

Catalyst
Accelerating Perl Web Application Development

Design, develop, test and deploy applications with the
open-source Catalyst MVC framework

Jonathan Rockway

 BIRMINGHAM - MUMBAI

Catalyst
Accelerating Perl Web Application Development

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2007

Production Reference: 1031207

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847190-95-6

www.packtpub.com

Cover Image by Raghuram Ashok (raghuram@iiitb.ac.in)

Credits

Author

Jonathan Rockway

Reviewers

K. Jamie Cheetham

Joshua A. McAdams

Senior Acquisition Editor

Douglas Paterson

Development Editor

Nikhil Bangera

Technical Editor

Swapna V. Verlekar

Usha Iyer

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Indexer

Hemangini Bari

Proofreader

Harminder Singh

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Jonathan Rockway, a member of the Catalyst Core Team, has been programming
Perl since his middle school years. He became professionally involved with Perl
when we was a desktop support minion at the University of Chicago and inherited a
mod_perl application. He now works as a software developer at Infinity Interactive.
In his spare time, he maintains a collection of modules on the CPAN and tries to
speak at as many Perl conferences as possible.

 About the Reviewers

Kieran Jamie Cheetham is currently residing in the UK and graduated university
with a first class masters degree in Physics, Astrophysics and Cosmology.

After spending a number of years working on small HTML/CSS projects, he started
working for an open source software company in northwest England. Initially
focusing on refactoring PHP web-based administration interfaces and dealing
with domain name management he moved on to MVC systems in Perl—and in
particular Catalyst.

When not working Kieran enjoys exploring the countryside, pointing his telescopes
to the night sky, reading science fiction and tinkering with machines.

I would like to thank Matt for helping open my eyes to some of the
"wonders" of Perl, American clients keeping me company when
hacking all through the night, L and B for helping to keep me sane,
and all of the various people on IRC who were willing to answer my
inane questions and help test and document some of my work.

Joshua McAdams is a programmer who loves hacking Perl as well as talking
about programming on Perlcast, the Perl podcast. He is a CPAN contributor, a
two-time YAPC host, and a winner of the Perl Foundation's White Camel Award.
For a day-job, he works at Performics, a division of DoubleClick, where he serves as
Engineering Manager for the Data Warehousing team.

I'd like to thank the Perl community for their continuing creation and innovation.
This is a great community to be a part of. Though I've been coding for many years,
I've became a much better programmer in these last few years that I've been an active
member of the Perl world. I would encourage everyone who works in Perl to be a
part of the community by attending a PM meeting, visiting a weekend workshop or
YAPC, or just hanging out on irc.perl.org, perlmonks.org, use.perl.org, or any
of the many other Perl haunts.

Table of Contents
Preface 1
Chapter 1: Introduction to Catalyst 5

Catalyst Application Architecture 6
Extensibility 7
Reusability 8
Flexibility 8
Reliability 8

Installing Catalyst 9
CPAN 9

Where to go for Help? 10
Summary 11

Chapter 2: Creating a Catalyst Application 13
Creating the Application Skeleton 13
MyApp Directory Structure 17

Files in the MyApp Directory 18
Files in the lib Directory 18
Files in the root Directory 19
Files in the script Directory 19
Files in the t Directory 20

Adding a View 20
Using a Template To Render the Page 25
Some Technical Details 26

Adding a Database 27
Installing SQLite 27
Creating a Database Schema 28
Creating a Database Model for Catalyst 28
Using the Model 29

Summary 30

Table of Contents

[ii]

Chapter 3: Building a Real Application 31
Environment Setup 32
Database Design 32
Understanding the Interface to the Database 34
TTSite 37

Creating the Index Page 38
Creating a "Not Found" Page 38

Viewing People 40
Basic CRUD 43
Forms 43
Finishing Up 47
Summary 51

Chapter 4: Expanding the Application 53
Configuration Files 53

Configuring the Address Book 55
Sessions 56

Adding Sessions to the Address Book 57
Sessions in the Database 59

Using Components from Outside Catalyst 60
Searching and Paging 64
Authentication and Authorization 72

Authentication 72
Authorization 73
Adding Authentication and Authorization to the Address Book 75

Summary 82
Chapter 5: Building a More Advanced Application 83

The Application 83
Background 83

Creating the Database 84
Populating the Database 88

Extracting the Data 92
Chained ResultSets 95
Custom ResultSets 97

Putting the Data on the Web 99
Summary 117

Chapter 6: Building Your Own Model 119
Extending a DBIx::Class Model 119

Custom Methods Without Raw SQL 121
Calling Database Functions 121

Creating a Database Model from Scratch 122
Implementing a Filesystem Model 124

Table of Contents

[iii]

Tweaking the Model 128
Request Context Inside the Model 129
Maintainable Models 130
Other Components 132

Summary 132
Chapter 7: Hot Web Topics 133

REST 133
Getting some REST 134

REST Controller 135
REST Authentication 135
Adding an Entity 136
REST Easy 143

AJAX 144
Getting Started 144

Jemplate 144
Implementing AJAX 146

RSS 151
Summary 153

Chapter 8: Testing 155
Mechanics 156
Testing ChatStat 158

Testing a Database 159
Testing the Web Interface 161

Testing the Address Book 165
Logging In 165
Testing Forms 167
Testing JavaScript 169

Summary 173
Chapter 9: Deployment 175

Basics 175
PAR Deployment 177
Configuration Management 178

Configuring a Web Server 178
Apache 179

FastCGI 179
Static Content 180
mod_perl 180
Performance Considerations 181

Development Server and perlbal 182
Summary 183

Index 185

Preface
Many web applications are implemented in a way that makes developing them
painful and repetitive. Catalyst is an open-source Perl-based Model-View-Controller
framework that aims to solve this problem by reorganizing your web application to
design and implement it in a natural, maintainable and testable manner, making web
development fun, fast and rewarding.

Everything that your web application needs to do is only written once; you connect
to the database in one place, have configuration in one place, etc. Then, you just
write actions for each URL that your application needs, without worrying about the
database connections or HTML to produce. Catalyst will handle the details so you
can worry about writing your application. Catalyst is designed to be reliable.
There are hundreds of production applications and thousands of users. The
code is well-tested, and new releases almost always maintain compatibility with
applications written for older versions. You don't have to worry about Catalyst
breaking your application and slowing down your development. It just works. Most
importantly, Catalyst has a thriving community. You can ask a question on the IRC
channel and get a response at almost any time of the day.

This book helps you understand the Catalyst framework, its MVC architecture and
also provides detailed walkthroughs to create your web applications. Using this
book you can build, test and deploy a site with Catalyst and also learn how to extend
Catalyst through plug-ins.

Preface

[2]

What This Book Covers
Chapter 1 serves as an introduction to Catalyst and its features. You will also learn
how to install and get it up and running.

In Chapter 2, we will create a Catalyst application skeleton, step through the different
files in its directories, and learn how to generate HTML output and connect a SQLite
database to Catalyst.

In Chapter 3 we build our first real application – the address book. We learn to design
and understand the "CRUD" interface to the database of our site and write some
Catalyst actions.

In Chapter 4, we add common features to our address book application. We learn
how to add sessions to our application programmed search logic and identify
users and use their identity to control access to the application. Later, we explore
authentication and authorization by implementing page-level and record-level
access control.

We build a new application called ChatStat in Chapter 5. Here we explore the features
of DBIC for easy handling of data and use Catalyst to get the data from DBIC onto
the web.

In Chapter 6 we look at the different ways to access the data model. We learn to write
a database model and create a filesystem model from scratch, which is integrated
with the Catalyst application.

In Chapter 7, we will develop a REST API to give the user easy access to our
application's data. We also learn to add AJAX interactivity and incorporate RSS feeds
in our application.

Chapter 8 covers an important part of any project, i.e., testing. We learn to write
programs to test our Catalyst application automatically. We see how to test the
individual non-Catalyst components, and then the components inside Catalyst.

In Chapter 9, we learn to package our application and make it available as a PAR file,
ready to run on a real web server.

What You Need for This Book
Throughout this book, we will assume that you have the following packages
installed and available:

Perl version 5.8.1 or higher
A working web server
SQLite

•
•
•

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "The best
place for questions is the #catalyst IRC channel."

A block of code will be set as follows:

sub end : Private {
 my ($self, $c) = @_;
 $c->forward('View::TT');
}

Any command-line input and output is written as follows:

$ cpan -i DBD::SQLite DBIx::Class Catalyst::Model::DBIC::Schema
New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"The MyApp directory structure shows the directories lib, root, script, and t."

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email suggest@
packtpub.com.

Preface

[4]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/0956_Code.zip, and select this book
from the list of titles to download any example code or extra resources for this book.
The files available for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction to Catalyst
Writing a web application is usually a repetitive process. For every page, you create
a new script. This script performs essentially the same tasks as the other scripts in the
application: connect to a database, get some input from the user, and produce a web
page as the result. This style of application design results in a structure like this:

Building an application with this sort of design is certainly not a difficult process, but
the constant repetition can be prone to error. If you decide to change your database,
you will have to update the database connection string in each file. If you happen to
forget one obscure file, you might not be aware until your users start sending you
angry emails.

Introduction to Catalyst

[6]

Of course, this problem is not limited to the database connection strings. As the
diagram shows, repeated elements are everywhere. As each page generates its own
HTML, a request from your web designer to update the layout of a page will involve
having to dig through your Perl source code (potentially breaking database queries
or other logic), just to change some HTML. In addition any time you make a change
that affects your entire site or application, you'll have to make the change a number
of times; once for each "page". Similarly, fixing one bug will entail copying the fix to
every other place. This is inconvenient, a waste of time and just plain boring.

Catalyst is an open source Perl-based Model-View-Controller framework that aims to
solve this problem by reorganizing your web application.

Catalyst Application Architecture
Rather than making each location that a user may visit an individual file, we make
each location an action inside a Controller class. Catalyst sits in front of each of
these controllers, and when it receives a request, it dispatches the request to the
proper action. When an action is called by the dispatcher, it's in a pre-configured
environment—all configuration options have been read from a configuration file, all
databases are connected, all parameters from the request have been parsed, etc. All
your action has to do is implement the logic associated with the request; there is no
setup that you have to manually perform.

Database ModelAction

Action

Action

Action

Controller

Controller

HTML View

Catalyst

Although this dispatch mechanism is already an improvement over the traditional
process, Catalyst doesn't stop here. Your actions can call on the help of Models and
Views, as well.

Chapter 1

[7]

A Model is a source of data. Most applications use a single relational database like
MySQL or PostgreSQL as their Model, but Catalyst does not require that—you can
use anything from files on disk, to an email server, or remote RSS feeds; and you can
have as many Models as your application needs.

Each Model knows how to configure itself at startup (for example, connect to the
database server), so you'll never have to worry about that. If you need to use a
different database, you can change the connection information in one file, restart
your application, and the change will take effect everywhere, automatically. The
repetition that a traditional application would require is simply non-existent
in Catalyst.

Lastly, a View is another component that your action may use. A View is a way to
turn the raw data that your action generates into something more useful to your
application's users. Typically, applications have a View that converts the data
into an HTML page via a templating system, like the Template Toolkit, Mason, or
ClearSilver.

Templating systems abstract your HTML or XML away from your Perl code, so the
web designer can edit it without knowing anything about Perl or the underlying
design of your application.

You don't have to completely understand what MVC is right now—we'll start
learning the details in the next chapter. For now, think about all the code you've
cut-n-pasted between files in your application and how Catalyst will eliminate
that forever.

Extensibility
MVC isn't all that Catalyst provides. At the time of writing, there were over 190
freely-available plugins that added new features to Catalyst. Existing plug-ins
offer functionality such as configuration file parsers, specialized logging tools,
email interfaces, caching, user authentication and authorization; cryptography,
internationalization, and localization, browser detection and even virus scanning.
Most of these plug-ins drop right into your application and instantly provide you
with the advertised functionality. This saves you from having to reinvent the wheel
for common (and uncommon!) tasks.

In addition to plug-ins, pre-made Models, Controllers, and Views (collectively
called components) are also available. Since Catalyst is fully object-oriented,
your application-specific components can simply "subclass" these off-the-shelf
components and customize the functionality to whatever degree is necessary.

Introduction to Catalyst

[8]

Finally, if there's no pre-built component available, there's the possibility that a
generic Perl module from the CPAN (Comprehensive Perl Archive Network;
http://search.cpan.org/) can help you—there are over 10,000 modules
currently available!

Reusability
Another advantage of Catalyst's MVC design is that the components need not be
specific to one application. If you're developing a number of related applications,
you can share components between them with minimal (or no) modification, since
the components are just Perl objects that need not know anything specific about your
application. (Of course, if you need a component that's specific to your application,
that's no problem for Catalyst.)

Flexibility
As Catalyst handles all the details of loading your components and handling
requests, you aren't tied to any details of this process. This means that you can
deploy your application with any web server (Apache and lighttpd are widely used)
under whatever configuration best suits your environment. If you're using mod_perl
with Apache 1.3, that's no problem for Catalyst. If you're using lighttpd as a proxy to
several backend FastCGI servers, Catalyst will work great. Catalyst even comes with
a built-in HTTP server, so you can develop applications without having to install and
configure a web server.

With Catalyst, like Perl itself, There Is More Than One Way To Do It, and Catalyst will
bend to fit your environment so you can use what you're already familiar with.

Reliability
Finally, Catalyst is designed to be reliable. The run-time package comes with over
2600 unit tests that automatically check the reliability of Catalyst when you install
it. In the unlikely event that there's something wrong with your Perl environment,
Catalyst won't install until it's fixed. There's always the possibility of a bug in
Catalyst, but nothing major has come up because the core developer team tries to
keep Catalyst as small as possible. Everything that's non-essential is kept in plug-ins
or in reusable base components. (We try to keep these stable too, of course.)

This reliability isn't just for the Catalyst developers though. When you create your
application (or components within it), unit tests are automatically generated. These
tests serve to make sure that your application is at least minimally functional. If you
choose to, you can easily add your own automatic tests that can test every part of

Chapter 1

[9]

your application. Rather than manually going through your site when you make a
major (or minor) change, you can have the computer double-check everything while
you get a cup of coffee. Testing is examined in detail in Chapter 8.

Installing Catalyst
Now that you're convinced that you want to try Catalyst, you just have to install
it. Since Catalyst is Perl-based, you'll need to have a working version of Perl. Most
Linux and BSD distributions come with a suitable Perl in the default install, as do
many commercial Unix variants. (Mac OS X is no exception.) Microsoft Windows
doesn't ship with Perl, but you can get a base Perl distribution for free from
ActiveState, Strawberry Perl, or Cygwin. Regardless of your operating system, you'll
need Perl version 5.8.1 or higher (5.8.8, the latest at the time of writing, is the version
used in the book).

The easiest way to install Catalyst is via your operating system's package manager.
This mostly applies to Linux and the BSDs and the syntax is specific to your
distribution. On Debian-based versions of GNU/Linux, the command is:

$ apt-get install libcatalyst-perl

On FreeBSD or OpenBSD, you can build the Catalyst "port" by running the following
commands as root:

$ cd /usr/ports/www/p5-Catalyst-Runtime

$ make install

If you're using ActiveState on Windows, ActiveState has a "PPM" package for
Catalyst. You can find the PPM at http://cpan.uwinnipeg.ca/dist/
Catalyst-Runtime.

Finally, be sure to check your operating system's manual for specific instructions
on installing packages. The latest details are available from the Catalyst Installation
guide at http://search.cpan.org/perldoc?Catalyst::Manual::Installation.

CPAN
If your operating system doesn't provide pacakges, installing Catalyst directly from
the CPAN is a simple process. Perl ships with a utility called cpan that handles the
installation process for you. Simply run this from the command line:

$ cpan Catalyst::Runtime Catalyst::Devel

Introduction to Catalyst

[10]

and Catalyst (and all of its dependencies) will be downloaded, integrity-checked
and installed.

The disadvantage of this approach is that you'll need a C compiler gcc, make, and
related development utilities. Most Linux distributions have these available, but
they aren't a part of the default install. Mac OS X offers gcc and make as part of its
"developer tools" package, which you'll need to install if you choose to use cpan.

The cpan script is, unfortunately, notorious for asking difficult questions the first
time that you run it (in order to build a configuration suitable for your system).
If you want to avoid these questions and just get Catalyst installed, try the
cat-install script at http://www.shadowcat.co.uk/static/cat-install. You
can download that file, run it with Perl, and Catalyst should be installed when it's
finished running.

Where to go for Help?
If cpan is just not working for you and you feel lost, the Catalyst community would
love to help you out. The best place for questions is the #catalyst IRC channel on
irc.perl.org. Users, developers, and other helpful people monitor this channel and
are happy to answer Catalyst-related questions.

For longer questions, email is probably a better means of communication.
Catalyst has an English-language users list that you can sign up for at:
http://lists.scsys.co.uk/cgi-bin/mailman/listinfo/catalyst.

As Catalyst becomes more popular, new lists are being created for other languages.
Catalyst-de was recently created for German-speaking users, and there's interest
in creating a Japanese-language mailing list. Many readers of the English list speak
other languages, so if you're having trouble with English, say so and someone can
likely assist you in your native language.

Finally, the main project web site, http://www.catalystframework.org/, provides
links to useful community tools including the Catalyst wiki, Planet Catalyst (a
collection of Catalyst-related blog postings), and the Catalyst Advent Calendar (a
mini-cookbook published each December).

As always, before posting to the mailing list or asking on IRC, do a quick Google
search to see if you're experiencing a common problem.

Chapter 1

[11]

Summary
Many web applications are implemented in a way that makes developing them
painful and repetitive. Catalyst, an MVC framework for Perl, lets you design and
implement a web application in a natural, maintainable, and testable manner.
Everything that your web application needs to do is only written once; you connect
to the database in one place, have configuration in one place, etc. Then, you just
write actions for each URL that your application needs, without worrying about the
database connections or HTML to produce. Catalyst will handle the details so you
can worry about writing your application. Thanks to Catalyst's plug-in system, it can
do more than just dispatch requests—it can manage sessions and users for you, as
well as handle many other common tasks. Catalyst is designed to be reliable. There
are hundreds of production applications and thousands of users. The code is well-
tested and new releases almost always maintain compatibility with applications
written for older versions. You don't have to worry about Catalyst breaking your
application and slowing down your development. It just works.

Most importantly, Catalyst (and Perl) has a thriving community. You can ask a
question on the IRC channel and get a response at almost any time of the day.
There are also resources on the web for learning more; blogs from developers and
users, recipes on the advent calendar and a wealth of questions answered on the
mailing list.

Creating a Catalyst
Application

Now that you've installed Catalyst, we are ready to create a simple application.
In this chapter, we will be creating a basic application. We'll create the skeleton of
the application and write some Catalyst actions. Then we'll learn how to use the
Template Toolkit to generate HTML output and finally, connect a SQLite database to
Catalyst with DBIx::Class.

Creating the Application Skeleton
Catalyst comes with a script called catalyst.pl to make this task as simple as
possible. catalyst.pl takes a single argument, the application's name, and creates
an application of that name. The name can be any valid Perl module name, like
MyApp or MyCompany::HR::Timesheets.

Let's get started by creating "MyApp", the example application for this chapter.

$ catalyst.pl MyApp

created "MyApp"

created "MyApp/"MyApp/script"

created "MyApp/lib"

created "MyApp/root"

created "MyApp/root/static"

created "MyApp/root/static/images"

created "MyApp/t"

created "MyApp/lib/MyApp"

created "MyApp/lib/MyApp/Model"

created "MyApp/lib/MyApp/View"

Creating a Catalyst Application

[14]

created "MyApp/lib/MyApp/Controller"

created "MyApp/myapp.yml"

created "MyApp/lib/MyApp.pm"

created "MyApp/lib/MyApp/Controller/Root.pm"

created "MyApp/README"

created "MyApp/Changes"

created "MyApp/t/01app.t"

created "MyApp/t/02pod.t"

created "MyApp/t/03podcoverage.t"

created "MyApp/root/static/images/catalyst_logo.png"

created "MyApp/root/static/images/btn_120x50_built.png"

created "MyApp/root/static/images/btn_120x50_built_shadow.png"

created "MyApp/root/static/images/btn_120x50_powered.png"

created "MyApp/root/static/images/btn_120x50_powered_shadow.png"

created "MyApp/root/static/images/btn_88x31_built.png"

created "MyApp/root/static/images/btn_88x31_built_shadow.png"

created "MyApp/root/static/images/btn_88x31_powered.png"

created "MyApp/root/static/images/btn_88x31_powered_shadow.png"

created "MyApp/root/favicon.ico"

created "MyApp/Makefile.PL"

created "MyApp/script/myapp_cgi.pl"

created "MyApp/script/myapp_fastcgi.pl"

created "MyApp/script/myapp_server.pl"

created "MyApp/script/myapp_test.pl"

created "MyApp/script/myapp_create.pl"

We'll discuss in detail what each of these files do as we progress through the book,
but for now, let's just change to the newly-created MyApp directory (cd MyApp) and
run the following:

$ perl script/myapp_server.pl

This will start up the development web server. You should see some debugging
information appear on the console:

[debug] Debug messages enabled

[debug] Loaded plugins:

.---.

| Catalyst::Plugin::ConfigLoader 0.13 |

Chapter 2

[15]

| Catalyst::Plugin::Static::Simple 0.14 |

'---'

[debug] Loaded dispatcher "Catalyst::Dispatcher"

[debug] Loaded engine "Catalyst::Engine::HTTP"

[debug] Found home "/home/jon/projects/book/chapter2/MyApp"

[debug] Loaded Config "/home/jon/projects/book/chapter2/MyApp/myapp.yml"

[debug] Loaded components:

.--+----------.

| Class | Type +-
---+----------+

| MyApp::Controller::Root | instance |

'--- ---------------+----------'

[debug] Loaded Private actions:

.----------------------+-------------- ------------------+--------------.

| Private | Class | Method |

+----------------------+---------------------------------+--------------+

| /default | MyApp::Controller::Root | default |

| /end | MyApp::Controller::Root | end |

'----------------------+---------------------------------+--------------'

[info] MyApp powered by Catalyst 5.7010

You can connect to your server at http://localhost:3000

This debugging information contains a summary of plug-ins, models, views and
controllers that your application uses, in addition to showing a map of URLs to
actions. As we haven't added anything to the application as yet, this isn't particularly
helpful, but it will become so as we add features.

To see what your application looks like in a browser, simply browse to
http://localhost:3000.

Creating a Catalyst Application

[16]

You should see the standard Catalyst welcome page as follows:

Chapter 2

[17]

Let's put the application aside for a moment, and see what all the files that were
created are used for.

MyApp Directory Structure

Before we start modifying MyApp, let's take a look at how a Catalyst application
is structured on a disk. In the root directory of your application, there are some
support files. If you're familiar with CPAN modules, you'll be at home with Catalyst.
A Catalyst application is structured in exactly the same way (and can be uploaded to
the CPAN unmodified, if desired).

Creating a Catalyst Application

[18]

This chapter will refer to MyApp as your application's name, so if you use
something else, be sure to substitute appropriately.

Files in the MyApp Directory
Makefile.PL: This is a script that will generate a makefile to build, test and install
your application. It can also contain a list of your application's CPAN dependencies
and automatically install them.
To run Makefile.PL and generate a Makefile, simply type perl Makefile.PL.
After that, you can run make to build the app, make test to test the app (you can try
this right now, as some sample tests have already been created), make install to
install the app, and so on. For full details, see the Module::Install documentation.
It's important that you don't delete this file. Catalyst looks for it to determine where
the root of your application is.

Changes: This is simply a free-form text file where you can document changes
to your application. It's not required, but it can be helpful to end-users or other
developers working on your application, especially if you're writing an
open-source application.

README: This is just a text file with information on your application. If you're not
going to distribute your application, you don't need to keep it around.

myapp.yml: This is your application's main configuration file, which is loaded
when you start your application. You can specify configuration directly inside your
application, but this file makes it easier to tweak settings without worrying about
breaking your code. myapp.yml is in YAML format, but if you rename the file to
myapp.pl, you can write it in Perl (or myapp.conf for Apache-style syntax; see the
Config::Any manual for a full list).

The name of this file is based on your application's name. Everything is converted
to lowercase, double colons are replaced with underscores, and the yml extension
is appended.

Files in the lib Directory
The heart of your application lives in the lib directory.
This directory contains a file called MyApp.pm, which is the main file for
your application.

•

•

Chapter 2

[19]

This is where you can specify plug-ins to load, as well as the default
configuration.
Inside lib are the three key directories, MyApp/Controller, MyApp/Model,
and MyApp/View.
These directories are where your Controllers, Models, and Views will live.
Right now there's one Controller called Root.pm. This will handle all URLs
that are in the "root" of your application, and is where the code that generates
the welcome page is located.

Keep in mind that "MyApp" will be replaced with whatever you passed to
catalyst.pl when you created the application, and that double colons in the
application name will create separate subdirectories on the filesystem. For example,
catalyst.pl MyCompany::HR::Timeslips would create lib/MyCompany/HR/
Timeslips.pm, lib/MyCompany/HR/Timeslips/Controller/, mycompany_hr_
timeslips.yml, and other similarly-named files.

Files in the root Directory
The next special directory is the root directory. This directory will hold your
templates and other non-code support files. A subdirectory called /root/static is
for static content like images and style sheets. Catalyst is set up to serve static files
from this directory automatically (under the "/static" path).

Files in the script Directory
Finally, there is the script directory that contains the scripts needed to run and
modify your application.

myapp_server.pl is the development server; a self-contained HTTP server that you
can use to see your application while you're developing it.

myapp_cgi.pl is a CGI script for deploying your application with a web server that
cannot use mod_perl or FastCGI. It's very slow, so use it only as a last resort.

The last server is called myapp_fastcgi.pl, which allows you to run your
application as a FastCGI server. In Chapter 9, we'll see how to use these scripts to run
our application in a production environment.

There are also two utility scripts in this directory. You can use the myapp_test.pl
script to test an action, without opening a web browser. For example, you can print
the source of the welcome page by running the following command line:

$ perl script/myapp_test.pl /

•

•

Creating a Catalyst Application

[20]

The last script is myapp_create.pl, which is a version of catalyst.pl that's
customized for your application. It can create models, views, controllers, tests and
many other things. We'll use it in the next two sections to create a View and Model
for MyApp.

All of the scripts in the script directory accept command-line arguments to
customize their behavior. perl script/myapp_<scriptname>.pl --help will
explain the details for a specific script.

Files in the t Directory
The t directory is where your application's automatic tests are stored. By default,
you'll have three tests as given below:

1. 01app.t, which is a test that passes if your application compiles.
2. 02pod.t, which will pass if your POD (Plain Old Documentation; embedded

API documentation inside your application) is valid.
3. 03podcoverage.t, which tests that every public function in your application

has some documentation.

You can run the tests in this command by running make test, after Makefile.PL
creates the Makefile.

Adding a View
To begin customizing our application, let's start by adding a View that allows us to
use the Template Toolkit to render HTML pages. The View is a component which
is called after your action runs to convert the data that your action put in the stash
into HTML (or another format suitable for the end user; JSON and XML are also
commonly used).

The Template Toolkit is included with the Catalyst::Devel package, so you should
already have it. You'll need to install the Catalyst interface to it though, by running
the following command line:

$ cpan -i Catalyst::View::TT

If you don't have TT for some reason, cpan will detect that and install it for you.

Once that's complete, create the View by running the following command line:

$ perl script/myapp_create.pl view TT TT

Chapter 2

[21]

The "TT TT" part of the above command means create a view called View/TT.pm
(the first TT) based on the standard Catalyst::View::TT (the second TT). You can
choose any valid Perl filename as the name of your view, but a simple "TT" makes the
most sense here.

Next, it's a good idea to add Catalyst::View::TT to the prerequisites section of
Makefile.PL. Your application will run fine if you omit this step, but if you're
diligent about adding your prerequisites to Makefile.PL, it will be very easy to
move your application to another machine. A simple perl Makefile.PL && make on
the new machine will allow Catalyst to automatically install all of your application's
dependencies while you have a cup of coffee and relax. A minute of your time here
will save much more time later.

Currently, the Makefile.PL looks something like the following:

use inc::Module::Install;
name 'MyApp';
all_from 'lib/MyApp.pm';
requires 'Catalyst' => '5.7005';
requires 'Catalyst::Plugin::ConfigLoader';
requires 'Catalyst::Plugin::Static::Simple';
requires 'Catalyst::Action::RenderView';
requires 'YAML'; # This should reflect the config file format you've
 # chosen
 # See Catalyst::Plugin::ConfigLoader for supported formats
catalyst();
install_script glob('script/*.pl');
auto_install();
catalyst_par();
WriteAll();

All you need to do to add a prerequisite, is add a line like:

requires 'Catalyst::View::TT' => 0;

near the other require statements above (order isn't important). The 0 represents the
minimum version of the module that your application requires. Leaving it at 0 is fine
if you don't know the version, but it's best to specify the current version you're using
to develop with. You can determine the version of any module on your system by
typing perl -MSome::Module -e 'print Some::Module->VERSION'.

The next step is to create a template in root directory. For this example, we're going
to make a page that says "Hello, world!", so let's call it hello.tt.

Creating a Catalyst Application

[22]

Here's the code:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns=" http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Hello, world!</title>
 </head>
 <body>
 <h1>Hello, world.</h1>
 <p>
 Here's a word from our Controller:
 [% word | html %].
 </p>
 </body>
</html>

This is just a regular XHTML file, with some special control sequences for the
Template Toolkit. [% word%] tells TT to get a variable called "word" and print it at
that point in the template. The | html part after "word" in the example above is a TT
filter that means to escape any HTML in word so that < is rendered as an actual <
sign and not an HTML tag. This prevents a type of security hole called "XSS" (cross-
site scripting). While security probably isn't important for a "hello world" page, it's
wise to get into good habits now.

Right now, this hello.tt doesn't do anything, because we haven't told our
application to use the TT view yet. Let's create a new controller called "Hello" to
manage this page (and make it available at /hello):

perl script/myapp_create.pl controller Hello

This will create /lib/MyApp/Controller/Hello.pm (and /t/controller_hello.t,
which we won't use until Chapter 8):

package MyApp::Controller::Hello;

use strict;
use warnings;
use base 'Catalyst::Controller';

=head1 NAME

MyApp::Controller::Hello - Catalyst Controller

=head1 DESCRIPTION

Catalyst Controller.

=head1 METHODS

Chapter 2

[23]

=cut

=head2 index

=cut

sub index : Private {
 my ($self, $c) = @_;

 $c->response->body('Matched MyApp::Controller::Hello in Hello.');
}

=head1 AUTHOR

Your Name

=head1 LICENSE

This library is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.

=cut

1;

This file consists of three parts. Up at the top is a package declaration (so Perl knows
what this module is named), and then some use statements (to tell Perl that this
module is a Catalyst controller). Next, there is some POD that you can fill in to
provide some API documentation. (See man perlpod for the syntax.) If you don't
think you need documentation, you can delete it; it's ignored by Perl. The perldoc
utility included with perl will process this documentation into text, HTML,
LaTeX, etc.

Next there's an index subroutine. Following that is some more documentation
and a 1. The 1 is important to Perl for historical reasons and must not be removed.
(Modules must return true when they're loaded, otherwise Perl will assume that
the loading has failed and will die with an error message. 1 is always true, so it's
conventional to use it for this purpose.)

The index subroutine (actually an Action, as it has an attribute after it) is what we
want to modify. As the name suggests, index will be run when a directory index
for /hello is requested. The URL /hello is derived from the name of the controller
with colons converted to / and the "Hello" from Hello.pm converted to all lower
case. The :Private attribute after index tells Catalyst to handle the index action
internally using special rules. If we specified :Local instead of :Private, then
Catalyst would map the index Action to handle a URL that looks like /hello/
index, which is not quite what we want. (If we omitted the attribute, Catalyst would
ignore the action entirely.)

Note that throughout the book instead of a generic index action, we will use code
like the following:

sub list_everything :Path Args(0) { ... }

Creating a Catalyst Application

[24]

This syntax is more explicit and works with Chained, an advanced feature we'll see
in Chapter 5.

As we want to be able to handle more than just an index, we need to rename the
subroutine. Let's call it hello :Global. This will allow the hello action to handle
everything under /hello, instead of just /hello/. This will allow us to supply
an argument (the word to print in [% word %]) directly in the URL. (This hello
action could also have been implemented in Root.pm as a :Local action, but
implementing it in its own file makes it easier to edit without affecting other parts of
the application.)

After we make that change, we also need to change the first line of the
hello subroutine. Right now, it looks like my ($self, $c) = @_;. This gets
the first two arguments passed to the Action by Catalyst, $self, and $c.
$self is a MyApp::Controller::Hello object, and is not of much use right now.
$c is the Catalyst context and contains all the information about our application and
the current request (and hence is very useful). Catalyst passes more than just $self
and $c, though, so we want to modify that line to read my ($self, $c, @args)=@_;.
This will allow us to access the rest of the arguments via the @args array.

Arguments are everything in the URL that Catalyst didn't use when matching an
action. As an example, /hello/foo/bar would put foo and bar in $args[0] and
$args[1], respectively, and then call the action matching /hello.

Next, let's test the application and make sure everything works so far. Save Hello.
pm and then run perl script/myapp_test.pl /hello/test. If everything is correct,
myapp_test.pl will print out some debugging information and then print "Matched
MyApp::Controller::Hello in Hello" to the browser. If something else happens,
make sure that you typed in your code correctly (a final listing to check against what
appears at the end of this section). The : Global part is especially important, so be
sure that the debugging output mentions it.

[debug] Loaded Private actions:

.----------------------+---------------------------------+--------------.

| Private | Class | Method |

+----------------------+---------------------------------+--------------+

| /hello/hello | MyApp::Controller::Hello | hello |

'----------------------+------------------------ --------+--------------'

[debug] Loaded Path actions:

.-------------------------------------+--- -----------------------------.

| Path | Private |

+-------------------------------------+---------------------------------+

| /hello | /hello/hello |

'-------------------------------------+---------------------------------'

Chapter 2

[25]

This will show you that the URL /hello is handled by the private action called
/hello/hello and that /hello/hello is the hello subroutine inside MyApp::
Controller::Hello.

Once everything is working, we're ready to add the templating code to the
hello subroutine.

Using a Template To Render the Page
We want to replace the $c->response->body('Matched MyApp::Controller::
Hello in Hello'); line with the following code:

 my $word = $args[0] || 'Default word';

 $c->stash->{template} = 'hello.tt';
 $c->stash->{word} = $word;

The first line assigns the first argument to a variable called word (or uses Default
Word if there isn't a first argument). The next line tells the TT view to use hello.tt
as the template for rendering this request. Finally, we put $word in the stash as word,
so the [% word %] statement in our template can access that variable.

The stash is a data structure that exists throughout a single Catalyst request. Data you
insert into the stash in an Action will be available to the View (and other Actions).
Templates can only access variables that have been explicitly placed here, so it's
important to remember to put your useful data in the stash (otherwise it will be gone
at the end of the subroutine, instead of the end of the request).

After you've made these changes, your hello subroutine should look like this (and
the default index subroutine should be gone):

sub hello : Global {
 my ($self, $c, @args) = @_;
 my $word = $args[0] || 'Default word';

 $c->stash->{template} = 'hello.tt';
 $c->stash->{word} = $word;
}

With the code setup, you should be ready to view your web page.
Open your web browser, start the development server, and surf to
http://localhost:3000/hello/test.

Creating a Catalyst Application

[26]

You should see your template rendered in the browser.

Changing the /test part of the URL should change the word that shows up in
the template.

Congratulations, you've created your first dynamic Catalyst application!

If you're interested in experimenting some more with this setup, here are some
things to try. Edit the hello.tt template to change the look of the page. You
shouldn't even need to restart your development server for changes to take effect.
After that, add another page to your application by creating another subroutine in
Hello.pm and another template. Editing Hello.pm will require a restart, but you
can make the server automatically restart when necessary by running the server like
perl script/myapp_server.pl -r -d. The -r will cause the server to restart when
appropriate, and the -d will show debugging information, even if you've turned it
off inside your application.

Some Technical Details
At this point, you may be wondering why the hello.tt template showed up
without your code ever calling any methods in the Template Toolkit View. This
is because, the end action in the default Root.pm uses an ActionClass called
"RenderView". The end action in Root is called at the end of every request, and the
RenderView ActionClass will automatically forward to the default View. If you'd
rather be explicit about invoking the view, you can add a line like:

$c->forward('View::TT');

at the end of your action. (And RenderView will stay out of the way.)

Chapter 2

[27]

If you have more than one view, you should always explicitly forward, since there's
not currently a rigorous definition of "default". You can make every action in a single
controller forward to the same view by overriding the end action in that controller:

sub end : Private {
 my ($self, $c) = @_;
 $c->forward('View::TT');$c->forward('View::TT');
}

If you override end like this, the default end in Root.pm will not be called. (Only one
end action is executed per request; the one that's "closest" to the action that started
the request cycle.)

End actions (as well as the similar begin and auto actions) will be covered in more
detail throughout the book.

Adding a Database
The other component that many web applications require is a SQL relational
database. Catalyst supports many ways of accessing databases, but the most
popular is via an Object-Relational Mapper (ORM) called DBIx::Class (DBIC).
Object-relational mappers allow you to perform operations on your database as
though each database object were a Perl object. This means that instead of writing
SQL like SELECT * FROM table, you can instead say @results = $table->all. The
advantage of this approach is that DBIC handles the SQL for you, so you can switch
from SQLite to DB2 without modifying any of your code. The resulting code in your
Controller is also more readable; everything looks like manipulation of Perl data
structures. We'll see the power of this approach throughout the book, but for now,
let's just create a simple DBIC Model.

You can use any database that you like for this, but I recommend SQLite for
development. SQLite is an "embedded" database, so the database exists as a single
file and requires no server to run.

Installing SQLite
The first step is to install SQLite from the SQLite website at http://sqlite.org/ (or
through your distribution's package manager; the package is usually called "sqlite3").
You'll also need to install the Perl version of SQLite, called DBD::SQLite, and DBIx::
Class itself:

$ cpan -i DBD::SQLite DBIx::Class Catalyst::Model::DBIC::Schema

Creating a Catalyst Application

[28]

Creating a Database Schema
Once the dependencies are installed, we'll create a sample database with the sqlite3
command-line utility:

$ sqlite3 /tmp/database

SQLite version 3.3.8

Enter ".help" for instructions

sqlite> CREATE TABLE test (id INTEGER PRIMARY KEY, subject TEXT, message
TEXT, date DATETIME);

sqlite> INSERT INTO test (id, subject, message, date) VALUES(NULL, "test
message", "this is a test message", "2005-01-01 00:00");

sqlite> INSERT INTO test (id, subject, message, date) VALUES(NULL,
"another test message", "this is a another test message, hooray", "2005-
01-01 00:01");

sqlite> SELECT * FROM test;

1|test message|this is a test message|2005-01-01 00:00

2|another test message|this is a another test message, hooray|2005-01-01
00:01

sqlite> .quit

$

Here we created a "test" table in a database file called /tmp/database and added two
rows to it.

SQLite has unusual semantics for auto-incrementing primary keys.
You must declare the auto-increment column exactly as "INTEGER
PRIMARY KEY" and then assign NULL during INSERT operations.
DBIC will handle this automatically, but you should be aware of this
unconventional approach when interacting with the database from within
the sqlite3 utility.

Creating a Database Model for Catalyst
To use this database from Catalyst, we need to create a Catalyst Model. We can do
this using the following command line:

$ perl script/myapp_create.pl model TestDatabase DBIC::Schema \ MyApp::
Schema::TestDatabase create=dynamic \ dbi:SQLite:/tmp/database

Chapter 2

[29]

The first argument is the name of the Catalyst Model (TestDatabase).
DBIC::Schema is what sort of model we're creating. MyApp::Schema::TestDatabase
is where the schema definition will be stored (we won't use the Schema in this
example, but real applications will). create=dynamic tells DBIC to read the
database every time the application is started to determine the schema (layout of
tables, foreign key relations, etc.). The final argument is the DBI connect string for
the database.

We'll also create another Controller for the database page, to avoid cluttering up the
Hello or Root controllers.

$ perl script/myapp_create.pl controller Database

Once we have this, we'll create a template to show data from the database in a file
called root/list_messages.tt. It should look like the following:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en">
 <head>
 <title>Hello, database!</title>
 </head>
 <body>
 <h1>Database</h1>
 <p>Here's what the database looks like: </p>

 [% WHILE (message = messages.next) %]

 <p>Message [% message.subject | html %]
 (#[% message.id | html %]):</p>
 <p>[% message.message | html %]</p>
 <p>Written at <i>[% message.date | html %]</i>.</p>

 [% END %]

 </body>
</html>

Using the Model
Now, we'll want to create code to show this template in the Database.pm Controller.
In this case, using the index action that's automatically generated will be fine, since
we don't need any arguments.

Creating a Catalyst Application

[30]

We will need to populate a variable called messages with the data from our
database. The code to do this looks like the following:

sub list_messages :Path Args(0) { # same as index :Private
 my ($self, $c) = @_;

 $c->stash->{template} = 'list_messages.tt';
 $c->stash->{messages} = $c->model('TestDatabase::test');$c->stash->{messages} = $c->model('TestDatabase::test');
}

This is almost the same as our hello action, but in this case we fill the messages
variable with the entires in the test table (in the TestDatabase Model). The
$c->model(...) syntax allows you to access any Model by name. DBIC::Schema
supports extra syntax to allow you to name a table in the database directly
(the ::test part), so we use that to create a ResultSet object.

Once we have the template and results from the database query in the stash, our
template takes over. The [% WHILE (message = messages.next) %] command loops
over each row in the test table, and creates a variable called message that holds that
row. The other [% ... %] commands in the template simply extract the data from the
row via the column name. That's all there is to it—Catalyst handles the hard stuff
for you!

To view your database as an HTML page, start the development server again and
browse to http://localhost:3000/database.

Summary
In this chapter, we created our first Catalyst application with the catalyst.pl
utility. After running the skeleton application and inspecting it with a web browser,
we added an HTML template View with the myapp_create.pl script and created
a "Hello" Controller to display a "Hello, world" page. Finally, we added a database
Model using DBIC::Schema and created a Controller containing actions that show
data from the database, via the View and templates, as an HTML page.

Building a Real Application
In this chapter, we're going to build our first real application, an address book. We'll
start with a skeleton similar to the application from the last chapter, but then we'll
add some real logic to create a CRUD (create, retrieve, update, delete) interface to
a database.

Building a Real Application

[32]

We'll also learn how to define forms that automatically generate and validate
themselves, and how to design a database schema. We'll also use a View that
generates common pages for us, so we won't have to worry about style sheets or
tricky HTML for now.

Environment Setup
Before we start writing our new application, we'll need to create a skeleton again. We
can create it using the following command lines:

$ catalyst.pl AddressBook

$ cd AddressBook/

We'll also need two more CPAN modules for this chapter. These can be created
using the following:

$ cpan Catalyst::Controller::FormBuilder Catalyst::Controller::BindLex

The above command will ensure that the latest version of each modules is installed
on your system.

After installing the modules, we'll add a special Template Toolkit View called
TTSite to our application, using the following command line:

$ perl script/addressbook_create.pl view HTML TTSite

TTSite will automatically generate some basic HTML for us, so our templates will
only need to contain the text and markup that applies specifically to them. The
header, footer, messages and stylesheets will all be handled automatically and will
be easy to customize later.

Database Design
The first real step will be to think about what kind of data we need to store and then
design a database schema to efficiently store that data. To keep things simple (but
realistic), let's set our specification as follows:

The address book should keep track of multiple addresses for a person.
Each person can have a first and last name.
Each address can have a street address, a phone number and an
email address.

Translated into a relational database schema, that means we'll have a "people" table
that will assign a unique identifier to each first name and last name pair.

•

•

•

Chapter 3

[33]

Then we'll have an "addresses" table that will allow each person to have multiple
addresses; each consisting of a unique ID (so it's easy to reference later), a location
("Office", "Home"), a free-form postal address (so we don't have to worry about the
complexity of having a City, Country, State, Postal Code, etc.), a phone number and
an email address. Each row will have a column called "person", which will be the ID
of the person that "owns" this address (called a foreign key in SQL parlance). We'll
also make each field in the addresses table optional (except for the location), so we
can have locations like "Mobile" for storing a mobile phone number (without a postal
address or email).

Now we just have to express this as SQL, and type it into SQLite as follows:

$ sqlite3 database

sqlite> CREATE TABLE people (id INTEGER NOT NULL PRIMARY KEY, firstname
VARCHAR(50) NOT NULL, lastname VARCHAR(50) NOT NULL);

sqlite> CREATE TABLE addresses (id INTEGER NOT NULL PRIMARY KEY, person
INTEGER NOT NULL, location VARCHAR(20), postal TEXT, phone VARCHAR(20),
email VARCHAR(100));

Let's also add some sample data, so we can create a "view" page and actually see
some data show up as follows:

sqlite> INSERT INTO people VALUES(NULL, 'Your', 'Name');

sqlite> INSERT INTO addresses VALUES(NULL, 1, 'Home', '123 Green St.',
'123-456-7890', 'home@example.com');

sqlite> INSERT INTO addresses VALUES(NULL, 1, 'Work', '42 Work St.',
'987-654-3210', 'work@example.com');

sqlite> .quit

With the schema configured, let's link the database to a Catalyst model using the
following command line:

$ perl script/addressbook_create.pl model AddressDB DBIC::Schema
AddressBook::Schema::AddressDB create=static dbi:SQLite:database

This will create a Model called AddressDB, and it will also create a Schema/
AddressDB subdirectory that contains the definition of our database schema in
DBIx::Class's (DBIC) format. This schema will be pre-populated with the schema
we just created with the sqlite3 utility. Keeping the schema in this format will
allow us to deploy to any database system that DBIx::Class supports by simply
running the deploy function in your schema. It will also let us explicitly specify any
relations between the tables, so that we can access the data from inside our program
in a natural way. This will also allow functionality, like automatically deleting a
person's addresses when we delete that person.

Building a Real Application

[34]

Understanding the Interface to the
Database
The exact files generated (inside lib/AddressBook) are:

Model/AddressDB.pm

The actual Model that Catalyst uses. It's simply a stub that points DBIx::
Class at the Schema/AddressDB.pm schema.
Schema/AddressDB.pm

This is the schema that the Model points to. This is another stub that auto-
matically loads everything in the subdirectory/AddressDB
Schema/AddressDB/People.pm and Schema/AddressDB/Addresses.pm

This is where the real schema data is stored. Each of these files will declare
a table name (so that Perl knows that People.pm is the people table in the
database) and the column definitions. Relationships between tables are
added here, as are any specific access methods you'd like to add. Accessing a
column's data by name is available by default, so most people won't need to
add their own methods.

We'll need to dig inside these schema files so that we can specify the relations. Let's
look at People.pm first.

package AddressBook::Schema::AddressDB::People;

use strict;
use warnings;

use base 'DBIx::Class';

__PACKAGE__->load_components("PK::Auto", "Core");
__PACKAGE__->table("people");
__PACKAGE__->add_columns(
 "id",
 { data_type => "INTEGER", is_nullable => 0, size => undef },
 "firstname",
 { data_type => "VARCHAR", is_nullable => 0, size => 50 },
 "lastname",
 { data_type => "VARCHAR", is_nullable => 0, size => 50 },
);
__PACKAGE__->set_primary_key("id");
1;

•

•

•

Chapter 3

[35]

Everything is fairly understandable by default. The module starts like any other
(with a package declaration based on the filename, and use strict and use
warnings). We then load DBIx::Class. After that, we start configuring the table.
First, we load some DBIC components, core for the main functionality, and PK::
Auto to get auto-incrementing primary keys. Next, we tell DBIx::Class that this
module represents the people table in the database. After that, we declare all the
columns in the database. The format is simply pairs of column names and their
definitions. Lastly, we tell DBIx::Class which column is the primary key, so that it
can manage relations for us in an intelligent manner.

We do need to add one line to the bottom of the file manually. As every entry in this
table can have zero or more addresses (entries in the addresses table) associated with
it, it would be useful to access these addresses as though they were data stored in a
column (like the "firstname"). In SQL, this is called a "has many" relationship and we
use the has_many function to make DBIx::Class aware of this relationship.

__PACKAGE__->has_many(
 addresses => 'AddressBook::Schema::AddressDB::Addresses',
 'person',
 {cascading_delete => 1});

This looks pretty complicated but it's just a matter of reading everything right.
The above example is read as, "This package (module, table) has many addresses
in the AddressBook::Schema::AddressDB::Addresses table". The column
that relates addresses to this package is person in the addresses table.
{cascading_delete => 1} is a configuration option that causes any addresses
associated with a person to be deleted when that person is deleted. The name
addresses we chose above is the name we'll use to access the related data when
we have a person object around. It can be anything you want; it need not bear any
resemblance to a column name in either of the affected tables.

We'll also add one method to this class. It is given as follows:

sub name {
 my $self = shift;
 return $self->firstname. ' '. $self->lastname;
}

This will allow us to access the full name of the person by simply calling name on an
instance (much easier that concatenating the firstname and lastname every time
we want to display them together).

Building a Real Application

[36]

Once that's set, we need to do the same things for the auto-generated Addresses.pm.
The code for this file looks pretty much the same as the People.pm file. It is given
as follows:

package AddressBook::Schema::AddressDB::Addresses;

use strict;
use warnings;

use base 'DBIx::Class';

__PACKAGE__->load_components("PK::Auto", "Core");
__PACKAGE__->table("addresses");
__PACKAGE__->add_columns(
 "id",
 { data_type => "INTEGER", is_nullable => 0, size => undef },
 "person",
 { data_type => "INTEGER", is_nullable => 0, size => undef },
 "location",
 { data_type => "VARCHAR", is_nullable => 1, size => 20 },
 "postal",
 { data_type => "TEXT", is_nullable => 1, size => undef },
 "phone",
 { data_type => "VARCHAR", is_nullable => 1, size => 20 },
 "email",
 { data_type => "VARCHAR", is_nullable => 1, size => 100 },
);
__PACKAGE__->set_primary_key("id");

The only modification we need to make is to define a relation from addresses to
people. This relation is called belongs-to relation and looks like the following:

__PACKAGE__->belongs_to(

 person => 'AddressBook::Schema::AddressDB::People');

This simply says that the person column in this table is a foreign key into the
AddressBook::Schema::AddressDB::People table. In terms of coding, this means
that when we access $some_address->person we will get the Person object that this
address is associated with instead of the database's ID number for that person.

That's all we need to do with the Model for this section. Let us put this aside for a
moment and turn our focus to the View.

Chapter 3

[37]

TTSite
TTSite is a Catalyst View that wraps every TT template we use in a header and
footer. This all happens transparently, so we can add some prettiness to our site
without writing any CSS or HTML.

There are a few differences from the standard TT view to be aware of. First,
templates are stored in /root/src instead of /root. TTSite keeps its configuration
in /root/lib, so that's where you'll want to go if you want to change the look of the
site. The configuration is easy to understand—the file called header contains the TT
commands that will be added to the header of the page (and so on).

For this application, we do need to make a few modifications to the default setup.
First, let's remove the default "message" (to display at the top of the page), so we can
specify our own from a controller.

To do this, edit /root/lib/config/main, removing the block of code that looks
like this:

 # set defaults for variables, etc.
 DEFAULT
 message = 'There is no message';

Next, we'll edit the template that formats our main content so that it will show us
a message if it exists (and an error message if one exists). In /root/lib/site/
layout, add the following lines after the <div id="content"> and before the [%
content %] command:

[% IF error %]
 <p>[% error | html %]</p>
[% END %]
[% IF message %]
 <p>[% message | html %]</p>
[% END %]

This change will allow our controllers to set messages (or error) that will display
above the content. This means we can skip the step of adding error screens or success
screens. For example, after adding an address, we can return the user to the list of
addresses and add a message saying Address added successfully!. This is in contrast
to the traditional scheme of having an entire page with the message and a link to
go back.

Finally, we need to edit /lib/AddressBook/View/HTML.pm and add a line to set the
default template extension to .tt2. Simply add the following:

TEMPLATE_EXTENSION => '.tt2',

Building a Real Application

[38]

before the TIMER => 0 line. This will cause Catalyst to automatically pick which
template to render based on the name of the action. For example, the action /
person/edit will automatically use the template in root/src/person/edit.tt2,
which will save us some typing later on.

That's all we need to get a comfortable View set up, so let's start adding some pages!

Creating the Index Page
The first pages we need to add are an index page and a "not found" page. The index
page goes in /root/src/index.tt2, and looks like the following:

[% META title = "Welcome to the Address Book" %]
<p>Here you will find All Things Address.</p>
<p>From here, you can:

Look at all
people
Add a new person</
a>

</p>

As you can see, TTSite saved us a bit of work here. All we have to do is set the title,
and then provide the content. In this case, we're just printing out two links, one
to list all people and another to add a new person. Note that instead of specifying
URLs directly, we use Catalyst.uri_for and then the internal name of the action
(displayed in the debugging output). This ensures that the URL that's generated will
always be correct, even if your application is moved to a different host or subdirectory,
or, if you change your action from Local to Global, or something similar.

Creating a "Not Found" Page
Next, we need a "not found" page to show to the user when they enter an invalid URL.
We'll call this not_found.tt2 and it will live in the same directory as index.tt2:

[% META title = '404 Not Found' %]
<p>We couldn't find the page you were looking for.
Maybe you'd like to
go home instead?
</p>

Chapter 3

[39]

Now that we have the templates, we need to add some actions in the Root
controller that will show them when appropriate. The code in /lib/AddressBook/
Controller/Root.pm should look like this (replacing the auto-generated default and
index actions, but nothing else):

sub default : Private {
 my ($self, $c) = @_;

 $c->response->status('404');
 $c->stash->{template} = 'not_found.tt2';
}

sub index : Private {};

This is the same thing that we did in the last chapter, except in the index action we
don't need to do anything, since TTSite will automatically render index.tt2 when
the index action is called.

With that, we're ready to take a first look at our application. Start up the
development server using the following command line:

$ perl script/addressbook_server.pl -r -d

Then navigate to http://localhost:3000/. The index page should show up like
the following:

Then navigate to http://localhost:3000/this/does/not/exist. You should see
the error page and be able to click a link to get back to the index page.

If that works, we're ready to start writing the real code!

Building a Real Application

[40]

Viewing People
The first link on the index page is Look at all people, so let's create an action that will
display everyone in our database, along with their addresses (if any). We'll also show
links to relevant actions such as "edit name", "add address" and "delete person". The
eventual goal is to have a page that looks something like this:

The page is a little busy, but it conveys all the information that we want to. (You'll
also note that Catalyst and Perl can handle Unicode data flawlessly.)

The first thing we need to do is to create a People controller for managing people.
This controller will have add, delete and list actions for each person. (The list action
actually shows every person, which is convenient even if the grammar isn't perfect.)

We'll be deviating a bit from the standard template controller, so there's no reason to
automatically generate one. Let's just start with this code, inside lib/AddressBook/
Controller/Person.pm:

Chapter 3

[41]

package AddressBook::Controller::Person;

use strict;
use warnings;
use base 'Catalyst::Controller::BindLex';

sub list : Local {
 my ($self, $c) = @_;
 my $people : Stashed = $c->model('AddressDB::People');
 $c->stash->{template} = 'person/list.tt2';
}

1;

This controller is slightly different from the one we used in the last chapter. Instead
of using Catalyst::Controller as our base class, we're using Catalyst::
Controller::BindLex. BindLex works just like a regular controller, but it gives you
the ability to add : Stashed after any variable name to automatically store it in the
stash. This will save us typing when we need to use a value in both the controller
and in the template. Without BindLex, you would use the variable normally in the
controller and then manually save it in $c->stash in order to see the value inside
the template.

After that, we add a Local list action that gets all the People out of the database and
stores them in $people (and $c->stash->{people}). Finally, we set the template to
person/list.tt2, and we're done. (Note that although this action would use that
template by default, we specify it explicitly so that other actions that forward to this
page will also display the list.tt2 template.)

That's all the controller needs to do to create a page like the one in the above
screenshot. Now, we just need the list.tt2 template, inside root/src/person/
list.tt2:

[% META title = 'People' %]

[% IF people.count > 0 %]
<p>Here are people that I know about:</p>

[% WHILE (person = people.next) %]

 [% person.name | html %]
 <a href="[% Catalyst.uri_for("/address/add/$person.id") | html
%]">Add address
 <a href="[% Catalyst.uri_for("/person/edit/$person.id") | html
%]">Edit
 <a href="[% Catalyst.uri_for("/person/delete/$person.id") | html
%]">Delete

Building a Real Application

[42]

 [% SET addresses = person.addresses %]

 [% FOREACH address = addresses %]

 [% address.location | html %]
 <a href="[% Catalyst.uri_for("/address/edit/$address.id") | html
%]">
 Edit
 <a href="[% Catalyst.uri_for("/address/delete/$address.id") | html
%]">
 Delete

 <address>
 [% address.postal | html | html_line_break %]
 </address>
 Phone: [% address.phone | html %]

 Email: [% address.email | html %]

 [% END %]

[% END %]

[% ELSE %]
<p>No people yet!</p>
[% END %]
<p>
 Add a new person...
</p>

This looks fairly complex, but it's mostly HTML that makes the data from the
database look nice. The bulk of the code consists of a WHILE loop that iterates over
each Person in the database. Once we have a Person object, we can print out the first
name, last name and some links to pages where we can edit and delete people and
addresses (we'll create these pages later). After that, we get an array of Addresses
associated with this person (from the relationship we added to the schema earlier in
the chapter). We iterate over each element in that array and print out the location,
postal address, phone number and email address associated for that address. When
there are no more addresses, we return to the WHILE loop and get the next Person in
the database. This continues until everything in the database has been printed.

To see this in action, start up the server, add some new people and addresses
to the database (via the sqlite3 utility) and watch them appear on the page at
http://localhost:3000/person/list.

Chapter 3

[43]

Basic CRUD
Let's start by writing the easiest method, a method to delete a person from the
database. All we need is a simple action in the Person controller:

sub delete : Local {
 my ($self, $c, $id) = @_;
 my $person : Stashed = $c->model('AddressDB::People')->
 find({id => $id});

 if($person){
 $c->stash->{message} = 'Deleted '. $person->name;
 $person->delete;
 }
 else {
 $c->stash->{error} = "No person $id";
 }

 $c->forward('list');
}

This action will create a URL that looks like /person/delete/1, where 1 is the
person's ID number in the database. Using that ID number that's passed in the URL,
we look for the row in the database with that ID. If we find one, we set the status
message to Deleted Person's Name and then delete the person. (The delete method
will also remove any addresses that were associated with that person.) If there's no
person in the database matching that ID, we set an error message instead.

Regardless of the outcome, we forward back to the list page we came from. There,
the new data will show up, with an appropriate message at the top of the screen.
This makes it very easy for the user to be sure that his action took effect—there's a
message saying that it did and the user can look at the list of people and confirm
that the person deleted is gone—and it makes it easy to perform another operation,
as he doesn't have to navigate anywhere. The only disadvantage is that the URL in
the URL bar is no longer correct. For now, we'll live with this, but in the next chapter
we'll see how to keep the URL correct and forward the user around in the same way.

Forms
Now that you've deleted the sample row you added when you created the database,
we'll need to implement methods for adding (and editing) a person.

Building a Real Application

[44]

Since creating and validating HTML forms is a repetitive and boring task, we're
going to use Catalyst::controller::FormBuilder to automatically build our
forms. All we have to do is create a definition of the form and FormBuilder will
generate the HTML and validate it when the user submits it. If there's a problem
with one of the fields, FormBuilder will return the form to the user with an
appropriate message. If the user's browser supports JavaScript, FormBuilder will
validate the form on the client side to save a round-trip. (The data will be validated
again on the server and rejected if it's bad. This prevents users from turning off
JavaScript and submitting bad data.)

The first form to add is the "edit name" form. Since the action will be located at '/
person/edit', the form definition will live in the /root/forms/person/edit.fb
file. This file contains the following:

name: person_edit
method: post
fields:
 firstname:
 label: First Name
 type: text
 size: 30
 required: 1
 lastname:
 label: Last Name
 type: text
 size: 30
 required: 1

We'll also need a template where we can render this form, so inside /root/src/
person/edit.tt2, we'll add a very small template:

[% META title = "Edit a person" %]
[% form.render %]

This is all we need to generate a form for adding a person or changing a person's
name. Before we add all the form logic, let's write a simple action in the Person
controller so we can see what the form looks like:

sub edit : Local Form {
 my ($self, $c) = @_;

 if ($c->form->submitted && $c->form->validate) {
 $c->stash->{message} = 'Thanks for submitting the form!';
 }
}

Chapter 3

[45]

We also need to inherit from Catalyst::Controller::FormBuilder at the top of
the Controller file:

use base qw(Catalyst::Controller::FormBuilder Catalyst::Controller::
BindLex);

This new use base line will replace the existing line (which only loads BindLex).

You can now start up the development server and navigate to
http://localhost:3000/person/edit. You should see the form that you
defined in the edit.fb form definition file. Try entering some text and clicking
submit. If your entries are acceptable (according to the constraints specified in the
form definition), then $c->form->validate will return true and the Thanks for
submitting the form! message will appear at the top of your page. If you manage
to submit some invalid data (one of the names left blank, for example), then
FormBuilder will return you to the form and mark the fields that have errors in red.

Now that our form works, we just need to add some database logic to have a fully
working action. The final action looks like this:

sub edit : Local Form {
 my ($self, $c, $id) = @_;

 my $person = $c->model('AddressDB::People')->
 find_or_new({id => $id});

 if ($c->form->submitted && $c->form->validate) {
 # form was submitted and it validated
 $person->firstname($c->form->field('firstname'));
 $person->lastname ($c->form->field('lastname'));
 $person->update_or_insert;

 $c->stash->{message} =
 ($id > 0 ? 'Updated ' : 'Added ') . $person->name;

 $c->forward('list');
 }
 else {
 # first time through, or invalid form

 if(!$id){
 $c->stash->{message} = 'Adding a new person';
 }

 $c->form->field(name => 'firstname',
 value => $person->firstname);

 $c->form->field(name => 'lastname',
 value => $person->lastname);
 }
}

Building a Real Application

[46]

Here's what happens: The action is set up to accept the numeric ID of the person
to edit. We use this ID number to view the person with that ID in the database via
the find_or_new DBIC method. The find method by itself will work for locating
existing records, but using find_or_new instead will create a new record if there's
no matching record already in the database. The new record that is created is not
actually written to the database; it only exists in memory. Only when we insert the
record explicitly will it be created in the database. This allows us to call find_or_new
each time the action is called because we only insert_or_update the record when
we've verified that the data is valid. (If we used find_or_create instead of find_
or_new, we'd create a record every time someone requested the form. That would
lead to a lot of useless data in the database.)

After we have a record to manipulate, we check whether the form has been
submitted ($c->form->submitted) and if so, whether the form data is valid
according to the edit.fb file ($c->form->validate). If both of these conditions are
true, we transfer the data from the form to the database and then update_or_insert
the record (insert if the record is new, update if it already exists; DBIC will figure out
which one is appropriate). Then, we add a message to the stash, and forward it to the
list page (so the user can edit another person and see the new person along with the
existing people).

If the form hasn't been submitted yet, or the data's not valid, we transfer the
firstname and lastname from the database to the form and let FormBuilder display
the form (again). Although we transfer the database information to the form each
time, the submitted form data will override the database data. This can be prevented
by passing the force => 1 option to $c->form->field, in which case the database
data will override the form data.

Although the edit action actually handles adding new entries, it's a good idea to
have a separate add action as well. This will allow you to be flexible in the future; if
you decide that the add form should be different from the edit form, you can make
that change without finding all links to edit that actually add. (Make sure that you
use $c->uri_for('/person/add') instead of $c->uri_for('/person/edit')
when generating links though. Even though they do the same thing now, they won't
if you change the add action later.)

Here's the add action that redirects the user to the edit action:

sub add : Local {
 my ($self, $c) = @_;
 $c->response->redirect($c->uri_for('edit'));
}

Chapter 3

[47]

If you'd prefer not to do a client-side redirect, you can add code like this instead:

sub add : Local Form('/person/edit') {
 my ($self, $c) = @_;
 $c->stash->{template} = 'person/edit.tt2';
 $c->forward('edit', []);
}

This makes for a cleaner application, but makes for extra typing to get the
same functionality.

The [] in the forward statement tells Catalyst to throw away any arguments that
were passed to the action. This way, visiting the URL /person/add/2 will add a new
person, not edit person #2.

Finishing Up
The final feature we need to add to our address book is an address editing controller,
with methods for adding, editing and deleting addresses. Even though the address
data is more complicated than the simple firstname/lastname records that we were
working with before, the code is almost exactly the same.

Let's start by creating a template for the address editing form, in root/src/
address/edit.tt2:

[% META title = "Address" %]
<p>Here's some text explaining the form below. Only the "location"
field is required, etc., etc.</p>
[% form.render %]

This looks just like the name editing form. In a real application, you will want to add
some text explaining the form so that your users know what constraints are placed
on the data. Since this is just another template, you can add as much text before or
after the form as you feel is appropriate. You can also use variables from the stash,
and so on.

Next, we want to add a definition of the form in root/forms/address/edit.fb.
This can be done in the following manner:

name: address_edit
method: POST
title: Address
fields:
 location:
 label: Location
 type: select

Building a Real Application

[48]

 options: Home, Office, Mobile
 other: 1
 required: 1

 postal:
 label: Mailing Address
 type: textarea
 rows: 4
 cols: 60

 phone:
 label: Phone Number
 validate: PHONE

 email:
 label: E-Mail Address
 validate: EMAIL

In this form, we're taking advantage of some of FormBuidler's more advanced
features. The first field, location, is declared to be a dropdown menu with "Home",
"Office", and "Mobile" as options. We also tell FormBuilder to provide an "other"
option. This will create a textfield that can be filled out to declare a location other
than one of the options we explicitly mentioned. FormBuilder will automatically
generate the JavaScript required to hide and unhide this field as appropriate.

The phone and email fields are also special. Since we want to make sure that the user
submits realistic phone numbers and email addresses, we tell FormBuilder to use its
built-in EMAIL and PHONE validators (see the FormBuilder documentation for a full
list of validation types). If the built-in validation functions don't meet your needs,
you can also specify a regular expression in single quotes instead. FormBuilder will
generate the JavaScript equivalent of this regex for client-side validation and then
use the regex as you specified it for the server-side validation. This is extremely
convenient for complicated forms.

With that out of the way, all we need to do is write the controller, lib/
AddressBook/Controller/Address.pm:

package AddressBook::Controller::Address;

use strict;
use warnings;
use base qw(Catalyst::Controller::FormBuilder Catalyst::Controller::
BindLex');

sub add : Local Form('/address/edit') {
 my ($self, $c, $person_id) = @_;
 $c->stash->{template} = 'address/edit.tt2';
 $c->forward('edit', [undef, $person_id]);
}

Chapter 3

[49]

sub edit : Local Form {
 my ($self, $c, $address_id, $person_id) = @_;

 my $address : Stashed;

 if(!$address_id && $person_id){
 # we're adding a new address to $person
 # check that person exists
 my $person = $c->model('AddressDB::People')->
 find({id => $person_id});
 if(!$person){
 $c->stash->{error} = 'No such person!';
 $c->detach('/person/list');
 }

 # create the new address
 $address = $c->model('AddressDB::Addresses')->
 new({person => $person});

 }
 else {
 $address = $c->model('AddressDB::Addresses')->
 find({id => $address_id});

 if(!$address){
 $c->stash->{error} = 'No such address!';
 $c->detach('/person/list');
 }
 }

 if ($c->form->submitted && $c->form->validate){
 # transfer data from form to database
 $address->location($c->form->field('location'));
 $address->postal ($c->form->field('postal'));
 $address->phone ($c->form->field('phone'));
 $address->email ($c->form->field('email'));
 $address->insert_or_update;
 $c->stash->{message} =
 ($address_id > 0 ? 'Updated ' : 'Added new ').
 'address for '. $address->person->name;
 $c->detach('/person/list');
 }
 else {
 # transfer data from database to form
 if(!$address_id){
 $c->stash->{message} = 'Adding a new address ';
 }

Building a Real Application

[50]

 else {
 $c->stash->{message} = 'Updating an address ';
 }
 $c->stash->{message} .= ' for '. $address->person->name;

 $c->form->field(name => 'location',
 value => $address->location);

 $c->form->field(name => 'postal',
 value => $address->postal);

 $c->form->field(name => 'phone',
 value => $address->phone);

 $c->form->field(name => 'email',
 value => $address->email);
 }
}

sub delete : Local {
 my ($self, $c, $address_id) = @_;

 my $address = $c->model('AddressDB::Addresses')->
 find({id => $address_id});

 if($address){
 # "Deleted First Last's Home address"
 $c->stash->{message} =
 'Deleted ' . $address->person->name. q{'s }.
 $address->location. ' address';

 $address->delete;
 }
 else {
 $c->stash->{error} = 'No such address';
 }

 $c->forward('/person/list');
}

1;

This controller employs the same techniques as the Person.pm controller, but
some of the details are different. First, the edit action accepts two arguments, the
address's ID and the person's ID. This creates a URL like /address/edit/0/5.
This is so the edit action can also create new addresses. When we edit an address,
we specify only the address ID. When we want to create an address, we leave the
address ID undefined (or zero) and specify the person's ID instead. This is a little
unwieldy, so we abstract these details out to the add action. The add action accepts
the person's ID and then forwards the appropriate data to the edit action.

Chapter 3

[51]

Once inside the edit action, we determine whether we're adding or editing. If we're
adding, we create a new row in the database that's linked to the person that was
passed in. Note that when we create the row, we assign the actual person object to
the person column, not the person's ID number. Although the database actually
stores the relation from an address to its person via an ID number, this is a detail
that DBIC handles for us. We only have to think about what we mean, not how the
database represents relations.

If it turns out the person ID that was passed doesn't exist in the database, we return
the user to the list of people and addresses with an error message at the top.

If we're instead editing an existing address, we just look up the address by the
address ID number that was passed into the action. If we can't find one, we return
the user to the list page with an error message.

At this point, we have an address object (existing or newly-created) that we can
use to populate the form. The rest of the action looks just like the one for adding or
editing a person, except we have a few more fields this time.

The address delete action also works exactly like the person deletion action, except
we delete an address object instead of a person object.

Since we already added code to list addresses to the /person/list template, we can
restart the server, browse to that page (http://localhost:3000/person/list) and
try adding some addresses. You should now have full creation, listing editing, and
deletion facilities, all tied together with a consistent look-and-feel.

Summary
In this chapter, we created a full CRUD application. We started by creating a
database schema inside of SQLite. Then we created a Catalyst model for accessing
this database. Since SQLite doesn't handle foreign key relations by itself, we added
information about the relations between tables directly to the DBIC schema files.
Once that was set up, we customized the TTSite View and created a page that
listed all people and addresses in the database. Then, we created a controller to
edit, add and delete people. The edit and add actions were simple forms, so we
used Catalyst::Controller::FormBuilder to generate and validate the forms
automatically. After this controller was built, we created a similar one to add, edit
and update addresses, again using FormBuilder to generate the form HTML and
JavaScript for us.

Expanding the Application
In this chapter, we will continue to work with our address book application and
add some features that almost every application needs. We'll see how to move
the configuration options out of application code and into an easy-to-maintain
configuration file. We'll also learn how to search a database and create search
results that span multiple pages. To bulk up our database so that searching is more
meaningful, we'll write a script to import CSV files into the address book. We will
also add sessions to our application, so that data can persist between requests.
Finally, we'll explore authentication and authorization by implementing page-level
and record-level access control.

Configuration Files
The first new feature we'll add to our address book is the ability to be configured
from an outside configuration file. This will allow us to easily change configurable
aspects of our application without having to touch any of the application code. This
is helpful during development, but really shines when a non-programmer (like
an end-user or a system administrator) needs to change a minor setting when the
application is in production.

This feature will also be the easiest to add. Catalyst is set to read configuration from
a file by default, and it creates an example configuration file in the application's
main directory. In our case, the file is called addressbook.yml. This file is in the
YAML format, which is convenient for configuration because every data structure in
Perl can be described by YAML natively. If you don't like YAML, you can use any
configuration file format that Config::Any supports. At the time of this writing, that
means XML, Config::General (Apache-style), INI, JSON, and or a Perl script. To
use one of these instead of YAML, just rename the config file have an extension that
your desired format usually uses (xml for XML, ini for INI, js for JSON, pl for Perl,
conf for Config::General).

Expanding the Application

[54]

The simplest piece of configuration data you can add to your application is a single
key/value pair. In YAML syntax, a configuration option foo set to bar will look like:

foo: bar

Inside your application, you can access the value of foo via the config method in
the application object:

print "Foo is: ". $c->config->{foo};

You can also configure individual Components (Models, Views and Controllers)
from the config file by creating a key with the component type and component
name separated by a double colon. For example, the configuration for MyApp::
Model::MyDatabase would be under the Model::MyDatabase key. Setting the key
foo to value bar inside MyDatabase would look like the following:

Model::MyDatabase:
 foo: bar

You can also configure directly inside the class where you use Catalyst :

package MyApp;
use Catalyst qw(...);

...
__PACKAGE__->config->{Model::MyDatabase} = { foo => 'bar' };
...
__PACKAGE__->setup;
1;

To get at the from inside Model::MyDatabase, you can simply access a piece of class
data with the name of the key:

$my_foo = $self->{foo};

It's better to explicitly create an accessor method, though:

package MyApp::Model::MyDatabase;
use base 'Catalyst::Model';
__PACKAGE__->mk_ro_accessors('foo');

sub show_foo {
 my $self = shift;
 print "foo is equal to ". $self->foo;
}

Chapter 4

[55]

In this example, we didn't need to access anything from a hash because Catalyst
automatically created a (read-only) accessor method. The advantage of creating a
method to access the data is that mistyping the name in your code somewhere will
result in an error (instead of silently returning an undefined value). We also gain the
ability to prevent writing, or perhaps return a default value if one isn't specified in
the config file..

A module called Class::Accessor::Fast is used to create the accessors (and is
where the mk_ro_accessors method comes from), so you are free to do anything
that is mentioned in the Class::Accessor documentation. Catalyst doesn't require
you to use Class::Accessor, though; you could also write the accessor/mutator
methods manually, or omit them entirely and just get everything out of the $self
hash. You are free to do what works best for your application.

Configuring the Address Book
At this point, our Address Book doesn't have many options to configure.
However, there is one critical option: the location of the database. Looking inside
AddressBook::Model::AddressDB, we can see that the database's location is hard-
coded to the value that we initially specified. Fortunately, if we specify a database
in the config file, it will override the hard-coded value. This means we don't have
to modify any code to use a different database; we simply need to add the following
option to our addressbook.yml file:

Model::AddressDB:
 connect_info:
 - DBI:SQLite:__HOME__/database

The - in YAML means an "array element" and in DBIC models (like AddressDB), the
configuration information is an array of four elements. The first element is the DBI
connection string. The second and third elements are the database username and
password, respectively. The final element is a hash of configuration attributes to pass
on to the database driver. DBIx::Class and Catalyst don't actually interpret this
data, they just pass the array on to a DBI->connect call.

As SQLite doesn't use usernames or passwords, we haven't specified them in
our configuration.

A configuration entry for a MySQL database (which does use usernames and
passwords) would look similar:

Model::AddressDB:
 connect_info:
 - DBI:mysql:address_database
 - username
 - password

Expanding the Application

[56]

Keep in mind that YAML uses the line's indentation level to determine which keys
and values belong to each other. Therefore, it's critical that elements are properly
lined up and that only spaces are used to indent rather than tabs.

Sessions
A feature that almost every web application needs is the ability to store application
state for a certain user between requests. HTTP alone treats each request as being
completely unrelated to every other request. This is usually undesirable in the
context of a web application because some data needs to persist between page
loads. For example, it would be very inconvenient to require a user to type his/her
username and password on every page to authorize the next action. Sessions are
the solution to this problem. When a user first visits your application, Catalyst will
supply him/her with a token to identify him/herself for a certain amount of time.
Whenever that token is supplied with a request, Catalyst will find its session data
and make it accessible in your controllers throughout the request.

To get started with sessions, you'll need to install some modules and load the
appropriate session plug-ins into your application. The modules we'll need to install
are Catalyst::Plugin::Session, Catalyst::Plugin::Session::State::Cookie,
and Catalyst::Plugin::Session::Store::FastMmap or Catalyst::Plugin::
Session::Store::File.

Catalyst's session engine consists of three parts. The first is Catalyst::Plugin::
Session, which provides general session functionality. For the session plug-in to
work, it needs to be able to do two things—store session data somewhere and be
able to get a session id token from each user. The most common form of a token is a
cookie that's stored on the user's machine. When your application sets a cookie, the
browser will store it and attach it to every request. Catalyst will see this cookie and
then restore the appropriate session data. To use cookies to manage sessions, load
Catalyst::Plugin::Session::State::Cookie into your application.

However, if the user's have disabled cookies for some reason, then this won't work.
Nearly every browser and robot on the web today supports cookies, though, so
you shouldn't have to worry about browser support. If you absolutely cannot use
cookies, try Catalyst::Plugin::Session::State::URI, but be aware that it can
be buggy because it works by rewriting every link on your generated pages to
include the session identifier in the URL. (It can also open up security issues. If a user
follows a link to an external website, the external website will be able to retrieve the
session id from the Referrer header and then steal the user's session. Therefore, it's
recommended that you just use cookies.)

Chapter 4

[57]

Once you have a way to identify each user, you'll need to store the data somewhere.
The most convenient method for this is Catalyst::Plugin::Session::Store::
FastMmap. FastMmap will store session data in a memory mapped file, which is fast
and efficient but won't be shared between load-balanced machines or persist between
runs of your server. (Note that FastMmap won't work on Windows, but you can use
Catalyst::Plugin::Session::Store::File instead.) Storing the session data in
your database will eliminate these problems, but it will be slightly slower. Most real
applications won't notice the speed difference. For development, Session::Store::
File and Session::Store::FastMmap are the most convenient as they require no
additional configuration.

After you've decided on which Session::Store and Session::State back-ends
to use, simply list them with the other plug-ins. Your AddressBook.pm should look
something like this:

use Catalyst qw/ConfigLoader Static::Simple
 Session Session::State::Cookie Session::Store::FastMmap/;

When you restart your application, the first request will result in a cookie being set.
Each subsequent request with that cookie will be in the same session. You'll also
have access to a few new methods in your context object. The most useful are
$c->session and $c->flash. These methods both work like $c->stash, except they
persist for more than one request. Data stored with $c->session will persist until
the session expires (which you can check via the $c->session_expires accessor).
$c->flash is a little bit more complicated. It works like the stash, but will persist
between HTTP redirects (explained in detail later in this chapter). Once it's read or
written to after a redirect, it will be cleared out.

The most convenient way of using the flash is to set:

__PACKAGE__->config(session => {flash_to_stash => 1});

in AddressBook.pm with the rest of your configuration options. With this turned on,
the flash from the last request will automatically become the stash for the current
request. We'll see how this is helpful in the next section.

Adding Sessions to the Address Book
Our address book doesn't need sessions in the traditional sense quite yet. It doesn't
need to store any data between requests, because nothing is specific to a single user.
Every user has the same privileges and every operation changes the data for every
other user. However, we can use sessions to improve the user interface.

Expanding the Application

[58]

In the version of AddressBook from Chapter 3, we programmed our mutator
operations (/person/delete, for example) to set a message key in the stash and then
forward back to the list action. This made deletes seamless—the user just clicked
delete and then saw the updated list of people with a message at the top saying that
the person had been successfully removed. The only problem was that the URL in
the browser was still at /person/delete/number instead of /person/list. If a user
bookmarked that URL assuming that it would lead them to the list of people, they
could accidentally delete a person or just get an error message.

Catalyst will let us do better than that. To get the user's URL bar to show the real
URL, we need to redirect him (via an HTTP redirection code) to the user list page. If
we did that without sessions, everything in the stash would be lost and we wouldn't
be able to display a status message at the top of the page. Thanks to the flash
though, we can tell Catalyst to display the message on the next page load instead of
the current page. All we need to do is enable flash_to_stash as above, store the
message in $c->flash, and issue an HTTP redirect to the user list. Here's the code
that implements this for the person deletion action:

if($person){
 $c->flash->{message} = 'Deleted ' . $person->name;
 $person->delete;
}
else {
 $c->flash->{error} = "No person $id";
}

$c->response->redirect($c->uri_for('list'));
$c->detach();

The only difference between this and the old code is that we are using the flash
instead of the stash, and so we redirect instead of forward at the end.

The syntax for redirection might be a bit confusing. Redirection works by setting a
header in the HTTP response, and then sending the browser a normal page. As the
browser is outside the realm of Catalyst, we have to convert the name of the action to
a real fully-qualified URL. We then set the necessary response header ("Location:") to
that URL. The $c->detach() line will stop all further processing of actions and jump
directly to the end action. In this case it's not strictly necessary (since the end action
will be called immediately anyway), but if you're inside some if/then statements,
detach will get you out as quickly as possible. After you detach, the default end
action will see that this response is a redirect and pass that on to the browser without
rendering a template.

Chapter 4

[59]

When the browser requests the /person/list page, Catalyst will restore the session,
move the flash to the stash, and then handle the request as normal. (If this isn't
working for you, make sure you enabled the flash_to_stash configuration option
as described above.) At the end of the request, the message from the flash will be
displayed on top of the page, just like before. This will all be transparent, so you
won't have to change the templates at all.

Forwarding will continue to work as before, but you can gradually convert from
forwarding to redirection as you see it. Now your users have the best of both
worlds. They can bookmark any page and go to the right place, while still receiving
informative status messages where necessary.

Sessions in the Database
If you plan on deploying your application across multiple servers (via a load
balancer), putting sessions in the database can make your life easier. You won't need
to ensure that each user gets the same server for every request—everything will
work perfectly even if the user moves between servers. That means that you can also
take servers down without anyone losing data.

The setup isn't quite as simple as with Session::Store::FastMmap or Session::
Store::File, but it is straightforward. The first thing to do is to create a sessions
table in your database as follows:

CREATE TABLE sessions (
 id CHAR(72) PRIMARY KEY,
 session_data TEXT,
 expires INTEGER
);

Then, add a schema file, lib/AddressBook/Schema/AddressDB/Session.pm to your
DBIC schema as follows:

package AddressBook::Schema::AddressDB::Session;
use base qw/DBIx::Class/;
__PACKAGE__->load_components(qw/Core/);
__PACKAGE__->table('sessions');
__PACKAGE__->add_columns(
 id => { data_type => "CHAR", is_nullable => 0,
 size => 72 },
 session_data => { data_type => "TEXT", is_nullable => 1,
 size => undef },
 expires => { data_type => "INTEGER", is_nullable => 1,
 size => undef}
);
__PACKAGE__->set_primary_key('id');
1;

Expanding the Application

[60]

Then all you have to do is use Session::Store::DBIC instead of Session::
Store::FastMmap and add the following configuration option in AddressBook.pm:

__PACKAGE__->config(session => {
 dbic_class => 'AddressDB::Session',
 flash_to_stash => 1 });

When you restart your application, session information will be stored in your
DBIC model.

Using Components from Outside Catalyst
As you start using the address book, you might want to be able to import and export
data in a standard format. You could add a web interface for this functionality, but
sometimes it's easier to just write a quick shell script to parse some outside data
and enter it into our database. Thanks to the flexibility of Catalyst, scripts running
outside of the main application can use the same Model (and even other components,
if you can dream up a use for them) as the application and manipulate the
database directly.

Using the DBIx::Class schema externally is pretty straightforward. All we need to
do is use the Schema, connect to it and add the data.

Let's write a script in the script directory that will accept lines of CSV-formatted
data (for example, "Firstname,Lastname,Home,123 Fake Street,123-456-
7890,address@example.com") and add them to the database. We start our script by
creating it in script/import_csv.pl and writing a bit of documentation:

#!/usr/bin/perl

=head1 NAME
import_csv.pl - imports CSV files into the address book

=head1 FORMAT

The data should be in CSV format with the following fields:

 firstname, lastname, address location, address, phone, email

=cut

Next, we'll load the Text::CSV_XS module to parse the CSV data for us.

use Text::CSV_XS;

Chapter 4

[61]

Here's the tricky part:

use FindBin qw($Bin);
use Path::Class;
use lib dir($Bin, '..', 'lib')->stringify;

We want our application to work on any platform and be able to find the
configuration file so that we can find the database automatically. We start by using
the FindBin module to find the filename of our script (placed in the $Bin variable).
As we put the script in script/import_csv.pl and our Catalyst application is
rooted one level above, we use the Path::Class module to generate the filename
of the lib directory that's one level above the location of our script. We use Path::
Class instead of just writing $Bin/../lib, so that the script will run under
operating systems other than UNIX. Once we have a filename, we pass it to the lib
pragma to tell Perl to look for modules (our Schema) in that path.

Now we can safely load the schema and YAML to parse the config file:

use AddressBook::Schema::AddressDB;
use YAML 'LoadFile';
use strict;

Here we use the same FindBin trick to find the location of our configuration file. We
then load it and replace __HOME__ in the database's path with the root directory of
our application (as Catalyst does when it loads the configuration file):

my $config = LoadFile(file($Bin, '..', 'addressbook.yml'));
my $dsn = $config->{'Model::AddressDB'}->{connect_info}->[0];
my $HOME = dir($Bin, '..');
$dsn =~ s/__HOME__/$HOME/;

Our database's connection information in now in $dsn, and we can simply connect to
the schema:

my $schema =
 AddressBook::Schema::AddressDB->connect($dsn)
 or die "Failed to connect to database at $dsn";

From there, everything works as it did inside our application, with a few caveats.
Instead of using $c->model('AddressDB::TableName'), we write $schema-
>resultset("TableName").

while(my $line = <>){
 eval {
 my $csv = Text::CSV_XS->new();
 $csv->parse($line) or die "Invalid data";
 my ($first, $last, $location, $address, $phone, $email)

Expanding the Application

[62]

 = $csv->fields();

 my $person = $schema->resultset('People')->
 find_or_create({ firstname => $first,
 lastname => $last,
 });

 $schema->resultset('Addresses')->
 create({ person => $person,
 location => $location,
 postal => $address,
 phone => $phone,
 email => $email,
 });
 print "Added @{[$person->name]}'s $location address.\n";
 };
 if($@){
 warn "Problem adding address: $@";
 }
}

The main loop is pretty simple. We first use Text::CSV_XS to parse the current line
(STDIN or files specified on the command line) into the fields—first name, last name,
location, postal address, phone number and email address. We then use the first
name and last name to locate an entry in the people table (or create it if it doesn't
exist). Then we use that person object to create an appropriate row in the address
table, using the rest of the data. If that works, we print out a message saying we
added the user and then move on to the next line in the data file.

We also wrap the entire procedure in an eval{} block so that we can print an error
message and move onto the next piece of data if there's an error.

There's one more thing we need to do before we can run this. The find_or_create
method will only work if you guarantee to DBIx::Class that each firstname and
lastname combination is unique. We do this by creating a UNIQUE constraint
in the database and then adding the following line to AddressBook::Schema::
AddressDB::People:

__PACKAGE__->add_unique_constraint(name =>
 [qw/firstname lastname/]);

This tells DBIx::Class that the columns firstname and lastname, taken together,
are unique (like a primary key). We name this constraint "name" so that we can
distinguish between it and other constraints.

Chapter 4

[63]

After you add that line to your schema, you should be able to run the application:

$ perl script/import_csv.pl

Test,Person,Home,123 Home St.,123-456-7890,home@example.comhome@example.com

Test,Person,Work,123 Work ST.,890-123-4567,work@example.com,work@example.com

^D

$

Now when we visit the website, we'll see a Test Person with a Work and Home
address! As you can see, sometimes it's very convenient to access your application
without a web interface. Some infrequent operations, like reporting or bulk imports,
are easier to perform from the command line.

We'll conclude with a script to generate some random CSV data:

#!/usr/bin/perl

=head1 NAME

random_addresses.pl – generate random addresses

=head1 USAGE

Run like C<perl script/random_addresses.pl | perl script/import_csv.
pl>

=cut

my @names = qw(Foo Bar Baz Test Jonathan Rockway Person Another A);
my @locations = qw(Home Work Mobile Fax Test);
my @streets = qw(Green Oak Elm 60th Fake State Halsted);

for(1..200){
 my $first = $names[rand @names];
 my $last = $names[rand @names];
 my $where = $locations[rand @locations];
 my $number = int rand 9900 + 100; # 3-digit street number
 my $street = $streets[rand @streets];
 my $address = "$number $street St.";
 my $phone = join '-', (int rand 800 + 100, int rand 899 + 100,
 int rand 8999 + 1000);
 my $email = "$first.$last\@$where.example.com";
 print "$first,$last,$where,$address,$phone,$email\n";
}

Then we can run:

$ perl script/random_addresses.pl | perl script/import_csv.pl

When the above command finishes, you'll have 200 new addresses in your
database—just in time for the next section on searching!

Expanding the Application

[64]

Thanks to the import script, our application now has all the power of the UNIX
command line. Anything that can generate CSV data can now communicate with the
application. (You can also try opening up the generated random addresses in your
spreadsheet program; it should work fine.)

Searching and Paging
Now that our application is starting to accumulate a significant quantity of data,
it would be nice to be able to search it. In this section, we'll create an interface for
searching addresses and names and displaying the search results. We'll start with a
form for defining what the user wants to search for:

Chapter 4

[65]

Then we'll search and display the results:

The first thing we'll do is create a Search controller and then write the database logic
for searching.

Expanding the Application

[66]

To do this, we'll first create lib/AddressBook/Controller/Search.pm. We'll have a
single action that will generate a search form and then display results when the form
is submitted as follows:

package AddressBook::Controller::Search;
use strict;
use warnings;
use base qw(Catalyst::Controller::FormBuilder Catalyst::Controller::
BindLex);
sub search : Global Form {
 my ($self, $c, $query) = @_;
 my $form = $self->formbuilder;

 # get query from the URL (or the form if there's nothing there)
 $query ||= $form->field('query')
 if($form->submitted && $form->validate);

 return unless $query; # no query? we're done

 $c->stash->{query} = $query;
 my @tokens = split /\s+/, $query;
 my $result : Stashed;

 if('Names' eq $form->field('domain')){
 $result = $c->forward('search_names', \@tokens);
 $c->stash->{'template'} = 'search/name_results.tt2'
 }
 else {
 $result = $c->forward('search_addresses', \@tokens);
 $c->stash->{'template'} = 'search/address_results.tt2'
 }

 my $page = $c->request->param('page');
 $page = 1 if($page !~ /^\d+$/);
 $result = $result->page($page);
 my $pager : Stashed = $result->pager;
}

This is the bulk of the controller. We start by getting a query string from the form or
the URL. If the form is empty, we halt further processing and redisplay the form.

If there is a search, we tokenize the search string by splitting the string into an array
of words. Our search is going to be a very simple search—it will look for any word
in any field. The search will also be limited to either names or addresses, not both.
In the next few lines, we determine whether the search domain is addresses or names
and forward to a sub-action to actually do the search. When that action returns, we
set the necessary template (name_results for the name search results, address_
results otherwise).

Chapter 4

[67]

Finally, we'll account for paging the results. Instead of displaying every result on one
page, we'll split it up to show only 10 results per page. To do this, we simply call the
page method on the resultset. Page will return a new resultset that will only contain
10 results. Also, if there's a numeric "page" parameter set in the URL, we'll skip to
that page of the resultset ($page). Otherwise, we'll display the first page.

Lastly, we'll get a "pager" for this resultset. The pager is a Data::Page object and
stores metadata about the paged resultset. It will allow us to easily create links to the
first page of results, last page, next page, and previous page, and also contains the
number of results on this page, the total number of results, the total number of pages,
etc. You could manually calculate these things, but it's tricky and time consuming to
get it right. Catalyst and DBIx::Class will handle all the tedious details of paging
results automatically.

That's the bulk of our search. The next methods send the actual search requests to
the database:

sub search_addresses : Private {
 my ($self, $c, @tokens) = @_;

 my @address_fields = qw/postal phone email location/;
 @address_fields = cross(\@address_fields, \@tokens);

 return $c->model('AddressDB::Addresses')->
search(\@address_fields);
}

sub search_names : Private {
 my ($self, $c, @tokens) = @_;

 my @people_fields = qw/firstname lastname/;
 @people_fields = cross(\@people_fields, \@tokens);

 return $c->model('AddressDB::People')->

search(\@people_fields);
}

sub cross {
 my $columns = shift || [];
 my $tokens = shift || [];

 map {s/%/\\%/g} @$tokens;

 my @result;
 foreach my $column (@$columns){
 push @result,
 (map +{$column => {-like => "%$_%"}}, @$tokens);
 }
 return @result;
}

1; # End the module with a true value!

Expanding the Application

[68]

Most of the work is done in the cross subroutine, which generates a list of all
columns paired with all the search tokens. As we're doing a text search, we want
to use the LIKE predicate and enclose the terms in %. The SQL we want for a name
search of "Test Person" is:

SELECT * FROM people WHERE firstname LIKE '%Test%' OR
firstname LIKE '%Person%' OR lastname LIKE '%Person%' OR
lastname LIKE '%Test';

In DBIx::Class notation, we want:

$c->model('AddressDB::People')->
 search([{ firstname => {-like => '%Test%'}},
 { firstname => {-like => '%Person%'}},
 { lastname => {-like => '%Test%'}},
 { lastname => {-like => '%Person%'}}]);

The cross routine simply returns the part that's inside of search([]).

Now that our logic is configured, we just need to generate the HTML. As with the
forms in the last chapter, we'll use FormBuilder to automatically generate the search
page. First, we'll create a root/forms/search/search.fb form as follows:

name: search
method: GET
header: 1
title: Search
fields:
 query:
 label: Query
 type: text
 required: 1
 domain:
 label: Domain
 options: Names, Addresses
 required: 1

submit: Search

We're using the GET method this time so that we can redo the search (via the results
page) for each page. The first page will be at the URL /search?query=Something,
the second page will be at /search?query=Something&page=2, etc. We need the
basic template to display this form as well:

[% META title="Search" %]
Search for people or addresses:
[% FormBuilder.render %]

Chapter 4

[69]

As you'd expect, that file lives in root/src/search/search.tt2.

The next thing to take care of is the results page. As the name results and address
results pages are very similar, we're going to create a wrapper template that those
two results will include. We'll just put it in root/src/search/results_wrapper.
tt2 so we can include it in the real templates with a minimum of effort. Here's
the code:

<h2>Search for [% query | html %]</h2>

<p>Displaying entries [% pager.first %]-[% pager.last %] of
[% pager.total_entries %]</p>
<ol start="[% pager.first %]">
[% content %]

<hr />
Navigation:
<<
 pager.first_page })
%]">First
 pager.previous_page
})%]">Previous
|
 pager.next_page
})%]">Next
 pager.last_page })
%]">Last
 >>
or Search again

This template is actually where most of the interesting stuff happens. At the top, we
use the pager object to provide some information about which page we're on, how
many results there are, etc. Then we start a numbered list at the first result on this
page and include the content from the real template. After the real template (the
template that actually displays the search results), we generate all the necessary
navigation links. The key to this is the $c->response->uri_with ([% Catalyst.
res.uri_with(...) %] inside the template) method. This method accepts a list of
query string parameters (page in this case) and will replace the parameter with the
provided replacement, keeping the rest of the URL the same as the current page. In
this case, if we're at http://localhost:3000/search?domain=Names&query=Some+
Names+That+I+Like&page=5, [% Catalyst.res,uri_with({ page => 15 }) %]
would result in the URL http://localhost:3000/search?domain=Names&query=S
ome+Names+That+I+Like&page=15. This makes it very simple to modify the current
URL—you don't need to parse anything.

Expanding the Application

[70]

We use uri_with four times, twice to generate the URLs for the first and last pages
of the result, and twice to generate links to the next and previous pages of the results.
A more polished application might want to hide the links for pages that don't exist
(there's no next page when you're on the last page, for example).

Now we just need to create the two templates to display the results. We're going
to copy the display logic from the template that displays the list of all people and
their addresses. To make it easier to maintain our templates, we're going to extract
the code that displays a single person and the code that displays a single address to
separate templates. We'll then include that code from the list.tt2 template and
name_results.tt2 and address_results.tt2.

The first template will display an address stored in a variable called "address":

[% address.location | html %]

 Edit

Delete

<address>[% address.postal | html | html_line_break %]</address>
 Phone: [% address.phone | html %]

 Email: [% address.email | html %]

We'll store this in root/src/address_fragment.tt2, so it's clear that this is just a
fragment of a page. Next is the person_fragment.tt2 template, which will display
a person (and his addresses) stored in a variable named "person":

 [% person.name | html %]
 <a href="[% Catalyst.uri_for("/address/add/$person.id")
 | html %]">Add address
 <a href="[% Catalyst.uri_for("/person/edit/$person.id")
 | html %]">Edit
 <a href="[% Catalyst.uri_for("/person/delete/$person.id")
 | html %]">Delete

 [% SET addresses = person.addresses %]

 [% FOREACH address = addresses %]
 [% INCLUDE address_fragment.tt2 %]
 [% END %]

Chapter 4

[71]

Note that we're including the address_fragment.tt2 template for every address
that a person has. It's important to note that the address variable from this template
will exist inside the template we include and that it's possible for the included
templates to modify variables in the calling template. If you'd rather not want this to
happen, use the [% PROCESS %] directive instead.

Let us modify root/src/person/list.tt2 to use the new fragments by replacing
the existing WHILE loop with the following:

[% WHILE (person = people.next) %]
 [% INCLUDE person_fragment.tt2 %]
[% END %]

This cleans up the code quite nicely. We're finally ready to create the search
results templates:

First, root/src/search/name_results.tt2

[% META title = "Search results" %]
[% WRAPPER "search/results_wrapper.tt2" %]
[% WHILE (person = result.next) %]
[% INCLUDE person_fragment.tt2 %]
[% END %]
[% END %]

Next, root/src/search/address_results.tt2

[% META title = "Search results" %]
[% WRAPPER "search/results_wrapper.tt2" %]

[% WHILE (address = result.next) %]
[% address.location | html %] address for [% address.person.name
%]

[% INCLUDE address_fragment.tt2 %]

[% END %]

[% END %]

Factoring templates into small fragments make it very easy to modify something
once and have it appear everywhere in your application. There's no code to
cut-n-paste if you want the layout of both result pages to change. Just modify the
wrapper and both pages will look the same.

Writing these templates was the final step to get the searching working. You should
be able to start your application, navigate to /search, and search to your heart's
content. If you need more data in your database, just run the import_csv.pl
script again.

Expanding the Application

[72]

Authentication and Authorization
Now that our application has some real data in it, it would be nice to only show it
to the authorized users, not everyone on the Internet. In Catalyst, this is a two step
process. First, we use Authentication plug-ins to determine who a user is. In the
simplest case, we ask the user to enter a username and password. If the username
is known and the password is correct, we assume that the person at the other end
of the connection is the user whose username they specified. If we wanted to be
more flexible, we could ask users to log in with OpenID, their Flickr username
and password, or Bitcard. Either way, the end result is that we can authoritatively
associate a username with the session and then act on that username to grant
permission to restricted areas of our application. The granting of permission is the
second stage—Authorization.

Authentication
As with sessions, Catalyst handles Authentication via an array of plug-ins. The
main plug-in is Catalyst::Plugin::Authentication. This plug-in calls upon
sub-plugins that handle the various details, such as reading the OpenID credentials
or looking up a username and password in the database. Regardless of the
plug-ins you use, you'll get a standard interface. Every logged in user gets a user
object, accessible through $c->user->obj. If you use DBIC to store your usernames
and passwords, this object is a full DBIC resultset for the user's row in the user
table. This will allow you to store user preferences in the database right next to their
username and password, as well as create relations to other tables. Other back-ends
might not put anything in the object, but the username will always be available
via $c->user.

The simplest way to try authentication in your application is via the "Minimal"
back-end, with a setup like the following in your application's main file:

use Catalyst qw/
 Authentication
 Authentication::Store::Minimal
 Authentication::Credential::Password
 # (use the same session settings as before)
 Session Sesion::Store::... Session::State::...
 /;
__PACKAGE__->config->{authentication}{users} = {
 username => {
 password => "password",
 roles => [qw/may_view may_edit/],
 }
};

Chapter 4

[73]

This will store usernames and passwords directly in the configuration file. This makes
testing very easy, since you can add any attributes to the user object by specifying keys
and values alongside the password or roles without having to change your database
schema. Another easy way to get authentication going quickly is to generate an
Apache htpasswd file and use Authentication::Store::Htpasswd:

use Catalyst qw/
 Authentication
 Authentication::Store::Htpasswd
 Authentication::Credential::Password
 Session Session::Store::... Session::State::...
 /;
__PACKAGE__->config->{authentication}{htpasswd}
 = "/path/to/passwd.file";

Once you have an authentication store and some users, you can create an action that
reads the username and password from the user and calls $c->login($username,
$password). If the username and password were correct, $c->login will return true
and store that fact in the session so the user doesn't have to re-authenticate to every
page. Once the user is logged in, your actions can test $c->user and act upon the
information as they see it. When the user is done with his session, your application
should call $c->logout, which will delete the session data.

Authorization
Having just a username isn't particularly useful, unless your application only wants
to differentiate between logged in users and anonymous users. If you'd like to apply
different rules to different classes of users for different URLs, you'll want to use some
of the Catalyst's Authorization plug-ins.

The simplest Authorization plug-in is Authorization::Roles. This plug-in
provides methods for testing if a user belongs to a certain "role", or class, of users.
You'll need a back end that supports roles, but fortunately both the Minimal back
end and the DBIC back end do. Using roles is very simple. At the beginning of your
action, you call $c->assert_user_roles(qw/role1 role2/). This method will
throw an exception unless the user is a member of both role1 and role2. For example,
an action called edit_management_reports might look like this:

sub edit_management_reports {
 my ($self, $c) = @_;
 $c->assert_user_roles(qw/manager editor/);
 generate_reports();
}

Expanding the Application

[74]

Unless a user is both a manager and an editor, the generate_reports() command
will never be called. The user will instead get an access denied error message.

$c->assert_user_role(qw/role1 role2/) works similarly, but only requires a
user to possess one of the mentioned roles (not all). If you want more control over
what happens when a user is denied access, you can use $c->check_user_role(s)
instead. These methods work like assert_user_role(s), but returns true if the
check succeeds and returns false otherwise. You can check the result in an if
statement, and act accordingly:

if($c->check_user_role(qw|administrator editor|)){
 do_the_edit();
}
else {
 $c->stash->{error} = "You are not authorized to edit this.";
 $c->detach('/denied');
}

This is the most basic way to use roles to control access. A more flexible option is
the Authorization::ACL plug-in. This plug-in allows you to setup per-path rules
that are tested on each request. If all of the checks pass, the user is allowed to access
the page. Otherwise, an /access_denied method is executed instead. This method
can display an error to the user, or check some other credentials and allow
access anyway.

For example, to use the ACL to disallow access to /admin for non-administrators,
your MyApp.pm (or AddressBook.pm) file will look like the following:

use Catalyst qw/ConfigLoader Static::Simple
 Session Session::State::Cookie Session::Store::DBIC
 Authentication
 Authentication::Store::DBIC
 Authentication::Credential::Password
 Authorization::Roles
 Authorization::ACL/;
setup sessions, authorization, and authentication

ACL rules
__PACKAGE__->deny_access_unless('/admin', [qw/admin/]);

This code will check the user's role on every request to /admin. If the user isn't in
all of the listed roles (only 'admin' in this case), then the request goes to /access_
denied instead of /admin. This rule will also apply to /admin/list/user/123 and
anything in a path below /admin.

Chapter 4

[75]

If you prefer not to use roles, you can also use an arbitrary subroutine:

__PACKAGE__->allow_access_if(
 '/bonus/area',
 sub { my ($c, $action) = @_;
 if($c->user->karma > 50){
 return $ALLOWED
 }
 else {
 return $DENIED
 }
 }
);

Here we allow access to /bonus/area only if the user has a karma (as defined by the
user object) greater than 50. Otherwise, the /access_denied action is run instead.

The ACL plug-in gives you the ability to easily apply arbitrary rules to an entire
portion of your application, without having to change any controller code.

Adding Authentication and Authorization to the
Address Book
Now that we've had an overview of authentication and authorization, let's restrict
access to our address book. To make the management of users and roles as easy as
possible, we'll store the user data and role data in our DBIC model. For now, we'll
manually add users to the database and set their usernames and passwords. We'll
also optionally associate an entry in the person table with each user, to allow
non-editors to edit their own addresses. Finally, we'll create two roles, "viewer"
and "editor" and restrict access to the site via an ACL. We'll let viewers view any
data and allow editors to mutate that data (edit/create/delete). Also, we'll make an
exception—if a user is a viewer but wants to add or delete his own addresses, we'll
allow that.

The first step is to create the necessary tables in our database:

$ sqlite3 database

CREATE TABLE user (id INTEGER PRIMARY KEY, username TEXT, password TEXT,
person INTEGER);

INSERT INTO user VALUES(1, 'edit', 'editme', 1);

INSERT INTO user VALUES(2, 'view', 'viewme', 2);

CREATE TABLE role (

 id INTEGER PRIMARY KEY,

Expanding the Application

[76]

 role TEXT

);

INSERT INTO role VALUES(1, 'editor');

INSERT INTO role VALUES(2, 'viewer');

CREATE TABLE user_role (

 user INTEGER REFERENCES user,

 role INTEGER REFERENCES role,

 PRIMARY KEY (user, role)

);

INSERT INTO user_role VALUES(1, 1);

INSERT INTO user_role VALUES(1, 2);

INSERT INTO user_role VALUES(2, 2);

DELETE FROM people; -- Clear out the database

INSERT INTO people VALUES(1, 'Editor', 'Person');

INSERT INTO people VALUES(2, 'Viewer', 'Person');

Here, we created three tables, a user table to store username, passwords and the link
to the people table; a role table to store a list of roles; and a user_role table to apply
roles to each user. Then we added two users, "edit" and "view" (with passwords
"editme" and "viewme" respectively. (Note that we're using cleartext passwords
for testing. When we deploy the application, we'll encrypt the password so that
the passwords are not revealed if the database is stolen.) We also added "editor"
and "viewer" roles and made "edit" a member of the "editor" and "viewer" role, and
"view" only a "viewer". Finally, we created the entries in the people table for
each user.

Next we'll need to create three schema files in lib/AddressBook/Schema/
AddressDB as follows:

package AddressBook::Schema::AddressDB::User;
use strict;
use base 'DBIx::Class';

__PACKAGE__->load_components(qw/ Core /);
__PACKAGE__->table('user');
__PACKAGE__->add_columns(id => { data_type => "INTEGER" },
 username => { data_type => "TEXT" },
 password => { data_type => "TEXT" },
 person => { data_type => "INTEGER"},);

__PACKAGE__->set_primary_key('id');

__PACKAGE__->has_many(map_user_role =>
 'AddressBook::Schema::AddressDB::UserRole' => 'user');

Chapter 4

[77]

__PACKAGE__->belongs_to(person => 'AddressBook::Schema::AddressDB::
People');

1;

package AddressBook::Schema::AddressDB::Role;
use strict;
use base 'DBIx::Class';

__PACKAGE__->load_components(qw/ Core /);
__PACKAGE__->table('role');
__PACKAGE__->add_columns(id => { data_type => "INTEGER" },
 role => { data_type => "TEXT" },
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->has_many(map_user_role =>
 'AddressBook::Schema::AddressDB::UserRole' => 'role'
);

1;

package AddressBook::Schema::AddressDB::UserRole;
use strict;
use base 'DBIx::Class';

__PACKAGE__->load_components(qw/ Core /);
__PACKAGE__->table('user_role');
__PACKAGE__->add_columns(user => {data_type => "INTEGER"},
 role => {data_type => "INTEGER"},);
__PACKAGE__->set_primary_key(qw/user role/);

1;

Now we just need to configure the application to use these schemata in
AddressBook.pm as follows:

use Catalyst qw/ConfigLoader Static::Simple
 Session Session::State::Cookie Session::Store::DBIC
 Authentication
 Authentication::Store::DBIC
 Authentication::Credential::Password
 Authorization::Roles
 Authorization::ACL/;

__PACKAGE__->config(name => 'AddressBook');

__PACKAGE__->config(session => {
 dbic_class => 'AddressDB::Session',
 expires => 3600,
 flash_to_stash => 1,
 }
);

Expanding the Application

[78]

__PACKAGE__->config->{authentication}{dbic} =
 {
 user_class => 'AddressDB::User',
 user_field => 'username',
 password_type => 'clear', # use salted_hash for real applications
 };

__PACKAGE__->config->{authorization}{dbic} =
 {
 role_class => 'AddressDB::Role',
 role_field => 'role',
 role_rel => 'map_user_role',
 user_role_user_field => 'user',
 };

Start the application
__PACKAGE__->setup;

Now our application is set to use authentication information from the database
and we're ready to start implementing the guts of our authentication infrastructure.
We'll first need to change the use base line in AddressBook::Controller::Root
as follows:

use base qw(Catalyst::Controller::FormBuilder Catalyst::Controller::
BindLex);

Then we need to create login, logout and access_denied methods as follows:

sub access_denied : Private {
 my ($self, $c) = @_;
 $c->stash->{template} = 'denied.tt2';
}

sub login : Global Form {
 my ($self, $c) = @_;
 my $form = $self->formbuilder;

 return unless $form->submitted && $form->validate;

 if($c->login($form->field('username'),
 $form->field('password')))
 {
 $c->flash->{message} = 'Logged in successfully.';
 $c->res->redirect($c->uri_for('/'));
 $c->detach();
 }
 else {
 $c->stash->{error} = 'Login failed.';
 }

Chapter 4

[79]

}

sub logout : Global {
 my ($self, $c) = @_;

 $c->logout;
 $c->flash->{message} = 'Logged out.';
 $c->res->redirect($c->uri_for('/'));
}

These three actions are very simple. access_denied just displays the access
denied template when the user isn't authorized to access a certain page. logout calls
$c->logout and redirects the user to the main page, with a message saying that the
logout has succeeded. Finally, login reads in a FormBuilder form and checks the
provided username and password. If it matches a user database, the login succeeds.
If it doesn't match then we let the user try again, while displaying an error message
on top of the login form.

The login form and login template go in the usual places, root/forms/login.fb for
the form definition and root/src/login.tt2 for the template and are very similar
to the forms and templates we've already created:

[% META title="Log in" %]
[% FormBuilder.render %]

name: login
method: POST

Expanding the Application

[80]

header: 1
title: Login
fields:
 username:
 label: username
 type: text
 required: 1
 password:
 label: password
 type: password
 required: 1

submit: Login

We'll also modify our global header in root/lib/site/layout to show the logged
in user's name:

<div id="header">[% PROCESS site/header %]</div>
<div id="userinfo">
 [% IF Catalyst.user %]
 Logged in as [% Catalyst.user -%]
 [%- IF Catalyst.user.person.name -%]
 ([% Catalyst.user.person.name %])
 [%- END %].

 Log out.
 [% ELSE %]
 Not logged in. Log
in.
 [% END %]
</div>

<div id="content">

Note that the first and last lines should already exist in the file. We'll also need to
update the CSS (root/src/ttsite.css) a bit, so that the username displays in a
small font on the right side of the screen:

#userinfo {
 font-size: .8em;
 text-align: right;
}

Upon restarting the server, you should be able to visit /login, type in a username
and password and be logged in! Clicking the logout link should cause Catalyst to
forget that you logged in (and allow you to log in again). With that working, we're
ready to add the final feature—authorization.

Chapter 4

[81]

We'll implement authorization in two stages. First, we'll add generic rules to only
allow viewers to view pages that contain address data. To the end of AddressBook.
pm, after __PACKAGE__->setup, add the following:

ACLs
__PACKAGE__->deny_access_unless('/person', [qw/viewer/]);
__PACKAGE__->deny_access_unless('/search', [qw/viewer/]);
__PACKAGE__->deny_access_unless('/address', [qw/viewer/]);

should always be allowed
__PACKAGE__->allow_access('/index');
__PACKAGE__->allow_access('/login');

We'll also need the template to display when the user is denied access,
root/src/denied.tt2:

[% META title="Access denied" %]

[% IF !error %]You are not allowed to access this resource.[% END %]
[% IF !Catalyst.user %]
Logging in might help.
[% END %]

This template does a few different things. If the user's not logged in, then the page
suggests that the user should authenticate and then try again. If an error message has
been specified, then that's displayed. Otherwise, a default message is displayed: You
are not allowed to access this resource.

The final step is to add a rule to all edit actions to see if a user is a member of the
editor role, or she/he's editing his own entry. So, at the top of each editing action,
add some code like the following:

check ACL
$address = $c->model('AddressDB::Address')->...
if($address->person->id != eval{$c->user->person->id} &&
 !$c->check_any_user_role('editor')){

 $c->stash->{error} =
 'You are not authorized to delete addresses
 for this person.';

 $c->detach('/access_denied');
 }

We're using the eval statement to protect against the case where $c->user doesn't
exist (and calling person on an undefined value would make the program die).

Expanding the Application

[82]

You'll want to add this to the edit and delete actions in AddressBook::Controller::
Person and AddressBook::Controller::Address, modifying the error message as
appropriate. You also might want to disallow a user from deleting his/her name, as
that will cause the foreign key in the user table to dangle into nowhere.

When you've made those changes, fire up the application and explore the robust
access control system that you've created!

Summary
In this chapter, we added some of the most common features that web applications
need to our address book application. We learned how to make deployment easy by
using the configuration file. Next, we saw how to store data between requests with
Session plug-ins, and how to use the Session plug-in to make the user's experience
more consistent and enjoyable. We also learned how to identify users and use their
identity to control access to the application. Later, we programmed search logic and
learned how to display resultsets that span multiple pages. Finally, we learned how
to utilize our application's model outside of our application.

Building a More Advanced
Application

In this chapter, we'll build a brand new application from scratch while exploring the
advanced features of Catalyst, DBIx::Class and the Template Toolkit. We'll start by
modelling our data and building a DBIx::Class schema. Then we'll add some extra
code to the schema to abstract away some more complex queries. After that we'll
build a web interface to the database with just a few lines of code. Finally, we'll add
some editing features to the web interface.

The Application
The application we'll be building in this chapter is called ChatStat and arises from
a need to track the opinions of irc.perl.org denizens. A common convention
on irc.perl.org is to add ++ or -- and a quip after a word. These one-liners are
usually amusing and deserve to live on after they've scrolled off the screen. So, we'll
write a Catalyst application to make this data available on the web.

Background
Before we set up the data model, it's important to understand what data we need to
keep track of. The most important piece of data to track is the actual opinions from
the IRC channel. A complete opinion on IRC looks something like the following:

(on #channel) < nickname> (some thing)++ # things are good

Building a More Advanced Application

[84]

Here we see nickname saying that he likes some thing on #channel because things
are good. In our database, we'll want to store each opinion as a parsed entity
consisting of columns for the channel, the nickname, the thing ("some thing" here),
how many points were given (1 for "++", 0 for "+-", and -1 for "--"), the comment
("things are good") and, finally the entire message (so that we can fix up the other
columns if we find our parser not working properly later).

For the sake of making queries easier to write, we'll also normalize the data. This
means that there will be a things table that gives each thing a unique ID and similar
tables for the nicknames and channels. This will result in an opinions table that
has records like "57, 42, 89, 6, 1, 'message' and 'something++ # message'". 57 is the
(opinion) primary key, 42 is the nickname primary key, 89 is the thing primary key, 6
is the channel, etc. Database management systems work best with this sort of data (as
redundancy is eliminated) and it makes it easy to add metadata to the entities later. (A
nickname will consist of a hostname, username and nickname; a channel will consist
of an IRC network and channel names, etc.) Normalizing the data means that it's
simple to add extra metadata later, without affecting the existing queries.

Finally, since one person (in real life) can have multiple nicknames, we'll add a
person table to group related nicknames together. Each nickname will belong to
one person.

Creating the Database
First, we'll create the application so that we have some place to put our database file.
We won't be doing much with Catalyst to start, but we'll need the project eventually:

$ catalyst.pl ChatStat

$ cd ChatStat

Let's get started by creating the tables in SQLite as follows:

$ sqlite3 root/database

CREATE TABLE channels (
 cid INTEGER PRIMARY KEY NOT NULL,
 channel TEXT NOT NULL
);
CREATE TABLE nicknames (
 nid INTEGER PRIMARY KEY NOT NULL,
 pid INTEGER NOT NULL,
 nick TEXT NOT NULL,
 username TEXT NOT NULL,
 host TEXT NOT NULL
);

Chapter 5

[85]

CREATE TABLE opinions (
 oid INTEGER PRIMARY KEY NOT NULL,
 nid INTEGER NOT NULL,
 cid INTEGER NOT NULL,
 tid INTEGER NOT NULL,
 message TEXT NOT NULL,
 reason TEXT NOT NULL,
 points INTEGER NOT NULL
);
CREATE TABLE people (
 pid INTEGER PRIMARY KEY NOT NULL,
 name TEXT NOT NULL
);

CREATE TABLE things (
 tid INTEGER PRIMARY KEY NOT NULL,
 thing TEXT NOT NULL
);
CREATE UNIQUE INDEX channel_channels on channels (channel);
CREATE UNIQUE INDEX hostmask_nicknames on nicknames (nick, username,
host);
CREATE UNIQUE INDEX nickname_people on people (name);
CREATE UNIQUE INDEX thing_things on things (thing);
CREATE INDEX idx_opinions_tid ON opinions (tid);

The tables are pretty straightforward, but note that we are creating some unique
indices for various columns. This ensures that we can't accidentally give a thing
multiple ID numbers and end up with a useless opinions table. It also makes writing
the database code easier; we can look up a thing by its name instead of its unique
ID (primary key), as the database guarantees that each thing will only appear in
the things table once. The hostmask_nicknames index is a bit different; the data we
get from IRC is in the form (nick, username, and host) so that the index will let us
retrieve the unique ID given to that data.

Finally, we have a regular index on opinions.tid. We'll be grouping by this column
in many queries, so it's logical to index. Doing so reduces the runtime of some
queries from two seconds per query to thirty or more queries per second!

Now that we have the tables in place, we'll need to generate a DBIx::Class schema
and add the relationships:

$ perl script/app_ircxory_create.pl model DBIC DBIC::Schema
ChatStat::Schema create=static DBI:SQLite:root/database

This will create the files in lib/ChatStat/Schema/*. Let us look at those files one-at-
a-time and add the constraints.

Building a More Advanced Application

[86]

First, let us look at People.pm. All we need to add here is a name for our unique
constraint and a line telling DBIx::Class that a person can have many nicknames.

Here's the constraint:

__PACKAGE__->add_unique_constraint(
 nickname => [qw/name/]
);

This will allow us to write the following:

my $jrockway = $people->find('jrockway',
 { key => 'nickname' });

Later in the app, it's ensured that a UNIQUE INDEX over name will be created when
we redeploy the schema.

Here's the has_many relationship:

__PACKAGE__->has_many(
 "nicknames",
 "ChatStat::Schema::Nicknames",
 { "foreign.pid" => "self.pid" },
);

This command will tell DBIx::Class to create an accessor called "nicknames" that
will return an array of ChatStat::Schema::Nickname objects. The third argument is
the join condition specified in SQL::Abstract syntax. In this case, we say to join on
people.pid = nicknames.pid.

Nicknames.pm will look similar. We have another unique constraint, a has_many
relationship to opinions (every nickname has many opinions), and a belongs_to
relationship back to People. The belongs_to relationship, will allow us to access the
person record when we only have a nickname.

Here's the code:

__PACKAGE__->add_unique_constraint(
 hostmask => [qw/nick username host/]
);
__PACKAGE__->has_many(
 "opinions",
 "ChatStat::Schema::Opinions",
 { "foreign.nid" => "self.nid" },
);
__PACKAGE__->belongs_to(
 "person",

Chapter 5

[87]

 "ChatStat::Schema::People",
 { pid => "pid" }
);

The has_many relationship looks the same as the one we just created.

The belongs_to relationship is also similar. We say to create a person accessor
that will return a ChatStat::Schema::People object for the person. We've also
abbreviated the join condition here, omitting the reference to foreign and self because
foreign and self are implied automatically when they're omitted and there are no
other conditions. It saves a bit of typing.

Moving along, let's take a look at the Things.pm file. We're going to add another
unique constraint and has_many relationship here:

__PACKAGE__->add_unique_constraint(
 thing => [qw/thing/]
);
__PACKAGE__->has_many(
 "opinions",
 "ChatStat::Schema::Opinions",
 { "foreign.tid" => "self.tid" },
);

By now this pattern should be looking familiar. The has_many relationship will
create an opinions accessor that will return a list of opinions that relate to the
current "thing".

Channels.pm is going to look almost exactly the same:

__PACKAGE__->add_unique_constraint(
 channel => [qw/channel/]
);
__PACKAGE__->has_many(
 "opinions",
 "ChatStat::Schema::Opinions",
 { "foreign.cid" => "self.cid" },
);

Finally, we'll edit Opinions.pm and add belongs_to relationships to reverse the
has_many relationships we created above:

__PACKAGE__->belongs_to(
 "nickname",
 "ChatStat::Schema::Nicknames",
 { nid => "nid" },
);

Building a More Advanced Application

[88]

__PACKAGE__->belongs_to(
 "thing",
 "ChatStat::Schema::Things",
 { tid => "tid" },
);
__PACKAGE__->belongs_to(
 "channel",
 "ChatStat::Schema::Channels",
 { cid => "cid" },
);

That's all we need to do. Now every piece of data is related properly, allowing us to
get whatever data is needed in a Perl fashion. Setting up a normalized schema is a bit
more work, but the data is more organized and working with it using DBIx::Class
will be a pleasure.

Populating the Database
An empty database isn't much fun, so let's add some data to it. In the version of
this application that I use, I have a POE-based IRCBot dynamically added data to
the database as messages come in from IRC. As POE is beyond the scope of this
book, we'll create a small command-line script that works similarly. For the
curious, the IRCBot code is included with the book and lives under the
ChatStat::Robot namespace.

For the data-adding script, we'll take the same approach as the IRCBot. We'll start
with a string that looks like an IRC message, parse it into its components and then
add it to the database.

Let us start with a class to abstract the components of the message.
In lib/ChatStat/Action.pm, create the following:

package ChatStat::Action;
use strict;
use warnings;
use Regexp::Common qw/balanced/;

use base 'Class::Accessor';
__PACKAGE__->mk_accessors(qw|who channel word points reason message|);

use Readonly;
Readonly my %OP_POINTS => ('++' => 1,
 '--' => -1,
 '-+' => 0,
 '+-' => 0,
);

Chapter 5

[89]

sub new {
 my ($class, $who, $where, $what) = @_;
 my $self = $class->SUPER::new({ who => $who,
 channel => $where,
 message => $what
 });

 $self->_parse;
 return $self;
}

sub _parse {
 my $self = shift;
 my $what = $self->message;

 my $parens = $RE{balanced}{-parens=>'(){}[]<>'}{-keep};
 if ($what =~ /
 (?: # what we're voting on:
 $parens # something in parens
 | # -or-
 ([A-Za-z_:0-9]+) # a single word++
)
 ([+-]{2}) # the operation (inc or dec)
 \s* # spaces, who cares
 (?:[#] \s* (.+)$)? # and an optional reason
 /x
)
 {
 my $paren = $1;
 my $word = $2;
 if (defined $paren) {
 $paren =~ s/^[({[<]//;
 $paren =~ s/[)}\]>]$//;
 $word = $paren;
 }

 my $op = $3;
 my $reason = $4;
 $reason = '' if !defined $reason;

 # trim
 $word =~ s/^\s+//;
 $word =~ s/\s+$//;
 $reason =~ s/^\s+//;
 $reason =~ s/\s+$//;

 # it worked
 $self->word(lc $word);

Building a More Advanced Application

[90]

 $self->reason(lc $reason);
 $self->points($OP_POINTS{$op} || 0);
 return;
 }
 die 'parse error';
}
1;

This class takes a nickname, channel name and message, and sets up a data structure
consisting of the parsed-out parts. For example, when you invoke:

my $a = ChatStat::Action->new('jon', '#test',
 'Catalyst++ # fun');

You'll be able to access the components like the following:

my $nick = $a->who; # jon
my $points = $a->points; # 1 (-1 if we said --)
my $reason = $a->reason; # fun
my $word = $a->word; # catalyst

We use Regexp::Common to parse out balanced sets of parentheses so that we can
add points to a phrase like "a phrase" by typing "(a phrase) ++". Thanks to Regexp::
Common::balanced, we can use any paired brackets we want, like <something>++ or
{something else}--.

With the parsing out of the way, we want to be able to add one of these Actions to
the database. Because of the normalized schema, we have to do some extra work. We
need to create the "dependencies" of the opinion first (thing, nickname, and channel)
and then insert the actual opinion record. The nickname object is created similarly as
it needs to refer to an existing person object.

As there's a lot to do, let's add a subroutine to the schema (in lib/ChatStat/
Schema.pm) called "record", which will insert an Action object into the database
as follows:

sub record {
 my $self = shift;
 my $action = shift;

 my $nickname = $self->_get_nickname(parse_nickname($action->who));
 my $thing = $self->resultset('Things')->
 find_or_create({ thing => $action->word });

 my $channel = $self->resultset('Channels')->
 find_or_create({ channel => $action->channel });

 return $self->resultset('Opinions')->
 create({ nickname => $nickname,

Chapter 5

[91]

 thing => $thing,
 points => $action->points,
 message => $action->message,
 reason => $action->reason,
 channel => $channel,
 });
}

All we do here is use the DBIC schema ($self) to create or find the relevant records,
then we create an Opinion. We do need a _get_nickname subroutine to take
the nickname (in the form of nickname!~username@hostname.com and return a
nickname object that refers to a (perhaps newly-created) person object:

sub _get_nickname {
 my $self = shift;
 my ($nick, $user, $host) = @_;

 my $nickname = $self->resultset('Nicknames')->
 find_or_create({ nick => $nick,
 username => $user,
 host => $host,
 });

 my $person = $nickname->person;
 if (!$person) {
 my $person = $self->resultset('People')->
 find_or_create({ name => $nick });
 $nickname->person($person);
 $nickname->update;
 }

 return $nickname;
}

Now we can get an Action and put it into the database with one line of code:

$schema->record(ChatStat::Action->new(...));

Let's tie this all together by creating a script in script/chatstat_add_opinion.pl
so that we can add opinions from the command line as follows:

use strict;
use warnings;

use FindBin qw($Bin);
use lib "$Bin/../lib";

use ChatStat::Action;
use ChatStat::Schema;

my ($channel, $who, $message) = @ARGV;

Building a More Advanced Application

[92]

die 'need channel as arg 1' unless $channel;
die 'need nickname as arg 2' unless $who;
die 'need message as arg 3' unless $message;

my $s = ChatStat::Schema->connect("DBI:SQLite:$Bin/../root/database");
die "failed to connect to database" unless $s;

my $parsed = ChatStat::Action->new($channel, $who, $message);
my $new = $s->record($parsed);

print "added opinion ". $new->oid. "\n";

You can now run this using the following command line:

$ perl script/chatstat_add_opinion.pl 'jon!~jon@jrock.us' '#foo'
'scripts++ # making my life easy'

added opinion 1

Extracting the Data
Now that our database is full of data, it's time to make some sense out of it. We'll
start by writing a function to determine the total number of points a "thing"
has accumulated.

Instead of writing a script to test each query we write, we'll use a REPL
(read-evaluate-print loop) to interact with our program in real time. To get a Perl
REPL, install the Devel::REPL module from CPAN. That module provides a script
called re.pl. Run re.pl, and you'll be able to type in Perl code as though you're at a
shell prompt that understands Perl.

As an example, let us try adding an opinion from re.pl:

$ re.pl # the > is now re.pl's prompt

> use lib qw(lib);

> use ChatStat::Action;

> use ChatStat::Schema;

> my $s = ChatStat::Schema->connect('DBI:SQLite:root/database');

$ChatStat_Schema1 = ChatStat::Schema=HASH(0x8aafda0);

> my $a = ChatStat::Action->new('jon!~jon@jrock.us', '#test', '(re.
pl)++');

$ChatStat_Action1 = ChatStat::Action=HASH(0x90dbe40);

> $a->message;

(re.pl)++

> $a->reason;

> $a->points;

Chapter 5

[93]

1

> my $o = $s->record($a);

$ChatStat_Schema_Opinions1 = ChatStat::Schema::Opinions=HASH(0x915a450);

> $o->id;

6

> $o->nickname->person->name;

jon

> exit

If you want to explore your program or you're only going to do something once or
twice, re.pl is a great way to do it.

Back to the task at hand, let's write a function to return the number of points a
"Thing" has accumulated. For now, we'll add this function directly to the Schema:

sub karma_for {
 my $schema = shift;
 my $thing = shift;

 my $col =
 $schema->resultset('Opinions')->
 search({ 'thing.thing' => lc $thing,
 },
 { join => ['thing'],
 })->get_column('points');

 return $col->sum || 0;
}

We're introducing a few new features of DBIx::Class here. We start with a
straightforward search of the opinions table, looking for rows where thing.thing
equals the $thing passed into the function. However, there is no column called
thing.thing in the opinions table. To get that, we want to join along the "thing"
relationship we created earlier. This is what the second argument search does; we
pass a list of relationships to join in as "join", and now the columns in the related
table are available to use in the search query. (If you want to get back the value of
a joined in column, specify include_columns => [qw/table.list table.of
table.columns/] after join.)

At this point, we have a resultset. When we call get_column on that resultset,
an object representing a single column of the resultset is returned. The object has
methods like sum to return the sum of everything in that column, all to return an
array of values, etc. We call sum to sum up the points, and then return that sum.

Building a More Advanced Application

[94]

The critical thing to keep in mind is that even though we call methods and create
objects, no query goes out to the database until we ask for a result. This means that
get_column isn't actually getting the column from the database and converting it to
a Perl array; it merely sets a flag saying we only need to get this column when we actually
run the query. When we say $col->sum at the end, that tells DBIx::Class to
execute the query; the sum command is done on the database side with the SQL
function SUM.

We can explore the actual SQL that this command generates by setting the
environment variable DBIC_TRACE=1 and then running karma_for:

$ DBIC_TRACE=1 re.pl

> use ...; # see above

> $s = ChatStat::Schema->connect(...); # same as last time

> $s->karma_for('catalyst');

SELECT SUM(points) FROM opinions me JOIN things thing ON (thing.tid =
me.tid) WHERE (thing.thing = ?): 'catalyst'

2

> exit

You can see that the generated SQL is pretty efficient and probably what you would
have written yourself.

Let's take the karma_for subroutine a bit further and add an option to only count
the karma that goes in a certain direction (the sum of all upvotes, the sum of all
downvotes, etc).

To do this, we just need to add another condition to the search (limiting the selection
to rows where points are less than zero, greater than zero, etc.). We add this to the
top of karma_for:

 my $dir = shift;

 my @points;
 if (defined $dir && $dir == -1) {
 @points = ('points' => {'<=', -1});
 }
 elsif (defined $dir && $dir == 1) {
 @points = ('points' => {'>=', 1});
 }
 elsif (defined $dir && $dir == 0) {
 @points = ('points' => {'==', 0});
 }

Chapter 5

[95]

Then we pass @points to search:

 search({ 'thing.thing' => lc $thing,
 @points,
 }, ...

Finally, if $dir was passed in, we will want to call the COUNT function instead of the
SUM function, so we add a conditional for that before we return the sum:

 if (defined $dir) {
 return $col->func('count');
 }

Back in re.pl, we can try out the new functionality:

> $s->karma_for('catalyst', -1);

SELECT COUNT(points) FROM opinions me JOIN things thing ON (thing.tid
= me.tid) WHERE (points <= ? AND thing.thing = ?): '-1', 'catalyst'

0

> $s->karma_for('catalyst');

SELECT SUM(points) FROM opinions me JOIN things thing ON (thing.tid =
me.tid) WHERE (thing.thing = ?): 'catalyst'

2

>

Chained ResultSets
The most powerful abstraction DBIx::Class provides is the ResultSet. Every query
you create with DBIx::Class is a ResultSet, and a new ResultSet can be created by
chaining a ResultSet command off of an existing ResultSet. As an example, let's use
re.pl (and ResultSet chaining) to find a list of people that have shared their opinions
on the same things I have. Let us add some sample data as follows:

> $s->resultset('Opinions')->delete; # clear out opinions

> $s->record(ChatStat::Action->new('jon!~a@a','a','test++'))'jon!~a@a','a','test++'))','a','test++'))

> $s->record(ChatStat::Action->new('jon!~a@b','a','perl++'))'jon!~a@b','a','perl++'))','a','perl++'))

> $s->record(ChatStat::Action->new('foo!~c@c','c','test++'))'foo!~c@c','c','test++'))','c','test++'))

> $s->record(ChatStat::Action->new('bar!~d@d','c','test--'))'bar!~d@d','c','test--'))','c','test--'))

> $s->record(ChatStat::Action->new('quux!~q@q','q','foobar++'))

Building a More Advanced Application

[96]

Now, we'll find jon:

> my $me = $s->resultset('People')->find('jon', { key => 'nickname' })

> $me->name

jon

And the nicknames he's used:

> $me->nicknames

$ARRAY1 = [...];

> map { $_->host } $me->nicknames

$ARRAY1 = ['a', 'b'];

This tells us that jon has used IRC from hosts a and b, which is exactly what we
typed above.

Now, let's find opinions that those nicknames have authored:

> my $opinions = $me->nicknames->search_related('opinions')

> map { $_->oid } $opinions->all

$ARRAY1 = [1, 2]

Now we can join in the things that these opinions refer to using the following
command line:

> my $things = $opinions->search_related('thing');

> $things->get_column('thing')->all

$ARRAY1 = ['test', 'perl'];

Now for the fun part—we join everything back in reverse. We get the opinions that
refer to these things, then we join in the nicknames that authored those opinions,
then we find the person that those nicknames belong to:

> $things->search_related('opinions')

 ->search_related('nickname')

 ->search_related('person', {}, {group_by => 'person.name'})

 ->get_column('name')->all;

$ARRAY1 = ['bar', 'foo', 'jon'];

To avoid duplicates at the last step, we added a GROUP BY clause to the query so that
we would only see a person's name once.

Chapter 5

[97]

Let's take this one step further and only show people who upmodded things that jon
had an opinion about:

> $things->search_related('opinions',{'opinions_2.points'=>

 {'>', 0}})

 ->search_related('nickname')

 ->search_related('person', {}, {group_by => 'person.name'})

 ->get_column('name')->all;

$ARRAY1 = ['foo', 'jon'];

In this final query, bar went away because he only downmodded test, and that
opinion was filtered out by the search passed to the first search_related call. Note
that if a table is visited twice along the chain, it's referred to the second time by
<tablename>_2 instead of just the table name. (This scales as high as you'd like it to.)

If you're curious, the final generated SQL statement was as follows:

SELECT name FROM nicknames me LEFT JOIN opinions opinions ON (
opinions.nid = me.nid) JOIN things thing ON (thing.tid = opinions.
tid) LEFT JOIN opinions opinions_2 ON (opinions_2.tid = thing.tid
) JOIN nicknames nickname ON (nickname.nid = opinions_2.nid) JOIN
people person ON (person.pid = nickname.pid) WHERE (((opinions_
2.points >= ?) AND (me.pid = ?))) GROUP BY person.name

As you can see, even though we stored intermediate results to named variables, the
final query is only run once and no filtering of the results is done in Perl. Due to this,
even complicated queries don't take a speed hit; they run the same as if you had
executed the SQL yourself.

One last thing to note is that you need not end the chained ResultSets with
get_column or all; you can use any method you would use on a normal resultset
(including another search).

Custom ResultSets
As the complexity of your queries increase, you might want to start giving them
names so that you can use them like the other ResultSet methods. DBIC provides a
few ways to do this. The first is to create a subclass of DBIx::Class::ResultSet,
add a method that accepts a resultset and returns another one, and to refer to it in
your Schema class:

__PACKAGE__->resultset_class('MyApp::ResultSet::Foo');

Building a More Advanced Application

[98]

If you just want to add a few custom resultset methods throughout your application,
you can use the ResultSetManager plug-in. This plug-in will allow you to write
ResultSet methods directly inside the Schema class:

__PACKAGE__->load_components("ResultSetManager", "Core");
...
sub my_search :ResultSet {
 my $rs = shift;
 ...
 return $rs->...
}

Let's familiarize ourselves with this concept by creating a ResultSet method in
the People class that will return similar people (by using the algorithm from the
previous example).

In People.pm, be sure to load the ResultSetManager plugin as follows:

__PACKAGE__->load_components(
 "ResultSetManager", "PK::Auto", "Core"
);

Then, we just write the similar_people method in the following manner:

sub similar_people :ResultSet {
 my $rs = shift;
 return $rs
 ->search_related('nicknames')
 ->search_related('opinions')
 ->search_related('thing')
 ->search_related('opinions')
 ->search_related('nickname')
 ->search_related('person', {}, {group_by => 'person.name'});
}

Now we can use the similar_people as a ResultSet method:

my @similar = $people->search(...)->similar_people
 ->get_column('names')->all;

Note that if you don't intend to call the method on a ResultSet (but rather a single
Row in the ResultSet), then you don't need to add the :ResultSet tag. The normal
accessors methods that are created in a Schema class may return resultsets, but they
won't be called from a ResultSet. So, if you want similar_people to work on the
result of $people->find(...), you should omit the :ResultSet attribute from
the method.

Chapter 5

[99]

Putting the Data on the Web
Now that we have the fundamentals of the database setup, we're ready to build a
web interface. The general idea will be to present a summary of the data we collect
and provide links for getting more information.

The main page, pictured below, is where we'll start. It displays the results of two
queries (highest/lowest score and most/least controversial). The items themselves
are links to pages that show the reasons each voter provided for upvoting or
downvoting the thing.

Building a More Advanced Application

[100]

We'll start with the template work. The generic wrapper, root/wrapper.tt2:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>[% title || c.config.name %]</title>
 <link rel="stylesheet"
 href="[% c.uri_for('/static/main.css') %]"
 type="text/css" />
 </head>
 <body>
 <h1>
 ChatStat
 </h1>
 [% content %]
 <div id="logos">

 <img src="[% base %]static/btn_120x50_built.png"
 alt="Built with Catalyst" />

 </div>
 </body>
</html>

With that out of the way, we can create some macros that will make writing the
actual pages much easier. Every time we see a "thing", we want it to be a link to
the things page. Similarly, we always want negative scores to show up in red, and
positive scores in green. Finally, we want nicknames to be linked to that person's
information people. To make this easy to achieve, we'll write some common macros
and include those on each page. Then we can use syntax like [% score(some_
score) %] to format our data consistently.

The macros for score, thing and person can be placed in root/thing_macros.tt2,
and should look like the following:

[% # format a thing %]
[% MACRO thing(thing) BLOCK %]
<a class="thing"
 href="[% c.uri_for('/things',thing) | html%]">
 [% thing | html %]
[% END %]

[% # format a person's nickname %]
[% MACRO person(person) BLOCK %]

Chapter 5

[101]

<a class="person"
 href="[% c.uri_for('/people',person) | html%]">
 [% person | html %]
[% END %]

[% # format a score %]
[% MACRO score(score) BLOCK %]
 [% IF score > 0 %]
 [% SET class = "positive" %]
 [% ELSE %]
 [% SET class = "negative" %]
 [% END %]

[% score | html %]

[% END %]

As the main design element of our application is side-by-side pairs, it makes sense to
create a reusable template for displaying two elements side-by-side. We'll do this by
creating a template called pair.tt2, and including it where we need it. The code for
root/pair.tt2 looks like the following:

<div class="pair clearfix" [% IF width %] style="width: [% width %]"
[% END %]>
 <h2>[% title | html %]</h2>
 <div class="box left">
 <h3>[% left_title | html %]</h3>
 [% left %]
 </div>
 <div class="box right">
 <h3>[% right_title | html %]</h3>
 [% right %]
 </div>
 <br class="clear" />
</div>

We can use this elsewhere like the following:

[% INCLUDE pair.tt2
 title='Pair Title'
 left_title = 'The left side'
 left = 'some HTML for the left side'
 right_title = 'Ten right side'
 right = 'some HTML for the right side
%]

Building a More Advanced Application

[102]

Before we write the main page, we just need a macro that will format a list of the
thing-score tuples from the database into HTML, to pass to pair.tt2 as left and
right. As we will use this on more than just the main page, we'll put the macro in
thing_macros.tt2 with the other macros:

[% # transform a list of [thing, score] tuples into HTML %]
[% MACRO list_things(key,more) BLOCK %]

 [% FOREACH row = key %]

 [% thing(row.thing) %]
 [% score(row.total_points) %]

 [% END %]
 [% IF more %]
 More...
 [% END %]

[% END %]

Now we're ready to write the main page, root/index.tt2.

[% WRAPPER wrapper.tt2 %]
[% PROCESS thing_macros.tt2 %]
[% MACRO list_controversy(rs) BLOCK %]

[% FOREACH row IN rs %]
[% thing(row.thing) %] [% score(row.total_points) %]
 ([% row.ups | html%]
 [% row.downs | html %])

[% END %]

[% END %]

[% INCLUDE pair.tt2
 title='By Score'
 left_title = 'Ten Best Things'
 left = list_things(top_ten,c.uri_for('/things'))
 right_title = 'Ten Worst Things'
 right = list_things(bottom_ten,c.uri_for('/things'))
%]
[% INCLUDE pair.tt2
 title='By Controversy'
 left_title = 'Ten Most Controversial Things'
 left = list_controversy(most_controversial)

Chapter 5

[103]

 right_title = 'Ten Least Controversial Things'
 right = list_controversy(least_controversial)
%]

<p>Want to voice your own opinion? Connect to irc.perl.org and join
[% channels | html %]. From there, just talk normally and ChatStat
will learn what you think! </p>

[% END %]

We start by wrapping the page in our main wrapper. Then we include the macros.
We use PROCESS instead of INCLUDE so that the macros are treated as thought they
were actually typed inside main.tt2. (INCLUDE will throw them away after the
included template is processed.) We continue by defining a macro to format the
controversy data, since it differs slightly from the best/worst data. After that we're
ready to show our two pairs (best/worst and the controversy), and a bit of
explanatory text.

Now we need to actually get this data from the database into the template. We'll start
with the root Controller in lib/ChatStat/Controller/Root.pm:

package ChatStat::Controller::Root;
use strict;
use warnings;

use base 'Catalyst::Controller';
__PACKAGE__->config(namespace => q{});

sub main : Path Args(0) {
 my ($self, $c, @args) = @_;
 $c->stash(template => 'index.tt2');

 # highest/lowest by score
 $c->stash(top_ten => [$c->model('DBIC::Things')->highest_rated]);
 $c->stash(bottom_ten=>[$c->model('DBIC::Things')->lowest_rated]);

 # controversy
 $c->stash(most_controversial =>
 [$c->model('DBIC::Things')->most_controversial]);
 $c->stash(least_controversial =>
 [$c->model('DBIC::Things')->least_controversial]);

 # list of joined channels
 my @channels = @{$c->config->{bot}{channels}||[]};
 my $last = pop @channels if @channels > 1;
 my $channels = join ', ', @channels;
 $channels .= " or $last" if $last;
 $c->stash(channels => $channels);
}

Building a More Advanced Application

[104]

All we do here is call into some custom ResultSets (highest_rated, lowest_rated,
most_controversial and least_controversial) that we will define in ChatStat::
Schema::Things. We also get a list of IRC channels from the config file, and join
those so that users looking at the page know where to go to vote for things.

The final step is to write those custom ResultSets as follows:

=head2 highest_rated([$how_many [, $multiplier]])

Returns a resultset page of C<$how_many> highest rated items, or 10 if
not specified. If C<$multiplier> is C<-1>, then the lowest-rated
items are returned instead. (C<$multiplier> defaults to 1.)

 my @top_ten = $schema->resultset('Opinions')->highest_rated();
 my @bot_ten = $schema->resultset('Opinions')->highest_rated(10, -1);
 my @top_40 = $schema->resultset('Opinions')->highest_rated(40);
 ...

From there:

 my $first = @top_ten[0];
 say $first->thing->thing. ' has '. $first->total_points. ' points';

=cut

sub highest_rated :ResultSet {
 my $self = shift;
 my $count = shift || 10;
 my $mult = shift || 1;

 croak "bad multiplier $mult; use 1 or -1"
 if $mult != -1 && $mult != 1;

 my $sort = $mult > 0 ? 'DESC' : 'ASC';
 return $self->search({},
 { '+select' => [{ SUM => 'opinions.points'}],
 '+as' => [qw/total_points/],
 join => ['opinions'],
 group_by => 'me.tid',
 order_by => "SUM(opinions.points) $sort",
 rows => $count,
 page => 1,
 });
}

=head2 lowest_rated([$how_many])

Abbreviation for highest_rated($how_many, -1)

=cut

sub lowest_rated :ResultSet {
 shift->highest_rated(shift(), -1);
}

Chapter 5

[105]

lowest_rated is just an alias for highest_rated, but sorted backwards.
highest_rated is where all of the real work happens. The top part of the function
reads the arguments and translates 1 or -1 into DESC or ASC sort order and supplies
values for optional arguments. The real meat is the call to search. The empty {}
passed means that we don't want to constrain the results at all; we want every
row in the Things table. The next hashref is a list of modifiers. +select says to
select additional columns, specified as an array reference. Here we're selecting
SUM(opinions.points). We can use "opinions" as we passed it as an argument to
the join attribute. Note that "opinions" is the name of the DBIx::Class relationship,
not the name of the table. The +as we pass gives the SUM(opinions.points) a name,
total_points, that we can pass to get_column to get the value. For convenience, we
should create an accessor to get this for us:

sub total_points {
 my $self = shift;

 # if we've joined this in, use the version we already have
 my $fast = eval { $self->get_column('total_points') };
 return $fast if defined $fast;

 # if it's not there, compute it with another SQL query
 return $self->opinions->get_column('points')->sum;
}

This accessor first looks to see if we already have total_points, and if we do,
returns it. If we don't ask for total_points when we do the query, it will be
calculated separately. (Note that if you're going to call total_points on every row,
it's best to join it in like we do in highest_rated. If you don't, every call will result
in a trip to the database, requiring a new query for every single row.)

We have seen the other attributes passed to search in the highest_rated string.
order_by defines the sort order (like SQL's ORDER BY keyword) and group_by will
set the grouping for aggregates, in this case the tid column in opinions. Rows and
page set up paging; we usually want 10 rows and the first page, so we pass 10 and 1
to each of those attributes.

With that in place, the first half of our main page loads. Now we just need the
controversy data. Here are least_controversial and most_controversial:

sub most_controversial :ResultSet {
 my $self = shift;
 my $count = shift;
 my $algo = '-(ABS(SUM(points))+COUNT(1))/(COUNT(1)+0.1)';
 $self->_controversial($count, $algo, 'DESC');
}

sub least_controversial :ResultSet {

Building a More Advanced Application

[106]

 my $self = shift;
 my $count = shift;
 my $algo = '-ABS(SUM(points))/(COUNT(1)+0.8)';
 $self->_controversial($count, $algo, 'ASC');
}

These methods simply set up the SQL for determining the controversy and pass
it to the _controversial function, which does the real work. For the curious, I
fine-tuned the controversy algorithm by writing a small REPL (included in the
contrib directory of the source code) this accepts a SQL statement ($algo above)
and shows the top 10 rows sorted by the result of that query. This allowed me to
tweak the algorithm with real data until I liked the result. (The basic idea is that the
most controversial items have scores close to zero because they've been upmodded
and downmodded an equal number of times. The least controversial items have high
scores with little opposition.)

Here's _controversial, which does the real work:

sub _controversial :ResultSet {
 my $self = shift;
 my $count = shift || 10;
 my $algo = shift;
 my $order = shift;

 $algo .= ' co';

 return
 $self->search({},
 { '+select' => [\$algo,
 { SUM => 'points'},
 \'ABS(SUM((POINTS+1)/2))',
 \'ABS(SUM((POINTS-1)/2))',
 { COUNT => 1 },
],
 '+as' => [qw/controversy total_points ups downs c/],
 join => ['opinions'],
 group_by => 'me.tid',
 order_by => "co $order",
 having => "COUNT(1) > 5",
 rows => $count,
 page => 1,
 });
}

Chapter 5

[107]

What we do here is to select the controversy rating ($algo), the total score, the
number of upmods, the number of downmods, and the total count of upmods and
downmods (for ordering). We introduce a new attribute here, having, which is the
same as SQL's HAVING clause.

Now we have everything we need to run the application. If you start the app, you
should be able to visit the main page and see the highest rated things, lowest rated
things, most controversial things, and least controversial things. All that's missing is
formatting, which you can get by creating a root/static/main.css, which looks
like the following:

* {
 background-color: white;
}

h2 { margin: 0 }

span.positive_score {
 color: green;
}
span.negative_score {
 color: red;
}
a.thing {
 color: black;
 text-decoration: none;
}

.pair {
 width: 30em;
}
.pair h3 {
 margin: 0;
 padding: 0;
}
.box {
 width: 47%;
}
.pair .left {
 float: left;
}
.pair .right {
 float: right;
}

.clearfix:after {
 content: ".";
 display: block;

Building a More Advanced Application

[108]

 height: 0px;
 clear: both;
 visibility: hidden;
}

#logos {
 padding-top: 2em;
}

#logos img {
 border: none;
}

Now you can reload and see everything neatly laid out (and with pretty colors).

At this point, we're ready to start making some of the links work. We'll start with the
more... link, which shows a list of everything in the database.

Let's start by adding a ResultSet that will return everything and its score to
lib/ChatStat/Schema/Things.pm:

sub everything :ResultSet {
 my $self = shift;

 return $self->search({},
 { '+select' => { SUM =>
 'opinions.points' },
 '+as' => 'total_points',
 join => 'opinions',
 group_by => 'opinions.tid',
 });

This is simple compared to the queries we wrote before. We're simply selecting
everything and adding the total points to the results.

This query is actually a superset of the queries we wrote above. As
ResultSets can be chained, it's possible to write the other queries as a
search chained off of this one. The code size is about the same, though, so
I chose to do all three separately.

With this everything query, let's move on to writing the Controller. We'll need to
create a new one, lib/ChatStat/Controller/Things.pm, and add the following:

package ChatStat::Controller::Things;
use strict;
use warnings;

use base 'Catalyst::Controller';

Chapter 5

[109]

sub all_things :Path Args(0) {
 my ($self, $c) = @_;
 $c->stash(template => 'things.tt2');
 $c->stash(everything => [
 $c->model('DBIC::Things')->
 everything->search({},{ order_by =>
 'SUM(opinions.points) DESC'})
]);
}

1;

Here we get a list of everything with our everything ResultSet method, and then
filter it further, so it's sorted according to the number of points.

Finally, we need a template, root/things.tt2, to display this data:

[% WRAPPER wrapper.tt2 %]
<h2>Every Thing</h2>
[% PROCESS thing_macros.tt2 %]
[% FOREACH row = everything %]
<p>[% thing(row.thing) %] [% score(row.total_points) %]</p>
[% END %]
[% END %]

Writing the template becomes pretty simple when all the macros are set up for you
in advance.

Now we're ready to write the most interesting page in the application, the "thing"
overview page. On this page, we'll be able to see the karma for the item, the number
of upmods and downmods, and all of the written opinions. Here's what the page will
look like:

Building a More Advanced Application

[110]

As we already have most of the data we need for this page, let's start by writing the
controller. Below the all_things method we just wrote, add a one_thing method:

sub one_thing :Path Args(1) {
 my ($self, $c, $thing) = @_;
 my $m = $c->model('DBIC');

 # aggregates
 $c->stash(template => 'thing.tt2');
 $c->stash(thing => $thing);
 $c->stash(points => $m->karma_for($thing));
 $c->stash(ups => $m->karma_for($thing, 1));
 $c->stash(downs => $m->karma_for($thing, -1));
 $c->stash(person => $m->resultset('People')->
 find({ name => $thing}, { key => 'nickname' })
);

 # detailed reasons
 my @reasons = $c->model('DBIC::Things')->reasons_for($thing);
 my @up_r = grep { $_->points > 0 } @reasons;
 my @dn_r = grep { $_->points < 0 } @reasons;
 my @nu_r = grep { $_->points == 0 } @reasons;

 $c->stash(up_reasons => \@up_r);
 $c->stash(down_reasons => \@dn_r);
 $c->stash(neutral_reasons => \@nu_r);

}

Note that this action accepts one argument (the thing), so that it is :Path Args(1)
instead of :Path Args(0).

We do have a few queries in this action. We get the karma for the thing, and the
number of ups and downs it received. We also look for a person with the same
nickname as the thing and pass it to the template if there is one. Finally, we get all
the textual reasons for this things, and sort them into upmod reasons, downmod
reasons, and neutral reasons.

Here's the code (in Schema::Things) for reasons_for:

sub reasons_for :ResultSet {
 my $self = shift;
 my $thing = shift;

 return $self->
 search({ thing => $thing })->
 search_related(opinions => {reason => {'<>' => q{}}});
}

Chapter 5

[111]

This method returns all the opinions that are related to this thing, that have a
non-NULL (or empty) textual reason.

The template for this action, root/thing.tt2, is straightforward as follows:

[% WRAPPER wrapper.tt2 %]
[% PROCESS thing_macros.tt2 %]
[% MACRO list_reasons(opinions) BLOCK %]
 [% FOREACH opinion = opinions %]
 <div class="reason">
 <p>[% opinion.reason | html %]
 [% person(opinion.person) %]
 </p>
 </div>
 [% END %]
 [% IF opinions.size < 1 %] <p>None!</p> [% END %]
[% END %]

<h2>Information on [% c.stash.thing | html %]</h2>
<p>[% c.stash.thing | html %] has karma of [% score(points) %] from
being upmodded [% score(ups) %] times and downmodded
[% downs | html %] times.
</p>

[% IF c.stash.person %]
<p>[% person(c.stash.thing) %] is also a person!</p>
[% END %]

[% INCLUDE pair.tt2
 left_title = "Reasons why " _ c.stash.thing _ " is loved"
 right_title = "Reasons why " _ c.stash.thing _ " is hated"
 left = list_reasons(up_reasons)
 right = list_reasons(down_reasons)
 width = "50em"
%]

<div class="pair" style="width: 50em">
<div class="box" style="padding-left: 13em; padding-right: 13em;">
[% IF neutral_reasons.size > 0 %]
<h3>Reasons why [% c.stash.thing | html %] is meh</h3>
[% list_reasons(neutral_reasons) %]
[% END %]
</div>
</div>

[% END %]

Building a More Advanced Application

[112]

We include our usual macros and then define one to format the up/down/neutral
reasons into HTML. Then we start the actual body of the page, which is a bit of text
showing the upmod and downmod count, and then a pair of reason lists. If we find
a person that has the same name as thing, we display a link to that page. Below the
pair of reason lists, we display the neutral reasons if there are any.

The final thing we need to do is to give each person a page, so that the person()
links we create everywhere actually work. This page will show a list of the user's
favorite and least favorite things and a list of machines that he has used.

The controller, People.pm, will look like the following:

package ChatStat::Controller::People;
use strict;
use warnings;

use base 'Catalyst::Controller::BindLex';

sub one_person :Path :Args(1) {
 my ($self, $c, $name) = @_;

 $c->stash(template => 'person.tt2');

Chapter 5

[113]

 # find who we're looking for
 my $person :Stashed = $c->model('DBIC::People')->
 find($name, {key => 'nickname'});

 $c->detach('/error_404', [qq{No such person "$name"}]) unless
$person;

 # get nicknames
 my $nicknames :Stashed = $person->nicknames;
 my $nickids = [$nicknames->get_column('nid')->all];
 my @cond = ({ 'opinions.nid' =>
 { -in => $nickids },
 },
 { join => 'opinions' }
);

 # and do the search for things' scores
 my $t = $c->model('DBIC::Things');
 my @high :Stashed = $t->highest_rated->search(@cond);
 my @low :Stashed = $t->lowest_rated->search(@cond);
}
1;

We start by finding the requested person, and detaching to a 404 page if it doesn't
exist. The code for the 404 page is in Root.pm:

sub error_404 :Private {
 my ($self, $c, $reason) = @_;
 $reason ||= 'Not found';
 $c->stash(reason => $reason);
 $c->stash(template => '404.tt2');
 $c->response->status(404);
}

And the template, root/404.tt2:

[% WRAPPER wrapper.tt2 %]
<h2>404 Not Found</h2>
<p>[% reason | html %]</p>
Go home?
[% END %]

After we have a Person, we get a list of the nickname IDs that he has used, and use
that data to build up some constraints that will limit a query of opinions to ones by
that user. Finally, we use our highest_rated and lowest_rated ResultSets to get
the highest and lowest rated items, but with a twist—we search within that ResultSet
and limit it to the nicknames used by the requested Person. In this way, we get a top
and bottom ten list for a specific user.

Building a More Advanced Application

[114]

Once we have the data, we just need to show it via root/person.tt2:

[% WRAPPER wrapper.tt2 %]
[% PROCESS thing_macros.tt2 %]
[% INCLUDE pair.tt2
 title= c.stash.person.name _ "'s Notables"
 left_title = 'Ten Favorite Things'
 left = list_things(high)
 right_title = 'Ten Favorite Things to Hate'
 right = list_things(low)
%]
<h2>Known aliases</h2>
<table>
<tr><th>user</th><th>nick</th><th>host</th></tr>
[% WHILE (nick = nicknames.next) %]
<tr>
 <td>[% nick.username | html %]</td>
 <td>[% person(nick.nick) %]</td>
 <td>[% nick.host | html %]</td>
</tr>
[% END %]
</table>
[% END %]

Here, we reuse the list_things macro we wrote for the main page and show the
pair of best/worst things. Then we use the Person object to display some information
about the nicknames that person has used.

For completeness, let's also add an action for displaying a list of all people:

sub everyone :Path Args(0) {
 my ($self, $c) = @_;
 my $people :Stashed = $c->model('DBIC::People');
 $c->stash(template => 'people.tt2');
}

The template is simple:

[% WRAPPER wrapper.tt2 %]
[% PROCESS thing_macros.tt2 %]
<h2>Everyone</h2>

[% WHILE (the_person = people.next) %]
[% person(the_person.name) %]
[% END %]

[% END %]

Chapter 5

[115]

That's all we need for the read-only part of the interface. Everything that's linked to
it works.

Let us add one last feature to the Things controller to demonstrate Catalyst's
Chained dispatch type. We'll provide two additional actions, "ups" and "downs" to
get just a list of up reasons and down reasons for each thing. The URL will look like
/things/<the thing>/ups and /things/<the thing>/downs.

Without the Chained dispatch type, writing something like this would be ugly. You
would have to get the second argument (if there was one), figure out whether it was
up or down, then do something based on that information. Chained makes this sort
of thing trivial.

To get started, we'll modify the existing actions a bit. Instead of:

sub one_thing :Path Args(1) { ... }

We'll start a Chain as follows:

sub thing_setup :Chained('/') PathPart('things') CaptureArgs(1) {
 my ($self, $c, $thing) = @_;
 $c->stash(thing => $thing);
 my $m = $c->model('DBIC');

 # rest of the action, except setting the template
}

This will start a chain that will capture one argument whenever /things/* is hit.
The argument to Chained is usually the chain that your action applies to, but to
start a chain you attach it to /. PathPart is what URL part you want after the chain
(things after /) in this case. CaptureArgs will take a number of arguments off the
URL and pass them to the action before trying to match the rest of the chain.

This won't do anything itself; chains need an endpoint. So, we'll add one_thing
endpoint to restore the functionality that we had before:

sub one_thing :Chained('thing_setup') PathPart('') Args(0) {
 my ($self, $c) = @_;
 $c->stash(template => 'thing.tt2');
}

Here we're chaining this endpoint of thing_setup with an empty name, and
accepting no arguments. Note that in the middle of the chain you say CaptureArgs,
but at an endpoint you just say Args as usual.

Building a More Advanced Application

[116]

Now the old action will work like it did before. However, adding new actions that
operate on a thing is quite easy:

sub ups :Chained('thing_setup') Args(0) {
 my ($self, $c) = @_;
 $c->stash(template => 'reasons_simple.tt2');
 $c->stash(things => $c->stash->{up_reasons});
}

sub downs :Chained('thing_setup') Args(0) {
 my ($self, $c) = @_;
 $c->stash(template => 'reasons_simple.tt2');
 $c->stash(things => $c->stash->{down_reasons});
}

In this case we can omit PathPart, because it defaults to the name of the action, and
that's what we want this time.

That's all we need to do to add actions that only show ups or downs on the page. The
setup work happens in thing_setup, and the endpoints that chain off that do the
minimum amount of work needed to show the page.

To see this in action, just create the template, root/reasons_simple.tt2:

<html>
<title>Reasons for [% thing | html %]</title>
<body>

[% FOREACH thing = things %]
[% thing.reason | html %]
[% END %]

</body>
</html>

Adding a /ups or /downs off any thing's page's URL will now show the simple list of
reasons for that thing.

Note that you can chain chains from chains, so that you aren't limited to a URL like
/base/<argument>/endpoint. You can chain as many times as you like, so /base/
<argument>/something/<argument>/endpoint is perfectly legal (and useful).

Chapter 5

[117]

Summary
In this chapter, we created a new application called ChatStat. As it's database
heavy, we took a look at the features of DBIC that make handling all the data easy.
We then used Catalyst to get the data from DBIC and onto the web. We saw the
value of putting data logic into the Model (in the form of custom accessors and
ResultSets), and how Catalyst's chained dispatcher makes it easy to add actions onto
other actions.

Building Your Own Model
In the last few chapters, we've seen how DBIx::Class can provide a powerful
interface to your data. Sometimes, however, DBIx::Class is not the right tool for the
job. Situations often arise in which your application won't be able to access database
tables directly and instead you'll need to access data through predefined stored
procedures. In this case, DBIx::Class would be useless as you aren't able to read
and modify objects with the usual SELECT, INSERT, UPDATE, and DELETE command
set—everything must be done by calling a procedure and reading back the result.

In other cases, your data won't be in a database at all. You might instead choose to
store and retrieve information from files in a directory.

In this chapter, we'll cover three common cases—mixing a procedural interface with
a relational DBIx::Class interface, writing a database interface without DBIx::
Class, and building a custom Model that doesn't use a database at all.

Extending a DBIx::Class Model
A common occurrence is a situation in which your application has free reign over
most of the database, but needs to use a few stored procedure calls to get at certain
pieces of data. In that case, you'll want to create a normal DBIC schema and then add
methods for accessing the unusual data.

As an example, let's look back to the AddressBook application and imagine that
for some reason we couldn't use DBIx::Class to access the user table, and instead
need to write the raw SQL to return an array containing everyone's username. In
AddressBook::Model::AddressDB, we just need to write a subroutine to do our
work as follows:

package AddressBook::Model::AddressDB;
// other code in the package
sub get_users {

Building Your Own Model

[120]

 my $self = shift;
 my $storage = $self->storage;
 return $storage->dbh_do(
 sub {
 my $self = shift;
 my $dbh = shift;
 my $sth = $dbh->prepare('SELECT username FROM user');
 $sth->execute();
 my @rows = @{$sth->fetchall_arrayref()};
 return map { $_->[0] } @rows;
 });
}

Here's how the code works. On the first line, we get our DBIC::Schema object and
then obtain the schema's storage object. The storage object is what DBIC uses to
execute its generated SQL on the database, and is usually an instance of DBIx::
Class::Storage::DBI. This class contains a method called dbh_do which will
execute a piece of code, passed to dbh_do as a coderef (or "anonymous subroutine"),
and provide the code with a standard DBI database handle (usually called $dbh).
dbh_do will make sure that the database handle is valid before it calls your code,
so you don't need to worry about things like the database connection timing out.
DBIC will reconnect if necessary and then call your code. dbh_do will also handle
exceptions raised within your code in a standard way, so that errors can be
caught normally.

The rest of the code deals with actually executing our query. When the database
handle is ready, it's passed as the second argument to our coderef (the first is the
storage object itself, in case you happen to need that). Once we have the database
handle, the rest of the code is exactly the same as if we were using plain DBI instead
of DBIx::Class. We first prepare our query (which need not be a SELECT; it could be
EXEC or anything else), execute it and, finally, process the result. The map statement
converts the returned data to the form we expect it in, a list of names (instead of a
list of rows each containing a single name). Note that the return statement in the
coderef returns to dbh_do, not to the caller of get_users. This means that you can
execute dbh_do as many times as required and then further process the results before
returning from the get_users subroutine.

Once you've written this subroutine, you can easily call it from elsewhere in
your application:

my @users = $c->model('AddressDB')->get_users;
$c->response->body('All Users' join ', ', @users);

Chapter 6

[121]

Custom Methods Without Raw SQL
As the above example doesn't use any features of the database that DBIC doesn't
explicitly expose in its resultset interface, let us see how we can implement the
get_users function without using dbh_do. Although the preconditions of the
example indicated that we couldn't use DBIC, it's good to compare the two
approaches so you can decide which way to do things in your application. Here's
another way to implement the above example:

sub get_users { # version 2
 my $self = shift;
 my $users = $self->resultset('User');
 my @result;
 while(my $user = $users->next){
 push @result, $user->username;
 }
 return @result;
}

This looks like the usual DBIC manipulation that we're used to. (Usually we call
$c->model('AddressDB::User') to get the "User" resultset, but under the hood this
is the same as $c->model('AddressDB')->resultset('User'). In this example,
$self is the same as $c->model('AddressDB').)

The above code is cleaner and more portable (across database systems) than the
dbh_do method, so it's best to prefer resultsets over dbh_do unless there's
absolutely no other way to achieve the functionality you desire.

Calling Database Functions
Another common problem is the need to call database functions on tables that you're
accessing with DBIC. Fortunately, DBIC provides syntax for this case, so we won't
need to write any SQL manually and run it with dbh_do. All that's required is a
second argument to search. For example, if we want to get the count of all users in
the user table, we could write (in a controller) the following:

$users = $c->model('AddressDB::User');
$users->search({}, { select => [{ COUNT => 'id' }],
 as => ['count'],});
$count = $users->first->get_column('count');

This is the same as executing SELECT COUNT(id) FROM user, fetching the first row
and then setting $count to the first column of that row.

Building Your Own Model

[122]

Note that we didn't specify a WHERE clause, but if we wanted to, we could replace the
first {} with the WHERE expression, and then get the count of matching rows. Here's a
function that we can place in the User ResultSetClass to get easy access to the
user count:

sub count_users_where {
 my $self = shift;
 my $condition = shift;

 $self->search($condition,
 { select => [{ COUNT => 'id' }],
 as => ['count'], });
 my $first = $users->first;
 return $first->get_column('count') if $first;
 return 0; # if there is no "first" row, return 0
}

Now, we can write something like the following:

$jons = $c->model('AddressDB::User')->
 count_users_where([username => {-like => '%jon%'}]);

to get the number of jons in the database, without having to fetch every record and
count them.

If you only need to work with a single column, you can also use the DBIx::Class::
ResultSetColumn interface.

Creating a Database Model from Scratch
In some cases, you'll have no use for any of DBIC's functionality. DBIC might not
work with your database, or perhaps you're migrating a legacy application that has
well-tested database queries that you don't want to rewrite. In this sort of situation,
you can write the entire database model manually.

In the next example, we'll use Catalyst::Model::DBI to set up the basic DBI layer
and the write methods (like we did above) to access the data in the model. As we
have the AddressBook application working, we'll add a DBI model and write some
queries against the AddressBook database.

First, we need to create the model. We'll call it AddressDBI:

$ perl script/addressbook_create.pl model AddressDBI DBI DBI:SQLite:
database

Chapter 6

[123]

When you open the generated AddressBook::Model::AddressDBI file, you should
see something like this:

package AddressBook::Model::AddressDBI;

use strict;
use base 'Catalyst::Model::DBI';

__PACKAGE__->config(
 dsn => 'DBI:SQLite:database',
 user => '',
 password => '',
 options => {},
);
1; # magic true value required

Once you have this file, you can just start adding methods. The database
handle will be available via $self->dbh, and the rest is up to you. Let's add a
count_users function:

sub count_users {
 my $self = shift;
 my $dbh = $self->dbh;

 my $rows = $dbh->
 selectall_arrayref('SELECT COUNT(id) FROM user');
 return $rows->[0]->[0]; # first row, then the first column
}

Let's also add a test Controller so that we can see if this method works. First, create
the Test controller by running the following command line:

$ perl script/addressbook_create.pl controller Test

And then add a quick test action as follows:

sub count_users : Local {
 my ($self, $c) = @_;

 my $count = $c->model('AddressDBI')->count_users();
 $c->response->body("There are $count users.");
}

You can quickly see the output of this action by running the following
command line:

$ perl script/addressbook_test.pl /test/count_users

There are 2 users.

Building Your Own Model

[124]

The myapp_test.pl script will work for any action, but it works best
for test actions like this because the output is plain-text and will fit on the
screen. When you're testing actual actions in your application, it's usually
easier to read the page when you view it in the browser.

That's all there is to it—just add methods to AddressDBI until you have everything
you need.

The only other thing you might want to do is to add the database configuration to
your config file, like we did in Chapter 4. It works almost the same way for DBI as it
does for DBIC::Schema:

name: AddressBook
Model::AddressDBI:
 dsn: "DBI:SQLite:database"
 username: ~
 password: ~
 options:
 option1: something
 # and so on
the rest of your config file goes here

Implementing a Filesystem Model
In this final example, we'll build an entire model from scratch without even the
help of a model base class like Catalyst::Model::DBI. Before you do this for your
own application, you should check the CPAN to see if anyone's done anything
similar already. There are currently about fifty ready-to-use model base classes that
abstract data sources like LDAP servers, RSS readers, shopping carts, search engines,
Subversion, email folders, web services and even YouTube. Expanding upon one of
these classes will usually be easier than writing everything yourself.

For this example, we'll create a very simple blog application. To post the blog, you
just write some text and put it in a file whose name is the title you want on the post.
We'll write a filesystem model from scratch to provide the application with the
blog posts.

Let's start by creating the app's skeleton:

$ catalyst.pl Blog

Chapter 6

[125]

After that, we'll create our Filesystem model:

$ cd Blog

$ perl script/blog_create.pl model Filesystem

We'll also use plain TT for the View:

$ perl script/blog_create.pl view TT TT

Let's continue by creating a template for displaying the most recent blog posts, called
root/recent.tt:

<html>
<head><title>Recent blog posts</title></head>
<body>
<h1>Blog</h1>
[% FOREACH post = posts %]
<h2>[% post.title | html %]</h2>
<i>Written on [% post.created | html %]</i>
[% post.body %]
[% END %]
</body>
</html>

Finally, let's replace the default index action with one that gets the posts from the
model and then displays them inside the recent.tt template. In Blog::Controller::
Root, we'll replace default with the following code:

sub default : Private {
 my ($self, $c) = @_;
 $c->stash->{template} = 'recent.tt';
 #$c->stash->{posts} = [$c->model('Filesystem')
 # ->get_recent_posts()];
}

Note that we've commented out the line where we get the posts, since we
haven't implemented the get_recent_posts method yet. You should be able to
start the application now and see the beginnings of a blog when you visit
http://localhost:3000/.

Building Your Own Model

[126]

All that's left to do is implement the model. This model will take a two-tiered
approach. The actual Catalyst model will find all "posts" and will create a
Blog::Model::Filesystem::Post object for each. These objects will do most of
the work—reading the file, etc. Let's start by creating the Post class by writing
lib/Blog/Model/Filesystem/Post.pm:

Post.pm

package Blog::Model::Filesystem::Post;
use strict;
use warnings;
use Carp;
use File::Basename;
use File::Slurp qw(read_file);
use File::CreationTime qw(creation_time);
use base 'Class::Accessor';
__PACKAGE__->mk_ro_accessors(qw(filename));

sub new {
 my $class = shift;
 my $filename = shift;

 croak "Must specify a filename" unless $filename;

 my $self = {};
 $self->{filename} = $filename;
 bless $self, $class;
 return $self;
}

sub title {
 my $self = shift;
 my $filename = $self->filename;
 my $title = basename($filename);
 $title =~ s/[.](\w+)$//; # strip off .extensions
 return $title;
}

sub body {
 my $self = shift;
 return read_file($self->filename);
}

sub created {
 my $self = shift;
 return creation_time($self->filename);
}

sub modified {
 my $self = shift;
 return (stat $self->filename)[9]; # 9 is mtime
}

1;

Chapter 6

[127]

This is a pretty standard Perl class. The new method takes a filename and creates an
instance of this class based on the filename. The rest of the methods access the file
and return the desired information. Because of the way we've designed the class, it
will be extremely simple to add more information to each blog post in the future.
We'll just create another method, and the information will be easily available to the
controller and the template.

Now we need to create the actual Catalyst model that will find blog posts and
return instances of the above Post object. To start with, we'll just need to add the
get_recent_posts method in the following manner:

package Blog::Model::Filesystem;

use strict;
use warnings;
use base 'Catalyst::Model';
use Carp;
use File::Spec;
use Blog::Model::Filesystem::Post;

__PACKAGE__->mk_accessors('base');

sub get_recent_posts {
 my $self = shift;
 my $base = $self->base;

 my @articles;

 opendir my $dir, $base or
 croak "Problem opening $base: $!";
 while(my $file = readdir $dir){
 next if $file =~ /^[.]/; # skip hidden files
 my $filename = File::Spec->catfile($base, $file);
 next if -d $filename;
 push @articles,
 Blog::Model::Filesystem::Post->new($filename);
 }
 closedir $dir;

 @articles = reverse sort {$a->created <=> $b->created}

 @articles;

 return @articles if @articles < 5;
 return @articles[0..4]; # top 5 otherwise
}

Building Your Own Model

[128]

The mk_accessors line is especially important—this will allow you to specify a
"base" attribute in the config file, which will then be available in the rest of the
methods as $self->base. Here's the config file, blog.yml:

name: Blog
Model::Filesystem:
 base: /tmp/test

Now all you need to do is remove the comment from the line in Root.pm and then
add some HTML files to /tmp/test. When you start your server, you should see the
5 most recent posts displayed!

(If you're interested in taking this idea further, check out the Angerwhale blogging
system, available from the CPAN. It uses a similar filesystem-based model, but one
that has many more features.)

Tweaking the Model
With the core functionality in place, we can now dig a bit deeper into the model
and add some more features. The first one is a sort of "user interface" improvement.
Instead of making the user type out the Model::Filesystem part in the config file,
it would be nice to just specify "base" and have that take the effect in the same
way. We can achieve this by reading the value of $c->config->{base} into
$c->config->{Model::Filesystem}->{base} just before Catalyst creates an
instance of the class. This is done by overriding the COMPONENT method in the model.
The COMPONENT method is called to setup things like configuration right before the
new method is called (things like database connections are set up). We can override
this in our model, tweak the config, and then call the version of COMPONENT in
Catalyst::Model to finish everything up:

sub COMPONENT {
 my ($class, $app, $args) = @_;
 $args->{base} = $app->config->{base};
 return $class->NEXT::COMPONENT($app, $args);
}

We call $c $app at this point, because $c usually means that there is
a request occurring, whereas $app is just the static data that "is" your
application. The current version of Catalyst lets you treat these objects the
same way, but Catalyst 5.8 will distinguish between them. This will allow
Catalyst applications to embed each other, among other things.

Chapter 6

[129]

With this code in place, we can change the config file to:

base: /tmp/test
name: Blog

The last feature we'll add is validation of "base" in the new method. This will check to
see if the base directory exists, and if it does not, issue an error message and prevent
the application from starting:

sub new {
 my $class = shift;
 my $self = $class->NEXT::new(@_); # get the real self
 my $base = $self->base;
 croak "base $base does not exist" if !-d $base;
 return $self;
}

If you're inheriting from a base class, you can control whether or not your code runs
before that of your base class by choosing whether to run your code before or after
the NEXT::new() call. NEXT::new() is where the superclasses get a chance to set
themselves up, then control is passed back to you. You should return the result of
NEXT::new() from the new method.

Request Context Inside the Model
Generally, your model's configuration won't change as requests run. When Catalyst
is started, your model is initialized and it doesn't see the rest of your application
again. This means that you can't save the $app you got from COMPONENT and use it
to, say, access $c->request or $c->response in the future. It's generally a good idea
to avoid touching the request from inside a model (that's what the Controller is for)
anyway, but if you absolutely need to, you can get the latest $c by implementing an
ACCEPT_CONTEXT method in your model. It's called by Catalyst every time you call
$c->model() and is passed $c and any arguments are passed to $c->model(). In
general, it will look something like this:

__PACKAGE__->mk_accessors(qw|context|); # at the top

sub ACCEPT_CONTEXT {
 my ($self, $c, @args) = @_;
 $self->context($c);
 return $self;
}

Building Your Own Model

[130]

We return $self from ACCEPT_CONTEXT here, but in theory you can return anything.
The value is passed directly back to the caller of $c->model(). DBIC::Schema takes
advantage of this feature to return individual resultsets instead of the entire schema
depending on how $c->model() is invoked.

After you've added an ACCEPT_CONTEXT method like the above, you can call
$self->context() anywhere in your model to get the current request context.

Maintainable Models
When you're writing your own data model for use with Catalyst, you might want
to consider making it work without Catalyst first, and then later adding some glue
to make it easy to use from within Catalyst. The advantage of this approach is that
you can test your model without having to have a Catalyst app to use it and that you
can use your data model class in non-Catalyst applications. DBIx::Class takes this
approach, the DBIx::Class::Schema works fine without Catalyst. The DBIC model
you create for your application is just a bit of glue to make using the DBIx::Class::
Schema from Catalyst convenient.

Let's take a look at how we would build the Filesystem model in this manner. First,
we'll move the Blog::Model::Filesystem::Post class to the Blog::Backend::
Filesystem::Post namespace. Then, we'll write our post access code in Blog::
Backend::Filesystem instead of Blog::Model::Filesystem. The code is exactly
the same, except we'll write our own new method:

package Blog::Backend::Filesystem;
use strict;
use warnings;
use Carp;

use Blog::Backend::Filesystem::Post;

sub new {
 my ($class, $args) = @_; # args is { base => 'path' }
 croak 'need a base that exists' if !-d $args->{base};
 return bless $args, $class;
}

then the same as Blog::Model::Filesystem above, substituting
Blog::Backend::Filesystem::Post for
Blog::Model::Filesystem::Post.

Now you have a class that you can use to access blog posts from outside of
Catalyst. Just instantiate it like my $post_model = Blog::Backend::Filesystem-
>new({ base => '/var/blog' }) and then use $post_model like you did $c-
>model('Filesystem') above.

Chapter 6

[131]

The final step is to create the glue to bind the backend class to a Catalyst model.
Fortunately, Catalyst::Model::Adaptor, a module on CPAN, will do that for us
automatically by running the following command line:

$ perl script/blog_create.pl model Filesystem Adaptor Blog::Backend::
Filesystem

That command will create a Model called Blog::Model::Filesystem
which simply returns a Blog::Backend::Filesystem object when you call
$c->model('Filesystem'). It works by creating a subclass of Catalyst::Model::
Adaptor, which will create an instance of your backend class at startup and return it
when needed.

One disadvantage is that the configuration format changes slightly:

Model::Filesystem:
 args:
 base: /var/blog

If you want to avoid the unsightly args key, you can override prepare_arguments
in the Model like this:

package Blog::Model::Filesytem;

generated code here

sub prepare_arguments {
 my ($self, $app) = @_;
 return { base => $app->{base} };
}

Now the adapted Filesystem Model will work exactly like the one we made earlier,
but with very little Catalyst-specific code.

If you are writing a Model that needs a new backend class to be created every time
you call $c->model or once per request (instead of once per application), you can use
the Catalyst::Model::Factory and Catalyst::Model::Factory::PerRequest
modules included with Catalyst::Model::Adaptor. They are all used in the same
way (as above, substituting Factory or Factory::PerRequest for Adaptor), but
integrate your backend class with Catalyst in slightly different ways. For most cases,
these Models will be all you need.

Building Your Own Model

[132]

Other Components
Models are just the tip of the iceberg—Views and Controllers work the same way
(and implement the same methods) as Models. You can easily create custom Views
and Controllers and inherit from them in your application to improve the reusability
of your application's code.

Summary
In this chapter, we looked at alternate ways to access the data model. We first
added the ability to execute raw SQL to a standard DBIC model, and contrasted the
code with normal DBIC resultset access. Then, we completely eliminated DBIC and
wrote a database Model that used DBI to run raw SQL on the database. Next, we
created a Filesystem Model from scratch, and learned how to use COMPONENT and
ACCEPT_CONTEXT to integrate the Model with the Catalyst application. We also saw
how using Catalyst::Model::Adaptor made writing a maintainable Model easier.

Hot Web Topics
Traditionally, web applications were lonely and isolated. They each had their own
set of users and data, and never acknowledged the existence of other applications.
Today, things are changing. Web applications provide public APIs so that other
applications can programmatically interact with their data and users. Users can visit
sites and later request that the site notifies them when it has been updated.

Another new development is widespread adoption of dynamic JavaScript-enabled
web applications. Gone are the days of slow waits between pages while things
loaded; AJAX allows web applications to be almost as responsive as native desktop
applications. In this chapter, we'll take a look at how to get your Catalyst application
in on the fun! We'll add a REST API to allow other programs to easily access our
application. Then, we'll use this API to add AJAX interactivity to our application.
Finally, we'll modify our mini-blog application to allow users to subscribe to the
latest posts.

REST
A feature that many public websites are beginning to offer their users is the ability to
get the information out of the application through a well-defined API (Application
Programming Interface). Instead of forcing users to "screen-scrape" the HTML
(programmatically parsing the pages that normal browser-based visitors see on the
screen), which is tedious and prone to error, the application provides developers
with the ability to access the application's entities in a serialized (XML, JSON, etc.)
format. Thanks to a wide variety of data deserializers for nearly every programming
language, getting data from a web application into your application is extremely
easy to implement and maintain with this approach.

Hot Web Topics

[134]

There are two main methods of providing this functionality; RPC (Remote
Procedure Call), like XML-RPC or SOAP (Simple Object Access Protocol) and REST
(Representational State Transfer). RPC-based approaches create an "RPC endpoint"
URL for your application and clients send requests (like give me address 42 or delete
person 10) to this URL and get responses back. All requests use the same endpoint.

REST uses a cleaner approach; it provides a URL for each entity ("noun") and the
client uses HTTP verbs to operate on these. Instead of sending an HTTP GET request
to /address/42/delete to delete address 42, we send an HTTP DELETE to /
address/42. A GET request to that location would return the serialized address and a
PUT request would update the data with the serialized version sent with the request.
POST-ing to the /address URL will create a new address.

In addition, all errors (and status indication) that can arise during this process are
returned as standard HTTP codes. If an address isn't found, the REST interface
returns 404 Not Found. When an entity is created, the server returns 201 Created
along with the serialized entity. If a certain HTTP method doesn't make sense for a
certain entity, 405 Method Not Allowed is returned. There's no strict standard dictating
what to return when, but the convention is to pick the most descriptive HTTP status
code. The idea is to make it as easy as possible for an off-the-shelf HTTP client to
understand what the response means.

We'll see all of this in action as we add a REST interface to our
AddressBook application.application.

Getting some REST
In this section, we'll add REST to the AddressBook application so that API clients
can easily look up people and their addresses. We'll write a simple command-line
client for accessing this interface, and we'll use it in the next section to implement an
interactive JavaScript interface.

The first step is to install Catalyst's REST plug-in; Catalyst::Controller::REST.
Catalyst::Controller::REST is a controller base class that will handle most of
the REST details for us. It will automatically determine the type of incoming data
and deserialize it into a Perl object. When we send a response, it will automatically
serialize the response entity into the format that the client requested. It also adds
some convenience functions, so we don't have to remember the proper HTTP
response codes for each operation. Finally, it includes an ActionClass that will
dispatch different HTTP methods to different Perl methods. We'll make use of all
these features when creating the REST interface.

Chapter 7

[135]

REST Controller
To provide a clean namespace for our REST actions, we're going to implement the
REST interface in a separate controller called "REST". Let's start by creating /lib/
AddressBook/Controller/REST.pm:

package AddressBook::Controller::REST;
use strict;
use warnings;
use base qw(Catalyst::Controller::REST);

__PACKAGE__->config->{serialize}{default} = 'JSON';
1;

This creates the basic controller, and sets the default serialization method to JSON
(JavaScript Object Notation). Clients can override this by sending a standard HTTP
Accept: header. They specify the format that their PUT or POST request is in by setting
a Content-type: header. Formats supported by Catalyst::Controller::REST
include JSON, YAML, XML, raw PHP, raw Perl, FreezeThaw and Storable. Refer to
the documentation for a full list and what headers to send for each type.

REST Authentication
Before we write any more code, we need to think about how to handle authentication
for the REST interface. As users of the API will most likely not be using a browser,
requiring them to log in, get a cookie and send it with each request would be
cumbersome. As a result, REST (and RPC) interfaces usually use some other sort
of authentication.

The most common method (used by Flickr and Google, among many others) is to
give each user an "API key". The API key works like a username and password, but
can be disabled if the user abuses the API (without disabling his normal web access).
The API key is sent in the headers of every request and the REST interface verifies it
before performing the request.

As it seems unlikely that anyone would abuse our AddressBook's API, we'll just
send the normal username and password with every request. Since there's no
standard HTTP header for this, we'll use X-Username and X-Password.

In addition, we'll want the REST interface to work (partially) from a web browser, so
we will also check to see if a user is logged in through the normal cookie method. If
he is, we won't bother checking for the X-Username and X-Password headers.

Hot Web Topics

[136]

Every REST request will need to be authenticated, so we'll add the authentication
check in the begin method of the REST controller as follows:

sub begin : ActionClass('Deserialize') {
 my ($self, $c) = @_;

 my $username = $c->req->header('X-Username');
 my $password = $c->req->header('X-Password');

 # require either logged in user, or correct user+pass in headers
 if (!$c->user && !$c->login($username, $password)){
 # login failed
 $c->res->status(403); # forbidden
 $c->res->body("You are not authorized to use the REST API.");
 $c->detach;
 }
}

Note that we are also applying the Deserialize ActionClass here. Normally the
REST controller deserializes the request automatically, but we're overriding it's
begin method where it would perform this task. So, we re-add it explicitly so that
everything continues to work normally.

We also need to tell our normal ACL plug-in to ignore the REST area, so at the
bottom of AddressBook.pm, we add:

 __PACKAGE__->allow_access('/rest'); # rest does its own auth

Adding an Entity
Now that our interface is protected appropriately, we can start adding some entities.
The format for implementing REST entities with Catalyst::Controller::REST is
as follows. We first create a standard Catalyst action that acts as the entity (noun).
We use the normal :Local, :Global, :Path, etc. attributes to map the Action to a
URL. However, we also add the REST ActionClass to the Action. This ActionClass
will eliminate some tedium associated with REST. Instead of a chain of if statements
like the following:

if ($c->req->method eq 'GET') { handle GET request }
elsif($c->req->method eq 'POST'){ handle POST request }
elsif(...) ...
else { return an error }

Chapter 7

[137]

we can write the following:

sub entity :Local :ActionClass('REST'){
 # do some setup for each request
}
sub entity_GET { handle GET request }
sub entity_POST { handle POST request }

Catalyst will take care of returning an HTTP error code when a method isn't
implemented, and will also allow an HTTP client to ask what methods are
implemented for a given entity.

Let us apply this by creating the shell of a person entity as follows:

sub person :Local :ActionClass('REST') {
 my ($self, $c, $id) = @_;
 $c->stash(id => $id);
}

sub person_GET {
 my ($self, $c) = @_;
 my $id = $c->stash->{id};

 my $person = $c->model('AddressDB::People')->
 find({id => $id});

 if ($person) {
 $self->status_ok($c, entity =>
 mk_person_entity($person));
 }
 else {
 $self->status_not_found($c, message =>
 'No matching person found');
 }
}

sub mk_person_entity {
 my $person = shift;
 my $addresses =
 [map {
 mk_address_entity($_)->{address}
 }
 $person->addresses
];

Hot Web Topics

[138]

 return { person => { firstname => $person->firstname,
 lastname => $person->lastname,
 fullname => $person->name,
 id => $person->id,
 addresses => $addresses,
 }
 };
}

Here, we create the main person action, which optionally accepts an ID number,
and implements the GET method. Notice that we use some convenience methods in
Catalyst::Controller::REST to handle the HTTP plumbing for us. When a record
is found successfully, we call status_ok with the entity. When a record is not found,
we call status_not_found with an error message. These two methods will send the
appropriate HTTP response codes (200 and 404, respectively) and will serialize the
provided entity and error message with the client's serializer of choice.

One thing to watch out for is that we don't implement the mk_address_entity
method until later in the chapter. So for testing purposes, comment out the map {}
statement and the address => $addresses hash entry for now.

Once you've added this code, you're ready to test your first REST action! Start the
dev server, open a web browser and point it to http://localhost:3000/rest/
person/1. Depending on what headers your browser sends, you'll either see an XML
version of the person object:

<opt>

 <data id="1" name="person" firstname="Jonathan"

 fullname="Jonathan Rockway" lastname="Rockway" />

</opt>

or perhaps a YAML version:

person:

 firstname: Jonathan

 fullname: Jonathan Rockway

 id: 1

 lastname: Rockway

And if your browser sends no Accept header at all, you'll see the JSON fallback:

{"person":{"firstname":"Jonathan","lastname":"Rockway","id":1,"fulname:"J
onathan Rockway"}}

Chapter 7

[139]

As you can see, regardless of the format returned, the information is much easier to
reuse than it would be without the API.

Now that we have the basic idea of REST, let's add a PUT method for updating the
existing records:

sub person_PUT {
 my ($self, $c) = @_;

 my $id = $c->stash->{id};
 my $person = $c->model('AddressDB::People')->
 find_or_new({id => $id});

 if ($person) {
 $person->firstname ($c->req->data->{firstname})
 if $c->req->data->{firstname};

 $person->lastname ($c->req->data->{lastname})
 if $c->req->data->{lastname};

 $person->insert_or_update;

 $self->status_created($c,
 entity =>
 mk_person_entity($person),
 location =>
 $c->
 uri_for("/rest/person/$id"));
 }
 else {
 $self->status_not_found($c,
 message => 'No matching person found');
 }
}

This looks similar to GET, but we actually update the record with data from the
serialized request (available via $c->request->data). When we update the record
successfully, we return a 201 Created response. By convention, we include the URL
where this object can be requested, but we also include the object so that the client
doesn't have to make another request. REST is flexible; you can use both a location
and an entity, or just one of them.

Hot Web Topics

[140]

We're not doing any data validation here (other than not changing fields
that aren't sent). In a real application, you'll want to factor the validation
code out of the Person controller (and into the Model, usually) and share
it between the REST and non-REST interface. When the data is invalid,
simply return a 400 Bad Request, which tells the client to not repeat the
request without changing the data.

With PUT done, we need a way to create a new record (without providing an ID).
POST serves this purpose:

sub person_POST {
 my ($self, $c) = @_;
 my $person = $c->model('AddressDB::People')->
 create({ firstname => $c->req->data->{firstname},
 lastname => $c->req->data->{lastname},
 });
 my $id = $person->id;
 $self->status_created($c,
 entity =>
 mk_person_entity($person),
 location =>
 $c->uri_for("/rest/person/$id"));
}

Finally, we need a way to delete records:

sub person_DELETE {
 my ($self, $c) = @_;
 my $id = $c->stash->{id};
 my $person = $c->model('AddressDB::People')->
 find({id => $id});

 if ($person) {
 $self->status_ok($c,
 entity => mk_person_entity($person));
 $person->delete;
 }
 else {
 $self->status_not_found($c,
 message => 'No matching person found');
 }
}

Chapter 7

[141]

In this example, we return a copy of the deleted object, but this isn't always
necessary. It's perfectly fine for the DELETE method to delete the object and just
return 200 OK.

With the person entity out of the way, let us add an interface to the address objects.
The procedure is exactly the same:

sub address : Local : ActionClass('REST'){
 my ($self, $c, $id) = @_;
 $c->stash(id => $id);
}

sub address_GET {
 my ($self, $c) = @_;
 my $id = $c->stash->{id};
 my $address = $c->model('AddressDB::Addresses')->find({id =>
 $id});
 if ($address) {
 $self->status_ok($c, entity => mk_address_entity($address));
 }
 else {
 $self->status_not_found($c, message => 'No matching address
 found');
 }
}
sub address_PUT {
 my ($self, $c) = @_;
 my $id = $c->stash->{id};

 eval {
 my $address = $c->model('AddressDB::Addresses')->
 find_or_new({id => $id});

 $address->location($c->req->data->{location})
 if $c->req->data->{location};

 $address->postal ($c->req->data->{postal})
 if $c->req->data->{postal};

 $address->phone ($c->req->data->{phone})
 if $c->req->data->{phone};

 $address->email ($c->req->data->{email})
 if $c->req->data->{email};

Hot Web Topics

[142]

 $address->person ($c->req->data->{person})
 if $c->req->data->{person};

 $address->insert_or_update;

 $id = $address->id;
 $self->status_created($c,
 entity => mk_address_entity($address),
 location => $c->uri_for("/rest/address/$id"));

 };
 if ($@) {
 $self->status_bad_request($c,
 message => "Invalid data supplied: $@");

 }
}

sub address_POST {
 my ($self, $c) = @_;

 eval {
 my $address = $c->model('AddressDB::Addresses')->
 create({ location => $c->req->data->{location},
 postal => $c->req->data->{postal},
 phone => $c->req->data->{phone},
 email => $c->req->data->{email},
 person => $c->req->data->{person},
 });
 my $id = $address->id;
 $self->status_created($c,
 entity => mk_address_entity($address),
 location => $c->uri_for("/rest/address/$id"));
 };
 if ($@) {
 $self->status_bad_request($c,
 message => "Invalid data supplied: $@");
 }
}

sub address_DELETE {
 my ($self, $c) = @_;
 my $id = $c->stash->{id};

Chapter 7

[143]

 my $address = $c->model('AddressDB::Addresses')->find({id =>
$id});

 if ($address) {
 $self->status_ok($c, entity => mk_address_entity($address));
 $address->delete;
 }
 else {
 $self->status_not_found($c, message => 'No matching address
found');
 }
}

sub mk_address_entity {
 my $address = shift;

 return { address => { id => $address->id,
 person => $address->person->id,
 person_name => $address->person->name,
 email => $address->email,
 phone => $address->phone,
 postal => $address->postal,
 location => $address->location,
 }
 };
}

Now that you have the mk_address_entity function, you can return the address
records for a person when the person is requested i.e. you can remove the comments
from the earlier lines.

This time we're doing a bit of validation. As the database might throw an exception
when a foreign key or NOT NULL constraint is violated, we wrap database writes in
an eval {} block. If there's a database error, we return 400 Bad Request and the error
message from the database. You'll probably want to return a more detailed error
message in a real application, as your users probably don't care about what database
constraints you have.

REST Easy
That's all there is to creating an API for your application—give each object a URL
and allow HTTP verbs as actions to perform on that object.

In the next section, we'll use our own REST API to implement AJAX.

Hot Web Topics

[144]

AJAX
AJAX is a technique for dynamically adding new data to a web page that's already
loaded. It technically stands for Asynchronous JavaScript And XML, but the original
meaning has been diluted such that AJAX also refers to Synchronous JavaScript
And JSON, as well. Think of it as DHTML that can dynamically retrieve data from
the server in the background.

As JavaScript has matured greatly over the last few years and browser support is
generally solid, there's no reason to shy away from its use. A little JavaScript can
greatly improve the user experience for users that choose to enable it.

In this section, we'll improve the AddressBook user interface a bit by adding some
AJAX. The end goal is to be able to edit addresses "in place". Instead of clicking "edit"
and waiting for the address editing page to load, the text fields will turn into text
boxes and the user can begin editing immediately. When he's done, clicking submit
will submit the address for validation and the process will proceed as usual.

Getting Started
The bulk of AJAX is getting the data from the server to the client in JSON or XML
form. However, handling the JSON data on the client side is where most of the
effort is spent. There are several frameworks that do this and they all work fine
with Catalyst. Some of the most popular are Dojo, jQuery, mootools, and prototype.
Prototype is popular (and even has a Catalyst plug-in), but it's hard to integrate
with other JavaScript, so it's best to avoid it for maintainability reasons. The other
frameworks have more features and cause fewer undesirable side effects.

For our application, we're going to take a more Perl-y approach and use a framework
called Jemplate. Jemplate is basically Template Toolkit for JavaScript. You send your
TT template to the client along with some JSON, and the client will render it and
update the web page accordingly. I prefer this approach because I can reuse my TT
templates and my REST interface. (Other frameworks require that you send HTML
back, so you have to write completely new Actions and templates to satisfy them.)

Jemplate
Jemplate is actually a two-part framework. Half of it is the TT to JavaScript complier,
which runs inside our application. The other half is the JavaScript that runs in the
client's browser. To get the Catalyst part, simply install Catalyst::View::Jemplate
from CPAN. Then, run the following command line:

$ perl script/addressbook_create.pl view Jemplate Jemplate

Chapter 7

[145]

Next, create root/jemplate where the jemplates will live and edit the
INCLUDE_PATH in AddressBook::View::HTML to look like the following:

__PACKAGE__->config({
 ...
 INCLUDE_PATH => [
 AddressBook->path_to('root', 'jemplate'),
 AddressBook->path_to('root', 'src'),
 AddressBook->path_to('root', 'lib'),
],
 ...
});

This will allow TT to access the jemplates.

Continuing, we need to create an Action in the Root controller that will compile all
the jemplates in the jemplate directory and send the JavaScript to the browser. (This
sounds inefficient, but compilation only happens once and both the server and client
will cache the compiled results.)

In lib/AddressBook/Controller/Root.pm, add the following:

=head2 jemplate

Return the jemplates.

=cut

sub jemplate : Global {
 my($self, $c) = @_;
 $c->forward('View::Jemplate');
}

This will make the jemplate JavaScript available at /jemplate.

Lastly, we need to add a Cache backend to the application so that we can cache the
compiled jemplates. Install Catalyst::Plugin::Cache::Store::FastMmap from
the CPAN and then add Cache and Cache::Store::FastMmap to the use Catalyst
line where you load the other plug-ins. Also, add the following configuration
somewhere before __PACKAGE__->setup:

__PACKAGE__->config->{cache}{expires} = 43200;
__PACKAGE__->config->{cache}{backends}{jemplate}{store} = 'FastMmap';

__PACKAGE__->config->{'View::Jemplate'}{jemplate_dir} =
 __PACKAGE__->path_to('root', 'jemplate');
__PACKAGE__->config->{'View::Jemplate'}{jemplate_ext} = '.tt2';

Hot Web Topics

[146]

This sets up a Jemplate cache, shared between all instances of your application, using
the FastMmap backend. We also configure the Jemplate compiler to treat *.tt2 in
root/jemplates as jemplates to compile and send to the client.

The final step is to generate the Jemplate runtime JavaScript

$ jemplate --runtime > root/static/Jemplate.js

and include it on every page by editing root/lib/site/html and adding the
following lines in the <head> section:

 <script type="text/javascript"
 src="[% base %]static/Jemplate.js"></script>
 <script type="text/javascript"
 src="[% base %]jemplate"></script>

We're also including the compiled jemplates, even though we haven't written any
as yet. You only need that one line of JavaScript to include all the jemplates in the
jemplate directory.

Implementing AJAX
Now that we've set up the Jemplate framework, we can start writing jemplates.

The basic workflow goes like this:

1. Create an action that supplies JSON to the client.
2. Write a Template Toolkit template to turn the JSON into HTML.

The syntax for a Jemplate is the same as a regular template; if your JSON action
returns a structure like {hello:world}, then you can access hello with the
[% hello %] syntax in the template. (Arrays and hashes work too; Jemplate is
similar to Template Toolkit.) After that, you need to call Jemplate's process function
on the client side with the filename of the template to use, the URL where the JSON
can be fetched from and the ID of the HTML DOM element to be replaced with the
rendered text.

We'll see this in action by implementing the in-place address editor described earlier.

The first step is to create a Jemplate that will render an address' JSON (or Catalyst
stash entry) as either an editable form or as a view-only piece of text. We'll use the
view-only part to initially populate the view via TT, and then show the editable form
via AJAX when requested. The same TT template will run on both the server and the
client, which is the real power of Jemplate.

Chapter 7

[147]

The template will be called edit_address.tt2 and will live in the
root/jemplate directory:

[% IF error %]
 <p class="error">[% error %]</p>
[% END %]
[% IF view_only %]
[% address.location | html %]
<a href="[% Catalyst.uri_for("/address/edit/$address.id") %]"
 onclick="show_address_edit_form([% address.id | html %]); return
false;">
Edit

Delete

<div class="address" id="address_[% address.id | html %]">
 <address>[% address.postal | html | html_line_break %]</address>
 Phone: [% address.phone | html %]

 Email: [% address.email | html %]

</div>
[% ELSE %]
<form name="edit_address" method="post"
 action="../address/edit/[% address.id %]">
<input name="_" type="hidden" value="_" />
<input id="_submitted_address_edit" name="_submitted_address_edit"
 type="hidden" value="1" />
<table>
<tr>
 <td>Location</td>
 <td><input name="location"
 type="text" value="[% address.location | html %]" /></td>
</tr>
<tr valign="top">
 <td>Mailing Address</td>
 <td><textarea cols="60" name="postal" rows="4">[% address.postal |
html %]</textarea></td>
</tr>
<tr valign="top">
 <td>Phone Number</td>
 <td><input name="phone" type="text"
 value="[% address.phone | html %]" /></td>
</tr>
<tr valign="top">
 <td>E-Mail Address</td>
 <td><input name="email" type="text" value="[% address.email %]" /></
td>
</tr>
<tr valign="top">
 <td align="center" colspan="2"><input name="_submit" type="submit"

Hot Web Topics

[148]

value="Submit" /></td>
</tr>
</table>
</form>
[% END %]

The HTML inside the form is copied from the FormBuilder output; we're going to
trick FormBuilder into thinking that this is just a regular FormBuilder form so that
we don't have to reimplement validation, etc. (If the AJAX-submitted form is invalid,
the user will just get the regular FormBuilder address editor page.)

As this template is mostly duplicating the functionality in root/src/address_
fragment.tt2, we'll edit that file to just include the Jemplate:

[% INCLUDE "edit_address.tt2" view_only = 1 %]

You should be able to start the server now and navigate to the list of people and
addresses. It should look exactly the same as before, as we haven't really changed
anything yet. We only moved the address_fragment code into the edit_address
template. We haven't added any JavaScript interactivity yet; everything is static
HTML rendered by TT on the server.

Now let's add the interactivity. The basic idea is to make the edit link for each
address call the Jemplate process function instead of navigating to another page.
We'll leave the href attribute of the link intact, though, so that users without
JavaScript will not be affected. The basic pattern for this is:

The return false tells the browser to not follow the href after the JavaScript
function runs.

Now all that's left is to write that function(). As we're going to have multiple
addresses on the same page, the function should only operate on a specific ID. When
run, it should request the address data from /rest/address/id and render the
template into a #address_id div. The code that does that looks like this:

 function show_address_edit_form(id) {
 Jemplate.process('edit_address.tt2',
 '[% Catalyst.uri_for("/rest/address/") %]'+id,
 '#address_'+id);
 }

That function should be placed in root/lib/site/html, in the <head> section,
surrounded by <script type="text/javascript"></script> tags.

Chapter 7

[149]

When we were editing the edit_address.tt2 Jemplate earlier, we changed the
link to run that JavaScript function (for the correct ID). That's all we needed to do;
everything is in place for the in-place editor to work. Start the server, navigate to the
list of addresses, and click edit. The text of the address should be replaced with an
editable form! That's AJAX.

If it's not working for you, you might want to try installing Firefox and the Firebug
extension. Firebug will show you all JavaScript errors and AJAX requests (requests
and responses with complete headers) and will let you set JavaScript breakpoints.
If something's wrong with the JavaScript, Firebug should help you identify the
problem very quickly.

If you have that part working, let's add one more feature; the ability to cancel editing.
All this feature does is request the Jemplate again, but with editing disabled.

First we need to modify the edit_address Jemplate to have another div to install
the read-only version back into. Before the:

[% address.location | html %]

line, add a wrapper div:

<div id="outside_address_[% address.id | html %]">

Also be sure to close that div with a </div> tag, just before the [% ELSE %] directive.
At the very bottom of the file (or where your designer prefers), add a simple link:

<a href="#"
 onclick="cancel_address_edit([% address.id | html %]);
 return false">
 [X] Cancel edit

This is the link that will appear in the edit mode to allow the user to cancel the edit.
Now, let us implement the cancel_address_edit function, which goes in the same
place as the show_address_edit_form function:

 function cancel_address_edit(id){
 var data = Ajax.get('[%
 Catalyst.uri_for("/rest/address/") %]'
 +id);
 data = JSON.parse(data);
 data.view_only = 1;
 var elem = document.getElementById('outside_address_'+id);
 Jemplate.process('edit_address.tt2', data, elem);
 }

We have to do the JSON parsing "manually" this time, because we want to set
view_only to a true value before we let Jemplate render the template.

Hot Web Topics

[150]

To be sure the new version of the Jemplate takes effect, rm -rf /tmp/addressbook
and restart the server. You should now be able to cancel the edit operation by
clicking the link. Using the same template on both the client and the server is
a powerful concept, and should make it easy for you to quickly implement a
JavaScript-based user interface.

We can see a rendered in-place edit form, firebug on the lower half of the figure
showing AJAX response below:

Chapter 7

[151]

The cancelled in-place edit is seen in the following figure:

RSS
The final topic that we'll examine is RSS feeds. An RSS feed is an XML format
designed to let users subscribe to website and receive notification whenever a new
article (or other piece of content) is posted. It works best for news sites or blogs.

RSS is beginning to be phased out in favor of Atom, which serves the same purpose
but is an actual IETF standard. Users use RSS and Atom interchangeably and most
RSS readers support Atom feeds. We'll be using the XML::Feed CPAN module to
generate the RSS feed, which can generate Atom and legacy RSS from the same code.

Hot Web Topics

[152]

To demonstrate the concept of RSS, we'll add an RSS feed to our mini-blog program
from Chapter 6. To start, let's create a Controller to generate RSS feeds. As the RSS
feed is specific to one piece of data and no templating system is used to generate
the Feed, we're going to do everything inside a controller. If your application has
multiple sources of data that you want to create a View that converts the stash to an
RSS feed, instead.

Here's the source of the Feeds controller
(in Blog/lib/Blog/Controller/Feeds.pm):

package Blog::Controller::Feeds;
use strict;
use warnings;
use base 'Catalyst::Controller';
use XML::Feed;
use DateTime;

sub atom : Local {
 my ($self, $c) = @_;
 $c->stash->{type} = 'Atom';
}

sub rss : Local {
 my ($self, $c) = @_;
 $c->stash->{type} = 'RSS';
}

sub end : Private {
 my ($self, $c) = @_;

 my @posts = $c->model('Filesystem')->get_recent_posts;

 my $feed = XML::Feed->new($c->stash->{type});
 $feed->title("Test Blog Feed");
 $feed->link($c->uri_for('/'));
 $feed->description("Test feed for my mini-blog");
 $feed->author("Your Name");
 $feed->language('en-US');
 foreach my $post (@posts) {
 my $entry = XML::Feed::Entry->new($c->stash->{type});
 $entry->title($post->title);
 $entry->content($post->body);
 $entry->issued(DateTime->from_epoch(epoch => $post->created));
 $entry->modified(DateTime->from_epoch(epoch =>
 $post->modified));
 # entry unique ID
 $entry->link($c->req->base.$post->created.$post->title);

Chapter 7

[153]

 $feed->add_entry($entry);
 }

 $c->res->content_type('application/xml');
 $c->res->body($feed->as_xml);
}

1;

Creating an RSS feed is very simple. The first two actions let the user select what
type of feed he wants based on the URL. Regardless of his choice, we forward to end
Action where we actually render the feed.

Here, we create an XML::Feed object and then set as many attributes as possible (the
manual for XML::Feed shows the whole list of possible attributes). Then, for each
blog post, we create an XML::Feed::Entry, populate it and add it to the feed. At the
very end, we send the generated XML to the user.

When a user subscribes to the feed, his client will request the feed every few hours.
When a new article is added (as specified by "link", the article's unique id), he'll be
alerted that the site has changed. Most users prefer that the full text of the updated
article be in the "content" field in the RSS entry (so they can view the article right
inside the RSS reader), but it's acceptable to only include the first paragraph so the
user will visit your site for the full story.

Summary
In this chapter, we developed a REST API to allow easy access to our application's
data. We used this API to ease development of an interactive JavaScript interface to
editing addresses. Finally, we added an RSS feed to our mini-Blog to allow users to
subscribe to the latest updates and posts.

Testing
Automatic testing is an important part of any programming project. It's always good
to know that your application works correctly, but it's tedious to manually click
through your application's interface every time you change something. Automatic
testing transfers this burden onto the computer—after you've written the tests, the
application will test itself whenever necessary. This makes adding new features
a low risk operation; because your tests will start failing as soon as you break
something, you'll be able to fix the problem immediately, and you won't have to
worry about the fix breaking something else. If your tests are well-written, you can
spend your time adding features, not tracking down obscure bugs at 3 A.M.

While this book doesn't intend to push any development methodology, there
are a few schools of thinking on when to write tests. One is called "Test Driven
Development", which suggests that you always write tests before you write any
code. The idea is that before adding a feature you run your test suite, notice that
everything passes, and then add some failing tests. Then you write the code until the
tests go green, and you repeat the process for the next feature. When all the features
are implemented, you also have a fully tested application, as no code can be written
without writing a test first. This is an easy way to ensure that all of your code is
tested; you're simply not allowed to implement a feature until it's tested. You won't
have to worry about not having enough time to test something before release—if
the feature is working, it's also tested. This is generally good, which is why the
movement has attracted so much positive attention.

On the other end, the spectrum is waiting until your application is completely built
before you write tests. Although it looks like we're doing this in the book, I actually
wrote the tests along with the code but saved them up until this chapter so that they
would get enough text to explain them adequately. I don't recommend that you
try this for your real applications. Writing tests is a development aid, so waiting
until development is complete misses much of the point of testing. The tests will be
helpful for the next development cycle, but you, still probably wasted a lot of time in
this cycle manually doing what the computer could do for you. So get disciplined

Testing

[156]

and write tests as you develop the code the first time. Even though it seems like do
actually you're wasting time not writing application code, you'll find that in the end
you save time, and you won't lose sleep wondering what your last commit broke.

I prefer a hybrid approach to writing tests. I try to write as many tests as possible for
a component or feature before I start writing a code for it, but I don't take any effort
to make sure I got every case that I'm going to write the code for. Then I code for a
bit, and test the basic flow of the application through the interface, just to make sure
I didn't do anything too stupid (typos, etc.) Once I'm sure that the application doesn't
contain any obvious errors, I write tests for the corner cases, and fix the errors in the
code without using the interface at all. If a bug comes up later, I'll experiment a bit to
reproduce the bug, add a test to the appropriate error, and then try to make the test
pass without wasting time with the web interface.

As you get familiar with testing, you'll find a style that works well for you. If this
chapter is your first exposure to automated testing, I recommend that you try the
"Test Driven Development" methodology. After a while, you'll know when you
don't need to strictly adhere to the procedure, but in the mean time, you'll be writing
tested code at a pretty good pace.

In this chapter, we'll take a look at the technologies and techniques available to make
testing your Catalyst application easy. We'll start by seeing how to run the auto-
generated tests, and where to put new ones. Then we'll begin testing ChatStat by
testing the data model outside of Catalyst. After that, we'll write a few tests to ensure
that the web interface is nicely working with the data model. Then we'll write some
tests for the Address Book application.

Mechanics
Before we start writing tests, let's take a look at what we have so far. Out of the
box, your Catalyst application already has a few tests in the t/ directory of the
application. You can run these by making a Makefile with Makefile.PL as follows::

$ perl Makefile.PL

<output>

$ make test

t/01app.................ok

t/02pod.................skipped

 all skipped: set TEST_POD to enable this test

t/03podcoverage.........skipped

 all skipped: set TEST_POD to enable this test

t/controller_Address....ok

Chapter 8

[157]

t/controller_Person.....ok

t/model_AddressDB.......ok

t/view_Jemplate.........ok

All tests successful, 2 tests skipped.

Files=7, Tests=9, 3 wallclock secs (2.92 cusr + 0.29 csys = 3.21 CPU)

The tests you see running here were added by catalyst.pl (the ones that start
with numbers), or by the addressbook_create.pl script (the ones that start
with model and view). These tests don't really do much testing, because they're
just auto-generated tests that see if the code compiles. Here's what the
t/view_Jemplate.t looks like:

use strict;
use warnings;
use Test::More tests => 1;

BEGIN { use_ok 'AddressBook::View::Jemplate' }

Although this test doesn't do much, it does show the structure of a test file. A test
is just a Perl script that ends with a .t extension. We use strict and use warnings,
and then use a module called Test::More. Test::More, which produces an output
that can be read by a module called Test::Harness. This is what make test uses to
generate the summary above. If you run the tests manually, the output looks like
the following:

$ perl -Ilib t/view_Jemplate.t

1..1

ok 1 - use AddressBook::View::Jemplate;

This output format is called TAP (Test Anything Protocol), and is generated for you
by Test::More. Although you could generate TAP manually, it's easier to just let the
module do it for you.

One last note—Perl comes with a command called prove that will do the same thing
as make test:

$ prove -Ilib t/view_Jemplate.t

t/view_Jemplate....ok

All tests successful.

Files=1, Tests=1, 0 wallclock secs (0.20 cusr + 0.02 csys = 0.22 CPU)

prove is nice when you only want to run a few test files instead of the entire suite.

Testing

[158]

Testing ChatStat
Now that we have seen what tests look like and how to run them, let's dive into
testing ChatStat. When I was first writing ChatStat, I designed it with testability in
mind. The key practice here is to make as many components of the application work
without depending on other parts of the application. Testing a Perl class is very easy,
but firing up a Catalyst application and testing it by making requests and looking at
the HTML is hard. So, I tried to keep the need for the second type of test down by
not doing much inside Catalyst. All the hard stuff is inside the easily testable Perl
modules. This not only makes testing easy, it's just a plain good design. Without any
effort on my part, I can use the same code to write a command-line version of the
app, or perhaps an IRC interface.

Let's get started by writing some tests for the ChatStat message parser. This isn't
particularly related to the Catalyst part of the application, but if this doesn't work,
the whole app is useless. In addition, this is the simplest test to write, so it's a good
practice before we move on to more complex parts of the application.

We'll start with a very simple test for the parse_nickname function, located in the
ChatStat::Robot::Parser module from Chapter 5. This function takes a string
like person!~username@some-host.com and produces an array like ['person',
'username', 'some-host.com'].

In t/irc-parser-nickname.t, add the following:

use strict;
use warnings;
use Test::More;
use ChatStat::Robot::Parser;

my %tests =
 (
 # me @ example.com
 'jrockway!~jrockway@example.com' =>
 ['jrockway', 'jrockway', 'example.com']

);

plan tests => scalar keys %tests;

while (my ($k, $v) = each %tests) {
 my $get = [parse_nickname($k)];
 my $expect = $v;
 is_deeply($get, $expect, "$k parses");
}

Chapter 8

[159]

We wrote this test by creating a table at the top of the test with the input string and
the expected output result. Then we told Test::More how many tests we're going
to run (so it can warn us if the test file dies halfway through), and finally we run
parse_nickname on each input and used the is_deeply function in Test::More to
see if the "got" and "expected" data was the same.

You can try running the test with prove as follows:

$ prove -Ilib t/irc-parser-nickname.t

t/irc-parser-nickname....ok

All tests successful.

Files=1, Tests=1, 0 wallclock secs (0.12 cusr + 0.00 csys = 0.12 CPU)

The advantage of writing a test in this table-driven format is that you can add
another assertion (test case) without writing any more code. If you append another
test case to the %tests hash:

my %tests =
 (
 # me @ example.com
 'jrockway!~jrockway@example.com' =>
 ['jrockway', 'jrockway', 'example.com'],
 'another!~test@some-place.com' =>
 ['another', 'test', 'some-place.com'],
);

You'll now see two tests running:

$ prove -Ilib t/irc-parser-nickname.t

t/irc-parser-nickname....ok

All tests successful.

Files=1, Tests=2, 0 wallclock secs (0.07 cusr + 0.01 csys = 0.08 CPU)

You can take this technique a step further and write test cases in a separate (non-
Perl) file and load that file as the %tests hash. Then you can have someone other
than a programmer write your test cases. If you do choose to follow this route, you
should take a look at FIT (http://fit.c2.com/), and the Test::FITesque module
on CPAN.

Testing a Database
ChatStat is a pretty database-heavy application, so there's no way to avoid testing
the database part. We can make testing the database less painful by providing an
easy way for creating an empty database just for testing. This is easy to do with
SQLite; we just create a temporary database, deploy our schema to it, run the tests

Testing

[160]

and then delete the database. Whenever I start a database application, I create a small
module to automate this. For ChatStat, it's called ChatStat::Test::Database, and
looks like the following:

package ChatStat::Test::Database;
use strict;
use warnings;
use Directory::Scratch;

use base 'ChatStat::Schema';

sub connect {
 my $class = shift;

 # setup temp space
 my $tmp = Directory::Scratch->new;
 my $db = $tmp->touch('database');

 # "connect" to temp database; deploy schema
 my $schema = $class->SUPER::connect("DBI:SQLite:$db");
 $schema->deploy;

 # done!
 return $schema;
}

All we do here is subclass our real DBIx::Class schema, and change the connect
method to create a temporary database first. The Directory::Scratch module
handles the management of the temporary scratch space, so we don't need to worry
about cleaning up when we're done with tests.

Now we're ready to write database tests. The simplest thing to test would be the
everything ResultSet, which will take "opinion" records and coalesce them into a
ranked list of "things" with their point values. For example, given the input "test++,
test--, foo++, foo++, bar--, and baz+-", we should get output like "foo => 2, baz => 0,
test => 0, bar => -1".

Now that we know what we're testing (and have some sample data), we just need to
have the computer check it for us. Let's create t/schema-report-everything.t:

use strict;
use warnings;
use Test::More tests => 1;
use ChatStat::Test::Database;
use ChatStat::Robot::Action;

my @RECORDS = ([qw/test 1/],
 [qw/test -1/],
 [qw/foo 1/],
 [qw/foo 1/],

Chapter 8

[161]

 [qw/bar -1/],
 [qw/baz 0/],
);

my @EXPECT = ([qw/foo 2/],
 [qw/baz 0/],
 [qw/test 0/],
 [qw/bar -1/],
);

my $schema = ChatStat::Test::Database->connect;
$schema->record(ChatStat::Robot::Action->
 new({ who => 'foo!~foo@test.com',
 word => $_->[0],
 points => $_->[1],
 channel => '#test',
 reason => 'test',
 message => 'test',
 }))
 for @RECORDS;

my @everything = map {[$_->thing, $_->total_points]}
 $schema->resultset('Things')->all;
is_deeply [sort {$a->[0] cmp $b->[0]} @everything],
 [sort {$a->[0] cmp $b->[0]} @EXPECT],
 'got expected everything';

With the database abstracted away, writing this test is easy. We start by defining our
input data and output data. Then we connect to the database and add the input data
to the database via ChatStat::Robot::Action. Then we run our everything report
and see that it matches the expected data.

This is all that's there to testing. There are some other tests for other reports in
ChatStat included with the book's source code, but they're not much different than
the above test. They simply add data to the database, and see if the results of queries
make sense.

Testing the Web Interface
Once you're confident that the backend is well-tested, you need to make sure that
the Catalyst part of your application is working smoothly. We have some more
tools at our disposal for this task, Catalyst::Test and Test::WWW::Mechanize::
Catalyst.

Testing

[162]

The basic idea here is to use Catalyst::Test (or similar) to make requests against
the application and then see if the response contains the data we're looking for. (You
can also do other things, like test if the HTML is valid, etc.)

As we still need the database, we'll have to jump through a few hoops to get a real
Catalyst application to use the temporary database. What we need to do is to create
the testing database and then create a Catalyst config file that tells Catalyst to use
the test database instead of the real one.

Here's the code for a module that does that, Chatstat::Test::Database::Live:

package ChatStat::Test::Database::Live;
use strict;
use warnings;

use ChatStat::Schema;
use Directory::Scratch;
use YAML qw(DumpFile);
use FindBin qw($Bin);

use base 'Exporter';
our @EXPORT = qw/schema/;

my $schema;
my $config;
BEGIN {
 my $tmp = Directory::Scratch->new;

 my $dsn = "DBI:SQLite:$db";
 $schema = ChatStat::Schema->connect($dsn);
 $schema->deploy;

 $config = "$Bin/../chatstat_local.yml";
 DumpFile($config, {'Model::DBIC' => {connect_info => [$dsn]}});
}

sub schema { $schema };

END { unlink $config };

When you use this module, it will create a test database, connect to it and write a
"local" config file, with the connection information pointing to the test database.
After this module is loaded and Catalyst is started, it will see the config file with
the suffix _local and override the existing config file with the data contained in
the local file. The END{} block will delete the local config file when the test is done
running, so you won't have to worry about the local configuration cluttering up
your disk.

Chapter 8

[163]

Now that we have a test database shared between the test script and the Catalyst
app, we can start writing some tests. Let's test the page at /things, which list's every
thing that has an entry in the database.

We'll start by creating the basic test file called t/app-live-everything.t as follows:

use strict;
use warnings;
use Test::More tests => 3;
use ChatStat::Robot::Action;
use ChatStat::Test::Database::Live;
use Test::WWW::Mechanize::Catalyst qw/ChatStat/;
my $schema = schema();
my $mech = Test::WWW::Mechanize::Catalyst->new;
test empty page
is_deeply [$schema->resultset('Things')->everything], [], 'no things
yet';
$mech->get_ok('http://localhost/things/');
$mech->content_unlike(qr/test/);

This will create the database, and then use Test::WWW::Mechanize::Catalyst to
start an instance of the application. Then we get the test database and a Test::WWW::
Mechanize object (that runs requests against our app instead of the Internet).

With the setup done, we make sure there are no things in the database yet, and that
they don't show up on the page. The $mech->get_ok method will run the /things/
action in our application (the localhost in the URL means "our application" in this
case, not the web server running on the local host). The $mech->content_unlike
looks for a regex on the page, and is a passing test if the regex doesn't match. In this
case, we're looking to ensure that the word "test" doesn't show up on the page yet.
We'll add it to the page right before the next test; this is just a sanity check to make
sure it doesn't show up there for some other reason.

Now, let's add "test++" to the database, and see if the page updates correctly. First,
let's add a little utility to make inserting "test++" into the database easy:

sub add_opinion {
 $schema->record(ChatStat::Robot::Action->
 new({ who => 'foo!~foo@test.com',
 word => $_[0],
 points => $_[1],
 channel => '#test',
 reason => 'test',
 message => 'test',
 })
);
}

Testing

[164]

I add this to the very bottom of the test file so that I don't have to skip past it when
reading the tests.

After the existing tests, add the following:

add an opinion
add_opinion(test => 1);
my @things = $schema->resultset('Things')->everything->all;
is $things[0]->total_points, 1, 'got 1 point';
is $things[0]->thing, 'test', 'for test';

$mech->get_ok('http://localhost/things/');
$mech->content_like(qr/test/);
$mech->content_like(qr/1/);

And be sure to change the test counter at the top of the test to 8, since we just added
five more assertions.

These test cases look like the ones above. We add a piece of data to the database,
check that it's in the resultset, and then see if the correct text appears on the web
page. To complete this test, let's add some negative and zero entries, and make sure
those work:

add_opinion(foo => 0);
$mech->get_ok('http://localhost/things/');
$mech->content_like(qr/foo/, 'foo shows up, even though it has 0
points');

add_opinion(test => -1);
add_opinion(test => -1);
$mech->get_ok('http://localhost/things/');
$mech->content_like(qr/negative/, q{now there's a negative entry});
$mech->content_unlike(qr/positive/, q{but no more positives});

add_opinion(bar => 1);
$mech->get_ok('http://localhost/things/');
$mech->content_like(qr/positive/, q{positive is back});
$mech->content_like(qr/bar/, q{and bar shows up});

That's all we need for this test. After running this, you can be pretty sure that adding
opinions to the database is reflected in the web interface.

You can do many more things with Test::WWW::Mechanize::Catalyst. If you're
looking for documentation, be sure to see the docs for Test::WWW::Mechanize,
WWW::Mechanize, and LWP::UserAgent, since that's the inheritance hierarchy for
Test::WWW::Mechanize::Catalyst. Anything that those modules can do, Test::
WWW::Mechanize::Catalyst can do against your Catalyst application.

Chapter 8

[165]

Testing the Address Book
Testing the Address Book requires some techniques that we didn't need for
ChatStat. Most of the AddressBook is hidden behind a login screen, so we'll have
to log in in order to test the app. It also requires us to fill out a lot of forms. Finally,
it has a JavaScript interface that we can't test without a live web browser. In this
section, we'll see how to test those parts of the application.

Logging In
We'll start by adding a test database module to AddressBook. This is almost an exact
copy of the one we created for ChatStat, but we add a convenience function for
creating a test user and logging in as that user:

package AddressBook::Test::Database::Live;
use strict;
use warnings;

use AddressBook::Schema::AddressDB;
use Directory::Scratch;
use YAML qw(DumpFile);
use FindBin qw($Bin);

use base 'Exporter';
our @EXPORT = qw/log_in schema/;

my $schema;
my $config;
BEGIN {
 my $tmp = Directory::Scratch->new;
 my $db = $tmp->touch('db');

 my $dsn = "DBI:SQLite:$db";
 $schema = AddressBook::Schema::AddressDB->connect($dsn);
 $schema->deploy;

 $config = "$Bin/../addressbook_local.yml";
 DumpFile($config, {'Model::AddressDB' => {connect_info =>
[$dsn]}});
}

sub schema { $schema };

sub log_in { # counts as 4 tests
 my $mech = shift;

 my $person = schema()->
 resultset('People')->create({ firstname => 'Test',
 lastname => 'User',
 });

Testing

[166]

 my $user = schema()->resultset('User')->
 create({ username => 'test_user',
 password => 'ABCDEFGHI',
 person => $person,
 });

 $mech->get_ok('http://localhost/login');
 $mech->form_name('login');
 $mech->field(username => 'test_user');
 $mech->field(password => 'ABCDEFGHI');
 $mech->click('_submit');
 $mech->content_like(qr/Logged in successfully/);
 $mech->content_like(qr/Logged in as/);
 $mech->content_like(qr/Test User/);

 return $user;
}

END { unlink $config };

1;

The important part of this module is the log_in function. It creates a test user and
uses Mechanize's form functionality to visit the log in page, enter the username and
password, "click" submit and check that the user logged in successfully.

Now it's easy to start writing tests. Let's start by testing the login and logout
functionality in a file called t/live-login.t as follows:

use strict;
use warnings;
use Test::More tests => 7;

use AddressBook::Test::Database::Live;
use Test::WWW::Mechanize::Catalyst 'AddressBook';

my $schema = schema();
my $mech = Test::WWW::Mechanize::Catalyst->new;
log_in($mech);
$mech->follow_link_ok({url_regex => qr/logout/},
 'follow logout link');
$mech->content_like(qr/Not logged in/);
$mech->content_unlike(qr/Test User/);

All we do here is create the schema and mech objects, try to log in (which is 4
assertions) and then try to log out. It's important to note that Mechanize is just like a
regular web browser, and cookies and sessions are preserved. (There are even back,
forward, and reload "buttons" that Mech can "click".)

Chapter 8

[167]

Testing Forms
Now that we have a logged in user, let's try creating a person, then adding an
address for him. To get started, let's add the standard header to t/live-add-
person.t as follows:

use strict;
use warnings;
use Test::More tests => 17;

use AddressBook::Test::Database::Live;
use Test::WWW::Mechanize::Catalyst 'AddressBook';

my $schema = schema();
my $mech = Test::WWW::Mechanize::Catalyst->new;

We'll continue by adding the user that log_in creates to the editor and viewer roles,
so the ACL rules don't prevent the test from running:

give user a role that lets him edit
my $user = log_in($mech); # 4 tests
my $viewer = $schema->resultset('Role')->create({ role => 'editor' });
my $editor = $schema->resultset('Role')->create({ role => 'viewer' });
$schema->resultset('UserRole')->create({ user => $user->id,
 role => $editor->id });
$schema->resultset('UserRole')->create({ user => $user->id,

 role => $viewer->id });

Now the test user can access and edit any part of the application. Let's try adding a
new Person by clicking links and filling out forms:

now try adding a new person
$mech->get_ok('http://localhost/');
$mech->follow_link_ok({ text => 'Add a new person' });
$mech->content_like(qr/Adding a new person/, 'on the add person
page');
$mech->form_number(1); # first form
$mech->field(firstname => 'Avery');
$mech->field(lastname => 'Newperson');
$mech->click('_submit');
$mech->content_like(qr/Added Avery Newperson/, 'added a very new
person');

Testing

[168]

Now there should be a new person, Avery Newperson, in the database. Let's retrieve
a Person record from the database to make sure that the interface is actually
updating the database:

find ID of new person
my $person = $schema->resultset('People')->
 find(qw/Avery Newperson/, { key => 'name' });
my $id = $person->id;
ok $person->id > 0, 'got a person';

Now that we have the ID, let's add a Home address for Avery:

add an address
$mech->get_ok("http://localhost/address/add/$id");
$mech->content_like(qr/Adding a new address \s* for Avery Newperson/);
$mech->form_number(1);
$mech->field(location => 'Home');
$mech->field(postal => 'This is the postal address.');
$mech->field(phone => '123-456-7890');
$mech->field(email => 'test@example.com');
$mech->click('_submit');
$mech->content_like(qr/Added new address for Avery Newperson/);
$mech->content_like(qr/This is the postal address[.]/);

If that worked, the $person above should now have some related addresses
as follows:

see if that's in the database
my $address = $person->search_related('addresses')->first;
is $address->postal, 'This is the postal address.';
my $aid = $address->id;

Let's conclude by deleting the address as follows:

now delete the address
$mech->follow_link_ok({url_regex => qr{address/delete/$aid} },
 'blow away address');
$mech->content_like(qr/Deleted Avery Newperson's Home address/);
$mech->content_unlike(qr/This is the postal address[.]/);

Chapter 8

[169]

Now you can run the test with make test or prove:

$ prove -Ilib t/live-add-person.t

t/live-add-person....ok

All tests successful.

Files=1, Tests=17, 2 wallclock secs (1.68 cusr + 0.08 csys = 1.76
CPU)

What used to be a few seconds of clicking through the interface manually is now an
automatic test that can tell you whether your application works in just a few seconds.
For a real application, you'll want to test everything, but this test is a good start.
Good tests will include tests of common cases but also edge cases. For example, if a
field requires a number, what happens if the user enters "0 but true" (not a number)
or "0e0" (a number)? Edge cases are where bugs show up, so try to be tricky and
eliminate them in development. It's much more fun to fix a bug that a test finds as
opposed to one that causes your site to go down at 3 in the morning.

As an aside, if you'd like to have your tests written automatically, you can install a
CPAN module called HTTP::Recorder. HTTP::Recorder, which will act as a proxy
between your application and the browser, and will translate any clicks and form
submissions into code that you can paste into your Mechanize-based test. It's good
for recording activity during user testing. If someone runs into a bug, you'll have
a detailed log of what they clicked. You can copy that into your test file, add some
assertions and you'll be able to fix the bug without having the user click through the
interface to find the bug again.

Testing JavaScript
The last remaining part of the Address Book to test is the Jemplate-based
in-place address editor. To test this, we'll use a tool called Selenium RC
(http://www.openqa.org/) to run tests directly in the browser. Selenium is a tool
that sits between your application, the test script, and the web browser. The test
script sends the Selenium server commands to run inside the web browser. The web
browser then executes those commands, and returns the results to the Selenium
server and then your test script.

It can be hard to get it up and running because it requires the Java Runtime
Environment and a working web browser. It is somewhat experimental, and the
author has only tested on Cygwin with Firefox and IE and Debian GNU/Linux
with Firefox.

Testing

[170]

Developing Selenium tests is pretty easy, thanks to the Selenium IDE Firefox
extension available at http://www.openqa.org/selenium-ide/. It turns Firefox
into an IDE that can record and edit tests, and save them to the Perl format.
To create a test against the Catalyst application, we'll start by recording the basic
outline of the test with Selenium IDE.

To get started, start the Address Book application, then open the IDE and click the
red record button. Then enter http://localhost:3000/ in the address bar and
wait for the page to load. Log in as the test user, navigate to the list of all addresses,
click the first edit link to edit the address in place and then change each of the
fields to a new value. Click on submit to store the changes, and then highlight
all the text you just entered (now as part of the static page), right-click and select
"verifyTextPresent" for each field.

Chapter 8

[171]

You should now have a Selenium test that looks like the following:

Now you can select all the records, change the clipboard format to Perl, and
copy-and-paste the result into into t/selenium-edit.t. We're going to edit the
result a bit, though.

Here's what you get right out of the Selenium IDE:

$sel->open_ok("/");
$sel->click_ok("link=Log in");
$sel->wait_for_page_to_load_ok("30000");
$sel->type_ok("username", "test_user");
$sel->type_ok("password", "ABCDEFGHI");
$sel->click_ok("login_submit");
$sel->wait_for_page_to_load_ok("30000");
$sel->click_ok("link=Look at all people");
$sel->wait_for_page_to_load_ok("30000");
$sel->type_ok("location", "New Address");
$sel->type_ok("postal", "This is a test");
$sel->type_ok("phone", "123-456-7890");

Testing

[172]

$sel->type_ok("email", "new-address\@selenium.example.com");
$sel->click_ok("_submit");
$sel->wait_for_page_to_load_ok("30000");
$sel->is_text_present_ok("New Address");
$sel->is_text_present_ok("This is a test");
$sel->is_text_present_ok("123-456-7890");
$sel->is_text_present_ok("new-address\@selenium.example.com");
$sel->click_ok("//a[\@onclick='show_address_edit_form(6); return
false;']");

To make this test run exactly as in the IDE, you just need to use Test::WWW::
Selenium::Catalyst by adding something like this to the top of the file:

use strict;
use warnings;
use Test::More tests => 20;

use AddressBook::Test::Database::Live;
use Test::WWW::Selenium::Catalyst 'AddressBook';

my $sel = Test::WWW::Selenium::Catalyst->start;

There are still a few tweaks we need to make the test work. We need to replace the
hard-coded 6 with the ID of a sample address we create. We'll start by creating the
necessary database records right before we create the $sel object:

my $person = schema()->
 resultset('People')->create({ firstname => 'Test',
 lastname => 'User',
 });
my $user = schema()->resultset('User')->
 create({ username => 'test_user',
 password => 'ABCDEFGHI',
 person => $person,
 });

my $address = schema()->resultset('Addresses')->
 create({ person => $person->id,
 location => 'Home',
 postal => 'Postal address.',
 phone => 'Phone',
 email => 'email@email.com',
 });

my $aid = $address->id;

Chapter 8

[173]

Then you just need to replace the 6 on the last line with $aid. As soon as you do that,
you should be able to run the test from prove. A web browser window will pop up
and run the actions that your test script dictates. If everything goes well, you should
see the All tests successful. message at the very end. After it's working, you should
add some more tests to see that the database was modified as you expected it to be.

 If all doesn't go well, take a look at the manual page for
Test::WWW::Selenium::Catalyst.

Once it's up and running, though, you should find it a valuable testing tool,
especially as the Selenium IDE makes it easy for anyone to record test cases.

Selenium isn't the only way to test JavaScript. You can also write Test::More style
tests in JavaScript by using the Test.Simple module from the JSAN (the JavaScript
version of the CPAN).Check it out at http://openjsan.org/doc/t/th/theory/
Test/Simple/0.21/.

Summary
In this chapter, we learned how to write programs to test our Catalyst application
automatically. We saw how to test the individual non-Catalyst components, and
then saw how to test the components inside Catalyst with Test::WWW::Mechanize::
Catalyst. We then learned how to test form-heavy applications with Mechanize,
and finally how to test the JavaScript components with Selenium. Testing was once a
tedious manual chore, but now the computer can do it for you!

Deployment
At some point in your application's life cycle, you're going to want to run the
application on a machine other than your development environment. In this chapter,
we'll cover packaging your application (for internal or CPAN release) and running
that package in a production environment with a real web server.

Basics
The first step in deploying your application is to copy your application from your
development/build environment to your production environment. This may sound
trivial, but it's important to make sure that your process is easy and repeatable. Ifant to make sure that your process is easy and repeatable. Ifnt to make sure that your process is easy and repeatable. If
you require every step to be done manually, it's likely that at some point (under
the pressure of short maintenance windows), something will be missed and your
users will be unhappy. Are you sure you remembered to install every dependency,
update the source tree on every server in the farm, change permissions and edit
configuration files appropriately?

Fortunately, Catalyst makes it easy to do deployment right. If you've been diligent
about keeping the dependencies in your Makefile.PL up to date, you'll find it very
easy to manage dependencies and the application itself.

Let's start with a quick run through of the Makefile.PL build process. We will use
Makefile.PL twice, once on the build system (to build the package) and again on the
target system, to build the application itself.

The first step is to run Makefile.PL on your development or build system:

$ perl Makefile.PL

Deployment

[176]

This will generate a Makefile that includes some useful targets; make dist, make
test, make clean, make manifest, make distclean and many others. Before we
build a distribution, we'll want to run make distclean to delete any non-code that
has accumulated during the development process. Unfortunately, as the Makefile is
considered a temporary file, it will be removed in this step. After the distclean,
re-run Makefile.PL to regenerate the Makefile.

Now that you have a clean working directory, you can generate a "manifest"
file containing a list of the files in your application. make manifest will do this
automatically and save the results in a file called MANIFEST. If this file looks
good, you're ready for the next step. If it contains entries that aren't a part of your
application, then create a file called MANIFEST.SKIP to indicate paths to skip. A
MANIFEST.SKIP that I usually use looks like this:

.git/
blib
pm_to_blib
MANIFEST.bak
MANIFEST.SKIP~
cover_db
Makefile$
Makefile.old$

The format is one regular expression per line. If a file's full path is matched by any
regular expression in the file, it will be skipped over when building the manifest.

You can test the skip list by re-running make manifest. That command will inform
you of what it added to, or removed from, the manifest based on the new skip rules.

When the manifest is to your liking, all that's left to do is to actually build the
package with make dist. The make dist command will build a compressed tar
file of your application called MyApp-0.01.tar.gz that contains the source (and
Makefile.PL) of your application, suitable for uploading to the CPAN or copying
to another system to install. The 0.01 in the file name is the version number, which
can be changed by editing the our $VERSION = ‘0.01' line in your application's
main file, lib/MyApp.pm. Traditionally, versions start at 0.01 and are increased by
0.01 on each release. Test releases are marked with a version number, an underscore
and another number, like 0.01_01 (note that 0.01_01 sorts after 0.01). Many utilities
assume this convention, so it's good to stick to it even if you don't plan to release
your code to the world.

Chapter 9

[177]

With this package built, the final step is to copy the tarball to your deployment
server. On that machine, simply run:

$ tar xzvf MyApp-0.01.tar.gz

$ cd MyApp

$ perl Makefile.PL

$ make && make test

That will extract the application, generate the Makefile, install all the dependencies
that Makefile.PL mentions and finally, run the application's automated test suite. If
all goes well, you're ready to point your web server at the application directory.

PAR Deployment
If your build environment and production are at the same platform, you can save
some time and trouble by deploying a PAR package instead of manually building a
tarball. A PAR file is a Perl Archive, a self-contained Perl application. It will contain
your application and all the dependencies, which means that you can copy a single
file to all of your production machines and have your application "Just Work".

Building a PAR is usually as simple as adding a line that says:

catalyst_par();

to your Makefile.PL, running Makefile.PL, and then running make catalyst_par.
The PAR packer will examine your application to determine its dependencies
and then generate an archive that bundles the dependencies, your application
and the scripts to run the application together in a file called myapp.par. To run you
application, put the par file somewhere convenient and then run parl myapp.par
<script>, where the script is myapp_server.pl, myapp_fastcgi.pl, myapp_test.
pl, etc. The PAR will unpack itself and then execute the requested command.

Note that the command is parl, not Perl; it's included in the PAR CPAN distribution,
which must be installed on the target system.

Sometimes the auto-scanning of your application might not pick up all the
dependencies; you can manually add a list of dependencies to always include
by including:

catalyst_par_classes(qw/A::Dependency Another::Dependency .../);

inside Makefile.PL.

Deployment

[178]

Configuration Management
It's likely that your development and production environments will require different
configuration files. Catalyst provides a few ways to handle this. The most flexible
is to maintain separate configuration files for each instance of your application
(development, staging, QA, production, etc.) and set the MYAPP_CONFIG environment
variable to point to the correct file on each environment.

If there is a lot of configuration that overlaps between the instances, that approach
might not be ideal. Catalyst has a concept of local configuration files that you can use
instead. If there is an environment variable called MYAPP_CONFIG_LOCAL_SUFFIX set,
then Catalyst will supplement the default configuration (say, myapp.yml) with a file
named myapp_<suffix>.yml. The default suffix is local, so if you only have two
environments to configure, you can put your development-specific settings in the
local file and simply not copy the myapp_local.yml file to production.

If you have more than two environments, put the bulk of your config in myapp.yml,
then create a myapp_envname.yml for each environment. Then just set the
MYAPP_CONFIG_LOCAL_SUFFIX environment variable appropriately, and you're set.

If you use the hostname as the suffix you can say MYAPP_CONFIG_
LOCAL_SUFFIX='hostname'; then even the environment variable
setting is identical between machines.

 Alternatively, y�u �an s�e�i�y ��n�i�urati�n dire�tly as envir�n�ent varia�les �it�� t��ey�u �an s�e�i�y ��n�i�urati�n dire�tly as envir�n�ent varia�les �it�� t��e
Catalyst::Plugin::ConfigLoader::Environment extensi�n.

Configuring a Web Server
Once you have your application working on the production machine, you're ready
to point a real web server at it. Which server you use is usually decided by what
your other applications are using. If you already have Apache and mod_perl set
up, use that. If you aren't serving many users, you will probably be fine with just
the development server included with Catalyst. If you're tired of Apache, you can
use lighttpd with FastCGI. Catalyst tries to make mod_perl, FastCGI, and the
development server behave the same, so you should use whatever is convenient
for you. (Note that plain CGI is also an option, but it will be unbearably slow, so
don't use it.)

Generally, new deployments are using Apache and FastCGI, since that configuration
is relatively easy to set up and manage.

Chapter 9

[179]

Apache
Apache is the world's most common web server, so most sites are already using
Apache and have a configuration that you can easily add your Catalyst app to. If you
decide to use Apache, you can use either mod_perl or FastCGI to actually run your
Catalyst application.

FastCGI
FastCGI is easiest of the two to set up; simply install mod_fastcgi (or the newer
mod_fcgid, which might be better for some users) and add the following to Apache's
httpd.conf:

FastCgiServer /.../myapp/script/myapp_fastcgi.pl -processes 3
Alias /myapp/ /.../myapp/script/myapp_fastcgi.pl/

(Note that ... above is an abbreviation for wherever you want your application code
to live. Many sites use /var/www or /var/www-apps, but /home/myapp/ or something
similar is also possible.)

The above configuration will tell Apache to start (and maintain) three instances of
your application, and to make the application available on the web under the /myapp
URL. You can put the Alias directive inside a VirtualHost block to make your
application available at the root of a virtual host.

If you'd like to run your FastCGI server on a separate machine, you can tell Apache
about a FastCGI external server:

FastCgiExternalServer /var/www/htdocs/myapp.fcgi -host remote.server.
com:3010
Alias /myapp/ /var/www/htdocs/myapp.fcgi

Note that /var/www/htdocs/myapp.fcgi isn't a real file; it's a virtual file that ends
with .fcgi (so Apache knows to invoke the fastcgi-handler) and exists inside
the doc root (so Apache knows it's allowed to be served). The -host directive points
FastCGI at the server running on remote.server.com, port 3010.

On remote.server.com, you'll want to run scripts/myapp_fastcgi.pl -l :3010
and setup firewall rules so that only your front end server can talk to port 3010. You
can also use another port number, as there is no defined standard port.

If your application is in a PAR, you can start an external FastCGI server by running
parl myapp.par myapp_fastcgi.pl -l :3010. You can then configure a remote
Apache with FastCGI to support to connect to that server, just as described above for
the non-PAR case.

Deployment

[180]

In addition, the external server need not be on another host, it can be run on
localhost the same way. You can also use a named socket on the filesystem instead of
a host and port; just say -socket instead of -host. It is easier to enforce permissions
on files than TCP ports, so if you care about fine-grained access to the FastCGI
server, you might like using the named socket better. Keep in mind that you can't
use a named socket when the FastCGI server is running on a different host from the
front-end web server.

Static Content
One last tweak is to have Apache serve your static content without involving your
Catalyst application. All you'll need to do is add an Alias directive like the following:

Alias /myapp/static /.../myapp/root/static

Apache can serve static content much more efficiently than your Catalyst application,
so for maximum performance it's best to add this piece of configuration.

mod_perl
For years, mod_perl was the only way to write efficient web applications, so it's still
in wide use. Serving your Catalyst application with mod_perl is very easy. First,
you'll need Catalyst::Engine::Apache from the CPAN.

Then, to a mod_perl-enabled Apache 2.x.x configuration, you'll just need to add:

PerlSwitches -I/.../myapp/lib
PerlModule MyApp
<Location /> # or you can use /myapp, or a VirtualHost, etc.
 SetHandler modperl
 PerlResponseHandler MyApp
</Location>

On Apache 1.3, the setup is slightly different:

<Perl>
 use lib qw(/.../myapp/lib);
</Perl>
PerlModule MyApp
<Location />
 SetHandler perl-script
 PerlHandler MyApp
</Location>

Chapter 9

[181]

Finally, if you're using PAR, you can install Apache::PAR and point Apache at the
PAR instead of a directory:

PerlAddVar PARInclude /.../myapp.par
PerlModule Apache::PAR
PerlModule MyApp

These directives replace the <Perl> or PerlSwitches sections above (but not the
<Location> section).

After you have setup your configuration, you can restart Apache and enjoy your
app. The same static caveat with FastCGI applies to mod_perl, so you will want to
add an Alias or Location for serving the static content directly. (This is more difficult
with PAR, but you might want to take the slight performance hit for the convenience
of one-file deployment. Additionally, you can copy the static content somewhere
outside of the PAR file and only use the PAR for code. Then there is no performance
hit, but maintenance is slightly more difficult.)

Performance Considerations
Unfortunately, the mod_perl setup described above is not ideal. mod_perl works by
loading your entire application into every Apache process. This means that when
an Apache process has to spoon-feed a dial-up user a 200M movie (or 20k of HTML;
the concept is the same), the memory that your application used is wasted streaming
bytes instead of processing requests. On sites with high traffic, this will result in
unacceptable performance, as the application processes will be tied up serving data
(and you can't start more application processes because you'll be out of memory).

This is a well-known mod_perl problem not specific to Catalyst (or even Perl,
mod_ruby and mod_python suffer the same problem), and is part of the reason why
FastCGI is becoming popular.

The solution is to run a two-tiered architecture. In front of your mod_perl application
processes, you place a lean load balancer (like perlbal) or a basic Apache process. The
front end will pass dynamic requests to the backend application servers. When the
dynamic result is ready, the dynamic server will send it very quickly to the front end
server. The front end server will then send the response to the client. While that front
end server is tied up, another lean front end server can dispatch another dynamic
request to your application. This setup ensures that you are always using as much
CPU and bandwidth as possible.

Deployment

[182]

Setting up a front end server is covered in the mod_perl book at http://perl.
apache.org/, and perlbal is covered in the next section. The only thing you need to
do for Catalyst is to tell it that there's a frontend proxy by setting using_frontend_
proxy to 1 in the application config. This option is necessary so that Catalyst will
generate URLs that point to the front end server when you use uri_for.

If you're going to use mod_perl for a large site, be sure to set up a
two-tiered architecture.

Development Server and perlbal
The final deployment option is to simply use the myapp_server.pl development
server. This server is not intrinsically limited in any way; you can expose it to the
Internet and your application will work fine. The main problem is the same as
mod_perl, though; feeding the resulting HTML (or images, etc.) back to the client
will tie up system memory unnecessarily. Additionally, as the development server
can only handle one connection at a time, users will have to wait in line to use your
application, which is probably not acceptable unless your are creating something like
a desktop web application.

That means, it's easy to get a very efficient two-tiered setup going with perlbal. The
basic idea is to start a pool of development servers running on different ports, and
then have perlbal load balance between them. perlbal will handle talking to clients
and will send dynamic requests to a waiting development server. The performance
of this setup will be excellent, as perlbal adds almost no overhead (it's used for
popular sites like LiveJournal and Vox and easily handles hundreds of millions of
requests a day).

To get started, install perlbal from the CPAN (it's also available at
http://www.danga.com/perlbal/). Then, create a simple perlbal configuration
file called /etc/perlbal/perlbal.conf that looks like this:

CREATE POOL myapp
 POOL myapp ADD 127.0.0.1:3010
 POOL myapp ADD 127.0.0.1:3011
 POOL myapp ADD 127.0.0.1:3012
 POOL myapp ADD 127.0.0.1:3013

CREATE SERVICE balancer
 SET listen = 0.0.0.0:80
 SET role = reverse_proxy
 SET pool = myapp
 SET persist_client = on
 SET persist_backend = on
ENABLE balancer

Chapter 9

[183]

open up a management port for dynamic configuration
CREATE SERVICE mgmt
 SET role = management
 SET listen = 127.0.0.1:60000
ENABLE mgmt

When that's set up, start a few instances of your application:

$ perl script/myapp_server.pl -p 3010 -d

$ perl script/myapp_server.pl -p 3011 -d

$ perl script/myapp_server.pl -p 3012 -d

$ perl script/myapp_server.pl -p 3013 -d

and start perlbal:

$perlbal

Now visit http://localhost/, and you should be good to go. If you choose to keep
perlbal's management interface up, you should firewall off its port (60000).

Summary
In this chapter, we moved our application from development to production. We
learned how Makefile.PL made it simple to manage dependencies and create
packages. We also saw how to create a unique configuration for each environment,
and how to set up a variety of web servers. Finally, we learned how to make our
application a self-contained file, called a PAR.

Index
A
address book, application

address editing controller, adding 47-51
authentication 72
authentication, adding 75
authorization 73, 75
authorization, adding 75
Catalyst model, creating 33
configuration files 53
configuration files, using 54
configuring 55
controller, uses 41
CRUD 43
data, searching 64-70
database, accessing 33
database, schema files 34
database, sessions 59
database design 32, 33
database schema, creating in SQLite 32, 33
environment setup 32
forms 43-47
forms, building 44
people, viewing 40
People controller, creating 40, 42
relations, specifying 34
results, displaying 66
results, paging 67
resultset, displaying 67
Search Controller, creating 65
search form, generating 66
search page, generating 68, 69
search templates, creating 71
session engine 56
session plugin, loading 56
sessions 56, 57
sessions, adding 57, 58
sessions, modules 56

TTSite 37
address book application, testing

about 165
forums, testing 167, 168
JavaScript, testing 169-173
logging in 165, 166

AJAX
about 144
implementing 146-151
Jemplate 144
Apache

about 179
fastcgi 179
mod_perl 180
mod_perl, performance enhancing 181
mod_perl, serving Catalyst aplication 180
static content 180

API key 135
application

address book 31
deploying 175
skeleton 13

Asynchronous JavaScript And XML. See
AJAX

authentication
about 72
application, configuring 77
guts, implementing 78
schema files, creating 76, 77
tables, creating in database 75

authentication, REST
about 135
API key 135

Authentication plugin 72, 73
authorization

about 73
implementing 81

[186]

C
Catalyst

about 6
address book application 31
address book application, testing 165
application, building 31
application, deploying 175
application structure 18
authentication 72
authorization 72, 73
ChatStat application 83
ChatStat application, testing 158
configuration management 178
CPAN modules, creating 32
database model, creating 28
help 10
installing 9
installing from CPAN 9
mechanics 156, 157
model, creating 33
outside components, using 60-63
PAR, deploying 177
REST plugin, installing 134
ResultSet object, creating 29
skeleton application, creating 13, 14
skeleton application, debugging 14, 15
web server, configuring 178

Catalyst application architecture
about 6
extensibility 7
flexbility 8
reliability 8
reusability 8

Catalyst model
creating 127

ChatStat application
accessor, creating 86
building 83
data, extracting 92
data, putting on web 99-116
database, creating 84
database, populating 88-91
DBIC, chained ResultSets 95
DBIC, custom ResultSets 97
DBIC, features 93
DBIC schema, generating 85
running 107

tables, creating in SQLite 84
web interface, building 99

ChatStat application, testing
about 158, 159
database, testing 159-161
web interface, testing 161-164

components
Controller 6
Model 7
View 7, 20

configuration management 178
CPAN

Catalyst, installing from 9

D
database

interface, understanding 34-36
database, accessing ways

Object-Relational Mapper 27
database, skeleton application

database model, creating 28
database model, using 29
database schema, creating 28
SQLite, installing 27

database model
creating 122, 123

data putting on web, ChatStat application
custom ResultSets, writing 104
macros, creating 100
main page 99
main page, writing 102, 103
ResultSets, adding 108
template, creating 101

DBIC
about 27
features 93

DBIC model
custom methods, implementing without

raw SQL 121
database functions, calling 121, 122
extending 119
SQL, executing 120

DBIx
:Class. See DBIC

development server
about 182
perlbal 182

[187]

F
filesystem model

blog application, creating 124, 125
creating 124
implementing 126
integrating, ACCEPT_CONTEXT used used

130
integrating, COMPONENT used 129
maintainable models, writing 130, 131
tweaking 128, 129

I
interface to database 34

J
Jemplate, AJAX

about 144-146
setting up 146

JSON 144

M
Makefile.PL

about 175
running, on development system 175

MyApp directory structure, skeleton
application

files in lib directory 18
files in MyApp directory 18
files in root directory 19
files in script directory 19
files in t directory 20

O
Object-Relational Mapper 27

P
PAR

deploying 177
perlbal

about 182
installing 182, 183

R
Representational State Transfer. See REST
REST

about 133, 134
ActionClass 134, 136
adding, to address book application 134
authentication 135
controller, creating 135
entity, adding 136-143

RSS feed
about 151
adding, to mini-blog program 152
creating 152, 153

S
sessions 56
skeleton application

creating 13
customizing 20
database, adding 27
MyApp directory structure 17
View, adding 21-23
View, technical details 26

SQLite
database schema, creating 32

T
testing

address book application 165
ChatStat application 158

TTSite
about 37
index page, creating 38

V
View

page rendering, template used 25, 26
Template Toolkit, rendering HTML pages

20

W
web server

Apache 179
configuring 178

	Catalyst
	Preface
	Table of Contents
	Chapter 1: Introduction to Catalyst
	Catalyst Application Architecture
	Extensibility
	Reusability
	Flexibility
	Reliability

	Installing Catalyst
	CPAN

	Where to go for Help?
	Summary

	Chapter 2: Creating a Catalyst Application
	Creating the Application Skeleton
	MyApp Directory Structure
	Files in the MyApp Directory
	Files in the lib Directory
	Files in the root Directory
	Files in the script Directory
	Files in the t Directory

	Adding a View
	Using a Template To Render the Page
	Some Technical Details

	Adding a Database
	Installing SQLite
	Creating a Database Schema
	Creating a Database Model for Catalyst
	Using the Model

	Summary

	Chapter 3: Building a Real Application
	Environment Setup
	Database Design
	Understanding the Interface to the Database
	TTSite
	Creating the Index Page
	Creating a "Not Found" Page

	Viewing People
	Basic CRUD
	Forms
	Finishing Up
	Summary

	Chapter 4: Expanding the Application
	Configuration Files
	Configuring the Address Book

	Sessions
	Adding Sessions to the Address Book
	Sessions in the Database

	Using Components from Outside Catalyst
	Searching and Paging
	Authentication and Authorization
	Authentication
	Authorization
	Adding Authentication and Authorization to the Address Book

	Summary

	Chapter 5: Building a More Advanced Application
	The Application
	Background

	Creating the Database
	Populating the Database

	Extracting the Data
	Chained ResultSets
	Custom ResultSets

	Putting the Data on the Web
	Summary

	Chapter 6: Building Your Own Model
	Extending a DBIx::Class Model
	Custom Methods Without Raw SQL
	Calling Database Functions

	Creating a Database Model from Scratch
	Implementing a Filesystem Model
	Tweaking the Model
	Request Context Inside the Model
	Maintainable Models
	Other Components

	Summary

	Chapter 7: Hot Web Topics
	REST
	Getting some REST
	REST Controller
	REST Authentication
	Adding an Entity
	REST Easy

	AJAX
	Getting Started
	Jemplate

	Implementing AJAX

	RSS
	Summary

	Chapter 8: Testing
	Mechanics
	Testing ChatStat
	Testing a Database
	Testing the Web Interface

	Testing the Address Book
	Logging In
	Testing Forms
	Testing JavaScript

	Summary

	Chapter 9: Deployment
	Basics
	PAR Deployment
	Configuration Management

	Configuring a Web Server
	Apache
	FastCGI
	Static Content
	mod_perl
	Performance Considerations

	Development Server and perlbal

	Summary

	Index

