

Zenoss Core Network and
System Monitoring

A step-by-step guide to configuring, using, and adapting
the free open-source network monitoring system

Michael Badger

 BIRMINGHAM - MUMBAI

Zenoss Core Network and System Monitoring

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2008

Production Reference: 1060608

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-28-2

www.packtpub.com

Cover Image by Nilesh R. Mohite (nilpreet2000@yahoo.co.in)

Credits

Author

Michael Badger

Reviewers

Mark Turner

Matt Ray

Mark Hinkle

Erik Dahl

Acquisition Editor

Bansari Barot

Technical Editor

Usha Iyer

Editorial Team Leader

Akshara Aware

Project Manager

Abhijeet Deobhakta

Project Coordinator

Zenab Kapasi

Indexer

Monica Ajmera

Proofreader

Camille Guy

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

Foreword
As the world becomes more connected, the complexity of information technology
is expanding. Information workers rely on an expanding number of technologies
to collaborate: email, instant messaging, web forums, and wikis. Organizations that
at one time relied solely on paper are becoming more dependent on information
systems. In addition there is an increase in network-enabled devices including
security systems, building environmental controls, power meters, and more. IT
administrative staffers are responsible for a growing number of services and the IT
fabric used by organizations is continuing to become more intricate.

The way we develop technology is also changing. Highly skilled programmers once
wrote their code secretly behind closed doors. This is the old way of doing things
Today millions of people develop, distribute, and use open-source software that is
produced collaboratively over the Internet. The new model thrives on user input and
collaboration. It enables the users of software to take control and become produces of
technology the barrier for participation has been lowered.

The trends of open source software use and a growing complexity in information
technology have lead to the perfect storm for the adoption of open source systems
management. It's no longer good enough to have tools that are purpose-built. It's
just as important to have management tools that are easy to deploy, easy to use, and
easy to integrate with existing systems. This presents an opportunity for system and
network administrators to deploy open source systems management tools that can
be adapted to an ever-changing environment.

Zenoss Core was developed to be both adaptable and scalable yet easy enough for
even the smallest organizations to use. Released under the GNU Public License
(version 2.0) Zenoss has been downloaded over 500,000 times and used by thousands
of IT professionals every day to monitor and manage IT infrastructure. The Zenoss
community that supports and contributes to Zenoss has grown to over 33,000
members who consistently help improve and expand Zenoss' capabilities.

The open-source development and distribution model is the key factor that allows
users of the software to have full access, not just to run the program, but also to
modify and redistribute it. This freedom is one reason that Zenoss' popularity
has risen so quickly. Zenoss Core presents a unique opportunity for systems
management professionals, as it is enterprise-grade software but also free and
open source.

In true open-source fashion, this book was not written by Zenoss project members or
Zenoss Inc. employees. It was authored by one of our community members who was
passionate about our software and took it upon himself to share his knowledge. We
are very proud that our software generates that kind of enthusiasm and hope that
our efforts and the efforts of our community of users are evident as you use
Zenoss Core.

Mark R. Hinkle
VP of Community Zenoss Inc.
http://community.zenoss.com

About the Author

Michael Badger is a technical writer with a BS in Technical and Professional
Communication from the Pennsylvania College of Technology/Penn State. He has
been helping users understand, troubleshoot, and use technology for the better part
of 15 years. In the 1990's, he rose through the ranks at the industry leading internet
service provider, MindSpring, to manage a technical support call center in Dallas,
TX. He later found himself supporting and writing about Win4Lin, a Windows
virtualization solution for Linux. Today, he prefers to fill a generalist's role with a
focus on automated web application testing and writing—always looking to learn
the next cool application or technology. For fun, he prefers to be outside in the wilds
of Central Pennsylvania fishing, hiking, and hunting.

Acknowledgement

I'd like to thank Mark Hinkle for connecting me with Packt Publishing and helping
me get this book started. You believe in my writing and my work ethic, and for that,
I can only say thank you. I am honored to call you my friend.

Thank you, Zenoss, Inc., for providing me with support in the way of training
and resources. Chet Luther, your superb training and support accelerated my
Zenoss learning curve dramatically. Thank you, Drew Bray, for providing some
documentation to help me get started in my research.

Bill Karpovich and Erik Dahl, I enjoyed our conversations. Of course, without Erik I
wouldn't have a software application to write about. Thank you.

I owe a special thank you to my primary reviewers, Mark Turner and Kells Kearney.
I appreciate every last comment you provided to me, and have no doubt that your
work has improved the quality of this book. Mark, it has been a pleasure to work
with you again, and I hope that we can collaborate on future projects. Kells, thank
you for accepting my invitation to review, and I look forward to working with you in
the future.

I'd like to thank my writing mentor, Charles Kemnitz, for preparing me to write my
first book. Your guidance and disciplined advice gave me the confidence to know
that once I started writing, I would finish.

Christie, my dear wife, I owe you so much. Perhaps there were better times to write
a book, but now is my opportunity. You encouraged me to take it. Now we can
pause to take an inventory of our accomplishments: We're settled in a new house, we
finished the baby's room, Cameron was born, and I wrote a book. I'd say that was a
productive six months.

 About the Reviewer

Mark Turner has worked with open source since 1994 in IT management, sales
engineering, and client services roles. His focus has been on Linux, asterisk,
OpenLDAP, and network management solutions. His last role was with Zenoss as
a client services engineer where he provided consulting, support, and training for
Zenoss customers.

Table of Contents
Preface 1
Chapter 1: Introduction 7

What is Zenoss? 7
Web Portal 8
Device Management 9
Availability and Performance Monitors 10
Event Management 13
System Reports 13

Zenoss Inc. 13
Summary 14

Chapter 2: System Architecture 15
User Layer 16
Data Layer 17
Collection Layer 18

Device Management 19
Performance And Availability 20
Event Information 22

Summary 23
Chapter 3: Installation and Set up 25

Server Specifications 26
Supported Operating Systems 26

Zenoss Dependencies 27
Quick Start with Virtual Appliance 27

Install Virtual Appliance 28
Working with The Virtual Appliance 29

Binary Installation 31
Source Installation 32

Ubuntu Notes 32

Table of Contents

[ii]

System Setup for Source Install 33
Download Zenoss Source 34
Build And Install Zenoss 35

Server Setup 36
Start Zenoss at Boot Time 36
Firewall Policies 37
SNMP on Linux 39

Install SNMP on Linux 39
WMI And SNMP on Windows 40

Summary 42
Chapter 4: The Zenoss User Interface 43

Welcome to Zenoss 43
Navigation Techniques 44
User Accounts 47
Main Views 47

Locations with Google Maps 49
Device Issues 49
Zenoss Issues 50
Watch List 50
Root Organizers 51
Production State 51

Browse By Organizers 52
Locations 53
Systems And Groups 55
Networks 56

Inheritance 60
Classes 61

Set Device Properties 64
Summary 66

Chapter 5: Device Management 67
Add Devices 67
Device Status 71
Device Administration 74

Lock Or Unlock Device 74
Rename A Device 75
Reset IP Address 76
Push Changes 76
Device List 77
Delete Devices 79

Model Devices 80
SNMP 80

Test SNMP 80
Windows Considerations 82

Table of Contents

[iii]

SNMP Collector Plug-ins 83
Model Device 84
SSH Modeling 86
SSH Collector Plug-ins 86
Zenoss Plug-ins 87
Model Device 89
Port Scan Modeling 90

OS Tab 91
Hardware Tab 92

Device zProperties 92
Summary 96

Chapter 6: Status And Performance Monitors 97
Available Monitors 97

Status Monitors 98
Performance Monitors 100

Add A New Monitor 102
Attach A Monitor To Devices 102

Component Status 104
OS Tab 104

Interfaces 105
OS Processes 107
Services 110
IP Services 112
Win Services 114
File Systems 116
Routes 117

Performance Graphs 118
Performance Templates 120

Data Sources 122
Thresholds 123
Graph Definitions 124

Reorder The Graphs on The Perf Tab 124
Customize A Threshold 125

Summary 126
Chapter 7: Event Management 127

Monitor Syslog Messages 127
Collect Cisco Router Syslogs 129
Test Syslog Configuration with Logger 131

Monitor Windows Event Logs 131
Test Event Log Configuration with Eventcreate 132

Event Console 133
Event Log 135
Device Event View 137

Table of Contents

[iv]

Event Classes 138
Classes 138
Mappings 139

Status 140
Edit 141
Sequence 142

Events And History 143
zProperties 143

Event Manager 145
Fields 146
Commands 148

Working with Events 150
Add Events 150
Map Events 152
Overridden Objects 154
Transformations 155
Event Work Flow 156

Event De-Duplication 157
Summary 158

Chapter 8: System Reports 159
Report Overview 159
Device Reports 161

All Devices 161
Manufacturers and Products 162

All Monitored Components 164
Device Changes 164
Model Collection Age 165
New Devices 165
Ping Status Issues 165
SNMP Status Issues 166
Software Inventory 166

Event Reports 167
All Event Classes 167
All Event Mappings 168
All Heartbeats 168

Graph Reports 169
Multi-Graph Reports 173
Performance Reports 178

Aggregate Reports 178
Availability Report 179
CPU Utilization 180

Table of Contents

[v]

Filesystem Utilization Report 181
Interface Utilization 182
Memory Utilization 182
Threshold Summary 183

User Reports 184
Notification Schedules 184

Summary 184
Chapter 9: Settings And Administration 185

Alerting Rules 185
User Management 185

Administered Objects 188
Event Views 189
Alerting Rules 191

Alert Escalations 192
Message 193
Schedule 194

Groups 195
System Settings 196
Commands 199
Menus 200
Portlets Permission 202
Zenoss Daemons 203
Maintenance Windows 205
Add MIBs 206
Back Up and Restore 207

Automate Backups 208
Update Zenoss Core 210

RPM Update 211
Source Update 212
Virtual Appliance Update 212

Summary 213
Chapter 10: Extend Zenoss 215

ZenPacks 215
Install 216

Monitor Websites with HttpMonitor 216
Create 221

Add Objects to ZenPack 222
Export ZenPack 223
Contribute ZenPacks 224

Plug-ins 224
Test The Plug-in 224

Table of Contents

[vi]

Apply The Plug-in to A Device 225
Debug 227
Zenoss Plugins 229

Email Reports 230
Email Events 231

Zenmail 233
Zenpop3 233

Access Zenoss Objects Database with zendmd 234
Summary 236

Chapter 11: Technical Support 237
Troubleshoot Zenoss 237

Reports 237
Zenoss Daemons 238

Basic Usage 239
Log Files 241

Community Support 242
Documentation 242
Code 242
Discuss 242

Commercial Support 243
Support Subscriptions 243
Consulting 244
Training 244

Summary 244
Appendix A: Event Attributes 245
Appendix B: TALES And Device Attributes 249
Index 253

Preface
Regardless of the size of your organization, information technology (IT) plays an
increasingly important role in day-to-day business, which implies we have incentives
to manage the servers, routers, workstations, printers, and other systems attached
to our networks. Zenoss Core Network and System Monitoring: A Step-by-Step Guide for
Beginners provides a narrowly focused guide that helps users set up an environment
to manage their IT assets regardless of systems administration background or
lack thereof.

We use step-by-step examples with ample screen captures to demonstrate Zenoss
Core's capabilities that you can easily apply to your environment. The book keeps
the emphasis on using Zenoss Core through its web interface. Advanced users will
be able to identify ways in which they can customize the system to do more, while
less advanced users will appreciate the ease of use Zenoss provides.

If you work through each chapter in sequence, you will start with installation
and finish with monitoring solution that can be deployed on your network. Each
chapter builds on the knowledge gained from the previous chapter. However, each
chapter can stand on its own, allowing you to pick and choose the features you want
to explore.

What This Book Covers
Chapter 1—Introduction: Provides an overview of Zenoss Core's network and
systems management capabilities.

Chapter 2—System Architecture: Discusses the underlying components and how they
fit together to form Zenoss Core.

Chapter 3—Installation and Setup: Details step-by-step instructions for each of the three
installation methods—As a virtual appliance, from a binary installer, or compiled from
source. Information on how to prepare servers to be monitored is also covered.

Preface

[2]

Chapter 4—Zenoss Dashboard: Introduces the web interface's navigation and
organization properties. The dashboard holds the key to the rest of the book. From
Chapter 4 onwards, the emphasis is on using the dashboard.

Chapter 5—Device Management: Walks through the process of discovering and
modeling devices to build an inventory of the network. In Zenoss, everything is
viewed as a device, and without devices, we have nothing to monitor.

Chapter 6—Status and Performance Monitors: Describes how to set up monitoring
so that we know the operational status of our devices and components, such as file
systems, interfaces, and processes.

Chapter 7—Event Management: Provides an in-depth review of how Zenoss Core
generates events and how we can manage them from the Event Console.

Chapter 8—System Reports: Takes us on a tour of Zenoss Core's included reporting
features. The reports aggregate system-wide data to provide real-time and historical
status views about devices, events, and performance.

Chapter 9—Settings and Administration: Documents how to manage users, define
alerting rules, and customize event views. Includes information about general
Zenoss Core administration, including backups and updates.

Chapter 10—Extend Zenoss: Extend Zenoss Core with ZenPacks, Nagios plugins, and
command line utilities.

Chapter 11—Technical Support: The place to start when things go wrong. Outlines
the vibrant community support resources and provides a synopsis of how to
troubleshoot Zenoss Core.

Appendix A—Event Attributes: A table of available event fields that are used to
describe and process events.

Appendix B—TALES and Device Attributes: Provides a list of the device and
event attributes available to the Templating Attribute Language Expression
Syntax (TALES).

What You Need for This Book
Hardware
Actual server specifications may very depending on the amount and frequency of the
data you collect. Zenoss Inc. recommends the following hardware specifications for a
production monitoring server:

Preface

[3]

Network with up to 250 devices
4 GB RAM
Core 2 Duo E6300 1.86/1066 RTL
75 GB disk storage

Network with more than 250 devices
8 GB RAM
XEON 5120 DC 1.86/1066/4MB
Four 75 GB drives in two RAID-1 pairs

The following table shows the available installation options.

Installation Type Platform
Virtual Appliance Windows

Linux
Binary Installer Red Hat Enterprise Linux 5

Fedora Core 6
SUSE

Source Ubuntu
FreeBSD
Solaris 10
Mac 0S X
Other Linux environments

Virtual appliance users do not need to install any dependencies because they are
included in the image. For all other installations, you need to install the following
software packages prior to installing Zenoss:

MySQL 5.0.22 or higher
MySQL development environment
Python 2.3.5 or 2.4
Python development environment

If you plan to build a Zenoss installation from source code, you need to install
the following:

SWIG
Autoconf
GNU build environment

We also need SNMP.

•

°
°
°

•

°
°
°

•
•
•
•

•
•
•

Preface

[4]

Who Is This Book For
This book is for anyone who would like to proactively monitor their network
resource, including Windows and Linux systems administrators.

Readers should have a basic knowledge of networking concepts and be able to
administer the systems they plan to monitor. Some Linux knowledge is helpful
but not required. This book does not assume any existing system and network
monitoring experience.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: “We can include other contexts through the
use of the include directive.'

A block of code will be set as follows:

#Setup Zenoss environment
export ZENHOME=/usr/local/zenoss
export PYTHONPATH=$ZENHOME/lib/python
export PATH=$ZENHOME/bin:$PATH

Any command-line input and output is written as follows:

zentestcommand --device=Fox –datasource=checkCpu

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
“clicking the Next button moves you to the next screen'.

Important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/4282_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this, you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Preface

[6]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction
If you have ever arrived at work to answer voice mails and emails about a down
web server, print server, or mail server, then you must be familiar with the
customer-driven monitoring solution. It's cheap to implement but unreliable, and
sometimes the monitor gets an attitude and for good reason. Our customers should
not bear the responsibility of monitoring our networks for problems. Unfortunately,
commercial monitoring tools lie beyond the budget of many organizations, and the
available open-source tools require several packages to be "glued" together by users
to get a complete solution.

Zenoss Core replaces prohibitive costs and incomplete solutions with a capable,
feature-rich network and systems monitoring package.

What is Zenoss?
Zenoss Core challenges the systems-monitoring landscape with an open-source
enterprise management solution that provides a single, web-based point of access
to configure, manage, monitor, and report on our IT assets. We get a "single pane
of glass" view of our IT assets including routers, servers, and environment. With
Zenoss, the question changes from, "Should I monitor my IT resources?" to "How
can I afford not to monitor my network?"

Introduction

[8]

Zenoss Core is a web-based application which installs to a central server on
the network and uses the Zope application server. It is written in Python. It's a
Linux-based application, but we do not need to be Linux administrators to install
and use Zenoss Core. Zenoss Inc. releases a virtual appliance that requires no Linux
knowledge or setup and enables Mac, Windows, and Linux users to install Zenoss
Core inside VMware Player or VMware Server.

The Zenoss Core native Linux installers continue to improve and support a broader
range of distributions, which means the Linux skills required to install Zenoss Core
natively continue to decrease. Starting with the Zenoss Core 2.2 release, we will have
the option of using point and click installers built on BitRock installers; but don't
worry, we can still install from source if we so choose. Chapter 3 outlines several
installation options.

Administrators access Zenoss Core via a web interface that allows us to do:

Device Management
Availability and Performance Monitoring
Event Management
System Reports Generation
User and Alert Management

We can do all this from a web portal, which we will look at first.

Web Portal
The web portal is the face of the Zenoss system and is the place where we spend
most of our time. It's an AJAX enabled interface that provides a single access point
to the monitoring system and requires no operating-system-specific knowledge to
use. The web interface features drag-and-drop dashboard portlets that display a
customized view of our network's health at any given time. The following screen
capture shows the web portal.

•

•

•

•

•

Chapter 1

[9]

Device Management
At the heart of the device management, Zenoss places a configuration management
database (CMDB), which stores a model of the IT environment and its change
history. Zenoss supports adding devices to the CMDB one at a time or by
auto-discovering active devices by walking the routing tables. Devices are then
modeled via simple network management protocol (SNMP), SSH, or port scans.

Introduction

[10]

Zenoss allows us to organize devices by user-defined locations, groups, and systems.
One of the Zenoss's most powerful organizational concepts is classes, which allow us
to define monitoring characteristics based on a hierarchical classification of devices.
The following screen capture provides a look at a device status page.

Availability and Performance Monitors
By using ICMP and SNMP monitoring, Zenoss reports on the availability of
the following:

Network devices
TCP/IP services and ports

•

•

Chapter 1

[11]

URL availability
Windows services and processes
Linux/UNIX processes

Zenoss monitors are Level-3 network topology aware, which reduces the amount of
alert chatter by creating an event about the problem device only and not about the
devices that depend on the down device.

Zenoss Core 2.1 introduces a Flash-based map of the network topology that
displays a view of the network on a single page, which can be seen in the following
screen capture.

•

•

•

Introduction

[12]

Zenoss integrates Google Maps to provide a high level geographic status of the
user-defined network locations at the city, state/province, or country level. The
following screen capture shows a view of the Google Maps integration.

Chapter 1

[13]

Performance monitors collect time series data and provide us with a graphical
analysis of the following components:

File system statistics
CPU and memory usage
JMX monitoring for J2EE servers
Nagios and Cacti plug-in support

If a monitored device crosses a defined threshold, Zenoss generates an event.

Event Management
Zenoss monitors a variety of sources for signs of trouble, including syslogs,
availability and performance monitors, SNMP traps, and Windows event logs. Core
features of the event management system include:

Custom events
Automatic prioritization
Event deduplication
Up/down event correlation

Zenoss processes events based on a customizable set of rules. In response to events,
Zenoss can send email or pager alerts, run a script, or do nothing. We can configure
how Zenoss responds to an event by defining alerting rules for users and groups.

System Reports
Zenoss packages a set of standard reports that allow us to view what is happening
right now, as well as what has happened. The reports integrate with the device
management, performance monitors, events and user functionalities of Zenoss.
Advanced users can create custom reports as needed.

Zenoss Inc.
Zenoss Core is backed by the commercial company, Zenoss Inc., which was
co-founded by Erik Dahl and Bill Karpovich in 2006. Prior to founding Zenoss
Inc., Dahl began development of Zenoss in 2002 to address a need he saw in the
enterprise-systems monitoring market. He did this by setting out to develop an
affordable, functional, and easy to use solution for organizations of all sizes.

•

•

•

•

•

•

•

•

Introduction

[14]

In addition to sponsoring the development of Zenoss Core, Zenoss Inc. provides
consulting, training, paid support, and an enterprise edition of Zenoss. Zenoss
Enterprise extends the functionality of Zenoss Core by offering an extended report
library, synthetic web transactions, certified monitors (ZenPacks), and a global
dashboard for multiple Zenoss installations.

Today, Zenoss Inc. makes systems and network monitoring available to everyone
under the GPL v2 license.

Summary
Now that we have an overview of Zenoss Core's network and systems management
capabilities, we will examine the technical structure. Chapter 2 discusses the system
architecture of Zenoss Core and introduces the major components that make the
application work.

System Architecture
Zenoss blends innovative development with several open-source software projects
to create a robust network and systems management solution. Before we jump into
installation, we can pause for a moment to take a peek under the hood and see what
makes Zenoss work. Reviewing the system architecture now provides us with an
understanding that can help troubleshoot problems that may arise later.

Zenoss provides everything that we need to discover, collect, store, and manage
our IT resources; and when we talk about the system architecture, it helps to
conceptually segregate Zenoss into three layers:

User
Data
Collection

The User Layer (refer to the following screenshot) allows us to connect to the Zenoss
from any computer running Mozilla Firefox or Microsoft Internet Explorer. From
the User Layer, we manage the device data that Zenoss collects from our network.
Although Zenoss automatically handles many collection and monitoring tasks, we
can manually control the collection components from the Zenoss web interface.

•
•
•

System Architecture

[16]

The most notable open-source software components that integrate with Zenoss
include Zope, Python, MySQL, RRDtool, and Twisted. In this Chapter, we will
examine each layer and its core components.

User Layer
Zenoss is flexible enough to work from a command line, but most of our work will
take place via an AJAX enabled interface, which is based on the Zope application
server framework. We limit our command line work to installation, troubleshooting,
and general curiosity.

The following screenshot shows the view of the Zenoss dashboard.

Zope is a popular, extensible application server written in Python. It features a
built-in web server, transactional object database, and HTML templates. Python has
a reputation as an easy-to-use object-oriented programming language. Not only is
Python the basis for Zope, it’s also the basis for Zenoss Core.

Chapter 2

[17]

Through the web interface, we provide input with both the data and collection layers
to accomplish tasks related to the following areas:

Navigation and organization
Device management
Availability and performance monitors
System reports
Event Management
Settings and Administration

Data Layer
As we might expect, databases are the heart of the data layer, and Zenoss stores
data in three types of databases. The Collection layer funnels device information
to ZenHub, which in turns stores the data in the appropriate place. (Refer to the
following screenshot).

Events are stored in a MySQL database. Zenoss generates Events when an
established threshold is crossed, such as a server outage or high memory usage.
Events trigger actions, such as email or pager alerts.

MySQL is a popular open-source database commonly used by web applications as
part of the LAMP (Linux, Apache, MySQL, and PHP) stack. It is often praised in the
industry for being fast and reliable.

•

•

•

•

•

•

System Architecture

[18]

Time series performance gets stored in a Round Robin Database (RRD). A round
robin database differs from a linear database, such as MySQL, in that it’s circular—
which means the size does not increase over time. Data is stored in a first in, first out
basis. RRDtool provides Zenoss with the ability to log and graph performance data.

The third database deployed by Zenoss is a Configuration Management Database
(CMDB). The CMDB is an Information Technology Infrastructure Library (ITIL)
standard for managing the configuration, relationship, and change history of the IT
environment, which creates a detailed model of the network. Zenoss uses a Zope
object database to house the CMDB.

Collection Layer
The collection layer includes several daemons that gather information about
devices, performance, and Events (refer to the following screen capture). They feed
information to ZenHub to distribute to the appropriate database. As we’ll find out,
the Zenoss daemons are easy to identify—they all start with the prefix "zen."

We access the daemons by selecting Settings > Daemons from the Zenoss
dashboard. As the following screen capture illustrates, the dashboard provides us
with the complete view of the Zenoss Daemons that includes the process ID and
up/down State. Green is up; red is down. Also from the interface, we can view the
log, edit the Configuration, and start and Stop each daemon.

Chapter 2

[19]

If we browse the file system, we will find each daemon in $ZENHOME/bin. $ZENHOME
is an environment variable, which allows us to talk about the Zenoss installation
directory without knowing exactly where it is. For example, I may install to /usr/
local/zenoss while you install to /home/zenoss.

Twisted is an integral network communication protocol for the daemons. The
Twisted Core README file describes Twisted as an "event based framework for
internet applications, which works on Python 2.3.x or 2.4.x"

Device Management
Finding the devices on our networks is a prerequisite to managing them, and Zenoss
not only finds the devices, it models them. Device modeling builds a detailed
overview of the network by recording the following types of information: system
dependencies, available services, and change history.

System Architecture

[20]

Zenoss provides several ways to view information about a device or a group of
devices. The following screen capture shows an alphabetical list of all devices from
the Device List view.

The following table describes the daemons responsible for discovering and
modeling devices.

Device Daemon Description
zenmodeler Queries the devices via SSH, SNMP, and port scans when we model the

device. Each time zenmodeler runs on a device, it compares its findings
with existing configuration and updates it as necessary.

zendisc Runs when we add a network subnet to Zenoss and choose to discover
all devices attached to the network.

Zenoss uses Simple Network Management Protocol (SNMP) as a primary
collection protocol.

Performance And Availability
The Zenoss performance and availability daemons help us determine if the devices
on our network are available and performing within the established guidelines. If
our monitored systems perform in an unexpected way, Zenoss generates an event.
The following screen capture displays an overview of the Device Status for a server.

Chapter 2

[21]

The following daemons play an important role in collecting performance and
availability data.

Performance Daemon Description
zenperfsnmp Stores the collected performance data in RRD files so that RRDtool

can graph device performance over hourly, daily, weekly,
monthly, or yearly durations.

zencommand Provides a way to run custom scripts and third party plug-ins
including Nagios and Cacti plug-ins from within Zenoss.

zenprocess Monitors performance data, such as CPU and Memory usage using
SNMP collection.

zenping Pings a device and reports an up or down status. This is the
main way Zenoss knows if the device is active or not. Zenping is
layer-3 topology aware, which means that if a router goes down,
Zenoss will know the devices dependent on the router are also
unreachable and will not monitor them during the outage.

zenstatus Tests the TCP ports and reports an up or down service.

System Architecture

[22]

Event Information
When a device goes down or a service crosses a predetermined threshold, such
as available disk space, Zenoss generates an event. One of the ways Zenoss
displays monitoring activity is via the Event Console, as shown in the following
screen capture.

We can configure Zenoss to notify us by email or pager when events occur. Zenoss
can also automatically run custom commands in response to events as a first step in
problem resolution.

Event Daemon Description
zensyslog Creates events from syslog messages.
zeneventlog Creates events from Windows event logs.
zentrap Creates events from SNMP traps. When a problem occurs on a

monitored device, it generates an SNMP trap to alert Zenoss of
the problem.

Chapter 2

[23]

Summary
At a high level, we want to find and monitor devices, then be notified when
problems occur. The Zenoss web interface lets us do that without thinking too much
about the internal components. By reviewing the system architecture, we gained a
cursory understanding about how Zenoss works, which provided a foundation for
configuration, troubleshooting, and advanced usage. We did not cover all of the
Zenoss commands or open-source components, but we did highlight the aspects of the
system we will work with, throughout the book. Now, we’re ready to install a working
Zenoss system. Chapter 3 identifies the Zenoss dependencies, walks through each of
the installation options, and prepares our network servers for monitoring.

Installation and Set up
In this chapter, we fill in the step-by-step details required to get a functioning Zenoss
system. We identify dependencies, review installation options, and take a look at
server setup.

Our first step is to choose one of the three installation methods: virtual appliance,
binary installer, or source. The virtual appliance makes a good choice, if we want
to evaluate or demonstrate Zenoss. The virtual appliance runs a functional Zenoss
system using VMware Player or VMware Server out-of-the-box and needs no Linux
knowledge. When run from VMware, the Zenoss virtual appliance may be used to
monitor networks with relatively few devices.

The binary installer makes a good choice if we want to avoid building Zenoss
from source and we run a supported distribution. The Supported Operating
Systems section in this chapter includes a list of distributions that have binary
installation support.

We can build from source on a variety of Unix-based environments, such as Ubuntu
and Mac OS X. A source installation gives us the ability to install Zenoss in the
environment of our choice but requires more work. Of the three installation methods,
a source install requires the most familiarity with your operating system and
presents more points of failure.

As we move beyond installing Zenoss to set up, we focus on firewall policies and
Simple Network Management Protocol (SNMP) for Linux and Windows systems.
Even though Zenoss can use other methods to monitor devices, SNMP is the default
monitoring protocol. We are free to change how we monitor and collect information
at any time.

During the installation and the set up, we work from the command line because it's
fast and it's consistent from one distribution to the next. If an error does occur, we
can see the error immediately printed to the terminal window.

Installation and Set up

[26]

When working from the command line, we assume knowledge of two basic tasks:
opening the terminal window and navigating the file structure. For all other tasks,
the book provides the exact command to type.

After installation and set up, we spend most of our time working with Zenoss through
the web interface. Let's get this installation out of the way so we can discover Zenoss.

Server Specifications
Actual server specifications may vary depending on the amount and frequency of the
data you collect. Zenoss Inc. recommends the following hardware specifications as a
starting point based on feedback from the community:

Network with up to 250 devices
4 GB RAM
Core 2 Duo E6300 1.86/1066 RTL
75 GB disk storage

Network with more than 250 devices

8 GB RAM
XEON 5120 DC 1.86/1066/4MB
Four 75 GB drives in two RAID-1 pairs

Supported Operating Systems
Zenoss requires a Unix-based platform and installs on systems capable of running a
GNU build environment. However, Zenoss supports only a few distributions with
binary installers. The following table shows the available installation options.

Installation Type Platform
Virtual Appliance Windows

Linux
Binary Installer Red Hat Enterprise Linux 5

Fedora Core 6
SUSE

Source Ubuntu
FreeBSD
Solaris 10
Mac 0S X
Other Linux environments

•

°
°
°

•

°
°
°

Chapter 3

[27]

As more binary installers become available, Zenoss posts them to
http://www.zenoss.com/download.

Zenoss Dependencies
Virtual appliance users do not need to install any dependencies because they are
included in the image. For all other installations, you need to install the following
software packages prior to installing Zenoss:

MySQL 5.0.22 or higher
MySQL development environment
Python 2.3.5 or 2.4
Python development environment

If you plan to build a Zenoss installation from source code, you need to install
the following:

SWIG
Autoconf
GNU build environment

Dependent software packages are available via your distribution's normal software
package manager. However, the package names and installation commands
vary based on distribution. Consult your distribution's documentation for
more information.

Quick Start with Virtual Appliance
If we know how to download and install software in our host environment, we
can get a working Zenoss system with the virtual appliance. The Zenoss virtual
appliance packages a working Zenoss Core installation inside a Linux guest that can
be booted from a host system, including Windows, using VMware's Player, Server,
or Workstation programs.

The virtual appliance is great for:

Users with little or no Linux knowledge
Demonstrations and Evaluations
Monitoring small networks with a few devices

•

•

•

•

•

•

•

•

•

•

Installation and Set up

[28]

Install Virtual Appliance
We will finish the installation as fast as we can download files and install the
VMware Player. Let's begin:

1. Download the VMware Player from http://www.vmware.com/player/.
Registration is required to complete the download.

2. Install VMware Player according to VMware's installation instructions for
your operating system.

3. Download the Zenoss virtual appliance from
http://www.zenoss.com/download/.

4. Unzip the Zenoss virtual appliance download file to a working directory in
your system.

5. Open VMware Player:
On Windows, select Start > Programs > VMware Player.
On Linux, select VMplayer from the application menu, or
type the command:
vmware

6. VMware Player prompts us to load the virtual machine configuration file we
previously unzipped, as shown in the following screenshot:

7. Open the Zenoss virtual appliance we unzipped in step 4.

°
°

Chapter 3

[29]

The Zenoss virtual appliance takes a few minutes to load depending on the
performance of your system. When the appliance boots, a welcome window opens
and displays the IP address of the Zenoss management console and the standard
Linux login prompt, as shown in the following screenshot:

When we connect to Zenoss through our web browser, we use the IP address
of the Zenoss management console that displays on the welcome screen
(e.g. http://192.168.1.125.8080). We cannot access our virtualized Zenoss
installation by navigating to localhost, which is the host name of the Zenoss virtual
appliance. If the IP address of the Zenoss console does not display, we can obtain the
IP address using the ifconfig command, as described in the next section: Working
with The Virtual Appliance.

Zenoss is ready to monitor. Our next step is to set up the servers on our network to
be monitored. If you can't wait to see Zenoss in action, feel free to skip the server
setup section for now and check out Chapter 4 for an introduction to web interface.
You can come back and set up your servers later.

If this is the first time you are working with VMware or Linux, take a few minutes to
get acquainted with the environment.

Working with The Virtual Appliance
The Zenoss virtual appliance is a streamlined but functional Linux system, which
means we can log in and have access to the underlying Linux environment. Let's
cover a few basic tasks.

In order to type inside the virtual appliance window, use the keyboard shortcut:

Ctrl + G

To return the cursor to the host desktop, use the keyboard shortcut:

Ctrl + Alt

Installation and Set up

[30]

By default, the root login does not have a password assigned. To log in to the virtual
appliance, enter the following user name at the login prompt:

root

To set a password for the root user, enter the command:

passwd

The passwd command prompts us to enter a new password. Assigning a password
to the root user makes the system more secure and allows us to connect to the virtual
appliance as root via SSH.

The IP address of the Zenoss virtual appliance is displayed at the top of the terminal
window when the appliance loads. The most confusing part about using the
Zenoss virtual appliance may be picking the correct IP address and port number.
We connect to Zenoss on port 8080. So if our virtual appliance has an IP address of
192.168.1.103, then we use http://192.168.1.103:8080 to open the Zenoss login
screen. If we use port 8003, we access the rPath management console, which is the
underlying system used to build the Zenoss virtual appliance.

After login, we can find additional IP configuration as shown in the following
screenshot, with the command:

ifconfig

Chapter 3

[31]

To shut down the virtual appliance, select Player > Exit from the VMware Player.
We may also use the the command:

shutdown –h now

If we shut down the virtual appliance, Zenoss no longer monitors the network and
the web interface is not accessible.

We may now jump ahead to the Server Setup section of this chapter for help in
configuring the servers we wish to monitor.

Binary Installation
Zenoss provides a binary installer in RPM format for Red Hat Enterprise Linux,
which covers CentOS and Fedora Core. Binaries for additional distributions are
added by Zenoss as the market demands and as time allows.

To install Zenoss and its dependencies on Red Hat:

1. Download the latest RPM for Red Hat Enterprise Linux from
http://www.zenoss.com/download/.

2. Open a terminal window and become the root user:
 su -

3. If you have not yet installed the Zenoss dependencies, run:
 yum -y install mysql mysql-server net-snmp net-snmp-utils /

 python python-dev

4. Install the Zenoss RPM by running the following command from the
download directory where x.x-x equals the latest version number:

 rpm -ivh zenoss-2.x.x-x.el5.i386.rpm

5. Start SNMP:
 service snmp start

6. Start MySQL:
 service mysqld start

7. Start Zenoss:
 /etc/init.d/zenoss start

Installation and Set up

[32]

Let's test our installation. Open a browser and enter the URL of the Zenoss server,
which listens on port 8080 (for example http://192.168.115:8080). A screen
appears as shown in the following screenshot.

Chapter 4 tells us more about logging in and using the web interface. For more setup
information, continue with the Server Setup section.

Source Installation
Like any open-source project, we can install Zenoss using the source code on any
Linux- or Unix-based system including FreeBSD, Mac OS X, and Ubuntu. The
installation requires more setup, but in return for the extra work, we are able to
extend Zenoss to a variety of architectures.

Distribution-specific tips for Ubuntu users are included in the Ubuntu Notes section
to help make the installation smoother. Additional distribution notes can be found in
the INSTALL.TXT file located in the top level of the source code directory.

Ubuntu Notes
The Ubuntu installation generally follows the same installation steps as the source
install, but the following information will help us get started.

Chapter 3

[33]

Debian derivative distributions use APT to add, update, and remove software
packages from the system. We can use APT from the command line or from the
graphical interface Synaptic, available from the System > Administration menu in
Ubuntu. Update the repositories with the following two commands:

sudo apt-get update
sudo apt-get upgrade

Now, install the Zenoss dependencies with apt-get. The example commands specify
each package installation command on a separate line for clarity.

sudo apt-get install mysql-server
sudo apt-get install mysql-client
sudo apt-get install libmysqlclient15-dev
sudo apt-get install python2.4
sudo apt-get install python2.4-dev
sudo apt-get install build-essential
sudo apt-get install snmp
sudo apt-get install snmpd
sudo apt-get install autoconf
sudo apt-get install swig
sudo apt-get install python-setuptools

To reduce the amount of typing, we may supply all the package names as arguments
to the apt-get install command. For example:

sudo apt-get install mysql-server mysql-client ...

Ubuntu installs Python 2.5, but Zenoss requires we install Python 2.4 to properly
build all of its dependencies. Prior to starting the Zenoss installation, update the
/usr/bin/python symlink to point to the python2.4 file:

unlink /usr/bin/python

ln -s /usr/bin/python2.4 /usr/bin/python

After the installation, you can change the /usr/bin/python symlink back as follows:

unlink /usr/bin/python
ln -s /usr/bin/pythong2.5 /usr/bin/python

From this point, follow the source installation procedures to set up and install Zenoss.

System Setup for Source Install
Open a terminal window and become the root user:

1. Install the dependencies listed earlier in this chapter.
2. Create the Zenoss user:

 useradd zenoss

Installation and Set up

[34]

3. Add the ZENHOME and PYTHONPATH environment variables to the zenoss user's
environment by adding the following lines to the zenoss user's .bashrc file
(as shown in the following screenshot):

export ZENHOME=/usr/local/zenoss
export PYTHONPATH=$ZENHOME/lib/python
export PATH=$ZENHOME/bin:$PATH

4. Create the installation directory:
 mkdir /usr/local/zenoss

5. Change the installation directory's ownership to the zenoss user:
 chown zenoss /usr/local/zenoss

We can install Zenoss to any directory, but we must set the ZENHOME environment
variable in the .bashrc file to match the installation directory.

Download Zenoss Source
Next, we download the Zenoss source file from http://www.zenoss.com/download
and unpack it to a working directory on the Zenoss server with the following
command, where x.x-x equals the latest version:

tar xzvf zenoss-2.x.x-x.tar.gz

When we build and install Zenoss, we work as the user zenoss, which presents some
permission problems during the build, if we download the files as a user other than
zenoss. As root, use the following commands to move the source files to /home/
zenoss and set ownership:

mv zenoss-2.x.x-x /home/zenoss
chown -R zenoss /home/zenoss/zenoss-2.x.x-x

We are ready to build the source code.

°

°

°

Chapter 3

[35]

Build And Install Zenoss
To build and install Zenoss, we run the included install.sh script. The script
collects configuration information for the web and database components of the
Zenoss system, then builds the source files.

We continue our work from the command line:
1. Log in as the user zenoss:

 su - zenoss

2. From the Zenoss source directory, run the install script:
 ./install.sh

3. The install script prompts for the following Zenoss database configurations
(refer to the following screenshot):

Admin password for the dashboard
The host name of the MySQL server
A root user for the MySQL server
A password for the MySQL root user
Name of the MySQL events database
A user name for the events database
Password for the events database user name

.

°
°
°
°
°
°
°

Installation and Set up

[36]

4. After the install completes, set ownership and uid on zensocket. As root,
enter the following commands:

 chown root:zenoss /usr/local/zenoss/bin/zensocket
 chmod 04750 /usr/local/zenoss/bin/zensocket

If the installation fails, the error message prints to the terminal window and to the
zenbuild.log file in the installation source directory. Source installations most often
fail because the dependencies are not properly installed.

To continue with a failed installation after we fix the problem, clean the installation
source, and run the install script again with the commands:

make clean
./install.sh

The "make clean" command removes the build files and zenbuild.log file.

After a successful installation, we can log in to Zenoss by navigating to port 8080 of
the Zenoss server (e.g., http://192.168.1.115:8080)

Server Setup
The second part of the installation equation is server setup. We'll examine the
following configuration options:

Start Zenoss at boot time
Firewall policies
SNMP on Linux and Windows

Start Zenoss at Boot Time
By default, Zenoss does not automatically start during the boot process and it
is required to start the Zenoss daemons manually. As the zenoss user, run
the command:

zenoss start

Red Hat users can enable Zenoss at boot time by running the following commands
as root:
/sbin/chkconfig zenoss
/sbin/chkconfig –-level 345 zenoss on

•

•

•

Chapter 3

[37]

If you use a Debian based distribution, such as Ubuntu, do the following as root:
cp /usr/local/zenoss/bin/zenoss /etc/init.d/
update-rc.d zenoss defaults 95

The next time the system reboots, use the following command as the zenoss user to
verify whether Zenoss started:

zenoss status

If the Zenoss daemons are not running, consult your distribution's documentation
for help in automatically starting programs at boot time. Remember, we can run the
following command as the zenoss user to start Zenoss:

zenoss start

Firewall Policies
Zenoss requires access to a few ports on the network in order to communicate with
the the systems we want to monitor. The Zenoss server needs to accept connections
on the following ports:

8080 for HTTP access
514 for syslog access
22 for SSH access

To facilitate monitoring, the systems on the network need to allow access to the
following ports:

161 for SNMP
22 for SSH

This is a common list of ports, but network and monitoring needs are unique from
one site to the next. For example, if you do not plan to connect to your Zenoss server
via SSH, then you do not need to open port 22.

Iptables is a popular tool for managing firewall access on Linux systems. Firestarter,
a graphical front end to iptables is shown in the following screenshot. Windows has
built-in firewall support via the Windows Firewall Control Panel (as shown in the
screenshot following the next one). If you are unsure about how to configure port
access, consult your firewall documentation or system administrator.

•

•

•

•

•

Installation and Set up

[38]

Chapter 3

[39]

SNMP on Linux
Zenoss uses SNMP to collect information, such as file system statistics, memory
usage, and interface status from the systems attached to the network. The network
devices report data to Zenoss via an SNMP agent, which is installed on each device,
but SNMP is only a collection protocol. The information SNMP collects about each
device depends on the device's Management Information base (MIB). MIBs are
management, that define the devices on the network and are part of the OSI network
management model. MIBs further rely on object identifiers (OIDs) to tell SNMP
which data values to return.

As we will see in later chapters, Zenoss can discover and monitor our networks
without using SNMP, but if we choose not to use SNMP, we sacrifice a detailed
model of our networks.

Install SNMP on Linux
If we plan to collect device information from the network using SNMP, we need
to install SNMP on the Zenoss server and the devices attached to the network. The
package names vary from one distribution to the next, so be sure to check with your
distribution, if you are unsure of which file you need.

Red Hat users can install SNMP with the command:

yum -y install net-snmp

Ubuntu users can install SNMP with the command:

apt-get install snmpd

Zenoss recommends we add several configuration changes to the snmpd.conf file.
Before you make any changes, back up the snmpd.conf file. As root:

cp /etc/snmp/snmpd.conf /etc/snmp/snmpd.conf.bak

In the section that begins "First, map the community name into a security
name," add:

com2sec notConfigUser default public

In the section that begins "Second, map the security names into group names," add:

group notConfigGroup v1 notConfigUser
group notConfigGroup v2c notConfigUser

Installation and Set up

[40]

In the section that begins "Third, create a view for us to let the groups have
rights," add:

view systemview included .1

In the section that begins, "Finally, grant the 2 groups access to the 1 view with
different write permissions," add the following line:

access notConfigGroup "" any noauth exact systemview none
none

Add the following lines to the System Contact Information section:

syslocation Unknown (edit /etc/snmp/snmpd.local.conf)
syscontact Root <root@localhost> (configure /etc/snmp/snmpd.local.
conf)

Add the following lines to the Further Information section to configure the default
community string for sending traps:

trapcommunity public
trapsink default

WMI And SNMP on Windows
Often, we want to know more about our Windows servers than a simple up or down
status. In order to view specific information about Windows services and events, we
need to enable Windows Management Instrumentation (WMI) and SNMP.

WMI provides several management options for Windows 2000, Windows XP, and
Windows Server 2003, including the ability to access Windows event logs.

WMI and SNMP are enabled from the Windows Management and Monitoring Tools
packages. To install WMI and SNMP (refer to the following screenshot):

1. Open the Windows Control Panel.
2. Select Add/Remove Windows Components.
3. Click on Management and Monitoring Tools and select Details.
4. Select Simple Network Management Protocol and WMI.

Chapter 3

[41]

5. Save the changes to install the Windows Components.

After WMI installs, we can get detailed information about the services running on
server and confirm WMI is properly configured. From the Windows Computer
Management control panel:

1. Run the command wbemtest from Start > Run.
2. Select the Connect. button.
3. Change the Namespace field to \\HOST\root\cimv2.
4. Enter user name and password.

Installation and Set up

[42]

5. Click the Query button.
6. In the search box, type "select * from win32_service" to see a list of services

as shown in the next screen capture.

The Windows SNMP agent does not return information about the server's CPU,
memory, or file system. For these stats, Zenoss Inc. recommends we install the third-
party SNMP Informant from http://www.snmp-informant.com. No configuration
is necessary for SNMP Informant.

Summary
In this chapter we examined the Zenoss installation from several angles, and we
found an installation type that meets our abilities and needs. We prepared the
servers on our network for monitoring by configuring SNMP and we opened the
necessary firewall access to our systems.

Now that we have a functioning Zenoss system, we turn to Chapter 4 for our first
look at the Zenoss web interface, the heart of the system. We take an in-depth tour of
Zenoss' navigation, organization, and setup features, and we begin to configure our
monitoring environment.

The Zenoss User Interface
Before we jump straight into monitoring and modeling devices, we need to cover a
few concepts that will help us manage our device data. If we have not yet thought
about our device hierarchies, we will raise those questions as we move through
the chapter. Our device hierarchies establish relationships to with other devices,
locations, systems, and groups.

In this chapter, we log in and explore the interface using four types of navigation
techniques: navigation panel, bread crumbs, page tabs, and table menus.
As we navigate the Zenoss interface, we create organizers to help us build
device relationships.

Establishing device relationships help us understand how a device fits into our IT
environment by location, system, group, and class. The relationships we build in this
chapter help us manage our devices by assigning common configurations to a group
of devices. The groupings provide all devices a way to inherit the configurations of a
common organizer.

To demonstrate Zenoss' hierarchy and inheritance concepts, we need devices to
organize, so we'll let Zenoss auto-discover the devices on our networks. The
auto-discovery process provides a quick way to build an inventory of the devices
on the network and jump-start our monitoring process.

Welcome to Zenoss
Open a web browser and go to http://zenoss-server:8080, where zenoss-server
is the URL of the machine you installed Zenoss on. Notice the port number? Zenoss
listens on port 8080.

The Zenoss User Interface

[44]

When prompted for a user name and password, enter the values you defined during
setup. The defaults are:

User name: admin
Password: zenoss

The following screenshot shows the Zenoss login screen.

After a successful login, the Zenoss interface displays the default dashboard view,
which includes drag-and-drop portlets for Locations, Device Issues, and Zenoss
Issues. Additional portlets are available from the Add Portlets link.

Navigation Techniques
At first look, the interface to the Zenoss web application appears overwhelming and
we don't have any big red buttons that say, "start here." As we take a few minutes to
acquaint ourselves with the application, the overwhelming feeling will subside.

•

•

Chapter 4

[45]

The navigation panel runs down the left side of the screen and contains headings for
Main Views, Classes, Browse By, and Management. The navigation panel provides
the primary way to move from one section to the next within Zenoss (refer to the
following screen capture).

To hide the navigation panel, click the triangle located above the Main Views
heading. When the panel is hidden, the triangle inverts and the screen automatically
resizes to give the page content more space. Click on the inverted triangle to display
the panel, and pin the panel in place by clicking the tack.

While the navigation panel allows us to quickly navigate the system, Zenoss uses
bread crumb links to help us know where we have been and where we are in the
application. If you have used other web applications, such as wikis, you must be
familiar with breadcrumb navigation.

The Zenoss User Interface

[46]

To see the bread crumbs in action, select Devices from the navigation panel. Click
on Server from the list of sub-devices, then Linux. The bread crumbs display a
navigable path which can be found directly under the Zenoss Core log, and based on
our example, we see /Devices/Server/Linux (as shown in the following screenshot).
Each time we select a sub-device or device, the bread crumbs update to reflect the
current location. To get back to the list of Server sub-devices, click on the Server link
in the bread crumbs.

From /Devices/Server, we notice a third navigation method, tabs. Tabs should be
fairly self explanatory in that we click on the tab and a new screen displays. Zenoss
uses the tabs to display information and configurations specific to the device you
are on. The following screenshot shows the view of tabs within a page.

The fourth level of navigation occurs on the tables that display on each page. The
inverted white triangles next to Classes, Sub-Devices, and Devices represent the
table menus and display context sensitive options. Most of what we do to manipulate
our monitoring environment will be based on the page menus. The following
screenshot shows a sample table menu.

With an overview of the navigation techniques in place, we're ready to continue
setting up our Zenoss system.

Chapter 4

[47]

User Accounts
Zenoss is a multi-user system, so we should create a user account for ourselves and
any other person who may use Zenoss. To add a user account:

1. Select Settings from the navigation panel.
2. Click on the Users tab.
3. From the User table menu, select Add New User.
4. Enter a user name and click OK.
5. Click on the new user name do display the user properties and make the

following changes:
Enter a password.
Set the role to ZenManager.

6. Click Save.

Chapter 9 provides a step-by-step guide to adding and managing users, including
a discussion about the roles. The ZenManager role gives us sufficient access
permissions to add, edit, or delete our device inventory within Zenoss.

We may now click the Logout link at the top of the Zenoss interface and log in using
our user account.

Main Views
The Zenoss interface opens to the Dashboard view, which contains a list of
configurable, drag-and-drop portlets. Portlets are widgets we remove and add from
the dashboard that provide an overview of our monitoring status. We can choose
from the following portlets:

Location
Device Issues
Zenoss Issues
Top Level Organizers
Watch List
Production States

•

•

•

•

•

•

•

•

The Zenoss User Interface

[48]

The Location, Device Issues, and Zenoss Issues portlets display by default, but we
can remove them by clicking on the asterisk at the top-right corner of the portlet to
show a settings panel, as seen in the following screenshot. From the settings panel,
choose the Remove Portlet link.

To add a portlet, click on the Add Portlet link at the top of the Dashboard view.
From the Add Portlet dialog box that gets displayed, select the portlet you want to
see on the Dashboard (refer to the following screenshot).

To arrange the portlets, click on the Configure Layout link at the top of the
Dashboard view to display the Column Layout dialog box. We can choose from
various combinations of one, two and three column arrangements. After we choose
a layout, we can rearrange the order of the portlets on the screen by dragging and
dropping a portlet to a new position on the screen.

Other main views include the Event Console, Device List, and Network Map. As we
add devices and create events, we will talk about each of these in turn. For now, let's
set up the Locations portlet to display Google Maps.

Chapter 4

[49]

Locations with Google Maps
The Locations portlet not only displays our configured locations, but it also shows
the network connections between our locations. The locations on the map also
display the current status of the devices at a location and we can drill down to any
device from the portlet.

In order to make the Locations portlet work, we need to add a Google Maps API key
to the Zenoss settings. To acquire a Google Maps API key:

1. Visit http://www.google.com/apis/google.
2. Follow the "Sign up for a Google Maps API key" link.
3. Agree to the Google Maps license agreement .
4. Enter the URL of the Zenoss server to generate the key.
5. Copy the key.
6. Open Zenoss and click on Settings from the navigation panel.
7. Scroll to the bottom of the settings screen and paste the key into the field

labeled Google Maps API Key.
8. Save the changes.

The page refreshes and displays a status message which says that we have
successfully saved the settings. Navigate back to the Dashboard view by selecting
Dashboard from the navigation panel. The Location portlet displays a map, but
Google Maps doesn't know which specific location we want to see, so it guesses.
We'll come back to locations in a while, but first, we need to finish our review of the
Dashboard portlets.

Device Issues
The Device Issues portlet displays a list of all devices with an event using a
color-coded status. Each device name is a hyperlink that links to the devices main
status page. Likewise, clicking on the event redirects us to the event page for
each device.

We can modify the portlet title and refresh rate from the settings pane.

The Zenoss User Interface

[50]

Zenoss Issues
Zenoss not only monitors our network but it monitors itself and reports its status. If
one of the daemons we discussed in Chapter 2 has a problem, Zenoss displays that
problem in the Zenoss Issues portlet (refer to the following screenshot).

Like the Device Issues portlet, we can only change the portlet Title and Refresh Rate.

Watch List
With the Watch List portlet we can monitor the status of an entire device hierarchy,
also known as a class, for example, /Devices/Network. If any device we classify as
Devices/Network generates an event, the status updates on the Watch List portlet.

To watch a device class, select the class from the Zenoss Objects drop down menu
that appears in the portlet settings. We can also change the Title and Refresh Rate
(refer to the following screenshot).

Chapter 4

[51]

Root Organizers
Zenoss allows us to organize our data in several ways, including by location,
systems, groups, and devices. The Root Organizers portlet displays the status for the
grouping we choose. The Locations, systems, and groups are user defined while the
devices are primarily Zenoss defined.

The default organization is by device class. We configure locations, systems, and
groups later in this chapter. If you want to select a new Root Organizer, choose the
new organizer from the settings pane of the portlet. We can also change the portlet
Title and Refresh Rate (refer to the following screenshot).

Production State
The Production States portlet displays the Devices assigned to the selected
Production State. Default Production States are Production, Pre-Production, Test,
Maintenance, and Decommissioned.

The Zenoss User Interface

[52]

Select the Production States to display from the settings pane. To monitor multiple
states, hold down the Ctrl key while selecting the states. You may also change the
portlet Title and Refresh Rate (refer to the following screenshot).

Browse By Organizers
We use the organizers in the Browse By category to define a classification hierarchy
that lets us identify and manage our assets by systems, groups, locations, and
networks. How we define our organizers depends on our monitoring environment
and to what level we want to manage devices.

To demonstrate how we can organize our data, we'll create a sample company to
monitor called Mill Race Communications. For the sake of our discussion, we'll
assume the company has a support and development department with groups of
staff in each department. We'll reference this sample company as we move through
the Zenoss setup and the remainder of the book. We can change our organizers at
any time.

Chapter 4

[53]

We'll start by adding a location by selecting the Locations menu from the
navigation panel (refer to the following screenshot).

Locations
Location names can be generic or specific depending on individual needs. We use the
locations to identify our network, so it's important to use values that have meaning.
To enter a new location:

1. Select Add New Organizer from the Sub-Locations table menu.
2. Type a description (for example, Mill Race) in the ID field of the Add

Organizer dialog.
3. Save the change by clicking OK.

The new location displays in the Sub-Locations table and includes several fields
in addition to the location name. The Subs field provides sub-locations assigned
to Mill Race. The Devices field lists the total number of devices assigned to the
location, and the Events column shows the highest severity event and the number of
corresponding number of events. Since we just started, we see all zeros.

We can add as many locations as we need, or we can further define our locations
and add sub-locations to the Mill Race organizer. Click on the Mill Race link in
the Sub-Locations table. Zenoss now displays information specific to the Mill
Race location. Any events that display on the page will be for devices assigned to
/Locations/Mill Race. Let's add locations for First Floor and Second Floor by
selecting the Add New Organizer option from the Sub-Location page menu.

The Zenoss User Interface

[54]

If we click on the First Floor link, we see the status screen that displays information
specific to the /Locations/Mill Race/First Floor organizer. Let's go back to the Mill
Race location by clicking on Mill Race link in the bread crumbs.

The Summary table on the Mill Race Status tab contains Descriptions and Address
fields that we can edit. Click on the Edit link next to Description and enter any
number of items, such as driving directions or contacts. Save the changes (refer to the
following screenshot).

In order to use the Google Maps portlet, we need to enter a mappable address, such
as city and state. Edit the Address field and enter the address to pass to Google Maps
and click Save. Click on the Map tab to display the map view.

To see multiple locations on the map, add an address for each location; however, you
can enter only one address for each location. Click on the Dashboard view and note
that the Location portlet now displays a map.

If you followed my examples, then you probably want to remove our test locations
and add meaningful locations. To remove a location, select Locations from the
navigation bar. Check the box next to Mill Race in the Sub-Locations table. From the
Sub-Locations page menu, select Delete Organizers.

Chapter 4

[55]

Systems And Groups
We continue defining our monitoring environment by setting up system organizers
for our example company, which is similar to adding locations. From the navigation
panel, select Systems. On the Systems screen, Zenoss displays the Status tab by
default. To add a system organizer:

1. Select Add New Organizer from the Sub-Systems table menu.
2. Type a description (e.g., Support) in the ID field of the Add Organizer dialog.
3. Save the change by clicking OK.
4. Enter a second organizer for Development.

The Sub-Systems table displays the newly added Development and Support
organizers, and each system lists the number of sub-locations, devices, and events
(refer to the following screenshot).

The Systems screen includes tabs for Performance, Events, History, and
Administration. The Performance tab displays group performance data. The Events
tab shows current events for any devices in the organizer, while the History tab
maintains a list of acknowledged events. The Administration tab displays a list of
user-defined commands, maintenance windows, and administrators that may be
assigned to the Systems organizer. After we add devices to the system, we can assign
them to systems and groups.

The Zenoss User Interface

[56]

Next, we'll create a developers group and a software testers group. From the
navigation menu, select Groups to display the Groups Status page. To add a
system organizer:

1. Select Add New Organizer from the Sub-Groups table menu.
2. Type a description (e.g., Developers) in the ID field of the Add

Organizer dialog.
3. Save the change by clicking OK.
4. Enter a second organizer for Software Testers.

The Sub-Groups table displays both groups, but what if we want to classify software
testers within the developers group?

No problem. We'll move the groups:

1. Check the box next to Software Testers in the Sub-Groups menu.
2. Choose Move Organizers from the Sub-Groups page menu.
3. Select Developers from the drop-down list in the Move Organizers dialog

(refer to the following screenshot).
4. Click Move.

Zenoss refreshes the page and displays the /Groups/Developers group page which
now shows the Software Testers sub-group.

Networks
Zenoss can automatically discover all the devices with an IP address on our
networks, and if the device responds to an SNMP query, Zenoss adds it to the device
inventory. We demonstrate the process of adding devices manually in Chapter 5. We
might want to manually add a device to the inventory if our network contains a large
amount of devices we do not wish to monitor or if Zenoss did not automatically add
the device.

Chapter 4

[57]

The Mill Race Communications network we use throughout the book is not publicly
accessible. Each person should apply network addresses and device names that are
specific to their environment in place of the book's examples.

Before we can discover devices, we need to add a network:

1. Select Networks from the navigation panel.
2. Select Add Networks from the Sub-Networks table menu.
3. Enter the IP address (Ex: 192.168.1.1) of the network in the ID field of the

Add Network dialog.
4. Click OK.

The following screenshot shows the Networks Overview page:

Our new network displays in the Subnetworks table. To discover devices:

1. Select the checkbox for the network you want to discover.
2. Select Discover Devices from the Sub-Networks table menu.

Zenoss initiates a ping sweep of the network and looks for active IP addresses.
Devices are added to the Discovered device class.

The device discovery process displays a real time log that provides a step-by-step
account of the results. The following screenshot shows that Zenoss ran the zendisc
command on the network and pinged 254 IP addresses in 51.49 seconds. From those
254 IP addresses, it only found three active IP addresses. The remainder of the log
provides some information about each IP address. Obviously, the example uses
a small network, but small networks deserve to be monitored too!

The Zenoss User Interface

[58]

Scroll to the bottom of the device discovery log and click on the Navigate to
Networks link.

The 192.168.1.1 Sub-network table is now populated with information including
subnets, number of IPs, and Free IPs. To view more detailed information, click on the
192.168.1.1 link to navigate to the network's overview page as shown in the following
screenshot. The Network table provides an Overview of the network, including a
user defined description. We can add and discover Subnetworks from this page
as well.

Chapter 4

[59]

The IP Addresses table lists the discovered IPs on the network along with a Ping and
SNMP status.

From the network overview, we get our first look at zProperties, which Zenoss uses
as a way to define common configuration information for a category of devices. We'll
encounter zProperties again when we cover the class organizers for events, devices,
services, and processes.

The available network zProperties are:

zProperty Description
zAutoDiscover Tells zendisc to automatically discover the devices on the

network. Enter either true or false.
zDefaultNetworkTree Lists network subnets in CIDR format. Default values are

24 and 32.
zDrawMapLinks Tells Google Maps not to draw links for the network. Default

value is false. Set to true if you do not use Google Maps or if
the network is not at a mappable location.

zIcon Sets the location of the default network icon.
zPingFailThresh Enters the number of failed ping requests Zenoss processes

before the device is removed. Default value is 168.

The Zenoss User Interface

[60]

Inheritance
Our discussion about Network zProperties introduces an opportune time to
talk about inheritance in Zenoss. Inheritance means that devices assume the
configuration of its parent organizers and often go from general to specific. We'll
demonstrate inheritance using networks.

From the navigation panel, select Networks. Our test company has at least one
network added to Zenoss already; let's add a second network. We'll use 192.168.2.0
for our example. Our list of networks now contains 192.168.1.1 and 192.168.2.0,
which translates into the following hierarchies:

/Networks/192.168.1.1
/Networks/192.168.2.0

For our test, we'll make configuration changes at the network organizer level and to
the individual 192.168.1.1 network:

1. At the Network level, select zProperties.
2. Set zAutoDiscover to false and save.
3. Select the Overview tab to display the list of networks.
4. Follow the 192.168.1.1 network link.
5. Select the zProperties tab from the 192.168.1.1 Networks Overview page.
6. Set zAutoDiscover to true and save (refer to the following screenshot).
7. Go back to the Network level to display the list of all networks.

•
•

Chapter 4

[61]

At this point, we have a custom configuration. The 192.168.1.1 network inherits the
properties of its parent network organizer, with one exception. On the 192.168.1.1
network, we will be able to automatically discover devices because we set the
zAutoDiscover to "true."

To test our network inheritance setup, select the checkbox for both the 192.168.1.1
and 192.168.2.0 networks from the Sub-Networks list. From the table menu,
select Discover.

Zenoss runs the zendisc command and displays the results in the Discover Devices
summary window. You can review the scan results. Even though we tried to
discover devices on both networks, Zenoss did not poll the 192.168.2.0 network
because it inherited the Networks zProperties, which disables device auto-discovery.
However, Zenoss did discover the devices on the 192.168.1.1 network because we
gave 192.168.1.1 a custom auto-discovery property.

Classes
Several classes exist to organize devices, events, services, and processes based on
common groupings, but we'll stick to talking about devices in this chapter. For
example, the devices we discovered on our network are automatically classified as
discovered. At this point, you may be remembering our discussion about the Browse
By Organizers and wonder in just how many ways we can categorize items.

The organizers we use for locations, systems, and groups do not affect how we
monitor devices. They provide a logistical overview of our monitoring environment,
but our devices do not inherit any configuration properties from them.

Classes, however, do affect how we monitor devices. Each device class has
configurable zProperties, which means that the devices we add to /Server/Linux
inherit a common configuration. It also means that they share monitoring properties
with all devices classified under the server hierarchy and Linux classes. As we did
with networks, we can also set zProperties for individual devices.

The Zenoss User Interface

[62]

We need to change the classification of the devices Zenoss auto-discovered from
the default Discovered class to something more descriptive. Select Devices from the
navigation panel.

The first thing we notice when the Device page loads (as shown in the previous
screenshot)is the row of tabs—Classes, Events, History, zProperties, and Templates.
The Classes tab shows an overview of the current organizer and opens by default.
The Events tab shows all the events for all the devices that are members of the class.
Likewise, the History tab shows the past events for all the devices in the class. We
discussed zProperties before and we will see them again. The Templates tab lists
the available performance templates for the class. How Zenoss collects and displays
performance data can be customized using templates, and like zProperties, devices
inherit the templates of their class.

The next field we see on the Device Class section is the Summary table. The table
lists the number of Events, by severity, for the class. It also displays a summary total
of all sub-classes and the number of devices contained in the class.

The Sub-Devices table displays a list of classes available to the selected class.
For each class in the list, Zenoss provides summary information that includes the
number of Sub-classes, Devices, and Events.

Chapter 4

[63]

Zenoss provides the following class hierarchies in the Sub-Devices table:

Discovered
KVM
Network

Router
Cisco
Firewall
RSM
TerminalServer

Switch
Ping
Power

UPS
APC

Printer
InkJet
Laser

Server
Cmd
Darwin
Linux
Remote
Scan
Solaris

In this chapter, we use classes as a way to establish device relationships. In Chapter
5, we use classes as the basis for our modeling exercise because the information
Zenoss provides us about a device is determined, in part, by its class association.

•

•

•

°

°

°

°

°

°

•

•

°

°

•

°

°

•

°

°

°

°

°

°

The Zenoss User Interface

[64]

Set Device Properties
The Devices table, which is adjacent to the Sub-Devices table, lists all the devices
for the selected class. We do not have any devices assigned to the top-level devices
organizer, so the device list is blank. To display a list of devices for the Discovered
class, click on the Discovered link in the Sub-Devices table.

Now we are viewing the /Devices/Discovered class and the bread crumb navigation
confirms our location in the hierarchy. In the following screen capture, we see three
devices associated with the Discovered class, but we want to change that.

When we click on the Devices page menu, we get our first look at several device
management functions. The following table lists the options and a brief description.

Menu Description
Set Production State Available production states are production,

pre-production, test, maintenance, and
decommissioned.
The production state affects the monitoring
and alerting status of the device.

Set Priority Available priorities are highest, high, normal,
low, lowest, and trivial.

Move to Class Assigns a class organizer.
Set Groups Assigns a group organizer.
Set Systems Assigns a system organizer.
Set Location Assigns a location.
Set Status Monitors Assigns a status monitor to define how

Zenoss polls the device.

Chapter 4

[65]

Menu Description
Set Perf Monitors Assign a performance monitor to define

how Zenoss collects performance data for
the device.

Delete Devices Remove the selected device.
Lock Devices Prevent the device from being removed

if the device is not active during network
auto discovery.

Right now, we want to assign class, group, system, and location to our devices. We'll
continue using devices specific to Mill Race Communications in the examples, but if
you have already discovered your own devices, substitute values as needed.

First, assign locations:

1. Click the 192.168.1.145 and 192.168.1.105 devices to select them.
2. From the Devices page menu, select Set Location.
3. Select /Mill Race/Second Floor from the Set Location dialog; click OK.
4. Assign the 192.168.1.115 device to the /Mill Race location.

Second, assign groups:

1. Select all the devices from the Devices table. We can mass select all the
devices in the list by clicking on the "All" select link located in the second row
of the Devices table.

2. From the page menu, select Set Groups.
3. Select /Developers/Software Testers from the Set Groups dialog; click OK.

Third, assign systems:

1. Select 192.168.1.115 from the device list.
2. From the page menu, select Systems.
3. Select /Developers from the Set Systems dialog; click OK.

Fourth, assign classes:

1. Select 192.168.1.115 from the device list.
2. From the page menu, select Move Classes.
3. Select /Server/Linux from the Move Classes dialog; click OK.

The Zenoss User Interface

[66]

Whoa! The screen has changed. Let's take a moment and see if we can figure out
where we are. Look at the bread crumb navigation. Zenoss opens the new device
class when we move classes, which means we are looking at the /Server/Linux
page. We still have a few assignments to make, so go back to the /Devices/
Discovered class.

We finish our device assignments by moving the device 192.168.1.145 to the /Server/
Darwin class and the device 192.168.1.105 to the /Printer class.

Now that we have defined our device relationships, let's take a quick tour around
the application to see how our changes fit into the system. When we select Groups
from the navigation panel, we see Zenoss displays three devices for the Developers
group. If we click on the Developers sub-group, we see the Software Testers group
with three devices listed. Follow the Software Testers link to display all three of our
sample devices.

Next, select Locations from the navigation panel and follow the Mill Race link. Here
we see the device 192.168.1.115 assigned to the Mill Race location, but the other
devices are further classified under the Second Floor location.

Summary
While speaking about two key concepts, hierarchy and inheritance, we got the
firsthand experience of navigating the Zenoss web application and were able to start
our device inventory. If you haven't already done so, apply the information in this
chapter to your own network so that you can facilitate the way you manage
your devices.

In Chapter 5, we continue discussing our device management concepts by adding
more devices manually, and we'll model our devices with SSH and SNMP. We also
take an in-depth look at the Device List view.

Device Management
Based on the work done in Chapter 4, Zenoss is now monitoring all the devices we
automatically added to our inventory and if we look around the web interface, we
may notice that some devices have events associated with them. At any moment, we
can get the up/down status for each device, but we'll to continue to build a more
detailed model of our networks.

We'll start this chapter by fine -tuning our device inventory through manually
adding devices to our inventory. Then we'll take a look at the main device status
view and perform some routine device administration tasks. The second half of the
chapter demonstrates the available monitoring protocols that Zenoss uses to model
the devices. Device modeling builds relationships between devices and inventories
the services, processes, and hardware on each device.

We'll continue to demonstrate features using the Mill Race network, but feel free to
substitute your own devices in the examples given in this chapter. By the time we
finish Chapter 5, we'll have a detailed model of our networks that we will continue
to build upon in later chapters.

Add Devices
In Chapter 4, we auto-discovered the devices on our networks, but sometimes we
don't want to add all the available devices on the network to the inventory or it may
be that all our devices may not be found. To compensate for both these scenarios,
Zenoss allows us to add one device at a time to the device inventory.

To add a single device, select Add Device from the navigation panel. The Add
Device page is divided into multiple sections for general device information,
Attributes, and Relations as shown in the following screenshot. We can be as
detailed as we want to be when we add the device manually. However,
at a minimum, we should enter a Device Name, Device Class Path, and
Discovery Protocol.

Device Management

[68]

The Device Name identifies the IP address or resolvable hostname, while the
device class sets the monitoring properties we want our device to inherit by default.
If the device is not SNMP-enabled, select None, otherwise Zenoss will not add
the device.

We'll continue monitoring our Mill Race location by adding a new Linux server with
the following configuration:

Device Name: 192.168.1.110

Device Class: /Server/Linux

Discovery Protocol: None

OS Manufacturer: Ubuntu

Location: /Mill Race/Second Floor

Chapter 5

[69]

System: /Development

Group: /Developers/Software Testers

The Add Device Options table lists the available configuration information we can
set when adding a device manually.

Add Device Options
Field Name Description
Device Name Enter either an IP address or resolvable host

name to identify the device.
Device Class Path Select the appropriate device classifications:

For example: /Server/Linux.
Discovery Protocol Choose either SNMP or None depending

on whether or not you monitor the device
with SNMP.

SNMP Community Enter the community string of the device. The
most common default is public.

Attributes
SNMP Port The default port for SNMP communication

is 161.
Tag Number If the device has a tag number, such as a

service tag number, enter the value.
Serial Number Record the manufacturer's serial number.
Production State Select the current state of the device:

For example: Production, maintenance,
decommissioned.

Priority Highest, high, normal, low, lowest, trivial.
Rack Slot Record the physical rack location of the device.
Comments Use the comments to enter device-specific

information, including description, device
users, or who is responsible for the device.

Relations
HW Manufacturer Select a manufacturer name from the list.

For example: Cisco or Linksys.
HW Product Select a product from the list. The HW

Product lists gets populated based on the HW
Manufacturer selection.

OS Manufacturer Select a manufacturer name from the list.
For example: Microsoft or Fedora Core.

Device Management

[70]

Add Device Options
Field Name Description
OS Product Select a product from the list. The OS

Product list gets populated based on the HW
Manufacturer selection.

Location Path Select the location of the device. Create a
new location by typing the name in the New
Location field and clicking Add.

Systems Select a system organizer. Create a new system
by typing the name in the New System field
and clicking Add.

Groups Select a group organizer. Create a new group
by typing the name in the New Device Group
field and clicking Add.

Status Monitor Select a status monitor to define how often the
device availability is monitored. The default
is localhost. Create a new status monitor by
typing the name in the New Status Monitor
field and clicking Add.
Refer to Chapter 6 for configuration
information.

Performance Monitor Select a performance monitor to define how
often device performance data is collected. The
default is localhost. Create a new performance
monitor by typing the name in the New
Performance Monitor field.
Refer to Chapter 6 for configuration
information.

After we enter the configuration information for the device, click the Add button. If
Zenoss encounters an error while adding the device, the error will be printed in the
status window. Check the add device properties and try again. If Zenoss successfully
adds the device, the Status window displays a log indicating device's properties as
shown in the following screenshot.

Chapter 5

[71]

The Add Device Status page provides a hyperlink at the bottom of the page that says,
"Navigate to device 192.168.1.110." If we click on the device name, the Device Status
page is displayed.

Device Status
The Device status page displays an overview of our device and contains the same
information we encountered on the Add Device page. As we look at the Device
Status table for 192.168.1.110 as shown in the following screenshot, we can determine
several important monitoring statistics in one glance.

In our example, the device name and IP address are the same, but they do not need
to be the same. If the host has multiple CNAMEs or interfaces, we can specify a name
other than the name we used to find the device, via DNS resolution. We may find
that we want to implement a custom naming scheme for devices. Regardless of what
we name the device, Zenoss uses the IP address to monitor, not the name.

The Device Status table lists the number of events by severity and color code. The
Device Severities table lists Zenoss's severity:

Device Severities
Color Severity
Red Critical
Orange Error
Yellow Warning
Blue Information
Grey Debug

Device Management

[72]

The Device Status page also lists important statistics of the device. The Availability
and Uptime values are automatically calculated, and the Production State and
Priority values can be changed via the device's Edit page. We can lock the device
to prevent Zenoss from removing or updating the device configuration. The Last
Change, Last Collection, and the First Seen values provide a quick way to verify the
modeling history of the device by listing the last time Zenoss detected a change with
the device configuration and the last time the device was modeled.

In the Device Status page, we also see a list of Component Types and the Status of
each monitored component. As we build our monitoring solution, the components
we monitor will change per device, but common components include SNMP,
ipServices, Windows event logs, and syslogs.

If we look closely at the previous screen shot that shows the status of 192.168.1.110,
we notice that the SNMP component displays an error condition. This indicates that
our device does not have SNMP installed or is not configured correctly. Refer to the
Server Setup section in Chapter 3 for help in SNMP configuration.

Chapter 5

[73]

Up to this point, we have only added devices to our inventory, so why do we see
an error message for SNMP anyway? When we added the device, we set the class
/Server/Linux, which implies that the device uses the modeling properties defined
in the class. The /Server/Linux class uses the SNMP monitoring by default. We'll
talk more about modeling our devices in the modeling section of this chapter.

Like other pages, Zenoss provides context-aware menus that allow us to manage
our device from the Device Status page. When we click on the page menu, three
submenus display: More, Manage, and Run Commands. As we work through this
chapter, we will cover many of the available menu options, but the following series
of screen shots provide a quick view of each menu.

Device Management

[74]

Device Administration
From the page menu on the Device Status page, we can perform several
administration-related tasks, including reset IP address, rename, and lock the
device configuration.

Lock Or Unlock Device
Zenoss automatically polls the devices in our inventory and remodels the devices
when it finds changes. We can lock the device's configuration from being updated by
Zenoss. We can also lock the device from being deleted from the inventory.

To change the lock status of a device:

1. From the Device Status page menu, select Manage > Lock.
2. Select from the following choices as shown in the following screenshot:

Send event when actions are blocked by a lock
Lock from deletion and updates
Lock from deletion
Unlock

3. The device status page displays after we choose a locking option.

°

°

°

°

Chapter 5

[75]

If we lock the device, the lock status displays a padlock icon on the Device
Status page.

Rename A Device
Zenoss automatically detects and populates the device name, but we can name the
device as anything we want. We'll change the name of our 192.1.168.110 device:

1. From Device Status page menu, select Manage > Rename Device.
2. Enter the new name (e.g., Coyote) in the ID field of the Rename

Device dialog.
3. Click OK to save the change.

On the Device Status page, the device information updates to reflect the new name,
Coyote as shown in the following screenshot. Even the breadcrumb navigation
changes to reflect the name.

The device name will not be updated by the Zenoss modeling process.

Device Management

[76]

Reset IP Address
If the IP address of a device changes, we need to update Zenoss to reflect the correct
configuration. To change the IP address of our newly named Coyote:

1. From Device Status page menu, select Manage > Reset IP.
2. Enter the new resolvable host name or IP address in the IP field of the Reset

IP dialog box (shown in the following screenshot) or leave it blank to allow
Zenoss to lookup the IP based on the device name.

3. Click OK to save the change.

Push Changes
After we make changes to the device, we can "push" the changes live right away
instead of waiting for Zenoss to remodel the device. From the Device Status page
menu, select Manage > Push Changes. Zenoss confirms the action with a status
message as shown in the following screenshot.

Chapter 5

[77]

Device List
Up to this point, we have been administering our devices on a per device level,
which is acceptable if we only want to make a few changes to one or two devices. If
we want to mass update our device properties, we use the Device List view.

To display a list of devices, select Device List from the navigation panel
(Device List is shown in the previous screenshot).

The Device List table divides into columns for Device ID, IP, Class, Production
State, Event, and Locks, which provides succinct synopsis of the state of our devices.

The device names and classes are hyperlinks that take you to the device's status page
and the class' summary pages. The Event page displays two squares per device.
The squares with the red borders display the critical events, and the squares with
no borders display error events. Events are listed as the number of acknowledged
events over the total number of events.

If we have a large inventory, selecting a device from a list of entries becomes
cumbersome, so we can sort the table by Device ID, IP, Class, or Production State.
Click on the column heading to change the sort order and note the white triangle
that shows whether the column is sorted in ascending or descending order. Click the
column heading again to reverse the sort order.

Device Management

[78]

If we know the name of the device we want to find, Zenoss provides a global search
box that we can use to search by device name or IP. The Device/IP Search box is
right-aligned at the top of the page and to the right of the Zenoss Core logo.

If Zenoss finds a device matching the search criteria, it automatically opens the
Device Status page. If multiple devices match the search criteria, Zenoss displays
a search results page, so that we can select the correct device.

The Device List table also has a search box, but it's more flexible and allows us to
search by the Device Name, IP, Production State, and Class. As an example, enter
the search term "linux" and press enter. The list of devices changes to reflect all
devices that contain Linux in the name, Production State, or Class (as shown in the
following screenshot).

The Device List view not only displays the list of devices, it also allows us to mass
update a group of devices by setting properties such as class, groups, locations,
status monitors, performance monitors, and production states.

Let's walk through a quick example and change the location for all our devices:

1 Select All devices in the list.
2 From the page menu, select Set Location.
3 From the Set Location dialog box, choose a new location (for example,

Mill Race).
4 Click the Set Location button.

Chapter 5

[79]

This process eliminates the sub-locations that we set in our initial configuration in
Chapter 4 and all the devices are now assigned to Mill Race.

Delete Devices
If we physically remove a device from our network, we need to update our Zenoss
inventory. Otherwise, Zenoss will continue to monitor a device that no longer exists.
We can either set the device's production state to decommissioned or delete the
device from the Device List. If we change the production state to decommissioned,
the device still displays in the Device List, but Zenoss no longer monitors it.

We remove devices from our inventory from the Device List view with just a
few steps:

1 Select the device from the list.
2 From the page menu, select Delete Devices.
3 Click OK to confirm the delete.

The device will no longer show in inventory and Zenoss will not monitor or
model it. However, removing the device from the Device List does not remove
the performance data associated with the device. If we add the same device name
back into Zenoss, the existing performance data will be available. Zenoss stores the
performance data by device name in $ZENHOME/perf.

Device Management

[80]

Model Devices
When we talk about Zenoss, two related but different words often come up,
monitoring and modeling. Monitoring refers to the availability of the device and
answers the question, "Is the device accessible?" Modeling defines a relationship
between devices and identifies the components available on a device, such as
services, interfaces, and file systems.

Zenoss models devices via SNMP, SSH, port scan, and telnet and gathers
information via collector plug-ins. Each class has a default set of collector plug-ins
that tells Zenoss how to model the devices assigned to the class. We can add or
remove collector plug-ins at the device level for individual changes or at the class
level for all the devices in the class.

The collector plug-in names reflect the monitoring protocol they are used for. All
the SNMP collectors contain "snmp" in the name. The SSH and telnet plug-in names
contain "cmd," and the port scan plug-in contains "portscan" in the name.

We'll step through modeling examples for SNMP, SSH, and port scan; however, we'll
skip telnet because it's similar to SSH.

SNMP
Zenoss defaults to SNMP monitoring, and as we discussed in Chapter 3, the
monitored device needs to have SNMP installed and configured to work properly. If
you glossed over the SNMP configuration in Chapter 3, take a moment to review the
information now.

Zenoss supports SNMP v1, v2c, and v3. The example commands used in this section
to troubleshoot SNMP specify v1.

Test SNMP
If we're unsure of our SNMP setup, we can test it by running the snmpwalk
command to retrieve the values of the MIB tree on the monitored device. We'll
demonstrate both working and broken SNMP configurations on the Mill
Race network.

From the Device List, select the device named Coyote. From the Device Status page
menu, choose Run Commands > snmpwalk. A new window opens and we see the
results of the snmpwalk command as shown in the following screenshot.

Chapter 5

[81]

Now we select the device Bobcat from the Device List view. Run the snmpwalk
command from the Device Status page. This time, we receive a Timeout error, which
indicates that we have a problem with SNMP on the device Bobcat as shown in the
following screenshot.

Assuming that SNMP is properly configured on the device and that the monitored
device accepts traffic on port 161, we may need to update the device's community
string. To update the community:

1 Select the device from the Device List view.
2 From the Device Status page menu, select More > zProperties.
3 Find the Community field and enter the correct value.
4 Save the changes.

After updating the SNMP community string in the zProperties, we run the
snmpwalk command again to see if we have fixed the problem.

Device Management

[82]

If we continue to encounter problems getting Zenoss to model a device with SNMP,
we can try to narrow down the problem by running the following snmpwalk
command from the monitored devices shell prompt:

snmpwalk -v1 -c public localhost system

Replace public with the correct community string. If the command is successful
when using localhost, edit the snmpd configuration file. As root, edit /etc/default/
snmpd or /etc/default/snmp and remove 127.0.0.1 from the following line:

SNMPDPORTS = '-Lsd -Lf /dev/null -u snmp -I -smux -p /var/run/snmpd.
pid 127.0.0.1'

After editing the /etc/default/snmpd file, restart the snmpd service as root. For
example:

/etc/init.d/snmpd stop

/etc/init.d/snmpd start

Retest the snmpwalk command to confirm that SNMP is working correctly. Windows
users can run wbemtest from the command line as outlined in Chapter 3 to test
SNMP. If problems remain, consult chapter 11 for a list of Zenoss Core community
help resources.

Windows Considerations
The Windows SNMP installation is covered in the Server Setup section of Chapter 3,
but in order to collect information from WMI, we need to configure the zProperties
for the Windows device. Navigate to the Windows device and open the zProperties
page by selecting the More > zProperties from the page menu. Scroll to the bottom
of the page and make the following changes:

Set zWinEventLog to true.
Enter the Windows user's password in the zWinPassword field.
Enter the user name with administrative rights in the zWinUser field in the
following formats:

.\user for local user accounts
DOMAIN\user for domain user accounts

Set zWMIMonitorIgnore to false.

Save the changes, and Zenoss is ready to model the information on the Windows
device. We can force a model by selecting Manage > Model Device from the
page menu.

•

•

•

°

°

•

Chapter 5

[83]

SNMP Collector Plug-ins
The Collector Plug-ins assigned to the device determine how Zenoss models the
device. Let's take a look at our example device Coyote and see what collectors are
currently assigned. From the Device Status page for Coyote, select More > Collector
Plug-ins from the page menu.

A page showing the assigned collector plugi-ns displays in the left column of the
page with an Add Fields link on the right. When we click on the Add Fields link, a
column of unassigned plug-ins appears and the link name changes to Hide Fields as
shown in the following screenshot.

The plug-in names are intuitive in that the name suggests the type of information
we expect to be modeling. For example, zenoss.snmp.IpServiceMap returns a list
of active IP services on the device, such as HTTP. The Dell specific plugi-ns retrieve
more detailed information from Dell devices using OpenManage, and the HP
plugi-ns provide more information about devices using Insight Management agents.

Device Management

[84]

To remove a plug-in from the assigned plug-in list, click on the "x" next to the
plug-in name. To assign a plug-in, drag the plug-in name from available list to the
assigned list.

To see how our devices are affected, let's remove the zenoss.snmp.IpServiceMap
and add zenoss.cmd.df. After we make the changes to the plug-ins for Coyote,
scroll to the bottom of the page and click Save.

Model Device
Zenoss automatically models each device in our inventory every six hours, but we
can manually force Zenoss to model the device. From the Device Status page, select
Manage > Model Device from the page menu.

Zenoss displays the results of the zenmodeler command in the window as shown in
the following screenshot.

Chapter 5

[85]

Zenoss first determines which plugi-ns are available and then collects information
based on those plug-ins. Notice that no cmd plug-ins are found, which means that
the zenoss.cmd.df plug-in we added to Coyote will not be collected. After Zenoss
models the device, we can review the device overview page to see what component
types Zenoss discovered. IpService should not be listed.

If we go back to the Collector Plug-ins page for Coyote, we can add the zenoss.
snmp.IpService plug-in and then model the device again. Now, IpServices is
displayed in the Component Type list as shown in the following screenshot.

Device Management

[86]

The Component Type list gets updated as part of the modeling process and so does
the OS fields in the Device Information table (the greyed-out fields in the screen
shot). If we enter values in these fields during the Add Device step, the values would
be overwritten with the SNMP values.

Our example made changes to the device level, which means that if we view the
collector plug-ins for the /Server/Linux device class, the original plug-ins are
specified. To view the plug-ins for the class:

1 Select Devices from the navigation panel.
2 Select Server from the sub-devices list.
3 Select Linux from the sub-devices list.
4 From the /Devices/Server/Linux page menu, select More > Collector

Plug-ins.

Devices automatically inherit any changes we make to the class collector plug-ins the
next time Zenoss models the devices.

SSH Modeling
If the monitored device does not support SNMP, or if we need to monitor a device
behind a firewall, SSH provides an alternative to SNMP. Unlike SNMP, SSH needs
the Zenoss Plug-ins installed on each monitored device and platform support
is limited to Linux, Darwin, and FreeBSD. We also need to make sure that the
monitored device has an SSH server installed so that the Zenoss system can log in
and retrieve information. OpenSSH from openssh.com offers a good cross-platform
SSH solution.

The level of modeling provided by the Zenoss Plug-ins varies between platforms. For
this reason, we may not achieve the same level of detail as we do with SNMP, but
SSH modeling provides more detail than a port scan.

To help us setup our SSH monitoring, Zenoss provides the /Server/Cmd class which
is already configured with the command plug-ins we need to monitor via SSH.

SSH Collector Plug-ins
From the navigation panel, select Devices. Navigate to the /Server/Cmd class
and click on the zProperties tab. Find the zCollectorPlug-ins field and click on
the Edit link. A list of the assigned collector plug-ins is displayed as shown in the
following screenshot.

Chapter 5

[87]

The important thing to note with the command collector plug-ins is the new level
of specificity in the name. The zenoss.cmd.uname and zenoss.cmd.df plug-ins are
common to all architectures, while the plug-ins with "linux" in the name work with
Linux systems. Mac OS X platforms use the plug-ins with "darwin" in the name.

If we did not have any any OS X systems to monitor, then we could remove all
the Darwin-based plug-ins from the /Server/Cmd class or, if we know that we
don't want to monitor the memory usage for any of our devices, we can remove
that plug-in.

We'll leave the collector plug-ins as they are for the /Server/Cmd class and change
our test device Coyote to use SSH instead of SNMP.

Zenoss Plug-ins
Zenoss will monitor and retrieve some data using the SSH modeler even if we do not
install the Zenoss plug-ins, but the device model will be incomplete. For example,
file systems will be detected along with the size of each drive., but the usage statistics
will not be reported. Zenoss also generates warning events if it cannot find the
zenplugin.py command on the monitored system.

Device Management

[88]

The monitored system needs a Python environment installed. This can be
installed using your distribution's package manager. If you have setuptools
installed, you can install the Zenoss-Plug-ins package from the Cheese Shop
(http://pypi.python.org/pypi/) with the following command as root:

easy_install Zenoss-Plugins

We can also build the Zenoss Plug-ins package from source:

1 Download the Zenoss Plug-ins package from
http://www.zenoss.com/download/.

2 Extract the plug-in file.
3 From the plug-in source directory, run the following commands as root:

python setup.py build
python setup.py install

The setuptools procedure installs zenplugin.py to /usr/bin, which is important
because we need to configure the device zProperties to look for the plug-ins in the
correct location.

To ensure that the plug-in file is working correctly, run the following command on
the monitored device, which is Coyote in our example:

zenplugin.py –list-plugins

°

°

Chapter 5

[89]

The command outputs the detected platform and the supported plug-ins as shown in
the following screenshot.

Model Device
In order to get Zenoss to model Coyote, we need to tell Zenoss how to connect. First,
we'll change the class to /Server/Cmd because it's already configured with the
plug-ins we need to use. Second, we'll configure the zProperties so that Zenoss can
log in to the device and run system commands.

Navigate to Coyote's Device Status page, and from the page menu, select
Manage > Change Class. Select /Server/Cmd and confirm the selection by
clicking OK.

Next open the zProperties. From the page menu, select More > zProperties. Make
the following changes:

Set zCommandUsername to the SSH login on the monitored device.
Set the user's password in zCommandPassword.
Change zCommandPath to /usr/bin.
Set zSnmpMonitorIgnore to true.

When we type the password in zCommandPassword, it will be in clear text, but
after we save the zProperties, the password will be starred out. After we have all the
changes entered, click Save.

Find the zCollectorPlug-ins field and click on the Edit link to display the collector
plug-ins page. Verify the plug-ins listed are for the /Server/Cmd class only. If not,
remove the SNMP plug-ins and add the cmd plug-ins. Save any changes.

•

•

•

•

Device Management

[90]

Now, let's model the device. From the page menu, select Manage > Model Device.

The modeling process resembles the process for SNMP, but notice that this time
we're using the cmd plug-ins instead of the SNMP.

Port Scan Modeling
Sometimes, the only option we have to model our devices is with a port scan. A port
scan tries to guess which services are running on a device by connecting to various
ports. Port scans provide the least detailed model and may raise security alerts on
your network. Consult the security administrators before port scanning devices on
the network.

Zenoss creates a separate device class in /Server/Scan to handle these devices. There
is only one plug-in available, and it is named zenoss.portscan.IpServiceMap. As
the name implies, it returns a list of services running on the device.

We go through the same steps to model a device with port scan as we do for SNMP
and SSH.

Chapter 5

[91]

OS Tab
After Zenoss models the devices, it populates the operating system (OS) tab with its
findings. From the device's Status page, click on the OS tab.

We'll discuss each of the sections in more detail in Chapter 6, but we see that Zenoss
has detected the Interfaces, IP Services, File Systems, and Routes for our server,
Fox as shown in the previous screenshot. Those groupings should sound familiar,
as we've seen various implementations of those collector plug-ins for SNMP and
SSH plug-ins.

Device Management

[92]

Hardware Tab
With the exception of the port scan, the Zenoss models include information about
a device's memory and CPU. We can access the Hardware tab by clicking the tab
labeled Hardware from the Device Status page.

If we monitor a Windows system, we can gather hard disk information by adding
the zenoss.snmp.InformantHardDiskMap collector plug-in to the device.

Device zProperties
In the course of the chapter, we have changed several zProperties at the device
or class level to define how we monitor our devices. The following table lists the
available zProperties and a description of each.

zProperty Description
zCollectorClientTimeout Set the timeout of the client collector in

seconds. The default is 180.
zCollectorDecoding Specify the character encoding. The default

is latin-1.
zCollectorLogChanges Set to true to log changes and false not to log

changes to the collector.
zCollectorPlug-ins Click the Edit link to open the collector

plug-in selection page.
zCommandCommandTimeout Time in seconds to wait for a command to

finish. The default is 15.
zCommandCycleTime Specifies a time in seconds to cycle through

zCommands. The default is 60.
zCommandExistanceTest Test to see if a command exists on the

monitored device. The default is 'test -f %s'.
zCommandLoginTimeout Wait for the specified seconds for a login

prompt. The default is 10.

Chapter 5

[93]

zProperty Description
zCommandLoginTries Attempt to log in the number of specified

times. The default is 1.
zCommandPassword Enter the password for the user's shell account

on the monitored device.
zCommandPath Enter the path of the zenplugin.py

command. The default is /opt/zenoss/
libexec; however, the default installation
path for zenplugin.py is /usr/bin

zCommandPort The port the monitored system uses for SSH
connections. The default is 22.

zCommandProtocol Specify the protocol (telnet, ssh) to use. The
default is SSH.

zCommandSearchPath Specify all the paths to search for
the commands.

zCommandUsername Enter the user log in name for the monitored
device.

zDeviceTemplates Enter the templates by name to use to display
information. The default is device.

zFileSystemMapIgnoreNames Enter the names of the files system to ignore.
For example: /boot.

zIcon Each device class has a default icon that can be
changed as necessary.

zIfDescription Displays the interface description on the
Interfaces table of the OS tab. Select either true
or false. The default is false.

zInterfaceMapIgnoreNames Enter the names of the interfaces to ignore. For
example: lo.

zInterfaceMapIgnoreTypes Enter the type of interfaces to ignore. For
example: local loopback.

zIpServiceMapMaxPort Specify the maximum port number to port
scan. The default is 1024.

zKeyPath Specify the path to the user's public key file for
use with public-key authentication.

zLinks Enter HTML markup or TALES expressions to
display a link for the device. For example, you
can create a link to a router's administration
console that will display on the Device
Status page.

Device Management

[94]

zProperty Description
zLocalInterfaceNames A regular expression match to identify local

interface names. The default expression looks
for lo (loopback) and vmnet (Vmware).

zLocalIpAddresses A regular expression match to identify local
IP address.

zMaxOIDPerRequest Specify the number of OIDs Zenoss collects
with a single query. The default is 40.

zPingInterfaceDescription Find interfaces to ping by device description.
zPingInterfaceName Find interfaces to ping by name.
zPingMonitorIgnore Select true not to ping the device or false to

ping the device.
zProdStateThreshold Monitor a service that is higher than the

production state listed. Possible values include
1000 (Production), 500 (Pre-Production),
400 (Test), 300 (Maintenance), and -1
(Decommissioned).

zRouteMapCollectOnlyIndirect Set to true to collect only the indirect routes.
Default is false.

zRouteMapCollectOnlyLocal Set to true to collect only the local routes.
Default is false.

zSnmpAuthPassword Specify SNMP password, if applicable.
zSnmpAuthType If using zSnmpAuthPassword, select either

MD5 or SHA authentication protocol.
zSnmpCommunities List of communities Zenoss tries to collect

information for. The defaults are public and
private. Enter more as needed.

zSnmpCommunity The default community name on the
monitored device.

zSnmpMonitorIgnore Set whether or not Zenoss should monitor the
device with SNMP. Defaults to false.

zSnmpPort The SNMP communication port. Defaults to
port 161.

zSnmpPrivPassword Enter the security user's password.
zSnmpPrivType Select either AES or DES encryption.
zSnmpSecurityName enter the security user's name.
zSnmpTimeout Length of time in seconds that Zenoss waits

for a response from the remote SNMP agent.
Defaults to 2.5.

Chapter 5

[95]

zProperty Description
zSnmpTries Number of times Zenoss tries to connect via

SNMP before reporting a failure.
zSnmpVer The version of SNMP. Available options are 1,

2c, and 3. Defaults to 1.
zStatusConnectTimeout Specifies the time in seconds for an IP service

to respond before the service is marked down.
The default is 15.

zSysedgeDiskMapIngoreNames Not used.
zTelnetEnable On Cisco routers, send the enable command to

enable command collection. Default is false.
zTelnetEnableRegex Match the enable prompt with the specified

regular expression.
zTelnetLoginRegex Match the login prompt with the specified

regular expression.
zTelnetPasswordRegex Match the password prompt with the specified

regular expression.
zTelnetPromptTimeout Specify the time in seconds to wait for the

login prompt to display.
zTelnetSuccessRegexList Match the command prompt with the specified

regular expression.
zTelnetTermLength Select true to enable telnet terminal length.
zWinEventLog Specifies whether or not Zenoss collects the

Windows event log. Default is false.
zWinEventLogMinSeverity Collect all Windows event logs that match the

specified severity. Enter a value between 1
and 5, where 1 is the most severe. The default
is 2.

zWinPassword Enter the Windows user's password.
zWinUser Enter the user name of an account on the

monitored Windows system.
zWmiMonitorIgnore Set to true to ignore WMI monitoring and set

to false to monitor WMI services.
zFileSystemMapIgnoreTypes Do not use
zPythonClass Do not use
zXmlRpcMonitorIgnore Set to true to enable XML/RPC monitoring

Device Management

[96]

Summary
As we see, Zenoss aggregates a large amount of information about our networks.
In this chapter, we've learnt how to use classes, plug-ins, and modeling protocols
to organize, collect, and display information about our devices. By using the device
classes, we can define a hierarchical set of monitoring properties for groups
of devices.

The classes allow us to set the collector plug-ins and define a common set of
zProperties per device. Exceptions can be made on a per device basis. This is one
of Zenoss's core data organization concepts. We can change a device's class or
zProperties at any time and Zenoss will apply the changes the next time it
models the device.

In Chapter 6, we will review status and performance monitors, and we will also
monitor individual device components based on the device models we generated in
this Chapter. We'll monitor TCI/IP services, processes, file systems, CPUs,
and interfaces.

Status and Performance
Monitors

Is the device available? How has the device performed over time? We answer these
questions and more in our discussion about status and performance monitors. Status
monitoring lets us know if the device is up or down, and performance monitoring
graphs device performance over a time range.

In the previous chapters, we have built an inventory of the devices we wish to
monitor and Zenoss is happily monitoring them. However, Zenoss makes its best
guess about how we want to monitor our devices, which isn't always the way we
want to monitor.

In this chapter, we learn how to tell Zenoss what and how we want to monitor.
We'll start by reviewing the system-wide monitors we use to collect status and
performance data. Then we'll monitor the interfaces, processes, services, file systems,
and routes of a device. After we overview the performance graphs, we'll finish the
chapter by customizing the threshold of a performance template.

Available Monitors
Zenoss provides one performance monitor and one status monitor by default. The
monitors store information about how Zenoss collects monitoring information from
the devices on the network. We can customize the existing monitors or create new
monitors and apply them to devices or device classes.

Status and Performance Monitors

[98]

To display the available status and performance monitors, select Monitors from the
navigation panel.

The tables provide the Name, the Creation Time, and the Last Modification time
for each monitor as shown in the previous screenshot. We'll take a closer look at
each one.

Status Monitors
Status monitors set the frequency at which Zenoss polls the devices for an up/down
status. Zenoss allows us to configure how we perform ping tests. For example, we
may configure a separate status monitor for our WAN sites than for our LAN sites.
Click on the localhost status monitor to display the overview page. The Overview
page shows the Status Monitor Configuration and Devices tables as shown in the
following screenshot.

Chapter 6

[99]

The Status Monitor Configuration provides a snapshot of the configuration as
it exists. Our Zenoss installation currently uses this configuration to monitor the
availability of all the devices, but we will add a new monitor soon. Let's review the
available settings:

Property Description
Monitor Name A text description of the status monitor.
Ping Timeout The time in seconds that zenping waits for a

reply to the ping command. Default is 1.5.
Cycle Interval The time in seconds for which Zenoss collects

availability data. The default is 60 seconds.
Maximum Failures If the device fails to respond to a ping for the

specified number of consecutive tries, remove
it. The default is 1440 (36 hours).

Chunk Size Specifies a default chunk size of 75 bytes.
Ping Tries The maximum number ping attempts per

Cycle Interval. The default is 2.
Configuration Reload Interval The time in minutes at which Zenoss reloads

the configuration. The default is 20.

Status and Performance Monitors

[100]

For our purposes, the most important values are Ping Timeout, Cycle Interval, and
Ping Tries. Let's step through an example using the default values. Zenoss pings the
device each minute. If the device fails to respond to the first ping within 1.5 seconds,
a second ping is sent. If the device fails to acknowledge the second ping within 1.5
seconds, Zenoss marks the device as down (red) and generates an event. If the device
returns the ping, Zenoss marks the device status as up (green).

If we make changes to the localhost status monitor, we affect the way Zenoss
monitors all the devices. For example, if we decide that we only need to check for
available devices once every five minutes, we could change the Cycle Interval to 300.
If we have a device or class of devices we want to monitor at a different interval,
such as WAN devices, we create a different status monitor to store our settings.

Performance Monitors
The performance monitors tell Zenoss how often to collect data about the services,
processes, and hardware attached to the devices. We manage the performance
monitors in the same way we manage the status monitors. To display the default
performance monitors, select Monitors from the navigation menu.

Click on the localhost performance monitor to display the monitor's Overview page.
The Overview page shows the Performance Collector Configuration table and the
Devices table (refer to following screenshot).

Chapter 6

[101]

The Performance Collector Configuration table displays the current configuration
settings, and the Devices table shows a list of all the devices using the localhost
performance monitor. Since localhost is the default, our entire device inventory
displays in the Devices list.

Let's review the performance collector settings.

Property Description
Event Log Cycle Interval The time in seconds for which zenwin collects

Windows event logs. The default is 60.
SNMP Performance Cycle Interval The time in seconds for which zenperfsnmp

collects SNMP performance data. The default
is 300.

Process Cycle Interval The time in seconds for which zenprocess
collects process performance data. The
default is 180.

Status Cycle Interval The time in seconds for which zenstatus
collects data about TCP services . The default
is 60.

Windows Service Cycle Interval The time in seconds for which zenwin
collects performance data about Windows
services. The default is 60.

Windows Modeler Cycle Interval The time in seconds for which
zenwinmodeler collects performance data.
The default is 60.

Config Cycle Interval The time in minutes that Zenoss reloads the
monitor configuration.

Render URL Used for inter-daemon communication
(XML/RPC) for graphing information. The
default is /zport/RenderServer.

Render User The user name required to connect to a
remote collector plugin. Default is blank.

To make changes to the localhost performance monitor, click the Edit tab. Any changes
we make here affects all the devices assigned to this performance monitor.

The Edit page includes two fields that do not display on the Overview page: Render
Password and Default RRD Create Command. The Render User and the Render
Password values allow the Zenoss system to authenticate to a remote performance
collector. We only need to specify a user name and password if our Zenoss system
needs to communicate directly with a remote performance collector.

Status and Performance Monitors

[102]

The Default RRD Create Command field contains syntax for the RRDTool to use to
build graphs. The default configuration should be fine, but for more information
about RRDTool visit http://oss.oetiker.ch/rrdtool/.

Add A New Monitor
We use the same process to add a status monitor as we do to add a performance
monitor; therefore, we'll demonstrate the process by adding an example
status monitor.

In our example, we add a new monitor named "Workstation.":

1. Select Monitors from the navigation menu.
2. From the Status Monitors table menu, select Add Monitor.
3. Enter a descriptive name (Eg.: Workstation) in the Add Monitor dialog box.
4. Click OK to confirm the add.

The new monitor displays in the Status Monitor list, but it has the same settings as
the localhost status monitor. Click on the new Workstation monitor name to display
the Overview page. Notice that the Workstation status monitor does not have any
devices attached to it.

Before we assign the new monitor to any devices, let's configure it. Click the Edit tab.
We change the Cycle Interval to 0 so that any devices assigned to the monitor will
not be pinged. However, the devices will still be modeled.

Attach A Monitor To Devices
After we add and configure the monitor, we need to attach it to a device. This
example uses our new status monitor to demonstrate the steps, but we would apply
the same steps to performance monitors.

We either assign the monitor to an individual device or to a device class, so that all
the devices in the class inherit the monitor.

To change the monitor for a group of individual devices:

1. Select Device List from the navigation menu.
2. Select the target devices.
3. From the page menu, select Set Status Monitor.
4. Choose Workstation from the Status Monitor selection box (refer to the

following screenshot).
5. Click OK to confirm the change.

Chapter 6

[103]

To change the status monitor for an entire device class:

1. Select Devices from the navigation menu to display the list of classes.
2. Click the Workstation class name that we created in Chapter 5 from the

Sub-Devices table.
3. From the page menu, select Edit > Set Status Monitors.
4. Select Workstation from the Status Monitor selection box (refer to the

following screenshot).
5. Click OK to confirm the change.

Next, we verify that our devices reflect the new status monitors. We could look at the
Edit tab for each device to see if the Workstation status monitor is set for the device,
but , we'll continue working from the Monitors Overview page.

Status and Performance Monitors

[104]

Select Monitors from the navigation menu. Then follow the Workstation link
to display the Overview page. The Devices list shows all the devices using the
Workstation status monitor.

Component Status
Now that we know a bit about how Zenoss collects status and performance
information, we turn our attention to monitoring the status of the components. We
manage the individual components of a device from the OS tab.

OS Tab
When we select a device from the Device List, the OS tab becomes available. The
components listed on the OS tab depend upon the device, the modeling protocol
(for example, SNMP, SSH, port scan) and the collector plug-ins used for the device;
therefore not all the devices will have the same components listed. We'll cover
each of the following components in turn: Interfaces, OS Process, IP Services, Win
Services, File Systems, and Routes.

Chapter 6

[105]

Interfaces
As part of the modeling process, Zenoss discovers the interfaces running on the
device and automatically begins monitoring them. The following screenshot shows
the discovered interfaces on our example server, Fox, along with various bits of
configuration information, including the interface Name, IP Address, Network,
MAC address, operational status, administrative status, and whether or not the
device configuration is locked. We covered locks in Chapter 5. The operational status
is represented by the "O" column heading, while the "A" column represents the
administrative status.

Since Fox is a Linux server, we will check Zenoss' work by logging in and running
the following command to see if the interface information matches up:

ifconfig -a

Windows users can run the following command to see a list of all the interfaces:

ipconfig /all

Status and Performance Monitors

[106]

As we see, the list of interfaces in Zenoss matches the interfaces found on the device.
However, just because Zenoss discovers the interface doesn't mean we need to
monitor it. For example, we may decide we don't really need to monitor the
loopback adapter.

The loopback adapter (lo) provides an interface for network traffic that only takes
place on the local machine, and it always has an IP address of 127.0.0.1. We do
not want to delete the loopback adapter from our machine, as that would cause
problems, but we can delete the monitor from Zenoss without any problems.

To delete the "lo" interface from the list, select it and choose Delete IpInterfaces from
the Interfaces table menu.

We can also add interfaces to Zenoss. To add the "lo" interface, select Add
IpInterfaces from the Interfaces table menu. Enter "lo" in the ID field of the Add
IpInterface dialog box. After we add the interface name, Zenoss displays the
Interface Status page (refer to the following screenshot).

If we specify the Name, IP Address, and a Monitor status equal to True, all other
values will be detected the next time Zenoss models the device. Actually, in case of
our example, Zenoss would have added the loopback adapter back to the Interfaces
list automatically the next time it modeled the device. If we do not want to monitor
an interface, set the Monitor status to false. Save the changes and navigate back to
the OS page.

Chapter 6

[107]

OS Processes
Zenoss keeps tabs on almost any process we want to monitor. Zenoss won't be
able to gather reliable statistics for short-lived processes which up at irregular
intervals. On the server, each running application is represented by a process. From
the navigation menu, select Processes. The Classes tab displays a Sub-Folders and
Processes table.

To add a process:

1. Select Add Process from the Processes table menu.
2. Enter the name of the process (for example mysql) in the ID field of the Add

OSProcess dialog box.
3. Click OK to create the process monitor.

Now, add a second process name, such as snmp.exe.

The Processes table lists the monitored processes by Name along with the regular
expression (Regex) Zenoss uses to identify the process on the device. The Monitor
column tells us whether or not the process is being monitored, and the Count
column indicates the number of monitored instances of each process (refer to the
following screenshot).

Status and Performance Monitors

[108]

As we see, Zenoss populates the Regex value based on the value we entered when
we added the process. If we want to specify a Python-based regular expression, for
our process:

1. Click on the mysql process to display the Status page.
2. Click on the Edit tab.
3. Enter .*mysql.* in the Regex field.
4. Click Save.

We use the Sub-Folders to create organizers for our processes. Since Zenoss can
monitor Windows and Linux processes, we'll organize our process monitors by
operating system.

To add a new Sub-Folder to the Processes page:

1. Select Add New Organizer from the Sub-Folders table menu.
2. Enter the name of the organizer (for example, Windows) in the ID field of the

Add Organizer dialog box.
3. Click OK to create the new organizer.
4. For the sake of completeness, add a second organizer for Linux.

Let's finish organizing our processes by moving the Linux processes to the Linux
folder and the Windows processes to the Windows folder.

To move a process to a folder:

1. Select the process from the Processes table.
2. Select Move Processes from the table menu.
3. Select the folder name from the drop-down list in the Move Processes

dialog box.
4. Click Move to assign the process to an organizer.

The next time Zenoss models the devices, it automatically detects and adds the new
processes to the device's monitored components. Let's take a look at the OS tab for
our test server, Fox.

Chapter 6

[109]

From the previous screenshot, we see that Zenoss detected and added several
instances of the mysqld process and one sshd process. The OS Processes table
displays the service Class, Name, alert status for Restarts, Fail Severity, Status, and
configuration Locks.

If we follow the service class link, Zenoss displays the class properties. In addition to
the current configuration, we see a Process Instances table that lists each monitored
instance of the process and its status. The following screenshot shows the sshd
service class.

Status and Performance Monitors

[110]

If we navigate back to the device's OS tab, we can click on a process's class name
from the OS Processes table to display a settings screen. The available settings are
intuitive. We have a Status, a link to the Process Class, the Name of the process,
the Monitor status, Alert On Restart status, and the Fail Severity (refer to the
following screenshot).

Services
Unlike processes, Zenoss provides a list of services available to monitor, on the
devices. Services start automatically when the operating system boots up and
without the need for user control. Windows services (for example, eventlog) and
Unix daemons (for example, smtp) are examples of services. To view the list of
services, select Services from the navigation menu. The Services are organized by
folders for IpService and WinService, and each provides a count of the number of
included services; the IpService contains a list of Linux-based services while the
WinService organizer contains a list of Windows-based services.

By clicking on the folder name, we navigate the list of services and sub-folders. For
example, the IpService folder contains further divisions for privileged and registered
ports. The Privileged folder contains those ports up to 1024.

Chapter 6

[111]

The Services table displays several columns of information for each service name,
including Port, Description, Monitor status, and a service Count. The Monitor
status indicates whether the service class is monitored by default or not. We can
automatically monitor services as Zenoss discovers them, by setting the monitor
status to true, or we can enable monitoring for individual devices.

Status and Performance Monitors

[112]

Click on the ssh service name to display the ssh service class Status page (refer to the
following screenshot). This page has a similar format as the process class status page.

The Service Class table lists the current configuration as defined on the Edit tab and
zProperties tab. The Service Instances table lists all the occurrences of the service by
Device along with the Monitor status and operational Status.

We can set the failure severity and monitor status on the zProperties tab. Select the
Edit tab to modify additional service properties, including the name, description,
and port. We can also control what Zenoss checks when monitoring the service by
specifying a Send String value, and then defining the expected response in the Expect
Regex field.

Any change we make here will apply to all instances of the service, and the next time
Zenoss models the devices, the device model updates automatically.

IP Services
Sometimes, we won't want to monitor all instances of a service, and in those cases,
we can add IP Services from the device's OS tab. In this example, we'll monitor the
syslog service for the device, Fox. From the OS tab, we have two ways to add
a service.

If Zenoss is currently monitoring any service, we see an IP Services table with a list
of services. In this case, we can choose Add IpService from the table menu.

If we don't see the IP Services menu, then we can use the page menu and select
Add > IpService:

Chapter 6

[113]

1. When the Add IpService dialog displays begin typing the name of the
service (for example, sysl) and notice the list of services filters as we type.

2. Select the service from the list (for example, syslog).
3. Select the protocol of the service you want to monitor (E.g: tcp or udp)
3. Click OK to add the new service.

Zenoss displays a service Status page after we add the service. This screen is a remix
of the service class properties we reviewed in the previous section. If we need to, we
can change settings, such as the Protocol and the Port number. In order to get Zenoss
to monitor the syslog service on the device, we need to set the Monitor status to True
(refer to the following screenshot).

Status and Performance Monitors

[114]

After we save the configuration, the status indicator turns from gray to green,
indicating that the service is monitored and available.

Now, when we navigate back to the OS tab for the device, we see the syslog service
in the IP Services table. By default, the table displays the monitored services;
however, if we want to see a list of the unmonitored services for the device,
uncheck the Monitored checkbox in the IP Services table heading (refer to the
following screenshot).

To enable monitoring for any service in this list, click on the Service name to edit the
properties and set the Monitor status to true.

Win Services
In order to monitor Windows services, WMI must be installed on the Windows
machines. For help in installing WMI, refer to Chapter 3. To demonstrate the Win
Services, let's build a software inventory for our test device Master by monitoring the
AppMgmt service:

1. From the page menu, select Add > Add WinService.
2. In the Win Service Class field, begin typing the name of the service

(for example, app as shown in the following screenshot) to filter the list.
3. Select the service name (for example, AppMgmt).

Chapter 6

[115]

4. Click OK to add the WinService.

After we add the service, we need to set the Monitor status to true and save the
change, just like we did with the IP Services.

In addition to monitoring the availability of the Windows Applications Management
service, Zenoss will populate the Software tab with a list of all the installed software
when the device is modeled (refer to the following screenshot).

Status and Performance Monitors

[116]

File Systems
Zenoss models the file system hierarchy and reports the volume, capacity in Total
bytes, Used bytes, Free bytes, Percent Utilization, and whether or not the file
system configuration is locked (refer to the following screenshot). If we add a new
Mount point, such as an extra drive, Zenoss automatically detects and adds the new
file system when it models the device.

We can also manually add a new file system from the OS tab:

1. From the File Systems table menu, select Add File System.

2. In the ID field of the Add File System Dialog, enter the mount point for the
file system (E.g: /media/disk).

3. Click OK to add the new file system.

Zenoss displays the Status page of the of the new File System with several
properties. The only values we need to verify are the Mount Point and the Monitor
status. After we verify the Mount Point and set the Monitor status to True as shown
in the following screenshot, we will Save our changes.

Chapter 6

[117]

When we navigate back to the OS tab, notice that the new file system for /media/
disk does not have the total bytes, free bytes, used bytes, and utilization calculated.
After Zenoss models the device, the file system details fill in.

Routes
For each device, Zenoss discovers the routing table and displays the following
information in the Routes table of the OS tab: Destination, NextHop, Interface,
Protocol, Type, and configuration Locks (as shown in the following screenshot). If
the Destination or NextHop values correspond to a discovered network, then we can
click on the route to display the network properties. We have added and configured
networks in Chapter 4. Likewise, if we click on the interface name, we load the
interface status page from the Interfaces table on the OS tab.

Similar to the interfaces, we can easily verify whether Zenoss is providing us
with accurate information or not. If we log on to Fox, we can issue the following
command to see a list of routes:

routes -n

On a Windows server, we can use the following command:

route print

Status and Performance Monitors

[118]

Although Zenoss automatically adds new routes that it discovers when it models the
device, we can add a new route manually:

1. From the Routes table menu, select Add IpRouteEntry.
2. The AddIpRouteEntry dialog box prompts for several values:

Destination
Next Hop
Interface
Protocol
Type

3. Enter at least the destination address.
4. Click OK to add the route.

The next time Zenoss models the device, it will fill in any route details you left blank
while adding the new route.

Performance Graphs
Zenoss creates time series graphs using RRDTool for the performance monitors we
discussed earlier in the chapter. "Time series" implies that we continuously measure
data at regular intervals. We find graphs in two locations. The device's Perf tab
contains load, cpu, and memory utilization graphs. From the OS tab, we can view
graphs for the interfaces, OS processes, and file systems.

All graphs on a page share display settings. Each group of graphs can be viewed on
an Hourly, daily, weekly, monthly, or yearly Range. The default Range is Hourly
(see the following screenshot). Each group of graphs has a Reset button that restores
all the graphs on a page to the default view. The Link graphs check box allows all
the graphs on the page to stay in synchronisation as we navigate through the time
line of a single graph.

°

°

°

°

°

Chapter 6

[119]

Each graph also has its own set of controls. On either side of the graph, we have time
line navigation controls. The "<" navigates backward through the date range while
the ">" navigates forward. The magnifying glasses allow us to zoom in and out on
the graph. To zoom in, click the "+", and then move the cursor over the graph. When
the cursor turns to a cross hairs, click the mouse button to zoom in. The same process
applies to zoom out, except that we select the "-" magnifying glass.

The layout of each graph also follows a common format. The time measurement
plots on the x axis and the data point being measured plots on the y-axis. Beneath the
x-axis, the graph identifies the visible time range.

At the bottom of the graph, we see the color-coded data points represented on the
graph. Each data point displays current, average, and maximum measurements for
the visible time range.

On the device's Perf tab, Zenoss displays the following default graphs:

Load Average
Load Average 5 Min
CPU Utilization
CPU Idle
Free Swap
Free Memory

Of the graphs listed on the Perf tab, only the CPU Idle graph establishes an event
generating threshold. If idle CPU percentage drops below 2%, Zenoss generates a
warning event.

•

•

•

•

•

•

Status and Performance Monitors

[120]

Additional performance graphs are available from the OS tab for:

Interfaces
Throughput
Packets
Errors

OS Processes
CPU Utilization
Memory
Process Count

File Systems

Utilization

To view the graphs for an individual interface, process, or file system, click the name
from the applicable table to view the properties. The graphs display on the second
half of the page. For example, if we want to see the utilization graph for the root file
system on Fox, we first navigate to the OS tab for Fox. Then we click on the "/" name
from the File Systems table to display the status page. Then we can scroll down the
page to view the Utilization graph.

Default thresholds are established for interfaces and file systems. When the interface
reaches at least 75% utilization or when a file system usage exceeds 90%, Zenoss
generates a warning event.

In order to change or add our graphs, including thresholds, we modify the device's
performance template.

Performance Templates
Performance templates tell Zenoss what data sources to collect and how to graph the
data. They use that data to establish monitoring thresholds, which we can in turn
use to generate events. We apply template properties to the devices class or to the
individual device. In Zenoss terminology, the process of applying a template to a
device or a class is called binding.

•

°

°

°

•

°

°

°

•

°

Chapter 6

[121]

To view the templates that are bound to a device class, navigate to the class
(for example, /Server/Linux) and click the Templates tab (shown in the
following screenshot).

Let's compare the template bindings for the /Server/Linux device class with that
of the device Fox, a member of the /Server/Linux group. Navigate to the Status
Overview page for Fox, and from the page menu, select More > Templates (refer to
the following screenshot).

All of the templates applied to the class level apply to Fox and when Zenoss creates
the graphs, it searches the device class hierarchy and matches the graph to the
monitored component. This way, if we monitor a file system, Zenoss automatically
creates a performance graph for the file system. Since the Device template is bound
to Fox at the device level, Zenoss applies those template settings and ignores the
template settings defined for the Device template bound to the device class.

Click on the Device name from the device class templates page to display the
template properties. In addition to the name and description, we see the tables for
Data Sources, Thresholds, and Graph Definitions.

The Device performance template we are viewing defines the graphs we previously
reviewed on the Perf tab.

Status and Performance Monitors

[122]

Data Sources
The Data Sources table lists the Name, Source, Source Type, and Enabled status for
each data source (see the following screenshot). The Source lists the individual OID
that Zenoss polls to collect the performance data. For example, to get system up time,
Zenoss polls the 1.3.6.1.2.1.25.1.1.0 OID.

The Source Type is either SNMP or command by default. Additional source
types, such as JMX are available through ZenPacks. Fox uses SNMP to monitor the
OID, but the command source type collects data by running shell commands. For
comparison, let's look at the Data Sources table for Coyote, a device monitored via
SSH. The sources look quite different. Instead of OID values, we see the Zenoss
Plug-ins we installed in Chapter 5, as shown in the following screenshot.

Chapter 6

[123]

To configure the data source and edit the data points, click on the name from the
table. SNMP data sources have exactly one data point, while each command data
source may have more than one data point.

Thresholds
The performance template page lists any established thresholds by Name, Type,
Data Source, Severity, and Enabled status, as shown in the following screenshot.
The only threshold type Zenoss includes by default is MinMaxThreshold, which
allows us to monitor the minimum or maximum values of a data source. We apply
the threshold against one of the data sources defined in the Data Sources table.

To configure the CPU Utilization threshold in our example, click on the name. From
the Min/Max Threshold configuration page, we should recognize the settings from
the example we used when talking about the CPU Idle performance graph:

Data Points = ssCpuRawIdle_ssCpuRawIdle
Min Value = 2
Severity = warning
Escalate = 5

This means if the Idle CPU usage falls below 2%, Zenoss generates a warning event
and if the usage remains below 2% for five consecutive monitoring periods, Zenoss
escalates the event to an error severity.

•

•

•

•

Status and Performance Monitors

[124]

Graph Definitions
The final table on the performance templates page is Graph Definitions which lists
the graphs to display according to Sequence, Name, Graph Points, Units, Height,
and Width, as shown in the following screenshot. The Graph Points correspond to
the data points. The units specify the unit of measure displayed on the y-axis of the
graph. The default Height and Width values are 100 and 500 pixels, respectively.

To configure a graph, click on its name. If our data graphs exponentially, we can
show a logarithmic y-axis by setting the Log value to true. To graph data that is
measured in multiples of 1024, set Base 1024 to true. We can change the way the
values get displayed on the y-axis by specifying a Min or Max Y value.

Reorder The Graphs on The Perf Tab
The Seq field on the Graph Definitions table identifies the order in which the graphs
are displayed when viewing the Perf tab. To change the order of the graphs:

1. Type the preferred sequence next to each graph.
2. From the Graph Definitions table menu, select Re-sequence Graphs.

Now, when we view the Perf tab for the device, the graphs get displayed in our
preferred order.

Chapter 6

[125]

If we want to delete a graph entirely, select the graph name, and choose Delete
Graph from the Graph Definitions table menu.

Customize A Threshold
Instead of editing the default templates and changing the original settings, we can
create a copy of the template to edit. Let's tweak our CPU Utilization threshold
for Fox.

From the Templates page for Fox, click the Create Local Copy button for the Device
template. The button name now says Remove Local Copy and Zenoss displays a
status message confirming the action (see following screenshot).

1. Edit the Device template by clicking on its name.
2. Edit the CPU Utilization threshold.
3. Change the Name to Sensitive CPU Utilization.
4. Change the Min Value to 5.
5. Change the Escalate Count to 3.
6. Save the changes.

Now, Zenoss generates a warning event if the idle CPU percentage for Fox falls
below 5%, and if the idle CPU percentage remains below 5% for three consecutive
polling periods, Zenoss escalates the event severity to error.

Of course, we can change any value on our template to meet our monitoring
needs, including Data Sources and Graph Definitions. For an example of adding a
new performance template with new Data Sources and Graph Definitions, see the
HttpMonitor ZenPack section in Chapter 10.

Status and Performance Monitors

[126]

Summary
In this chapter, we learnt how Zenoss monitors our devices and their processes,
services, and components. Not only do we know if our devices are available, but
we can graph key performance metrics over time too. The status and performance
monitoring concepts we discussed in this chapter enable us to customize our Zenoss
monitoring environment so that we track and report only the information we want
to see.

By defining our monitoring properties, we give Zenoss a set of rules to apply to the
devices on our network. When Zenoss finds a device that is not operating within
the bounds of our expected rules, it generates an event. In the next chapter, we learn
how to process events in Zenoss.

Event Management
When problems occur on our networks, we want to know about them. Zenoss
notifies us of the problems by generating events when one of our devices becomes
unavailable or crosses a performance threshold.

In Zenoss, we have several ways to view and manipulate events for our devices.
We'll start off by setting Zenoss to monitor Unix syslogs and Windows event logs.
Then we'll tour the Event Console, event classes, and the Event Manager, and we'll
finish the chapter by building custom event rules.

The Event Console helps us identify and work with active events. We use event
classes to define our event processing rules via event class keys, Python scripts,
and TALES expressions. The Event Manager enables us to change the way in which
Zenoss stores and displays events.

Monitor Syslog Messages
In Zenoss, we have the capability to monitor syslog messages from Unix-based
hosts on the network. Zenoss uses the zensyslog daemon to turn incoming syslog
messages into events from any host on the network, even if the host is not in the
Zenoss device inventory.

Before we configure our servers to send syslog messages to Zenoss, we need to
determine the facility and priority we want to monitor. The available facilities
include auth, authpriv, cron, daemon, ftp, kern, lpr, mail, news, syslog, user, and
uucp. The facility specifies the subsystem we want to monitor. For example, we
specify the lpr facility to monitor print activity.

Event Management

[128]

We specify one of the following priorities, listed from the lowest to the highest
severity: debug, info, notice, warning, err, crit, alert, and emerg. Choose the
minimum priority to log. For example, choose warning to monitor logs with a
priority of warning, err, crit alert and emerg.

In our syslog.conf file, we separate the facility and the priority by a period, as
the example shows. Let's set up the sample Linux server. Coyote to send its syslog
messages to Zenoss:

1. On Coyote, edit /etc/syslog.conf as root (refer to the
following screenshot).

2. Add the following line where 192.168.1.125 is the IP address or the host
name of the Zenoss server:

 mail.debug @192.168.1.125

3. Restart the syslog service as root:
 /etc/init.d/sysklogd restart

Chapter 7

[129]

Note the mail.debug syntax in the syslog example. This sends all syslog facilities
with a minimum priority of debug to the Zenoss. Based on our needs and the
capabilities of syslog.conf, we can fine-tune our rules as needed. For more
information about syslog.conf, see the documentation by running the command:

man syslog.conf

Of course, Unix-based servers are not the only devices that have remote syslog
capabilities. Many routers provide remote logging features. We'll overview the steps
needed for a Cisco router. For other devices, consult the documentation.

Collect Cisco Router Syslogs
To forward the Cisco router's syslogs to Zenoss, we need to know the Zenoss host,
the minimum log priority to collect, and the facility. The following priorities are
available: Emergency, alert, critical, error, warning, notice, informational, and debug.
The available facilities include local0 through local7 and the default facility is local7.

To forward syslog messages from a Cisco IOS router to Zenoss, log onto the router
and follow these steps using privileged EXEC mode:

1. Enter the configuration mode with the command:
 configure terminal

2. Specify the Zenoss server by IP address or host name with the command:
 logging 192.168.1.125

3. Set the syslog priority:
 logging trap warning

4. Set the syslog facility:
 logging facility local7

5. Quit the configuration mode:
 end

6. Verify the logging information:

 show logging

Event Management

[130]

After we configure the device to send its logs to Zenoss, we need to configure the
Zenoss system to monitor the syslogs:

1. Log in to Zenoss and open the OS tab for the device we configured for
remote syslog logging.

2. From the IP Services table menu, select Add IP Service.
3. In the Add IpService dialog box, enter "syslog"(refer to the

following screenshot).
4. Click OK to open the syslog Status page.
5. Change the Monitor status to True.
6. Click Save to begin monitoring the syslog service for the device.

Zenoss is now monitoring the syslogs for a single device. If we want to monitor the
syslog services on all devices, we enable monitoring at the syslog service class level
as we discussed in Chapter 6.

Chapter 7

[131]

Test Syslog Configuration with Logger
We can test our remote syslog configuration by using the command line tool "logger"
to send a test syslog message of a specified facility and priority. To test, run the
following commands from the Linux devices that are logging their messages
to Zenoss:

logger -p cron.warn "This is a test"

logger -p mail.error "This is another test"

The logger command syntax is straightforward. The -p option specifies the facility
and the priority which we followed with a message in quotes. Based on our earlier
Linux syslog example where we directed all the mail subsystem messages with at
least a priority of debug to Zenoss, the first command will not display in the Zenoss
Event Console, but the second command will.

To double check, click on the Event Console and verify that the syslog messages are
being logged correctly. By the end of this chapter, we'll know how to process the
unknown event in the Event Console.

Monitor Windows Event Logs
In the Server Setup section of Chapter 3, we discussed setting up Windows
Management Instrument ion (WMI). If WMI is not yet installed, take a few moments
to review the instructions in Chapter 3.

Unlike syslog, which logs messages directly to a remote host, Zenoss has to connect
to the Windows server to monitor the system's Event Log. We'll monitor the device
Master, our sample Windows system:

1. Log in to Zenoss and open the OS tab for the device Master.
2. From the Win Services table menu, select Add WinServices.
3. In the Add WinServices dialog box, enter "Event Log.".
4. Click OK to open the Event Log Status page.
5. Change the monitor status to True.
6. Click Save.

Event Management

[132]

Next, we need to configure the following device zProperties to connect to the
Windows machine and monitor the event logs. From the device's Status page, select
More > zProperties and enter the following configuration:

1. Set zWinEventlog to True.
2. Set zWinPassword to the password of the zWinUser.
3. Set zWinUser to a user who has administrative access to the

Windows server.
4. For a domain user, specify DOMAIN\user.
5. For a local user, specify .\user.
6. Set zWmiMonitorignore to False.

By default, Zenoss collects the Windows events with a minimum severity of warning.
But we can change that by specifying a value in the zWinEventlogMinSeverity. The
following table shows the available event log severities:

Event Log Severity Description
1 Error
2 Warning
4 Informational
8 Security Audit Success
16 Security Audit Failure

Test Event Log Configuration with Eventcreate
Windows provides a tool called eventcreate.exe that we can use to generate
system events and test our Event Log setup. To test, run the following commands
from a Windows device where Zenoss is monitoring the Event Log:

eventcreate /t error /l system /id 500 /d "test message"
eventcreate /t error /id 501 /d "another test message"
eventcreate /?

Chapter 7

[133]

Let's look at the command syntax. We use the /t option to specify the severity, /l
to specify either application or system message, /id to create an event id, and /d to
include a message. The first command creates an system error message with an ID
of 500 while the second command creates an application error message with an ID of
501. The third command displays the eventcreate.exe help page.

Event Console
From the Event Console, we see a single view of the current events in the system,
and the default includes columns for device, component, event class, summary,
first time, last time, count, and event log. We can change the fields displayed in the
view through the Event Manager, which we will cover later in this chapter. From
the Event Console, we can navigate to the device overview page by clicking on the
device name in the column. We can also navigate to the event class overview by
clicking on the class name in the event class column.

By default, the Event Console displays events with a minimum severity of
information and minimum state of acknowledged with filters to expand or restrict
the view. To filter by severity or state, select a new value from the list in the table
header and the Event Console automatically updates. The following table illustrates
the available severities from the least to the most severe with a brief description of
how they may be used. There are no hard and fast rules to dictate how we apply
event severities to our system.

Event Severity Description
Clear Correlates to a previous down event and

moves the event to history.
Debug Used for troubleshooting. Does not indicate a

problem.
Info Used to mark an event in the system for

informational purposes.
Warning Indicates a potential problem.
Error The device or component is unavailable or is

operating at dangerous performance levels.
Critical The device or component is down.

Event Management

[134]

Event states categorize the current status of an event. The following table lists the
event states with a brief description of the state:

Event State Description
Suppressed An event occurred, but it was sent directly

to history.
Acknowledged The event is still active and is being worked

on by an admin.
Unacknowledged Represents a new event that has not been

acknowledged and is presumably not being
worked on.

If we want to monitor the Event Console in real time and make the view
automatically update when a new event occurs, click the Start link in the table
header. The Start label turns to Stop, and the Event Console refreshes every
60 seconds.

The Event Console search box enables us to search for text in any of the displayed
table columns. For example, if we want to view all the events in the Unknown event
class, we can search for "unknown" (refer to the screenshot below).

Chapter 7

[135]

Event Log
We access the event log by clicking on the magnifying glass icon in the Event
Console. The log consists of three tabs: Fields, Details, and Log. The Fields tab
(as shown in the following screenshot) provides a list of all the fields we could
possibly display in the Event Console view. If Zenoss knows the value of a field, it's
populated. Refer to Appendix A for a list of event fields and their meaning.

Event Management

[136]

The Details tab of the event log (refer to following screenshot) shows additional
event information, but there are no defined list of fields that display on this tab.
Some Zenoss daemons automatically log information to the details field, such as the
process ID of a syslog event.

The final tab of the Event Log is Log (as seen in the following screenshot) , which
administrators can use to record the notes relevant to the event. Type a message in
the text box and click the Add Message button to create a log entry. Zenoss records
the time stamp of the entry, the User who created the entry, and the Text of
the entry.

We talk more about user management in chapter 9, but identifiying which user
created a log entry is just one reason why we want to work as a regular user versus
working as the admin user. If everyone creates log entries as the admin user for an
event, how can we determine who is working on resolving the event?

Chapter 7

[137]

Device Event View
While the Event Console displays all events, we can also view events on a per device
basis. If we select a device from the Device List and choose the Events tab, we see a
list table that resembles the Event Console.

Click on the History tab to see yet another device view (as shown in the previous
screenshot). The History tab interests us for two main reasons. First, we can limit the
events we see by date range. Second, we can see all events including the events that
have been automatically archived in history or suppressed.

Event Management

[138]

Event Classes
Zenoss maps events to classes, which has a hierarchy of properties similar to the
device, service, and process classes we looked at in earlier chapters. Zenoss generates
events in response to some monitoring activity, which is why we have the ability to
assign multiple severities to events. Zenoss evaluates the details of the monitoring
activity that caused an event to see if it can match the details to an event instance.
The event instance maps the event to a class via an event class key. More than one
event class key can exist, which allows us to assign an order of precedence to how
each event instance is mapped to event classes. We'll examine the event evaluation
procedure later in this section.

After the event maps to an event class, Zenoss assigns the class' zProperties to the
event. Next, the event inherits the device's properties. After the device details are
processed, Zenoss updates the event to reflect the new properties.

For example, let's say we configure the /Status/IpService event class to have a fail
severity equal to error. We then set /IpService/Privileged/ssh service class to a fail
severity equal to critical. Based on the hierarchical event processing, all IpServices,
such as SMTP, fail with a severity of error. However, if the SSH service fails, the
event inherits the service class properties and fails with a critical severity.

Let's take a look around the Event Class screens.

Classes
From the navigation panel, select Events to display the Events Classes page.
The Classes page shows summary information for Status, SubClasses, and Event
Class Mappings.

The Status table shows the number of Events by severity, number of sub classes, and
the number of event instances. The SubClasses table shows the number of classes,
number of event Instances, and number of Events per class organizer. The EventClass
Mappings table lists the event instance names along with the Evaluation description
and number of active Events per mapping.

We drill down an event class hierarchy by clicking on the subclass name and the
details we see on the screen are based on the position in the event hierarchy from
which we are viewing. So, if we view the top level Events class, the status page
indicates that we have 130 subclasses and 336 event instances. When we click on the
App name from the SubClasses table, the status reflects 16 subclasses and 70 event
instances (see following screenshot).

Chapter 7

[139]

We can add, delete, and move the SubClass organizers and EventClass Mappings
from the applicable table menu.

Mappings
The Mappings tab displays each mapping rule for the event class along with the
associated event class, evaluation rule, and the number of active events for the
mapping. Let's take a closer look at the Heartbeat event class mappings. From the
navigation menu, select Events. Then select Heartbeat from the SubClasses table and
choose the Mappings tab (see following screenshot).

Event Management

[140]

We can add, delete, and move mappings from the table menu, but for now, we'll
edit an existing mapping. From the EventClass Mappings table, click on evtsys to
display the property tabs. We see some familiar tabs along with some new tabs. The
zProperties, Events, History, and Modifications tabs work the same way as they do
for the parent event class, so we'll focus on the Status, Edit, and Sequence tab.

Status
The Status page that is displayed when we edit the evtsys mapping provides a
summary of the event class mapping. Remember, screens within Zenoss are context
sensitive, which means that the status overview we see shows the number of events
that apply to the selected event class mapping.

The EventClassInst table provides a read-only view of the event mapping rules
(refer to the following screenshot). We modify the event mapping rules in the
Edit tab.

Chapter 7

[141]

Edit
On the Edit tab, we have several text boxes that we use to define the mapping rules
(see the following screenshot).

Our evtsys event class mapping is a relatively simple example. If the details of an
event match the text "-- Mark --", Zenoss applies the evtsys zProperties to the event.
The following table outlines the available text boxes on the Edit tab.

Event Management

[142]

Option Description
Name A descriptive name for the event

class mapping.
Event Class Key Maps the event to the event class. More than one class can have

the same Event Class Key.
Sequence Defines the order in which the Event Class Key is processed in

relation to the other keys with the same name.
Rule A Python expression that evaluates the current event using the

evt environment variable and an event field. For example:
evt.ipAddress == 192.168.1.132

Regex A regular expression used to match the current event details.
Example Sample event text. Click Save to validate the regular expression

against the Example text. If the Regex command turns red, the
expression does not match the Example.

Transform Enter TALES expressions to manipulate the event. For
example: evt.summary = ‘Change the event summary'. For
more information about TALES expressions, see Appendix B.

Explanation A text description of the mapping rules.
Resolution Provides details to resolve the event.

In order to apply the mapping to the event class, we need to specify a Rule, Regex,
or Transform command. Don't forget to Save changes when you finish.

Sequence
Each event mapping can have multiple instances that map events to different event
classes, and to demonstrate, we continue using our evtsys event class mapping
example. Click on the Sequence tab to display all the available instances of
the mapping.

Chapter 7

[143]

The Sequence page (as shown in the previous screenshot) displays the Sequence,
ID, EventClass, and Evaluation for each instance of the event class mapping. In our
example, we learn how we can map events in evtsys maps to the /Heartbeat and the
/Win/evtsys classes.

The Sequence number determines the order in which each instance is processed. By
default, the evtsys instance for the /Heartbeat event class gets processed first. If the
regular expression "-- MARK --" is found in the event details, Zenoss maps the event
to the /Heartbeat class and stops processing. If the "-- MARK --" regular expression is
not matched, then the second instance of evtsys is processed.

To change the order in which the event class mappings get processed, enter the new
sequence and click Save.

Events And History
Let's navigate back to the top level /Events class and select the Events tab. The
Events tab has the same look and feel as the Event Console. If we sit at the top level
of the /Events class, we see all the active events in the system just like the Event
Console. As we navigate an event class hierarchy, the Events tab filters the list to
show only the events in the current event class and below.

To view the event history for an event class, click the History tab, and like the Event
Console, we can filter the events by date range.

zProperties
After an event maps to an event class, the class zProperties are assigned. If the event
class mapping has different zProperties set, the event inherits the zProperties of the
event class mapping.

Event Management

[144]

The available zProperties (shown in the previous screenshot) are outlined in the
following table:

zProperty Description
zEventAction Specify the action to take on the event. The

following options are available:
Status—Keep the event
active and display it in the
Event Console.
History—Move the event straight to
history. Does not show the event on
the Event Console.
Drop—Do not archive the event.

•

•

•

zEventClearClasses Clear the event if the the device generates
an event that matches one of the specified
event classes.

zEventSeverity Specify the fail severity for the event. In
descending order of severity, the available
options are:

Critical
Error
Warning
Info
Debug
Clear
Default

•

•

•

•

•

•

•

Chapter 7

[145]

Event Manager
The Event Manager provides an interface that allows us to configure how events
are stored, displayed, and acted on. We access the Event Manager from the
navigation panel.

The Edit tab displays when we first open the Event Manager and provides three
configuration areas: Connection Information, Cache, and Maintenance (as shown
in the previous screenshot). The following fields are available:

Field Description
Connection Information
Backend Type Specify the database type. Only MySQL is

available.
User Name Database user name. Default is "zenoss."
Password Password for user name. Default is "zenoss."
Database Events database name. Default is "events."
Host name Database host name. Default is "localhost."
Port Database port number. Default is 3306.

Event Management

[146]

Field Description
Cache
Cache Timeout Sets the event cache timeout in seconds. The

lower the number, the more responsive the
Event Console will be. The default is 20.

Cache Clear Count Sets a threshold to clear event cache counts.
The default is 20.

History Cache Timeout Sets the history event cache timeout in
seconds. The lower the number, the more
responsive the history events views will be.
The default is 300.

History Cache Clear Count Sets a threshold to clear history event cache
counts. The default is 20.

Maintenance
Event Aging Threshold (hours) If the event has not been acknowledged in the

specified amount of time, move it to history.
Default is 4 hours.

Don't Age This Severity and Above Events higher than the specified severity
will not automatically go to history. Default
is "error."

Default Availability Report (days) Specify the number of days to show data for
the availability report. The default is 7.

Default Syslog Priority Monitor syslog events with the specified
syslog priority and above. The default is 3,
which is the error.

Don't forget to click Save after making any changes.

Fields
The Fields tab of the Event Manager provides a way to add and remove fields from
the Event Console and from a device's Event tab. The page divides into two rows:
Default Result Fields and Device Result Fields (refer to the next screenshot). The
assigned fields display in the left column for each row.

Chapter 7

[147]

If we remember the collector plug-in section of Chapter 5, these page controls look
familiar. To remove a field from the assigned column, click the "x" next to the field
name. To add fields, click the Add Fields link to display a list of available fields.
Then drag them to the left column to assign them.

The fields assigned to the Default Result Fields display on the Event Console and
the Events tab of the Event Class. The fields assigned to the Device Result Fields
display on the device's Events tab.

The History Fields tab provides the same field assignment options as the Fields tab.
The fields assigned to the Default Result Fields display on the event class' History
tab, while the fields assigned to the Device Result Fields display on the device's
History tab.

Both the Fields and the History Fields pages provide a Default Sort field to control
how the data is sorted. The default sort order for the Fields tab is descending by
severity, then descending by last time. The History Fields sort descending by
last time.

Event Management

[148]

The syntax for the sort field is to list the field name to be sorted followed by the sort
order. Multiple sort conditions (fields) are separated by a comma, as illustrated in the
Fields tab. If we want to sort our historical events in ascending order by count, we
enter "count asc" as the Default Sort.

Commands
Through the Commands tab of the Event Manager (shown in the following
screenshot), we can create shell commands run on the Zenoss server based on an
event. We'll create a simple command to write to a file.

The Commands table lists each defined command by name with an overview
of the commands properties. To create a command, type a descriptive name (e.g:
CreateFile) in the text box and click the Add button. Click on the command name to
display the Edit tab.

The following table lists each of the options on the command's edit tab.

Property Description
Enabled Select True to enable the command and False

to disable it.
Default Command Timeout The time in seconds to wait for the command

to complete. The default is 60.
Delay The time in seconds Zenoss waits to execute

the command from the time an event triggers
the command. The default is 0.

Repeat Time Repeat the command once in every specified
interval. The default is 0 seconds.

Chapter 7

[149]

Property Description
Command Enter the command to run when a new event

matches the command filter. Accepts either
Python or TALES expressions.

Clear Command Enter the command to run when a clear event
matches the command filter. Accepts Python
or TALES expressions.

Where Add filters to modify the conditions that
trigger the command.

Let's modify our CreateFile command in the following way. Set the Enabled field to
True. In the Command field, enter the following:

echo "The Event with ID ${evt/evid} is on fire!" >> /tmp/
SampleEventCommand

In the Clear Command field, enter the following:

echo "${evt/evid} for ${dev/id} is no longer a burning issue" >> /tmp/
SampleEventCommand

In the Where field, define a filter for Event Class that begins with /App. Save
the changes.

The following screenshot shows the result of the CreateFile command for both new
and clear events.

We will discuss ways to test events in the Add Events section of this chapter.

Event Management

[150]

Working with Events
So far in this chapter, we've taken a look at events from several different angles,
and we have a good understanding about how events work in Zenoss. For the most
part, the event creation process is automatic, and we don't need to think about it, but
Zenoss provides us with several mechanisms that allows us to interact with events.
We will learn how to manually add events for troubleshooting purposes, map
events, view overridden objects, can transform events.

Add Events
We have three ways to test our event rules:

We wait for the device to go down.
We make the device go down.
We take a less intrusive approach and manually create events without
imposing any down time on the device.

We add events from the page menu of the event class.

If we navigate to the event class we want to create an event for, Zenoss automatically
populates the Event Class with the selected class. We'll continue working with the
CreateFile command we created earlier in the Chapter.

To add an event and test our event command (refer to the next screenshot):

1. Navigate to the /App event class.
2. Select Add Event from the page menu.
3. Enter a Message.
4. Enter a device name (for example, Coyote).
5. Select Severity equal to Critical.
6. Select /App for the Event Class.

•

•

•

Chapter 7

[151]

7. Click OK.

The event we just created displays in the Event Console and in the Events tab of the
/Events/App class. Now, check the /tmp/SampleEventCommand file we created in
the event command section earlier in the Chapter and verify if the event created an
entry in the file.

Next, we simulate a clear event. Add another event for Coyote in the /App event
class, but this time choose Clear for the Event Severity. When we send the clear
event, Zenoss correlates the event and moves it to history. All the event views
update to reflect the new event status and the /tmp/Sample/Event/Command file
is updated based on the clear command we specified in the CreateFile command.

Event Management

[152]

We can review both events from the History tab. Let's open the event log for the
down event we created. Scroll to the bottom of the Fields tab and note that Zenoss
has populated the deletedTime and clearid fields with the information from the clear
event. Click over to the Log tab, and we see a log entry by the admin user with the
text "auto cleared." The value in the Date field matches the deletedTime value on the
Fields tab.

As long as we know the specific event condition we want to test, we can use the add
event option to simulate a real event, thereby allowing use to test mapping rules,
event commands, or notification rules.

Map Events
Sometimes Zenoss receives an event that it cannot map to an event class, so it maps
it to the /Unknown event class. Syslog events, for example, map to the /Unknown
event class. A quick look at the History tab (see the following screenshot) for the
/Events class shows several unknown events for our Zenoss system.

If we need more details on an unknown event, we can review the event log to
determine the component, event group, Zenoss agent, and other device organization
information. If we want to map an event that has already been archived to the
history, we must select the event and select Undelete Events from the History
table menu.

Chapter 7

[153]

Let's take an example where we have an active event from an exim4 mail server
program event which we want to map to the /App/Log event class (refer to the
following screenshot).

To map the event:

1. Select the event from the Events list.
2. Select Map Events to Class from the table menu.
3. In the Map Events dialog box, select the event class (e.g., /App/Log).
4. Click OK to map the event to an event class.

After we map the event, Zenoss displays the event mapping Status tab, which
we covered earlier in the chapter. By default, no commands are defined in the
Rule, Regex, or Transform options, but the summary of the alert is automatically
populated into the Example field (refer to the following screenshot) which helps
validate any regular expressions we define.

Event Management

[154]

Let's test our mapping by adding a new event following the steps in the preceding
Add Event section. Give the event the following attributes:

Message: This is a test event
Device: Any device
Event Class Key: exim4
Event Class: Leave blank

The event displays in the Event Console. To clear the event, we can send a clear
event, or we can move it to history. To move an event to history:

1. Select the event from the Event Console.
2. Select Move to History from the page menu.
3. Click OK to confirm the move.

If the event class we want to map the event to does not exist, we create the event
class by adding a new event class organizer. We can create as many subclass
organizers as we need to identify an event hierarchy, or we can add a new subclass
organizer into an existing event class structure.

In addition to adding new classes, we can add new mappings. To add a new
event mapping:

1. Select Events from the navigation menu.
2. Navigate to the event class we want to add the mapping to (e.g., /App/Log).
3. Select Add Mapping from the EventClass Mappings table menu.
4. In the Add Event Class Mappings dialog box, enter a descriptive name.
5. Click OK to add the mapping.

Now we can edit the mapping to add rules to map the event to a class and
zProperties to handle the event.

Overridden Objects
Sometimes our events do not process as we expect them to process because Zenoss
allows us to customize our event rules in the class hierarchies and for individual
devices. To help track down problems with our event processing rules, we can view
the overridden objects. Overridden objects are the classes and event class mappings
that have custom zProperties.

•
•
•
•

Chapter 7

[155]

To display the overridden objects, open the Events Class and select More >
Overridden Objects from the page menu. The Overriding Objects table provides
a zProperty selection that corresponds to the available zProperties for an event:
zEventAction, zEventClearClasses, and zEventSeverity. To filter the list, select
a zProperty.

The first listing in the table is the Object and its default Value. The table then lists
the Overriding Objects with the Overriding Values. In Zenoss, the Overriding
Value takes precedence and is where we want to go to make changes. Objects, in this
context, refer to both event classes and mappings. Click on the object name to edit
the object's zProperties.

Transformations
Event transformations occur in two locations. We already reviewed transformations
at the event class mapping level. We can also define transformations at the event
class level. Transformations use TALES expressions to change the event details as the
event is processed.

To create an event transformation:

1. Navigate to the event class we want to transform.
2. Select More > Transform from the page menu.
3. Enter a Python statement to process the event.

Event Management

[156]

The following screen capture shows an event transformation that changes the event
state for device Master to acknowledged (1) for the /Status/Wmi/Conn event class.

Zenoss provides a modified Python shell named zendmd that lets us interact with
the Zenoss object database. We can use zendmd to test our python statements and to
access the methods and attributes available to us from Zenoss. We'll review zendmd
in Chapter 10.

Event Work Flow
When Zenoss creates an event that requires action, the event displays on the Event
Console. As we've seen, some events are information only and can be sent straight to
history, while other events clear themselves; however, when an event pops up on the
event console, it needs attention.

Our first step is to acknowledge the event from the Event Console. To acknowledge
an event, select it from the list, and choose Acknowledge Event from the table menu.
The event turns a lighter shade to visually indicate that someone has acknowledged
the event (see the next screenshot). The event is still active, so it continues to display
in the Event Console.

Chapter 7

[157]

Our second step is to open the Event Log and add an entry to the Log tab to let
others know that the event is being worked on. After we resolve the event, we can
add another Log entry to specify the resolution.

The third step clears the event. To clear the event, choose the event from the Event
Console and select Move to History from the table menu. Alternatively, we can let
Zenoss automatically detect that the device is up and let it clear the event via up/
down event correlation.

Event De-Duplication
If we have a web server down, Zenoss continues to monitor it every 60 seconds and
will continue to generate an event each time it determines that the web server is
down. That comes to 1,440 events a day. Thankfully, Zenoss suppresses all that noise
with event de-duplication.

Event Management

[158]

If Zenoss determines that the event is a duplicate of an existing event, it increments
the event count, rather than generate a new event. As we will see in Chapter 9,
events trigger alerts, and by suppressing duplicate events, we avoid duplicate alerts
for active events, thereby reducing alert chatter. The de-duplication identification
(dedupid) is set to device, component, event class, event key, and severity.

Summary
Zenoss provides a wealth of information about our networks and systems in the
form of events. Using the event management concepts in this Chapter, we can utilize
that information to manage our IT resources in a way that meets our individual
needs. We can now move around the Event Console and multiple event views to
interact with active and archived events. We can collect syslog messages and monitor
Windows Event Log. We know how to customize our event processing rules by
running event-triggered commands, mapping events, and transforming events.

In the next chapter, we shift from working an event or a device in real time to a
historical view that lets us examine all the events and devices in relation to each
other via the Zenoss reports. Then we'll move into administering the Zenoss system,
including user management and alerts.

System Reports
Zenoss Core includes several reports that allow us to aggregate device, event,
performance, and user data into single views. Until now, we have spent all our time
reviewing information at a per device, per component, or per class level, but the
reports present a broad view of our IT resources in the context of all the devices,
components, or classes.

In this chapter, we'll review each of the included reports, as well as create a custom
multi-graph report.

Report Overview
To see a list of the default organizers, select Reports from the navigation menu. The
report organizers we will cover are:

Device Reports
Event Reports
Graph Reports
Multi-Graph Reports
Performance Reports

•

•

•

•

•

System Reports

[160]

User Reports

Next to each organizer name (see the previous screenshot), we see the list of
Subfolders or suborganizers and the number of Reports included in each organizer.
Like many things in Zenoss, we have the ability to add and remove organizers to
create a custom report hierarchy.

We can then navigate up and down the hierarchy to display the available reports.
Displaying a report is as simple as clicking on the report name from the current
report organizer.

Many reports, except graphs, provide a search field in the report heading which
we can use to filter the contents of the report. The filter searches each column in the
report for a match. Each report has an export option that saves the report data in a
comma separated value (csv) format according to the applied filter.

•

Chapter 8

[161]

Device Reports
The Device Reports organizer contains reports that aggregate information from all
the devices in the Zenoss inventory and provides the following reports:

All Devices
All Monitored Devices
Device Changes
Model Collection Age
New Devices
Ping Status Issues
SNMP Status Issues
Software Inventory

All Devices
The All Devices report (refer to the following screenshot) lists each device from thereport (refer to the following screenshot) lists each device from the(refer to the following screenshot) lists each device from the
inventory by Name with additional columns for Class, Product, State, Ping status,
and SNMP status.

At one point or another, we have touched on each one of the columns displayed
on the report, except Product. The Product column shows the hardware product
description from the device's Edit tab.

•

•

•

•

•

•

•

•

System Reports

[162]

Manufacturers and Products
Zenoss includes a products class that organizes by manufacturers with products
as subclasses. If we click on the Products menu from the navigation panel, a list of
manufacturers is displayed (as shown in the following screenshot) with familiar
names, such as Apple, Cisco, and Microsoft.

The Manufacturers table displays the URL, the Phone number, and a Count of the
products included for each manufacturer. Click on the name of a manufacturer to
edit the organizer's properties and see the list of products. The Overview page (see
the following screenshot) displays the manufacturer's contact information, including
his web site URL, Phone, and address. We can modify the contact information as
necessary from the Edit tab.

The Products table displays a list of products that belong to the manufacturer with
columns for Type, Product Key, and Count. The available types are Operating
System, Hardware, and software. The Product Key identifies the product, and the
Count column shows the total number of devices assigned to the product.

Chapter 8

[163]

Click on a product name to display its Overview page (refer to the following
screenshot). We see the product configuration information in the Product table, as
well as a Description field and Part Number field. All the values can be modified
from the Edit tab.

The Product Instances table lists the name of the devices currently attached to the
product. If we click on the device name, the device's status page loads.

System Reports

[164]

All Monitored Components
The All Monitored Components report lists all the interfaces, processes, services,
file systems, and routes that are being monitored for each device. The information
contained in the report correlates to the OS tab for each device. The following
screenshot shows the All Monitored Components report sorted by device.

The report includes the Device name, Component name, Type, Description, and
component Status. Click on the device name to view the device's status page or click
on the component name to view the properties screen for the component.

Device Changes
When Zenoss models a device and detects a change, it records the date of the change.
The Device Changes report displays all devices that have changed within the past
day (see the following screenshot). The report lists the device by name and class. We
also see the date and time when the device was First Seen, last modeled,
and changed.

Chapter 8

[165]

Model Collection Age
If a device's model has a production state higher than 0 and has not been updated
for 48 hours, it displays on the Model Collection Age report. The report includes
the same data as the Device Changes report: Name, class, first seen, collection,
and change. Devices that have the zProperty zSnmpMonitorIgnore set to True
are excluded.

New Devices
The New Devices report shows a list of devices that have been added to the
Zenoss inventory within the past seven days. The report lists the device class and
timestamps for the first seen, collection, and change dates.

Ping Status Issues
The Ping Status report (see the following screenshot) shows a list of devices that
currently have a ping status other than up. In addition to the device Name and
Class, the report lists the hardware Product description, State, Ping status, and
SNMP status. If the ping status is down, a count of failed ping attempts is displayed
in the Ping status column.

System Reports

[166]

SNMP Status Issues
The SNMP Status Issues report is similar to the Ping Status Issues report, except that
it reports devices that have an SNMP status other than up. For devices that have an
SNMP status equal to down, Zenoss reports the number of failures.

Software Inventory
The Software Inventory report pulls data from two sources and organizes the
information by manufacturer and product. If we specify an OS Manufacturer and OS
Product on a device's Edit tab, that selection displays on the report. The report also
includes the software listed on the device's Software tab. The Count column on the
report provides the total number of instances that the software product shows up in
the device inventory.

Chapter 8

[167]

If we click on the manufacturer link, the manufacturer overview page is displayed
with information specific to the vendor, including associated products. If we click on
the product name, the product overview page is displayed and we see a list of all the
devices associated with the product.

Event Reports
The event reports give us a system-wide view of event classes, mappings, and
heartbeats. We'll review the following reports:

All Event Classes
All Event Mappings
All Heartbeats

All Event Classes
To see a list of all the event classes defined in the system, we view the All Event
Classes report. For each event class, the report includes the number of Subclasses,
Instances of the class within the system, and the number of current system Events.

•

•

•

System Reports

[168]

All Event Mappings
The All Event Mappings report displays a list of all the event mappings currently
defined in the Zenoss system. For each event mapping, the report lists the
EventClassKey, the Evaluation text, and the number of current system Events.

All Heartbeats
Heartbeats monitor the health of the Zenoss daemons, and the All Heartbeats report
displays the list of current heartbeat failures by Device and Component. On the
report, the Components column corresponds to the available daemons, such as
zenactions and zenstatus. The report provides the duration of the heartbeat failure
in Seconds.

Chapter 8

[169]

Graph Reports
Graph reports allow us to create custom graphs based on the existing performance
graphs for interfaces, processes, file systems, memory, and CPU. Let's take file
systems as an example of what we can do with a graph report. If we recall our
discussion about performance graphs in Chapter 6, we know that we can view
graphs for each volume on a per device basis by going to the OS tab and clicking on
the mount point name for each device.

By creating a graph report, we can create one view with multiple, related graphs. For
example, if we want to see file system graphs for all our file servers, we can create a
graph to show us the relevant file systems from each file server.

Depending on our monitoring setup, Zenoss graphs the file system utilization for
each volume on our devices. To see the information about a volume, we can go to
the OS tab for a device and drill down on the volume name to get the graph, but we
cannot compare these graphs with related servers. By creating a graph report, we can
display multiple, related graphs in one view.

Zenoss does not include any graph reports by default. Let's build a custom report to
monitor a file system on our test server Fox:

1. Select Reports from the navigation menu.
2. Select the Graph Reports organizer.
3. From the Reports table menu, select Add Graph Report.
4. Enter a descriptive name (for example, File System Utilization on Backup

Servers) in the ID field of the Add Graph Report dialog box.
5. Click OK to add the report and display the graph's Edit tab.
6. Select Fox from the list of devices in the Add New Graph table.
7. Select /media/disk from the component list.
8. Select Utilization from the list of graphs.
9. Click the Add Graph to Report button to save the graph.

The Edit tab contains all the settings we need to build our graph and is divided
into three tables: Graph Report, Add New Graph, and Graphs. Our step-by-step
instructions cover the fields required to add the graph, but let's review each section
in more detail.

System Reports

[170]

The Graph Report table includes descriptive information including Name, Title,
Number of Columns, and Comments (as shown in the following screenshot). The
value we enter for Name displays on both the onscreen and printed version of the
graph. The Comments field provides a mix of HTML and TALES expressions to add
a report description to the printed version of the graph, which defaults to the Zenoss
logo, and report date and time.

Zenoss uses Zope's Template Attribute Language Expression Syntax (TALES)
throughout the system to report on events and devices. Appendix B provides more
information about TALES. For now, we'll leave the comment section as-is.

In the Add New Graph table, we have Device, Component, and Graph selection
boxes (see the following screenshot). The component selections depend on the(see the following screenshot). The component selections depend on the
selected device, and the available graphs depend on the selected components. If no
graphs get displayed, then the selected component does not have a graph and we
need to choose a different component.

Chapter 8

[171]

After we click the Add Graph to Report button, the graph displays in the Graphs
table. We can add as many graphs as we need. In the Graphs table, we see the
report's summary information, including Sequence number, Name, Device,
Component, and Graph type (see the following screenshot).

System Reports

[172]

If we add more than one graph, we use the other sequence number to control the
order in which the graphs are displayed on the screen. The name column lists
the graph report element name and provides a hyperlink to edit the graph report
element properties.

The important fields are Summary and Comments (see the previous screenshot).
The Summary section contains TALES expressions that print summary data above
the graph, including Device, Component, and Graph type. The TALES expressions
in the comments section display the summary information for the graph on the
printable version of the report.

Chapter 8

[173]

To run our new report, navigate back to the Graph Reports organizer and click
on the report name to display the graph. Click the printable button to open a
print-ready copy of the graph in a new browser window (as seen in the following
screenshot).

Multi-Graph Reports
Multi-graphs are similar to graph reports in that we define the devices and
components to graph. Graph reports restrict us to existing performance graphs,
whereas the multi-graph reports allow us to define our own data points. In addition,
we can graph multiple devices and components on a single graph.

Let's add a multi-graph report that displays the interface 75% utilization threshold
for all devices in the Mill Race location:

1. Select Reports from the navigation menu.
2. Select the Multi-Graph Reports organizer.
3. From the Reports table menu, select Add Multi-Graph Reports.
4. Enter a descriptive name (e.g: Interface Thresholds) in the ID field of the

Add Multi-Graph Report dialog box.

System Reports

[174]

5. Click OK to add the report and display the graph's Edit tab (see the following
screenshot).

To finish setting up our multi-graph report, we need to add Collections, Graph
Definitions, and Graph Groups. The Collections allow us to specify the list of
devices we want to graph by device class, system, group, location, or specific device/
component.

To add a new collection:

1. Select Add Collection from the Collections table menu.
2. Enter a descriptive name (for example, Location) in the ID field of the Add

Collection dialog box.
3. Click OK to add the collection and display the properties.
4. In the Add to Collection table, select an Item Type (for example, Location).

Chapter 8

[175]

5. From the list of available selections, select the item (for example, /Mill Race).
6. Set Include Suborganizers to True to recursively include all sub-organizers

for the selected Item Type.
7. Click the Add to Collection button (see the following screenshot).

The Collection Items table updates to include a description of the item we added
along with the number of devices selected. We can add as many item types to an
individual collection as necessary, and we can add multiple collections.

System Reports

[176]

Next, we add Graph Definitions to the report. Navigate back to the graph's
Edit tab by clicking on the report name (for example, Interface Thresholds) in the
breadcrumbs navigation:

1. Select Add Graph from the Graph Definition table menu.
2. Enter a descriptive name (e.g., Thresholds) in the ID field of the Add a New

Graph dialog box.
3. Click OK to display the Graph Definition page.
4. From the Graph Points table menu, select Add Threshold.
5. In the Add GraphPoint dialog box, begin typing the threshold name to

display a filtered list of graph points.
6. Select Utilization 75 perc.
7. Click OK to add the threshold to the Graph Points table.

The following screenshot shows the Graph Definition properties.

Chapter 8

[177]

We can add multiple thresholds or data points to the graph definition, and we can
have more than one graph definition per report. To add data points, select Add
DataPoint from the Graph Points table menu. The Add DataPoint dialog box also
filters the list of available data points as we type in the dialog box.

We can also change the way the graph displays by changing values such as height
and width. We'll use the default values here.

Finally, we need to add a graph group. Navigate back to the report's Edit tab:

1. From the Graph Groups table menu, select Add Graph Group.

2. Enter a descriptive name in the ID field of the Add Group dialog box.

3. Click OK to display the Graph Group properties.

4. Select the Collection and Graph Definition to apply to the graph group
(see the following screenshot).

5. In the Method drop-down list, choose one of the following values:

Separate graph for each device
All devices on single graph

6. Click Save.

Our multi-graph example is simple in that we didn't add multiple collections and
graph definitions; however, we have enough background to experiment with more
complex multi-graphs to correlate device performance.

To view the multi-report, select the Multi-Graph Reports organizer from the Report
page, then click on the report name.

•

•

System Reports

[178]

Performance Reports
The performance reports include a mix of graphs and text-based reports:

Aggregate
Availability
CPU Utilization
Filesystem Utilization
Interface Utilization
Memory Utilization
Threshold Summary

The aggregate report shows the performance graphs that combine data from all the
devices into one graph for each measure, such as free memory.

Aggregate Reports
The available aggregate reports include CPU Use, Free Memory, Free Swap,
and Network Input/Output for all the devices in the Zenoss inventory. We can
customize how each graph is displayed by changing the graph parameters. To make
changes, click on the graph image to open the parameters window (as shown in the
following screenshot).

•
•
•
•
•
•
•

Chapter 8

[179]

We can control the size of the graph by specifying a new Width and Height in pixels.
In addition, we can set new minimum and maximum values for the y-axis that
correspond to the unit of measurement for each graph. By default, all the devices are
included, but we can view the graph for a single device by entering the device name
in the Devices field.

The default time Span for the graph is One Week, but we may choose one day, two
weeks, one month, or one year. After making the selections, press the Submit Query
button, and Zenoss redraws the graph based on the new parameters.

Availability Report
The Availability report lists each device in the inventory along with its Systems
organizer. The availability is calculated for the selected Event Class and Severity.

System Reports

[180]

The default report gives us the availability percentage for the past seven days for
the /Status/Ping event class with a Severity of Error. We can change the reporting
criteria based on the following options:

Report Filter Description
Device Enter a device name to limit the report to a single device.
Component Enter a component name from the device OS tab. Zenoss returns devices

that match with the specified component.
Start Date Specify the first day of the report.
End Date Specify the last day of the report
Event Class Select the type of the event to report on. For example: /Status/SNMP.
Severity Select the event severity to use when calculating availability.

After we enter the report criteria, we can click on the Update button to view the
new report.

CPU Utilization
The CPU Utilization provides the Load Average and the Percent Utilization for each
device. If Zenoss is not collecting CPU performance statistics for a device, the Load
Average and Percent Utilization values display as "N/A" (refer to the following
screen capture).

Chapter 8

[181]

By default, the report displays for the previous seven days. However, we can specify
custom Start and End Dates for the report. We can also choose one of the following
Summary Types: Maximum or Average. Maximum displays the maximum Load
Average and Percent Utilization for the date range while the average summary type
provides average Load Average and Percent Utilization calculations.

Filesystem Utilization Report
All monitored file systems are included in the Filesystem Utilization report. For
each file system Mount point, the report includes the Device, Total Bytes, Used
Bytes, Free Bytes, and Percent Utilization (as seen in the next screenshot). If Zenoss
does not know a value, it populates the report values with "N/A".

The default date range of the report includes the previous seven days, but we can
specify our own Start and End Dates. We can further filter the report output by
showing the maximum or Average usage statistics by choosing the appropriate
option from the Summary Type.

System Reports

[182]

Interface Utilization
The Interface Utilization Report (seen in the following screenshot) includes all
monitored interfaces. For each Interface, the report includes the Device, Speed,
Input, Output, Total throughput, and Percent Utilization. The report lists "N/A" for
any unknown values.

The default date range of the report includes the previous seven days, but we can
specify our own Start and End Dates. We can further filter the report output by
showing the maximum or Average usage statistics by choosing the appropriate
option from the Summary Type.

Memory Utilization
The Memory Utilization Report (see the next screenshot) includes all the devices
and provides the following memory statistics: Total, Available, Cached, Buffered,
and Percent Utilization. Like several of the performance reports, known values are
displayed, while "N/A" displays for unknown values.

Chapter 8

[183]

The default date range of the report includes the previous seven days, but we can
specify our own Start and End Dates. We can further filter the report output by
showing the maximum or Average usage statistics by choosing the appropriate
option from the Summary Type.

Threshold Summary
To see a list of the devices that have crossed the performance threshold, we run
the Threshold Summary Report (refer to the following screenshot) . For eachReport (refer to the following screenshot) . For each(refer to the following screenshot) . For each
Component listed, the report includes the Device, Event Class, and a Count of the
threshold violations, the Duration, and Percent Utilization.

System Reports

[184]

The report displays the previous seven days by default, but we can specify custom
Start and End Dates. The default Class is /Perf, which includes all the performance
class events; however, we can limit the report to the following event sub-classes:
/Perf/CPU, /Perf/Memory, /Perf/Filesystem, /Perf/Interface, /Perf/Snmp, and
/Perf/XmlRpc.

User Reports
The User Reports organizer includes user-centric reports. We'll review the
Notification Schedules report.

Notification Schedules
The Notification Schedules Report (see the next screen capture) displays each
alerting rule by name, with the assigned user. The other fields on the report include
alert delays, active status, alert Duration, and Next Active window. Each alert
includes two rows on the report, and on the second row, we see the actual
alert criteria.

Summary
Now that we have wrapped up our discussion on Zenoss reporting, we have all the
tools necessary to manage our device inventory, including discovery, monitoring,
and event management. In Chapter 9, we will turn our attention to administering the
Zenoss system. We'll manage users, alerts, and perform general Zenoss maintenance.

Settings and Administration
Monitoring our IT resources means little unless we alert our staff to problems,
so we'll spend the first part of this chapter reviewing alerting rules and user
management. Alerting rules are tied to users, and we need alerting rules to notify our
users of outages. Once we configure our alerting rules, we have a fully functioning
monitoring environment.

After alerting rules, we will cover many of the system settings that control the
Zenoss UI, notification protocols, and daemons. No administration discussion would
be complete without talking about backups and updates, so we'll end the chapter by
talking about common Zenoss tasks including backups and updates.

Alerting Rules
To finish setting up our monitoring environment, we need to add users to
Zenoss and configure alerting rules so that events trigger an action. Actions can
be notifications via email or pager, or we can run shell commands based on our
alerting rules.

User Management
We should set up a user name for each person who will be using Zenoss, and all the
users should log in using their user account, not as the admin user. Individual users
can be granted the same privileges as the admin account; however, working as the
non-admin user has several benefits:

Changes to settings are tracked via user name
Custom alerting rules can be defined per user
Access can be restricted per user

•

•

•

Settings and Administration

[186]

Let's add a new user:

1. Select Settings from the navigation panel.
2. Select the Users tab.
3. From the Users table menu, select Add New User.
4. Enter the User Name and Email address in the Add User dialog box.
5. Click OK to create the user account.

The new user name is added to the list of users (see following screenshot) along with
columns for Email address, Pager, address, and Roles.

Before a new user can log in, we must specify a password. To create a password and
configure the account, edit the user account by clicking on the user name from the
Users table. The following table includes the fields we can set via the Edit Screen.

Property Description
Password Specify the new password in the first text field. Retype

the password in the second box and click save to
verify the passwords match.

Roles Specify a user role. Available options are Manager,
ZenManager, and ZenUser.

Groups If the user is a member of a defined group, select it.
Groups are defined in Settings > Users.

Email Enter an email address if the user has to receive alerts
via email.

Chapter 9

[187]

Property Description

Pager Enter a pager number if the user will receive alerts
via pager.

Default Page Size Specify number of entries displayed in a grid listing.
Default is 40.

Default Admin Role Select the default role for administered objects.
Default Admin Level This field is not currently used and is reserved for

future use.
Dashboard Refresh Enter the time in seconds that the dashboard refreshes

for the user. The default is 30 seconds.
Dashboard Timeout Enter the time in seconds before the dashboard

refresh timeouts. The default is 25 seconds.
Dashboard Organizer Select the organizer view for the Device Issues

dashboard portlet. The user can change or select
a new organizer via the Preferences link. Available
options include:
Devices
Systems
Groups
Locations

Network Map Start Object Specify a default network from the monitored
networks to map on the Network Maps view. For
example, 192.168.1.1.

We use roles to define a user's level of access to the system. The following table lists
the available roles from the most to the least restrictive access.

Role Access Privileges
ZenUser View-only access to the system includes the

Dashboard, Device List, Browse By organizers,
and classes.

ZenManager Access includes view, update, and delete. User is
able to access the Management menu items and
Event Console.

Settings and Administration

[188]

Administered Objects
For each user, we can assign a list of administered objects, which includes devices,
systems, groups, and locations. By matching users to administered objects, we have
an easy way to identify who is responsible for the object. The following screenshot
shows the Administered Objects for a user.

To add an object, choose the appropriate option from the Administered Objects
page menu. If we add a device, the Add Device dialog box filters the list of devices
as we type. If we add a system, group, or location, we choose the object from a
drop-down list.

Each administered object has a default role that we can change. We specify the user's
default admin role on each user's Edit tab.

If we click on the object name, Zenoss displays the Status page for the device, system,
group, or location. Each object also has an Administration page that lists the users
identified as administrators. For example, navigate to a device and select More >
Administration from the page menu to see the list of administrators for the device.

Chapter 9

[189]

From the Administrators table of the object (see the previous screenshot), we see
a list of users and Roles. Click on the user name to navigate back to the user's
Edit page.

Event Views
In Chapter 7, we discussed Event Views in detail. Zenoss enables us to create custom
event views per user. To define a custom event view for a user:

1. Edit the user.
2. Select the Event Views tab.
3. From the Event Views table menu, select Add Event View.
4. Enter a descriptive name (e.g: Events on Coyote) in the Add Event View

dialog box.
5. Click OK to add the event view.

Settings and Administration

[190]

Each event view displays columns for type and event summary. By default, the
newly created event view looks identical to the Event Console. Click on the name
from the Event Views list to display and edit the view (see the following
screen capture).

From the edit tab, we specify the following event view properties:

Property Description
Type Select "status" to display active events and "history" to display

cleared events.
Where Build the filtering rules for the event view. For example:

"Device is Coyote."
Order by Specify the default sort order. Sort orders are specified in pairs by field

and order. Each sort order is comma separated. For example, if we
specify a sort order equal to "severity desc, count asc" the event view
lists all the events from the most severe to the least severe. Within
each severity, the view sorts by the count field in ascending order.

Result Fields Add and remove fields to the event view.

After we edit the view, click Save. Then click on the View tab so that the view
gets displayed.

Chapter 9

[191]

Alerting Rules
We attach alerts to users or groups of users. We'll cover groups in the next section,
but for now, we'll add an alerting rule at the user level. To add an alerting rule, select
the Alerting Rules tab (see the following screenshot) while editing the user name to
display the list of rules assigned to the user.

The Alerting Rules table displays a summary of each rule including columns for
Name, Delay, Repeat Time, Action, Enabled, and Send Clear. To add a new
alerting rule:

1. Select Add Alerting Rules from the Alerting Rules table menu.
2. Enter a descriptive name in the Add Alerting Rule dialog box.
3. Click OK to add the new rule.
4. Click on the name in the Alerting Rules table to edit the rule properties (see

the next screenshot).
5. Configure the alert and click Save.

Settings and Administration

[192]

The default rule sends an email when any device in a Production State generates a
new event with a Severity level equal to or greater than Error. Zenoss also sends an
alert when the event clears. However, the alert is disabled by default.

Let's take a look at each of the Alerting Rule properties:

Property Description
Delay (secs) Delay sending the alert for the specified time.

Default is 0.
Enabled Set to True to enable the alert. If the value is False,

this rule does not send alerts.
Action Choose either email or pager notifications.
Address (optional) Specify any valid email address. If left blank, the

email address specified for the user is used.
Send clear messages Select True to send alerts when the event clears.

Select False to suppress clear messages.
Repeat Time (secs) Repeat the alerting rule for the specified time.

Default is 0.
Where Select the event filter criteria. Add and remove

filters as needed.

An event filter consists of three parts: an event field, a comparison operator, and a
value to compare to the event field.

We add a filter by selecting the event field from the Add Filter drop-down list. See
Appendix A for a list of fields. Next, we specify a comparison operator, such as
greater-than and less-than. Then we specify a value to match against the operator.
The More filters we add to a rule, the more specific our alerting rule becomes.More filters we add to a rule, the more specific our alerting rule becomes.

Alert Escalations
By using the filters on an alerting rule, we can create an alert hierarchy that notifies
another user when a certain condition occurs. We can create a new rule for a
second user and add a filter that specifies a count value so that if the event is not
acknowledged, the user is notified. For example, if our new filter specifies a count
greater than five, we define a rule that does not trigger unless an event remains
unacknowledged for five consecutive times. We talked about acknowledging events
as part of the event work flow in Chapter 7.

Chapter 9

[193]

Message
While editing our alerting rule, we have the ability to customize the text of the alert
message Zenoss sends. To view the Message, click on the Message tab.

We can specify the Subject and the Body for both the down alert and the clear alert.
As the text at the bottom of the Message tab indicates, the "message format is a
Python format string. Fields are specified as %(fieldname)s." (refer to the previous
screenshot). All the event fields are listed for reference.

If we set the alerting rule to send a page, we can only specify a subject line for the
down and clear alerts because of likely character restrictions on the pager.

Settings and Administration

[194]

Schedule
We may set a schedule for each alerting rule so that the rule sends alerts only during
the specified period. From the Edit tab of an alerting rule, click on the Schedule tab
to view the Active Periods table. The Active Periods table displays a list of schedules
sorted by Name with columns for Start, Duration, Repeat, and Enabled, as shown in
the next screen capture.

To add a schedule, select Add Rule Window from the Active Periods table menu.
Enter a descriptive name when prompted. Click OK to add the new schedule to the
Active Periods table. Click on the name to display the active period's Status page.

On the Status page for the active period, we define the time of day when the
alerting schedule is active (see the previous screenshot). The following table lists the
available settings.

Property Description
Enabled Set to True to enable the alerting rule during

the specified time and duration.
Start Specify the start date, hour, and minute. The

hours are specified in 24-hour time.
Duration Enter the Days, Hours, and Minutes to keep

the alerting rule active after it starts.

Chapter 9

[195]

Property Description
Repeat Select the interval and frequency. Available

intervals are:
Never
Daily
Every weekday
Weekly
Monthly
First Sunday of the month

Enter a frequency to repeat the selected
interval.

•

•

•

•

•

•

We may add as many active periods to an alerting rule as we need to accommodate
each user's work schedule.

Groups
We've just learnt how to define alerting rules on a per user basis, but if we have
more than two or three users, we need a better way to handle our alerting rules.
Fortunately, Zenoss provides groups, and the same alerting rule concepts that apply
to users apply to groups.

We start by adding a new group to the Groups table of the Users tab in the Settings
page. Next, we assign users to the group in the following way:

1. Select the group name.
2. Select Add Users from the Group table menu.
3. Choose the user names (ctrl + click to select multiple) from the Add Users To

Group dialog box (refer to the following screenshot).
4. Select the Group name from the Add Users to Group dialog box.

Settings and Administration

[196]

5. Click OK to assign the users to the group.

Now that we have a newly created group with users assigned, click on the group
name to display the group's Edit tab. From the Edit tab, we can add and remove
users from our group. On the Administered Objects tab, we identify the relationship
a device, system, group, or location has to a group.

To begin adding alerting rules for the group, select the Alerting Rules tab and follow
the steps outlined in the previous section for individual users.

System Settings
In addition to the Simple Mail Transport Protocol (SMTP) and Simple Network
Paging Protocol (SNPP) host configuration, the Settings page displays other site
configurations, such as state and priority conversions. Before Zenoss can send alerts,
we need to configure the SMTP and SNPP hosts' information, depending on which
notification method we use for our alerting rules. To access the Settings, click on
Settings from the navigation panel (refer to the next screenshot).

Chapter 9

[197]

The following table lists the available settings.

Property Description
SMTP Host The address of the SMTP server.
SMTP Port The SMTP port. The default is 25.
SMTP Username If the SMTP server requires authentication to send mail,

specify the user name to send the mail. Zenoss sends the
SMTP user name and password when needed.

SMTP Password Specify the password for the SMTP user name.
From Address for Emails Alerts will come from the specified email address.
Use TLS? If the SMTP host uses Transport Layer Security,

check this box.
SNPP Host Specify the Simple Network Paging Protocol host.
SNPP Port Specify the SNPP Port number. Default is 444.
Dashboard Production State
Threshold

The dashboard displays devices with a threshold equal
to or greater than the specified value. Default is 1000.

Dashboard Priority Threshold The dashboard displays devices with a priority equal to
or greater than the specified value. Default is 2.

State Conversions In descending order, Zenoss includes the following
device states by default:

Production: 1000
Pre-Production: 500
Test: 400
Maintenance: 300
Decommissioned: -1

Some places within Zenoss use the text description
while other places use the numeric state.

•

•

•

•

•

Priority Conversions In descending order, Zenoss uses the following device
priorities:

Highest: 5
High: 4
Normal: 3
Low: 2
Lowest: 1
Trivial: 0

Some places within Zenoss use the text description
while other places use the numeric priority.

•

•

•

•

•

•

Settings and Administration

[198]

Property Description
Administrative Roles Create user-defined roles. Not currently used in Zenoss

Core for event processing.
Google Maps API Key Enter the Google Maps API key to display the map on

the Locations dashboard portlet.

We can add as many states, priorities, and Administrative Roles as we want. For
example, we could assign a group of devices to a custom state and use the state to
build custom event and alerting rules.

Chapter 9

[199]

Commands
By combining shell commands and TALES expressions, we can run commands
against our devices from within the Zenoss web portal. Zenoss includes the
following commands by default: host, ping, snmpwalk, and traceroute. To see the
complete syntax of these commands, navigate to Settings > Commands.

Let's examine the ping command. The actual command Zenoss executes against the
device is ping -c2 ${device/manageIp}. The first half of the command construction
(ping -c2) is a ping command that sends no more than two ping requests. The
second half of the command (${device/manageIp} is a TALES expression. The
manageIp variable provides the IP address of the current device. A list of TALES
expressions can be found in Appendix B .

We run commands from a device's status page, a device class, systems organizer,
group organizer, or location. For example, if we want to ping a single device, edit the
device and select Run Commands > Ping from the page menu. If we want to ping all
Linux servers, navigate to the /Server/Linux class and run the ping command from
the page menu. The output displays in a new window (refer to the next screenshot).

Settings and Administration

[200]

The commands are primarily a troubleshooting tool. We will walk through the
process of adding a new nmap command. We use nmap to determine open ports and
available services on a machine. From the Commands tab:

1. Select Add User Command from the Commands table menu.
2. Enter a descriptive name (e.g.: nmap) in the Add User Command dialog box.
3. Click OK to add the command and display the command properties.
4. Type a short explanation in the Description field: "Display interesting ports

on a device".
5. Enter the following in the Command field: nmap -v ${device/manageIp}.
6. Click Save.

Now, we will test our command on a device to make sure it does what we expect.

Menus
You don't like the menu order on a page? The Menus tab enables us to change how
the menus display within Zenoss. When we navigate to Settings > Menus, the
Menus tab displays a Menu ID selection that corresponds to various menu trees
throughout the Zenoss portal. Select the Menu ID to display the individual menu
items associated with the Menu ID. Each menu item has an associated Ordering,
Description, and Action. The Description is the text that displays when we access
the menu. The Action displays the object which the menu calls. Ordering defines the
sequence which the menus display.

In order to add a menu, we need to know the Menu Item, Description, and
Action values.

As an example, we will remove a menu item and then replace it. Let's remove the
Delete Device option from the Manage menu.:

1. Select Manage from the Menu ID drop down list.
2. Record the Ordering, Menu Item, Description, and Action values for

deleteDevice.
3. Select the deleteDevice menu item from the Menu table.
4. Select Delete Menu Items from the Menu table (refer to the following screen

capture). The individual menus display in the Menu table.
5. Click OK to confirm the delete.

Chapter 9

[201]

To verify our action, we can navigate to the device's status page. From the page
menu, select More. Note that Delete Device is no longer an option.

Let's add the Delete Device Menu back:

1. Select Manage from the Menu ID drop-down list.
2. Select Add Menu Item from the table menu.
3. In the Add Menu Item dialog box, enter the following values:

ID: deleteDevice
Description: Delete Devices...
Action: dialog_deleteDevice
Ordering: 4.0

4. Click OK to add the menu.

When we view the the Manage menu for a device, we can select Delete Device.

°

°

°

°

Settings and Administration

[202]

Portlets Permission
We can restrict which users see which dashboard portlets by setting permissions on
the Portlets tab in Settings. We can choose from three levels (refer to the following
screen capture):

Users with Manage DMD permission
Users with View permission
Users with ZenCommon permission

The three permission levels correspond to the three Zenoss roles: Manager,
ZenManager, and ZenUser. Functionally speaking, however, the Users with Manage
DMD and Users with ZenCommon permissions apply equally to users in the
Manager and ZenManager roles (as of Zenoss Core 2.1.2).

If we want to restrict users within the ZenUsers role from seeing a dashboard portlet,
assign the portlet Users with Manage DMD permission. Users who are members
of either the Manager or ZenManager role will be able to see all the device portlets
regardless of the set permission.

Don't forget to Save changes.

•

•

•

Chapter 9

[203]

Zenoss Daemons
A daemon is a process that runs in the background on Unix systems and is
comparable to what Windows calls a service. To see a list of Zenoss daemons,
navigate to Settings > Daemons for each daemon, we see the process ID (PID), Log
File, Configuration, State, and Actions, as shown in the following screen capture.

We've been working with these daemons from the very beginning through our
actions within the Zenoss UI. As we look over the list of daemons, we can speculate
what some of these processes are responsible for. For example, zensyslog processes
syslogs, zenmodeler creates the model of our devices based on the plug-ins defined
for each device, and zenping monitors device availability each minute.

We usually turn to the Daemons tab when we're curious or troubleshooting. Click on
the view log link to display the log file for each daemon. We find the raw logs in the
$ZENHOME/log directory.

If we want to override the default daemon behavior, we can edit the configuration
by clicking on the edit config link, and naturally, the view config link displays
the current configuration. To view the available options for each daemon, open a
command line environment and type the name of the daemon followed by the word
help. To see zenmodeler's options, we type:

zenmodeler help

Settings and Administration

[204]

The output is as shown in the following figure.

The syntax we use to enter command parameters and values via the web interface
varies from the way we specify options on the command line. In our example, we
will increase zenmodeler's logging level from the default INFO to a more verbose
DEBUG. On the command line, we use the following command as the Zenoss User:

zenmodeler restart --logseverity=4

If we use the edit config link via the Daemons tab, we specify the parameters and
values via a space delineated list. See the following screenshot.

Don't forget to save the configuration. Then click the restart button for the
zenmodeler daemon to pass the new configuration to the daemon. To view the
results of our change, click on the view log link and scroll to the bottom. We see the
results of our action and our logs now show debugging messages.

Each of the daemon configuration files can be found in the $ZENHOME/etc directory,
and we can edit them with a text editor if we choose to.

Chapter 9

[205]

Maintenance Windows
If we plan to take a device out of service for maintenance or other scheduled down
time, we can set up a maintenance window so that Zenoss does not alert us of a
problem when our scheduled maintenance starts. We define maintenance windows
via the Administration properties of devices, device classes, systems, groups,
or locations. We'll walk through a sample maintenance window for our web
server Coyote:

1. Click the device from the Device List to display the device's status page.
2. From the page menu, select More > Administration.
3. From the Maintenance Windows table menu, select Add Maint Window.
4. In the Add Maintenance Window dialog box, enter a descriptive name:

(e.g.: Test Window).
5. Click OK to add the maintenance window.

Our new Test Window rule is displayed in the Maintenance Windows table, but
we still need to configure and enable the rule. Click on the name to edit the rule
properties (see the following screenshot).

Settings and Administration

[206]

The following table outlines the available maintenance window properties.

Property Description
Enabled Select true to activate the Maintenance window.

Default is False.
Start Enter the start date and time.
Duration Specify the duration in Days, Hours, and Minutes.
Repeat Select the interval to repeat the maintenance window.

Available intervals are:
Never
Daily
Every weekday
Weekly
Monthly
First Sunday of the month

•

•

•

•

•

•

Start Production State Specify the production state to move the devices into, once the
maintenance window starts. Default is Maintenance.

Stop Production State Specify the production state for the device after the
maintenance window ends. The default selection is Original.

By setting the production state to Maintenance, Zenoss continues to monitor the
device; however, it will not send any alerts.

Add MIBs
We haven't talked about Management Information Database's files since Chapter
3, but at some point, we may need an MIB that Zenoss does not provide. If we see
OID numbers (for example, .1.3.6.1.4.1.311.1.1.3.1.3) in our events, then that's a
good sign which indicates that we need to update our MIBs. To find an MIB and its
dependencies, we can search the following resources:

Vendor's support site
Web search for the OID
MIB search sites, such as http://www.mibsearch.com

We will use the MSFT-MIB.mib file to demonstrate how to register a MIB with
Zenoss. First, copy the MSFT-MIB.mib to $ZENHOME/share/mibs/site/. Second, run
the following command as the Zenoss user:

zenmib run

•

•

•

Chapter 9

[207]

If the command is successful, we will see the following output in our
command output:

INFO:zen.zenmib:Loaded mib MSFT-MIB

We can see the result of our action by logging into the Zenoss UI and selecting MIBs
from the navigation panel. Our newly registered MIB is displayed in the table along
with the number of nodes mapped by the MIB. Click on the name to display the
contents of the MIB file. Refer to the following screen capture which shows the OID
mappings of an imported MIB file.

By looking at the contents of the MIB, we can see the human friendly names each
node (OID) maps to.

Back Up and Restore
Zenoss provides two command line utilities that enable us to back up and restore
key pieces of our Zenoss configuration. The zenbackup command backs up the
following components:

MySQL events
Zope database
$ZENHOME/etc
Performance data

•
•
•

•

Settings and Administration

[208]

To create the backup, run the following commands as the zenoss user:

zenoss stop

zenbackup

zenoss start

We stop the Zenoss service before running the backup command and we start
Zenoss after the backup completes. To see a list of available options, run zenbackup
with the --help option.

The zenbackup command creates a zipped file in the $ZENHOME/backups directory.
An example backup file would be named zenbackup_20080119.tgz, which keeps
the file names unique by using the date the backup is created.

In order to restore the backup file, we need to know the backup file name and the
events database password. If our system uses a non-Zenoss default events database
name and credentials, then we need to specify that information in our zenrestore
command. To see a list of all the available options, append the --help option to the
zenrestore command. To restore our backup file, run the following commands as
the Zenoss user:

zenoss stop

zenrestore --file=$ZENHOME/backups/zenbackup_20080119.tgz --dbpass=mypass

zenoss start

Of course, we will substitute the file name and database password with the ones that
match our individual environments.

Automate Backups
We can schedule regular backups with cron, a Unix-based daemon. In our example,
we'll create a script in the /home/zenoss/bin directory and schedule it to run via
crontab, which is a utility that allows individual users to schedule recurring tasks.

As the Zenoss user, save the following bash script as zenoss_daily to /home/
zenoss/bin/:

#!/bin/bash

This script contains a short list of Zenoss commands that
we want to run daily via cron.

#Setup Zenoss environment
export ZENHOME=/usr/local/zenoss
export PYTHONPATH=$ZENHOME/lib/python

Chapter 9

[209]

export PATH=$ZENHOME/bin:$PATH

Back up Zenoss and capture the verbose stdout to a log
zenbackup -v > $HOME\zenoss_daily.log

end script

After we save the zenoss_daily script, we need to make it executable. As the Zenoss
user, run the following command:

chmod +x $HOME/bin/zenoss_daily

Next, we need to schedule our script to run at a regular interval via the Zenoss users
crontab entry.

In order for the Zenoss user to use crontab, the user name "zenoss" must either
appear in the /etc/cron.allow file or must not appear in the /etc/cron.deny file
depending on the system cofiguration. As an example, we'll add "zenoss" to /etc/
cron.allow by adding a new line with the user name "zenoss" on it. If /etc/cron.
allow does not exist, we can create it as root using our favorite text editor.

When we define a crontab entry, we define the minute, hour, day of the month,
month, or day of the week followed by the command to run. The following table
shows valid values for each time, day, and date field.

Time Intervals (Listed in the order they
appear in crontab)

Valid Values

Minute 0 - 59
Hour 0 – 23
Day of Month 1 – 31
Month 1 – 12 (January = 1)
Day of Week 0 - 6 (Sunday = 0)

Let's set our zenoss_daily script to run at 11:30 PM daily. As the zenoss user,
invoke the crontab editor with the following command:

crontab-e

Make the following entry into the crontab editor and save it:

30 23 * * * /home/zenoss/bin/zenoss_daily

In this example, we're not specifying a day of the month, month, or day of the week,
so we use an asterisk (*) for those fields. To verify that our command runs each
day, check $ZENHOME/backups for a backup file for each day. We can also review
the /home/zenoss/zenoss_daily.log file that we use to capture the output of the
zenbackup command.

Settings and Administration

[210]

Update Zenoss Core
Zenoss releases major versions that add features and follows up with maintenance
releases. For example, Zenoss 2.1 is a feature release and primarily adds
functionality, while Zenoss 2.1.2 represents a maintenance release that
increases stability.

Zenoss also outputs sprint releases every 30 days. Sprint gives out a regular release
schedule that allows Zenoss and the community to preview and test features that
are in progress and scheduled for upcoming stable releases. The features are often
functional but incomplete.

Part of the update process implies that we know about the software we have
installed right now. To view information about the current Zenoss installation, we
navigate to Settings > Versions (see the following screen capture).

Chapter 9

[211]

The Versions tab shows us version information about Zenoss, its core components,
and the host operating system. In the Check For Updates table, we click the Check
Zenoss Version Now button to get the latest version number, which is then reported
as the Available Zenoss Version. If that number is greater than the installed
Zenoss version listed in the Software Component Versions table, we have an
upgrade available.

Zenoss does not upgrade automatically. We need to download the update from
http://www.zenoss.com/download/. The update procedure depends on whether
or not we are using an RPM, source, or virtual appliance install.

Prior to updating Zenoss, we should make sure that we back up our monitoring
data with zenbackup as discussed in the Back up and Restore section. As an extra
safeguard, we can backup the entire $ZENHOME directory prior to updating in case the
entire update process somehow goes awry.

RPM Update
Before we install the new RPM, we stop the Zenoss daemons with the following
command as the Zenoss user:

zenoss stop

Next, install the downloaded RPM with the following command as root:

rpm -Uvh zenoss-<version #>.rpm

Replace the <version #> with the correct name of the downloaded file.

After the installation completes, start Zenoss with the following command as the
Zenoss user:

zenoss start

Log in to the Zenoss UI as before.

Settings and Administration

[212]

Source Update
To update the source install, unpack the current source and run the install script
located in the top level of the source directory as the Zenoss user:

./install.sh

The installer prompts us with two questions. The installer asks us to enter the
password for the Zenoss admin user. It also asks us if we want to keep our existing
database. The default answer is yes. If we answer no, our existing device and event
database will be wiped out and we'll have to start from scratch. The expected answer
here is Y for yes.

After Zenoss builds and installs the update, the install script prompts us to update
the permissions on zensocket. As root, run the following commands:

chown root:zenoss /usr/local/zenoss/bin/zensocket

chmod 04750 /usr/local/zenoss/bin/zensocket

Finally, restart the Zenoss daemons by running the following command as the
Zenoss user:

zenoss start

Log in to the Zenoss portal as before.

Virtual Appliance Update
Virtual appliance users can update to the next version of Zenoss by using the
package manager conary. Log in to the Zenoss virtual image as the Zenoss user and
stop Zenoss:

zenoss stop

As root, update Zenoss with the command:

conary update zenoss --resolve

If conary complains about unresolvable python dependencies, then run the following
commands:

conary update python --resolve

conary update zenoss --zenoss

To finish the update, restart Zenoss as the Zenoss user:

zenoss start

Log in to Zenoss as usual.

Chapter 9

[213]

Summary
Now that we have concluded our Zenoss administration discussion, we have all the
tools to implement and maintain a highly customizable monitoring solution. In the
previous chapters, we monitored devices and generated events, and in this chapter
we have completed our monitoring solution by turning events into alerts. As we
found out, there's more to administering Zenoss than defining alerting rules and
user management. We looked at the various ways to control system-wide monitoring
properties through daemons, system settings, and custom user commands. Our
chapter concluded by updating Zenoss Core to the latest version after we learnt how
to back up and restore.

In the next chapter, we'll take a look at extending Zenoss' functionality through its
ZenPack architecture, as well as some advanced command line usage.

Extend Zenoss
In this chapter, we take advantage of some of the Zenoss Core's advanced features
to extend our monitoring and reporting capabilities. Specifically, we will install and
create ZenPacks, configure external plug-ins, and turn emails into events.

To accomplish some of our tasks, we move away from the comforts of the graphical
user interface and spend some time working with several Zenoss commands from
the command line interface.

ZenPacks
ZenPacks provide an architecture that allows us to customize Zenoss and share
those customizations between installations or with the community at large. ZenPack
authors can choose to create their ZenPacks from the web interface or program
Zenpacks. From the web interface, we package changes to the following components:
Event and Device classes, services, processes, reports, MIBs, menus, commands,
and performance templates. If we want to add a new daemon or modify the web
interface, then we need to write the ZenPack programmatically.

 We'll use the web interface to accomplish the tasks that most administrators will
need. We'll walk through an example that packages several new user commands
into a ZenPack. For the programmers among us, Zenoss provides an example
HelloWorldZenPack on the Zenoss ZenPack Project Site at http://www.zenoss.
com/community/projects/zenpacks/.

Before we jump into creating a ZenPack on our own, let's take a look at the ZenPacks
currently available from Zenoss. The ZenPack Project Site organizes the packages
into three categories: Community, Core, and Enterprise.

Extend Zenoss

[216]

The community ZenPacks are created and shared by Zenoss community members.
They are available as-is. The Core ZenPacks are created and distributed by Zenoss
for all to use. The Enterprise ZenPacks are reserved for customers who purchased
Zenoss Enterprise and are not available to Zenoss Core users.

Install
Incorporating a ZenPack into our Zenoss system includes three steps:

1. Download the ZenPack from the the Zenoss ZenPack Project Site.
2. Install the ZenPack.
3. Configure the devices to use the ZenPack.

Let's demonstrate the process with the HttpMonitor ZenPack, which monitors the
status and response time of a website using the Nagios plug-in check_http.

Monitor Websites with HttpMonitor
Hopefully, the ZenPacks we install have appropriate documentation that tells us
how to take advantage of the new functionality. In the case of the HttpMonitor
ZenPack, we know by reading the Zenoss documentation that the ZenPack adds
the /Status/Web event class and the HttpMonitor data source, which allows us to
generate performance graphs.

In our example, the real work begins after we install the ZenPack. We add the
website to be monitored as a device and create a custom performance template that
we will use to add data sources and graphs.

Let's begin by installing the HttpMonitor ZenPack:

1. Download the HttpMonitor package from the Zenoss ZenPack Project Site,
but do not unzip the file.

2. Navigate to Settings > ZenPacks in Zenoss.
3. From the Loaded ZenPacks table menu, select Install ZenPack.
4. Browse for and select the ZenPack we downloaded.
5. Click OK to install the ZenPack.

After the ZenPack installs, Zenoss displays the results of the ZenPack installation in
the browser window, as shown in the following screen capture.

Chapter 10

[217]

If we want to monitor only one website, we could create a custom performance
template at the device level, but in our example, we assume that we want to monitor
several URLs. Therefore, we'll use Zenoss' hierarchy and create a new/Web device
class to organize our websites.

The following sequence of steps adds the web domain in the /Web device class
and creates a custom performance template that we will configure. This process
incorporates many of the concepts we've used throughout the book to manage
our devices. It's now a good time to review the performance template section in
Chapter 6.

Let's monitor badgerfiles.com or any other website:

1. Create the /Web device class.
2. Add a new device with the following properties:

Device Name: badgerfiles.com
Device Class Path: /Web
Discovery Protocol: None

3. Select badgerfiles.com from the Device List.
4. From the device's page menu, select More > Templates.
5. Click Create Local Copy for the Device performance template.
6. Edit the device template and make the following changes:

Name: HttpMonitor
Description: Monitor the status and performance of URLs.
Remove the sysUpTime Data Source.

•

•

•

•

•

•

Extend Zenoss

[218]

7. From the Data Sources menu, select Add Data Source.
8. In the Add a new Data Source dialog box:

Enter a descriptive name in the ID field (e.g.: pageLoad)
Type HttpMonitor

9. Click OK to add the data source and display its properties
(see the following screenshot).

At this point, our /Web device class does not have any performance templates
associated with it because we renamed the local copy of the device template, which
means our new device does not have a performance template either. We will bind
the template to the /Web class in a few minutes. For now, we should use the bread
crumb navigation to move up and down the performance template hierarchy
to make changes to the HttpMonitor template. We can also edit the template by
navigating to Devices > Templates.

•

•

Chapter 10

[219]

When we set the Data Source Type to HttpMonitor, we got a custom set of data
source properties that correspond to the check_http command found in $ZENHOME/
libexec. To see an explanation of the available options, we can run the following
command from the command line:

$ZENHOME/libexec/check_http –help

We can configure our data source in a way that meets our individual needs. For
example, we may want to change the Severity to Error or Use SSL. Perhaps our site
requires authentication. All these options, and more are available.

After we save the data source properties, two new data points display in the Data
Points table: Size and time. We'll use these data points to create a new graph:

1. Navigate back to the HttpMonitor Performance Template.
2. From the Graph Definitions table menu, select Add Graph.
3. In the Add Graph dialog, enter a descriptive name

(e.g.: Website Performance) in the ID field.
4. Click OK to add the graph and display the Graph Definition properties.
5. From the Graph Points table menu, select Add Data Point.
6. In the Add GraphPoint dialog box, select the pageLoad_size or pageLoad_

time Data Points depending on whether we want to see the size or time
(see the next screenshot).

7. Click OK to add the graph points.

Extend Zenoss

[220]

After we add the graph points, we can configure the graph definition properties as
needed. Save any changes and navigate back to to the HttpMonitor Performance
Template page. If we want to see graphs for both size and time values, use the same
process to create a second graph.

In our final step, we need to bind the HttpMonitor performance template to the
/Web device class:

1. From the navigation menu, select Devices, then /Web.
2. Select the Template tab to display a list of available performance templates.
3. From the Available Performance Templates table menu, select Bind

Templates.
4. From the Bind Performance Templates dialog box, select HttpMonitor (refer

to the next screen capture).
5. Click OK to bind the template.

When we bind the template to the device class, all the devices in the class inherit the
template's properties.

Now, we test our work. Select badgerfiles.com from the Device List and select the
Perf tab. If we see the Web Site Performance graph as shown in the following
screenshot, we are successful.

Chapter 10

[221]

The HttpMonitor ZenPack required us to manually configure several components
that could easily be incorporated into the ZenPack. For example, the ZenPack
could reduce our configuration steps by including the /Web device class and the
HttpMonitor performance template. The good news is that we now have access to
the ZenPack, so we can add and remove objects as we deem necessary.

In our next ZenPack example, we'll go through the steps to create a new ZenPack.

Create
With the basics of installing a ZenPack behind us, we can try our hand at creating a
new ZenPack that includes several custom user commands. In Chapter 9, we added
the nmap command. We'll use that command as the first component in our ZenPack.
To create a ZenPack, we perform the following steps: Customize Zenoss, add the
customizations to a ZenPack, and export the ZenPack for deployment.

Our first step is to create the User_Commands ZenPack organizer:

1. From the navigation window, select Settings > ZenPacks.
2. From the Loaded ZenPacks table menu, select Create a ZenPack.
3. In the Create a new ZenPack dialog box, enter descriptive values for the ID,

Author, Organization, and Version text boxes.
4. Click OK to add the ZenPack.

Extend Zenoss

[222]

We note that our list of Loaded ZenPacks includes two items (see the preceding
screenshot): The HttpMonitor ZenPack we installed and our new User_Commands
ZenPack. The Loaded ZenPacks menu summarizes the information about the
ZenPack, and it matches the values we entered in the Create a ZenPack dialog box.
The last column in the table provides the number of objects in the ZenPack.

Add Objects to ZenPack
At the moment, we have an empty ZenPack organizer, so let's add some commands:

1. Select Settings > Commands.
2. Select the commands to add to the User_Command ZenPack.
3. From the Define Commands table menu, select Add to ZenPack.
4. Choose the User_Commands in the Add to ZenPack dialog box

(see the next screen capture).
5. Click Add to add the commands.

To check our work, we may navigate back to the ZenPacks tab in Settings. Now, the
number of objects should change to update the number of commands we just added
to the User_Commands ZenPack. Edit the User_Command ZenPack to display the
Detail tab.

Chapter 10

[223]

The Detail tab contains two tables: Files in ZenPack and Objects in ZenPack. In our
example, each command we add shows up in the Objects in ZenPack table.

We can add as many objects to the ZenPack as needed.

Export ZenPack
Before we can contribute our ZenPack to the Zenoss community, we need to
export it:

1. From the User_Commands Detail page menu, select Export ZenPack.
2. Choose an export option (refer to the following screen capture):

Export to $ZENHOME/exports
Export to $ZENHOME/exports and download

3. Click OK to export the ZenPack.
If we choose the Export to $ZENHOME/exports and download option, a new file is
created in the exports directory of our Zenoss installation, and we are prompted to
download the file via our web browser.

°

°

Extend Zenoss

[224]

After the export process completes, make a note of the changes in the Detail tab. The
Files in ZenPack table now lists the individual files that make up the ZenPack.

As a result of the export, we end up with a User_Commands.zip file that we can
distribute among our individual Zenoss installations or to the community. Starting
with Zenoss 2.2, ZenPacks will be packaged in the Python egg format, which means
our file will be named User_Commands.egg. To install our new ZenPack, we follow
the installation steps outlined in the previous section.

If at any time we wish to add objects to an existing process, we simply add the object
to the applicable ZenPack. Export the ZenPack and it's ready for distribution.

Contribute ZenPacks
Zenoss does not provide an automated upload feature for community ZenPacks.
If we would like to make our ZenPack available for the larger community, send an
email to community@zenoss.com.

Plug-ins
Plug-ins allow us to gather information about our devices and services. Nagios and
Cacti are two popular open-source monitoring projects and include plug-ins that
support a wide range of monitoring tasks. Zenoss incorporates a plug-in framework
that allows us to install Nagios and Cacti plug-ins without modification to extend
the core functionality. Zenoss includes the official Nagios plug-ins in the $ZENHOME/
libexec/ directory, though we can download additional plug-ins as needed.
As we demonstrated with the HttpMonitor ZenPack example, ZenPacks can
include plug-ins.

In this section, we'll demonstrate how to use a plug-in with Zenoss by using the
included Nagios check_procs plug-in to monitor for processes that exceed a defined
CPU utilization.

Test The Plug-in
The plugi-ns are command line programs that we can run outside of Zenoss, and
each plug-in has unique options we need to set in order to return the information we
want to monitor. To see the command syntax, we append --help to the command.
To see the check_procs usage syntax, run the command:

$ZENHOME/libexec/check_procs --help

Chapter 10

[225]

We see the following help print to the screen:

Usage:check_procs -w <range> -c <range> [-m metric] [-s state] [-p ppid]

 [-u user] [-r rss] [-z vsz] [-P %cpu] [-a argument-array]

 [-C command] [-t timeout] [-v]

The check_procs help file is actually more verbose and explains the options in more
detail. However, in the interest of space, we include only the summary help lines.
We'll use check_procs to monitor the processes that have a CPU usage of over 20%,
but the plug-in also monitors state, resident set memory size, virtual memory size,
CPU percentage, and elapsed time.

The following example commands set a warning and a critical threshold for percent
CPU usage. Each example includes a sample output to illustrate the command. As
the Zenoss user, run the following commands:

$ZENHOME/libexec/check_procs -w 20 -c 30 --metric=CPU

CPU OK: 163 processes

$ZENHOME/libexec/check_procs -w 01 -c 30 --metric=CPU

CPU WARNING: 1 warn out of 163 processes

$ZENHOME/libexec/check_procs -w 01 -c 02 --metric=CPU

CPU CRITICAL: 1 crit, 0 warn out of 163 processes

Apply The Plug-in to A Device
Now that we know how to run our plug-in and know what to expect, we can log
into Zenoss and edit the performance template for the target device. If we wanted
to apply the plug-in to all devices in a class, we would either modify the device
template for the class or create a new template and bind it to the class like we did in
the HttpMonitor ZenPack example. For this example, however, we'll apply the
plug-in at the individual device level.

Let's configure a new data source for our Zenoss server Fox:

1. From Fox's status page, select More > Templates from the page menu.
2. Click the Create Local Copy button for the device template.
3. Edit the Device template.
4. From the Data Source table menu, select Add Data Source.

Extend Zenoss

[226]

5. In the Add a New Data Source dialog box, enter the following values:
ID: checkCpu
Type: Command

6. Click OK to add the data source and edit its properties.
7. Configure and save the data source as needed.

How we configure our data source depends on our individual setups (refer to the
next screen capture). We'll take a moment to review the available properties and then
come back to enter specific values.

Property Description
Name The name of the data source we enter in the Add a New Data

Source dialog box.
Enabled Set to True to enable the command.
Use SSH Set to False to run the command only on the Zenoss server. Set to

true to run the command on a remote server via SSH.
Component Enter a descriptive component name to describe the event. Blank

by default.
Event Class Select the event class that this command should map to.
Event Key Enter a descriptive event key to aid in event mappings. Blank

by default.
Severity Select a fail severity. Default is Warning.
Cycle Time The time in seconds that Zenoss runs the command on the

devices. The default is 300.
Command Template Specify the command to run the plug-in. Accepts TALES

expressions that allows us to make the command generic for all
devices in a class.

In our check_procs example, we can enter the command we tested into the
Command Template box. However, if our command uses arguments such as device
name or file system components, we could substitute absolute values by using
TALES expressions, thereby making the command work regardless of the device.

°

°

Chapter 10

[227]

For example, if we want to monitor all the devices in a class with the check_disk
plug-in, our command might look like:

/usr/local/zenoss/libexec/check_disk -w 5% -c 3% -p ${dev/compname}

In this case, the -p option specifies the partition name. By substituting the TALES
expression for a partition name, the command becomes generic enough to run
against all the devices.

When we specify the command, we may specify either the absolute path or just use
the command name. If we do not specify the absolute path for the command, Zenoss
uses the command path specified in the zCommandPath zProperty for the device. To
eliminate a point of failure from our configuration, we will specify the absolute path
in the Command Template.

Debug
After we add the new data source to our device, we need to make sure that it
will run within Zenoss. We'll use two Zenoss commands: zentestcommand and
zencommand. When we run zentestcommand, we should get the same output that
we got when we ran the plug-in from the command line in 'Test the Plug-in' section.
We run zencommand to provide a debugging output.

Extend Zenoss

[228]

We supply zentestcommand the device name and the data source. The data source
corresponds to the value we created in the previous section, 'Apply the Plug-in to a
Device'. As the user zenoss, run the following command:
zentestcommand --device=Fox –datasource=checkCpu

The output of the command that we specified in the Command Template of the data
source prints to the terminal.

After we verify that our new data source runs properly, we can test our plugin using
the zencommand on the device. The zencommand daemon is responsible for running
our commands.
zencommand run --device=Fox -v10

The -v10 option provides verbose output that we can use to validate that our
command runs correctly. When we run zencommand from the command line, we
mimic what Zenoss does when it monitors the device. We're looking for key pieces
of information in the output. First, zencommand runs the plug-in command and
prints the output. Second, we see an informational message which tells us how many
commands are scheduled for the device. At this point, we expect to see this line in
the output:
INFO: zen.zencommand:---------- - schedule has 1 command

This message confirms that our plug-in will run based on the cycle time interval we
specify in the data source properties.

To illustrate an event, we set the CPU usage thresholds for the check_procs plug-in
extremely low (1% for warning and 2%). When we check the Events tab for Fox, we
see an event that was generated from zencommand.

We need to take a moment to discuss how Zenoss translates a plug-in's warning and
critical severities. If the plug-in returns a warning severity, Zenoss maps the event
to the severity defined in the data source's properties. If the plug-in returns a critical
severity, Zenoss maps the event to the next higher severity.

Chapter 10

[229]

Zenoss Plugins
We installed the Zenoss plug-ins (zenplugin.py) on a remote machine in Chapter 5
and modeled a device using zenplugin.py. The following screenshot shows the
file system template for the /Server/Cmd device class, which is using the disk
collector plug-in. We note that the data Source Type is command and it's monitoring
over SSH.

If we navigate to the Devices template for the /Server/Cmd device class, we can see
examples using the mem, proc, and cpu collector plug-ins. We can configure
the Zenoss Plug-ins in the same way in which we configured our Nagios plug-in
check_procs.

Extend Zenoss

[230]

Email Reports
Zenoss includes the reportmail command in $ZENHOME/bin that enables us to send
an individual report via email. No graphical interface is available, which means that
we must work from the command line as the Zenoss user.

We need to specify the URL of the report, the user name and the password for a
Zenoss user, and the from address. Run the command reportmail --help to get a
full list of options.

To get the URL of the report, we open the report we want to mail from the Zenoss
UI, and copy the URL from our browser. For our example, we'll send the Device
Changes Report to the Zenoss user mike, using the following command:

reportmail -u http://localhost:8080/zport/dmd/Reports/Device%20Reports/
Device%20Changes -U mike -p pass123 -f mike@badgerfiles.com

The command sends the Device Changes Report to the email address specified in
the user settings for mike (refer to the following screenshot). The from address on
the email is mike@badgerfiles.com. If we want to send the report to more than one
email address, we include the -a option along with the additional email address. See
the help file for more information.

Chapter 10

[231]

If we want to email the report out on a recurring basis, we can schedule it as a
cron job. We talked about setting up cron jobs in the Automate Backups section of
Chapter 9, and as a part of that section, we created a zenoss daily script in the /home/
zenoss/bin directory. Then, we scheduled our script to run via crontab. As the
Zenoss user, edit zenoss_daily and add our reportmail command. Our new script
now looks like:

#!/bin/bash

This script contains a short list of Zenoss commands that
we want to run daily via cron.

#Setup Zenoss environment
export ZENHOME=/usr/local/zenoss
export PYTHONPATH=$ZENHOME/lib/python
export PATH=$ZENHOME/bin:$PATH

Back up Zenoss and capture the verbose stdout to a log
zenbackup -v > $HOME\zenoss_daily.log

Email Device Changes report.
reportmail -u http://localhost:8080/zport/dmd/Reports/
Device%20Reports/Device%20Changes -U mike -p pass123 -f mike@
badgerfiles.com

end script

Our script poses a slight security risk in that we need to supply the user name and
the password for a Zenoss account in order for the reportmail to work. We can take a
few precautions with the user account we use with reportmail.

We should change the permissions on our zenoss_daily script so that only
the Zenoss user can read it. From the /home/zenoss/bin directory, run the
following command:

chmod 700 zenoss_daily

The user account should not match a user account on the host system, and the
Zenoss account we use with reportmail should be set up with a ZenUser role
within Zenoss.

Email Events
Turn email into events with zenmail and zenpop3. Zenmail allows us to start an
internal SMTP server and direct other devices to send alerts directly to Zenoss via
the open SMTP port. The message gets turned into an event in Zenoss. We can use
the zenpop3 daemon to retrieve emails from a specified account and generate events
based on those emails.

Extend Zenoss

[232]

To use either program in daemon mode, we edit the $ZENHOME/bin/zenoss
configuration file, so that the daemons start when Zenoss starts. Also, the daemons
will be available via Settings > Daemons in the Zenoss portal.

As the Zenoss user:

1. Back up $ZENHOME/bin/zenoss.
2. Open $ZENHOME/bin/zenoss in a text editor.
3. Find the line in the script that begins with $ZENHOME/bin/zenfunctions and

uncomment or add the following lines (refer to the next screenshot):
C="$C zenmail"
C="$C zenpop3"

4. Restart the Zenoss daemons with the command zenoss restart.

°

°

Chapter 10

[233]

When we restart the Zenoss daemon, zenmail and zenpop3 print warning messages
that tell us that they were unable to find the configuration files in /usr/local/
zenoss/etc/. To clear those messages up, run the following commands as the
Zenoss user:

zenmail genconf
zenpop3 genconf

The genconf option creates a configuration file in $ZENHOME/etc with all the
available options for the daemon. Each Zenoss daemon accepts the genconf option.
Now we're ready to configure zenmail and zenpop3.

Zenmail
The zenmail command is helpful because we can configure our devices to send
email directly to the SMTP server running via zenmail. Zenoss turns the email into
an event.

We do not use zenmail to send alert notifications to our users. Notifications are
handled via the server we define on the Settings page in Zenoss. If we would try to
configure the SMTP settings to use zenmail, any emails Zenoss sends to our users
will end up in the Event Console, not our user's inbox.

If we want to bind the SMTP server to a port other than 25, we can edit the zenmail
configuration file and add the parameter listenport followed by the new port
number. We introduce the daemons and their configuration files in Chapter 9.

For a list of all options of zenmail, run the command:

zenmail --help

Zenpop3
In order to make zenpop3 work, we need to specify the mail server, user name, and
password at a minimum:

1. In Zenoss, navigate to Settings > Daemons.
2. Edit the configuration for zenpop3.
3. Enter the following parameters followed by the correct POP3 server values

(refer to the next screen capture):
pophost
popuser
poppass
cycletime

•
•
•
•

Extend Zenoss

[234]

4. Save the configuration.
5. Restart zenpop3.

To test the setup, we send an email to the account we specified in the zenpop3
configuration. If everything is successful, we get an unknown event in the Event
Console (refer to the following screenshot).

Now that we have the event, we can map it and process it in a way that meets
our individual needs. Consult Chapter 7 for assistance on mapping and
processing events.

Access Zenoss Objects Database
with zendmd
Zenoss provides a Python shell called zendmd that allows us to access the Zenoss
object database. From zendmd, we can write and test Python statements that
manipulate the Zenoss objects. This section introduces the environment and provides
some basic commands to get us started.

To start the zendmd shell, run the following command:

zendmd

Chapter 10

[235]

The Zenoss dmd command shell opens and displays with a >>> prompt. Enter the
following statements at the shell (exclude the commented text that begins with #):

zhelp() # Display a list of objects
dir(dmd) # Display methods available to dmd object
dir(devices) # Display methods available to devices object
find('Coyote') # Find the device by name
d = find('Coyote') # Assign the device to the variable d
d.deviceClass() # Display the device class

The dmd object is the root of the Zenoss object database. When we execute the
dir(devices) statement, one of the methods we return is deviceClass(), which we
then use to print Coyote's device class. In this example, d.deviceClass() returns:

<DeviceClass at /zport/dmd/Devices/Server/Remote/devices/Coyote/
deviceClass/Remote>

The following script prints all the devices in the Zenoss object database with the
corresponding device class. The zendmd command prompts are preserved:

>>> for x in dmd.Devices.getSubDevices():
... print "%s, %s" % (x. x.getDeviceClassName())
...

When working in the zendmd shell, the line spacing of our code is important. Each
line after line 1 is indented. The shell will print an indentation error message if we
forget to indent. When we finish typing our python statement, hit enter on a blank
line that's preceded by three periods (...) and the shell will evaluate the statement.
Our sample script produces the following output:

<Device at Crow>, /Network/Router
<Device at Fox>, /Server/Linux
<Device at Master>, /Server/Windows
<Device at Coyote>, /Server/Remote
<Device at Print Server>, /Printer
<Device at Bobcat>, /Workstation
<Device at badgerfiles.com>, /Web

If we want to print only the devices in the /Server device class, our Python
statement becomes:

>>> for x in dmd.Devices.Server.getSubDevices():
... print "%s, %s" % (x, x.deviceClass())
...

Extend Zenoss

[236]

If we want to print only the devices in the /Server/Linux device class, our Python
statement becomes:

>>> for x in dmd.Devices.Server.Linux.getSubDevices():
... print "%s, %s" % (x, x.deviceClass())
...

As we run each statement, our results become very specific. We can also commit
changes to the Zenoss object database from zendmd. Our next example finds the
device named Bobcat and sets the production state to Production.

>>> x = find('Bobcat')
... x.productionState = 1000
....
>>> commit()

The commit() method applies our changes to the Zenoss object database. We can log
into the Zenoss UI and verify if our statement executed correctly.

Summary
We've seen an overview of several ways in which we can extend the base
functionality of Zenoss. However, we're not able to demonstrate all the configuration
options and scenarios possible. The real enlightenment comes when each of us
deploys Zenoss in our individual environments and finds creative ways to use
ZenPacks, plug-ins, and email to manage our IT assets.

This chapter provides ample opportunity to make mistakes in our configuration,
which means that we'll need to troubleshoot problems. The next Chapter outlines the
tools we can use to troubleshoot and request support.

Technical Support
Despite our best efforts, we sometimes encounter problems with the software
we use. As IT professionals, we accept this fate. Let's review some basic Zenoss
troubleshooting and support options to help us identify and get answers to
our problems.

Troubleshoot Zenoss
Zenoss provides several default options to help us identify and diagnose problems,
including reports, log files, and Zenoss commands.

Reports
Zenoss includes several default reports that we can analyze to find potential
problems with our monitoring setup. We reviewed each of the reports in detail in
Chapter 8. The following table lists a problem description and the report that may
provide the necessary information.

Problem Report Name Description
User is not alerted when
an event occurs

Notification Schedules Review the active notification window
and filter rule for each user.

Device model does not
update

Model Collection Age Devices listed have not been monitored
by SNMP for 48 hours.

SNMP monitoring
problems

SNMP Status Issues System wide view of all devices with
SNMP issues by device class. Includes
devices not monitored with SNMP.

Technical Support

[238]

Problem Report Name Description
Availability monitoring
problems

Ping Status Issues System wide view of all devices with
ping issues by device class. Includes
devices not monitored with ping.

Need to know available
disk space across all
devices on the network

Filesystem Utilization All monitored file systems display in a
single view.

Need to know the total
network utilization for
memory, CPU, and
throughput

Aggregate Reports All usages statistics for all monitored
devices display in a single graph for
each item.

Each report tells us something about the IT assets we monitor, which makes them
valuable resources when we try to track down trends or problems.

Zenoss Daemons
Until now, we have been primarily interacting with the Zenoss daemons through the
web interface. Now it's time to take a look under the hood at the daemons and see
how they can aid our troubleshooting.

Before we jump into the command line debugging and log files, let's get a basic
understanding of what each daemon does.

Daemon Function
zenping Monitors availability with ping.
zensyslog Turns *nix based syslogs into events.
zenstatus Monitors components with status monitors.
zenactions Performs commands based on events. Event commands are

user defined.
zentrap Monitors SNMP traps.
zenmodeler Models each device according to associated plugins.
zenperfsnmp Collects performance data for components via SNMP.
zencommand Runs external commands, such as Nagios plugins.
zenprocess Collects SNMP performance data for CPU and Memory.
zenwin Monitors WMI services on Windows systems.
zeneventlog Monitors Windows event logs.
zenwinmodeler Models Windows systems.

Chapter 11

[239]

Basic Usage
All these daemons work in a consistent way in that they run in the background in
daemon mode or in the foreground for debugging purposes. Consequently, we have
two separate help files which we can review. We'll demonstrate using zenactions.

To see the daemon run options, use the command:

zenactions --help

The following screenshot shows the command's output:

To see the available options, run the command:

zenactions help

Technical Support

[240]

The following screen shot shows the options available to zenactions.

The options available to the daemon vary based on the command. For example, some
daemons allow us to specify a device, while others do not. However, each daemon
allows us to specify the integer value of the level of logging we want to see.

The available logging levels from the least to most verbose are:

Log Severity Numeric Value
Critical 50
Error 40
Info 20
Debug 10
Trace 5

Many of the daemons are set to log everything with a severity equal to or greater
than info. However, when we're troubleshooting, we most likely want the verbose
output provided by debug. If we are trying to isolate a command failure, we may
need to specify a logging level of trace.

Chapter 11

[241]

As the Zenoss user, run the following commands. Compare the output of these
two commands:

zenstatus run

zenstatus run -v10

As we see, setting the logging level to debug creates a verbose output compared to
the default level of info.

Note the syntax of our zenstatus examples. We supply zenstatus a command.
In this case, we have provided run. Then we append the options we want to use.
Our examples use the logseverity option. As an example, if we want to generate
a sample configuration file using the default options, we supply the genconf
command to the daemon, and the command looks like:

zenstatus genconf

The same rules apply to all the daemons.

Log Files
Each of the Zenoss daemons logs status messages to corresponding log files that we
find in $ZENHOME/logs. We can also access the logs for each daemon by navigating
to the Settings > Daemons page via the web interface.

Reviewing log files will help us confirm that Zenoss completes certain tasks. For
example, if we need to troubleshoot the modeling process for a Windows server,
we look through the zenwinmodeler log file to identify potential problems (see the
following screen capture).

Technical Support

[242]

As we look through some of the log files, we may notice that the output for some of
the daemons is more verbose than others. If we want to adjust the default logging
level of the daemons, we can edit the configuration file and specify the logging
level by specifying the parameter logseverity and the applicable value (see the
following screenshot).

Community Support
For support, we turn to the Zenoss community at http://www.zenoss.com/
community/ for documentation, code, and discussion.

Documentation
The documentation contains a mix of community-contributed and
company-sponsored documentation on a variety of topics. Our focus in this
book has been fairly narrow in that we concentrate on setting up a monitoring
environment from the web interface. The documentation is a great place to find
advanced topics and development topics that provide a complementary perspective
to the information in this book.

Code
Developers have not figured out how to write perfect code that works in all
situations, so we expect to encounter software bugs as we use Zenoss. We don't
want to expend energy troubleshooting known software issues. If we try something
in Zenoss and it continues to fail even though we're sure we've done everything
correctly, search the current bug tickets in Trac, Zenoss' incident tracker.

Discuss
At some point, we will need to ask questions to the Zenoss community via one of
several mediums: IRC, mailing lists, and forums.

Chapter 11

[243]

To interact with other community members in real time, we can use IRC. Connect to:

Server: irc.freenode.net port 6667
Channel: #zenoss

The mailing lists and forums are synchronized, so we can subscribe to the email
list or browse the forums based on our individual preferences. The following
groups exist:

Zenoss Users: Main support forum for help with installation, configuration,
and use.
Zenoss ZenPack: Help with the development and distribution of ZenPacks.
Zenoss Dev: A resource for Zenoss developers.
Zenoss Announce: Lists new releases and Zenoss announcements.

Remember, the forums are not for real-time discussions, and the people who respond
are donating their time to help us.

Commercial Support
This book focuses on how to configure and use Zenoss Core to monitor our networks
and systems. Zenoss Inc. provides a commercial version called Zenoss Enterprise
that includes professional support subscriptions and enhanced software features.

Zenoss Enterprise includes the following default features:

Global dashboard that aggregates data from multiple Zenoss installations.
Synthetic transactions to test web, database, email, and performance.
An advanced report library.
Predictive threshold trending.
Certified builds and ZenPacks.
Integration with RANCID, Remedy, and LDAP.

For more information about Zenoss Enterprise, visit http://www.zenoss.com/
product/enterprise.

Support Subscriptions
In addition to community support, Zenoss Inc. provides support subscriptions for
both the core and enterprise editions of Zenoss. Organizations may choose from Core
Support, Enterprise Silver, and Enterprise Gold subscriptions.

•

•

•

•

•

•

•

•

•

•

•

•

Technical Support

[244]

The core support option provides the same fully-functional software that we've
covered in this book, but extends professional support to the organizations which
need it. The enterprise support options include the enhanced Zenoss Enterprise
software with additional support options and decreased incident response times.

For more information on the support offerings from Zenoss Inc.,
visit http://www.zenoss.com/product/overview#subscriptions.

Consulting
Need help customizing or deploying Zenoss? Zenoss Inc. provides consulting
services to help organizations, and to plan, deploy, customize, and integrate a Zenoss
monitoring solution into an organization.

For more information about consulting services, visit http://www.zenoss.com/
product/#consulting.

Training
Zenoss Inc. provides a two-day, hands-on Zenoss administration course at
the company's, headquarters at Annapolis, Maryland. The Zenoss Enterprise
subscription plans include at least one training seat with the subscription.

Summary
Zenoss is a complex software package wrapped in an accessible web interface,
which enables ready access to enterprise quality network and system monitors to the
masses. As we gain familiarity with Zenoss through daily usage, our knowledge will
grow, and we'll find ways to make Zenoss a better tool for our environments.

Zenoss is flexible enough to accommodate all skill levels. The user who never
monitored anything gains value by having an easy to use interface while advanced
users can probe deeper by manipulating Zenoss at the command and code levels.

For all users, the discovery begins at port 8080 of our Zenoss servers.

Event Attributes
Each Zenoss event includes several attributes to describe the details of an event;
however, not all fields are populated for each event. The event fields defined in
this table can be found in the log for an event, which is accessible from the Event
Console. We can also configure our event views to display events using these fields
via the Event Manager. We cover the Event Console and event views in Chapter 7.

The event fields are valid attributes that we can substitute in our Python statements
via TALES expressions. Appendix B lists some of the device attributes that we can
use with TALES.

Event Field Description
dedupid Identifies the event so that Zenoss can deduplicate events.

Takes the form of device | component | eventClass |
eventKey | severity.

evid A unique identifier for the event.
device Specifies the device attached to the event.
component The Zenoss daemon reporting the event.
eventClass The event class the event maps to.
eventKey A user-defined way to map events. Event keys can be

sequenced to aid the event class mapping of events from
a common source to different event classes.

summary Summary of the event.

Event Attributes

[246]

Event Field Description
message Message body for the event. May be the same as summary.
severity An Numeric representation of the event:

5 = Critical
4 = Error
3 = Warning
2 = Info
1 = Debug
0 = Clear

eventState Numeric representation of the event state:
0 = New
1 = Acknowledged
2 = Suppressed

eventClassKey Maps the event to an event class.
eventGroup Event source group: for example, syslog, Process, ping.
stateChange Time stamp when the event state changed.
firstTime Time stamp when the event first occurred.
lastTime Time stamp when the event last occurred.
count The total number of times the event has occurred based on

the dedupid.
prodState The production state of the device. The Zenoss

defaults are:
1000 = Production
500 = Pre-Production
Test = 400
Maintenance = 300
Decommissioned = -1

suppid If the event is suppressed, this is the ID of the
suppressing event.

manager The fully qualified domain name of the event collector that
generated the event.

Appendix A

[247]

Event Field Description
agent Reports the Zenoss daemon responsible for generating

the event.
DeviceClass The device class.
Location The location organizer assigned to the device.
Systems The system organizer assigned to the device.
DeviceGroups The group organizer assigned to the device.
ipAddress The IP address of the device.
facility The syslog subsystem that generated the event (for

example, cron, mail, lpr, auth, authpriv, daemon, ftp, kern,
mark, news, syslog, user, uucp, local0 through local7).

priority The priority of the syslog event.
ntevid The Event ID field of the Windows NT event log.
ownerid The ID number of the event owner.
clearid The ID number of the event that cleared this event.
DevicePriority The priority as assigned in the device's Edit page:

5 = Highest
4 = High
3 = Normal
2 = Low
1 = Lowest
0 = Trivial

eventClassMapping The event class mapping used to evaluate and map
the event.

TALES and Device Attributes
Throughout the book, we encounter many fields that accept TALES expressions
including user commands, event commands, performance templates, zProperties,
event mappings, and event transformations. Zenoss uses the Template Attribute
Language Expression Syntax (TALES) to retrieve device and event attributes for
Zenoss objects within any valid Python statement.

If we want to access device attributes, we use the syntax:

${device/attribute}

For example, Zenoss includes the following user command:

traceroute -q 1 -w 2 ${device/manageIp}

The TALES expression substitutes the device IP address that we normally expect
to enter when we run the traceroute command manually. This makes sure that
the same command can be run for any device and that the correct device IP will be
substituted into the command.

If we want to access event attributes, we use the following syntax:

${evt/attribute}

For example, we create a custom event command in Chapter 7 to write some event
information to a file:

echo "The Event with ID ${evt/evit} is on fire!" >> /tmp/
SampleEventCommand

In this command, we use TALES to substitute the event ID. When the event runs, we
get the following line in our file:

The Event with ID 7f000001365df722fffe960 is on fire!

TALES and Device Attributes

[250]

The following table includes a list of the attributes that we may use when working
with our devices. We can find many of these attributes on display on an individual
device's Status page.

For a list of event specific attributes, see the list of event fields in Appendix A.

Device Attributes Description
id The device name, which is not necessarily the

fully qualified domain name..
manageIp The IP address of the device.
productionState The numeric value of the device's production

state:
1000 = Production

500 = Pre-Production

400 = Test

300 = Maintenance

-1 = Decommissioned
productionStateString The device's production state as a human-

readable string.
priority The numeric priority value:

5 = Highest

4 = High

3 = Normal

2 = Low

1 = Lowest

0 = Trivial
priorityString The device's priority as a human-readable

string.
locationName The location organizer assigned to the device.
systemNames The list of system organizers assigned to the

device.
groupNames The list of group organizers assigned to the

device.
snmpDescr The SNMP Description.
snmpOID The OID from SNMP.
snmpContact The SNMP contact value.

Appendix B

[251]

Device Attributes Description
snmpSysName The system name from SNMP.
snmpLastCollection The last time Zenoss collected SNMP data for

the device.
comments User-entered comments on the device.
uptimeStr The uptime values for the device.
pingStatusString The device's ping status:

0 = Up

1 = Down

2 = None
snmpStatusString The device's SNMP status:

0 = Up

1 = Down

2 = None.
osVersion The operating system version .
osProductName The software product name defined on the

device's edit page.
osManufactureName The operating system manufacturer name

defined on the device's edit page.
hwProductName The hardware product name defined on the

device's edit page.
hwManufacturerName The hardware manufacturer name defined on

the device's edit page.

Index
A
add device options

comments 69
device class path 69
discovery protocol 69
groups 70
HW manufacturer 69
HW product 69
IP address 68
location path 70
OS manufacturer 69
OS product 70
performance monitor 70
priority 69
production state 69
rack slot 69
serial number 69
SNMP community 69
SNMP port 69
status monitor 70
systems 70
tag number 69

aggregate reports 178, 179
alerting rules

about 191
alert escalations 192
message tab 193
properties 192
schedule 194, 195

all devices report 161
all monitored components report 164
availability report 179, 180

B
backup

about 207, 208
automating 208
zenbackup 207, 208

browsing, by organizers
about 52
location, adding 53-55
network, adding 56-58
system organizer, adding 55
zProperties, network 59

C
classes

about 61, 62
device management functions 64, 65
set device properties 64, 65

class hierarchies 63
collection layer

device management 19
event information 22
performance and availability 20

commands
about 199
nmap command, adding 200
ping command 199

command line utilities 207, 208
commercial support

about 243
consulting services 244
support subscription 243
training 244

[254]

community support
code 242
documentation 242

component status
OS tab 104

CPU utilization, performance reports
180, 181

D
daemons, Zenoss

about 238
available options, command 240
log files 241
run options, command 239
zenactions 238
zencommand 238
zeneventlog 238
zenmodeler 238
zenperfsnmp 238
zenping 238
zenprocess 238
zenstatus 238
zensyslog 238
zentrap 238
zenwin 238
zenwinmodeler 238
zenwinmodeler log file 241

dashboard view
portlets 47

data layer 17, 18
CMDB 18
round robin database (RRD) 18

data sources, performance templates 122
de-duplication, events 157
device

adding 67-71
administration 74
deleting 79, 80
list 77
lock status, changing 74, 75
modeling 80
renaming 75, 76
status 71-73
zProperties 92

device administration
device, renaming 75, 76

device list 77-79
devices, deleting 79, 80
IP address, resetting 76
lock device 74, 75
push changes 76
unlock device 74, 75

device attributes
about 250, 251
accessing 249

device changes report 164
device daemon

zendisc 20
zenmodeler 20

device management
about 9, 67
configuration management database

(CMDB) 9
device management, collection layer

device daemon 20
zendisc, device daemon 20
zenmodeler, device daemon 20

device management functions
delete devices 65
lock devices 65
move to class 64
set groups 64
set location 64
set perf monitors 65
set priority 64
set production state 64
set status monitors 64
set systems 64

device reports
about 161
all devices report 161
all monitored components report 164
device changes report 164
manufacturers 162-164
model collection age report 165
new devices report 165
ping status issues report 165
products 162-164
SNMP status issues report 166
software inventory report 166, 167

devices, adding
about 67, 68
options 69-71

[255]

device severities 71
device status, Zenoss 71-73
device zProperties 92

E
email events 231-233
emailing, reports 230, 231
event

adding 150, 151
classes 138
console 133
de-duplication 157
logs 131, 135
manager 145
mapping 152-154
rules, testing 150
state 134
view 137
working with 150

event attributes
about 245-247
accessing 249

event classes
about 138
classes tab 138, 139
edit tab 141, 142
event tab 143
history tab 143
mappings tab 139
sequence tab 142, 143
status tab 140
zEventAction, zProperties tab 144
zEventClearClasses, zProperties tab 144
zEventSeverity, zProperties tab 144
zProperties tab 143

event console
about 133, 134
device event view 137
event log 135, 136

event daemon
zeneventlog 22
zensyslog 22
zentrap 22

event de-duplication 157
event fields 245, 246, 247

event information, collection layer
event daemon 22
zeneventlog, event daemon 22
zensyslog, event daemon 22
zentrap, event daemon 22

event log
accessing 135
configuration, testing with Eventcreate 132
details tab 136
fields tab 135
log tab 136
monitoring 131, 132
severities 132

event log severity 132
event management 13, 127
event manager

about 145
cache, edit tab 146
clear command, commands tab 149
command, commands tab 149
commands tab 148
connection information, edit tab 145
default command timeout, commands tab

148
delay, commands tab 148
edit tab 145, 146
enabled, commands tab 148
fields tab 146
history fields tab 147
maintenance, edit tab 146
repeat time, commands tab 148
where, commands tab 149

event reports
about 167
all event classes 167
all event mappings 168
all heartbeats 168

events, emailing
zenmail command 233
zenpop3 233, 234

events, working with
events, adding 150-152
events, mapping 152-154
event transformation, creating 155, 156
event work flow 156, 157
overriden objects, displaying 155

[256]

event severity
about 133
clear 133
critical 133
debug 133
error 133
info 133
warning 133

event state
acknowledged 134
suppressed 134
unacknowledged 134

F
filesystem utilization report, performance

reports 181, 182

G
graph

definitions 124
performance graphs 118-120
reordering, on Perf tab 124

graph definitions, performance templates
graphs, reordering on Perf tab 124
threshold, customizing 125

graph reports 169-173

H
hardware specifications 26
hardware tab, model devices 92
HttpMonitor

installing 216
web site, monitoring 217-221

I
inheritance

demonstrating, networks used 60, 61
network inheritance setup, testing 61

installation options, Zenoss
binary installation 31, 32
source installation 32
virtual appliance 27

installing, Zenoss
from source code 27
on Red Hat 31

installing, ZenPack 216
interface utilization report, performance

reports 182
iptables 37
IT resources

discovering 15
managing 15
monitoring 185

L
layers, Zenoss

collection layer 18, 19
data layer 17, 18
user layer 16, 17

log severity 240

M
maintenance windows

about 205
properties 206

main views
portlets 47

Management Information Base. See MIB
Management Information Database. See

MIB
memory utilization report, performance

reports 182, 183
menus

adding 200
delete device option, adding 200
delete device option, removing 201

MIB
about 39
adding 206

model collection age report 165
model devices

about 80
hardware tab 92
OS tab 91
SNMP 80

[257]

monitors
about 97, 98
performance monitors 100, 101
status monitors 98

multi-graph reports
adding 173-178

N
Nagios plug-ins 224
navigation techniques, Zenoss

bread crumbs 46
navigation panel 44
table menus 46
tabs 46

network
adding 57, 58
zProperties 59

new devices report 165

O
Object Identifiers. See OIDs
OIDs 39
OS tab, component status

about 104
file systems 116, 117
interfaces 105-107
IP services 112-114
OS processes 107-110
routes 117, 118
services 110, 112
Win services 114, 115

OS tab, model devices 91

P
performance and availability, collection

layer
performance daemon 21
zencommand, performance daemon 21
zenperfsnmp, performance daemon 21
zenping, performance daemon 21
zenprocess, performance daemon 21
zenstatus, performance daemon 21

performance daemon
zencommand 21

zenperfsnmp 21
zenping 21
zenprocess 21
zenstatus 21

performance graphs
about 118-120

performance monitors
about 13, 100, 101
config cycle interval 101
event log cycle interval 101
monitor, adding 102
monitor, attaching to devices 102-104
process cycle interval 101
render URL 101
render user 101
SNMP performance cycle interval 101
status cycle interval 101
windows modeler cycle interval 101
windows service cycle interval 101

performance reports
about 178
aggregate reports 178, 179
availability report 179, 180
CPU utilization 180, 181
filesystem utilization report 181, 182
interface utilization report 182
memory utilization report 182, 183
threshold summary 183, 184

performance templates
about 120, 121
data sources 122
graph definitions 124
thresholds 123

Perf tab 118, 119
ping status issues report 165
plug-ins

about 224
applying, to device 225-227
debugging 227-229
testing 224, 225

plug-ins, Zenoss 87
portlets, main views

about 47
adding 48
arranging 48
device issues portlet 49

[258]

locations portlet 49
production state portlet 51
root organizers portlet 51
watch list portlet 50
Zenoss issues portlet 50

portlets permissions
granting 202
users with Manage DMD permission 202
users with view permission 202
users with Zencommon permission 202

port scan modeling 90
prerequisites, Zenoss 27

R
report

aggregate reports 178, 179
all devices report 161
all monitored components report 164
availability report 179, 180
building 169
device changes report 164
device reports 161
emailing 230, 231
event reports 167
filesystem utilization report 181, 182
graph reports 169-173
interface utilization report 182
memory utilization report 182, 183
model collection age report 165
multi-graph reports 173-178
new devices report 165
overview 159, 160
performance reports 178
ping status report 165
SNMP status issues report 166
software inventory report 166, 167
user reports 184

report filter
component 180
device 180
end date 180
event class 180
severity 180
start date 180

Round Robin Database. See RRD
RRD 18

RRDTool 101

S
server setup

firewall policies 37
SNMP, installing on Linux 39, 40
WMI and SNMP, installing on Windows

40-42
Zenoss starting, at boot time 36

server specifications
hardware specifications 26
installation options 26
operating systems, supported 26

services, OS tab
about 110-112
IP services 112-114
Win services 114, 115

settings
about 196
administrative roles 198
dashboard priority threshold 197
dashboard production state threshold 197
Google maps API key 198
priority conversions 197
SMTP host 197
SMTP password 197
SMTP port 197
SMTP username 197
SNPP host 197
SNPP port 197
state conversions 197
use TLS 197

setup 37
Simple Mail Transport Protocol. See SMTP
Simple Network Management Protocol. See

SNMP
Simple Network Paging Protocol. See SNPP
SMTP

about 196
host 197
password 197
port 197
username 197

SNMP
installing on Linux 39, 40
installing on Windows 40, 41

[259]

status issues report 166
SNMP, model devices

collector plug-ins 83, 84
model device 84-90
port scan modeling 90
SSH collector plug-ins 86, 87
SSH modeling 86
testing 80-82
windows considerations 82, 83
Zenoss plug-ins 87

SNMP collector plug-ins 83, 84
SNPP

about 196
host 197
port 197

software inventory report 166, 167
software packages, prerequisites 27
source installation

system setup 33, 34
Ubuntu notes 32, 33
Zenoss, building 35
Zenoss, installing 35, 36
Zenoss source, downloading 34

SSH collector plug-ins 86
SSH modeling 86
status monitors

about 98
chunk size 99
configuration 98
configuration reload interval 99
cycle interval 99
maximum failures 99
monitor name 99
ping timeout 99
ping tries 99

syslog messages
cisco router syslogs, collecting 129
forwarding, to Zenoss 129, 130
monitoring 127-129
syslog configuration testing, logger used

131
system reports 13

T
TALES

about 249

Template Attribute Language Expression
Syntax. See TALES

thresholds, performance templates
about 123
customizing 125

threshold summary, performance reports
183, 184

troubleshooting, Zenoss
about 237
reports 237, 238

U
updating, Zenoss core 210, 211
user account, Zenoss

adding 47
user layer 16, 17
user management

about 185
administered objects 188, 189
event views, defining 189
event views, properties 190
users, assigning to groups 195, 196

user reports
notification schedules report 184

V
virtual appliance

advantages 27
installing 28, 29
working with 29-31

VMware player
downloading 28, 29
installing 28, 29

W
web portal 8
web site

monitoring, HttpMonitor used 216-221
windows event logs, monitoring

about 131, 132
event log configuration, testing with
Eventcreate 132

Windows Management Instrumentation.
See WMI

[260]

WMI
and SNMP, installing on Windows 40

Z
zendmd 234-236
zenmail 233
Zenoss

about 15
add device options 69
classes 61
class hierarchies 62, 63
collection layer 18, 19
community support 242
component status 104
data layer 17, 18
default RRD create command 101
dependencies 27
device attributes 249
device management 67
device reports 161
device status 71-73
event attributes 245
event classes 138
event console 133, 134
event de-duplication 157
event fields 245
event management 127
event manager 145, 146
event reports 167
events, working with 150
graph reports 169-173
HttpMonitor, installing 216
inheritance 60, 61
installation options 27
installing from source code, prerequisites

27
layers 15
main views 47
monitors 97, 98
multi-graph reports 173-178
navigation techniques 44
performance graphs 118-120
performance monitors 100, 101
performance reports 178
performance templates 120, 121
Perf tab 119

prerequisites 27
report overview 159, 160
setup 37
software packages, prerequisites 27
source, downloading 34
status monitors 98-100
syslog messages, monitoring 127-129
TALES 249
troubleshooting 237
user account, adding 47
user layer 16, 17
user reports 184
windows event logs, monitoring 131, 132
ZenPack, installing 216

Zenoss core. See also Zenoss
about 7, 8
availability 10, 11
performance monitors 13
RPM, updating 211
source, updating 212
updating 210, 211
virtual appliance, updating 212
web portal 8

Zenoss daemons
about 203, 204

Zenoss dependencies
binary installation 31, 32
source installation 32
virtual appliance 27

Zenoss Enterprise
features 243

Zenoss Inc 13
Zenoss objects database

accessing, zendmd used 234-236
Zenoss plug-ins 229, 230
ZenPack

about 215
cotributing 224
creating 221
exporting 223, 224
HttpMonitor, installing 216
installing 216
objects, adding to 222, 223

zenpop3 233, 234
zenstatus 241
zProperties, device

zCollectorClientTimeout 92

[261]

zCollectorDecoding 92
zCollectorLogChanges 92
zCollectorPlug-ins 92
zCommandCommandTimeout 92
zCommandCycleTime 92
zCommandExistanceTest 92
zCommandLoginTimeout 92
zCommandLoginTries 93
zCommandPassword 93
zCommandPath 93
zCommandPort 93
zCommandProtocol 93
zCommandSearchPath 93
zCommandUsername 93
zDeviceTemplates 93
zFileSystemMapIgnoreNames 93
zIcon 93
zIfDescription 93
zInterfaceMapIgnoreNames 93
zInterfaceMapIgnoreTypes 93
zIpServiceMapMaxPort 93
zKeyPath 93
zLinks 93
zLocalInterfaceNames 94
zLocalIpAddresses 94
zMaxOIDPerRequest 94
zPingInterfaceDescription 94
zPingInterfaceName 94
zPingMonitorIgnore 94
zProdStateThreshold 94
zRouteMapCollectOnlyIndirect 94
zRouteMapCollectOnlyLocal 94

zSnmpAuthPassword 94
zSnmpAuthType 94
zSnmpCommunities 94
zSnmpCommunity 94
zSnmpMonitorIgnore 94
zSnmpPort 94
zSnmpPrivPassword 94
zSnmpPrivType 94
zSnmpSecurityName 94
zSnmpTimeout 94
zSnmpTries 95
zSnmpVer 95
zStatusConnectTimeout 95
zSysedgeDiskMapIngoreNames 95
zTelnetEnable 95
zTelnetEnableRegex 95
zTelnetLoginRegex 95
zTelnetPasswordRegex 95
zTelnetPromptTimeout 95
zTelnetSuccessRegexList 95
zTelnetTermLength 95
zWinEventLog 95
zWinEventLogMinSeverity 95
zWinPassword 95
zWinUser 95
zWmiMonitorIgnore 95

zProperties, network
zAutoDiscover 59
zDefaultNetworkTree 59
zDrawMapLinks 59
zIcon 59
zPingFailThresh 59

	Zenoss Core Network and System Monitoring
	Table of Contents
	Preface
	Chapter 1: Introduction
	What is Zenoss?
	Web Portal
	Device Management
	Availability and Performance Monitors
	Event Management
	System Reports

	Zenoss Inc.
	Summary

	Chapter 2: System Architecture
	User Layer
	Data Layer
	Collection Layer
	Device Management
	Performance And Availability
	Event Information

	Summary

	Chapter 3: Installation and Set up
	Server Specifications
	Supported Operating Systems

	Zenoss Dependencies
	Quick Start with Virtual Appliance
	Install Virtual Appliance
	Working with The Virtual Appliance

	Binary Installation
	Source Installation
	Ubuntu Notes
	System Setup for Source Install
	Download Zenoss Source
	Build And Install Zenoss

	Server Setup
	Start Zenoss at Boot Time
	Firewall Policies
	SNMP on Linux
	Install SNMP on Linux
	WMI And SNMP on Windows

	Summary

	Chapter 4: The Zenoss User Interface
	Welcome to Zenoss
	Navigation Techniques
	User Accounts
	Main Views
	Locations with Google Maps
	Device Issues
	Zenoss Issues
	Watch List
	Root Organizers
	Production State

	Browse By Organizers
	Locations
	Systems And Groups
	Networks

	Inheritance
	Classes
	Set Device Properties

	Summary

	Chapter 5: Device Management
	Add Devices
	Device Status
	Device Administration
	Lock Or Unlock Device
	Rename A Device
	Reset IP Address
	Push Changes
	Device List
	Delete Devices

	Model Devices
	SNMP
	Test SNMP
	Windows Considerations
	SNMP Collector Plug-ins
	Model Device
	SSH Modeling
	SSH Collector Plug-ins
	Zenoss Plug-ins
	Model Device
	Port Scan Modeling

	OS Tab
	Hardware Tab

	Device zProperties
	Summary

	Chapter 6: Status And Performance Monitors
	Available Monitors
	Status Monitors
	Performance Monitors
	Add A New Monitor
	Attach A Monitor To Devices

	Component Status
	OS Tab
	Interfaces
	OS Processes
	Services
	IP Services
	Win Services
	File Systems
	Routes

	Performance Graphs
	Performance Templates
	Data Sources
	Thresholds
	Graph Definitions
	Reorder The Graphs on The Perf Tab
	Customize A Threshold

	Summary

	Chapter 7: Event Management
	Monitor Syslog Messages
	Collect Cisco Router Syslogs
	Test Syslog Configuration with Logger

	Monitor Windows Event Logs
	Test Event Log Configuration with Eventcreate

	Event Console
	Event Log
	Device Event View

	Event Classes
	Classes
	Mappings
	Status
	Edit
	Sequence

	Events And History
	zProperties

	Event Manager
	Fields
	Commands

	Working with Events
	Add Events
	Map Events
	Overridden Objects
	Transformations
	Event Work Flow

	Event De-Duplication
	Summary

	Chapter 8: System Reports
	Report Overview
	Device Reports
	All Devices
	Manufacturers and Products

	All Monitored Components
	Device Changes
	Model Collection Age
	New Devices
	Ping Status Issues
	SNMP Status Issues
	Software Inventory

	Event Reports
	All Event Classes
	All Event Mappings
	All Heartbeats

	Graph Reports
	Multi-Graph Reports
	Performance Reports
	Aggregate Reports
	Availability Report
	CPU Utilization
	Filesystem Utilization Report
	Interface Utilization
	Memory Utilization
	Threshold Summary

	User Reports
	Notification Schedules

	Summary

	Chapter 9: Settings And Administration
	Alerting Rules
	User Management
	Administered Objects
	Event Views
	Alerting Rules
	Alert Escalations
	Message
	Schedule

	Groups

	System Settings
	Commands
	Menus
	Portlets Permission
	Zenoss Daemons
	Maintenance Windows
	Add MIBs
	Back Up and Restore
	Automate Backups

	Update Zenoss Core
	RPM Update
	Source Update
	Virtual Appliance Update

	Summary

	Chapter 10: Extend Zenoss
	ZenPacks
	Install
	Monitor Websites with HttpMonitor

	Create
	Add Objects to ZenPack
	Export ZenPack
	Contribute ZenPacks

	Plug-ins
	Test The Plug-in
	Apply The Plug-in to A Device
	Debug
	Zenoss Plugins

	Email Reports
	Email Events
	Zenmail
	Zenpop3

	Access Zenoss Objects Database with zendmd
	Summary

	Chapter 11: Technical Support
	Troubleshoot Zenoss
	Reports
	Zenoss Daemons
	Basic Usage
	Log Files

	Community Support
	Documentation
	Code
	Discuss

	Commercial Support
	Support Subscriptions
	Consulting
	Training

	Summary

	Appendix A: Event Attributes
	Appendix B: TALES And Device Attributes
	Index

