

Understanding TCP/IP
A clear and comprehensive guide to TCP/IP
protocols

Libor Dostálek
Alena Kabelová

 BIRMINGHAM - MUMBAI

Understanding TCP/IP
A clear and comprehensive guide to TCP/IP protocols
Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, Packt Publishing, nor its dealers or distributors will
be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

First published: April 2006

Production Reference: 1130406

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-71-X
www.packtpub.com

Cover Design by www.visionwt.com

This is an authorized and updated translation from the Czech language.

Copyright © Computer Press 2003 Velký průvodce protokoly TCP/IP a systémem DNS. ISBN: 80-
722-6675-6. All rights reserved.

Credits

Authors
Libor Dostálek
Alena Kabelová

Contributing Authors
Marta Vohnoutová
Luděk Rašek
Michal Hojsík

Technical Editors
Abhishek Shirodkar
Darshan Parekh

Development Editor
Louay Fatoohi

Editorial Manager
Dipali Chittar

Indexer
Abhishek Shirodkar

Proofreader
Chris Smith

Production Coordinator
Manjiri Nadkarni

Illustrator
Shantanu Zagade

Cover Designer
Helen Wood

About the Authors

Libor Dostálek was born in 1957 in Prague, Czech Republic. He graduated in mathematics at the
Charles University in Prague. For the last 20 years he has been involved in ICT architecture and
security. His experiences as the IT architect and the hostmaster of one of the first European Internet
Service Providers have been used while writing this publication.

Later he became an IT architect of one of the first home banking applications fully based on the PKI
architecture, and also an IT architect of one of the first GSM banking applications (mobile banking).
As a head consultant, he designed the architecture of several European public certification service
providers (certification authorities) and also many e-commerce and e-banking applications.

The public knows him either as an author of many publications about TCP/IP and security or as a
teacher. He has taught at various schools as well as held various commercial courses. At present,
he lectures on Cryptology protocols at the Charles University in Prague.

He is currently an employee of the Siemens.

Alena Kabelová was born in 1964 in Budweis, Czech Republic. She graduated in ICT at the
Economical University in Prague. She worked together with Libor Dostálek as a hostmaster. She
is mostly involved in software development and teaching. At present, she works as a senior project
manager at the PVT and focuses mainly on electronic banking.

Her experiences as the hostmaster of an important European ISP are applied in this publication.

Acknowledgements

This book has a long history. In every new edition, there were new chapters and sections added
by different co-authors. We extend our special thanks to our following co-authors:

• Luděk Rašek wrote Chapter 17 (Lightweight Directory Access Protocol).

• Marta Vohnoutová wrote section 4.7 (Wireless Local Area Network).

• Michal Hojsík wrote section 7.4.2 (Link State Protocols).

The English edition was really a tough one. The original book was split into two volumes:
Understanding TCP/IP (ISBN: 1-904811-71-X) and DNS in Action (ISBN: 1-904811-78-7). The
book has been rewritten and the content list is not the same as the original book. The person
who urged us to rewrite the book was the book's editor from Packt Publishing, Abhishek
Shirodkar. Thanks to Abhishek, the English edition of this has turned out to be really good.

Table of Contents

Preface 1
Chapter 1: Introduction to Network Protocols 5

1.1 ISO OSI 8
1.1.1 Physical Layer 8
1.1.2 Data Link Layer 9
1.1.3 Network Layer 11
1.1.4 Transport Layer 12
1.1.5 Session Layer 13
1.1.6 Presentation Layer 13
1.1.7 Application Layer 13

1.2 TCP/IP 14
1.2.1 Internet Protocol 14
1.2.2 TCP and UDP 14
1.2.3 Application Protocols 15

1.3 Methods of Information Transmission 16
1.3.1 Synchronous Transmission 16
1.3.2 Packet Transmission 17
1.3.3 Asynchronous Transmission 17

1.4 Virtual Circuit 18
Chapter 2: Network Monitoring Tools 21

2.1 Packet Drivers 22
2.2 MS Network Monitor 23

2.2.1 Frame Capturing 23
2.2.2 Viewing Captured Frames 26
2.2.3 Filters for Displaying Captured Frames 28

2.3 Ethereal 28
2.4 Homework 30

Table of Contents

Chapter 3: Physical Layer 33
3.1 Serial Line 34

3.1.1 Serial and Parallel Data Transport 34
3.1.2 Symmetrical and Asymmetrical Signals 34
3.1.3 Synchronous and Asynchronous Transport 35
3.1.4 V.24, V.35, and X.21 Protocols 36
3.1.5 Null Modem 40

3.2 Modems 40
3.2.1 Dial-Up Connection 41
3.2.2 Leased Lines 41
3.2.3 Automatic Modem 42

3.2.3.1 AT Commands 42
3.2.4 Synchronous Transmission 44
3.2.5 Baseband, Voice Band, and ADSL 44
3.2.6 Transmission Rate 49

3.2.6.1 The V.90 Recommendation 49
3.2.7 Data Compression 50
3.2.8 Error Detection 51

3.3 Digital Circuits 51
3.3.1 ISDN 51

3.3.1.1 Basic Rate 52
3.3.1.2 Higher Layer Protocols and Signalization 54

3.3.2 E and T Lines 56
3.4 LAN 57

3.4.1 Structured Cables 57
3.4.1.1 Copper Distribution 58
3.4.1.2 Optical Fibers 59

3.4.2 Ethernet (10 Mbps) 62
3.4.2.1 AUI 62
3.4.2.2 BNC 62
3.4.2.3 Twisted-Pair 62

3.4.3 Fast Ethernet (100 Mbps) 63
3.4.4 Gigabyte Ethernet (1 Gbps) 63

Chapter 4: Link Layer 65
4.1 Serial Line Internet Protocol 65
4.2 Compressed SLIP 66

ii

Table of Contents

4.3 High-Level Data Link Control Protocol 71
4.3.1 Flag 72
4.3.2 Address Field 73
4.3.3 Control Field 73

4.3.3.1 I-Frame 74
4.3.3.2 S-Frame 75
4.3.3.3 U-Frame 75

4.3.4 Data Field and a Transferred Protocol Type 76
4.3.5 Checksum 77
4.3.6 HDLC Protocol Summary 77

4.4 Point-To-Point Protocol 77
4.4.1 Dialing a Phone Line 80
4.4.2 Link Control Protocol 81
4.4.3 Authentication 87

4.4.3.1 Password Authentication Protocol 88
4.4.3.2 Challenge Handshake Authentication Protocols 89
4.4.3.3 Extensible Authentication Protocol 90
4.4.3.4 Radius Protocol 91

4.4.4 Call-Back Control Protocol 92
4.4.5 Other Protocols 94

4.4.5.1 Multilink Protocol 94
4.4.5.2 Bandwidth Allocation Protocol and Bandwidth Allocation Control Protocol 96
4.4.5.3 Compression Control Protocol 97
4.4.5.4 Encryption Control Protocol 98
4.4.5.5 Setting Encryption Keys 98

4.4.6 Internet Protocol Control Protocol 99
4.5 Frame Relay 101

4.5.1 A Frame Relay Protocol Frame 105
4.5.2 IP Through Frame Relay 108
4.5.3 Local Management Interface 110
4.5.4 Frame Relay Configuration on CISCO Routers 110
4.5.5 Frame Relay Protocol 110

4.6 Local Area Networks 111
4.6.1 Ethernet 112

4.7 Wireless Local Area Network 121
4.7.1 Typical WLAN Configuration 123

4.7.1.1 Peer-To-Peer Networks 123
4.7.1.2 Access Point 123
4.7.1.3 Roaming (Several Access Points) 124
4.7.1.4 Backbone Point-to-Point Connection 124

 iii

Table of Contents

4.7.2 Antennas 124
4.7.3 Security of WLAN 125

4.7.3.1 Service Set ID 125
4.7.3.2 Wired Equivalent Privacy 125
4.7.3.3 IEEE 802.1X 126

4.8 Fixed Wireless Access 127
4.8.1 The Differences Between FWA and WLAN 127
4.8.2 The Main Benefits of FWA 128

Chapter 5: Internet Protocol 129
5.1 IP Datagram 133
5.2. Internet Control Message Protocol 137

5.2.1 Echo 140
5.2.2 Destination Unreachable 141
5.2.3 Source Quench (Lower Sending Speed) 141
5.2.4 Redirect 141
5.2.5 ICMP Router Discovery 141
5.2.6 Time Exceeded 142
5.2.7 Subnet Address Mask Request 144
5.2.8 Time Synchronization 144

5.3 Fragmentation 145
5.4 Optional Entries in the IP Header 149

5.4.1 Record Route 150
5.4.2 Timestamp 152
5.4.3 Source Routing 153
5.4.4 IP Router Alert Option 155

5.5 ARP and RARP Protocols 156
5.5.1 ARP Filtering 159
5.5.2 Proxy ARP 160
5.5.3 Reverse ARP 160

5.6 Internet Group Management Protocol 161
5.7 Multicast and Link Protocol 164

Chapter 6: IP Address 167
6.1 Network: First Period of History 168

6.1.1 Special-Use IP Addresses 169
6.1.2 Network Mask 170

6.2 Network: Second Period of History 171
6.2.1 Subnetworks 173
6.2.2 Super-Networks and Autonomous Systems 177

iv

Table of Contents

6.3 IP Addresses in the Intranet and Special-Use IP Addresses 182
6.4 Unnumbered Interface 183

6.4.1 Dynamic Address Assignment 184
6.5 Address Plan 184
6.6 Over 254 Interfaces in a LAN 186

Chapter 7: Routing 189
7.1 Forwarding and Screening 191
7.2 Routing 192

7.2.1 Processing 194
7.3 Handling Routing Tables 195

7.3.1 List of Contents of a Routing Table in a Command Prompt 195
7.3.1.1 Contents of a Routing Table in UNIX 195

7.3.2 Routing Table Listing in Windows 2000/XP/2003 196
7.3.3 Contents of a Routing Table in Cisco Routers 197
7.3.4 Routing Table Entry Addition and Removal 198

7.4 Routing Protocols 199
7.4.1 Routing Vector Protocols 199

7.4.1.1 RVP Principle 199
7.4.1.2 RIP and RIP2 203

7.4.2 Link State Protocols 204
7.4.2.1 OSPF 209

7.4.3 IPG and EGP 211
7.4.4 Aggregation 211
7.4.5 Redistribution 211

7.5 Neutral Exchange Point 212
Chapter 8: IP Version 6 213

8.1 Next Headers of IP Version 6 Datagram 216
8.1.1 Hop-By-Hop Options 217
8.1.2 Routing Header 219
8.1.3 Fragment Header 222
8.1.4 Authentication Header 222
8.1.5 Encapsulating Security Payload Header 223

8.2 ICMP Version 6 Protocol 224
8.2.1 Address Resolution 225
8.2.2 Router Discovery 229
8.2.3 Redirect 231

 v

Table of Contents

8.3. IP Addresses 233
8.3.1 Types of Address Inscription 233
8.3.2 Multicasts 234
8.3.3 Unicasts 235

8.4 Windows 2003 236
Chapter 9: Transmission Control Protocol 239

9.1 TCP Segments 241
9.2 TCP Header Options 246
9.3 Establishing and Terminating a Connection with TCP 247

9.3.1 Establishing a Connection 248
9.3.2 Terminating a Connection 252
9.3.3 Aborting a Connection 255

9.4 Determining the Connection State 256
9.5 Response Delay Techniques 257
9.6 Window Technique 261
9.7 Network Congestion 264

9.7.1 Slow Start 264
9.7.2 Congestion Avoidance 265
9.7.3 Segment Loss 266

9.8 The Window Scale Factor 266
Chapter 10: User Datagram Protocol 269

10.1 Fragmentation 271
10.2 Broadcasts and Multicasts 272

Chapter 11: Domain Name System 273
11.1 Domains and Subdomains 274
11.2 Name Syntax 275
11.3 Reverse Domains 276
11.4 Resource Records 278
11.5 DNS Protocol 279
11.6 DNS Query 280

11.6.1 DNS Query Packet Format 281
11.6.2 DNS Query Packet Header 281
11.6.3 Question Section 283
11.6.4 The Answer Section, Authoritative Servers, and Additional Information
 285

vi

Table of Contents

Chapter 12: Telnet 287
12.1 The NVT Protocol 288
12.2 Telnet Protocol Commands 290

12.2.1 Signal for Synchronization 294
12.2.2 The Telnet Command Line 294
12.2.3 Communication Modes 297

12.3 Example of Windows NT Client Communication 298
12.4 Example of UNIX Client Communication 300

Chapter 13: File Transfer Protocol 305
13.1 Architecture 306
13.2 Active Mode of FTP Protocol Communication 308
13.3 Passive Mode of FTP Protocol Communication 311
13.4 FTP Commands 313
13.5 Proxy 316
13.6 Return Codes 317
13.7 Abnormal Termination of Data Transfer 318
13.8 Anonymous FTP 319

Chapter 14: Hypertext Transfer Protocol 321
14.1 Client-Server 321
14.2 Proxy 326
14.3 Gateway 329
14.4 Tunnel 331
14.5 More Intermediate Nodes 333
14.6 Uniform Resource Identifier 334

14.6.1 The http Scheme 334
14.6.2 The ftp Scheme 335
14.6.3 The mailto Scheme 336
14.6.4 The nntp Scheme 336
14.6.5 The telnet Scheme 336
14.6.6 The file Scheme 336
14.6.7 The pop Scheme 336

14.7 Relative URI 337
14.8 The HTTP Request 337

14.8.1 The GET Method 338
14.8.2 The POST Method 341

 vii

Table of Contents

14.8.3 The HEAD Method 342
14.8.4 The TRACE Method 343
14.8.5 The OPTIONS Method 343

14.9 The HTTP Response 344
14.9.1 An Overview of Result Codes 344

14.10 Other Header Fields 346
14.10.1 Accept Header Field 346
14.10.2 Client Authentication 347
14.10.3 Proxy Authentication 348
14.10.4 Content Header Field 348
14.10.5 Redirection and Temporary Unavailability of Objects 349
14.10.6 Cache 350
14.10.7 Software Information 352

14.11 Cookie 352
14.11.1 Set-Cookie and Set-Cookie2 Header Fields 355

14.11.1.1 Cookie Header Field 355
Chapter 15: Email 357

15.1 Email Architecture 357
15.1.1 DNS and Email 365

15.2 Mail Message Format 365
15.2.1 Basic Header Fields 366

15.3 MIME 368
15.3.1 MIME Header Fields 369

15.3.1.1 MIME-Version 369
15.3.1.2 Content-Type 370
15.3.1.3 Content-Transfer-Encoding 371
15.3.1.4 Content-Disposition 371

15.3.2 Standard Encoding Mechanisms 372
15.3.2.1 Quoted-Printable 372
15.3.2.2 Base64 373

15.3.3 Non-ASCII Text in Message Header Fields 375
15.3.4 Discrete Media Types in Content-Type 375

15.3.4.1 text 375
15.3.4.2 application 376
15.3.4.3 image 377
15.3.4.4 audio 377
15.3.4.5 video 378
15.3.4.6 model 378

viii

Table of Contents

15.3.5 Composite Media Types in Content-Type 378
15.3.5.1 multipart 378
15.3.5.2 message 382

15.4 SMTP 383
15.5 ESMTP 386

15.5.1 Message Delivery Receipt 388
15.5.1.1 Delivery Status Notification 390
15.5.1.2 The Disposition-Notification-To Header Field 393

15.6 POP3 395
15.7 IMAP4 397

15.7.1 Unauthenticated State 400
15.7.1.1 LOGIN 400
15.7.1.2 AUTHENTICATE 400

15.7.2 Authenticated State 400
15.7.2.1 CREATE, DELETE, RENAME, and LIST Commands 400
15.7.2.2 SUBSRCIBE, LSUB, and UNSUBSCRIBE Commands 403
15.7.2.3 STATUS 403
15.7.2.4 SELECT and EXAMINE Commands 404

15.7.3 Open Mailbox 404
15.7.3.1 COPY 405
15.7.3.2 SEARCH 405
15.7.3.3 FETCH 406
15.7.3.4 STORE 408
15.7.3.5 EXPUNGE 409
15.7.3.6 CLOSE 409

15.8 Mailing Lists 409
Chapter 16: Forums 413

16.1 Message Format 414
16.2 NNTP Protocol 415

16.2.1 End User Communication 416
16.2.2 Communication Among Servers 419
16.2.3 Session Termination 420

Chapter 17: Lightweight Directory Access Protocol 421
17.1 Protocol Principle 421
17.2 Data Model of LDAP Directory 422
17.3 LDAP Protocol Data Units 426

17.3.1 The Search Operation 427
17.3.1.1 Filters 429

 ix

Table of Contents

17.3.2 Further Operations with Entries 430
17.3.2.1 The Add Operation 430
17.3.2.2 The Modify Operation 431
17.3.2.3 The Delete Operation 431
17.3.2.4 The Modify DN Operation 432
17.3.2.5 The Compare Operation 432

17.4 Server Programs 432
17.5 Client Programs 432

17.5.1 The LDAP Browser 433
17.5.2 The OpenLDAP Client 433
17.5.3 ADSIedit 434
17.5.4 MS Outlook Express and MS Outlook 434

17.6 Lightweight Directory Interchange Format 435
Appendix A: CISCO Routers 437

A.1 Interface Identification 440
A.2 Cables 440
A.3 Memory 441
A.4 Console 442
A.5 Commands 443

A.5.1 Non-Privileged Mode 444
A.5.2 Privileged mode 445

A.6 Configuration 445
A.6.1 Setting a Password for Privileged Mode 447
A.6.2 Web 448
A.6.3 ConfigMaker 448

A.7 Debugging 449
Index 453

x

Preface

You are probably wondering whether to refer to this book to understand more about TCP/IP or to
read some other good books describing similar topics and containing the word TCP/IP in their
titles. Let us explain to you what moved us to write another publication about the TCP/IP
protocols on which the Internet is based.

Publications about the Internet are usually of two types:

• Publications involved with concrete operating systems (Microsoft Windows,
UNIX, CISCO, etc.). The goal of such publications is to train readers in a
particular TCP/IP implementation, while describing the main TCP/IP principles is
only their secondary goal.

• Publications written for the academic environment. Even if their main goal is to
describe the basic TCP/IP principles, they could be too tedious for many readers.

So we faced the task of creating a basic TCP/IP guide, independent from any concrete
environment (for example, Microsoft Windows, UNIX, CISCO, etc.), emphasizing presentation of
the text in a clear and apt form to readers so that they understand the main coherences. To explain
the basic principles and coherences in the best way, we have used a lot of illustrations. These
illustrations were not created by chance. We drew and constantly refined them according to the
requirements from our countless TCP/IP courses. First we chalked them on a blackboard, next we
drew them on a white blackboard, and finally we drew them in Microsoft Visio. It has been twenty
years since we started teaching TCP/IP.

If you say to yourself that you will not pay for this book and will study TCP/IP directly from the
Internet RFC standards, you have unknowingly found the next goal of this publication. Exploring
the huge number of RFC standards takes a lot of time, and moreover their study is very difficult
for a beginner. (The idea of someone reading international standards as a novel in his or her bed
before sleep is funny.) So another goal of this publication is to equip readers with such knowledge
that they would be able to study RFC by themselves after reading this book.

We, the authors, wish you good luck and hope that you get a lot of useful information by
reading this publication.

What This Book Covers
Chapter 1 contains a general introduction to computer networks. The ISO OSI model is mentioned
and compared with the TCP/IP protocol family.

Chapter 2 acquaints the reader with the basics of network sniffing. Network sniffing is
demonstrated with the help of two tools: MS Network Monitor and Ethereal. We use network
sniffing as our basic means to clarify principles of particular protocols.

Preface

 2

Chapter 3 deals with the physical layer. Concretely, it deals with serial lines, modems, ISDN,
and LAN.

Chapter 4 deals with a link layer. It describes the SLIP, CSLIP, PPP, FrameRelay, Ethernet, WiFi
(IEEE 802.11), and FWA protocols.

Chapter 5 describes the Internet Protocol (IP) including ICMP, IGMP, ARP, and RARP protocols.

Chapter 6 clarifies the meaning of an IP address and a network mask. It also emphasizes the
historical process by which the meaning of the term IP network has developed.

Chapter 7 describes the term 'routing', which is, without any doubt, the most complicated area
of IP networks. This chapter explains the principles on which particular types of routing
protocols are based. However, a detailed description of individual routing protocols is beyond
the scope of this publication.

Chapter 8 deals with the new IP generation—the Internet Protocol version 6.

Chapter 9 turns to the TCP protocol.

Chapter 10 describes the little brother of the TCP protocol—the UDP protocol.

Chapter 11 discusses the Domain Name System (DNS), which translates names into IP addresses
and vice versa.

Chapter 12 describes the Telnet protocol. It is rarely used today, but because it is often a base of
application protocols, we will use it to explain the principles of these application protocols
(excluding the LDAP protocol).

Chapter 13 addresses the File Transfer protocol (FTP).

Chapter 14 describes probably the most popular protocol, HTTP.

Chapter 15 deals with electronic mail. It describes the following protocols: SMTP, ESMTP,
POP3, IMAP4, and MIME; and even mailing lists are mentioned here.

Chapter 16 describes discussions forums (the NNTP protocol).

Chapter 17 deals with the Lightweight Directory Access Protocol (LDAP).

Appendix A contains the basic principles of working with CISCO routers for beginners.

What You Need for This Book
This publication is created to help beginners who are already familiar with computers to
discover the secrets of TCP/IP. It will be useful for students, advanced users, computer and
network administrators, computer managers, and security managers. Professionals who want to
discover secrets of Internet technology can also appreciate it. It will be also useful as a textbook
of TCP/IP lectures.

Preface

This publication contains a lot of examples. Please do not blame us if we take the side of some
particular operating system; we have put here examples from both Windows and UNIX, and
sometimes even CISCO. We have added a supplement containing the basics of the CISCO
system because a basic knowledge of the operating system of CISCO routers is essential not
only for network administrators, but also for the general readers.

This book explains the TCP/IP concepts to users, independently of the hardware and software they
use. Readers can effectively work with TCP/IP even in a not-so-powerful personal computer.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "You can set it explicitly
for the ping and traceroute commands."

A block of code will be set as follows:
C: HEAD / HTTP/1.1;;
C: Host: www.iana.org
C:
S: HTTP/1.1 200 OK
S: Date: Tue, 20 Dec 2005 21:17:06 GMT
S: Server: Apache/1.3.27 (Unix) (Red-Hat/Linux)
S: Last-Modified: Thu, 04 Nov 2004 19:34:30 GMT
S: ETag: "1acad9-153a-418a8446"
S: Accept-Ranges: bytes
S: Content-Length: 5434
S: Connection: close
S: Content-Type: text/html

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items will be made bold:

+ FRAME: Base frame properties
 + ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 IP: ID = 0x673D; Proto = ICMP; Len: 84
 IP: Version = 4 (0x4)
 IP: Header Length = 44 (0x2C)
 + IP: Service Type = 0 (0x0)
 IP: Total Length = 84 (0x54)
 IP: Identification = 26429 (0x673D)
 + IP: Flags Summary = 0 (0x0)
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 32 (0x20)

 3

Preface

 4

New terms and important words are introduced in a bold-type font. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "clicking the Next
button moves you to the next screen".

Warnings or important notes appear in a box like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about this book, what
you liked or may have disliked. Reader feedback is important for us to develop titles that you
really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, making sure to
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or contributing
to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get
the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes do happen. If
you find a mistake in one of our books—maybe a mistake in text or code—we would be grateful if
you would report this to us. By doing this you can save other readers from frustration, and help to
improve subsequent versions of this book. If you find any errata, report them by visiting
http://www.packtpub.com/support, selecting your book, clicking on the Submit Errata link, and
entering the details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with some aspect of
the book, and we will do our best to address it.

1
Introduction to Network

Protocols

Just as diplomats use diplomatic protocols in their meetings, computers use network protocols to
communicate in computer networks. There are many network protocols in existence; TCP/IP is a
family of network protocols that are used for the Internet.

A network protocol is a standard written down on a piece of paper (or, more precisely, with a text
editor in a computer). The standards that are used for the Internet are called Requests For Comment
(RFC). RFCs are numbered from 1 onwards. There are more than 4,500 RFCs today. Many of them
have become out of date, so only a handful of the first thousand RFCs are still used today.

The International Standardization Office (ISO) has standardized a system of network protocols
called as ISO OSI. Another organization that issues communication standards is the
International Telecommunication Union (ITU) located in Geneva. The ITU was formerly
known as the CCITT and, being founded in 1865, is one of the oldest worldwide organizations
(for comparison, the Red Cross was founded in 1863). Some standards are also issued by the
Institute of Electrical and Electronics Engineers (IEEE). RFC, standards released by RIPE
(Réseaux IP Européens), and PKCS (Public Key Cryptography Standard) are freely available
on the Internet and are easy to get hold of. Other organizations (ISO, ITU, and so on) do not
provide their standards free of charge—you have to pay for them. If that presents a problem, then
you have to spend some time doing some library research.

First of all, let's have a look at why network communication is divided into several protocols. The
answer is simple although this is a very complex problem that reaches across many different
professions. Most books concerning network protocols explain the problem using a metaphor of
two foreigners (or philosophers, doctors, and so on) trying to communicate with each other. Each
of the two can only communicate in his or her respective language. In order for them to be able to
communicate with each other, they need a translator as shown in the following figure:

Introduction to Network Protocols

Figure 1.1: Three-layer communication architecture

The two foreigners exchange ideas, i.e., they communicate. But they only do so virtually. In
reality, they are both handing over information to their interpreters, who then transmit this
information by sending vibrations through the surrounding air with their vocal cords. Or if the
parties are far away from each other, the interpreters communicate over the phone; thus the
information is physically transmitted over phone lines. We can therefore talk about virtual
communication in the horizontal direction (philosophical communication, the shared language
between interpreters, and electronic signals transmitted via phone lines) and real communication
in the vertical direction (foreigner-to-interpreter and interpreter-to-phone). We can thus distinguish
three levels of communication:

1. Between two foreigners
2. Between interpreters
3. Physical transmission of information using media (phone lines, sound waves, etc.)

Communication between the two foreigners and between the two interpreters is only virtual. In
fact, the only real communication happens between the foreigner and his or her interpreter.

Even more layers are used in computer networks. The number of layers depends on which system
of network protocols you choose to use. The system of network protocols is sometimes referred to
as the network model. You most commonly work with a system that uses the Internet, which is
also referred to as the TCP/IP family. In addition to TCP/IP, we will also come across the ISO OSI
model that was standardized by the ISO.

 6

Chapter 1

Figure 1.2: Comparison of TCP/IP and ISO OSI network models

The TCP/IP family uses four layers while ISO OSI uses seven layers as shown in the figure above.
The TCP/IP and ISO OSI systems differ from each other significantly, although they are very
similar on the network and transport layers.

Except for some exceptions like SLIP or PPP, the TCP/IP family does not deal with the link and
physical layers. Therefore, even on the Internet, we use the link and physical protocols of the ISO
OSI model.

 7

Introduction to Network Protocols

1.1 ISO OSI
Communication between two computers is shown in the following figure:

Figure 1.3: Seven-layer architecture of ISO OSI

1.1.1 Physical Layer
The physical layer is responsible for activating the physical circuit between the Data Terminal
Equipment (DTE) and Data Circuit-terminating Equipment (DCE), communicating through
it, and then deactivating it. Additionally, the physical layer is also responsible for the
communication between DCEs (see Figure 1.3a). A computer or router can represent the DTE.
The DCE, on the other hand, is usually represented by a modem or a multiplexer.

 8

Chapter 1

Figure 1.3a: DTE and DCE

To put it differently, the physical layer describes the electric or optical signals used for
communicating between two computers. Physical circuits are created on the physical layer. Other
appliances such as modems modulating a signal for a phone line are often put in the physical
circuits created between two computers.

Physical layer protocols specify the following:

• Electrical signals (for example, +1V)
• Connector shapes (for example, V.35)
• Media type (twisted pair, coaxial cable, optical fiber, etc.)
• Modulation (for example, FM, PM, etc.)
• Coding (for example, RZ, NRZ, etc.)
• Synchronization (synchronous and asynchronous communication, time source, and so on)

1.1.2 Data Link Layer
As for serial links, the link layer provides data exchange between neighboring computers as well
as data exchange between computers within a local network.

For the link layer, the basic unit of data transfer is the data link packet frame (see Figure 1.4). A
data frame is composed of a header, payload, and trailer.

 9

Introduction to Network Protocols

Figure 1.4: Data link packet or frame

A frame carries the destination link address, source link address, and other control information
in the header. The trailer usually contains the checksum of the transported data. By using the
checksum, we can find out whether the payload has been damaged during transfer. The
network-layer packet is usually included in the payload.

In Figure 1.3a, the link layer does not engage in a conversation between DTE and DCE (the link
layer does not see the DCE). It is engaged, however, in the frame exchange between DTEs. (It
relies on the physical layer to handle the DCE issue.)

The following figure illustrates that different protocols can be used for each end of the connection
on the physical layer. In our case, one of the ends uses the X.21 protocol while the other end uses
the V.35 protocol. This rule is valid not only for serial links, but also for local networks. In local
networks, you are more likely to encounter more complicated setups in which a switch that
converts the link frames of one link protocol into link frames of a second one (for example,
Ethernet into FDDI) is inserted between the two ends of the connection. This obviously results in
different protocols being used on the physical layer.

Figure 1.5: Link layer communication

A serial port or an Ethernet card can serve as a link interface. A link interface has a link address
that is unique within a particular Local Area Network (LAN).

 10

Chapter 1

1.1.3 Network Layer
The network layer ensures the data transfer between two remote computers within a particular
Wide Area Network (WAN). The basic unit of transfer is a datagram that is wrapped
(encapsulated) in a frame. The datagram is also composed of a header and data field. Trailers are
not very common in network protocols.

Figure 1.6: Network packet and its insertion in the link frame

As shown in the figure above, the datagram header, together with data (network-layer payload),
creates the payload or data field of the frame.

There is usually at least one router on WANs between two computers. The connection between
two neighboring routers on the link layer is always direct. The router unpacks the datagram from a
frame, only to wrap it again into a different frame (or, more generally, in a frame of different link
protocol) before sending it to a different line. The network layer does not see the appliances on the
physical and link layers (modems, repeaters, switches, etc.).

The network layer does not care about what kind of link protocols are used on route between the
source and the destination.

Figure 1.7: Network layer communication

 11

Introduction to Network Protocols

A serial port or an Ethernet card can be used as a network interface. A network interface has a one
or more unique address within a particular WAN.

1.1.4 Transport Layer
A network layer facilitates the connection between two remote computers. As far as the transport
layer is concerned, it acts as if there were no modems, repeaters, bridges, or routers along the way.
The transport layer relies completely on the services of lower layers. It also expects that the
connection between two computers has been established, and it can therefore fully dedicate its
efforts to the cooperation between two distant computers. Generally, the transport layer is
responsible for communication between two applications running on different computers.

There can be several transport connections between two computers at any given time (for example,
one for a virtual terminal and another for email). On the network layer, the transport packets are
directed based on the address of the computer (or its network interface). On the transport layer,
individual applications are addressed. Applications use unique addresses within one computer, so the
transport address is usually composed of both the network and transport addresses.

Figure 1.8: Transport layer connection

In this case, the basic transmission unit is the segment that is composed of a header and payload.
The transport packet is transmitted within the payload of the network packet.

Figure 1.9: Inserting transport packets into network packets that are then inserted into link frames

 12

Chapter 1

1.1.5 Session Layer
The session layer facilitates exchange of data between two applications. In other words, it serves
as a checkpoint and is involved in synchronizing transactions, correctly closing files, and so on.
Sharing a network disk is a good example of a session. The disk can be shared for a certain period
of time, but the disk is not used for the entire time. When we need to work with a file on the
network disk, a connection is established on the transport layer from the time when the file is
opened to when it is closed. The session, however, exists on the session layer for the entire time
the disk is being shared.

The basic unit is a session layer PDU (Protocol Data Unit), which is inserted in a segment. Other
books often illustrate this with a figure of a session-layer PDU, composed of the session header
and payload, being inserted in the segment. Starting with the session layer, however, this does not
necessarily have to be the case. The session layer information can be transmitted inside the
payload. This situation is even more noticeable if, for example, the presentation layer encrypts the
data, and thus changes the whole content of the session-layer PDU.

1.1.6 Presentation Layer
The presentation layer is responsible for representing and securing data. The representation can
differ on different computers. For example, it deals with the problem of whether the highest bit is
in the byte on the right or on the left. By securing, we mean encrypting, ensuring data integrity,
digital signing, and so forth.

1.1.7 Application Layer
The application layer defines the format in which the data should be received from or handed over
to the applications. For example, the OSI Virtual Terminal protocol describes how data should be
formatted as well as the dialogue used between the two ends of the connection.

Figure 1.10: Examples of network protocols from the ISO OSI protocols family

 13

Introduction to Network Protocols

 14

1.2 TCP/IP
With a few exceptions, the TCP/IP family does not deal with the physical or link layers. In
practice, Internet protocols often use protocols that adhere to the ISO OSI standards for the
physical and link layers.

What is the correlation between the ISO OSI protocols and TCP/IP? Each group of protocols has
its definition of its own layers as well as the protocols used on these layers. Generally speaking,
ISO OSI protocols and TCP/IP are incompatible. In practice, ISO OSI-compliant communication
appliances need to be used for transferring IP datagrams, or on the other hand, services based on
ISO OSI need to be provided via the Internet.

1.2.1 Internet Protocol
Internet Protocol (IP) basically corresponds to the network layer. IP is used for transmitting IP
datagrams between remote computers. Each IP datagram header contains the destination address,
which is the complete routing information used for delivering the IP datagram to its destination.
Therefore, the network can only transmit each datagram individually. IP datagrams of one session
can be transmitted through different paths and can thus be received by the destination in a different
order than they were sent.

Each network interface on the large Internet network has one or more IP address that is unique
worldwide. (One network interface can have several IP addresses, but one IP address cannot be
used by many network interfaces.) The Internet is composed of individual networks that are
interconnected via routers. Routers are also referred to as gateways in old literature.

1.2.2 TCP and UDP
TCP and UDP correspond to the transportation layer. TCP transports data using TCP segments
that are addressed to individual applications. UDP transports data using UDP datagrams.

TCP and UDP arrange a connection between applications that run on remote computers. TCP and
UDP can also facilitate communication between processes running on the same computer, but this
is not very interesting for our purposes.

The difference between TCP and UDP is that TCP is a connection-oriented service—the
destination confirms the data received. If some data (TCP segments) gets lost, the destination
requests a retransmission of the lost data. UDP transports data using datagrams (the delivery is not
guaranteed). In other words, the source party sends the datagram without worrying about whether
it has been received. UDP is connectionless-oriented service.

The port is used as the address. To understand the difference between an IP address and port
number, think of it as a mailing address. The IP address corresponds to the address of a house,
while the port tells you the name of the person that should receive the letter.

TCP is described in Chapter 9 and UDP in Chapter 10.

Chapter 1

1.2.3 Application Protocols
Application protocols correspond to several ISO OSI layers. The session, presentation, and
application ISO OSI layers are reduced to one TCP/IP application layer.

The absence of a presentation layer is made up for by introducing specialized presentation-
application protocols such as SSL and S/MINE that specialize in securing data or the Virtual
Terminal and ASN.1 protocols that are designed for presenting data. The Virtual Terminal
protocol (not to be confused with the ISO OSI protocol of the same name) specifies the network
data presentation for character-oriented network protocols (Telnet, FTP, SMTP, and, partly,
HTTP). Similarly, ASN.1 is often used for binary-oriented network transport. ASN.1 (including
BER or DER encoding) was initially used by SNMP, but today it is also used by S/MINE.

There are many different application protocols. For practical purposes, they can be divided into
two groups:

• User protocols utilized by user applications (HTTP, SMTP, Telnet, FTP, IMAP,
PIP3, and so on).

• Service protocols, i.e., the protocols that ordinary Internet users rarely encounter.
These protocols make sure the Internet functions correctly. For example, these could
be routing protocols that are used for mutual communication by routers to correctly
set their routing tables. Another example is SNMP usage in network administration.

Figure 1.11: Some protocols of the TCP/IP family

 15

Introduction to Network Protocols

1.3 Methods of Information Transmission
There are many different network protocols and several protocols can be available even on a
single layer. Especially with lower-layer protocols, we distinguish between the types of
transmission that they facilitate, whether they provide connection-oriented or connection-less
services, if the protocol uses virtual circuits, and so on. We also distinguish between synchronous,
packet, and asynchronous transmission.

1.3.1 Synchronous Transmission
Synchronous transmission is needed when it is necessary to provide a stable (guaranteed) bandwidth,
for example, in audio and video. If the source does not use the provided bandwidth it remains unused.
Synchronous transmission uses frames that are of fixed length and are transmitted at constant speeds.

Figure 1.12: Frames divided into slots in synchronous transmission

In synchronous transmission, the guaranteed bandwidth is established by dividing the transmitted
frames into slots (see Figure 1.12). One or more slots in any transmitted frame are reserved for a
particular connection. Let's say that each frame has slot 1 reserved for our connection. Since the
frames follow each other steadily in a network, our application has a guaranteed bandwidth
consisting of the number of slot 1s that can be transmitted through the network in one second.

The concept becomes even clearer if we draw several frames under each other, creating a 'super-
frame' (see Figure 1.13). The slots located directly under each other belong to the same connection.

Figure 1.13: Super-frame

 16

Chapter 1

Synchronous transmission is used to connect your company switchboard to the phone company
exchange. In this case, we use an E1(or T1 in United States) link containing 32 slots of 64 Kbps
each. A slot can be used for making a phone call. Therefore, in theory, 32 calls are guaranteed at
the same time (although some slots are probably used for servicing).

The Internet does not use synchronous transmission, i.e., in general, does not guarantee
bandwidth. Quality audio or video transmission on the Internet is usually achieved by over-
dimensioning the transmission lines. Recently, there has been a steady increase in requests for
audio and video transmission via the Internet, so more and more often we come across systems
that guarantee bandwidth even on the Internet with the help of Quality of Service (QoS). In order
for us to reach the expected results, however, all appliances on route from the source to the
destination must support these services. Today, we are more likely to get involved with only those
areas on the Internet that guarantee bandwidth such as within a particular Internet provider.

1.3.2 Packet Transmission
(From now onwards we will use the term packet to refer to 'packet', 'datagram', 'segment',
'protocol data unit'.) Packet transmission is especially valuable for transferring data. Packets
usually carry data of variable size.

Figure 1.14: Packet data transmission

One packet always carries data of one particular application (of one connection). It is not possible
to guarantee bandwidth, because the packets are of various lengths. On the other hand, we can use
the bandwidth more effectively because if one application does not transmit data, then other
applications can use the bandwidth instead.

1.3.3 Asynchronous Transmission
Asynchronous transmission is used in the ATM protocol. This transmission type combines
features of packet transmission with features of synchronous transmission.

Figure 1.15: Asynchronous data transfer

Similarly to synchronous transmission, in asynchronous transmission, the data are transmitted in
packets that are rather small, but are all of the same size; these packets are called cells. Similarly to
packet transmission, data for one application (one connection) is transmitted in one cell. All cells have
the same length; so if we guarantee that the nth cell will be available for a certain application (a
particular connection), the bandwidth will be guaranteed by this as well. Additionally, it doesn't really
matter if the application does not send the cell since a different application's cell might be sent instead.

 17

Introduction to Network Protocols

1.4 Virtual Circuit
Some network protocols create virtual circuits in networks. A virtual circuit is conducted through
the network and all packets of a particular connection go via the circuit. If the circuit gets
interrupted anywhere, then the connection is interrupted, a new circuit is established, and data
transmission continues.

Figure 1.16: Virtual circuit

In the figure above, a virtual circuit between nodes A and D is established via nodes B, F, and G.
All packets must go through this circuit.

Datagrams can be transmitted via the virtual circuit in two ways:

• The circuit does not guarantee the datagram's delivery to its destination. (If network
congestion occurs, the circuit can even throw the datagram away.) An example is
the Frame Relay protocol.

• The virtual circuit can establish a connection and guarantee the data delivery, i.e., the
data packets transmitted are numbered and the destination confirms their reception.
If any data gets lost, a request to resend the data is made. For example, this
mechanism is used in the X.25 protocol.

The advantage of virtual circuits is that they are first established (using signalization) and then the
data is inserted only into the established circuit. Each packet does not have to carry the globally
unique address of the destination (complete routing information) in its header. It only needs the
circuit ID.

The virtual mechanism is not used on the Internet, which was primarily aimed for use by the U.S.
Department of Defense, since the destruction of a node in the virtual circuit would result in the
transmission being interrupted—a fact that the authors of TCP/IP did not like. For this reason, IP
does not use virtual circuits. Each IP datagram carries a destination IP address (complete routing
information) and is therefore transported independently. If a node is destroyed, only the IP

 18

Chapter 1

datagrams currently being transmitted through that particular node are destroyed. The remaining
datagrams are routed via different nodes.

Figure 1.17: IP does not use virtual circuits.

As the figure above shows, IP datagrams 1, 2, and 3 start from the node A to node B, but from this
point, datagrams 1 and 3 are routed through a different path than datagram 2. The destination
(node D) is then reached by each of them via a different path. Generally, IP datagrams may reach
their destination in a different order than the order in which they were sent. So our IP datagrams
could be received in the following order: 2, 1, and then 3.

In the Internet hierarchy, TCP—a higher-layer protocol that establishes a connection and
guarantees the delivery of data—is used above the connectionless IP. If some of the data packets
are lost, their retransmission is requested. If the data packets were lost due to the destruction of a
node along the way and there is another routing possible within the network, then the transmission
is automatically repeated using the other path.

Virtual circuits are divided into the following groups:

• Permanent (Permanent Virtual Circuit (PVC)), i.e., circuits permanently built by
the network administrator.

• Switched (Switched Virtual Circuit (SVC)), i.e., virtual circuits that are created
dynamically as the need arises. An SVC is created with the help of signalizing
protocols that can be used for communicating between the user and the network
itself. The network signalizes to the user various events that can be used for network
monitoring and administration. SVC communication consists of two steps: creating
the virtual circuit and using it for communication.

 19

Introduction to Network Protocols

 20

PVC corresponds to leased lines and SVC corresponds to the dial-up lines of a phone network.

Protocols using virtual circuits are called Connection-Oriented Network Services
(CONS) and protocols transporting their packets without using virtual circuits are called
Connection-Less Network Services (CLNS).

2
Network Monitoring Tools

Network monitoring tools can be used to monitor data transfers on your network. Monitoring is a
process of capturing link frames in the network and storing these frames in memory. Monitoring
also includes viewing the contents of the individual captured frames.

Network monitoring tools are mostly used by network administrators to look for network
configuration errors or monitor network workload. These tools are also an indispensable resource
for programmers who develop network applications. To give you an example, let's say you have
written a client/server application. You start the application and nothing happens—the client does
not even connect to the server. At this point, you cannot be sure whether the problem lies with the
client or the server. By capturing frames, however, you can establish that the client sent a data
frame, but the server did not react and the fault is therefore likely on the server's side. Or you
might notice that the data sent by the client is different from what you expected.

We will mainly use the two programs, Network Monitor and Ethereal, to demonstrate different
network protocols. Both programs have a similar graphical user interface. A wide selection of
similar programs is available in the market. The UNIX operating system offers the tcpdump
command. As opposed to the programs mentioned above, tcpdump does not have a graphical user
interface and is designed to be used mainly for scripts.

In addition to these tools, network monitoring hardware is also available. What are the advantages
of hardware network monitors? These tools are particularly important for technical staff. Software
monitors only display frames that are undamaged. It may be that a station has a damaged network
interface card, which produces faulty frames. Software monitors have a difficult time recognizing
these damaged stations. Moreover, Fiber Distributed Data Interface (FDDI) service frames are not
displayed by software monitors.

The bigger problems with using network monitoring tools are in the area of security. The
argument used against them is that they can be easily used to capture the password of network
users that work with Telnet, FTP, and web browsers (in the case of the HTTP protocol).

The authors of this book, on the contrary, consider it useful to demonstrate password capturing.
Even more than initial security problems, these demonstrations serve to convince companies to
change their authorization method from the dangerous username/password system.

Network Monitoring Tools

 22

2.1 Packet Drivers
In order to keep track of incoming and outgoing packets, we have to insert a component between
the network interface and the rest of the operating system. This component is able to track the
passing packets or perhaps hand them over to other programs to be protocolled or displayed. This
component is often called a packet driver or packet filter. In MS Windows NT (Windows 2000,
XP etc.), the packet driver is called the Network Monitor Agent. The program that protocols or
displays the packets captured by the packet driver, is the Network Monitor for Windows or the
tcpdump command for UNIX.

The network interface cards of systems connected to the LAN listen to the traffic on the LAN, i.e.,
they read individual passing link frames. Link frames of protocols for local networks usually start
with the destination link address, so if the station finds that the incoming frame is not addressed to
itself, then it usually ignores the rest of the frame. In practice this means that the packet driver can
only accept frames that are addressed to the station where the packet driver is running (and also
the frames that this station sends onto the network). If this is not enough and you want to track all
the traffic in your LAN segment, then you have to switch the network interface card into
promiscuous mode. In promiscuous mode, the network card reads all the frames and we can track
all the traffic in your LAN segment. You can switch the network interface card into promiscuous
mode using the Network Monitor program, which is a part of the SMS Server.

If the network interface card is not in promiscuous mode, you can see the frames sent out by your
station and the ones that are addressed to it. These not only include frames that have one of your
station's addresses, but also all broadcasts. You will also see all multicasts that your station
accepts. This is a somewhat complex problem that is discussed in detail in Section 5.7. Another
problem is keeping track of traffic on a switched Ethernet. If you want to track communication in
LAN segments other than the one your PC connects to, you must keep in mind that the frames are
usually not repeated in the segment where your PC is located. This can be solved by using a
switch diagnostic output or by poisoning the ARP cache.

These days, ordinary repeaters are not used very frequently; almost everything is done with
switches. So if you want to keep track of traffic on a station or a server, you need to get hold of an
old repeater with at least three interfaces. One interface will be connected to a switch distribution,
i.e., the repeater will be plugged into the interface into which the station was originally plugged,
the second interface will be connected to the station we want to watch, and the third interface will
be connected to a notebook with the relevant packet driver.

If you want to use Network Monitor, you must add the Network Monitor Agent to your
network configuration.

In UNIX-type operating systems, the packet driver is usually added to the operating system kernel.
For example, you add PACKETFILTER options into the configuration file of a kernel for UNIX
True64. Then you create a new kernel. By using the pfconfig command, you can switch
individual interfaces into promiscuous mode. You can use the pfstat command to examine the
configuration of a particular interface.

The WinPcap packet driver is another interesting component (see http://netgroup-
serv.polito.it/). It is a packet driver that is compatible with Windows 95 and higher, and it

Chapter 2

also acts as a UNIX packet driver. Ethereal is one of the several programs that uses this packet
driver and thereby works on both Windows and UNIX.

2.2 MS Network Monitor
MS Network Monitor is supplied with certain Microsoft products (such as SMS Server). Installing
the program on Windows NT must be done very carefully and exactly according to the
instructions in the guide. In the middle of the installation process, you will usually be asked to
install Network Monitor Agent. If you do not follow the instructions exactly, the program will not
function and will need to be reinstalled.

Starting with Windows 2000 and later, Network Monitor is supplied as a part of the server
(Network Monitor Tools). On the other hand, Windows 2000 and XP restricts the use of the
program. Therefore, we more often find Ethereal used in PCs.

The Network Monitor handles frame display well. Not only can it separate the header from the
actual data, but it can also dissect individual items in the network protocol headers.

2.2.1 Frame Capturing
When you start Network Monitor, the window shown in Figure 2.1 pops up. Inside this window
should be the Capture window. If this inner window does not open, then the Network Monitor or
the Network Monitor Agent is not installed properly and needs to be reinstalled.

Figure 2.1: Initial MS Network Monitor screen

 23

Network Monitoring Tools

First of all, you have to choose the appropriate network interface to use for frame capturing. This
is done by choosing

 24

Capture | Networks. There's also another interesting detail that we have to pay
attention to. After looking at the following figure, in the left window we will choose the interface
we want to sniff:

Figure 2.2: Selecting the network interface used for frame capturing

The issue here is the Windows 2000 architecture. It has an NDIS layer located above the network
interface cards that ensures a standard communication between the operating system and network
interface cards, although this only applies to LAN cards.

An NDISWAN driver (Ndiswan.sys) inserted between the serial lines ports, changes the
communication format of the serial port into a format that adheres to the Ethernet protocol (in
other words, into a form commonly processed by the NDIS layer). This has two practical results:

1. If you want to capture frames on a serial line, then you have to choose an interface
with that is set to Dial-up Connection TRUE.

2. After you have captured the frames on the serial line, they have (for example, when
establishing a connection through the PPP protocol) special link addresses inside the
Ethernet frame:

o For the frame being sent, both the sender and receiver fields contain the
SEND string.

o For the frame being received, both fields will contain RECV.

It is important to not confuse this with the 'PPP over Ethernet' protocol that is supported
by Microsoft Windows XP.

Now, we can start capturing frames by clicking Start capture (see Figure 2.3) or by choosing
F10 Capture | or pressing Start . Once the capturing has started, the window shown in Figure

2.3 appears.

Chapter 2

Figure 2.3: Capturing data frames

The window for capturing data frames consists of several smaller windows. The window on the
top left contains graphs that describe:

 • % Network Utilization, i.e., rate of the utilization of all network resources that are
available for current capturing

 • Frames Per Second, i.e., the number of frames that the network transfers each second
• Bytes , i.e., the number of bytes transported each second Per Second

 • Broadcast Per Second, i.e., the number of broadcasts per second
 • Multicast Per Second, i.e., the number of multicasts per second

The complete statistics window is on the top-right. The time that has elapsed from the beginning
of capturing is shown on the first line. Each particular area of information has its own graph:

 • Network Statistics shows the total number of frames that have gone through the LAN
segment; it also shows how many of them were broadcast, etc.

 • Captured Statistics gives statistics for only those frames that have been captured.
This can be different from the information under Network Statistics because you can
define a capturing filter that sets rules for which frames are accepted and saved. You
set capturing filters using the Capture | option or pressing F8. Filter

 25

Network Monitoring Tools

 26

• Per Second shows the average statistical values per second. Statistics

 • Network Card shows the network interface card's average connection speed. Statistics

The session statistics window gives you statistical data for individual sessions. A session is an
interval during which two stations exchange data. There is one line for each pair of stations. The
numeric value shows the number of frames sent from one station to the other (or vice versa).

Network Monitor displays session statistics for the first 100 unique network sessions that it
detects. To reset statistics and view information about the next 100 detected unique network
sessions, click Capture | . Clear Statistics

In addition to capturing frames, you can also choose Capture | Activation to prepare an action that
can be automatically activated, like when a certain part of the buffer memory is exhausted. One
interesting option is to activate whenever a frame containing a specified string in a particular position
appears. The activation can also be triggered when a program starts up or when a file opens.

2.2.2 Viewing Captured Frames
When you click Stop and View to switch to the mode for viewing captured frames, the following
window with the captured frames appears:

Figure 2.4: Captured frames

Chapter 2

You can see your chosen frame in the captured frame display. To view detailed information of any
frame, click it in the window as shown in the following figure:

Figure 2.5: Detailed display of the second frame

Detailed information appears in three frames of windows. The top window displays the captured
frames, the middle window shows the details of the selected captured frame, and the bottom
window shows the captured frame in hexadecimals and characters (dump format).

The middle window is the one we're most interested in. Figure 2.5 shows the link header followed by
a network packet header. Anything from the transport header to the application layer can be displayed
here. Even at the application layer, detailed information for many packets is provided as well.

Some header entries have a + sign in front of them. This tells you that detailed information can be
obtained by clicking the + sign. We will therefore discuss the individual headers of all protocols
described in this book.

The dissected frames can also be printed by selecting File | Print. The frame in Figure 2.5 is
as follows:

+ Frame: Base frame properties
PPP: Unknown Frame (0x0)
 PPP: Destination Address = RECV_
 PPP: Source Address = RECV_
 PPP: Protocol = Link Control Protocol
LCP: Config Req Packet, Ident = 0x00, Length = 25
 LCP: Code = Configuration Request

 27

Network Monitoring Tools

 28

 LCP: Identifier = 0 (0x0)
 LCP: Length = 25 (0x19)
LCP: Options: ASYNC.MAP:00 00 00 00-AUTH:CHAP-MAGIC#:0x10C0-PROT.COMP-
ADR/CF.COMP-
+ LCP: ASYNC.MAP:00 00 00 00
+ LCP: AUTH:CHAP
+ LCP: MAGIC#:0x10C0
+ LCP: PROT.COMP
+ LCP: ADR/CF.COMP

00000: 20 52 45 43 56 05 20 52 45 43 56 05 C0 21 01 00 RECV. RECV.À!..
00010: 00 19 02 06 00 00 00 00 03 05 C2 23 80 05 06 00 Â#�...
00020: 00 10 C0 07 02 08 02 ..À....

(The Network Monitor version used in Windows 2000 Server has a drawback in that the statement
is in UNICODE. This would not be an issue if there were two bytes containing a hexadecimal FF
or FE at the beginning, which would signal to Windows that it is a UNICODE file. After adding
these characters to the beginning by using the WinVi editor, the statement resulted in the form
shown above.)

2.2.3 Filters for Displaying Captured Frames
The most common problem when using network monitor programs is finding the required frame
often from huge numbers of frames. You can use filters to make the task easier. There are two
kinds of filters:

• Frame capturing filters that are activated in Network Monitor before capturing starts
(Capture | Filter or F8).

• Filters for displaying captured frames that are activated upon viewing frames. These
filters let you display only selected captured frames (Display | Filter or F8).

Filters consist of logical conditions that are linked by the AND, OR, and NOT logical operators. A
condition might involve:

• An address (for example, IP address in the case of IP protocol)
• A protocol, i.e., only frames with specified protocols will be shown (IP, HTTP, etc.)
• The value of a specific protocol's item, for example, the TCP port of the sender is 1345

2.3 Ethereal
Ethereal is an alternative to Network Monitor and can be used with Windows 2000 Professional or
Windows XP. You can download the program at http://www.ethereal.com/. In addition to the
graphical Ethereal program, the distribution also contains other utilities such as a command-line
version called Tethereal.

For starters, we have to install the packet driver. As mentioned earlier, if you are going to run
Ethereal on Windows, use the WinPcap packet driver, which can be found at http://netgroup-
serv.polito.it/.

Chapter 2

After you have successfully installed the packet driver, you can install and configure Ethereal.
When you run the program, you are presented with the window shown in Figure 2.6, which is
similar to the Network Monitor window shown in Figure 2.5. Choose Capture | Start to open a
window where you can enter parameters for frame capturing. For example, by clicking Interface
you can choose the network interface used to capture frames. Click OK to begin capturing. After
the capturing has finished, you can view the individual captured frames in the same way as you
would in Network Monitor.

Figure 2.6: Starting frame capturing in Ethereal

Ethereal can also open files with stored frames generated by various other programs, including
Network Monitor.

Ethereal contains a range of interesting tools like the Follow TCP Stream command, which is
available in the Tools menu. By choosing this command, the contents of a particular TCP
connection can be displayed in ASCII characters or in hexadecimals.

Figure 2.7 shows an example of a TCP connection. This connection was produced by using an
FTP program to connect to the ftp.ripe.net server. One packet from this connection was found
and then | Tools Follow TCP was clicked to get the following figure: Stream

 29

Network Monitoring Tools

Figure 2.7: TCP connection statements in Ethereal

The boxes in the figure above outline the user name and password anonymous dostalek@pvt.cz. If
you had connected to a non-anonymous server, your real password would have been disclosed in
this way.

2.4 Homework
You should now be ready to experiment with Network Monitor or Ethereal. It is recommended
that you try to capture your own password as the first exercise. (The authors strongly discourage
you from trying to capture somebody else's password—after all, this would not be possible
without switching your network card into promiscuous mode or using switched Ethernet.) Try
these two exercises:

Telnet

 30

1. protocol: You do not even need an account on a server. Choose whatever
server you like that works with Telnet. Start up Network Monitor and, using Telnet, try
to establish a connection and choose your username and password. The server will
refuse the connection, but stop Network Monitor and use the frame search to find the
username and password that you entered. You should be patient, since the terminal first
tries to set the terminal characteristics using the <IAC> command of the Telnet
application protocol. You should just skip this dialogue. In Ethereal, this process is
simpler since the only thing you have to do is to choose Tools | Follow TCP . Stream

mailto:dostalek@pvt.cz

Chapter 2

HTTP2. protocol: Find some HTTP server with basic authentication with username and
password and sniff the communication of this server. The name and password form a
part of each user's query. But since the HTTP header lines cannot contain any
characters that are not a part of ASCII, the username and password are separated by a
colon and the whole thing is coded in Base64 format. Decoding needs to be done either
manually or using a suitable program. (This does not work with HTTPS protocol as
passwords cannot be captured there, because the connection is encrypted.)

The header contains the following information:
Authorization: Base64 (username:password)

Or for firewall authorization:
Proxy-Authorization: Base64 (username:password)

Where Base64() means that the Base64 argument is coded in seven-bit form.

If you do not feel like decoding Base64 by hand on a piece of paper, you can use programs such as
the OpenSSL program with the enc –a –d parameters.

Specialized programs designed specifically for password capturing can also be found on the Internet.

 31

3
Physical Layer

Protocols of the physical layer are for the vast majority of users They are completely hidden
protocols that describe signals on the connectors (commonly referred to as plugs) on the back part
of the computer, to which a cable connecting the computer with the network is attached. Users
tend to shift the responsibility to technical staff, whom they consider people "who take care of
wires, by measuring something with a voltmeter." The situation today is completely different. A
technician more or less administers software that controls all the mysterious boxes in locked
rooms. This idea does not actually refer to the physical layer only, but encompasses the link layer
as well. The users usually get involved only in the IP protocol (or network protocols), since in this
protocol, they either see or do not see servers or neighbors. In contrast, the physical and link layers
only provide communication with some kind of a box halfway down to the server, the existence of
which is usually not known to regular users.

Generally, we distinguish between two types of network: a Local Area Network (LAN) and a Wide
Area Network (WAN). Regarding the physical layer, for one group of protocols are LAN protocols,
while another group are WAN. However, the currently popular ATM protocol eliminates the
differences between LAN and WAN, and it not only uses new protocols, but is also able to use the
current WAN lines, including their protocols (for example, T1 lines in America or E1 lines in
Europe). In addition, the ATM emulates protocols for the LAN protocol as well.

LAN
The LAN is used by several stations to communicate mostly on a shared medium. Within one
LAN, the same link protocol is used (for example, Ethernet). Today, however, the term LAN also
covers the so-called extended LANs that are composed of individual LANs. The extended LANs
are created by connecting individual LANs via switches. Switches often have interfaces for
various types of link protocols and are able to convert frames of one link protocol into frames of a
different link protocol. An individual LAN composed of just two items, with one of them being
the switch, is increasingly common.

As for the physical layer, we will be interested in just the individual LAN since the extended
LANs are viewed only as a complex of several individual LANs. LANs commonly use broadcasts.

Routers are used to connect a LAN to a WAN. A router is a box that transfers an IP datagram from
one network interface to another one, while each interface may be a part of a different LAN or
may be an interface for the WAN.

Physical Layer

 34

The transfer rate on today's LANs ranges from 10 Mbps to 10 Gbps.

WAN
Wide Area Networks cover a wide variety of situations, ranging from connecting a home PC to the
Internet via a serial asynchronous line at rates in Kbps to intercontinental lines via underwater
cables or satellite connection in tens of Gbps.

PAN
A Personal Area Network is used to exchange data between appliances (such as telephones, cell
phones, and Personal Digital Assistants) within the range of a person; typically within the range of
10 meters. The most often used protocols for PAN networks are Bluetooth and WiFi (IEEE 802.11).

MAN
A Metropolitan Area Network is used to exchange data within some municipality or a group of them.
MAN can use various protocols, but probably the most typical is using cable television cabling.

3.1 Serial Line
A PC has connectors for the COM1 and COM2 serial interfaces usually on the back. COM1 is
commonly used for a mouse; hence after the serial line has been connected to our PC, only COM2
is left. The serial interface is usually used for connecting the modem.

Serial PC outputs use signals specified by the ITU-T V.24 standard (corresponding to the US
standard—RS-232). It is an interface for serial asynchronous arrhythmic data transport. It is
usually used for rates up to 64 Kbps although, you are most likely to connect your modem at home
using 115,200 bps, and surprisingly, it is going to work well.

3.1.1 Serial and Parallel Data Transport
Serial transmission means that there is only one pair of wires (or one wire and a shared ground for
asymmetric interfaces) for transporting information from the sender to the receiver. Therefore, the
individual bits of every single character are transported following each other, i.e., serially.

Parallel transmission uses eight wires (or multiples of eight) for transporting a group of bits. In
other words, all bits of the character being transported can be transported at the same time, i.e., in
parallel. Parallel transmission is used especially in (internal) computer buses and also for
communicating with a parallel printer. There are also modems using a parallel interface.

3.1.2 Symmetrical and Asymmetrical Signals
There are at least two signals used with serial interfaces: data reception and data transmission. If
two wires carry each signal, then it is a symmetrical or differential signal. Symmetrical signals for
data transfer are used, for example, by the V.35 and X.21 interfaces.

If each individual signal is carried via one wire and a shared ground, then this is an asymmetrical
signal. Asymmetrical signals are used, for example, by the V.24 interface. The V.35 interface uses
asymmetrical controlling signals, but uses symmetrical signals for data.

Chapter 3

3.1.3 Synchronous and Asynchronous Transport
If you try to communicate information to someone (for example, by a phone), you have to speak at
an appropriate rate so the other person understands what you say. If you speak, say, ten times
faster than normal, then the person is very unlikely to understand. The person listening has to
synchronize with the person speaking.

For the purpose of synchronization, we recognize the following transport types:

Synchronous: Information is transported bit by bit. The time elapsed from the
moment of transporting one bit to the next bit being transmitted is always equal.
(Do not confuse this with synchronous transmission described in Section 1.3.1 in
Chapter 1.)

•

Asynchronous: The time elapsed from the moment of transporting one bit to the
next bit being transported varies. A subset of asynchronous data transport is called

•

arrhythmic data transport. In the case of arrhythmic data transport, characters are
transported in an asynchronous way, while particular bits in the scope of a character
are transported in a synchronous way. If an asynchronous transport is mentioned, it
mostly means an asynchronous arrhythmic transport.

When using asynchronous arrhythmic transport, the character being sent is wrapped in an
envelope formed by a start bit, parity bits, and stop bits as shown in the following figure:

Figure 3.1: Asynchronous arrhythmic character transport

A receiver generates a sampling frequency at the next higher frequency level than the maximum
possible frequency for transporting one bit. The computer uses this frequency to test the incoming
signal samples. If the sample corresponds with a certain probability to the start bit, it supposes that
it has detected a character being transported. It keeps on sampling and considers everything in
front of the stop bits as the bits of the transported character. The data bits of the transported
character are located between the start bit and stop bits and, additionally, there can be a parity bit
providing a simple checksum of the transported character.

Asynchronous transmission has the advantage of the receiver being able to adjust itself with a lot of
tolerance to the transmitter frequency. On the other hand, the envelope usually contains one start bit,
one parity bit, and one, one and half, or two stop bits. That can result in the envelope causing a 50%
transport overhead (a character that is being transported usually contains 5 to 8 bits).

In the case of synchronous transport, the overhead is low. In the past, Binary Synchronous
Communication (BSC) data transmission protocol (when data were transported in blocks in a
synchronous manner) was used. The beginning of the block was formed by one or more
synchronizing characters that corresponded to the start bit. The receiver would synchronize
using these synchronizing characters. The block was then transported synchronously.

 35

Physical Layer

Today, however, a completely different principle prevails. Besides the transported data, a
synchronizing signal (clock) is transported via wires as well. In Figure 3.2, there are four
appliances participating in communication (two modems and two computers).

Figure 3.2: Synchronous transport

Similar to a philharmonic orchestra having one conductor, only one of these four appliances can
be the time source. It is usually one of the modems (originator). Other appliances adjust the pace
of their circuits according to this conductor. Since all of the appliances are synchronized, they can
communicate directly, without the need for sampling. If one of the computers served as the time
source, then we would set the modem of the time-generating computer as the originator for
communication between modems. The modem would also be set for using an external time source
(from the computer).

3.1.4 V.24, V.35, and X.21 Protocols
At the physical level, the V.35, X.21, and the PC-friendly V.24 (RS-232) protocols are usually used
for serial interfaces. There are, of course, other protocols as well, although these are not that
common. The user usually encounters these interfaces at the modem-computer (or router) interface.

The V.24 interface is popular with PC users due to the fact that almost all PCs are equipped with
at least COM1 port built in accordance with the V.24 protocol. The V.24 interface is usually not
recommended for rates above 64 Kbps. Therefore, we should consider using the V.35 or X.21
interfaces in these cases, but these interfaces are not present in most PCs.

All of the three protocols use a different connector type so it is quite difficult to get the
interconnecting cables mixed up.

 36

Chapter 3

Figure 3.3: Connectors used for V.24, X.21, and V.35 interfaces

Regarding the V.35 and X.21 interfaces, the data transmission always happens via wire pairs, with
the signal value being set between wires of a given pair (symmetrically). Signals with a shared
ground (asymmetrical) are used only for signaling data flow control. Symmetrical signals enable
the use of higher frequencies.

It is possible to directly connect two computers by using the V.24, V.35, or X.21 interfaces, but
only for distances not exceeding several meters. Longer distances require the use of modems.

Table 3.1 is a list explaining the meaning of individual signals on the V.24, X.21, and V.35
interfaces. For the sake of simplicity, we have adjusted the terms so they would correspond to
communication of computers with modems. We describe the modem cable interconnecting the
computer and modem. In Table 3.1, the 'From' column describes the signal source, which is either
computer (C) or modem (M). The 'Signal Type' column describes whether it is a symmetric signal
(between A and B) or an asymmetric one (between A and the shared signal ground).

 37

Physical Layer

 38

Abbreviation V.24 X.21 V.35

15 Pin 34 Pin

 Signal Description From

EIA ITU 25
Pin

9 Pin

A B

Signal
Type

A B

Frame Ground (screen or
chassis)

 FG 101 1 1 A Ground

Signal Ground SG 102 7 5 8 B

Transmitted Data C TxD 103 2 3 2 9 both P S Data

Received Data M RxD 104 3 2 4 11 both R T

Ready To Send
[DTE → DCE]

C RTS 105 4 7 3 10 asymetrical C

Clear To Send
[DCE → DTE]

M CTS 106 5 8 asymetrical D

Data Set Ready
[DCE → DTE]

M DSR 107 6 6 asymetrical E

Data Terminal Ready
[DTE → DCE]

C DTR 108/2 20 4 asymetrical H

Data Carrier Detected
(Tone from a modem)
[DCE → DTE]

M DCD 109 8 1 5 12 asymetrical F

Signal
Control

Ring Indicator (ringing
tone detected)

M RI 125 22 9 asymetrical J

Transmit Signal Element
Timing (DTE Source)

C TTC 113 24 symetrical U W

Transmitter Signal
Element Timing (DCE
Source)

M TC 114 15 symetrical Y A
A

Clock

Receiver Signal Element
Timing (DCE Source)

M RC 115 17

6

13

symetrical V X

Remote Loopback C RLB 140 21

Local Loopback/Quality
Detector

C LLB 141 18

Test

Test Mode M TM 142 25

Table: 3.1: V.24, X.21, and V.35 signals

Chapter 3

The dialog between the computer and modem is schematically described in the following figure:

Figure 3.4: Scheme of the dialogue between the computer and modem

The DTR and DSR signals inform their counterparts that the appliance is on. In reality, though
these signals are sometimes not used (the outlets are not connected or, on the contrary, the DTR
and DSR outlets are connected directly in the connector). If the DTR and DSR are not connected,
then both ends of the connection have to be ready (configured) for this situation so they do not
wait endlessly for the other party's signal.

The RTS and CTS signals are important for data flow control. If the buffer memory of the modem
is full, it unsets the CTS signal, signaling to its counterpart to delay data transmission. After the
buffer memory has been emptied, the modem again resets the CTS signal and the computer can
continue sending data. On the other hand, if the computer is currently unable to process the data
received, it interrupts the RTS signal.

We have the option to completely leave out the RTS and CTS signals (for example, no relevant
outlets are connected with the cable). Then we need to configure both ends so they are aware of this
fact. In this case, data signals (always in opposite directions) can be used for data flow control. If the
reception needs to be delayed, the XOFF character is sent by the receiving party to the transmitting
party. The XON character renews the transmission. The XON/XOFF protocol also needs to be set up
on both ends and can be used only for an asynchronous connection transporting characters.

Data signals (both the TD and RD) can, at the beginning, transmit data only between the computer
and modem, such as the AT commands for dialing. Only after a connection between the modems has
been established, can the TD and RD signals also be used for data transmission between computers.

 39

Physical Layer

Data flow control using the RTS and CTS signals is effective especially in the case of the V.24
interface. The V.35 and X.21 interfaces are aimed for higher rates, and we can use them to connect
to, for example, a Frame Relay network provider. In such cases, several sub-interfaces (logical
interface) go through one interface (physical interface), and in a Frame Relay, each sub-interface
corresponds to one DLCI (Data Link Connection Identifier), i.e., one virtual circuit. Should one
virtual circuit get overloaded by data, it is impossible to stop the data flow using the RTS or CTS
signals since such an interruption would also involve an interruption of all sub-interfaces,
irrespective of the number (one is enough) of such overloaded sub-interfaces.

3.1.5 Null Modem
If you want to connect two computers placed next to each other by using the V.24, X.21, or V.35
interfaces (both sides must use the same protocol), then the connecting cable must be connected in
a special way. The problem, however, is that the signals transmitted by one party on a corresponding
pin must be received by the destination party by the receiving pin (the transmission must be crossed
with the reception). Such an interconnecting cable is called a null modem.

Figure 3.5: Some variants of null modem connections for the interface V.24/25 pin

In the case of synchronous transport, one party has to be the time source. If either party is unable
to generate the clock, then just the cable is not sufficient for a null modem, but there has to be
another intermediate box between the computers that are clock source (see Figure 3.2).

3.2 Modems
The telephone network is often used for long-distance connections. The telephone is used for
audio communication. If we want to use phone lines for computer communication, then the data
information has to be modulated at the source party and demodulated at the destination party. The
communication happens both ways, so both parties need a mo

 40

dulator/demodulator, i.e., a modem.

A modem is an appliance that connects to a PC or a router using a modem cable (i.e., in the case of
a PC, by the V.24 interface on the COM port). The second outlet of the modem is used to connect
to the phone line. The modem might be built into the computer or in the form of a PCMCIA card
inserted into a notebook or laptop. In such cases, there is no need for a modem cable. Today
general users are recommend to use modems with USB ports. USB modems are connected to a
USB port on the computer's side.

Chapter 3

We can build the line between modems ourselves (for example, between two buildings). In
such cases, it is usually a leased line. If we want to use a phone operator, then we have
basically two possibilities:

• A dial-up connection
• A leased line

3.2.1 Dial-Up Connection
Everybody has used a dial-up connection for phone calls. Firstly, by dialing a phone number,
a virtual circuit is created that can be used for making phone calls or for transferring data.

Figure 3.6: Dial-up connection

The existing phone line is usually used by connecting the modem to the user's phone jack. The
phone is then connected to the second modem outlet. The user commands the modem via his or her
PC to disconnect the phone and use the line for computer communication. After data communication
is over, the phone is reconnected and it is possible to use it again for making phone calls.

3.2.2 Leased Lines
The second possibility is the leased line. If we prefer not to dial phone numbers all the time,
nor worry about having the line busy by being online, we can lease a line for computer
communication, i.e., technicians will establish a permanent circuit—a leased line.

There are no doubts about its advantages. We do not have to dial all the time, the connection is
permanent, and last, but not least, we are charged a set rate. Companies will tend to use leased
lines since not only it is more convenient, but the transmission rate is significantly higher as well.

 41

Physical Layer

 42

To achieve a high transmission rate in leased lines, sometimes we use two circuits (quadruple
wire) instead of one circuit (double wire). One of the circuits is then dedicated for transmission,
the other for reception, so both circuits have to be crossed. The circuit originating in the first of the
two modems as transmission must be connected to the other modem as reception. This is called a
full-duplex connection.

3.2.3 Automatic Modem
There is a problem with a dial-up connection. Who is going to dial the number? Formerly, non-
automatic modems were used with dial-up connections as well as with leased lines. That resulted
in the user having to dial the phone number manually using a phone and then switch the modem
into the data transmission mode (VOICE/DATA switch).

Automatic modems are able to accept commands from the computer once they are switched on,
and can also be used for dialing the appropriate number. After establishing the connection, the
modems themselves mutually agree on the highest transmission rate and switch into the data
mode automatically.

AT commands, introduced in early 1980s by the Hayes Company, are used today for
communication between the modem and the PC controlling it. AT commands are aimed at
controlling the modem on asynchronous interfaces. Each AT command is composed of characters.

AT commands are also used for setting the modem for synchronous transmission if the V.24
interface is used. The procedure is as follows:

• The modem connects to the COM port.
• Start HyperTerminal or a similar program and then set up this program for

asynchronous communication with the modem.
• Set up the modem by using AT-commands. The final command switches the

modem to synchronous mode. The modem seems to freeze (because it already
wants to communicate in synchronous mode), but the PC still communicates in
asynchronous mode.

The set up modem then can be consequently connected to, for example, a router where it will work
in synchronous mode. Using buttons, the modem switches back to the default setting
(asynchronous transmission is usually the default setting).

3.2.3.1 AT Commands
AT commands are simple orders, used to control the computer modem. For example, the ATH
command means that the computer sends to the modem (or more specifically, to the COM port) an
ATH string. The modem then interprets the ATH string as a command.

Initially, the computer communicates with the local modem using the AT commands. Once the
connection between modems has been established, the local modem informs of its establishment
by sending the CONNECT command to the local computer and, subsequently, switches to data mode.
From this moment, the computers are able to communicate directly with each other, i.e., the
computers communicate as if there were no modems (or as if they were connected via a null

Chapter 3

modem). If the computer wants to switch the modem back to command mode in order to send AT
commands, it sends the +++ string in the form of data.

If you work using Windows XP, start the HyperTerminal application. Create an arbitrary connection
with the number and name that you choose. Click Properties in the File menu and click the Configure
button and then the tab. Check Advanced Bring up terminal window before dialing. Confirm the
choice and click in the taskbar button. The Call Terminal window before dialing window will pop up.
There, you can practice the AT commands described in the following paragraphs.

The PC sends an AT command AT to the modem ("Modem, are you ready to work"?). If the
modem is ready to work, it answers, "OK" (You can try entering AT characters into the Terminal

 window before). dialing window

Now, the PC is ready to send the modem the dial command in the form of ATDtn (for example,
ATDP1234560), where the t is the type of dialing (p for pulse dialing and t for tone dialing) and
the n is the destination party's telephone number. The destination modem answers the call and both
modems agree on the highest possible transfer rate. The source modem informs the PC by sending
the CONNECT command, which may use the agreed transfer rate as a parameter. Then both modems
switch to data mode, i.e., both computers start communicating as if there were no modems. The
mechanism is described in Table 3.2, without including the error messages and the AT commands
for setting up the destination modem.

T

 Local
Computer

 Local
Modem
(dialing)

Phone
Circuit

Remote
Modem
(answering)

 Remote
Computer

 105, RTS 105, RTS
Signalization

 106, CTS 106, CTS

 AT Inactive

 OK AT
commands

 ATDph. no.

Dialing Circuit
establishing
(agreement
on a common
highest
possible
speed)

Answering

 Signalization 109, DCD 109, DCD
Established

 AT
commands

 CONNECT

Data transfer Data transfer

Table 3.2: AT command communication

 43

Physical Layer

 44

Today, modems not capable of dialing numbers are used only for synchronous leased lines where
no dialing is needed.

3.2.4 Synchronous Transmission
We've already mentioned that transmission can be either synchronous or asynchronous. Synchronous
modems are used for synchronous transmission and asynchronous modems are used for
asynchronous transmission. Today's modems are usually capable of both modes of transmission.

Note that PCs support, as a standard, only asynchronous transmission. Therefore, a modem that is set
as synchronous needs to be set to asynchronous mode before using the PC, otherwise it seems to
malfunction. The situation is different for modems inserted into computers in the form of a PCMCIA
card or a modem card, and for USB modems. This is because these modems do not use the standard
COM ports and, consequently, we can theoretically use synchronous transmission as well.

When configuring synchronous modems, we should not forget to set one modem as the timing
source (originator). If the originator is the computer, then we set the modem of the time-generating
computer as the originator. This modem also needs to be configured so as to be capable of using
an external time source.

Modems having rates up to 64 Kbps can usually work both in synchronous and in asynchronous
mode. Modems having rates that exceed 64 Kbps are usually synchronous.

There are also modems supporting auto-synchronous mode. They communicate with the computer
in asynchronous mode, store the data in memory, and then send the data in synchronous mode.
The Internet uses these modems only rarely; they are mostly found in public data networks based
on the X.25 (or X.32) protocol.

3.2.5 Baseband, Voice Band, and ADSL
When transmitting phone-quality voice, we need to transmit in the band from 0.3 to 3.4 kHz.

Telephone wires (the subscriber loop) usually lead from your home jack to the patch panel of the
local phone exchange. The local exchange connects the phone circuit using other exchanges all the
way to the exchange of the destination party. Since this often encompasses long distances, the
signal needs to be strengthened by repeater stations from time to time (see Figure 3.7). The
repeater station strengthens the signal only in the band from 0.3 to 3.4 kHz. If the phone
connection leads through repeater stations, then modems have to translate the data-carrying signal
into the appropriate band. This creates the Voice Band.

Chapter 3

Figure 3.7: Telephone circuit goes through repeater stations and telephone exchanges

The Voice Band is used today for transmitting data at rates up to 56 Kbps. However, the
transmission band of a twisted-pair, connecting an end user's plug and a patch panel of a local
phone exchange, is much broader.

Figure 3.8: Transmission band of twisted-pair wiring

The situation is different for transmission that does not use repeater stations (for example, when we
set up the lines ourselves between two buildings) or if both ends of the connection are transmitting to

 45

Physical Layer

the same exchange as shown in the following figure (there are no repeater stations used):

Figure 3.9: Baseband modems using a direct metallic connection

In such cases, the wires can be connected directly to each other providing a significantly broader
baseband. In practice, of course, we will not connect wires together; instead, we will use the
existing local telephone lines to connect to a high transmission rate data network.

Modems working in the baseband provide for much higher transmission rates. Sometimes these
modems are referred to as Baseband Modems .

Figure 3.10: Baseband

 46

Chapter 3

Modems working in the baseband are usually not automatic, because they are used on leased lines
and use synchronous transmission.

Till now, we have presumed that the transmission rate is the same in both directions. But from the
point of view of an end user, the situation seems to be a bit different. An end user would prefer to
have a higher downstream rate (from Internet to a user) than upstream rate (the opposite direction).
Users mostly download data from the Internet and send data less often to the Internet (maybe with
the exception of MS Word attachments in emails). A technology having a different transmission
rate for each direction is called asymmetric. Later, we will discuss asymmetrical technologies in
connection with the V.90 protocol. Now, we will also describe ADSL—one of technologies using
a baseband (see Table 3.3).

The Asymmetric Digital Subscriber Line (ADSL) technology is suitable for end users having a
subscriber loop realized with the help of a twisted-pair at their disposal. The transmission band of
a twisted-pair is divided as follows:

• A lower frequency range for an analog.
• A phone circuit.
• An upper frequency range for a baseband. This is an asymmetrical technology

having a higher transmission bandwidth from an Internet provider to an end user.

Figure 3.11: ADSL uses either FDM or EC transmission band system

ADSL leaves the band from 0 to 4 kHz for phone circuits (POTS). The ADSL data is transmitted
within the band from 4 kHz upwards. We distinguish two methods of signal transmission (see
Figure 3.11):

Frequency Division Multiplexing FDM• (): The main principle is based on
separating the frequency bands of upstream and downstream transmission.
Echo cancellation: The two directions of data transmission use overlapping
frequency bands. The main advantage is that both channels use the lowest possible
frequency, which means less noise and reaching longer distances.

•

If we use the ADSL technology in a subscriber loop on the end user side, this subscriber loop ends
in an appliance called splitter, which splits frequencies below 4 kHz for an analog/digital phone
circuit and frequencies above 4 kHz for data transfer:

 47

Physical Layer

Figure 3.12: Splitter

The following table shows the transmission rates supported by the modem:

 48

Transfer Capacity Protocol Usage

Symmetrical Asymmetrical
Upstream Downstream

V.32 9.6 Kbps

V.32bis 14.4 Kbps

Connection from
home

V.34 28.8 Kbps

V.34+ 33.6 Kbps

A
na

lo
g

Tr
an

sf
er

V.90 33.6 Kbps 56 Kbps

Chapter 3

Protocol Transfer Capacity Usage

 Symmetrical Asymmetrical

 Upstream Downstream

Digital Subscriber
Line (DSL)

160 Kbps Data communication

High data-rate
Digital Subscriber
Line (HDSL)

1.544 Mbps to
42.048 Mbps

 T1/E1 circuits, remote
connection of local
networks (LANs)

Symmetric Digital
Subscriber Line
(SDSL)

1.544 Mbps to
2.048 Mbps

 Like HDSL

Asymmetric
Digital Subscriber
Line (ADSL)

 16 to 640 Kbps 1.5 to 9 Mbps Internet access,
Video-on-Demand,
LAN access,
interactive multimedia
applications

xD
SL

Very high data-
rate Digital
Subscriber Line
(VDSL)

 1.5 to 2.3 Mbps 13 to 52 Mbps This is the future

Table 3.3: Transmission rates

3.2.6 Transmission Rate
Modems send/receive data from two sides: the computer and the phone line. Both transmission
rates, however, do not have to be the same. Problems occur only if data piles up in the modem for
a while. Therefore today's modems are equipped with buffer memory.

When we speak of the modem transmission rate, we refer to the transmission rate of the phone
wires. The transmission rate is given by the recommendations of the ITU that are supported by
the modem. The most up-to-date recommendations for voice band circuits are shown in Table
3.3. (Transmission rates on leased lines with the transmission in the baseband or on digital
circuits are different).

3.2.6.1 The V.90 Recommendation
The V.90 recommendation is not aimed at being used by the modem under all circumstances. It is
not suitable for connecting from home to office equipped by an analog phone. On the contrary, the
V.90 recommendation is very suitable for connecting a PC to an Internet Service Provider, if the
latter is connected to the phone company via a digital line.

 49

Physical Layer

Figure 3.13: V.90 recommendation

Today, phone exchanges are fully digital. The signal carried via the analog line from a user to the
phone company is digitized by the A/D converter (once it reaches the phone company) and
subsequently processed as data. If the signal went to the user of a classic analog phone, then it
would need reconverting by the A/D converter once it reached the destination user.

Internet providers are usually directly connected to the phone company via a high volume digital
circuit. If that is the case, then the signal conversion at the provider's side is not needed. In the
opposite direction, however, things get more interesting. The provider digitally hands over the
data to the phone company and that data is converted to analog on the user's side. What is so
interesting about it? There is loss of information when converting the signal from analog to digital,
but not in reverse. So the line can function at higher rates (up to 56 Kbps) in the direction from the
phone company to the user.

3.2.7 Data Compression
If the modem managed to compress the data before transmitting and the destination modem were
capable of decompressing the data, then more data would be transferred at the same transmission
rate. Compression is only possible with asynchronous transmission of characters. Microcom has
developed the MNP 5 protocol for data compression. The ITU has issued the V.42bis
recommendation for data compression.

If we compress the data, it is transferred at rates exceeding 100 Kbps even on lines with a transfer
rate of 28.8 Kbps.

Why do we use a higher transmission rate on the computer-modem interface than on the line
between two modems? The answer is simple. It is important, especially, when modems use data

 50

Chapter 3

compression to communicate with each other. The maximum supported rate of the COM port is
115,200 bps, which allows maximum compression of 4:1 at the rate of 28.8 Kbps. Some data
types (for example, video) can be compressed up to 40:1 in some cases.

3.2.8 Error Detection
The idea is that data is transmitted between modems in data blocks, i.e., frames. The source
modem calculates the checksum from the data block and adds it to the transmitted data. The
destination modem again calculates the checksum from the transmitted data (without the added
checksum) and compares it with the one previously calculated by the first modem. If the results
are the same, the modem hands over the data to the destination computer. Should they differ, it is
considered an error in transmission, and the modem requests that the data be sent one more time.

Originally, the most widely used protocols were introduced by Microcom under the name of MNP
2 to 4. Subsequently, the protocols were also specified by the ITU in the V.42 recommendation.

The V.42 protocol also describes the two-phase process of establishing a connection. In the first
detection phase, the modems mutually investigate their capacity by exchanging predefined
characters. In the second confirmation phase, the modems mutually exchange information about
the maximum capacity of data blocks as well as the number of blocks transmitted, followed by a
request for confirmation of data block reception.

3.3 Digital Circuits
Until now, we have discussed only analog circuits. Gradually, however, analog distribution is
being replaced by digital distribution. Initially, this process was confined only to the phone
companies. Today, even users can take advantage of digital circuits, i.e., ISDNs.

3.3.1 ISDN
Telecom companies offer the following two types of ISDN connections:

Basic Rate: This type of connection consists of one line (a twisted-pair) containing
two B data channels, each with a capacity of 64 Kbps and one signalization D
channel with a capacity of 16 Kbps.

•

Primary Rate: This type of connection consists of the following: •

o In North America: 23 B data channels, each having a capacity of 64
Kbps, and 1 D signalization channel with a capacity of 64 Kbps.

o In Europe: 30 B data channels, each having a capacity of 64 Kbps and 1
D signalization channel with a capacity of 64 Kbps.

 51

Physical Layer

Figure 3.14: Basic Rate and Primary Rate

The D channel is used in ISDN for signaling, i.e., for establishing a virtual circuit (dialing). If the
B channels are busy because of phone calls, then the D channel can signal another incoming call.
The current call can be put on hold, while answering the new incoming call. It can also be used to
indicate caller ID.

3.3.1.1 Basic Rate
Basic Rate uses the current subscriber loops via copper twisted-pairs. Therefore, the current
metallic distribution network for analog telephones can also be used for the Basic Rate
distribution. ISDN is described by the V.110 protocol. The twisted-pair coming from the phone
company creates a U interface as illustrated in the following figure:

Figure 3.15: Basic Rate

The U interface is an interface between the phone company and the NT-1 appliance (box) that
is usually supplied and installed by the phone network provider. The NT-1 appliance has two
twin-leads of the S/T interface. The S/T functions as a bus bar to which individual digital
appliances connect.

 52

Chapter 3

Figure 3.16: Connecting appliances to the S/T interface

Figure 3.16 shows that the individual appliances connect to the S/T interface as to a bus bar. Since
the Basic Rate has two B data channels, two appliances can communicate at the same time (for
example, one digital phone and one modem or two digital phones).

Although we have just two B data channels, we can connect more than just two digital appliances
to the S/T interface (but only two can communicate at any given time). Let's say we have five
digital phones, with each of them possibly having a different phone number. For the user, it gives
the impression that they have five phone lines, however, in reality, they can use just two phones at
the same time.

A terminal adapter can connect to the S/T interface, thus enabling it to connect to the commonly
used analog modems, faxes, and telephones.

 53

Physical Layer

Fig. 3.17: Basic Rate divided into individual slots

 54

It is also important to say a few things about digital modems . Many people seem to dislike this
expression because a modem is an appliance that modulates/demodulates digital signal into an
analog one. The digital modem does not do anything like that. It just converts one type of digital
interface (for example, V.24 on PC) to the S/T interface (the RJ45 connector).

ISDN uses synchronous data transfer (as described in Section 3.1.3). Basic Rate uses a
transmission rate of 192 Kbps, which is divided into slots for individual channels, as shown in
Figure 3.17.

3.3.1.2 Higher Layer Protocols and Signalization
B channels can be used for phone calls, in which case, each slot of the relevant B channel contains
one sample of the call (sound signal). But we are more interested in data transmission.

When transmitting data, LAPB protocol frames are inserted in the B channels and LABD protocol
frames are inserted in the D channel. (There are also other protocols used by ISDN, such as LABF,
I.465, V.120, etc.) Both the LAPB and LAPD protocols are derived (see Figure 3.18) from the
HDLC protocol (see Section 4.3).

Figure 3.18: The Schema of the LAPB and LAPD link protocol frames

Network packets are inserted into LAPB protocol frames. The packets of the network layer may
belong to, for example, the X.25 protocol. More important to us, however, is that IP datagrams
may be inserted into the LAPB protocol frames.

So far, we have looked at a situation where the B channel used for transmitting data or a call.
The question of creating (dialing) the virtual circuit, one of the functions of signalization that uses
the D channel, is yet to be answered.

Chapter 3

We recognize two levels of signalization. In DSS1 signalization, a user requires the creation of a
circuit and other services. On the provider's part, DSS1 signalization is wrapped into the SS7
signalization (used also for the signalization of classic analog calls) and then transferred to the
called party. An incoming call is signaled at the destination again by DSS1 signalization.

DSS1 signalization is specified by ITU recommendations Q.931 and Q.932. Q.931 provides basic
services such as creating circuits and is considered a network protocol within the ISO OSI network
model. The Q.932 protocol provides other services such as putting a call on hold and, within the ISO
OSI network model, the protocol coverage ranges from the transport to application layer.

Figure 3.19: DSS1 and SS7 signalization

Messages are sent in the DSS1 signalization. Table 3.4 shows some basic types of messages.

DSS1 Signalization POTS Analogy

Setup Circuit making

Call Proceeding Dialing

Alerting Ringing

Connect Pick up

Disconnect/Release Hang up

Table 3.4: Messages

The following figure illustrates the DSS1 in the ISO OSI model:

Figure 3.20: DSS1 in the ISO OSI model

 55

Physical Layer

3.3.2 E and T Lines
We spoke about the E1 line in Chapter 1. The E1 line is the lowest parameter in the hierarchy of
transmission paths specified in ITU recommendations G.702 and G.703. There are also hierarchies
of transmission paths for the U.S. (T lines), and Japan as well as transatlantic connections.

Line Transmission rate Maximum distance
DS1 (T1) 1.544 Mbps 6 km

E1 2.048 Mbps 5.2 km

DS2 (T2) 6.312 Mbps 4 km

E2 8.448 Mbps 3 km

¼ STS-1 12.960 Mbps 1.5 km

½ STS-1 25.920 Mbps 1 km

STS-1 51.840 Mbps 0.3 km

E3 34.368 Mbps

E4 239.264 Mbps

Table 3.5: Line transmission rates

A line with a transmission rate of 64 Kbps forms the basis. The E1 line contains 32 basic lines.
The T1 line contains 25 such basic lines. The E2 line contains 4x E1. The E3 line contains 16 x E1
(or 4 x E2) etc.

Although the E1 line contains 32 basic lines, we can still use only 30. Slot number 0 and 16 are
used for servicing particular frames. These two slots also contain the super-frame checksum
(see Figure 3.17).

You can rent either one slot (64 Kbps) or more. The maximum bandwidth for an E1 line is 30 x 64
= 1,920 Kbps. If we rent the whole 1,920 Kbps, then this is known as an undivided E1 .

E1 can be connected by two twisted-pairs (120 Ω), coaxial cable (75 Ω), or optical cable.

Figure 3.21: E1 super-frame divided into 32 slots of 64 Kbps each

 56

Chapter 3

More often, however, you would rent only n x 64 Kbps. Then the E1 line itself is invisible and in
practice finishes at the provider, where it connects to a multiplexer. Users connect using a metallic
connection, and it is also possible to use modems with base band transmission that are commonly
available for the rate of Mbps (i.e., they are capable of containing the whole E1 line). The user
connects a baseband modem with a V.35, V.24, or X.21 connector.

3.4 LAN
Local networks are used for connecting computers over short distances (from hundreds of feet to
several miles). In local networks, the choice of the physical layer depends on the choice of the link
protocol, especially when considering three types of link protocols: Ethernet, Fast Ethernet, and
Gigabyte Ethernet. The FDDI, Token Ring, and Arcnet protocols are not used widely.

3.4.1 Structured Cables
Structured cables are a comprehensive solution to the low-voltage wiring in buildings. It involves,
especially, phone and LAN wiring. The original idea of joining these cables with the fire and
security signalization has been dropped, since the two will require different security measures.

LAN sockets, phone jacks, and other outlets are distributed in individual rooms within buildings.
These connect to a patch panel placed in the building (see Figure 3.18). As for optical wiring,
optical fibers connect to an optical distribution box.

Figure 3.22: Cabling in buildings

The patch panel and optical distribution box are usually enclosed together in a rack-mount, along
with active LAN elements or even the phone exchange. The interconnection between active LAN
elements and the patch panel is provided by patch leads.

 57

Physical Layer

The wiring leading from sockets to the patch panel is quite expensive since very often this also
involves building adjustments. Therefore, we should try to do our best in setting the wiring so that
it will not need any additional adjustments. One of the key elements of the philosophy of new
network protocols is using, as much as possible, the existing cabling. Quality cabling originally
created for Ethernet 10Base-T also served the needs of 100Base-TX.

Let's have a look at the following examples of cabling standards (according to EIA/TIA):

• Category 5 (no longer in use) where the supplier guaranteed bandwidth up to 100
MHz, regardless of the protocol used (Ethernet, Token Ring, CDDI, etc.).

• Category 5E also uses bandwidths up to 100 MHz, although it needs new ways of
measuring parameters that might be sometimes stricter.

• Category 6 with a bandwidth of up to 250 MHz.
• Category 7 with bandwidths up to 600 MHz is proposed. At the time of writing this

book, connector types have not been approved yet, the measuring method has not
been specified, and so on.

There used also to be Categories 3 and 4. Cabling built according to these standards needs redoing.

Figure 3.23: Cross section of interconnecting cables

3.4.1.1 Copper Distribution
Copper cabling is composed of twisted-pairs. Rooms are equipped with jacks for the RJ45 connector:

Figure 3.24: The RJ-45 connector

 58

Chapter 3

The RJ-45 connector (sugar cube) contains 8 outlets for 4 pairs. Most often, they are connected
according to the EIA/TIA 568B standard (see Figure 3.25). This connection enables the use of pair
1, for example, as telephone (analog) and pairs 2 and 3 as, for example, Ethernet (pair 4 remains
unused in this case).

Figure 3.25: EIA 568B—interconnecting individual pairs

3.4.1.2 Optical Fibers
Optical fibers are composed of two glass layers, each with a different refractive index. One type of
glass is used as the nucleus of the fiber and a different type is used as the wrapper. An optical
beam is transmitted through the nucleus and it bounces within the interface (mirror) formed by the
two different types of glass:

Figure 3.26: Optical fiber

Glass has only little optical resistance for just three light wavelengths: 850 nm, 1,300 nm, and
1,500 nm; therefore, one of these wavelengths is used to excite the beam.

The optical fiber is always a simplex connection, i.e., there is a transmitter on one side and
a receiver on the other. Fiber pairs are required for duplex connections (which is usually the case),
i.e., one fiber in each direction.

Although, the fiber usually has a diameter of 125 μm, the nucleus can be of two different diameters:

• 50 μm (or 62.5 μm): This is called multi mod fiber. Multi mod fibers are excited by
using an LED, although nowadays, lasers are used for gigabyte Ethernets.
9 μm: This is called single mod fiber. Single mod fibers have a nucleus so narrow
that the beam advances in the parallel direction, i.e., it does not bounce from the
glass interface. This fiber is excited only by using a laser. Single mod fibers are used
for long distance communication.

•

 59

Physical Layer

Figure 3.27 shows the means of protecting optical fibers. Optical fibers are wrapped in a primary
protection that provides the fiber with elasticity. The fiber is very vulnerable without it. Secondary
protection only increases the level of protection. The secondary protection layer is sometimes
removed, for example, from optical interconnecting cables.

Figure 3.27: Multi- and single-mod fiber

Working with optical cables that have their secondary protection layer removed is quite
complicated in a usual office environment. In this area, optical fiber with tight secondary
protection (with the diameter of 900 μm or 0.9 mm) is quite popular. This type of protection
integrates the primary and secondary protection. These cables are somewhat more expensive,
which makes them a poor choice for long distance cabling, although optical connectors can
connect directly to them.

If cables with primary protection are used, then we also need to use prefabricated optical connectors
fixed onto a piece of optical fiber, known as pigtails. Pigtails are then welded onto the fiber.

Figure 3.28: Pigtail

Welding two optical cables (i.e., also welding a pigtail) is a whole science. Just imagine the fact
that we have to weld a fiber consisting of two kinds of glass (wrapping and nucleus), which would
simply melt and clog the cable if we used the usual method of welding.

 60

Chapter 3

Figure 3.29: Faulty welding of optical fiber preventing the beam from advancing

The fibers need to be welded in a way that does not create any obstacles to the beam. A quality
weld can only be achieved by using a very expensive appliance.

In many cases, trying to avoid welding is much more effective. Instead, we should use fibers with
tight secondary protection, fixing optical connectors onto the fibers and, subsequently,
interconnecting these fibers via optical connectors.

Optical fibers, including primary and secondary protection (or tight protection) are usually stored
in optical cables. Fiber bunches in optical cables are wrapped in Kevlar and all this is encapsulated
in the external layers of the cable. External layers depend on where the cable is placed (floor,
buildings, underwater, etc.).

Cutting the cable constitutes another problem. If it breaks in your hand, its end gets frazzled;
therefore, special tools are used for cutting it. Even then we still need to reface both cut ends as
well as check them using a microscope in order to find out whether all the cracks have been
removed by refacing.

The following figure shows an optical fiber with tight secondary protection and an optical
connector attached to it:

Figure 3.30: The principle of optical connector

The protection has been removed from the end of the fiber. A ceramic ring (ferrule) has been put
into place where the removed protection layer used to be. The end part with ferrule was refaced
and checked under the microscope. Two fibers with their ends adjusted in this way were inserted

 61

Physical Layer

into a cavity facing each other in order to prevent them from shifting. In the cavity, the nucleus of
one of the fibers touches the nucleus of the other one and the light beam can move freely form one
fiber into the other.

3.4.2 Ethernet (10 Mbps)
Ethernet uses four types of interfaces: AUI, BNC, TP, or an optical connector.

3.4.2.1 AUI
AUI (also referred to as 10BASE-5) is an interface (the CANNON 15 connector) onto which the
cable connects the computer with a transceiver. A transceiver is an appliance that originally
transmitted/received signals over the thick coaxial cable of the LAN. There are also transceivers
with thin coaxial cable (the AUI/BNC reduction) as well as transceivers for twisted-pairs (the
AUI/TP reduction). This means that the AUI interface is universal, since it contains the power
source for any possible reductions. On the other hand, the TP/BNC reduction needs to be created
by using an independent repeater with its own power source, which makes it a bit expensive.

3.4.2.2 BNC
BNC (also referred to as 10BASE-2) is an interface used for connections via thin coaxial cable.
The coaxial cable is interrupted in the point of connection. The BNC connector is attached to both
connecting ends using special tongs. Both BNC connectors connect to a BNC T-connector that
connects to the computer.

3.4.2.3 Twisted-Pair
Twisted-pair (also referred to as TP or 10BASE-T) is connected via the RJ-45 connector (a "sugar
cube"). The twisted-pair is usually led together with the telephone network to the central patch panel.

For Ethernet, two pairs are used in the RJ 45 connector—one pair for transmitting and the other
pair for receiving. If the Ethernet segment is shared only by two stations that are directly
interconnected via a patch cord, then the pairs must be crossed (i.e., the transmission is crossed
with the reception).

Figure 3.31: TP interconnecting cables

 62

Chapter 3

TP uses two pairs in the RJ45 connector, as shown in Figure 3.32. Note that outlets 4 and 5 remain
free, so it is possible to use them for connecting a telephone (an analog one).

Figure 3.32: Connecting the outlets for 10BASE-T or 10BASE-TX

A segment composed of only two stations is a very interesting one. The network interfaces located
in such a segment switch into the full duplex mode, completely separating the transmission from
the reception. No collisions can occur in such segments (the transmission connects directly to the
reception and no third parties can get involved), therefore, we can achieve rates approaching the
theoretical maximum (10 Mb/s for Ethernet, 100 Mb/s for Fast Ethernet) independently in each
direction. Switched Ethernet is based on this principle. Due to the collision-free traffic in this
segment, the maximum length of the segment can reach up to 45 miles.

Optical Fiber
Ethernet on optical fibers is also referred to as 10BASE-F. As a rule, a pair of optical fibers is
used—one in each direction of communication.

3.4.3 Fast Ethernet (100 Mbps)
Fast Ethernet connects via twisted-pair (100BASE-TX) or an optical connector (100BASE-FX). The
only difference when compared with the usual Ethernet is just the quality of wires. The current
distribution system is of at least grade 5 quality, so the introduction of fast Ethernet is not a problem.

3.4.4 Gigabyte Ethernet (1 Gbps)
Gigabyte Ethernet is standardized for optical appliances and for twisted-pairs (four pairs). When using
twisted-pairs, whether category 5E or 6 cabling has been used is of great importance. For the 5E
category, duplex distribution on all four pairs is used. As for category 6, full duplex transmission is
used, i.e., two pairs are reserved for reception and the other two for transmission.

When using duplex transmission (5E category), all four pairs need to transmit as well as receive.
As a result, the circuits tend to be more complicated, expensive, and prone to errors. This raises
the question whether we are better off changing the cable as opposed to buying expensive
interfaces. Anyway, it is a reason for preferring cabling in category 6.

Single mode fibers should comply with the 100BASE-LX standard. They are excited by a laser of
frequency 1,300 nm with a maximum segment length of 1.2 miles. (Single mode fibers in fully
duplex segments are up to 25 miles.) The same standard is applicable to multimode fibers up to
450 yards.

The 1000BASE-SX standard is used only for multimode fibers. This standard is excited by a laser
of 850 nm and works for distances up to 25 yards.

 63

4
Link Layer

There are many link protocols. In this chapter, we'll take a closer look at Serial Line Internet
Protocol (SLIP), Compressed SLIP (CSLIP), High-level Data Link Control (HDLC),
Point-to-Point Protocol (PPP), Frame Relay, and Ethernet.

4.1 Serial Line Internet Protocol
Serial Line Internet Protocol places IP packets directly into the serial line. In order to control the
line, escape sequences are placed between data (analogous to communication between a computer
and a printer).

SLIP protocol is specified by the standard RFC 1055. SLIP is a very simple protocol, which is
used to transfer packets of the network layer.

Figure 4.1: SLIP protocol frame

Each protocol frame begins and ends with a flag. In the case of SLIP protocol, the flag is known as
END (C016). Most implementations of SLIP place an END flag at the beginning as well. If the
byte C016 appears in the transferred data, it is substituted with a SLIP escape sequence couplet—
DB16DC16 (not the ASCII Esc-sequence 1B16)—and if the byte DBB16 appears it is substituted with
the couplet DB16DD16.

Link Layer

 66

SLIP protocol is very simple, but there are a few negative aspects to it as shown in the following
bullet list:

• SLIP protocol does not ensure error detection during transfer. That's why it is
recommended to use error detection on at least the modem level—for example,
according to the V.42 recommendation—otherwise error detection would not be
ensured at all. (The IP protocol has a checksum only on headers and the checksum in
UDP is not obligatory.) That's why it's dangerous to place DNS servers and NFS
servers, which don't have the checksum turned on in a UDP datagram, behind lines
using SLIP.

• The SLIP frame does not carry any transfer protocol information concerning the
network layer. That's why it's possible to transfer only one network protocol at any
given time. This means it's not possible to mix, for example, IP packets with IPX
packets on the same line. There is a problem with ARP as well. When we have a PC
behind a line using SLIP, we won't get the effect 'as if the PC were on the LAN'
using an ARP proxy.

• It's not possible for both ends to, for example, inform each other about their IP
address or other configuration parameters.

• It's not possible to use SLIP on synchronous lines.

Thanks to its ease of use, SLIP has an advantage as well. As it provides almost no services, it
transfers a minimum of service information, so it's often favored on less error-free and slower
serial lines.

4.2 Compressed SLIP
The variant of SLIP with compression is called Compressed SLIP (CSLIP). CSLIP, specified
by RFC 1144, reduces 40 bytes of headers from the TCP and IP protocols (20 from TCP and 20
from IP) to anything between 3 and 16 bytes. It is the TCP header and the IP header that are
compressed, not the data!

It's possible to use the same TCP and IP header compression with the PPP protocol. In contrast to
CSLIP (where both ends of the connection have to be configured for the header compression in
advance), when using PPP, one end of the connection offers the possibility of compressing the
header to the opposite end of the connection—if both ends agree, they will then use compression.

Chapter 4

Figure 4.2: IP and TCP header compression can be set when configuring PPP protocol in Windows XP

Even though we are talking about the compression of the header, it's not actually the same
compression that we are used to, for example, with the ZIP program. This is not a question of
data compression.

The idea is that the author of the TCP/IP header compression (Van Jacobson) had thought about
the TCP and IP headers (see Figure 4.3) and found out that a lot of data in the header doesn't
change or changes just a little during a TCP connection. So it was possible to transfer just the
changed items in the TCP and IP headers or even their increment (delta). Actually, only the
following items are changed: IP datagram identification, the sequence number of sent bytes, the
sequence number of received bytes, some attributes, window size, TCP header checksum, and the
urgent pointer. Changes in other items are rare. The whole header items, the IP datagram length,
and the header checksum, are unnecessary.

 67

Link Layer

Figure 4.3: IP and TCP headers

The header compression (as described in RFC 1144) will compress the header only in the TCP
protocol and when only the items listed earlier are changing. In other instances (for example,
ICMP packets, UDP datagrams, or IP-datagram fragments, or when some of the RST, SYN, FIN
flags are set, or when the ACK flag is not set, etc.), compression will not occur and the
uncompressed frame is transferred by the line.

When the sender wishes to transfer a TCP packet, the packet is passed through the component
labeled Compressor on the sender side in the following figure:

Fig. 4.4: Compressor and decompressor

 68

Chapter 4

The compressor then either compresses the packet or sends it unchanged. There is a decompressor
on the recipient side, which reconstructs the compressed packet into the original one.

The compressor compresses individual data flows (individual connections). For each data flow
a slot is kept, in which there is all the information from the TCP and IP headers necessary for both
compression and decompression, i.e., reconstruction, of both headers.

Now let's consider the situation when the sender's packet has arrived at the compressor. The
compressor first examines whether the packet can be compressed or not. If the packet cannot be
compressed (for example, it is an ICMP packet, UDP datagram, or IP-datagram fragment, or when
any of the RST, SYN, FIN attributes are set, or when the ACK attribute is not set, and so on),
compression will not be done, and the uncompressed frame is transferred by the line. If the packet
can be compressed, the compressor starts searching its slots for a TCP + IP header for the data
flow to which the packet belongs.

Two situations may occur:

• The appropriate TCP + IP header is found in none of the slots. The packet is
therefore the first compressible packet of a new connection (the very first packet of a
new TCP connection has the attribute SYN set and therefore cannot be compressed).
In that case, the compressor inserts the TCP and IP headers into the first free slot it
finds. If there is no free slot available, the compressor uses the slot that has not been
used for the longest time. The compressor does not compress the packet, but only
changes the value 6 (for TCP protocol) in the 'higher-layer protocol' field to the
number of the slot used.

• The compressor finds the TCP + IP headers corresponding to the preceding packet
for this connection in slot number N. The compressor has found that this packet
corresponds to connection N. In that case, the compressor compresses the packet.

Figure 4.5: Compressed header

The structure of a compressed packet is shown in the figure above (optional items are dotted). The
TCP and IP headers of the packet have been compressed. The compression does not pertain to the
data part of the packet.

 69

Link Layer

 70

A compressed header contains a mask in the first byte. This is because the individual bits of the
mask specify which items of the original packet's header have changed. That is why the whole
items or their increments must be transferred as part of the compressed header. If a flag is set, then
the compressed header includes that particular item; if it is not set, then the corresponding item is
not included into the compressed header.

The TCP header checksum is always transferred.

The individual bits of the mask are as follows (see Figure 4.5):

• N stands for the slot number. The slot number is optional; the assumption is that
where it is not stated, it is identical with the slot number of the preceding compressed
packet transferred by the line. The length of the slot number is 1 byte (i.e., its value
is in the 0-255 interval). This is because the slot number is transferred between the
compressor and the decompressor in the higher-layer protocol field, whose length is
just 1 byte.
This is why a maximum of 255 connections can be compressed on a line at the same time.
This makes compression suitable for lines connecting PCs to the Internet rather than for
connecting backbone routers.

• U stands for urgent pointer. It signals that the urgent data pointer field of the packet
has been filled in.

• W stands for increment of window size. The compressed header does not transfer the
value of the whole window, but just its increment. Where the increment is negative
or exceeds 64,000 (i.e., surpasses 2 bytes), the packet is not compressed. The same is
the case with the A, S, and I bits.

• A stands for increment of acknowledged data.
• S stands for increment of sent data.
• I stands for increment of IP packet identification.
• P stands for the PUSH flag. This attribute differs from the rest by not having any

corresponding item in the compressed header. If the flag is set, the PUSH flag in the
TCP segment header of the original packet is also set.

The compressed header's form depends on its length, which may be one of the following types:

• Compressed headers do not transfer null values of items. For example, when the
increment of sent data is unchanged, i.e., if the increment has a null value, then the
increment of the sent data item is not included in the compressed header.

• If the value of the compressed header item is between 1 and 255, then it is
transmitted in one byte.

• If the value of the compressed header item is greater then 255 and less than 65,536,
then it is transmitted in three bytes where the first byte is 00. (The fact that the zero
is not transferred is used to signal that three bytes were spent on the item.) For
example, the maximum value possible (65,535) is stored in hexadecimal notation in
three bytes as 00 FF FF.

Chapter 4

Although the TCP connection is fully duplex, TCP and IP header compression is entirely independent
in either direction, i.e., it is treated as if there were two independent simplex connections. Strictly
speaking, it is the data flow rather than the fully duplex TCP connection that is being compressed.

Should a compressed header have the A, W, and U flags set simultaneously, the packet does not
have a normal compressed header. This case is an exception reserved for Telnet, rlogin, and some
other protocols. With these protocols, compressed headers consist of the mask with the A, W, and
U flags set and the checksum, i.e., the compressed header has 3 bytes only. In this case, when a
key of a terminal is pushed, only 4 bytes instead of 41 bytes are transferred (3 bytes of the
compressed header plus 1 byte of data). For details, please refer to RFC 1144.

IP header compression has already been improved to such an extent that even protocols other than
TCP protocol (for example, UDP or IP version 6) can be compressed. This new specification is
dealt with in detail in RFC 2507 to RFC 2509.

4.3 High-Level Data Link Control Protocol
High-level Data Link Control (HDLC) protocol provides error detection and data stream control.
HDLC is governed by the following standards: ISO 3309, ISO 4335, ISO 7776, ISO 7809, ISO
8471, and ISO 8885.

HDLC was derived from the SDLC protocol created by IBM. SDLC was used for synchronous
transfer. Today, SDLC is mostly understood as a subset of HDLC, even though not all of the
options of the SDLC protocol were included in HDLC.

Later, the HDLC standard was extended for asynchronous transfer as well. The asynchronous
variant of HDLC is usually used by the PPP protocol that is described in Section 4.4. From now
on in this chapter, we will assume synchronized, bit-oriented transfer on a physical layer.

HDLC is a very extensive standard with a large number of options (many of them are optional or
even mutually exclusive). Single producers usually utilize only a part of this standard and create a
lot of details according to their own requirements. That's why implementations of HDLC by, for
example, Digital and from CISCO (or other companies) aren't compatible with each other. That's
why most of the companies today are distributing programs not only for their own HDLC
implementation, but also for the implementations of their most important competitors as well. So
you could hear about CISCO HDLC, DEC HDLC, and so on.

A device attached to a data link that handles data link protocol functions is called a station. The
data link connecting stations can be either balanced or unbalanced. An unbalanced link connects
two or more stations. One of the stations is designated a primary station while all the others are
secondary ones. In the case of unbalanced data links, the primary station sends commands and the
secondary stations send replies. A balanced data link connects only two stations, either of which
can start the transmission at any time.

HDLC protocol uses the following modes:

• Asynchronous Balanced Mode (ABM) is used to connect two stations with a fully
duplex connection. This means that both stations can transmit at the same time,
without making the line busy. Currently, this is the most commonly used mode.

 71

Link Layer

• Normal Response Mode (NRM) is used to support unbalanced data links to connect
two or more stations using half-duplex connection (switching duplex between
transmission and reception). A common transfer medium is used for the reception
and transmission of data—you can either transmit or receive at any one time. One of the
stations is a primary station and the others are secondary. A secondary station cannot initiate
transmission without receiving permission from the primary station first. The primary
station uses polling do determine which secondary stations wish to transmit and assign
permission to a single station to transmit at a given time. Only the primary station can
transmit without permission. Other stations can transmit only when they have been given
permission from the primary station. The Poll/Final (P/F) bit in the control field of an
HDLC frame sets the permission. This mode is used rarely on the Internet. We won't take
a closer look at it—it's listed here mainly as a means of explaining the meaning of a P/F bit.

• In Asynchronous Response Mode (ARM), each station performs the function of
both a primary and a secondary station. ARM is very rare at present.

Figure 4.6: ABM and NTM

The HDLC frame format is shown in the following figure:

Figure 4.7: HDLC frame

4.3.1 Flag
The flag delimits an HDLC frame, which means that each HDLC frame begins and ends with a
flag. In the communication line, sequences of flags might appear. When two flags arrive, one after
another, they define an empty frame—which is not processed.

 72

Chapter 4

A flag consists of 8 bits: 0111 1110. Six 1s in a row indicate a flag. You can easily argue that a
transferred character could have more than six consecutive 1s. But a bit-oriented synchronous
version of HDLC uses a trick. On input, whenever data contains five 1s in row, a 0 is automatically
added after these 1s. Logically, on the output, when there is a zero after five 1s, this 0 is omitted. If
there's a 1 and not 0 after these 1s, it's the flag. This technique is called bit stuffing.

This technique is possible only in bit-oriented transfer when a stream of bits is transferred; in
character-oriented transfer, this technique is not possible because the number of bits must be divisible
by the length of the character (usually 7 or 8 bits). Adding an extra bit would disobey this rule.

4.3.2 Address Field
The address field is 8 bits long. It stands for the address of the station to which the frame is
supposed to be delivered. It's evident that this field has its usage in NRM mode (or SDLC
protocol) when often more than two stations are communicating. But it's highly desired; that's why
it appears in all of the HDLC mutations. For the purpose of completeness, let's say that PPP uses,
for example, a 1111 1111 value, which is broadcast. An address field in this sense (within HDLC)
doesn't have anything in common with an IP address. It's a link address.

4.3.3 Control Field
The control field is the most complicated field. The control field is 1 or 2 bytes in length. The two
lowest bits of the control field differentiate three types of HDLC frames:

• Information frames or I-frames (in which the lowest bit is 0) are primarily used for
data transfer. But they can carry control information in their control field as well (for
example, positive confirmation of a received frame).

• Unnumbered frames or U-frames (in which the two lowest bits are 11) are used not
only to transfer data, but also for many control functions as well (for example,
beginning an initializing dialogue, line control, and diagnostics).

• Supervisor frames or S-frames (in which the two lowest bits are 10) are used to
control the data stream (for example, sending a request, confirming an I-frame, and
so on). S-frames are used together with I-frames after the link is initialized. S-frames
usually don't contain any data fields.

The control field within U-frames has 8 bits. Within I- and S-frames, it can have either 8 or 16
bits. In the following figures, the 16-bit control field is used, which is enhanced mode.

ABM and NRM modes usually use an 8-bit control field. Enhanced modes with 16-bit control
fields are usually called ABME or NRME.

What is omitted in an 8-bit control field? Only 3 bits for numbering N(S) and N(R) are used,
which means that frames are not numbered modulo 128, but just modulo 8.

 73

Link Layer

4.3.3.1 I-Frame
The N(S) and N(R) fields in an I-frame are used for numbering the frames. They're numbered
from 0 to 127 (the highest possible number with 7 bits). After reaching 127, the counting starts
from 0 again. N(S) defines the number of a sent frame. The N(R) field, on the contrary, is used for
received frame confirmation. Since the communication is duplex (two-way), correctly received
frames are confirmed in the opposite direction.

Figure 4.8: I-frame

When sending data in the opposite direction is not necessary, an S-frame is used for received data
confirmation (using the RR command). If the received frame is found to be incorrect after checking
the checksum, an S-frame is used to ask for a repeat of the transfer (using the REJ command)—a
negative confirmation. This S-frame will repeat the number of the last correctly received frame
within its N(R) field.

It's possible to confirm frames one by one. But that prolongs the response time because you have to
wait for every frame to confirm. That's why frames are usually confirmed with the help of a window.

When, for example, the window equals three (see Figure 4.9), then after three packets are sent, the
sender waits for the confirmation of the first one. After confirming the first one a fourth one is
sent, after confirming the second one a fifth one is sent, and so on. It's necessary to keep the whole
window of unconfirmed frames in the buffer memory of the sender, in case repetition of a
damaged or lost frame is requested.

Figure 4.9: Window equals 3

 74

Chapter 4

The P/F bit is important for the NRM mode of HDLC. A primary station in NRM mode allows a
secondary station to transmit data by setting this bit on P (Poll). The secondary station lets this bit
remain set during transmission, to signal that the station wants to continue the transmission. With
the last transmitted frame, the bit is set on F (Final).

4.3.3.2 S-Frame

Figure 4.10: S-frame

An S-frame can confirm a correctly received frame in the Command field. It can carry the
following commands or responses:

• RR (Receiver Ready) informs the other side that the receiver is ready to accept
I-frames, or it's used like a signal that the line is free again (if it was busy before). It
can also be used to confirm the number of the last correctly received frame (as was
mentioned in the I-frame description).

• RNR (Receiver Not Ready) informs the other side about a temporary inability to
receiving I-frames and confirms the frames received until now at the same time.

• REJ (Reject) informs the other side that a damaged frame has been received. It is
used either as a command or as an answer requesting repetition of the transmission.

4.3.3.3 U-Frame

Figure 4.11: U-frame

 75

Link Layer

U-frames can carry both data and commands/responses:

• SABM (Set Asynchronous Balanced Mode) sets the line to ABM mode with an 8-bit
control field.

• SABME (Set Asynchronous Balanced Mode Extended) sets the line to ABM mode with
a 16-bit control field; it's the version of HDLC that we described earlier.

• SNRM (Set Normal Response Mode) sets the line to NRM with an 8-bit control field.
• SNRME (Set Normal Response Mode Extended) sets the line to NRM mode with

a 16-bit control field.
• UA (Unnumbered Acknowledgement) is used for SABM, SABME, SNRM,

SNRME, and DISC confirmation.
• DISC (Disconnect) when used within dial-up lines is a hang-up request. Within

leased lines it enables you to cancel the operating mode (the actual set up).
• DM (Disconnect Mode) is used for positive DISC confirmation.
• FRMR (Frame Reject) is used to indicate an incoming damaged frame, when it's not

possible to correct by retransmission. After receiving FRMR, you begin again with
setting up the line mode, that is with one of the following commands: SABM, SABME, SNRM,
and SNRME. The beginning of the data part of the packet contains 2-3 byte fields with the
error code (for example, error in the control field of a frame, error in the information
field, frame capacity exceeded, error in the received frame sequence, and so on).

• XID (Exchange Station Identification) commands and responses are used for the
beginning initialization sequence, when the stations agree on checksum length,
transferred higher-layer protocol, and so on.

• UI (Unnumbered Information) is used for unnumbered data frame transmission.
These frames can contain transferred protocol specification at the beginning of a data
field, so it's possible to mix different protocols (such as IP and IPX) within one line.

Figure 4.12: Examples of HDLC handshakes

4.3.4 Data Field and a Transferred Protocol Type
The data field (officially called information field) contains either transferred data or control
information. A data field may be omitted. Most implementations of HDLC require the data field to
be some multiple of 8 bits.

 76

Chapter 4

The HDLC-frame header doesn't enable the option of higher-layer protocol specification. This
means that it doesn't enable, for example, mixing IP frames with IPX. And the choice of protocol
happens in the beginning initialization dialogue. These restricts apply to numbered frames; it's
possible to put the protocol specification at the beginning of a data field with unnumbered frames.

4.3.5 Checksum
The Frame Check Sequence (FCS) also called checksum is calculated from the transferred data,
the address, and control field, and is usually 32 or 16 bits long. The recipient also calculates
a checksum from an incoming frame and compares it to the checksum from the frame it received.
If they are the same, it can assume that the incoming frame has been transferred correctly. If not,
in the case of numbered frames, it can ask for transfer repetition. The definition of which
checksum is going to be used is part of the initial dialog between the stations during the
connection initialization (with the help of the XID command).

4.3.6 HDLC Protocol Summary
HDLC is an advanced link protocol, which enables the following:

• Checking for damaged frames with the help of a checksum.
• Requesting frame transfer repetition after receiving a damaged numbered frame

(unnumbered damaged frames are discarded).
• Mixing different network protocols within one line with the help of unnumbered

frames; but in this case retransmission isn't possible.

In HDLC protocol the line can be in the following states:

• Down (no communication)
• Setup (only U-frames can be used)
• Up (the state of data transmission having regular conditions, only I- and S-frames are

transferred—U-frames are not used for data transmission)
• Disconnecting (only U-frames are transferred)

4.4 Point-To-Point Protocol
Almost every Internet user will sooner or later come across PPP. It's precisely the protocol that
gives you trouble when you want to connect your PC to the Internet through a dial-up line or
ADSL line. PPP most often uses frames similar to those of HDLC protocol. However, it doesn't
use all the possibilities that HDLC offers by far. But perhaps it introduces even more new features.

The basic features of PPP are as follows:

• On the physical level, it is able to use an interface in accordance with the
recommendations V.24, V.35, and so on. It doesn't require any control signals (RTS,
CTS, DCD, DTR, etc.). However, control signals can be used to enhance its efficiency.

 77

Link Layer

• It can use both asynchronous and synchronous (bit or character) data transmission.
• For asynchronous transmission, it uses 1 start bit, 8 data bits, and 1 stop bit (no parity).
• It requires fully duplex (two-way) point-to-point leased or dial-up lines.
• As a rule, it uses 16 or 32 bits for a checksum to detect whether the frame was

damaged during transmission.
• The aim of PPP is to allow the transfer of several network protocols at the same time

through one line (to mix protocols). It doesn't use I-frames, only U-frames.
Therefore, it cannot number the frames nor repeat them if it detects damaged ones.

• At the beginning of the data field, it places an 8-bit or 16-bit identification of the
transmitted network protocol.

PPP is specified by RFC 1661. The form of a PPP frame, encapsulated in a way similar to HDLC,
is specified by RFC 1662. Figure 4.13 shows a PPP frame structure. The Protocol field specifies
the transmitted protocol.

Figure 4.13: PPP frames

In addition to the encapsulation of a PPP frame similar to HDLC, other methods of PPP
encapsulation are also specified. For an example of Frame Relay encapsulation or
Ethernet encapsulation, see RFC 2516.

 78

Chapter 4

However, let's go back to HDLC encapsulation. A PPP frame contains a value of FF16 (broadcast)
in the Address Field and always contains the value of 0316 in the Control Field (U-frame with
the P/F bit set to 0). If only frames with this Address and Control Field are in the line, then both
ends of the line can use Address-and-Control-Field-Compression option. If this option is used,
both fields are simply left out during the transmission.

Let's describe the flag. Flags are at the beginning and the end of each PPP frame. The flags contain
binary 0111 1110, i.e., 7E16. But what if the 7E character must be transmitted within the data? In
binary synchronous lines, we have described the technique of bit stuffing (see Section 4.3.1).

In asynchronous connections (also in character synchronous lines) escape sequences will be used
(as in the SLIP protocol). The 7E character will be replaced by a 7D 5E couplet and the 7D
character will be replaced by a 7D 5D couplet.

Implicitly, the 7D escape sequence also introduces all ASCII control characters (characters from
the ASCII table with a decimal code smaller than 32). Moreover, 3210 (i.e., 2016) is added to the
value of these characters. For example, 7E2316 is transmitted instead of character 03. As a result,
even the terminal driver cannot damage the transmitted characters by wrongly interpreting them
as, for example, BELL, BAKSPACE, and so on. Maybe you were surprised by the word
'implicitly' at the beginning of this paragraph. However, using the Async-Control-Character-
Map (ACCM) option, both stations can agree on the table of characters that will be introduced by
an escape sequence.

In binary synchronous lines, escape sequences are not used. However, this is not always the case.
Escape sequences can be found also in binary synchronous links. Why? If there is a need to
convert a transmission from asynchronous to bit synchronous (and vice versa), escape sequences
pass from asynchronous to synchronous transmission as characters. When answering, the
synchronous side must add escape sequences to synchronous data, so that it is possible to
communicate with the counterpart after the conversion. Therefore, synchronous stations can use
the ACCM option as well. Such a conversion is used, for example, when a synchronous line is
connected to a PC and an autosynchronous modem is used. It means that asynchronous
communication comes out of the PC and in the autosynchronous modem, where it is converted
into synchronous communication.

Five types of service protocols that are a part of PPP are as follows:

• LCP, which establishes a connection.
• Protocols responsible for authentication (PAP, CHAP, EAP, and so on).
• Protocols for call-back.
• Other protocols: protocols for data encoding, protocols for data compression,

Multilink Protocol, Bandwidth Allocation Protocol, and so on.
• The NCP protocol group. Each network protocol that uses the PPP link protocol has

its own standard for NCP. The protocol number of the protocol is always a part of
this standard, and it is used in the Protocol field for the particular NCP protocol (the
number always begins with the digit 8) and for data frames (the number begins with
the digit 0). Among others, there are the following NCP protocols:

 79

Link Layer

 80

o IPCP (protocol number 802116) is a variant of NCP for IP version 4.
IPCP is specified by RFC 1332. Data frames use the value 002116 in
the Protocol field.

o IPV6CP (protocol number 805716) is a variant of NCP for IP version 6
(RFC 2023). Data frames transmitted by IP version 6 use protocol
number 005716.

o SNACP (protocol number 804D16), i.e., NCP for IBM SNA (RFC
2043). Data frames use protocol number 004D16.

o DNCP (protocol number 802716), i.e., NCP for DECnet Phase IV
(RFC 1762). Data frames use protocol number 002716.

o IPXCP (protocol number 802B16), i.e., NCP protocol for IPX (RFC
1552). Data frames use protocol number 002BB16.

o OSINLCP (protocol number 802316), i.e., NCP for OSI protocols, for
example, protocols ES-IS, IS-IS, etc. (RFC 1377). Data frames use
protocol number 002316.

4.4.1 Dialing a Phone Line
Before we begin to describe the individual protocols of the PPP family, let's have a look at the actual
dialing of a line. Practical problems often appear even before the actual PPP connection is established.

In Windows there are, for example, options that allow you to open the terminal window. The
terminal window can be opened at two specific moments:

• Before the modem starts dialing. At this moment, the user can type commands into
the terminal window to control the modem (for example, the AT command). The user
can specify a dialed phone number manually (for example, ATDT123456789 in the
case of phone number 123456789) and monitor how the modem works.

• After the phone circuit is established, i.e., the modems on both sides are switched
into data mode.

If the phone circuit is established, the users can find themselves in either of the two situations:

• The other side waits for only PPP communication (in the terminal window only
gibberish is shown, i.e., frames with a Configure-Request command in binary form).
This situation happens, for example, when establishing communication with
Windows servers. The only reasonable thing to do in such a situation is to close the
terminal window and to continue communication by PPP.

• The other side awaits the terminal dialog. This situation is common, for example, in
UNIX servers or CISCO boxes. The user is asked to enter username and password.
Again, two situations can happen:

o The user enters a username that can work interactively in the given
system, then a command line of the given operating system appears
and the user can work as he or she is used to on this system. The user
can also activate PPP by the ppp command (gibberish appears again);
close the terminal window, and leave the line for the computer to
communicate by PPP.

Chapter 4

o The user cannot work interactively in the given operating system. After
entering the correct password, PPP is automatically activated. The only
thing to do for the user after his or her authentication is to close the
terminal window and continue communication by PPP.

In both cases the user had been authenticated; however, with a terminal
dialogue, not PPP.

After establishing the phone circuit, the terminal window can be set according to the settings of a
particular dial-up connection. In HyperTerminal, open the Properties window of a particular dial-
up connection and then choose the Connect To tab. Afterwards, press the Configure… button. In
the Advanced tab, check Bring up terminal window after dialing.

4.4.2 Link Control Protocol
Link Control Protocol (LCP) is used before the question of which network protocol will run
through the line is even considered. LCP (unlike NCP protocols) is a common protocol for all
network protocols. The function of LCP is to establish a connection, terminate a connection,
negotiate an authentication algorithm, and so on. The line gradually undergoes the following
phases: establishing a connection, authentication, network protocol, and disconnection as shown in
the following figure:

Figure 4.14: Individual link phases in PPP

Link Disconnection is always the starting and ending point of your session. If any external event
happens (for example, the modems lose their connection or the network administrator issues a
command to terminate the connection), the line switches to this phase.

 81

Link Layer

 82

This disconnection phase leads to an Connection opening phase. The connection is opened through
an exchange of configuration packets. No data packets (i.e., network protocol packets, for example,
IP) are transmitted during this phase. If a data packet appears during this phase, it is discarded. The
aim of this phase is to establish connectivity between both ends of the line.

Authentication is the phase during which the client proves its identity. The word client is used on
purpose. You might be asking yourself, "Who's the client here?" The client is the side (station)
that is asked to prove its identity. After proving that station's identity, the stations can then
exchange their roles, and the other side can be asked to prove its identity. In practice, only one
side usually proves its identity (for example, a PC user against an Internet provider).

Authentication is not compulsory and can be skipped. During the process of authentication, again,
no data (i.e., network protocol) packets can be transmitted.

Authentication only transmits the data that is used as the actual proof of identity. This means that
LCP doesn't describe any authentication algorithm; it only transmits data, which is then used by
the authentication protocols. Password Authentication Protocol (PAP), Challenge-Handshake
Authentication Protocol (CHAP), and similar protocols are used as authentication protocols.
Additionally, as a rule, terminal authentication is also possible.

After the authentication phase, both ends (peers) can agree to do a call back using the call-back
protocol. After this the connection is established again and another authentication phase is possible.

If a connection is established (line is up), further protocols can be activated. Mostly, however, they
are activated immediately after the authentication phase. By using these protocols, both ends can
agree on things like transmission encoding, data compression, spreading of bandwidth over
several phone lines (Multilink Protocol), dynamic bandwidth allocation to several phone lines if
needed (Bandwidth Allocation Protocol (BAP)), and so on.

The phase described in Figure 4.14 as Network protocol can contain in itself a whole range of
steps. At this point, the individual NCP protocols take over. Each network protocol that wants to
use the line must set the line to an open state for this particular protocol with the help of its own
NCP. Data packets of a network protocol for which the line is not open will be discarded.

For example, if both IP packets (version 4) and IS-IS protocol packets are to be transmitted by the
line, the line must be opened twice during this phase: once using IPCP protocol and a second time
using OSINLCP. Data of a particular network protocol can start being transmitted only after the
line is open for this particular network protocol. The line can be open for several network
protocols at the same time.

Connection termination is the last phase. During this phase all packets, except for LCP packets,
are discarded. Connection termination is also signaled to the physical layer. The physical layer can
react, for example, by hanging up the dial-up line.

The LCP frame format is shown in Figure 4.15. It is important to emphasize that all of the PPP
family's control protocols will have similar frames that consist of the Code Identification (ID),
Length, and Option fields (for example, command parameters).

Chapter 4

Figure 4.15: LCP Frame Format

The 8-bit Code field specifies the type of command (or reply) of LCP:

Code Code Name Description

1 Configure-Request Configuration packet carrying requests to change implicit line parameters.

2 Configure-Ack Configuration packet with positive confirmation of requests to change
implicit line parameters, i.e., all the requested changes to parameters are
identified and accepted.

3 Configure-Nak Configuration packet with the response that the opposite side did identify
all options, but didn't accept all of them. The ones that were not accepted
are specified in this packet and their alternative values are proposed.

4 Configure-Reject Configuration packet that refuses all requests. This can also be a result
of an invalid option code, for example, the request was not identified.

5 Terminate-Request Request for connection termination.

6 Terminate-Ack Confirmation of the request for connection termination.

7 Code-Reject Request refused due to an unknown code. It can also occur when the
opposite station uses a different protocol version.

8 Protocol-Reject The opposite side does not support the given protocol.

9 Echo-Request Test loop support on the link level.

10 Echo-Reply Compulsory response to Echo-Request.

11 Discard-Request Discards the packet. This is used to test the line load, i.e., the sender
generates an artificial line load using these packets.

12 Identification This is an extended option containing a 4-byte magic number and a text
of a variable length. The meaning of the magic number is similar to the
Magic-Number option. The text can contain, for example, the type of
hardware, the version of software, and so on.

Table 4.1: Code names

 83

Link Layer

 84

The 8-bit ID field is the request identification. The sender generates the request identification into
this field and the receiver copies it into its response. This field is used to couple a response to the
given request.

The 16-bit Length field contains a number that states the sum of the lengths of the following
fields: code, ID, length, and options.

The Options field contains individual requests (or responses) to change implicit line parameters.
This field consists of one or more options. Individual options are placed in a sequence, as shown
in Figure 4.15. The Type and Length fields are both 8 bits long.

The following table presents some of the options:

Type Option Name Description

1 Maximum-Receive-
Unit

Using this option, the stations can agree on a frame length (MTU) longer
than 1,500 bytes (all stations are obliged to transmit frames of at least
1,500 bytes). The Data field of the option then specifies the length of
the frame.

2 ACCM (ASYNC.MAP) Four bytes of the Data field, i.e., 32 bits, are used to specify which
control characters (the first 32 characters of ASCII table) are replaced by
an escape sequence (7D16) and the value of the actual character
increased by 32 (2016). If, for example, the 5th bit in the 32-bit string is
set to 1, then 7D2516 will be transmitted instead of the character 0516. If
there is no risk of misinterpretation, then, as a rule, both sides agree on
an ACCM that consists of zeros only.

3 Authentication-
Protocol

Request for authentication by a specific authentication protocol. For
example, for PAP the Data field of this option contains hexadecimal
C023, for CHAP it contains C223, for EAP it is C227, and so on. When
dealing with CHAP, this option, in addition to protocol ID (C223), also
carries a one-way function identifier: 0516 for MD5 algorithm, 8016 in the
case of the MS CHAP protocol in version 1 (which uses MD4 algorithm),
8116 in the case of MS CHAP protocol version 2.

5 Magic-Number This contains a random 4-byte magic number that serves to detect the
feedback (loop) in the line. If the recipient receives a Configure-Request
with the magic number filled in, it finds out whether by chance the previous
Configure-Request had the same magic number. If so, it is probably a case
of feedback. In this case, it generates a different magic number for its
response. If it is not a case of feedback, it copies the original magic number
into its response. Some PPP implementations repeat the first frame in the
line until they receive the first response. By presenting the same magic
number, they signal that it is a case of frame repetition.

7 Protocol-Field-
Compression

Compression of leading zeros in the protocol number. The PPP frame
contains a 2-byte field that specifies the type of protocol (e.g., 002116 for
IP-datagrams). At the beginning of communication, it must always be
a 2-byte field. After the confirmation of Protocol-Field-Compression, a
1-byte field is used, i.e., the first byte is left out if it contains 0.

8 Address-and-
Control- Field-
Compression

In PPP frames, the Address field always contains the value FF and the
control field always contains the value 03. After the Address-and-
Control-Field-Compression is confirmed, the sender leaves out this field
and the recipient automatically fills it back in.

Chapter 4

Code Option Name Description

13 Call-Back Request for call back. After the confirmation of this request, the
authentication phase should be carried out and the LCP dialog should
lead to hanging up the line, after which the second end of the line
establishes a connection. The data field of this option includes the phone
number type (phone address type). As a rule, it contains the value 06,
i.e., it will be negotiated by CBCP (see RFC 1700).

17 Multilink-MRRU Confirmation of this option signals that the system has MP protocol
implemented. The data field of this option contains the maximum packet
size that the system is able to rebuild (see Section 4.4.5).

18 SSNH Request to shorten the MP header from 4 to 2 bytes (see Section 4.4.5).

19 Multilink-
Endpoint
Discriminator

Explicit identification of the computer as the end of the connection for MP
(see Section 4.4.5).

23 Line-
Discriminator
for BAP

Explicit identification of the line within one computer (see Section 4.4.5).

Table 4.2: Option names

To understand better the function of individual fields, see the list of frames shown below that details
the Configure-Request command by which the Windows server specifies its connection requests. (A
standard configuration for the dial-up connection was used, and the PAP authentication protocol was
used, which, for security reasons, Windows server is quite reluctant to use. But it wouldn't have been
possible to capture the password if a different authentication protocol was used.)

+ Frame: Base frame properties
 PPP: Unknown Frame (0x0)
 PPP: Destination Address = SEND_
 PPP: Source Address = SEND_
 PPP: Protocol = Line Control Protocol
 LCP: Config Req Packet, Ident = 0x00, Length = 44
 LCP: Code = Configuration Request
 LCP: Identifier = 0 (0x0)
 LCP: Length = 44 (0x2C)
 LCP: Options:
 LCP: ASYNC.MAP:00 00 00 00
 LCP: Option Type = Async-Control-Character-Map
 LCP: Option Length = 6 (0x6)
 LCP: Async Control Character Map = 00 00 00 00
 LCP: AUTH:PAP
 LCP: Option Type = Authentication-Protocol
 LCP: Option Length = 4 (0x4)
 LCP: Authentication Protocol = Password Authentication Protocol
 LCP: Option Data: Number of data bytes remaining = 0 (0x0000)
 LCP: MAGIC#:0x6147A40
 LCP: Option Type = Magic-Number
 LCP: Option Length = 6 (0x6)
 LCP: Magic Number = 102005312 (0x6147A40)
 LCP: PROT.COMP
 LCP: Option Type = Protocol-Field-Compression
 LCP: Option Length = 2 (0x2)
 LCP: ADR/CF.COMP
 LCP: Option Type = Address-and-Control-Field-Compression
 LCP: Option Length = 2 (0x2)
 LCP: CALL.BACK:Unkn
 LCP: Option Type = Callback
 LCP: Option Length = 3 (0x3)

 85

Link Layer

 86

 LCP: CallBack = 0x06
 LCP: MRRU
 LCP: Option Type = Multiline-MRRU
 LCP: Option Length = 4 (0x4)
 LCP: Multiline MRRU = 1614 (0x64E)
 LCP: Option Summary = N/A
 LCP: Option Type = Multiline-Endpoint-Discriminator
 LCP: Option Length = 9 (0x9)
 LCP: Option Summary = N/A
 LCP: Option Type = Line Discriminator for BACP
 LCP: Option Length = 4 (0x4)

The above list contains the PPP frame that Windows server recalculated in the Ethernet frame
format. This frame can be recognized by the SEND Ethernet address, by which the Network
monitoring program says that it is dealing with a transmitted frame (see Section 2.2.1). The PPP
frame consists of the following:

• Code (Configuration Request=1)
• Identifier (=0)
• Length (44 bytes)
• Options. Here is a list of available options:

o ASYNC.MAP (Async–Control–Character–Map): This option
specifies which of the first 32 characters of the ASCII table are to be
introduced by an escape sequence. Since, in our case, the data field of
this option contains only zeros, no characters will be introduced, i.e., it
is a line that is not used, for example, as a terminal line; therefore
there is no risk of control character misinterpretation.

o AUTH.PAP: Request authentication by PAP.
o MAGIC: This option contains the magic number.
o PROT.COMP: Request Protocol-Field-Compression (i.e., a request

omitting the leading zeros in protocol numbers).
o ADR/CF.COM: Request Address-and-Control-Field-Compression

(i.e., requesting that these fields be omitted).
o CALL.BACK: Proposes that the call-back protocol be activated.
o Multilink MRRU: Is MP supported? How big a packet is it possible

to rebuild?
o Option Summary (Multiline-Endpoint-Discriminator): An explicit

identification of the connection (of the computer) in MP. The value of
the identifier is not shown in this listing; however, it is in a
hexadecimal listing.

o Option Summary (Line-Discriminator for BACP): An explicit
identification of the line within the computer.

Chapter 4

Figure 4.16: A fictional example of an LCP dialog

The above figure shows an example of an LCP handshake that is described as follows:
1. The first side sends its connection requests by a Configure-Request command.
2. The second side doesn't know the PROT.COMP option, which it communicates via a

Configure-Reject command with the PROT.COMP option.
3. The first side therefore sends a command that it thinks the other side should understand.
4. The second side understands it, but prefers the MRRU=700 option, which it

communicates via a Configure-Nack command with the MRRU=700 option.
5. The first side sends a command with options that it thinks will be acceptable for the

second side.
6. The second side confirms everything by the Configure-Ack command.

4.4.3 Authentication
Identity can be proven in two ways within PPP (the third possibility is, of course, to leave
out authentication):

• By terminal dialogue. This possibility was described in Section 4.4.1.
• By the authentication protocols of PPP family, namely:

o Password Authentication Protocol (PAP). This protocol is similar to
authentication by terminal dialog, i.e., the users also prove their identity
with their username and password, but they enter both values into the
PAP protocol (RFC 1334) and not directly into the terminal line.

o Challenge Handshake Authentication Protocol (CHAP). This
protocol is specified by RFC 1994 and is regarded as superior to PAP.
Both ends of the connection share a secret. The station that initiates

 87

Link Layer

the authentication generates a random string to use as a challenge, which
it sends to the other side. The second side concatenates this string to the
shared secret and, from the result, calculates the checksum by using a
one-way algorithm (for example, MD5). The result, which is a one-time
access password, is sent back. So, the one-time access password is sent
back to the station that initiated the process of authentication. This
station, however, knowing both the shared secret and the challenge, is
also able to calculate the one-time access password. Therefore, it
compares both passwords and, if they are identical, confirms the
successful result of the authentication to the other side.

o MS CHAP version 1 and 2.
o EAP (see Section 4.4.3.3).

Figure 4.17: Configuration of authentication protocols and encryption in Windows XP

In the figure above, the server side is set in accordance with the particular server in the Routing
and Remote Access program (PPP card).

4.4.3.1 Password Authentication Protocol
PAP is a simple protocol. The communication, as a rule, consists of two packets. An
authentication packet is submitted by an Authenticate-Request command, and the other
end either confirms the authentication with an Authenticate-Ack command or refuses it with
an Authenticate-Nak command.

 88

Chapter 4

Code Code Name Description

1 Authenticate-Request The packet that begins communication via PAP. It carries an option
with code 1, which contains the name and the password.

2 Authenticate-Ack Authentication confirmed.

3 Authenticate-Nak Authentication failed.

Table 4.3: PAP commands

An example of a Network monitoring program listing is as follows:
+ Frame: Base frame properties
+ PPP: Unknown Frame (0x0)
 PPPPAP: Authenticate Request
 PPPPAP: Code = Authenticate Request
 PPPPAP: ID = 5 (0x5)
 PPPPAP: Length = 27 (0x1B)
 PPPPAP: Side ID Length = 13 (0xD)
 PPPPAP: Side ID = Administrator
 PPPPAP: Password Length = 5 (0x5)
 PPPPAP: Password

4.4.3.2 Challenge Handshake Authentication Protocols
The advantage of CHAP is that both ends share the same secret. Therefore, it is easy to carry out
authentication from both ends. But sharing the secret is also a disadvantage of CHAP because it
is impossible to prevent misuse of the secret by the other side (unlike in the case of authentication
by a password, where the other side has access only to a password, which is invalidated by a one-
way function).

CHAP communicates in three steps. In the first step, a request containing a random string is sent
to the side to be authenticated with the Challenge command. The side to be authenticated then
runs both the shared secret and the challenge (random string) through a one-way function (for
example, the MD5 algorithm). The result is entered into a Response and sent back. The first side's
reaction is then either a confirmation of the authentication (Success) or a refusal (Failure).

Code Code Name Description

1 Challenge Carries the Challenge option

2 Response Carries the Response option

3 Success Positive confirmation of authentication

4 Failure Authentication failed

The disadvantage of CHAP is that both ends must have the shared secret at their disposal in an
open format. In many operating systems, however, this is not a common feature. In most operating
systems, the user specifies a password, but this password is not saved in an open format in the
operating system's user database. The operating system invalidates the password with a one-way
function and only the result of this operation is saved in the user database. Within the user
authentication process, the user passes his or her password to the system. The system applies the
above mentioned one-way function to the password and only the result of this operation is
compared with the data in the user database.

 89

Link Layer

 90

Microsoft has introduced a modified version of CHAP, specified as MS CHAP version 1 (RFC
2433). In Windows operating systems, passwords to which the MD4 one-way function has been
applied are kept. The user's password, invalidated by the MD4 algorithm, then represents a shared
secret. The client's software then applies the MD4 algorithm again to both the shared secret and
the random challenge.

The basic advantage of MS CHAP version 1 is its backward compatibility with LAN Manager
systems. However, double-sided authentication is not possible and, in particular, there is
a problem with the encryption of transmitted data. We will learn more about this in Section 4.4.5
that deals with other protocols, especially encryption protocols. It is important to realize that
encryption keys are, as a rule, derived from data that was exchanged during the authentication
phase. MS CHAP version 1 allows these keys to be derived from the shared secret only, which
means that when a user is using the same password, he or she is also using the same encryption
keys. These drawbacks have been resolved by MS CHAP version 2 (RFC 2759) which, however,
doesn't have backward compatibility with LAN Manager systems.

We should bear in mind that the selection of the specific CHAP version to be used (CHAP, MS
CHAP version 1, MS CHAP version 2, etc.) is already negotiated during the connection
establishment phase by LCP. With CHAP-type protocols, the Authentication-Protocol option
specifies two values. The first value specifies that it is a CHAP-type authentication protocol, and
the second value specifies the particular authentication protocol.

4.4.3.3 Extensible Authentication Protocol
Even though, in terms of frame format, EAP is very similar to CHAP, it is based on an entirely
different philosophy. While in PAP, CHAP, or MS CHAP, the authentication protocol is
negotiated by LCP during the connection establishment, in EAP, the only thing that is negotiated
during this phase is the fact that EAP will be used. EAP is specified by RFC 2284.

The fact that both ends agree to use EAP doesn't mean that a specific authentication algorithm will
be used—that is negotiated later by EAP itself. EAP therefore allows the use of an arbitrary
authentication mechanism; it is sufficient to implement this mechanism on both sides of the
connection. If EAP is used, the authentication phase has two steps: negotiation of the specific
authentication algorithm (which we call the authentication scheme) and then the actual
authentication. It is thus possible to implement authentication schemes that use various
authentication calculators to generate one-time passwords; you can use TLS (RFC 2716)
authentication and so on. At any rate, the EAP-MD5 scheme, which is a variant of CHAP, should
be implemented as follows:

1. The side that verifies the identity of the other side sends an EAP-Request message in
which it asks the other side to prove its identity.

2. If the side to be authenticated agrees with this authentication, it signals its agreement
in the EAP-Response.

3. The side that verifies the identity of the other side sends an EAP-Request message
(Challenge).

4. The side to be authenticated adds the shared secret (password) to the challenge and
applies the MD5 one-way function to it. The result is entered into the EAP-Response.

Chapter 4

5. The side that verifies the identity of the other side confirms the authentication with
an EAP-Success message or refuses the authentication with an EAP-Failure message.

One very interesting aspect of authentication is an authentication scheme that uses the TLS
protocol, namely EAP-TLS. This scheme utilizes server authentication (based on the server
certificate) and user authentication (based on the user's personal certificate).

Windows 2000 (2003 or XP, as the case may be) supports the use of smart cards that bear a private
key, which complements the public key from the certificate. In terms of security, using smart cards
and the EAP-TLS scheme together provides numerous possibilities for providing access to Intranet
servers through phone line connections. In practice, this looks as follows: the user start his or her
laptop, but is not logged into the system, puts a smart card into the card-reader of the laptop, and
enters his or her PIN. Using PPP, the system establishes a dial-up connection with the server.
Authentication against the server is done via EAP-TLS. If the authentication is successful, the user's
laptop is logged into the system and the connection with the server is established. The user can use
the same smart card to log into an intranet computer via a LAN, but this has nothing to do with PPP.

Another advantage of the EAP-TLS scheme is that on both ends of the connection, a master secret is
created, from where it is possible to 'chip off' encryption keys, shared secrets ensuring the integrity of
transmitted data, and so on. The disadvantage of the EAP-TLS scheme is that the user's certificates
must also be kept in the user database (i.e., it requires a PKI infrastructure). This specifically means
that on Windows 2000/2003, Active Directory must be available. Therefore, the EAP-TLS scheme
should be used in sophisticated solutions that are backed by well-designed projects.

A well-designed project can give employees who are on business trips or at home secure log-in
access to an internal network through a phone line, which could be even safer than using VPN.

Figure 4.18: The user is authenticated using a chip card and EAP-TLS in Windows 2000/2003

4.4.3.4 Radius Protocol
The problem with authentication is that a client usually does not want to log into the same access
server, but rather into various access servers. A classic example is connection to an Internet
provider that has its points of presence (POP) in various cities. In this case, the authentication

 91

Link Layer

information would have to be kept in each access server. The idea here is to centralize the
authentication information. There is one main server (or several back-up servers) in the network,
which keeps authentication information for each user. In addition to authentication information,
configuration information can also be kept (for example, the user's IP address, access filters, etc.).

The Internet provider's access server acts as a client for this type of server(s) and asks for the
following specific service: to verify the authentication end user's response, or to provide an IP-
address that is to be given to the user by IPCP protocol, and so on. The RADIUS protocol is
currently widely used as the protocol between the access server and the server with authentication
and configuration information. RADIUS is an application protocol.

In addition to RADIUS, there is also the RADIUS Accounting Protocol. With this protocol,
Access Servers can pass among themselves information about users' logins and logouts. The
RADIUS Accounting Server collects this information, which can later be used for various
purposes such as charging Internet users. On Windows 2000/2003, Radius is a part of Internet
Authentication Service (IAS).

Figure 4.19: Radius and Radius Accounting protocols

4.4.4 Call-Back Control Protocol
The Call-Back Control Protocol (CBCP) serves to negotiate a call-back with dial-up lines.
Basically, there are two possible call-back situations:

• The client establishes connection with the server and passes to the server the phone
number it should call back. The server calls back without checking the number. In
terms of security, this possibility doesn't provide anything new, except that the client
doesn't have to pay for the call. A better scenario would be for the server to check in
the database of users whether the number specified by the client is acceptable.

• The client establishes a connection with the server and doesn't pass the server a
phone number. The server then finds the number in the database of users (don't
forget that call-back negotiation is carried out only after the client is authenticated so
that the server knows who is on the other side).

 92

Chapter 4

It must be emphasized that a call-back in which the server checks the phone number it is
calling back has very strong potential in the area of security. In security jargon, this is called
double-locking.

A potential hacker would not only have to break the authentication protocol, (which, in the case of
EAP-TLS with a private key on a smart card, is very difficult), but would also have to break the
telephone exchange security system in order to create a dial-up circuit leading to himself or herself
instead of to the client. CBCP packets have the same format as LCP packets (the only difference is
that the protocol number is C029 instead of C021). CBCP uses the following commands: CB-
Request (code 1), CB-Response (code 2), and CB-Ack (code 3).

CBCP uses following options:

Code Code Name Description

1 No Call-Back Without call-back or call-back to the phone
number specified by the client.

2 Call-Back to user-specified number Call-back to the phone number specified by
the client.

3 Call-Back to administrator-defined
number

Call-back to the phone number chosen from a
database of users.

4 Call-Back to any number from a list
of numbers

Server calls back to one phone number from
the phone number list.

Table 4.4: CBCP options

When a client submits a phone number, the dialog is as follows:

1. The server sends a CB-Request with the No Call-Back option.
2. The client replies with a CB-Response command and the call-back to the user-

specified number option that contains three pieces of data:
o Time delay in the phone call.
o The phone number type (for example, 01 for classical analog networks

(PSTN) or ISDN networks).
o The phone number.

3. The server confirms the result by CB-Ack command.

It can also be possible for the client to refuse to submit a phone number and for the established
connection to carry on without a call-back.

When the server uses a phone number listed in the database of users, the dialog is as follows:

1. The server sends a CB-Request with the Call-Back to administrator-defined
number option.

2. The client replies with a CB-Response command and the call-back to
administrator-defined number option.

3. The server confirms the result with the CB-Ack command.

 93

Link Layer

4.4.5 Other Protocols

4.4.5.1 Multilink Protocol
MP is specified by RFC 1990 and specifies how to use several physical lines between two
computers at the same time. The result is that several lines create one virtual bundle—a thick wire.

Another important aspect for this protocol is that the individual lines that form the bundle can be
physically based on various technologies (dial-up lines, leased lines, X.25, etc.). A classic example
is a connection of both B channels in ISDN (Basic Rate).

The following figure shows an example of one-way communication:

Figure 4.20: MP and BAP (this is a two-way connection, although only one-way communication is shown)

 94

Chapter 4

It is assumed in the figure opposite that the individual lines have already established a connection
by LCP and with the help of the same protocol negotiated MP support. To achieve this, both sides
have to mutually confirm the MRRU support option that includes the maximum packet size that
both sides are able to assemble (1,500 bytes minimum). Both ends exchange their explicit
identifications via the Multiline-Endpoint-Discriminator option.

This identification allows PPP to recognize that certain lines lead to the same computer (the other
end of these lines has sent the same identification) and can therefore be put into the same bundle.
The end of the line identification consists of the following two parts:

• The class it specifies as the address type (2=IP address, 3=Ethernet address,
5=phone number).

• The actual address. Windows uses Ethernet addresses. So, for example, if the phone
connection lines are active, and you execute the ipconfig command with the /all
switch, you will see that the system has created Ethernet addresses for the serial lines.

Once the bundle has been formed, it can carry packets. As shown in Figure 4.20, the sender takes
a PPP packet consisting of the protocol number and data and inserts it into the bundle. But what if
the bundle consists of several lines?

The process that the sender carries out is called fragmentation (not to be confused with
IP fragmentation).

Packets can be (but don't need to be) cut into smaller pieces (fragments). Fragments are then
inserted into individual lines. Fragments have a completely normal PPP frame format (as shown in
Figure 4.13), but they use 003D16 as the protocol number. The MP header introduces the data
field. The receiver reconstructs the original PPP packets (consisting of the protocol number and
data) from the fragments.

The MP header contains the fragment number and the flags B and E. The header serves the
following two purposes:

• Allows the reconstruction of original packets from the fragments.
• Makes sure that the packets are reconstructed in the same order as they were inserted

into the virtual bundle. You have to remember that this is not on the network layer, so
PPP knows nothing about IP properties, and IP doesn't take care of keeping the correct
frame order. Moreover, certain protocols might not like changes in the frame order.

Numbers in the MP header serve to preserve the order of the fragments (the numbers are strictly
incremental). The B (begin) and E flags (end) signal that the fragment carries the beginning (or the
end) of the packet. If a fragment has the B and E bytes set up, it is a fragment carrying the whole
(uncut) packet. The MP header is 4 bytes long, and the fragment number is 24 bits long and has a
6-bit padding containing zeros.

Using the Short Sequence Number Header (SSNH) option, it is possible to negotiate a 2-byte
header. In this case, the padding is only 2-bits long and the remaining 12 bits carry the fragment
number. The above mentioned options are LCP options with codes 17 to 19 (i.e., these options are
negotiated during the 'establishing connection' phase).

 95

Link Layer

 96

4.4.5.2 Bandwidth Allocation Protocol and Bandwidth Allocation
Control Protocol
These protocols are specified by RFC 2125, and they allow you to dynamically add or subtract
individual lines from a line bundle (see Section 4.4.5.1). If BAP and BACP are implemented, then
each line that establishes a connection must, during the connection establishment phase, specify its
identification (within the computer) by the Line-Discriminator for BAP, which is an LCP option.
Thus we have the following two different identifications negotiated by LCP during this phase:

• Multiline-Endpoint-Discriminator, which identifies the entire computer. This
identifier uses MP.

• Line-Discriminator for BAP, which identifies a specific line within the bundle.
Each side of the connection uses independent IDs.

After this point, the BACP is activated. It is a simple control protocol with a simple function. If
both ends of the lines make a request to add or subtract a line from the bundle at the same time,
then the BACP kicks in to solve the situation and it does this basically by throwing dice. The side
with a smaller number wins and its requests will have priority. If both sides cast the same number,
the throw is simply repeated.

To put in a slightly more technical way, BACP is a protocol whose packets have a similar format
to LCP packets (protocol number C02BB16), so it uses the ,
(when different numbers are cast), (when the same numbers are cast), or

 commands. These commands contain only one option, Favored-Peer, which
carries a random 4-byte nonzero number. The side that is is the side that generates the
smaller number. And they don't throw a die with six sides, but with 2 sides.

Configure-Request Configure-Ack

Configure-Nack

Configure-Reject

favored
32

The goal of BAP is to add and subtract lines. BAP uses the following commands:

Code Command Name Description

1 Call-Request "I'd like to establish a connection through another line."
(Before a side starts to add a line it has to be confirmed by
the other side.)

2 Call-Response Add-line request confirmed.

3 CallBack-Request "I'd like to add a line, but you will have to dial it up. Do
you agree?"

4 CallBack-Response Add-line by a call-back request is confirmed.

5 Line-Drop-Query-Request "I'd like to drop a line."

6 Line-Drop-Query-Response Drop-line request is confirmed.

7 Call-Status-Indication After the confirmation of the add-line request, the Call-
Status-Indication option notifies whether it was
successful or not.

8 Call-Status-Response Response to Call-Status-Indication.

Table 4.5: BAP commands

Chapter 4

Note that all these responses are of the 'request confirmation' type (i.e., the response doesn't say if
the confirmation is positive or negative). We can get to know this even from the data segment of
the response. This segment starts with 1 byte (8 bits), which contains the error code:

• 00000000—Request-Ack
• 00000001—Request-Nack
• 00000010—Request-Reject
• 00000011—Request-Full-Nak (the requested action is refused when, for example,

the maximum or the minimum number of lines in the bundle has been reached)

The following options can be appended with the commands:

Code Option Name Description

1 Line-Type Speed and type of line. The types are, for example, 0=ISDN,
1=X.25, 2=analog, and so on.

2 Phone-Delta Contains information needed to dial the phone number (for
example, the phone number itself).

3 No-Phone-Number-Needed Information needed to dial the phone number is not
transmitted. (For security reasons, you may not want to
transmit the number.) It is saved in the configuration and due
to security reasons, we do not want it to be transmitted.

4 Reason The reason for adding or dropping a line (a text string).

5 Link-Discriminator This is used when a line is taken away. It contains the
identification of the line being removed (see the Line-
Discriminator for BAP LCP option).

6 Call-Status Information on the add-line status and on the action that
follows a failed dial-up connection. Status codes are
according to Q.931 (0 indicates a successful connection) and
the actions can be 0=dialing won't be repeated and 1=dialing
will be repeated.

Table 4.6: BAP options

4.4.5.3 Compression Control Protocol
CCP (specified in RFC 1962) serves to negotiate the data compression algorithm. PPP frames,
carrying CCP packets, use protocol number 80FD16 and again their format is derived from LCP. If
the connection is implemented by more than one line (MP) and it is a case of individual
compression in a particular line, then protocol number 80FB16 is used.

It's enough to look at Figure 4.20 and realize that either a packet or a fragment can be compressed.
Compression can take place either above the gear wheels (compression of the whole packet) or
beneath them (fragment compression). If the compression takes place beneath the gear wheels,
then, theoretically, it is possible to carry out compression only in certain lines and not in all of
them (for example, if they use compression on the physical layer with the V.42bis protocol).

Data frames carrying compressed packets then use protocol number 00FD16 (or 00FB16), i.e., a
compressed datagram. If compression fails (for example, the compressed packet would be bigger
than the original one), an uncompressed packet is sent. The protocol number tells the receiver
whether to carry out decompression or not.

 97

Link Layer

 98

CCP generally serves to negotiate the compression algorithm. The commands it uses are similar to
LCP commands and they are: Configure-Request, Configure-Ack, Configure-Nak, Configure-
Reject, Terminate-Request, Terminate-Ack, and Code-Reject with codes 1 to 7. There are two
special commands in CCP:

• Reset-Request (code=14): It is recommended that compressed data is periodically
compared with a checksum. If the receiver finds out that the compression failed, i.e.,
the checksum failed, then by means of the Reset-Request command, it requests that
the sender initiates (resets) all its compression counters, dictionaries, etc. In other
words, it starts compression from the beginning.

• Reset-Ack (code=15): When the sender resets all its counters and dictionaries, it
informs the receiver about it by means of the Reset-Ack command. The receiver also
has to carry out a reset to be able to decompress incoming data correctly.

Options serve to negotiate a particular algorithm. If this negotiation fails, it doesn't matter, because
communication still goes on without compression. Option codes then correspond to individual
algorithms. For example, Stac LZS has code 17, MPPC has code 18, and so on.

A particular negotiated compression algorithm is specified by the following standards:

• RFC 1967: PPP LZS-DCP Compression Protocol.
• RFC 1974: PPP Stac LZS Compression Protocol.
• RFC 2118: Microsoft Point-To-Point Compression (MPPC) Protocol.

When data is compressed, its encryption can be carried out. To do it the in the reverse order is not
very efficient, because encrypted data (gibberish) cannot be compressed very much.

4.4.5.4 Encryption Control Protocol
ECP (specified in RFC 1968) serves to negotiate an encryption algorithm. This protocol doesn't
serve to exchange encryption keys. Its syntax is similar to CCP syntax, including Reset-Request
and Reset-Ack commands. The principal difference shows itself when both ends cannot agree on a
particular algorithm. This could be a problem depending on both sides; the configuration and
communication may be terminated in such a case. For example, in Figure 4.17, it is decided a
connection should be made even if encryption is not available.

There are standards that specify agreements on particular algorithms, for example, RFC 3078. It
specifies that Microsoft Point-To-Point Encryption (MPPE) Protocol uses RC4 encryption.
A part of MPPE is also an agreement on the length of the encryption key (40, 56, or 128 bytes).

4.4.5.5 Setting Encryption Keys
If we have agreed on the encryption algorithm, the only things we need to keep happy are the
encryption keys. PPP derives encryption keys from the information that both sides exchanged during
the authentication phase. We have to realize that for authentication by, for example, one of the
CHAP protocols, both sides have to share a secret. The shared secret is essentially like a symmetrical
encryption key. However, when the shared secret is used directly as a symmetrical encryption key, it
could make the secret's disclosure quite easy. Therefore, the shared secret is ground by one-way
functions and, as a spice, a random string challenge is also added to the grinder.

Chapter 4

RFC 3079 derives keys for use with Microsoft Point-to-Point Encryption (MPPE) and specifies
the derivation of encryption keys in the case of authentication by MS CHAP version 1 and MS
CHAP version 2 protocols.

RFC 3079 also specifies the derivation of encryption keys in the case of authentication by EAP-
TLS. If we use EAP-TLS authentication, we already have the so-called master secret created on
both sides, from which we 'chip off' individual encryption keys (different ones for each direction
of communication). After that, we can start to secure the communication in the way TLS protocol
does. If the system is used in a well thought out way, EAP-TLS represents a rather high level of
security. Without much experience, however, it can cause trouble.

4.4.6 Internet Protocol Control Protocol
After a connection between both ends has been established, authentication has been carried out,
and the possible use of several lines as well as the compression and encryption have been agreed
upon, individual network protocols enter into operation. Each network protocol must negotiate the
opening of communication by its own control protocol.

IPCP is an NCP protocol for IP version 4 (see RFC 1332), i.e., IPCP is the control protocol for IP.
The IPCP frame format is similar to the LCP frame format, but its protocol number is 802116 (see
Figure 4.13).

Code Command Name Description

1 Configure-Request Configuration packet carrying requests for the change of implicit
parameters.

2 Configure-Ack Configuration packet with positive confirmation of the requests for the
change of implicit line parameters. For example, all the requested
changes of parameters are accepted.

3 Configure-Nak Configuration packet with the response that the opposite side doesn't
accept all the requests for the change of line parameters. The ones that
are not accepted are specified in this packet. The rest of the requests
made are accepted (i.e., requests not specified in the Configure-Nak
packet are accepted).

4 Configure-Reject Configuration packet refusing all requests. It can also be a
consequence of an invalid request code.

5 Terminate-Request Request for connection termination (termination of IP transmission).

6 Terminate-Ack Confirmation of the request for connection termination.

7 Code-Reject Request refused due to an unknown code. It can also be caused by the
fact that the opposite station uses a different version of the protocol.

Table 4.7: IPCP commands

 99

Link Layer

 100

IPCP uses the following options:

Type Option Name Description

2 IP-Compression-
Protocol

Compression of an IP header. The data field of this option contains
the numberical identification of the compression protocol, for
example, 002D16 for 'classical' compression according to RFC 1144,
described in CSLIP part. For Van Jacobson compression, perfected
in RFC 2507 to 2509, the data field contains 006116. Compression
parameters follow the compression protocol number. For classical
Van Jacobson compression, it carries two 1-byte parameters: Max
Slot ID (the highest slot number will be from zero up to this number)
and Comp Slot ID (if it's set to 0, the slot number cannot be left out
even in a succession of compressed packets from the same data
flow). Packets compressed according to RFC 2507 have, according
to RFC 2507, the following parameters: TCP_SPACE,
NON_TCP_SPACE, and so on.

3 IP-Address Passing an IP address to the other side. This allows you to
dynamically assign IP addresses. If a site wants to use a different IP
address, it responds with a Configure-Nak packet, where this
address is specified.

129 Primary-DNS-Address Primary name server specification. The data field contains a 4-byte IP
address of the primary name server.

130 Primary-NBNS-
server-address

Primary WINS server.

131 Secondary-DNS-
Address

Secondary name server.

132 Secondary-NBNS-
server-address

Secondary WINS server.

Table 4.8: IPCP options

In PPP, protocol identification uses the following values for IP:

• 002116 for the IP without any Van Jacobson's compression
• 002d16 for the Van Jacobson compressed TCP/IP
• 002f16 for the Van Jacobson uncompressed TCP/IP

In the case of compression, the situation is more complicated because not all packets have a
compressed header. It is therefore necessary to differentiate between the transmitted packets,
distinguishing the ones with a compressed TCP/IP header and the ones with an uncompressed one
(for example, the first packets in the flow).

Therefore in a PPP frame, the header (in the Protocol field) of an uncompressed packet has the
identification 002F16 (Protocol field in the IP-header is replaced by a slot number) and packets
with a compressed IP-header have the identification 002D16.

Here is an example of a PPP protocol frame carrying the Configure-Request command of IPCP
caught by a Network monitor program during communication between Windows XP and
Windows server:

Frame: Base frame properties
+ PPP: Unknown Frame (0x0)
 IPCP: Configuration Request, Ident = 0x05

Chapter 4

 IPCP: Code = Configuration Request
 IPCP: Identifier = 5 (0x5)
 IPCP: Length = 16 (0x10)
 IPCP: Option: Compression Prot. = 0x002D (Van Jacobson Compr. TCP/IP)
 IPCP: Option Type = Compression Protocol
 IPCP: Option Length = 6 (0x6)
 IPCP: Compression Protocol = Van Jacobson Compressed TCP/IP
 IPCP: Max Slot ID = 15 (0xF)
 IPCP: Comp Slot ID = Slot Identifier may be compressed
 IPCP: Option: Address = 10.1.1.1
 IPCP: Option Type = Address
 IPCP: Option Length = 6 (0x6)
 IPCP: Source Address = 10.1.1.1

Please notice that classical Van Jacobson compression (RFC 1144) with Max Slot ID and Comp
Slot Id parameters is requested.

4.5 Frame Relay
Frame Relay is a link-layer protocol used for large networks. It is specified in the following
standards: I.122, I.441, and ANSI TI.606 and mostly in the standards of the Frame Relay Forum
(FRF) group. See http://www.mfaforum.org.

Frame relay is usually used in permanent virtual circuits (dial-up lines are theoretically possible as
well, but haven't seen them in reality yet). A permanent virtual circuit is similar to a leased line. A
user would rent virtual circuits in his or her particular locality from a Frame Relay provider.

A Frame Relay is a datagram-oriented and connectionless service; so unnumbered frames are
transferred by it. The provider doesn't guarantee the frame delivery. Each frame contains
a checksum, so it is possible to check that the packet wasn't changed during the transfer. A
damaged packet is discarded.

The primary parameter of a virtual circuit is the amount of data that can be transferred by the user to the
virtual circuit within the time interval Tc. This quantity will be known as the bandwidth interval, and
we will also use the abbreviation Bc for it. A rate Bc/Tc is used more often and is known as
Committed Information Rate (CIR). CIR tells us how much data a user can transfer to a Frame
Relay network within a certain time unit. CIR is an abstraction because it is not possible to transfer the
exact amount of data in one second that the averaged CIR says. That is because data are transferred to
the network in whole frames and not just in parts. We are talking about a theoretical average.

A user makes an agreement with the provider on CIR for a particular bandwidth (for example, 64
Kbps) according to the user's needs. The user can also go over the agreed level during rush hour.
Of course, everything is for a certain fee, so the user may make an agreement on another speed as
well. It is called Excess Burst Rate (BE). BE indicates how many bytes a user can go over the Bc
in a Tc time interval.

Frame Relay is designed for speeds from 56 Kbps to 2 Mbps. But it is still effective even when
reaching speeds of 100 Mbps. So when you rent a leased line from a public telephone network
provider to interconnect, for example, four localities, you'll need four leased lines. You'll have
three modems in each locality and three connected interfaces on the router. The following figure
shows us the large site of a hypothetical company, which is situated in Berlin, Munich, Dortmund,
and Cologne.

 101

Link Layer

Figure 4.21: WAN based on leased lines

A Frame Relay provider, in contrast, runs its own data network as shown below:

Figure 4.22: WAN based on Frame Relay

A user (customer) is connected to this network in particular localities usually with one line with a
higher capacity. That user trusts data frames to the Frame Relay network provider and expects
them to be delivered to the user's other localities. The provider's network is constructed from
Frame Relay switches that transfer trusted frames between each other. The user actually doesn't
care through which switches his or her frame is traveling; he or she probably doesn't even care if
there's a Frame Relay protocol inside the provider's network.

It's enough to have one interface on a router in each locality and one line on the closest access
point of a Frame Relay provider to connect all the desired localities.

 102

Chapter 4

Virtual circuits will be established between particular localities as shown in the following figure:

Figure 4.23: Virtual circuits

In this figure, we can see that virtual circuits have been established between Munich and
Dortmund, Munich and Berlin, and Berlin and Dortmund. A network with the same topology as a
network where the particular localities are connected with leased lines is created. But instead of
leased lines, we have virtual circuits.

The physical line that is connecting, for example, the Berlin locality with a Frame Relay network
serves two virtual circuits at the same time. The Frame Relay provider has created a large private
network according to the customer's desire with the help of virtual circuits. But the Frame Relay
provider has many customers and can create a private WAN for every one of them. The classical
case of connecting a customer to the Frame Relay network is not that the actual computer would
connect to the Frame Relay network. A router is connected to the Frame Relay and single
computers are connected with the router in the locality by a local network.

Between the router of the user and the closest Frame Relay switch, there's a user-network interface
defined (see Figure 4.24). The customer trusts his or her frames to the provider on this interface. A
Frame Relay's characteristics that we're talking about are bound by this interface. The customer
doesn't care what's inside. It's similar to data networks based on the X.25 protocol. X.25 is just an
interface between the provider and the user.

Figure 4.24: Interconnection through the Frame Relay provider

 103

Link Layer

In the physical layer within Frame Relay networks, V.35 and X.21 interfaces are used. Circuits
with synchronous transfer are used (clocks are generated by the Frame Relay network).

The frame has a lot of lines to go through on its way through the circuit from the source to the end.
There's a line between the user and provider (user-network interface). Further, it has the particular
lines from one Frame Relay switch to another on its way and at the end there is a user-network
interface again. Every virtual circuit is identified with a Data Link Connection Identifier
(DLCI). DLCI is a part of Frame Relay header. If there are, for example, two virtual circuits going
from one location to other locations, then particular locations differ by DLCI in the header frame.

A Frame Relay protocol header usually has 10 bits for DLCI; so DLCI values ranges from 0 to
1023. Adding DLCI usually follows these rules:

DLCI Rules

0 LMI

1-15 Reserved

16-991 Virtual circuits

992-1007 Two-layer management

1008-1022 Reserved

1023 Virtual circuits management

Table 4.9: DLCI values

In Figure 4.25, a frame changes its DLCI gradually on its way from Berlin to Dortmund. The user
in Berlin gives the frame with DLCI=22 to the Frame Relay provider. A switch, in its
configuration table, has to change the DLCI to 32 and transfer the incoming frame from interface
1 to interface 2 (Dortmund locality of our customer through switch 2). Switch 2 is configured to
change the DLCI from 32 to 62 (Dortmund locality of our customer through switch 3). Switch 3 is
configured to change the DLCI from 62 to 92 and gives the frame to the end user.

Figure 4.25: DLCI

 104

Chapter 4

From a customer's point of view, the situation is much easier. When customers want to send a
frame from Berlin to Dortmund, they just fill the DLCI frame header with 22 and can be sure that
they will receive it in Dortmund with DLCI=92. In addition, when a frame is sent with DLCI=21
from Berlin, then it is received in Munich with DLCI=41. Contrariwise, when a DLCI=41 frame is
sent from Munich, it is received in Berlin with DLCI=21.

DLCI might be used within a Frame Relay network because of the following:

• It is unique in the context of the whole network of a Frame Relay provider.
• It is unique in the context of one Frame Relay switch.
• It is unique in the context of one Frame Relay switch interface.

4.5.1 A Frame Relay Protocol Frame
A Frame Relay protocol frame, unlike an HDLC frame, doesn't have an independent address and control
field. It has the common field of the header, which contains the DLCI and other control information. A
header is 2 to 4 bytes long. Usually, we see headers of 2 bytes in length (that is 10 bits for DLCI).

A header can have 2, 3, or 4 bytes. Each byte of the header contains an EA bit, which indicates
whether the following byte is still part of the header or if it is a part of the transmitted data. If
EA=0, the following byte is part of the header; if EA=1, this byte is the last byte of the header.

The DLCI field is the identification of a virtual circuit. The DLCI can be unique only within a
concrete network interface, within one Frame Relay switch, or within the whole network. We
usually meet DLCIs that are unique within a concrete network interface.

Figure 4.26: Format of Frame Relay frame

 105

Link Layer

 106

Bit C/R defines if it's a command (C) or response (R). Within a header 3 or 4 bytes long, we have
a DC bit as well, which when set to 0, specifies that the last six bits are part of the DLCI. If it's set
to 1, then the last six bits carry DL-CORE.

By setting Discard Eligibility (DE), you signal that the frame may be discarded (a frame set like
that has less importance). For example, when sending frames above the average line capacity
(CIR), you can set the DE bit to 1. Then if the network is not able to transmit all the frames, it
throws away first the frames with DE set to 1.

We still have Backward Explicit Congestion Notification (BECN) and Forward Explicit
Congestion Notification (FECN) bits to look at.

Even though setting these bits is not obligatory, we'll take a closer look at them. We can solve the
problem of congestion of the virtual circuit with their help. When sending data by a virtual circuit
from one end to the other, it doesn't matter when some packets get lost (for example, on the TCP
layer, the transmission will be repeated). The problem is with the congestion of the virtual circuit,
which means there is some bottleneck along the way that is not able to send the frames with the
desired speed. At such a point, frames are stored in buffers until the memory is full and other
frames have to be discarded. We call this situation line congestion.

Loss of frames means that the higher layers have to request retransmission of the higher layer
packets. Or it can even cause the loss of connection, so that the connection has to be re-
established. In both cases, it means higher amount of transmitted data and bigger overhead.

When the line is overloaded, every other (even small) traffic increase is congesting the line even
more and the line has less throughput. On the TCP protocol layer, the communication has to be
renewed repeatedly until the connection is closed. The user is angry and he or she thinks that there
is a network breakdown. The solution is in the response time prolongation on the virtual circuit.
This means that the virtual circuit will be acting as if it has smaller throughput on the output. So
the virtual circuit is getting the user's frames with less speed, but it tries to deliver those frames.
The user thinks that the link slows down, but it at least doesn't seem to be not working.

In the case of congestion of the virtual circuit, the network signals to the sender by turning the
BECN bit on and to the receiver by turning on the FECN bit (by sender and receiver, I mean the
user's router on the user-network interface, see Figure 4.27).

Chapter 4

Figure 4.27: Frame Relay Congestion Notification

If the network is overloaded, the BECN and FECN bits are set. The network knows about the
overload if it has prepared to throw away frames or it has already begun to do this. The network
can also predict the congestion by finding out that some line is close to overloading when
controlling the queue of gathered frames on the Frame Relay network points.

Setting the BECN and FECN bits is not pursued through the usual data links (data DLCI).
A service DLCI=1023 is reserved for such a signal, whose frames are sent to the user on the user-
network interface by the Frame Relay network. In the data part, such a service frame has a
structure derived from the XID command frame of the HDLC protocol (U-frames of the XID
commandof the HDLC protocol are used for commands and responses that carry configuration
information). In our case, the XID command carries the DLCI number of the congested virtual
circuit. Figure 4.27 shows us the situation when the disturbed virtual circuit has DLCI=2 on the
sender side.

The problem is that the user's access router will get, via a BECN bit, information that the virtual
circuit is congested. But is it possible for the router to lower the line load? It has to be intelligent
enough to signal the load to the higher layer.

In the case of the Internet, IP is used as the higher layer (in Figure 4.28, it's the highest layer of
the router).

 107

Link Layer

Figure 4.28: BECN signalization

The router has to contain support for this on the border of the Frame Relay and IP protocols. Support
for link congestion treatment can lie in several mechanisms. IP has its own mechanism for the
treatment of congested lines with the help of the ICMP protocol. A router that is forced to throw
away an IP packet due to congestion, informs the sender of the IP packet by an ICMP datagram
Source Quench.

After receiving the Sourch Quence ICMP, the receiver lowers the TCP connection speed. (Let's
note that Source Quench is not used with the UDP protocol.)

The router checks the proportion of received frames with the BECN bit set at regular intervals on
each virtual circuit. If the proportion is large, it begins to generate a Source Quench response in
ICMP protocol for the incoming packets on the actual virtual circuit.

There are other options as well. For example, the access router doesn't process the BECN frames
at all. Then on the TCP/IP protocol layer, TCP segments can be lost. The connection might seem
to be not working.

Another option is that the user's access router can work not only with the third layer (IP protocol), but
with the fourth layer as well (TCP protocol). Thus, the router could correct the window length directly
in the TCP segments header or could artificially hold up the responses from the other side. The source
would think that the line has a longer response to the destination, so it would lower the rate of sending
TCP packets. But interventions into the TCP on the router are considered to be indelicate.

4.5.2 IP Through Frame Relay
If we look at Figure 4.29 with the Frame Relay protocol frame, we will not find a field that carries
identification of a higher layer protocol. With the help from such a field, we could easily and
effectively put packets of different network protocol into a link frame (in our case, into the Frame
Relay frame). This problem is solved by RFC 2427 (Multi-protocol over Frame relay). A frame
according to RFC 2427 is shown in the following figure:

 108

Chapter 4

Figure 4.29: RFC 2427 Frame Relay frame format (see Figure 4.26 for header field 'Header')

This frame has the following added to it:

• A Control field derived from an HDLC control field, because Frame Relay uses
unnumbered frames. The control field has, in the case of a data frame, value=3.

• Padding that contains binary zeros to ensure the even length of the whole header
according to RFC 2427. So it's used when the Header (address) field has 3 bytes.

• A Network Layer Protocol ID (NLPID) field containing the higher-layer protocol.
Unfortunately, it has only one byte. Therefore we cannot count on all protocols of
a higher layer having their own number. For this reason, Sub-Network Access
Protocol (SNAP) headers are added carrying higher-layer protocol identification;
SNAP has 8016 as it's own NLPID identification (see Figure 4.30).

Figure 4.30: RFC 2427 Frame Relay frame format with SNAP header

A SNAP header contains an OUI field which identifies the organization that assigns higher-layer
protocol numbers for the Protocol Identifier (PID) field. For example, an OUI containing zeros
carries in the PID field any the same numbers that the Ethernet II protocol uses (for example,
080016 for IP and so on). Because a SNAP header is 3 bytes long, the padding field is used only in
the case that the Header (address) field is 2 bytes long. We can theoretically use three forms of
Frame Relay frames for the IP protocol:

• A standard form of a frame according to the Figure 4.26, which contains neither the
control field nor the NLPID field. The IP datagram is added directly into the data part.

• A frame according to RFC 2427 (without SNAP) when the NLPID field has a value
CC16 (IPv4 protocol)

• A frame according to RFC 2427 with a SNAP header when the NLPID field has
a value 8016. The OUI field only contains zeros and the PID field has a value of 80016.

 109

Link Layer

 110

There's another option possible. Within this option, we put PPP protocol into the Frame Relay frames
(PPP in Frame Relay) and then into PPP we put IP. This alternative is specified in RFC 1973. It's
derived from RFC 2427 (without SNAP), where the NLPID field has a value CF16. It's an option for
the PPP protocol that doesn't use HDLC encapsulation, but Frame Relay encapsulation.

4.5.3 Local Management Interface
We can use a Frame Relay network in a way where we mechanically put frames into a virtual
circuit, take them out on the other side, and do not care about anything else. But a Frame Relay
network is mostly able to give other information as well, such as various statistics, accounting
information, information about any concrete interface that may have been connected,
disconnected, configured, and so on. This communication works on the Local Management
Interface (LMI) protocol.

For such information, the DLCI service with number zero is used, where the user exchanges with
Frame Relay frames (carrying LMI), frames with appropriate information. During router
configuration, we write in the type of the LMI protocol implementation.

4.5.4 Frame Relay Configuration on CISCO Routers
It's necessary to understand that a Frame Relay provider will probably place a synchronous baseband
modem on our site (a modem that works in the base band), which we connect with, for example, a
V.35 cable. So all the virtual circuits (all DLCIs) will be connected to one serial interface (they will
be physically in one cable). Let's say they will be connected to the interface 'Serial 1'.

Each data DLCI will create a sub-interface and it will be marked in CISCO configuration with the
suffix .1, .2, and so on (for example, Serial 1.1). We don't explicitly configure the DLCI service
even if we activate, for example, LMI by a special command.

Frame Relay protocol can use standard encapsulation as shown in Figure 4.26 (frame-relay
encapsulation) or encapsulation according to RFC 2427 (frame-relay IETF encapsulation).

Example (DLCI=112):
Interface Serial 1
 no ip address
 encapsulation frame-relay IETF
 frame-relay lmi-type cisco
!
interface Serial 1.1 point-to-point
 ip address naka
 no ip directed-broadcast
 frame-relay interface-dlci 112

4.5.5 Frame Relay Protocol
The customer usually agrees with the Frame Relay provider on the following:

• The localities that will be connected with the virtual circuit.
• The Committed Information Rate (CIR) and Excess Burst Rate (BE).

Chapter 4

• The BECN and FECN bits setting. The user has to think about how to use them if the
user's routers are able to use these bits.

• The line that connects the user and the provider (connection such as leased line, fiber
optic, radio relay, etc.). Usually the Frame Relay provider provides the lines to
connect its network with the user as well. It's very important to know which physical
interface (V.35, X.21, and so on) will be used, so you would know which connection
cable you're supposed to buy for your router.

A frequent question is: What is the difference between Frame Relay and a public X.25 network?
Frame Relay is just a link-layer protocol (X.25 is a network layer protocol), so Frame Relay users
usually don't have some unique worldwide address. The second difference is that Frame Relay is a
datagram service, so the frame delivery is not guaranteed. X.25 stores data that couldn't be
processed into its buffer and transmits it gradually. A common characteristic is that both protocols
create virtual circuits.

4.6 Local Area Networks
Local Area Networks with transmission rates ranging between 10 Mbps and 10 Gbps belong
among medium-speed networks. The aim of the LAN is to interconnect computers (and other
communication appliances such as routers) within one or several buildings in a campus so they
can mutually communicate. When using optical cables, the LAN can cover several miles.

Many different LAN systems have been developed over the last few years, although, just two of
them have become more widespread: Ethernet and, to a lesser extent, the FDDI. (You can also
come across the Token Ring system by IBM, but this usually applies only to users that are fully
equipped with IBM appliances.)

In order to connect a computer to the LAN, we have to insert the appropriate network card first.
The LAN link protocols are partially executed directly in the network card.

The LAN comprises of the following parts:

• Cabling belongs to the physical layer.
• Network cards are inserted into computers and other devices. This is part of both the

physical and the link layer since part of the software for dealing with the link layer is
executed directly within the network cards.

• Link protocol (including link frames and their handshake).

Several LAN systems have been created independently from each other. Ethernet II is still used.
Some years ago, the Institute of Electrical and Electronics Engineers (IEEE) came up with a
project. The aim of this project was to unify existing initiatives and work out standards for
particular LAN types (for example, Ethernet, Arcnet, Token Ring, and so on). These standards
described the Media Access Control (MAC) layer for each type. The IEEE 802.3 standard was
created for Ethernet, IEEE 802.4 for Token Bus, IEEE 802.5 for Token Ring, and so on.

A joint standard, IEEE 802.2, was created for the Logical Link Control (LLC) layer of all systems.

 111

Link Layer

In other words, the LAN link layer has been divided into two sub-layers. The bottom MAC
layer—partially overlapping the physical layer—deals with access to the communication medium.
The top LLC layer enables you to initiate, administer, and terminate logical connections between
individual LAN stations.

Figure 4.31: IEEE 802 architecture

ISO has taken over the IEEE standards. So ISO 8802-2 originates in the IEEE 802.2 standard, ISO
8802-3 in the IEEE 802.3 standard, and so on.

4.6.1 Ethernet
The Ethernet protocol was originally developed by DEC, Intel, and Xerox. Its 10 MHz version is
known as Ethernet II. As stated above, the IEEE later normalized the Ethernet protocol as the
802.3 standard. This standard was taken over by ISO and published as ISO 8802-3. The frame
format according to the Ethernet II standard slightly differs from the ISO 8802-3 standard.
Gradually, the IEEE 802.3u standard for 100 MHz Ethernet (Fast Ethernet) and the IEEE 802.3z
standard for 1 GHz (Gigabyte Ethernet) were created.

Originally 10BASE5 thick coaxial cable was used for Ethernet distribution. A coaxial cable, which
could be only up to 500 meters in length, constituted one local network segment. The thick Ethernet
segment (as it was often referred to) mostly consisted of one piece of coaxial cable. Transceivers
would connect to the coaxial cable, connecting to the AUI ports of Ethernet cards added to
computers. The DB15 connector would be usually used for the AUI port.

10BASE5 means that it is a network using the transmission frequency of 10 MHz (that, for
Ethernet, also equals the theoretical transmission rate of the network).

Figure 4.32: The Ethernet segment formed by a coaxial cable

 112

Chapter 4

The massive expansion of Ethernet came with the use of thin coaxial cable. The thin coaxial cable
is interrupted at each station with a BNC connector welded or pressed by using special tongs onto
both ends of the interruption. A BNC-T connector is inserted between two BNC connectors. The
third BNC connector outlet is fixed directly onto the BNC connector of the Ethernet network card
in the computer. There are also transceivers for thin Ethernet; the BNC-T connector then connects
onto the thin Ethernet transceiver, and the cable leading from the transceiver connects onto the
AUI port of the computer.

Thin Ethernet, known as 10BASE2, can form a segment of a maximum length of 185 meters. If
the same auxilliary network cards are used in the segment, then with some types of these cards, it
is possible to extend the segment to 300-400 meters.

The LAN segment length is maximum at 500 (or 185–300) meters. A LAN can be extended by
using several segments that are interconnected by repeaters. A repeater is a box with two or more
network interfaces that are mutually interconnected. If a data frame appears at one of the
interfaces, it is automatically repeated to all others. A repeater may have both AUI and BNC ports,
so some segments might use thin Ethernet while others use thick Ethernet.

A pair of optical cables may be used between two repeaters; this type is sometimes referred to as
10BASE-F. The length of the optical interconnection of two repeaters may reach 1 km.

The repeater might also use ports for twisted-pairs. However, the situation for twisted-pairs
somewhat differs. A twisted-pair (to be more precise, two pairs of wires) is an connection between
the repeater and the computer. This is more like the transceiver-AUI-connector interface
(although, it does not have a power supply).

Figure 4.33: LAN consisting of individual segments

The repeater (as opposed to the coaxial cable) is the core of a network consisting of twisted-pairs.
The twisted-pairs come out of the repeater in a star formation, connecting particular computers. A
repeater for twisted-pairs is referred to as a Hub (hub was used for the active element of star-
shaped networks).

 113

Link Layer

Figure 4.34: HUB (repeater)

The connection between the repeater and the computer is formed by two twisted-pairs (four wires). It
is a duplex connection with one pair for each channel. From the viewpoint of the computer, one pair
is used for transmission, the other one for reception. Hubs used for twisted-pairs can be mutually
interconnected. Note that what is transmission to one is reception to the other, so the pairs must be
mutually crossed in the patch cord (similarly to null modems). Most often, hubs are supplied with a
switch fixed to one of the ports causing the pairs to cross. So a normal patch cord can be used,
connecting it to the port with a switch that is set to the relevant position.

Ethernet using twisted-pairs is referred to as 10BASE-T. There are also a ten times faster version
of Ethernet referred to as 100BASE-TX and Gigabyte Ethernet referred to as 1000BASE-CX.

Figure 4.35: Repeater for twisted-pair

 114

Chapter 4

(Repeaters cannot be used for combining 10BASE-T, 100BASE-TX, and 1000BASE-CX. A
switch must be used to interconnect them.) The length of the twisted-pair between a repeater and a
station can normally be up to 100 meters.

From the network model point of view, the repeater (hub) functions on the physical layer.
Communication over a LAN using repeaters between computers is transparent, i.e., the computers
on the LAN communicate to each other without knowing about the repeaters existence.

A bridge also interconnects individual LAN segments, though unlike a repeater it does not repeat
mechanically all the frames that appear at one of its ports. A bridge is a specialized computer that
works with a bridging table. The table contains a list of all the link addresses (MAC addresses) of
all of the LAN's network interfaces.

In the bridging table, each address has information behind which the network interface of the
bridge is located. If the data frame appears on some network interface of the bridge, the bridge
looks at the destination address in the data frame and (using the bridging table) finds out behind
which interface the address is located. It then only repeats the frame onto the interface where the
destination address is located. If it is the same interface, the frame is not repeated at all. Logically,
broadcasts are repeated into all interfaces.

Figure 4.36: Bridge

 115

Link Layer

 116

The possible size of the bridging table, i.e., how much memory is allotted to it, is an important
bridge parameter. The most important of all, however, is how to fill this table with correct data.
One of the possible answers is that the network administrator inserts the data manually. This might
sound ridiculous, but it is a suitable solution for high-security networks. In this case, the LAN
administrator sets exactly who can communicate with whom. At present, the bridges are
supplemented with another table that is a reversed version of the bridging table listing who is not
allowed to communicate with whom.

How can data be filled into the table automatically? The algorithm is very simple. The bridge
works similarly to a repeater when it is turned on, i.e., it repeats everything onto all interfaces.
However, it checks the source address of all incoming frames. The bridge knows what the source
interface is, so the source address as well as the relevant interface can be inserted into the bridging
table as a new entry.

It is possible to have several bridges in one LAN. The frame handover between individual
interfaces of the bridges may not be as fast as with repeaters (the response time can be longer). In
some cases, it can be useful to interconnect two bridges by, for example, a serial line with modems
or a laser connection.

The repeater is the core of LAN segments. Individual segments are interconnected via bridges.
Computers that communicate with each other more intensely, such as computers within one
department, share a common segment. It is advantageous to connect, for example, the router to the
Internet or central servers to separate ports of the bridge. The bridge is used to separate the traffic
between particular segments.

Another solution is to use a bridge with a high number of ports while not using repeaters for
individual network segments. This solution is sometimes referred to as switched Ethernet. The
core of switched Ethernet is the intelligent bridge that starts to process another frame immediately
after it has recognized to which interface it should repeat the previous frame. Such a bridge has
already been referred to as a switch.

Switches are powerful bridges that can repeat frames not only between individual Ethernet segments,
but also between, for example, Ethernet and Fast Ethernet, Ethernet and FDDI, and so on. The switch
has to not only change the frame format from, say, Ethernet to FDDI, but it also has to cope with
different transmission rates. When transferring data, problems occur between fast segments (FDDI)
and, for example, Ethernet, since FDDI can deliver data at a rate that Ethernet cannot handle. Frames
must be stored in the buffer memory of the switch.

Chapter 4

Figure 4.37: Switch

The CSMA/CD protocol is used for exchanging data between stations on Ethernet. Within this
protocol all LAN stations are equal. If any of the stations needs to transmit, it listens on the LAN
to find out whether any other station is transmitting. If the medium is not used (i.e., no other
station is transmitting), the station can start transmitting. However, two stations might have
decided to transmit at the same moment. So besides transmitting data, the station keeps listening to
check whether another one has started transmitting at the same time. Should another station start
transmitting, a collision occurs. For other stations to be capable of detecting such a collision, the
two stations cannot cease the transmission immediately, but keep transmitting characters of no
importance for a while, then they both stop transmitting at a randomly chosen moment.

The denser the traffic on Ethernet, the higher the probability of collisions. A reasonable workload
for the network is approximately 20%. So for an Ethernet of 10 MHz frequency, the throughput of
the network is calculated for approximately 2 Mbps, i.e., 256 Kbps.

If we have a segment with only two stations, a collision might also occur on the coaxial cable. The
situation is different if the segment containing two stations is linked by a twisted-pair that has
separate pairs for transmitting and receiving. Network cards then switch into the full duplex mode
in which both stations can transmit and receive data at the same time. This is referred to as a
collision-free segment. In these segments, speeds close to the theoretical maximum may be
achieved. If the LAN core is not the repeater, but a switch with individual stations being connected
via a collision-free segment, this is referred to as switched Ethernet. The collision-free segment
consists of a computer on one side and the switch interface on the other.

 117

Link Layer

The structure of the Ethernet protocol frame depends on the standard used. The structure within
the Ethernet II protocol is shown in the following figure:

Figure 4.38: Ethernet II frame format

Ethernet II begins with a synchronizing preamble (part of the physical layer) where all stations
receiving frames synchronize. The frame is finished by a checksum that reveals if any damage has
been done to the frame. Additionally, it contains 6-byte link addresses of both the source and the
destination. A field specifying the higher-layer (i.e., the network-layer) protocol and the
transferred data themselves (protocol specification: IP version 4, ARP, and RARP) are clearly
shown in Figure 4.38. The data field must be at least 46 bytes long, and if a lower amount of data
must be transmitted, the rest is filled with useless padding.

The physical addresses have 6 bytes. The first three bytes specify the network card producer and
the remaining bytes specify the particular card of that particular producer, so the addresses are
unique worldwide. This applies only to global addresses. They are stored in the permanent
memory of the network card. Upon initialization of the card by the driver, the card can be
commanded not to use that particular address, but a different one. Therefore, it is possible to use
your own local managed system of link addresses, for example, within one company. This
mechanism was used, for example, by the DECnet phase IV protocol.

The network card can use a globally dedicated address or a locally managed address. Besides these
dedicated addresses there are also broadcasts and multicasts. The broadcast (with an address
composed of 48 1s) is aimed at all LAN stations. The multicast (with the lowest bit of the first
byte set to 1) is aimed at only some LAN stations, i.e., the ones that accept the included address.

Figure 4.39: Destination link address

 118

Chapter 4

Bits zero and one of the first byte in a link address have a specific meanings that are as follows
(see Figure 4.39):

• Bit zero specifies if it is a dedicated address (unicast address) or broadcast/multicast
address.

• Bit one specifies if it is a globally managed address or a locally managed address.

As an example, let's have a look at an Ethernet II protocol frame statement from an MS
Network Monitor:

+ FRAME: Base frame properties
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 00000C31D211
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 0010A4F18B3E
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 74 (0x004A)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 60 (0x003C)
+ IP: ID = 0xAB06; Proto = ICMP; Len: 60
+ ICMP: Echo, From 195.47.37.200 To 194.149.105.18

For the ISO 8802-3 protocol, the situation is more complicated. The ISO 8802-3 protocol data
frame only differs in one field in comparison with Ethernet II as shown in the following figure:

Figure 4.40: IEEE 802.3 protocol frame (ISO 8802-3)

The data field (see Figure 4.41) can contain not only data, but also the ISO 8802-2 protocol
packet, the header of which can by extended by two more fields that form SNAP. In other words,
the stations are able to communicate to each other with the help of the following:

• Raw frames of the ISO 8802-3 protocol (without ISO 8802-2 and SNAP).
• ISO 8802-3 protocol frames that encapsulate ISO 8802-2 without SNAP,

colloquially referred to as Ethernet ISO 8802-2.
• The ISO 8802-3 protocol frames that encapsulate ISO 8802-3 with SNAP,

colloquially referred to as Ethernet SNAP.

The length field expresses the length of the data transferred. The two Ethernet standards differ in
this field. During operations, it is impossible to get the frame types mixed up, since the data length
is up to 1,500 B and the protocol specifications of the Ethernet II standard are expressed by
numbers higher than 1,500.

 119

Link Layer

Figure 4.41: ISO 8802-2 and SNAP

We will now see an example of an Ethernet SNAP frame statement:
+ FRAME: Base frame properties
 ETHERNET: 802.3 Length = 60
 ETHERNET: Destination address : 010081000100
 ETHERNET:1 = Group address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 0000810C3D50
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 60 (0x003C)
 ETHERNET: Data Length : 0x0013 (19)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 46 (0x002E)
 LLC: UI DSAP=0xAA SSAP=0xAA C
 LLC: DSAP = 0xAA : INDIVIDUAL : Sub-Network Access Protocol (SNAP)
 LLC: SSAP = 0xAA: COMMAND : Sub-Network Access Protocol (SNAP)
 LLC: Frame Category: Unnumbered Frame
 LLC: Command = UI
 LLC: LLC Data: Number of data bytes remaining = 43 (0x002B)
 SNAP: ETYPE = 0x01A2
 SNAP: Snap Organization code = 00 00 81
 SNAP: Snap etype : 0x01A2
 SNAP: Snap Data: Number of data bytes remaining = 38 (0x0026)

The chosen frame does not carry an IP-datagram as you might have expected. As for the Internet,
each station must support the Ethernet II protocol. Only the stations that somehow agree on using
Ethernet ISO 8800-3 can actually use it. That is the reason for the Ethernet II protocol being by far
the most widespread.

Let's get back to the field description. The Destination Server Access Point (DSAP) and Source
Service Access Point (SSAP) specify the source and destination applications sending/receiving
the particular frame. For example, the IP-protocol uses DSAP=SSAP=AA16 and NetBIOS uses
DSAP=SSAP=F016. When using the ISO 8802-2 protocol, it is possible to deliver data all the way
to the particular applications running on the station. There are even network protocols that use

 120

Chapter 4

this kind of address identification (do not use the network layer) for LAN communication. While
the use of such protocols is effective (one layer faster), they are non-routable, i.e., they are aimed
at being used only by a LAN, not the WAN. The NetBEUI protocol is an example of such an
exotic protocol.

The control field is completely analogous to the control field of the HDLC protocol. Again, the
stations can use U-, I-, and S-frames to communicate. The frames can be numbered; so if they get
lost or if an error occurs, retransmission can be requested and so on. As for the IP protocol, only
U-frames are used and the P/F bit is set to zero, i.e., the control field has a value of 0316 (similar to
the PPP protocol).

The Sub-Network Access Protocol (SNAP) header is used for specifying the higher layer
protocol, which is similar to the protocol field in Ethernet II. It consists of two fields. The 3-byte
Organization code field specifies the organization that administers the assignment of numbers for
higher-layer protocols that are carried in the Protocol field. Even the 00-00-0016 organization code
has the same higher layer protocol specifications as the Ethernet II protocol. In short, what was
missed in the ISO 8802-3 protocol in comparison with the Ethernet II protocol (the protocol field)
is clumsily taken care of by the SNAP header.

4.7 Wireless Local Area Network
Currently, the use of WLAN is rising. There are several reasons for this:

• Mobility—the user is not limited by the cable and socket.
• Fast and easy setup.
• Lower overall cost of building the network (no need to build expensive cable

distribution infrastructure).
• Extendibility by choosing a suitable antenna and setting its polarization

appropriately. In this way both the capacity and territory covered can be extended.
• Roaming is an important WLAN feature. If roaming is set, mobile stations can freely

move within an area covered by the signal of access points if these access points are
interconnected, for example, by the backbone network. Mobile stations log onto the
access point providing the best signal-noise ratio (SNR). Should this ratio decrease
below the limit set or should the signal disappear completely, the mobile station
switches into the promiscuous mode or looks for another access point with the best
signal-noise ratio. Roaming does not disturb the network communication of
particular applications in any way.

Usually, a WLAN is found:

• Outdoor environment:
o In places where it is impossible to use appliances attached by cables

and sockets such as hospitals or production halls.
o In combination with infrastructural cabling with desktops being

connected in the classical way with infrastructural cabling and laptops
being connected wirelessly.

o In temporary networks such as exhibition grounds, college dormitories, etc.

 121

Link Layer

 122

• Indoor environment:
o Internet and intranet networks.

WLANs use radio transmission in the 2.4 GHz or 5 GHz band as the transmission medium. No
broadcasting license is usually needed. Therefore, in this case no authority coordinates the
assignment of licenses; so you can end up interfering with other WLANs (such as those of Internet
providers). If we do not set up the network properly, we can even interfere with our own network.
Other interference sources can be appliances using the same band such as microwaves, Bluetooth,
personal wireless networks, etc.

The IEEE 802.11 standard specifies WLAN. WLAN use a Media Access Control (MAC)
Protocol referred to as Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA). It
was derived from the CSMA/CD (collision detection) that we know from Ethernet. As opposed to
Ethernet, however, wireless transmitters do not detect airborne collisions; therefore, the
confirmation system is used for their detection. The CSMA/CA protocol is also used for
association and re-association of the end station with the access point.

The signal can advance in one of the following ways in the WLAN:

• Direct Sequence Spread Spectrum (DSSS): This is the transmission of radio waves
in the band from 2.4 to 2.4835 GHz using DSSS. The transmitter changes the data
(bit) flow into the flow of symbols with each symbol representing a group of one or
more bits. Using a modulation technique such as the Quadrature Phase Shift
Keying (QPSK), the transmitter modulates or multiplies each symbol by a pseudo-
random interference sequence. This operation artificially increases the bandwidth
used in connection to the sequence length. The DSS divides the band into 14
channels of 22 MHz each, partially overlapping. There are just three non-overlapping
channels in the band.

• Frequency Hopping Spread Spectrum (FHSS): The transmission of radio waves
of 2.4 to 2. 4835 GHz using FHSS transmits one or more data packets via one
frequency (the band is divided into 75 sub-channels, each of 1 MHz) then hops onto
a different frequency. The method of hopping between individual frequencies is not
random, but uses a repeating order that is known to both the transmitter and receiver.
In order to minimize the possibility of simultaneously using one sub-channel, it is
possible to set various conversations using different keys.

• Diffused Infrared (DFIR): Local infrared data communication is limited to one
office or another undivided space. This is due to the fact that infrared rays do not go
through solid matter, but bounce off.

There have been and there still are many different attempts to extend the IEEE 802.11 standard in
order to improve the functionality of the WLAN. This includes 802.11b, known as Wireless
Fidelity (WI-FI), which enables reaching a theoretical rate of 11 Mbps in the 2.4 GHz band. This
is provided by Complementary Code Keying (CCK). The transmission rate changes
dynamically based on the signal and noise levels. The 11 Mbps rate already includes overhead so
the usable rate is approximately 40% lower with a strong correlation to many factors such as the
number of end stations, the transport protocol used, the length of the files transported, and so on.

Chapter 4

4.7.1 Typical WLAN Configuration

4.7.1.1 Peer-To-Peer Networks
This is also called the ad-hoc mode. Wireless stations communicate directly with each other. No access
point is needed nor any configuration. This method is suitable for a maximum of 8 to 10 computers.

Figure 4.42: Peer-to-peer WLAN

4.7.1.2 Access Point
The WLAN access point is stationary and forms a base radio station and data bridge. The access
point is usually connected to the network via, for example, an Ethernet.

Security features such as encryption or filtration of link or IP addresses can also be set in the
access point. The number of end stations that can be connected to one access point is 15-38.

Figure 4.43: WLAN Access Point

 123

Link Layer

4.7.1.3 Roaming (Several Access Points)
If roaming is enabled, the end stations can move freely with individual access points handing them
over between each other.

Figure 4.44: Roaming WLAN

4.7.1.4 Backbone Point-to-Point Connection
This is the interconnection of two networks via access points in the point-to-point configuration.
This connection is typical for an outdoor solution using a supplementary beam antenna.

Figure 4.45: Backbone point-to-point connection

4.7.2 Antennas
WLANs are used not only indoors as an alternative to a classical 'wired' Ethernet, but they are
being also used more and more outdoors. In such cases, lighting arresters and supplementary
antennas are used. By combining powerful transmitters and good antenna gains, it is possible to

 124

Chapter 4

communicate over significant distances. These appliances usually work in the half-duplex mode,
but they can be modified into a full-duplex connection by using two parallel pairs of antennas, one
for the transmission and the other for the reception. An antenna with high gain located at the
destination point will also help us solve the problem of radiated power fall-off with distance.

The antennas are used with horizontal, vertical, or circular polarization. The vertical or horizontal
polarizations are set by turning the antenna; however, circular polarization requires a different
antenna type such as a spiral antenna. Parabolas of various diameters are used for the point-to-
point connection while for the point-to-multipoint communication, Yagi antennas, i.e., horizontal
multidirectional antennas or sector antennas are used.

When building antennas outdoors, it is necessary to respect and verify physical rules governing
radio communication such as the Fresnel zone, which sets the maximum height of objects located
between antennas.

4.7.3 Security of WLAN
Until recently, WLANs were using several not-very-secure features of wireless network
protection. Let's have a look now at some security features used by WLANs.

4.7.3.1 Service Set ID
The SSID is a reference to the access point, which can be set as needed (also called network
name). It is possible to set the access point so it transmits the network ID at regular intervals thus
enabling the user to choose the appropriate network based on the revealed SSID. This is not very
secure since the SSID is revealed to potential hackers as well. Another possibility is the manual
configuration of the SSID at the end stations.

4.7.3.2 Wired Equivalent Privacy
The WEP protocol is a facultative part of the IEEE 802.11b standard, which provides
authentication of stations and transmission encryption. However, many WLANs do not use it. It is
switched off implicitly, although it is vital for data security and network management, and for
these reasons, it should be switched on. The WEP protocol uses symmetrical encryption.

For the authentication of end stations, all stations use an identical 40-bit long shared secret that will
be used by the end stations together with their link addresses for access point authentication. It is a
one-sided authentication of the end stations (appliances), not user authentication.

For data encryption, a 64-bit key is used (although, some producers offer a 128-bit key)
consisting of the user key and a changeable initialization vector of 24 bits. The initialization vector
changes with every packet. The RC4 algorithm is used as the encryption algorithm.

The security of the WEP protocol is questionable since captured data can be easily used for
decrypting the cipher using commonly accessible programs such as WEPcrack or AirSnort. Due to
holes in the system of security keys, AirSnort is capable of breaking the cipher within seconds
after one day of passive sniffing.

 125

Link Layer

Oftentimes, WLANs are used at a point-to-multipoint Internet user connection. In such
cases, users using the same access point for connection must realize that by sharing the
same Ethernet segment they are also sharing the same key. We recommend that our users
use other means of protecting their data from their neighbors such as IPsec or security
measures at the application level (SSL/TLS, S/MINE, SSH, etc.).

4.7.3.3 IEEE 802.1X
WLAN security was questionable. The IEEE 802.1X standard is becoming increasingly common for
security measures. It involves user authentication, encryption, and secure distribution of keys.
Figure 4.46 shows a typical way of using this security system (used, for example, by Lucent for the
WLAN in the Orinoco network.). Again, EAP-TLS is used here (see Section 4.4.3.3).

Figure 4.46: IEEE 802.1X security system

 126

Chapter 4

4.8 Fixed Wireless Access
Fixed Wireless Access networks (also called Wireless Local Loop) is a wireless technology
enabling broadband connection such as point-to-multipoint. The FWA is an alternative solution to
the 'last mile', giving telecommunication service providers an option to access end users directly. The
main feature of this technology is the high throughput of the band enabling attainment of high-rate
data transport and voice communication, as well as provision of other telecommunication services.

This is a cellular system based on a large number of mutually overlapping cells that work similarly
to the GSM networks with the end terminals being stationary (they can be located, for example, on
the customer's building) in direct visibility with the base station.

The base station is composed of shared managing hardware and an antenna system that provides
signal transmission for a 360° radius of 7-9 km. The signal transmission can be divided into
sectors ranging between 15° to 90°. By using frequency planning, it is possible to increase the
overall capacity of the base station and use the frequency spectrum optimally.

One base station with one or more sectors composes the basic construction unit of the FWA. By
mutually interconnecting the individual base stations, a network covering extensive areas is
created. A managing and operational center is a part of the network where the network operations
are checked and monitored as well as the quality of the services provided.

An end terminal is used to connect the customer. It consists of a compact antenna system and an
inner unit with a telecommunication interface that is used to connect the customer's network.

The FWA is formed by a broadband network in the bands of either 26 GHz or 3.5 GHz giving the
operators and Internet providers the option to offer quality services such as:

• Fast Internet access (up to 8 Mbps)
• Virtual Private Networks (VPN)
• High-rate transport of extensive data volumes
• Voice services based on the EuroISDN30 principle
• Conference services
• Multimedia services

The configuration as well as the modular nature of end terminals at the user's premises also
enables one to combine these services.

4.8.1 The Differences Between FWA and WLAN
These technologies are aimed at different targets. Thus FWA in contrast to WLAN:

• Does not have mobile stations and does not support roaming.
• Has assigned licensed frequency bands. Interferences from other networks does not

occur. It is usually possible to guarantee the client a certain bandwidth. But the FWA
provider pays a fee for the frequency assigned.

 127

Link Layer

 128

• The transfer rates and the capacity of both base and end stations are significantly
higher while the distant range is smaller.

• The FWA is aimed at voice transport; the end stations can be equipped with various
interfaces for connecting a router. They do not usually provide an Ethernet interface.

• The price of the end and base stations differs from WLAN appliances by up to
two orders of magnitude.

4.8.2 The Main Benefits of FWA
The main advantages are as follows:

• Guaranteed bandwidth
• High degree of reliability of transmission (99.995%) comparable to optical cables
• Flexibility and high capacity
• Effective use of the frequency spectrum width

5
Internet Protocol

Some link protocols are designed for data transportation within a local network, while other link
protocols transport data between neighboring routers in a wide network. Unlike link protocols, IP
protocol transports data between any two arbitrary computers within the Internet, i.e., through
many LANs.

Usually, the data is transported (routed) from the sender to the recipient through many routers.
A number of routers can appear between the sender and the recipient. Each router resolves routing
to the next router (next hop) independently. The data is thereby transferred from one router to
another. A hop means the next junction (a router or a destination machine) to which the data is
being transferred.

The IP is a protocol that enables the connection of individual (often local) networks into a worldwide
Internet. The Internet also got its name from Internet Protocol. The acronym Internet Protocol means
InterNet Protocol, i.e., a protocol connecting particular networks. Later it became an established
custom to write Internet instead of InterNet and that is how the term Internet originated.

Figure 5.1: InterNet

Internet Protocol

The IP consists of several individual protocols that are as follows:

• The actual IP.
• Internet Control Message Protocol (ICMP) that serves specifically to signal

abnormal states.
• Internet Group Management Protocol (IGMP) that serves for local transportation

of multicasts.
• Address Resolution Protocol (ARP) and Reverse Address Resolution Protocol

(RARP) that are often seen as independent protocols because their packets are not
encapsulated in IP datagrams.

Whereas in the link protocol, each network interface has its physical (i.e., link) address, which for
LANs consists of 6 bytes, in the IP protocol, each network interface has at least one IP address,
which for IP version 4 is 4 bytes and for IP version 6 is 16 bytes.

Figure 5.2: Link address and IP address

The basic element used to build a Wide Area Network (WAN) is a router with which individual
LANs are connected into a wide network. For a router, you can use a normal computer with
several network interfaces and a normal operating system or a specialized box into which you
usually do not connect a monitor or keyboard. The word router thus has two meanings. The first
general meaning of the word is a computer (classic computer or specialized box) that serves to
transfer data packets between two network interfaces. The second more practical meaning of
router is a specialized box that works as a router.

The ability to transfer data packets between the network interfaces of a router is called
forwarding. While this function is required for routers, for computers with a classic operating
system (UNIX, Windows, etc.), we have to solve the question of how to make the operating
system kernel prohibit forwarding.

The basic question is "Why are two protocols needed? Why is one link protocol not enough?"
A link protocol only serves for transporting data within a LAN (i.e., for transporting to the nearest
router, which unpacks the data from the link framework and repacks the data into a different link
frame). A different link protocol may be used at each interface of a router. Do not be fooled when
a router uses the same link protocol on its different interfaces, for example, Ethernet. Even in this

 130

Chapter 5

case, repacking is happening—we just have to keep in mind that an Ethernet frame uses different
physical addresses before unpacking than it does after reassembling.

A particularly strong argument in the debate as to whether two protocols are necessary is the
characteristics of protocols that only use a link layer for transporting data. For example, certain
communication participants only have link (6 byte) addresses such as the NetBEUI (Microsoft) or
LAT (Digital) protocols. These protocols are simple and usually faster at creating and processing
packets. However, because it is only possible to address a recipient within the LAN, it is not
possible to send data to a recipient behind a router, i.e., in a WAN. That is why these protocols are
marked as non-routable. They are usable only within a local network, not outside it.

Figure 5.3: Link protocols and IP protocol

Figure 5.3 shows that, unlike IP, which transports data between two remote computers on a WAN,
the link protocol only transports data frames to the next router. While each router throws away the
envelope in which the data is wrapped on a link layer and creates a new one, an IP datagram (IP
packet) is not changed by the router. The router must not change the IP datagram content. The
only exception is the Time To Live (TTL) entry in the IP datagram header. Each router is obliged
to diminish the entry by a minimum of 1. When the entry reaches 0, the IP datagram is thrown
away. Using this mechanism, the Internet tries to prevent endless wandering of packets through
the Internet. There are also other exceptions (like fragmentation, source routing, and so on), which
we will talk about later.

While for link protocols, the basic unit of transferred data is called a link frame, in the IP the
basic unit of transferred data is called an IP datagram.

Let's look at the situation illustrated in Figure 5.4 in which a sender from the local Ethernet 1
network sends an IP datagram to a recipient on the Ethernet 2 network. To make things simpler in
Figure 5.4, we marked the IP addresses of the sender and recipient with the words From and To,
as if the datagram were an email. We also marked the link addresses in the same way. For
example, in the figure the sender has HW1 as a link address.

 131

Internet Protocol

Figure 5.4: Sender sending IP datagram encapsulated into Ethernet frame

The sender wants to send an IP datagram to the recipient with the IP address IP2. It creates an IP
datagram, but to insert it into a local network, the sender must insert it into a link frame (in our
case, Ethernet). It's good to note the analogy that the IP datagram was embarked on an 'Ethernet 1
ship'. However, the data can only travel through the link protocol to router 1, which unpacks the IP
datagram from the Ethernet frame and looks at the recipient's IP address. Depending on the
recipient's IP address, it decides to which of its routers the IP datagram should be sent, i.e., on
which link protocol the IP datagram should be embarked.

However, making this decision is not easy. The router decides based on its routing table (which
we discuss in detail in Chapter 7). Let us suppose that the router has decided on the HDLC line.

Figure 5.5: The IP datagram is encapsulated into an HDLC frame

 132

Chapter 5

The router lowers the value of the TTL entry by a minimum number of 1 and inserts our IP
datagram into a different link protocol, which in our case is the HDLC protocol (see Figure 5.5). If
we compare the HDLC protocol to a container transport, then our IP datagram was reloaded from
the Ethernet 1 ship into an HDLC company container.

Our IP datagram is transported via the HDLC protocol to the next router, which again unpacks the
IP datagram from the HDLC envelope, lowers the value of the TTL entry, and, after wrapping it in
an Ethernet envelope, inserts it into the destination LAN.

Figure 5.6: The IP datagram is again encapsulated into an Ethernet frame

The same link protocol is purposely chosen (Ethernet) for both LANs to illustrate that the link
frames of these two LANs are totally different. In the sender's LAN, the Ethernet frame has the
sender's HW1 address and the recipient's HW2 address—whereas in the recipient's LAN, an
Ethernet frame is also used, but the sender's address is HW4 and the recipient's address is HW5.

5.1 IP Datagram
In explaining the TCP/IP protocol family, it is common to draw everything in a table that has
a line of 4 bytes, i.e., bits 0 to 31. We too will often refer to this description.

An IP datagram consists of a header and transmitted data. A header usually has 20 bytes.
However, a header can also contain optional entries that can make it longer.

 133

Internet Protocol

The structure of an IP datagram is shown in the following figure:

Figure 5.7: IP datagram

Before we start to describe particular header entries, we will capture an IP datagram using MS
Network Monitor. This way we will immediately be able to see whether what we are describing is
really being transmitted through the network. Now we can begin to look at the meaning of
individual entries in the IP datagram header.

+ FRAME: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 IP: ID = 0x5814; Proto = ICMP; Len: 60
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Service Type = 0 (0x0)
 IP: Precedence = Routine
 IP: ...0.... = Normal Delay
 IP:0... = Normal Throughput
 IP:0.. = Normal Reliability
 IP: Total Length = 60 (0x3C)
 IP: Identification = 22548 (0x5814)
 IP: Flags Summary = 0 (0x0)
 IP:0 = Last fragment in datagram
 IP:0. = May fragment datagram if necessary
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 32 (0x20)
 Protocol = ICMP – Internet Control Message
 IP: Checksum = 0xEBF0
 IP: Source Address = 194.149.104.198
 IP: Destination Address = 194.149.104.203
 IP: Data: Number of data bytes remaining = 40 (0x0028)
+ ICMP: Echo, From 194.149.104.198 To 194.149.104.203

 134

Chapter 5

Version IP is the first entry in the IP datagram header. This 4-bit (half-byte) entry consists of an
IP protocol version. In this chapter, we talk about version 4 of the IP protocol, which is why in this
case this entry has a value of 4.

Header Length contains the header length of the IP datagram. In the case of the captured IP
datagram shown below, the header length is 20. However, you can see from the MS Network
Monitor hexadecimal printout, the header length has a value of 5 (not 20). The explanation is
simple. The length is not expressed in bytes, but in 4-byte units, and 5 x 4 equals 20. Thus, even
when using optional entries, the header length must be a multiple of four. If the header is not
a multiple of four bytes, it will be padded to a multiple of four using a meaningless value.

The maximum length of an IP datagram header is limited by the fact that the entry header length only
has 4 bits available (11112=F16 =1510). The maximum IP datagram header length is 6010 bytes (=15 x
4). Since mandatory entries have 20 B, there is a maximum of 40 B remaining for optional entries.

Type of Service (TOS) is an entry that for a long time did not have a practical use. The TOS entry
is used to specify the IP datagram's transmission quality. The original meaning of the particular
bits of this entry is illustrated in the following figure:

Figure 5.8: Meaning of the particular bits of the TOS entry

However, RFC 2474 defines the entry in a new way. It does not even call it TOS anymore; the
entry is now called Differentiated Services (DS). The importance of this entry increased with the
requirement to guarantee bandwidth even in networks based on TCP/IP protocols and hence it was
introduced. These requirements were brought on especially by applications requiring sound and
video transmission.

It is necessary to provide a corresponding bandwidth on all lines leading between the sender and
the recipient for applications that have to guarantee a certain transmission bandwidth. For this
purpose, a Resource ReSerVation Protocol (RSVP) specified by RFC 2205 is used. If any
machine on this route does not support the RSVP protocol, the building of the guaranteed path is
threatened. We can use the following command in Windows XP to test whether it is possible to
build the route to a fictional address, http://www.company.com: pathping –R www.company.com

 135

Internet Protocol

Total IP packet length contains the total length of the IP datagram in bytes. Because this entry
only has two bytes, the maximum IP datagram length is 65,535 bytes.

Identifier of IP packet contains the IP datagram identification that is inserted into the IP
datagram by the sender's operating system. This entry, together with the Flags and Fragment
Offset entries, is used by the datagram fragmentation mechanism.

If the DF bit is set to 1, fragmentation is forbidden (see Figure 5.9). Setting it to 0, on the other
hand, means that fragmentation is possible. If the MF bit is set to 1, it specifies that this is not the
last fragment.

Figure 5.9: Flags

Time To Live (IP datagram lifespan) prevents endless wandering of an IP datagram through the
Internet. Each router is obliged to diminish the positive TTL entry by a minimum of 1. When it
reaches 0, the IP datagram is thrown away. The sender of the IP datagram is informed about this
via the ICMP protocol.

How do we set the value of the TTL entry? You can set it explicitly for the ping and traceroute
commands. If, however, the program developer does not set it explicitly, we are generally dealing
with an operating system kernel parameter. In Windows XP, you can change the default TTL with
the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Srvices\Tcpip\Parameters\
DefaultTTL register key. We have to add it to the register (it is of type REG_DWORD).

Next level protocol contains the identification number of the higher-layer protocol that is
encapsulated in the IP datagram. In practice, we would rarely come across a case in which the IP
protocol is communicated with directly. A higher-layer protocol (TCP or UDP) or one of the
ICMP or IGMP service protocols is always used. The ICMP and IGMP protocols are formally part
of the IP protocol. However, they act as higher-layer protocols, i.e., there is an IP protocol header
in the transported packet followed by the ICMP or IGMP protocol header.

The numbers of higher layer protocols are given to the protocols' authors by the IANA
organization. The assigned numbers can be found at http://www.iana.org./numbers.html. As a
point of interest, the numbers of some of the protocols described in this publication are listed in
the following table:

Number of Higher Layer Protocol Protocol

1 ICMP

2 IGMP

6 TCP

1710=1116 UDP

Table 5.1: Protocol numbers

 136

Chapter 5

A higher-layer protocol is not the only thing that can be encapsulated in the IP protocol. For
example, we can also encapsulate protocols that are not supported by the Internet and for some
reason need to be transported over the Internet such as Novell's IPX protocol (IPX over IP). Even
an actual IP datagram can be encapsulated over the IP protocol. At first sight, encapsulation of IP
over IP can seem like a waste of time. However, if we want to transmit data between two parts of a
private network over the Internet with an address 10.0.0.0/8 range, then this type of encapsulation
becomes necessary. Moreover, it is also possible to secure intra-IP datagrams with encoding and
a simple Virtual Private Network (VPN) can thus be created.

Number of Higher Layer Protocol (Decimal) Protocol

4 IP over IP

97 Ethernet within IP

111 IPX in IP

Table 5.2: Encapsulated protocol number (decimal)

If we need to transport IP protocol version 6 datagrams over a network that only supports IP
protocol version 4, then again we have no choice but to encapsulate IPv6 over IPv4. Table 5.2 lists
the numbers of some encapsulated protocols.

IP header checksum contains the checksum, but only from the IP datagram header and not from
the entire datagram. Its use is therefore limited. More detailed information on the calculation of a
checksum can be found in RFC 1071 and RFC 1141.

The problem with a checksum is that when a router changes any entry in the IP datagram header
(for example, it has to change TTL), it also has to change the checksum value, which requires a
certain overhead in the router.

Source IP address and Destination IP address contain a 4-byte IP source address and a 4-byte
IP datagram destination address.

5.2. Internet Control Message Protocol
ICMP is a service protocol that is part of IP. It is used to signal abnormal events in networks built on
the IP protocol. ICMP wraps its packets into an IP datagram, i.e., if we capture transported datagrams,
we can later find a link header then an IP header followed by the header of the ICMP packet.

It is possible to signal various states with ICMP; however, the reality is that any specific
implementation of TCP/IP can only support a certain number of these signals and, above all, many
ICMP signals may be discarded by routers for security reasons.

 137

Internet Protocol

An ICMP packet header is always 8-bytes long (see Figure 5.10). The first four bytes always have
the same meaning, and the contents of the remaining four depend on the ICMP packet type.

Figure 5.10: ICMP packet

The first four bytes of the header always contain the message type, message code, and a 16-bit
checksum. The message format depends on the value of the type field. The type field is a rough
division of ICMP packets. The field code then specifies a particular problem (soft division) that is
being signaled by ICMP.

 138

Chapter 5

Individual types and codes are listed in the following table:

Type Code Description What does it
signal?

Who processes
it?

0 0 Echo Reply to User
Application

User Application

 Destination unreachable Error User Application

0 Network unreachable

1 Host unreachable

2 Protocol unreachable

3 Port unreachable

4 Fragmentation needed, but fragment bit not set

5 Source route failed

6 Destination network unknown

7 Destination host unknown

9 Destination network administratively prohibited

10 Destination host administratively prohibited

11 Network unreachable for TOS

12 Host unreachable for TOS

3

13 Communication administratively prohibited by filtering

4 0 Source quench Error OS kernel for TCP
Thrown Away for
UDP

5 Redirect Error OS kernel

0 Redirect for network

1 Redirect for host

2 Redirect for TOS and network

3 Redirect for TOS and host

8 0 Echo request User
Application
Request

OS kernel

9 0 Router advertisement User
Application
Reply

User process

10 0 Router solicitation User
Application
Request

User process

11
0
1

Time exceeded
TTL equals 0 during transit
Fragment Reassembly Time Exceeded

Error User process

 139

Internet Protocol

 140

Type Code Description What does it
signal?

Who processes
it?

 Parameter problem Error User process

0 Pointer indicates the error

12

1 Missing a Required Option

 2 Bad Length

13 0 Timestamp request User
Application
Request

User process

14 0 Timestamp reply User
Application
Reply

OS kernel

17 0 Address mask request User
Application
Request

User process

18 0 Address mask reply User
Application
Reply

OS kernel

Table 5.3: List of ICMP messages

Now let's look at some specific message types.

5.2.1 Echo
This is a simple ICMP tool that we can use to test the accessibility of particular nodes in the
Internet. The applicant sends an 'Echo request' ICMP packet and the destination node is obliged to
reply with an ICMP 'Echo' packet.

All operating systems supporting the TCP/IP protocol contain the ping program, which the user can
use to send an echo request to the destination junction. The ping program then displays the reply.

The purpose of the identification field in an ICMP packet header lies in pairing the request with
the reply (so that we can find out to which request belongs a particular reply).

For example, in Windows XP, we would like to find out if the system on IP address
194.149.105.18 is alive (the word 'alive' is important because some systems reply "alive"):
D:\ >ping 194.149.105.18

Pinging 194.149.105.18 with 32 bytes of data:

Reply from 194.149.105.18: bytes=32 time<10ms TTL=63
Reply from 194.149.105.18: bytes=32 time<10ms TTL=63
Reply from 194.149.105.18: bytes=32 time<10ms TTL=63
Reply from 194.149.105.18: bytes=32 time<10ms TTL=63

This system has sent the echo application four times. The reply had a 32-byte long data part and it
was received within 10 milliseconds. The TTL entry had a value of 63 in the reply.

Chapter 5

5.2.2 Destination Unreachable
If the IP datagram cannot be transmitted further to the recipient, then it is thrown away, and the
sender is informed with the ICMP 'Destination Unreachable' message. Some specific reasons are
listed in Table 5.3.

5.2.3 Source Quench (Lower Sending Speed)
If some part of the network between the sender and the recipient is overloaded, then a router that is
not able to further transmit all IP datagrams, signals 'Source Quench' to the sender. If the sender
uses the TCP protocol, it lowers the speed by sending TCP segments. With the UDP protocol,
Source Quench messages are ignored. We are already acquainted with this message from the
FrameRelay protocol.

5.2.4 Redirect
With the help of this ICMP packet, dynamic changes are made in the routing table.

Figure 5.11: Redirect

In the figure above, Router 1 receives an IP datagram that needs to be forwarded to another address
thorough the same network interface through which the IP datagram came. It forwards the IP datagram,
but uses an ICMP redirect packet to instruct the sender to change its own routing table and not to ask
for such strange services anymore.

This situation occurs mostly when we have several routers on the local network, but individual
PCs on a LAN only have one default entry pointing to one of the routers after startup.

5.2.5 ICMP Router Discovery
This is a rather new feature—thanks to which do not have to manually configure any default
entries in the routing table of LAN computers (usually client PCs). After startup, the computer
sends an ICMP 'Router Solicitation' message and the routers on the LAN reply with an ICMP

 141

Internet Protocol

 142

'Router Advertisement' message packet that contains the address of the router, the length of the
address, and IP address/preference pairs. The computer can automatically generate the default
entry from the reply.

The higher the value of the preference, the more the IP address is preferred. The preference value
8000000016 signals that this address should be excluded from the routing table.

The routers reply back to the application for routing; however, at a random interval between 450 and
600 seconds, they should generate multicast for all systems on the LAN (224.0.0.1) or broadcast
(255.255.255.255) into the local network with ICMP 'Router Advertisement' message packets.

The lifespan entry states the time for which the information is valid, i.e., for which the entry is to
be kept in the PC's routing table.

5.2.6 Time Exceeded
This type includes two very different cases that are as follows:

• For Code=0, it signals that the TTL entry was lowered to 0 on the router, i.e., there is
a suspicion that the IP datagram got lost on the Internet and it will therefore be
eliminated.

• For Code=1, it signals that the recipient's computer is not able to complete the entire
IP datagram from the fragments within the set time (time exceeded for IP datagram
reassembly).

The ICMP time exceeded packet with code=0 is used by the traceroute (UNIX) or tracert
(Microsoft) program.

The tracert program is simpler than traceroute. This program sends ICMP 'Echo request' packets
from the source computer to the destination node. However, it sets the TTL entry to 1 in the first
packet. The first router in the path throws the packet away and returns an ICMP 'Time exceeded'
packet because it has to lower the TTL by at least 1, but in doing so it generates 0.

Thus in the IP datagram, the source computer receives an ICMP 'Time exceeded' packet from the
first router in the path. It is possible to find out the address of the first router in the path from the
sender's address entry in the IP header. The time interval between sending and receiving the
packet is measured, and thus the program knows the packet's traveling time from the sender to the
recipient and back. This repeats three times and all three times are displayed. At the end of the
line, the name of the router and its IP address (in brackets) are also displayed. The name is taken
from reverse resolution in DNS.

If the reply is not acquired within a time limit, an asterisk (*) is displayed instead of the time.
Then everything is repeated with a TTL=2 value, and so on. The router terminates its operation
when it receives an ICMP 'Echo' message from the destination node. The termination can also
occur when a router does not know the way to the destination computer, and the source computer
is sent an 'Destination unreachable' message.

Chapter 5

Figure 5.12: Tracert command

D:\> tracert kula.usp.ac.fj
Tracing route to kula.usp.ac.fj [144.120.8.11]
over a maximum of 30 hops:

 1 <10 ms 10 ms <10 ms cbuN002e00.pvt.net [194.149.104.193]
 2 10 ms 10 ms 10 ms phucbu.pvt.net [194.149.96.13]
 3 601 ms 561 ms 641 ms 951.Hssi5-0.GW1.NYC2.ALTER.NET [157.130.0.117]
 4 591 ms 571 ms 571 ms 143.ATM2-0.XR1.EWR1.ALTER.NET [146.188.177.50]
 5 591 ms 581 ms 571 ms 193.ATM1-0-0.BR1.EWR1.ALTER.NET
 6 400 ms 381 ms 360 ms sl-pen-11-h3.sprintlink.net [137.39.44.130]
 7 811 ms 591 ms 661 ms sl-bb10-pen-0-1.sprintlink.net [144.232.5.5]
 8 500 ms 651 ms 731 ms sl-bb22-stk-6-0.sprintlink.net [144.232.8.178]
 9 871 ms 831 ms 932 ms sl-bb23-stk-8-0.sprintlink.net [144.232.4.110]
 10 691 ms 650 ms 611 ms sl-bb10-sj-6-0.sprintlink.net [144.232.8.193]
 11 811 ms 771 ms 771 ms sl-gw2-sj-0-0-155M.sprintlink.net
 12 641 ms 651 ms 641 ms sl-cais-1.sprintlink.net [144.228.111.18]
 13 801 ms 811 ms 861 ms hssi9-0-0.hk-T3.hkt.net [202.84.128.253]
 14 801 ms * 811 ms f5-0.yck06.hkt.net [205.252.130.201]
 15 821 ms 831 ms 822 ms a6-0.tmh08.hkt.net [205.252.130.81]
 16 1402 ms 1342 ms 1362 ms s4-3b.tmh08.hkt.net [205.252.128.158]
 17 1381 ms 1362 ms 1352 ms 202.84.251.6
 18 1362 ms 1362 ms 1352 ms 202.62.120.6
 19 1422 ms 1372 ms 1392 ms 202.62.125.134
 20 1412 ms 1382 ms 1412 ms kula.usp.ac.fj [144.120.8.11]

Trace complete.

The traceroute program operates on a similar principle. However, it does not send ICMP 'Echo
request' packets, but instead, generates UDP datagrams (you can change the UDP port with the -p
parameter). If a filter is applied on a router on route to the destination computer, you can choose
a different UDP port number to find a 'hole' in the filter and find the route all the way to the
destination computer. One useful example for this technique is port number 53 (-p 53), which is
used by DNS.
$ /usr/sbin/traceroute -p 20000 libor.pvt.net

traceroute to libor.pvt.net (194.149.104.198), 30 hops max, 40 byte packets
1 cbuN003f00.pvt.net (194.149.105.17) 1 ms 1 ms 1 ms
2 Libor.pvt.net (194.149.104.198) 1 ms 1 ms 1 ms

 143

Internet Protocol

The destination computer usually replies with an ICMP 'Port unreachable' packet (type=3,
code=3). In addition to the time or an asterisk, the traceroute program can also write out !H
(unreachable destination), !N (unreachable network), !A (network administratively prohibited), or
!S (explicit routing failed).

5.2.7 Subnet Address Mask Request
Using this ICMP packet, a diskless station can ask for a mask of its network once it has received
its IP address via RARP protocol.

This mechanism is not very commonly used anymore. A station can acquire a mask of its network
by using the BOOTP protocol, with which it can also acquire other information. However, even
the BOOTP protocol is currently being replaced by the DHCP protocol, which is more complex
and provides more information. The BOOTP and DHCP protocols are both application protocols.

5.2.8 Time Synchronization
Using this ICMP packet, a destination computer is asked for the time. The mechanism is
illustrated in the following figure:

Figure 5.13: Time synchronization

The source computer enters the time of the request that was sent into the ICMP 'Timestamp
request' packet.

The destination computer enters 'Timestamp reply' two times into its reply:

• The time when the request was received
• The time when the reply was sent

 144

Chapter 5

The source computer thus finds out the time the reply was received (which of course is not
transmitted in any ICMP packet). By subtracting the time the request was sent from the time the
reply was received, the traveling time from the source computer to the destination computer and
back (Round Trip Time (RTT)) is deduced.

The time is stated in milliseconds from the previous midnight using the Greenwich Mean Time
(GMT). (Technically, we should write Coordinated Universal Time (UTC) instead of GMT. We
use GMT out of habit.)

5.3 Fragmentation
IP datagrams are wrapped into link frames. The link protocols only enable data transmission
within their frames up to a certain maximum limit. The maximum data size that can be inserted
into one link frame is called Maximum Transfer Unit (MTU).

Link Protocol MTU

Ethernet II 1500

Ethernet 802.3 SNAP 1492

Frame Relay 1600

FDDI 4478

Table 5.4: MTUs of link protocols

It is obvious from looking at the previous table that most link protocols have MTU in ones of
kilobytes. On lines connecting remote locations, we also sometimes encounter an MTU smaller
than 1 KB. The total field length of an IP datagram, however, is 16 bits long; so theoretically, it is
possible to create an IP datagram up to 64 KB long.

But what happens when an IP datagram on route from the sender to the recipient encounters
a router (see Router 2 in Figure 5.14), from which the line leading in the direction of the recipient
has an MTU less than the size of our IP datagram?

Figure 5.14: MTU between the router and the recipient

The router is not able to send the IP datagram. The router decides how to proceed based on the
'Fragmentation possible' flag (DF bit) in the header of the IP datagram (we will ignore the
possibility that there is another line leading to the recipient, even if with a worse metric). The
'Fragmentation possible' flag can either be set or not. So there are two options:

 145

Internet Protocol

• If fragmentation is possible, then fragmentation will be performed as described later
in this chapter.

• If fragmentation is not possible, then the router throws the IP datagram away
and informs the sender with an ICMP 'Fragmentation needed but fragment bit
not set' signal.

If we use a flag to prohibit fragmentation, we can also find out what the smallest MTU between the
sender and the recipient is, i.e., the maximum IP datagram size that does not need to be fragmented.

For example, we can do so using the ping command. Microsoft's implementation of the ping
command lets you prohibit fragmentation with the help of the -f parameter and allows you to set
the length of the IP datagram using the -l parameter.
C:\> ping -f –l 2000 recipient

This command either announces that the recipient is functional displays the RTT, or it will display
an error message, so we can find out whether on route fragmentation was needed for a 2000 B
long IP datagram. If fragmentation is needed, we can decrease the size of the sent IP datagram and
watch whether or not fragmentation is needed this time. We can proceed doing this until we find
the limit after which fragmentation is needed.

It would be much easier if the ICMP signal contained the MTU value that is valid for the line
causing the problem. This option was originally not considered. However, the MTU field was later
added to ICMP packets exactly for this purpose. This extension is rarely implemented.

The second two bytes from the header's unused four bytes were used in the ICMP packet. The
ICMP packet structure is displayed in the following figure:

Figure 5.15: ICMP 'Fragmentation needed and fragment bit was not set' message

If the MTU field is 0, the router does not support this new extension.

Now let's go back to the situation where it is specified in the IP packet that fragmentation is
possible. The router divides longer IP datagrams to fragments whose total length is smaller than or
equal to the MTU of the following line as shown in the following figure:

 146

Chapter 5

Figure 5.16: IP datagram shredding

The header of each IP datagram contains its identification, which is then inherited by its
fragments. Because of this identification, the recipient can find out which fragments it should use
to complete the datagram. No one except the recipient is eligible to complete the original datagram
from the fragments—not even a router that has a line leading from it with a big enough MTU to
accommodate the entire datagram. The reason is simple; the Internet does not guarantee that
individual fragments will travel the same route (it does not even guarantee the order in which they
will be received). So a router that tries to reassemble the datagram could jeopardize the connection
because it would never acquire fragments that take a different route.

Identification of IP datagrams can be unambiguous only within the frame of one higher-layer
protocol because the header of an IP datagram also contains the 'Protocol' field (meaning 'higher-
layer protocol'). A global identification can be understood as the chaining of the 'identification' field
and the 'protocol' field (plus, of course, the IP addresses of the sender and recipient). So theoretically,
two IP datagrams with the same identification can be sent in a row. However, one carries a TCP
packet and the other a UDP packet. Once again, this implementation is not very common.

Each fragment creates an independent IP datagram, which is needed to create a new IP header for
each fragment during fragmentation. Some data items (such as the higher-layer protocol or the IP
addresses of the sender and recipient) are acquired from the original IP datagram's header.

During fragmentation, the 'Fragment offset' field, which expresses how many bytes of the original
IP datagram's data part were inserted into previous fragments, enters the equation. The 'Total
length of IP datagram' field contains the length of the fragment, not the length of the original
datagram. In order for the recipient to find out how long the original datagram is, the last fragment
is labeled with a 'Last fragment' flag. The whole mechanism is illustrated in the following figure:

 147

Internet Protocol

Figure 5.17: IP datagram fragmentation

The network does not distinguish differences between the transmission of a fragment and the
transmission of the entire (non-fragmented) IP datagram. A non-fragmented datagram is
a fragment with an offset of 0 and a 'Last fragment' flag. That's why the words 'IP datagram' and
'fragment' are often interchanged.

The fragmentation mechanism even permits the fragmentation of fragments, if the fragment gets to
a router whose leaving line has an even smaller MTU.

It is important that each subsequent fragment entails loading at least 20 B of it header. As an
interesting aside, Figure 5.17 shows a TCP packet inserted into an IP packet. So what is so
interesting about it?

The interesting thing is that the TCP header is included only in the first IP fragment. So if the IP
datagrams are being filtered on the router, based not only on information from the IP header, but
also on information from the TCP header, it is only possible to filter the first fragment; the others
are left out. After a certain interval, the recipient finds out that it is missing the first fragment from
the IP datagram and signals this to the recipient with an ICMP 'Fragment reassembly time
exceeded' message. So during TCP packet filtering, it is important to not forget to filter these
ICMP packets in the opposite direction, if you do not want to provide an attacker with the
information that we ourselves are protecting through filtering.

Fragmentation is considered a necessary evil; applications requiring extremely secure
communication forbid fragmentation.

 148

Chapter 5

5.4 Optional Entries in the IP Header
Optional entries in the IP header are one of the more interesting facets of TCP/IP protocols. We
will demonstrate how dangerous it can be to use optional entries, and why many Internet providers
throw away IP datagrams that contain them. However, from the pure TCP/IP protocol point of
view, this practice is inexcusable (even if performed in good faith), and it can be compared to
requiring everyone to carry crutches in case they break their leg.

If a recipient receives an IP datagram with any of these options, it should also use the option in its
reply. Optional entries widen the IP header. Due to the IP header's maximum length of 60 B (out
of which 20 B is mandatory), the optional entries are limited to 40 B. Currently there are several
options for widening the IP header. They are as follows:

• Record route
• Timestamp
• Loose source routing
• Strict source routing
• IP Router Alert option
• Security options for Internet Protocol (RFC 1108), which is obsolete

Optional entries in an IP header follow the mandatory entries. Generally, optional entries have the
format displayed in the following figure:

Figure 5.18: IP datagram header options

Where the Copy bit is set to 1, it specifies that this option should be copied into all fragments
originating from this datagram. If the bit is set to 0, it is only copied into the header of the
first fragment.

The two bits that make up the Option class field have the following values:

• Value 0 if the IP datagram is carrying regular data or data earmarked for network
management

• Value 2 (=102) if the IP datagram serves to synchronize or measure the network

 149

Internet Protocol

The Option number field then specifies a particular option. The following table lists the commonly
used options:

Code Hexadecimal
Value

Decimal
Value

Length Option

0 00 00000 00 0 Does not
exist

End of options list. This is used if the
options do not end with the IP header.
The length field and data will not be
used.

0 00 00001 01 1 Does not
exist

No operation. Header padding up to
multiples of 4 bytes. The length field
and data will not be used.

0 00 00111 07 7 Variable Record route.

0 10 00100 44 68 Variable Timestamp.

1 00 00011 83 131 Variable Loose source routing.

1 00 01001 89 137 Variable Strict source routing.

1 00 10100 94 148 4 IP Router Alert Option.

Table 5.5: Option number field options

5.4.1 Record Route
If the header contains the option field Code=7, then each router on route to an IP datagram's
destination adds the IP address of its output interface into the IP header. Individual 4-byte fields in
the header of the IP datagram for IP addresses are called slots. It is possible to insert up to 9 slots
into the IP header for IP addresses.

Figure 5.19: Record route option

The length field contains the total length of the widening, and the ptr (pointer) field shows the first
free slot that is available for input (each subsequent router enters a new IP address and increases
the ptr entry by 4).

A datagram, on route from the source to the destination, collects the router's outgoing IP addresses
into its slots. If the destination machine supports this option too, then it uses this option in its reply
after first copying all slots from the received datagram into the sent datagram.

So using the ping command with the 'record route' option, we can find out the list of outgoing
addresses not only on the datagram's route from the source to the destination, but also on its way back.

 150

Chapter 5

With the Microsoft ping command, a 'record route' widening can be created with the -r parameter,
followed by the number of created slots. For example:
D:\> ping -r 5 ns.pvt.net

This generates an ICMP packet with the 'record route' option for five IP address slots. Although
the sender creates five slots, none of them are filled in. Therefore, the indicator for the first free ptr
slot points to the first slot.

The IP header is widened by 3 + 5 * 4 = 23 bytes as we can see from the captured IP datagram below:
+ FRAME: Base frame properties
 + ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 IP: ID = 0x673D; Proto = ICMP; Len: 84
 IP: Version = 4 (0x4)
 IP: Header Length = 44 (0x2C)
 + IP: Service Type = 0 (0x0)
 IP: Total Length = 84 (0x54)
 IP: Identification = 26429 (0x673D)
 + IP: Flags Summary = 0 (0x0)
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 32 (0x20)
 IP: Protocol = ICMP - Internet Control Message
 IP: Checksum = 0xCB51
 IP: Source Address = 194.149.104.198
 IP: Destination Address = 194.149.105.18
 IP: Option Fields = 7 (0x7)
 IP: Record Route Option = 7 (0x7)
 IP: Option Length = 23 (0x17)
 IP: Next Slot Pointer = 4 (0x4)
 IP: Route Traveled = 0 (0x0)
 IP: End of Options = 0 (0x0)
 IP: Data: Number of data bytes remaining = 40 (0x0028)
 + ICMP: Echo, From 194.149.104.198 To 194.149.105.18

The user can see the reply on his or her screen:
Pinging ns.pvt.net [194.149.105.18] with 32 bytes of data:
Reply from 194.149.105.18: bytes=32 time<10ms TTL=63
 Route: 194.149.105.17 ->
 194.149.105.18 ->
 194.149.104.193

So on route from the sender to the recipient (194.149.105.18) and back, there is only one router,
which on route to the recipient has the address 194.149.105.17 and on route to the sender has the
address 194.149.104.193. (By 'sender', we mean the user who issued the ping command).

This reply originated from an ICMP 'Echo' packet. The following frame displays the captured
reply with the slots filled in:

 + FRAME: Base frame properties
 + ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 IP: ID = 0x2DD8; Proto = ICMP; Len: 84
 IP: Version = 4 (0x4)
 IP: Header Length = 44 (0x2C)
 + IP: Service Type = 0 (0x0)
 IP: Total Length = 84 (0x54)
 IP: Identification = 11736 (0x2DD8)
 + IP: Flags Summary = 0 (0x0)
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 63 (0x3F)
 IP: Protocol = ICMP - Internet Control Message

 151

Internet Protocol

 IP: Checksum = 0x3334
 IP: Source Address = 194.149.105.18
 IP: Destination Address = 194.149.104.198
 IP: Option Fields = 7 (0x7)
 IP: Record Route Option = 7 (0x7)
 IP: Option Length = 23 (0x17)
 IP: Next Slot Pointer = 16 (0x10)
 IP: Route Traveled = 194 (0xC2)
 IP: Gateway = 194.149.105.17
 IP: Gateway = 194.149.105.18
 IP: Gateway = 194.149.104.193
 IP: End of Options = 0 (0x0)
 IP: Data: Number of data bytes remaining = 40 (0x0028)
 + ICMP: Echo Reply, To 194.149.104.198 From 194.149.105.18

5.4.2 Timestamp
This option is a variation on the record route option. Each router enters a timestamp into the IP
header when the datagram passes through it. A in ICMP time synchronization, the time is
registered in milliseconds from the last midnight (GMT).

Figure 5.20: Timestamp

The field code for this option has a value of 4416=6810. Two 4-bit fields, OF and FL widen the
format of this option.

The Microsoft ping command with the -s parameter generates an ICMP packet with the
'Timestamp' requirement. The number listed after the -s parameter states the number of allocated
slots. If you have to use both the timestamp and an IP address, it is possible to allocate a maximum
of four slots.

The ping -s 3 194.149.105.18 command generates the following IP datagram (shortened):
 ...
 IP: Option Fields = 68 (0x44)
 IP: Internet Timestamp Option = 68 (0x44)
 IP: Option Length = 28 (0x1C)
 IP: Time pointer = 5 (0x5)
 IP:0001 = Both time stamps and IP addresses
 IP: Missed stations = 0 (0x0)
 IP: Time Route = 0 (0x0)
 IP: Gateway = 0.0.0.0
 IP: Time Point = 0 (0x0)
 IP: Gateway = 0.0.0.0

 152

Chapter 5

 IP: Time Point = 0 (0x0)
 IP: Gateway = 0.0.0.0
 IP: Time Point = 16792576 (0x1003C00)
 IP: Data: Number of data bytes remaining = 40 (0x0028)
 ...

The user is then shown the IP addresses and timestamps. The milliseconds need to be transformed
to hours, minutes, and seconds, and we must not forget daylight savings time.

Pinging 194.149.105.18 with 32 bytes of data:
Reply from 194.149.105.18: bytes=32 time<10ms TTL=63
 Timestamp: 194.149.105.17 : 52251609 ->
 194.149.105.18 : 52531841 ->
 194.149.104.193 : 52251610

Which was brought by the IP datagram (shortened):
 ...
 IP: Option Fields = 68 (0x44)
 IP: Internet Timestamp Option = 68 (0x44)
 IP: Option Length = 28 (0x1C)
 IP: Time pointer = 29 (0x1D)
 IP:0001 = Both time stamps and IP addresses
 IP: Missed stations = 0 (0x0)
 IP: Time Route
 IP: Gateway = 194.149.105.17
 IP: Time Point = 52251609 (0x31D4BD9)
 IP: Gateway = 194.149.105.18
 IP: Time Point = 52531841 (0x3219281)
 IP: Gateway = 194.149.104.193
 IP: Time Point = 52251610 (0x31D4BDA)
 IP: Data: Number of data bytes remaining = 40 (0x0028)
 ...

5.4.3 Source Routing
Source routing lets you explicitly set through which routers an IP datagram should be transmitted
over the Internet. This is good news for hackers because it means that they can divert the
transmission of IP datagrams as needed.

There are two types of source routing:

• Loose source routing (code=8316) when an IP datagram is transmitted through
named routers. However, not all routers through which the IP datagram is
transmitted have to be named.

• Strict source routing (code=8916) when a list of routers must contain all routers
through which the IP datagram is routed. If the IP datagram is routed through a
different router, the routing will fail.

Figure 5.21: Source routing option

The source routing mechanism is quite complicated. Individual participating routers correct not
only the ptr field, but also the recipient's address in the IP datagram.

 153

Internet Protocol

Even if the sender addresses the destination directly from the application, the destination's address
in the IP datagram always contains the next router (next hop) from the list of routers. The whole
process is automatically secured by an IP layer that takes an IP address from the first slot on the
sender's machine and replaces it with the original destination address. The contents of particular
slots are moved to the left (the first slot was emptied after an address was entered into the
destination address field). The original destination address is saved in the last (free) slot. The ptr
(pointer) indicator points to a slot with an IP address one hop down the route.

The following routers proceed similarly. The entire process is illustrated in the following figure,
where the asterisk represents the slot to which the ptr field points:

Figure 5.22: Source routing

The Microsoft ping command lets you specify source routing with the help of the -j parameter for
loose source routing and the -k parameter for strict source routing. The parameter is followed by
the list of IP addresses through which the routing should be performed.

Example:
D:\ >ping -j 195.47.1.1 10.1.1.1
Output:

...
 IP: Source Address = 194.149.104.198
 IP: Destination Address = 195.47.1.1
 IP: Option Fields = 131 (0x83)
 IP: Loose Source Routing Option = 131 (0x83)
 IP: Option Length = 7 (0x7)
 IP: Routing Pointer = 4 (0x4)
 IP: Route To Go
 IP: Gateway = 10.1.1.1
 IP: End of Options = 0 (0x0)
 IP: Data: Number of data bytes remaining = 40 (0x0028)
 ...

When a user makes a mistake, he or she receives the following error message:
Pinging 172.17.101.1 with 32 bytes of data:
Reply from 194.149.104.193: Invalid source route specified.

 154

Chapter 5

This message results from the fact that source routing was prohibited on a particular router. Why is
source routing prohibited? The reasons involve security. Source routing can be abused in two ways:

• It is possible to divert the transmission of IP datagrams through a different router,
where the data will be sniffed or even changed with the help of source routing.

• It is possible to attack the inside of an intranet from the Internet with the help of
source routing, even though the intranet uses addressing for private networks (for
example, 10.0.0.0/8). These private networks are not directly addressable from the
Internet; this is one of the protections offered by intranets. To gain access, you can
use the firewall itself if it enables source routing (not very likely). An easier way is
through a computer that for some reason has a direct connection to the Internet. For
example, this could be the laptop of an employee, who connects to the Internet
directly through a dial-up connection when out of the office. When in the office, the
employee has a network card and works on the LAN. If the employee establishes
connection on both sides, he or she allows IP forwarding in the operating system and
thus supports source routing. The mechanism is illustrated in the following figure:

Figure 5.23: Source routing attack

5.4.4 IP Router Alert Option
An IP datagram is forwarded through the Internet via a series of routers. Under normal
circumstances, the router does not care very much about the contents of the forwarded IP
datagram, just as postal workers do not care about the contents of the letters they handle.

However, in addition to ordinary IP datagrams, some datagrams that are forwarded through the
Internet are for routing protocols and are directed to routers. These IP datagrams have their
destination address filled in (although it is the address of a router). The routers process these IP
datagrams on their way to the destination (the destination router) just like any other IP datagram.
However, the information carried in these IP datagrams can also be interesting to routers on the
way (in other words, those routers to which the datagram is not directly addressed). Under normal
circumstances, the routers on route do not even know that they were forwarding information that

 155

Internet Protocol

could be useful. At the same time, the sender does not know that there is a router on route to
which it is directly sending such information.

An IP datagram header can carry a notification option for the router that alerts all the routers on
the way that "This IP datagram is not addressed to you directly, but it forwards information,
which can also be interesting to you. If you know how, have a look at the information and use it."

Figure 5.24: IP Router Alert Option

5.5 ARP and RARP Protocols
If I am a station on a local network and want to communicate with another station on the same
network through an IP datagram, I address a 4-byte IP address to the station in the IP datagram.
In performing the transmission, I know the source IP address (my address) and the destination IP
address. I can therefore complete an IP datagram. But the problem is that this IP datagram must be
wrapped in a link frame, for example, in an Ethernet frame. In order to create an Ethernet frame, I
need the link (6 B) addresses of both the source and the destination. I am the source and I know
my link address, but I do not know the destination link address. How do I find out what this
address is? The answer is by using the Address Resolution Protocol (ARP).

ARP lets you to get the link address of an opposite station when you know its IP address. The
solution is simple and is shown in the following figure:

Figure 5.25: ARP

 156

Chapter 5

ARP sends a link broadcast to the LAN (link address FF:FF:FF:FF:FF:FF) with a request, "I, a
station with link address HW1 and IP address IP1, want to communicate with the station that has
IP address IP2. Who can help me localize the link address of the station with IP address IP2?".
The IP2 station hears the message and replies. It states its link address (HW2) in its reply.

ARP packets (see Figure 5.26) are wrapped directly into the Ethernet, i.e., they are not preceded
by an IP header. The ARP protocol is in fact independent of the IP protocol. That is why even
other protocols that have nothing in common with the TCP/IP protocol family can use it.

Figure 5.26: ARP packet

The Hardware type field specifies the link protocol used on the LAN. Number 1 is reserved for
the link protocol of Ethernet II. The list of allocated numbers is published on http://www.iana.org.

The Protocol type specifies the network's protocol type. This uses the same numbers as are used
for the protocol field in the Ethernet II protocol, i.e., the IP protocol is allocated the number 080016.

The HS field sets the length of a link address and the PS field sets the length of a network address.
By default, HS=6 and PS=4.

The Operation field specifies which operation is running. The ARP request has a value of 1 and
the ARP reply has a value of 2. This field is also defined for the reverse translation (RARP
protocol), where the RARP request uses a value of 3 and the RARP reply has a value of 4.

This information is followed by the source link address, the source IP address, the destination link
address (filled in with zeros in the request), and the destination IP address.

The request is sent with a link broadcast and has zeros in the destination link address field. The reply
has all fields filled in and does not need to be sent by broadcast. We should point out that the
destination and source will be interchanged in the reply. The following example makes this clear:
C:\ > ping 194.149.104.126

This command, which can send the first IP datagram (ICMP echo request packet), must use the
routing table to find out whether the destination is on the LAN or behind a router. In other words,
it must find the next hop. If the destination is behind a router, it looks for the link address of the
router. If the destination is not behind a router, it looks directly for the link address of the
destination (as in our case).

Now we already know that the destination IP address is 194.149.104.126 and is directly on the
LAN. We now need to find out its link address. The source operating system will generate the
following ARP request:

 + FRAME: Base frame properties
 ETHERNET: ETYPE = 0x0806 : Protocol = ARP: Address Resolution Protocol
 + ETHERNET: Destination address : FFFFFFFFFFFF
 + ETHERNET: Source address : 0020AFFA2589

 157

Internet Protocol

 158

 ETHERNET: Frame Length : 42 (0x002A)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 28 (0x001C)
 ARP_RARP: ARP: Request, Target IP: 194.149.104.126
 ARP_RARP: Hardware Address Space = 1 (0x1)
 ARP_RARP: Protocol Address Space = 2048 (0x800)
 ARP_RARP: Hardware Address Length = 6 (0x6)
 ARP_RARP: Protocol Address Length = 4 (0x4)
 ARP_RARP: Opcode = 1 (0x1)
 ARP_RARP: Sender's Hardware Address = 0020AFFA2589
 ARP_RARP: Sender's Protocol Address = 194.149.104.121
 ARP_RARP: Target's Hardware Address = 000000000000
 ARP_RARP: Target's Protocol Address = 194.149.104.126

The recipient immediately replies with the following packet:
 + FRAME: Base frame properties
 ETHERNET: ETYPE = 0x0806 : Protocol = ARP: Address Resolution Protocol
 + ETHERNET: Destination address : 0020AFFA2589
 + ETHERNET: Source address : 00603E1D9001
 ETHERNET: Frame Length : 60 (0x003C)
 ETHERNET: Ethernet Type : 0x0806 (ARP: Address Resolution Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 46 (0x002E)
 ARP_RARP:
 ARP_RARP: Hardware Address Space = 1 (0x1)
 ARP_RARP: Protocol Address Space = 2048 (0x800)
 ARP_RARP: Hardware Address Length = 6 (0x6)
 ARP_RARP: Protocol Address Length = 4 (0x4)
 ARP_RARP: Opcode = 2 (0x2)
 ARP_RARP: Sender's Hardware Address = 00603E1D9001
 ARP_RARP: Sender's Protocol Address = 194.149.104.126
 ARP_RARP: Target's Hardware Address = 0020AFFA2589
 ARP_RARP: Target's Protocol Address = 194.149.104.121
 ARP_RARP: Frame Padding

From this packet, the system automatically adds an entry to its ARP cache, stating the link address
that belongs to the listed IP address. In the next communication with computer 194.149.104.126,
this entry is used and the ARP question is not generated again. The ARP cache content can be
viewed with the following command:
D:\> arp -a

Interface: 194.149.104.121
Internet AddressPhysical ADRESS Type
194.149.104.12600-60-3e-1d-90-01dynamic
10.1.1.100-01-11-11-ff-08static

There can be entries in the ARP cache that are acquired by ARP request. These entries are
dynamic. We can also write entries in the ARP cache using the explicit arp command. These
entries are static. It is also possible to erase entries from the ARP cache using the arp command.

The following is an example of static entry insertion:
D:\> arp -s 10.1.1.1 00-01-11-11-ff-08

The following example shows the deletion of the entry:
D:\> arp -d 10.1.1.1

How long do dynamic entries remain in the ARP cache? This interval is a parameter of the
operating system kernel. Usually, the entries have a 2-minute lifespan, unless they are used for a
second time. Each successive time they are used, their lifespan increases by another 2 minutes.
However, this does not go on infinitely. It is usually possible to prolong the lifespan up

Chapter 5

to a maximum lifespan, which is usually 10 minutes. However, some systems also record negative
replies into the ARP table, which usually have a 3-minute lifespan. Before a negative conclusion is
performed, the ARP request is repeated after 5.5 seconds and again after another 24 seconds.

It is possible to change these constants in Windows 2000 or Windows XP by changing keys in the
registry. The keys for controlling the ARP cache are placed in the HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\Tcpip\Parameters registry key. We can also add the following
REG_DWORD keys into this registry key.

• ArpCacheLife containing the lifespan (in seconds) of an unused entry in the ARP cache.
• ArpCacheMinReferenceLife containing the maximum lifespan (in seconds) of an

entry in the ARP cache.

Using the ARP protocol, it is possible to send a request with the IP addresses of the source and
destination filled in and also with both link addresses filled in. You can think of this type of
request as, "Is there by any chance another station on the LAN that uses the same address as
me?". If a reply is received, the user is sent the following message: "Duplicate IP address sent
from Ethernet address xx:xx:xx:xx:xx:xx." Of course, this indicates an error in the configuration
of one of the stations using this address.

5.5.1 ARP Filtering
In fact, ARP filtering is not filtering, but it has a similar effect to filtering. This procedure is used
when there are two firms (or two independent parts of one firm) on one LAN.

Figure 5.27: ARP filtering

The problem lies in preventing an employee from company B from accessing the company A
server (in other words, preventing the company B employee from declaring his or her PC as the
PC of a company A employee).

To solve this problem, we fill in the ARP cache on the company A server statically (manually).
The server then always replies to the address of the company A employee's PC without using the
ARP protocol and hackers are therefore out of luck.

Filtering is limited, however, because the company B employee can also forge a link address. This
process is not trivial and is enough to discourage a novice hacker.

 159

Internet Protocol

5.5.2 Proxy ARP
The ARP protocol only works within a LAN. There cannot be a router between the requesting and
replying computers. The reason is simple: the destination address in the request is a broadcast,
which is not forwarded by routers.

But what to do when you have two or more parts of a LAN separated by a router? The solution is a
proxy ARP. Proxy ARP runs on a router.

Figure 5.28: LAN separated by a router

The computer wants to use an ARP request to find out the link address for an IP address A that
belongs to the second part of the LAN behind the router. The router cannot let this request go
through, but if it is configured with proxy ARP, it will reply that its own link address corresponds
to IP address A.

Figure 5.29: Proxy ARP

If the computer wants to send a link frame to A, it addresses the router, which then forwards the IP
datagram to destination computer A.

5.5.3 Reverse ARP
While the ARP protocol serves to translate an IP address into a link address, Reverse ARP
(RARP) serves to translate a link address into IP address. But why would you want to perform
this type of translation?

 160

Chapter 5

The RARP protocol is used for diskless stations. Once it is turned on, a diskless station does not
know anything other than its link address (which is stored in ROM on a network interface card by
the producer). It needs to find out its IP address after startup. It therefore sends a broadcast onto
the LAN with the following request: "I have link address HW1. Who can tell me what my IP
address is?". Then there has to be an RARP server on the LAN, which will allocate the station its
IP address and give the address to it in a reply. The RARP protocol uses the same packet format as
the ARP protocol. Only the value of the Operation field is increased by two. Of course, the IP
address of the applicant is not entered in the request.

In practice, the RARP protocol is seldom used any more as it was replaced by the more complex
DHCP protocol.

5.6 Internet Group Management Protocol
Like ICMP, IGMP is a service protocol for IP. IGMP packets are wrapped into IP datagrams. It is
used for forwarding multicasts. Currently, version 2 of the IGMP protocol is up to date with RFC
2236 norms.

The following figure shows the structure of an IGMP version 2 packet:

Figure 5.30: IGMP v2 packet

The Type field acquires the values shown in the following table:

Value (hexadecimal) Significance

11 IP Membership query ("Are there any members on the LAN?")

12 IGMPv1 Membership Report

16 IGMPv2 Membership Report

17 IGMPv2 Leave Group

Table 5.6: Type field values

The MRT (Maximum Response Time) field is only used in router requests and specifies (in
tenths of a second) the time that members of the group have to repeat their requests for
membership in the group. In all other cases, the MTR field has a value of 0.

The checksum is calculated in the same way as with the ICMP protocol. The IP group
address field is zero for a general request, and in all other cases, specifies the particular IP
address of a multicast.

The IP addresses of multicasts are in an interval of 224.0.0.0 up to 239.255.255.255. The interval
224.0.0.0 to 224.0.0.255 is earmarked for reserved purposes on the LAN (see Table 5.7). Because
multicasts with these addresses are earmarked exclusively for LAN, they usually have a value of
1 set in the TTL entry.

 161

Internet Protocol

IP address Reserved for addressing

224.0.0.1 All systems within LAN

224.0.0.2 All routers within LAN

224.0.0.4 Distance Vector Multicast Routing Protocol (see RFC 1075)

224.0.0.5 OSPF All Routers (see RFC 1583)

224.0.0.6 OSPF Designated Routers (see RFC 1583)

224.0.0.9 RIP-2 etc

Table 5.7: IP addresses of multicast

All IGMP packets have TTL=1 set in the IP header. IGMP protocol version 2 packets use the
(extension) IP header option 'IP Router Alert' option.

The core of the Internet is called Multicast Backbone (Mbone), which is where multicast
forwarding is ensured. Its complexity is obvious in Figure 5.31, in which the source of multicasts, for
example, an internet radio station, forwards its data with the help of multicasts. If the multicasts were
forwarded as avalanches without any control, the data could be gradually duplicated (flooding). For
example, the same data could come to router C from router A and from router B.

Figure 5.31: Multicasts flooding

The IGMP protocol solves multicast forwarding within a LAN.

Let's imagine that we are on a LAN and some routers accept multicasts from MBONE and decide
whether to forward them to the LAN. In general, if no computer on the LAN needs the multicasts,
it is useless to forward them—they would only increase the LAN workload.

So we have a situation where some routers on LAN can supply the LAN with multicasts, but do
not do so, because multicasts are not required on the LAN.

 162

Chapter 5

For each IP address of a multicast on the LAN, a group of the multicast's members is defined. The
routers keep a list of these groups. If any computer on the LAN is a member of a particular group,
the routers will begin to forward the individual multicasts to the LAN.

When the last member leaves the group, the multicast forwarding on the LAN is terminated.
Therefore the existence of the group means multicasts are forwarded. It is not important how many
members the group has, but only that it has at least one member.

If an application that wants to listen to radio station 226.1.1.1 starts running on a computer, the
computer sends out a request for membership in group 226.1.1.1 as shown in the following figure:

Figure 5.32: Computer on LAN sends out a request for membership in group

The request fields are as follows:

• IP-header:
TTL=1
IP-sender's address=Computer
IP-recipient's address=224.0.0.2 (to all routers on LAN)

• IGMP-packet:
Type=1616

MRT=0
IP-multicast address=226.1.1.1

If no 226.1.1.1 multicasts have yet been spread on the LAN, then the forwarding begins.

If a computer accepts multicasts and is the last member of the group, it can stop the forwarding by
sending a similar IGMP packet, but with the field type=1716.

But let's look at what happens if the application is not properly terminated on the computer. The
computer is simply taken out of the socket and does not have a chance to send a 'switch off
packet'. Let's imagine that multicasts on the LAN are forwarded by router E (see Figure 5.35). For
router E to find out whether it is still needed to spread our group, from time to time it has to send
the IGMP membership query packet, "Are there any members on the LAN?" (i.e., the type
field=11) to the LAN. This packet has two variations:

1. A general request that asks about all groups (the IP address field of the multicast is
filled in with zeroes). Individual computers must repeat their request for membership
in each group, one by one, within MTR (tenths of second). If they do not, it is
assumed that they have left the group.

 163

Internet Protocol

2. A request addressed for a particular group (the IP address field of the multicast is
entered in an IGMP packet). All members of a particular group must repeat their
request for membership within MTR (tenths of a second).

Figure 5.33: Router E says, "Are there any members on the LAN?"

The application fills the header fields in this way:

• IP-header:
TTL=1
IP-sender's address=Router E
IP-recipient's address=224.0.0.1 (to all systems on LAN)

• IGMP-packet:
Type=1116
MRT>0 for version 2, =0 for version 1
IP-address of a multicast=226.1.1.1 (addressed request), 0.0.0.0 (general request)

However, the question remains as to how particular routers will agree among themselves on the
LAN, when there are more than one routers. The routers work in relation to the IGMP protocol in
two modes:

• An Applicant that sends a membership request on the LAN.
• A Listener that is not active, but only listens to the operation and does not enter the

game if there is an applicant on the LAN.

After being switched on, the router starts working as an Applicant. However, if it finds requests
from a router with a higher IP address on the LAN, it switches itself to Listener mode.

5.7 Multicast and Link Protocol
So far we have been describing broadcast transmission, but the problem with LAN is identifying
the link address of the recipient.

The ARP protocol specifies an unambiguous relationship between an unambiguous IP address
(unicast) and the destination link address. This is possible when an unambiguous relationship
exists between IP addresses and link addresses. This relationship is called mapping (mapping of
IP addresses to link addresses).

The situation is different when a broadcast is sent to all LAN systems. For these purposes the link
protocol uses a broadcast, which for the Ethernet, FDDI, and so on is ff:ff:ff:ff:ff:ff.

 164

Chapter 5

But how do we do this with multicasts that are addressed neither to one destination on the LAN
nor to all systems on the LAN, but rather to several particular destinations?

First let's look at the problem. Under normal circumstances, the recipient processes only those
frames that are broadcasts or addressed with the destination link address. (It is possible to switch a
network card into promiscuous mode (in which it accepts everything), but this is not considered
normal. Unfortunately, many WLAN and FDDI network interface cards cannot be switched into
promiscuous mode).

Link protocols also enable multicasts. These are a type of link address in which the lowest bit of
the link address's first byte is set to 1. For example, a broadcast is a special case of this multicast
type. But how do you map the IP address of a multicast to a link multicast?

It is not as simple as it may seem at first sight. A 6-byte link address consists of three bytes
specifying the network card's producer and three bytes of the card's serial number.

IANA (the highest Internet authority) registered itself as an imaginary producer of network cards
and received the identification number 00:00:5e. It used the first half of these addresses for
mapping IP multicasts to link multicasts (see Figure 5.34). Unfortunately, this half only has 23
bits, so the mapping cannot be unambiguous.

Figure 5.34: Mapping IP multicasts

The first byte of a link address must have the lowest bit set to 1 because it is a link multicast. So in
fact, the prefix is not 00:00:5e, but 01:00:5e.

Part A of an IP address specifies a multicast, so it is always constant. Part B is not mapped.

So if two multicasts differ only in part B, then they are mapped to the same link address. For
example, the IP addresses 224.0.1.1, 224.128.1.1, and 225.0.1.1 are always mapped to
01:00:5e:00:01:01.

The link layer of the computer accepts link frames that are as follows:

• Unicast addresses of this computer
• Broadcasts
• Multicasts whose list is forwarded to the link layer by higher layers

 165

Internet Protocol

 166

The list of accepted link multicasts contains the address 224.0.0.1 and all link multicasts
originated due to unambiguous mapping. Surplus multicasts must be filtered out by the IP
protocol. Some software programs switch the network interface card into promiscuous mode for
the duration of all multicasts and leave everything up to the IP protocol. However, this uselessly
increases the burden put on the operating system.

6
IP Address

In IP protocol version 4, an IP address has 4 bytes. An IP address uniquely addresses a network
interface. Such a unique address is called a unicast IP address. If a system uses several network
cards (several network interfaces) and all of them use IP protocol, then every network interface
has its own IP address. It is similar to the address of a house; every house has only one address.

The other alternative is also possible. Several IP addresses may be assigned on one network
interface. The first address is called a primary address while the others are called secondary
addresses or aliases. Using secondary IP addresses is common with web servers; for example, the
web servers of several different companies, each of which has its own homepage, can run on a
single computer/server. The use of secondary IP addresses for web servers is, however, in practice
considered as wasteful; so virtual web servers are used instead. In that case, many web servers
share one IP address and server specification is accomplished on the application level in the HTTP
protocol (via the host header).

As most computers use one network interface, it is common for the IP address of a network
interface to be called the computer IP address.

An IP address has four bytes. It is written in a dotted notation—adjacent bytes of the 4-byte
address are separated by a dot. The notations used are as follows:

• Binary notation, where all the individual bits of each byte are expressed as a binary
number, for example, 10101010.01010101.11111111.11111000

• Decimal notation, where the four 8-digit binary numbers are converted to the
decimal numerical notation, i.e., 170.85.255.248

• Hexadecimal notation, where each byte of the IP address is expressed as a
hexadecimal number, i.e., AA.55.FF.F8

An IP address consists of two parts:

• A (local) network address
• A computer address in a (local) network

IP Address

The problem is how to find out which part of an IP address is the network address and which part
is the computer address. Even the term 'network' itself is slightly vague; its meaning has
undergone some changes and terms such as subnetwork and super-network have come into use.

6.1 Network: First Period of History
This era lasted from the beginning of the Internet until 1993. In this era, the term 'net' was
specified by RFC 796 standard (J. Postel, September 1, 1981). Those twelve years were marked by
the idea that 4 bytes must be enough for an IP address.

An IP address was structured into a network address and a computer address within a network, as
is shown in the following figure:

Figure 6.1: Structure of an IP address

It is the initial bits of the first byte of an IP address that determine how many bytes of the IP
address make up the network address. There are five classes of IP address:

Class A: The value of the highest bit of the first byte is 0. The remaining 7 bits of the
first byte represent the network address and the rest (24 bits) are reserved for the
computer address within the network. There are 126 networks within the A Class
(0 and 127 are networks with a specific meaning). In each network there are 2

•

24-2
computer addresses (addresses consisting entirely of zeros or ones are addresses with
a specific meaning).
Class B: The value of the two highest bits of the first byte is 10

 168

• 2. The remaining
6 bits of the first byte and the following second byte represent the network address.
This allows us to have 214 networks each consisting of 216-2 computers.
Class C: The value of the three highest bits of the first byte is 110• 2. The remaining 5
bits and the following two bytes represent the network address. This allows us to
have 221 networks each consisting of 128-2 computers.
Class D: The value of the four highest bits of the first byte is 1110• 2. The class D
addresses are not divided into a network and a computer addresses, because they are
multicast addresses themselves.
Class E: The rest of the addresses are reserved for future use. •

Chapter 6

Class 1st byte of an
IP address

2nd byte of an IP
address

3rd byte of an IP
address

4th byte of an IP
address

A 0 computer address computer address computer address nnnnnnn
1-12710

B 10 computer address computer address nnnnnnnnnnnnnn
128-19110

C 110 computer address nnnnnnnn nnnnnnnn nnnnn
192-223 10

E 1110 mmmmmmmm mmmmmmmm mmmmmmmmmmmm

224-23910

F >239 10

Table 6.1: IP address classes

The individual address classes are summed up in Table 6.1. Bits used for the network address are
marked as n and bits used for the multicast address are marked as m.

It is clear from the table that the total of class A networks is 128–2=126 with 28+8+8=16 M
addresses each. Similarly, there can be up to 14 K class B networks with 64 K addresses each.
Finally, there can be up to 2M class C networks with 256 addresses each. Some addresses are
reserved for special use.

6.1.1 Special-Use IP Addresses
The general form of an IP address is network.computer, where the network is represented by one
byte for class A, two bytes for class B, and three bytes for a class C address.

If the network or computer address only consists of zeros (in binary notation) (00…0), it is
understood as the address of 'this' computer/network. If there are only ones (11…1), it is
understood as the address of 'all' computers/networks. A limited broadcast consists of only ones
(255.255.255).

An overview of special-use IP addresses in binary notation is presented in Table 6.2:

Address type Description

0.0.0.0 This computer in this network

00…0.computer A computer in this network

network.00…0 An address of a particular network

network.11...1 (ones only in the
computer address position)

A direct broadcast sent to the 'network' network—can be sent to a
remote network

11...1 (ones only, in decimal notation:
255.255.255.255)

Limited broadcast (broadcast in local network only)—not routed
further

A software loop (loopback)—never leaves the computer,
usually 127.0.0.1 127.whatever

Table 6.2: Special-use IP address

 169

IP Address

 170

Every network card (network interface) has at least one unique address (unicast); besides this, the
whole system has a loopback address 127.0.0.1. The 127.0.0.1 address is not unique in the
Internet, because it is the same for every computer (host).

For example, let us say, 192.168.6.0 network is a class C network. What is the identity of all the
other computers in this network? The answer is simple: The IP address of a broadcast on this
network is 192.168.6.255.

After executing the ping 192.168.6.255 command, all the computers in this network that are
switched on will respond by sending the ICMP Echo packet. The Microsoft implementation of the
ping command unfortunately does not display all the answers, but most of the other
implementations do. This enables us to see which computers are on.

Similarly, using the ping command (with TTL=1), it is possible to find out what computers in the
LAN are dealing with what particular multicasts. One of multicast addresses is 224.0.0.1. It is a
multicast for "All Systems on this Subnet" (see RFC 1112 or http://www.iana.org/
assignments/multicast-addresses).
ping 224.0.0.1

Unfortunately Microsoft operating systems handle this command in a strange way by only telling
us 'Is alive', but not telling us the IP address.

6.1.2 Network Mask
Network masks are used to help define the network address, which is part of the IP address,
namely to specify which bits of the IP address represent the network address. A network mask is a
four-byte number. The bits specifying the network address are ones while all the rest are zeros.
How the network mask works can be illustrated with an the example using binary notation.

The length of the network address part of an IP address varies with different network classes.
Class A uses the first byte. This means that the standard network mask for Class A addresses
has ones only in the first byte and zeros only in the remaining three bytes (11111111.00000000.
00000000.00000000). In decimal notation it is 255.0.0.0 and FF.00.00.00 in hexadecimal
notation. Similarly, the standard Class B network mask in decimal notation is 255.255.0.0
(FF.FF.00.00 in hexadecimal notation). And finally for Class C it is 255.255.255.0
(FF.FF.FF.00 in hexadecimal notation).

Network masks corresponding to classes A, B, and C are called standard network masks. Network
masks help to work out the network address of a computer with a particular IP address. For
example, 170.85.255.248 or 10101010.01010101.11111111.11111000 in binary notation.

The answer is simple. First, we look into the IP address class table to find out that the address is a
Class B IP address. Provided we use the standard network mask, the Class B network mask is
11111111.11111111.00000000.00000000.

The network address can be determined by multiplying each bit in the IP address by the
corresponding bit in the network mask:

Chapter 6

 10101010.01010101.11111111.11111000

 x 11111111.11111111.00000000.00000000
 --
 10101010.01010101.00000000.00000000

Having converted the result to decimal notation, we find out that the computer is in network
170.85.0.0.

This method of network address identification may seem overcomplicated with standard network
masks as the network mask may seem important for operating system developers, but unimportant
for network administrators. We will be able to appreciate the significance of the network mask as
soon as we proceed to the next period of history.

6.2 Network: Second Period of History
In 1993, the RFC 1517–1520 Classless Inter-Domain Routing (CIDR) specifications were
released. These specifications are only seldom referred to nowadays, but had changed the
understanding of the term 'network' in the context of the Internet. Networks started to be regarded
in terms of network masks instead of network classes.

The computer address part of the IP address was divided into two parts, the subnetwork address
and the computer address.

Figure 6.2: IP address structure

From the network address point of view, the network address and the subnetwork address form
one unit. Briefly speaking, the IP address part with ones only in the network mask specifies the
network. At this point, terminology becomes ambiguous. In some cases, the term network applies
to an A, B, or C Class network while in other cases the term network refers to that part of the IP
address for which there are ones in the corresponding network mask. If we forget the classes for a
while and start using arbitrary masks, defining a network, for example, 192.168.0.0, will not
suffice and the corresponding network mask has to be attached to specify the network. In terms of
classes, the network will always have the 255.255.255.0 mask, for it is a Class C mask. The
255.255.255.0 mask for the 192.168.0.0 network is called the standard network mask.

Table 6.3 shows the division of a 192.168.0.0 network into subnetworks with various masks. (The
standard mask is shown in bold.)

 171

IP Address

 172

Mask Number of ones
in the mask

The network consists of
an IP-address interval

Shortened network
notation

255.248.0.0 13 192.168.0.0 to 192.175.255.255 192.168.0.0/13

255.252.0.0 14 192.168.0.0 to 192.171.255.255 192.168.0.0/14

255.254.0.0 15 192.168.0.0 to 192.169.255.255 192.168.0.0/15

255.255.0.0 16 192.168.0.0 to 192.168.255.255 192.168.0.0/16

255.255.248.0 21 192.168.0.0 to 192.168.7.255 192.168.0.0/21

255.255.252.0 22 192.168.0.0 to 192.168.3.255 192.168.0.0/22

255.255.254.0 23 192.168.0.0 to 192.168.1.255 192.168.0.0/23

255.255.255.0 24 192.168.0.0 to 192.168.0.255 192.168.0.0/24

255.255.255.128 25 192.168.0.0 to 192.168.0.127 192.168.0.0/25

255.255.255.192 26 192.168.0.0 to 192.168.0.63 192.168.0.0/26

255.255.255.224 27 192.168.0.0 to 192.168.0.31 192.168.0.0/27

255.255.255.240 28 192.168.0.0 to 192.168.0.15 192.168.0.0/28

255.255.255.248 29 192.168.0.0 to 192.168.0.7 192.168.0.0/29

255.255.255.252 30 192.168.0.0 to 192.168.0.3 192.168.0.0/30

255.255.255.254 31 192.168.0.0 to 192.168.0.1* 192.168.0.0/31

255.255.255.255 32 The entire computer address
(host address) 192.168.0.0

192.168.0.0/32

Table 6.3: Division of a 192.168.0.0 network into subnetworks

* The network shown in italics is absurd as it would have two addresses only: one for the
entire network and another for broadcast; hence no addresses are left for computers.

Addresses with masks of fewer ones than in the standard mask are called super-network addresses
(see the upper part of the table) and addresses with masks of more ones than in the standard mask
are called subnetwork addresses (see the lower part of the table).

Since the binary notation of a network mask is represented by a continuous series of ones from the
left side, it is common to shorten "192.168.0.0 network with 255.255.255.252 mask" as
192.168.0.0/30, with number 30 defining the number of ones in the mask.

I can hear the angry voices of readers questioning why the mask should consist of a
continuous series of ones. Although this does not have to be so in theory, it is an
unwritten rule, and a good one.

Let us take, for example, a 192.168.0.0 network with a 255.255.255.95 mask. 95 expressed in binary
notation is 01011111, i.e., changes in positions x1x11111 are available, which as a result means that
the network is 00000000 (0 in decimal notation) computer addresses are 00100000 (32 in binary

Chapter 6

notation) and 10000000 (128 in binary notation) and the broadcast is 10100000 (160 in binary
notation). Inserting new subnetworks between these addresses is a problem that is hard to solve.

How do you feel now about administering such a network? The point is that most software does
support such networks. The network mask does not differentiate between the network and
subnetwork parts of an IP address.

6.2.1 Subnetworks
A subnetwork is a part of the Internet that corresponds to a company or a part of a company.

Figure 6.3: IP address and its network mask

Reserved addresses are used as well:

network.subnetwork.00…0 Address of the subnetwork as such

network.00…0.00…0 Network address

network.subnetwork.11…1 Subnetwork broadcast

network.11…1.11…1 This is a broadcast for all subnetworks of the entire network

Table 6.4: Special-use addresses

It is evident that a subnetwork with only zeros in the subnetwork part of the address presents
a problem, as it is hard to differentiate between the network and subnetwork addresses. Another
ambiguity arises when there are only ones in the subnetwork part of the address as it is unclear
whether the multicast is for the entire subnetwork or all subnetworks. For these reasons, the use of
these networks is avoided. Most software does not support these subnetworks at all while in other
programs, special configurations must be set to support these subnetworks.

A broadcast sent to all subnetworks of a particular network is only a theoretical concept anyway.
I have never come across a case of its use, probably due to the fact that the router lacks
information on how the remote network is structured to subnetworks.

Subnetworks are used within companies for configuring individual local networks. Due to lack
of IP addresses, most companies have been assigned C class subnetworks only. These are further
divided into minor subnetworks.

 173

IP Address

Figure 6.4: The Internet consists of networks that can be further divided to subnetworks

An example: I am trying to connect a company to the Internet. I have been assigned a C class
address (e.g., 194.149.115.0 in decimal notation and 11000010.10010101.01110011.00000000 in
binary notation). I was lucky to get a whole C class address.

The complicated structure of the company presents a problem. Its network consists of a variety of
minor Local Area Networks (LAN) and serial lines connecting them. It is necessary to divide the
network that has been assigned to the company into subnetworks. From outside, the company will
appear as one network with a standard mask.

As the first three bytes of the assigned IP address are constant, only the last byte of the IP address
will be quoted further in the text (the first three bytes remain constant, e.g., 194.149.115).

It is evident at first glance that to divide the subnetwork (instead of a standard network mask for a
C class address, i.e. 255.255.255.0), a non-standard, but constant network mask 255.255.255.240
(11111111.11111111.11111111.11110000 in binary notation) can be used. Note that the first half
of the last byte serves as the subnetwork address, which allows us to divide the assigned C class
address into 16 subnetworks with 16 addresses each.

 174

Chapter 6

Subnetwork in binary
notation
(the last byte of the
194.149.115.0 IP address)

Network
mask
(in binary
notation)

Subnetwork
address
(in decimal
notation)

Network
mask
(in decimal
notation)

Maximum number of
computers within a
particular subnetwork
(without the subnetwork
address and broadcast)

00000000 to 00001111 11110000 .0 .240 0 (non-unique subnetwork)

00010000 to 00011111 .16 14

00100000 to 00101111 .32 14

00110000 to 00111111 .48 14

01000000 to 01001111 .64 14

01010000 to 01011111 .80 14

01100000 to 01100000 .96 14

01110000 to 01111111 .112 14

 10000000 to 10001111 .128 14

10010000 to 10011111 .144 14

10100000 to 10101111 .160 14

10110000 to 10111111 .176 14

11000000 to 11001111 .192 14

11010000 to 11011111 .208 14

11100000 to 11101111 .224 14

11110000 to 11111111 .240 0 (non-unique subnetwork)

Table 6.5: Subnetwork addresses

Each subnetwork consists of 16 addresses, 14 of which can be used since two addresses are
reserved for special use. Zeros only mark the subnetwork address and ones only indicate the
subnetwork broadcast. For example, the address 194.149.115.32 specifies the third subnetwork as
such and the address 194.149.115.47 is a broadcast on this subnetwork (194.149.115.255 is a
broadcast on the entire network 194.149.155.0). Addresses that can be assigned to network
interfaces therefore ranges from 194.149.155.33 to 46 only.

Another problem is that it is not clear whether the address 194.149.155.255 is the broadcast on all
subnetworks of this network or on the subnetwork 194.149.115.240 only. For this reason the last
subnetwork is generally not used. A similar problem is the collision of network and subnetwork
address 194.149.115.0. This is why the first subnetwork is generally not used either.

Dividing the assigned address into subnetworks consisting of the same number of addresses is
usually not necessary in practice. For example, subnetworks of 14 addresses each is an
unnecessary luxury for serial links while being insufficient for many LANs on the other hand. To
divide a network into subnetworks of different lengths, a variable subnetwork mask can be used.
See Table 6.6 for an example:

 175

IP Address

 176

Subnetwork in binary
notation
(the last byte of the
IP address)

Network
mask
(in binary
notation)

Subnetwork
address
(in decimal
notation)

Network
mask
(in decimal
notation)

Maximum number of
computers within a
particular subnetwork
(without the
subnetwork address
and broadcast)

00000000 to 00000011 11111100 .0 .252 0 (non-unique
subnetwork)

00000100 to 00000111 11111100 .4/30 .252 2

00001000 to 00001111 11111000 .8/29 .248 6

00010000 to 00011111 11110000 .16/28 .240 14

00100000 to 00111111 11100000 .32/27 .224 30

01000000 to 01111111 11000000 .64/26 .192 62

10000000 to 10111111 11000000 .128/26 .192 62

11000000 to 11011111 11100000 .192/27 .224 30

11100000 to 11101111 11110000 .224/28 .240 14

11110000 to 11100011 11111000 .240/29 .248 6

11111000 to 11111011 11111100 .248/30 .252 2

11111100 to 11111111 11111100 .252/30 .252 0 (non-unique
subnetwork)

Table 6.6: Subnetwork addresses

It is evident from the table above that the largest subnetwork can have up to 64 addresses;
therefore, if we need a LAN of more than 62 network interfaces, it is reasonable to use a whole C
class address.

Now we can show one more example. Work out the address of the network in which there is
a computer whose IP address is 10.0.0.239 provided we use the network mask 255.255.255.240.

Let us convert the IP address and the mask to binary notation and multiply bit by bit:

 00001010.00000000.00000000.11101111 (10.0.0.23910)

x 11111111.11111111.11111111.11110000 (255.255.255.24010)

 00001010.00000000.00000000.11100000 (10.0.0.22410)

The address is on the network 10.0.0.224. But can this be a computer address? No. Why is that?
Let us differentiate the network address from the computer address:

00001010.00000000.0000000.1110|1111
<—————–network—————–>|<comp.>

The form of the address is network.ones; this means it is not a computer address, but a broadcast
of the network 10.0.0.224.

Chapter 6

As with networks, a broadcast can be sent with the ping command:
ping 10.0.0.240

The command works if there is a computer in the subnetwork that is alive, and a UNIX
implementation of the ping command shows us which of the subnetwork computers are on.

6.2.2 Super-Networks and Autonomous Systems
While subnetworks are used for LAN purposes, i.e., in configurations of individual network
interfaces (network cards), super-networks are used for IP address aggregation. IP address
aggregation is helpful for routing and administration in assigning IP addresses.

The Internet is a system of interconnected Internet providers (or similar organizations). An
Internet provider provides a commercial or noncommercial Internet connection. Besides providers,
the Internet comprises a few other organizations that are involved in the investigation and
development of the Internet, and they, however, do not differ from providers in terms of networks.

Providers transfer IP datagrams either within their own network or between one another. Apart
from providers who can transfer IP datagrams between one another, there are also transit providers
by whom IP datagrams are transferred.

The Internet is not spoken of as being divided into providers, but into autonomous systems related
to IP datagram routing. Each provider has one or several autonomous systems assigned. An
autonomous system is represented by a two-byte number.

From routing point of view, the Internet is divided into autonomous systems AS (). AS is
a set of IP networks maintained by routers exchanging routing information via a common
routing protocol.

Internet Service Providers (ISP) are administrators of autonomous systems usually. They apply for
IP address intervals to assign themselves and their customers. A set of assigned IP intervals of the
given ISP (including IP intervals of its customer) form AS.

Address intervals can be aggregated into one or more super-network addresses. The whole
allocated address space of the given ISP can act as a single or few entries in the routing tables of a
router of a remote AS. This saves the router's memory and makes administration easier.

Aggregation is simple. If, for example, a network address interval 62.177.64.0 to 62.177.127.0 has
been assigned, it can be aggregated to the super-network address 62.177.64.0 with the network
mask 255.255.192.0. The common notation of the address, however, is 62.177.64.0/18 (the mask
255.255.192.0 consists of 18 ones).

 177

IP Address

Figure 6.5: The Internet is divided into autonomous systems that can be further divided into super-networks.

Super-networks are in turn divided into networks and are further divided into subnetworks.

Dividing a network into subnetworks involves a rise in the number of ones in the network mask,
the opposite is the case with aggregation. Aggregated networks are called super-networks. From
the viewpoint of an AS, a super-network appears as an integral whole. AS administrators regard
networks as an integral whole. And subnetworks are seen as an integral whole by local
network administrators.

When a company switches from one provider to another that belongs to a different autonomous
system, a problem occurs. The company has to apply for new IP addresses with the new provider
and have its networks renumbered. The computer's names (including the email address) can,
nevertheless, be preserved.

Provider-independent addresses are used as well; they are assigned to companies connected
to several providers simultaneously or companies connected to a LAN that creates a core of a
NIX Neutral Internet eXchange (), where IP datagrams are transferred collectively among
individual providers.

 178

Chapter 6

Let us return to one of our previous hypothetical examples, where a company had been assigned
the IP address interval 62.177.90.0/24. As the company is situated at several locations, the
administrator assigned the Budweis subnetwork (Budweis is a town in the south of the Czech
Republic), the IP address interval 62.177.90.176/28. At this location, there is a computer with IP
address 62.177.90.190. The computer tries to communicate with a server in Fiji (to download
a web page http://www.fijimuseum.org.fj/). The IP datagrams are transferred via the Internet
to Fiji. Then the Fiji server tries to respond.

The address 62.177.90.190 belongs to the interval 62.0.0.0/8 assigned to RIPE (a Regional IP
Registry in Europe and neighboring territories). As far as the Fiji server is concerned, the recipient is
somewhere between Portugal, Svalbard and Kamchatka. The Fiji server theoretically does not need
to work out to which autonomous system the address 62.177.90.190 belongs, provided that all
transfers to Europe are sent through satellite or underwater cable. Theoretically, its routing table can
have a single entry for Europe and neighboring territories (62.0.0.0 with the mask 254.0.0.0).

The geographical distance from Fiji to Europe is approximately the same whether the direction is
to the west, east, south, or north, but the datagram is now sent to a router in the U.S. It is not that
simple there. There are many lines from America to Europe, and it is necessary to work out in
which direction the datagram should be transferred and by which line it should be sent. The router
in the U.S. finds out that the address 62.177.90.190 belongs to the interval 60.177.64.0/18, which
belongs to the autonomous system AS6706. The routing table of its routers must have one entry
for each address interval assigned to the autonomous system AS6706. In this case it is 62.177.64.0
with the mask 255.255.192.0.

Important routers in the U.S. situated on the border of autonomous systems must have one entry
for every IP address interval assigned to a provider anywhere on Earth. Such a router is said to
have complete routing tables for the entire Internet. These routers with complete routing tables are
needed as border routers of transit autonomous systems, i.e., autonomous systems through which
datagrams are transferred to other autonomous systems. If our datagram has been received on the
Western shore of the U.S., it will have to be transferred through American transit autonomous
systems to the East coast where the underwater cables to Europe are located.

Exchanging IP datagrams between autonomous systems depends not only on technical factors, i.e.,
on the technically most advantageous route to the recipient, but also on the routing policy of
individual autonomous systems. This, in familiar terms, means whether the other side pays for
transit or not. Should there be any obstacles, the IP datagram can be transferred via a more
complicated route or its routing can even be forbidden by the administration.

Our IP datagram has arrived from the U.S. via a border router of our autonomous system AS6706.
The router has to analyze the address thoroughly, finding out that the IP address 62.177.90.190
belongs to the interval 62.177.90.0/24 assigned to our company.

In the routing tables of the autonomous system AS6706, there is the entry 62.177.90.0 with the
mask 255.255.255.0.

The provider transfers the IP datagram to the border router of our company, which analyses the
address 62.177.90.190 to figure out where the IP datagram is to be sent. The company's border
router finds out that its routing table entry (the Budweis LAN) reads as 62.177.90.176 with the
mask 255.255.255.240.

 179

IP Address

 180

The IP datagram is transferred to a router in Budweis. The router works out that the network
62.177.90.176/28 is a network directly connected to its local interface. It finds out via the ARP
protocol what the six-byte link address of the recipient is (if the address is not in its ARP cache)
and sends the IP datagram to the recipient. The recipient discards the IP header and works out
from the TCP header that the information is designed for a web browser, discards the TCP header,
and the content in HTTP protocol is interpreted on a screen.

I have just tried it and found that the whole process between a server in Fiji and a client in
Budweis (Europe) takes about 340 milliseconds. The example shows not only the speed and
throughput of the routing links, but also the enormous capacity of the border routers that have to
search the routing tables at an immense speed. For this reason, the border routers are often
equipped with specialized co-processors designed to handle routing tables.

The numbers of autonomous systems are assigned by Regional Internet Registries. They are
international agencies such as the RIPE agency in Europe, AfriNIC for African Countries, ARIN
in North America, LACNIC in Latin America or APNIC in the Asian Pacific Region. These
agencies keep information on assigned IP address intervals and assigned autonomous systems
numbers in their databases.

On the ftp://ftp.ripe.net/tools/IRRToolSet FTP server, the Information Sciences Institute (ISI)
offers the prtraceroute application that calls the traceroute command, while seeking
information in the regional agencies' databases using the whois command from the traceroute
command output. For example, as far as autonomous systems are concerned, a route to Fiji looks
like the following:
$ prtraceroute www.fijimuseum.org.fj

 1 [AS6706] lo0.adsl-plus-jhc.adsl.vol.cz (212.20.125.148) 85 ms 14 ms 13 ms
 2 [AS6706] adsl-plus-1.adsl.ctc-ptp04.vol.cz (212.20.125.141) 99 ms 14 ms 15 ms
 3 [AS6706] ge3-42.c17.prg.vol.cz (195.122.209.37) 15 ms 15 ms 14 ms
 4 [AS6706] ge3-42.c17.prg.vol.cz (195.122.209.37) 14 ms 14 ms 16 ms
 5 [AS6706] ge5-1.tr3.prg.vol.cz (195.122.207.119) 16 ms 19 ms 15 ms
 6 [AS8447] AUX1-Czech-Online.highway.telekom.at (195.3.102.209) 26 ms 26 ms 25 ms
 7 [AS8447] IIX2-WARSSW02.highway.telekom.at (195.3.70.196) 29 ms 28 ms 27 ms
 8 [AS3356] 212.73.202.122 ms 20 ms 24 ms
 9 [AS3356] so-4-0-0.mp1.Vienna1.Level3.net (4.68.112.77) 22 ms 23 ms 22 ms
10 [AS3356] ae-0-0.bbr2.NewYork1.Level3.net (64.159.1.42) 114 ms 121 ms 113 ms
11 [AS3356] ae-11-51.car1.NewYork1.Level3.net (4.68.97.20) 114 ms 122 ms 114 ms
12 [AS3356] mci-level3-oc48.NewYork1.Level3.net (4.68.111.30) 118 ms 118 ms 115 ms
13 [AS701] 0.so-6-0-0.XL1.NYC4.ALTER.NET (152.63.21.78) 119 ms 118 ms 122 ms
14 [AS701] 0.so-7-0-0.XL1.SAC1.ALTER.NET (152.63.53.249) 207 ms 206 ms 205 ms
15 [AS701] POS6-0.IG3.SAC1.ALTER.NET (152.63.54.121) 241 ms 206 ms 207 ms
16 [AS701] fintelfiji4-gw.customer.alter.net (157.130.214.186) 338 ms 335 ms 337 ms
17 [AS9241] 202.170.33.15335 ms 336 ms 333 ms
18 [AS9241] 202.137.176.253336 ms 332 ms 336 ms
19 [AS9241] juniper1.is.com.fj (210.7.20.2) 338 ms 335 ms *
20 [AS9241] www.fijimuseum.org.fj (202.62.120.2) 339 ms 337 ms 335 ms

Path taken:
AS6706 AS8447 AS3356 AS701 AS9241

The first column is the hop number, the second column is the autonomous system number (square
bracket in decimal notation preceded by the AS string), the third column shows the router interface
DNS name, the fourth one in parentheses is its IP address, followed by three round trip times.

The single line headed Path taken lists the route where a hop is defined, not as a router, but as an
autonomous system.

Chapter 6

The prtraceroute command is a great help to an autonomous system administrator because if
a connection is lost, the autonomous system connected most recently can be found via the
prtraceroute command. By entering string AS9241 into APNIC WHOIS Database Search in the
web page http://www.apnic.net we obtain:

as-block: AS9216 - AS10239
descr: APNIC ASN block
remarks: These AS numbers are further assigned by APNIC
remarks: to APNIC members and end-users in the APNIC region
admin-c: HM20-AP
tech-c: HM20-AP
mnt-by: APNIC-HM
mnt-lower: APNIC-HM
changed: hm-changed@apnic.net 20020926
changed: hm-changed@apnic.net 20030205
changed: hm-changed@apnic.net 20060103
source: APNIC

aut-num: AS9241
as-name: FINTEL-FJ
descr: Fiji International Telecomunications Ltd
country: FJ
import: from AS701
 action pref=5;
 accept ANY
import: from AS7474
 action pref=15;
 accept ANY
export: to AS701
 announce AS9241
export: to AS7474
 announce AS9241
default: to AS701
 action pref=5;
 networks ANY
default: to AS7474
 action pref=15;
 networks ANY
remarks: www.fintelfiji.com
admin-c: IK136-AP
tech-c: LN21-AP
mnt-by: MAINT-FJ-LNAKACIA
changed: lmnakacia@fintelfiji.com 20040316
source: APNIC

person: Ioane N Koroivuki
nic-hdl: IK136-AP
e-mail: inkoroivuki@fintelfiji.com
address: FINTEL
address: PO Box 59
address: Suva
address: Fiji
phone: +679-3312933
fax-no: +679-3300750
country: FJ
changed: lmnakacia@fintelfiji.com 20030128
mnt-by: MAINT-FJ-FINTEL
source: APNIC

person: Laisiasa Nakacia
address: C/- Fintel
address: PO Box 59
address: Suva, Fiji
country: FJ

 181

IP Address

 182

phone: +679-312933
fax-no: +679-300750
e-mail: lmnakacia@fintelfiji.com
nic-hdl: LN21-AP
mnt-by: MAINT-NEW
changed: lmnakacia@fintelfiji.com 20010310
source: APNIC

The administrator can get in touch with an administrator of the autonomous system connected to
most recently and ask him or her for help. With the help of the WHOIS database and searching on
the Internet registries web pages, it is possible to find information about IP networks assignment
and other interesting information.

6.3 IP Addresses in the Intranet and Special-Use
IP Addresses
Using Internet technology inside corporate network is referred to as intranet.

IP addresses must be assigned uniquely worldwide. Just a few years ago, many companies had
their networks built on the TCP/IP protocol and no one had ever dreamt of connecting them to the
Internet. This is why they chose entirely arbitrary addresses for their networks. Nowadays,
companies tend to connect their networks to the Internet through a firewall and some discover that
their addresses are already used by someone else. They are forced to renumber their networks,
which is a painstaking operation.

At first, companies using intranet addresses colliding with Internet ones mostly tried to find
a fresh solution to avoid renumbering their intranet addresses. As a solution we mention Network
Address Translation (NAT), but solutions of this kind have drawbacks of their own and these
vain efforts are usually followed by renumbering the whole intranet anyway.

For interconnected corporate networks use IP addresses as specified in RFC 1918 and presented
in Table 6.7.

Class A 10.0.0.0/8 10.0.0.0 to 10.255.255.255

Class B 172.16.0.0/12 172.16.0.0 to 172.31.255.255

Class C 192.168.0.0/16 192.168.0.0 to 192.168.255.255

Table 6.7: IP address specified in RFC 1918

The use of these addresses helps to increase security because they cannot be used in the Internet
(they are used by hundreds of companies in their interconnected networks concurrently).
Addresses in these ranges can be used without requesting them to be assigned.

A frequently asked question is how Internet providers ensure that these addresses are not used; do
they filter them off? No filtering is needed since these addresses are simply not included in the
routing tables and therefore cannot be routed to.

I also recommend going through RFC 3330 (Special-Use IPv4 Addresses). You will see that
besides the intervals reserved for intranets that were mentioned, there are other intervals of IP
addresses allocated for special use. I found the following ones especially interesting:

Chapter 6

• 169.254.0.0/16: This is the link-local block. It is allocated for communication
between hosts on a single link. These addresses are preferred by Microsoft. If a
network interface is being auto configured by Windows and its IP address cannot be
found (not even by DHCP protocol), then the network interface is assigned an IP
address from this IP range.

• 192.0.2.0/24: This block is assigned as TEST-NET for use in documentation and
example code. It is often used in conjunction with domain names example.com or
example.net in vendor and protocol documentation. Addresses within this block
should not appear on the public Internet.

• 198.18.0.0/15: This block has been allocated for use in benchmark tests of network
interconnection devices (RFC 2544).

Intervals of autonomous system numbers are allocated in the same way as IP address intervals,
i.e., the different Regional Internet Registries (RIPE, APNIC, ARIN, AfriNIC, and LACNIC) have
been allocated intervals from which they allocate AS numbers to individual Internet providers.

Autonomous system numbers for private use on intranets are allocated too, namely, AS64512-
65534 (see http://www.iana.org/assignments/as-numbers).

6.4 Unnumbered Interface
Let us consider serial links connecting LANs. For such a link, a subnetwork of at least four IP
addresses is needed (a network address, a network broadcast, and two addresses for network
interfaces on routers).

Figure 6.6: LAN connected via serial links

It is obvious from Figure 6.6 that besides the three IP address intervals for local networks, other
addresses for serial link networks will be necessary. It is clear at first glance, that not using
another network address for serial links would be very efficient.

Current routers are able to create an unnumbered interface on point-to-point links adjacent routers
act as a single virtual router. Each physical router represents one half of this virtual router. The
virtual router has two interfaces only—one per each LAN.

 183

http://www.iana.org/assignments/as-numbers

IP Address

Figure 6.7: Unnumbered networks

There is no need then to waste IP addresses for serial links.

6.4.1 Dynamic Address Assignment
If a network has already been assigned an IP address interval, it is possible to start assigning
addresses to network interfaces in the network. There are two ways of doing it:

• Static (permanent) IP address assignment
• Dynamic (at connection time) IP address assignment

Dynamic address assignment is dealt with by the DHCP application protocol usually. The DHCP
protocol is based on older protocols such as ARP, RARP, and BOOTP. For further information,
see RFC 2131.

In the DHCP protocol, a client requests to be assigned an IP address (or other services) by the
DHCP server. The DHCP server can be represented by a process on a computer running UNIX,
Windows, or any other operating system. Alternatively, the DHCP server can be represented by
a part of a router, wireless access point, or switch.

While IP address assignment in a LAN is currently a DHCP protocol domain, the PPP protocol is
usually used for IP address assignment to computers on a point-to-point lines.

The PPP protocol does not offer the same services as the DHCP protocol, but can assign an IP
address to a station. Connecting a user to the Internet usually does not require anything else.

While the IP address assigned by PPP is usually assigned for the connection time (the involved
router knows when the particular point-to-point connection starts and ends), an IP address
assigned by the DHCP protocol is reserved for a longer time—the DHCP server does not know,
for example, when a user takes his or her PC off the LAN.

6.5 Address Plan
Every company intending to be connected to the Internet must have an address plan first. It usually
consists of two parts. The first is a schematic diagram of individual LAN to WAN connections,
the other is a list of the individual LANs with estimated numbers of LAN interfaces. The address
plan should include a reserve for potential expansion over the next two years. The reserve is
usually double the present capacity. Then the address plan is sent to an Internet provider, implying
a request for assigning a corresponding number of IP addresses.

 184

Chapter 6

Figure 6.8: A fictitious company network

An example: We are supposed to connect to the Internet a company using three local networks:
Car Body Works, Paint Shop, and Engine Plant (a Regional Internet Registry never accepts
a general application for the three A, B, and C networks—the concrete request must always
be specified).

There are 8 computers in the Car Body Works, and the number is expected to increase to 16;
the nine computers in the Engine Plant are expected to become 18; and the 20 computers in the
Paint Shop are expected to become 40.

The required number of IP addresses in the three networks is 128:

LAN Present
state

Next year In 2 years The closest possibility for LAN Required

32Car Body Works 8 10 16 32*

32Paint Shop 9 15 18 32

64Engine Plant 20 35 40 64

Table 6.7: Present and projected computer requirements. * 16 is not sufficient because the subnetwork and
broadcast addresses are reserved; therefore the requirement is 32

It may seem strange to connect individual departments to the Internet. Nowadays, companies do
not need more than 16 Internet IP addresses. They usually choose one of the firewall connections
delineated in Figure 6.9.

A demilitarized zone is a LAN accessible from the Internet and therefore with official IP
addresses. The privilege of a demilitarized zone is that it is the only network in the Internet, which
can be at least partly accessed from within an intranet simultaneously.

No more than the following IP addresses are required:

• A four IP address network for a serial link to the Internet (the network can be
unnumbered too).

• For the Internet side of the firewall.
• For a demilitarized zone network, where, for example, a corporate web server

is situated.

 185

IP Address

 186

6.6 Over 254 Interfaces in a LAN
Cases may occur when a local network includes say around 300 computers. In these instances, one
C class network is not enough and therefore two C class networks are assigned. Using two
separate C class networks creates the danger of incorrect configuration. The LAN must have a
router for routing between them (or a proxy ARP must be used). Instead of communicating within
the network directly with each other, the computers must use the router. But the real drawback is
that the data is transferred twice, once from the sender to the router and for a second time from the
router to the recipient, which is most cumbersome with 300 computers in the network.

A reasonable solution is to use a super-network consisting of two C class networks, i.e., a
super-network with the mask /23, i.e., 255.255.128.0.

Chapter 6

Figure 6.9: The most common firewall connections

 187

7
Routing

IP routing and IP forwarding are two processes that are at the very foundation of the Internet.
Every system with TCP/IP protocol installed has at least one network interface called loopback.
Besides, it can have one or more network interface cards installed. Let us imagine we have
received one link frame, carrying an IP datagram, through the first installed network interface
card. Its processing, summarized in Figure 7.1, can be described in the following steps:

1. The IP datagram is extracted from the link frame. The sender's link address can be
used to refresh the ARP cache.

2. The extracted IP datagram is inserted into an input queue and waits here for its processing.
3. Processing of the header options is the first step within the processing. First, the

options 'Loose source routing' and 'Strict source routing' are processed. If the IP
datagram belongs (according to the content of the source routing options) to another
receiver, it is passed on for forwarding.

4. Next, we must know if the IP datagram belongs to this station, if not, it is also passed
on for forwarding.

5. Now, we must know if the datagram is an ICMP datagram. If so, it is processed and
the answer, if any, is passed on for routing back (step number 7).

6. At this point, all the duties of the IP layer are fulfilled, and the IP datagram is passed
on to the higher TCP/UDP layers. They will extract either the TCP segment or the
UDP datagram from IP datagram and process it.

7. All the outgoing IP datagrams and IP datagrams that should be forwarded are
processed in the routing system first. The goal of routing is to find out to which
network interface the IP datagram should be given for forwarding. To be able to
make such a decision the routing system has routing tables at its disposal.

8. The routing system must know if the sent IP datagram is a broadcast addressed to
this station; if so, then a copy must be also given to the loopback interface.

9. If the sent IP datagram is either a broadcast or a multicast, skip step 10.
10. Before the IP datagram is wrapped into a link frame, the station makes sure if the IP

datagram is addressed to it, if so, it is passed on to the loopback interface.
11. If the IP datagram is either broadcast or multicast, direct mapping of the IP address

to a link address is done. The IP datagram is put into a link frame and sent.
12. If it is a unicast, the IP datagram is wrapped into a link frame using the ARP protocol

and sent.

Routing

Looking at Figure 7.1 in detail, you will find the answer to the question "Why do I have to
configure a loopback?" Whenever an interface finds out that an IP datagram should be forwarded
back to the input, it is instead forwarded to the program loop, which takes care of the operation.

Figure 7.1: Routing

 190

Chapter 7

Among other things, Figure 7.1 shows that during the processing of input data, on some occasions,
the operating system forwards the information automatically to the output (to the routing process),
i.e., application programs do not interfere with the forwarding. These instances include:

• Source routing
• Forwarding
• Echo request
• Redirect

The kernel of the operating system always includes parameters enabling you to ban the automatic
processing of IP datagrams. While the ban on source routing is very common, echo requests are
banned only rarely.

7.1 Forwarding and Screening
Forwarding enables the use of a station (for example, computer) as a router. When a station finds
out that an IP datagram is not addressed to it, it tries to forward it, i.e., send it in the same way as it
sends its own IP datagrams.

Forwarding can be banned too, by configuring the kernel of the operating system. With older
systems, such a ban required a recompilation of the kernel of the operating system. With current
systems, the same can be done dynamically (for example, Windows 2000, Windows XP, or most
UNIX systems). It may, however, be necessary to restart the system after such modification.

The situation with Windows 2000/XP is interesting. In Windows 2000/XP, forwarding is set by
inserting the value 1 into the IpEnableRouter key, which is in the HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\Tcpip\Parameters registry folder.

It is an interesting feature of many operating systems that they do not forward IP datagrams
mechanically, but screen them, i.e., they do not forward all packets, but only some of them (the
screened ones).

Figure 7.2: Filtering

The way screening most often works is that before an IP datagram is forwarded, the whole
forwarding procedure is suspended and the decision to forward an IP datagram or not is left to
a process (service) running in the background.

 191

Routing

The forwarded IP datagram is handed over to a screening procedure that confirms or rejects the
forwarding. The screening procedure makes a decision based on the information in:

1. The IP header, for example, if the addressee is or is not on the blacklist.
2. The TCP-header, for example, according to port numbers and/or an ACK or SYN

flag are set.
3. The application protocol, used by some firewalls.

The implementation of the first two types of screening is common on routers. The third type of
screening is a method used with firewalls working on the screening principle (as opposed to
proxy firewalls).

7.2 Routing
The routing of IP datagrams is very similar to sorting letters at a post office. There is a
sorting table with slots in it. Each slot has a mail pouch attached beneath. All slots are marked
with the names of the respective towns with direct mail service from the town where the post
office is situated.

Sorting is done by a post office clerk, who sorts letters one by one and checks the address of every
letter. If the addressee is, say, in Vienna, the clerk drops the letter into the slot marked Vienna. If
the addressee is in a village near Prague, the clerk drops the letter into the slot marked Prague
(since there is no direct mail service to the village near Prague and the nearest point with direct
mail service is Prague). When all the letters have been dealt with, the mail pouches are detached
from the sorting table. A tag with the name of the town where the pouch is to be sent is attached to
each of them and the mail pouches are sent.

Figure 7.3: Manual sorting of letters in a post office

 192

Chapter 7

A router does not sort letters, but IP datagrams. The process is called routing. When a router
receives an IP datagram, it must decide to which of its interfaces (slots on the sorting desk) it is to
be fed and to which of its neighbors (next hop) it is to be sent.

To make the long story short, a router is a device that sorts and delivers IP datagrams among its
interfaces. An IP datagram can be delivered to the same interface it came from, but since such
cases are considered wasteful, the IP datagram sender is notified of the fact by means of a redirect
ICMP packet.

The router in the following picture has received an IP datagram addressed to the destination
10.5.2.1 and has to decide whether the IP datagram is to be sent to Serial 1, Serial 2, or possibly to
the Ethernet interface again.

Figure 7.4: Router's dilemma over to which interface should it send the packet.

A router uses a routing table (a parallel to a sorting table in a post office) to make its decision. The
routing table of the entire router is as follows:

Network Mask Next Hop Network Interface Metric

192.168.1.0 255.255.255.0 192.168.254.5 Serial 1 4

10.1.2.0 255.255.255.0 Local interface Ethernet 0

10.5.1.0 255.255.255.0 10.10.10.2 Serial 2 3

10.5.0.0 255.255.0.0 10.5.5.5 Serial 1 2

…

0.0.0.0 0.0.0.0 10.10.10.2 Serial 2 1

Table 7.1: Routing table

The first column of the routing table states the IP address of the destination network. To illustrate
the situation, let us imagine that the routing table is arranged in descending order according to the
first column. This allows us to apply the basic rule of routing easily, which is as follows: A more
specific address of the destination network has priority over a less specific address.

 193

Routing

 194

A more specific address is understood as an address whose network mask includes more ones. If
there are two or more pathways to the destination network in the routing table, the more specific
one is used. If there are two pathways with the same level of specification, the pathway with the
lowest metric (price) is used.

7.2.1 Processing
Provided that the lines of the routing table are arranged in descending order, the sorting table can be
processed from the top to the bottom. A network mask is taken from every line and the IP address
of the IP datagram's destination is multiplied with it bit by bit. The result is compared with the first
column. If the result is not identical with the IP network address in the first column, the following
line is processed. If the result is identical with the IP address in the first column, the next line is
checked for another pathway to the destination address (then the metric would play a role).

Let us return to the example from Figure 7.4. The router is deciding to which of its network
interfaces the IP datagram with the IP address 10.5.2.1 is to be sent. The router is processing its
routing table:

1st line:

192.168.1.0 255.255.255.0 192.168.254.5 Serial 1 4

By multiplying bit by bit the target address 10.5.2.1 with the mask 255.255.255.0, we obtain the
result 10.5.2.0, which is not identical with the network IP address in the first column (the address
is 192.168.1.0). Because no match was found the next line is processed.

2nd line:

10.1.2.0 255.255.255.0 Local interface Ethernet 0

By multiplying bit by bit the target address 10.5.2.1 with the mask 255.255.255.0, we obtain the
result 10.5.2.0, which is not identical with the network IP address in the first column (the address
is 10.1.2.0). Because no match was found the next line is processed.

3rd line:

10.5.1.0 255.255.255.0 10.10.10.2 Serial 2 3

By multiplying bit by bit the target address 10.5.2.1 with the mask 255.255.255.0, we obtain the
result 10.5.2.0, which is not identical with the network IP address in the first column (the address
is 10.5.1.0). Because no match was found the next line is processed.

4th line:

10.5.0.0 255.255.0.0 10.5.5.5 Serial 1 2

By multiplying bit by bit the target address 10.5.2.1 with the mask 255.255.0.0 we obtain the
result 10.5.0.0, which is identical with the network IP address in the first column (the address is
10.5.0.0). The IP datagram will, therefore, be sent to Serial 1 and delivered to a router with the IP
address 10.5.5.5. If it was an Ethernet interface instead of a serial link, then the link address of
a router with the IP address 10.5.5.5 would have to be found via ARP protocol.

Chapter 7

The last line in the first column with the address 0.0.0.0 and the mask 0.0.0.0 is called the default
route.All IP datagrams that satisfy no other row of the routing table are sent through the default
route (note that this route suits every address: zero multiplied by zero is zero). An default route
can be included in the routing table or not; the content of a routing table depends on its
administrator. An default route is used, for example, by companies for routing to the Internet.

When driving, say, from Dover to London, the default route is to London, and only the need to
leave the main road is marked at many crossroads. There is a sign showing the way to Canterbury
or Brighton, but the sign for the direct route to London is often missing. The road leading to
London is an implicit piece of information (i.e., the default route is to London) and there is no
need to repeat it every time.

7.3 Handling Routing Tables
A routing table has to be filled up with individual entries. The static entries stay in the routing
table until they are removed or the system is switched off. The dynamic entries fed into routing
tables by application protocols have their lifespan monitored and are removed after its expiration.

The English commands often use the term gateway instead of router, especially, in older manuals.
The term gateway in a routing table stands for the next router (next hop) in the trip.

7.3.1 List of Contents of a Routing Table in a Command
Prompt
The netstat -r command lists the contents of a routing table.

7.3.1.1 Contents of a Routing Table in UNIX
UNIX is an operating system with considerable history. The older versions of UNIX operating
systems did not list the network mask. The standard network mask was presupposed and this made
the lists confusing when other masks were used.

The more recent versions of UNIX list network masks in decimal notation or simply put slash
after IP address followed by the number of ones in the network mask. For example, Linux uses
decimal notation:

$ netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
160.217.208.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
192.168.0.0 160.217.208.1 255.255.0.0 UG 0 0 0 eth0
0.0.0.0 160.217.208.254 0.0.0.0 UG 0 0 0 eth0

In the above example, the Destination specifies destination network, the Gateway specifies next
hop, and the Genmask specifies a network mask.

 195

Routing

 196

The most interesting is the Flags column. The significance of the flags is as follows:

• U (up). The route is up.
• G (gateway). The G flag indicates that the route to the target address leads through a

router (gateway), i.e., the next hop is a router. The link layer will search for the link
address of the particular router, not the target address (which is not available directly).

• H (host). The H flag indicates that the particular address is an interface address
(a computer), not a network address, i.e., the mask is 255.255.255.255.

• D (dynamic). The entry is added based on the redirect ICMP announcement or by daemon.
• M (modified). The entry is modified based on the redirect announcement or by daemon.
• R (reinstate route for dynamic routing).
• A (installed by addrconf).
• ! (reject route).

The MSS column specifies TCP Maximum Segment Size (MSS) for connections over this route in
bytes. The Window column specifies TCP window size for connections over this route in bytes. The
irtt column specifies the initial round trip time (IRTT) for TCP connections over this route in
milliseconds. The Iface column specifies the interface's name.

7.3.2 Routing Table Listing in Windows 2000/XP/2003
The netstat -r command lists the contents of a routing table in ascending order, i.e., the routing
table has to be processed from the bottom to the top.

Now, let's focus on the following listing of a routing table. The PC had an interface with the IP
address 192.168.2.111. If you check the first column, however, IP datagrams addressed to
192.168.2.111 are to be sent to the interface 127.0.0.1. It is correct since it is the address of a local
network interface of this PC.

The conclusion is that while interfaces in Unix systems have their names, for example, eth0, in
Microsoft routing table's IP addresses are used instead.
C:\ > netstat -r

Route Table
===
Active Routes:
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 192.168.2.1 192.168.2.111 30
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 192.168.2.0 255.255.255.0 192.168.2.111 192.168.2.111 30
 192.168.2.111 255.255.255.255 127.0.0.1 127.0.0.1 30
 192.168.2.255 255.255.255.255 192.168.2.111 192.168.2.111 30
 224.0.0.0 240.0.0.0 192.168.2.111 192.168.2.111 30
 255.255.255.255 255.255.255.255 192.168.2.111 10004 1
 255.255.255.255 255.255.255.255 192.168.2.111 192.168.2.111 1
Default Gateway: 192.168.2.1
===
Persistent Routes:
 Network Address Netmask Gateway Address Metric
 192.168.15.0 255.255.255.0 192.168.2.54 1

Chapter 7

The network 224.0.0.0 with the mask 224.0.0.0 stands for all multicasts (including reserved IP
addresses, i.e., the D and E class IP addresses).

In Windows 2000/2003 Server, the program Routing and Remote Access is available (it is a snap-
in console module), which can be used to list the contents of a routing table and add/remove static
entries. Besides this, the program can configure routing protocols in Windows 2000/2003.

Figure 7.5: The contents of a routing table obtained using the Routing and remote access program

7.3.3 Contents of a Routing Table in Cisco Routers
The contents of CISCO routing tables can be listed by unprivileged users as well:
Router>sho ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate
default
 U - per-user static route, o - ODR

Gateway of last resort is 195.47.37.192 to network 0.0.0.0

 195.47.37.0/27 is subnetted, 1 subnets
C 195.47.37.192 is directly connected, Ethernet0
 10.0.0.0/24 is subnetted, 3 subnets
S 10.4.6.0 [1/0] via 195.47.37.211
S 10.4.4.0 [1/0] via 195.47.37.210
S 10.4.5.0 [1/0] via 195.47.37.210
S* 0.0.0.0/0 [1/0] via 195.47.37.192

The lower part of the list contains individual entries of the routing table. The list of entries is
divided into sections corresponding to individual networks. For example, the header "10.0.0.0/24
is subnetted, 3 subnets" informs us that the network 10.0.0.0/24 is subnetted and there exists
subsequent route for three subnetworks in the routing table.. Important information is conveyed by

 197

Routing

 198

the first column in the list of the entries of the routing table. It shows the way the particular entry
got into the routing table. The list in the example includes only two ways (a comprehensive list of
codes are listed in the first part of the list):

• C for Connected: The entry got to the routing table from the configuration of the
router's interface.

• S for Static: The entry was configured statically.

7.3.4 Routing Table Entry Addition and Removal
The routing table entries are set:

• During the configuration of a network interface, when defining the address and
network mask of the interface. In UNIX, the ifconfig command is used.

• Statically (manually) using the route command.
• Dynamically from redirect ICMP announcements.
• Dynamically by routing protocols.

The routing table is filled statically using the route command. In Windows the route command is
used with the following syntax:
ROUTE [-f/-p] [command [destination] [MASK netmask] [gateway] [METRIC metric]]

The syntax is explained as follows:

• -f: This clears the contents of a routing table first.
• -p: This makes a route persistent even after rebooting the system when used with the

ADD command. By default, routes are not preserved when the system is rebooted. If
it is followed by the PRINT command, it lists the permanent entries.

• command: This indicates a command for processing the routing table; it can have the
following values:

o PRINT: Lists the contents of the routing table. T

o ADD: Adds an entry to the routing table.
o DELETE: Deletes an entry from the routing table.
o CHANGE: Modifies an entry.

• destination: This specifies the target network.
• netmask: This specifies the network mask.
• gateway: This specifies the next hop.
• METRIC: This specifies the metric.

An example:
route –p add 10.0.0.32 mask 255.255.255.240 192.168.1.2

In UNIX there are no permanent entries in the routing table. After rebooting, static entries are
always fed into the routing table by the route command (by an automated procedure).

Chapter 7

The repertoire of commands of the route command in UNIX is different as well. There is usually
no Print command, but on the contrary there is a flush command (deleting the routing table) and
a monitor command causing a live listing of changes in the routing table to a standard output (can
be stopped by Ctrl-C key combination). For example:
route add –net 10.0.0.32/28 192.168.1.2

With the CISCO routers, static entries are added to the routing table by adding the entry into the
router's configuration. For example:
ip route 10.1.1.0 255.255.255.0 192.169.1.1

This adds an entry routing the network 10.1.1.0/24 to the router (gateway) 192.169.1.1. The
default entry, routing everything else to the router 192.168.1.2 is added by:
ip route 0.0.0.0 0.0.0.0 192.168.1.2

7.4 Routing Protocols
Routing protocols are application protocols used not by users (persons), but by routers to fill their
routing tables automatically by mutual communication.

There are two independent divisions of routing protocols:

• Link State Protocols (LSP) and Routing Vector Protocols (RVP) divide routing
protocols from algorithm point of view.

• Interior Gateway Protocols (IGP) and Exterior Gateway Protocols (EGP) divide
routing protocols from organizational point of view. IGP is suitable for routing inside
an autonomous system and EGP for exchanging routing information between
autonomous systems.

7.4.1 Routing Vector Protocols
RVP is based on exchange of the contents of neighboring routers' routing tables. A vector is one
entry in a routing table (vector size is a metric or cost). If we obtain the individual vectors from a
neighbor's routing table, we can compile the vectors that are missing from the routing table and
add them into it. However, we must not forget to increase the metric of such added entries.

The most often used routing protocols are RIP and RIP2. Their metric is the number of hops.

7.4.1.1 RVP Principle
We can explain the RVP principle describing particular steps of filling routing tables of
neighboring routers.

In the first step (see Figure. 7.6.), imagine we switched on all the routers at the same moment.
Immediately after switching them on, the particular routers only have routes (items in routing
table) created according to their own configuration in their routing tables, i.e., they only know
networks they are physically connected to.

 199

Routing

Figure 7.6: The first step of filling routing tables

Within the second step (see Figure 7.7), the neighboring routers mutually exchange their routing
tables. If a router receives a routing table from its neighbor, it first adds 1 to the metrics of all
routes. Then the router takes one item from the obtained routing table after another and tests if the
same item is present in its own routing table. If it does not find a match, the router adds this new
item into its routing table. If the same route is found, the router compares metrics of the two
matching ones. Then, it writes the route with the lower metric into its routing table. In our case,
the networks with the metric 2 are inserted.

Figure 7.7: The second step of filling routing tables

 200

Chapter 7

Within the third step (see Figure 7.8), the neighboring routers exchange their routing tables again
(the exchanged routing tables already have routes from step two). In our case the networks with
the metric 3 are inserted.

Figure 7.8: The third step of filling routing tables

Within the fourth step, the last one in our case (see Figure 7.9), the networks with the metric 4 are
inserted. Note that all our routers have already completed routing tables. Because the network
topology can change, routers do not store the dynamically created routing information into their
tables permanently, but only for a short time (the time interval is usually 2-5 minutes according
to a concrete routing protocol).

 201

Routing

Figure 7.9: The fourth step of filling routing tables

This algorithm is called a vector-distance algorithm or a Bellman-Ford algorithm. Particular
implementations or particular routing protocols using this algorithm are called protocols of the
Routing Vector Protocol (RVP) type.

Probably the most known flaw of the RVP protocols is the slow convergence (or count to infinity)
problem. Its principle is described in the figure shown below:

Figure 7.10: Slow convergence problem

 202

Chapter 7

Router R1 is directly connected to N1 (metric 1). It periodically advertises this information (route)
to its neighbors. So router R2 learns this information from router R1 (metric 2). Correspondingly
router R3 will learn this information from router R2 (metric 3).

Now suppose that R1's connection to network N1 fails. Router R1 changes its routing tables,
stating that network N1 is inaccessible. After this router R1 receives from router R2 its routing
information, stating that network N1 is accessible through router R2 (metric 2); R1 increases the
metric to 3 and stores into its routing table that the network N1 is accessible through R2.

After some time, the information about network N1 stored in router R2's routing table expires. But
after a while it receives an advertisement from router R1 that it knows a route to network N1 with
metric 3. R2 increases the metric to 4 and stores it into its own routing table.

The result is that the information about the route to network N1 in routing tables oscillates. We
have two solutions:

• The RVP protocols sets up an upper limit of metric. For example, the RIP and RIP2
protocols, using a number of hops as a metric, have an upper limit 16 (the metric 16
means that the network is unreachable). So the upper limit for the metric of an
accessible network is 15.

• If a router receives routing information from some router, it does not advertise this
routing information back to it (this technique is called split horizon update).

Another unpleasant feature of these protocols is the fact that these protocols do not support load
balancing of parallel lines.

Since RVP protocols are designed for smaller WAN, the question always has to be asked whether
the change of the network configuration will be dynamic enough, or if the routers will work better
configured manually using static entries.

7.4.1.2 RIP and RIP2
RIP and RIP 2 are examples of RVP protocols. In UNIX, RIP is implemented by the routed or
gated daemons.

In RIP neighboring routers exchange the contents of their routing tables via broadcast. One
disadvantage is that routing table entries of protocol RIP do not include the network masks. Thus,
the RIP protocol can be used only when networks with the standard mask are used.

This disadvantage has been eliminated from the RIP 2 protocol that transports not only a network
address, but also a mask. RIP 2 spreads the contents of the routing tables usually via a multicast
with the 224.0.0.9 IP-address.

A router advertises its routing tables every 30 seconds. The recipient keeps the received
information live for 180 seconds. If the information is not updated within this time interval,
it expires.

 203

Routing

Figure 7.11: In Windows 2000/2003 Server, routing protocols are activated

from the Routing and Remote Access program.

These protocols are simple and easy to implement. One disadvantage is that the vector exchange
may oscillate in larger networks causing a situation when some more remote networks may be
available at one moment and not available a moment later. By larger networks, we mean networks
with metrics higher than 10.

Probably the most important advantage of RIP protocols and of all other RVP protocols is that no
configuration is required. You just start them and they run. On the other hand, LSP protocol
configuration requires an experienced network administrator.

7.4.2 Link State Protocols
The principle on which LSP protocols are based on is entirely different. To be able to understand
the LSP principle, we must make a short excursion into graph theory first.

A graph is a set of dots called vertices or nodes connected by links called edges or arcs. Two
vertices are considered adjacent if an edge exists between them. In the Figure 7.12, vertices A and
C are adjacent, but vertices A and B are not. The set of neighbors for a vertex consists of all
vertices adjacent to it. In the example graph, vertex N3 has two neighbors, vertex J and vertex G.
A path is a sequence of vertices in which each vertex is adjacent to both the preceding and
succeeding vertices. The edges are evaluated by metric (costs). For example, in Figure 7.12 the
edge from vertex A to vertex B has metric 6.

In our case, vertices of the graph are routers (or LANs) and edges are represented by lines between
them. We can draw our network as a graph (see Figure 7.12). Let us imagine that the router A has
to decide in which direction it is to send an IP datagram for vertex G. From the graph point of
view, our task is to find out the shortest path from the vertex A to the vertex G.

 204

Chapter 7

Figure 7.12: Graph G

The task of finding the shortest path in a graph can be solved with Dijkstra's algorithm.
Edsger Wybe Dijkstra (1930-2002), a Dutch computer scientist, developed the algorithm. The
algorithm's principle is shown in the Figure 7.13. With the help of this algorithm, we will create
step-by-step a subgraph S of the graph G. For the purpose of this algorithm, we will rate the
vertices of the graph G stepwise. At each vertex of the subgraph S, we will also record a name of a
neighbor from which we have reached this vertex. Initially, rate all vertices of the graph G by
infinity. Within the first step (1), the subgraph contains only the initial vertex (A) and its rating is
set to 0. On each step, proceed as follows:

• For each new vertex U of the subgraph S (initially this is only the vertex A), move
through all its neighbors that are not already elements of S. For every such vertex V,
add the rating of U to the metric of the edge between U and V (do not change the
metric of this edge). If the obtained value (denote it by x) is lower than the current
rating of V, set the rating of V to x and record the name of the vertex U at V.

• Choose all neighbors of the subgraph S that have the lowest rating of all neighbors of
S (this can be just one vertex). Add these vertices to the subgraph S.

 205

Routing

Figure 7.13: Successive steps of finding the shortest path in the graph from A to G

You can see here how to find out the subgraph of the shortest path from the vertex A to the vertex
G in six steps:

1. The subgraph S contains only the vertex A (S={A}) and its rating is zero. All other
vertices have sets rating to infinity.

2. We are looking for all neighbors of the subgraph S, i.e., of the vertex A. We find
the vertices C, N6, and N1, rate these vertices, and record from which vertex we
have reached them. Vertices N6 and N1 have the lowest rating (equal to 1), so we
will add these vertices into the subgraph S. The result is S={A, N1, N6}.

 206

Chapter 7

3. Now, the new vertices of the subgraph S are N1 and N6. They have the neighbors D
and B, which are not the elements of S. We rate these vertices (by adding the rating
of N1 to the metric of the connecting edge D and B) by the value 2. Since the rating
of the vertex C is 6, we add vertices D and B into the subgraph S. The result is
S={A, B, D, N1, N6}.

4. Continuing in the same way, the result of the fourth step is S={A, B, D, N1, N2, N5, N6}.
5. Similarly, in the fifth step S={A, B, C, D, E, H, N1, N2, N5, N6}.
6. In the fifth step, we found the shortest path from A to G within the subgraph S. We

can reconstruct this path by following the recorded vertices names, namely, A, N1,
D, N2, E, and G.

7. We can continue until the subgraph S contains all the vertices of the graph G (S={A,
B, C, D, E, F, G, H, J, N1, N2, N3, N4, N5, N6}).

We can also create a tree for these steps. In this tree, we can see how the particular vertices
were added:

Figure 7.14: The tree containing paths to all vertices of the network is gradually created

 207

Routing

Based on the tree graph shown earlier, we can easily create the routing table of router A:

Network Next Hop Network Interface Metric

N1 Local interface I3 0

N2 D I3 3

N3 D I3 6

N4 C I2 7

N5 B I3 3

N6 Local interface I1 1

Table 7.2: Routing table

From the tree graph, it is clear that if router A wants to send an IP datagram to vertex G, it must
forward it to vertex N1 first.

In Figure 7.15, you can see the network topology from which the graph G was created. We will
also describe all network interfaces for the router A.

Figure 7.15: The network topology from which graph G was created

Correspondingly, all our routers can create their own routing tables. If your are confused as to
what we need to create the routing tables, then the answer is we need nothing more than the
complete topology of our network. Every router is able to create its own routing table from it.

 208

Chapter 7

How can a router obtain the complete topology of our network? We proceed in the following way:
every router finds out connections to its neighbors. It sends a number of queries (n) by broadcast
or multicast. If its neighbor is up (that means if it receives at least k responses; 1 ≤ k ≤ n), it
considers that the connection (edge of graph) exists.

Now, every router knows its neighbors. The next phase is called a flooding procedure. In this
phase, the router sends information about its neighbors to all other routers.

All the routers use the same data to create their routing tables, i.e., all routers have the same data.
This is a main difference from the RVP protocol, where routers learn from one another including
possible mistakes due to which oscillations may arise.

The important thing is that the network topology can change dynamically (line off, line up, etc.).
So the information about network topology must be updated regularly.

This algorithm is called Shortest Path First (SPF). Routing protocols based on this algorithm are
called Link State Protocol (LSP) protocols.

Particular implementations of LSP bring various improvements in this process. We will mention two:

• It is not recommended to flood broad networks with large volumes of information from
routers. This is why these networks are divided into areas, and the approach mentioned
above is applied within one area at a time. On the borders between neighboring areas,
there are border routers exchanging information on the whole areas

• If there are several routers within one common network (for example, a LAN), they
mutually agree on one designated router, which takes care of routing.

LSP protocols are far more stable than RVP protocols and are applicable to even very broad
networks. The disadvantage is that the network has to be designed, i.e., divided into areas by an
expert and its configuration is not trivial either. If LSP is used without enough experience, it may
happen that some links will not route data while others will be overloaded.

OSPF and IS-IS protocols are examples of LSP protocols. The feature in which they differ is the
interpretation of the term area. The area is a logical grouping of routers, and its information may
be summarized towards the rest of the network. The OSPF protocol is designed for IP routing
only. The IS-IS protocol supports simultaneous routing by several protocols (for example, IP,
IPv6, and DECnet). It is true that the IS-IS protocol must be configured by an expert.

7.4.2.1 OSPF
OSPF is an abbreviation of Open Shortest Path First, i.e., Open SPF The word Open is very
important because this protocol was created by the Internet Engineering Task Force (IETF)
initiative. The goal was to create a license-free specification. The consequence of this was a
massive spread of this protocol. Unfortunately the approach of the biggest competitor IS-IS was
different from the OSPF, which is why the IS-IS is not so widespread.

 209

Routing

ES-ES is standardized by ISO/IEC 10589, and it is possible to find the official name of this
standard at http:/www.iso.org/:

Information technology -- Telecommunications and information exchange between
systems -- Intermediate System to Intermediate System intra-domain routing
information exchange protocol for use in conjunction with the protocol for providing
the connectionless-mode network service (ISO 8473).

OSPF implements many new features as follows: type of services routing, load balancing for
equal-cost parallel lines, mutual authentication of communicating routers, distribution of external
routing information (this means external networks outside the autonomous system), and so on.

An OSPF network is divided into particular areas. Routers located in area boundaries are called
border routers. A flooding is processed only within a particular area. The border routers exchange
summaries of routing information.

The topology of particular areas is very interesting. The core of the OSPF topology is a backbone
area with routers having complete routing information. The other areas must be connected directly
to this backbone area.

Figure 7.16: Topology of OSPF networks

A special kind of area is called a stub area. Inside the stub area, there is no spreading of the routing
information of external networks, because all routing from this stub area can be done through the
default route, directed to the backbone area. An area can be configured as a stub when there is a single
exit point from the area, or when the choice of exit point need not be on external network basis.

The areas connected through more than one line enable load balancing. In this case, we are not
talking about stub areas, because these areas must have full routing information. We call them
backboneless areas or simply areas.

OSPF does not support direct connection of backboneless areas other than through the backbone
i.e., transversal lines between backboneless areas are not allowed. The exception to this rule are
areas not directly connected to a backbone area, but connected through a virtual link leading
through another (transit) area. But even if virtually, this type of remote area is also directly
connected to a backbone area. Routers on both ends of a virtual link are border routers. (Transit
areas must not be stub areas too.)

 210

Chapter 7

Every OSPF router has its own, 4B-long unique identification. Correspondingly, every area also
has its own 4 B-long, unique identification. This identification is similar to an IPv4 address. For
example, a border area always has the 0.0.0.0 identification.

7.4.3 IPG and EGP
IGP protocols are to be used within autonomous systems. The above mentioned RIP, RIP2, OSPF
as well as IS-IS protocols are all IGP protocols.

Internet providers need to exchange routing information as well. For the exchange of routing
information between autonomous systems, Internet providers use the EGP protocols. The BGP
protocol (Border Gateway Protocol) has also been used recently.

EGP protocols differ from IGP protocols mainly by allowing consideration of routing policies
(i.e., billing policy).

7.4.4 Aggregation
Aggregation is the process of combining several entries in a routing table into a single one. It is
useful, for example, in network promotion outside an autonomous system.

Several entries can be merged into one if the networks aggregated into one entry make up a super-
network. Automatic aggregation is a dream rather than a reality. As non-assigned addresses are
usually skipped in a provider's super-networks, all the IP addresses of the autonomous system
cannot be aggregated into one or a few entries. Aggregation is in practice accomplished manually
by promoting all assigned IP addresses outside the autonomous system.

7.4.5 Redistribution
The question mark in Figure 7.17 marks a router exchanging routing information in BGP, OSPF,
and RIP protocols simultaneously and which may have a few static entries in its routing table.

It is not evident whether the information (routing table entries) acquired by a particular routing
protocol should be promoted to other routing protocols, i.e., whether they should be redistributed.
A routing table entry thus has to include the information of which protocol it was created by.
Redistribution means transferring the routing information obtained by one routing protocol to
another routing protocol.

Figure 7.17: Redistribution

 211

Routing

 212

7.5 Neutral Exchange Point
If we want to establish a new Internet provider outside the U.S., we will have to solve two basic
communication problems.

The first problem is to establish a connection with America, i.e., we must give our clients access to
the world's Internet information sources. If we want to be an Internet provider in a geographically
distant country, we will have to consider the great costs of transatlantic or transpacific connection
lines. The solution could be to use the services of some of the international Internet providers.
They already have running transatlantic or transpacific connection lines and you can connect to
them. Initially this seems to be an acceptable solution. From the point of view of routing, the
partner Internet providers run transit (built-in) autonomous systems (AS) through which we will
be able to transfer our IP datagrams to various areas throughout the world.

We have an international connection now, but we must realize that we live in a specific country
where a specific custom is followed, and most problems our citizens face are also national. This
means that our citizens, i.e., our potential Internet clients will want to communicate mostly among
themselves within their national community. In other words, our clients will also want to
communicate with clients of our national competitors. If we are connected to the Internet only
through an international connection line (for example, to the US), all the communication between
our clients and clients of our national competitors will be routed through the US even if they live
next door. From an economic point of view, this obviously would not be very feasible.

Thus, we need to resolve communication with our national competitors i.e., we need to resolve IP
datagram exchange between our AS and those of our competitors. But negotiations with
competitors are always difficult.

The solution is to establish a consortium of national Internet providers, which will establish a
Neutral Exchange Point NIX through which all NIX members will exchange their IP datagrams.
From a technical point of view, this can be accomplished by having a common LAN to which all
NIX members connect their routers. Then, they can simply connect their routers with their
particular AS.

8
IP Version 6

The original IP version 4 protocol, specified by RFC 760 in January 1980, was replaced by RFC
791 in September 1981. IP version 6 was originally specified by RFC 1883 in December 1995.
Presently, IP version 6 uses the RFC 2460 specification. IP version 6 was therefore referred to as
IP the Next Generation (IPng).

Although the IP version 4 was robust at the time of its publication in 1981, it did not anticipate
several Internet advances including:

• The recent exponential growth of the Internet and the impending exhaustion of the IP
version 4 address space

• The need for simpler configuration
• The requirement for security at the IP level
• The need for better support for real-time delivery of data, also called quality of service

IP version 6 has not only enlarged the IP address size from 4 to 16 bytes, but also offers a
revamped view of the IP datagram. Fields such as the header checksum as well as other
infrequently used fields are now optional rather than mandatory for the base header.

The IP version 6 datagram consists of a 40 byte-long base header followed by various extensions.
Although a 40-byte basic header may seem rather large, keep in mind that the source and
destination IP addresses alone consist of 32 bytes.

IP Version 6

The base header structure is shown in the following figure:

Figure 8.1: Base header of IP version 6 datagram

 214

The IP version field has the value 6 rather than the value 4 found in IP version 4.

The Traffic class field contains four bits; therefore, it can have a value ranging between 0 and 15.
It indicates priory and congestion control. Congestion control means that in the case of a network
overload, the router is forced to discard certain IP datagrams. This field prioritizes which
datagrams are less important and therefore more quickly discarded. In essence, datagrams of lesser
value are discarded before those of higher value.

The 0-15 interval is divided into two parts:

• Interval 0-7 is for congestion-controlled usual traffic in which:
o 0 is unspecified data
o 1 is background traffic (e.g., news)
o 2 is automatic traffic (e.g., mail)
o 4 is user-initiated transmission of big amounts of data (e.g., FTP files)
o 6 is interactive traffic (e.g., Telnet, X windows, etc.)
o 7 is network management traffic (routing protocols, SNMP)

• Interval 8-15 is for noncongestion-controlled traffic real-time transmission (such as
audio). Datagrams of lower value are thrown away before datagrams of higher value.
This is valid only for the 0-7 interval since the 8-15 interval is processed separately.
This is only in theory; in practice, there are Traffic class field fulfilled usually by zeros.

The Flow label field is introduced in IP version 6. Along with the source address it identifies
individual data flows on the Internet. Until now, routing was done based solely on the destination
address. A drawback of Internet routing is that individual datagrams are transmitted separately,
i.e., if the flow of IP datagrams goes between two applications, then the routers along the way deal

Chapter 8

with each passing datagram on individual basis. For example, if you transmit a file of several
MBs, the flow involves thousands of datagrams. Thus, each router along the way must deal with
each of them individually. If there is no change in the network topology, then the router has to
solve the same task for thousands of datagrams with the same result.

A solution to this is labeling datagrams of the same flow. Streamlining in this way allows the
router to save memory by simply solving the task (to which interface the datagram is to be sent)
for the first datagram of the flow. As for the ensuing datagrams, the router simply searches its
cache. If it finds no matches, it solves the routing task for that particular datagram as well.

The datagrams of the same flow are automatically sent to the interface selected for the first one.
The flow is identified based on the source address and the data flow label field. An item is stored
in the router cache for no longer than six seconds. The danger is that the user could restart his or
her computer, restarting its operating system again, and, coincidentally, the system might end up
generating the same label for a different data flow. However, it is assumed that the user will not
restart his or her computer before 6 seconds have elapsed.

Another possibility is the use of data flow labels for the provision of the guaranteed bandwidth.
The routers on the way from the source to the destination are configured so as to provide data
flows of a particular label with a corresponding bandwidth. When datagrams reach the router, they
are stored in the queue. Under normal circumstances, the queue is First In First Out (FIFO) type.
The router may not process in this way. The router may give priority depending on the concrete
data flow. In such cases, the 6 second limit does not apply. This is only in theory; in practice, there
are Flow label field fulfilled usually by zeroes.

The Payload length field specifies the total length of the IP datagram excluding the base header.
Since the field has two bytes, the maximum length of the datagram transferred might be 65,535
bytes. It is also possible, however, to use a larger datagram from the next header of the router
information that enables sending even larger datagrams (jumbograms).

0 Hop-by-Hop Header

4 IP protocol

6 TCP protocol

17 UDP protocol

43 Routing Header

44 Fragment Header

45 IRP Protocol

46 RRP protocol

50 Encapsulating Security
Payload

51 Authentication Header

58 ICMP protocol

59 No next header follows

60 Destination Options

Table 8.1: Next headers in IP version 6 datagram

 215

IP Version 6

 216

The Next header field specifies the next header type. Table 8.1 shows some of the possibilities
the field offers. Section 8.1 deals with other types of next headers.

In Table 8.1, only items shown in bold are part of the IP protocol. All other items belong to
higher-layer protocols.

The Hop limit field essentially corresponds to the TTL item (Time to Live of a datagram) in IP
version 4. It can be used in one of the following two ways:

• To detect routing loops (to discard lost IP datagrams). The hop limit is decreased every
time the IP datagram passes through a router. When it reaches 0, the datagram is
considered lost and, subsequently, discarded.

• To find the shortest path through the Internet (similar to the traceroute command).
The aim is to find the nearest member of a particular multicast group. Initially, a
datagram is sent to the multicast with the hop limit set to 1. If no member responds,
than a datagram with the hop limit set to 2 is sent, and so on.

8.1 Next Headers of IP Version 6 Datagram
Next headers can follow the base header.

The Next header field in the base header shows, which data type (header) follows the base header.
Headers form chains. The chain contains only those headers that are necessary as opposed to IP
version 4 that often carries extraneous information in its header.

Chapter 8

Figure 8.2: An example of IP version 6 datagram structure with arrows showing the order of header processing

The Next header field is followed by the header length field. This field specifies the shift that is
necessary in order to reach the next header. The base header does not have a header length field
since it is always 40 bytes long. The length is not used with fragment headers either since this
header is always 8 bytes long.

8.1.1 Hop-By-Hop Options
This Next header contains individual pieces of information (options) that are aimed at
routers transferring the datagram. Each router transferring the datagram must look at and
process these options.

 217

IP Version 6

 218

The option (see Figure 8.3) consists of the Type field (1 B long), the Length field of 1 B and the
field containing the Option itself.

Figure 8.3: The structure of one of the options of the next header hop-by-hop options

The Type field consists of eight bits:
aabxxxxx

The aa bits inform the router what it is expected to do with the datagram if the option is not
recognized. There are several possibilities:

• 00. "If you do not recognize this option, then skip over this option and continue
processing the header."

• 01. "If you do not recognize this option, then discard the datagram and do not
proceed to any other steps."

• 10. "If you do not recognize this option, then discard the datagram and inform the
source of this using the ICMP protocol."

• 11. "If you do not recognize this option, then discard the datagram and if it is not
addressed to a multicast, inform the source of this situation using the ICMP protocol."

The b bit indicates whether the router is allowed to change the option:

• 0. "The option value can or cannot be changed."
• 1. "The option value can be changed in transit."

Chapter 8

Table 8.2 shows some of the options. The padding options serves for a simple alignment of the
header length at multiples of 4-byte units.

Type in Decimal
Units

Type in Binary
Units

Option Length Alignment

0 00000000 Padding 1 byte long 1 N/A

1 00000001 Padding n bytes long 2+n N/A

194 11000010 Large datagram
(Jumbogram)

2+4 4

Table 8.2: Some options from the information header for routers

Padding is aimed at the alignment of the header length. The IP version 6 Jumbograms options
(RFC 2675) uses alignment. That is why this option must terminate at a four-byte boundary:

Figure 8.4: The IP version 6 Jumbograms length option has a maximum of four bytes

If the IP version 6 Jumbograms option is used, the datagram length in the base header is set to zero
and the length indicated in this option is used. While the base headers uses a length of 2 bytes (i.e.,
the datagram can have up to 64 KB), the 4 bytes of the Jumbogram option provide for a maximum
length of up to 4 GB.

8.1.2 Routing Header
As of now, the routing header Next header uses only the option (Type=0), which is source
routing. The source specifies the IP addresses of the routers that are used in transmitting
the datagram:

 219

IP Version 6

Figure 8.5: Source routing option

The lower part of the header contains the IP addresses of routers that the source wants to use for
routing the datagram.

The Mask of Strict Source Routing field contains 24 bits (0-23 from left to right). Each bit
corresponds to one hop and indicates whether the next router contained in the header must be the
neighboring one (strict routing) or if other routers can occur between. For example, if the bit is set
to 1, then the router employs strict routing for the following hop.

The i field indicates how many IP address (routers) from Source routing option was left. Each
processing router that is listed in the header decreases the value of this field by 1.

The problem is, however, that if the datagram is to be routed via a particular router, the destination
address must also contain the IP address of that next router. Therefore, the destination address
always contains the IP address of the following router that is to be used for transmitting. The real
destination address is then stored in the header of the routing information among other routers listed.
The following figure shows the cycle of IP addresses in the source routing information header.

 220

Chapter 8

Figure 8.6: An example of the cycle of IP addresses in strict source routing

 221

IP Version 6

8.1.3 Fragment Header
Only the operating system source is capable of fragmenting IP datagrams in IP version 6. On the
other hand, the routers along a datagram's delivery path are not allowed to fragment as they are in
IP version 4.

Figure 8.7: Fragment header

Unlike IP version 4, each IP datagram does not contain any identification (e.g., in the base
header). Identification of the IP datagram is necessary for fragmenting so that the destination user
knows which fragments are a part of the same datagram. In IP version 6, the datagram
identification is only contained in the next header; therefore, it is not a part of each IP datagram.

 222

The Fragment Offset field is used for putting the datagram together. By using this field, the
destination user finds out the order that the fragments received should be in. The Fragment Offset
field does not indicate the offset in bytes, but in multiples of eight bytes (8-byte units); therefore,
fragments need to be divided into portions divisible by eight.

The M (more fragment) field indicates the last fragment. The one-bit M flag is set to 1 (1 = more
fragments), except in the last fragment, where it is set to 0 (0 = last fragment).

8.1.4 Authentication Header

Figure 8.8: Authentication Header

The Authentication header uses IPsec for ensuring data integrity and also enables the source user
to authenticate data in order to verify that they have been sent. The datagram is protected against
any potential modifications in the IP datagram along its delivery path such as by a hacker.

Chapter 8

The basic authentication is done by using the MD-5 (RFC 1321) algorithm for calculating a hash.
The authentication uses a hash calculated from the non-variable IP datagram fields and a shared
secret. The shared secret is a 128-bit long string (if it is shorter, it is padded with zeros). However,
this string must first be exchanged between the source and destination in some other way. Note
that each party may have more than one shared secret. The Security Parameters Index (SPI) points
to corresponding shared secret.

8.1.5 Encapsulating Security Payload Header
While Authentication header ensuring data integrity, the Encapsulating Security Payload Header
enables encryption of the transferred data.
It must be the final Next header in the IP datagram if the subsequent data is encrypted, otherwise
following headers will be unavailable for processing by the routers transmitting the IP datagram.

The first four bytes, similar to the Authentication header, are an index for the table where the
cryptographic material is stored such as encryption type, encryption mode, encryption keys, etc.

The following figure is an example of encrypted data structure for DES encryption in the CBC mode:

Figure 8.9: Encapsulating Security Payload header

There are three ways to utilize the Encapsulating Security Payload header:

• The end parties (source and destination) do the encryption or decryption.
• Either the source or the destination does not support encryption. In this case, a router

encrypts or decrypts the data instead of the source or destination that does not
support encryption. This router is referred to as the security gateway.

 223

IP Version 6

• Both the source and destination do not support encryption and security gateways do
it for both of them:

Figure 8.10: Security gateway

It is useful to utilize a security gateway in order to differentiate between the intranet and the
Internet. Intranet traffic does not require encrypting while the transmission between two parts of
a company via the Internet might require it.

8.2 ICMP Version 6 Protocol
Just as an ICMP protocol is used for diagnostics and error signaling in IP version 4, IP version 6
uses an ICMP version 6 protocol. For IP version 6, the ICMP protocol is specified by RFC 2463.

The ICMP version 6 protocol offers different functionality than the previous version of ICMP. For
example, ICMP version 6 deals with the translation of IP addresses into link addresses. (The IP
version 4 protocol uses separate protocols for that purpose, namely, ARP and RARP.)

With regard to packet structure, the ICMP packet has a higher-layer protocol; thus, the base header
of the IP protocol as well as Next headers, if necessary, precedes it:

Figure 8.11: ICMP version 6 packet structure

 224

Chapter 8

The ICMP type field contains the message type (approximate classification of the message) and
the ICMP code field specifies the detailed classification of the message.

RFC 2461 and RFC 2463 specify types and codes of ICMP messages that are listed in Table 8.3:

Type Code Description

Destination unreachable 1
No route to destination 0
Communication with destination administratively prohibited 1
Address unreachable 3
Port unreachable 4

2 0 Packet too big

3 Time exceeded
0 Hop limit exceeded in transit
1 Fragment reassembly time exceeded

Parameter Problem 4
Erroneous header field encountered 0
Unrecognized Next header 1
Unrecognized IP version 6 option encountered 2

128 0 Echo request

129 0 Echo reply

133 0 Router solicitation

134 0 Router advertisement

135 0 Neighbor solicitation

136 0 Neighbor advertisement

137 0 Redirect message

Table 8.3: Types and codes of ICMP messages

ICMP message types are divided in two intervals:

• The 0 to 127 interval for error messages
• The 128 to 255 interval for informational messages

The function of the ICMP messages (shown in Table 8.3) within the 0–129 interval is similar to
the ICMP messages in the IP version 4 protocol. Therefore, it is worth taking a look at the
remaining message types.

8.2.1 Address Resolution
In Figure 8.12, station A with the address of FE80::220:AFFF:FE42:4636 wants to send an IP
datagram to station B. However, the IP datagram must be inserted in the link frame. Station A
knows station B's IP address (FE80::2A0:24FF:FE47:1EC), but also needs to have the link address
of station B once the link frame has been established.

 225

IP Version 6

Figure 8.12: Station A wants to send an IP datagram to station B

Two ICMP messages can be used to resolve the neighboring link address on the local network:

• Neighbor Solicitation: Station A solicits the link address of station B via multicast.
• Neighbor Advertisement: Station B return its link address to station A.

Figure 8.13: Neighbor solicitation

 226

Chapter 8

The maximum number of hop fields indicates 255 for a neighbor solicitation. If this request is sent
through routers (i.e., from a different network), then the value of this field would decrease below
255, and, therefore, the destination party would know that it is an invalid request from another
network rendering this request impossible. (The Link addresses are unique only within the LAN.)

The base header has a special purpose IP address (FF02::1:FF47:1EC) in the destination field. It is
a multicast that has been constructed exclusively for this ICMP message. It is composed of the
FF02:0:0:0:0:1:FF/104 prefix, with the remaining 24 bits taken by the lowest 24 bits of the IP
version 6 address. As described in Section 8.3.3, in the case of unicasts, these 24 bits will contain
the three lowest bytes of the link address (assigned by the network card producer). The ICMP type
field has the value of 135. The code field has the value of 0, but routers can warn that by setting
the code field to 1.

The ICMP message body contains the required IP address, and the option with the link address of
the requesting party (the sender).

In ICMP messages, the options always consist of three fields:

• One-byte option field containing the option type (e.g., source link address indicates 1
in the option identification field for requests, 2 for answers)

• One-byte length field containing the option length
• The option itself

The Microsoft Network Monitor statement is worth taking note of as well:
+ ETHERNET: EType = IP version 6
 IP6: Proto = ICMP6; Len = 32
 IP6: Version = 6 (0x6)
 IP6: Traffic Class = 0 (0x0)
 IP6: Flow Label = 0 (0x0)
 IP6: Payload Length = 32 (0x20)
 IP6: Next Header = 58 (ICMP6)
 IP6: Hop Limit = 255 (0xFF)
 IP6: Source Address = fe80::220:afff:fe42:4636
 IP6: Destination Address = ff02::1:ff47:1ec
 IP6: Payload: Number of data bytes remaining = 32 (0x0020)
 ICMP6: Neighbor Solicitation; Target = fe80::2a0:24ff:fe47:1ec
 ICMP6: Type = 135 (Neighbor Solicitation)
 ICMP6: Code = 0 (0x0)
 ICMP6: Checksum = 0x6665
 ICMP6: Reserved
 ICMP6: Target Address = fe80::2a0:24ff:fe47:1ec
 + ICMP6: Source Link-Layer Address = 00 20 AF 42 46 36

The answer is called a Neighbor advertisement. Let's take a close look at this message (see
Figure 8.14). The base header of the IP datagram contains the value of 1 in the hop limit field,
which prevents the answer from being sent to a different network. Furthermore, the destination IP
address is not a multicast, but rather the IP address of the requesting party.

The body of the ICMP message contains three cryptic bits (flags): R, S, and O. The body also
contains the station's IP address and option 2 contains the requested link address. If a router is the
source party, the Router flag R is set to 1.

 227

IP Version 6

Figure 8.14: Neighbor advertisement

If it is an answer to a solicitation (i.e., if the ICMP message follows receipt of a neighbor
solicitation message), the solicited flag (S) is set to 1.

If the source party wishes to stress that the destination user should rewrite the values saved in
cache, the override flag (O) is set to 1.

The destination party saves the information from neighbor advertisement in cache, obviating the
need to repeat the neighbor solicitation process when sending the responding IP datagram.

In Windows XP, it is possible to display the contents of this cache by entering the

 228

ipv6 nc command.

Here is the completed Network Monitor statement:
+ ETHERNET: EType = IP version 6
+ IP6: Proto = ICMP6; Len = 32
 ICMP6: Neighbor Advertisement; Target = fe80::2a0:24ff:fe47:1ec
 ICMP6: Type = 136 (Neighbor Advertisement)
 ICMP6: Code = 0 (0x0)
 ICMP6: Checksum = 0xAD0E
 ICMP6: 0............................... = Not router
 ICMP6: .1.............................. = Solicited

Chapter 8

 ICMP6: ..1............................. = Override
 ICMP6: Target Address = fe80::2a0:24ff:fe47:1ec
 ICMP6: Target Link-Layer Address = 00 A0 24 47 01 EC
 ICMP6: Type = 2 (0x2)
 ICMP6: Length = 1 (0x1)
 ICMP6: Target Link-Layer Address = 00 A0 24 47 01 EC

8.2.2 Router Discovery
If a station needs to communicate outside a LAN, than a router address is necessary. To do this, the
station needs to have the default route and save it to its routing table.

Routers make this information public on a regular basis by sending a multicast to all computers in
the LAN (FF02::1) via an ICMP message known as Router advertisement.

Figure 8.15: Router advertisement message format

 229

IP Version 6

After the router advertisement has been received, the station creates the default route for its
routing table by simply setting the source IP address of this message as the default route.

The ICMP message Router advertisement contains the following fields:

 230

• The ICMP message Type field with the value set to 134 and the Code field set to 0.
• By using the Hop limit field, the stations receive a recommended value that is to be

entered into the Hop limit field in the base header of IP datagrams.
• The M and O bits (flags) are used for higher-layer protocols involved in the

automatic configuration of the station (such as the DHCP protocol).

• The Router lifetime field contains the time in seconds that the station should use for
keeping the default route in its routing table. If the value is set to zero, it means to
delete this default route from the routing tables.

• The Reachability timeout suggests a time limit to place on neighbor information
that a station understands. If a station fails to be contacted by a neighbor within this
time period, it can suspect that the neighbor in no longer reachable. The
Reachability Retransmission Interval limits the frequency of neighbor solicitations
for a destination.

Figure 8.16: Router Solicitation message format

Chapter 8

Additionally, the ICMP message for a neighbor advertisement may also contain certain options.
Figure 8.15 shows the Sender's Link Address and MTU options.

We have seen the Sender's Link Address option when dealing with neighbor advertisement
messages. In this case, it should prevent the station from sending another ICMP message in order
to ask the router for its link address. The MTU specifies the maximum link frame size supported.

The station itself may issue a Router solicitation message as soon as it connects to the network,
which allows it to find routers without having to wait for the next Router advertisement message.
This message (see Figure 8.16) is sent by the station via multicast to all routers (FF02:2). The router
then uses the neighbor advertisement function that contains the unique address of the requesting
party. The router should not use a multicast.

8.2.3 Redirect
The following contingency is also shown in Figure 5.11.

Figure 8.17: ICMP Redirect Message

Consider the situation where there are several routers on a LAN, and a source computer sends an
IP datagram to a destination computer, as shown in Figure 8.17. Since the sender's routing table
does not contain direct routing to Receiver through Router 2, it will use the default route that can
be acquired, for example, from an ICMP message containing a Router advertisement, which
results in routing via router 1. Router 1 will receive the datagram but it must forward to Router 2
through the same interface. During this process, Router 1 informs the Sender of this fact via a
redirect ICMP message. The Sender will receive this message, and use it to make a new entry in
its routing table that indicates the destination can be reached directly via Router 2.

 231

IP Version 6

Figure 8.18: Redirect

 232

Chapter 8

The Redirect ICMP message is shown in Figure 8.18. It should be noted that the code field
contains 0 if the destination of the ICMP message is a computer and 1 if the destination is a router.

8.3. IP Addresses
IP addresses in IP version 6 protocols have 16 bytes (128 bits). We recognize three types of addresses:

Unicast: A unique address of a network interface (an analogy to IP version 4
interface address)

•
.

Anycast: New type of address, an address referring to a group of network interfaces. An
IP datagram containing the anycast type of address will be delivered to one of the
interfaces listed (the closest one within the network topology). These addresses are
assigned from unicasts address space.

•

Multicast• : A group address (an analogy to IP version 4 multicasts).

There are no broadcasts!

8.3.1 Types of Address Inscription
Three principal types of address inscription are used:

• hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh where h is one hexadecimal digit
(0 to F) representing 4 address bits.
Example: ABCE:3:89AD:134:FEDC:E4D1:34:4321(the initial 0s do not need to
be indicated).

• An abbreviated type using a double colon. The double colon can appear only once in
an address. The double colon replaces any number of groups consisting of four zeros.
Example: The address 12A1:0:0:0:0:5:15:500C:44 can be abbreviated as
12A1::5:15:500C:44, the address 1234:0:0:0:0:0:0:14 as 1234::14, and a loop, i.e., the
address 0:0:0:0:0:0:0:1 as ::1.

• hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:d.d.d.d with the last four characters
expressed similarly to an IP version 4, i.e., each byte is expressed by a decimal
number. This form of inscription is suitable for environments using IP version 4 and
IP version 6 addresses together.
Examples: ::195.47.103.12 and 12::A54:147.123.25.4

Network addresses are indicated similarly to IP version 4 addresses as a prefix followed by a slash
and the number of bits forming the address, e.g., 80:1::1/64. RFC 4291 and RFC 2450 specify the
allocation of version 6 IP addresses.

 233

IP Version 6

Network Address Description

0:0:0:0:0:0:0:0 Unspecified address not assigned to any interface; if used, then it indicates that no
address has been assigned to the interface

0:0:0:0:0:0:0:1 Loopback; corresponds to 127.0.0.1

…

2000::/3 Globally unique addresses (unicasts)

2001:0000::/23 IANA

2001:0200::/23 APNIC (Asia and Pacific)

2001:0400::/23 ARIN (America)

2001:0600::/23 RIPE NCC (Europe)

2002::/16 "6 to 4" (see RFC 3056)

…

1111 1110 10

 234

2/10 Unique addresses within local networks or neighbors interconnected via link (Link-Local
Unicast); corresponds to 169.254.0.0/16 (Such as FE80 ::)

1111 1110 112/10 Unique address within one company (Site-Local Unicast); corresponds to 10.0.0.0/8
(Such as FECO ::)

FF::/8 Multicasts

Table 8.4: Some parts of the IPng address space (for more details see http://www.iana.org/)

8.3.2 Multicasts
The first byte of a multicast prefix contains only binary 1s, i.e., hexadecimal FF:

Figure 8.19: Multicast address

The second byte is divided into halves. The first half contains only one important bit, T, indicating
if it contains a 0 that the multicast is permanently assigned (

T

well-known multicast), and if it
contains 1 that it is only temporarily assigned (transient multicast).

The second half of the second byte specifies the scope of the group forming the multicast. It can
have different values such as:

• 1: Interface-local scope
• 2: Link-local scope
• 5: Site-local scope
• 8: Organization-local scope
• E: Global scope

Chapter 8

There can also be dedicated multicasts. A few of them are (where xx equals to scope):

• FFxx::1: Multicasts for all stations (both computers and routers)
• FFxx::2: Multicasts for all routers
• FFxx::9: Multicasts for all routers using the RIP protocol

For example, the FF02::2 multicast is aimed at all routers on the LAN.

8.3.3 Unicasts
InternetIP version 6 unicast addressees (similarly as IP version 4 addressees) are maintained by

Registries IR (). Internet Registry is an organization that is responsible for distributing IP address
space to its members or customers and for registering those distributions. IRs are classified
according to their primary function and territorial scope within the hierarchical structure depicted
in the following figure:

Figure 8.20: Unicast IP version 6 address assignment

The first three bits (001) determine the unicast. The following bits identify RIR, which have
allocated address space from IANA (http://www.iana.org/). RIR allocates parts of its address
space to individual ISP acting as LIR. Individual ISP assigns address space to its customers (to
individual sites).

The Interface address (or the interface identification) has 64 bits. The preferred method of
interface addressing is derived from interface addressing according to IEEE EUI-64 base on Link
Layer Address (see Section 4.6.1 in Chapter 4) containing 8 bytes (64 bits). It consists of three
bytes identifying the producer and five bytes assigned by the producer. The conversion of an EUI-
64 address into an IP version 6 interface address is simple (see Figure 8.21), since only one bit is
changed. It is the second lowest bit of the first byte. This bit specifies the address as either a
unique worldwide address or as a locally administered one.

On the link layer, however, we usually use a six-byte address according to IEEE 802 (three bytes
identifying the producer and three bytes assigned by the producer). We have to make the six-byte
IEEE 802 address into an eight-byte IEEE EUI-64 address. The conversion is simple: two bytes of
FFFE16 are inserted between the third and forth byte:

 235

IP Version 6

Figure 8.21: Conversion of an IEEE 802 address into an address used in IP version 6

An example:

The manufacturer of my network card assigned it the link address of 00-A0-24-47-01-EC. Using
EUI-64 conversion, it changes to 00-A0-24-FF-FE-47-01-EC. The IP version 6 protocol will then
use the interface address of ::2A0:24FF:FE47:1EC.

8.4 Windows 2003
Microsoft has implemented IP version 6 as a separate protocol stack independent of the IP version
4 protocol stack. Windows XP implements IP version 6 experimentally (the IP version 6 protocol
stack can be installed (activated) by the ipv6 install command). Windows 2003, with SP 1
installed, implements it officially; it is possible to add it the same way you are used to add other
network protocols with the help of the Control Panel menu. Unfortunately, this step is the only one
you can do in Windows' window. Other setup must be done through the netsh program. Some
programs support the IP version 6 protocol directly (

 236

ping, tracert, netsh, ipconfig, FTP,
Telnet, Internet Explorer, etc.).

It is a good idea to run the netsh program without parameters. In this case, it works in a way that
is similar to working with Cisco router configuration. We will see a command line:
netsh>

Now, let's go through the IP version 6 statement context:
netsh> interface ipv6

Within the IP version 6 installation, several interfaces are usually configured (and a new one for
every new network card inserted into a computer). The following statement gives us information
about configured interfaces:
netsh interface ipv6>show interface

Querying active state...

Idx Met MTU State Name
--- ---- ----- ------------ -----
 5 0 1500 Connected Local Area Connection
 4 2 1280 Disconnected Teredo Tunneling Pseudo-Interface
 3 1 1280 Connected 6to4 Pseudo-Interface
 2 1 1280 Connected Automatic Tunneling Pseudo-Interface
 1 0 1500 Connected Loopback Pseudo-Interface

Chapter 8

Besides the long names of individual interfaces (the fifth column of the abstract above), you can
see an interface index in the first column. If we want to specify not only an IP address, but also a
local network interface, we must state the IP version 6 address followed by the interface index.
The delimiter between the IP version 6 address and the interface index is the % character. For example:
C:\>ping fe80::c0a8:641e%5

Let's go back to the abstract of particular interfaces. Every interface can have one or more IP
addresses. The next IP address for the interface number five (fe80::192.168.100.30 is represented
in full hexadecimal form as fe80::c0a8:641e) can be added by the following statement:
netsh interface ipv6 add address 5 fe80::192.168.100.30

Ok.

Now we can list assignments of IP addresses to particular interfaces:
netsh interface ipv6>show addr

Querying active state...

Interface 5: Local Area Connection

Addr Type DAD State Valid Life Pref. Life Address
--------- ---------- ------------ ------------ -----------------------------
Manual Preferred infinite infinite fe80::c0a8:641e
Link Preferred infinite infinite fe80::20c:29ff:fe0d:4660

Interface 4: Teredo Tunneling Pseudo-Interface

Addr Type DAD State Valid Life Pref. Life Address
--------- ---------- ------------ ------------ -----------------------------
Link Preferred infinite infinite fe80::5445:5245:444f

Interface 2: Automatic Tunneling Pseudo-Interface

Addr Type DAD State Valid Life Pref. Life Address
--------- ---------- ------------ ------------ -----------------------------
Link Preferred infinite infinite fe80::5efe:192.168.100.30

Interface 1: Loopback Pseudo-Interface

Addr Type DAD State Valid Life Pref. Life Address
--------- ---------- ------------ ------------ -----------------------------
Loopback Preferred infinite infinite ::1
Link Preferred infinite infinite fe80::1

 237

9
Transmission Control Protocol

Transmission Control Protocol (TCP) is an upper-layer protocol from the IP point of view. The
first question that always occurs to a beginner is "Why do we need two protocols, IP and TCP?"

While IP transmits data between individual computers on the Internet, TCP transfers data between
two actual applications running on these two computers. IP is used for data transfers between
computers. An IP address is the address only of a computer's network interface, while TCP uses a
port number as its address. If we were to compare this to a standard postal system, the IP address
would be the building address and the port number (the address in TCP) would be the name of an
actual resident in the building.

TCP is connection oriented. In other words, this is a service that establishes a connection between
two applications, i.e., creates a virtual circuit for the time of connection. This is a full duplex
circuit; data is simultaneously transferred in both directions independently as shown in Figure 9.1.
The transferred bytes are numbered. Lost or damaged data is requested again. The integrity of the
transferred data is ensured by a checksum.

Figure 9.1: TCP creates a fully two-way link between the ends of the connection

In other words, an application that uses TCP does not have to worry about data getting lost during
transfer or being modified by a transfer error. This safeguard is only effective against technical
errors. It does not attempt to protect data from intelligent attackers, who could modify the data and
also recalculate the checksum. The protocols in the TCP/IP family that deal with protecting data
transfers from this type of attack are, for example, the SSL and S/MIME application protocols.

Transmission Control Protocol

source

 240

The ends of the connection (and destination) are specified with the port number. This number
is two-byte, so its value can vary between 0 and 65535. Port numbers often express the fact that they
are TCP ports with a backslash and the protocol name (tcp). UDP uses a different set of ports than
TCP (also 0 to 65535); so for example, port 53/tcp has nothing in common with port 53/udp.

On the Internet, the target application is addressed (unambiguously defined) with an IP address,
a port number, and the protocol used (TCP or UDP). IP transfers an IP datagram to a specific
computer. Various applications run on this computer. The operating system uses the target port
number to recognize to which application it should deliver the TCP segment.

Ports are similar to mailboxes in an apartment building, as shown in Figure 9.2:

Figure 9.2: TCP and UDP ports

The basic unit of transfer in TCP is called a TCP segment, sometimes also called a TCP packet.
Why a segment? An application running on one computer uses TCP to send data to an application
running on a different computer.

For example, the computer may need to transmit a 2 GB file through TCP. TCP segments are
wrapped in IP datagrams, which use only 16 bits to specify their length, so a TCP segment can
only have a maximum length of 65535 minus the length of the TCP header. The transferred 2 GB
must therefore be split into segments that fit inside TCP packets. We therefore figuratively call
them TCP segments instead of TCP packets.

A TCP segment is inserted into an IP datagram. IP datagrams are inserted into a link frame. If the
size of the TCP segment is too big to be entered into an IP datagram without exceeding the
maximum capacity of the link frame (MTU), the IP has to perform fragmentation on the TCP
datagram (see Figure 9.2).

Chapter 9

Fragmentation increases overhead, which is why we try to create segments that are not long enough
to require fragmentation. Note that the TCP header is transported in the first IP fragment only.

Figure 9.3: Segmentation and fragmentation

9.1 TCP Segments
The structure of a TCP segment is illustrated in the following figure:

Figure 9.4: TCP segment

 241

Transmission Control Protocol

 242

The source port is the port of the TCP segment source while the destination port is the port of
the TCP segment destination. The five entries, source port, destination port, source IP address,
destination IP address, and TCP protocol, unambiguously identify the particular connection on the
Internet at any given time.

A TCP segment is part of the data flow between the source and the destination. The sequence
number is the sequence number of the first byte of a TCP segment in the data flow from the
source to the destination (TCP transfers bytes from the sequence number of the transferred byte to
the length of the segment). The data flow in the opposite direction has an independent (different)
numbering of its data. Since the transferred byte sequence number is 32 bits long, after reaching a
value of 232-1, it cyclically attains a value of 0 again. Numbering usually does not start from zero
(nor from some predefined constant number). Rather, numbering should start from a randomly
chosen number. When the SYN flag is set, the source operating system always starts counting
from scratch, thereby generating a new starting transferred byte sequence number called an ISN
(Initial Sequence Number).

Conversely, the acknowledgment number expresses the number of the next byte that the
destination is ready to accept. In other words, the destination confirms that it correctly received
everything up to the acknowledgement number minus one.

Header length specifies the length of the TCP segment header in multiples of 32 bits (4 bytes),
similar to the format of IP headers.

Window size specifies the maximum increment of the sequence number that will be still accepted
by the destination.

Urgent Pointer is valid only if the URG flag is set. This points to the last byte of the urgent data.
In some applications, the urgent pointer to the one byte beyond the last byte of urgent data. For
example, this mechanism is used by the Telnet protocol.

The Telnet application protocol transfers data between a client and a server. Besides normal
application data, the data flow can also contain the IAC (Interpret As Command) command,
meaning "interpret the following data as a Telnet command". The IAC command begins with the
IAC flag (decimal value 255) followed by the appropriate command. One example of this
command is ABORT (abort process).

FTP control channel is controlled by the Telnet's commands (refer to Chapter 13 for more details).
With the help of the Telnet commands, the FTP client may abort a file transfer from the server.
From the user's point of view, it's easy to press the appropriate interrupt key. Pressing the interrupt
key generates the following:

Figure 9.5: Urgent Pointer (the parentheses contain the Telnet's command)

Chapter 9

At first, three bytes of urgent data (<IAC><IP><IAC>) is generated in the TCP stream, which the
urgent pointer points to the next byte containing the Telnet's Data mark command <DM>. The <DM>
byte is followed by the FTP command ABOR. When the FTP server receives the urgent data on the
control channel, it reads the control channel, ignores any Telnet command, and looks for the FTP
command . ABOR

The following flags can appear in the flag field:

URG: TCP segment contains urgent data. •

ACK: TCP segment has a valid acknowledgment number field (set in all segments
except the first segment with which the client establishes connection).

•

PSH: This flag means push function. By means of this function, TCP allows a sending
application to specify that the data must be

•
pushed immediately. When an application

requests the TCP to push data, the TCP should send the data that has accumulated
without waiting to fill the segment. TCP segments sent in such a way are marked by
PSH flag.

RST: Reset the TCP connection. •

SYN: This flag means synchronize sequence numbers. Source is beginning a new
counting sequence. In other words, the TCP segment contains the sequence number
of the first sent byte (ISN).

•

FIN: No more data from the sender. If we compare this to working with files, then
the FIN flag would be the end of file (EOF). Receiving a TCP segment with the FIN
flag does not mean that transferring data in the opposite direction is not possible.
Because TCP is a fully duplex connection, the FIN flag will cause the closing of
connection only in one direction. In this direction, however, no more TCP segments
with the PSH flag will be sent (with the exception of possible retransmission).

•

In the rest of this chapter, we will write combinations of set flags by using the first letter of each
flag's name. If a certain flag is not set, we will use a dot in place of its name. So for example, if
a TCP segment only has the ACK and FIN flags set, we would write .A...F.

checksum The IP header is calculated from the IP header only. From the point of view of data
transfer integrity, it is important that the checksum in a TCP segment header is also calculated
from the transferred data. This checksum is calculated not only from the TCP segment itself, but
also from certain IP header items. The checksum requires an even byte-count, so if the byte-count
results in an odd number, one padding byte is added to the end.

 243

Transmission Control Protocol

The checksum is calculated from the fields shown in Figure 9.6. This structure serves only to
calculate the checksum. In any case, this type of structure would never be transmitted over the
Internet! This structure is sometimes called pseudoheader.

Figure 9.6: The field for which TCP checksums are calculated

 244

Chapter 9

Finally, in the following figure, you can see IP and TCP headers:

Figure 9.7: IP and TCP Header

 245

Transmission Control Protocol

9.2 TCP Header Options
Mandatory TCP header items take up 20 B. These mandatory items are followed by optional
items. An optional item is made up of the optional item type, optional item length, and value. The
length of the TCP segment must be a multiple of four. If the header length is not a multiple of
four, it is padded with NOP (no operation) options.

Since the header length field of the whole TCP segment is only four bits long, this field can only
contain a maximum value of 11112=1510. The header length is determined in multiples of four, so
the header can have a maximum length of 15x4=60 bytes. Mandatory items take up 20 bytes, so at
the most only 40 bytes are left for optional items.

Figure 9.8 shows some TCP header options and their structure. The most interesting item is the
Maximum Segment Size (MSS) optional item. Using this item, both sides of a connection can
agree on a maximum segment size at the beginning of the connection.

Figure 9.8: Some TCP options

 246

Chapter 9

An example of a TCP segment sniffed by Network Monitor is shown. The following TCP segment
has the SYN flag set. The segment header only specifies one optional item, the Maximum
Segment Size, which has a value of 1460.

+ FRAME: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 IP: ID = 0x4030; Proto = TCP; Len: 44
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 + IP: Service Type = 0 (0x0)
 IP: Total Length = 44 (0x2C)
 IP: Identification = 16432 (0x4030)
 + IP: Flags Summary = 2 (0x2)
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 128 (0x80)
 IP: Protocol = TCP – Transmission Control
 IP: Checksum = 0x63DF
 IP: Source Address = 194.149.104.198
 IP: Destination Address = 194.149.104.203
 IP: Data: Number of data bytes remaining = 24 (0x0018)
 TCP:S., len: 4, seq: 145165778-145165781, ack: 0, win: 8192,
 TCP: Source Port = 0x05B2
 TCP: Destination Port = 0x1151
 TCP: Sequence Number = 145165778 (0x8A70DD2)
 TCP: Acknowledgement Number = 0 (0x0)
 TCP: Data Offset = 24 (0x18)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x02 :S.
 TCP: ..0..... = No urgent data
 TCP: ...0.... = Acknowledgement field not significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:1. = Synchronize sequence numbers
 TCP:0 = No Fin
 TCP: Window = 8192 (0x2000)
 TCP: Checksum = 0xF3ED
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Options
 TCP: Option Kind (Maximum Segment Size) = 2 (0x2)
 TCP: Option Length = 4 (0x4)
 TCP: Option Value = 1460 (0x5B4)

9.3 Establishing and Terminating a Connection
with TCP
The core of IP was the IP datagram description. Since IP is a datagram-oriented (connectionless)
service, there was not much of a need to prepare for cases in which the IP datagram was not
delivered. At most, IP can signal this status using ICMP. Signaling with ICMP is only done out of
good will in IP. In practice, we often run across cases where signaling with ICMP is restricted
because it is not desirable, for example, for security reasons.

TCP uses IP for transferring data over the Internet, even though it establishes a reliable stream-
oriented service over this protocol. It must solve the problems of establishing and closing
a connection, confirming received data, and re-requesting lost data, and also solve problems with
keeping the communication paths passable. The TCP segment description is obviously only one
small part of TCP. A larger part of the protocol is the description of TCP segment exchange
(handshaking) between both ends of the TCP connection.

 247

Transmission Control Protocol

 248

9.3.1 Establishing a Connection
TCP allows one side to establish a connection. The other side either accepts the connection or refuses
it. From the point of view of the application layer, the side that is establishing the connection is the
client and the side waiting for a connection is the server. There are other application models than the
server-client model, but to keep things simple, we will use the client for the side that is initializing
connection and the server for the side that is waiting for a connection.

As an example, let us say the client wants to establish a connection with the server running on the
Server computer on port 4433. (In practice, we would write that the client wants to establish
a connection with the Server:4433 server.) The client uses port 1458 for the connection. While the
server port must be a well-known port (so that the client knows which one it is), this rule does not
apply to the client port. It is also possible, of course, for a client to always use a fixed port—in our
example, it is port 1458.

It is more common, however, for a client not to rely on a concrete port number. It asks the
operating system to assign it one of the free ports for the duration of the connection. Let us assume
that the operating system assigns port 1458 to the client. The operating system thus assigns a port
number higher than 1023. These ports are known as client or unprivileged ports as opposed to port
numbers that are lower than 1024 that only privileged users (like the root user in UNIX) can
request to use. For our example, it is not important whether the client specifically requested port
1458 or just wanted any port and 1458 was assigned to it by the operating system.

Windows 2000/XP usually only assigns client's ports up to port 5000. If we want to change this
number, we have to rewrite the value of the MaxUpserPort key in the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters registry folder.
This key is of REG DWORD type and is also valid for UDP ports.

Ports lower than port 1024 are known as privileged ports. These ports are most commonly used by
servers because, as a rule, servers are initialized by privileged users or are initialized during the
operating system startup as if they were initialized by privileged users. Our server does not use
a privileged port; it uses port 4433 (4433>1203). Any operating system user can initialize this kind
of server (if, of course, the appropriate port is open and is not already allocated to another process).

Servers normally use a well-known port number. The IANA organization assigns these numbers to
server authors. You can view assigned port numbers at http://www.iana.org/.

The client begins establishing a connection by sending the first TCP segment (segment 1) as
shown in Figure 9.9). In this segment the source port is 1458 and the destination port is 4433. The
client encapsulates this TCP segment into an IP datagram whose source IP address is "Client" and
whose destination IP address is "Server". So far everything is pretty clear. But what do the other
TCP segment fields look like?

http://www.iana.org/

Chapter 9

Figure 9.9: Establishing a connection

The client generates a random number between 0 and 232-1, which it uses to send as the Initial
Sequence Number (ISN). In our case, we generated ISN=145165778. The SYN flag (....S.) in the
TCP segment sets because the client has just created an Initial Sequence Number and inserted it in
the Sequence number header field.. During this connection, the sequence number will always be
incremented by the sent byte number so it cannot be generated again. Therefore the client cannot
set the SYN flag in any other TCP segments during this connection.

Segment 1 is the first segment in the TCP communication, and therefore cannot confirm any
received data. The acknowledgement number field does not have a valid meaning (being filled in
with a binary zero) and thus even the ACK flag cannot be set (ACK is set in each following TCP
segment until the end of the connection). A TCP segment with the SYN flag set and no ACK flag
set is very specific. This setup is diagnostic for the first TCP segment in a connection. If you want
to prohibit clients from establishing connection from a certain direction, all you have to do is filter
out all TCP segments from that direction that have the SYN flag set and ACK flag isn't set
together. In this case, the attacker does not stand a chance. This mechanism is often used to protect
an intranet from the Internet.

 249

Transmission Control Protocol

 250

Another part of segment 1 is the option MSS in the TCP header. MSS can be a part of the segment
1 or the segment 2 or both. This option informs the other side about the maximum length of the
TCP Data field in the TCP segment that the sender wants to receive so that IP datagrams will not
need fragmenting. This option can only appear in a TCP segment that has the SYN flag set (in
other words, in the first two segments).

MSS usually uses 536 bytes by default. This value is used for connections outside of the local
network (over a WAN). Our example uses an Ethernet II connection within a local network. For the
Ethernet II link protocol, the maximum data part of a frame is 1500. If from this 1500 we subtract 20
for the IP header and another 30 for the TCP header, we come to the value 1460 (from our example).

Since we used MS Network Monitor for the sniffing, it appears in the segment 1 as if we had used
segment 1 to send bytes with sequence numbers from 145165778 to 14516581. In other words, as
if we had sent 4 bytes of data. The first three segments do not carry any data. Segment 1 only
contains a four-byte optional item from the TCP header that specifies the maximum length of
received segments <mss 1460>. MS Network Monitor adds the length of the optional header items
to the data length. We often write optional header items in angular brackets.

The following is the MS Network Monitor output (only the TCP summary line is listed):

1. Segment client to server
TCP:S., len: 4, seq: 145165778-145165781, ack: 0, win: 8192, src:
1458 dst: 4433

2. Segment server to client
TCP: .A..S., len: 4, seq: 377664000-377664003, ack: 145165779, win:33580,
src: 4433 dst: 1458

The second segment already confirms data received; it has the ACK flag set. It confirms
one byte of data received. From the MS Network Monitor abstract, it appears that the
segment is confirming one byte from the optional header items, but this is not the case. It
is only confirming the SYN flag. Like the FIN flag, the SYN flag appears as if it
consisted of one byte. This is actually caused by the fact that the acknowledgment
number of the confirmed byte expresses the number of the next byte that the source may
send. Thus the source may send ISN+1.

Beginning with the second segment, all segments will confirm received data (that is, they
will have the ACK flag set).

3. Segment client to server
TCP: .A...., len: 0, seq: 145165779-145165779, ack: 377664001, win: 8760,
src: 1458 dst: 4433

The third segment also confirms the SYN flag, so it is as if it was confirming one byte. The
third segment and the following ones cannot contain the MSS optional header item.

With the third segment, connection establishment ends. Therefore we can say that TCP
requires three-phase handshaking for establishing a connection and (as we will see in
section 9.3.2) four-phase handshaking for closing a connection.

Chapter 9

4. Segment client to server
TCP: .AP..., len:84, seq: 145165779-145165862, ack: 377664001, win: 8760,
src: 1458 dst: 4433

You may be surprised to find that the fourth segment is sent by the client to the server.
You probably expected the fourth segment to be sent by the server to the client. It does
not make any difference. As soon as either side receives the first ACK, it can begin
transmitting. TCP is after all a full duplex connection, and our client was already getting
impatient because of all the data it had to send. The fact that the TCP segment carries
application data that may be transferred forthwith is signaled by setting the PSH flag.

5. Segment server to client
TCP: .AP..., len:79, seq: 377664001-377664079, ack: 145165863, win:33580,
src: 4433 dst: 1458

At all times during a connection, the connection is in a "state". During connection establishment,
the following states can occur:

• Server:
o LISTEN: The server is ready to connect with clients.
o SYN_RCVD: The server has received the first TCP segment (SYN flag

set) from the client.
• Client:

o SYN_SEND: The client sent the first TCP segment (SYN flag set).
If the connection is established, the client and the server go into ESTABLISHED state. In this
state, both ends can transmit data simultaneously. This is illustrated in Figure 9.10 overleaf.

In both Windows and UNIX, you can easily print out the current connections on your computer
and their states using the following command:
netstat -a

 251

Transmission Control Protocol

Figure 9.10: Connection establishment

9.3.2 Terminating a Connection
While in a client-server architecture, it is usually the client that establishes the connection, but
either side can close the connection. The first side to send a TCP segment with the FIN (end of
connection) flag carries out an active close, and the second side has no choice but to carry out
a passive close.

Theoretically, it is possible to close the connection simultaneously. If one side carries out an active
close of the connection, then it can no longer send data. The other side can, however, continue to
send data until it also ends the connection. The state between the connection's active close and its
passive close is called a half close. A TCP segment with the FIN flag set is similar to an end-of-
file marker (EOF) as it happens in the file reading.

 252

Chapter 9

Four TCP segments are required for properly closing a connection. Like the SYN flag in
connection establishment, the FIN flag confirms as if it takes up 1 B of data.

Figure 9.11: Ending a connection

In the above figure, segment 6 begins the active close of the connection with the set FIN flag.
Segment 7 confirms the connection closure by the left side; in other words, it carries out a passive
close. Most importantly, if segment 8 also contained the FIN flag, it would cause the entire
connection to begin closing. Figure 9.11 shows a common example (for example, used by the rsh
program), in which segment 7 does not contain the FIN flag, because the right side wants to
continue the connection. In other words, it wants to use a half closed connection to transmit
application data. The side that closed the connection cannot send any more data. When the second
party has sent what it wanted to, it sets up the FIN flag in the last segment (8) and waits till the
termination of connection is confirmed (9).

 253

Transmission Control Protocol

 254

The following states are possible during connection termination (see Figure 9.12):

• FIN_WAIT1: This means the side finds it has sent all data (and needs to signal the
end of the file), so it sets the FIN flag in the TCP segment, i.e., it signals the active
close of the connection by segment 6.

• CLOSE_WAIT: This means that the second side received the active close of the
connection, and it has no choice but to send segment 7 signaling that it is going into
the passive close of the connection. The connection is then in CLOSE_WAIT state.

• FIN_WAIT2: This is the state that comes after the side that initiated active close
receives segment 7 from the other side confirming the active close of the connection.
This side remains in FIN_WAIT2 state until the other side sends a TCP segment with
the FIN flag (in other words, until it goes into the TIME_WAIT state).

• LAST_ACK: This means that the other side has already sent all data and signals the
complete close of the connection with segment 8.

• TIME_WAIT: This means that all data from both sides has been transferred. It is
only necessary to confirm that the connections are completely closed. By sending the
TCP segment 9, the complete connection close is confirmed.

This segment is not confirmed, and the side that sent it must therefore wait in
TIME_WAIT state for two minutes. (Some TCP/IP implementations shorten this period
to as little as 30 seconds. In Windows, this timeout is set up using REG_DWORD named
TcpTimedWaitDelay under HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\TcpIp\Parameters). This time period should be close to twice the time to live
of a TCP segment in the network. The reason for this is simple: segment 9 could get lost
in the network and the other side could ask for it to be repeated. If the connection was
already closed, then it would be impossible to repeat the segment.

• CLOSED: This means that the second side received confirmation that the connection
was completely closed and goes into CLOSED state. The side that sent segment 9
also goes into the CLOSED state after the appropriate time has elapsed.

Chapter 9

Figure 9.12: Connection closure

9.3.3 Aborting a Connection
A connection can be aborted by setting the RST (Reset) flag in a TCP segment header. A
connection can be aborted in the following two cases:

• The client requests a connection with a server on a port on which no server is up
running. This is different from UDP. If a UDP datagram is sent to a port on which no
server is running, the system responds with an ICMP port unreachable message.

• The second case is when it is prohibited to continue in an existing connection. We
can also divide this situation into two cases:

o A proper connection close is a relatively long affair (for example, an
application is forced to wait in TIME_WAIT state). After sending all of
its data, the application wants to close the connection faster and uses a
connection refusal. In practice, we often find that instead of segment 9,
a segment with the RST flag is sent.

 255

Transmission Control Protocol

 256

Another variation is that segment 9 is followed by a confirmation of segment 9
using a TCP segment with the RST flag set. Using this method, however, the
connection can only be closed if both sides have exchanged all data.

o One of the communicating sides finds that the other side is untrusted
and immediately closes the connection. An example of this is SSL,
which provides secure communication (encrypted and authenticated). If
one side cannot authenticate itself or cannot use strong encryption
algorithms as required by the other side, the connection is immediately
terminated by setting the RST flag.

9.4 Determining the Connection State
You can list all the actual TCP and UDP connections using the netstat command with the
–a parameter.
$ netstat -an

Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 0 194.149.105.18.22 194.149.103.204.24695 TIME_WAIT
tcp 0 0 194.149.105.18.3099 194.108.145.128.25 SYN_SENT
tcp 0 34472 194.149.105.18.3079 195.47.32.245.25 ESTABLISHED
tcp 0 0 *.22 *.* LISTEN
tcp 0 0 *.25 *.* LISTEN
tcp 0 0 *.53 *.* LISTEN
udp 0 0 *.53 *.*
udp 0 0 127.0.0.1.53 *.*

If the switch –n is used, it means that the IP addresses will not be replaced with DNS
names by reverse translation.

The first two lines are the list header. The columns have the following meanings:

• The Proto column contains the name of the protocol used (TCP or UDP).
• The Recv-Q column displays the number of bytes in the connection input queue

(waiting to be processed by an application).
• The Send-Q column displays the number of bytes in the output queue (waiting to be sent).
• The Local Address column contains the address of the local network interface

separated from the local port number with a dot. Severs that are waiting for
a connection can have an asterisk instead of an IP address. The asterisk indicates that
the server is waiting for a connection on all of its network interfaces.

• The Foreign Address column contains the IP address and port number of the remote
side of the connection. Asterisks indicate that the server is waiting for a connection
from any IP address and port number.

• The (state) column displays the above-mentioned connection state.

Chapter 9

For servers, the following combinations can appear:

Local Address Foreign Address (state) Description

IP1.port1 IP2.port2 LISTEN Server is awaiting connection to its IP1 network
interface with a particular client where the
client's IP address is IP2 and port port2.

IP1.port1 IP2.port2 Excluding
LISTEN

Server is establishing connection / is connected
/ is ending connection with a particular client.

IP1.port1 *.* LISTEN Server is awaiting connection to its only IP1
network interface with any client.

*.port1 *.* LISTEN Server is awaiting connection to any of its
network interfaces with any client.

Table 9.1: Server connection state

In the previous example the following line:
tcp 0 0 194.149.105.18.22 194.149.103.204.24695 TIME_WAIT

indicates that the server running on port 22/tcp of the local computer (i.e., the sshd program)
confirmed complete connection closure (TIME_WAIT) with the computer having the IP address
194.149.103.204, and the client was assigned port 24695 for this connection.

The following line:
tcp 0 0 *.53 *.* LISTEN

indicates that the server on port 53/tcp of the local computer (the named program) is waiting for
a connection with any client on all of its network interfaces.

9.5 Response Delay Techniques
Interactive applications like Telnet and Character-at-a-time mode are complicated precisely because
they are interactive. This means that if you press the B key on your keyboard, the character B is
encapsulated in a TCP segment (20+1=21 B), the TCP segment is entered into an IP datagram
(20+21=41 B) and this IP datagram then travels over the Internet as segment 1 (see Figure 9.13) until
it reaches the server (of course, everything is also entered into link frames from router to router).

 257

Transmission Control Protocol

Figure 9.13: Press B and Y

The server:

• Confirms receiving the character. In other words, if it does not have any data to send;
it sends a non-data segment (40 B), i.e., segment 2.

• Passes character B to the server application for processing. The server application
must send character B back (segment 3) so that the client software can display
character B on the client's monitor (using remote echo). Echo is necessary to give the
user sitting on the client side the feeling that the application is interactive. The client
receives the echo (character B) and does the following:

o Displays it on the monitor.
o Sends a confirmation that it received the echo to the server with

segment 4. If it does not have any other data to send, it sends the
confirmation with a non-data TCP segment.

 258

Chapter 9

If the application works in this way, then pressing one key on the keyboard means that 82 B must
be transmitted in both directions (not counting the overhead of the link layer). The 82 B is made
up of 41 B to send the character and another 42 B to confirm it.

The previous figure illustrates the situation in which the B and Y keys (the first two letters in the
string BYE) are pressed. It is easy to see that we need to reduce the amount of data transferred in
both directions, thereby reducing the chance of congestion in the connection path. The goal is to
reduce the transfer of non-data segments. (In figure 9.13, segments 2, 4, 6, and 8 does not contain
any data.)

Here we will mention the two strategies: Delayed Acknowledgements and Nagale Algorithm .
The Delayed Acknowledgement strategy is based on the assumption that received data
acknowledgement do not need to be sent immediately, but can be acknowledged after a small
delay. During this delay, other data that needs to be transmitted may appear and acknowledgement
may be sent together.

The foundation for this principle is that the operating system counts down timer with 200 ms usually
tick. (The maximum length of a tick cannot exceed 500 ms.) After each tick, the system checks to
see if there is anything to acknowledge. If several things need to be sent, they are sent all at once.

In Figure 9.14, the client using 200 ms delayed the acknowledgements tick.

Figure 9.14: 200 ms delay

 259

Transmission Control Protocol

For small datagrams (called tinygrams), we can achieve even greater reductions using the Nagle
algorithm, as shown in Figure 9.15. This algorithm states the following:

• TCP connection can have only one outstanding segment that has not yet been
acknowledged.

• Data is collected and sent in a single segment when the acknowledgment arrives.

In this case, the client software does not wait for another tick. Instead, it waits until some data
arrives from the other side; the acknowledgement sends only the data segments (they say: "the
ACK piggybacks the data"). This algorithm synchronizes the response time with the capacity of
the connection lines (controls the data flow). In other words, if the line is more loaded, then the
response takes longer and the answer is also delayed.

Figure 9.15: The Nagle algorithm

The Nagle algorithm is useful for programs like Telnet, but it is undesirable for programs
like X-server. If we used it for X-server, then the mouse motion would be jerky on our
monitor. For applications that transmit large amounts of data (like HTTP, the FTP data
channel, etc.), both the response delay technique also loses its utility.

 260

Chapter 9

9.6 Window Technique
Now we can look at the problem that arises when a client needs to send large amounts of data. The
client (or server) can send data to the other side without its reception being confirmed up to an
amount that is called a window (or WIN in short). The WIN determines the opposite (destination)
site of connection.

In Figure 9.16, let us imagine that the client has established a connection with the server and they
have mutually agreed on an Maximum Segment Size (MSS) of 1 K (or 1024 B) and a mutual
window size of 4 K (or 4096 B).

Figure 9.16: Window technique

 261

Transmission Control Protocol

The window technique is easier to understand from the figure above:

• The client begins transmitting data and sends segments 1, 2, and 3.

• The server returns a confirmation (segment 4) from the server that confirms
segments 1 and 2.

• The client in return sends segments 5, 6, and 7, but the server has not had enough
time to process the data and its buffer has been exhausted.

• Segment 8 therefore confirms that segments 3, 5, 6, and 7 were received, but at the
same time, it closes the window for the client. In other words, the client cannot
continue sending data. After the server processes part of the data, it allows the client
to proceed with transmitting data again.

• Segment 9 does not fully open the window; it only opens 2 K because not all of the
data in the buffer memory has been processed and there is no space for more.

Let us examine how the client sees the window after receiving segment 4:

Figure 9.17: Window

The first 2 K is already confirmed. The window has been moved behind byte 2408. The client no
longer needs to keep this confirmed data in its memory. Data that has been sent, but not confirmed,
(segment 3) takes up 1 K. The client can therefore send 3 K of data without any further confirmation.

 262

Chapter 9

As data is sent, the window gradually moves as data is acknowledged as shown in the following figure:

Figure 9.18: Sliding window

 263

Transmission Control Protocol

9.7 Network Congestion
A window (WIN) is the amount of data that the destination is able to receive. Although the
window size is determined by the destination, the problem also extends to the source. If the source
is on a fast network and the destination is on a slow network, then the source could literally jam up
the network with data up to the window size. Since the network would not be able to transfer such
large amounts of data, the network would get congested and the data that the network is not able to
deliver would be thrown away. Routers enter IP datagrams into buffer memory, but even buffer
memory is limited.

Data loss is always bad and our goal is to avoid it whenever possible. That is why we also define
a window on the source side. This window tries to specify how much unconfirmed data the source
can send before the network gets congested. The source-side window is called the congestion
window (or CWND for short). The source gradually increases the CWND, but cannot increase it
unlimitedly. The threshold after which network congestion is likely to occur is called SSTHRESH.
However, we want to use the Internet to its fullest potential, so we want to find the greatest
possible CWND that is a bit higher than the SSTHRESH. It only makes sense to measure the
SSTHRESH in multiples of the segment size (segsize).

Figure 9.19: Network congestion

The source must always send amounts of unconfirmed data that do not exceed the window
declared by the destination (WIN), but that also do not exceed the CWND. In other words, the
maximum amount of unconfirmed data that it can send is the lesser value of WIN and CWND.

9.7.1 Slow Start
The question is how to define the maximum CWND. The source sets the CWND dynamically.
First, it sends one segment and waits for its confirmation. If it receives confirmation, it sends two
segments. If it receives a confirmation again, it sends four segments and so on. We are dealing
with the 2n series, which is exponential.

Understandably, after a few rounds, the source will reach the window size (WIN) or will flood the
network and will not receive confirmation because congestion occurs. In other words, it has to
send the segments again because a segment got lost. At this point, the CWND is reduced by half
and this value is entered as the SSTHRESH value. (If the SSTHRESH is smaller than two
segments, then its value is set to two segments.)

It is necessary to distinguish how it was determined that the segment was not confirmed. We were
assuming that the segment got lost somewhere on route. The destination did not receive the segment,
so it is still confirming the last received segment. After the destination repeats its confirmation for
the last received segment three times, the source decides the segment as lost and resends it. However,

 264

Chapter 9

it is also possible that the source does not receive any confirmation at all (even for any previous
segment) within the defined time limit. In this case, the CWND is set to the size of one segment
(segsize) and the SSTHRESH is set to twice the size of a segment (2xsegsize), and the slow start is
started over from the beginning.

Figure 9.20: Slow Start

9.7.2 Congestion Avoidance
For each connection, the source keeps the actual values of the MSS, WIN, CWND, and SSTHRESH
variables. MSS is set by the destination when the connection is established (the segment that has this
options is marked with the SYN flag). WINDOW is dynamically set by the destination during the
connection; it specifies the amount of data that can fit into the buffer memory.

Figure 9.21: Congestion avoidance

When sending a segment, the source cannot sit around thinking about what to do. It must make
decisions quickly based on the variables it has.

1. If CWND is less than or equal to SSTHRESH, then we are dealing with a slow start.
It is therefore possible to try to send double the amount of data.

2. If CWND is already larger than SSTHRESH, then sending double the amount of data
would probably cause congestion. In this case the CWND is only increased by
segsizexsegsize/CWND+segsize/8 counted in integers. This minor increase of the
CWND is called the Congestion Avoidance Algorithm.

 265

Transmission Control Protocol

 266

9.7.3 Segment Loss
Not even the algorithm discussed previously can prevent TCP segment loss. Segment loss can be
caused by changing situations in the communication paths, breakdowns along a communication
path, and so forth.

If CWND is considerably large, then repeating the entire unconfirmed window when dealing with
the loss of a single segment would be very unpleasant, since it would enormously increase the
overhead of the system. This is why we use the Fast Retransmit Algorithm.

How can the source determine that the TCP segment was in fact lost? (For now we will not deal
with the possibility that the source did not receive any confirmation at all from the destination.)
The destination determines that the segment was lost because it receives other segments, but never
receives the lost segment. In other words, it is missing data in the received data sequence and
receives segments out of order. When it receives segments out of order, the destination is forced to
resend (duplicate) its confirmation of the last correctly received segment.

However, TCP segments are wrapped in IP datagrams. Each IP datagram travels over the Internet
independently and theoretically on a different route. Some routes are faster than others. It can
therefore occur that one segment takes a slower route and naturally arrives at the destination after the
following segment. In the meantime, the destination has already sent its duplicated confirmation.

Receiving one duplicated answer is therefore considered a commonplace occurrence. It is different
when a segment actually gets lost. The destination does not receive the segment at all and receives
the next segment. It carries out the duplicate confirmation of the last correctly received segment.
It then receives the next segment, which is also out of order because the destination still has not
received the missing segment. The confirmation is duplicated again. The destination then receives
another segment that is out of order, repeats the duplication again, and so forth.

The source gradually receives the first duplicate from the destination, then the second, but still
thinks that everything is normal. Once it receives the third segment, it thinks, "Something must
have happened so I think I will retransmit the segment that the destination thinks is lost." It then
resends the lost segment. The destination receives the missing segment, and since the destination
did not throw away any of the subsequent segments (which were originally received out of order),
it confirms that it received all of the delivered segments.

This fast retransmit algorithm allows the source to repeat only those segments that were lost
instead of repeating all of the unconfirmed data. Repeating all of the unconfirmed data is
necessary only when the fast retransmit algorithm does not succeed in the given time period.

9.8 The Window Scale Factor
The window declared by the destination has 2 B allocated in the TCP header. The destination can
therefore declare a window that is between 0 and 65535 B. These windows are too small for
gigabyte networks. One solution is to use the window scale factor optional item in the TCP
segment header. This option can only be used in segments that initialize a connection (segments
with the SYN flag).

Chapter 9

Using the window scale factor item, both sides of the connection agree to scale the window by a
factor of 0 to 14. Let us call this factor n. The agreed factor can be different in each direction.

The window scale factor is used in an interesting way. If the source proposes a window of size k
big and proposes to scale it by n, then the destination understands that the window proposed by the
source is k x 2n (that is, it increases the width of the window by n bits).

14The largest declared window possible is 65535x2 =1073725440=1G-16384. Thus with this
window, the maximum amount we can declare is almost 1GB.

But why is there a limit to the size of the window? The answer is simple. Transmitted data bytes
are numbered from 0 to 232 (=4 GB). When the number 232 is reached, we start over again from
zero. If we increased the window to 8 GB, for example, the source could send up to 8 GB of
unconfirmed data. If, however, the destination wants to repeat any part of that 8 GB (for example,
the segment starting somewhere around 2GB), then the source would not know whether to send
the segment beginning with 2 GB or the one beginning with 6 GB, because both would have the
same sent byte sequence number. (We start counting from zero again when we reach 4 B.)

Even when using a window with a size of hundreds of MBs (which is permitted), it can happen
that a segment will arrive over the Internet from a previously confirmed window, but will have a
number used in the current window. This problem can be solved using another optional entry in
the TCP segment header called time stamp. This entry can appear in any segment. The source
enters an explicit increasing sequence (time). The destination then enters its time stamp in the
reply and repeats the last received time stamp. In this way, we can determine which segments are
old and which ones are current, as well as recognize old lost segments.

 267

10
User Datagram Protocol

User Datagram Protocol (UDP) is a simple alternative to TCP. UDP is a connectionless service,
it does not establish a connection, in contrast to TCP. The source party sends a UDP datagram to
the destination party and then stops worrying about the datagram getting lost (this is a job for the
application protocol).

UDP datagrams are enveloped in an IP datagram as shown in the following figure:

Figure 10.1: UDP datagram header

As you can see from the figure above, a UDP header is very simple. It contains the numbers of
both the source and destination ports completely analogous to TCP. Again, it is important to
mention that the port numbers of the UDP protocol have nothing to do with the port numbers of
TCP. UDP uses an independent set of port numbers.

The UDP Length field indicates the length of UDP datagram (header length + data length). The
minimum length is 8, i.e., a UDP datagram containing just the header and no data.

An interesting thing is that the checksum field does not need to be filled in. The calculation of the
checksum is therefore not compulsory in UDP.

User Datagram Protocol

The overall appearance of UDP datagram including its IP header is shown in the following figure:

Figure 10.2: UDP

In the past, the checksum calculation was disabled in some computers, especially in computers
that have the Network File System (NFS) installed. The reason for this was to speed up the
response time of the computer.

Especially in the case of important servers, it is necessary to check that the checksum calculation
is enabled. It could be dangerous, especially, for DNS servers since the checksum would then be
calculated on the link layer only. But some link protocols such as SLIP do not calculate a
checksum, so even a technical problem could cause damage to the application data without giving
the destination user the chance of ever discovering the mistake.

 270

Chapter 10

If the checksum is calculated, then, as with TCP, the structure (pseudoheader) shown in Figure
10.3 is used for calculating it:

Figure 10.3: Pseudoheader for calculating the checksum of UDP datagrams

10.1 Fragmentation
Fragmentation in IP can also be used for UDP datagrams, but we should do our best to avoid
fragmentation in UDP.

DNS could serve as a classic example. A DNS client sends a query via UDP to a server. If the
server's answer exceeds the 512 B limit, all the extra data is cut short and the TC Flag in
application data is set to indicate this message truncation (TC). Should the client request more
information, it repeats the request using TCP which will also be used by the server for returning a
complete answer.

An example of UDP datagram:
+ FRAME: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 IP: ID = 0x9CCE; Proto = UDP; Len: 74
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 + IP: Service Type = 0 (0x0)
 IP: Total Length = 74 (0x4A)
 IP: Identification = 40142 (0x9CCE)
 + IP: Flags Summary = 0 (0x0)
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 30 (0x1E)
 IP: Protocol = UDP - User Datagram

 271

User Datagram Protocol

 272

 IP: Checksum = 0x803D
 IP: Source Address = 194.149.104.203
 IP: Destination Address = 192.36.148.18
 IP: Data: Number of data bytes remaining = 54 (0x0036)
 UDP: Src Port: DNS, (53); Dst Port: DNS (53); Length = 54 (0x36)
 UDP: Source Port = DNS
 UDP: Destination Port = DNS
 UDP: Total length = 54 (0x36) bytes
 UDP: UDP Checksum = 0x13A0
 UDP: Data: Number of data bytes remaining = 46 (0x002E)
+ DNS: 0x7E01:Std Qry for 130.204.212.195.in-addr.arpa. of type Dom. name ptr
INET addr.

10.2 Broadcasts and Multicasts
It might seem at first glance that UDP is poor relative of TCP. So is there anything that UDP can
do that TCP cannot? What is special about UDP is the fact that the destination of a UDP datagram
does not have to be just a unique IP address, i.e., the network interface of a particular computer.
The destination might also be a multicast; even a broadcast as well.

Though broadcasts can be addressed, addressing multicasts is much more interesting. For
example, each client establishes a connection with the server in the Real Audio application. On the
other hand, in the Progressive Real Audio application, the data is transmitted via multicasts, i.e.,
a huge amount of the transmission path capacity is saved. This is exactly the case where the UDP
protocol serves you best.

11
Domain Name System

All applications that provide communication between computers on the Internet use IP addresses
to identify communicating hosts. However, IP addresses are difficult for human users to
remember. That is why we use the name of a network interface instead of an IP address. For each
IP address, there is the name of a network interface (computer)—or to be exact, a domain name.
This domain name can be used in all commands where it is possible to use an IP address. (One
exception where only an IP address can be used is the specification of an actual name server.) A
single IP address can have several domain names affiliated with it.

The relationship between the name of a computer and an IP address is defined in the Domain
Name System (DNS) database. The DNS database is distributed worldwide. It contains individual
records that are called Resource Records (RR). Individual parts of the DNS database called
zones are placed on particular name servers. That is, DNS is a worldwide distributed database.

If you want to use an Internet browser to browse to www.google.com with the IP address
64.233.167.147 (Figure 11.1), you enter the website name www.google.com in the browser
address field.

Just before the connection with the www.google.com web server is made, the www.google.com
DNS name is translated into an IP address and only then is the connection actually established.

It is practical to use an IP address instead of a domain name whenever we suspect that the DNS on
the computer is not working correctly. Although it seems unusual, in this case, we can write
something like:

ping 64.233.167.147

or:
http://64.233.167.147

or send email to:
dostalek@[64.233.167.147]

However, the reaction can be unexpected, especially, for the email, HTTP, and HTTPS protocols.
Mail servers do not necessarily support transport to servers listed in brackets. HTTP will return to
us the primary home page and the HTTPS protocol will complain that the server name does not
match the server name in the server's certificate.

Domain Name System

Figure 11.1: It is necessary to translate a name to an IP address before establishing a connection

11.1 Domains and Subdomains
The entire Internet is divided into domains, i.e., name groups that logically belong together. The
domains specify whether the names belong to a particular company, country, and so forth. It is
possible to create subgroups within a domain that are called subdomains. For example, it is
possible to create department subdomains for a company domain. The domain name reflects
a host's membership in a group and subgroup. Each group has a name affiliated with it. The
domain name of a host is composed from the individual group names. For example, the host
named bob.company.com consists of a host named bob inside a subdomain called company, which
is a subdomain of the domain com.

The domain name consists of strings separated by dots. The name is processed from left to right.
The highest competent authority is the root domain expressed by a dot (.) on the very right (this
dot is often left out). Top Level Domains (TLDs) are defined in the root domain. We have two
kind of TLD, Generic Top Level Domain (gTLD) and Country Code Top Level Domain
(ccTLD). Well known gTLDs are edu, com, net, and mil which are used mostly in the USA.
According to ISO 3166, we also have two letter ccTLD for individual countries. For example, the
us domain is associated with the USA. However ccTLD are used mostly outside the USA. For
example, United Kingdom uses uk, India uses in, the Czech Republic uses cz, and so on. A
detailed list of ccTLDs and their details can be found at http://www.iana.org/cctld/
cctld-whois.htm.

The TLD domains are divided into subdomains for particular organizations, for example, coca-
cola.com, mcdonalds.com, google.com. Generally, a company subdomain can be divided into lower
levels of subdomains, for example, the company Company Ltd. can have its subdomain as
company.com and lower levels like bill.company.com for its billing department, sec.company.com
for its security department, and head.company.com for its headquarters.

 274

Chapter 11

The names create a tree structure as shown in the figure:

Figure 11.1a: The names in the DNS system create a tree structure

The following list contains some other registered gTLDs:

• The .org domain is intended to serve the noncommercial community.
• The .aero domain is reserved for members of the air transport industry.
• The .biz domain is reserved for businesses.
• The .coop domain is reserved for cooperative associations.
• The .int domain is only used for registering organizations established by

international treaties between governments.
• The .museum domain is reserved for museums.
• The .name domain is reserved for individuals.
• The .pro domain is being established; it will be restricted to credited professionals

and related entities.

11.2 Name Syntax
Names are listed in a dot notation (for example, abc.head.company.com). They have the
following general syntax:

string.string.stringstring.

where the first string is a computer name, followed by the name of the lowest inserted domain,
then the name of a higher domain, and so on. For unambiguousness, a dot expressing the root
domain is also listed at the end.

 275

Domain Name System

 276

The entire name can have a maximum of 255 characters. An individual string can have
a maximum of 63 characters. The string can consist of letters, numbers, and hyphens. A hyphen
cannot be at the beginning or at the end of a string. There are also extensions specifying a richer
repertoire of characters that can be used to create names. However, we usually avoid these
additional characters because they are not supported by all applications.

Both lower and upper case letters can be used, but this is not so simple. From the point of view of
saving and processing in the DNS database, lower and upper case letters are not differentiated. In
other words, the name newyork.com will be saved in the same place in a DNS database as
NewYork.com or NEWYORK.com. Therefore, when translating a name to an IP address, it does not
matter whether the user enters upper or lower case letters. However, the name is saved in the
database in upper and lower case letters; so if NewYork.com was saved in the database, then during
a query, the database will return "NewYork.com.". The final dot is part of the name.

In some cases, the part of the name on the right can be omitted. We can almost always leave out
the last part of the domain name in application programs. In databases describing domains the
situation is more complicated:

• It is almost always possible to omit the last dot.
• It is usually possible to omit the end of the name, which is identical to the name of the

domain, on computers inside the domain. For example, inside the company.com domain
it is possible to just write computer.abc instead of computer.abc.company.com.
(However, you cannot write a dot at the end!) The domains that the computer belongs
to are directly defined by the domain and search commands in the resolver
configuration file. There can be several domains of this kind defined.

11.3 Reverse Domains
We have already said that communication between hosts is based on IP addresses, not domain
names. On the other hand, some applications need to find a name for an IP address—in other
words, find the reverse record. This process is the translation of an IP address into a domain name,
which is often called reverse translation.

As with domains, IP addresses also create a tree structure (see Figure 11.2). Domains created by
IP addresses are often called reverse domains. The pseudodomains IP6.arpa for IPv6 and in-
addr.arpa for IPv4 were created for the purpose of reverse translation. The latter domain name
has historical origins; it is an acronym for inverse addresses in the Arpanet.

Under the domain in-addr.arpa, there are domains with the same name as the first number from
the network IP address. Thus the in-addr.arpa domain has subdomains 0 to 255. Each of these
subdomains also contains lower subdomains 0 to 255. For example, network 195.47.37.0/24
belongs to subdomain 37.47.195.in-addr.arpa. This actual subdomain belongs to domain
47.195.in-addr.arpa, and so forth. Note that the domains here are created like network IP
addresses written backwards.

Chapter 11

Figure 11.2: Reverse domain to IP address 195.47.37.2

This whole mechanism works if the IP addresses of classes A, B, or C are affiliated. But what
should you do if you only have a subnetwork of class C affiliated? Can you even run your own
name server for reverse translation? The answer is yes. Even though the IP address only has four
bytes and a classic reverse domain has a maximum of three numbers (the fourth numbers are
already elements of the domain—IP addresses), the reverse domains for subnets of class C are
created with four numbers. For example, for subnetwork 194.149.150.16/28 we will use domain
16.150.149.194.in-addr.arpa. It is as if the IP address suddenly has five bytes! This was originally
a mistake in the implementation of DNS, but later this mistake proved to be very practical so it
was standardized as an RFC.

 277

Domain Name System

11.4 Resource Records
Information on domain names and their IP addresses, as well as all the other information
distributed via DNS is stored in the memory of name servers as Resource Records (RRs).

A name server (also referred to as a DNS server) loads data into its memory in several ways.
Authoritative data are read from files on a disk or obtained via a zone transfer query from another
server's memory. Nonauthoritative data are obtained by the server from other servers' memory as it
answers individual DNS queries.

If a DNS client needs to obtain information from a DNS, it requests RRs from the DNS according
to its requirements, i.e., a client can request from a domain server an A type RR with the IP
addresses of the particular domain name. A client can be a resolver or a name server that cannot
resolve the query on its own.

Each RR has the same structure in DNS protocol. The RR structure is shown in the following figure:

Figure 11.3: Resource Record structure

Each RR field consists of:

• NAME: Domain name.
• TYPE: Record type.
• CLASS: Record class.
• TTL: Time to live. A 32-bit number indicating the time the particular RR can be kept

valid in a server cache. When this time expires, the record has to be considered invalid.
The value 0 keeps nonauthoritative servers from saving the RR to their cache memory.

• RDLENGTH: A 16-bit number specifying the length of the RDATA field.
• RDATA: The data stored as a string of variable length. The format of the field

depends on the RR type and class.

 278

Chapter 11

Note that the RR format in DNS protocol is in binary notation, i.e., it is opaque to users. This is
the form in which RRs are propagated through the network via DNS protocol. On the other hand,
users will want to insert their RRs and zone files in text format. As it is simple to convert binary
notation to text format, individual fields are converted to text and separated by a space or a tab or a
combination of these characters. Individual strings in domain names are spaced by a dot.

Type Name Description of the RDATA field

A Host Address 32-bit IP address.

NS Authoritative
Name Server

The domain name of the name server, which is the authoritative name server
for the particular domain.

CNAME Canonical
name for
an alias

A domain name specifying a synonym to the NAME field.

SOA Start Of
Authority

Each zone data file must have exactly one SOA record. This consists of 7
fields.

PTR Domain name
pointer

Domain name. The record is used for reverse translation.

HINFO Host
information

Consists of two strings of characters. They contain descriptions of the
hardware and thesoftware used in the NAME computer respectively.

MX Mail exchange Consists of two fields. The first is an unsigned 16-bit containing the
preference value and the second is the domain name of the exchange server.

TXT Text string Text string containing a description.

AAAA IP6 address 128-bit IP address (IP version 6).

WKS Well known
service
description

A description of well known server services in TCP and UDP. It consists of
three parts: 32-bit address, protocol number, and service ports.

SIG Security
signature

A description record used for authentication in Secure DNS.

KEY Security key A public zone key used as a signature in authentication.

NXT Next domain Name of another domain. Authenticating a nonexistent domain name and type.

A6 A6 host
address

Can contain up to three fields: prefix length, part of an IP version 6 address,
and prefix name.

Table 11.1 The most common types of RR

11.5 DNS Protocol
The DNS protocol works with several types of operations. The most commonly used operation is a
DNS QUERY. It is a query that enables the obtaining of one or more records from the DNS
database. The DNS QUERY operation was for a long time the only operation possible in the DNS
system. New modifications to the DNS protocol have brought new kinds of operations, for
example, DNS NOTIFY and DNS UPDATE.

 279

Domain Name System

 280

The DNS protocol operates on a query/answer basis. A client sends a query to a server and the
server answers it. DNS protocol uses name compression in order to make DNS packets as
compact as possible.

The DNS protocol is an application-layer protocol and, as such, it does not carry out packet
transfer on its own. The packet transfer is delegated to a transport protocol. Unlike the
overwhelming majority of other application protocols, DNS protocol uses both UDP and TCP.
Each query and the answer to it are transferred by the same transport protocol.

With translation queries (i.e., RR queries), UDP is preferred. Where a DNS answer is longer than
512 B, the answer includes only a 512 B part of the information, and the truncation (TC) bit is set
in the header to mark that the answer is incomplete. The complete answer can be requested by the
client via TCP.

For zone transfer, for example, between a primary and a secondary name server, TCP is used.
Name servers wait for queries both on the 53/UDP port and the 53/TCP port.

Some UDP implementations do not fill in the checksum field in the UDP packet header and
take advantage of this option. This feature can be useful, for example, for NFS, but it is
precarious with DNS. A network failure can result in a meaningless answer, especially where
SLIP has been used on the way between a server and a client. Therefore make sure before a
name server installation that your system is set to fill in the checksum in UDP packets.

11.6 DNS Query
The DNS QUERY operation consists of a query and an answer. A query contains a request for an
RR (or several RRs) from the DNS database. The answer either contains the particular RR or is a
denial. The RR contained in an answer can be the ultimate answer or help the client to formulate
another DNS QUERY to achieve the aim, i.e., to formulate another iteration.

Chapter 11

11.6.1 DNS Query Packet Format
DNS query uses the same packet format for both queries and answers as shown in the following figure:

Figure 11.4: DNS Query packet format

A packet can consist of up to five sections. Each packet has to contain the HEADER section.

The term 'query' is used in two senses:

1. A DNS QUERY operation. A basic DNS protocol operation through which records
(RR) are searched for in DNS databases.

2. The DNS QUERY operation always consists of a query (sent by a client) and an
answer to it sent to the client by the name server. The client is either a resolver or a
name server that cannot provide the answer on its own. A resolver usually marks its
query with a tag showing it is a recursive query, i.e., it asks the name server to
retrieve a final answer. In contrast, if the query is sent by a name server, it is usually
marked with a tag showing it is an interactive query, i.e., the name server asks
another name server to help it with the translation, but does not send a recursive
query as it is able to arrive at what it needs by iteration.

11.6.2 DNS Query Packet Header
The packet header is obligatory and is contained both in the query and in the answer.

The first two bytes (16 bits) of a header contain a query identifier (query ID). A query ID is
generated by a client and copied into the answer by a server. The ID is used to match a query with
an answer. It identifies uniquely which particular query goes with which particular answer. The ID
allows a client to send several queries at a time without waiting for an answer.

 281

Domain Name System

 282

The next two bytes of a header contain the control bits. The significance of the control bits is
shown in the following table:

Field Number
of bits

Value

QR 1 0 if the message is a query
1 if the message is an answer

Opcode 4 The query type is the same both for the query and the answer:
0: standard query (QUERY)
1: inverse query (IQUERY)
2: status query (STATUS)
4: notify query (NOTIFY)
5: update query (UPDATE)

AA 1 0 for non-authoritative answer
1 for authoritative answer

TC 1 1: the answer was shortened to 512 bytes; if a client needs to obtain the whole
answer, the query must be sent again via TCP

RD 1 1 if Recursion Desired is set (this bit may be set in a query and is copied into the
response). If RD is set, it directs the name server to pursue the query recursively.

RA 1 1 if Recursion Available is set (this bit is set or cleared in a response and denotes
whether recursive query support is available in the name server).

Z 3 Reserved for future use

Rcode 4 The result code of an answer
0: No error (Noerror)
1: Format error, cannot be interpreted by the server (FormErr)
2: Server cannot answer (ServFail)
3: The query name does not exist (i.e., Nonexistent Domain),
 this answer can be released by authoritative name servers only (NXDomain)
4: Query type not supported (NotImplemented)
5: The server refuses to answer, for example, for security reasons (Query Refused)

Table 11.2 Significance of the individual control bits in a DNS packet header

The next four 2-byte fields in a packet header hold the number of records contained in the
individual sections following the header:

• QDCOUNT specifies the number of RR in QUESTION section
• ANCOUNT specifies the number of RR in ANSWER section T

• NSCOUNT specifies the number of RR in AUTHORITY section
• ARCOUNT specifies the number of RR in ADDITIONAL section T

The following example shows a DNS packet found in a network:
Frame 2 (318 bytes on wire, 318 bytes captured)
Ethernet II, Src: Cisco_8e:1f:80 (00:15:63:8e:1f:80), Dst: Fujitsu_79:5d:0e
(00:0b:5d:79:5d:0e)
Internet Protocol, Src: 160.217.1.10 (160.217.1.10), Dst: 160.217.208.142
(160.217.208.142)
User Datagram Protocol, Src Port: domain (53), Dst Port: 1337 (1337)

Chapter 11

Domain Name System (response)
 Transaction ID: 0x000c
 Flags: 0x8180 (Standard query response, No error)
 1... = Response: Message is a response
 .000 0... = Opcode: Standard query (0)
 0.. = Authoritative: Server is not an authority for
 domain
 0. = Truncated: Message is not truncated
 1 = Recursion desired: Do query recursively
 1... = Recursion available: Server can do recursive
 queries
 0.. = Z: reserved (0)
 0. = Answer authenticated: Answer/authority portion
 was not authenticated by the server
 0000 = Reply code: No error (0)
 Questions: 1
 Answer RRs: 3
 Authority RRs: 6
 Additional RRs: 6
 Queries
 www.google.com: type A, class IN
 Answers
 www.google.com: type CNAME, class IN, cname www.l.google.com
 www.l.google.com: type A, class IN, addr 72.14.207.99
 www.l.google.com: type A, class IN, addr 72.14.207.104
 Authoritative nameservers
 l.google.com: type NS, class IN, ns d.l.google.com
 l.google.com: type NS, class IN, ns e.l.google.com
 l.google.com: type NS, class IN, ns g.l.google.com
 l.google.com: type NS, class IN, ns a.l.google.com
 l.google.com: type NS, class IN, ns b.l.google.com
 l.google.com: type NS, class IN, ns c.l.google.com
 Additional records
 a.l.google.com: type A, class IN, addr 216.239.53.9
 b.l.google.com: type A, class IN, addr 64.233.179.9
 c.l.google.com: type A, class IN, addr 64.233.161.9
 d.l.google.com: type A, class IN, addr 64.233.183.9
 e.l.google.com: type A, class IN, addr 66.102.11.9
 g.l.google.com: type A, class IN, addr 64.233.167.9

11.6.3 Question Section
DNS query packets mostly contain only one section: it is a question section for one question
(QDCOUNT=1). The question section consists of three fields:

• QNAME contains a domain name. In DNS protocol the dot (.) notation is not used
with domain names. Each part of a domain name (commonly stated between dots) is
preceded by a byte containing the length of the string. The domain name is
concluded by a zero marking its end (zero length of the string). An example of the
content of this field in a query for the info.pvt.net domain name translation is as
follows: 0416info0316pvt0316net0016. The lengths of strings are in binary notation.

• QTYPE specifies the RR type required in the answer. The most common types of
queries are shown in the following table:

Type Value (in decimal
notation)

Description

A 1 IP address version 4

NS 2 Authoritative name servers

 283

Domain Name System

 284

Type Value (in decimal
notation)

Description

CNAME 5 The canonical name for an alias

SOA 6 Marks the start of a zone of
authority

WKS 11 A well known service description

PTR 12 A domain name pointer

HINFO 13 Host information

MX 15 Mail exchange

TXT 16 Text strings

SIG 24 For a security signature

KEY 25 For a security key

NXT 30 Next Domain

AAAA 28 IP6 Address

CERT 37 CERT

A6 38 IP address version 6

AXFR 252 Transfer of an entire zone

IXFR 251 Incremental transfer

* 255 A request for all records

Table11.3 Query type values

• QCLASS stands for query class:

Numerical value (in decimal notation) Description

1 IN: Internet

3 CH: Chaos

4 HS: Hesiod

255 *: all classes (as QCLASS only)

Table 11.4 Query Classes

An example of a DNS packet found in a network is as follows (the question section is shown in bold):
Frame 2 (318 bytes on wire, 318 bytes captured)
Ethernet II, Src: Cisco_8e:1f:80 (00:15:63:8e:1f:80), Dst: Fujitsu_79:5d:0e
(00:0b:5d:79:5d:0e)
Internet Protocol, Src: 160.217.1.10 (160.217.1.10), Dst: 160.217.208.142
(160.217.208.142)
User Datagram Protocol, Src Port: domain (53), Dst Port: 1337 (1337)
Domain Name System (response)
 Transaction ID: 0x000c
 Flags: 0x8180 (Standard query response, No error)
 Questions: 1
 Answer RRs: 3
 Authority RRs: 6
 Additional RRs: 6
 Queries

Chapter 11

 www.google.com: type A, class IN
 Name: www.google.com
 Type: A (Host address)
 Class: IN (0x0001)
 Answers
 Authoritative nameservers
 Additional records

11.6.4 The Answer Section, Authoritative Servers, and
Additional Information
Along with a header section and a repeated question section, answer packets contain another three
sections: an answer section, an authoritative servers section, and an additional information section.
The answer itself is included in the answer section. The authoritative name server section holds the
names of the name servers in NS Type of RR. The additional information section usually holds IP
addresses of authoritative name servers. Records in these sections are common resource records
similar to name server cache records and use the same format as:

• NAME: The domain name, the same format as in the QNAME question section.
• TYPE: The record type, the same format as in the QTYPE question section.
• CLASS: The record class, the same format as in the QCLASS question section.
• TTL: RR expiry date, i.e., the time an answer can be kept in cache as valid.
• RDLENGTH: RDATA section length.
• RDATA: the right side of the RR (an IP address or a domain name).

An example of a DNS packet with answer, authoritative servers, and additional information
sections is as follows:

Ethernet II, Src: 00:15:f2:20:25:26, Dst: 00:0e:35:e1:fb:4c
Internet Protocol, Src Addr: 10.0.0.138 (10.0.0.138), Dst Addr: 10.0.0.1
(10.0.0.1)
User Datagram Protocol, Src Port: domain (53), Dst Port: 3718 (3718)
Domain Name System (response)
 Transaction ID: 0x0003
 Flags: 0x8180 (Standard query response, No error)
 Questions: 1
 Answer RRs: 5
 Authority RRs: 6
 Additional RRs: 6
 Queries
 www.google.com: type A, class IN
 Answers
 www.google.com: type CNAME, class IN, cname www.l.google.com
 www.l.google.com: type A, class IN, addr 64.233.183.104
 www.l.google.com: type A, class IN, addr 64.233.183.147
 www.l.google.com: type A, class IN, addr 64.233.183.99
 www.l.google.com: type A, class IN, addr 64.233.183.103
 Authoritative nameservers
 l.google.com: type NS, class IN, ns c.l.google.com
 l.google.com: type NS, class IN, ns d.l.google.com
 l.google.com: type NS, class IN, ns e.l.google.com
 l.google.com: type NS, class IN, ns g.l.google.com
 l.google.com: type NS, class IN, ns a.l.google.com
 l.google.com: type NS, class IN, ns b.l.google.com
 Additional records
 a.l.google.com: type A, class IN, addr 216.239.53.9

 285

Domain Name System

 286

 b.l.google.com: type A, class IN, addr 64.233.179.9
 c.l.google.com: type A, class IN, addr 64.233.161.9
 d.l.google.com: type A, class IN, addr 64.233.183.9
 e.l.google.com: type A, class IN, addr 66.102.11.9
 g.l.google.com: type A, class IN, addr 64.233.167.9

The answer section and the additional information section in the example above are in bold.

12
Telnet

Telnet is one of the oldest application protocols used within the Internet, and its origin is tied with
the ARPANET network. Telnet's history dates back to 1969 when the word "Telnet" came into
being as an acronym for Telecommunications Network Protocol. RFC 764 standardized Telnet
in 1980, and RFC 854 replaced it in 1983.

Usage
Telnet protocol is used to emulate a conventional character terminal (for example, the legendary
VT100) in TCP/IP-based computer networks.

A 'conventional terminal' is an I/O device used for human-computer communication. A
conventional terminal is hardware consisting of a keyboard and an output device, namely, a printer
or a display. A conventional terminal is usually connected to a computer via a serial asynchronous
link (IBM terminals are a different story and therefore not mentioned in this book).

It is possible to emulate a conventional terminal in the HyperTerminal program (previously known
as Terminal) in Windows XP PCs. Beginners often ask the question, "What is the difference
between HyperTerminal and Telnet? They both do the same job!" The question always catches us
unprepared. The difference is fundamental. While HyperTerminal changes a PC into a console
when connected to a computer via a serial link (i.e., using either a null modem or a pair of
modems), Telnet emulates a console via TCP/IP. The answer to the earlier question is as follows:
Using HyperTerminal, you communicate through a COM port on a particular computer without
TCP/IP; Telnet communication is through a network card (except when a computer is connected to
a TCP/IP network using SLIP or PPP). Since this answer doesn't seem sufficient to beginners,
another argument is at hand: Each user using HyperTerminal needs a separate socket (serial COM
port) on the server side, whereas if Telnet is used, the server can do with a single interface (for
example, Ethernet) shared by all participants.

Using Telnet is not limited to working on a remote computer only. Network administrators
appreciate Telnet when testing protocols such as FTP, POP3, SMTP, HTTP, NNTP, and so on.
Although many readers might possibly be using the Telnet protocol on a day-to-day basis, it may
seem that an entirely different protocol than the Telnet that is being discussed here. This is not the
case; Telnet is a relatively complicated protocol, which provides us with a convenient environment
for daily use.

Telnet

 288

Support from Operating Systems
UNIX, Windows, and other operating systems supporting TCP/IP support the Telnet protocol.
While clients have been implemented into the Windows operating system since Microsoft started
supporting TCP/IP, servers have been implemented from Windows 2000 onwards.

Security
With security-sensitive servers, it is necessary to make sure immediately after installing the server
that a Telnet server is not running. If the Telnet server is running, it must be stopped immediately
and steps taken to ensure that it does not start after rebooting the system. On the other hand, the
Telnet client can be found to be useful many a time. Telnet over SSL/TLS is currently not popular.
Where secure communication is necessary, SSH is preferred.

User Sector
System administrators appreciate the use of Telnet as they can perform remote system
administration via Telnet. The times when ordinary users used the Telnet program have
irretrievably passed.

12.1 The NVT Protocol
NVT is an acronym for Network Virtual Terminal. NVT is a subset of the Telnet protocol, i.e., it
is as if the Telnet protocol consists of two layers: the lower layer called NVT and the upper layer
called the main Telnet protocol. The NVT protocol deals with data presentation, i.e., it provides
answers to questions such as into which byte should the letter A be transformed in order to be
interpreted as A again at the other end of the network connection, or which Telnet protocol
command should be generated when the well-known Ctrl + C (^C) combination of characters is
keyed in for abnormal termination of a program run from the console.

It is precisely the NVT protocol that is used (to a limited extent) for data presentation in a
number of other protocols such as FTP, POP3, SMTP, NNTP, HTTP, etc. Multipurpose
Internet Mail Extension (MIME) is basically an extension of this philosophy. This is also the
reason why the NVT protocol is discussed in such detail. It is a presentation by the NVT
protocol (testable by the Telnet program) or some other data presentation that is used in the
application layer of Internet protocols.

The question is which other kinds of data presentation used in the Internet are available—the
answer is simple. One would tend to expect that there are no other types of presentation. This,
however, is not the case namely for binary oriented protocols important for encrypted
communication. The DER (or BER) coding is used in SNMP protocol as well as secure
communication protocols. The TLS (or SSL) protocol is the only one that has a presentation of
its own.

Chapter 12

Figure 12.1: Network architecture of the NVT protocol

Figure 12.2 shows the philosophy underlying the use of the Telnet protocol. Either the client
works on computer A either from a classical terminal from which the client controls the Telnet
program running on computer A (computer A has, for example, a UNIX or Windows operating
system), or the client is sitting at computer A (equipped with, for example, MS Windows) and is
running the Telnet program on it.

Figure 12.2: The NVT protocol

Now let's assume a client seated at computer A needs to work on computer B. The client starts the
Telnet program using the name of the computer he or she wants to connect to, i.e., B. The Telnet
program establishes communication with well-known port 23 of computer B via TCP. At that port,
the Telnet protocol server (the telnetd program) is waiting.

The problem is that the representation of data in computers A and B may differ, i.e., computer A
may use, say, ASCII coding while the coding used by computer B may be entirely different. To
accommodate this, the NVT protocol specifies the representation of the data being transferred in

 289

Telnet

 290

the network. The data representation is called an NVT protocol. This means that the Telnet
protocol prescribes neither to computer A nor to computer B which data representation they are to
use locally (for example, when saving data on disks), but specifies which data representation is to
be used by both computers when sending data to or receiving data from the network.

This is why the Telnet protocol does not care which representation of data is used by computers A
and B. Computer A is obliged to send data in the NVT representation using TCP protocol.
Similarly, computer B converts data from NVT to its own representation.

The basis of representation of data in the NVT protocol are the 128 initial characters of ASCII
coding (the highest bit (8th bit) equals zero). The first 32 characters are control characters (new line
(NL), carriage return (CR), bell (BEL), etc.). CR and NL character pairs stand for the end of the line.

Here is a superb example of how the NVT protocol is used. Let us suppose that both A and B use
the UNIX operating system. The character for the end of line is NL in UNIX. If the end of line is
sent from computer A, it must replace the single character NL in the TCP segment by two
characters, CR and NL. Conversely, computer B must replace the pair of characters, CR and NL,
by only NL. If computer B receives just the NL character (without CR), then it has received data
not representing the end of line, but something else.

12.2 Telnet Protocol Commands
The IAC (Interpret As Command) character's decimal value is 255 (FF in the hexadecimal
notation) and is of special significance. If a character of this value is to be transmitted, it must be
doubled. The IAC character is interpreted as the beginning of a Telnet protocol command.

This means the IAC character may be followed by the commands listed in the following table:

Command

Decimal
Notation

Hexadecimal
Notation

Symbol Significance

236 EC EOF End of file

237 ED SUSP Suspend process

238 EE ABORT Abort process

239 EF EOR End of record

240 F0 SE Sub option end

241 F1 NOP No operation

242 F2 DM Data mark (usually mark urgent data in TCP segment)

243 F3 BRK Break process

244 F4 IP Interrupt process

245 F5 AO Abort output

246 F6 AYT Are your there?

Chapter 12

Command
Significance Decimal

Notation
Hexadecimal

Notation
Symbol

247 F7 EC Escape character (escape to the command line)

248 F8 EL Erase line

249 F9 GA Go ahead

250 FA SB Sub option beginning

251 FB WILL

252 FC WONT

253 FD DO
See Table 12.2

254 FE DONT

255 FF IAC Data byte with decimal value 255

Table 12.1: Telnet protocol commands

Let us go back to Figure 12.2 and consider the commands in the previous table. If the user wants
to stop the process by any of the commands ABORT, BREAK, or INTERRUPTT T, he or she selects the
appropriate key at the console. As the command is keyed in, the corresponding process
termination command is generated (for example, IAC ABORT, i.e., FF EE). However, the question is
whether the corresponding commands are to be interpreted locally on computer A (i.e., whether
they are used for generating IAC Telnet protocol commands), or whether this information is to be
transmitted to server B for interpretation.

Both alternatives can occur in practice. In UNIX, local interpretation of commands and IAC
command generation can be set in the command line of the Telnet program by the following
command (not available in the Microsoft Client):
telnet> toggle localchars

The toggle command toggles (between TRUE and FALSE) various flags that control how Telnet
responds to events. In our case, it serves the localchars flag. If this flag is TRUE, then the flush,
interrupt, quit, erase, and kill characters are interpreted locally and transformed into appropriate
Telnet commands. The result depends on the chosen Telnet communication mode (see Section
12.2.3). Local interpretation in the character-at-a-time mode is rarely used. On the other hand, this
setting is ignored in the line mode. Local interpretation is always used in the line mode.

Individual Telnet IAC commands can also be sent manually from the command line. This is done
using the send command. For example, a process can be terminated using the BRK command
(available in Windows XP):
telnet> send BRK

The AYT command ("Are you there server?"), which is a variation on the ping command is very
interesting. If the communication with the server is all right, the server responds with YES
(available in Windows XP):
telnet> send AYT

 [Yes]

 291

Telnet

 292

The server returns the [YES] string. If the string is not shown, it means there is something wrong
in the communication with the server or the communication has not been established at all.

The Telnet protocol uses the following commands as a basic tool for negotiation of mutual
communication options by the sender and the recipient:

• WILL command: The sender suggests it would like to use an option.
• DO command: The sender instructs the recipient to use a particular option.
• WONT command: The sender informs the recipient it will not use a particular option.
• DONT command: The sender instructs the recipient not to use a particular option.

Six different communication situations can occur and are explained in the following table:

Sender Recipient Description

WILL DO Sender wants to enable option.
Recipient confirms use of option.

WILL DONT Sender wants to enable option.
Recipient disallows use of option by sender.

DO WILL Sender wants the receiver to enable option.
Recipient agrees.

DO WONT Sender wants the receiver to enable option.
Recipient declines.

WONT DONT Sender wants to disable option.
Recipient must confirm it.

DONT WONT Sender wants receiver to disable option.
Recipient must confirm it.

Table 12.2: Basic compound command communication pattern

A number of options can have parameters. A list of some of the options is shown in the following
table (for a detailed list see, e.g., RFC 2400):

Option

Name Decimal
Number

Hexadecimal
Number

Description RFC

ECHO 1 1 If, for example, the A key is keyed from the console,
we expect the 'A' character to appear on the screen
to confirm that we did press the A key. The
character can be sent to the screen locally by the
console or by the server via the Telnet protocol. The
ECHO option is a request for the server.

857

SUPPRESS
GO AHEAD

3 3 This option suppress half-duplex mode. 858

STATUS 5 5 This verifies the current status of the Telnet options. 859

Chapter 12

Option
Description RFC Name Decimal

Number
Hexadecimal
Number

TIMING 6 6 This option provides a mechanism for a user or a
process at one end of a Telnet connection to be
sure that the previously transmitted data has been
completely processed, printed, discarded, or
disposed. Currently most often used for
communication in line-at-a-time mode.

860
MARK

TERMINAL 24 18 This option can have the following parameters: 1091
TYPE 1=SEND: the server requests the client to send the

client's current terminal type.
0=SENDING: the client is stating the name of its
current terminal type. A string including the terminal
type immediately follows the 0 option.

31 1F Negotiation of terminal window size (i.e., the client
informs the server of the number of lines and
columns of its terminal window). This option can
have two 2-byte parameters: number of columns
and number of lines.

1073 NAWS

32 20 Terminal connection speed (classical terminal serial
line). This option can have two parameters: sending
speed and receiving speed.

1079 TSPEED

1372 33 21 Data flow control (i.e., LFLOW ^S and ^Q processing—
interrupting and restarting terminal output); this
option can have the following parameters:
0=OFF (used, e.g., by the VI editor), 1=ON,
2=RESTART-ANY, 3= RESTART-XON

34 22 LINEMODE LINEMODE is a Telnet mode that processes terminal
characters on the client side of a Telnet connection.
This option can have a number of parameters.

1184

35 23 Negotiates the X-display location of a Telnet client
when a user runs the Telnet client under the X-
windows system.

1096 XDISPLOC

OLD 36 24 This option means Environment variables. This
option has been superseded by the RFC 1872
standards.

1408
ENVIRON

NEW 39 27 This option means Environment variables. This
option has a number of parameters (see RFC 1572).
Two parameters,

1572
ENVIRON

DISPLAY and PRINTER, are
transmitted in practice.

46 2E Telnet starts the TLS. STARTTLS

47 2F Telnet Kermit. KERMIT

255 FF Extended option list. 861 EXTOP

Table 12.3: Telnet protocol options

 293

Telnet

 294

As an example, we may use a compound command for terminal type. If the server knows the type
(and therefore the attributes) of the terminal the user is seated at, it can offer him or her the full-
screen mode of the vi editor. One of the options on how to enquire about the terminal type is to
initiate the request for terminal type by the server. In the first step, it asks the client whether it is
able to convey the terminal type by using the DO-WILL communication (provided the client's
answer is positive). In the next step, the server sends out a compound command (including the
parameters) requesting a string containing a particular type of parameters. The compound
command with parameters must always contain SB and SE.

An example of such communication is shown in the following table (bold text is used for
hexadecimal values followed by the command):

Client Server Description

←

FF FD 18
<IAC DO TERMINAL-TYPE>

The server instructs the client to
send its terminal type.

FF FB 18
<IAC WILL TERMINAL-TYPE>

→
 The client agrees to provide its

terminal type.

←

FF FA 18 01 FF FO
<IAC SB TERMINAL-TYPE
SEND>

<IAC SE>

The server instructs the client to
send its terminal type using the
parameter 01 (SEND).

FF FA 18 00 76 74 31 30 30 FF F0
<IAC SB TERMINAL-TYPE SENDING>
vt100

<IAC SE>

→

 The client sends its terminal
type, namely, vt100 using the
parameter 00 (SENDING).

Table 12.4: Client-server communication

12.2.1 Signal for Synchronization
The Telnet protocol uses the Data Mark command (<IAC DM> sequence) as SYNCH signal. This
sequence causes the other end to discard all previously typed (but not yet read) input. This
sequence is send as TCP urgent data (urgent pointer points to <DM>).

The following command can enforce the synchronization sent from the command-line of the
Telnet program:
telnet> send synch

12.2.2 The Telnet Command Line
Users of the Telnet program work within a local operating system and are connected to the
operating system of a remote computer, thanks to the Telnet protocol. Apart from communicating
with the remote operating system, a user may use the Telnet command line. A user can access the
command line in two possible ways:

Chapter 12

• The user runs the telnet command without any parameters. After this, no
connection is established, and the Telnet command line is at the user's disposal.

• During an established session with a remote system, a user can access the command
line by using an escape sequence. The escape sequence is usually the ^] character
(i.e., pressing the CTRL and] keys simultaneously). By selecting this character, the
user calls the Telnet program command line on his or her local computer:

telnet>

or
Microsoft Telnet>

in Windows 2000/XP. A user can then run Telnet program commands in the command line.

Communication can be established by the following command:
telnet> open server [port]

The TCP port is optional; if not stated, the default port is port 23. This, however, involves a small
problem. Establishing communication (for example, in UNIX) with an default port in terms of the
Telnet protocol is different from establishing communication with another port. This is because if
a client is establishing communication with an default port, it can more or less take for granted that
there is a Telnet protocol server waiting at port 23, i.e., the client may go ahead with sending IAC
commands (SUPPRESS-GO-AHEAD, WILL TERMINAL TYPE, WILL FLOW, and so on) as the server will
most probably interpret them.

If, however, the user uses the Telnet program for communication for example, with an SMTP server,
the SMTP server might be unable to interpret commands such as WILL-TERMINAL-TYPE. This is why
when establishing communication with another port, the Telnet program only establishes the
communication at the TCP level and waits for the server to respond. If the server comes up with IAC
commands (for example, IAC DO TERMINAL-TYPE), the client knows it is communicating with a Telnet
server and also sends IAC commands to the server. If the server does not return any IAC command,
the Telnet program assumes there is no Telnet server and does not bother the server with IAC
commands. (If the user wants the client to communicate using IAC commands at an explicit port
from the start, the client should put the - character in front of the port number.)

Similarly, the close command ends communication.

The set command sets Telnet program variables, for example:
telnet> set escape ^G

This command sets escape sequences to ^G (also available in Windows XP).

The following command redirects the output of debugging information to a specified file (in
Windows XP, use the set logfile command).
telnet> set tracefile file

 295

Telnet

 296

The toggle command, among other things, prints the debugging information (not available in the
Microsoft Client). The debugging information is very interesting in terms of understanding the
Telnet protocol. Some functions of the Telnet protocol using the toggle command are demonstrated
here. We start by listing the IAC commands in text form sent by the Telnet command:
telnet> toggle options

This will display subsequent Telnet commands. For example:
SENT DO SUPPRESS-GO-AHEAD

This means that the client has sent the IAC command DO-SUPPRESS-GO-AHEAD (i.e., FF DD 03 in
hexadecimal notation).

Another type of listing is the listing of the entire data packet (without the link protocol header, IP
header, and TCP headers) obtained by the command:
telnet> toggle netdata

This command will continue to list the transmitted data. An example of a listing of a packet is
as follows:

> 0x0 fffa2000393630302c39363030fff0fffa230074312e7076742e637a3a302e30
> 0x20 fff0fffa270000444953504c41590174312e7076742e637a3a302e30fff0fffa
> 0x40 180044545445524dfff0

The > character means that the client sends the packet to a server. Similarly, the < character would
mean reception of a packet from the server. The center column beginning with 0x0 defines the
offset of the first character on the line from the beginning of the packet listing in hexadecimal
notation. The right-hand side column contains the actual data.

The status command enables us to obtain the current relation setting.

The send command enables us to manually send an IAC command. Another command that
deserves mentioning is getstatus; the client uses the IAC STATUS SEND command to request status
information from the server. This command is not available in the Microsoft Client.
telnet> send getstatus

Sent suboption STATUS SEND (sending request for status)
RCVD IAC SB
Received suboption STATUS IS (the server supports:
 WILL ECHO - character mode
 WILL SUPPRESS GO AHEAD
 WILL STATUS - respond to request for status
 DO TERMINAL TYPE - process client's terminal type
 DO NAWS - process client's windiow size
 DO TSPEED - process client's line speed
 DO LFLOW - process data flow control
 DO LINEMODE - line mode
 DO XDISPLOC - client's X-server location
 DO NEW-ENVIRON - environment variables consistent
with RCF-
 1572

Chapter 12

12.2.3 Communication Modes
The mode command enables changing communication modes.

For communicating in the Telnet protocol, one of thsee four modes can be employed:

Half-duplex: This mode is analogous to radio communication and consists in the
communication of two subjects using a shared frequency. If one participant of the
communication is transmitting a signal, the other participant must listen. The
participant continues to transmit the signal until it is terminated, usually by saying
"

•

over", which means a switchover from emission to reception. Similarly, the Telnet
protocol uses the <IAC GA> command instead of "over". This mode has become outdated.
Character-at–a-time: This is the most popular mode at present. This mode is
usually the default one at both clients and servers. The client sends characters one by
one to the server (the characters are usually sent in separate TCP segments, i.e., each
character is surrounded by at least 20 bytes of an IP header and at least 20 bytes of a
TCP segment header.

•

The switchover to 'character at a time' is done by the following dialog:
DO → SUPPRESS-GO-AHEAD

 ← WILL SUPPRESS-GO-AHEAD

 ← WILL ECHO

DO → ECHO

This shows that both SUPPRESS-GO-AHEAD and ECHO options are active.

Line at a time• , or 'kludge' line: This mode is derived from 'character-at-a-time'.
'Character-at-a-time' requires the SUPPRESS-GO-AHEAD and ECHO options to be
simultaneously active. 'Line-at-a-time' is analogous to 'character-at-a-time' with one
of the two options stated inactive at a time.
The client executes the ECHO option locally. Keying in a password is a problem as we do not
wish the password to be shown on the screen. Therefore, the server switches to 'character at
a time' before the password is keyed in; the server sends WILL ECHO command and the client
confirms it with DO ECHO. After keying in the password, the server returns to the original
mode by sending WONT ECHO, which is confirmed by DONT ECHO by the client.

Linemode: The entire input line (including potential modifications) is processed at
the client end and the line is sent to the server only when this is done. The
switchover to linemode is done as follows:

•

WILL → LINEMODE

 ← DO LINEMODE

Linemode also has a problem with entering a password, which is dealt by a temporary
switchover to character-at-a-time mode (as in 'line-at-a-time' mode). The use of the vi
editor is dealt with in a similar way.

 297

Telnet

12.3 Example of Windows NT Client Communication
Our example describes Microsoft Windows NT Telnet protocol client communication with a
server using the True64 UNIX operating system. In Windows NT (or 2000), the toggle command
is not available. For this reason, the debugging list cannot be used to analyze the Telnet protocol.

This should not discourage Windows users. We should recall that the MS Network Monitor
program is available in Windows. MS Network Monitor helps in capturing the individual Telnet
protocol packets as shown in the following figure:

Figure 12.3: A Telnet protocol packet includes IACs sent out by the server

Let us assume that the communication is started at the TCP level. Microsoft Client does not start
the communication using the IAC Telnet protocol, not even at the default port, but waits to see
whether the server uses Telnet protocol.

Table 12.5 shows an exhaustive listing of this communication. For example, the communication
data shown in Figure 12.3 are broken down to five separate IACs. Each IAC is listed in
hexadecimal notation and is followed by the equivalent text.

 298

Chapter 12

Client Server Description

 FF FD 18 The server instructs the client to send
its terminal type. <IAC DO TERMINAL-TYPE >

The server instructs the client to send
its line speed.

FF FD 20
<IAC DO TSPEED>

The server instructs the client to send
its window's location (for X-Windows).

FF FD 23 ←
<IAC DO XDISPLOC>

The server instructs the client to send
variables of its environment (FF FD 27 SET
command listing in Windows).

T

<IAC DO NEW-ENVIRON>

FF FD 24 The server instructs the client to send
its environment variables (outdated
option).

<IAC DO OLD-ENVIRON>

 The client agrees to provide a terminal
type (response to

FF FB 18
<IAC WILL TETMINAL-
TYPE>

→ DO).

FF FC 20 The client refuses to provide its line
speed (user does not work at classical
terminal).

<IAC WONT TSPEED>

FF FC 23
The client refuses to provide its
window's location (user does not use
X-Windows).

<IAC WONT XDISPLOC>
→

FF FC 27
<WONT NEW-ENVITON> The client refuses to provide its

environment variables. FF FC 24
<WONT OLD-ENVIRON>

 FF FA 18 01 The server requests the terminal type
from the client. As the option is used
with a parameter, it must be bracketed
by SB and SE.

<IAC SB TERMINAL-TYPE
01> ←
FF FO
<IAC SE>

FF FA 18 00 76 74 31 30
30

 The client sends the server its terminal
type, i.e., vt100. As the option is used
with a parameter, SB and SE must be
used.

<IAC SB TERMINAL-
TYPE → 00> vt100
FF F0
<IAC SE>

 FF FB 03 The server does not wish to use half-
duplex. <IAC WILL SUPPRESS –GO-

AHEAD>
FF FD 01 The server wants client to ECHO.

 <IAC DO ECHO>

FF FD 1F The server wants client to use ← NAWS.
 <IAC DO NAWS>

The server requests FF FB 05 STATUS.
 <IAC WILL STATUS>
The server wants client to use LFLOW. FF FD 21

<IAC DO LFLOW>

 299

Telnet

 300

Client Server Description

FF FD 03
<IAC DO SUPPRESS-GO-
AHEAD>

→
 The client confirms not using half-

duplex mode.

FF FB 01
<IAC WILL ECHO>

FF FC 1F
<IAC WONT NAWS>

FF FC 05
<IAC DONT STATUS>

FF FC 21
<IAC WONT LFLOW>

→

 The client agrees to ECHO.

The client refuses NAWS.

The client denies STATUS.

The client refuses LFLOW.

←

FF FE 01
<IAC DONT ECHO>

FF FB 01
<IAC WILL ECHO>

The server does not want the client to
ECHO.

The server wants to ECHO itself.

FF FC 01
<IAC WONT ECHO>

→
 The client will not ECHO.

 ← Login:

FF FD 01
<IAC DO ECHO>

→
 The client agrees that the server will

ECHO.

User name →

 ← Password:

Table 12.5: Client-server Telnet protocol communication (Windows NT client)

12.4 Example of UNIX Client Communication
Let's say our client is started in an X-Windows window within the True64 UNIX system. The
server is True64 UNIX as well.

An example of this communication is shown in the following figure:

Chapter 12

Figure 12.4: Client/server communication in UNIX

 301

Telnet

 302

We first start the Telnet program without a parameter and thus get the Telnet program command
line. From here we start a listing of debugging information both of IAC in text form (1) and of all
application data in hexadecimal notation (2).

We use the open command to establish communication with t1.pvt.cz server. The Telnet
program sets the escape sequence as ^]. As the port number was not specified in the open
command, the client (unlike Windows NT Client) assumes it is establishing connection with a
Telnet protocol server. This is why immediately after the connection is established, the client
sends these IAC commands of the Telnet protocol to the server:

• (5) The client does not want to communicate in half-duplex.
• (6) The client wants to send the server its terminal type.
• (7) The client wants to send the number of rows and columns of its window.
• (8) The client wants to send its terminal's line speed.
• (9) The client wants to negotiate data flow control with the server.
• (10) The client wishes to work in the linemode.
• (11) The client wants to send environment variables in line with RFC 1572.
• (12) The client requests the status.
• (13) The client wishes to send its X-server location to the server.

The client sends the commands (5 to 13) to the server in the packet shown on line 14. The server
responds with IAC command in the packet shown in hexadecimal notation on line 15. The
individual IAC on both lines are separated by spaces. The packet on line 15 contains the following
IAC commands:

• (16) The server requests the client to send the terminal type (in response to line 6).
• (17) The server asks the client to send its line speed (in response to line 8).
• (18) The server wants the client to send the information of its X-server location.
• (19) The server requests the environment variables according to the new specifications.
• (20) The server requests the environment variables according to the old specifications.

On line 21, the client refuses to send environment variables according to the old specifications; the
packet in hexadecimal notation is shown on line 22. The server responds with a packet (23) that
includes the following commands:

• (24) The server will not communicate in half-duplex (in response to line 5).
• (25) The server requests the client to send the number of lines and columns of its terminal.
• (26) Contains the instant response including two 2-byte parameters:

o The first parameter (first two parameter bytes) has 0 in the first byte
and 8010 (5016) in the second byte, i.e., the client informs the server it
has 80 columns available.

o The second parameter informs the server there are 24 lines available.
• (27) The server supports data flow control.

Chapter 12

• () The server does not support the linemode. 28

) The server supports the transmission of status information. • (29

The next packet sent by the server contains the following commands:

• (30) The server requests the terminal speed of the client. The client immediately
responds on line saying that the sending and receiving speed is 9600 b/s. 31

• (32) The server requests the X-server location of the client. The client responds on
line that the location is 33 t1.pvt.cz:0.0.

• (34) The server asks for the environment variables. The client sends only the value of
the "DISPLAY" environment variable (see line). 35

) The server requests for the terminal type. The client says on line • (36 37 that the
terminal type is "DTTERM".

The server tries to suggest 'line-at-a-time' by asking whether the client wants to do ECHO on line
. The client refuses 'line-at-a-time' mode (). 38 39

On line , the server suggests to 40 ECHO to which the client responds positively on line . 41

Now the tiring IAC sequence ends, and the server identifies itself on line 42 and invites the user to
key in the login () and password. 43

 303

13
File Transfer Protocol

File Transfer Protocol (FTP) is an application protocol suitable for file transfers in a computer
network based on TCP/IP. Like the Telnet protocol, FTP too has a very rich history. It dates back
to RFC 114 released on April 16, 1971. Now it is standardized by RFC 959 and amended by RFC
2228 and RFC 2640.

Usage
FTP is used for file transfers in computer networks using TCP/IP protocol.

Support from Operating Systems
UNIX, Windows, and other operating systems supporting TCP/IP support FTP as well asTelnet
protocol. The FTP client is also an integral part of all web browsers.

Security
FTP is neither less nor more secure than Telnet. Because it is intended for file transfers,
anonymous servers that do not have high security requirements often use it.

Telnet over SSL/TLS is currently not very popular. Where secure communication is necessary, the
SSH protocol is used. The client program for file transfer over SSH protocol is named scp.

User Sector
There are basically three groups of FTP users:

1. Users and system administrators working on the operating system of a particular server.
2. Ordinary users mostly use FTP for data download from FTP servers via Internet

browsers. In this case, an anonymous FTP server is used.
3. Many intermediate users utilize FTP in special graphical clients for Windows (for

example, WS_FTP) or as part of a graphical application of the "Commander" type
(for example, Norton Commander, Windows Commander, etc.).

File Transfer Protocol

13.1 Architecture
The architecture of the FTP protocol is as follows:

Figure 13.1: The FTP architecture

A user works with a user interface that is represented either by the command line of the FTP
program, a GUI FTP utility, or an Internet browser.

The user interface is usually created according to the working of the operating system in which it
is implemented. The user interface gives requests to the layer of the command interpreter. Then
the command interpreter communicates with the server using commands defined by the FTP
protocol. Section 13.4 contains an overview of these commands. However, the user can make use
of an even richer range of commands since the command interpreter usually interprets several
commands for working with the local file system of the client (for example, the lcd command that
is used to set the current directory on the client side).

If both the client and the server layers of the command interpreter in the command channel agree
on data transmission between the client and the server, a request for data transmission is given to
the data transmission layer. The data transmission layer works with the local file system. It is able
to read a file and write transferred data (into the file system).

 306

Chapter 13

FTP protocol architecture is special as it uses two channels of the client-server type:

• Control channel: Using this channel, a client sends its requests to a server, for
example, for directory listing or file downloading. This channel uses NVT
presentation protocol. By default, a server expects requests of the command channel
at the well-known 21/TCP port.

• Data channel: Using this channel, the required data (either directory listing or file
content) is transferred. A data channel is a bit special because the role of a server and
a client can be switched. Therefore, we distinguish two modes of FTP protocol
communication: active and passive.

When the data channel is open, concrete data transmission features are always set up. The
following four FTP protocol options can be set up:

• Type of transferred data. FTP protocol distinguishes up to four types of transferred
files (however, only ASCII and binary are usually implemented):

o ASCII: This is the default type of a transferred file. The transferred
data is represented in the NVT protocol, i.e., a sender converts the
transferred data into NVT and a receiver converts it from NVT to the
coding in the receiver's operating system. A command channel also
uses this way of transferring data.

o EBCDIC: This is used if both ends of the connection are systems using
EBCDIC code.

o Binary type: This transfers data as continuous flow of bytes. This type
is commonly used for binary data transmission.

o Local file type: This is usually not implemented today. It is intended for
binary data transmission between systems with different data representation.

• Format option (this option can be set only for ASCII or EBCDIC file types):
o Non-print: File does not contain format characters.
o Telnet format control: File contains vertical format characters for

printing as they are defined in the Telnet protocol.
o FORTRAN control: First character of each line contains the

FORTRAN language format control character.
• Structure of a transferred file. This option can be as follows:

o File structure: A file is a stream of bytes (default value).
o Record structure (only for ASCII or EBCDIC type transfers): In this

case, the structure of a transferred file may contain records. The transferred
file contains the control characters EOR (end of record) and EOF (end of
file). Both control characters are preceded by the FF escape sequence (a
semantic byte of value FF must be doubled). The escape sequence is
followed by either 01 (for EOR) or by 02 (for EOF). The combination of
EOR and EOF at the end of the file can be reduced to FF 03.

o Page structure: This is supported in some operating systems. Each
page is transmitted with a page number so that the pages can be
received in random order.

 307

File Transfer Protocol

 308

• Transmission mode. This specifies how a file is transferred:
o Mode stream: This is the default value. A file is transferred as a stream

of bytes. In the case of file structure, the receiver knows it is an end of
the file if the sender closes the data channel. In the case of record
structure, the FF 03 characters indicate the end of the file.

o Block mode: Transfers data in blocks. Each block contains an
information header field.

o Compressed mode: This mode enables compression of transferred data.

We can display the status of an established FTP connection by the status command:
ftp> status

Connected to infoserv.ripe.net.
No proxy connection.
Mode: stream; Type: binary; Form: non-print; Structure: file
Verbose: on; Bell: off; Prompting: on; Globbing: on
Store unique: off; Receive unique: off
Case: off; CR stripping: on
Ntrans: off
Nmap: off
Hash mark printing: off; Use of PORT cmds: on
Interpretation of "|" in filenames: off

Here is an explanation of the highlighted line:

• Mode: stream: The transmission mode is mode stream.
• Type: binary: The type of transferred data is binary (continuous byte flow).
• Form: non-print: The format option is non-print (transferred data does not contain

format characters for output, for example, at a printer).
• Structure: file: The structure of the transferred data is file structure.

13.2 Active Mode of FTP Protocol Communication
Active mode is the basic mode of FTP protocol communication. The most frequently asked
question is how the user can influence the option of the communication mode. The answer is hard
to give because an FTP client developer must enable this option. Only some clients have such an
option; Linux clients support the proxy command, but Windows clients doesn't support the proxy
command. On the other hand, most Internet browsers use passive mode. However, servers usually
support both communication modes.

At first, we will briefly show a scenario of active communication in the following table:

Step FTP communication

1. C:\WINDOWS\system32>ftp ftp.ripe.net

Connected to hawk-ftp.ripe.net.

220 FTPD Server (RIPE NCC FTP server)

2. User (hawk-ftp.ripe.net:(none)): anonymous

331 Anonymous login ok, send your complete email address as your password.

Chapter 13

Step FTP communication

3. Password:

4. 230-Welcome 194.149.105.131,

230-

230-This is the ftp-server of the RIPE Network Coordination Centre (NCC).

...

230-

230 Guest login ok, access restrictions apply.

5. ftp> debug

Debugging On.

6. ftp> dir

---> PORT 194,149,105,131,4,11

7. 200 PORT command successful.

8. ---> LIST

9. 150 Opening ASCII mode data connection for file list

10. -rw-r--r-- 1 ftpuser ftpgroup 2826 Nov 18 2004 About-ripe

drwxr-x—-x 2 ftpuser ftpgroup 4096 Dec 9 2004 cdforlinx

...

11. 226 Transfer complete.

ftp: 1384 bytes received in 2,53Seconds 0,55Kbytes/sec.

 ftp>

Table 13.1: Active mode

Here is a description of the steps shown in the above table:

1. A client wants to establish connection with the ftp.ripe.net server for control channel.
At first, the client will ask the port management of its local computer for a free port
allocation. Any one of the ports above 1023 (client port) is allocated to it. This port is
used for the TCP connection with the server port 21/TCP. In this way the command
channel is set up, and the FTP service is ready for a new user.

2. The FTP service asks for the username.
3. The FTP service authenticates the user by a user password.
4. Once the user is logged in, the FTP service prints out its banner.
5. Since we want to describe the FTP protocol communication in detail, we type debug, an

FTP client command. This command has no influence on the communication between a
client and a server. The FTP client will only output detailed information of the FTP
protocol communication. For example:

--> PORT T 194,149,105,131,4,11

This means the client sent to the server (-->) an FTP protocol command, PORT
194,149,105,131,4,11.

 309

File Transfer Protocol

6. Now we can execute the dir command for a detailed listing of the current working directory on
the server. To send a directory listing from the server to the client, a data channel must be
created. For establishing a data channel, the server changes its role. This change of role is the
basic characteristic of active mode of the FTP.

The FTP client asks the port management of its operating system for the allocation of a
free port and then starts the TCP server on this port for the data channel. Port 1035
(expressed decimally) is allocated to the FTP client. The hexadecimal value of 1035 is 04
0B. However, FTP protocol states every byte decimally, i.e., 4 and 11. Another way of
calculating is 4 x 256 + 11=1035.
With the help of the PORT command, the FTP client sends six decimal numbers containing its
IP address (194.149.105.131) and the port (1035=4,11), i.e., it sends 194, 149, 105, 131, 4, 11.

7. The server acknowledges the PORT command.
8. The client software translates the client dir command into the FTP protocol LIST

command. The user types the client command. FTP commands are transferred in the FTP
control channel in NVT representation (i.e., in ASCII).

T

9. The FTP server establishes TCP connection with the FTP client using the IP address and
port from the PORT command. Notice that it is the FTP server that establishes a connection
and not the FTP client (see 1), but the server and the client have exchanged their roles in
the data channel. The FTP server indicates that it has established a TCP connection with
the FTP client and opens the ASCII mode data channel for transferring the directory listing.

10. The server transfers the directory listing through the data channel.
11. The server indicates through the control channel that the transfer of the directory listing

is complete (and closes the data channel).

Figure 13.2: FTP active mode

 310

Chapter 13

In this kind of FTP active mode, the data channel is established from the FTP server to the FTP
client. In TCP terminology, the FTP server is the TCP client for the data channel, and the FTP
client is a TCP server.

13.3 Passive Mode of FTP Protocol Communication
In some cases, it is possible that a data channel cannot be established from an FTP server to an
FTP client (for example, firewalls may deny such a connection). In such cases, we can use the
passive mode of communication, where a client creates connections for both the command and
data channels. This can be very useful if we want to protect, for example, our network by packet
filtration at the access router or a firewall.

In the case of active mode, we cannot use the Telnet program for FTP protocol survey, because we
would have to run the Telnet program at the server to create the data channel. In contrast, in the
case of the passive mode, we can use the Telnet program instead of the FTP program. In this case,
we must directly use the FTP protocol commands as described in Table 13.1.

We will briefly clarify the basic principles of passive FTP communication again at the
ftp.ripe.net server (see Figure 13.3):

 Passive FTP Communication

1 C:\>telnet ftp.ripe.net 21

220 FTPD Server (RIPE NCC FTP server)

2 user ftp

331 Anonymous login ok, send your complete email address as your password.

3 pass libor.dostalek@siemens.com

4 230-Welcome 194.149.105.131,

This is the ftp-server of the RIPE Network Coordination Centre (NCC).

...

5 pasv

227 Entering Passive Mode (193,0,0,215,237,221).

6 list

150 Opening ASCII mode data connection for file list

 Client Starting Next Telnet Session

7 C:\>telnet 193.0.0.215 60893

-rw-r--r-- 1 ftpuser ftpgroup 2826 Nov 18 2004 About-ripe

drwxr-x--x 2 ftpuser ftpgroup 4096 Dec 9 2004 cdforlinx

drwxrwxr-x 2 ftpuser ftpgroup 4096 Feb 21 2005 erx

lrwxrwxrwx 1 ftpuser ftpgroup 7 Jul 1 2003 fyi -> rfc/fyi

...

Connection to host lost.

(60893 = 256 x 237 + 221)

 311

ftp://ftp.ripe.net/

File Transfer Protocol

 312

 Client Starting Next Telnet Session

8 226 Transfer complete.

9 quit

221 Goodbye.

10 Connection to host lost.

Table 13.2: Passive mode

The explanation of the table above is shown in the following list:

1. We establish a connection with the ftp.ripe.net server via the command channel.
We use the well-known 21/TCP port reserved for FTP servers.

2. A user authentication follows. Since we are not using an FTP client, but only a
Telnet program, we must directly type the FTP protocol commands. We type the
FTP user command with the username parameter (here, the username is ftp).

3. For the password, we use the FTP pass command and enter the password as
its parameter.

4. In the case of successful authentication, the server returns its welcome banner.

5. This part is critical. Here the client says that the communication has to proceed in the
passive mode (by the FTP pasv command), i.e., we want the server to allocate a port
for the data channel. In passive mode, the server does not use port 20, but asks its
port management for a free port. In our case, the port 60893=256x237+221 is
allocated. This time it is the server that returns the PORT command, its IP address, and
the number of the allocated port to which the client has to establish the connection.

6. Now we can type the FTP list command for the directory listing.

7. The server expects the connection for the data channel to be established, so we must
quickly run another Telnet program in a different window and establish a connection
with the server, but this time at port 60893. This way we can immediately see the
output of the data channel.

8. The server indicates through the control channel that the transfer of the directory
listing is complete (and closes the data channel).

9. Now, we can quit the control channel.

10. Here, the server indicates that the connection is closed.

Chapter 13

Figure 13.3: FTP passive mode

13.4 FTP Commands
Users usually use user programs like ftp.exe. User programs have a user interface (generally a
command line) that allow users to input user commands. The most fundamental function of a user
program is converting a user command to an FTP command that is transmitted over a network.
The FTP command always contains a keyword (for example, USER). This keyword can be followed
by parameters separated by a space. The command is terminated with the CR (carriage return) and
LF (new line) characters. FTP commands are always in ASCII.

FTP Command
(transferred by
network)

Usual user command Description

USER username user Username.

PASS password Password.

ACCT account account Apart from a username, some servers can also require
an account name, which can be used for accessing
some data.

CWD cd Change working directory (at server)

CDUP cdup Parent directory will by set as working directory (at
server).

SMNT path – File system mount.

 313

File Transfer Protocol

 314

FTP Command
(transferred by
network)

Usual user command Description

QUIT quit Terminates a user session and if file transfer is not in
progress, the server closes the control channel.

REIN – Reinitialization—user is logged off, but connection
through command channel remains. A command
USER can follow.

PORT port – See text.

PASV passive Passive mode.

TYPE code ascii, binary Transferred file type specification (first parameter) and
file transfer format option (second parameter.
Example: TYPE A N. ASCII type without printing
format characters must be set up.

STRU structure form Specifies the structure of transferred file. E.g. STRU F.
Transferred file structure must be set to 'file structure'.

MODE mode mode Transmission mode. E.g. MODE S means stream
mode setting.

RETR path get Downloads file from server.

STOR path put Transfers file to server.

STOU path rununique + get Similar to STOR, however, transferred file will have an
explicit name in directory (ftp will not replace existing
file, but it will change a name).

APPE path append Transfer file to server. If there is already a file with the
same name, the file is not replaced, but it is extended
with the transferred data.

REST data mark Restart of data transfer.

RNFR path rename Rename of file will be performed by two FTP commands.

RNTO path Command RNFR checks whether file exists at server,
and commands RNTO sets new name of file.

ABOR Tells the server to abort the previous FTP command
and any associated transfer of data. This command
uses the Telnet synchronization command Data Mark.

DELE path delete Delete file.

RMD path rmdir Remove directory.

MKD path mkdir Make directory.

PWD pwd Print working directory.

LIST [path] dir List directory content.

NLIST [path] ls Detailed list of directory content.

Chapter 13

FTP Command
(transferred by
network)

Usual user command Description

SITE string Command for other server services. Which services a
particular server provides, one can learn by the
command: SITE HELP. E.g. SITE IDLE identifies
setting of inactive connection limits.

SYST system Find out the type of operating system at the server.

STAT [path] status This command causes a status response to be sent
over the control connection as a reply. The command
may be sent during a file transfer.

HELP [command] remotehelp Output supported commands at server.

NOOP Empty command (no command).

Table 13.3: FTP commands (transferred by network)

It is necessary to distinguish between the user commands of an FTP program and FTP protocol
commands. For example, for directory listing, a user types the dir command, which is converted
into the FTP LIST command.

On the other hand, the FTP program has many internal user commands that often have nothing to
do with network communication, but serve to make things comfortable for the user. Such
commands are, for example, as follows:

• hash command: Using this command a user can set the client software so that after
transmitting 1 or 2 KB of data through the data channel, a hash sign (#) appears on
the display. Thus, the user would know that the data is really being transferred and
the program has not hung.

• lcd command: The user can change the working directory of the local system by
using this command. Sometimes more commands concerning the local system are
implemented. For example, lpwd command on Linux; lpwd command changes
working directory on local machine. Generally, we can execute all (external)
commands of the local system by adding an exclamation mark before the command
at the command line.

• literal command: This command is very important. By using this command, one
can send any FTP protocol command, for example, any argument of the literal
command is directly inserted into the TCP protocol. For example, literal PWD.

• Commands starting with an m character: This character creates a special group. These
commands enable the use of wildcard characters for multiple choices, such as the
asterisk (*) character in file names. Thus it is possible to transfer several files by one
command. However, it is necessary to realize that these commands only generate, on
behalf of the user, several FTP commands that are gradually executed. By the first
command, the remote directory listing is obtained, on the basis of which individual
commands are generated. After all, it is only a feature of the client software and is
not another set of FTP commands.

 315

File Transfer Protocol

The problem with the transmission between different operating systems (for example,
Microsoft and UNIX) is the fact that Microsoft usually uses upper case for file names,
while UNIX uses lower case . The question is whether to convert letters in file names,
i.e., either from upper case to lower case or lower case to upper case). This conversion is
generally controlled by the case user command.

• Apart from the previously stated FTP commands, experimental commands starting
with the X character can be also used, for example, XCWD is the experimental analog
of the command CWD (for detailed information, see RFC 1123).

13.5 Proxy
It should be noted that the proxy described here does not relate to a proxy we will meet in the field
of HTTP. The principle is that a client can mediate file transfer between two FTP servers, for
example, between the ftp.ripe.net server and the ftp.pvt.cz server.

First, the client creates the command channel with the ftp.ripe.net server. Using the proxy
command, the client creates other channel (called a 'proxy-channel') with the ftp.pvt.cz server.
The ftp.pvt.cz server allocates a port where it will wait for the connection for the data channel
(the server sends the IP address and the allocated port number to the client by the command
channel). The point is the server can think it is waiting for the connection from the client.
Nevertheless, the client gives the IP address and the allocated port to the ftp.ripe.net server.
Now the ftp.ripe.net server can establish the connection for the data channel with the
ftp.pvt.cz server and can input data it wants to send through the created data channel. In this
case, the client must give the RETR command (read file) to one server and the command STOR
(write file) to the other server.

Figure 13.4: FTP proxy

And finally, the listing of the communication in debugging mode:
ftp> ftp.ripe.net

Connected to ftp.ripe.net.
220 ftp.ripe.net FTP server (Version wu-2.6.1(1) Tue Jul 18 14:18:18 CEST
2000) ready.

Name (ftp.ripe.net:root): ftp
331 Guest login ok, send your complete email address as password.

 316

ftp://ftp.ripe.net/
ftp://ftp.pvt.cz/
ftp://ftp.ripe.net/
ftp://ftp.pvt.cz/
ftp://ftp.pvt.cz/
ftp://ftp.ripe.net/
ftp://ftp.ripe.net/
ftp://ftp.pvt.cz/

Chapter 13

Password:
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.

ftp> debug
Debugging on (debug=1).

ftp> proxy open ftp.pvt.cz
Connected to ftp.pvt.cz
220 ftp.pvt.cz FTP server (Digital UNIX Version 5.60) ready.

Name: ftp
—-> USER ftp
331 Guest login ok, send ident as password.

Password:
—-> PASS XXXX
230 Guest login ok, access restrictions apply.
—-> SYST
215 UNIX Type: L8 Version: Digital UNIX V4.0 (Rev. 878)
Remote system type is UNIX.
Using binary mode to transfer files.

ftp> proxy get file
—-> TYPE I
ftp.pvt.cz:200 Type set to I.
—-> PASV
ftp.pvt.cz:227 Entering Passive Mode (195,47,37,196,15,127)
—-> TYPE I
ftp.ripe.net:200 Type set to I.
—-> PORT 195,47,37,196,15,127
ftp.ripe.net:200 PORT command successful.
—-> RETR file
ftp.ripe.net:150 Opening BINARY mode data connection for file (2093 bytes).
—-> STOR file
ftp.pvt.cz:150 Opening BINARY mode data connection for file (0.0.0.0,0).
ftp.pvt.cz:226 Transfer complete.
ftp.ripe.net:226 Transfer complete.
local: file remote: file

ftp>

Proxy FTP is not implemented in Windows XP clients.

13.6 Return Codes
The server replies to individual FTP protocol commands set by the client with a message with a
three-digit return code followed by text clarifying the return code. The three-digit return code has
the form xyz where:

x takes any of these following values:

• 1: A positive preliminary reply when starting some action. Before the client can send
another command, one can expect a message about the termination of the action.

• 2: A positive completion reply (the requested action has been successfully
completed). The client can send commands.

• 3: A positive immediate reply after which the client has to perform a concrete action.
For instance, after entering a username, a password is required.

 317

File Transfer Protocol

 318

• 4: A transient negative completion reply. This means the command was not accepted
and the requested action did not take place, but the error condition is temporary and
the action may be requested again.

• 5: A permanent negative completion reply, for example, on an unsupported command.

y can take any of these following values: 0 for syntax errors, 1 for informative message, 2 for
connection error, 3 for authentication error, 4 for unspecified error, and 5 for a file system error.

z specifies the error in detail.

Here are some examples:
125 Data connection already open; transfer starting.
230 User logged in, proceed.
331 User name okay, need password.
452 Insufficient storage space in system.
502 Command not implemented.

13.7 Abnormal Termination of Data Transfer
Abnormal termination of a data transfer is practically the only use of the Telnet protocol
commands (NVT protocol) by FTP.

In Table 13.3, we can find the ABOR command that is used for an abnormal termination of the
previously executed command. It could happen that the server would sequentially process
individual client commands one by one. In such a case, the ABOR command would be processed
after the completion of the previous command. But we would usually want to terminate the
previous (running) command sooner, i.e., to process the command ABOR immediately when the
server receives it. This can be achieved as follows:

The client software is generally sensitive to some key sequence for abnormal termination, for
example, Ctrl + C (graphical clients can have a single button for termination). After pressing Ctrl
+ C, the client would like the server to stop sending data into the data channel. The client
accomplishes this with two actions:

1. With the help of an NVT protocol command, the interrupt process client command
(<IAC IP>), it sends a signal to a server. The <IAC DM> (data mark) command, which
is a signal for synchronization (SYNCH), follows the <IAC IP> command. The FTP
protocol data are encapsulated into a TCP segment. This TCP segment has the URG
flag set and the 'Urgent Pointer' TCP header field filled in pointing to the data mark
command (<IAC DM>). For more details, refer to Sections 9.1 and 12.2.

2. It executes the ABOR FTP command (a command of the FTP protocol).

Overall, the client sends 10 bytes of data:
<IAC IP><IAC DM>ABOR CR LF

A particular implementation of the FTP client sets the urgent data flag and sends the IAC
commands. The implementation depends on the software developer of the FTP client.

Chapter 13

13.8 Anonymous FTP
Not all FTP servers use the "anonymous server" principle. An anonymous server enables us to
access clients without client authentication.

Since the FTP protocol did not take into account anonymous servers, FTP anonymous users have
to set a username and password during their access to an FTP server. Generally, either the string
anonymous or the string ftp is used as a username. Both strings have the same meaning. A user
email address is often demanded as a password. This helps the anonymous server operator to
create statistics concerned with access to the server.

Some anonymous servers allow access only to clients whose computers have the appropriate PTR
record in the DNS. This restriction, however, has very disputable significance.

An anonymous FTP server serves users for downloading file, i.e., companies can offer free
information using an anonymous FTP server. Anonymous FTP servers can be accessed very easily
using Internet browsers.

If anonymous FTP servers are connected to Internet, they are exposed to a high risk of attack. That
is why anonymous FTP server implementations frequently perform the trick shown in the
following figure to increase their safety:

Figure 13.5: Anonymous FTP

During the startup of an FTP server, the system changes the root directory into a fake root
directory that the FTP server wants to make accessible. This means the server operating system
will intentionally pretend that the fake directory is the root directory containing FTP server data.
Thus, the anonymous users logged into this server will not be able to access other directories of
the server operating system.

It is necessary to point out here that the server will not be able to access even the directories in
which, for example, the ls program (used for directory listing) is placed. Therefore, we must not
forget to add, for example, the bin directory with the ls program into the fake root directory. It is
also usually necessary to add the etc directory with the fake passwd file. It is, however, not
necessary to allow total access to the fake bin directory—only an 'execute right' is given to the

 319

File Transfer Protocol

 320

users for executing the ls program. The ls program must not use the shared libraries of the
operating system; it must have statically compiled. Statically compiled programs are incomparably
larger than the dynamically linked ones. Therefore, it is interesting to display the size of the ls
program placed in the directory where it is used in the operating system, and the size of the ls
program used by the anonymous FTP server.

An anonymous FTP server must never be started under the super user mode. For anonymous user
access, a user (or user group) is given minimal access to the server operating system. Generally, an
anonymous FTP server is used only for reading files; therefore, the administrator of the
anonymous FTP server usually removes the write privilege from all directories.

In practice, an anonymous FTP server is sometimes also used for file exchange among users. Here,
it is necessary for anonymous users to have write access. Mostly, write permission is allowed only
for one directory. Conversely, the write permission is set for that particular directory, but read
permission of the directory (not for files in this directory) is removed. Thus, a user can copy data
in that directory, but nobody will be able to open the content of the directory. Instead, one user
will agree with another user for file exchange, using another channel (for example, a phone line).

14
Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) protocol is a significantly young protocol. Its origin
dates back to the year 1990. Its predecessor was the Gopher protocol (today nearly forgotten). The
other turning point is HTTP protocol version 0.9, which has many implementations. The new
version 1.1 (RFC 2616) is more complicated.

Usage
HTTP protocol serves for information searching on the Internet (or intranet).

Security
HTTP itself supports many authentication methods (such as username and password, Kerberos,
etc.). Netscape introduced securing communication by means of HTTP Secure Socket Layer
(SSL). SSL became the base for the Internet standard Transport Layer Security (TLS). SSL/TLS is
based on PKI with ITU-T X.509 certificates.

HTTP communication using SSL or TLS (HTTP over SSL/TLS) is called HTTPS. It is interesting
that the client authentication can be done either by means of the HTTP protocol or by means of the
SSL/TLS layer.

User Segment
Today, HTTP protocol is the most used protocol on the Internet. In fact, some Internet users even
identify the Internet with the HTTP protocol.

The components of HTTP are the proxy and tunnel specifications. That is why the
Internet has no problems through firewalls. Due to this, HTTP protocol became a popular
protocol for tunneling other protocols (RTSP, ICQ, Napster, etc.).

14.1 Client-Server
A client-server relationship is the basic architecture of communication in HTTP protocol. If a
direct TCP connection between a client and a server is established, the user types the Uniform
Resource Identifier (URI) he or she wants to survey into the browser:

Hypertext Transfer Protocol

Figure 14.1: HTTP architecture

As shown in the previous figure, the client first takes the server name from the URI and with the
help of DNS, translates it into the IP address (1 and 2). Then the client establishes a TCP
connection with the obtained IP address of the server. The browser inputs the HTTP request into
the newly created channel (3), and the server responses with an HTTP response (4) within the
same TCP connection. Then, the browser displays the response to the user.

It is important that the browser displays the web pages to the user. Every web page usually consists
of many objects and every object must be downloaded by a separate HTTP request from the web
server. In the older versions of the HTTP protocol, a new TCP connection was always established for
each request. Only the basic text of the web page is downloaded by the first request; the basic text
usually contains many references for objects necessary for properly displaying the web page. Thus,
in the next step, separate TCP connections with the web server are established simultaneously to
download each individual object. This process creates transmission peaks in the transmission channel.

 322

Chapter 14

HTTP protocol version 1.1, by default, assumes that only one TCP connection will be established
between the client and server for the entire web page. It is possible to close the connection after
one or more requests. The client can send several requests within one TCP connection without
waiting for the response to the previous request (this process is known as pipelining).

By default, HTTP protocol version 1.1 assumes that more requests and responses will be entered
into the established connection. If you explicitly want to close the connection, it is necessary to
put the following header field into the HTTP header:

Connection: Close

HTTP communication always consists of requests and responses. The relation between a client and a
server is always created only by a request and a response to this request. The older version of the
HTTP protocol even established a TCP connection only for one request-response cycle. The newer
version uses the already established connection for more request-response cycles. However, these
cycles are independent even if several request-response cycles go through one TCP connection.

The fact that the HTTP protocol does not engage in a dialogue longer than one request and the
immediate response is a certain limitation of the HTTP protocol. In practice, the following
situation can occur: A user wants to make a purchase using the HTTP protocol at a virtual
department store on the Internet. The user chooses the goods and adds them into the virtual
shopping basket that the user virtually carries with him or her while shopping. However, the user
(client) might choose more goods during the next client-server relation. The problem is how to
store the information about the anonymous client that he or she already has some goods in his or
her shopping basket. We will deal with this problem later in Section 14.11.

The following figure illustrates how a Telnet program establishes a connection with the
www.fiji.gov.fj server at the well-known HTTP port 80:

Figure 14.2: An example of HTTP communication for experts

A request is sent to the HTTP protocol as follows:
GET / HTTP/1.1
Host: www.fiji.gov.fj

The response was immediate:
 HTTP/1.1 200 OK

 323

http://www.playboy.com/

Hypertext Transfer Protocol

In the previous figure overleaf, the first line requests the content of the root directory by the GET
method, and the second line shows the name of the virtual web server. The blank third line
separates the HTTP header field from data.

Windows XP

 324

 users: Press the Telnet's escape keys Ctrl +] without delay before issuing
the GET command. You would then receive the Microsoft Telnet prompt. At this prompt,
input the set localecho Telnet command and press Enter and then issue the GET
command.

Surprisingly, such a communication with a web server is not sufficient for some users; they
demand information to be graphically displayed as shown in the following figure:

Figure 14.3: An example of HTTP communication for normal users

However, this type of display is significantly more complicated. In the figure above, the browser
displays the text formatted in the HTML language. This text contains only references to pictures,
so that every picture from the web page can be downloaded from the web server using
independent request-response communication. These communications are independent (though
they go through one TCP connection), i.e., the picture can also be used in other web pages or can
be downloaded separately.

Chapter 14

Another limitation of the HTTP protocol is the client-server architecture itself. This architecture
does not allow for sending asynchronous events from a server to a client. Thus, it is difficult to
create applications of stock exchange type using the HTTP protocol, because in the case of share
price change, the stock exchange application immediately needs to inform the client of this fact.
However, the stock exchange site is on a server, and a working server cannot initiate a TCP
connection. Unfortunately, in the case of the HTTP protocol, the server can inform the client only
when the client sends some request to the server.

GSM (mobile) has solved this problem. GSM uses WAP protocol, which includes a
variation of HTTP protocol. This variation of HTTP has a WAP Push function. This
function exchanges the role of an HTTP client and an HTTP server for a short period.
During this period, a mobile phone plays the role of a server on which information is
posted from a system (out of the GSM network) playing the client's role.

A user usually sets the browser (client) so that the responses (web pages) will be displayed to the
user and, if possible, stored in a cache to reduce the response time and network bandwidth
consumption on future equivalent requests. When repeating the request, the information can be
displayed to the user from the local cache.

As usual, caching has problems with fresh information. Various strategies are used to overcome
the problem of when to display cached information and when the client should transfer
information from the server . It is possible for a client to ask a server by HTTP: "Have you
changed the web page?" Only if the reply is "Yes" will the page be transferred from the server.
Some responses of the server can be marked not to be stored into the cache. The client must
contact the target server even if it has a cached copy of the data being requested.

Storing data into cache is very complicated; Section 14.10.7 deals with this problem. Nowadays
we have very sophisticated algorithms for working with a cache. Thanks to dynamic web pages,
secured connections, and also due to a higher throughput of communication lines, the importance
of a cache is gradually declining.

An Internet browser is not only an HTTP client. Usually, browsers have integrated FTP client and
also Gopher client.

The HTTP protocol introduces proxies, gateways, and tunnels. Any number of these intermediate
systems can come between a client and a server. From a TCP protocol viewpoint, a TCP
connection is always established between two neighbor nodes (i.e., a TCP connection between the
client and the first proxy, between the first proxy and the second proxy, and so on). In order to
describe a proxy, a gateway, and a tunnel, we will describe a network scheme with only one
intermediate system between a client and a server. Later, we will find out that nothing important
changes if there is more than one intermediate system.

Intermediate systems are often used where it is not possible to establish a TCP connection directly
between a client and a server, for example, at the firewall that separates an intranet from the Internet.

 325

Hypertext Transfer Protocol

 326

14.2 Proxy
A proxy is a system that consists of two parts:

• The server part of a proxy accepts client requests and passes them to the client part
of the proxy. In backward communication, the responses pass from the client part of
the proxy to the origin client.

• The client part of a proxy receives request from the server part of the proxy,
establishes a TCP connection with the target server, and sends the request to the
target server on behalf of the client.

Figure 14.4 shows how a proxy appears to a user. The important function of a proxy lies hidden in
the middle of the proxy, i.e., between the server and the client part. It is as follows: A proxy
understands the application protocol (in our case, the HTTP protocol), and it can perform several
operations with the accepted request from the client. The operations are as follows:

• It can store responses into its cache (for example, a disc). If a proxy receives the
same request in the future (for example, from another client), then it can return this
request more quickly directly from the proxy cache without establishing a connection
with the target server. This might look effective, but there is one essential question:
"How do we know that the cached data is fresh?"

• It can modify a request (or response), i.e., change data of the application protocol.
• It can decide whether the client is authorized to perform such a request.

A proxy can verify if a client is authorized to perform a request in several ways, as follows:

• A proxy can check that the client does not access any prohibited server. For example,
an employer can set a proxy server black list. The servers from this list will be
inaccessible to the employees. In practice, it is common that employers forbid access
to, for example, www.playboy.com. (However, there is almost no sense in doing this,
as employees will find 10 other servers with even more interesting themes about
which the employer does not know.)

• A proxy can check whether the user is authorized to use a proxy. In such a case,
it requires user authentication. The most frequent types of user authentication are as follows:

o The IP address of the user's PC. This authentication is not too safe;
therefore, it is used to restrict intranet clients from using the proxy (for
example, not allowing access to the Internet through the proxy).

o User name and password.
o User name and onetime password.
o Kerberos based authentication
o User's certificate based authentication

• A proxy running on a firewall can ask the operating system to check from which network
interface the user proxy request comes, i.e., whether the user is accessing the proxy from
an intranet or from an Internet network interface. Of course, the standard TCP/IP
implementation in operating systems does not know this. This is one of the differences
between a standard operating system and an operating system with a firewall installed.

http://www.playboy.com/

Chapter 14

• If a proxy knows where the request came from (whether from the intranet or
Internet), it can use different authentication mechanisms for requests from the
intranet and Internet. For instance, from the intranet, it accepts all requests—while
from the Internet, it requires a onetime password for authentication.

• A proxy can also check the transferred data for spyware and similar malicious codes.

A functioning proxy is shown in the following illustration:

Figure 14.4: Proxy

At the beginning, a user (client) types the URI he or she wants to view into a browser. For
instance, the client types the following request:

http://www.server.com/file.htm

However, the client handles this request by means of a proxy, i.e., the browser finds out the
application protocol from the URI and forwards the request to the proxy server that has been
configured for that protocol.

 327

Hypertext Transfer Protocol

Figure 14.5: Configuration of a proxy, a gateway, and a tunnel in an Internet browser

In Figure 14.4, the first step shows that the client translates the proxy DNS name into the IP
address (1 and 2). Now, the client can establish a TCP connection with the server part of proxy at
the port stated in the Proxy Settings window (see Figure 14.5). The client will insert its HTTP
request in the newly created TCP connection (3):
 GET http://www.server.com/file.htm HTTP/1.1
 Host: www.server.com

The proxy looks in its cache to check whether the response to this request already exists (4). If the
response to the request is not found in the cache, the proxy sends the request to its client part to
handle it. The client part parses the URI. The proxy takes the server name (www.server.com) from
the URI request and translates it into an IP address from a DNS server (5 and 6). Since the proxy
has access to the Internet, it can have this request translated in the Internet.

First, the client part of proxy rewrites the request as shown:
 GET /file.htm HTTP/1.1
 Host: www.server.com

Next, the client part of the proxy establishes a TCP connection with the target server and delivers
the request on behalf of the client (8). The server response is received by the client part of proxy
(9). The proxy stores the response into the cache if the proxy policy allows it (11). Finally, the
proxy delivers the response to the client (12), and it is displayed to the user and, eventually, it is
stored into its local cache as well.

 328

http://www.server.cz/

Chapter 14

In Figure 14.5, the configuration of an Internet browser is shown. The proxy for the HTTP protocol is
configured in this window. Furthermore, proxies or gateways for the FTP and Gopher protocols can
be configured here too. The Secure option is used for a tunnel configuration of SSL/TLS.

You can try this if you are working behind a company's firewall with the help of Telnet program.
First, you find the DNS name (or the IP address) and the TCP port of your company's HTTP proxy
(see Figure 14.5). As an example, the proxy address used is proxy.company.com and the port
number is 8080.

Now use the Telnet program as follows:

C\> telnet proxy.company.com 8080

In the Telnet window, input an HTTP request with an absolute URI. For example:

GET http://www.packtpub.com HTTP/1.1
Host: www.packpub.com
<Enter><Enter>

You obtain the home page of www.packpub.com on you company's intranet.

Windows XP users Ctrl: Press the Telnet's escape keys +] without delay before issuing
the GET command. You would then receive the Microsoft Telnet prompt. At this prompt,
input the set localecho Telnet command and press Enter and then issue the GET command. T

14.3 Gateway
A gateway is an intermediate node that works similarly to a proxy. The main difference is that a
gateway changes one application protocol to the other protocol. The most common type of a
gateway has a server part that accepts HTTP requests from clients and changes them into FTP
communications as shown in the following figure:

 329

Hypertext Transfer Protocol

Figure 14.6: Gateway

An interesting feature of the FTP gateway is that if a user wants to display the content of a
directory, the gateway finds out only the directory content as listed by the list command of the
FTP protocol. Such a directory listing is not an HTML formatted web page. However, the gateway
must display this directory content to the client in a web page style. To accomplish this task, the
gateway must have icons for a file, a directory, etc. With the help of these icons, the gateway
creates a web page containing the directory content and it is displayed to the client. The logical
result is that if you display the directory content through a proxy from one supplier and later on
through a proxy from another supplier, the graphic design may be displayed differently.

This is not surprising, because if a browser establishes a connection directly with a target server
(without proxy), the directory content received through the FTP protocol must be similarly
converted into a graphic form. Hence, the listing of the same directory displayed by various
browsers (or another version of the same browser) can have a different graphic design.

You can perform the following example for any FTP server on the Internet. Follow the steps
shown in the previous example of an HTTP proxy and use the following:
C\> telnet proxy.company.com 8080

 330

Chapter 14

In the Telnet window, input an HTTP request with absolute URI. For example:
GET ftp://ftp.rfc-editor.org/ HTTP/1.1
Host: ftp.rfc-editor.org
<Enter><Enter>

You obtain a root directory listing of the ftp.rfc-editor.org FTP server on you company's intranet.

14.4 Tunnel
A tunnel is an intermediate system that does not need to understand the contents of transferred
data. Even encrypted application data can be transferred through a tunnel. It is used by the SSL or
TLS protocols. A tunnel is configured in the Secure option in Figure 14.5.

A tunnel is explained in the following figure:

Figure 14.7: Tunnel

The client translates a tunnel name into an IP address (1 and 2). The client establishes a TCP
connection with the server part of tunnel. Into this created channel, the client usually inserts the
CONNECT command with the DNS name and, optionally, the port of the target server (3). The tunnel
translates the target server's DNS name into the IP address (5 and 6) and establishes a TCP
connection with the target server at the port stated in the CONNECT command. T

 331

Hypertext Transfer Protocol

Now, the tunnel has created two dual carriageway connections. We can imagine the direction of
the connection as shown using two pipes in the following figure:

Figure 14.8: A tunnel welds both connections together

 332

In the previous figure, one pipe serves for the outgoing connection and another for the incoming
connection (duplex line). A tunnel simply welds two pipes together. After welding, the tunnel will
mechanically pass data between the server part and the client part of tunnel with no knowledge
about the content of passed data, for example, SSL/TLS data are enciphered. Everything that
comes from the client is mechanically sent through the "welded" pipes to the target server.
Similarly, everything that comes from the server is sent to the client. Within such a connection, the
client can start establishing an encrypted connection by the SSL/TLS protocol.

It is quite logical that if a tunnel cannot read the transferred data, it also cannot control what data a
client downloads from a server. For example, tunnels do not know how to prohibit downloading
Java applets or ActiveX components from the target server. The tunnel does not cache the
transferred data.

For practice purposes, you can solve the following problem: We have created an application with
the client-server architecture, and there is a user who wishes use this application. However, the
user is in the internal network separated by a firewall and our server is on the Internet. It is easy to
change the application to first establish a connection through the tunnel and then type the CONNECT
server:port HTTP/1.1 command. The tunnel will establish a connection with the server:port
target and weld both connections together. Now the client has already established connection with
the target server. Of course, the client will operate if the tunnel (for example, for SSL/TLS as
configured in the Secure field in Figure 14.5) is started up at the firewall.

If you are aware of a Telnet server on the Internet (for example, computer.firm.com), then you
may experiment with the tunnel on your firewall. First, however, note the content of the Secure
field shown in Figure14.5.
C:\> telnet proxy.company.com 8080

Connecting To proxy.company.com ...

CONNECT computer.firm.com:23

HTTP/1.1 200 Connection established

Chapter 14

Proxy-agent: Apache/1.3.14 (UNIX)

FreeBSD/i386 (computer.firm.com) (ttyp4)

 login:

(The proxy sends the second line of the code, the client sends the highlighted third line, and the
server sends the remaining part.)

The result would depend on your skills and the skills of your firewall administrator. If you are not
aware of any Telnet servers, then use an HTTP server and port 80 (or without any port). In this
case, use the GET method. T

There exist insidious programs that provide many Internet services though tunnel. But a firewall
administrator's nightmare are worms that sniff intranet network traffic and send confidential
information through the tunnel outside the company.

14.5 More Intermediate Nodes
There are many possible combinations of intermediate systems on the way from a client to a
target server.

It is quite common to use 'Proxy on Proxy' in companies that have an intranet separated into several
secure zones. For example, the first secure zone is for employees, and the second secure zone is for
production servers. The zone for production servers is interconnected with the employee secured
zone through an internal firewall. Next, the employee zone is connected through another firewall to
the Internet. Both firewalls may run proxies and tunnels.

In the case of a double proxy, the target server name must be translated to its IP address at the last
proxy before the target server. Similarly, it is a good idea to place a gateway at the end of the node
chain as shown:

Figure 14.9: A chain of intermediate systems

Note that intermediate systems are before the Internet. This is a limitation of HTTP. If the
intermediate system was after the Internet (on the target server side of Internet), then would be
impossible to configure the proxy in a browser (as the client would not know the DNS name or IP
address of a remote proxy). Such proxies are called reverse proxies.

 333

Hypertext Transfer Protocol

 334

A reverse proxy is useful when a web server provider would like to protect its server with a
firewall or would like to use some hardware accelerators before the web servers. Different
manufacturers offer different solutions because the reverse proxy is outside the HTTP
specification. The real problem with a reverse proxy is how to pass user authentication through the
reverse proxy. There are many solutions. One of them is to authenticate users against the reverse
proxy and pass user identification from the reverse proxy to the target server in additional HTML
header lines. These header lines usually begin with the iv- string (i.e., Identity Verification).

14.6 Uniform Resource Identifier
A Uniform Resource Identifier (URI) is an object identifier in a web world. A URI can be any
of the following: Uniform Resource Name (URN), Uniform Resource Locator (URL), and
Uniform Resource Characteristic (URC). In this book, we will only discuss the URL.

Individual application protocols have their own URI scheme. A URI is specified by RFC 1738 as:
 <scheme>:<scheme-specific-part>

where <scheme> can be, for instance, http (HTTP protocol), ftp (FTP protocol), mailto (SMTP
protocol), nntp (NNTP protocol (news groups)), telnet (Telnet relation), file (local file), imap
(IMAP protocol), ldap (LDAP protocol), or pop (POP3 protocol).

The schemes (but not in the whole URI) are not case sensitive, i.e., ftp is the same as FTP or Ftp.

Only ASCII characters occur in a URI. If you must use a non-ASCII character, it must be replaced
with the % character followed by the hexadecimal code of the character. In the hexadecimal code
of the character, we can write both upper and lower case for the hexadecimal digits A to F. The
special characters (;, /, ?, :, @, =, and &) are reserved for special usage, i.e., if they are to be used
in some string, they must be replaced with % and their hexadecimal code.

14.6.1 The http Scheme
Syntax:
http://<user:password>@<server>:<port>/<path>?<query string>#<fragment>

A username and a password are used for client authentication. Generally, it is not recommended to
set a password in a URI. If a password is not set, then HTTP protocol will start an additional
dialogue to request it. In the dialogue window, the password is not displayed during typing
(individual letters of the password are replaced with asterisks or dots). In this case, a colon must
not follow the username.

If a username (or username and password pair) is set, the @ character must precede the server
name. A TCP port is stated after a colon. If we want to use the well-known port 80 for HTTP, we
state neither a colon, nor the port number. The path contains a file identification consisting of
directories separated by a slash and a file name.

A question mark (?) is followed by query string. A hash (#) specifies a reference to a web page
fragment. A web page can be larger than the size of the monitor screen. Using a scrollbar, we can
browse a web page. A web page can be also separated into labeled fragments; these labels are

Chapter 14

identified as <fragment>. If we want to display a particular fragment in a window without moving
the scrollbar, we use a reference to this fragment.

Example:

1. A request from an anonymous client for a root directory content of the
server.company.com server is shown as:
http://server.company.com

2. The root directory content of the server.company.com server is requested by the
user novak. If the server demands a password for this user, a consequent dialogue
with the server will be called by:
http://novak@server.company.com

3. An anonymous user starts the forms.exe program from the cgi-bin directory. The
field1=%20&field2=value2 string passes to the program by the forms.exe

QUERY_STRING system variable. It uses a form with two fields: field1 and field2.
field1 contains a space (ASCII code 2016) and field2 contains the value value2:
http://server.company.com/cgi-bin/forms.exe?field1=%20&field2=value2

4. An anonymous user wants to display the content of the document document.html
from the /adr1/adr2/adr3 directory. The user wishes to display the paragraph5
fragment directly.
http://server.company.com/adr1/adr2/adr3/document.html#paragraph5

14.6.2 The ftp Scheme
Syntax:
ftp://<user>:<password>@<server>:<port>/<d1>/<d2>/.../<dn>/<file>;type=y

This syntax containing a username, password, and a server name is similar to the HTTP syntax.
The only difference is that if a username is not set, the user "anonymous" will be automatically
used instead. If a user's email address is known, it is used as a password. The well-known port for
FTP is 21. The type of the transferred file(s) can be either i or a; however, these parameters are
not used in practice.

The basic question is how to interpret the /<d1>/<d2>/.../<dn>/<file> string. The answer is
simple: FTP uses the CWD command. The commands CWD d1, CWD d2, up to CWD dn are successively
executed by the FTP protocol. Then, the RETR file command is executed.

This procedure does not allow specifying an absolute path (a path from the root directory) easily, because
inserting a slash is problematic (see second example).

Example:
ftp://ftp.company.com/etc/passwd

CWD etc and RETR passwd FTP commands perform this request.

If we want to execute the CDW /etc command, we must set:
ftp://ftp.company.com/%2Fetc/passwd

because the hexadecimal value of a slash is 2F.

 335

Hypertext Transfer Protocol

 336

14.6.3 The mailto Scheme
Syntax:
mailto:<rfc822-addr-spec>

This scheme has only one parameter, which is an email address to which the mail message has to
be sent.

Example:
mailto:libor.dostalek@siemens.com

14.6.4 The nntp Scheme
Syntax:
nntp://<server>:<port>/<newsgroup-name>/<article-number>

For more details, refer to Chapter 16.

14.6.5 The telnet Scheme
Syntax:
Telnet://<user>:<password>@<server>:<port>/

In this scheme, the following can be left out: the final slash, the username, and the password.

14.6.6 The file Scheme
Syntax:
file://<server>/<path>

This scheme is usually used as a reference to data in a local disk. Instead of a computer name, an
empty string (or a localhost name) is used. When specifying files this way, we most frequently
state three consecutive slashes. The path is then the whole specification of a file. The pipe
character is used instead of colon because the colon has a special meaning as password and/or port
separator in a URI.

Example:
file:///C|/WINNT/system32/file.txt

The situation is interesting in operating systems where the directory structure is different from
Windows or UNIX operating system. As an example, let us consider the OpenVMS operating
system. For this operating system, we will express, for example, the DISK$USER:[MY.NOTES]-
NOTE123456.TXT file.
file:///disk$user/my/notes/note12345.txt

14.6.7 The pop Scheme
Syntax:
pop://<user>;auth=<auth>@<host>:<port>

Chapter 14

For more details, see RFC 2384.

RFC 2192 specifies the imap scheme, and RFC 2255 specifies the ldap scheme.

14.7 Relative URI
If a URI does not start with a scheme name, then this is called a 'relative URI'. A relative URI is
always related to some base, i.e., to some absolute URI. This base can be the URI of the displayed
document or even the URI of the previous document. If there is no such URI, an implicit URI of
the application can be used.

A relative URI can contain . or .. characters; they are a reference to a working or parent directory
respectively. A relative URI is parsed in several independent parts: a server name, a path including
a file name, a request, and a fragment. Individual parts are separated by the following characters: #
(fragment), ? (query string), and so on.

Let's take the base (which is the absolute URI) and replace its parts by a relative URI from right to
left. Hence, in the displayed http://www.company.com/path/file.htm page, the following
hypertext references (relative URIs) can be found:

• #paragraph1 that can be translated to the following absolute URI:
http://www.company.com/path/file.htm#paragraph1.

• file2.htm that can be translated to the following absolute URI:
http://www.comapny.com/path/file2.htm.

• ../file3.htm that can be translated to the following absolute URI:
http://www.company.com/file3.htm.

14.8 The HTTP Request
The HTTP request (and response) structure reminds us of an email structure. At first sight, we see
the difference only in the first line. The first line of a request contains a method, and the first line
of a response contains status line.

An HTTP request consists of the following (see Figure 14.10):

• A method: HTTP version 1.1 supports the following methods: GET, POST, HEAD, T

OPTIONS, TRACE, CONNECT, PUTTT, and DELETE. The PUT and DELETE methods are not
always implemented.

• A header: This consists of individual header fields. Every header field starts with a
keyword (for example, Host). A colon followed by a space terminates the keyword.
After a space, the header field parameters can follow. The whole header field is
always terminated by an end of line (CR+LF). Only one header field is compulsory,
namely, the Host header field.

• A blank line: I.e. CR+LF twice; the first CR+LF ends the last line of a header field.
(CR is a cursor return character (0D), and LF is a new line character (0A)). 16 16

• The transferred data (optional).

 337

http://www.company.com/path/file.htm
http://www.comapny.com/path/file2.htm
http://www.company.com/file3.htm

Hypertext Transfer Protocol

Figure 14.10: HTTP request

In HTTP protocol version 1.1, the method always has the following form:

 338

<Method's name> <URI> HTTP/1.1

In the current version of HTTP, it is obligatory to include the third item (version number) in the
form for version 1.1. If the version number (along with the HTTP/1.1 HTTP string) is missing, then
HTTP version 0.9 is assumed. (In the case of an HTTP request, version 0.9 of HTTP does not
support the header line Host:, and the HTTP response will not contain a status line.)

An example of the GET method of HTTP version 1.1:
GET / HTTP/1.1

Personally, it is surprising to see that web servers do not accept an 'absolute URI' as a parameter
(an absolute URI begins with the name of scheme and a server name, for example, begins with the
http://server… string). If the browser cuts the method name and server name from a URI, then
you obtain a relative URI. An absolute URI is accepted only by proxies and gateways (tunnels do
not require URIs at all; tunnels only require the target server name and the port (optional)).

Another interesting topic is that HTTP methods require a URI. However, common users write
only the server name in their browser's location field, but the browser will cut the server name
from the URI so that nothing remains. In this case, the browser itself adds the slash (root
directory) after the server name.

14.8.1 The GET Method
GET method is used to retrieve information stored on a server. With the help from the query string
of a URI (after the question mark), a request for desired information may be defined. The GET
method can theoretically also contain data, however, it is rarely used because data is transferred as
a part of the request especially in this case.

Chapter 14

The GET method is often used with the combination of conditional header lines that are as follows:
If-Modified-Since, If-Unmodified-Since, If-Match, If-None-Match, or If-Range header
field. The result is a "conditional GET" that is helpful primarily in the case of static web pages. A
conditional GET method requests that the web page be transferred only under the circumstances
described by the conditional header lines. A conditional

T

GETT method is intended to reduce
unnecessary network bandwidth usage by allowing cached web pages.

Let us see some examples by means of the Telnet program for Windows XP. We will connect to
the server www.packtpub.com at port 80:
C:\> telnet www.packtpub.com 80

Windows XP users Ctrl: Press the Telnet's escape keys +] without delay before issuing
the GET command. You would then receive the Microsoft Telnet prompt. At this prompt,
input the set localecho Telnet command and press Enter and then issue the GET command. T

In the following examples, sentences in bold are client commands, the text in italics are comments,
and the remaining text is the server response.

In the first example, we ask the server to list its root directory content. Web servers are usually
configured for not returning a file list of web server's root directories. They usually give back the
content of an index file (for example, index.html, default.htm, and so on), if present, which is a
server's home page.

Example 1:
GET / HTTP/1.1
Host: www.packtpub.com

 (An empty line separates a request header and a request body)
 (The request body is empty)

HTTP/1.1 200 OK
Date: Tue, 20 Dec 2005 19:23:09 GMT
Server: Apache
Cache-Control: must-revalidate
Pragma: no-cache
Content-Type: text/html; charset=UTF-8

 (A blank line separates a response header and a response body)
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>Packt Publishing Book Store</title>
<link href="http://www.packtpub.com/rss.xml"
...

In HTTP protocol version 1.1, the Host header field is mandatory; therefore, even our request
must contain this header field. The Host header field contains the server name.

 339

Hypertext Transfer Protocol

 340

The response, apart from the status line, contains several interesting header fields:

• Date: Shows the date and time of the start of the response.
• Server: Contains information about the software used by the target server to handle

the request.
• Cache-Control and Pragma: With the help of these header lines, the server specifies how

to manage a web page in a cache. In this case, we do not save the web page in cache.
• Content-Type: This header line indicates the media type of the transferred data.

Example 2:

Now we will use the www.iana.org web server in the same way:
GET / HTTP/1.1
Host: www.iana.org

HTTP/1.1 200 OK
Date: Tue, 20 Dec 2005 19:59:03 GMT
Server: Apache/1.3.27 (UNIX) (Red-Hat/Linux)
Last-Modified: Thu, 04 Nov 2004 19:34:30 GMT
ETag: "1acad9-153a-418a8446"
Accept-Ranges: bytes
Content-Length: 5434
Connection: close
Content-Type: text/html

<HTML>
 <HEAD>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
 <META NAME="Author" CONTENT="IANA">
 <META NAME="Keywords" CONTENT="IANA, ICANN, domains, ip address, protocol,
parameter, Internet authority">
...

This web server primarily provides static web pages. Static web pages are ripe for caching. From a
caching point of view, consider the following two header lines:

• Last-Modified: Indicates the date and time at which the target server believes the
web source (web page) was last modified.

• ETag: This header line provides the current value of the entity tag of the web source
(web page). An entity tag is an unambiguous identifier of the web page. Entity tags
are used for comparing two or more web source from the same resource (the same
web server).

These two header lines will be useful in conditional GET requests. The conditional GET requests use
the following conditional header fields: If-Modified-Since, If-Unmodified-Since, If-Match,
If-None-Match, and If-Range. A conditional request causes the requested data to be transferred
only if the condition of the request is true. The If-Match and If-None-Match header lines evaluate
the response version (ETag), while the If-Modified-Since and If-Unmodified-Since headers
evaluate the last modification date.

Chapter 14

Example 3:

In example 2, we received the response with the "1acad9-153a-418a8446" entity tag (it is
necessary to use quotation marks). Therefore, we can ask the server to return the web source if
only this source was changed:
 GET / HTTP/1.1

Host: www.iana.org
If-None-Match: "1acad9-153a-418a8446"

HTTP/1.1 304 Not Modified
Date: Tue, 20 Dec 2005 20:29:29 GMT
Server: Apache/1.3.27 (UNIX) (Red-Hat/Linux)
Connection: close
S: ETag: "1acad9-153a-418a8446"
Connection to host lost.

From the code, we can see that the web source identified by the "1acad9-153a-418a8446" entity
tag was not modified and hence was not transferred.

Example 4:

The If-Modified-Since header field means that the client would like to transfer the web source
(web page) from the web server only if the particular source has been modified. However, not the
web source identification, but the last modification time is decisive.
 GET / HTTP/1.1

Host: www.iana.org
If-Modified-Since: Tue, 20 Dec 2005 19:59:03 GMT

HTTP/1.1 304 Not Modified
Date: Tue, 20 Dec 2005 20:41:50 GMT
Server: Apache/1.3.27 (UNIX) (Red-Hat/Linux)
Connection: close
ETag: "1acad9-153a-418a8446"
Connection to host lost.

Since the particular page has not been modified, the server returns only the header field informing
us that the page has not been modified.

14.8.2 The POST Method
The POST method is useful for sending data (for example, an HTML form) to a server. However,
there is a hitch in using the POST method with the Telnet program. The problem is that in an HTTP
request, an empty line follows the data sent by a client to a server. In doing so, the server must
recognize how much data the client will send. From a keyboard, we cannot type the data quickly,
and the server does not wait for us. A solution to this problem is to inform the server about the
number of bytes to be sent in the header. For this purpose, the Content-Length header line is
used. (In contrast, a browser puts both the header and data into one TCP segment so that the server
can deal with of the whole request.)

Example 5:
POST /cgi-bin/ping HTTP/1.1
Host: test.company.com
Content-Length: 29

 (A blank line separates a header from a message body)

 341

Hypertext Transfer Protocol

 342

filed1=info&field2=&pfield3=3

HTTP/1.1 100 Continue

HTTP/1.1 200 OK
Date: Thu, 21 Dec 2000 07:21:11 GMT
Server: Apache/1.2b10
Transfer-Encoding: chunked
Content-Type: TEXT/HTML

188
<HTML>
 <HEAD>

Now we count the number of bytes the data part of our request has and add the Content-Length
header field into the header. The impatient server informs us by the HTTP /1.1 100 Continue
message ("Go on quickly!") that it will process our request (this usually does not happen to a
browser, because it is fast enough to supply the server quickly with the data). As for the response,
the Transfer-Encoding:chunked header field is interesting. This header field notifies that the
server it is sending the message in parts (chunks). This form of response consists of individual
parts, each starting with a row containing the hexadecimal value of the data (18816=39210). The
last part of a zero byte must be always stated. The last part is followed by a blank line, which can
be followed by header fields of the HTTP response footing (rarely used in practice).

Furthermore, we would like to mention the data filed1=info&field2=&pfield3=3 that we sent to
the server. These are three fields of a web form. The first field of a web form is called field1 and
the user fills it by the value info. The user did not fill the second field called field2. Finally, the
third field called field3 is filled by the digit 3. The individual fields are separated from one
another with the & character; this is a special character separating web page fields.

It is important to note that by using the POST method, the data is sent in the data part of the HTTP
request. If we want to send the same form content of using the GET method, the request method would
look like as follows:

GET /cgi-bin/ping?filed1=info&field2=&pfield3=3 HTTP/1.1
Host: test.company.com

In this case, we do not need the Content-Length header field, because data is sent as a query
string in the URI. If a CGI script on the server side processes the data, one script would have to be
used for the GET method and another for the T POST method. The GET method CGI script obtains the
transferred data through the QUERY_STRING system variable. In contrast, the PUT method CGI script
obtains the transferred data through standard input. (Of course, it is also possible to write a script
that can process both the standard input and the QUERY_STRING variable alternatively.)

14.8.3 The HEAD Method
The HEAD method is similar to the GET method except that the server does not return a message
body in the response.

Example 6:
HEAD / HTTP/1.1
Host: www.iana.org

HTTP/1.1 200 OK
Date: Tue, 20 Dec 2005 21:17:06 GMT

Chapter 14

Server: Apache/1.3.27 (UNIX) (Red-Hat/Linux)
Last-Modified: Thu, 04 Nov 2004 19:34:30 GMT
ETag: "1acad9-153a-418a8446"
Accept-Ranges: bytes
Content-Length: 5434
Connection: close
Content-Type: text/html
Connection to host lost.

14.8.4 The TRACE Method
The TRACE method is an HTTP analog of the tracert ICMP command in Windows XP. This time,
however, we will not find out how many routers are between our computer and the target
computer, but we can find out the number of intermediate systems (proxies or gateways).

If we communicate through a proxy or gateway, we must not forget that we have to enter the
complete absolute URI (http//info.pvt.net) into the TRACE method.

Example 7:
TRACE http://info.pvt.net HTTP/1.1
Host: info.pvt.net

HTTP/1.0 200 OK
Date: Wed, 20 Dec 2000 17:24:04 GMT
Server: Apache/1.2b10
Content-Type: message/http

TRACE / HTTP/1.0
Host: info.pvt.net
Cache-Control: Max-age=259200

 Via: 1.1 proxy.pvt.com:8080 (Squid/1.1.22)

The statistics, in which we are so interested, are in the Via header field. In this header, proxies or
gateways are listed. In our example, we communicate only through one proxy.

Cache-control is an interesting header. In our case, it indicates that information may be kept for
up to 259,200 seconds in the cache.

14.8.5 The OPTIONS Method
The OPTIONS method represents a request for information about the communication options
available on the Request-URI. This method allows the client to determine the options and/or
requirements associated with a resource of the capabilities of a server without implying a resource
action or initiating a resource retrieval. If we ask for the server in general rather than to a specific
resource, we will have to use an asterisk instead of a URI:

Example 8:
OPTIONS * HTTP/1.1

Host: www.packtpub.com

HTTP/1.1 200 OK
Date: Tue, 20 Dec 2005 21:35:09 GMT
Server: Apache/2.0.54
Allow: GET,HEAD,POST,OPTIONS,TRACE
Content-Length: 0
Content-Type: text/plain; charset=ISO-8859-1

The server informs us it supports the GET, HEAD, POST, OPTIONS, and TRACE methods.
 343

Hypertext Transfer Protocol

 344

14.9 The HTTP Response
The HTTP response starts with a status line in the following form:
<Version> <Result code> <Reason-Phrase>

Here, Version is the HTTP protocol version in which the response is formulated. Result code
specifies the success or failure of an operation, and Reason-Phrase is intended for the user. A
header formed from the header fields follows the status line again. A blank line that separates the
header from the message body terminates the header. If the header contains the Transfer-
Encoding:chunked header field, there can be once again an empty line after the data followed by
the footer, which is formed again by the header fields. In practice, a case where the footer is used
has not been observed.

Here is an example of a status line (positive response):
HTTP/1.1 200 OK

Result code consists of three digits. The first digit determines the response type:

• 1xx: Informative response and the process continues
• 2xx: Process successful
• 3xx: Redirecting, i.e., further process will concern another URI
• 4xx: Client error (for example, a syntax error in the request)
• 5xx: Server error (for example, a CGI-script error)

14.9.1 An Overview of Result Codes
100 Continue

101 Switching Protocols

200 OK

201 Created

202 Accepted

203 Non-Authoritative Information

204 No Content

205 Reset Content

206 Partial Content

300 Multiple Choices

301 Moved Permanently

302 Found

303 See Other

304 Not Modified

305 Use Proxy

Chapter 14

307 Temporary Redirect

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Time-out

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Large

415 Unsupported Media Type

416 Requested range not satisfiable

417 Expectation Failed

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Time-out

505 HTTP Version not supported

If the Reason-Phrase does not fit into the status line, then it continues into the Warning header
field. It is an extension of the status line. The Warning header field has two parameters, the warn-
code and the note, separated by a space.

Most often, the Warning header field is used to complete the information given from cache and not
from the target server. It can happen that the cache returns some stale information because, for
example, the proxy is not able to establish an upstream connection with the server (the result codes
are from 110 to 112).

 345

Hypertext Transfer Protocol

 346

An overview of the result codes used in the Warning header field:

Warning Code Warning Note

110 Response is stale

111 Revalidation failed

112 Disconnected operation

113 Heuristic expiration

199 Miscellaneous warning

Table 14.1: HTTP response warning codes

14.10 Other Header Fields
Now we discuss about some other header fields.

14.10.1 Accept Header Field
Using the Accept, Accept-Charset, Accept-Encoding, and Accept-Language header fields, the
client notifies of its capabilities in its request. Each of these header fields can contain several
parameters separated by commas. These parameters, in every instance, can have a quality (q)
associated with them, which can be stated after a semicolon. The quality is a number between 0
and 1. The higher the quality of the property, the more it is preferred by the client and it is 1 (the
default value is q=1). An asterisk can be used to specify all the possible choices of the property.

Using the Accept header field, the client specifies supported media types. For example:
Accept: text/*;q=0.3, text/html, image/jpeg;q=0.7, model/vrml, */*;q=0.1

This code states that the client prefers:

1. any text with quality 0.3
2. text/html with quality 1
3. image/jpeg with quality 0.7
4. model/vrml with quality 1
5. any medium with quality 0.1

Using the Accept-Charset header field, the client specifies the supported character sets:
Accept-Charset: iso-8859-5, unicode-1-1;q=0.8, *;q=0.1

This code states that the client prefers the iso-8859-5 character set (with quality as 1).
Furthermore, with quality 0.8, it supports the unicode-1-1 character set, otherwise it supports
any character set with quality 0.1.

Using the Accept-Encoding header field, the client specifies the supported types of data compression:
Accept-Encoding: compress;q=0.5, gzip

The client prefers the gzip method; however, with quality 0.5, it also supports the compress method.

Chapter 14

Using the Accept-Language header field, the client specifies the supported languages:
Accept-Language: cz, en;q=0.5

The client prefers the Czech language (cz), but also supports the English language (en).

The Accept-Ranges header field uses the server in its response to the client. (see Example 2 in
Section 14.8.1).

14.10.2 Client Authentication
A client can enter a username and password directly into the URI; however, this is not common.
When a client does not set its authentication information, a dialog is more common. In this case,
the server will return:

HTTP/1.1 401 Unauthorized
WWW-authenticate: auth_method realm="string", optional auth.parametrs

The first parameter (auth_method) is the type of authentication that the server demands. The
realm string will be displayed to the client so it knows to which object it has to authenticate.
Finally, some authentication methods can use additional parameters. The Basic authentication
method does not use additional parameters.

RFC 2617 distinguishes two authentication types: Basic and Digest. Both methods use
authentication by username and password.

The Basic authentication transmits the unsecured name and password in text form throughout the
network. The authentication dialog then proceeds, for example, as follows:

GET /file HTTP/1.1
Host: server.company.com

HTTP/1.1 401 Unauthorized
WWW-authenticate: Basic realm="server.company.com"
... other header lines

GET /file HTTP/1.1
Host: server.company.com
Authorization: Basic RG9zdGFsZWs6cGFzc3dvcmQNCg==

HTTP/1.1 200 OK
...

Here, the client after receiving the HTTP/1.1 401 Unauthorized message performs authentication
by the Basic authentication method (username and password). Nevertheless, the server can offer
several objects, and we can use different authentication for each of them. Therefore, the server
returns the realm string so the browser can display on the user's dialog window to which object
(server) it has to set the username and password. A string is created from the username and
password entered by a client by placing a colon between them (for example, Dostalek:password).
In the Authorization header field, the string is not transmitted directly, but is encoded by Base64:
Base64(Dostalek:password)="RG9zdGFsZWs6cGFzc3dvcmQNCg=="

Anyone who sniffs the Authorization header field, on the way from the client to the server, only
needs to apply decoding Base64 to the RG9zdGFsZWs6cGFzc3dvcmQNCg== string (for example, by an
OpenSSL program) and will see the password. The authentication of the Digest type tries to prevent

 347

Hypertext Transfer Protocol

 348

this. This authentication type also uses the user password; however, it does not transmit the password
itself, but a hash (calculated, for example, by the MD5 algorithm) from the following:

• A Nonce number generated by the server as a hash from the clock stamp, response
identification (ETag), and the private key of the server.

• An Opaque number generated by the server. The nonce and opaque numbers are
delivered to the client in the WWW-Authenticate header field as extra parameters.

• Username.
• User password.
• String from the realm parameter.
• Required URI.

RFC 2831 brings further possibilities of authentication. In addition, some firewalls use the Basic
authentication; however, they use a one-time password generated by the authentication calculator
(authentication token).

Microsoft is launching the Simple and Protected Negotiate (SPNEGO) authentication method.
In this method, the server answers with a WWW-Authenticate header field containing the Negotiate
authentication method. The client in its response adds the Authorization header field with two
parameters. The first parameter is an authentication method named Negotiate, and the second
parameter is a SPNEGO token containing a Kerberos ticket or NTLM credentials.

Using a Kerberos ticket is a good solution because it allows Windows domain users to do single
sign-on on UNIX servers. An IBM reverse proxy (WebSeal) also supports this method.

14.10.3 Proxy Authentication
Client to proxy authentication is quite similar to client to server authentication. If a proxy requires
authentication, it will send the following response:

407 Proxy Authentication Required
proxy-authenticate: auth_method realm="string", optional auth.parametrs

The client is authenticated using the Proxy-Authorization header field. The Proxy-
Authenticate and Proxy-Authorization headers have the same syntax as the WWW-
Authorization and Authenticate headers.

14.10.4 Content Header Field
Content header fields are intended for media type specification. They are based on MIME type
specifications; however, they are not quite compatible with MIME itself (MIME is discussed in
Section 15.3). HTTP protocol does not support, for example, the Content-Transfer-Encoding
header field nor, of course, the Mime-Version header field.

The Content-Type header field is analogous to the MIME header field with the same name. It
describes the type of data to be transferred. For example:
Content-Type: text/html; charset=ISO-8859-4

Chapter 14

This header field specifies that the data to be transferred is text formatted in HTML and uses the
ISO-8859-4 character set.

The Content-Length header field contains the length of the data to be transferred.

 The Content-Encoding header field specifies the compression algorithm.
Content-Encoding: gzip

The Content-Language header field specifies the language. For example:
Content-Language: en

The Content-MD5 header field contains the MD5 hash algorithm from the data to be transferred.

The Content-Range header field is used if a message contains only a part of the data to be
transferred. For example, if the server response is too long, the server will divide the data into
several parts:

HTTP/1.1 206 Partial content
Content-Range: bytes 21010-47021/47022

 (The total length of a message follows the slash)
Content-Length: 26012

The Content-Location header field contains a URI with the data to be transferred. This header
field is important particularly when the required data is stored in several locations. This header
field is not associated with redirection!

The client uses the Referer header field (so spelled) to notify the server from where it received
the information of the required URI. The server can statistically interpret data obtained from this
header field at regular intervals. However, browsers usually fill the URI of the displayed page into
the Referer header field. If it is correct, the hypertext link is shown on the displayed web page.
However, if the user explicitly enters a new URI into the location window, then the Referer
header field can be misleading (i.e., it would contain the previously displayed web page).

For example, if the page of a charitable organization is displayed in your browser, and you enter
www.playboy.com into the dialogue window, the link to the charitable organization will get into
the Referer header field, and it will appear in the Playboy statistics that this charitable
organization has a reference link to their pages.

14.10.5 Redirection and Temporary Unavailability of Objects
It can happen that the required object is relocated to another URI (for example, to another server
or into another directory). In such a case, the server will return the status line with a 3xx result
code followed by the header field:
Location: new-URI

where specifies the location of the required information. new-URI

For example:
HTTP/1.1 301 Moved Permanently
Location: http://www.company.com/file
...

 349

Hypertext Transfer Protocol

 350

However, it can also happen that the object has not been moved, but is temporary unavailable. The
server can notify the client not only of the bad news (that the object is not available), but by using
the Retry-After header field, it can give the client advice on when to ask for the object again. For
example, it may advise the client to repeat the request after one minute:

HTTP/1.1 503 Service Unavailable
Retry-After: 60
...

The Retry-After header field can be of importance even in the case of redirection:
HTTP/1.1 301 Moved Permanently
Location: http://www.company.com/file
Retry-After: 10
...

In this case, the server informs the client to perform redirection after 10 seconds.

14.10.6 Cache
We must realize that caches can be found in the following places: clients, proxies, gateways, and
servers. A cache is not found in a tunnel since a tunnel does not know what it transfers.

A cache is either shared or private. A shared cache stores information independent of which user it
is intended for. If the information is dependent on the user (for example, client authentication
information, personal inquiry, and so on), it must not be stored into the shared cache; however, it
can be stored into a private cache.

A cache can accelerate the response rate of a communication. However, the basic problem is how to
prevent the cache from responding with stale data. If the server does not want anything unusual out of
the cache, it usually fills in the Date, Last-Modified, and Expires header fields in a response. If the
server needs anything unusual, it will also fill in the Cache-Control header field. A client can also use
this header field in its request.

The Expires header field determines the date and time of expiration of the information, after
which it is considered stale; before this time, the information is considered fresh. The cache counts
the time in seconds for which information can be considered as fresh (freshness lifetime).

The age of the information is maintained in the cache, i.e., the time the information was stored in
cache or traveled through the network. The age is stated in seconds. If the information is retrieved
from the cache, then it is not from the original source (from the target server). The Age header field
is used for stating the age of the information.

Example 9:

A response containing the following header fields arrives on December 23, 2005 at 19:11:22:
Date: Sat, 23 Dec 2005 19:11:22 GMT
Expires: Sat, 23 Dec 2005 22:11:22 GMT

In this case, the age is 3600 seconds and freshness lifetime is 7200 seconds. If this information is
immediately handovered (December 23, 2005 at 19:11:22), the following header field would be
added to it:
Age: 3600

Chapter 14

A problem arises with information that does not contain the Expires header field. Here, it depends
on the implementation. A bit of consideration of the usage of the Date and Last-Modified header
fields appears to be quite useful. The difference in the values stated in the Date and Last-
Modified header fields represents the time the information has remained unmodified on the server.
Then it may be reasonable to maintain this information in the cache for a time that is, let's say,
10% of this difference.

The Cache-Control header field can have many directives. The client can set in the Cache-
Control header field the following directives:

• no-cache: The response must not be retrieved from a cache.
• no-store: Sensitive information is probably used, therefore it must not be stored.
• max-age=s: The client does not want information older than 's' seconds.
• min-fresh=s: The client only wants information that will be considered as fresh for

at least the next 's' seconds (whose freshness lifetime is no less than its current age
plus the 's' seconds).

• max-stale=s: The client is ready to accept even stale information, but not
information stale by more than 's' seconds.

In its response, the server can state the following directives:

• public: The response can be stored even into a shared cache.
 • private: The response can only be stored into a private cache (the response

contains private information and another user can have other information from the
same URI).

• no-cache: The response must not be stored into a cache.
• no-store: The response must not be stored on a disk (it can, for example, contain

sensitive information). An exception is the storage on a disk (outside cache)
specified explicitly by the user (for example, by clicking the right mouse button).

• must-revalidate: By this request, the server requires all intermediate caches to refresh.
• proxy-revalidate: This has the same meaning as the must-revalidate directive,

except that it does not apply to private (non-shared) client (browser) caches. Thus,
for example, the information for client authentication can be maintained in the client
cache (a client need not repeatedly insert the authentication information).

• max-age=s: The server explicitly specifies the maximum time for which information
can be maintained in cache. If the server includes the max-age=0 directive in its
response, it will force all the intermediate caches to refresh their information.

• s-maxage=s: Analogous to max-age, however, it applies only to a shared cache.

It is also necessary to mention that HTTP protocol version 1.0 supported only one header field,
namely, Pragma: no-cache.

The server commanded uses this header field for not storing the response into the cache.
Therefore, if the data is not to be stored into cache, this header field is used for backward
compatibility (not all intermediate proxies and gateways may support HTTP version 1.1).

 351

Hypertext Transfer Protocol

 352

14.10.7 Software Information
A client can use the User-Agent header field in its request to inform the server about the software
under which it is running. The server can use this information for statistical purposes. The server
also uses the User-Agent header field for response formulation if it wants to employ some special
properties of the client software. For example, applications running on the server can query if the
client is using MS Explorer, and if so the application can send ActiveX components to the client.

The server can use the Server header field in its response to inform the client of the software
under which it is running.

14.11 Cookie
The HTTP protocol uses only the request and the immediate response to that request. It is not
possible to keep a running session between the client and the server. It is not possible to keep any
information between two requests to the server.

Netscape solved this problem by establishing a simple relation, during which it is possible to pass
information from the server response to the subsequent request(s). The server writes a small piece
of data called a cookie into its response. The Cooke is written in the Set-Cookie header line. The
client repeats this cookie in the next request to this server in the Cooke header line. This creates a
session that is not intended as a persistent TCP connection, but as a logical session created from
HTTP requests and responses.

The main server initiates a session. In subsequent requests, the target server may use a cookie to
determine the current state of the session. It may send back the Set-Cookie response header with
the same or different information to the client, or it may not send the Set-Cookie header at all.
The target server may end a session by sending the client a Set-Cookie header with the Max-Age=0
parameter. The client can then repeat this information in its next request.

In the following figure, the Microsoft's Internet Explorer menu in which a user can configure a
cookie usage is shown:

Chapter 14

Figure 14.11: Cookie settings (Internet Explorer)

The client, for example, can shop at a virtual department store by using a cookie. The client passes
through the virtual department store and chooses goods into his or her shopping basket. However,
the information on what the client has in the shopping basket must be maintained somewhere. This
information on the client relation status with the department store will be maintained in cookies.

The process is explained in the following steps (all details of the request and response headers
are omitted):

1. The client enters the virtual department store www.department.store.com and
identifies him or herself via a http://www.department.store.com/shop/login
form, i.e., the client sends the following HTTP request:

 POST /shop/login HTTP/1.1
 ...

2. The server assigns an identification to the client using the Set-Cookie header field:
 HTTP/1.1 200 OK
 Set-Cookie: Customer="007"; Path="/shop"
 ...

3. The client chooses goods from the jacket department by using forms:
 POST /shop/jacket HTTP/1.1
 Cookie: Customer="007"
 ...

 353

Hypertext Transfer Protocol

 354

4. The server returns the identification of chosen goods:
 HTTP/1.1 200 OK
 Set-Cookie: Goods="jacket_05"; Path="/shop"
 ...

5. The client can continue choosing; however, he or she must choose the shipping and
payment method at the final stage:

 POST /shop/transport HTTP/1.1
 Cookie: Customer="007"; Goods="jacket_05"
 ...

6. The server returns the identification of the chosen shipping and payment method:
 HTTP/1.1 200 OK
 Set-Cookie: Transport="cash on delivery"; Path="/shop"
 ...

7. The client arrives at the cash register and wishes to confirm the purchase order (we
will not consider payment here):

 POST /shop/transport HTTP/1.1
 Cookie: Customer="007"; Goods="jacket_05"; Transport="cash on delivery"
 ...

8. Finally, the server confirms the purchase order, and the relation is terminated:
 HTTP/1.1 200 OK
 ...

A complication of cookie usage is present in the client's freedom to pass through the virtual
department store and, in the middle of shopping, switch to an entirely different server, which,
coincidentally, can also use cookies, and some of the data in its the URI can even be the same (for
example, part of the path).

Therefore, the client must record a cookie for each server. But different applications may be running
on the same server—all using cookies—so the client must separately record individual
communications with the help of cookies. The client must distinguish individual communications
according to the following:

• A server name must not contain a period in the name, i.e., it must not be the server
name with a subdomain. (In our case, the server is www.)

• A server port restricts the port to which a cookie may be returned in a Cookie request
header. (In our case, it is 80, the well-known port of an HTTP server.)

• A domain name specifies the domain for which the cookie is valid. (In our case, it is
.department.store.com.)

• A path specifies the subset of URLs on the target server to which this cookie applies.
(In our case, it is /shop.)

The path and domain tell a browser that the cookie has to be sent back to the server when
requesting URLs of a given domain and path.

Chapter 14

14.11.1 Set-Cookie and Set-Cookie2 Header Fields
As we mentioned earlier, Netscape introduced the cookie. In 1997, RFC 2109 standardized the cookie.
This standard requires the mandatory Version parameter, but this parameter is usually not used.

In 2000, a new standard was issued as RFC 2965 – HTTP State Management Mechanism. This
standard introduced new Set-Cookie2 and Cookie2 header lines. Both header lines Set-Cookie
and Set-Cookie2 have a similar syntax:

• Cookie name=value. For example, goods="jacket_05". The header field must
contain at least one occurrence of this parameter.

• Version=1, i.e., the version of the cookies protocol. This header is required, but is
not used in proxies.

The following parameters are officially optional:

 • Comment=comment: This may contain comments.
• Discard: A cookie may not be maintained after the termination of a client

program (browser).
• Domain=domain: This specifies a domain to which the cookie refers.
• Max-Age=seconds: This specifies maximum time for which the client can maintain

this information. The target server may end a session by sending the client a Set-
Cookie header with a Max-Age=0 parameter.

• Path=path: This specifies the subset of URIs on the server to which this cookie
applies.

• Port=port: This specifies the server port from which the cookies were sent.
• Secure: This specifies the request to a client to communicate through a secured

channel whenever it sends back a cookie.

14.11.1.1 Cookie Header Field
A Cookie header field has the following syntax:
Cookie: $Version=1; par ; par ; ...1 2

where parx has the following syntax:
Cookie name=value [; $Path=path] [; $Domain=domain] [; $Port=port]

The square brackets in the above code means optional options.

 355

15
Email

Electronic mail (email) is one of the oldest and also one of the most widely used Internet services.
Mail communication is performed by many application protocols (SMTP, POP3, IMAP4, etc.),
and this chapter describes these protocols.

Support from Operating Systems
At present, email is implemented probably in all existing operating systems. Logically, operating
systems of end-user stations implement clients of particular protocols while server operating
systems implement mail servers. As was described in the case of TCP/IP protocol, a mail server is
far beyond the client-server architecture. It is better to use the more appropriate term Mail Transfer
Agent (MTA) instead of mail server.

Security
Two types of security are used for email:

• End-to-End security: A sender secures the entire path through which an email travels
(from the sender to the receiver). In this case, an electronic signature (for integrity and
non-repudiation of the email) and/or electronic envelope (for privacy of the email) is
used. End-to-End security is based on the S/MIME protocol and its extension ESS.

• Peer-to-Peer security: This is mostly used between an end user and a neighboring
mail server. In this way we prevent an unauthorized person from drawing our mails
from our mailbox or some snooper from sniffing our mails. In the case of outbound
mails, a mail server can check the client's identity to know who is sending spam through
it. The SSL/TLS protocol is also used for securing Peer-to-Peer email communication,.

User Sector
We would hardly find any users not using email.

15.1 Email Architecture
The basic idea of the email architecture (see Figure 15.1) on the Internet dates back to the mid
seventies. Nowadays, the standard RFC 821 from 1982 is the basis of the mail communication on
the Internet. (RFC 822 describes the form of an email message.) At that time, users were sitting at
terminals from which they started mail clients. A mail client has nothing in common with network
communication. In essence, a mail client is only a specialized text editor. This text editor can
display to the user the message content from the mailbox; it can also work with the messages in

Email

 358

the mailbox. It can also do the same with the user's private mailboxes. Furthermore, it is possible
to receive and send messages by means of the mail client. Sending a message does not mean any
network communication, only storing the message into a message queue.

The queue of messages is regularly scanned by the SMTP client, which establishes a connection
with the remote SMTP server, to which it delivers the message. The remote SMTP server accepts
the message and checks whether it is intended for a local user. If the accepted message is intended
for a local delivery, it tries to deliver the message to the inbox of the local user. If it is not, it then
stores the message into the mail queue, and the whole process repeats again.

If the recipient is an address of a local system user, the SMTP server will store the accepted
message into the recipient's mailbox. Here it is necessary to mention that the mail server usually
has a privileged access to all the users' mailboxes in its system. In other words, the SMTP server is
generally started up under a privileged user. If an attacker breaks into the mail server, he or she
can receive an unlimited access to the system. Therefore, the following procedure is much better:
the mail server runs under another user than the superuser. Then the user accesses the mailboxes
using group privileges.

In the system, each user has, as a rule, one mailbox known as INBOX, where the SMTP server
stores the user's incoming mail. The mailbox is not a file called INBOX, but its name is usually the
same as the username. The name INBOX was established by the IMAP4 protocol.

Moreover, the user can also establish private mailboxes, where he or she moves the incoming mail
from the INBOX mailbox. The SMTP server does not operate the private mailboxes. They are
generally established under the home directory of the user. The aim is to force the user not to
archive the incoming mail in the system's mailbox, i.e., INBOX. Some mail clients also achieve
this aim. If the user displays the incoming mail, then they automatically transfer it into a private
mailbox, which they call INBOX or inbox, in the home directory of the user.

The Internet mail has one fundamental property due to the storage of outgoing mail into a queue
and incoming mail into a mailbox. It is a fact that the user can send email that the recipient does
not have to collect from his or her mailbox until he or she wants. Therefore, it is not necessary to
immediately establish a connection with the recipient system at the time of mail dispatch. The
recipient system can even be switched off at the time when the sender sends a message. If the
SMTP client does not succeed in sending the mail, it will leave the mail in the queue. Of course,
the message will not be in the queue forever. The system administrator usually has set a maximum
time the item will stay in the queue, typically set at 2 to 7 days. After this time, the mail is
returned to the sender as undelivered.

It is still more complicated! The SMTP client may not send a message for many reasons. It is up to
proper configuration to differentiate between two scenarios:

• At the time the mail could not be delivered onward, but after a certain time it may be
possible (for example, the target system name was translated in DNS, but the system
was not available).

• The message cannot be delivered due to an error, which cannot be removed (for
example, the remote system name is correct, but the stated recipient does not exist in
the system). In such a case, it is necessary to delete the message from the queue and
to return it immediately to the sender.

Chapter 15

Figure 15.1: SMTP architecture

In the figure above, user A wants to send an email message to user B. User A will type the message
using a mail client. Finally, he or she will send the message; however, the message only gets stored
into a queue. The SMTP client scans through the queue until it gets to the message. It tries to deliver
the message to the recipient's system; if it does not succeed, it will leave it in the queue.

When the server receives the message, it investigates if the message recipient is a local system
user; if he or she is a local system user, it stores the message into the recipient's mailbox. If the
recipient is not a local system user, it stores the message in the queue for further dispatch.
Afterward, the recipient can process the accepted message with his or her mail client.

The arrival of personal computers caused a great change in the use of email. At its core, email
remains the same; however, nowadays users do not want to sit at a mail server terminal (even if it
is emulated by the Telnet protocol on their PC), but want to use applications on their PC. The
question is how to send and receive mail from a PC.

 359

Email

While one can easily use the SMTP protocol again for sending emails, the SMTP protocol is not
suitable for mail server to PC mail delivery. Why not? The recipient's PC is generally switched on
for only several hours a day. Apart from this time, the mail would stay in the sender's queue, and
the recipient system would appear to be unavailable. Another problem is that an SMTP server
would have to run on the recipient's PC. Therefore, another strategy was chosen, as shown in the
following figure:

Figure 15.2: POP3 and IMAP4

The user has an incoming mailbox (INBOX) on the mail server. From the SMTP protocol
viewpoint, the mail server is the endpoint system. The only problem is how to take the delivery
of messages in the INBOX using your PC.

 360

Chapter 15

Two protocols are available for using the user's mailbox on the mail server (both of which are
supported by Microsoft and other manufacturers as well):

Post Office Protocol version 31. (POP3): This is a very simple protocol where the
user works offline. The user downloads incoming mail from the mail server onto his
or her PC and terminates the TCP connection with the server. Only after the mail is
downloaded does the user work with the individual mail messages. If the user wants
to send mails, he or she will use the SMTP protocol.
Internet Message Access Protocol version 42. (IMAP4): This is a complicated
protocol that enables the user to work not only offline, but also online. The user can
establish a connection with the mail server for a longer time and can be continuously
informed by the server of changes in his or her mailbox. The IMAP protocol also
enables the user to work with private mailboxes on the server directly from the PC.
By means of the IMAP4 protocol, it is also possible to synchronize mailboxes on the
PC to those on the server. Thus, the mailboxes on the server remain as a backup of
mailboxes on the PC. If the user wants to send mail, he or she will again use the
SMTP protocol. Using the IMAP protocol is particularly practical when we
sometimes want to work from our PC and at other times from a server terminal.

Another choice is to operate a web server on the mail server, which enables users to access their
mailboxes via the Web.

The question is when to choose POP3 and when to choose IMAP4. For the big Internet providers,
POP3 protocol is very advantageous because the mail does not stay on the server:

Figure 15.3: Email solution for large Internet service providers

 361

Email

 362

Users download mails to their PCs. When we imagine hundred thousand users, all permanently
having their mail on the server, we realize that no disk capacity is sufficient for such an immense
amount of data. This can only be possible for small providers, who can offer to selected clients the
premium service of private mailboxes on the server.

In contrast, the IMAP4 protocol is advantageous for smaller companies because it performs the
backup of the mailboxes. In addition, it is easier to back up one disk system rather than each user
doing it individually.

Nevertheless, the loss of the content of mailboxes can cause great economic damage. Therefore, it
is necessary when using the POP3 protocol to back up mails either on the server or on the PC, for
example, by using a CD-R.

In the figures, we do not use the word "mail server", but "SMTP agent". The reason is that there
is always an SMTP client for sending mail and an SMTP server for mail reception together.
Additionally, the mail client software must, at regular intervals, scan through the queue, and try to
send items in this queue to a service (or a daemon) that is running. This daemon behaves as a client
from the TCP protocol viewpoint only at the moment when an item in the queue is being dispatched.

The question is how to organize a company's mail on its internal network. If we have more than
one mail server, the use of one central mail server identified as the mail hub will work well.

All the company's mail communications then pass through the central mail hub. Since the passage
of all the company's mail messages is logged here, it is possible to centrally query if a piece of
mail was received or sent. Similarly, as in a proxy, it is possible to check on the central mail hub
whether the mail messages contain malicious codes (viruses, spyware, etc.). In addition, we can
have not only malicious code protection, but also antispam protection. If direct communication
between individual systems was possible, then such protection would be necessary at each system,
which could be economically unsupportable.

The postmaster is responsible for the mail server configuration. All configuration problems are
concentrated at the central mail hub configuration. The local mail agent configuration is usually
easy (they send everything to the central mail server). The default system settings set during the
original system installation can often be used for the local mail agent configuration.

There are several choices on how to configure the central mail hub of the company. At the
beginning, it is necessary to determine which mail addresses will be used by the employees. In
essence, there are two philosophies:

1. Mail addresses of the type novak@shop.company.com or dvorak@toolroom.company.com
2. Mail addresses of the type Bob.Novak@company.com

In the first case, we divide the internal network of the company into DNS domains such as
shop.company.com, toolroom.company.com, etc. For each domain, we operate a local mail server
(local mail agent). In doing so, it is possible to operate several domains on one physical server.

Chapter 15

From the Internet, the mail messages arrive for novak@shop.company.com at the central mail
server. The central mail server is configured to deliver all emails to the domain shop.company.com
to the s1.shop.company.com server.

At the s1.shop.company.com server, the user Novak has his mailbox (INBOX). The user Novak
will thus probably have two mail addresses: novak@s1.shop.company.com and novak@shop.
company.com. At the s1.shop.company.com server, the SMTP agent will probably be configured
to accept both mail addresses for its local users.

In the second case, the mail message for the recipient, Bob.Novak@company.com, comes to the
central mail hub. Here, this address is translated to the address novak@shop.company.com or to
the address novak@s1.shop.company.com. Now, such an address is deliverable within the
internal network.

The other possibility (for the central mail hub) is not to translate the recipient address and forward
messages to local mail s1.shop.company.com without address translation. However, the local mail
server must be configured to accept such addresses.

Address translation may cause problems with the implementation of secure mail
(S/MIME) in the case of a digitally signed message. In this case, the sender's address
must match the email address in the sender's certificate. In the case of an enveloped
(enciphered) message, the recipient's address must match the email address of the
recipient's certificate.

 363

mailto:novak@shop.company.com
mailto:.Novak@company.com
mailto:novak@obchod.firma.cz
mailto:novak@s1.obchod.firma.cz

Email

Figure 15.4: Mail hub

The user can have up to three mail addresses:

 364

• novak@s1.shop.company.com
• novak@shop.company.com
• Bob.Novak@company.com

The central mail server is usually configured to rewrite the sender's address for mail going to the
Internet so that every sender has only one address. Also, addresses of the type
novak@s1.shop.company.com reveal something about the company's internal structure. This could
be a potential information leak and could be used by attackers.

It does not matter much to the internal network if the user has more than one address. However, it
is problematic during Internet conferences. For instance, closed conferences (on the basis of the
listserv system) control the sender's address. If the user registers in the conference under one
name and then sends a report under another name, the report can be rejected.

Nowadays, the preferred form of an email address on the Internet and the intranet is
Bob.Novak@company.com.

mailto:novak@s1.obchod.firma.cz

Chapter 15

15.1.1 DNS and Email
We have many potential email addresses, for example novak@s1.shop.company.com,
novak@shop.company.com, Bob.Novak@company.com, or even Bob.Novak@s1.shop.company.com.
We need to deliver all these addresses to the s1.shop.company.com server; a correctly formulated
record in the DNS can achieve this. For example:

company.com. IN MX 10 mh.company.com.
 IN MX 20 mail.provider.com.
*.company.com. IN MX 10 mh.company.com.
 IN MX 20 mail.provider.com.
mh.company.com. IN A ...
mail.provider.com. IN A ...

MX records are used to direct mail to a particular mail server—in our case, the central mail server,
mh.company.com. The first line says that all mail for addresses terminated by the @company.com
string are to be delivered to the mh.company.com server. The second line then says that if, by
chance, the mh.company.com server is not available at the moment, then mail has to be delivered to
the mail.provider.com server from where it will be transferred to mh.company.com later.

The third line says that all mail terminated by the company.com string has to be directed to the
mh.company.com server. If we do not want to transmit addresses of the type novak@s1.shop.
company.com, novak@shop.company.com or Frantisek.Novak@s1.shop.firm.com on the Internet,
but only addresses of the type Bob.Novak@company.com or novak@company.com, then we will not use
the third and fourth lines with an asterisk (we assume that A records for intranet servers do not exist
on the Internet, for example, A records for s1.shop.company.com).

Another choice is not to use the asterisk (*), but to list in DNS the second level subdomains, for
which we want to deliver mail over the Internet:

company.com. IN MX 10 mh.company.com.
 IN MX 20 mail.provider.com.
shop.company.com. IN MX 10 mh.company.com.
 IN MX 20 mail.provider.com.
machine-shop.company.com. IN MX 10 mh.company.com.
 IN MX 20 mail.provider.com.
ms.company.com. IN MX 10 mh.company.com.
 IN MX 20 mail.provider.com.

15.2 Mail Message Format
The mail message format is specified by the RFC 822 standard. Every email message contains a
message header and a message body. The message header is separated from the message body by
one blank line (CR LF CR LF). The header and the body of the message use only ASCII characters.

The header is formed from individual header fields. Every header field begins with a keyword
followed by a colon. Parameters can be listed after the keyword. The header field ends at the end
of a line (i.e., CR LF).

Spaces and tabs may be inserted between individual parts of the header field. The header field may
continue on the next line. However, in such a case, the next line must begin with a space or tab
(the keyword of the header field must be indented from the first position in the line).

 365

mailto:novak@s1.obchod.firma.cz
mailto:novak@obchod.firma.cz
mailto:Frantisek.Novak@firma.cz
mailto:novak@obchod.firma.cz
mailto:Frantisek.Novak@s1.shop.firm.cz
mailto:Frantisek.Novak@firma.cz
mailto:novak@firma.cz

Email

 366

The following characters have special significance, especially in an address:

• Semicolon (;) and colon (:) are important list delimiters. A colon follows the field
name and, for example, semicolons separate recipients in the TO header field.

• Angular brackets (<>) have special meaning in an address. If the address contains
a string within the angular brackets, then everything outside this string will be
ignored; the address will be taken from the string within the angular brackets.

• Square brackets ([]) are significant in computer names; they show that the computer
name should not be translated in the DNS.

• Parentheses (()) usually contain comments.

Here is an example:
From: Libor Dostalek
 <dostalek@siemens.cz>
To: Bob.Novak@company.com;
 Novak@[195.47.40.4] (raw IP-address)

15.2.1 Basic Header Fields
A review of basic header fields is as follows:

Header Field Description

Received: Every email server through which the message passes adds this header field to the
beginning of an email message. Thus, all the Received header lines create a block of
header fields on top of the message header. Therefore, if we read this block from bottom
to top, we will discover the whole route, and through which email servers the message
has passed. This header field may contain words such as:
from (sending server).
by (receiving server).
via (physical path).
with (network or mail protocol).
id (receiver message identification).
for (for whom the message is intended). For example, if the recipient is set as a
distribution list, then the original recipient will be maintained, i.e., the distribution list).

From: The sender who sends the email.

Sender: Handled by, e.g.., secretary. This field contains, for example, information about a
conference through which the message was received.

Date: Posting date (date, time, and time zone).

Reply to: To whom you send your replies.

In-Reply-
To:

Replying to your message. Identification of the previous correspondence to which this
message is an answer.

To: Recipients (primary recipients of the message).

Cc: Carbon copy (secondary recipients of the message).

Chapter 15

Header Field Description

Blind carbon copy (additional recipients of the message). This header field is erased
before sending.

Bcc:

Message identification (unique identifier that refers to this version of a particular message). Message Id:

Keywords or phrases describing the content separated by commas. Keywords:

Identify other correspondence which this message references. References:

Subject (short summary of the message content). Subject:

Comments about the message. Comments:

Encryption (obsolete). Encrypted:

All header fields beginning with the string X-: X- are user defined (here the word user means
software developer, not software user). For example, X-Mailer is often used to identify the
software used by the sender of the message.

When automatic message forwarding is used (for example, return of an undelivered
message by an intermediate mail server), the

Resent:

Resent- string will be add at the front of
the original header field (for example, Resent-From or Resent-CC. etc.).

Example:

Received: from amphissa.erlm.siemens.de ([146.254.164.8])
 by cz.siemens.net
 with Microsoft SMTPSVC;
 Thu, 29 Dec 2005 08:14:58 +0100
Received: from tegea.erlm.siemens.de
 by amphissa.erlm.siemens.de
 with ESMTP
 id 1786215B526
 for <libor.dostalek@siemens.com>;
 Thu, 29 Dec 2005 08:14:58 +0100 (CET)
Received: from zetes.siemens.com (zetes.siemens.com [217.194.34.75])
 by tegea.erlm.siemens.de
 with ESMTP
 id CA10D1774B8
 for <libor.dostalek@siemens.com>;
 Thu, 29 Dec 2005 08:14:56 +0100 (CET)
Received: from imap.packtpub.com (unknown [217.207.125.60])
 by zetes.siemens.com (Postfix) with ESMTP
 for <libor.dostalek@siemens.com>;
 Thu, 29 Dec 2005 08:14:55 +0100 (CET)
Received: from paramita (unknown [203.122.53.88])
 by imap.packtpub.com (Postfix)
 with ESMTP
 id B6D24970B36
 for <libor.dostalek@siemens.com>;
 Thu, 29 Dec 2005 07:22:12 +0000 (GMT)
From: "Abhishek" <abhisheks@packtpub.com>
To: "'Dostalek Libor'" <libor.dostalek@siemens.com>
Subject: RE: TCP/IP DNS_Chapter 14
Date: Thu, 29 Dec 2005 12:44:44 +0530
Message-ID: <000001c60c47$8ce00220$0d00a8c0@paramita>
X-Mailer: Microsoft Office Outlook 11
Return-Path: abhisheks@packtpub.com

Message text

 367

Email

 368

The header of this message must be divided into Received header fields and other header fields.
The Received header fields were added to the beginning of the message by mail servers through
which the message passed. Therefore, the order of Received header fields is important. The
Received header field added by the first server will be in the last place; the preceding Received
header field was added by the second server, and so on.

If we read the Received header fields from bottom to top, we will see that the message had been
sent from a computer named paramita, and it was then handled by imap.packtpub.com. The
message continued to zetes.siemens.com, and then was handed over to tegea.erlm.siemens.de,
amphissa.erlm.siemens.de, and finally arrived at cz.siemens.net.

15.3 MIME
The SMTP message format was defined by the RFC 822 standard, and in 2001 the RFC 2822
standard superseded the RFC 822 standard. These standards are suitable to transfer data in the
ASCII format. It soon became clear that this standard was not suitable for many users' needs; users
wanted to send emails containing texts written with other character sets, formatted text, images,
sounds, binary files, and so on. Recently, a new need is to send secure email with attached
encrypted or electronically signed messages.

The users' needs quickly exceeded the limit of the RFC 822 standard and the Multipurpose
Internet Mail Extension (MIME), specified by RFC 2045-2049, was therefore introduced.
Today, RFC 2048 has be superseded by RFC 4288 and RFC 4289.

The problem of sending emails containing other kinds of data than text in the ASCII code can be
solved without MIME; the message just needs to be encoded into ASCII before sending. To read
it, the recipient first has to decode the message. The sender and the recipient have to agree, via
another means of communication, on the method of encoding the data into ASCII. The most
commonly used encoding systems are Base64 and Quoted Printable or UUENCODE for UNIX.
Experienced recipients will quickly recognize the encoding method and will therefore be able to
select the most suitable decoding program before processing (such as reading) the received data.

For ordinary users, however, this procedure is unacceptable. Users do not want to be bothered
with things like encoding; they want their mail client to handle these issues by itself. An ordinary
user thus prefers the second choice, which consists of setting up a new brand of message header
fields, labeling the content type of the transferred message body, and the algorithm used for
encoding the data into ASCII before sending. In this way the whole process can be fully
automated, and the user does not have to take any part in it. The MIME standard specifies the
description in the additional message header fields.

The recipient's software can therefore recognize the type of encoding from the message header
field and decode the message automatically. The sender's software also identifies the type of data
transferred in the Content-Type header field; this helps the recipient's software to recognize the
most suitable viewer for it. An appropriate viewer from the following is then opened:

• A text viewer for text
• An image viewer for images
• An appropriate player for sounds, videos, or animations

Chapter 15

Header fields carry the additional information about the transferred data, and their names start with
'Content-' string specified by the MIME standard. MIME standard extends RFC (2)822, which
preserves backward compatibility. MIME is designed to use the current email system to send
messages containing text with diacritic signs, texts in different alphabets, images, sounds, and so on.

This standard has to deal with two principal issues:

• How to transform a message containing binary data, for instance, into a message
conforming to the RFC (2)822 standard, i.e., one transferable by the regular
transfer protocols.

• How to differentiate the different types of messages. In other words, MIME
introduces a classification of the data (media type) transferred, which has become
very useful even outside the scope of email. MIME defines the following header
lines for mail messages, which specify content type and content transfer encoding.

15.3.1 MIME Header Fields
MIME works with the following header fields:

MIME-Version: The presence of this header field in a message indicates that the
message is structured according to MIME, i.e., according to RFC 2045-2049.

•

Content-Type: Specifies the media type and subtype of data in the message body
(text, audio, video, virtual reality, etc.).

•

Content-Transfer-Encoding: Specifies either the encoding transformation used to
convert the message into a format suitable for the transfer mechanism (for example,
Base64) or the data format (for example, 8-bit).

•

Content-ID: Specifies content identification. By means of content identification, it is
possible to make a link to another mail message.

•

Content-Description: Associates some descriptive text with a given body. An
example of

•
Content-Description: "Image of Prague Castle".

Content-some string: Reserved for future use in MIME. •
Content-Disposition: A header field specified by the RFC 2183 standard. •

15.3.1.1 MIME-Version
This is the only header field in MIME not starting with the "Content-" string. This header field
specifies the version of the MIME standard. The reason for implementing this header field is
backward compatibility in the future. The MIME extensions according to RFC 2045-2049 are
version 1.0. A new set of header fields might be introduced with a new version of MIME.

The HTTP protocol also uses header fields based on MIME, and many of them also start with the
"Content-" string, but they are adapted to HTTP. The fact that HTTP header fields are not fully
MIME-compatible is indicated by the absence of the Mime-Version header field in the HTTP
message header.

 369

Email

 370

A message composed according to RFC 2045-2049 must contain this header field. This header
field thus reads:
MIME-Version: 1.0

The MIME-Version header field must precede all other MIME header fields in a RFC (2)822 header.

15.3.1.2 Content-Type
This header field describes the type of data in the message body so that the client receiving the
message can select the appropriate way of presenting the message content. The form of the header
field is:
Content-Type: type/subtype; parameters

The header field specifies the nature of the message body using the type and the subtype;
additional parameters can be used if necessary. The parameters are formed as follows:
attribute=value; ...

There can be several parameters in random order separated by a semicolon.

The type indicates the nature of the data involved and whether the message contains text, an
image, or, for instance, a general binary file (octet stream). The subtype then specifies the format
of the text, image, and so on. Thus, the following example of a header field will inform the
recipient that the message contains an image in JPEG format:
Content-Type: image/jpeg

Basic media types are defined in RFC 2046. There are two categories of media types:

• Discrete media types describing the type of data transferred. These include
among others:

o text
o application
o image
o audio
o video

• Composite media types specifying that the message is composed of several parts.
These include among others:

o message
o multipart
o report

Other media types may be registered. Registration procedures are described in RFC 4288 and RFC
4289. Experimental types can also be used, but they need to be differentiated from the standard
types by the x-prefix before the type name. The names of types, subtypes, and parameters are not
case sensitive. We will discuss more about the Content-type header field in Sections 15.3.4 and
15.3.5 because it is a fundamental part of MIME.

Chapter 15

15.3.1.3 Content-Transfer-Encoding
The data intended for sending by email is often 8-bit or binary. This kind of data usually cannot be
sent directly; a transformation mechanism (encoding) thus needs to be applied to convert the data
into ASCII code. In other words, the data is transformed into a 7-bit format. The Content-
Transfer-Encoding header field is designed to indicate the type of encoding used in each case.

The Content-Transfer-Encoding header field can not only indicate the algorithm used to
transform the data, but also inform about the 7-bit, 8-bit, or binary character of data that has not
been transformed.

MIME defines two algorithms to encode data: Base64 and Quoted-Printable. The following are
frequently used types of encoding specified in the Content-Transfer-Encoding header field:

• Quoted-Printable: The message body is transformed by the Quoted-Printable algorithm.
• Base64: The message body is transformed by the Base64 algorithm.
• 7-bit: The message body is not transformed; it is in short lines and contains only

ASCII characters (short lines mean lines with 998 octets or less between CR LF line
separation sequences).

• 8-bit: The message body is not transformed; the lines are short, but there can be
characters not included in ASCII.

• Binary: The message body is not transformed, and the byte flow is not split into
lines. Any sequence of octets is allowed.

• x-extension: Experimental encoding (i.e., for developers' needs).

The 8-bit, 7-bit, and binary values mean no encoding; they are only indications of the data type.

The Content-Transfer-Encoding header field refers to the whole body of the message. If the
header field appears in a particular part of the message, it refers only to this part.

Example:
Content-Type: text/plain; charset=ISO-8859-2

Content-Transfer-Encoding: base64

This example is interpreted as follows: The original message body has been written in the ISO-
8859-2 character set and has been transformed into ASCII by the Base64 algorithm.

15.3.1.4 Content-Disposition
The Content-Disposition header field determines whether the message body is intended for
direct presentation to the recipient (inline) or not (attachment). Attachments are intended to be
processed by the recipients themselves (such as a file to be saved to the hard drive). The header
field can also contain further parameters:

• filename: Name of the file to be saved.
• creation-date: Indicates the date on which the file was last modified.
• read-date: Indicates the date on which the file was last read.

: An approximate size of the file in bytes. • size

 371

Email

 372

An example of a message carrying sound to be played to the recipient is as follows:
Message-ID: 335A2639.C79@siemens.com
Date: Sun, 20 Apr 1997 16:20:41 +0200
From: Libor Dostalek dostalek@siemens.com
X-Mailer: Mozilla 3.01Gold (WinNT; I)
MIME-Version: 1.0
To: dostalek@siemens.com
Subject: (no subject)
Content-Type: audio/wav
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="ding.wav"

UklGRkYtAABXQVZFZm10IBAAAAABAAEAIlYAACJWAAABAAgAZGF0YSItAACAgICAgICAgICA
gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC ...

15.3.2 Standard Encoding Mechanisms
The encoding mechanisms convert 8-bit data into 7-bit (i.e., data only containing ASCII
characters). MIME defines two encoding mechanisms: Quoted-Printable and Base64.

15.3.2.1 Quoted-Printable
This encoding mechanism is designed for message body mostly containing ASCII characters. The
resulting encoded text stays readable to a great degree.

The encoding rules are as follows:

• ASCII characters are not encoded and are left unchanged. In addition, ends of lines
are conserved. To be precise, bytes with a decimal value from 33 through 60 and
from 62 through 126 are unchanged (ASCII characters from ! to < and from > to ~).

• The remaining bytes are replaced with an equal to sign (=) followed by a
hexadecimal value of non-ASCII character. Thus, for instance, á is replaced by =E1.

• Byte values 9 and 32 are replaced by a tab and by a space respectively. These
characters cannot end a line.

• Ends of lines are marked by CR LF (Carriage Return Line Feed).
• The encoded line can have a maximum length of 76 characters. If longer, a soft line

break is inserted. A soft line break is the equal to sign (=) plus the end-of-linepair.

Example:

The string Václav Vopička will be encoded in Quoted-Printable as V=E1clav Vopi=E8ka, where:

• á = E1 in hexadecimal
• č = E8 in hexadecimal

Using this method of encoding for a text composed only of characters other than ASCII, would
make the text three times longer. Base64 encoding, however, prolongs a text by only a third.

Chapter 15

15.3.2.2 Base64
Base64 is a mechanism used for encoding non-ASCII data. The encoded output is only one-third
longer than the original. The encoding algorithm uses a Base64 table containing 64 signs (plus =).
To encode 64 signs, 6 bits are needed (26 = 64). The = sign (6510) is used for the special purpose of
marking a padding at the end of the file.

From the point of view of encoding, the message is not viewed as a flow of eight-bit groups
(octets or bytes), but as a flow of six-bits groups. Each group of six bits is then encoded according
to the Base64 table as shown below:

Figure 15.5: Base64 encoding

In the beginning, the text is divided into sequences of 24 bits (byte triplets). Each byte triplet is
divided into 4 sixes of bits. The decimal value of each group of six bits is replaced by one sign in
the Base64 table; the encoding proceeds from left to right. The corresponding sign from the
Base64 table replace each six-bit group.

The following is the Base64 table:

Value Encoded Value Encoded Value Encoded Value Encoded

0 A 17 R 34 i 51 z

1 B 18 S 35 j 52 0

2 C 19 T 36 k 53 1

3 D 20 U 37 l 54 2

4 E 21 V 38 m 55 3

5 F 22 W 39 n 56 4

6 G 23 X 40 o 57 5

 373

Email

 374

Value Encoded Value Encoded Value Encoded Value Encoded

7 H 24 Y 41 p 58 6

8 I 25 Z 42 q 59 7

9 J 26 a 43 r 60 8

10 K 27 b 44 s 61 9

11 L 28 c 45 t 62 +

12 M 29 d 46 u 63 /

13 N 30 e 47 v

14 O 31 f 48 w pad =

15 P 32 g 49 x

16 Q 33 h 50 y

The target (encoded) text has to be organized into lines with the maximum length of 76 characters.
All ends-of-lines signs and other signs not included in the Base64 table have to be ignored by the
decoding program; they can indicate a transfer error.

If less than 24 bits are left at the end of the text after the division, zero bits are added from the
right. This addition is indicated by the = sign.

The problem is that the length of the text does not necessarily have to be divisible by three. If the
text is divided into groups of 3 bytes, then there are three possibilities:

• The last group has 3 bytes. There is no complication and no = signs are added at the end.
• The last group has 2 bytes (16 bits). The first 12 bits are encoded regularly

according to the Base64 table. The remaining 4 bits are completed with two binary
0s to make 6 bits and the result is also encoded in Base64. At the end, however, =
is added to signal the 2-bit filler.

• The last group has 1 byte (8 bits). The first 6 bits are encoded regularly according to
the Base64 table. The remaining 2 bits are completed with four binary 0s and the
result is encoded in Base64. At the end, two = signs are added to signal the 4-bit filler.

The principle is best understood from the following examples:

Example: The length of the source text is divisible by three.
8-bit input: 01101101 01001000 01111011 11100011 10101010 11110001
6-bit input: 011011 010100 100001 111011 111000 111010 101011 110001
Decimal: 27 20 33 59 56 58 43 49
Base64 (output): b U h 7 4 6 r x

Example: The last group is 2 bytes long.
8-bit input: 01101101 01001000 01111011 11100011 10101010
Padding: 00
6-bit input: 011011 010100 100001 111011 111000 111010 101000
Decimal: 27 20 33 59 56 58 40
Base64 (output): b U h 7 4 6 o =

Chapter 15

Example: The last group is 1 byte long.
8-bit input: 01101101 01001000 01111011 11100011
Padding: 0000
6-bit input: 011011 010100 100001 111011 111000 110000
Decimal: 27 20 33 59 56 48
Base64 (output): b U h 7 4 w = =

15.3.3 Non-ASCII Text in Message Header Fields
Non-ASCII characters should never appear in a message header. If the header field contains such a
character, the message can either be delivered correctly to the recipient or it can be stopped by a
server on its way to the recipient; it can even be lost completely.

RFC 2047 deals with the issue of using non-ASCII characters in the header fields. Again, there are
two principal issues:

• What do the signs represent? A hexadecimal F8 can represent the Czech ř in one
character set and the Russian ш in another.

• How is it encoded into ASCII? Quoted-Printable or Base64 can be used, to mention
the most common.

The syntax of a non-ASCII string in a header field will be as follows:
=?charset?encoding?string?=

As for the encoding, q will be used for Quoted-Printable and b for Base64.

For example:

If the sender intends to write his or her name in the From header field with diacritics, then this can
be accomplished from the following example: A message from Václav Vopička, whose email
address is Vaclav.Vopicka@company.cz:
From: =?iso8859-2?q?V=E1clav Vopi=E8ka?=Vaclav.Vopicka@company.cz

Václav does not like his name to be written without diacritics, so he puts it correctly in an escaped
header field (From) and uses the ISO-8859-2 character set.

15.3.4 Discrete Media Types in Content-Type
The discrete media type tells the recipient's system what kind of software to use to open the
message body. The software could be as follows: a text viewer, an image viewer, an audio player,
a video player, or even software to show it in virtual reality.

15.3.4.1 text
The text type is designed for text messages. It is divided into the following subtypes:

• plain: See RFC 2045 and RFC 2046
• richtext: See RFC 1341 and RFC 2046
• enriched: See RFC 1896

: See RFC 2854 • html

 375

Email

 376

• sgml: See RFC 1874
• c822-headers: See RFC 1892
• css: See RFC 2318
• xml: See RFC 2376
• directory: See RFC 2425
• calendar: See RFC 2445
• parityfec: See RFC 3009

The plain subtype is primary; it identifies unformatted text. The other subtypes are used for
formatted texts. The html subtype containing HTML markup is a good example.

When using the text type, the charset parameter can be used to indicate the character set.
Examples of character sets are ASCII, ISO-8859-1, ISO-8859-2, Windows-1250, and so on.

For example:
Content-Type: text/plain; charset=ASCII

This is the implicit type. Thus, if the Content-Type is not present, it is implicitly understood that
the message is written in the text/plain type and subtype and the character set used is ASCII.

For example:
Content-Type: text/html; charset=iso-8859-2

15.3.4.2 application
This type is used for data that needs to be processed by an application to be presented properly to
the recipient. Generally, the subtype is the name of the application for which the data is designed.
The user has to be informed in some way on how to process the received data, for example, in an
accompanying message. The header field itself may not provide all the necessary information.

The subtypes are:

• Octet-Stream: This indicates that the body contains arbitrary binary data. The type
parameter (type of binary data) can be used (carrying information for the recipient).
The recommended action after receiving this kind of message is to save the data into
a file without decoding and run the application.

• Post-Script: This indicates that the message body is a Postscript document.

Here are some other subtypes (other registered subtypes are available at
http://www.iana.org/assignments/media-types/index.html):

• sgml: see RFC 1874
• pgp-signature, pgp-encrypted and pgp-keys: for PGP
• pkcs7-mime, pkcs7-signature, and pkcs-10: for S/MIME
• msword: text in the MS Word format
• pkcs7-mime: secured message by S/MIME

Chapter 15

Example: An MS Word file, file.doc:
Content-Type: application/msword

Content-Disposition: attachment; filename="file.doc"

Example: Internally digitally signed message
MIME-Version: 1.0
Content-Type: application/pkcs7-mime;
 smime-type=signed-data;
 name="smime.p7m"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="smime.p7m"

MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgMCGg....

15.3.4.3 image
The image type specifies an image, i.e., that the message body is an image. To show it properly, an
appropriate viewer is needed. The subtypes include, among others:

: See RFC 2045 and RFC 2046 • jpeg

• gif: See RFC 2045 and RFC 2046
: See RFC 2302 • tiff

Example:
Content-Type: image/jpeg

Content-Disposition: inline; filename="file.jpg"

15.3.4.4 audio
The audio type specifies sound. To present the sound properly, an appropriate player is necessary.
The subtypes include, among others, the following:

• basic: Mono sound with 8 kHz sampling frequency (implicit subtype)
• 32kadpcm: See RFC 2421 and RFC 2422
• L16: See RFC 2586
• telephone-event: See RFC 2833

: See RFC 2833 • tone

: See RFC 3003 • mpeg

• parityfec: See RFC 3009
• MP4A-LATM: See RFC 3016

Example:
Content-Type: audio/wav

 377

Email

15.3.4.5 video
The message body is a video/mpeg, which is the implicit subtype.

Example:
Content-Type: video/mpeg

15.3.4.6 model
The model type is designed for multidimensional structures (such as virtual reality). The type is
described in RFC 2077.

15.3.5 Composite Media Types in Content-Type
So far, we have only dealt with simple messages, i.e., those only having one part:

Figure 15.6: Structure of a standard
message according to RFC (2)822

Now we will focus on messages composed of several discrete messages. Each discrete message
can be further composed of message parts or it can be a single discrete message.

The message body can carry the following:

 378

• Several message parts; then, a Content-Type: multipart header is used.
• A long message transported as several short messages (Content-Type: message).

15.3.5.1 multipart
The body of this type of message contains several different message parts. Each part of the
message body starts with an initial delimiter followed by the part's headers (if any), a blank line,
and the body of the message part itself. The final delimiter closes the last part.

The message parts are not interpreted according to RFC 822. Optionally, they can contain header
fields (the blank line after the heading must always be inserted). If the message part has no header
fields, then the implicit header fields of the message as a whole are used.

Chapter 15

A delimiter is a special sequence of characters that cannot occur anywhere within the message
parts. A delimiter is defined in the parameter in the boundary Content-Type header field of the
multipart message.

The form of the parameter is boundary=string. The delimiter is then a line starting with two
dashes (--) followed by the parameter string. The maximum length of a delimiter is 70 characters.
The final delimiter has two extra dashes added to the end.

Figure 15.7: Multipart/mixed type of message

Here are some comments related to Figure 15.7:
Content-Type: multipart/mixed; boundary="gc0p4J:2408t"

This header field indicates that the message body is composed of several parts, while the message
part headers do not have to be given. Each part starts with the following line:
--gc0p4J:2408t

The final delimiter determines that there are no more parts. The final delimiter is closed by two dashes:
--gc0p4J:2408t--

 379

Email

The following figure of MS Outlook shows the example from Figure 15.7:

Figure 15.8: MS Outlook example created from Figure 15.7

The multipart type has the following subtypes:

 380

• multipart/mixed: This is the primary subtype. It is intended for messages
containing independent parts that need to be bound in a given order. A classical
example of this subtype is an email message containing one or more attachments.

• multipart/alternative: This message subtype contains several parts, where all
parts contain identical information and it is only the form that differs. For instance,
the same message is first written in ASCII, then in ISO-8859-2 with non-ASCII
characters, and then it is played (audio). The preferred form among the three is put to
the end position. The recipient's software has to recognize which forms it is able to
present and select the best of them.

Example:
From: angel@eden.org
To: devil@hell.org
Subject: Invitation
MIME-Version: 1.0
Content-Type: multipart/alternative; boundary=boundary42

In case your browser does not support MIME,
I'm just inviting you for a trip.
--boundary42
Content-Type: text/plain; charset=ASCII

 I'm even inviting you without diacritics.
 --boundary42
 Content-Type: text/html; charset=us-ascii

Join <H1>us</H1>
--boundary42
Content-Type: audio/basic
Content-Transfer-Encoding: base64

UklGRkYtAABXQVZFZm10IBAAAAABAAEAIlYAACJWAAABAAgAZGF0YSItAACAgICAgICAgICA
gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA
gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA
...
--boundary42--

Chapter 15

The software creating a message of this type has to arrange the parts according to growing media
quality. MS Outlook often uses this media type for text messages (plaint text and HTML).

• multipart/parallel: The client software is asked to present all parts
simultaneously such as playing a sound along with an image.

• multipart/report: This subtype can be used, for example, for reporting mail
system administrative messages.

• multipart/signed and multipart/encrypted are subtypes for S/MIME (secured
MIME). The multipart/signed subtype is designed for digitally signed messages; it
specifies a message composed of the following two parts:

o Message body
o External electronic signature (internally digitally signed message using

discrete media type application/pkcs7-mime.)

Figure 15.9: An external electronic signature

 381

Email

 382

(Notice: hexadecimalE9 is é in the ISO-8859-2 character set.)

• The multipart/encrypted subtype specifies a message in an electronic envelope
(encrypted message), but it is not often used in practice.

15.3.5.2 message
The message subtype is designed to send an email message as the body of another email message
(message/rfc822), to send a long message as several short ones (message/partial), or instead of
sending the message body, to send only information about the location of the message on a server
(message/external-body).

The few subtypes are as follows:

• message/rfc822 specifies that the body contains a nested message, and its syntax
complies with RFC 822. Unlike a message defined by RFC 822, it is not necessary
for each body of a message/rfc822 to include the From, Subject, and To header
fields. MIME messages can also be nested.

• message/partial is designed to send long messages as several short ones, while the
recipient's software can automatically show them as one (merged) message.

• message/external-body only gives information about the message located outside the
received message. The location of the data is specified by the following parameters:

o access-type specifies the server (protocol). The most common server
types are ftp, anon-ftp (anonymous FTP-server), mail-server (list
server), and local-file (file on a local machine).

o name specifies the name of the file.
o site specifies the name of the machine (server storing the file).
o expiration specifies the expiration time.

Example: (taken from RFC 2046)
From:
To:
Date:
Subject:
MIME-Version: 1.0
Message-ID: <id1@host.com>
Content-Type: multipart/alternative; boundary=42
Content-ID: <id001@guppylake.bellcore.com>

--42
Content-Type: message/external-body; name="BodyFormats.ps";
 site=ţthumper.bellcore.comţ; mode=ţimageţ;
 access-type=ANON-FTP; directory=ţpubţ;
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

Content-type: application/postscript
Content-ID: <id42@guppylake.bellcore.com>

--42
Content-Type: message/external-body; access-type=local-file;
 name=ţ/u/nsb/writing/rfcs/RFC-MIME.psţ;
 site=ţthumper.bellcore.comţ;
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

Chapter 15

Content-type: application/postscript
Content-ID: <id42@guppylake.bellcore.com>

--42
Content-Type: message/external-body;
 access-type=mail-server
 server=ţlistserv@bogus.bitnetţ;
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

Content-type: application/postscript
Content-ID: <id42@guppylake.bellcore.com>

get RFC-MIME.DOC
--42--

In this example, the sender is sending three links for the same data. The first copy of the data can
be found on an anonymous FTP server, the second on a local drive, and the third can be found in a
list server's archive.

While identifying the whole message is optional (id1@host.com), the message parts' content must
always be identified (id42@guppylake.bellcore.com).

It is also important to realize that the content of a message part is not data, but information about
this message. The Content-Type header field is thus used in three different ways:

Content-Type: multipart/alternative; boundary=42 specifies the media type of the message
as a whole.

Content-Type: message/external-body; specifies the media type of the message part; this is
a link.

Content-Type: application/postscript is not a header field, but the content of the message
specifying to which type of data it is linked.

15.4 SMTP
The Simple Mail Transfer Protocol (SMTP) is a simple protocol. Individual commands are in
the form of ASCII text (similar to the Telnet protocol). Therefore, it is easy to use the Telnet
program, for example, to send an email using the SMTP protocol.

The client uses the TCP protocol to establish a communication channel to a server on a well-known
port 25. The client will enter commands in this channel, and the server will reply with a three-digit
code followed by an error description text.

Commands entered by the client are four-character words that are not case sensitive. A command
may be followed by a parameter separated by a space. The command will end with the end of the
line (CR LF).

The principle of the SMTP protocol may be shown by an example of sending an email using the
Telnet program from Windows XP. (The highlighted code indicates the client's commands, and
the remaining code indicates replies from the server.):
C:\> Telnet smtp.provider.com 25

220 dns.terminal.cz ESMTP

HELO libor.computer.org
250 smtp.provider.com Hello libor.computer.org pleased to meet you

 383

Email

 384

MAIL FROM: phantom@hell.org
250 phantom@hell.org... Sender ok

RCPT TO: dostalek@pvt.cz
250 dostalek@pvt.cz... Recipient ok

DATA
354 Enter mail, end with "." on a line by itself

I will come for you.
phantom
.

250 UAA91875 Message accepted for delivery

QUIT
221 dns.terminal.cz closing connection

After establishing a TCP connection, the server introduced itself (status code 220). The client was
free to enter the HELO command and introduce itself. If I want to send an email, I begin the
dialogue with the MAIL command. The parameter of this command must be FROM: followed by the
email address of the sender (if you do not wish to divulge the sender's identity, then you can use
the form FROM:<>). The server will verify the sender and use the status code 250 to inform me that
the sender has been accepted.

Then I have to enter the recipient email address using the RCPT command. The recipient is entered
as a parameter to the command after the word TO:. Once again, the server uses the status code 250
to accept the recipient. Now I can move on to sending the email by entering the DATA command.
Status code 354 from the server will notify me that (if I did not know) the message is terminated
with a period on a new line after which a new line must follow (i.e., CR LF. CR LF). The message
is taken as it is (including the message header) and sent away. Once again, the server uses the code
250 to advise me when the message has been accepted.

Finally, I enter the QUIT command to terminate the connection. Such termination will be verified
by code 221 from the server.

Command Description

HELO client The client introduces itself by the computer name. This command should be used at
the commencement of a dialog with the server.
HELO libor.pvt.net 250 dns.terminal.cz Hello Libor.pvt.net,
pleased to meet you

MAIL FROM: sender Sender's email address.

RCPT TO: recipient Recipient's email address (this command is repeated for every recipient).
DATA The message that you want to send.
RESETT The current translation will be terminated abnormally (all the information transferred

in FROM and TO will be discarded).
SEND FROM sender This is similar to the MAIL command, but the message will be shown on the

recipient's terminal. (Not used).

Chapter 15

Command Description

VRFY address This is used to query if the recipient knows the particular address listed. The server
returns the full name of the user and the exact mail identification.

EXPN address This is similar to VRFY, but it can work not only with individual users, but also with
whole lists of users.
HELP
214-This is Sendmail version 8.9.3
214-Topics:
214- HELO EHLO MAIL RCPT DATA
214- RSET NOOP QUIT HELP VRFY
214- EXPN VERB ETRN DSN
214-For more info use "HELP <topic>"

HELP

This is used to terminate a connection. QUIT

This switches the role of a client to a server and vice versa. If the server confirms
this command, the client will expect the server to begin sending emails to the client.
As this command is considered unsafe, it is not used. Its weak spot is that anyone,
without authorization, could

TURN

suck the email queue out of the server.

Table 15.1: SMTP commands

You probably noticed that some information such as Sender and Recipient is entered twice. These
are first entered in the message header (in header fields) and then in the commands of the SMTP
protocols (for example, in the MAIL and commands). RCPT

Data from the message header are of secondary importance as far as the message transport through
the Internet is concerned. The SMTP not only transports the header, the empty line, and the text of
the message, it also transports the so-called SMTP message envelope (do not confuse this with an
electronic envelope!). The SMTP message envelope contains data from the MAIL and RCPT commands.

To transport the message between SMTP servers, the SMTP envelope is important. In the previous
example, we used the Telnet program to send a message without any header fields (i.e., it did not
even have the TO and FROM header fields). However, if you examine such a message after its
delivery to the recipient, you will see that the mail server completed the FROM header field, i.e., it
took the data from the SMTP envelope and used it to create the header field.

On the other hand, if you use a program to insert a message without an envelope into the email
queue (or if you hand it over to the sendmail program directly), then information from header
fields has to be taken into the envelope. Header fields in the header are of secondary importance,
but they can sometimes come in handy for email transport.

This is why even a recipient addressed in the BCC header field receives a message addressed to him
or her. The reason is simple; if a mail server loads a message and, for example, is creating the
envelope for the first time, and encounters the BCC header field, it will take this header field out.
However, that does not mean the information contained in the header field will be discarded; it
will be inserted into the SMTP envelope. This will deliver the message to its recipient, but this
recipient will not be mentioned in the header.

 385

Email

 386

Here is a review of the status codes:
211 System status, or system help reply
214 Help message
220 <domain> Service ready
221 <domain> Service closing transmission channel
250 Requested mail action okay, completed
251 User not local; will forward to <forward-path>

354 Start mail input; end with <CRLF>.<CRLF>
421 <domain> Service not available,
450 Requested mail action not taken: mailbox unavailable
451 Requested action aborted: local error in processing
452 Requested action not taken: insufficient system storage
500 Syntax error, command unrecognized
501 Syntax error in parameters or arguments
502 Command not implemented
503 Bad sequence of commands
504 Command parameter not implemented
550 Requested action not taken: mailbox unavailable
551 User not local; please try <forward-path>
552 Requested mail action aborted: exceeded storage allocation
553 Requested action not taken: mailbox name not allowed

15.5 ESMTP
Extensions of the SMTP protocol led to the development of Extended SMTP (ESMTP). The
extension principle is specified in the RFC 1869 standard. The main problem concerning any
extension is in its backward compatibility. In this case, the creators of ESMTP came up with a
very smart solution.

While the SMTP protocol usually begins its dialogue with the HELO command, ESMTP uses the
EHLO command. The server's reply will be either of the following:

• The client must have made a mistake in the command name. The client will immediately
realize that the server is SMTP-only and carry on with the HELO command.

• Status code 250 (shows that everything is OK). The client will immediately notice
that the server is of ESMTP type. Furthermore, the server's reply will contain the list
of extension commands it supports:

EHLO libor.computer.org
250-dns.terminal.cz Hello libor.computer.org, pleased to meet you
250-EXPN
250-VERB
250-8BITMIME
250-SIZE 8388608
250-DSN
250-ONEX
250-ETRN
250 HELP

We still need to describe some of the extension commands. These commands are usually written
as abbreviations of words characterizing their meaning (ONEX = One message transaction only).

Chapter 15

VERB
The VERB (Verbose) command will cause the server to list all the details of the communication
with next mail server.

For example:
C:\> Telnet smtp.provider.com 25

220 smtp.provider.com ESMTP
verb
250 Verbose mode
mail from: boss@company.com
250 boss@company.com... Sender ok
rcpt to: coworker@ompany.com
250 coworker@ompany.com... Recipient ok
data
354 Enter mail, end with "." on a line by itself
Unfortunately you are fired ...
.

050 dostalek@pvt.cz... Connecting to smtp.company.com. via esmtp...
050 220 smtp.company.com SMTPXD version 141 ready at Thu, 28 Dec ...
050 >>> EHLO smtp.provider.com
050 500 Command unrecognized
050 >>> HELO smtp.provider.com
050 250 smtp.company.com Hello smtp.provider.com, pleased to meet you
050 >>> MAIL From:<boss@company.com>
050 250 <boss@company.com>... Sender ok
050 >>> RCPT To:<coworker@ompany.com>
050 250 <coworker@ompany.com>... Recipient ok
050 >>> DATA
050 354 Enter mail, end with "." on a line by itself
050 >>> .
050 250 MAA14445 Message accepted for delivery
050 coworker@ompany.com... Sent (MAA14445 Message accepted for delivery)
250 MAA43965 Message accepted for delivery
050 Closing connection to smtp.company.com.
050 >>> QUIT
050 221 smtp.company.com closing connection

This is a dialogue of a server with the subsequent server on the way to the recipient. The >>>
string means sending the command.

8BITMIME
This extension is designed for the transfer of MIME messages containing 8-bit data. If the server
does not confirm its support for this 8-bit transfer, the SMTP client may not send any message; the
body of the message contains characters other than ASCII. However, it may encode the message,
for example, by using Base64. This will transform the message into 7-bit characters.

The 8BITMIME extension extends the MAIL command by the BODY=8BITMIME parameter.

For example:
MAIL FROM: phantom@hell.org BODY=8BITMIME
250 phantom@hell.org ... Sender and 8BITMIME ok

RCPT TO: dostalek@pvt.cz
250 dostalek@pvt.cz … Recipient ok

DATA
354 Send 8BITMIME message, ending in CRLF.CRLF.
 ...
.
250 OK

 387

Email

 388

SIZE
This extension is designed for specifying the maximum size of the message in bytes. The server
returns a SIZE extension with a numeric parameter, which will provide decimal specification of
the maximum message length to accept (message length includes line terminations, but not the
DATA command itself).

Furthermore, the SIZE extension may be used as another parameter for the MAIL command that can
specify the message length. In this way, the server can allocate corresponding memory space to
save the message. On the other hand, the server may reject such a large message (for example, due
to insufficient memory) before the data transfer starts.

ETRN
Especially small companies that have their mail servers behind a dial-up line will welcome this
extension. In this case, the incoming emails remain on the mail server of the provider that is trying
to delivery the messages to a company's mail server, which is not available for most of the time.

If the company is connected to a dial-up line, it expects the flow of incoming mail from the
provider, yet nothing happens. The provider's mail agent will send the messages as soon as they
come to the end of the queue. As the messages were lying there for a long time, the agent was
allowed to extend its delivery retry periods. Or the agent may even be configured, in the case of a
company (i.e., DNS domain), in such a way that it does not try to deliver the items until it receives
the ETRN command.

The ETRN command has only one parameter, which is the domain, for which the server should start
searching the queue. It is necessary to point out that, in contrast to the TURN command, if the ETRN
command is executed by an attacker, then the mail queue is started in vain. If you use the TURN
command, the attacker would receive the requested mail.

Extensions of the ETRN command are specified in RFC 1985.

15.5.1 Message Delivery Receipt
Electronic mail on the Internet does not guarantee delivery of messages. For several reasons, any
message may get lost on its way through the Internet. Therefore, the sender may sometimes
consider it prudent to have the message delivery confirmed. The recipient could handwrite the
confirmation, but obviously we are more interested in the possibility of automating this task.

Chapter 15

Figure 15.10: Message delivery reports setting in MS Outlook

Notification of the delivery of the mail to the recipient may be automated in two ways:

• By an extension of the ESMTP known as DSN that notifies of the delivery of the
mail into the user's mailbox on the server. (In the figure above, the option is Request
a delivery receipt for this message.)

• By a MIME extension executed via the Disposition-Notification-To header field.
This extension notifies the opening of the message by the recipient. However,
opening a message does not mean it has been read or understood by the recipient. (In
the figure above, the option is Request a read .) receipt for this message

In fact, the difference between these two mechanisms is that the DSN extension is interpreted by
the ESMTP server, i.e., the ESMTP server will generate the delivery report, whereas MIME is
interpreted by the mail client only (for example, MS Outlook), and a delivery report will be
generated by the mail client.

S/MIME introduces a third kind of email notification where a recipient correctly verifies
the digital signature of the email message. In the figure above, the option is Request
S/MIME . receipt for this message

 389

Email

 390

Whether your mail client supports one of these extensions, or even both, depends on the software
manufacturer. If both these notifications are used, you will receive two messages. The first one
says your mail has been delivered to the mailbox, and the second one indicates the recipient has
opened your mail.

15.5.1.1 Delivery Status Notification
The Delivery Status Notification (DSN) extension enables message delivery notification. It
extends the MAIL command for the SMTP protocol by the following two parameters:

• The RET parameter is used to indicate whether the notification report should contain
the whole of the original message (RET=FULL) or the message header only
(RET=HDRS).

• The ENVID parameter determines the message identification to enable the pairing of
notifications with the original messages.

Furthermore, the DSN extension extends the RCPT command by two parameters:

• The NOTIFY parameter specifies a condition for generating a notification. Conditions
may be as follows:

o NOTIFY=NEVER (never send a notification)
o NOTIFY=SUCCESS (send notification in case of successful delivery)
o NOTIFY=FAILURE (send notification in case of delivery failure)
o NOTIFY=DELAY (send notification in case of delayed delivery)

SUCCES, FAILURE, and DELAY conditions may be combined, for example,
NOTIFY=SUCCESS, FAILURE (send notification in case of successful or
failed delivery)

• The ORCPT parameter determines the original recipient. The initial address may be
changed, for example, during message forwarding. This parameter contains two
values: address type (for example, rfc822) and a single address (for example,
ORCPT=rfc822;dostalek@pvt.cz).

Notification is sent at the moment of delivery into the recipient's mailbox (INBOX), i.e., at the
moment after which the message will be available via the POP3 or IPMA4 protocols.

Here is an example of the sent message:
MAIL FROM: skol00@t1.pvt.cz RET=HDRS ENVID=007
250 <skol00@t1.pvt.cz>... Sender ok
RCPT TO: dostalek@ica.cz NOTIFY=SUCCESS,FAILURE
 ORCPT=rfc822;dostalek@pvt.cz
250 <dostalek@ica.cz>... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself

The following is the message text:
250 QAA64601 Message accepted for delivery

Chapter 15

In the previous example, the message has arrived at its recipient, and it was saved in its mailbox.
This caused the notification report to be sent to the sender skol00@t1.pvt.cz . The interesting
part is actually the notification report shown in the following table. This notification report is of
multipart type; it comprises several separate parts:

Notification Report Description

This is the
header of the
whole
message. The
message
comprises
three parts,
separated by
the boundary.

Received: from localhost (localhost)

 by t1.pvt.cz (8.9.3/8.9.3)
 id QAA31130;
 Thu, 28 Dec 2000 16:20:57 +0100 (MET)
Date: Thu, 28 Dec 2000 16:20:57 +0100 (MET)
From: Mail Delivery Subsystem <MAILER-DAEMON>
Message-Id: <200012281520.QAA31130@t1.pvt.cz>
To: <skol00@t1.pvt.cz>
MIME-Version: 1.0
Content-Type: multipart/report; report-type=delivery-status;
 boundary="QAA31130.978016857/t1.pvt.cz"
Subject: Return receipt
Auto-Submitted: auto-generated (return-receipt)

This is a MIME-encapsulated message

—QAA31130.978016857/t1.pvt.cz

The first part
contains a text
message for
the user (in
case the client
is not able to
process it
automatically).

The original message was received at Thu, 28 Dec 2000 16:20:57
from server.ica.cz [195.47.13.11]

 —— The following addresses had successful delivery notifications—
<dostalek@t1.pvt.cz> (successfully delivered to mailbox)

 —— Transcript of session follows ——-
<dostalek@t1.pvt.cz>... Successfully delivered

—QAA31130.978016857/t1.pvt.cz

The second
part is
intended for
automatic
processing by
the client.

Content-Type: message/delivery-status

Original-Envelope-Id: 007
Reporting-MTA: dns; t1.pvt.cz
Received-From-MTA: DNS; server.ica.cz
Arrival-Date: Thu, 28 Dec 2000 16:20:57 +0100 (MET)

Original-Recipient: rfc822;dostalek@pvt.cz
Final-Recipient: RFC822; <dostalek@t1.pvt.cz>
Action: delivered (to mailbox)
Status: 2.1.5

—QAA31130.978016857/t1.pvt.cz

 391

mailto:skol00@t1.pvt.cz

Email

 392

Notification Report Description

Content-Type: text/rfc822-headers

Return-Path: <skol00@t1.pvt.cz>
Received: from server.ica.cz (server.ica.cz [195.47.13.11])
 by t1.pvt.cz (8.9.3/8.9.3) with ESMTP id QAA30941
 for <dostalek@t1.pvt.cz>; Thu, 28 Dec …
Received: from dns.terminal.cz (dns.terminal.cz [195.70.130.1])
 by server.ica.cz (8.9.2/8.8.7) with ESMTP id QAA25234
 for <dostalek@ica.cz>; Thu, 28 Dec ...
From: skol00@t1.pvt.cz Received: from [195.47.37.200]
 by dns.terminal.cz (8.9.3/8.9.3) with SMTP id QAA64601
 for dostalek@ica.cz; Thu, 28 Dec ...
Date: Thu, 28 Dec 2000 16:20:18 +0100 (CET)
Message-Id: <200012281520.QAA64601@dns.terminal.cz>

—QAA31130.978016857/t1.pvt.cz—

The last part
contains the
header
(header fields)
of the original
message (see
RET=HDRS).

Table 15.2: Notification report

The Content Type: multipart/report; report-type-delivery-status message is specified by
RFC 1894. The core of this message is its second part, Content Type: message/delivery-
status, which is repeated for explanatory purposes:

Content-Type: message/delivery-status

Original-Envelope-Id: 007
Reporting-MTA: dns; t1.pvt.cz
Received-From-MTA: DNS; server.ica.cz
Arrival-Date: Thu, 28 Dec 2000 16:20:57 +0100 (MET)

Original-Recipient: rfc822;dostalek@pvt.cz
Final-Recipient: RFC822; <dostalek@t1.pvt.cz>
Action: delivered (to mailbox)
Status: 2.1.5

—QAA31130.978016857/t1.pvt.cz

The body of this message contains the following:

• Information about the message:
o Original-Envelope-Id: Original identification of the message entered

using the ENVID parameter.
o Reporting-MTA: Mail agent that asks for a receipt; contains name type

and name.
o Received-From-MTA: The name of the mail server from which the

message was received; contains name type and name.
o Arrival-Date: Date and time of message delivery into the

recipient's mailbox.
• Information about the recipient and about the message delivery:

o Original-Recipient: The original recipient as specified by the sender.
o Final-Recipient: The recipient who actually received the message.

Chapter 15

o Action: Action specifying the delivery results: Failed (the message was
not delivered), Delayed (the message was delayed), Delivered (the
message was delivered), Relayed (the message was transferred to another
mail system through a gate), and Expanded (the message was send to
recipients listed; the recipient's address was a list, i.e., alias or mail list).

o Status: Contains three numbers separated by periods. These three
numbers indicate the status of the message delivery. The first number
(class) indicates whether the message has been delivered (2 means
delivered, 4 means undelivered due to temporary failure, 5 means
undelivered due to unrecoverable error). The second number (subject)
specifies the cause of delivery problems (1 means address, 2 means
mailbox, 3 means mail system, 4 means network, 5 means mail
protocol, 6 means media type, 7 means security). The third number
provides detailed specification of the real cause. See RFC 1893 for a
detailed list of status codes.

15.5.1.2 The Disposition-Notification-To Header Field
This is an MIME extension (see Section 15.3). This extension is officially called Message
Disposition Notification (MDN) (see RFC 2298). The header of the original message will include
the header field:

Disposition-Notification-To: <e-mail>

where <e-mail> is the mail address for which the message notification is intended.

The notification report will be of multipart/report type again. The notification report will
comprise the following parts:

• Readable message for the sender.
• The message/disposition-notification report containing extract information

concerning the opening of the message by the client (also the reason for delivery
failure). This part is primarily intended for automated processing by the mail client.

• The third optional part is the original message.

Example:
HELO Libor
250 dns.terminal.cz Hello Libor, pleased to meet you
MAIL FROM: dostalek@t1.pvt.cz
250 <dostalek@t1.pvt.cz>... Sender ok
RCPT TO: dostalek@t2.pvt.cz
250 <dostalek@t2.pvt.cz>... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself

MIME-Version: 1.0
Content-Type: text/plain
Disposition-Notification-To: dostalek@t1.pvt.cz
Subject: xx

message text
.

250 RAA39113 Message accepted for delivery

 393

Email

 394

The recipient, dostalek@t1.pvt.cz, (i.e., the recipient from the Disposition-Notification-To
header field) has received the notification report of the opening of the message by the recipient:

Received: from ...
Reply-To: <dostalek@t2.pvt.cz>
From: "Libor Dostalek" <dostalek@t2.pvt.cz>
To: <dostalek@t1.pvt.cz>
Subject: =?windows-1250?B?UPhl6HRlbm86IA==?= ... i.e. Coded by Base64 Subject:
 Read by xx
Date: Tue, 2 Jan 2001 17:26:33 +0100
Message-ID: <001601c074d8$c56bace0$940e11ac@cbu.pvt.cz>
MIME-Version: 1.0
Content-Type: multipart/report;
 report-type=disposition-notification;
 boundary="——=_NextPart_000_0017_01C074E1.273014E0"
In-Reply-To: <200101021625.RAA39113@dns.terminal.cz>

This is a multi-part message in MIME format.

———=_NextPart_000_0017_01C074E1.273014E0
Content-Type: text/plain;
 charset="iso-8859-2"
Content-Transfer-Encoding: 8bit

Your message

 Subject: xx
 Sent: 02-01-2001 17:25

 was read on 02-01-2001 17:26

———=_NextPart_000_0017_01C074E1.273014E0
Content-Type: message/disposition-notification
Content-Transfer-Encoding: 7bit

Reporting-UA: Klim.pvt.cz; Microsoft Outlook CWS, Build 9.0.2416 (9.0.2910.0)
Final-Recipient: rfc822;dostalek@t2.pvt.cz
Original-Message-ID: <200101021625.RAA39113@dns.terminal.cz>
Disposition: automatic-action/MDN-sent-automatically; displayed

———=_NextPart_000_0017_01C074E1.273014E0—

The body of the message/disposition-notification report contains the following header fields:

• Reporting-UA (UA = User Agent or the mail client): This header field contains the
DNS name and the name of the software product.

• Final-Recipient: The recipient to whom the message is being issued.
• Original-Message-ID: Identification of the original message (from the Message-ID

header field).

• Disposition: The syntax of this header field is disposition-mode/disposition-
type; disposition-modifiers, where:

o The disposition-mode can be as follows: automatic-action (the
processing of the Disposition-Notification-To header field has
been done automatically), manual-action (the processing of the
Disposition-Notification-To header field has been a result of an
explicit instruction by the user rather than some sort of automatically
performed action, MDN-sent-manually (the notification was sent after
explicit approval by the user), and MDN-sent-automatically (the
notification was sent automatically).

Chapter 15

o The disposition-type can be as follows: displayed (the message was
opened by the user), dispatched (the message was processed, i.e.,
printed out, forwarded, sent by fax, and so on without necessarily having
been previously displayed to the user), processed (the message was
processed by a server without being displayed to the user), deleted (the
message was deleted), denied (the recipient does not wish to inform the
sender about the way the message was processed), and failed (the
message was not processed and an error occurred during processing).

15.6 POP3
Post Office Protocol version 3 (POP3) is a simple protocol that users can use to download emails
from their mailbox on the mail server to local mailboxes on their PC. It is intended to work offline
with the mail server. POP3 is specified in RFC 1939.

A client establishes connection with the well-known TCP port 110 of a server. After this
connection has been established, the server introduces itself, and is in the Authentication state (i.e.,
waiting for an authentication from its user). For example:
+ OK QPOP (version 2.1.4-R4-b5a) at t1.pvt.cz starting <3774.978040846@t1.pvt.cz>

Basic authentication is done with a username and password. If authentication is valid,
communication proceeds to the Transaction state, where clients can work with messages in their
mailbox on the server. Even if clients, for example, delete some messages from the mailbox on the
server, such deletions are not permanent during the transaction state. At the end of the session,
clients will have to switch into the Update state, where the changes in their mailbox on the server
become permanent.

The server always responds to the entered commands with a reply beginning either with the +
mark if the response is positive or with the – mark in the case of an error report.

As commands are entered in ASCII, communication with the POP3 server is even simpler using
the Telnet program, which also communicates in ASCII.

First, let's look at the individual commands (they are always made of four characters):

• Authentication state:
o The USER command is used to enter the user's name. For example:

USER dostalek

+OK Password required for Dostalek.
o The PASS command is used to enter the user's password (this command is

optional). For example:
PASS password

+O dostalek has 2 message(s) (3605 octets)
i.e. login was successful; you have 2 message on the server, these
are
3.605 bytes long in total.

o The QUIT command is used to terminate the connection.

 395

Email

 396

• Transaction state:
o The STAT command shows the number of messages in the mailbox and the

total size of the mailbox:
STAT
+OK 2 3605

o The LIST command returns the list of messages in the mailbox (one
message on each line). Every message has its sequence number and size:
LIST

+OK 2 messages (3.605 octets)
1 1.196

2 2.409
o The RETR command is used to download the message to a PC. The

parameter will be the number of messages to be downloaded:
RETR 2

o The DELE command is used to delete a message in the mailbox on server.
The parameter will be the number of messages to be deleted:
DELE 2

+OK Message 2 has been deleted.
o NOOP is an empty command:

NOOP

+OK
o The RSET command enables to regenerate messages deleted during the

current session:
RSET

+OK Maildrop has 2 messages (3.605 octets)
o The TOP command enables us to display the message beginning. Its syntax is:

TOP message_number number of lines in the message body
• Update state:

o Sessions are terminated once more by the QUIT command. At this moment,
the physical deletion of all messages marked as deleted takes place.

Example (downloading a message from the server):
C:\> Telnet t1.pvt.cz 110

+OK QPOP (version 2.1.4-R4-b5a) at t1.pvt.cz starting.
 <3774.978040846@t1.pvt.cz>

USER dostalek
+OK Password required for dostalek.

PASS password
+OK dostalek has 2 message(s) (3605 octets).

LIST
+OK 2 message (3605 octets)
1 1196
2 2409

RETR 2
+OK 1196 octets
X-UIDL: b27991db2a4199a85f593d76b58338c7
Received: from dns.terminal.cz (dns.terminal.cz [195.70.130.1])
by t1.pvt.cz (8.9.3/8.9.3) with ESMTP id XAA04273
for <dostalek@t1.pvt.cz>; Thu, 28 Dec 2000 23:21:10 +0100 (MET)

... message header and message body

Chapter 15

Although there are various possible extensions to the POP3 protocol, POP3 servers are in practice
usually designed as very simple ones. They enable a single connection between a mailbox and its
user with only a POP3 protocol. After logging in, the user's mailbox on the server will be
duplicated. The original mailbox will remain the same, and it will be able to accept further emails
(e.g., via the SMTP protocol). A copy of the original mailbox will be used by the POP3 protocol.
When the Update mode is entered, the two mailboxes once again converge into one.

After a user logs into the POP3 server, first a test will be conducted to check whether there is an
existing mailbox copy. If so, it is expected that the user will work with his or her mailbox using
the POP3 protocol and such login requests will be denied. Therefore, if the user cannot log into the
POP3 server, we have to check whether there is an existing copy of the mailbox accidentally left
from the previous login.

Another problem with POP3 on UNIX servers occurs at the moment when we would like to
activate the C2 security mode (now called as Common Criteria mode) in the server operating
system. The POP3 server may sometimes stop working after such an activation (no one is able to
log in). The problem is that the POP3 server must find the passwords of the users in order to verify
them. When transitioning into the C2 security mode, the passwords in the operating system may
be relocated to a safer place . The POP3 server cannot work with such a safe saving of passwords
and hence is not able log in any users.

15.7 IMAP4
The Internet Message Access Protocol (IMAP) version 4 is specified by RFC 3501. This
specification is sometimes also called as 'IMAP4 rev1' because it is a revision of the initial form of
the IMAP4 protocol specified in RFC 2060 and RFC 1730.

IMAP4 is a sophisticated protocol intended for use with mailboxes on a server using a PC in the
online (or offline) mode. At the same time, we can work with our mailboxes from several
applications. Some applications even establish two TCP connections with the IMPA4 server (for
example, MS Outlook)—one connection for working with mailboxes and the other one for
working with individual items (email messages). An IMAP4 protocol server uses the well-known
port 143/TCP.

When IMAP4 is working with a mailbox (during an established TCP connection), another
application can change the content of this mailbox (for example, the SMTP server records newly
received mail in the mailbox). These events (for example, a new message coming into the
mailbox) are reported by the server in the established connection. The client can actually find out
about newly received mail by sending the empty command, NOOP, to the server. This will initiate
the server to check whether any changes in the mailbox have been made. If so, the client will be
informed about the particular changes.

If one application opens a mailbox for reading and writing and another application also wants to
open the mailbox for reading and writing, the first application will have to change its mailbox to
read-only. The first application will be immediately notified that the mailbox is now open for reading
only, and if any changes in the mailbox need to be made, it has to be reopened. This kind of work
with mailboxes is typical for servers using the IMAP4 protocol, but what about other applications?

 397

Email

 398

In order to allow several applications to work with one mailbox, they should not interfere with one
another, otherwise a collision occurs, and the IMAP4 server will terminate the connection. For
example, incorrect behavior may often be simulated as follows: a mailbox opened for IMAP4 is
simultaneously opened by a mail program on the server and changes are made to it—let's say a
message is deleted (similar results would occur if we concurrently open the mailbox using either
IMAP4 or POP3 protocol).

However, I have to describe first what the commands of the IMAP4 protocol actually look like.
After the client has established a TCP connection with the server on port 143, the server will
introduce itself. For example, a Telnet session running on Windows XP goes as follows:

C:\>Telnet server.company.com 143
* OK server.company.com IMAP4rev1 v10.170 server ready

The client can enter commands now; commands are entered in ASCII (similarly to for the Telnet,
SMTP, and POP3 protocols, and so on). However, these commands are unlike those in POP3
protocol. The difference is not only in the command names, but especially in the usage of these
commands. In the IMAP4 protocol, several commands can be entered, and their corresponding
replies may come from the server in a random order. Therefore, the client numbers the entered
commands, and the server repeats the number of the command to which it is responding. It is up to
the client how he or she identifies (numbers) the commands. Commands are generally identified as
a string (it does not even have to be a number), and the uniqueness of such identification is also
the sole responsibility of the client.

After the connection has been established, we can show the format of commands and replies by
using CAPABILITY command causing the server to tell the client what functionalities it can provide:

0000 CAPABILITY
*CAPABILITY IMAP4 IMAP4 REV1 SCAN SORT AUTH=LOGIN
0000 OK CAPABILITY completed

The client numbers its query with the string 0000, and it is followed by the command (in our case
it is the CAPABILITY command). A command may be followed by its parameters (there are no
parameters for the CAPABILITY command).

The server sends two kinds of replies:

• Unnumbered replies that have an asterisk instead of the command or reply number.
These unnumbered replies in effect contain the information requested by the client.
In our case, the server supports the following: the IMAP4 protocol, the IMAP4
revision 1 protocol, SCAN and SORT extensions, and user authentication with the
LOGIN command (i.e., by name and password).

• Numbered replies that begin with the command number and inform about the
outcome of the command.

A numbered reply comprises the following:

• Command number.
• Result, which can be as follows:

o OK (command executed successfully).
o NO (command execution failed).

Chapter 15

o BAD (command error, for example, command syntax error).
o The result of PREAUTH may be the server's indication (after establishing

the connection) that the client is logged in as an actual user without the
necessity to log in using the LOGIN or AUTHENTICATE command.

o The BYE response may be returned if the server does not want to
communicate with the client any more. For example, the client may be
logged in for a long time without any activity:
* BYE Autologout: idle for too long
Or this result may be a part of logout sequence during the termination
of the connection:
5 LOGOUT

* BYE p30x01 IMAP4rev1 server terminating connection

4 OK LOGOUT completed

Or there was a login attempt by a client listed in the blacklist, therefore, the
server sends the client the BYE result instead of the introduction.

• Other replies specifying text information.

The following figure shows the individual states of the IMAP4 protocol:

Figure 15.11: States of the IMAP4 protocol

 399

Email

 400

Once a connection has been established, the Unauthenticated state occurs necessitating the
authentication of the client (or the termination of the authentication by entering the LOGOUT
command). An exception might be when the server informs the client immediately after
establishing the connection that the client has been pre-authenticated (PREAUTH).

In the Authenticated state, the client may work with mailboxes on the server as with files (i.e., the
client can create a mailbox, delete it, and rename it). The SELECT (or EXAMINE) command may
enable the client to open a particular mailbox and switch to the 'Open mailbox' mode in which he
or she can work with individual items inside the open mailbox (for example, items that will be
transferred from the server to the client.).

The CAPABILITY, NOOP, and LOGOUT commands do not depend on the current state; therefore, it is
possible to enter those anytime.

15.7.1 Unauthenticated State

15.7.1.1 LOGIN
The LOGIN command enables the user to log in using his or her name and password. After the
successful execution of the LOGIN command, the Authenticated state will be initiated.

1 login user password
1 OK LOGIN completed

15.7.1.2 AUTHENTICATE
For other authentication mechanisms, instead of using a name and a password (for example,
authentication using the Kerberos system), the AUTHENTICATE command is used. Generally, the
client suggests an authentication scheme as a parameter for the AUTHENTICATE command. If the
server supports this scheme, the reply will be a + mark meaning "proceed with authentication".
The client then replies with some particular authentication information. If the authentication
dialogue requires further communication between the server and the client, the server will reply
with a line beginning with a + mark again.

All the authentication information transferred between the client and the server is encoded
in Base64.

15.7.2 Authenticated State

15.7.2.1 CREATE, DELETE, RENAME, and LIST Commands
The CREATE command is used to create a mailbox as a file, the DELETE command initiates its
deletion, the RENAME command is used to change the name of a file, and the LIST command serves
for directory listing. Now we issue the LIST command:

2 LIST "" "*"
* LIST (\NoInferiors) "/" .profile
* LIST (\NoInferiors \UnMarked) "/" .login
* LIST (\NoInferiors \UnMarked) "/" .cshrc
* LIST (\NoInferiors \ Marked) "/" Drafts
* LIST (\NoInferiors \ Marked) "/" "Sent Items"
* LIST (\NoInferiors) NIL INBOX
2 OK LIST completed

Chapter 15

Directory listing in the UNIX operating system can help us see approximately the same listing:
$ ls –a

. .. .cshrc .login .profile Drafts Sent Items

(There was no INBOX on my system. It is the system mailbox present in the /var/spool/mail
directory and not in the home directory.)

The syntax of the LIST command is quite irregular. The LIST command has two parameters; the
first parameter is a path, and the second one is the name of the mailbox. The mailbox name may
include wildcard characters like an asterisk and the percentage sign. The asterisk expands
everything, but the percentage sign only applies to the mailbox name and not to the directory
structure (or the mailbox structure, if you wish).

In our directory, we create a mail subdirectory, and in this subdirectory, we create a mailbox2 file.
Here is the difference between the asterisk sign and the percentage sign:

1 list "" "%"
* LIST (\NoInferiors) "/" .profile
* LIST (\NoInferiors \UnMarked) "/" .login
* LIST (\NoInferiors \UnMarked) "/" .cshrc
* LIST (\NoInferiors \Marked) "/" Drafts
* LIST (\NoInferiors \Marked) "/" "Sent Items"
* LIST (\NoSelect) "/" mail
* LIST (\NoInferiors) NIL INBOX
1 OK LIST completed

1 list "" "*"
* LIST (\NoInferiors) "/" .profile
* LIST (\NoInferiors \UnMarked) "/" .login
* LIST (\NoInferiors \UnMarked) "/" .cshrc
* LIST (\NoSelect) "/" mail
* LIST (\NoInferiors \Marked) "/" Drafts
* LIST (\NoInferiors \Marked) "/" "Sent Items"
* LIST (\NoInferiors) "/" mail/mailbox2
* LIST (\NoInferiors) NIL INBOX
1 OK LIST completed

The server's reply to the LIST command gives information about each listed file (one file per line)
comprising three entries:

• Attributes in parentheses. The possible attributes in parentheses are:
o \NoInferiors: This is not a directory, i.e., there cannot be another item

under this item within the mailbox structure (it is not possible to have
any sublevels of hierarchy existing under this name).

o \NoSelect: This file cannot be opened as a mailbox.
o \Marked: This file is marked so that it could be opened as

a mailbox.
o \Unmarked: This file is not marked as a mailbox.

• Delimiters in the mailbox hierarchy (for example, in UNIX, the path to a file uses
forward slash as a delimiter between directory names). The word NIL means there is
no hierarchy.

• Mailbox name (file name).

 401

Email

Here is an example that uses the CREATE command to create a subdirectory in the home directory
(~dostalek) with two mailboxes, MailboxA and MailboxB:

3 CREATE "~dostalek/MailboxA"
3 OK CREATE completed

4 create "~dostalek/MailboxB"
4 OK CREATE completed

Type the LIST command to verify whether the mailbox has been created:
5 list "" "*"
* LIST (\NoInferiors) "/" .profile
* LIST (\NoInferiors \UnMarked) "/" .login
* LIST (\NoInferiors \UnMarked) "/" .cshrc
* LIST (\NoInferiors \Marked) "/" Drafts
* LIST (\NoInferiors \Marked) "/" "Sent Items"
* LIST (\NoInferiors) "/" MailboxA
* LIST (\NoInferiors) "/" MailboxB
* LIST (\NoSelect) "/" mail
* LIST (\NoInferiors) "/" mail/mailbox2
* LIST (\NoInferiors) NIL INBOX
5 OK LIST completed

The same listing can be obtained by an operating system command:
$ ls Mailbox*

MailboxA MailboxB

However, a regular user would not be satisfied with such a listing—that's why the user's mail
application shows it in a friendlier format. The following figure shows an example of the graphical
interpretation of our listing in the MS Outlook Express window (MS Outlook has a similar window):

Figure 15.12: Listing of MS Outlook Express

 402

Chapter 15

The RENAME command can be used to change the name of MailboxB directory to MailboxC.
For example:

6 RENAME MailboxB MailboxC
6 OK RENAME completed

Finally, the DELETE command is entered to erase the mailbox:
C: 7 DELETE MailboxC
S: 7 OK DELETE completed

We will create the MailboxB directory again in order to have at least two mailboxes on the server
for further explanations.

15.7.2.2 SUBSRCIBE, LSUB, and UNSUBSCRIBE Commands
A client uses the SUBSCRIBE command to tell the server to mark a directory as a mailbox.

C: 1 subscribe MailboxA
S: 1 OK SUBSCRIBE completed

Now we can enter the LIST command to get a listing of the mailboxes:

While implementing our server, we will create a file in the user's home directory called
.maliboxlist, which contains information about which mailboxes are marked:
$ cat $HOME/.mailboxlist

INBOX
Sent Items
MailboxA
MailboxB
Drafts

The UNSUBSRIBE command serves to unmark a mailbox.

The LSUB command is similar to the LIST command, but it provides a list of marked mailboxes only.

15.7.2.3 STATUS
The STATUS command can be used to obtain information about a mailbox without opening it. The
STATUS command has two parameters: the first parameter is the mailbox name and the second one
(in parentheses) is the list of item statuses.

The status of an item in a mailbox may be as follows:

• MESSAGES: The server will return the number of messages in the mailbox.
• RECENT: The server will return the number of items with the \Recent attribute.
• UIDNEXT: The server will return the number of the message that will be received next.
• UIDVALIDITY: The server will return a unique identification (UID) of the mailbox.
• UNSEEN: The server will return number of items without the \Seen attribute.

In the following example, we will look at the INBOX status instead of the private mailbox status
(/var/spool/mail/dostalek):

4 STATUS INBOX (MESSAGES RECENT UIDNEXT UIDVALIDITY UNSEEN)
* STATUS INBOX (MESSAGES 6 RECENT 0 UNSEEN 4 UIDNEXT 7
 UIDVALIDITY 978588855)
4 OK STATUS completed

 403

Email

 404

15.7.2.4 SELECT and EXAMINE Commands
The SELECT command allows us to open the mailbox, i.e., switch to 'Open mailbox' mode. The
EXAMINE command is similar to the SELECT command, but it opens the mailbox for reading
purposes only. The mailbox name will be entered as a parameter:

5 select INBOX
* 6 EXISTS
* OK [UIDVALIDITY 978588855] UID validity status
* FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
* OK [PERMANENTFLAGS (\Answered \Flagged \Deleted \Draft \Seen)]
 Permanent flags
* OK [UNSEEN 3] 3 is first unseen
* 0 RECENT
5 OK [READ-WRITE] SELECT completed

The server's reply is more complex; it comprises several kinds of lines:

• The line containing 6 EXISTS states that the currently open mailbox contains 6 messages.
• The OK [UIDVALIDITY 978588855] line states the unique ID of the mailbox.
• The FLAGS line contains parenthesized identification list of the flags (at a minimum,

the system-defined flags) that are applicable for this mailbox:
o \Seen: Message has been read.
o \Answered: Message has been answered.
o \Flagged: Message marked as urgent.
o \Deleted: Message marked as deleted. The EXPUNGE command may be

used to delete messages.
o \Draft: Message is not finished yet.
o \Recent: New message. This message will not be marked as \Recent

after the next mailbox opening.
• The OK [PERMANENTFLAGS Answered \Flagged \Deleted \Draft \Seen)] line lists

attributes, which the client may change and which will remain changed permanently
even after a particular session has ended.

• The OK [UNSEEN 3] line specifies the number of the first unread message in the
mailbox (i.e., all the messages preceding this one have been read).

• The 0 RECENT line shows the number of messages marked as \Recent.

15.7.3 Open Mailbox
Every mailbox has its unique identification, and the server returns it in the UIDVALIDITY
parameter. This identification is independent of the mailbox name in the operating system.

Similarly, every email message in the mailbox also has its own identification, which is guaranteed
to be unique as well. The identification sequence is an incremental one. By combining the mailbox
and the message identifiers, we will get a unique identification of a particular message in the system.

This unique identification is guaranteed, but it is not very useful. That is why messages are
sequentially numbered from one onwards within a mailbox. So if there is, for example, a message
deleted using the EXPUNGE command, other messages in the mailbox must be renumbered.

Chapter 15

15.7.3.1 COPY
The COPY command will copy messages from the open mailbox into the mailbox listed as the
second parameter. The first parameter is the number of the message to be copied. We can list a
range of messages instead of only one (for example, 3:6 is a range for messages number 3, 4, 5,
and 6). The following example will copy messages numbered from 3 to 6 into the mailbox
called Mailbox1:

3 COPY 3:6 Mailbox1
3 OK COPY completed

15.7.3.2 SEARCH
The SEARCH command can be used to search for messages in a mailbox. A search is performed
according to the search criteria listed as parameters with the SEARCH command. If there are many
search criteria listed, the search will select messages that fit all the criteria all at once (AND).
However, we have to add that there is also the OR criterion, which assesses partial criteria by
means of the OR operation. There is also an analogous negative criterion NOT.

The following is a list of criteria:

• Message range, for example, 3:6
• ALL (all the messages in the mailbox)
• ANSWERED (all the messages marked as \Answered)
• DELETED (all the messages marked as \Deleted)
• DRAFT (all the messages marked as \Draft)
• FLAGGED (all the messages marked as \Flagged)
• SEEN (all the messages marked as \Seen)
• NEW (all the message marked as \Recent, but without the \Seen mark)
• RECENT (all the messages marked as \Recent)
• UNANSWERED (all the messages not marked as \Answered)
• UNDELETED (all the messages not marked as\Deleted)
• UNDRAFT (all the message not marked as \Draft)
• UNFLAGGED (all the message not marked as \Flagged)
• UNSEEN (all the messages not marked as \Seen)

string• BODY (all the messages where the body contains a particular string)
string• TO (all the messages that contain a particular string in the TO header field)
string• CC (all the messages that contain a particular string in the CC header field)
string• BCC (all the messages that contain a particular string in the BCC header field)

string• SUBJECT (all the messages that contain a particular string in the Subject
header field)

 405

Email

 406

• FROM string (all the messages that contain a particular string in the From header field)
• HEADER header field string (all the messages containing a particular string in a

particular header field)
• ON date (all the messages sent on a particular date)
• BEFORE date (all the messages whose internal date is older than a particular date)
• SINCE date (all the messages whose internal date is the same or later than a

particular date)
• SENTBEFORE date (all the messages sent before a particular date)
• SENTON date (all the messages sent on a particular date)
• SENTSINCE date (all the messages sent on or after a particular date)
• LARGER size (all the messages larger than the listed byte size)
• SMALLER size (all the messages smaller than the listed byte size)
• UID id (all the messages with an explicit identification)
• NOT (the negation of search criterion)
• OR criterion1 criterion2 (OR operator)

An example:
789 SEARCH UNSEEN NOT FROM dostalek SINCE 4-Jan-2000
* SEARCH 7 8
789 OK SEARCH completed
Result: Messagess 7 and 8 satisfy searching criteria.

15.7.3.3 FETCH
The FETCH command can be used to download a message or a part of it from a server. This
command has the following syntax:

FETCH messages (what)

While the term messages means either a number or a message range (for example, 2:93), what
means which part of the message will be obtained. We can use parentheses to specify various
information that the server needs to get.

Here are some examples:

• BODY[section]: The server will return the content of the section listed in the square
brackets. Sections are HEADER, HEADER.FIELDS (header fields whose names are listed
in parentheses), HEADER.FIELDS.NOT, MIME, and TEXT (message text). For example:

 89 FETCH 9 BODY[HEADER.FIELDS (FROM DATE)]
* 9 FETCH (BODY[HEADER.FIELDS ("FROM" "DATE")] {83}
Date: Fri, 5 Jan 2001 15:28:39 +0100
From: Libor Dostalek test user <dostalek>

)

 89 OK FETCH completed

The FETCH command returns the Date and From header fields from message number 9.
Data sent from the server is in parentheses (after the FETCH string). The first line of the

Chapter 15

returned data repeats the data that has been returned by the server—BODY[HEADER
.FIELDS ("FROM" "DATE")] followed by the string {83}. Curly braces contain the length
of the following data that did not fit on this line. This means 83 bytes of data is being
sent, and the end of data is indicated by a closing parenthesis.

• BODY[section]<from to. >: This is analogous to the previous option, where the angular
brackets contain the volume of data to be transferred. The following example will
transfer the first 20 bytes from the data part of message number 6

 90 FETCH 6 BODY[TEXT]<1.20>
 * 6 FETCH (BODY[TEXT]<1> {20}
 20 bytes of message
)
 90 OK FETCH completed

• BODY.PEEK[section]<from.to>: This command is analogous to BODY, but it does not
mark messages returned as \Seen.

• FLAGS: Returns attributes of the listed messages:
81 FETCH 9:10 FLAGS
* 9 FETCH (FLAGS (\Seen))
* 10 FETCH (FLAGS (\Seen))

 81 OK FETCH completed

• RFC822: Returns the message in a format specified by RFC 822:
83 fetch 9 RFC822
* 9 FETCH (RFC822 {277}
Received: by P30X01.cbu.pvt.cz; (5.65/1.1.8.2/23Jun99-9.1MPM)
 id AA18388; Fri, 5 Jan 2001 15:28:39 +0100
Date: Fri, 5 Jan 2001 15:28:39 +0100
From: Libor Dostalek test user <dostalek>
Message-Id: 0101051428.AA18388@P30X01.cbu.pvt.cz
To: dostalek
Subject: Experiment

Message text
)

 83 OK FETCH completed

• RFC822.SIZE: Returns the message length:
84 fetch 9 RFC822.SIZE
* 9 FETCH (RFC822.SIZE 277)

 84 OK FETCH completed

• UID: Returns the message number.
• BODYSTRUCTURE: Returns the message structure. For example, a message containing

text in two alternative forms (text and HTML), and an attached file in MS Word
format has the following structure:
91 FETCH 11 BODYSTRUCTURE
* 11 FETCH (BODYSTRUCTURE ((("TEXT" "PLAIN" ("CHARSET" "iso-8859-2") NIL
NIL "QUOTED-PRINTABLE" 10 1 NIL NIL NIL)("TEXT" "HTML" ("CHARSET" "iso-
8859-2") NIL NIL "QUOTED-PRINTABLE" 345 10 NIL NIL NIL) "ALTERNATIVE"
("BOUNDARY" "—=_NextPart_001_0008_01C07734.EBEF7F00") NIL
NIL)("APPLICATION" "MSWORD" ("NAME" "file.doc") NIL NIL "BASE64" 26628 NIL
("ATTACHMENT" ("FILENAME" "file.doc")) NIL) "MIXED" ("BOUNDARY" "——
=_NextPart_000_0007_01C07734.EBEDF860") NIL NIL)

 91 OK FETCH completed

 407

Email

 408

Here is the message in the RFC 822 format to demonstrate the difference:
Message-Id: <000b01c0772c$8b1046e0$950e11ac@libor>
From: "Libor Dostalek" <dostalek@pvt.cz>
To: <dostalek>
Subject: test
Date: Fri, 5 Jan 2001 16:31:14 +0100
Mime-Version: 1.0
Content-Type: multipart/mixed;
 boundary="——=_NextPart_000_0007_01C07734.EBEDF860"

This is a message in MIME format containing several parts.
———=_NextPart_000_0007_01C07734.EBEDF860
Content-Type: multipart/alternative;
 boundary="——=_NextPart_001_0008_01C07734.EBEF7F00"
———=_NextPart_001_0008_01C07734.EBEF7F00
Content-Type: text/plain;
 charset="iso-8859-2"
Content-Transfer-Encoding: quoted-printable

Message text

———=_NextPart_001_0008_01C07734.EBEF7F00
Content-Type: text/html;
 charset="iso-8859-2"
Content-Transfer-Encoding: quoted-printable

<HTML>
<BODY bgColor=3D#ffffff>
<DIV>
Message text
</DIV></BODY></HTML>

———=_NextPart_001_0008_01C07734.EBEF7F00—

———=_NextPart_000_0007_01C07734.EBEDF860
Content-Type: application/msword;
 name="file.doc"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
 filename="file.doc"

MS Word document encoded by Base64

———=_NextPart_000_0007_01C07734.EBEDF860—

15.7.3.4 STORE
The STORE command serves to change item attributes (see the SELECT command) in a mailbox. It is
obviously possible to add, for example, the \Draft attribute. However, the most interesting
attribute is \Deleted, which prepares the item for deletion. The EXPUNGE command will then
delete the item.

The STORE command has three parameters:

• Item number or range of item numbers in a mailbox where the change of attributes occurs.
• The second parameter is one of the following keywords: FLAGS, +FLAGS or –FLAGS. By

using the +FLAGS keyword, we add attributes, by using the –FLAGS word, we remove
attributes listed as the third parameter, and by using the word FLAGS, we set item
parameters to the parameters listed as the third parameter of the STORE command.

• The last parameter is a list of attributes enclosed in parentheses.

Chapter 15

Examples:
35 store 9:10 +FLAGS (\Deleted)
* 9 FETCH (FLAGS (\Seen \Deleted))
* 10 FETCH (FLAGS (\Seen \Deleted))
35 OK STORE completed

36 store 10 -FLAGS (\Deleted)
* 10 FETCH (FLAGS (\Seen))
36 OK STORE completed

37 store 9 FLAGS (\Deleted)
* 9 FETCH (FLAGS (\Deleted))
37 OK STORE completed

15.7.3.5 EXPUNGE
The EXPUNGE command deletes items in the mailbox marked as \Deleted. There are 11 messages
in our mailbox, and messages number 9 and number 10 are marked \Deleted. The EXPUNGE
command will cause the following:

38 EXPUNGE
* 9 EXPUNGE
* 9 EXPUNGE
* 9 EXISTS
* 0 RECENT
38 OK Expunged 2 messages

You will probably think there is a mistake because messages 9 and 10 should have been erased, but
message number 9 is erased twice. It works as follows: immediately after the deletion of message
number 9, renumbering inside the mailbox will take place because messages inside the mailbox must
be numbered by a continuous sequence of numbers. So the original message number 10 is message
number 9 now. So the new message number 9 (initially number 10) must be deleted now.

15.7.3.6 CLOSE
The CLOSE command will help us to close the mailbox and switch to the 'Authenticated state' mode.

100 close
100 OK CLOSE completed

15.8 Mailing Lists
Electronic mail is sent to one or more recipients. The fundamental idea of a mailing list is that we
want to send the information to several recipients—mailing list members.

Such request can be met in several ways: manually or by using a helpful application (for example,
mailman, listserv, majordomo, etc.), or by the NNTP protocol described in the next chapter.

The procedure for the manual operation would be as follows: We create a group email address
within the local mail client. This group address includes all the mailing list members. We send the
mail messages to this group address. The problem is that every member of our mailing list must
create a group address manually, and every member of the mailing list might forget to add some
members to his or her group address. The forgotten addresses may vary from member to member.
Group addresses can also be created on servers (called as aliases). The disadvantage of this is that
the server administrator must maintain this group address manually.

 409

Email

 410

A helpful application automates this. This is a server, and it has its own mailing list email address
(let's say it is conference@company.com). Members of the mailing list will then send their
contributions to conference@company.com, which will then distribute these contributions to all the
mailing list members. Message headers generally include the Reply-To:conference@company.com
header field so that recipients wanting to reply will simply select the Reply button in their mail
application, and their contribution to the mailing list will be created automatically. Minor
problems may arise when you wish to flame (verbally attack on the Internet) a particular member.
You will realize this is not possible by simply pressing the Reply button, but that you have to copy
the sender's name from the From header field and paste it into the To header field, otherwise you
will be sending your spicy response to everyone.

Mailing lists are divided into open and closed lists and also into moderated or unmoderated lists.
Anyone can become a member of an open mailing list as long by sending a mail to the mailing list
mail address (let's say the mailing list address is conference-request@company.com) with a body
that contains only one line:

SUBSCRIBE mailing-list name surname

You might be wondering why the command does not include your email address. The email
address is actually taken from the header field of your email (from the From header field).
Similarly you may sign out of the mailing list by using the following command:

UNSUBSCRIBE mailing-list

Some mailing lists use the SIGNUP or JOIN command instead of SUBSCRIBE. Therefore, it is
advisable that you send an email containing the HELP string before you even start communicating
with the mailing list. Then the mailing list will send you instructions including the description of
the commands it accepts. If your email address changes, it is necessary to sign out of the mailing
list before such a change and log in with your new address. Under these circumstances, if you do
not manage to log out in time, you will need to send an email from the old address (for example,
via the Telnet program as described in Section 15.4).

One cannot log into a closed mailing list so easily. It is necessary to contact the mailing list
administrator, who will add you into the configuration file manually.

An unmoderated mailing list automatically forwards email messages from its members to everyone
participating. Conversely, an email message sent to a moderated mailing list is displayed to the mailing
list moderator first, who will judge whether the contribution will be distributed further or not.

Helpful applications, for example, mailman, listserv, majordomo, etc., have many functions. The
most important one is the email message archiving. The mailing list will save email messages into
an archive. Using commands sent by email, one can get to older email messages. By sending the
HELP command, the syntax for these commands will be displayed. There will also be commands
that we can use to find out about mailing lists provided by a particular server, and we can find out
who the members are.

Chapter 15

The retrieval of information from servers by using emails was very popular at the time when there
were no web servers. To make life easier, current mailing list archives have gates for the HTTP
protocol so the information in mailing list archives can be easily accessed. Another type of gate to
mailing lists is a gate based on the NNTP protocol. Contributions to such a mailing list are then
distributed to one of the NNTP forums.

The basic feature of a mailing list application is the fact that contributions are delivered to
mailboxes of mailing list members. So if you are on a vacation for a month, you will not miss any
contribution as all of them will be in your mailbox.

 411

16
Forums

Whereas an email message is delivered to a recipient's mailbox, a news message is delivered to an
NNTP server (news server) into a newsgroup (discussion forum or simply forum). A user must log
in to the news server and must subscribe to some concrete newsgroup and work with news
messages in the newsgroup.

News messages are in the newsgroups only for limited time. If the user is on holiday for a long
duration, he or she might even miss some news contributions. In the case of email, the user would
loose messages if the mailbox gets full.

Support from Operating Systems
While NNTP clients are mostly an integral part of mail clients (for example, Outlook Express),
NNTP servers are usually not a part of installation sets of common operating systems. This is why
the running of an NNTP server is not so easy, and it is usually the business of big ISPs.

Security
Securing news articles is not so common. It is possible to use the NNTP over SSL/TLS
communication (in this case, we talk about NNTPS). News messages can also be hypothetically
secured with the help of S/MIME. In practice, only an electronic signature could be used. The
encryption of a news message is questionable because it is not clear which public key should be
used for encrypting.

User Sector
The usage of news depends on a particular region. In some regions it is a very popular, while in
others it is almost not used at all. News has problems, probably even more than emails, with
unasked contributions (often very vulgar) that constantly lower its popularity.

Contributions to newsgroups or forums using the NNTP protocol are maintained on news servers
(NNTP servers). Users can download a particular contribution and read it. Contributions on
servers are maintained for a certain time period (several days) and then deleted; so if you do not
get to read it, too bad.

Contributions are maintained on servers, but exchanging them between servers is also possible. This
is a very complicated matter that is not managed by any protocol, but only by what is customary.
Therefore, the configuration of such a news server is really an art. Configuration of news servers
generally falls under the jurisdiction of the same wizards that take care of mail servers. One of the
criteria when choosing an Internet provider is the up-to-date state of its news server.

Forums

 414

The problem is in the distribution of contributions (news articles) among servers. From the global
point of view, there are few significant channels for news. These channels are so huge that they
can occupy a transmission bandwidth just for the connectivity of the provider. As news is quite
expensive, we should not be surprised if the providers block access to their news servers for the
clients of their competitors.

We can have private discussion groups on an intranet, which do not propagate into the Internet.
Although the NNTP protocol itself does not support proxies, gates, or tunnels, intranet clients usually
do not have a problem getting through the firewall to the provider's news server—there is a generic
proxy on the firewall for such purposes, because clients are usually not required to access the Internet
via more than one news server.

If you read a contribution in a discussion group, you have two options for replying. You can either
reply using the NNTP protocol and send in your own contribution to the discussion group, or you
can reply to the author yourself via SMTP (i.e., via email).

Users can either enter discussion groups as anonymous users or they need to be authenticated
when entering a discussion group for users only. Authentication is possible by using a name and
password or in more sophisticated ways such as secured access via SSL/TLS.

The most interesting feature is the names of discussion groups; they are similar to computer DNS
names. For example, there can be a computer named server.company.com. The computer name
includes the top-level domain (com) on the extreme right, then the second-level domain (company),
and so on. This means every DNS name is read from right to left.

On the other hand, the names of discussion groups are read from left to right. The name
'alt.binaries.pictures.nature' is read as follows: 'nature' is a subset of group 'pictures',
which is a subset of the group 'alt.binaries'.

The top-level groups are as follows:

• comp: Discussion groups about computers
• net: Discussion groups about computer networks
• alt: Alternative (entertainment groups) like alt.binaries (contains binary data)

Individual national groups begin with country identification such as de for Germany, cz for the
Czech Republic, and so on. Large corporations (like Microsoft) also have main groups.

16.1 Message Format
The format of the contribution is specified by RFC 1036. The format is similar to an email
message format except that there are even more header fields. Therefore, we will only be
interested in header fields that are specific to contributions. They are as follows:

Chapter 16

• Path header field: This header field is analogous to the email 'Received header' field.
While every mail server adds a new 'Received header' field at the beginning of the
message, there is only one 'Path header' field. Names of news servers through which
the message passes are added from the left and separated with an exclamation mark.
PATH: news.nextra.cz!newsfeed1.online.no!nextra.com

This means that the message went from the nextra.com server to the newsfeed1.o
 nline.no server and ended up on the news.nextra.cz server.

• News group header field: This header field indicates the discussion group for which
the messages are intended. For example:
Newsgroup: alt.binaries.pictures.nature

• Message-ID header field: This header field represents a unique identification of the
contribution (message).

• Expires header field: This header field is an explicit expression indicating the
message expiration date. If it is not stated, messages will be erased before or after
expiration of a period set by the particular news server administrator.

• Control header field: If a message contains this header field, then it is a service
message sent between news servers.

• Approved header field: This header field is used for moderated discussions and
contains information concerning the person who allowed the distribution of the
message within a discussion group.

• Lines header field: This header field contains the number of lines in the body of
the contribution.

16.2 NNTP Protocol
The NNTP protocol is specified in RFC 977. The NNTP protocol server listens at a well-known
port 199/TCP.

Once again, as the NNTP protocol commands are in ASCII, it is possible to use the Telnet program
(for example, from Windows 2000/XP) to communicate with the news server:
C:\WINNT>telnet news.provider.com 119

After a connection is established, the server will introduce itself as follows:
200 news.provider.com InterNetNews NNRP server INN 2.4.1 ready (posting ok).

The first line of a reply is always a status line indicating how successful we were. The status line
begins with a three-digit status code. The three-digit status codes are similar to those in the FTP
and HTTP protocols:

 100 help text follows
 199 debug output
 200 server ready – posting allowed
 201 server ready – no posting allowed
 202 slave status noted

 415

Forums

 416

 205 closing connection – goodbye!
 211 n f l s group selected
 (n = estimated number of articles in group,
 f = first article number in the group,
 l = last article number in the group,
 s = name of the group.)
 215 list of newsgroups follows
 220 n <a> article retrieved – head and body follow 221 n <a> article
 retrieved – head follows
 222 n <a> article retrieved – body follows
 223 n <a> article retrieved – request text separately 230 list of new
 articles by message-id follows
 231 list of new newsgroups follows
 235 article transferred ok
 240 article posted ok
 335 send article to be transferred. End with <CR-LF>.<CR-LF>
 340 send article to be posted. End with <CR-LF>.<CR-LF>
 400 service discontinued
 411 no such news group
 412 no newsgroup has been selected
 420 no current article has been selected
 421 no next article in this group
 422 no previous article in this group
 423 no such article number in this group
 430 no such article found
 435 article not wanted – do not send it
 436 transfer failed – try again later
 437 article rejected – do not try again.
 440 posting not allowed
 441 posting failed
 500 command not recognized
 501 command syntax error
 502 access restriction or permission denied
 503 program fault – command not performed

The client of the NNTP protocol may find itself in two situations:

• The client is the end user, usually sitting at a PC, who would like to join a particular
discussion, i.e., he or she wants to read messages and send contributions to the discussion.

• The client is a news server that wants to obtain new contributions from another
server or wants to send new contributions to another server.

16.2.1 End User Communication
At first, the end user needs to find out which groups actually exist; this can be done using the LIST
command:

LIST
215 Newsgroups in form "group high low flags".
alt.0099 0000000125 0000000125 y
alt.0d 0000009272 0000009269 y
alt.12hr 0000008408 0000008405 y
alt.12step.cuckold.jaime-de-castellvi 0000001787 0000001786 y
alt.12step.pedo.derek-mcmurray 0000001203 0000001202 y
alt.12step.sadomasochism.thewitch-dragon 0000002802 0000002801 y
alt.1d 0000029493 0000029483 y
alt.23is.strange 0000003566 0000003564 y
alt.2600d 0000002358 0000002358 y
alt.2600hz 0000004450 0000004450 y
alt.2d 0000005892 0000005892 y
...

Chapter 16

The first line of the reply is the status line with the status code 215 (the process was successful,
and the group list follows); the following lines list individual groups. Each newsgroup is sent as a
line of text in the following format:
group last first p

where group is the name of the newsgroup, last is the number of the last known article currently
in that newsgroup, first is the number of the first article currently in the newsgroup, and p is
either y or n indicating whether posting to this newsgroup is allowed (y) or prohibited (n) and m
indicates that the group is moderated.

The first group is alt.0099. At this moment the server has one messages for this group. The
highest message number in this group is 125 and the lowest one is also 125. The ending letter y
indicates that it is possible to add contributions into this group.

Figure 16.1: MS Outlook Express shows the same information graphically

If the client is interested in, for example, the discussion group called alt12.hr, he or she can use
the GROUP command to find out the number of contributions in this group. At the same time, this
command will set it up to work with this group.

GROUP alt12.hr
211 2 148 149 alt12.hr

The server replies with a status line (with status code 211) that it has two messages available for
this group (numbers 148 and 149). The STAT command with message number as the message
parameter will allow us to work with message number 148 in the alt12.hr group:

STAT 148
223 148 <91819$9mv$1@news.inet.tele.dk> status

After the status code (223), the STAT command returns the number of the contribution (148) and its
identification in angular brackets. Now, the client may download the whole message using the ARTICLE
command, the header using the HEAD command, and the message body using the BODY command.

 417

Forums

ARTICLE
220 148 <918i9h$9mv$1@news.inet.tele.dk> article
Path: news.nextra.cz!newsfeed1.online.no!nextra.com
 !newsfeed.nettuno.it!enews.sgi.com
 !news.tele.dk!Tele.Dk.POSTED!not-for-mail
From: "Karel Hroch" <karel.hroch@cmail.com>
Newsgroups: alt12.hr
Subject: Some Subject
Date: Wed, 13 Dec 2000 20:22:13 +0100
Organization: Posted Courtesy of Tele Danmark
Lines: 13
Message-ID: <918i9h$9mv$1@news.inet.tele.dk>
NNTP-Posting-Host: p016.as-l006.contactel.com

News text

If the client wants to send a contribution to the discussion group, he or she will use the POST
command (the message is ended with a period on a new line). There are special testing discussion
groups for testing messages (for example, alt.test, cz.test, etc.) in order not to bother the users
of real discussion groups. So we will send the contribution to the cz.test testing group:

POST
From: "Libor Dostalek" <dostalek@siemens.com>
Newsgroups: alt.test
Subject: TEST
Date: Fri, 20 Jan 2006 19:48:01 +0100
Organization: Cesnet, Czech NREN Operator
Lines: 3
Message-ID: <937kje$1fq7$2@news.cesnet.cz>

Test from Libor
.
340 Ok
240 Article posted

This time instead of using the Telnet program, we will use MS Outlook Express to look at the results:

Figure 16.2: The contribution displayed by the MS Outlook Express application

 418

Chapter 16

16.2.2 Communication Among Servers
As far as the TCP protocol is concerned, this is once again a client-server communication. Again,
there can be two scenarios:

• The NNTP server (as a TCP client) wants to obtain new groups (NEWGROUPS
command) and new contributions (NEWNEWS command).

• The NNTP server (as a TCP client) wants to offer new contributions to the other
party (IHAVE command).

New forums (new news groups) on the NNTP server is possible to learn with the help of
NEWGROUPS command. The NEWGROUPS command has two mandatory parameters: date (in the
YYMMDD format) and time (in the HHMMSS format). The question is, does the remote NNTP server
have anything new since the specified date (in the first parameter in YYMMDD format) and time
(in the second parameter in the HHMMSS format).

NEWGROUPS 060101 120000
231 New newsgroups follow.
free.it.ales.arti.cartoni 0 1 y
.

Since the listed time, the server has got one new forum free.it.ales.arti.cartoni (the report
is similar to the one used in the LIST command).

New contributions (news articles) posted or received by the specified news group since the
specified date will be listed with the help of NEWNEWS command. The first parameter of the
NEWNEWS command is the name of the discussion group whose contributions are being requested.
Other parameters are date and time.

Newsgroup name containing an asterisk (*) may be specified to broaden the article search to some
or all newsgroups. The asterisk will be extended to match any part of a newsgroup name. The
following example asks for all new contributions (news articles) for the main news group CZ.

NEWNEWS cz.* 060101 200000
230 New news follows
<9907.32994-27222-512060803-978805386@seznam.cz>
<A05CF6DED9CDD41193EA0008C724357801AA00@exchange.diamo.cz>
937kje$1fq7$2@news.nextra.cz ...
.

The server returns the unique identification of a new article. New articles can be downloaded
using the ARTICLE command with the unique article identification parameter (in angular brackets):

ARTICLE <3A5735AB.B4F794B5@regionet.cz>

If we want to offer a contribution to another party, we can use the IHAVE command with the
article identification parameter (in angular brackets). The other party will find out whether they
have such an article and if not, will request this article.

IHAVE <937kje$1fq7$3@news.nextra.cz>
335 News to me! <CRLF.CRLF> to end.
 sends news
.
235 Article transferred successfully. Thanks.

 419

Forums

 420

In reality, news servers are actually configured to communicate only with selected news servers:
IHAVE <937kje$1fq7$3@news.nextra.cz>
480 Transfer permission denied

16.2.3 Session Termination
The NNTP protocol session is terminated using the QUIT command.

17
Lightweight Directory Access

Protocol

Directory Access Protocol (DAP) was established by the International Telecommunication
Union (ITU) in the X.500 series that looked for an electronic analog of a telephone directory
book. DAP protocol was chosen for searching electronic directories, but it was too complicated for
Internet implementation. Therefore, people dealing with the Internet simplified it and developed a
new protocol. For naming the new protocol, they simply added the word 'Lightweight' at the
beginning of DAP.

The architecture is simple: On the server, there is a particular directory (database), and an LDAP
server that enables clients to access the database through the LDAP protocol.

Support from Operating Systems
Most email clients contain an "Address book" tool that can access LDAP servers. At present,
most server distributions contain an LDAP server (for example, Active Directory in Windows
2000/2003).

Security
Similar to HTTP, LDAP also supports various authentication methods. LDAP over SSL/TLS,
called LDAPS, is also common.

User Sector
At present, many users use LDAP, but most of them probably do not even know that their
computer uses this protocol.

17.1 Protocol Principle
The LDAP is of the client-server protocol type. The client connects to the server (a well-known
port is 389/TCP) and then sends requests in Protocol Data Units (PDU) that have ASN.1 syntax
and are encoded in BER (Basic Encoding Rules). The server accepts the request, performs the
requested operation, and returns results. Communication between the server and the client need
not be synchronous, and the client and the server must be able to work in asynchronous mode (for
example, the client does not have to wait for a reply for a sent request before sending further
requests). The processing of a pending request can be terminated by the abandon command. The
LDAP protocol also allows client authentication.

Lightweight Directory Access Protocol

The communication protocols described earlier were communicating in a text form. This
is why we have been able to simulate the communication with the help of the Telnet
program. In contrast, the LDAP's protocol data units are binary (BER encoded). Hence
for LDAP, the appropriate LDAP clients must be used.

17.2 Data Model of LDAP Directory
The Directory Information Tree (DIT) is the basic data structure with which the LDAP protocol
works. The DIT may be distributed over more than one physical server. Distribution over physical
servers is carried out by means of referrals. For example, if we are searching for a record on
another server, the record will contain a referral item that contains one or more LDAP URLs with
a link to the particular subtree.

A tree is made up of entries. Every entry has an assigned set of named attributes. Such named
attributes may be, for example, country (c), organization (o), common/canonical name (cn). An
entry in an LDAP tree usually describes an object in the real world (for example, a company, a
person, a printer, a computer, or a user group). As an example, we will use an entry for a person:

• Surname (sn): Rasek
• Canonical name (cn): Ludek Rasek
• Telephone (telephoneNumber): 345

Every entry attribute has its own name and value. Some attributes within an entry have a
privileged position and their value differentiates the entry from other entries on the same tree
level. A group of these special attributes forms the Relative Distinguished Name (RDN). By
using the RDN, we can choose one entry from all those at the same tree level.

Figure 17.1 shows the tree representing a company's staff. They are at the same tree level, and we
can distinguish among them (within the scope of LDAP) by giving everyone attribute(s). The
attributes that form the RDN are determined during creation of the entry. The entries shown in
Figure 17.1 are of the same type, but they can still have different attributes forming the RDN. The
figure shows the entries of the 'person' group, which has mandatory attributes like sn and cn as
well as optional attributes like telephoneNumber, description, etc.

Figure 17.1: Tree structure formed by RDN

 422

Chapter 17

In Figure 17.1, the entry for a person named Ludek Rasek contains only one unique attribute, the
canonical name (cn), shown as a bold font in the figure. By using this name, we can distinguish
this entry from others (i.e., from other colleagues in the same section).

There could also be another person named Ludek Rasek in the company, who works in another
department. If so, there are two RDN entries cn=Ludek Rasek within the tree, but these are in different
places. In order to distinguish between these entries, every entry is assigned a distinguished name (DN).
This name determines the entry's position in the tree, and it is formed by concatenating the RDN entries
by which we would get from the tree root to the desired entry. Therefore, our two colleagues, both
named "Ludek Rasek" can be distinguished as follows (different parts of DN are highlighted in italics):

• Ludek Rasek (consultant):
o DN (with full attribute names): canonical name=Ludek Rasek,

organizationalUnit=consulting department, organization=company
o DN (shortened names): cn=Ludek Rasek, ou=consulting department,

o=company
• Ludek Rasek (accountant):

o DN (with full attribute names): canonical name=Ludek Rasek,
organizationalUnit=accounting department, organization=company

o DN (shortened names): cn=Ludek Rasek, ou=accounting department,
o=company

The following figure shows a part of the tree (only attributes of the RDN are shown):

Figure 17.2: Part of the tree

The set of entries within one subtree (with a common root) administered by one or more servers is
called as the naming context. The root of the whole DIT is formed by the DSE entry (DSE is an
abbreviation of DSA Specific Entry, where DSA is an X.500 term for the directory server). There
is information within the DSE entry about the LDAP server(s) and the available administered
contexts. Figure 17.2 shows a simple example of a data structure administered by an LDAP server.
Within a server, there is only one DSE entry.

Figure 17.3 shows another simple example of a data structure administered by an LDAP server.
There are three independent trees. A DN within any such tree always has a common suffix. A list
of naming contexts administered by the server can be retrieved from the DSE entry (three
namingContext attributes are shown inside the DSE box in Figure 17.3).

 423

Lightweight Directory Access Protocol

Figure 17.3: An example of a DIT with three contexts including a DSE entry

An entry is formed by a collection of attributes. Every attribute is of a specific type. The type is
identified by a short name (for example, mail) and an object identifier (OID). The attribute type is
given by:

• The possibility of multiple occurrences of an attribute within one entry
• The possible values of the attribute
• The way of using the attribute value

For example, the mail attribute may include an IA5 string that is not case sensitive. It does not
differentiate between font sizes and can occur more than once in one entry.

A DIT contains a schema. A schema is a set of rules that describe which attribute types may be used
within a DIT, which entry classes may be used, and which properties the entry classes should have.

Every entry has a class (objectClass) assigned. An entry class determines which attributes may
be assigned to an entry. Every entry may have one or more assigned classes. The assignment of
classes to entries is carried out with the presence of one or more attributes of the objectClass
type. Every entry is assigned at least one attribute of the objectClass type. Entry classes
(objectClass) are arranged within a specific hierarchy. If an entry is assigned a specific class, it
will automatically obtain the parent's classes as well.

 424

Chapter 17

Some of the attributes may be assigned for processing purposes on a particular LDAP server. Such
attributes are called as operational. Operational attributes may be used, for example, to record
access authorizations to an item and its attributes. Operational attributes are not returned as the
results of regular search operations unless they are specifically required in the request parameters.
The server may create operational attributes automatically and keep information such as the
author's name (creatorsName), time of creation (createTimestamp), time of modification
(modifyTimestamp), description of entry type (subschemaSubentry), etc.

An LDAP server has to maintain its LDAP schema in such a way as to make it accessible to clients.
Every entry in a DIT has an operational subschemaSubentry attribute. This attribute contains the
entry's DN—the subentry subschema—wherein it is possible to find all the supported entry classes
and all the supported attributes. The subschemaSubentry entry has the following features:

• It contains the cn attribute that is used to form the entry's DN.
• It contains the objectClass attribute with at least two values: top and subschema.
• It contains objectClasses attributes; the values describe the available entry classes.
• It contains attributeClasses attributes; the values describe all the supported

attribute types.

There is a specific type of inquiry prescribed for searching items of the subschema entry type (see
search examples).

Schemas are described using a special syntax in order to enable their automatic download into
LDAP servers and their automatic control. This schema description includes description of entry
classes (objectClass), attributes, syntaxes, and comparison rules.

The example below shows the definition of inetOrgPerson class including all higher classes
(organisationalPerson, person, etc.). The inetOrgPerson class is defined in RFC 2798.

(2.5.6.6
 NAME 'person'
 SUP top
 STRUCTURAL
 MUST (sn $ cn)
 MAY (
 userPassword $ telephoneNumber $ seeAlso $ description
)
)

(2.5.6.7
 NAME 'organizationalPerson'
 SUP person
 STRUCTURAL
 MAY (title $ x121Address $ registeredAddress $
 destinationIndicator $
 preferredDeliveryMethod $ telexNumber $ teletexTerminalIdentifier $
 telephoneNumber $ internationaliSDNNumber $
 facsimileTelephoneNumber $
 street $ postOfficeBox $ postalCode $ postalAddress $
 physicalDeliveryOfficeName $ ou $ st $ l
)
)

(2.16.840.1.113730.3.2.2
 NAME 'inetOrgPerson'

 425

Lightweight Directory Access Protocol

 426

 SUP organizationalPerson
 STRUCTURAL
 MAY (
 audio $ businessCategory $ carLicense $ departmentNumber $
 displayName $ employeeNumber $ employeeType $ givenName $
 homePhone $ homePostalAddress $ initials $ jpegPhoto $
 labeledURI $ mail $ manager $ mobile $ o $ pager $
 photo $ roomNumber $ secretary $ uid $ userCertificate $
 x500uniqueIdentifier $ preferredLanguage $
 userSMIMECertificate $ userPKCS12
)
)

The class definition contains the following items: class name (NAME), parent class (SUP), structure
description (STRUCTURAL), mandatory (MUST), and optional (T MAY) attributes.

In the case of attributes, the definition specifies the attribute name (NAME), description of its
meaning (DESC), the comparison rule to be used for the equality test (EQUALITY), the rule for the
substring equality test (SUB-STR), the uniqueness setting of this attribute (SINGLE VALUE), and
specification of the format in which the attribute is transferred in LDAP messages and whether
binary transfer is required (SYNTAX):

(2.16.840.1.113730.3.1.3
 NAME 'employeeNumber'
 DESC 'numerically identifies an employee within an organization'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

17.3 LDAP Protocol Data Units
Protocol data units are described using the ASN.1 syntax, and they are transferred using the BER
coding subset. LDAP includes the following types of operations (each of them has defined inquiry
and reply formats):

• bind: Allows authentication information to be exchanged between a client and a
server (i.e., user authentication and establishing the session).

• unbind: Termination of the user's session.
• search: Operation for searching in the DIT. Within a reply, the client receives one of

the following types: entry (convenient item), reference to another server, and end of
inquiry processing.

• modify: Modification of an entry.
• add: Adds new entry.
• del: Deletes an entry.
• modifyDN: Changes entry's DN (name) enabling moving the entry within the DIT.
• compare: Testing whether the entry with a specific DN has the required value of a

specific attribute.
• abandon: Termination of a currently running operation.

Chapter 17

• extended: Enables transfer of various messages between a client and a server. These
are encoded into strings; therefore, this is a way of proprietary extension using a
standard methodology.

Every protocol unit of a request may be supplemented with additional information called controls
that may transfer nonstandard extension of the LDAP protocol in a standard methodology. If the
server does not understand such extensions, it may ignore them.

We will describe the most frequently used operation, i.e., searching within the LDAP protocol
in detail.

17.3.1 The Search Operation
The search operation is the most frequent operation run on the LDAP tree. Searching is the only
way of obtaining information from a DIT using the LDAP protocol. The search operation is
governed by the following parameters:

• Base: This means the base of the DN entry from which the search begins. The
search always runs through the base subclasses with the scope determined by
another parameter.

• Scope: This means the scope of a search with respect to the base item. There are
three kinds of searches:

o Base: This serves for searching the attributes within one entry (see
Figure 17.4).

o One level: This is used for searching in direct subclasses of the base
entry (see Figure 17.5).

o Subtree: A search is conducted in the entire subtree of the base entry.
If there is a naming context entered as the base entry, then the entire
naming context will be searched (see Figure 17.6).

• Handling of referrals (links): How alias objects are to be handled while searching. It
may contain the following options:

o Do not follow links: The search does not follow the links to other
servers automatically.

o Follow during search: The links are followed if they are present in the
search result (subclass of the base search object).

o Always follow: Links will be always followed.
• Time limit: This parameter specifies a time limit for a search period.
• Size limit: The size limit for returned results (number of entries).
• Type only: Whether the result will contain attribute types or values.
• Filter: Specifies the criteria for an entry selection (see Section 17.3.1.1)
• List of attributes: Determines which entry attributes specified by the filter will be

contained in the result.

 427

Lightweight Directory Access Protocol

Figure 17.4: Searching within the base scope

Figure 17.5: Searching within the one-level scope

 428

Chapter 17

Figure 17.6: Searching within the subtree scope

The previous figures show various ranges for a search in the LDAP tree. The search shown in the
figures originates from the base node with a unique name, DN: ou=division1, o=company. A search
within the base scope returns results only in the form of a base node attribute. A search within the one
level scope returns only entries that are one level below the search base node. A search within the
subtree scope completely searches the whole subtree below the base node.

17.3.1.1 Filters
Filters specify the conditions with which an entry should comply in order to be returned in a
search result. A filter is defined using logic operators AND (&), OR (|), NOT (!), the matching
rules for equality (=), greater than (>=), lesser than (<=), the presence of an attribute (=*), substring
(comparison string contains * as a wildcard), and approximate comparison (=~). The matching
rules are extensible, enabling the use of implementation-dependent rules.

Filters have an exactly defined form. Matching rules and logic operators are grouped within
parentheses. Parentheses also determine the filter evaluation priorities. The following table shows
several examples:

Base Scope Filter Attribute Description

"" base (objectClass=*) namingContext A special form of query for
selection of the DSE and its
parameters (in this case,
namingContext attribute).

dn:cn=name,
dc company,
dc=com

base (objectClass=
subschema)

 A special form of query for
schema referral; describes the
entry specified by query base.

 429

Lightweight Directory Access Protocol

 430

Base Range Filter Attribute Description

o=sales,
dc=company,
dc=com

subtree (cn=Alice) cn,mail This filter finds an entry with
cn=Alice within the entire
subtree of a sales department.

o=sales,
dc=company,
dc=com

one
level

(objectClass=*) dn A query for retrieving all DN
entries on one subtree level,
which is typically used in
LDAP browsers on expanding
the subtree.

Table 17.1: Filters

Some filters describe special types of searches; they are as follows:

• To search with an empty base, the base scope, the objectClass=* filter, and a list of
attributes in which we are interested, returns the attributes of a DSE entry.

• To search with the base set for a specific entry, the base scope, and the
objectClass=subschema filter, results in a link to a schema describing that entry.

17.3.2 Further Operations with Entries
Entries in an LDAP tree may be created, deleted, modified, moved (their DN being modified), and
compared. All these modifications can be written into an LDIF file (see Section 17.6).

17.3.2.1 The Add Operation
The add operation will create entries in a tree. To create an entry, the user has to enter:

• DN: A unique name of the entry being created
• A list of attributes of the entry being created

A unique name of the created entry is formed by RDNs concatenated in a string so they describe
the route through the tree from the root to the parent entry. During the entry creation, the LDAP
server will first check whether all DN items comply with the existing entries. After this check, the
server is able to determine which part of the DN forms the RDN of the created entry. A pair,
namely, the name and the value of the attribute(s), forms this RDN of the created entry.

These attributes that make up the RDN are present in a list of attributes belonging to the created
entry. Additionally, the list of attributes must include all the required attributes and also the
objectClass attribute(s). The list of attributes must not contain the operational attributes that will
be added by the server automatically.

Chapter 17

Figure 17.7: Examples of entry creation

17.3.2.2 The Modify Operation
Using this operation, we can modify the set of assigned attributes and their values within an entry.
The parameters of this operation are:

• DN: This specifies which entry is to be modified.
• List of modifications: This specifies what should be done with a given entry. The list

item always contains a flag of the modification method, the attribute name, and the
value set of an attribute.
The list of modifications is a sequence of particular modifications performed. Either the
whole sequence of changes is performed or no changes are performed at all. The list of
modifications contains the following types of items:

o Delete attribute value: This deletes the particular attribute value. If a
value is not entered in the request, all attribute values will be deleted
(the attribute will disappear from the entry). If all the attribute values
are entered—the attribute will also be removed from the entry.

o Add attribute value: This adds the entered attribute value into the entry
if the required attribute is not in the entry yet.

o Replace attribute value: This replaces all the old values with new ones
from the request. If the attribute does not exist, it will be created. If a
replacement with an empty value is required, the attribute will be
removed from the entry.

The modify operation cannot be used to change attributes forming the RDN.

17.3.2.3 The Delete Operation
Using this operation, we can remove an entry from a tree. The only parameter of this operation
is the entry's DN. This operation can only be used to remove branches from a tree (entries
without any subclasses). Then removal of a subtree has to be carried out in a client program by a
recursive algorithm.

 431

Lightweight Directory Access Protocol

 432

17.3.2.4 The Modify DN Operation
By using this operation, we can change the DN of an entry and move it within a tree. Parameters
for this operation are:

• DN: This specifies the entry.
• New RDN: This means the new value of the relative name. This is used for changing

the identification among "siblings".
• Delete old RDN: This states whether the values of attributes forming the old RDN

should remain in the entry or should be deleted.
• New superior: This is an optional parameter which, if present, contains the DN of the

new parent of the entry being renamed.

17.3.2.5 The Compare Operation
This operation can be used to compare the value of an attribute from a request with the value of an
attribute saved on a server. Its typical utilization is to verify a password, where the server might
allow comparison, but not reading of the password attributes.

Parameters of this operation are as follows:

• DN: This specifies the name of the entry to be compared with.
• Attribute name value: This specifies the attribute and the value to compared it with.

17.4 Server Programs
The following is a list of three examples of servers available for testing and utilization
of LDAP:

• OpenLDAP (http://www.openldap.org/): An open source project implementing
the server as well as the LPADv3 client and client library. OpenLDAP servers can be
configured as a distributed network of mutually cooperating LDAP servers
administrating one DIT. The OpenLDAP supports replication in a single-master
mode and multi-master mode.

• Sun Java System Directory Server (see http://www.sun.com/).
• Windows 2000/2003 Server: As a part of the server, the Active Directory is installed

and the AD native interface is LDAP. AD provides a distributed system with servers
maintaining the DIT in a multi-master model.

17.5 Client Programs
The following are the examples of a client program.

Chapter 17

17.5.1 The LDAP Browser
The LDAP browser is an LDAP client on the Java (J2SE) platform built on Java Naming and
Directory Services, and it is portable and usable on a whole range of platforms supporting Java
(functions on Linux and Windows with JRE1.3.1). This program works smoothly with an
LDAPv3 directory by using anonymous and non-anonymous access and access using SSL. Its
functions are carried out by an intuitive user interface that is similar to Windows Explorer (for
example, it supports drag-and-drop). It enables easy modification, addition, and deletion of
entries. It contains several editors for binary attributes (password, X.509 certificate, etc.).

Figure 17.8: A Java LDAP browser

17.5.2 The OpenLDAP Client
An OpenLDPA client is a client part of the OpenLDAP package distributed under the GPL
license. It contains a package of utilities to carry out all of the LDAP operations with complete
control from the command line. The inputs and outputs of the utilities may be in an LDIF format
(see Section 17.6).

 433

Lightweight Directory Access Protocol

Figure 17.9: An OpenLDAP client command-line utility for LDAP searching

17.5.3 ADSIedit
ADSIedit is available on the installation CD of Microsoft Windows 2003 server. It is a snap-in
module for Microsoft Management Console (MMC). ADSIedit is a helpful tool for Active
Directory administration because it acts as a low-level editor for Active Diectory using LDAP.

17.5.4 MS Outlook Express and MS Outlook
MS Outlook Express and MS Outlook enable utilization of LDAP as an external source for
a directory. Unfortunately, they do not have extensive search ability; they search by only a
few attributes.

 434

Chapter 17

Figure 17.10: The Find People option in the MS Outlook program

17.6 Lightweight Directory Interchange Format
Lightweight Directory Interchange Format (LDIF) is a specification of the data format for
information exchange between LDAP systems. This format was originally used only for the
description of entries in a directory. Now in its current form (defined in RFC 2849), it can also
serve for transferring change-related information among LDAP servers. There is 1:1 mapping
between the operations of the LDAP protocol and types of entries in LDIF files.

An LDIF file is formed by entries specifying particular changes. The file can contain a set of entries
to import, or it can contain change-related entries. The basic form of an import entry is as follows:

dn: <distinguished name>
 <attrdesc>: <attrvalue>
 <attrdesc>: <attrvalue>
 <attrdesc>:: <base64-encoded-value>
 <attrdesc>:< <URL>

 435

Lightweight Directory Access Protocol

 436

The first line of this entry contains the specification of its DN and is followed by attribute values.
An attribute value may be entered in three ways:

• Text: The value is a regular text string encoded using UTF-8. The attribute name is
separated from the data by a colon (:).

• Data: The value comprises data (binary and text) encoded by Base64. In this case,
the attribute name is separated from the data by two colons (::).

• External URL: Data is located in an external source and is specified by a URL. In
this case, the attribute name is separated from the URL specification by :<.

Individual entry items are on separate lines. If the data runs on to more than one line, then every
consecutive line containing data begins with a space.

All entries are mutually separated with empty lines. Lines beginning with # are ignored (comments).

A
CISCO Routers

It is very important that all network administrators know at least the basics of working with
CISCO routers since CISCO is considered the dominant company in this area. Routers of some
other manufacturers and also daemon GNU Zebra (http://www.zebra.org/) use similar
configuration languages to that which CISCO uses. In this book, we provided examples of not
only the configuration of operating systems such as UNIX and Windows, but also of the CISCO
configuration language.

CISCO specializes especially in network active elements (boxes) ranging from switches to
firewalls. These boxes interest us mostly because of their similar configuration language, and the
basics of these boxes are described in this appendix. We will focus exclusively on router
configuration. To find out more, visit http://www.cisco.com/ where you can find thousands of
pages of complete documentation describing both the hardware and the IOS.

CISCO routers are dedicated boxes that attend to only one thing—routing. They run a specialized
operating system called Internetwork Operating System (IOS). So we will actually look at the
IOS configuration. Whether the IOS is run on a tiny box or within an expensive appliance will be
of little importance.

The IOS is available in many different versions. However, the problem is, which protocols should
be supported by the IOS on our router (there are even IOSs with firewalls). The more protocols the
chosen IOS release supports, the more memory it will require, which might be a problem,
especially for older boxes. From an economic point of view, we will also be interested in the price
that, understandably, increases with the increasing number of protocols supported by that
particular version. So if we want to use some exotic network protocols, we have to pay a few
dollars more not only for the memory, but also for the operating system.

Before buying a router, we should decide on:

1. Buying the hardware box
o The box should have the appropriate number of network interface types

that we need (synchronous interfaces, asynchronous interfaces,
Ethernet network interfaces and so on).

o The box should provide good performance and should have sufficient
memory.

o We have to buy the proper cables.
2. Buying the right version of the IOS operating system

CISCO Routers

For the purposes of this appendix, I have borrowed a CISCO 801 box and CISCO 1841. Models of
the 800 series are low cost CISCO routers embedded in plastic boxes. Other series of CISCO
routers (1800 series, 2800 series, 3800 series, etc.) are modular. It is possible to upgrade the router
with additional interface cards, memory cards, etc. Just as children have Lego construction kits,
network administrators have modular CISCO routers.

The choice of these models is not a coincidence (I could not get a different one), but the choice of
the box is not really an issue, since from the point of view of this book, the differences among
them are negligible.

Whatever the type of router that falls into your hands, take a careful look at it, especially at the
back part with connectors. This is how you find out what type of interface the router has. Other
parts of the router are not that important.

Figure A.1: Rear view of CISCO 801 and CISCO 1841 (courtesy of http://www.cisco.com/)

Not taking into account the power source, all CISCO routers contain similar connectors on their
back part. Let's take the CISCO 801 as an example. So going from left to right, the connectors
are as follows:

 438

Appendix A

An RJ-45• connector for Ethernet at 10 MHz frequency.
An RJ-45• connector for console connection. This connecter has the V.24 (RS 232)
interface. For our purposes, this connector will be the most important of them all.
A port for WAN interface cards. Model CISCO 801 has only one embedded
WAN port:

•

Theo RJ-45 connector for ISDN Basic Rate (the S/T interface): It is
important not to forget that the CISCO 802 model is also available, and it
has a U interface and an integrated NT-1 appliance. I would like to stress
here that it is necessary to talk to your ISDN provider about which interface
type they use, so that you save yourself from doing some complicated work
later. It is not true that if you connect a router to a U interface, then you are
unable to connect other ISDN appliances (for example, an ISDN telephone),
since the router of an integrated NT-1 appliance contains an S/T interface
enabling it to connect to other ISDN appliances.

Different CISCO router types also use other interfaces such as:

• An RJ-45 connector for auxiliary port (AUX). This is usually used for remote
administration. It is a classic asynchronous port allowing hardware data flow control. A
modem can be connected to this port as well. A console, by its nature, is a similar port,
though it is primarily aimed at the local configuration of the router (not via modem).
The main difference between the console and the auxiliary port is that the auxiliary
port supports flow control, whereas the console port does not.
The• WAN ports : The WAN ports are usually located on changeable CISCO
interface cards:

o Universal serial interface can be found on all modular CISCO routers (Figure
A.1 shows an example of a serial interface card). Both synchronous and
asynchronous lines can be connected using this port. It is quite likely that it is
used for all protocols in serial lines (HDLC, PPP, Frame Relay, etc.) up to 2
Mbps. In the case of CISCO routers, the WAN port uses a specific
interface—DB-60—on the physical layer. The choice of a suitable cable then
determines a specific protocol on the physical layer that the router will use for
communication. So, if we want to communicate by using, for example the
V.35 protocol, we have to buy a special cable that has one DB-60 connector
on the router side and the V.35 connector on the other side.

o ISDN card.
o Interfaces for different types of Local Area Network (LAN), especially

interfaces for Fast Ethernet and Gigabit Ethernet.
• Voice interface cards and so on.

 439

CISCO Routers

 440

A.1 Interface Identification
CISCO routers have specific names for individual interface types, for example, Ethernet for an
Ethernet interface or Serial for a serial interface. The same applies to lines. Console or simply con used
for a console (marked sometimes as CTY), aux for auxiliary asynchronous interface, tty for
asynchronous lines, and we should not forget to mention vty for network terminals (or pseudo
terminals, if you wish to use the UNIX terminology) to which Telnet will be connected via the network.

Since the router has several interfaces, we always have to specify not only an interface's name,
but also its number that is set by the hardware configuration. For example, if we have two serial
interfaces, then one will be labeled as Serial 0 and the other as Serial 1. Knowing which one is 0
and which one is 1 also depends on the hardware configuration (more information can be found in
the hardware manual). We should not forget to include the number even if the box has just one
interface of that kind. For this reason, we have to include the number also when specifying a
unique console—con 0.

In the case of large routers that are constructed of individual modules, with each of them having
a number of ports, the numbering gets more difficult. In this case, the addressing of a particular
port consists of two parts: the number of a slot in which the module is inserted and the number of
a particular port within the concrete module. These two numbers are separated by a slash. If we
include a module with two Ethernet interfaces into Slot 0, then the box will have, among other
things, the interfaces Ethernet 0/0 and Ethernet 0/1.

The same applies to network lines labeled as 'vty'. Theoretically, an unlimited number of users can log
in via a network using Telnet. They will use the lines in the order they log in, for example, 'vty 0, 'vty 1',
and so on. CISCO routers enable you to configure several lines. In other words, theoretically several
users can be logged in at the same time. Here the term logged in means logged into the IOS system.
This number, for example, does not limit the number of people using PPP protocol.

A.2 Cables
It gets a whole lot more complicated when it comes to cables used with CISCO routers. Therefore,
when buying a router, it is advisable to discuss with the seller the possibility of changing the
supplied cables for different ones, if we find out that we need a different type.

There were no problems while connecting the LAN. I had got the cables from the building
administrator who was in charge of structured cabling. I was interested in only two interface
types—the WAN and console.

The most often used WAN port is the universal synchronous-asynchronous serial interface with
the CISCO DB-60 connector. By choosing an appropriate cable, we will also choose a particular
physical layer protocol that will be used by the router for communication. If you intend to use the
V.35 protocol, you have to get a cable that has a DB-60 connector on the router side and a V.35
interface on the modem side.

The V.35 interface might be the DTE or the DCE (see Figure 3.3 in Chapter 3). The DTE is
usually an end computer, a terminal, or a router and the DCE is usually a modem. Since I will use
synchronous transfer, it is important to set the appropriate time source. CISCO routers implicitly
require that the DCE be the time source (see Figure 3.2 in Chapter 3).

Appendix A

I found out later that I would also need to try direct communication between two routers and to do
this I borrowed another router. When interconnecting both routers via serial lines, I encountered an
interesting problem. The routers were lying next to each other without modems. For this reason, I had
to directly interconnect the two CISCO routers using the V.35 interface. So I had to create a null
modem. Figure 3.5 in Chapter 3 shows how to connect the null modem for the V.24 (RS 232) interface.

Analogously, it is possible to create a null modem for the V.35 interface by crossing the
transmitter with the receiver (and the control signal correspondingly). CISCO deals with such
interconnection by connecting one router to a V.35 DTE cable and the other to a V.35 DCE. Since
one of the cables is male (DTE) and the other female (DCE), it is possible to connect them, thus
creating the null modem. It results in synchronized communication, so one party will have to be
the time source, while the other will have to follow the first one. (Tip: The clock command will
have to be added to the DCE configuration.)

A.3 Memory
CISCO routers usually have three types of memory:

RAM1. : This is usually used by the operating system (the running operating system is
located there). The content of RAM is erased when the router is shut down or there is
a power outage. This memory type is usually labeled as system in commands.
FLASH2. : This memory type is not erased when a power outage occurs. It stores the
operating system that is transferred into RAM when the router is switched on.
NVRAM3. : This is a smaller rewritable memory that is not erased when a power
outage occurs. The router stores copies of the IOS configuration here.

Individual memory types act as file systems. Labeling is similar to the MS-DOS system, although
the A:, B:, C: etc drives are replaced by a memory type such as, flash:, nvram:, system: etc. For
example, a router's start up configuration is stored in nvram:startup-config file. The
configuration of a running system is in the system:running-config file.

In the newer IOS versions, we can also use the cd, dir, pwd, delete commands. By using the
copy command, it is possible to save the current router's configuration in NVRAM:
Copy system:running-config nvram:startup-config

(The same results can be achieved by using the older write memory command.)

The copy command might also use a URL as a parameter. This will enable us to insert a new
version of the operating system into the FLASH memory. You can upgrade your box from the
FTP server, i.e., you can copy a new version of the IOS into the FLASH memory by using the
following command (you will be asked to supply the data that you have not indicated in the
URL specification):
copy ftp: flash:

The older IOS versions support only the TFTP protocol and not the FTP protocol. If we run a
simple TFTP server on our PC, then we can back up the configuration in its root directory by
using the following command:
copy nvram:startup-config tftp:

 441

CISCO Routers

 442

A simple TFTP server for PCs is part of the software that is available at http://www.cisco.com/
pcgi-bin/tablebuild.pl/tftp.

A.4 Console
Console is an asynchronous interface. Connect this interface by a cable to the COM port of your
PC. Now your PC becomes a console used for configuring the router.

The router is supplied with a cable (a null modem for the V.24 (RS 232) interface) with an RJ-45
connector on the router side. On the router side, you plug the cable into the RJ-45 connector, on
the PC side use the 9-pin D-sub connector.

Now let's run the HyperTerminal application on a Windows 2000/XP PC. Set the following
properties for the COM port on the PC; speeds of 9,600 bps, 8 data bits, parity none, 1 stop bit
and no flow control. Problems could occur only if someone explicitly set different values in the
router configuration for managing the terminal.

The HyperTerminal application starts communicating after you switch on the router or when you
press the Enter key (if the router is already running). The problem, however, is that the router asks
you to type a password, which you do not have. The only option is to ignore the preset router start-
up configuration (nvram: startup-config) containing the password and begin working with the
router as if it were brand new (the original start-up configuration will remain in the NVRAM). So,
you have to shut down the router and turn it back on. After turning it on, press the Ctrl + Break
keys. A ROM Monitor (ROMMON) router firmware command line appears.

I entered the confreg command. Experienced network administrators just enter the hexadecimal
value of the configuration register so that the start-up configuration is ignored. I entered the
command without those parameters so it got into the interactive mode. I answered all the questions
as n (no) until I got to: Ignore system config info? y/n, which I answered as y. I accepted
everything without change for the rest of the confreg command and then I entered the boot
command, which loaded the IOS operating system.

Here, the password was not required. I refused the first proposed router configuration by
answering no and the IOS system command line popped up without the need to enter the
password. I entered enable to get into the command mode. Then I copied the original router
configuration from NVRAM into the operating memory by using the following command:
Copy startup-config running-config

I changed the passwords and saved the changed configuration in NVRAM with the write memory
command. I turned the router off and again turned it on. By pressing Ctrl + Break, I got the
firmware command line. I used the confreg command to renew the original settings, so the IOS
was run from the start-up configuration, i.e., it was loaded from NVRAM.

Nevertheless, the CISCO 801 box was a problem. This box does not support the confreg
command. Skipping the configuration at start up depends on the configuration register setting.
First, list the BOOTROM variables by the set command:

Appendix A

boot# set
set baud =9600
set data-bits =8
set parity =none
set stop-bits =1
set console-flags =0
set mac-address =00B0.C28B.76D2
set unit-ip =0.0.0.0
set serv-ip =0.0.0.0
set netmask =0.0.0.0
set gate-ip =0.0.0.0
set pkt-timeout =4
set tftp-timeout =16
set boot-action =flash
set file-name ="c800-oy6-mw.122-28a.bin"
set watchdog =off
set prompt ="boot"
set ios-conf =0x2102

The configuration register (ios-conf) has the value 0x2102. I wrote this value in my paper
notebook as it would be required after the experiment. Now I set configuration register to a new
value and rebooted the router:

boot# set ios-conf = 142
boot# boot

Now, the router skipped the original configuration and I could make the appropriate changes.
Next, I rebooted the router, pressed the Ctrl + Break keys, and set the original value in the
configuration register ().0x2102

A.5 Commands
We can find out which commands we are allowed to be used in the IOS system by using ?.

For example, a question mark entered on the command line in non-privileged mode:
Router>?

Exec commands:
 access-enable Create a temporary Access-List entry
 access-profile Apply user-profile to interface
 clear Reset functions
 connect Open a terminal connection
 disable Turn off privileged commands
 disconnect Disconnect an existing network connection
 enable Turn on privileged commands
 exit Exit from the EXEC
 help Description of the interactive help system
 lock Lock the terminal
 login Log in as a particular user
 logout Exit from the EXEC
—More—

The question mark command can also be used to obtain a list of commands that begin with
a particular character sequence. Just type in those characters followed immediately by the
question mark.

For example:
Router>p?
*p=ping pad ping ppp

 443

CISCO Routers

 444

Alternatively, we can enter a command followed by a question mark without the parameters and
the IOS will give the parameter syntax.

For example:
Router>ping ?
 WORD Ping destination address or hostname
 ip IP echo
 tag Tag encapsulated IP echo

The majority of commands referred to hereinafter may be used only in privileged mode, which can
be accessed by the enable command. You are requested to enter a password (if one is set) by the
system. The privileged mode can be usually recognized by the command prompt not being
terminated by the > character, but by the # character.

For example:
Router>enable
Password: (not shown)
Router#

A.5.1 Non-Privileged Mode
In the non-privileged mode, we can enter some commands that show configuration, but it is
impossible to change its functionality in a significant way. Let's have a look at few examples:

telnet, ping, traceroute: These commands are similar to the commands that we know from the
UNIX and Windows systems. What is interesting, however, is that many commands also work
with network protocols other than TCP/IP.

terminal: By entering this command, we can set various communication parameters of the
terminal. It is important that the same parameters be set on both sides when communicating, i.e.,
both for the terminal emulating program on the PC and on the router. For example, the terminal
type is set to vt100 by entering the following command:
terminal terminal–type vt100

If the vt100 terminal type is also set on the PC, then the up and down arrow buttons usually work
fine for me when going through the command history. I have never managed to set this up in
HyperTerminal, therefore I prefer to use the TeraTerm program.

ppp: If I log into a router via a modem using, for example, an asynchronous line, in order to connect
to the Internet (or intranet), then I usually authenticate myself as a specific user. As described in
Section A.4.1, after authentication, I receive the IOS command line and then I can enter the ppp
command to initiate communication in the PPP protocol. The ppp command starts up the PPP
protocol. (It is also possible to suppress the usage of the CISCO command line for particular users.)

show: We can obtain various information and statistics by using the show command. The
information that will be shown depends on the parameter entered. For example:

• ip shows information about the TCP/IP protocols.
o show ip route shows the routing table list.
o show ip arp shows the ARP cache list.

Appendix A

o show ip interface shows information on the individual
network interfaces.

• terminal shows the setup of the terminal line configuration parameters.
• users shows information about all logged in users.
• version shows the current version of the hardware and software.

login logout, , exit: I can log in as a particular user by entering the login command. The logout
and exit commands terminate the terminal.

enable, disable: I can login in the privileged mode by entering the enable command. The system
will ask for a password if it is required. disable is a privileged mode command that returns you to
non-privileged mode.

A.5.2 Privileged mode
In privileged mode, it is possible to execute, besides non-privileged commands, the commands
used when working with router's configuration and file systems. These are cd, dir, delete, copy,
erase (deleting a file), and especially the configure (router configuration) and debug (list packets
transferred) commands.

The show command is of much more use here such as:

• show debugging: Shows the current debugging setup.
• show running-config: Shows the configuration of a running system.
• show configuration: Shows startup configuration.
• show : Shows a log of events. logging

• show : Shows the information about individual lines. line

• show <interface>: Shows the current information of a particular interface that is
specified as a parameter. For example, the show int serial 0 command will enable
you to find out whether the line as well as the protocols are 'up' or 'down' along with
a lot of other information.

A.6 Configuration
The router has the following two configurations:

Current1. (running configuration): This is the configuration of the currently running
IOS that is displayed by entering show running-config.
Backed2. up configuration in NVRAM : The configuration is backed up in the
memory that is not erased during a power outage and is used after restarting the
router. This configuration is also called the startup configuration and can be
viewed by entering show configuration. The current configuration is backed up into
NVRAM by the write memory command.

 445

CISCO Routers

 446

As we have mentioned in Section A.3, the startup configuration can be downloaded as a text file
via the TFTP or FTP protocols. The text file can be modified in a text editor on our computer, and
then recopied back into the router by using, for example, the TFTP protocol.

An example of a simple configuration file is as follows:
version 12.2
hostname Router
!
enable password siemens
!
interface Ethernet0
 ip address 192.168.2.100 255.255.255.0
!
interface BRI0
 no ip address
 shutdown
!
ip http server
ip route 0.0.0.0 0.0.0.0 192.168.2.1
!
line con 0
 transport input none
line vty 0 4
 password cisco
 login
!
end

Note that the configuration file is composed of individual sections. Sections always start with
a command that starts from the first row. In the above example, we have the following sections:

• version specifies the IOS version.
• hostname specifies the router DNS name.
• enable password specifies the password used to access the privileged mode.
• interface Ethernet0 specifies the Ethernet 0 interface configuration.
• The IP address and the network mask are specified by the ip address parameter.
• interface Serial0 specifies the Serial 0 configuration. Note that the interface is

shut down by the shutdown parameter.
• line con 0 specifies the console configuration. If the login parameter is not mentioned

there, then we log into the non-privileged mode without using a password.
• line vty 0 specifies the first pseudo-terminal configuration for access via network

by the Telnet command. Note that even the non-privileged mode requires login (i.e.,
the login parameter). The password is specified by the password parameter.

• The last section is end.

Let's describe the interactive configuration that is far more common. The most common work of any
network administrator begins in the privileged mode by using the configure terminal command.

Appendix A

Here we do not have a full screen text editor that we can use to edit the configuration file, but
a very intelligent line editor, which we need to get used to. Interactive configuration begins with
the configure terminal command and ends with the exit command.

Each particular section is configured in turn. Configuring a section begins by typing the entire first
line of the section after the configure command.

If we were to change the IP address of Interface Ethernet 0 to 195.0.1.196 with the mask
255.255.255.0 in our configuration, then we would execute the following command:

Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface Ethernet 0
Router(config-if)#no ip address 192.168.2.100 255.255.255.0
Router(config-if)#ip address 195.0.1.196 255.255.255.0
Router(config-if)#^Z
Router# write memory
Building configuration...
[OK]

Note that the initial line was deleted at the beginning by the no command, which contained the
entire original line as the parameter.

If we wanted to start up the BRI0 interface in our example (i.e., get rid of the shutdown command),
then for the interactive configuration of the BRI0 interface, we would enter no shutdown.

The configuration ends with the exit command or by pressing Ctrl + Z (^Z).

We should not forget that the configuration file of the currently running system is the one
configured by interactive configuration. So after completing the configuration, it is useful to back
up the configuration by using the write memory command.

A.6.1 Setting a Password for Privileged Mode
It might have taken you by surprise that the password in the configuration file was shown in plain
text form. I chose this possibility only to be more visual. Passwords can be saved in a secured
form (altered by a one-way function).

Authentication is also possible by using the Radius or TACACS+ protocols.

If we do not want to use the plain text form for the password in the configuration, then we
can alter it by a one-way function and copy it into, for example, the UNIX /etc/passwd file. We
cannot enter the password in the regular form, but we should have it prepared in advance via
a one-way function.

Router#configure terminal
Router(config)#enable password 7 coded_password

Another possibility is to enter the password in the regular form and let the configuration command
convert it by using the one-way function.

Router(config)#enable secret password

 447

CISCO Routers

A.6.2 Web
If we enter

 448

ip http server in the configuration file, we start within the router a web server that
can be used for the configuration of our router (see Figure A.2). In your PC browser, enter the IP
address of the router as a URL.

Figure A.2: Web configuration

You will be asked to enter the user name and the password. If the router does not contain a specific
list of users, then we do not fill in the User name or Password, but just the password for accessing
the privileged mode. Now you can start communicating with the router via the web browser.

A.6.3 ConfigMaker
Another means of router configuration is ConfigMaker for PC that can be downloaded by
registered CISCO clients from http://www.cisco.com/go/configmaker. It is a very PC-friendly
program (see Figure A.3). By using the Detect function, the program gets the configuration of
individual boxes. By using the tools in the left panel, you can design a new network or just adjust
the existing one.

http://www.cisco.com/go/configmaker

Appendix A

You are interactively asked to enter individual parameters. This way a configuration is created for all
your boxes and then it is sent back to the boxes by the Deliver function. Among other things, the
program is capable of printing configuration pictures. However, the drawback is that if we focus
completely on controlling just by using this interface without gaining more information, we would
acquire only superficial knowledge. Another drawback is that individual operations take quite some
time, but an experienced network administrator will be able to do them faster using the terminal.

On the other hand, when I could not figure out the configuration of individual asynchronous lines,
I simply generated it by using the ConfigMaker. I knew at the first glance where I had made
a mistake.

Figure A.3: The ConfigMaker program

A.7 Debugging
The aim is to audit events as they occur. We will be interested in the following two types:

1. Events that occurred during the running of the system. That includes, for example, an
interface switched into the Up or Down mode, whether the router configuration has
been changed, etc.

2. Events defined by the administrator. The administrator defines a trap, such as
writing a report when a protocol data packet has been sent.

 449

CISCO Routers

First, we have to specify in the configuration where the individual event records will be written.
This can be done by entering the logging command in the configuration file:

Router# configure terminal
Router(config)# logging console 7

This command will print out the output of event records onto the console. The number 7 specifies
the most detailed statement. Lower numbers indicate less detailed statements, with 0 being the
least detailed. If we also want to have traps recorded, then we add another command (which is
important especially for recording events via a network using the SYSLOG protocol):

Router(config)# logging trap 7

Note that if we do not work directly on the console interface, but on the terminal, then we also
have to enable the output of the event records onto the terminal:

Router# terminal monitor

Since there might be many records and we might want to process them further, there is a practical
way of doing this, i.e., by sending the event records to the SYSLOG server over the network using
the SYSLOG protocol. The server is usually a part of UNIX.

A simple SYSLOG server for the PC is available at, for example, http://www.kiwisyslog.com/.

We run the SYSLOG server on our PC and we enter in the router the following command:

Router(config)#logging IP_adress_of_SYSLOG_server

By doing this, the event logging to the given IP address is launched. If the SYSLOG server has
already been started, then entering the above command will create the first record. If trap records
have also been set up, then they will start to appear in the log.

The last thing to be done is set the traps. This can be accomplished by the debug command. Its
parameters contain the individual protocols in which we are interested, such as:

Router# debug ip icmp

ICMP protocol events will be recorded. An example of such a log is shown in the following figure:

Figure A.4: A log of records containing ICMP packets

 450

Appendix A

This is not a detailed packet statement from which one could find out things such as passwords,
but it is a very comfortable tool for administrators looking for configuration mistakes.

To find out which traps we have set up, enter the show debug command. It takes another quite
thick manual to actually find out which packets of which protocols can be kept track of in this
manner. Quite often, though, a question mark following the debug command will work for you
just fine.

 451

Index

A
ABM, 71
active close, 252
address inscription, types, 233
Address Resolution Protocol

arp command, 158
filtering, 159
link address, obtaining, 156
packets, 157
proxy, 160

ad-hoc mode, 123
Adsiedit, 434
ADSL, 47
application layer, 13
application protocols

FTP protocol, 305
HTTP protocol, 321
RADIUS protocol, 91
service protocols, 15
Telnet protocol, 287
types, 15
user protocols, 15

ARM, 72
ARP cache, 158
ARP. See Address Resolution Protocol
arrhythmic data transport, 35
ASN.1 protocol, 15
asymmetrical

signal, 34
transmission, 47

Asymmetric Digital Subscriber Line, 47
asynchronous

transmission, 17
transportation, 35

Asynchronous Balanced Mode, 71
Asynchronous Response Mode, 72
AT commands

AT, 43
CONNECT, 42
dial, 43

autonomous system, 177

B
BACP, 96
Bandwidth Allocation Control Protocol, 96
Bandwidth Allocation Protocol, 96
BAP, 96
Base64, encoding mechanism, 373
baseband, 46, 47
basic rate, 51-54
bit stuffing, 73
bridge, 115
BSC data transmission, 35

C
cables

CISCO router, 440
copper distribution, 58, 59
ethernet, 112, 113
optical fibers, 59-63
standards, 58
structured, 57, 58

cache
about, 350
HTTP protocol, 350, 351

Call-Back Control Protocol
situations, 92
two locks, 93

CBCP. See Call-Back Control Protocol
CCP, 97
Challenge Handshake Authentication Protocol

about, 87
advantage, 89
communication, 89
disadvantage, 89
MS CHAP version 1, 90

CHAP. See Challenge Handshake
Authentication Protocol

checksum, 77
circuits. See digital circuits

CISCO
801, 438
1841, 438
commands, 443, 444
router. See CISCO router

CISCO router
about, 437
cables, 440
commands, 443, 444
ConfigMaker, 448
configuration, 445-447
connectors, 438
console, 442
debugging, 449-451
frame relay configuration, 110
interface, 439
interface identification, 440
memory, types, 441
web configuration, 448

client authentication, HTTP protocol, 347, 348
client port, 248, 249
CLNS, 20
collision-free segment, 117
command channel, 307
communication

architecture, 5, 6
levels, 6

Compressed SLIP
about, 66
compression, 68
decompression, 69
mask, 70
compressed packet, structure, 69

Compression Control Protocol, 97
ConfigMaker, 448
Congestion Avoidance Algorithm, 265
congestion window, 264
connection

duplex, 42
state, 256

Connection Oriented Network Services, 20
Connection-Less Network Services, 20
connectors

LAN connection, 439
RJ-45 for ISDN basic rate, 439
RJ-45 with V.24 interface, 439
WAN port, 439

CONS, 20
console, 442
cookie

about, 352

configuring, 352-354
header field, 355
set-cookie header field, 355
set-cookie2 header field, 355

CSLIP. See Compressed SLIP
CWND, 264

D
data

channel, 307
compression, 50
frame, 9
link layer. See data link layer
link, 71
units. See data units, LDAP protocol

data link layer
about, 9, 10
data frame, 9

data transmission
asymmetric, 47
asynchronous, 17
BSD, 35
methods, 16, 17
modes, 308
packet, 17
parallel, 34
serial, 34
synchronous, 16, 17, 44

data units, LADP protocol
add operation, 430, 431
compare operation, 432
delete operation, 431
modify DN operation, 432
modify operation, 431
operation, types, 426
search operation, 427, 428

datagram, 11, 18
debugging, CISCO router, 449-451
delimiter, 379
Delivery Status Notification, 390, 392, 393
dial-up connection, 41
differential signal, 34
digital

circuits. See digital circuits
modems, 54

digital circuits
E line, 56, 57
ISDN, 51, 52
signalization, 55

454

Direct Sequence Spread Spectrum, 122
Directory Information Tree, 422
DIT, 422
DNS query

answer packet, 285
packet format, 281
packet header, 281, 282
question section, 283, 284

DNS. See Domain Name System
Domain Name System

about, 273, 274
domain name, 274
domains, 274
email address, delivering, 365
name syntax, 275, 276
query. See DNS query
reverse domains, 276
subdomains, 274
working, 279, 280

domains, 274, 275
DSN, 390, 392, 393
DSS1 signalization, 55
DSSS, 122
duplex connection, 42

E
E1 line, 56, 57
EAP. See Extensible Authentication Protocol
echo cancellation, 47
ECP, 98
email

email address, delivering, 365
ESMTP, 386
IMAP4, 397
main hub, configuring, 362
MIME, 368
POP3, 395
sending, 358, 359
SMTP, 383

Encryption Control Protocol, 98
encryption keys, 98
ESMTP prtocol. See Extended SMTP
Ethereal

frame capturing, 29
TCP connection, displaying contents, 29

ethernet
about, 112
bridge table, automatically data filling, 116
bridge, 115

cables, 112, 113
communication among stations, 119
control field, 121
ethernet II protocol, structure, 118
interface, types, 62
LAN, 62, 63, 112-121
length field, 119
link address, 119
Link protocol, 112
repeater, 113
switch, 116, 117
types, 62, 63

Excess Burst Rate, 101
Extended SMTP

8BITMIME command, 387
ETRN command, 388
message delivery receipt, 388, 390, 392-394
SIZE command, 388
VERB command, 387

Extensible Authentication Protocol
about, 90
EAP-TLS protocol, 91
implementation, 90, 91

F
FDM, 47
FHSS, 122
File Transfer Protocol

active mode, 308-310
anonymous FTP server, 319, 320
architecture, 306
commands, 313-315
format, options, 307
passive mode, 311, 312
proxy, 316
return code, 317, 318
transferred data, types, 307
transferred file, structures, 307
transmission, modes, 308

filters, 429, 430
Fixed Wireless Access

about, 127
benefits, 128
WLAN, comparison, 127

forum
message format, 414, 415
NNTP protocol, 415

forwarding, 130, 191, 192. See also routing
fragmentation, 95, 145, 271

455

frame
capturing, 23-26
filters, 28
viewing, 26-28

Frame Relay, 40
Backward Explicit Congestion Notification,

106
bandwidth interval, 101
CISCO routers, configuring, 110
Committed Information Rate, 101
Data Link Connection Identifier, 104
Excess Burst Rate, 101
forms of frame, 109
Forward Explicit Congestion Notification, 106
frame format, 108
line congestion, 106
Local Management Interface, 110
SNAP header, 109
source quench, 108
virtual circuit, 103
X 25 network, difference, 111

Frequency Division Multiplexing, 47
Frequency Hopping Spread Spectrum, 122
FTP protocol. See File Transfer Protocol
FTP server, anonymous, 319, 320
FWA. See Fixed Wireless Access

G
gateway, 329

H
half close, 252
HDLC. See High-level Data Link Control
High-level Data Link Control

about, 71, 77
address field, 73
checksum, 77
control field, 73
data field, 76
flag, 72
information field, 76
modes, 71
types, 73

hop, 129
hop-by-hop options, 217
HTTP protocol. See Hyper Text Transfer

Protocol

HTTP request
GET method, 338-341
HEAD method, 342
OPTIONS method, 343
POST method, 341, 342
structure, 337, 338
TRACE method, 343

HTTP response
result codes, 344, 346
structure, 344

hub, 113
Hyper Text Transfer Protocol

about, 321
accept header field, 346, 347
architecture, 322
cache, 350, 351
client authentication, 347, 348
client-server communication, 323-325
content header field, 348, 349
cookie, 352
gateway communication, 329, 331
HTTP request, 337
HTTP response. See HTTP response, 344
proxy authentication, 348
proxy communication, 327, 328
reverse proxy, 333
tunnel communication, 331-333
Uniform Resource Identifier, 334

I
ICMP. See Internet Control Message Protocol
IEEE 802.1X, 126
I-frame, 74, 75
IGMP protocol. See Internet Gr5oup

Management Protocol
IMAP4 protocol. See Internet Message Access

Protocol version 4
interfaces

AUI (10BASE-5), 62
BNC (10BASE-2), 62
twisted pair (10BASE-T), 62, 63

Internet Control Message Protocol
about, 137
echo message, 140
port unreachable packet, 144
redirect message, 141
router advertisement message, 141
router solicitation message, 141

456

source quench message, 141
structure of packet header, 138
subnet address mask request, 144
time exceeded, 142, 144
time synchronization packet, 144
timestamp request packet, 144
undeliverable IP datagram message, 141
version 6, 224, 225

Internet Group Management Protocol
membership query message, 163
multicast forwarding, 162
router modes, 164
structure, 161

Internet Message Access Protocol version 4
about, 361, 397
AUTHENTICATE command, 400
CLOSE command, 409
COPY command, 405
CREATE command, 400, 402
DELETE command, 400, 403
EXAMINE command, 404
EXPUNGE command, 409
FETCH command, 406-408
LIST command, 401, 403
LOGIN command, 400
LSUB command, 403
mailbox, working, 397, 398
RENAME command, 400, 403
SEARCH command, 405, 406
SELECT command, 404
server, communicating with, 398, 399
STATUS command, 403
STORE command, 408
SUBSCRIBE command, 403
UNSUBSRIBE command, 403

Internet Protocol
about, 14, 129
address. See IP address
datagram. See IP datagram
fragmentation, 145-148
header. See IP header
types, 130
vesion 6. See IP version 6

Internet, structure, 177
Internet Protocol Control Protocol, 99-101
Internetwork Operating System, 437
IOS, 437
IP address

address inscription, types, 233
address plan, 184
autonomous systems, 177

intranet, 182
multicast, 234, 235
network interfaces, assigning addresses, 184
network mask, 170
notations, 167
parts, 167
routing, 220
serial links, 183
special-duty IP addresses, 169
super-network, 177
types of classes, 168
types, 233
unicast, 236

IP datagram
base header, 214, 215
definition, 131
Differentiated Services, 135
fragmentation, 145
processing, 189
routing, 189-193
screening, 191
structure, 134-137
transmission, 131-133, 179, 257
TTL entry value, setting, 136
Type of Service, 135
virtual circuit, 18, 19

IP header
IP router alert, 155
optional entries, 149, 150
record route, 150, 151
slots, 150
source routing, 153-155
timestamp, 152

IP version 6
about, 213
authentication header, 222, 223
fragment header, 222
hop-by-hop options, 217
ICMP vesion 6, 224, 225
IP address, 233
mapping, IP-address to link-address, 225, 227,

228
neighbor advertisement, 227
neighbor solicitation, 227
next headers, 216
padding, 219
redirect, 231, 233
router address detection on LAN, 231
routing header, 219
security header, 223, 224
strict source routing, 220

457

structure, 219
Windows 2003, 236, 237

IPCP, 99-101
IPCP, 99-101
ISDN

basic rate, 52-54
digital circuits, 51, 52
types of connection, 51

ISO OSI
application layer, 13
data link layer, 9, 10
definition, 5
network layer, 11, 12
physical layer, 8, 9
presentation layer, 13
session layer, 13
TCP/IP, comparision, 7
transport layer, 12

L
LAN. See Local Area Network
LCP. See Link Control Protocol
LDAP. See Lightweight Directory Access

Protocol
LDIF, 435
leased line, 41, 42
Lightweight Directory Access Protocol

about, 421
browser, 433
client programs, 433, 435
data model, 422, 423, 425, 426
data units. See data units, LADP protocol
Lightweight Directory Interchange Format,

435, 436
server programs, 432

Lightweight Directory Interchange Format, 435
Link Control Protocol

authentication, 82
call-back protocol, 82
connection, establishing, 82
connection termination, 82
link disconnection, 81
negotiated identifications, 96
network protocol, 82
phases, 81
types of command, 83

link frame, 131
link layer, link frames, 165

Link protocols
Compressed SLIP, 66, 69-71
ethernet, 112
Frame Relay, 101-105
High-level Data Link Control, 71, 72
Point-to-Point Protocol, 77, 79, 80
Serial Line Internet Protocol, 65, 66

LMI, 110
Local Area Network

about, 33, 34, 57, 111
cables, 57, 58
ethernet, 62, 63, 112-121
fast ethernet, 63
gigabyte ethernet, 63
interfaces, 186

Local Management Interface, 110
loopback, 189, 190

M
mail hub, configuring, 362
mail message format, structure, 365, 366, 368
mailbox

attributes, changing, 408
closing, 409
creating, 400
deleting, 400
directory listing, 400
erasing, 403
information, obtaining, 403
message, copying, 405
message, deleting, 409
message, downloading, 406-408
message, searching, 405
opening, 404
renaming, 400

mailing list, 409, 410
MAN, 34
mapping, 164, 225, 227, 228
Maximum Transfer Unit, 145
Mbone, 162
MDN, 393, 394
media types

about, 370
composite, Content-Type, 378, 380-383
discrete, Content-Type, 375, 376, 378

memory, CISCO router, 441
Message Disposition Notification, 393, 394
Metropolitan Area Network, 34
MIME protocol. See Multipurpose Internet

Mail Extension

458

modems
about, 40
ADSL, 47
automatic, 42
baseband, 46
communication with computer, 39, 40
data compression, 50
dial-up connection, 41
leased line, 41, 42
transmission, 44
transmission rate, 49
voice band, 44, 45
voice transmission, 44

MTU, 145
multicast, 164-166, 234, 235, 272
Multicast Backbone, 162
multicast flooding, 162
Multiline Protocol

communication, one-way, 94
end of the line identification, 95
fragmentation, 95
header, purposes, 95

Multipurpose Internet Mail Extension
composite media types in Content-Type, 378,

380-383
discrete media types in Content-Type, 375-378
encoding mechanisms, 372, 373, 375
header fields, 369-371

N
Nagle's algorithm, 260
neighbor

advertisement, 227, 228
solicitation, 227

network
address, 233
congestion. See network congestion
history, 168, 171
interfaces, assigning addresses, 184
interface cards, 22
layer, 11, 12
mask, 170
model, 6
monitoring, 21
packet, 54
protocol, 5
subnetwork, 173
super-network, 177
types, 33

network congestion
about, 264
avoiding congestion, 265
congestion window, 264
segment loss, 266
segment transmission, 264, 265
SSTHRESH, 264

Network Monitor
about, 23
agent, 22
filters, 28
frame capturing, 23, 24, 25, 26
hardware, 21
software, 21
TCP segment, example, 247
Telnet protocol packet, 298
view captured frames, 26

Network News Transfer Protocol
ARTICLE command, 417, 419
BODY command, 417
GROUP command, 417
HEAD command, 417
IHAVE command, 419
LIST command, 416
NEWGROUPS command, 419
NEWNEWS command, 419
POST command, 418
QUIT command, 420
STAT command, 417

Network Virtual Terminal, 288
NNTP protocol. See Network News Transfer

Protocol
non-privileged mode, 444, 445
Normal Response Mode, 72
NRM, 72
null modem, 40
NVT, 288

O
OpenLDAP client, 433
outlook, 434
outlook express, 434

P
packet driver

about, 22
kernel, creating, 22
link frames, transmitting, 22
WinPcapp, 22

459

packet filter. See packet driver
packet transmission, 17
padding, 219
PAN, 34
PAP, 87-89
parallel data transmission, 34
passive close, 252
Password Authentication Protocol, 87-89
Personal Area Network, 34
physical layer, 8, 9
pigtails, 60
pipelining, 323
Point-to-Point Protocol

authentication, 87, 88
escape sequence, 79
features, 77
frame, 86, 87, 100
IPCP, 99-101
Link Control Protocol, 81-87
phone line, dialing, 80, 81
protocol identification, 100
service protocols, types, 79

pooling, 72
POP3 protocol. See Post Office Protocol

version 3
port, client, 248, 249
Post Office Protocol version 3

about, 361, 395
server communication, 395, 397

PPP. See Point-to-Point Protocol
presentation layer, 13
privileged mode

command list, 445
password, 447

privileged port, 248
protocols

application protocols. See application
protocols

ARP. See Address Resolution Protocol
ASN.1 protocol, 15
BACP, 96
BAP, 96
CBCP. See Call-Back Control Protocol
CHAP. See Challenge Handshake

Authentication Protocol
EAP. See Extensible Authentication Protocol
ECP, 98
ESMTP. See Extended SMTP
FTP. See File Transfer Protocol
HTTP. See Hyper Text Transfer Protocol

ICMP. See Internet Control Message Protocol
IGMP. See Internet Group Management Protocol
IMAP4. See Internet Message Access Protocol
IP. See Internet Protocol
IPCP, 99-101
LADP. See Lightweight Directory Access

Protocol
LCP. See Link Control Protocol
Link protocol. See Link protocol
MIME. See Multipurpose Internet Mail

Extension
NNTP. See Network News Transfer Protocol
NVT, 288
PAP, 87-89
POP3. See Post Office Protocol version 3
PPP. See Point-to-Point Protocol
Radius Protocol, 91, 92
SLIP. See Serial Line Internet Protocol
SMTP. See Simple Mail Transfer Protocol
TCP. See Transmission Control Protocol
Telnet protocol. See Telnet protocol
UDP. See User Datagram Protocol
Virtual Terminal protocol, 15

proxy
Address Resolution Protocol, 160
authentication, 348
communication, 327, 328
File Transfer Protocol, 316
reverse, 333

pseudoheader, 244

R
RADIUS Accounting Protocol, 92
Radius Protocol, 91, 92
RARP, 160, 161
RDN, 422
Relative Distinguished Name, 422
relative URI, 337. See also Uniform Resource

Identifier
repeater, 113
Request For Comments, 5
Resource Records, 273, 278, 279
response delay techniques, 257, 259, 260
Reverse ARP, 160, 161
reverse proxy, 333
RFC, 5
router. See also CISCO router

about, 33, 130, 193
address detection, 231

460

advertisement, 229
routing, 189, 190, 192, 193. See also

forwarding
routing header, 219

S
serial data transmission, 34
serial line

data transportation, types, 34, 35
null modem, 40
protocols, 36
signal, types, 34
synchronization, types, 35

Serial Line Internet Protocol
about, 65
negative aspects, 66

service protocols, 15
Service Set ID, 125
session layer

about, 13
layer PDU, 13

S-frame, 75
Simple Mail Transfer Protocol

about, 383
email, sending, 384, 385

SLIP protocol. See Serial Line Internet
Protocol

SMTP protocol. See Simple Mail Transfer
Protocol

source quench, 108
source routing

misuse, 155
types, 153

splitter, 47
SSTHRESH, 264
station, 71
subdomains, 274
switch, 116
switched ethernet, 116
symmetrical signal, 34
SYNCH signal, 294
synchronous

transmission, 16, 17, 44
transportation, 35, 44

T
TCP. See Transmission Control Protocol
TCP/IP

application protocols, 15
Internet Protocol, 14
TCP, 14
UDP, 14

Telnet
command-line, 294, 296
HTTP protocol, establishing connection, 323
protocol. See Telnet protocol

Telnet protocol
about, 287
client communication, UNIX, 300-303
client communication, Windows NT, 298, 300
communication mode, types, 297
communication options, list, 292, 293
data transfer, abnormal termination, 318
mode command, 297
NVT protocol, 288, 289

time stamp, 267
TOS, 135
traceroute program, 142, 143
tracert program, 142
Transmission Control Protocol

about, 14
checksum, IP header, 243
connection, 239, 240
connection, establishing, 248-251
connection, refusing, 255, 256
connection, terminating, 252-254
connection state, 256, 257
flags, 243
fragmentation, 240, 241
header options, 246
network congestion, 264
response delay techniques, 257, 259, 260
segment, 240, 266
segment, Network Monitor, 247
segment, structure, 241, 242
segment loss, 266
Telnet application protocol, 242
UDP, 14
window scale factor, 266, 267
window technique, 261-263

transport layer, 12
Types of Service, 135

461

U Frame Relay, 103
Permanent Virtual Circuit, 19
Switched Virtual Circuit, 19 UDP protocol. See User Datagram Protocol

Virtual Terminal protocol, 15 U-frame, 76
voice band, 44, 45 unicast, 235, 236

Uniform Resource Identifier. See also relative URI

W about, 334
file scheme, 336
ftp scheme, 335 WAN, 34
http scheme, 334, 335 WEP, 125
mailto scheme, 336 Wide Area Networks, 34
nntp scheme, 336 WIN, 261, 264
pop scheme, 337 window, 261, 264
telnet scheme, 336 window scale factor, 266, 267

unprivileged port, 248, 249 Windows 2003, 236, 237
URI. See Uniform Resource Identifier WinPcapp, 22
User Datagram Protocol Wired Equivalent Privacy, 125

about, 14, 269 Wireless Local Area Network
broadcasts, 272 access point, 123
datagram, 270 antennas, 124
datagram, example, 271 backbone point-to-point connection, 124
fragmentation, 271 configuration, 123, 124
header, 269 features, 121
multicasts, 272 IEEE 802.1X standard, 126
psuedoheader, 271 peer-to-peer network, 123
speciality, 272 roaming, 124

user protocols, 15 security, 125
Service Set ID, 125

V signal transmission, 122
Wired Equivalent Privacy, 125

Wireless Local Loop, 127 V.24 interface, 36, 37
WLAN. See Wireless Local Area Network V.35 interface, 36, 37

V.90 recommendation, 49, 50

X virtual circuit
about, 18
advantage, 18 X.21 interface, 36, 37
datagram transmission, 18

462

	Cover
	Table of Contents
	Preface
	What This Book Covers
	What You Need for This Book
	Conventions
	Reader Feedback
	Customer Support
	Errata
	Questions

	Chapter 1: Introduction to Network Protocols
	 1.1 ISO OSI
	1.1.1 Physical Layer
	1.1.2 Data Link Layer
	 1.1.3 Network Layer
	1.1.4 Transport Layer
	 1.1.5 Session Layer
	1.1.6 Presentation Layer
	1.1.7 Application Layer

	 1.2 TCP/IP
	1.2.1 Internet Protocol
	1.2.2 TCP and UDP
	 1.2.3 Application Protocols

	 1.3 Methods of Information Transmission
	1.3.1 Synchronous Transmission
	1.3.2 Packet Transmission
	1.3.3 Asynchronous Transmission

	 1.4 Virtual Circuit

	Chapter 2: Network Monitoring Tools
	 2.1 Packet Drivers
	2.2 MS Network Monitor
	2.2.1 Frame Capturing
	2.2.2 Viewing Captured Frames
	2.2.3 Filters for Displaying Captured Frames

	2.3 Ethereal
	2.4 Homework

	Chapter 3: Physical Layer
	3.1 Serial Line
	3.1.1 Serial and Parallel Data Transport
	3.1.2 Symmetrical and Asymmetrical Signals
	 3.1.3 Synchronous and Asynchronous Transport
	3.1.4 V.24, V.35, and X.21 Protocols
	3.1.5 Null Modem

	3.2 Modems
	3.2.1 Dial-Up Connection
	3.2.2 Leased Lines
	3.2.3 Automatic Modem
	3.2.3.1 AT Commands

	3.2.4 Synchronous Transmission
	3.2.5 Baseband, Voice Band, and ADSL
	3.2.6 Transmission Rate
	3.2.6.1 The V.90 Recommendation

	3.2.7 Data Compression
	3.2.8 Error Detection

	3.3 Digital Circuits
	3.3.1 ISDN
	3.3.1.1 Basic Rate
	3.3.1.2 Higher Layer Protocols and Signalization

	 3.3.2 E and T Lines

	3.4 LAN
	3.4.1 Structured Cables
	3.4.1.1 Copper Distribution
	3.4.1.2 Optical Fibers

	3.4.2 Ethernet (10 Mbps)
	3.4.2.1 AUI
	3.4.2.2 BNC
	3.4.2.3 Twisted-Pair

	3.4.3 Fast Ethernet (100 Mbps)
	3.4.4 Gigabyte Ethernet (1 Gbps)

	Chapter 4: Link Layer
	4.1 Serial Line Internet Protocol
	4.2 Compressed SLIP
	4.3 High-Level Data Link Control Protocol
	4.3.1 Flag
	4.3.2 Address Field
	4.3.3 Control Field
	 4.3.3.1 I-Frame
	4.3.3.2 S-Frame
	4.3.3.3 U-Frame

	4.3.4 Data Field and a Transferred Protocol Type
	4.3.5 Checksum
	4.3.6 HDLC Protocol Summary

	4.4 Point-To-Point Protocol
	4.4.1 Dialing a Phone Line
	4.4.2 Link Control Protocol
	4.4.3 Authentication
	4.4.3.1 Password Authentication Protocol
	4.4.3.2 Challenge Handshake Authentication Protocols
	4.4.3.3 Extensible Authentication Protocol
	4.4.3.4 Radius Protocol

	4.4.4 Call-Back Control Protocol
	 4.4.5 Other Protocols
	4.4.5.1 Multilink Protocol
	 4.4.5.2 Bandwidth Allocation Protocol and Bandwidth Allocation Control Protocol
	4.4.5.3 Compression Control Protocol
	4.4.5.4 Encryption Control Protocol
	4.4.5.5 Setting Encryption Keys

	4.4.6 Internet Protocol Control Protocol

	4.5 Frame Relay
	4.5.1 A Frame Relay Protocol Frame
	4.5.2 IP Through Frame Relay
	4.5.3 Local Management Interface
	4.5.4 Frame Relay Configuration on CISCO Routers
	4.5.5 Frame Relay Protocol

	4.6 Local Area Networks
	4.6.1 Ethernet

	4.7 Wireless Local Area Network
	 4.7.1 Typical WLAN Configuration
	4.7.1.1 Peer-To-Peer Networks
	4.7.1.2 Access Point
	 4.7.1.3 Roaming (Several Access Points)
	4.7.1.4 Backbone Point-to-Point Connection

	4.7.2 Antennas
	4.7.3 Security of WLAN
	4.7.3.1 Service Set ID
	4.7.3.2 Wired Equivalent Privacy
	4.7.3.3 IEEE 802.1X

	 4.8 Fixed Wireless Access
	4.8.1 The Differences Between FWA and WLAN
	4.8.2 The Main Benefits of FWA

	Chapter 5: Internet Protocol
	5.1 IP Datagram
	5.2. Internet Control Message Protocol
	5.2.1 Echo
	 5.2.2 Destination Unreachable
	5.2.3 Source Quench (Lower Sending Speed)
	5.2.4 Redirect
	5.2.5 ICMP Router Discovery
	5.2.6 Time Exceeded
	5.2.7 Subnet Address Mask Request
	5.2.8 Time Synchronization

	5.3 Fragmentation
	 5.4 Optional Entries in the IP Header
	5.4.1 Record Route
	5.4.2 Timestamp
	5.4.3 Source Routing
	5.4.4 IP Router Alert Option

	5.5 ARP and RARP Protocols
	5.5.1 ARP Filtering
	 5.5.2 Proxy ARP
	5.5.3 Reverse ARP

	5.6 Internet Group Management Protocol
	5.7 Multicast and Link Protocol

	Chapter 6: IP Address
	6.1 Network: First Period of History
	6.1.1 Special-Use IP Addresses
	6.1.2 Network Mask

	6.2 Network: Second Period of History
	6.2.1 Subnetworks
	6.2.2 Super-Networks and Autonomous Systems

	6.3 IP Addresses in the Intranet and Special-Use IP Addresses
	6.4 Unnumbered Interface
	6.4.1 Dynamic Address Assignment

	6.5 Address Plan
	 6.6 Over 254 Interfaces in a LAN

	Chapter 7: Routing
	7.1 Forwarding and Screening
	7.2 Routing
	7.2.1 Processing

	7.3 Handling Routing Tables
	7.3.1 List of Contents of a Routing Table in a Command Prompt
	7.3.1.1 Contents of a Routing Table in UNIX

	7.3.2 Routing Table Listing in Windows 2000/XP/2003
	7.3.3 Contents of a Routing Table in Cisco Routers
	7.3.4 Routing Table Entry Addition and Removal

	7.4 Routing Protocols
	7.4.1 Routing Vector Protocols
	7.4.1.1 RVP Principle
	7.4.1.2 RIP and RIP2

	7.4.2 Link State Protocols
	7.4.2.1 OSPF

	7.4.3 IPG and EGP
	7.4.4 Aggregation
	7.4.5 Redistribution

	 7.5 Neutral Exchange Point

	Chapter 8: IP Version 6
	8.1 Next Headers of IP Version 6 Datagram
	8.1.1 Hop-By-Hop Options
	8.1.2 Routing Header
	 8.1.3 Fragment Header
	8.1.4 Authentication Header
	8.1.5 Encapsulating Security Payload Header

	8.2 ICMP Version 6 Protocol
	8.2.1 Address Resolution
	8.2.2 Router Discovery
	8.2.3 Redirect

	8.3. IP Addresses
	8.3.1 Types of Address Inscription
	8.3.2 Multicasts
	8.3.3 Unicasts

	8.4 Windows 2003

	Chapter 9: Transmission Control Protocol
	9.1 TCP Segments
	 9.2 TCP Header Options
	9.3 Establishing and Terminating a Connection with TCP
	 9.3.1 Establishing a Connection
	9.3.2 Terminating a Connection
	9.3.3 Aborting a Connection

	9.4 Determining the Connection State
	9.5 Response Delay Techniques
	 9.6 Window Technique
	 9.7 Network Congestion
	9.7.1 Slow Start
	9.7.2 Congestion Avoidance
	 9.7.3 Segment Loss

	9.8 The Window Scale Factor

	Chapter 10: User Datagram Protocol
	10.1 Fragmentation
	10.2 Broadcasts and Multicasts

	Chapter 11: Domain Name System
	11.1 Domains and Subdomains
	11.2 Name Syntax
	11.3 Reverse Domains
	 11.4 Resource Records
	11.5 DNS Protocol
	11.6 DNS Query
	 11.6.1 DNS Query Packet Format
	11.6.2 DNS Query Packet Header
	11.6.3 Question Section
	11.6.4 The Answer Section, Authoritative Servers, and Additional Information

	Chapter 12: Telnet
	12.1 The NVT Protocol
	12.2 Telnet Protocol Commands
	12.2.1 Signal for Synchronization
	12.2.2 The Telnet Command Line
	 12.2.3 Communication Modes

	 12.3 Example of Windows NT Client Communication
	12.4 Example of UNIX Client Communication

	Chapter 13: File Transfer Protocol
	 13.1 Architecture
	13.2 Active Mode of FTP Protocol Communication
	13.3 Passive Mode of FTP Protocol Communication
	13.4 FTP Commands
	13.5 Proxy
	13.6 Return Codes
	13.7 Abnormal Termination of Data Transfer
	 13.8 Anonymous FTP

	Chapter 14: Hypertext Transfer Protocol
	14.1 Client-Server
	 14.2 Proxy
	14.3 Gateway
	14.4 Tunnel
	14.5 More Intermediate Nodes
	14.6 Uniform Resource Identifier
	14.6.1 The http Scheme
	14.6.2 The ftp Scheme
	 14.6.3 The mailto Scheme
	14.6.4 The nntp Scheme
	14.6.5 The telnet Scheme
	14.6.6 The file Scheme
	14.6.7 The pop Scheme

	14.7 Relative URI
	14.8 The HTTP Request
	14.8.1 The GET Method
	14.8.2 The POST Method
	14.8.3 The HEAD Method
	14.8.4 The TRACE Method
	14.8.5 The OPTIONS Method

	 14.9 The HTTP Response
	14.9.1 An Overview of Result Codes

	14.10 Other Header Fields
	14.10.1 Accept Header Field
	14.10.2 Client Authentication
	14.10.3 Proxy Authentication
	14.10.4 Content Header Field
	14.10.5 Redirection and Temporary Unavailability of Objects
	14.10.6 Cache
	 14.10.7 Software Information

	14.11 Cookie
	 14.11.1 Set-Cookie and Set-Cookie2 Header Fields
	14.11.1.1 Cookie Header Field

	Chapter 15: Email
	15.1 Email Architecture
	15.2 Mail Message Format
	15.2.1 Basic Header Fields

	15.3 MIME
	15.3.1 MIME Header Fields
	15.3.1.1 MIME-Version
	15.3.1.2 Content-Type
	 15.3.1.3 Content-Transfer-Encoding
	15.3.1.4 Content-Disposition

	15.3.2 Standard Encoding Mechanisms
	15.3.2.1 Quoted-Printable
	 15.3.2.2 Base64

	15.3.3 Non-ASCII Text in Message Header Fields
	15.3.4 Discrete Media Types in Content-Type
	15.3.4.1 text
	15.3.4.2 application
	15.3.4.3 image
	15.3.4.4 audio
	 15.3.4.5 video
	15.3.4.6 model

	15.3.5 Composite Media Types in Content-Type
	15.3.5.1 multipart
	15.3.5.2 message

	15.4 SMTP
	15.5 ESMTP
	15.5.1 Message Delivery Receipt
	15.5.1.1 Delivery Status Notification
	15.5.1.2 The Disposition-Notification-To Header Field

	15.6 POP3
	15.7 IMAP4
	15.7.1 Unauthenticated State
	15.7.1.1 LOGIN
	15.7.1.2 AUTHENTICATE

	15.7.2 Authenticated State
	15.7.2.1 CREATE, DELETE, RENAME, and LIST Commands
	15.7.2.2 SUBSRCIBE, LSUB, and UNSUBSCRIBE Commands
	15.7.2.3 STATUS
	 15.7.2.4 SELECT and EXAMINE Commands

	15.7.3 Open Mailbox
	 15.7.3.1 COPY
	15.7.3.2 SEARCH
	15.7.3.3 FETCH
	15.7.3.4 STORE
	15.7.3.5 EXPUNGE
	15.7.3.6 CLOSE

	15.8 Mailing Lists

	Chapter 16: Forums
	16.1 Message Format
	16.2 NNTP Protocol
	16.2.1 End User Communication
	 16.2.2 Communication Among Servers
	16.2.3 Session Termination

	Chapter 17: Lightweight Directory Access Protocol
	17.1 Protocol Principle
	17.2 Data Model of LDAP Directory
	17.3 LDAP Protocol Data Units
	17.3.1 The Search Operation
	17.3.1.1 Filters

	17.3.2 Further Operations with Entries
	17.3.2.1 The Add Operation
	17.3.2.2 The Modify Operation
	17.3.2.3 The Delete Operation
	 17.3.2.4 The Modify DN Operation
	17.3.2.5 The Compare Operation

	17.4 Server Programs
	17.5 Client Programs
	 17.5.1 The LDAP Browser
	17.5.2 The OpenLDAP Client
	17.5.3 ADSIedit
	17.5.4 MS Outlook Express and MS Outlook

	17.6 Lightweight Directory Interchange Format

	Appendix A: CISCO Routers
	 A.1 Interface Identification
	A.2 Cables
	A.3 Memory
	A.4 Console
	A.5 Commands
	A.5.1 Non-Privileged Mode
	A.5.2 Privileged mode

	A.6 Configuration
	A.6.1 Setting a Password for Privileged Mode
	 A.6.2 Web
	A.6.3 ConfigMaker

	A.7 Debugging

	Index

