPI _COVM WORLD, status, err)
total = total + area
20 conti nue
print "(1X A F5.2, A F5.2, A F8.5)', 'The area from"',

+ DLIMT, ' to"', WIMT, ' is: ', total

el se
kRxkxkxxkxkx gl] other processes only send ***x**xk%x
dest = 0;
call Ml _SEND(area, 1, MPI _DOUBLE PRECI SI ON, dest, tag,
+ MPI _COMW WCRLD, err)

endi f

kkkkkhkkkxk fl nl Sh * ok kk ok ok kk ok kx

call Ml _FI NALI ZE(err)
stop

end
I'm assuming that, if you are reading this, you already know FORTRAN and that you have

already read the C version of the code. So this discussion is limited to the differences between
MPI in C and in FORTRAN. As you can see, there aren't many.

|! Don't forget to compile this with mpif77 rather than mpicc.

FORTRAN 77 programs begin with i ncl ude "npi.f". FORTRAN 90 may substitute use npi if
the MPI implementation supports modules.

In creating the MPI specification, a great deal of effort went into having similar binding in C
and FORTRAN. The biggest difference is the way error codes are handled. In FORTRAN there
are explicit parameters included as the last argument to each function call. This will return
eitherMPl _SUCCESS or an implementation-defined error code.

In C, function arguments tend to be more strongly typed than in FORTRAN, and you will
notice that C tends to use addresses when the function is returning a value. As you might
expect, the parameters to MPl _I ni t have changed. Finally, MPl _STATUS is an array rather
than a structure in FORTRAN.

Overall, the differences between C and FORTRAN aren’t that great. You should have little
difficulty translating code from one language to another.

13.3.4 MPI Using C++

Here is the same code in C++:

#incl ude "npi.h"

#incl ude <stdio. h>

/* probl em paraneters */

#define f(x) ((x) * (x))
#defi ne numberRects 50

#define | owerLimt 2.0

#def i ne upperLimt 5.0

int main(int argc, char * argv[])
{
/* NPl variables */
int dest, noProcesses, processld, src, tag;

MPI _St at us st at us;

/* probl emvari ables */
i nt i

doubl e area, at, height, |ower, width, total, range;

[* NPl setup */
MPI::Init(argc, argv);
noProcesses = MPI:: COMWM WORLD. Get _si ze();

processld = MPl :: COMM WORLD. Get _rank();

[* adjust probl emsize for subproblent/

range = (upperLimt - lowerLimt) / noProcesses;

wi dth = range / numberRects;

|l ower = lowerLimt + range * processld;

/* cal cul ate area for subprobl em*/

area = 0.0;

for (i = 0; i < nunberRects; i ++)

{ at =lower +i * width + width / 2.0;
hei ght = f(at);

area = area + width * height;

/* collect information and print results */

tag = 0
if (processld = = 0) [* if rank is O, collect results */
{ total = area;

for (src=1; src < noProcesses; Src++)
{ MPI::COW WCRLD. Recv(&area, 1, MPI::DOJUBLE, src, tag);
total = total + area;

}

fprintf (stderr, "The area from% to % is: %\n",

lowerLimt, upperLimt, total);

el se /* all other processes only send */

{ dest = 0

MPI :: COWM WDRLD. Send(&ar ea, 1, MPI::DOJBLE, dest, tag);

[* finish */
MPI: : Finalize();

return O;

If you didn't skip the section on FORTRAN, you'll notice that there are more differences in
going from C to C++ than in going from C to FORTRAN.

|! Remember, you'll compile this with mpiCC, not mpicc.

The C++ bindings were added to MPI as part of the MPI1-2 effort. Rather than try to follow the
binding structure used with C and FORTRAN, the C++ bindings were designed to exploit MPI's
object-oriented structure. Consequently, most functions become members of C++ classes.
For example, MPI : : COM_WDORLD is an instance of the communicator class. Get _r ank and

Get _size are methods in the class. All classes are part of the MPI namespace.

Another difference you'll notice is that Get _si ze and Get _r ank return values. Since the usual
style of error handling in C++ is throwing exceptions, which MPI follows, there is no need to
return error codes.

Finally, you notice that the type specifications have changed. In this example, we see
MPI : : DOUBLE rather than MPI _DQUBLE which is consistent with the naming conventions being

adopted here. We won't belabor this example. By looking at the code, you should have a
pretty clear idea of how the bindings have changed with C++.

Now that we have a working solution, let's look at some ways it can be improved. Along the
way we'll see two new MPI functions that can make life simpler.

4m PREV | < Day Day Up > | NEXT o

< Day Day Up >

13.4 1/0 with MPI

One severe limitation to our solution is that all of the parameters are hardwired into the
program. If we want to change anything, we need to recompile the program. It would be
much more useful if we read parameters from standard input.

Thus far, we have glossed over the potential difficulties that arise with 1/0 and MPI. In
general, 1/0 can get very messy with parallel programs. With our very first program, we saw
messages from each processor on our screen. Stop and think about it—how did the messages
from the other remote processes get to our screen? That bit of magic was handled by mpirun.
The MPI standard does not fully specify how 1/0 should be handled. Details are left to the
implementer. In general, you can usually expect the rank O process to be able to both read
from standard input and write to standard output. Output from other processes is usually
mapped back to the home node and displayed. Input calls by other processes are usually
mapped to /dev/zero, i.e., they are ignored. If in doubt, consult the documentation for your
particular implementation. If you can't find the answer in the documentation, it is fairly
straightforward to write a simple test program.

In practice, this strategy doesn't cause too many problems. It is certainly adequate for our
modest goals. Our strategy is to have the rank O process read the parameters from standard
input and then distribute them to the remaining processes. With that in mind, here is a
solution. New code appears in boldface.

#incl ude "npi.h"

#incl ude <stdio. h>

/* probl emparaneters */

#define f(x) ((x) * (x))

int main(int argc, char * argv[])
{
/* MPl variables */
int dest, noProcesses, processld, src, tag;

MPI _St at us st at us;

/* problemvari ables */
i nt i, nunberRects;
doubl e area, at, height, |ower, width, total, range;

doubl e |l owerLimt, upperLimt;

[* MPl setup */
MPI I nit(&argc, &argv);
MPI _Comm si ze(MPI _COVM WORLD, &noProcesses);

MPI _Comm r ank(MPI _COVMM WORLD, &processld);

tag = O;
if (processld = = 0) /* if rank is O, collect paraneters */
{

fprintf(stderr, "Enter nunber of steps:\n");

scanf ("%l", &nunberRects);

fprintf(stderr, "Enter |ow end of interval:\n");

scanf ("%f", & owerLimt);

fprintf(stderr, "Enter high end of interval:\n");

scanf ("% f", &upperLimt);

for (dest=1; dest < noProcesses; dest++) /* distribute parameters */

{
MPI _Send(&nunberRects, 1, Ml _INT, dest, 0, MPI _CQOVM WORLD);
MPI _Send(& owerLimt, 1, MPI_DQUBLE, dest, 1, MPI_COMM WORLD);
MPI _Send(&upperLimt, 1, MPI_DQUBLE, dest, 2, MPI_COMW WORLD);
}
}
el se /* all other processes receive */
{ src = 0;

MPI _Recv(&unber Rects, 1, MPI _INT, src, 0, MPl _COW WORLD, &status);
MPlI _Recv(& owerLimt, 1, MPI_DOUBLE, src, 1, MPI_COVM WORLD, &status);

MPlI _Recv(&upperLimt, 1, MPI_DOUBLE, src, 2, MPI_COVM WORLD, &status);

/* adjust probl emsize for subproblem*/
range = (upperLimt - lowerLimt) / noProcesses;

wi dth = range / numberRects;

| ower lowerLimt + range * processld;

/* cal cul ate area for subprobl em*/

area = 0.0;

for (i = 0; i < nunberRects; i ++)

{ at =lower + i * width + width / 2.0;
hei ght = f(at);

area = area + width * height;

/* collect information and print results */

tag = 3;
if (processld = = 0) /* if rank is 0, collect results */
{ total = area;

fprintf(stderr, "Area for process 0 is: %\n", area);

for (src=1; src < noProcesses; src++)

{
MPI _Recv(&area, 1, MPI _DOUBLE, src, tag, MPlI_COVMM WORLD, &status);
fprintf(stderr, "Area for process %l is: %\n", src, area);
total = total + aresg;

}

fprintf (stderr, "The area from% to % is: %\n",

[owerLimt, upperLinit, total);

}
el se /* all other processes only send */
{ dest = 0;

MPI _Send(&area, 1, MPI_DOWBLE, dest, tag, MPI_COMM WORLD);

/* finish */
MPI _Finalize();

return O;

The solution is straightforward. We need to partition the problem so that the input is only
attempted by the rank O process. It then enters a loop to send the parameters to the
remaining processes.

While this approach certainly works, it introduces a lot of overhead. While it might be
tempting to calculate a few of the derived parameters (e.g. r ange or wi dt h) and distribute
them as well, this is a false economy. Communication is always costly, so we'll let each
process calculate these values for themselves. Anyway, they would have been idle while the
rank O process did the calculations.

| & FREYV | < Day Day Up > | MEXT w»

< Day Day Up >

13.5 Broadcast Communications

In this subsection, we will further improve the efficiency of our code by introducing two new
MPI functions. In the process, we'll reduce the amount of code we have to work with.

13.5.1 Broadcast Functions

If you look back to the last solution, you'll notice that the parameters are sent individually to
each process one at a time even though each process is receiving the same information. For
example, if you are using 10 processes, while process O communicates with process 1,
processes 2 through 10 are idle. While process O communicates with process 2, processes 3
through 10 are sill idle. And so on. This may not be a big problem with a half dozen
processes, but if you are running on 1,000 machines, this can result in a lot of wasted time.
Fortunately, MPI provides an alternative, MPl _Bcast .

13.5.1.1 MPI_Bcast

MPI _Bcast provides a mechanism to distribute the same information among a communication
group or communicator. MPl _Bcast takes five arguments. The first three define the data to be
transmitted. The first argument is the buffer that contains the data; the second argument is
the number of items in the buffer; and the third argument, the data type. (The supported
data types are the same as with MPl _Send, etc.)

The next argument is the rank of the process that is generating the broadcast, sometimes
called the root of the broadcast. In our example, this is O, but this isn't a requirement. All
processes use identical calls to MPl _Bcast . By comparing their rank to the rank specified in

the can, a process can determine whether it is sending or receiving data. Consequently, there
is no need for any additional control structures with MPl _Bcast . The final argument is the
communicator, which effectively defines which processes will participate in the broadcast.
When the call returns, the data in the root's communications buffer will have been copied to
each of the remaining processes in the communicator.

Here is our numerical integration code using MPl _Bcast (and MPl _Reduce, a function we will
discuss next). New code appears in boldface.

#incl ude "npi.h"

#i ncl ude <stdio. h>

/* probl em paraneters */

#define f(x) ((x) * (x))

int main(int argc, char * argv[])

{

/* MPlI variables */

i nt noProcesses, processld

/* problemvari ables */

int

doubl e

doubl e

/* MPI

i, nunber Rects;
area, at, height, |lower, width, total, range

|l owerLimt, upperLimt;

setup */

MPI I nit(&argc, &argv);

MPI _Comm si ze(MPI _COVMM WORLD, &noProcesses);

MPI _Comm r ank(MPI _COVM WORLD, &processld);

if (processld = = 0) /* if rank is 0O, collect paraneters */

{

fprintf(stderr, "Enter nunber of steps:\n");

scanf ("%l", &nunberRects);

fprintf(stderr, "Enter low end of interval:\n");

scanf ("%f", & owerLimt);

fprintf(stderr, "Enter high end of interval:\n");

scanf ("% f", &upperLimt);

MPI _Bcast (&unber Rects, 1, MPI_INT, 0, MPI _COVM WORLD);

MPI _Bcast (& owerLimit, 1, MPI_DOUBLE, 0, MPI_COMM WCRLD);

MPI _Bcast (&upperLimt, 1, MPI_DOUBLE, 0, MPI_COW WORLD);

/* adj
range
wi dt h

| ower

u

st probl emsize for subproblent/
(upperLimt - lowerLimt) / noProcesses;
range / numberRects;

|l owerLimt + range * processld;

/* cal cul ate area for subprobl em*/

area = 0.0;

for (i = 0; i < nunberRects; i++)

{ at =lower + i * width + width / 2.0;
hei ght = f(at);

area = area + wi dth * height;

MPI _Reduce(&area, &total, 1, MPI_DOUBLE, MPI_SUM 0, MPI_COW WORLD ;

/* collect information and print results */
if (processld = = 0) /* if rank is O, print results */
{ fprintf (stderr, "The area from% to % is: %\n",

[owerLimt, upperLinit, total);

/* finish */
MPI _Finalize();

return O;

Notice that we have eliminated the control structures as well as the need for separate
MPl _Send and MPI _Recv calls.

13.5.1.2 MPI_Reduce

You'll also notice that we have used a new function, MPl _Reduce. The process of collecting
data is so common that MPI includes functions that automate this process. The idea behind
MPl _Reduce is to specify a data item to be accumulated, a storage location or variable to
accumulate in, and an operator to use when accumulating. In this example, we want to add
up all the individual areas, so area is the data to accumulate, t ot al is the location where we
accumulate the data, and the operation is adding or MPI _SUM

More specifically, MPl _Reduce has seven arguments. The first two are the addresses of the
send and receive buffers. The third is the number of elements in the send buffer, while the
fourth gives the type of the data. Both send and receive buffers will manipulate the same
number of elements which will be of the same type. The next operation identifies the function

used to combine elements. MPl _SWis used to add elements. MPI defines a dozen different
operators. These include operators to find the sum of the data values (MPl _SUM), their product
(MPl _PROD), the largest and smallest values (MPl _MAX and MPl _M N), and numerous logical
operations for both logical and bitwise comparisons using AND, OR, and XOR (MPI _LAND,

MPI _BAND,MPI _LCR,MPI _BCR,MPl _LXOR, and MPI _BXOR). The data type must be compatible

with the selected operation.

The next to the last argument identifies the root of the communications, i.e., the rank of the
process that will accumulate the final answer, and the last argument is the communicator.
These must have identical values in every process. Notice that only the root process will have
the accumulated result. If all of the processes need the result, there is an analogous function
MPl _All reduce that is used in the same way.

Notice how the use of MPI _Reduce has simplified our code. We have eliminated a control
structure, and, apart from the single parameter in our recall to MPl _Reduce, we no longer
need to distinguish among processes. Keep in mind that it is up to the implementer to
determine the best way to implement these functions. Details will vary. For example, the
"broadcast" in MPl _Bcast simply means that the data is sent to all the processes. It does not
necessarily imply that an Ethernet-style broadcast will be used, although that is one obvious
implementation strategy. When implementing for other networks, other strategies may be
necessary.

In this chapter we have introduced the six core MPI functions—MPI _I ni t ,MPI _Conm si ze,
MPI _Conm rank,MPl _Send,MPl _Recv, and MPI _Fi nal i ze—as well as several others that
simplify MPI coding. These six core functions have been described as the six indispensable
MPI functions, the functions that you really can't do without. On the other hand, most MPI
programs, with a little extra work, could be rewritten with just these six functions.
Congratulations! You are now an MPI programmer.

< Day Day Up >

< Day Day Up >

Chapter 14. Additional MPI Features

This chapter is an overview of a few of the more advanced features found in MPI. The goal of
this chapter is not to make you an expert on any of these features but simply to make you
aware that they exist. You should come away with a basic understanding of what they are and
how they might be used. The four sections in this chapter describe additional MPI features
that provide greater control for some common parallel programming tasks.

e If you want more control when exchanging messages, the first section describes MPI
commands that provide non-blocking and bidirectional communications.

¢ If you want to investigate other collective communication strategies, the second section
describes MPI commands for distributing data across the cluster or collecting data from
all the nodes in a cluster.

e If you want to create custom communication groups, the third section describes how it is
done.

e If you want to group data to minimize communication overhead, the last section
describes two alternatives—packed data and user-defined types.

While you may not need these features for simple programs, as your projects become more
ambitious, these features can make life easier.

< Day Day Up >

14.1 More on Point-to-Point Communication

InChapter 13, you were introduced to point-to-point communication, the communication
between a pair of cooperating processes. The two most basic commands used for point-to-
point communication are MPl _Send and MPI _Recv. Several variations on these commands that

can be helpful in some contexts are described in this section.

14.1.1 Non-Blocking Communication

One major difference among point-to-point commands is how they handle buffering and the
potential for blocking. MPI _Send is said to be a blocking command since it will wait to return

until the send buffer can be reclaimed. At a minimum, the message has to be copied into a
system buffer before MPl _Send will return. Similarly, MPl _Recv blocks until the receive buffer

actually contains the contents of the message.

14.1.1.1 MPI_lIsend and MPI_lIrecv

Although more complicated to use, non-blocking versions of MPl _Send and MPI _Recv are
included in MPI. These are MPl _I send and MPl _I recv. (The "I" denotes an immediate return.)
With the non-blocking versions, the communication operation is begun or, in the parlance, a
message is posted. At some later point, the program must explicitly complete the operation.
Several functions are provided to complete the operation, the simplest being MPl _Wai t and

MPI _Test .

MPI _| send takes the same arguments as MPl _Send with one exception. MPl _| send has had
one additional parameter at the end of its parameter list. This is a request handle, an opaque
object that is used in future references to this message exchange. That is, the handle
identifies the pending operation. (Handles are of type MPl _Request .) In MPl _I recv the status
parameter, which is now found in MPl _\W4i t , has been replaced by a request handle.
Otherwise, the parameters to MPl _Irecv are the same as MPl _Recv.

14.1.1.2 MPI_Wait

MPlI Wit takes two arguments. The first is the request handle just described; the second is a
status variable, which contains the same information and is used in exactly the same way as
inMPI _Recv.MPI _Wai t blocks until the operation identified by the request handle completes.
When it returns, the request handle is set to a special constant, MPl _REQUEST _NULL, indicating
that there is no longer a pending operation associated with the request handle.

Code for MPl _Irecv and MPl _Wai t might look something like this fragment:

int datuml, datun®;
MPI _Status st at us;

MPl _Request handl e;

if (processid = = 0)

{
MPI _Send(&datuml, 1, MPI_INT, 1, 1, MPI_COMW WORLD, &handle);
}
el se
{
MPl _Irecv(&datun®2, 1, MPI_INT, 0, 1, MPI_COW WRLD, &handle);
MPl Wi t (&andl e, &status);
}

In this example, the contents of dat uml are received in dat un2. As shown here, it is OK to mix
blocking and non-blocking commands. For example, you can use MPl _Send to send a message
that will be received by MPI _I recv as shown in the example.

14.1.1.3 MPI_Test

MPI _Test is a non-blocking alternative to MPl _Wai t . It takes three arguments: the request
handle, a flag, and a status variable. If the exchange is complete, the value returned in the
flag variable is t rue, the request handle is set to MPl _REQUEST_NULL, and the status variable
will contain information about the exchange. If the flag is still set to f al se, then the exchange
hasn't completed, the request variable is unchanged, and the status variable is undefined.

14.1.1.4 MPI_lIprobe

If you want to check up on messages without actually receiving them, use MPl _I pr obe. (There
is also a blocking variant called MPI _Probe.)MPl _| probe can be called multiple times without
actually receiving the message. Once you know the exchange has finished, you can use

MPI _Test or MPl _Wai t to actually receive the message. MPl _I| pr obe takes five arguments: the
rank of the source, the message tag, the communicator, a flag, and a status object. If the flag
ist rue, the message has been received and the status object can be examined. If f al se, the
status is undefined.

14.1.1.5 MPI_Cancel

If you have a pending, non-blocking communication operation, it can be aborted with the
MPI _Cancel command. MPl _Cancel takes a request handle as its only argument. You might
useMPl _Cancel in conjunction with MPI _I pr obe. If you don't like the status information
returned by MPl _I| pr obe, you can use MPI _Cancel to abort the exchange.

14.1.1.6 MPI_Sendrecv and MPI_Sendrecv_replace

If you need to exchange information between a pair of processes, you can use MPl _Sendr ecv
orMPl _Sendr ecv_repl ace. With the former, both the send and receive buffers must be
distinct. With the latter, the received message overwrites the sent message. These are both
blocking commands.

While these examples should give you an idea of some of the functions available, there are
other point-to-point functions not described here. For example, there is a set of commands to
create and manipulate persistent connections similar to communication ports

(MPl _Send_init,MPl _Start, etc.). You can specify dummy sources and destinations for
messages (MPl _PROC_NULL). There are variants on MPl _Wait and MPl _Test for processing lists
of pending communication operations (MPl _Test any,MPl _Test al | ,MPl _Test sone,

MPl Wi t any, etc.) Additional communication modes are also supported: synchronous-mode
communication and ready-mode communication.

4 FREV < Day Day Up > MEXT mp

< Day Day Up >

14.2 More on Collective Communication

Unlike point-to-point communication, collective communication involves every process in a
communication group. In Chapter 13, you saw two examples of collective communication
functions,MPl _Bcast and MPI _Reduce (along with MPI _Al | r educe). There are two advantages
to collective communication functions. First, they allow you to express a complex operation
using simpler semantics. Second, the implementation may be able to optimize the operations
in ways not available with simple point-to-point operations.

Collective operations fall into three categories: a barrier synchronization function, global
communication or data movement functions (e.g., MPl _Bcast), and global reduction or
collective computation functions (e.g., MPl _Reduce). There is only one barrier synchronization
function,MPl _Barri er. It serves to synchronize the processes. No data is exchanged. This
function is described in Chapter 17. All of the other collective functions are nonsynchronous.
That is, a collective function can return as soon as its role in the communication process is
complete. Unlike point-to-point operations, nonsynchronous mode is the only mode supported
by collective functions.

While collective functions don't have to wait for the corresponding functions to execute on
other nodes, they may block while waiting for space in system buffers. Thus, collective
functions come only in blocking versions.

The requirements that all collective functions be blocking, nonsynchronous, and support only
one communication mode simplify the semantics of collective operations. There are other
features in the same vein: no tag argument is used, the amount of data sent must exactly
match the amount of data received, and every process must call the function with the same
arguments.

14.2.1 Gather and Scatter

AfterMPl _Bcast and MPI _Reduce, the two most useful collective operations are MPl _Gat her
andMPl _Scatter.

14.2.1.1 MPI_Gather

MPl _Gat her, as the name implies, gathers information from all the processes in a
communication group. It takes eight arguments. The first three arguments define the
information that is sent. These are the starting address of the send buffer, the number of
items in the buffer, and the data type for the items. The next three arguments, which define
the received information, are address of the receive buffer, the number of items for a single
receive, and the data type. The seventh argument is the rank of the receiving or root process.
And the last argument is the communicator. Keep in mind that each process, including the
root process, sends the contents of its send buffer to the receiver. The root process receives
the messages, which are stored in rank order in the receive buffer. While this may seem
similar to MPl _Reduce, notice that the data is simply received. It is not combined or reduced
in any way.

Figure 14-1 shows the flow of data with a gather operation. The root or receiver can be any of
the processes. Each process sends a different piece of the data, shown in the figure as the
differentx’s.

Figure 14-1. Gathering data

Root

X, X X X X,
A4 A A

Here is an example using MPl _Gat her.

#incl ude "npi.h"

#incl ude <stdio. h>

int main(int argc, char * argv[])

bl] =[%, %, %, %]\n", b[O], b[1], b[2],

{
i nt processld;
int a[4 = {0, 0, 0, 0};
int b[4 = {0, 0, 0, 0};
MPI _Init(&argc, &argv);
MPI _Comm r ank(MPI _COVM WORLD, &processld);
if (processld = = 0) a[0]
if (processld = = 1) a1]
if (processld = = 2) af2]
if (processld = = 3) a[3]
if (processld = = 0)
fprintf(stderr, "Before:
b[3]);

MPl _Gat her (&a[processl d],

1,

MPI_INT, b, 1, MPI_INT, 0, MPI_CQOVW WORLD);

if (processld = = 0)
fprintf(stderr, "After: bl] =[%, %, %, %]\n", b[O], b[1], b[2],

b[3]):

MPI _Finalize();

return O;

While this is a somewhat contrived example, you can clearly see how MPl _Gat her works. Pay
particular attention to the arguments in this example. Note that both the address of the item
sent and the address of the receive buffer (in this case just an array name) are used. Here is
the output:

[sl oanjd@mny Cl2]$ npirun -np 4 gath

Before: b[] [0, O, O, O]

After: b[]

[1, 2, 3, 5]

MPI _Gat her has a couple of useful variants. MPl _Gat herv has an additional argument, an
integer array giving displacements. MPl _Gat herv is used when the amount of data varies from
process to process. MPl _Al | gather functions just like MPl _Gat her except that all processes
receive copies of the data. There is also an MPI _Al | gat her v.

14.2.1.2 MPI_Scatter

MPl _Scatt er is the dual or inverse of MPl _Gat her. If you compare Figure 14-2 to Figure 14-1,
the only difference is the direction of the arrows. The arguments to MPl _Scat t er are the same
asMPl _Gat her. You can think of MPl _Scatt er as splitting the send buffer and sending a piece
to each receiver, i.e., each receiver receives a unique piece of data. MPl _Scatter also has a
vector variant MPl _Scatterv.

Figure 14-2. Scattering data

Foot X

Here is another contrived example, this time with MPl _Scat t er :

#incl ude "npi.h"

#incl ude <stdio. h>

int main(int argc, char * argv[])

{
int processld, b;
int a[4 = {0, 0, 0, 0};
MPI _Init(&argc, &argv);
MPI _Comm r ank(MPI _COVM WORLD, &processld);
if (processld = =0) { a[0] =1; a[1l] = 2; a[2] = 3; a[3] =5; }
MPl _Scatter(a, 1, MPl _INT, &, 1, Ml _INT, 0, MPI_COVM WORLD);
fprintf(stderr, "Process %l: b = % \n", processlid, b);
MPI _Finalize();
return O;
}

Notice that we are sending an array but receiving its individual elements in this example. In
summary,MPl _Gat her sends an element and receives an array while MPl _Scat t er sends an

array and receives an element.

As with point-to-point communication, there are additional collective operations (for example,

MPI _Alltoall ,MPl _Reduce_scatter, and MPl _Scan). Itis even possible to define your own
reduction operator (using MPl _Op_cr eat e) for use with MPl _Reduce, etc. Because the amount
and nature of the data that you need to share varies with the nature of the problem, it is
worth becoming familiar with MPI's collective functions. You may need them sooner than you
think.

< Day Day Up >

14.3 Managing Communicators

Collective communication simplifies the communication process but has the limitation that you
must communicate with every process in the communicator or communication group. There
are times when you may want to communicate with only a subset of available processes. For
example, you may want to divide your processes so that different groups of processes work
on different tasks. Fortunately, the designers of MPI foresaw that possibility and included
functions that allow you to define and manipulate new communicators. By creating new
communicators that are subsets of your original communicator, you'll still be able to use
collective communication. This ability to create and manipulate communicators has been
described as MPI's key distinguishing feature, i.e., what distinguishes MPI from other message
passing systems.

Communicators are composed of two parts: a group of processes and a context. New
communicators can be built by manipulating an existing communicator or by taking the group
from an existing communicator and, after modifying that group, building a new communicator
based on that group. The default communicator MPl _COVWM WDRLD is usually the starting point,
but once you have other communicators, you can use them as well.[11

[11 Although it sounds like there is only one default communicator, there are actually two. The other

default communicator is MPl _CCOVM_SELF. Since this is defined for each process and contains only that
process, it isn't all that useful when defining new communicators.

14.3.1 Communicator Commands

MPI provides a number of functions for manipulating groups. The simplest way to create a
new group is to select processes from an existing group, either by explicitly including or
excluding processes. In the following example, process O is excluded from the group
associated with MPl _CQVM _WDORLD to create a new group. You might want to do this if you are
organizing your program using one process as a master, typically process 0, and all remaining
processes as workers. This is often called a master/slave algorithm. At times, the slave
processes may need to communicate with each other without including process 0. By creating
a new communicator (newComm in the following example), you can then carry out the
communication using collective functions.

#incl ude "npi.h"

#i ncl ude <stdio. h>

int main(int argc, char * argv[])
{

int processld, i, flag = 0;

int processes[1l] = {0};

MPI _Group worl dGoup, news oup;

MPlI _Comm newConm

MPI _Init(&argc, &argv);

MPI _Comm r ank(MPI _COMM WORLD, &processld);

MPI _Conmm group(MPI _COMWM WCRLD, &wor | dGroup);
MPI _Group_excl (worl dGroup, 1, processes, &newG oup);

MPI _Conmm create(MPl _COVM WDRLD, newGroup, &newConm) ;

fprintf(stderr, "Before: process: % Flag: %\n", processld, flag);
if (processld = =1) flag = 1,
if (processid !'= 0)

MPI _Bcast (&l ag, 1, MPI_INT, 0, newConm ;

fprintf(stderr, "After process: % Flag: %\ n", processld, flag);

if (processld !=0)
{ MPI _Comm fr ee(&ewConm) ;
MPI _Group_free(&newG oup) ;

}
MPI _Finalize();

return O;

Relevant portions of this program appear in boldface.

The first things to notice about the program are the new type declarations using MPl _Group
andMPl _CommMPl _Group allows us to define handles for manipulating process groups. In this
example, we need two group handles, one for the existing group from MPl _COVW WORLD and
one for the new group, we are defining. The MPl _Commtype is used to define a variable for the
new communicator being created.

14.3.1.1 MPI_Comm_group

Next, we need to extract the group from MPI _CQOVM WORLD, our starting point for the new
group. We use the function MPl _Comm gr oup to do this. It takes two arguments: the first is the

communicator; the second argument is a handle used to return the group for the specified
communicator, in this case, MPl _COVM _WORLD's group.

14.3.1.2 MPI_Group_incl and MPI_Group_excl

Once we have an existing group, we can use it to create a new group. In this example, we
exclude process from the original group using the MPl _Group_excl command. Exclusion is the

easiest way to handle this particular case since only one process needs to be specified.

MPl _Group_i ncl should be used when it is simpler to list processes to include rather than
exclude. The four arguments to MPl _Group_i ncl and MPI _Group_excl are the same: the first
argument is the original group you are using as a starting point; the second argument is the
number of processes that will be included or excluded; the third argument is an integer array
giving the ranks of the processes to be included or excluded; and the last parameter is the
address of the group's handle.

In this example, since process O is excluded, we have used the array process to list the single
process rank that we want excluded. We could have accomplished the same thing with the
array

int processes[3] = {1, 2, 3};

and the call

MPl _Group_incl (worl d&oup, 3, processes, &newd& oup);

Either way works fine.

14.3.1.3 MPI_Comm_create

Finally, we need to turn the new group into a communicator. This is done with the
MPI _Conm cr eate command, which takes three arguments: the original communicator, the

new group, and the address for the new communicator's handle. Once this call is made, we
have our communicator.

In the code sample given above, the next block of code shows how the new communicator
could be used. In the example, there is a variable f | ag initially set to O. It is changed in

process 1 to 1 and then broadcast to the remaining processes within the new communicator.
Here is what the output for four processes looks like.

[sl oanjd@my COMM $ npirun -np 4 comm
Process: 0 Flag: O
Process: O Flag: O
Process: 1 Flag: O
Process: 2 Flag: 0
Process: 3 Flag: 0
Process: 1 Flag: 1
Process: 2 Flag: 1

Process: 3 Flag: 1

Note that the value changes for every process except process 0.

There are a couple of things worth noting about how the new communicator is used. First,
notice that only the relevant processes are calling MPl _Bcast . Process 0 has been excluded.

Had this not been done, the call in process 0 would have returned a null communicator error
since it is not part of the communicator. The other thing to note is that the process with rank
1 in VPl _COVM WDRLD has a rank of O in the new communicator. Thus, the fourth argument to
MPl _Bcast is O, not 1.

14.3.1.4 MPI_Comm_free and MPI_Group_free

It is good housekeeping to release any communicators or groups you are no longer using. For
these two functions, the handles will be set to MPl _COVM_NULL and MPI _GROUP_NULL,

respectively. While releasing these isn't absolutely necessary, it can be helpful at times. For
example, doing so may alert you to the inadvertent use of what should be defunct groups or
communicators. Each of these two functions takes the address of the communicator or of the
group as an argument, respectively. It doesn't matter which function you call first.

Since process 0O is not part of the new communicator in the last example, we need to guard
againt using the new communicator within process 0. This isn't too difficult when a single

process is involved but can be a bit of a problem when more processes are involved. So in
some instances, splitting communicators is a better approach. Here is a simple example.

#incl ude "npi.h"

#incl ude <stdio. h>

int main(int argc, char * argv[])
{
int processld, i, flag = 0, color = 0;

MPI _Conmm newComn

MPI _Init(&argc, &argv);

MPI _Comm r ank(MPI _COMM WORLD, &processld);

if (processld = =0 || processld = = 1) color = 1;

MPl _Comm split(MPI _COVM WORLD, col or, processld, &newComm ;

fprintf(stderr, "Process: % Flag: %\ n", processld, flag);
if (processld = =0) flag = 1;
MPI _Bcast (& 1 ag, 1, MPI_I NI, 0, newConm;

fprintf(stderr, "Process: %l Flag: %\ n", processld, flag);

MPI _Comm f ree(&newCom) ;

MPI _Finalize();

return O;

Notice that, in this example, the communicator is manipulated directly without resorting to
dealing with groups.

14.3.1.5 MPI_Comm_split

The function MPl _Comm spl it is at the heart of this example. It is used to break a
communicator into any number of pieces. The first argument is the original communicator.
The second argument, often referred to as the color, is used to determine which
communicator a process will belong to. All processes that make the call to MPl _Conm spl it
with the same color will be in the same communicator. Processes with different values (or
colors) will be in different communicators. In this example, processes 0 and 1 have a color of
1 so they are in one communicator while processes 2 and above have a color of O and are in a
separate communicator. (If the color is MPl _UNDEFI NED, the process is excluded from any of
the new communicators.) The third argument, often called the key, is used to determine the
rank ordering for processes within a communicator. When keys are the same, the original
rank is used to break the tie. The last argument is the address of the new communicator.

Table 14-1gives a slightly more complicated example of how this might work. Using the data
in this table, three new communicators are created. The first communicator consists of
processes A, C, and D with ranks in the new communicator of 1, 0, and 2, respectively. The
second communicator consists of processes B and E with ranks O and 1, respectively. The last
communicator consists of the single process F with a rank of 0. Process G is not included in
any of the new communicators.

Table 14-1. Communicator assignments

Process A B Cc D E F G
Original rank 0O 1 2 3 4 5 6
Color 1 2 1 1 2 3 MPI_UNDEFINED
Key 3 3 2 3 3 a 0

Returning to the code given above, with four processes, two communicators will be created.
Both will be called newComm The first will have the original processes O and 1 with the same
ranks in the new communicator. The second will have the original processes 2 and 3 with new
ranks O and 1, respectively. Notice that a communicator is defined for every process, all with
the same name.

These two examples should give you an idea of why communicators are useful and how they
are used. Group management functions include functions to access groups (e.g.,

MPl _Group_si ze,MPl _Group_r ank, and VPl _Group_conpar e€) and functions to construct
groups (e.g., VPl _Group_di fference,MPl _Group_uni on,MPl _Group_i ncl, and

MPl _Group_range_incl). There are also a number of different communicator management
functions (e.g., MPI _Comm si ze,MPl _Comm dup,MPl _Comm conpar e, and MPl _Conm cr eat e).

\ .. PREY < Day Day Up > ME=ST "

< Day Day Up >

14 .4 Packaging Data

Since communication is expensive, the fewer messages sent, the better your program
performance will be. With this in mind, MPI provides several ways of packaging data. This
allows you to maximize the amount of information exchanged in each message. There are
three basic strategies.

Although we glossed over it, you've already seen one technique. You'll recall that the
messaged package in MPl _Send consists of a buffer address, a count, and a data type. Clearly,
this mechanism can be used to send multiple pieces of information as a single message,
provided they are of the same type. For example, in our first interactive version of the
numerical integration program, three calls to MPl _Send were used to distribute the values of
nunmber Rect s, ower Li m t,upperLi mt to all the processes.

MPI _Send(&unber Rects, 1, MPI_I NI, dest, 0, MPI_COW WCRLD);
MPl _Send(& owerLimt, 1, MPI_DOWBLE, dest, 1, MPI_COVM WORLD);
MPl _Send(&ipperLimt, 1, MPI_DOUBLE, dest, 2, MPlI_COVM WORLD);

We could have eliminated one of these calls by putting | ower Li m t and upperLi m t in an
array and sending it in a single call.

par ans[O] | owerLimt;

parans[1] = upperLinit;

MPI _Send(parans, 2, MPI_DOUBLE, dest, 1, MPI _COVM WORLD);

If you do this, don't forget to declare the array par ans and to make corresponding changes to
call to VPl _Recv to retrieve the data from the array.

For this to work, items must be in contiguous locations in memory. While this is true for
arrays, there are no guarantees for variables in general. Hence, using an array was necessary.
This is certainly a legitimate way to write code and, when sending blocks of data, is very
reasonable and efficient. In this case we've removed only one call so its value is somewhat
dubious. Furthermore, we weren't able to include number Rects since it is an integer rather
than a double.

It might seem that a structure would be a logical way around this last problem since the
elements in a structure are guaranteed to be in contiguous memory. Before a structure can be
used in an MPI function, however, it is necessary to define a new MPI type. Fortunately, MPI
provides a mechanism to do just that.

14.4.1 User-Defined Types

A user-defined data type can be used in place of the predefined data types included with MPI.
Such a type can be used as the data type in any MPI communication function. MPI type-
constructor functions are used to describe the memory layout for these new types in terms of
primitive types. User-defined or -derived data types are opaque objects that specify the
sequence of the primitive data types used and a sequence of displacements or offsets.

Here is the numerical integration problem adapted to use a user-defined data type.

#incl ude "npi.h"

#incl ude <stdio. h>

/* probl emparaneters */

#define f(x) ((x) * (x))

int min(int argc, char * argv[])

{

/* MPlI variables */

i nt noProcesses, processld;
i nt bl ockl engths[3] = {1, 1, 1};
MPI _Ai nt displ acenments[3] = {0, sizeof (double), 2*sizeof(double)};

MPI _Dat at ype rectStruct; /* the new type */

MPl _Datatype types[3] = {MPI _DOUBLE, MPI DOUBLE, MPI | NT};

/* problemvari ables */
i nt i

doubl e area, at, height, lower, wdth, total, range;

struct ParanStruct

{ double lowerLinmt;
double upperLimt;
i nt number Rect s;

} parans;

/[* MPl setup */
MPI I nit(&argc, &argv);
MPlI _Comm size(MPI _COVMM WORLD, &noProcesses);

MPI _Comm r ank(MPI _COVM WORLD, &processld);

/* define type */
MPlI _Type_struct (3, bl ockl engths, displacenents, types, & ectStruct);

MPI _Type_conmit (&rect Struct);

if (processlid = = 0) [* if rank is O, collect paranmeters */
{

fprintf(stderr, "Enter nunber of steps:\n");

scanf ("%l", ¶mns. nunberRects);

fprintf(stderr, "Enter |ow end of interval:\n");

scanf ("% f", ¶ns.|lowerLint);

fprintf(stderr, "Enter high end of interval:\n");

scanf ("% f", ¶ns.upperLimt);

}

MPI _Bcast (&arans, 1, rectStruct, 0, MPI_COW WCRLD);

/* adjust problemsize for subproblent/

range = (parans.upperLimt - paranms.lowerLimt) / noProcesses;

wi dt h

range / parans. nunberRects;

| ower parans. |l owerLinmt + range * processld;

/* cal cul ate area for subprobl em*/

area = 0.0;
for (i = 0; i < parans. nunberRects; i++)
{ at =lower + i * width + width / 2.0;

hei ght = f(at);

area = area + width * height;

MPI _Reduce(&area, &total, 1, MPI_DOUBLE, MPI_SUM 0, MPI_CQOW WORLD ;

/* collect information and print results */
if (processld = = 0) [* if rank is O, collect results */
{ fprintf(stderr, "The area from% to % is: %\n",

paranms.| owerLi mt, parans.upperlLimt, total);

/[* finish */
MPI _Finalize();

return 0O;

To simplify the new MPI type definition, a structure type Par antt r uct was defined. par ans is
an instance of that structure. To access the individual elements of the structure, constructs
such as par ans. nunber Rects must be used. These constructs have not been highlighted. All
other changes related to user-defined types appear in boldface in the code.

14.4.1.1 MPI_Type_struct

MPI _Type_struct was used to define the new type. This function takes five arguments. The
first four are input parameters while the last is the output parameter. The first is an integer
that gives the number of blocks of elements in the type. In our example, we have three blocks
of data. Our blocks are two doubles and an integer, but a block could be an aggregate data
type such as an array. The next argument is an array giving the lengths of each block. In this
example, because we've used scalars instead of arrays for our three blocks, the argument is
just an array of 1's, one for each block. The third argument is an array of displacements. A
displacement is determined by the size of the previous blocks, and the first displacement is
always zero. Note the use of the type MPI _Ai nt. This bit of MPI magic is an integer type
defined to be large enough to hold any address on the target architecture.I2l The fourth
argument is an array of primitive data types. Basically, you can think of an MPI data type as a
set of pairs, each pair defining the basic MPI type and its displacement in bytes.

[21 MPI also supplies a function MPl _Addr ess that can be used to calculate an offset. It takes a variable
and returns its byte address in memory.

14.4.1.2 MPI_Type_commit

Before a derived type can be used, it must be committed. You can think of this as "compiling”
the new data type. The only argument to MPl _Type_comni t is the type being defined.

As you can see from the example, the new type is used just like any existing type once
defined. Keep in mind that this is a very simplistic example. Much more complicated
structures can be built. MPI provides a rich feature set for user-defined data types.

14.4.2 Packing Data

Another alternative to packaging data is to use the MPI functions MPl _Pack and MPI _Unpack.
MPI _Pack allows you to store noncontiguous data in contiguous memory while MPl _Unpack is
used to retrieve that data.

14.4.2.1 MPI_Pack

MPl _Pack takes seven arguments. The first three define the message to be packed: the input
buffer, the number of input components, and the data type of each component. The next two
parameters define the buffer where the information is packed: the output buffer and the
buffer size. The next to the last argument gives the current position in the buffer in bytes,
while the last parameter is the communicator for the message.

Here is an example of how data is packed.

position = O;

MPI _Pack(&unber Rects, 1, MPI_I NI, buffer, 50, &position, MPI_COVM WORLD) ;
MPl _Pack(& owerLimt, 1, MPI_DOWBLE, buffer, 50, &position, MPI_CQOVM WORLD);

MPI _Pack(&pperLimt, 1, MPI _DOUBLE, buffer, 50, &position, MPI _CQVM VORLD) ;

In this instance, buf f er has been defined as an array of 50 char s and positionisanint.
Notice that the value of posi tion is automatically incremented as it is used.

14.4.2.2 MPI_Unpack

The first argument is the input buffer, a contiguous storage area containing the number of
bytes specified in the second argument. The third argument is the position where unpacking
should begin. The fourth and fifth arguments give the output buffer and the number of
components to unpack. The next to last argument is the output data type while the last
argument is the communicator for the message. You need not unpack the entire message.

Here is an example of unpacking the data just packed.

if (processld !=0)

{ position = 0;

MPl _Unpack(buffer, 50, &position, &nunberRects, 1, MPl _INT,
MPl _COMM WCRLD) ;

MPI _Unpack(buffer, 50, &position, & owerLimt, 1, MPI_DQOUBLE,
MPI _COMM WCRLD) ;

MPI _Unpack(buffer, 50, &position, &upperLimt, 1, MPI_DOUBLE,

MPI _COVM WCRLD) ;

This is the call to MPl _Bcast used to send the data.

MPI _Bcast (buffer, 50, MPI_PACKED, 0, MPI _CQOVM WORLD) ;

As you can see, it's pretty straightforward. The most likely mistake is getting parameters in
the wrong order or using the wrong type.

In general, if you have an array of data, the first approach (using a count) is the easiest. If
you have lots of different data scattered around your program, packing and unpacking is likely
to be the best choice. If the data are stored at regular intervals and of the same type, e.g.,
the column of a matrix, a derived type is usually a good choice.

This chapter has only scratched the surface. There is a lot more to know about MPI. For more
information, consult any of the books described in the Appendix A.

\ ‘ PREY < Day Day Up > MHE=T ‘

< Day Day Up >

Chapter 15. Designing Parallel Programs

There are no silver bullets for parallel program design. While many parallel programs may
appear to match one of several standard parallel program designs, every significant program
will have its own quirks that make it unique. Nevertheless, parallel program design is the
essential first step in writing parallel programs. This chapter will introduce you to some of the
basics. This should provide help in getting started. Just remember there is a lot more to learn.

We are going to look at a couple of different ways of classifying or approaching problems in
this chapter. While there is considerable overlap, these various schemes will provide you with
different perspectives in the hope that they at least will suggest a solution or approach that
may fit your individual needs.

4 FREV < Day Day Up > MEXT mp

< Day Day Up >

15.1 Overview

Algorithm design is a crucial part of the development process for parallel programs. In many
cases, the best serial algorithm can be easily parallelized, while in other cases a fundamentally
different algorithm will be needed. In this chapter, we'll focus on parallelizing a serial
algorithm. Keep in mind that this may not provide the best solution to your problem. There
are a number of very detailed books on parallel algorithm design, parallel programming in
general, and on MPI programming in particular. Most have extensive examples. Whenever
possible, you should look for an existing, optimized solution rather than trying to develop your
own. This is particularly true when faced with a problem that requires an algorithm that is
fundamentally different from the serial algorithm you might use. Don't reinvent the wheel.

The optimal algorithm will depend on the underlying architecture that is used. For parallel
programming, most algorithms will be optimized for either a shared memory architecture—a
scheme where global memory is shared among all processes—or a message passing
architecture. If you are looking at existing algorithms, be sure to take this into account.

Since this is a book about clusters, we will be looking at parallel program design from the
perspective of message passing. This isn't always the best approach for every problem, but it
is the most common for use with a cluster.

Parallel algorithms are more complicated than serial algorithms. While a serial algorithm is
just a sequence of steps, a parallel algorithm must also specify which steps can be executed
in parallel and provide adequate control mechanisms to describe the concurrency.

The process of parallel algorithm design can be broken into several steps. First, we must
identify the portions of the code that can, at least potentially, be executed safely in parallel.
Next, we must devise a plan for mapping those parallel portions into individual processes (or
onto individual processors). After that, we need to address the distribution of data as well as
the collection and consolidation of results. This step also includes addressing any
synchronization issues that might arise, which must be done so that we can, finally,
synchronize the execution of the processes.

< Day Day Up >

< Day Day Up >

15.2 Problem Decomposition

When decomposing a program, we will talk in terms of tasks. The meaning of this word may
vary slightly depending upon context. Typically, a task is a portion of a program that can be
executed as a unit. It may be used to mean that part of a program that can become an
independent process, or it may be used to mean a piece of the work that that process will
execute. It should be clear from context which meaning is intended.

Let's begin by looking at some of the issues involved in decomposing a problem into
parallelizable parts. The first issue we must face is task granularity. Depending on the
problem, a task may be broken into very small pieces (fine granularity), into relatively large
pieces (coarse granularity), or into a mixture of pieces of varying sizes.

Granularity, in one sense, establishes a limit on how many compute nodes or processors you
may be able to use effectively. For example, if you are multiplying two 10 by 10 matrices,
then you will need to do 100 multiplications. Since you won't be able to subdivide a
multiplication, you won't be able to divide this problem into more than 100 pieces.
Consequently, having more than 100 processors won't allow you to do the multiplications any
faster. In practice, the number of processors you can effectively use will be lower. It is
essential to realize that there are a number of trade-offs that must be balanced when dividing
a problem. In particular, coarse granularity tends to limit communication overhead but may
result in increased idle time and poor processor utilization. We will discuss each of these
concerns in detail in this chapter.

We can also speak of the degree of concurrency, i.e., the number of tasks that can execute at
the same time. Realize that this will vary during programming execution depending on the
point you are at in the program. Thus, it is often more meaningful to talk about the maximum
or the average degree of concurrency of a program. Generally, both the maximum and
average concurrency are larger with fine-grained than coarse-grained problems.

Adata (or task)dependency graph (or diagram) is one way of visually representing a
program. This can be helpful when investigating and describing potential concurrency. The
idea is to break the algorithm into pieces of code or tasks based on the data required by that
task. A graph is then drawn for the algorithm that shows the set of tasks as nodes connected
by arrows indicating the flow of data between connected pairs of tasks.

Figure 15-1 is a data dependency graph for the numerical integration program developed in
Chapter 13. The amount of detail will vary in these graphs depending on your purpose. In this
case, I've kept things very simple. If you desire, you can increase the detail to the point of
having a single node for each instruction and arrows for each variable.[11

[1] Some authors distinguish between data and task dependency graphs and between dependencies and
interactions. Feel free to adjust your graphs as you see fit.

The idea is that graphs such as these help you think about and locate potential concurrencies
in your code. If you have two blocks of code or tasks that don't depend on each other and
have everything they need to execute, these are potentially parallelizable tasks. Data flow
graphs can be used for both data and task partitioning. Data flow graphs should also provide
you with some idea of the critical paths through code, i.e., those paths that will likely take the
longest amount of time to complete. You won't be able to shorten the runtime of a program to
less time than it takes to complete the critical path. In other words, if you want to shorten the
runtime of a program, you must shorten the critical path.

Figure 15-1. Data flow for numerical integration

Input initial
prarameters

 Mamberfects, dowerLimit, upperLimit
Calculate
parameters
T T raniipe, widhly
Y Y Y
Laloulate Calculare Lalculate

thunk chunk thunk
| |
yyy o

Corsolidate
results

Y

Display
results

There are some limitations to this approach. You'll need to give loops some thought when
drawing these graphs, since the body of a loop is a potentially parallelizable piece of code. The
essential step in parallelizing the numerical integration problem in Chapter 13 was packaging
as individual tasks, with pieces of the loop used to calculate the area using the individual
rectangles. You should also realize that the graph provides no information about the relative
execution time for each task. Finally, and perhaps most important, the graph doesn't clearly
indicate how idle time might show up. Depending on how we code the task Consolidate
Results in Figure 15-1, most of the Calculate Chunk blocks may be idle waiting for an
opportunity to report their results. (Moreover, depending on how they are coded, the
individualCalculate Chunk tasks may not all be of the same length.)

15.2.1 Decomposition Strategies

There are several different decomposition strategies worth considering. Roughly speaking,
decomposition strategies fall into two different categories—data decomposition, sometimes
calleddata partitioning, and control decomposition or task partitioning. With data
decomposition, the data is broken into individual chunks and distributed among processes
that are essentially similar. With control decomposition, the problem is divided in such a way
that each process is doing a different calculation. In practice, many algorithms show
characteristics of both strategies.

15.2.1.1 Data decomposition

Data decomposition is generally much easier to program than control decomposition and is
usually the best approach when trying to adapt serial algorithms for parallel use. Data
decomposition also tends to scale very well, a crucial consideration when dealing with
problems that may grow.

The numerical integration program from the last chapter used data decomposition. Each
process had a different set of bounds, so the area that each calculated was different, but the
procedure was the same.

One of the most common approaches to data decomposition is a divide-and-conquer strategy.
This works particularly well with recursive algorithms. If a problem can be treated as a set of
independent subproblems, it is an ideal candidate for data decomposition. Consider the
problem of finding the largest value in a large collection of data. The data could be divided
into different sets, the largest in each set could be found, and finally, this collection of largest
values could be examined. Finding the largest value in each of the smaller sets could be

handled by a different processor. Finding the final answer is an ideal use of MPl _Reduce. This
is a pretty trivial example of how divide and conquer works.

For a more involved example, consider the merge sort algorithm.[2]l The serial algorithm takes
a set of data, divides it into smaller sets of data, sorts these smaller individual data sets, and
then merges the sorted sets back together. To sort a smaller set of data, merge sort uses the
same strategy recursively. Eventually, the smaller sets of data are reduced to sets of single
items that are obviously sorted. Merging sorted data is straightforward since you only have to
compare the first item in each group and select accordingly until you've worked your way
through the smaller sets.

[21 The sorting algorithm described here is just one possible approach, not necessarily the best. Sorting in
a parallel environment is particularly difficult and is an area of active, ongoing research.

In a parallel environment, you'll want to divide the data equally among the available
processors, but you probably won't want to continue dividing up the data beyond that point
because of the communications overhead. Once you have the data distributed, you'll need to
sort it locally on each individual processor. You could use the serial version of merge sort or
some other serial sorting algorithm.

Merging the data back together will be more problematic. Not only will you need code to
merge two data sets, but you'll need to develop a communications strategy to do this
efficiently. If you use a single process to collect and merge data, you will have a large amount
of idle time. A more appropriate strategy is to have pairs of processes merge their data, i.e.,
one sends its data and dies while the other receives the sent data and merges that data with
its own. Repeat this strategy with the remaining processes until only a single process remains.
It will have all the data sorted.

For example, if you have eight processes, processes 0 and 1, processes 2 and 3, processes 4
and 5, and processes 6 and 7 could all merge their data at the same time. Next, processes 0
and 2 and processes 4 and 6 could merge their data simultaneously. Finally, processes O and
4 could merge their data. This strategy, shown in Figure 15-2, has three sets of parallel
merges or stages. This is much more efficient than having process O merge its data
repeatedly with each of the other seven processes sequentially, a seven-stage procedure.

Figure 15-2. Merging data

NSNS NSNS

Stage &

\.ﬂ/\ /\/

With this strategy, for instance, 1,024 processes could merge their data in 10 stages. It would
take 1,023 stages with a single receiving process, roughly 100 times as long.

15.2.1.2 Control decomposition

With control decomposition, each processor has different tasks. One common model for
control decomposition is pipelining or stream parallelism. With pipelining, each task, except
the first and last, plays the role of both producer and consumer. A task receives or consumes
data, processes that data, and then sends the results on to the next consumer. For example,

consider a set of processes desighed to manipulate a video stream. The first process might
crop a frame, the second might adjust brightness within the frame, the third might adjust
color levels, etc. Each process does something different and will require radically different
code.

Note that the second process must wait for the first process to finish before it can begin since
the second process consumes and processes the data produced by the first. Similarly, the
third process can't begin until the second sends its data, and so on. Getting enough data into
the system so that all processes are active is referred to as priming the pipeline. Figure 15-3
shows how processes overlap.

Figure 15-3. Ideal process overlap

| Task 1
Task 2
Task 3

| Task 4

You must have a lot more data than processes for this approach to be efficient. Otherwise, the
idle time at both the beginning and at the end will render this approach pointless. Granularity
is a key consideration here. If the granularity is coarse, priming the pipeline is particularly
costly.

A second issue with pipelining is balance. Each of the processes must run for about the same
amount of time. If one process takes much longer than the other processes, they will be idle
much of the time and overall efficiency will be lost. (This is a likely problem with video
processing, for example, as described.) Figure 15-4 shows the effect of having one process
take longer. Note the idle time.

Figure 15-4. Process overlap with idle time

| | | | Task 1
Task 2
Task 3

| Taskd

However, even though task 2 takes twice as long as the other tasks in this four-task example,
there is still a speedup using the pipeline.

A number of algorithms fall between these two extremes. That is, they appear to have
elements of both strategies. For example, a common approach in artificial intelligence is to
describe algorithms in terms of a search space. A fundamental part of a chess-playing
program is to examine a number of different moves to see which appears to be the best.
Since it evaluates each move in the same manner, it is reasonable to approach this as a data
decomposition problem. Each process will be given a different board configuration, i.e., a
different set of data. But once the data has been distributed, the different processes go their
different ways. One process may terminate quickly having determined the board position is
abysmal (a process known as pruning), while another may be following a hot move
recursively through several levels.

< Day Day Up >

< Day Day Up >

15.3 Mapping Tasks to Processors

Being able to decompose a problem is only the first step. You'll also need to be able to map
the individual tasks to different processors in your cluster. This is largely a matter of
developing appropriate control structures and communication strategies. Since the ultimate
goal is to reduce the time to completion, task mapping is largely a balancing act between two
conflicting subgoals—the need to maximize concurrency and the need to minimize the
overhead introduced with concurrency. This overhead arises primarily from interprocess
communications, from process idle time, and to a lesser extent, from redundant calculations.

Considerredundant calculations first. When we separate a program into multiple tasks, the
separation may not always go cleanly. Consequently, it may be necessary for each process to
do redundant calculations, calculations that could have been done once by a single process.
Usually, this doesn't add to the program's overall time to completion since the rest of the
processes would have been idle while a single process did the calculation. In fact, having the
individual processors each do the calculation may be more efficient since it eliminated the
communication overhead that would be required to distribute the results of the calculation.
However, this is not always the case, particularly with asymmetric processes. You should be
aware of this possibility.

15.3.1 Communication Overhead

Communication overhead is a more severe problem. Returning to the matrix multiplication
example, while we might obtain maximum concurrency by having a different processor for
each of the 100 multiplications, the overhead of distributing the matrix elements and
collecting the results would more than eliminate any savings garnered from distributing the
multiplications. On the other hand, if we want to minimize communication overhead, we could
package everything in one process. While this would eliminate any need for communication, it
would also eliminate all concurrency. With most problems, the best solution usually (but not
always) lies somewhere between maximizing concurrency and minimizing communication.

In practice, you'll need to take an iterative approach to find the right balance between these
two extremes. It may take several tries to work out the details. There are three useful factors.
The most important is task size. Keep in mind that tasks may be uniform, i.e., all the same
size, or nonuniform. Decomposing into uniform pieces will usually minimize idle time, but this
isn't always true. First, you will need to be able to distribute data efficiently so that some
processes aren't waiting. Second, if some of the compute nodes are faster than others or if
some are more heavily loaded, the benefit of uniformity can be lost and may even be a
disadvantage.

Some tasks are inherently nonuniform. Consider searching through an array of data for an
item. In one instance, you may be able to find the item very quickly. In another instance, it
may take much longer. If two processes are sorting data, depending on the algorithm, the
one that receives a nearly sorted set of data may have a tremendous advantage over similar
processes sorting a highly random set of data.

In addition to task size, there is the issue of task generation. For some problems, task
generation is clearly defined. Task generation is said to be static for these problems. For
example, if we want to sort a million numbers, we can clearly determine in advance how we
want to generate the tasks. But not all problems are static. Consider the problem of playing
chess. The boards you will want to consider will depend on a number of factors that vary from
game to game, so they aren't known in advance. Both the number and size of the task will
depend on how the pieces are positioned on the board. For such problems, task generation is
said to be dynamic.

A third consideration is the communication pattern that the problem will generate. Like tasks,
communications may be static (the pattern is known in advance) or dynamic. In general,
static communication is easier to program since dynamic communication tends to be
unpredictable and error prone.

When programming, there are several very straightforward ways to minimize the impact of
communications. First, try to reduce the volume of the data you send. Avoid sending
unnecessary data. Can one process duplicate a calculation more efficiently than a pair of
processes can exchange a value? Next, try to minimize the number of messages sent. If
possible, package data so that it can be sent in a single message rather than as a series of
messages. Look for hotspots in your communication pattern. When possible, overlap
communications with computation to minimize network congestion. Finally, when feasible, use
the collective operations in your message-passing library to optimize communication.

There are a number of other important questions that need to be answered to fully
characterize communication patterns. Do all the processes need to communicate with each
other or can communication be managed through a single process? Then there is the issue of
communication timing, i.e., is communication synchronized? Can all the data be distributed at
once, or will it be necessary to update the data as the program runs? Is communication
unidirectional or bidirectional? What is the source and destination for data, i.e., does it come
from another process, is it sent to another process, or is the filesystem used? There are no
right or wrong answers to these questions, but you do need to know the answers to
understand what's going on.

15.3.2 Load Balancing

As previously noted, idle time is a major source of overhead. The best way to minimize idle
time is to balance the computing requirements among the available processors. There are
several sources of idle time in parallel programs. One source is a mismatch between tasks and
processors. If you try to run five processes on four processors, two of the processes will be
competing for the same processor and will take twice as long as the other processes. Another
source of idle time is nonuniform tasks as shown in Figure 15-4. Differences in processor
speeds, memory, or workload on cluster nodes can also result in some processes taking
longer than expected to complete, leaving other processes idle as they wait to send data to or
receive data from those processes.

One way to minimize the overhead resulting from idle time is load balancing. Depending on
the context, load balancing can mean different things. In the larger context of operating
systems, load balancing may mean running different programs or processes on different
machines. In the current context of parallel programming, it refers to a technique of breaking
a program into tasks and distributing those tasks based on processor availability.

An example should help. Suppose you have 100 nodes in your cluster, some fast and some
slow. If you divide your problem into 100 tasks and send one task to each node, then you
won't finish until the slowest, most heavily loaded node finishes. If, however, you divide your
problem into 1,000 tasks and write your code so that when a processor finishes one task it
receives another, the faster and less loaded processors can take on a larger share of the work
while the slower processors will do less. If all goes well, you will finish quicker.

This is the basic idea behind a work pool. The work is distributed by maintaining a pool of
tasks that are sent to processors whenever a processor becomes idle. Typically, a master-
slave arrangement is used—one (sometimes more) processor acts as a master distributing
work and collecting results, while the remaining processes act as slaves that process a single
task, return the results to the master, and wait for their next task. Typically, slaves are idle
only toward the end of the program's execution when there are fewer uncompleted tasks than
slaves.

In order to use a work pool effectively, you need to reduce the granularity of your tasks so

that you have more tasks than slaves. The key issue, when reducing the granularity, is at
what point communication overhead begins to outweigh the benefits of reduced idle time. In
general, a work pool works best when the communication overhead is small compared to the
amount of computing needed. You should also be aware that the master process can become
a bottleneck if it must deal with too many tasks. This may happen if the task size is too small.

Here is the numerical integration problem rewritten using a master-slave, work pool
approach.

#incl ude "npi.h"

#incl ude <stdio. h>

/* probl em paraneters */

#define f(x) ((x) * (x))

int main(int argc, char * argv[])
{

/* MPlI variables */

i nt dest, noProcesses, processld;

MPl _St at us st at us;

/* problemvari ables */

i nt i, chunk, nunber Chunks, nunber Rects;
doubl e area, at, height, lower, width, total, range;
doubl e lowerLimt, upperLinit;

/[* MPl setup */
MPI I nit(&argc, &argv);
MPI _Conmm si ze(MPI _COVMM WORLD, &noProcesses);

MPI _Comm r ank(MPI _COVM WORLD, &processld);

if (processld = = 0) /* if rank is 0, collect parameters */

{

fprintf(stderr, "Enter number of chunk to divide probleminto:\n");

scanf ("%l", &nunber Chunks);

fprintf(stderr, "Enter nunber of steps per chunk:\n");
scanf ("%l", &nunmberRects);

fprintf(stderr, "Enter |ow end of interval:\n");

scanf ("% f", & owerLimt);

fprintf(stderr, "Enter high end of interval:\n");

scanf ("% f", &upperLimt);

MPl _Bcast (&nunber Chunks, 1, Ml _INT, 0, MPI_COMM WORLD);
MPI _Bcast (&wunber Rects, 1, MPI _INT, 0, MPl _COVM WORLD)
MPl _Bcast (& owerLimt, 1, MPI_DOUBLE, 0, MPI_COMM WCRLD);

MPI _Bcast (&upperLimit, 1, MPl_DOUBLE, 0, MPI_COMM WCRLD):

[* collect information and print results */
/[* if rank is 0, assign chunk, collect results, print results */
if (processlid = = 0)
{ total =0.0;
i f (noProcesses - 1 < number Chunks) chunk = noProcesses - 1;
el se chunk = 0;
for (i = 1; i <= nunmberChunks; i++)
{ Ml _Recv(&area, 1, MPI _DOUBLE, MPI ANY_SOURCE, MPI_ANY_TAG,
MPI _COMM WCRLD, &st at us);
fprintf(stderr, "Area for process %, is: %\n", status. MWl _TAG
area);
total = total + area;

if (chunk '= 0 && chunk < nunber Chunks) chunk++;

el se chunk 0;

MPl _Send(&chunk, 1, MPI_INT, status. Ml _TAG, chunk, MPl _COVM WORLD);

}

fprintf (stderr, "The area from% to % is: %\n",

[owerLimt, upperLinit, total);

}

el se

[* all other processes, calculate area for chunk and send results */

{
i f (processld > nunber Chunks) chunk = 0; /* too nany processes */
el se chunk = processld;
while (chunk !'= 0)
{ [/* adjust problemsize for subproblem*/
range = (upperLimt - lowerLimt) / nunberChunks;
wi dth = range / nunber Rect s;
lower = lowerLimt + range * (chunk - 1);
/* calculate area for this chunk */
area = 0.0;
for (i = 0; i < nunberRects; i++)
{ at =lower +i * width + width / 2.0;
hei ght = f(at);
area = area + width * hei ght;
}
/* send results and get next chunk */
dest = O;
MPI _Send(&area, 1, MPI_DOUBLE, dest, processld, MPI_COVM WORLD) ;
MPI _Recv(&chunk, 1, MPI_INT, 0, MPI_ANY_TAG Ml _COVM WORLD,
&t atus);
}
}

/* finish */

MPI _Finalize();

return O;

There are two major sets of changes to this code. First, the number of regions

(nunber Chunks) is now a parameter entered by the user. Previously, we divided the problem
into the same number of regions as processors, i.e., each processor had its own well-defined
region to evaluate. Now the total number of regions exceeds (or should exceed) the number
of processes. The total number of regions is broadcast to each process so that the process
can go ahead and begin calculating the area for its first region.

Process O is the master process and no longer calculates the area for a region. Rather, it
keeps track of what needs to be done, assigns work, and collects results. All remaining
processes are slaves and do the actual work. If one of these is heavily loaded, it may only
calculate the area of one region while other, less-loaded nodes may calculate the area of
several regions. Notice that a value of O for chunk signals a slave than no more regions need
to be calculated.

\ . PREY < Day Day Up > ME=ST ‘

< Day Day Up >

15.4 Other Considerations

The issues we have examined up to this point are fairly generic. There are other
programming-specific issues that may need to be addressed as well. In this section, we will
look very briefly at two of the more common of these—parallel 1/0 and random numbers.
These are both programming tasks that can cause particular problems with parallel programs.
You'll need to take care whenever your programs use either of these. In some instances,
dealing with these issues may drive program design.

15.4.1 Parallel 1/0O

Large, computationally expensive problems that require clusters often involve large data sets.
Since 1/0 is always much more costly than computing, dealing with large data sets can
severely diminish performance and must be addressed.

There are several things you can do to improve 1/0 performance even before you start
programming. First, you should buy adequate 1/0 hardware. If your cluster will be used for
1/0-intensive tasks, you need to pay particular attention when setting up your cluster to
ensure you are using fast disks and adequate memory. Next, use a fast filesystem. While NFS
may be an easy way to get started with clusters, it is very slow. Other parallel filesystems
optimized for parallel performance should be considered, such as PVFS, which is described in

Chapter 12.

When programming, if memory isn't a problem, it is generally better to make a few large
requests rather than a larger number of smaller requests. Design your programs so that 1/0 is
distributed across your processes. Because of historical limitations in parallel 1/0 systems, it is
typical for parallel programs to do 1/0 from a single process. Ideally, you should use an
interface, such as MPI-10, that spreads 1/0 across the cluster and has been optimized for
parallel 1/0.

The standard Unix or POSIX filesystem interface for 1/0 provides relatively poor performance
when used in a parallel context, since it does not support collective operations and does not
provide noncontiguous access to files. While the original MPI specification avoided the
complexities of 1/0, the MPI1-2 specification dealt with this issue. The MPI1-2 specification for
parallel 1/0 (Chapter 9 of the specification) is often known as the MPI-10O. This standard was
the joint work of the Scalable 1/0 Initiative and the MPI-10 Committee through the MPI
Forum.

ROMIO, from Argonne National Laboratory, is a freely available, portable, high-performance
implementation of the MPI-10 standard that runs on a number of different architectures. Itis
included with MPICH and LAM/MPI and provides interfaces for both C and FORTRAN.

MPI-10 provides three types of data access mechanisms—using an explicit offset, using
individual file pointers, or using shared file pointers. It also provides support for several
different data representations.

15.4.2 MPI-10 Functions

MPI-10 optimizations include collective 1/0, data sieving, and hints. With collective 1/0, larger
chunks of data are read with a single disk access. The data can then be distributed among the
processes as needed. Data sieving is a technique that combines a number of smaller
noncontiguous reads into one large read. The system selects and returns the sections

requested by the user and discards the rest. While this can improve disk performance, it can
put a considerable strain on memory. Hints provide a mechanism to inform the filesystems
about a program's data access patterns, e.g., desired caching policies or striping.

The following code fragment shows how MPI-10 functions might be used:

#def i ne BUFFERSI ZE 1000

i nt buffer[BUFFERSI ZF] ;

MPI _File filehandl e;

MPl _Fil e open(MPl _COW WORLD, "filenanme", MPI _MDDE_RDONLY, MPI | NFO NULL,
&f il ehandl e);

MPI _Fil e_seek(filehandl e, processl d*BUFFERSI ZE*si zeof (int), MPl _SEEK SET);

MPI _File_read(filehandl e, buffer, BUFFERSI ZE, MPI _INT, &status);

MPl _Fil e_cl ose(&fil ehandl e);

The last four function calls would be executed by each process and, like all MPI functions,
would be sandwiched between calls to MPl _I nit and MPl _Final i ze. In this example, each

process opens the file, moves to and reads a block of data from the file, and then closes it.

15.4.2.1 MPI_File_open

MPl _Fil e_open is used to open a file. The first argument is the communication group. Every
process in the group will open the file. The second argument is the file name. The third
argument defines the type of access required to the file. MPl _MDE_RDONLY is read-only
access. Nine different modes are supported including MPI _MDE_RDWR (reading and writing),
MPI _MODE_WRONLY (write only), MPl _MCDE_CREATE (create if it doesn't exist),

MPI _MODE_DELETE_CON_CLOSE (delete file when done), and MPl _MCDE_APPEND (set the file
pointer at the end of the file). C users can use the bit-vector OR (]) to combine these
constants. The next to last argument is used to pass hints to the filesystem. The constant
MPI I NFO_NULL is used when no hint is available. Using hints does not otherwise change the
semantics of the program. (See the MPI-2 documentation for the rather complex details of
using hints.) The last argument is the file handle (on type MPI _Fil e), an opaque object used
to reference the file once opened.

15.4.2.2 MPI_File_seek

This function is used to position the file pointer. It takes three arguments: the file handle, an
offset into the file, and an update mode. There are three update modes: MPl _SEEK_SET (set
pointer to offset), MPl _SEEK CUR (set pointer to current position plus offset), and

MPI _SEEK _END (set pointer to end of file plus offset). In this example we have set the pointer
to the offset. Notice that processl d is used to calculate a different offset into the file for each

process.

15.4.2.3 MPI_File read

MPI _Fil e_read allows you to read data from the file specified by the first argument, the file
handle. The second argument specifies the address of the buffer, while the third element
gives the number of elements in the buffer. The fourth element specifies the type of the data
read. The options are the same as with other MPI functions, such as MPl _Send. In this
example, we are reading BUFFERSI ZE integers into the array at buf f er. The last argument is a
structure describing the status of read operation. For example, the number of items actually
read can be determined from st at us with the MPl _Get _count function.

15.4.2.4 MPI_File_close

MPl _Fil e_cl ose closes the file referenced by the file handle.

The four new functions in this sample example, along with MPl _File_wite, are the core
functions provided by MPI-10. However, a large number of other MPI-10 functions are also
available. These are described in detail in the MPI1-2 documentation.

15.4.3 Random Numbers

Generating random (or pseudorandom) numbers presents a particular problem for parallel
programming.Pseudorandom number generators typically produce a stream of "random"
numbers where the next random number depends upon previously generated random
numbers in some highly nonobvious way.[3l While the numbers appear to be random, and are
for most purposes, they are in fact calculated and reproducible provided you start with the
same parameters, i.e., at the same point in the stream. By varying the starting parameters, it
will appear that you are generating a different stream of random numbers. In fact, you are
just starting at different points on the same stream. The period for a random number
generator is the number of entries in the stream before the stream starts over again and
begins repeating itself. For good random number generators, the periods are quite large and
shouldn't create any problems for serial programs using random number generators.

[31 As you can imagine, coming up with a good generator is very, very tricky.

For parallel programs, however, there are some potential risks. For example, if you are using
a large number of random numbers on a number of different processors and using the same
random number generator on each, then there is a chance that some of the streams will
overlap. For some applications, such as parallel Monte Carlo simulations, this is extremely
undesirable.

There are several ways around this. One approach is to have a single process serve as a
random number generator and distribute its random numbers among the remaining
processes. Since only a single generator is used, it is straightforward to ensure that no
random number is used more than once. The disadvantage to this approach is the
communication overhead required to distribute the random numbers. This can be minimized,
somewhat, by distributing blocks of random numbers, but this complicates programming
since each process must now manage a block of random numbers.

An alternative approach is to use the same random number generator in each process but to
use different offsets into the stream. For example, if you are using 100 processes, process O
would use the 1st, 101st, 201st, etc., random numbers in the stream. Process 1 would use
the 2nd, 102nd, 202nd, etc., random numbers in the stream, etc. While this eliminates
communication overhead, it adds to the complexity of the program.

Fortunately, there are libraries of random number generators designed specifically for use
with parallel programs. One such library is Scalable Parallel Random Number Generators
(SPRNG). This library actually provides six different state-of-the-art random number
generators (Table 15-1). SPRNG works nicely with MPI. (You'll need to download and install
SPRNG before you can use it. See Chapter 9 for details.)

Table 15-1. SPRNG's random number generators

Code Generator

0 Additive Lagged Fibonacci Generator

1 48-bit Linear Congruential Generator with Prime Addend
2 64-bit Linear Congruential Generator with Prime Addend
3 Combined Multiple Recursive Generator

4 Multiplicative Lagged Fibonacci Generator

5 Prime Modulus Linear Congruential Generator

To give you an idea of how to use SPRNG, we'll look at a simple Monte Carlo simulation that
estimates the value of (in case you've forgotten). The way the simulation works is a little like
throwing darts.

Imagine throwing darts at a dart board with a circle in the center like the one in Figure 15-5.
Assuming that you are totally inept, the darts could land anywhere, but ignore those that miss
the board completely. If you count the total number of darts thrown (t ot al) and if you count
those that land in the circle (i n), then for random tosses, you'd expect the ratioi n/total to
be just the ratio of the area of the circle to the square. If the square is 1 foot on a side, the
area of the circle is /4 square feet. Using this information, you can estimate as 4*i n/ tot al ,
i.e., four times the ratio of the area of the circle to the area of the square.

Figure 15-5. Monte Carlo dartboard

{11

(0.

You'll need to throw a lot of darts to get a reasonable estimate. If you know a lot of inept dart
enthusiasts, you can recruit them. Each one throws darts and keeps track of their total. If you
add the results, you should get a better estimate.

The code that follows uses this technique to estimate the value of . Multiple processes are
used to provide a larger number of tosses and a better estimate. The code uses SPRNG to
generate separate streams of random numbers, one for each process.

#incl ude <stdio. h>
#incl ude <mat h. h>

#incl ude "npi.h"

#define SIMPLE SPRNG /* sinple interface */
#defi ne USE_MPI /* MPl version of SPRNG */

#incl ude "sprng. h"

mai n(int argc, char *argv[1])

{

int i, in, n, noProcesses, processld, seed, total;

doubl e pi;

n = 1000;

MPI _Init(&argc, &argv);

MPI _Comm si ze(MPI _COVMM WORLD, &noProcesses);

MPI _Comm r ank(MPI _COVM WORLD, &processld);

seed = make_sprng_seed();
init_sprng(3, seed, SPRNG DEFAULT);

print_sprng();

in = hits(n);

MPI _Reduce(& n, &otal, 1, MPI_INT, MPI_SUM 0, MPI _COVM WCRLD):

/* estimate and print pi */

i f(processid = = 0)

{ pi =(4.0 * total) / (n * noProcesses);

printf("Pi estimate: %8.16f \n", pi);

printf("Nunber of samples: %l2d \n", n * noProcesses);

MPI _Finalize();

/* count darts in target */

int hits(int n)

{
int i, in =0;
doubl e x, v;
for (i = 0; i <n; i+4)
{ x =sprng();
y =sprng();
if (x *x +y *y <1.0) in++
}
return in;
}

For simplicity, this code considers only the top right-hand corner (one-fourth) of the board.
But since the board is symmetric, the ratio of the areas is the same. The code simulates
randomly throwing darts by generating a pair of random numbers for the coordinates of
where the dart might land, and then looks to see if they are within the circle by calculating the
distance to the center of the circle 2l This is done in the function hits.

[4] Strictly speaking, it is using the square of the distance to avoid evaluating a square root for each point,
a costly operation.

Apart from the SPRNG code, shown in boldface, everything should look familiar. For MPI
programming, before including the SPRNG header file, you need to define two macros. In this
example, the macro SI MPLE_SPRNG is used to specify the simple interface, which should be
adequate for most needs. The alternative or default interface provides for multiple streams
per process. The macro USE_MPI is necessary to let the i ni t _spr ng routine make the
necessary MPI calls to ensure separate streams for each process.

Before generating random numbers, a seed needs to be generated and an initialization routine
called. The routine meke_spr ng_seed generates a seed using time and date information from

the system. When used with MPI, it broadcasts the seed to all the processes. i nit_sprng

initializes the random number streams. (This call can be omitted if you want to use the
defaults.) The first argument to i nit _sprng is an integer from 0 to 5 inclusive, specifying

which of the random number generators to use. Table 15-1 gives the possibilities. The second
argument is the seed, an encoding of the start state for the random number generator, while
the third argument is used to pass additional parameters required by some generators.

The call to pri nt _sprng, also optional, will provide information about each of the streams as
shown in the output below. Finally, to generate random numbers, a double between 0 and 1,
the call sprng is used as seen in the hits routine.

Here is an example of compiling the code. On this system, SPRNG has been installed in the
directory/usr/local/src/sprng2.0.

[sl oanjd@anny SPRNG|$ npi cc pi-npi.c -1/usr/local/src/sprng2.0/include \

>-L/usr/local/src/sprng2.0/lib -Isprng -Im-o pi-npi

Note the inclusion of path and library information. (Look at the Makefile file in the EXAMPLES
subdirectory in the installation tree for more hints on compiling.)

Here is part of the output for this program.

[sl oanj d@anny SPRNG $ npirun -np 4 pi-npi

Combi ned mul tiple recursive generator

seed = 88724496, streamnunber = 0 paraneter =0

Pi estimate: 3.0930000000000000

Nunber of sanpl es: 4000

Conbi ned mul tiple recursive generator

seed = 88724496, streamnunber = 2 paraneter = 0

The output for two of the streams is shown. It is similar for the other streams. If rounded, the
answer is correct to two places. That's using 4,000 darts.

The documentation for SPRNG provides a number of the details glossed over here. And the
installation also includes a large number of detailed examples.

These two examples, 1/0 and random numbers, should give you an idea of the types of

problems you may encounter when writing parallel code. Dealing with problem areas like
these may be critical when determining how your programs should be designed. At other
times, performance may hinge on more general issues such as balancing parallelism with

overhead. It all depends on the individual problem you face. While good design is essential,
often you will need to tweak your design based on empirical measurements. Chapter 17
provides the tools you will need to do this.

48 FREY < Day Day Up > MEXT o

< Day Day Up >

Chapter 16. Debugging Parallel
Programs

If you are using a cluster, you are probably dealing with large, relatively complicated
problems. As problem complexity grows, the likelihood of errors grows as well. In these
circumstances, debugging becomes an increasingly important skill. It is a simple fact of life—if
you write code, you are going to have to debug it.

In this chapter, we'll begin by looking at why debugging parallel programs can be challenging.
Next, we'll review debugging in general. Finally, we'll look at how the traditional serial
debugging approaches can be extended to parallel problems. Parallel debugging is an active
research area, so there is a lot to learn. We'll stick to the basics here.

4@ FREY < Day Day Up > NE=T

< Day Day Up >

16.1 Debugging and Parallel Programs

Parallel code presents new difficulties, and the task of coordinating processes can result in
some novel errors not seen in serial code. While elaborate classification schemes for parallel
problems exist, there are two broad categories of errors in parallel code that you are likely to
come up against. These are synchronization problems that stem from inherent
nondeterminism found in parallel code and deadlock. While we can further subclassify
problems, you shouldn't be too concerned about finer distinctions. If you can determine the
source of error and how to correct it, you can leave the classification to the more academically
inclined.

Synchronization problems result from variations in the order that instructions may be
executed when spread among multiple processes. By contrast, serial programs are
deterministic, executing each line of code in the order it was written. Once you start forking
off processes, all bets are off. Moreover, since the loads on machines fluctuate, as does the
competition for communications resources, the timing among processes can vary radically
from run to run. One process may run before another process one day and lag behind it the
next. If the order of execution among cooperating processes is important, this can lead to
problems. For example, the multiplication of matrices is not commutative. If you are
multiplying a chain of matrices, you'll need to explicitly control the order in which the
multiplications occur when dividing the problem among the processes. Otherwise, a race
condition may exist among processes.

Deadlock occurs when two or more processes are waiting on each other for something. For
example, if process A is waiting for process B to send it information before it can proceed, and
if process B is waiting for information from process A before it can proceed, then neither
process will be able to advance and send the other process what it needs. Both will wait, very
patiently, for the other to act first. While this may seem an obvious sort of problem that
should be easy to spot, deadlock can involve a chain of different processes and may depend
on a convoluted path through conditional statement in code. As such, it can occur in very
nonobvious ways. A variant of deadlock is livelock, where the process is still busy computing
but can't proceed beyond some point.

This shouldn't intimidate you. While you may occasionally see explicitly parallel problems,
most of the problems you are likely to see are not new. They are the same mistakes you'll
have made with serial code. This is good news! It means you should already be familiar with
most of the problems you'll see. It also suggests a strategy for developing and debugging
code.

Start, whenever possible, with a serial version of the code. This will help you identify potential
problems and work out the details of your code. Once you have the serial version fully
debugged, you can move on to the parallel version. Depending of the complexity of the
problem, the next step may be running the code with a small number of processes on the
same machine. Only after this is working properly should you scale up the problem.

Since most problems are serial, we'll start with a quick review of debugging in general and
then look at how we can expand traditional techniques to parallel programs.

4@ FREY < Day Day Up > MEXT mjp

< Day Day Up >

16.2 Avoiding Problems

I would be remiss if I didn't begin with the usual obligatory comments about avoiding bugs in
the first place. Life will be much simpler if you can avoid debugging. While this is not always
possible, there are several things you can do to minimize the amount of debugging you'll
need.

Carefully design your program before you begin coding.

¢ Be willing to scrap what you've done and start over.

¢ Comment your code and use reasonable naming conventions.
e Don't try to get too clever.

e Develop and test your code incrementally.

e Never try to write code when you are fatigued or distracted.

¢ Master all the programming tools that are available to you.

Of course, you already knew all of this. But sometimes it doesn't hurt to badger someone just
a little.

4@ PREV < Day Day Up > ME=T

< Day Day Up >

16.3 Programming Tools

On most systems, a number of debugging tools are readily available. Others can be easily
added. While most are designed to work with serial code, they are still worth mastering, since
most of your errors will be serial in nature.

First, you should learn to use the features built into your programming language. For
example, in C you might use asserts to verify the correct operation of your code. You should
also learn how to write error handlers. This advice extends beyond the language to any
libraries you are using. For example, MPI provides two error handlers, MPl _ERROR_ARE_FATAL
andMPl _ERRORS_RETURN. And the MPICH implementation defines additional error handlers.
While we have been ignoring them in our programming examples in order to keep the code as
simple as possible, almost all MPI functions return error codes.

Next, learn to use the features provided by your compiler. Most compilers provide a wealth of
support that is only a compile option or two away. Since the added checking increases
compile time, these are generally disabled by default. But if you take the time to read the
documentation, you'll find a lot of useful features. For example, with gcc you can use the
options- Wl | to turn on a number of (but not all) warnings, - ansi to specify the language
standard to use, and - pedanti ¢ to issue all mandatory diagnostics, including those frequently
omitted.mpicc will pass options like these on to the underlying compiler, so you can use them
when compiling MPI programs. When using these, you'll likely see a number of warning
messages that you can safely ignore, but you may find a pearl or two as well. Keep in mind
that there are a large number of additional options available with gcc, so be sure to read the
documentation.

Additionally, many systems have other utilities that can be helpful. The granddaddy of them
all is lint. This is a program that analyzes code for potential errors with which most older
compilers didn't bother. Most of the problems that lint checks for are now caught by modern
compilers (if you use the right flags). Fortunately, lint has been superceded with more
extensive checkers. If you are running Linux, you probably already have splint installed.

Here is an example of using splint. The -1 option is used to include the path to the file mpi.h.

[sl oanjd@ny AREA]$ splint -I1/opt/lam7.0/include rect.c

Splint 3.0.1.7 --- 24 Jan 2003

rect.c:80:13: Return value (type int) ignored: MPI_Recv(&chunk, . ..

rect.c:85:5: Return value (type int) ignored: MPI_Finalize()

Fi ni shed checking --- 29 code war ni ngs

Most of the output has been deleted (out of embarrassment), but you should get the idea. Of
course, this is a working program. It just could be better.

There are a number of other tools that you might want to investigate. For example, memory
checkers will examine your code for potential memory leaks. Probably the best known is the

commercial product purify, but you might want to look at the GNU product checkergcc.
Symbolic debuggers are described later in this chapter. And don't overlook profilers
(described in Chapter 17). While not designed as debugging tools, they frequently reveal lots
of problems.

48 FREV < Day Day Up > MEXT mp

< Day Day Up >

16.4 Rereading Code

There are three basic escalating strategies for locating errors—rereading code, printing
information at key points, and using a symbolic debugger. There is an interesting
correspondence between these debugging strategies and search strategies, i.e., linear search,
binary search, and indexed search. When reading code we are searching linearly for the error.
Printing works best when we take a binary approach. Through the breakpoints a symbolic
debugger provides, we are often able to move directly to a questionable line of code.

Rereading (or reading for the first time in some cases) means looking at the code really hard
with the hope the error will jump out at you. This is the best approach for new code since you
are likely to find a number of errors as well as other opportunities to improve the code. It also
works well when you have a pretty good idea of where the problem is. If it is a familiar error,
if you have just changed a small segment of code, or if the error could only have come from
one small segment of code, rereading is a viable approach.

Rereading relies on your repeatedly asking the question, "If | were a computer, what would |
do?" You can still play this game with a cluster, you just have to pretend to be several
computers at once and keep everything straight. With a cluster, the order of operations is
crucial. If you take this approach, you'll need to take extra care to ensure that you don't jump
beyond a point in one process that relies on another process without ensuring the other
process will do its part. An example may help explain what | mean.

As previously noted, one problem you may encounter with a parallel program is deadlock. For
example, if two processes are waiting to receive from each other before sending to each
other, both will be stalled. It is very easy when manually tracing a process to skim right over
the receive call, assuming the other process has sent the necessary information. Making that
type of assumption is what you must guard against when pretending to be a cluster of
computers. Here is an example:

#incl ude "npi.h"

#incl ude <stdio. h>

int main(int argc, char * argv[])

{
int datunl = 19, datun2 = 23, datunB = 27;
int datum4, datunb, datuns;
int noProcesses, processld;

MPI _St at us st at us;

[* NMPl setup */
MPI I nit(&argc, &argv);

MPI _Comm si ze(MPI _COMM WORLD, &noProcesses);

MPI _Comm r ank(MPI _COMM WORLD, &processld);

if (processld = = 0) /* for rank 0 */

{ MPl _Recv(&atum4, 1, MPI _INT, 2, 3, MPI_COVM WORLD, &status);
MPl _Send(&datunl, 1, MPI _INT, 1, 0, MPI _COVM WCRLD);
fprintf (stderr, "Received: %\ n", datumd);

}

else if (processlid = = 1) /* for rank 1 */

{ MPl _Recv(&atumb, 1, MPI _INT, 0, 0, MPI_COWM WORLD, &status);
MPl _Send(&datun2, 1, MPI _INT, 2, 1, MPl _COVM WCRLD);
fprintf (stderr, "Received: %\ n", datunb);

}

el se [* for rank 2 */

{ MPl _Recv(&atumb, 1, MPI _INT, 1, 1, MPI_COVM WORLD, &status);
MPI _Send(&datunB, 1, MPI _INT, 0, 3, MPl _COVM WCRLD);

fprintf (stderr, "Received: %\ n", datunb);

MPI _Finalize();

return O;

This code doesn't do anything worthwhile other than illustrate deadlock. It is designed to be
run with three processes. You'll notice that each process waits for another process to send it
information before it sends its own information. Thus process 0 is waiting for process 1 which
is waiting for process 2 which is waiting for process 0. If you run this program, nothing
happens—it hangs.

While this example is fairly straightforward and something that you probably could diagnose
simply by reading the source, other examples of deadlock can be quite subtle and
extraordinarily difficult to diagnose simply by looking at the source code.

Deadlock is one of the most common problems you'll face with parallel code. Another common

problem is mismatching parameters in function calls, particularly MPI functions. This is
something that you can check carefully while rereading your code.

< Day Day Up >

16.5 Tracing with printf

Printing information at key points is a way of tracing or following the execution of the code.
With C code, you stick pri nt f's throughout the code that let you know you've reached a
particular point in the code or tell you what the value of a variable is. By using this approach,
you can zero in on a crucial point in the program and see the value of parameters that may
affect the execution of the code. This quick and dirty approach works best when you already
have an idea of what might be going wrong. But if you are clueless as to where the problem
is, you may need a lot of print statements to zero in on the problem, particularly with large
programs. Moreover, it is very easy for the truly useful information to get lost in the deluge of
output you create.

On the other hand, there is certainly nothing wrong with printing information that provides the
user with some sense of progress and an indication of how the program is working. We did
this in our numerical integration program when we printed the process number and the
individual areas calculated by each process.

It can be particularly helpful to echo values that are read into the program to ensure that they
didn't get garbled in the process. For example, if you've inadvertently coerced a floating point
number into an integer, the truncation that occurs will likely cause problems. By printing the
value, you may be alerted to the problem.

Including print statements can also be helpful when you are working with complicated data
structures since you will be able to format the data in meaningful ways. Examining a large
array with a symbolic debugger can be challenging. Since it is straightforward to conditionally
print information, print statements can be helpful when the data you are interested in is
embedded within a large loop and you want to examine it only under selective conditions.

In developing code, programmers will frequently write large blocks of diagnostic code that
they will discard once the code seems to be working. When the code has to be changed at a
later date, they will often find themselves rewriting similar code as new problems arise. A
better solution is to consider the diagnostic code a key part of the development process and
keep it in your program. By using conditional compile directives, the code can be disabled in
production versions so that program efficiency isn't compromised, but can be enabled easily
should the need arise.

A technique that is often used with printf is deleting extraneous code. The idea is, after
making a copy of your program, to start deleting code and retesting to see whether the
problem has disappeared. The goal is to produce the smallest piece of code that still exhibits
the problem. This can be useful with some types of problems, particularly when you are trying
to piece together how some feature of a language works. It can also be helpful when
generating a bug report.

With parallel code, the pri ntf approach can be problematic. Earlier in this book, you saw
examples of how the output from different processes could be printed in a seemingly arbitrary
order. Buffering further complicates matters. If your code is crashing, a process may die
before its output is displayed. That output will be lost. Also, output can change timings which
can limit its effectiveness if you are dealing with a race problem. Finally, print statements can
seriously deteriorate performance.

If you are going to use the pri ntf approach with parallel programs, there are two things you
should do. First, if there is any possibility of the source of the output being confused, be sure

to label the output with the process number or machine name. Second, follow your calls to
pri ntf with a call to f fl ush so that the output is actually printed at the moment the program

generates it. For example,

int processld;

char processNanme[MPl _MAX_PROCESSOR_NAME] ;

MPI _Conm rank(MPI _COW WORLD, &processld);

MPI _Get processor_nane(processNanme, &naneSi ze);

fprintf(stdout, "Process %l on % at checkpoint 1. \n", processld,
processNane) ;

fflush(stdout);

If you want to control the order of the output, you'll need to have the master process
coordinate output.

| & FREYV | < Day Day Up > | MEXT w»

< Day Day Up >

16.6 Symbolic Debuggers

If these first two approaches don't seem to be working for you, it's time to turn to a symbolic
debugger. (Arguably, the sooner you switch to a symbolic debugger, the better.) Symbolic
debuggers will allow you to trace the execution of your program, stop and examine variables,
make changes, and resume execution. While you'll need to learn how to use them, most are
fairly intuitive and don't take long to master. All you really need to do is learn a few basic
commands to get started. You can learn more commands as the need arises.

There are a number of symbolic debuggers available, including debuggers that are specifically
designed to work with parallel programs such as commercial products like TotalView. With a
little extra effort, you'll probably be able to get by with some more common debuggers. In
this chapter we'll look at gdb and ddd, first with serial programs and then with parallel
programs.

gdb is a command-line symbolic debugger from the GNU project. As such, it is freely
available. You probably already have it installed on your Linux system. ddd is a GUI frontend
that can be used with gdb (or other debuggers) in an X Window System environment.I1l You
may need to install ddd, but the process is straightforward and is described in Chapter 9.

[1] There are other friendly ways of running gdb.xxgdb is an X Windows System version. gdb is often run
from within Emacs.

16.6.1 gdb

To demonstrate gdb, we'll use the program area.c from Chapter 13 with one slight added
error. (Also, the macro for f has been replaced with a function.) Here is the now buggy code:

#incl ude <stdio. h>

/* probl emparaneters */

#def i ne nunber St eps 50
#define | owerLimt 2.0
#def i ne upperLimt 50

doubl e f(double x)

{

return x*x;

int min (int argc, char * argv[])

int i;

doubl e area = 0.0;

doubl e step = (upperLimt - lowerLinmt) / nunberSteps;
doubl e at, height;

for (i = 0; i <= number Steps; i--)

{ at = lowerLimt + i * step + step / 2.0;

height = f(at);

area = area + step * height;

printf ("The area from% to % is: %\n",

lowerLimt, upperLinmt, area);

return 0O;

If you try to run this, it doesn't print anything and doesn't return. With that kind of behavior,
it is pretty easy to guess that there is something wrong with the loop. But let's play dumb for
a moment and see how we could discover this using gdb.

Before you can run gdb with a program, you should compile that program with the - g option.

[sl oanjd@ny DEBUJ $ gcc -g area.c -0 area

The- g option generates code that produces debugging information. This is necessary to make
the symbol table available so that you can refer to variables by name.

Unlike most compilers, gcc will allow you to use an optimization option (- O) with - g. Keep in
mind that optimizing code may reorder instructions or may eliminate variables. This can be
mind-boggling to a debugger so, in general, you should avoid optimizing your code when you
plan to use a symbolic debugger. With gcc, you have some latitude, but beware!

Once the code is properly compiled, you can start gdb. There are several ways to do this, but
the simplest is to pass the name of the program as a command-line argument. For example,

[sl oanj d@ny DEBUG $ gdb -q area

(gdb)

In this case, the - g option is used to suppress the general information that it prints by default.

When the program is loaded and ready to go, it returns the (gdb) prompt. You can get a list
of command categories by typing hel p at the prompt. To see a listing of the commands within
a category, type hel p followed by the category name, for example, hel p dat a. Commands
may be abbreviated provided the shortened name is unambiguous. For example, append may
be shortened to app but not to ap since it would be confused with apr opos.

The most reasonable place to start is probably the | i st command (abbreviated |).l i st will
begin listing your program, 10 lines at a time.

(gdb) |

7

8 doubl e f(doubl e x)

9 {

10 return x*x;

11 }

12

13 int main (int argc, char * argv[])
14 {

15 int i;

16 doubl e area = 0.0;

If you continue with | i st , it will display the next 10 lines of code. If you give it a single
numeric value, it will list 10 lines starting at that line. If you give it two numeric values
separated by a comma, it will treat those values as a range and print that code. For example,

(gdb) I 18,20

18 doubl e at, height;

19

20 for (i = 0; i <= nunberSteps; i--)

If you enter hel p i st at the prompt, you'll see a list of additional ways to use | i st .

Next, let's put a breakpoint on line 20. A breakpoint allows you to start a program and have it
automatically stop when it reaches the target line. If the line is never reached, e.g., it is
embedded in a conditional statement that fails, then the code won't stop. If the line is
executed several times, such as a breakpoint within a loop, it will stop each time.

(gdb) b 20

Breakpoint 1 at 0x804836e: file area.c, line 20.

You can list breakpoints with the i nf o br eakpoi nt command. Type hel p b at the prompt to
learn more breakpoints and the commands that can be used with them. (gdb also supports

watchpoints, which stop when a watched variable changes, and catchpoints, which catch an
exception).

Now let's run the program.

(gdb) run

Starting program /hone/ sl oanj d/ DEBUG area

Breakpoint 1, main (argc=1, argv=0xbfffe774) at area.c:20

20 for (i = 0; i <= nunberSteps; i-)

You'll note that it stopped at our breakpoint as expected.

Let's look at a few variables to make sure everything has been initialized correctly.
(gdb) print area

$1 =0

(gdb) print step

$2 = 0. 059999999999999998

So far, everything looks good.

(gdb) print nunber Steps

No synbol "nunberSteps"” in current context.

This may look like a problem, but it isn't. You'll recall that nunber St eps isn't a program
variable. It was defined with a #def i ne statement. The preprocessor substitutes the value for
the name throughout the program before compilation, so we won't be able to look at this with
the debugger. That's not a big problem but something you should be aware of.

We can step through individual lines of code with the next command.

(gdb) n

21 { at = lowerLimt + i * step + step / 2.0;
(gdb) n

22 hei ght = f(at);

(gdb) n

23 area = area + step * height;

(gdb) n

24 for (i = 0; i <= nunber Steps; i ++)

Thestep command is just like the next command except that next will treat a subroutine call
as one instruction while step will enter into the subroutine.

We'll come back to step after we have looked at some of the variables.

(gdb) print area

$3 = 0.24725399999999992
(gdb) print hei ght

$4 = 4.1208999999999989
(gdb) print step * hei ght
$5 = 0. 24725399999999992

Notice that pri nt will handle expressions as well as simple variables, a real convenience.
Everything still looks good.

Going back to step, here is the second iteration of the loop traced with step.

(gdb) s

21 { at = lowerLimt + i * step + step / 2.0;
(gdb) s

22 hei ght = f(at);

(gdb) s

f (x=2.0899999999999999) at area.c: 10
10 return x*x;

(gdb)s

11 }

(gdb) s

mai n (argc=1, argv=0xbfffe774) at area.c:23

23 area = area + step * height;
(gdb)s
20 for (i = 0; i <= number Steps; i++)

Notice that we are diving into the function f .

The body of the loop seems to be working correctly. Maybe there is something wrong with the
print statement? To examine the values it is getting, we'll set a second breakpoint and resume
execution.

(gdb) 1 25, 27
25
26 printf ("The area from% to % is: %\n",

27 lowerLimt, upperLinit, area);

(gdb)b 26

Breakpoi nt 2 at 0x80483c4: file area.c, line 26.
(gdb) conti nue

Cont i nui ng.

At this point the program hangs. Since the body of the loop looks OK and we aren't getting to
thepri nt f, there must be something wrong with the loop control structure.

Let's interrupt the program (CTRL-C) and examine the counter i .

Program recei ved signal SI G NT, Interrupt.
0x0804833d in f (x=-83775291.069999993) at area.c: 10
10 return x*x;

(gdb) print i

No synbol "i" in current context.

(gdb) n

11 }

(gdb) n

mai n (argc=1, argv=0xbfffd774) at area.c:23

23 area = area + step * height;
(gdb) print i

$7 = -1396254885

When the program was interrupted, we were in the function f so i was out of scope. We

needed to step through a couple of instructions to return to the main program to examine i .
And when we did, we saw that something was obviously wrong.

We can change the value of i and continue.

(gdb) set var i=51
(gdb) conti nue

Cont i nui ng.

Breakpoint 2, main (argc=1, argv=0xbfffd774) at area.c:26

26 pr

ntf ("The area from% to % is: %\n",

With an appropriate value of i , we exit the loop. Clearly, i isn't being updated appropriately.

We can continue until the end now, although our output won't make much sense, and then
exitgdb.

(gdb) conti nue
Cont i nui ng.

The area from 2. 000000 to 5. 000000 is: 203220027199808325287936. 000000

Program exited normally.

(gdb) q

Or we could have just quit where we were.

No doubt you noticed that the code had been changed from i ++ to i -- long before the end of
this section. This is definitely a problem that rereading the code should have found.
Nevertheless, you should have an idea of how to use gdb at this point.

16.6.2 ddd

Data Display Debugger is a frontend for command-line debuggers (or inferior debugger, in
ddd parlance). We'll use it with gdb, but it is not limited to gdb. You must have the X Window
System running. Since ddd is a frontend to gdb and you already know how to use gdb, there
isn't much new to learn. But ddd does have a few nice tricks. Although we won't go into it
here, one of ddd’s real strengths is displaying complex data structures such as linked lists.

As with gdb, compile your program with the - g option. Next, open ddd with executable as an
argument.

[sl oanjd@ny DEBUG $ ddd area

Addd splash screen will appear briefly and then three windows will open. The top window is
theddd Tip of the Day window [2l as shown in Figure 16-1.

[2]1 Tip #31, the tip in this figure, tells you how to get rid of the ddd Tip of the Day.

Figure 16-1. ddd Tip of the Day #31

Ta get rid of these tips of the day, unset
Edil—Preferences—Startup—Show Tip of the Day

| Close | Prev Tip Next Tip
- .

Read the tip, if you like, and then close the window.

The large window underneath the tip window is the main window you'll be working from. Off
to the side you'll see a smaller window with a few ddd commands. The small command

window can be repositioned so that it doesn't overlap with the main window if you wish.
Figure 16-2 shows both of these windows.

Figure 16-2. ddd's main window

5) - [
File Edit View Program Commands Status Source Data Help |
i = e W P o A B e =l
0 main ”Lna;:- FE?- -E.k untch sz g& %}% ,{ T*u 1-1?2):':.
#include <stdio.hs (v DoD X) £
/* problem parameters */f R
#idefine numbersteps 50 ﬁ
#deil::ine TowerLimit z.0 Interrupt
#defi Limit 5.0
efine upperlimi Stop | Stepi |
double F(doubl
E|:|u e fldouble) Mest | escli
return =*x; Urdil | Firish |
Cont Kl
int main { int argc, char * argv[])
¢ 3 ? e | Down|
int 1: i -#13'
double area = 0.0;
double step = {upperlimit = Towerlimit) / numberSteps: Beit Make
doubla at, height: —
for (1 =0; 1 < numbersteps; 1—)

i at = lowerLimit + i * step + step J 2.0
height = Flat);

area = area + skep * height:

¥

printf ("The area from &f to %F 1s5: %Fn",
lTewarlimit, upperlimit, area)

return O;

= |

GHU DDD 3.3.1 (i 3ge-redhat=T1nux—anu), by Dorothea L{gdb)

Lj'..‘l

E'ﬁ'alnum& to DDD 3.3.1 "Blue Gnu™ (1366-radh at-Hnws-gnu)

The window is pretty self-explanatory. The upper pane holds your source code, while the
lower pane is a text interface to gdb. You can type gdb commands in the lower pane just as
you did on the command line. gdb commands are also available via the menus at the top of
the window, or you can use the command window to enter the most common commands. For
example, if you want to edit the source, you can type edi t in the command window (just as
you would in gdb) or you can click on the edit button. Either way, you'll be thrown into an
editor. (Sorry, you can't edit it directly in the upper pane.)

To add a breakpoint, you can select a line in the upper pane and then click on the break
button (with the stop sign) on the tool bar. As you step through the code, a large green arrow
at the edge of the top pane points to the current line. If you move the cursor over a variable,
after a few seconds, a pop-up box will display the variable's current values.

The display can be reconfigured if you wish. For example, if you want to look at the machine
code in addition to (or instead of) the source listings, you can open a machine language
window (and close the source window). You can also resize windows and change fonts to your
heart's content.

< Day Day Up >

< Day Day Up >

16.7 Using gdb and ddd with MPI

Thus far we have used the debugger to start the program we want to debug. But with MPI
programs, we have used mpirun or mpiexec to start programs, which would seem to present
a problem.I31 Fortunately, there is a second way to start gdb or ddd that hasn't been
described yet. If a process is already in execution, you can specify its process number and
attachgdb or ddd to it. This is the key to using these debuggers with MPI.

[31 Actually, with some versions of mpirun, LAM/MPI, for instance, it is possible to start a debugger
directly. Since this won't always work, a more general approach is described here.

With this approach you'll start a parallel application the way you normally do and then attach
to it. This means the program is already in execution before you start the debugger. Ifit is a
very short program, then it may finish before you can start the debugger. The easiest way
around this is to include an input statement near the beginning. When the program starts, it
will pause at the input statement waiting for your reply. You can easily start the debugger
before you supply the required input. This will allow you to debug the program from that
point. Of course, if the program is hanging at some point, you won't have to be in such a
hurry.

Seemingly, a second issue is which cluster node to run the debugger on. The answer is "take
your pick."” You can run the debugger on each machine if you want. You can even run different
copies on different machines simultaneously.

This should all be clearer with a couple of examples. We'll look at a serial program first—the
flawed area program discussed earlier in this chapter. We'll start it running in one window.

[sl oanj d@ny DEBUG $./area

Then, in a second widow, we'll look to see what its process number is.

[sl oanj d@my DEBUGl $ ps -aux | grep area

sloanjd 19338 82.5 0.1 1340 228 pts/4 R 09: 57 0:32 ./area
sloanjd 19342 0.0 0.5 3576 632 pts/3 S 09: 58 0: 00 grep area

If it takes you several tries to debug your program, watch out for zombie processes and be
sure to kill any extraneous or hung processes when you are done.

With this information, we can start a debugger.

[sl oanj d@nmy DEBUG $ gdb -q area 19338

Attaching to program /home/ sl oanj d/ DEBUG area, process 19338
Readi ng synbols from/lib/tls/libc.so.6...done.

Loaded synbols for /lib/tls/libc.so.6

Readi ng synmbols from/1lib/ld-Iinux.so.2...done.

Loaded synbols for /Ilib/ld-linux.so.2

0x080483al in main (argc=1, argv=0xbfffele4) at area.c:22

22 hei ght = f(at);

(gdb)

When we attach to it, the program will stop running. It is now under our control. Of course,
part of the program will have executed before we attached to it, but we can now proceed with
our analysis using commands we have already seen.

Let's do the same thing with the deadlock program presented earlier in the chapter. First we'll
compile and run it.

[sl oanj d@ny DEADLOCK] $ npicc -g dl ock.c -o dl ock
[sl oanj d@nmy DEADLOCK] $ npirun -np 3 dl ock

Notice that the - g option is passed transparently to the compiler. Don't forget to include it. (If
you get an error message that the source is not available, you probably forgot.)

Then look for the process number and start ddd.

[sl oanj d@anmy DEADLOCK] $ ps -aux | grep dlock

sloanjd 19473 0.0 0.5 1600 676 pts/4 S 10: 16 0: 00 npirun -np 3
dl ock

sloanjd 19474 0.0 0.7 1904 0904 ? S 10: 16 0: 00 dl ock
sloanjd 19475 0.0 0.5 3572 632 pts/3 S 10: 17 0: 00 grep dlock

[sl oanj d@ny DEADLOCK] $ ddd dlock 19474

Notice that we see both the mpirun and the actual program. We are interested in the latter.
Onceddd is started, we can go to Status Backtrace to see where we are. A backtrace is a list

of the functions that called the current one, extending back to the function with which the
program began. As you can see in Figure 16-3, we are at line 19, the call to MPl _Recv.

Figure 16-3. ddd with Backtrace

-0 X

File Edil View Frogram Commands Slatus Source Data

) #3
-IEF LProces 4o 0x0B0E4dbb in lam_ssi_rpi_tep_fastrecy ()
MPT_Red | M1 0x0BOEGa23 in lam_ssi_rpi_top_low fastrecy OO
vi ol

i
]
?I'SE if {f

MPI_Re

MPI_Ser|
, fr Lp Dyowan | Close I Halp
elze

L

Help |
-] el e :] = =
0: fnain '{Lo?- Fiimuau -Ex Untch nzt gﬁ- jl\n:.ﬂt' :{ Frtate it
/* Deadlock demonstration #f OO0 4
#include “mpi.h"
include <stdio.h> Run
int main{ int arge. char * arge[]) Intermupt
int daturmd = 19, datumd = 23, datumd = 27; Etwl Shapi
int datumd, datumS, datieE: Mesit | Mesti
int noProcesses, processTd: —
MPI_Statug v DODD: Backirace E’ﬁm
Kl
f* MPT seal —
MPT Tnit(q CEcHiace : : : | e
MPT_Comm_g HS 042015504 in __Tibc_start_main) Froe libe.so.B
MPI_Comm_f #4 0x08049ce& in main () at dlock.c:19 |"'='| il
0:080575b4 in MPI_Recv () it | Make

MPT_Recw(&datumd, 1. MPI_INT, 1. 1. MPI_COMM_WORLD,. &status):

Loaded symbols for f1ib/1d=linux.s0.2

Reading symbols From J11b/1ibnss_files.s0.2.. . done.
Loaded symbols for f1ibS1ibnss_files.sa.2
oxfFffeonz in 72 (1

[gdi)

E'u'u'alt:uma to DDD 3.3.1 "Blue Gnu® (1366=radh st-Niwes- gl

LF:IT =

Lj_‘-.l_

If you want to see what's happening on another processor, you can use ssh to connect to the
machine and repeat the process. You will need to change to the appropriate directory so that
the source will be found. Also, of course, the process number will be different so you must

check for it again.

[sl oanj d@ny DEADLOCK] $ ssh oscar nodel
[sl oanj d@scarnodel sl oanjd]$ cd DEADLOXK

[sl oanj d@scarnodel DEADLOCK]$ ps -aux | grep dlock

sloanjd 23029 0.0 0.7 1908 896 ? S 10: 16 0: 00 dl ock

sloanjd 23107 0.0 0.3 1492 444 pts/2 S 10: 39 0: 00 grep dlock

[sl oanj d@scarnodel DEADLOCK]$ gdb -q dl ock 23029

Attaching to program /homne/ sl oanj d/ DEADLOCK/ dl ock, process 23029

Readi ng synbols from/usr/lib/libaio.so.1...done.
Loaded synbols for /usr/lib/libaio.so.1
Readi ng synmbols from/lib/libutil.so.1...done.

Loaded synbols for /lib/libutil.so.1

Readi ng synbols from/Ilib/tls/libpthread.so.0...done.

[New Thread 1073927328 (LWP 23029)]

Loaded synbols for /lib/tls/libpthread. so.0

Readi ng synmbols from/lib/tls/libc.so.6...done.

Loaded synbols for /lib/tls/libc.so.6

Readi ng synbols from/lib/ld-Iinux.so.2...done.

Loaded synbols for /lib/ld-1inux.so.2

Readi ng synmbols from/lib/libnss files.so.2...done.

Loaded synbols for /lib/libnss files.so.2

Oxffffe002 in ?? ()

(gdb) bt

#0 Oxffffe002 in 2?7 ()

#1 0x08066a23 in |amssi_rpi_tcp_low fastrecv ()

#2 0x08064dbb in lamssi_rpi_tcp_fastrecv ()

#3 0x080575b4 in MPI _Recv ()

#4 0x08049d4c in main (argc=1, argv=0xbfffdb44) at dl ock.c: 25

#5 0x42015504 in _ _libc_start_main () from/lib/tls/libc.so.6

The back trace information is similar. The program is stalled at line 25, the MPl _Recv call for
process with rank 1. gdb was used since this is a text-based window. If the node supports X

Window System (by default, an OSCAR compute node won't), | could have used ddd by
specifying the head node as the display.

< Day Day Up >

16.8 Notes for OSCAR and Rocks Users

gdb is part of the default Linux installation and should be available on your system. You will
need to add ddd to your system if you wish to use it. Since OSCAR installs X Window System
only on the head node, you will not be able to run ddd on your compute nodes. Rather, you
will need to run gdb on your compute node as shown in the last example in this chapter.

gdb and ddd are included with Rocks on the frontend and compute nodes. However, you'll
need to forward ddd sessions to the frontend using the DISPLAY environment variable since
the X Window System is not set up to run locally on compute nodes.

4 FREV < Day Day Up > MEXT mp

< Day Day Up >

Chapter 17. Profiling Parallel Programs

Since the raison d'étre for a cluster is higher performance, it stands to reason that if you
really need a cluster, writing efficient code should be important to you. The key to improving
the efficiency of your code is knowing where your code spends its time. Thus, the astute
cluster user will want to master code profiling. This chapter provides an introduction to
profiling in general, to the problems you'll face with parallel programs, and to some of the
tools you can use.

We'll begin by looking briefly at issues that impact program efficiency. Next, we'll look at ways
you can time programs (and parts of programs) using readily available tools and the special
features of MPI. Finally, we'll look at the MPE library, a library that extends MPI and is
particularly useful for profiling program performance. Where appropriate, we'll look first at
techniques typically used with serial programs to put the techniques in context, and then at
extending them to parallel programs.

4@ PREV < Day Day Up > ME=T

< Day Day Up >

17.1 Why Profile?

You have probably heard it before—the typical program will spend over 90% of its execution
time in less that 10% of the actual code. This is just a rule of thumb or heuristic, and as such,
will be wildly inaccurate or totally irrelevant for some programs. But for many, if not most,
programs, it is a reasonable observation. The actual numbers don't matter since they will
change from program to program. It is the idea that is important—for most programs, most
of the execution time spent is in a very small portion of the code.

This is extremely important to keep in mind in this critical portion of code. If your application
spends 95% of its time in 5% of the code, there is little to be gained by optimizing the other
959% of the code. Even if you could completely eliminate it, you'd only see a 5%
improvement. But if you can manage a 10% improvement in the critical 5% of your code, for
example, you'll see a 9.5% overall improvement in your program. Thus, the key to improving
your code's performance is to identify that crucial 5%. That's where you should spend your
time optimizing code.[1l

[11 In this chapter optimization means optimizing the time a program spends executing. Space
optimizations will be ignored.

Keep in mind that there is a point of diminishing returns when optimizing code. You'll need to
balance the amount of time you spend optimizing code with the amount of improvement you
actually get. There is a point where your code is good enough. The goals of profiling are two-
fold—to decide how much optimization is worth doing and to identify which parts of code
should be optimized.

The first step to optimizing code begins before you start writing it. To write the most efficient
code, you should begin by selecting the most appropriate or efficient algorithm. As the
program size grows, an unoptimized O(n logzn) algorithm will often outperform an optimized
O(n2) algorithm. Of course, algorithm selection will depend on your specific application.
Unfortunately, it can be problematic for parallel applications.

For serial algorithms, you can often make reasonable estimates on how time is being spent by
simply examining and analyzing the algorithm. The standard approach characterizes
performance using some measurement of the problem size. For example, when sorting an
array of numbers, the problem size would be the number of elements in the array. Some
problems are easily characterized by a single number while others may be more difficult to
characterize or may depend on several parameters. Since the problem size often provides a
bound for algorithmic performance, this approach is sometimes called asymptotic analysis.

Asymptotic analysis can be problematic with parallel programs for several reasons. First, it
may be difficult to estimate the cost of communications required by a parallel solution. This
can be further complicated by the need for additional code to coordinate communications
among the processors. Second, there is often a less than perfect overlap among the
communicating processes. A processor may be idle while it waits for its next task (as with our
numerical integration programs in earlier chapters). In particular, it may be difficult to predict
when a processor will be idle and what effect this will have on overall performance. For these
and other reasons, an empirical approach to estimating performance is often the preferred
approach for parallel programs. That is, we directly measure performance of existing
programs.

Thus, with parallel programs, the most appropriate strategy is to select the best algorithm you
can and then empirically verify its actual performance.

& FREV < Day Day Up > MEXT mp

< Day Day Up >

17.2 Writing and Optimizing Code

Code optimization can be done by hand or by the compiler. While you should avoid writing
obviously inefficient code, you shouldn't get carried away doing hand optimizations until
you've let your compiler have a try at optimizing your code. You are usually much better off
writing clean, clear, maintainable code than writing baroque code that saves a few cycles here
or there. Most modern compilers, when used with the appropriate compiler options, are very
good at optimizing code. It is often possible to have the best of both worlds—code that can be
read by mere mortals but that compiles to a fully optimized executable.

With this in mind, take the time to learn what optimization options are available with your
compiler. Because it takes longer to compile code when optimizing, because time-optimized
code can be larger than unoptimized code, and because compiler optimizations may reorder
instructions, making code more difficult to debug and profile, compilers typically will not
optimize code unless specifically directed to do so.

Withgcc, the optimization level is set with the - O compiler flag. (That's the letter O.) With the
flag- OL, most basic optimizations are done. More optimizations are done when the - @ flag is
used and still more with the - G flag. (- M is used to suppress optimization and - Gs is used to
optimize for size.) In addition to these collective optimizations, gcc provides additional flags
for other types of optimizations, such as loop unrolling, that might be useful in some
situations. Consult your compiler's documentation for particulars.

If you have selected your algorithm carefully and your compiler has done all it can for you,
the next step in optimizing code is to locate what portions of the code may benefit from
further attention. But locating the hot spots in your code doesn't mean that you'll be able to
eliminate them or lessen their impact. You may be working with an inherently time-consuming
problem. On the other hand, if you don't look, you'll never know.

Larger problems that you may be able to identify and address include problems with memory
access, I/0 (1/0 is always expensive), load balancing and task granularity, and
communication patterns. Basically, anything that results in idle processors is worth
examining.

Your extreme hotspots will be blocks of code that are executed repeatedly. These typically
occur within loops or, especially, nested loops. For these, some hand optimization may be
worthwhile. A number of techniques may be used, but they all boil down to eliminating
unnecessary operations. Basically, you'll need to focus on and locate the instructions in
question and look for ways to eliminate the number of instructions or replace them with less
costly instructions. For example, moving instructions out of a loop will reduce the number of
times the instructions are executed, while replacing an exponentiation with a multiplication
can reduce the cost of an individual instruction.

A detailed description of the various techniques that can be used is outside the scope of this
book. Several sources are listed in the Appendix A. The remainder of this chapter describes
tools that will help you locate inefficient code.

< Day Day Up >

< Day Day Up >

17.3 Timing Complete Programs

With many programs, the first and most logical step is simply to time how long the program
takes to execute from beginning to end. The total elapsed time is usually called the program's
wall-clock time. While the wall-clock time reflects a number of peripheral concerns such as
system loads caused by other users, it really is the bottom line. Ultimately, what you are
really interested in is how long you are going to have to wait for your answers, and this is just
what the wall-clock time measures.

Linux shells typically provide an internal timing command, usually called time. This command
measures the total execution time for a program when executed by the shell. Here is an
example with the bash shell:

[sl oanj d@amy PROFILE]$ time ./deno

r eal on6. 377s
user Onb. 350s

Sys OnD. 010s

In this example, the program demo ran for a total of 6.377 seconds. This number is the total
elapsed time or wall-clock time. Of that time, it spent 5.350 seconds executing the user or
non-kernel mode and another 0.010 seconds for system calls or in kernel mode. The
difference between the elapsed or real time and the sum of the user and sys times is time

spent by the system doing computing for other tasks.

While most Unix shells provide a timing command, different shells provide different levels of
information. Here is the same program timed under the C shell.

[sl oanj d@my PROFI LE]$ csh

[sl oanjd@ny ~/ PROFILE]$ tinme ./deno

5.340u 0. 000s 0:06.37 83.8% 0+0k 0+0i o 65pf+0w

[sl oanj d@ny ~/ PROFILE] $ exit

exit

In addition to user, system, and wall-clock times, with the C shell you also get percent of CPU
time (83.8% in this example), shared and unshared memory usage (0 and 0), block input and
output operations (0O and 0), number of page faults (65), and number of swaps (0).

With some shells such as the Korn shell, there is another timer, timex.timex, when used with
the- s option, provides still more information. See the appropriate manpage for more details.

If you don't want to worry about shell-specific commands, you can get pretty much the same
information if you use Linux's external time command.

[sl oanj d@ny PROFI LE]$ /usr/bin/tinme ./denp

5.32user 0.00system 0: 06.51el apsed 81%CPU (Oavgt ext +Oavgdata Omaxresi dent)k

Oi nput s+0out puts (66maj or+12m nor) pagef aul ts Oswaps

And if you want to be overwhelmed with information, use the - v option. (You might try
/bin/time if you aren't running Linux.)

With MPICH or LAM/MPI you can run the time command by simply inserting it on the
command line before the call to mpirun.

[sl oanj d@my PROFILE]$ time npirun -np 4 rect

(This is not guaranteed to work with all versions of MPI.)

While you'll have already formed an opinion as to whether your code is taking too long well
before you get around to timing it, time does let you to put some number on your impression
so that you'll sound more professional when complaining about system performance. Also, the
difference between the wall-clock time and the time your program takes will give you an idea
of how much of the time is caused by your code and how much of the time depends on
system load. (Of course, if you are timing an entire program, you needn't be concerned about
any code reordering caused by optimizing compilers.) Finally, several timings with different
input sizes can be used to get a very rough idea of how your program will scale.

\ . PREY < Day Day Up > ME=ST ‘

< Day Day Up >

17.4 Timing C Code Segments

The primary limitation to the various versions of time is that they don't tell you what part of
your code is running slowly. To know more, you'll need to delve into your code. There are a
couple of ways this can be done. The most straightforward way is to "instrument” the
code—that is, to embed commands directly into the code that record the system time at key
points and then to use these individual times to calculate elapsed times.

The primary advantage to manual instrumentation of code is total control. You determine
exactly what you want or need. This control doesn't come cheap. There are several difficulties
with manual instrumentation. First and foremost, it is a lot of work. You'll need to add
variables, determine collection points, calculate elapsed times, and format and display the
results. Typically, it will take several passes to locate the portion of code that is of interest.
For a large program, you may have a number of small, critical sections that you need to look
at. Once you have these timing values, you'll need to figure out how to interpret them. You'll
also need to guard against altering the performance of your program. This can be a result of
over-instrumenting your code, particularly at critical points. Of course, these problems are not
specific to manual instrumentation and will exist to some extent with whatever approach you
take.

The traditional way of instrumenting C code is with the tinme system call, provided by the
time.h library. Here is a code fragment that demonstrates its use:

#incl ude <sys/tine. h>

int mai n(voi d)

{

time_t start, finish;

tine(&start);

/* section to be timed */

time(&finish);

printf("El apsed time: %d\n", finish - start);
}

The time function returns the number of seconds since midnight (GMT) January 1, 1970.
Since this is a very large integer, the type tinme_t (defined in <sys/times.h>) can be used to
ensure that time variables have adequate storage. While easy to use if it meets your needs,

the primary limitation for ti ne is that the granularity (1 second) is too large for many tasks.

You can get around the granularity problem by using a different function, get t i neof day,
which provides microsecond granularity. get ti meof day is used with a structure composed of
two long integers, one for seconds and one for microseconds. Its use is slightly more
complicated. Here is an example:

#incl ude <sys/tine. h>

int mai n(voi d)
{
struct tinmeval start, finish;

struct tinmezone tz;

getti neof day(&start, & z);
printf("Ti me---seconds: % mcroseconds: % \n",
start.tv_sec, start.tv_usec);

/* section to be tinmed */

getti neof day(& i nish, &t z);
printf("Ti me---seconds: % mcroseconds: % \n",

finish.tv_sec, finish.tv_usec);

printf("\nE apsed ti me---seconds: % m croseconds: % \n",
((start.tv_usec > finish.tv_usec) ?
finish.tv_sec - start.tv_sec - 1 :
finish.tv_sec - start.tv_sec),
(start.tv_usec > finish.tv_usec) ?
1000000 + finish.tv_usec - start.tv_usec :

finish.tv_usec - start.tv_usec);

return O;

The first argument to get ti meof day is the structure for the time. The second is used to adjust
results for the appropriate time zone. Since we are interested in elapsed time, the time zone
is treated as a dummy argument. The first two pri nt fs in this example show how to display
the individual counters. The last pri nt f displays the elapsed time. Because two numbers are
involved, calculating elapsed time is slightly more complicated than with ti ne.

Keep in mind that both t i me and get t i neof day return wall-clock times. If the process is
interrupted between calls, the elapsed time that you calculate will include the time spent
during the interruption, even if it has absolutely nothing to do with your program. On the
other hand, these functions should largely (but not completely) be immune to problems
caused with code reordering for compiler optimizations, provided you stick to timing basic
blocks. (A basic block is a block of contiguous code that has a single entry point at its
beginning and a single exit point at its end).

Typically, timing commands are placed inside #i f def statements so that they can be compiled
only as needed. Other languages, such as FORTRAN, have similar timing commands.
However, what's available varies from compiler to compiler, so be sure to check the
appropriate documentation for your compiler.

17.4.1 Manual Timing with MPI

With the C library routines ti ne and get t i neof day, you have to choose between poor
granularity and the complications of dealing with a structure. With parallel programs, there is
the additional problem of synchronizing processes across the cluster.

17.4.2 MPI Functions

MPI provides another alternative, three additional functions that can be used to time code.

17.4.2.1 MPI_Wtime

Liket i me, the function MPl _W i ne returns the number of seconds since some point in the
past. Although this point in the past is not specified by the standard, it is guaranteed not to
change during the life of a process. However, there are no guarantees of consistency among
different processes across the cluster. The function call takes no arguments. Since the return
value is a double, the function can provide a finer granularity than ti ne. As with tine,

MPI _W i e returns the wall-clock time. If the process is interrupted between calls to

MPI _Wi e, the time the process is idle will be included in your calculated elapsed time. Since
MPI _W i me returns the time, unlike most MPI functions, it cannot return an error code.

17.4.2.2 MPI_Witick

MPI _Wi ck returns the actual resolution or granularity for the time returned by MPI _Wi ne

(rather than an error code). For example, if the system clock is a counter that is incremented
every microsecond, MPI _W i ck will return a value of roughly 0.000001. It takes no argument
and returns a double. In practice, MPl _W i ck's primary use is to satisfy the user's curiosity.

17.4.2.3 MPI_Barrier

One problem with timing a parallel program is that one process may be idle while waiting for

another. If used naively, MPI _Wi nme,tine, or getti neof day could return a value that includes
both running code and idle time. While you'll certainly want to know about both of these, itis
likely that the information will be useful only if you can separate them. MPI _Barri er can be
used to synchronize processes within a communication group. When MPl _Bar ri er is called,
individual processes in the group are blocked until all the processes have entered the call.
Once all processes have entered the call, i.e., reached the same point in the code, the call
returns for each process, and the processes are no longer blocked. MPl _Barri er takes a
communicator as an argument and, like most MPI functions, returns an integer error code.

Here is a code fragment that demonstrates how these functions might be used:

#incl ude "npi.h"

int main(int argc, char * argv[])

{

doubl e start, finish;

MPI _Barrier(MPl _COVW WORLD) ;
start = MPI_Winme();

/* section to be tinmed */

MPI _Barrier(MPl _COVM WORLD) ;
finish = MPI_Wime();
if (processld = = 0)

fprintf(stderr, "Elapsed tinme: %\n", finish-start);

Depending on the other code in the program, one or both of the calls to MPl _Barri er may not
be essential. Also, when timing short code segments, you shouldn't overlook the cost of
measurement. If needed, you can write a short code segment to estimate the cost of the calls
toMPl _Barrier and MPl _Wi me by simply repeating the calls and calculating the difference.

17.4.3 PMPI

If you want to time MPI calls, MPI provides a wrapper mechanism that can be used to create
profiling interface. Each MPI function has a dual function whose name begins with PMPI rather
thanMPI . For instance, you can use PMPI _Send just as you would MPI _Send,PMPI _Recv just

as you would MPI _Recv, and so on. What this allows you to do is write your own version of
any function and still have a way to call the original function. For example, if you want to write
your own version of MPl _Send, you'll still be able to call the original version by simply calling

its dual, PMPI _Send. Of course, to get this to work, you'll need to link to your library of
customized functions before you link to the standard MPI library.

Interesting, you say, but how is this useful? For profiling MPI commands, you can write a new
version of any MPI function that calls a timing routine, then calls the original version, and,
finally, calls the timing routine again when the original function returns. Here is an example
forMPl _Send:

int MPl _Send(void * buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Conm comm

{
doubl e start, finish;
int err_code;
start = MPI_Winme();
err_code = PMPI _Send(buf, count, datatype, dest, tag, com);
finish = MPl_Wine();
fprintf(stderr, "H apsed tinme: %\n", finish - start);
return err_code;
}

For this function definition, the parameter list was copied from the MPI standard. For the
embedded MPI function call, the return code from the call to PMPI _Send is saved and passed
back to the calling program. This example just displays the elapsed time. An alternative would
be to return it through a global variable or write it out to a file.

To use this code, you need to ensure that it is compiled and linked before the MPI library is
linked into your program. One neat thing about this approach is that you'll be able to use it
with precompiled modules even if you don't have their source. Of course it is a lot of work to
create routines for every MPI routine, but we'll see an alternative when we look at profiling
using MPE later in this chapter.

@ PREV < Day Day Up > MEXT W

< Day Day Up >

17.5 Profilers

Thus far we have been looking at timing code manually. While this provides a lot of control, it
is labor intensive. The alternative to manual timing is to use a profiler. A profiler attempts to
capture the profile of a program in execution; that is, a set of timings for an application that
maps where time is spent within the program. While with manual timing you'll want to focus
in on part of a program, a profiler typically provides information for the entire application in
one fell swoop. While a profiler may give more results than you actually need, you are less
likely to overlook a hotspot in your code using a profiler, particularly when working with very
complicated programs. Most profilers are easy to use and may give you some control over
how much information is collected. And most profilers not only collect information, but provide
a mechanism for analyzing the results. Graphical output is common, a big help with large,
complicated programs.

There are a number of profilers available, particularly if you include commercial products.
They differ in several ways, but it usually comes down to a question of how fine a granularity
you want and how much detail you need. Choices include information on a line-by-line basis,
information based on the basic blocks, or information based on function calls or modules.
Profilers may provide timing information or simply count the number of times a statement is
executed.

There are two basic categories for profiles—active and passive. (Some profilers, such as
gprof, have features that span both categories.) A passive profiler gathers information without
modifying the code. For example, a passive profiler might collect information by repeatedly
sampling the program counter while the program is running. By installing an interrupt service
routine that wakes up periodically and examines the program counter, the profiler can
construct a statistical profile for the program.

While passive profiles are less intrusive, they have a couple of problems. First, they tend to
provide a flat view of functions within an application. For example, if you have a function that
is called by several different functions, a passive profiler will give you an idea of how often the
function is called, but no information about what functions are making the call. Second,
passive profilers are inherently statistical. Key performance issues are how often you sample
and how many samples are taken. The quality of your results will depend on getting these
parameters right.

Active profiles automatically add code to collect profile information. Code can be added either
directly to the source code or to the object code generated by the compiler. While active
compilers avoid some of the problems passive profilers face, they introduce their on set of
problems. Perhaps the most significant of these is the confounding effect on timing
measurement caused by the execution of the added instructions.

In this section, we'll look at two profilers, gprof and gcov. These profilers modify the
application so that it will count how often functions are called and individual instructions are
executed, respectively. (Additionally, gprof uses passive profiling to estimate execution
times.) The two tools we'll examine use compiler options to add the profiling code to the
object code generated by the compiler. While both of these tools were designed for serial
programming and were not intended for use with parallel programs, they can, with a little
added effort, be used with parallel programs. We'll examine their use with serial code first and
then look at how they can be used with parallel code.

17.5.1 gprof

gprof generates profiles and call graphs (a report of which routines call which). There is both a

Berkeley Unix gprof and a GNU gprof that provide essentially the same information. gprof is
available on most systems today. (If your system doesn't have gprof, you might look to see if
prof is installed. While it's not as versatile as gprof, you'll still be able to generate the flat
profiles described in this section.)

Usinggprof is remarkably straightforward. You'll need to compile and link the program you
want to profile using the - gp option. (Compiler optimizations shouldn't cause much trouble
withgprof.) Next, run the program. This will create a file gmon.out with the profile
information. If the file already exists from a previous run, it will be overwritten. The gprof
program is then run to convert the binary output in gmon.out into a readable format.

Here is an example:
[sl oanj d@my PROFI LE]$ gcc denp.c -pg -o deno
[sl oanj d@ny PROFILE]$./denp

[sl oanj d@ny PROFI LE]$ gprof -b denmo > denvo.gpr of

This example uses the - b option to suppress the annotations that gprof includes by default.
You may want to leave this off the first time you run gprof, but if you run gprof often, you'll
want to use this option. gprof has other options that you might want to investigate if you find
you are using it a lot, such as excluding functions from the reports. In this example, I've also
redirected the output to a file to make it easier to examine.

Here is the code that | profiled.
mai n()
{ int i;

for (i=0; i<200; i++)

{ foo();
bar();
baz(); }
}
foo()
{ intj;
for (j=0; j<250; j++) bar();
}
bar ()
{ int k;

for (k=0; Kk<50; k++);

baz()
{ int m

for (mF0; nx100; m++) bang();

}
bang()
{ int n;
for (n=0; n<200; n++) bar();
}

As you can see, it doesn't do anything worthwhile, but it provides a reasonable demonstration
ofgprof's capabilities.

The output from gprof consists of three parts: a flat profile, a call graph, and a function index.
Here is the first part of the output, the flat profile:

Flat profile:

Each sanple counts as 0.01 seconds.

% cunul ative self sel f tot al
time seconds seconds calls ns/call ms/call nane
96. 97 6.09 6.09 4050200 0. 00 0.00 bar
1.27 6.17 0.08 20000 0. 00 0.30 bang
1.27 6.25 0. 08 200 0. 40 30.87 baz
0.48 6.28 0.03 200 0. 15 0.53 foo

This is not difficult to interpret. The routines are profiled, one per line, with their names given
in the last column nanme. The column % ti me gives the amount of time spent in each routine.
sel f seconds gives the time spent in an individual routine while cunul ati ve seconds
provides the total for the named routine along with the ones above it. cal | s reports the
number of times the function is called while sel f ns/cal | gives the average time spentin the
routine per call. tot al ns/ cal | gives the average time spent in the function and its
descendents. All times are given in milliseconds.

It should be clear that optimizing or eliminating calls to bar would provide the greatest
improvement. What's not clear is the interrelationship among the calls. Since bar is called by
several functions, improvement to these will help as well. To see this you need more
information. This is provided by a call graph.

Here is the call graph for this code:

Cal | graph

granularity: each sanple hit covers 4 byte(s) for 0.16% of 6.28 seconds

i ndex % tine self children called nane
<spontaneous>

[1] 100. 0 0.00 .28 main [1]

0.08 .09 200/ 200 baz [2]

0.03 .08 200/ 200 foo [5]

0. 00 .00 200/ 4050200 bar [4]

0.08 .09 200/ 200 main [1]
[2] 98.3 0.08 .09 200 baz [2]

0.08 .01 20000/ 20000 bang [3]

0.08 .01 20000/ 20000 baz [2]
[3] 97.0 0.08 .01 20000 bang [3]

6. 01 . 00 4000000/ 4050200 bar [4]

0. 00 .00 200/ 4050200 mai n [1]

0.08 .00 50000/ 4050200 foo [5]

6. 01 . 00 4000000/ 4050200 bang [3]
[4] 97.0 6. 09 .00 4050200 bar [4]

0. 03 .08 200/ 200 mai n [1]
[5] 1.7 0.03 .08 200 foo [5]

0. 08 .00 50000/ 4050200 bar [4]

The first thing you'll notice is that the numbers in the %t i me column don't add up to 100

percent. The reason is that each timing includes the total time spent in the function and its
children. The next two columns give the actual time spent in the function (sel f) and in the
functions it calls (chi | dren). The cal | ed column gives the number of times the function was
called. When two numbers are given in this column, the top number is the number of calls by
the parent to the child and the bottom number is the total number of calls to the child. For
example, consider the next to last line in section [4].

6.01 0.00 4000000/ 4050200 bang [3]

Since section [4] describes calls to bar, this line tells us that bang makes 4,000,000 of the
4,050,200 total calls made to bar.

The table is sorted numerically with a unique number of each function. This number is printed
next to each function to make it easier to look up individual functions. A function index is also
included at the end of the report.

I ndex by functi on nane

[3] bang [2] baz

[4] bar [5] foo

This is relatively useless for a small program but can be helpful with larger programs.

As noted above, the number of function calls is determined actively, so this number should be
totally accurate. The percentage of time in each is determined passively with a sampling rate
that may be too slow for short programs to capture enough data to be statistically reliable.
You will have observed that the basic granularity of gprof is a routine. Depending on the code,
this may not provide enough information. For example, it may not be immediately obvious
whether the poor performance you are seeing is the result of the computational complexity of
your code or of poor memory utilization if you are looking at a large routine. To improve
resolution and gain more information, you could break a program into more routines. Or you
could use gcov.

17.5.2 gcov

gcov is a test-coverage program that is often used as a profiler. When a test suite is designed
for a program, one of the objects is to exercise all parts of the code. A test-coverage program
records the number of times each line of code is executed. The idea is that you can use this
coverage data to ensure that your test suite is adequate. Of course, this is also the sort of
data you might want when profiling code.

gcov is part of the gcc development packages, so if you have gcc on your system, you should
havegcov. It does not work with other compilers, but similar programs may be available for
them (e.g., tcov with Solaris).

To use gcov, you need to compile code with two options, -fprofil e-arcs and -ft est-
cover age, which tell the compiler to add, respectively, the additional code needed to generate
a flow graph and extra profiling information.

[sl oanj d@ny PROFI LE]$ gcc -fprofile-arcs -ftest-coverage deno.c -o deno

You should avoid optimizations when using gcov, since optimizations that rewrite code will
make the results difficult to interpret. When the code is compiled, two new files will be created

with the same name as your program but with the extensions .bb and .bbg. The first contains
a list of source files with line numbers corresponding to basic blocks. The second is used to
reconstruct a flow graph for the program.

Once you have compiled the code, you'll need to run it.

[sl oanj d@ny PROFILE]$./denp

This will create yet another file with the run data. It will have the same name as your program
but with a .da extension. This is created in the directory where the original program was
compiled.

Finally, you can run gcov to generate your report.

[sl oanj d@ny PROFI LE]$ gcov deno

100. 00% of 13 source |lines executed in file deno.c

Creating denp.c.gcov.

You'll notice that the command reports what percentage of the source is actually executed,
something you would want to know if you are using it as a coverage tool rather than a
profiler. The actual report is created in a file with the extension . gcov.

Here is an example for the demonstration program that we looked at earlier.

nai n()
2 { inti;
201 for (i=0; i<200; i++)
200 { foo();
200 bar();
200 baz(); }
}
foo()

40 { int j;

200 for (j=0; j<250; j++) bar();

bar ()
8100400 { int k;

4050200 for (k=0; k<50; k++);

baz()
400 { int m

200 for (me0; nx100; mt+) bang();

bang()
40000 { int n;

20000 for (n=0; n<200; n++) bar();

As you can see, a count giving the number of times each line was executed is appended to
each line. Take care; if you execute the program multiple times, these counts accumulate. If
this isn't what you want, delete or rename the data file between runs.

17.5.3 Profiling Parallel Programs with gprof and gcov

Depending on the version of MPI you are using, you may be able to use gprof and gcov with
your MPI programs. However, you'll need to make some adjustments. If we naively try to
profile an MPI program with gprof or gcov, we run into problems. Here is an example using
rect from Chapter 14:

[sl oanj d@ny PROFI LE]$ npicc -pg rect.c -o rect
[sl oanj d@mny PROFILE]$ npirun -np 4 rect

Ent er nunber of chunk to divide probleminto:
7

Ent er nunmber of steps per chunk:

20

Enter | ow end of interval:

2.0

Enter high end of interval:

5.0

Area for process 1, is: 2.107855

Area for process 2, is: 2.999984

Area for process 3, is: 4.049546

Area for process 1, is: 5.256543
Area for process 2, is: 6.620975
Area for process 3, is: 8.142841
Area for process 1, is: 9.822141

The area from 2. 000000 to 5.000000 is: 38.999885

Everything appears to work. All the expected files are created. Here is the flat profile.
[sl oanj d@ny PROFI LE]$ gprof -bp rect

Flat profile:

Each sanple counts as 0.01 seconds.

no tinme accunul at ed

% cumul ative self sel f tot al
time seconds seconds calls Ts/call Ts/call nane
0. 00 0.00 0. 00 40 0. 00 0.00 f
0. 00 0.00 0. 00 2 0. 00 0.00 chunkArea
0. 00 0.00 0. 00 1 0. 00 0.00 _GLOBAL_ _|_mai nGCOV

We've obviously profiled something. The question is what. Because we are using NFS, all the
processes are writing out their lodfiles to the same directory. Since files are overwritten, what
we have is the data from the last process to finish. For the data, we can see this is either
process 2 or process 3.

If we are going to avoid this problem, we need to use the local filesystem on each node. For
exampI)I_el, we could copy the compiled code over to /tmp on each machine and run it from
there.[2

[2] This example uses scp to copy the file. If you have installed the C3 tools, discussed in Chapter 9, then
you can use cpush instead.

[sl oanj d@amy PROFILE]$ cp rect /tnp/

[sl oanj d@my PROFI LE]$ scp rect oscarnodel:/tnp/

reCt loo%l*****************************I 372 KB 00 00
[sl oanj d@ny PROFI LE]$ scp rect oscarnode2:/tnp/

rect loo%l*****************************l 372 KB 00 00
[sl oanj d@ny PROFILE]$ scp rect oscarnode3d:/tnp/

reCt loo%l*****************************I 372 KB 00 00

[slo
[slo
Ente
7
Ente
20
Ente

2.0

Enter high end of

5.0

Area

Area

Area

Area

Area

Area

Area

The

anj d@ny PROFILE]$ cd /tnp

anjd@ny tnpl$ npirun -np 4 rect

r nunber of chunk to divide probleminto

r number of steps per chunk:

r | ow end of

for process
for process
for process
for process
for process
for process

for process

i nterval:

interval :

1, is: 2.107855
2, is: 2.999984
3, is: 4.049546
1, is: 5.256543
2, is: 6.620975
3, is: 8.142841

1, is: 9.822141

area from 2. 000000 to 5.000000 is: 38.999885

Here is the flat profile for oscarnodel:

[sl oanj d@scarnodel tnp]$ gprof -bp rect

Fl at

profile:

Each sanple counts as 0.01 seconds.

no time accunmul at ed

%

cumul ative

tinme seconds

0.

0.

0.

00 0.00
00 0.00
00 0.00

sel f sel f tota
seconds calls Ts/call Ts/call nane
0. 00 60 0. 00 0.00 f
0.00 3 0. 00 0. 00 chunkArea

0. 00 1 0. 00 0.00 _GLOBAL_

_| _mai nGCOV

And here is the flat profile for oscarnode2:

[sl oanj d@scarnode2 tnp]$ gprof -bp rect

Flat profile:

Each sanple counts as 0.01 seconds.

no time accunul at ed

% cumul ative self sel f tot al
time seconds seconds calls Ts/call Ts/call nane
0. 00 0.00 0. 00 40 0. 00 0.00 f
0. 00 0.00 0. 00 2 0. 00 0. 00 chunkArea
0.00 0.00 0. 00 1 0.00 0.00 _GLOBAL_ _I _nmi nGCOV

If you compare these to the output, you'll see the calls to chunkArea now make sense—it is
called three times by process 1 on oscarnodel and twice by process 2 on oscarnode2. (We
could also look at the head node, amy, but because of the master/slave design of the
program, there isn't much to see.)

Unfortunately, using gcov with a parallel program is even more complicated. You'll recall that
the compile options used with gcov create two additional files and that a datafile is created
when the program is run. To run gcov, you'll need all these files as well as the executable and
the original source code file. To further complicate matters, the datafile that is created when
the program is run is created in the directory where the source was compiled.

To use gcov on a cluster, first copy the source code file to /tmp or a similar directory. Next,
compile the program with the appropriate switches. Once you've done this, you'll need to
copy the compiled code, the original source code, the .bb file, and the .bbg file to each node
on the cluster. Now you can run the program. A datafile will be created on each cluster in
/tmp. Once you have done this, you can then log onto each node and run gcov. For example,

[sl oanj d@scarnodel tnp]$ gcov rect
66. 67% of 57 source |lines executed in file rect.c

Creating rect.c.gcov.

Don't forget that the datafile accumulates information with gcov. If you want fresh data, you'll
need to delete it from each node. This is a lot of copying, so you'll want to automate it as
much as possible. You'll also need to clean up after you are done. In this example, | copied
rect,rect.c,rect.bb, and rect.bbg to each node. Fortunately, for this demonstration | only
needed to copy them to a few nodes.

A couple of warnings are in order. All of this is based on the assumption that each MPI
process will be able to access and write to the local filesystem. With MPI, there is no
guarantee this is the case. The approach outlined here seems to work with LAM/MPI and
MPICH, but if you are using some other version of MPI, all bets are off.

< Day Day Up >

17.6 MPE

Ifgprof and gcov seem too complicated for routine use, or if you just want to investigate all
your possibilities, there is another alternative you can consider—Multi-Processing Environment
(MPE). If you built MPICH manually on your cluster, you already have MPE. If you installed
MPICH as part of OSCAR, you'll need to add MPE. Fortunately, this is straightforward and is
described in Chapter 9. Although MPE is supplied with MPICH, it can be used with other
versions of MPI.

MPE provides several useful resources. First and foremost, it includes several libraries useful
to MPI programmers. These include a library of routines that create logdfiles for profiling MPI
programs. It also has a tracing library and a real-time animation library that are useful when
analyzing code. MPE also provides a parallel X graphics library. There are routines than can be
used to ensure that a section of code is run sequentially. There are also debugger setup
routines. While this section will focus on using logfiles to profile MPI program performance,
remember that this other functionality is available should you need it.

MPE's logging capabilities can generate three different logfile formats—ALOG,CLOG, and
SLOG. ALOG is an older ASCIlI-based format that is now deprecated. CLOG is the current
default format, while SLOG is an emerging standard. Unlike SLOG, CLOG does not scale well
and should be avoided for large files.

MPE includes four graphical visualization tools that allow you to examine the logdfiles that MPE
creates,upshot,nupshot,jumpshot-2, and jumpshot-3. The primary differences between
these four tools are the file formats they read and their implementation languages.

upshot

This tool reads and displays ALOG files and is implemented in Tcl/Tk.

nushot

This tool reads and displays CLOG files. Because it is implemented in an older version of
Tcl/Tk, it is not automatically installed.

jumpshot-2

This tool reads and displays CLOG files and is implemented in Java 1.1. (Unlike
jumpshot-3,jumpshot-2 is not compatible with newer versions of Java.)

jumpshot-3
This tool reads and displays SLOG files and is implemented in Java.

To build each of these, you will need the appropriate version of TCL/TK or Java on your
system.

Finally, MPE provides several utilities that simplify dealing with logfiles.

clog2slog

This utility that converts CLOG files into SLOG files.

clog2alog

This converts from CLOG to ALOG format.

slog_print and clog_print

These print programs for SLOG and CLOG files, respectively.

viewers

This utility invokes the appropriate visualization tool needed to display a logfile based on
its format.

There are two basic approaches to generating logfiles with MPE. When you link to the
appropriate MPE library, logfiles will be generated automatically using the PMPI profiling
interface described earlier in this chapter. Alternatively, you can embed MPE commands in a
program to manually collect information. It is also possible to combine these approaches in a
single program.

17.6.1 Using MPE

In order to use MPE, you'll need to link your programs to the appropriate libraries. Since MPE
has been integrated into the MPICH distribution, using MPICH is the easiest way to go because
MPICH provides compiler flags that simplify compilation.

If you are using another version of MPI, instead of or in addition to MPICH, your first order of
business will be locating the MPE libraries on your system and ensuring they are on your
compile/link paths, typically /usr/local/lib. If in doubt, use whereis to locate one of the
libraries. They should all be in the same place.

[sl oanj d@my sl oanj d]$ whereis |ibnpe. a

libmpe: /usr/local/lib/libnpe. a

Once you've got your path set correctly, using MPE shouldn't be difficult.

MPICH includes several demonstration programs, so you may find it easier if you test things
out with these rather than with one of your own programs. In the next two examples, I'm
usingcpi.c and cpilog.c, which are found in the examples directory under the MPICH source
tree.cpi.c is an ordinary MPI program that estimates the value of . It does not contain any
MPE commands. We'll use it to see how the automatic profiling library works.

To compile cpi.c under MPICH, use the - npi | og compiler flag.

[sl oanj d@any MPEDEMO|$ npicc cpi.c -npilog -o cpi

It is only slightly more complicated with LAM/MPI. You'll need to be sure that the libraries can
be found and you'll need to explicitly link both libraries, libimpe.a and libmpe.a as shown:

[sl oanj d@ny MPEDEMO|$ npicc cpi.c -Ilnpe -lInpe -0 cpi

(Be sure you link them in the order shown.)
When you run the program, you'll notice that a logfile is created.
[sl oanj d@nmy MPEDEMOl$ npirun -np 4 cpi
Process 0 of 4 on any
pi is approxinmately 3.1415926544231239, Error is 0.0000000008333307
wal | clock time = 0.005883
Witing logfile.
Finished witing | ogfile.
Process 2 of 4 on oscarnode2.oscardonmai n
Process 1 of 4 on oscarnodel.oscardonai n
Process 3 of 4 on oscarnode3.oscar domai n
By default, a CLOG file will be created. You can change the default behavior by setting the
environment variable MPE_LOG_FCRMAT.I31 For example,
[31 while setting MPE_LOG_FCRMAT works fine with MPICH, it doesn't seem to work with LAM/MPI.

[sl oanj d@any MPEDEMO|$ export MPE_LQOG FORVAT=SLOG

You can view the CLOG file directly with jumpshot-2, or you can convert it to a SLOG file with
clog2slog utility and then view it with jumpshot-3. I'll use the latter approach since | haven't
installedjumpshot-2 on this system.

[sl oanj d@any MPEDEMO|$ clog2sl og cpi.cl og

[sl oanj d@any MPEDEMO|$ j unpshot cpi . sl og

Remember that you'll need to execute that last command in an X Window System
environment.

jumpshot-3 opens three windows. The first is the main window for jumpshot-3, which you can
use to open other lodfiles and change program defaults. If you close it, the other jumpshot-3
windows will all close as well. See Figure 17-1.

Figure 17-1. Main Jumpshot-3 window

v T i - ~ x

File Display System Help

Lagfile |cpi.clog

The next window to open will be the legend. This gives the color code for the data display

window, which opens last. See Figure 17-2.

Figure 17-2. Legend

bl LEQEN

% BCAST
@ REDUCE

Select fDeselect

All

L Cha.nue Colar J

Sincecpi.c only uses two MPI commands, only two are shown. If other MPI functions had
been used in the program, they would have been added to the window. If the colored bullets
are not visible when the window opens, which is often the case, just resize the window and

they should appear.

The last window, the View & Frame Selector, displays the actual profile information. The graph
is organized vertically by process and horizontally by time. Once you have this window open,
you can use the options it provides to alter the way your data is displayed. See Figure 17-3.

Figure 17-3. View & Frame Selector

W W lecto - 0%

Fila Graph Data Sets ZFoom Legend

Ewvent Count vs Time

T immie;

v T T T v T
u] 00027 00034 0.0041 O,0042 00056 00063 00070 ©.007F O 0084

time { seconds)
FrEarEr s sRs e

A SRR AR AR AR EE
e e

gk

Connectivity Options View D prions
) Disconnected States @ Connected States ' MPI-Process ® Thread
Frame Information Frame Dperations

Number of Frames = 1 -_ﬂl .a ;
Current Frome - o Display

You can find an introductory tutorial on jumpshot-3 under the MPICH source tree in the
directorympe/viewers/jumpshot-3/doc. Both PDF and HTML versions are included.

As noted earlier, if you want more control over how your program is profiled, you can embed
MPE profiling commands directly into the code. With MPICH, you'll compile it in exactly the
same way, using the - npi | og flag. With LAM/MPI, you only need to link to the libmpe.a
library.

[sl oanj d@ny MPEDEMO|$ npicc cpilog.c -Inpe -0 cpilog

The file cpilog.c, compiled here, is an MPE demonstration program that includes embedded
MPE commands. An explanation of these commands and an example are given in the next
subsection of this chapter.

Before we leave compiling MPE programs, it is worth mentioning the other MPE libraries that
are used in much the same way. With MPICH, the compiler flag - npi ani mis used to link to the
animation library, while the flag - npi t race is used to link to the trace library. With LAM/MPI,
you'll need to link these directly when you compile. For example, to use the trace library
libtmpe.a, you might enter

[sl oanj d@any MPEDEMO|$ npicc cpi.c -ltnpe -0 cpi

With the trace library you'll get a trace printout for all MPI calls when you run the program.
Here is a partial listing for cpi.c:

[sl oanj d@anmy MPEDEMO}$ npirun -np 4 cpi

Starting MPlI _Init...

Starting MPI _Init...

Starting MPI _Init...

Starting MPI _Init...

(0]
[1]
[2]
[3]
[1]
[2]
[3]
[1]
[2]
[3]
(1]
[2]
[3]
[1]
[2]
[3]
[2]
[1]
[3]
[1]
[2]
[3]

Endi ng MPI _Ini t

Endi ng MPI _Init

Endi ng MPI _Init

Endi ng MPI _Init

Starting MPI _Conm si ze. ..

Starting MPI _Conm si ze. ..

Starting MPI_Comm si ze. ..

Endi ng MPI _Comm si ze

Endi ng MPI_Comm si ze

Endi ng MPI _Comm si ze

Starting MPI_Conmrank. ..

Starting MPI_Commrank. ..

Starting MPI_Commrank. ..

Endi ng MPI_Comm rank

Endi ng MPI_Comm rank

Endi ng MPI _Conm rank

Starting MPlI_Get processor_nane...
Starting MPlI_Get processor_nane...
Starting MPl _Get _processor_nane.. .
Endi ng MPI _Get _processor _namne

Endi ng MPI _Get _processor _nane

Endi ng MPI _Get _processor _nhane

Process 1 of 4 on oscarnodel.oscardonmain

Process 2 of 4 on oscarnode2.oscar domai n

Process 3 of 4 on oscarnode3.oscar domai n

[2]
[1]

Starting MPI _Bcast. ..

Starting MPl_Bcast. ..

[3] Starting MPI _Bcast. ..

There's a lot more output that has been omitted. As you can see, the program output is
interspersed with the trace. The number in the square bracket is the process.

< Day Day Up >

< Day Day Up >

17.7 Customized MPE Logging

If you want more control over the information that MPE supplies, you can manually instrument
your code. This can be done in combination with MPE default logging or independently. Here is
an example of adding MPE command to rect2.c, a program you are already familiar with. The
new MPE commands are in boldface. (You'll notice a few other minor differences as well if you
look closely at the code.)

#incl ude "npi.h"
#include "npe.h"

#incl ude <stdio. h>

/* probl emparaneters */

#define f(x) ((x) * (x))
#def i ne nunmberRect s 50
#define | owerLimt 2.0
#define upperLimt 5.0

int main(int argc, char * argv[])
{
/* MPl variables */
int dest, noProcesses, processld, src, tag;
int evntla, evntlb, evnt2a, evnt2b, evnt3a, evnt3b, evnt4a, evnt4b;
doubl e start, finish;

MPI _St at us st at us;

[* problemvariables */
i nt i

doubl e area, at, height, lower, width, total, range;

/[* MPl setup */

MPI I nit(&argc, &argv);

MPI _Comm si ze(MPI _COVM WORLD, &noProcesses);

MPI _Comm r ank(MPI _COMM WORLD, &processld);

if (processld = =0) start = MPl_Winme();

MPE_Init_log();

/* et event |IDfrom MPE */

evnt la = MPE_Log_get _event _nunber();

evnt 1b = MPE_Log_get _event _number();
evnt 2a = MPE_Log_get _event _nunber();
evnt 2b = MPE_Log_get _event_nunber();
evnt 3a = MPE_Log_get _event_nunmber();
evnt 3b = MPE_Log_get _event _nunber();
evnt4a = MPE_Log_get _event _number();
evnt4b = MPE_Log_get _event _number();
if (processld = =0) {

MPE_Descri be_st at e(evnt 1a, evntlb, "Setup", "yellow');
MPE _Descri be_state(evnt2a, evnt2b, "Receive", "red");
MPE Descri be_state(evnt3a, evnt3b, "D splay"”, "blue");

MPE Descri be_st at e(evnt 4a, evnt4b, "Send", "green");

}

MPE Start _log();
MPl _Barrier(MPl _COVM WORLD) ;

MPE _Log_event (evntla, 0, "start setup");

/* adjust problemsize for subproblent/

range = (upperLimt - lowerLimt) / noProcesses;

wi dth = range / nunberRects;

| owner lowerLimt + range * processld,
/* cal cul ate area for subprobl em*/
area = 0.0;
for (i = 0; i < nunberRects; i++)
{ at =lower +i * width + width / 2.0;
hei ght = f(at);
area = area + width * height;
}

MPE_Log_event (evnt 1b, 0, "end setup");

MPI _Barrier(MPl _COVM WORLD) ;

/* collect information and print results */
tag = 0;
if (processld = = 0) /* if rank is O, collect results */
{ WMPE_Log_event (evnt2a, 0, "start receive");
total = area;
for (src=1; src < noProcesses; src++)
{ MI_Recv(&area, 1, MPI_DOUBLE, src, tag, Ml _COVM WORLD, &status);
total = total + ares;
}
MPE_Log_event (evnt 2b, 0, "end receive");
MPE_Log _event (evnt3a, 0, "start display");
fprintf(stderr, "The area from% to % is: %\n",
lowerLimt, upperLimt, total);
}
el se /* all other processes only send */

{ MPE_Log_event(evntd4a, 0, "start send");

dest = O;
MPlI _Send(&area, 1, MPI_DOUBLE, dest, tag, MPI_COW WORLD) ;

MPE_Log_event (evnt4b, 0, "end send");

if (processlid = = 0)

{ finish = M _Winme();

printf("El apsed time = %\n", finish-start);
MPE_Log_event (evnt 3b, 0, "end display");

}

/[* finish */
MPE_Fi ni sh_l og("rect 2-10g");
MPI _Finalize();

return O;

Let's examine the changes. First, you'll notice that the mpe.h header file has been included.
Next, in this example, we want to look at four sections of code, so we've added variables to
record event numbers for each, evnt 1a through evnt 4b. We'll need a pair of variables for each
block of code. Event numbers are just distinct integers used to identify events. You could
make up your own as long as you are consistent, but it is better to use the MPE function
MPE_Log_get _event_nunber, which ensures that you have unique numbers. It is essential that
you use it if you are putting these commands in functions stored in a library or functions that
call libraries. With each pair of event numbers, we've associated a description and color using
theMPE_Descri be_st ate function. This is used to create the legend, color the graphs, etc.
Notice that one event starts a block that you want measured and a second event ends it.

Make sure your events are paired and are called exactly once.

You'll notice that all the other MPE function calls are bracketed between calls to MPE_I nit _| og
andMPE_Fi ni sh_I og. If you are combining your logging with MPE's default logging, i.e.,
linking your program to liblmpe.a, these function calls should not be included. They will be
called by MPI _I nit and MPI _Fi ni sh, respectively. However, if you are using the MPE function
call independently—that is, without using MPE's default logging—you’ll need these two calls.
Note that MPE_Fi ni sh_I| og allows you to specify a name for the logfile.

Once we've got everything set up, we are ready to call MPl _Start _| og to begin recording
events. Next, we simply put the sections of code we want to profile between pairs of calls to
MPE_Log_event . For example, the initial MPI _Bcast call is profiled by surrounding it with the
MPE_Log_event calls for evnt 1a and evnt 1b.

Once you've got the code instrumented, it is just a matter of compiling it with the appropriate
MPE options, running the code, and then examining the logfiles. Here is the display for this
program. This is shown in Figure 17-4.

Figure 17-4. Timeline

0002473712

00015407632

In Qut Reset Optigns Frimt Closa

10 10
20 20
0 30
| [I | | [l |
D O0BO2F 0008250 O.0DE4FY O.ODEESE DOOBS1E OOO0%141 0009384 OO00S5AT O
L] r
¥ All States
¥ Setup ¥ Raceive ¥ [l Display ¥ Send

Changa Oriantalion

In this example, I've opted to display the timeline for the program. For this particular display,
| chose MPI-Process under View Options and clicked on the Display button under Frame
Operations. (If you try this example, you may find it educational to run it with and without the

calls to \VPI

4@ PREV

_Barrier.)

< Day Day Up >

< Day Day Up >

17.8 Notes for OSCAR and Rocks Users

WithOSCAR, you should have all of the basic commands described earlier in this chapter
includinggprof and gcov. Both MPICH and LAM/MPI are installed under the /opt directory with
OSCAR. The MPI commands are readily available, but you'll need to install MPE if you wish to
use it. Rocks also includes gprof and gcov. Several different MPICH releases are included
under/opt. MPE is installed but you will need to configure the viewers. More information on
setting up MPE is included in Chapter 9.

4@ FREV < Day Day Up > MEXT mp

< Day Day Up >

Part V: Appendix

This appendix offers useful sources of information for all the aspects of setting up and
programming a cluster that were covered in this book.

< Day Day Up >

< Day Day Up >

Appendix A. References

While these listings are far from complete, they are the sources that | found the most useful
and should certainly keep you busy for a long time.

4m PREV | < Day Day Up > | NEXT o

< Day Day Up >

A.1 Books

If you are a new Linux user, the books by Powers or Siever are both good general references.
If you want to know more about Linux system administration, my favorite is Nemeth. Frisch, a
quicker read but less detailed book, is also a good place to begin. If you need more
information on the Linux kernel, Bovet is a reasonable book to look at. For fine-tuning your
system, Musumeci is a good resource. For a detailed overview of Unix security issues, you
might look at Garfinkel. Limoncelli provides a general overview of system administration
practices.

A robust network is a crucial part of any cluster. While general Linux books will take you a
long way, at some point you'll need more specialized information than a general
administration book can provide. If you want a broad overview of networking, Tanenbaum is
very readable. For Ethernet, Spurgeon is a great place to start. If you want more information
on TCP/IP, Comer, Hall, and Stevens are all good starting points. For setting up a TCP/IP
network, you should consider Hunt. For more information on firewalls, look at Cheswick or
Sonnenreich.

Of course, setting up a system will require configuring a number of network services. Hunt
provides a very good overview. If you need to delve deeper, there are a number of books
dedicated to individual network services, particularly from O'Reilly. For Apache, consider
Laurie. For DNS, you won't do better than Albitz. For NFS, look at Callaghan or Stern. For
SSH, you might consult Barrett.

For general information on parallel computing, good choices include Culler, Dongarra, and
Dowd. Culler is more architecture and performance oriented. Dongarra is a very good source
for information on how parallel computing is used. Dowd provides a wealth of information on
parallel programming techniques.

For additional information on clusters, the best place to start is Sterling's book. Many of the
tools described in this text are discussed by their creators in the book edited by Sterling,
listed below. Although uneven at times, parts of Bookman are very helpful.

There are a number of books available on parallel programming with MPI. For a general
introduction, look to Gropp or Pacheco. Both will provide you with more examples and greater
depth that | had space for in this book. Snir is an indispensable reference. If you are using
PVM, Geist is the best place to start. For producing efficient code, Bentley is wonderful.
Unfortunately, it is out of print, but you may be able to find it in a local library. Dowd is also
useful.

Albitz, Paul and Cricket Liu. DNS and BIND. Fourth Edition. Sebastopol, CA: O'Reilly &
Associates, Inc., 2001.

Barrett, Daniel and Richard Silverman. SSH, the Secure Shell: The Definitive Guide.
Sebastopol, CA: O'Reilly & Associates, Inc., 2001.

Bentley, Jon Louis. Writing Efficient Programs. Upper Saddle River, NJ: Prentice-Hall, Inc.,
1982.

Bookman, Charles. Linux Clustering: Building and Maintaining Linux Clusters. Indianapolis, IN:
New Riders Publishing, 2002.

Bovet, Daniel and Marco Cesati. Understanding the Linux Kernel. Second Edition. Sebastopol,
CA: O'Reilly & Associates, Inc., 2002.

Callaghan, Brent. NFS lllustrated. Reading, MA: Addison Wesley Professional, 1999.

Cheswick, William, Steven Bellovin, and Aviel Rubin. Firewalls and Internet Security: Repelling
the Wiley Hacker. Second Edition. Reading, MA: Addison Wesley Publishing Co., 2003.

Comer, Douglas. Internetworking with TCP/IP: Principles, Protocols, and Architectures.
Volume 1. Fourth Edition. Upper Saddle River, NJ: Prentice Hall, 2000.

Culler, David, Jaswinder Pal Singh, with Anoop Gupta. Parallel Computer Architecture: A
Hardware/Software Approach. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998.

Dowd, Kevin and Charles Severance. High Performance Computing. Second Edition.
Sebastopol, CA: O'Reilly & Associates, Inc., 1998.

Dongarra, Jack et al., eds. Sourcebook of Parallel Computing. San Francisco, CA: Morgan
Kaufmann Publishers, Inc., 2003.

Frisch, Aleen. Essential System Administration. Sebastopol, CA: O'Reilly & Associates, Inc.,
1991.

Garfinkel, Simson, Gene Spafford, and Alan Schwartz. Practical Unix & Internet Security. Third
Edition. Sebastopol, CA: O'Reilly & Associates, Inc., 1993.

Geist, Al et al. PVM: Parallel Virtual Machine: A User's Guide and Tutorial for Networked
Parallel Computing. Cambridge, MA: MIT Press, 1994.

Gropp, William, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming
with the Message-Passing Interface. Second Edition. Cambridge, MA: MIT Press, 1999.

Hall, Eric A. Internet Core Protocols: The Definitive Guide with CD-ROM. Sebastopol, CA:
O'Reilly & Associates, Inc., 2000.

Hunt, Craig. TCP/IP Network Administration. Second Edition. Sebastopol, CA: O'Reilly &
Associates, Inc., 1998.

Jain, Raj. The Art of Computer Systems Performance Analysis. New York, NY: John Wiley &
Sons, 1991.

Laurie, Ben and Peter Laurie. Apache: The Definitive Guide. Third Edition. Sebastopol, CA:
O'Reilly & Associates, Inc., 2002.

Limoncelli, Thomas and Christine Hogan. The Practice of System and Network Administration.
Upper Saddle River, NJ: Addison Wesley, 2002.

Message Passing Interface Forum. MPI1-2: Extensions to the Message-Passing Interface.
Knoxville, TN: University of Tennessee, 1997.

Musumeci, Gian-Palol and Mike Loukides. System Performance Tuning. Second Edition.
Sebastopol, CA: O'Reilly & Associates, Inc., 2002.

Nemeth, Evi et al. Linux Administration Handbook. Upper Saddle River, NJ: Prentice Hall,
2002.

Oram, Andy, ed. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. Sebastopol,
CA: O'Reilly & Associates, Inc., 2001.

Pacheco, Peter. Parallel Programming with MPI. San Francisco, CA: Morgan Kaufmann
Publishers, Inc., 1997.

Powers, Shelley et al.. Unix Power Tools. Third Edition. Sebastopol, CA: O'Reilly & Associates,
Inc., 2003.

Siever, Ellen, Aaron Weber, and Stephen Figgins. Linux in a Nutshell. Fourth Edition.
Sebastopol, CA: O'Reilly & Associates, Inc., 2003.

Snir, Marc et al. MPI: The Complete Reference. 2 vols. Cambridge, MA: MIT Press, 1998.

Sonnenreich, Wes and Tom Yates. Building Linux and OpenBSD Firewalls. New York, NY: John
Wiley & Sons, Inc., 2000.

Spurgeon, Charles. Ethernet: The Definitive Guide. Sebastopol, CA: O'Reilly & Associates,
Inc., 2000.

Stallman, Richard et. al. Debugging with GDB: The GNU Source-Level Debugger. Boston, MA:
GNU Press, 2003.

Sterling, Thomas, ed. Beowulf Cluster Computing with Linux. Cambridge, MA: MIT Press,
2002.

Stern, Hal, Mike Eisler, and Ricardo Labiaga. Managing NFS and NIS. Second Edition.
Sebastopol, CA: O'Reilly & Associates, Inc., 2001.

Stevens, W. Richard. TCP/IP lllustrated. Volume 1, The Protocols. Reading, MA: Addison
Wesley Longman, 1994.

Tanenbaum, Andrew. Computer Networks. Fourth Edition. Saddle River, NJ: Pearson
Education, 2002.

Thompson, Robert and Barbra Thompson. Building the Perfect PC. Sebastopol, CA: O'Reilly &
Associates, Inc., 2004.

Thompson, Robert and Barbra Thompson. PC Hardware in a Nutshell. Third Edition.
Sebastopol, CA: O'Reilly & Associates, Inc., 2003.

Wilkinson, Barry and Michael Allen. Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers. Upper Saddle River, NJ: Prentice-Hall, Inc.,
1999.

< Day Day Up >

< Day Day Up >

A.2 URLs

These URLs offering software and documentation were current when this book was written.
They are grouped roughly by category. Within a category, they are organized roughly in
alphabetic order. However, closely related items are grouped together. Most categories are
short, so you shouldn't have too much trouble locating an item even if you need to skim the
entire category.

A.2.1 General Cluster Information

http : //www.beowulf.org. This site has general information on Beowulf clusters, including
tutorials.

http ://clustering.foundries.sourceforge.net. Clustering Foundry is a source for cluster
software.

http : //www.clusterworld.com. This is the web site for ClusterWorld magazine.

http : //www.dell.com/powersolutions.Dell Power Solutions Magazine has frequent articles or
special issues devoted to clustering.

http : //www.linux-ha.org. This is the home for the Linux High-Availability Project. It provides
many links to information useful in setting up an HA cluster.

http ://www.lIcic.org. Linux Clustering Information Center is a great source of information and
links.

http ://www.tldp.org. Linux Documentation Project is the home to a vast store of Linux
documentation, including FAQs, HOWTOs, and other guides.

http : //www.linux-vs.org. This is the home to the Linux Virtual Server Project, another site of
interest if you want high availability or load balancing.

http ://www.linuxhpc.org. This is the home to LinuxHPC.org, another site to visit for high-
performance cluster information.

http : //www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/. This is the Remote Serial
Console HOWTO.

http://setiathome.ssl.berkeley.edu. This is the home for the SETI@Home project.

http : //www.top500.0rg. If you want to know what computers are currently on the 500 top
supercomputers list, visit this site.

http ://clusters.top500.0rg. For the top 500 clusters, visit this site.

http : //www.redbooks.ibm.com. Although IBM-Scentric, the Redbooks series contains a wealth
of information. Look for the Redbooks on SANs or Globus.

A.2.2 Linux

http://bccd.cs.uni.edu. This is the home of the Bootable Cluster CD (BCCD).

http://www.beowulf.org
http://clustering.foundries.sourceforge.net
http://www.clusterworld.com
http://www.dell.com/powersolutions
http://www.linux-ha.org
http://www.lcic.org
http://www.tldp.org
http://www.linux-vs.org
http://www.linuxhpc.org
http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/
http://setiathome.ssl.berkeley.edu
http://www.top500.org
http://clusters.top500.org
http://www.redbooks.ibm.com
http://bccd.cs.uni.edu

http ://www.debian.org. This is the home for Debian Linux.

http ://www.gentoo.org. This is the home for Gentoo Linux.

http : //www.knoppix.org. This is the home for Knoppix. Click on a flag for the language of your
choice. For a cluster version of Knoppix, visit http://bofh.be/clusterknoppix/.

http ://www.kernel.org. The Linux Kernels Archive provides kernel sources.

http ://www.mandrakesoft.com. This is the home for Mandrake Linux

http ://plumpos.sourceforge.net. This is the home for PlumpOS.

http ://www.redhat.com. This is the home for Red Hat Linux.

http ://www.suse.com. This is the home for SUSE Linux.

A.2.3 Cluster Software

http://bioinformatics.org/biobrew/. Visit the Biobrew site for information on a Rocks-based
bioinformatics cluster.

http : //www.mosix.org. This is site for the Mosix project.

http ://openmosix.sourceforge.net. This is the site for the openMosix project.

http : //www.openmosixview.com. If you are running openMosix, visit this site for the
openMosixView tools.

http://howto.ipng.be/Mosix-HOWTO/. Visit this site for the most recent version of Kris
Buytaert's openMosix HOWTO.

http ://mcaserta.com/maask/. For more information on the MigSHM openMosix patch, visit this
site.

http ://oscar.openclustergroup.org. This is the home of the Open Cluster Group and the site to
visit for OSCAR.

http : //www.openclustergroup.org/HA-OSCAR/. This is the home for the high availability
OSCAR branch.

http://rocks.npaci.edu. This is the home for Rocks.

http ://stommel.tamu.edu/—baum/npaci.html. This is Steven Baum's Rocks site, another good
source of information on Rocks. This has very nice sections on grids and on applications
available for clusters.

http ://www.scyld.com. This is the home for Scyld Beowulf. An earlier, nonsupported version
of Scyld Beowulf can be purchased at http ://www.linuxcentral.com.

A.2.4 Grid Computing and Tools

http ://www.globus.org. If you are interested in grid computing, you should start by visiting
the Globus Alliance site.

http://gridengine.sunsource.net. This is the home for the Sun Grid Engine.

http : //www.nsf-middleware.org. This is the home for the NSF middleware grid software.

http://www.debian.org
http://www.gentoo.org
http://www.knoppix.org
http://bofh.be/clusterknoppix/
http://www.kernel.org
http://www.mandrakesoft.com
http://plumpos.sourceforge.net
http://www.redhat.com
http://www.suse.com
http://bioinformatics.org/biobrew/
http://www.mosix.org
http://openmosix.sourceforge.net
http://www.openmosixview.com
http://howto.ipng.be/Mosix-HOWTO/
http://mcaserta.com/maask/
http://oscar.openclustergroup.org
http://www.openclustergroup.org/HA-OSCAR/
http://rocks.npaci.edu
http://stommel.tamu.edu/~baum/npaci.html
http://www.scyld.com
http://www.linuxcentral.com
http://www.globus.org
http://gridengine.sunsource.net
http://www.nsf-middleware.org

http ://www.opensce.org. This is the home for the OpenSCE (Scalable Cluster Environment)
project.

http://nws.cs.ucsb.edu. This is the home for the Network Weather Service.

http ://www.ncsa.uiuc.edu/Divisions/ACES/GPT/. This is the home for the Grid Packaging
Tools.

http ://www.citi.umich.edu/projects/kerb pki/. This is the home for KX.509 and KCA.

http ://grid.ncsa.uiuc.edu/ssh/. This is the home for GSI OpenSSH.

http ://grid.ncsa.uiuc.edu/myproxy/. This is the home for MyProxy.

http ://rocks.npaci.edu/gridconfig/. A user's manual for the Rocks Gridconfig Tools can be
found at this site.

A.2.5 Cloning and Management Software

http : //www.csm.ornl.gov/torc/C3/. This is the home for Cluster Command and Control (C3).

http ://sourceforge.net/projects/clumon. If you need Clumon, it can be downloaded from
SourceForge.

http : //www.feyrer.de/g4u/. This is the home for g4u.

http://ganglia.sourceforge.net. Ganglia can be downloaded from this site.

http://oss.sgi.com/projects/pcp/. This is the home for SGI's Performance Co-Pilot.

http ://sisuite.sourceforge.net. This is the home for System Installation Suite (SIS). It
provides links to System Configurator, Systemlmager, and System Installer.

A.2.6 Filesystems

http ://clusternfs.sourceforge.net. This is the home for ClusterNFS.

http : //www.coda.cs.cmu.edu/index.html. This is the home for the Coda file system

http : //www-1.ibm.com/servers/eserver/clusters/software/gpfs.html. This site provides
information for GPFS, the General Parallel File System.

http ://www.inter-mezzo.org. This is the home for the InterMezzo filesystem.

http ://www.lustre.org. This is the home for the Luster filesystem.

http ://www.openafs.org. This is the home for the Open Andrew filesystem.

http://opengafs.sourceforge.net. This is the home for OpenGFS Project.

http : //www.parl.clemson.edu/pvfs/. This is the home to the PVFS. For PVFS2, go to
http : //www.pvfs.org/pvfs2/.

A.2.7 Parallel Benchmarks

http : //www.netlib.org. The Netlib Repository is a good place to start if you need benchmarks.

http://hint.byu.edu. This is the home for the Hierarchical Integration (HINT) benchmark.

http://www.opensce.org
http://nws.cs.ucsb.edu
http://www.ncsa.uiuc.edu/Divisions/ACES/GPT/
http://www.citi.umich.edu/projects/kerb_pki/
http://grid.ncsa.uiuc.edu/ssh/
http://grid.ncsa.uiuc.edu/myproxy/
http://rocks.npaci.edu/gridconfig/
http://www.csm.ornl.gov/torc/C3/
http://sourceforge.net/projects/clumon
http://www.feyrer.de/g4u/
http://ganglia.sourceforge.net
http://oss.sgi.com/projects/pcp/
http://sisuite.sourceforge.net
http://clusternfs.sourceforge.net
http://www.coda.cs.cmu.edu/index.html
http://www-1.ibm.com/servers/eserver/clusters/software/gpfs.html
http://www.inter-mezzo.org
http://www.lustre.org
http://www.openafs.org
http://opengfs.sourceforge.net
http://www.parl.clemson.edu/pvfs/
http://www.pvfs.org/pvfs2/
http://www.netlib.org
http://hint.byu.edu

http : //www.netlib.org/benchmark/hpl/. This is the home for High Performance Linpack
benchmark.

http://www.iozone.org. This is the home for lozone, an I/0 and file system benchmark tool.

http://dast.nlanr.net/Projects/Iperf/. This is the home for Iperf, a network performance
measurement tool.

http ://science.nas.nasa.gov/Software/NPB/. This is the home for the NAS Parallel
Benchmarks.

A.2.8 Programming Software

http : //www.gnu.org/software/ddd/. This is the Data Display Debugger's home page.

http://gcc.gnu.org. This is the home page for the gcc compiler project. This project includes
gprof and gcov.

http://hdf.ncsa.uiuc.edu/HDF5/. This is the home page for HDF5.

http://java.sun.com. This is Sun's Java page. Java can also be downloaded from
http : //www.blackdown.org.

http : //www.lam-mpi.org. This is the home page for the LAM/MPI project.

http ://www.mpi-forum.org. This is the home page for the MPI Forum. Visit this site for
standards documents and other information on MPI.

http : //www-unix.mcs.anl.gov/mpi/mpich/. This is the home page for MPICH.

http : //www.netlib.org/pvm3/. This is the home page for PVM.

http ://www.mcs.anl.gov/romio/. This is the home page for ROMIO.

http : //www.splint.org. This is the home page for SPLINT.

http://sprng.cs.fsu.edu/. This is the home page for SPRNG, the Scalable Parallel Random
Number Generator.

http ://www.scriptics.com. This is the home page for Tcl/Tk.

http://vmi.ncsa.uiuc.edu. This is NCSA's page for the Virtual Machine Interface or VMI.

A.2.9 Scheduling Software

http : //www.cs.wisc.edu/condor. This is the home for the Condor Project.

http ://www.supercluster.org. This is the Center for HPC Cluster Resource Management and
Scheduling. Visit this site for Maui and Torque.

http ://umbc7.umbc.edu/ngs/ngsmain.html. This is the home for the Network Queuing
Systems software.

http : //www.openpbs.org. This is the home for the open software branch for PBS. For
OpenPBS patches, you might visit http ://www-unix.mcs.anl.gov/openpbs/ and
http ://bellatrix.pcl.ox.ac.uk/~ben/pbs/.

http ://www.pbspro.com This is the home for the commercial branch for PBS.

http://www.netlib.org/benchmark/hpl/
http://www.iozone.org
http://dast.nlanr.net/Projects/Iperf/
http://science.nas.nasa.gov/Software/NPB/
http://www.gnu.org/software/ddd/
http://gcc.gnu.org
http://hdf.ncsa.uiuc.edu/HDF5/
http://java.sun.com
http://www.blackdown.org
http://www.lam-mpi.org
http://www.mpi-forum.org
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.netlib.org/pvm3/
http://www.mcs.anl.gov/romio/
http://www.splint.org
http://sprng.cs.fsu.edu/
http://www.scriptics.com
http://vmi.ncsa.uiuc.edu
http://www.cs.wisc.edu/condor
http://www.supercluster.org
http://umbc7.umbc.edu/nqs/nqsmain.html
http://www.openpbs.org
http://www-unix.mcs.anl.gov/openpbs/
http://bellatrix.pcl.ox.ac.uk/~ben/pbs/
http://www.pbspro.com

A.2.10 System Software and Utilities

http : //www.chkrootkit.org. This is the home for the chkrootkit security program.

http ://modules.sourceforge.net. The modules package, on which switcher is based, can be
downloaded from SourceForge.

http ://www.myri.com. This commercial site is the home for Myricom, the creators of Myrinet.

http ://sourceforge.net/projects/pfilter. If you want the pfilter software, you can download it
from SourceForge.

http ://www.rrdtool.org. This is the home for Tobi Oetiker's RRDtool.

http://samba.anu.edu.au/rsync. Visit this site for more information or the latest version of
rsync.

http : //www.tripwire.org. This is the home for the tripwire security auditing tool.

http ://vsftpd.beasts.org. This is the home for Very Secure FTP.

http://www.chkrootkit.org
http://modules.sourceforge.net
http://www.myri.com
http://sourceforge.net/projects/pfilter
http://www.rrdtool.org
http://samba.anu.edu.au/rsync
http://www.tripwire.org
http://vsftpd.beasts.org

< Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The cover image of cowboys herding cattle is a 19th-century engraving from the Dover
Pictorial Archive. Using their horsemanship and lariat skills, cowboys in the American West
managed herds of several thousand cattle. These abilities would become especially valuable
after the Civil War, when an increased demand for beef in the northern and eastern parts of
the country left Texas ranchers needing a way to transport their product. Cowboys would
drive Texas Longhorn cattle over 1,000 miles north to railroad cow towns in Kansas and
Nebraska. These grueling journeys would take several months to complete, with those in
charge of the herd working, eating, and sleeping on the open plain.

Adam Witwer was the production editor and copyeditor for High Performance Linux Clusters
with OSCAR, Rocks, openMosix, and MPI. Leanne Soylemez was the proofreader. Claire
Cloutier and Sanders Kleinfeld provided quality control. John Bickelhaupt wrote the index.

Emma Colby designed the cover of this book, based on a series design by Hanna Dyer and
Edie Freedman. Clay Fernald produced the cover layout with QuarkXPress 4.1 using Adobe's
ITC Garamond font.

David Futato designed the interior layout. The chapter opening images are from Marvels of the
New West: A Vivid Portrayal of the Stupendous Marvels in the Vast Wonderland West of the
Missouri River, by William Thayer (The Henry Bill Publishing Co., 1888). This book was
converted to FrameMaker 5.5.6 by Joe Wizda with a format conversion tool created by Erik
Ray, Jason Mclntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand MX and Adobe
Photoshop CS. The tip and warning icons were drawn by Christopher Bing. This colophon was
written by Adam Witwer.

The online edition of this book was created by the Safari production group (John Chodacki,

Ken Douglass, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools
written and maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

\ & FREV < Day Day Up > ME=T

	High Performance Linux Clusters with OSCAR, Rocks, OpenMosix, and MPI
	Table of Contents
	Copyright
	Preface
	Audience
	Organization
	Conventions
	How to Contact Us
	Using Code Examples
	Acknowledgments

	Part I: An Introduction to Clusters
	Chapter 1. Cluster Architecture
	1.1 Modern Computing and the Role of Clusters
	1.2 Types of Clusters
	1.3 Distributed Computing and Clusters
	1.4 Limitations
	1.5 My Biases

	Chapter 2. Cluster Planning
	2.1 Design Steps
	2.2 Determining Your Cluster's Mission
	2.3 Architecture and Cluster Software
	2.4 Cluster Kits
	2.5 CD-ROM-Based Clusters
	2.6 Benchmarks

	Chapter 3. Cluster Hardware
	3.1 Design Decisions
	3.2 Environment

	Chapter 4. Linux for Clusters
	4.1 Installing Linux
	4.2 Configuring Services
	4.3 Cluster Security

	Part II: Getting Started Quickly
	Chapter 5. openMosix
	5.1 What Is openMosix?
	5.2 How openMosix Works
	5.3 Selecting an Installation Approach
	5.4 Installing a Precompiled Kernel
	5.5 Using openMosix
	5.6 Recompiling the Kernel
	5.7 Is openMosix Right for You?

	Chapter 6. OSCAR
	6.1 Why OSCAR?
	6.2 What's in OSCAR
	6.3 Installing OSCAR
	6.4 Security and OSCAR
	6.5 Using switcher
	6.6 Using LAM/MPI with OSCAR

	Chapter 7. Rocks
	7.1 Installing Rocks
	7.2 Managing Rocks
	7.3 Using MPICH with Rocks

	Part III: Building Custom Clusters
	Chapter 8. Cloning Systems
	8.1 Configuring Systems
	8.2 Automating Installations
	8.3 Notes for OSCAR and Rocks Users

	Chapter 9. Programming Software
	9.1 Programming Languages
	9.2 Selecting a Library
	9.3 LAM/MPI
	9.4 MPICH
	9.5 Other Programming Software
	9.6 Notes for OSCAR Users
	9.7 Notes for Rocks Users

	Chapter 10. Management Software
	10.1 C3
	10.2 Ganglia
	10.3 Notes for OSCAR and Rocks Users

	Chapter 11. Scheduling Software
	11.1 OpenPBS
	11.2 Notes for OSCAR and Rocks Users

	Chapter 12. Parallel Filesystems
	12.1 PVFS
	12.2 Using PVFS
	12.3 Notes for OSCAR and Rocks Users

	Part IV: Cluster Programming
	Chapter 13. Getting Started with MPI
	13.1 MPI
	13.2 A Simple Problem
	13.3 An MPI Solution
	13.4 I/O with MPI
	13.5 Broadcast Communications

	Chapter 14. Additional MPI Features
	14.1 More on Point-to-Point Communication
	14.2 More on Collective Communication
	14.3 Managing Communicators
	14.4 Packaging Data

	Chapter 15. Designing Parallel Programs
	15.1 Overview
	15.2 Problem Decomposition
	15.3 Mapping Tasks to Processors
	15.4 Other Considerations

	Chapter 16. Debugging Parallel Programs
	16.1 Debugging and Parallel Programs
	16.2 Avoiding Problems
	16.3 Programming Tools
	16.4 Rereading Code
	16.5 Tracing with printf
	16.6 Symbolic Debuggers
	16.7 Using gdb and ddd with MPI
	16.8 Notes for OSCAR and Rocks Users

	Chapter 17. Profiling Parallel Programs
	17.1 Why Profile?
	17.2 Writing and Optimizing Code
	17.3 Timing Complete Programs
	17.4 Timing C Code Segments
	17.5 Profilers
	17.6 MPE
	17.7 Customized MPE Logging
	17.8 Notes for OSCAR and Rocks Users

	Part V: Appendix
	Appendix A. References
	A.1 Books
	A.2 URLs

	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X

