
www.dbeBooks.com - An Ebook Library

BUILDING A MONITORING
INFRASTRUCTURE WITH
NAGIOS

This page intentionally left blank

BUILDING A MONITORING
INFRASTRUCTURE WITH
NAGIOS

David Josephsen

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris
Madrid • Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the des-
ignations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearsoned.com

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the book is available
through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.
Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books,
fi nd code samples, download chapters, and access technical information whenever and wherever you need
it.

If you have diffi culty registering on Safari Bookshelf or accessing the online edition, please e-mail customer-
service@safaribooksonline.com.

Visit us on the Web: www.prenhallprofessional.com
 Library of Congress Cataloging-in-Publication Data
Josephsen, David.
 Building a Monitoring Infrastructure with Nagios / David Josephsen, 1st ed.
 p. cm.
 Includes bibliographical references.
 ISBN 0-13-223693-1 (pbk. : alk. paper)
 1. Computer systems—Evaluation. 2. Computer systems—Reliability.
 3. Computer networks—Monitoring. I. Title.

 QA76.9.E94J69 2007

 004.2’4--dc22
 2006037765

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For infor-
mation regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-132-23693-1
Text printed in the United States on recycled paper at R.R. Donnelley & Sons in Crawfordsville, IN 60#
in Williamsburg
First printing, February 2007

http://www.prenhallprofessional.com
www.prenhallprofessional.com

For Gu, for enduring and encouraging my incessant curiosity.
And for Tito, the cat with the biggest heart.

This page intentionally left blank

vii

C O N T E N T S

 Acknowledgments xiii

 About the Author xv

 About the Technical Reviewers xvii

 Introduction xix

Do it Right the First Time xix

Why Nagios? xx

What’s in This Book? xxii

Who Should Read This Book? xxiv

CHAPTER 1 Best Practices 1

A Procedural Approach to Systems Monitoring 1

Processing and Overhead 4
Remote Versus Local Processing 4
Bandwidth Considerations 4

Network Location and Dependencies 6

Security 7

Silence Is Golden 9

Watching Ports Versus Watching Applications 11

Who’s Watching the Watchers? 11

CHAPTER 2 Theory of Operations 13

The Host and Service Paradigm 14
Starting from Scratch 14
Hosts and Services 15

viii Contents

Interdependence 16
The Down Side of Hosts and Services 17

Plugins 18
Exit Codes 18
Remote Execution 20

Scheduling 23
Check Interval and States 23
Distributing the Load 26
Reapers and Parallel Execution 27

Notifi cation 28
Global Gotchas 28
Notifi cation Options 29
Templates 30
Time Periods 30
Scheduled Downtime, Acknowledgments, and Escalations 31

I/O Interfaces Summarized 32
The Web Interface 32
Monitoring 33
Reporting 36
The External Command File 37
Performance Data 37
The Event Broker 38

CHAPTER 3 Installing Nagios 39

OS Support and the FHS 39

Installation Steps and Prerequisites 41

Installing Nagios 41
Confi gure 42
Make 44
Make Install 44

Patches 45
Secondary IP Patch 46
SNMP Community String Patch 46
Colored Statusmap Patch 46

Installing the Plugins 47

Installing NRPE 48

ixContents

CHAPTER 4 Confi guring Nagios 51

Objects and Defi nitions 52

nagios.cfg 54

The CGI Confi g 57

Templates 58

Timeperiods 60

Commands 61

Contacts 62

Contactgroup 64

Hosts 64

Services 66

Hostgroups 68

Servicegroups 69

Escalations 69

Dependencies 70

Extended Information 72

Apache Confi guration 72

GO! 73

CHAPTER 5 Bootstrapping the Confi gs 75

Scripting Templates 76

Auto-Discovery 79
Nmap and NACE 79
Namespace 81

GUI Confi guration Tools 82
Fruity 82
Monarch 83

CHAPTER 6 Watching 85

Local Queries 85
Pings 86
Port Queries 88
Querying Multiple Ports 90
(More) Complex Service Checks 92
E2E Monitoring with WebInject 94

x Contents

Watching Windows 98
The Windows Scripting Environment 98
COM and OLE 100
WMI 101
To WSH or not to WSH 105
To VB or Not to VB 106
The Future of Windows Scripting 107
Getting Down to Business 109
NRPE 109
NSClient/NSCPlus 111

Watching UNIX 112
NRPE 113
CPU 113
Memory 116
Disk 118

Watching “Other Stuff ” 119
SNMP 119
Working with SNMP 122
Environmental Sensors 126
Stand-alone Sensors 127
LMSensors 128
IPMI 129

CHAPTER 7 Visualization 131

Foundations, MRTG, and RRDTool 132
MRTG 135
RRDTool 135
RRD Data Types 136
Heartbeat and Step 137
Min and Max 139
Round Robin Archives 139
RRDTool Create Syntax 140

Data Collection and Polling 145
Shopping for Glue 145
NagiosGraph 146

Front-Ends and Dashboards 149
RRDTool Graph Mode 149

xiContents

RPN 152
Shopping for Front-Ends 154
drraw 155

Management Interfaces 158
Know What You’re Doing 159
RRDTool Fetch Mode 162
The GD Graphics Library 164
NagVis 166
GraphViz 167
Sparklines 169

Force Directed Graphs with jsvis 171

CHAPTER 8 Nagios Event Broker Interface 173

Function References and Callbacks in C 173

The NEB Architecture 175

Implementing a Filesystem Interface Using NEB 178

APPENDIX A Confi gure Options 193

APPENDIX B nagios.cfg and cgi.cfg 197

APPENDIX C Command-Line Options 207

Nagios 207
Nagios Binary 207

Plugins 208
check_ping 208
check_tcp 209
check_http 211
check_load 213
check_disk 213
check_procs 215

 Index 217

This page intentionally left blank

xiii

A C K N O W L E D G M E N T S

I’m terrifi ed to think of the wrong I might do by leaving someone out of this section. Though
I’m tempted to give in to that fear and abandon the endeavor entirely, it wouldn’t be fair
because the wisdom, encouragement, and time I’ve received from those around me are gifts
that cannot go unacknowledged.

First in line is my wife Cynthia, who has put on hold a year’s worth of projects to make
time for me to write. She is patient and encouraging and pretty, and I love her.

Thanks to my parents for being so thrilled and supportive throughout the duration.

To my surrogate family: Jose, Elodia, Claudia, and Ana, for their warmth and well
wishes.

Tito, Chuck, Lucas, Gillie, Thunder, Daemos, Phobos, and Gus, who brighten my
days and have had to make due with a small house until I could get the time to fix up
the new one.

Jer, the best co-author, mentor, and friend a guy could ask for.

I owe my boss at DBG, Todd Rowan, more than a little time and attention.

The tech reviewers on this project were outstanding. In no particular order: Russell
Adams, Kate Harris, Chris Burgess, and Taylor Dondich. I want you guys to know that I’m
working on fi guring out the difference between “weather” and “whether” and shortly there-
after, I plan to tackle the intricacies of the apostrophe.

Lastly, my editors at Prentice Hall have been great. They aren’t at all like the editors in
Spiderman or Fletch, which is what I was expecting. Catherine Nolan, Raina Chrobak, and
Mark Taub are an amazingly hardworking, on-the-ball, and clued-in group of professionals.
They’ve been patient and helpful, and I appreciate their time and attention.

Thanks.

This page intentionally left blank

A B O U T T H E A U T H O R

Dave Josephsen is the senior systems administrator at DBG, where he maintains a geographi-
cally dispersed collection of server farms and occasionally puts paper in the printer. Winner
of LISA 2004’s Best Paper Award and author of numerous articles, he enjoys writing about
technology, but admittedly, has more fun solving interesting problems and getting his hands
dirty with routers, fi rewalls, load balancers, and UNIX systems. His interests are too numer-
ous to list; he is quite uncomfortable writing about himself in the third person, and he’s hav-
ing so much fun he can’t believe he’s being paid. (But he’d prefer that you not mention that
last bit to his boss or publishers.)

xv

This page intentionally left blank

A B O U T T H E T E C H N I C A L R E V I E W E R S

Russell Adams
Russell Adams (rladams@adamsinfoserv.com) is an enterprise systems consultant. He has

been working with Linux since the mid 1990s. Russell specializes in high-availability cluster-
ing, automated systems management, and network monitoring solutions. He is a member of
the Houston Area Linux Users Group and contributes software to the OSS community.

Chris Burgess
Chris Burgess has more than ten years of experience in information technology and cur-

rently works as a system administrator for a nonprofi t organization in Melbourne, Australia.
He also works as a freelance Red Hat Certifi ed Engineer on a broad range of UNIX and
Windows systems. Furthermore, Chris has worked as an independent security consultant
for several organizations specializing in Internet security. He enjoys making presentations at
conferences and providing training sessions on a variety of technologies to IT professionals
and end-users. Chris is also the Victorian President of the System Administrators Guild of
Australia and regularly coordinates and attends industry and user group meetings.

Taylor Dondich
Previously working in the enterprise network engineering market, Taylor Dondich is

now a senior developer at Groundwork Open Source Solutions, a provider of open source
IT operations management software and services. Taylor has extensive experience in imple-
menting open source tools to provide the solution to IT management tasks. Taylor is also the
author of Fruity, one of the leading Nagios confi guration tools available as open source.

Kate Harris
Kate Harris (kate@totkat.org) has been playing with computers since 1980, and despite

a master’s degree and very nearly a Ph.D. in materials science, she has had the pleasure of
being paid to do so for the last ten years. She has brought Nagios into organizations that
were paying vast sums of money for less effective solutions. Kate also specializes in herding
cats or, in other words, managing system administrators.

xvii

This page intentionally left blank

This is a book about untrustworthy machines; machines, in fact, that are every bit as
untrustworthy as they are critical to our well-being. But I don’t need to bore you with a
laundry list of how prevalent computer systems have become or with horror stories about
what can happen when they fail. If you picked up this book, then I’m sure you’re aware of
the problems: layer upon layer of interdependent libraries hiding bugs in their abstraction,
script kiddies, viruses, DDOS attacks, hardware failures, end-user errors, back-hoes, hur-
ricanes, and on and on. It doesn’t matter whether the root cause is malicious or accidental,
your systems will fail. When they do fail, only two things will save you from the downtime:
redundancy and monitoring systems.

Do It Right the First Time

In concept, monitoring systems are simple: an extra system or collection of systems whose
job is to watch the other systems for problems. For example, the monitoring system can peri-
odically connect to a Web server to make sure it responds and, if not, send notifi cations to
the administrators. Although it sounds straightforward, monitoring systems have grown into
expensive, complex pieces of software. Many now have agents larger than 500 MB, include
proprietary scripting languages, and sport price tags above $60,000.

When implemented correctly, a monitoring system can be your best friend. It can notify
administrators of glitches before they become crises, help architects tease out patterns cor-
responding to chronic interoperability issues, and give engineers detailed capacity planning
information. A good monitoring system can help the security guys correlate interesting
events, show the network operations center personnel where the bandwidth bottlenecks are,
and provide management with much needed high-level visibility into the critical systems that
they bet their business on. A good monitoring system can help you uphold your service level
agreement (SLA) and even take steps to solve problems without waking anyone up. Good
monitoring systems save money, bring stability to complex environments, and make every-
one happy.

When done poorly, however, the same system can wreak havoc. Bad monitoring systems
cry wolf at all hours of the night so often that nobody pays attention anymore; they install
backdoors into your otherwise secure infrastructure, leech time and resources away from

I N T R O D U C T I O N

xix

other projects, and congest network links with megabyte upon megabyte of health checks.
Bad monitoring systems can really suck.

Unfortunately, getting it right the fi rst time isn’t as easy as you might think, and in my
experience, a bad monitoring system doesn’t usually survive long enough to be fi xed. Bad
monitoring systems are too much of a burden on everyone involved, including the systems
being monitored. In this context, it’s easy to see why large corporations and governments
employ full-time monitoring specialists and purchase software with six-fi gure price tags.
They know how important it is to get it right the fi rst time.

Small- to medium-sized businesses and universities can have environments as complex
or even more complex then large companies, but they obviously don’t have the luxury of
high-priced tools and specialized expertise. Getting a well-built monitoring infrastructure in
these environments, with their geographically dispersed campuses and satellite offi ces, can
be a challenge. But having spent the better part of the last 7 years building and maintaining
monitoring systems, I’m here to tell you that not only is it possible to get it done right the
fi rst time, but you can also do it for free, with a bit of elbow grease, some open source tools,
and a pinch of imagination.

Why Nagios?

Nagios is, in my opinion, the best system and network-monitoring tool available, open
source or otherwise. Its modularity and straightforward approach to monitoring make it
easy to work with and highly scalable. Further, Nagios’s open source license makes it freely
available and easy to extend to meet your specifi c needs. Instead of trying to do everything
for you, Nagios excels at interoperability with other open source tools, which makes it
fl exible. If you’re looking for a monolithic piece of software with check boxes that solve all
your problems, this probably isn’t the book for you. But before you stop reading, give me
another paragraph or two to convince you that the check boxes aren’t really what you’re
looking for.

The commercial offerings get it wrong because their approach to the problem assumes
that everyone wants the same solution. To a certain extent, this is true. Everyone has a large
glob of computers and network equipment and wants to be notifi ed if some subset of it fails.
So, if you want to sell monitoring software, the obvious way to go about it is to create a piece
of software that knows how to monitor every conceivable piece of computer software and
networking gear in existence. The more gadgets your system can monitor, the more people
you can sell it to. To someone who wants to sell monitoring software, it’s easy to believe that
monitoring systems are turnkey solutions and whoever’s software can monitor the largest
number of gadgets wins.

The commercial packages I’ve worked with all seem to follow this logic. Not unlike the
Borg, they are methodically locating new computer gizmos and adding the requisite moni-
toring code to their solution, or worse: acquiring other companies that already know how
to monitor lots of computer gadgetry and bolting those companies’ codes onto their own.

xx Introduction

They quickly become obsessed with features, creating enormous spreadsheets of supported
gizmos. Their software engineers exist so that the presales engineers can come to your offi ce
and say to your managers, through seemingly layers of white gleaming teeth, “Yes, our soft-
ware can monitor that.”

The problem is that monitoring systems are not turnkey solutions. They require a large
amount of customization before they start solving problems, and herein lies the difference
between people selling monitoring software and those designing and implementing monitor-
ing systems. When you’re trying to build a monitoring system, a piece of software that can
monitor every gadget in the world by clicking a check box is not as useful to you as the one
that makes it easy to monitor what you need, in exactly the manner that you want. By focus-
ing on what to monitor, the proprietary solutions neglect the how, which limits the context
in which they may be used.

Take ping, for example. Every monitoring system I’ve ever dealt with uses ICMP echo
requests, also known as pings, to check host availability in one way or another. But if you
want to control how a proprietary monitoring system uses ping, architectural limitations
become quickly apparent. Let’s say I want to specify the number of ICMP packets to send or
want to send notifi cations based on the round-trip time of the packet in microseconds instead
of simple pass/fail. More complex environments may necessitate that I use IPv6 pings, or that
I portknock before I ping. The problem with the monolithic, feature-full approach is that
these changes represent changes to the core application logic and are, therefore, nontrivial
to implement.

In the commercial-monitoring applications I’ve worked with, if these ping examples can
be performed at all, they require re-implementing the ping logic in the monitoring system’s
proprietary scripting language. In other words, you would have to toss out the built-in ping
functionality altogether. Perhaps controlling the specifi cs of ping checks is of questionable
value to you, but if you don’t actually have any control over something as basic as ping, what
are the odds that you’ll have fi nite enough control over the most important checks in your
environment? They’ve made the assumption that they know how you want to ping things,
and from then on it was game over; they never thought about it again. And why would they?
The ping feature is already in the spreadsheet, after all.

When it comes to gizmos, Nagios’s focus is on modularity. Single-purpose monitoring
applets called plugins provide support for specifi c devices and services. Rather than par-
ticipating in the feature arms race, hardware support is community-driven. As community
members have a need to monitor new devices or services, new plugins are written and usually
more quickly than the commercial applications can add the same support. In practice, Nag-
ios always supports everything you need it to and without ever needing to upgrade Nagios
itself. Nagios also provides the best of both worlds when it comes to support, with several
commercial options, as well as a thriving and helpful community that provides free support
through various forums and mailing lists.

Choosing Nagios as your monitoring platform means that your monitoring effort will be
limited only by your own imagination, technical prowess, and political savvy. Nagios can go
anywhere you want it to, and the trip there is usually simple. Although Nagios can do every-

xxiIntroduction

thing the commercial applications can and more, without the bulky insecure agent install, it
usually doesn’t compare favorably to commercial-monitoring systems because when spread-
sheets are parsed, Nagios doesn’t have as many checks. If they’re counting correctly, Nagios
has no checks at all, because technically it doesn’t know how to monitor anything; it prefers
that you tell it how. How, in fact, is exactly the variable that the aforementioned check box
cannot encompass. Check boxes cannot ask how; therefore, you don’t want them.

What’s in This Book?

Although Nagios is the biggest piece of the puzzle, it’s only one of the myriad of tools that
make up a world-class open source monitoring system. With several books, superb online
documentation, and lively and informative mailing lists, it’s also the best documented piece
of the puzzle. So my intention in writing this book is to pick up where the documentation
leaves off. This is not a book about Nagios as much as it is a book about the construction
of monitoring systems using Nagios, and there is much more to building monitoring systems
than confi guring a monitoring tool.

I cover the usual confi guration boilerplate, but confi guring and installing Nagios is not
my primary focus. Instead, to help you build great monitoring systems, I need to introduce
you to the protocols and tools that enhance Nagios’s functionality and simplify its con-
fi guration. I need to give you an in-depth understanding of the inner workings of Nagios
itself, so you can extend it to do whatever you might need. I need to spend some time in
this book exploring possibilities because Nagios is limited only by what you feel it can do.
Finally, I need to write about things only loosely related to Nagios, such as best practices,
SNMP, visualizing time-series data, and various Microsoft scripting technologies, such as
WMI and WSH.

Most importantly, I need to document Nagios itself in a different way than normal. By
introducing it in terms of a task-effi cient scheduling and notifi cation engine, I can keep things
simple while talking about the internals upfront. Rather than relegating important informa-
tion to the seldom-read advanced section, I empower you early on by covering topics such as
plugin customization and scheduling as core concepts.

Although the chapters stand on their own and I’ve tried to make the book as reference-
friendly as possible, I think it reads better as a progression from start to end. I encourage
you to read from cover to cover, skipping over anything you are already familiar with. The
text is not large, but I think you’ll fi nd it dense with information and even the most-seasoned
monitoring veterans should fi nd more than a few nuggets of wisdom.

The chapters tend to build on each other and casually introduce Nagios-specifi c details
in the context of more general monitoring concepts. Because there are many important deci-
sions that need to be made before any software is installed, I begin with “Best Practices” in

xxii Introduction

Chapter 1. This should get you thinking in terms of what needs to take place for your moni-
toring initiative to be successful, such as how to go about implementing, who to involve, and
what pitfalls to avoid.

Chapter 2, “Theory of Operations,” builds on Chapter 1’s general design guidance by
providing a theoretical overview of Nagios from the ground up. Rather than inundating you
with confi guration minutiae, Chapter 2 gives you a detailed understanding of how Nagios
works without being overly specifi c about confi guration directives. This knowledge will go a
long way toward making confi guration more transparent later.

Before we can confi gure Nagios to monitor our environment, we need to install it. Chap-
ter 3, “Installing Nagios,” should help you install Nagios, either from source or via a pack-
age manager.

Chapter 4, “Confi guring Nagios,” is the dreaded confi guration chapter. Confi guring
Nagios for the fi rst time is not something most people consider to be fun, but I hope I’ve kept
it as painless as possible by taking a bottom-up approach, only documenting the most-used
and required directives, providing up-front examples, and specifying exactly what objects
refer to what other objects and how.

Most people who try Nagios become attached to it and are loathe to use anything else.
But if there is a universal complaint, it is certainly confi guration. Chapter 5, “Bootstrapping
the Confi gs,” takes a bit of a digression to document some of the tools available to make
confi guration easier to stomach. These include automated discovery tools, as well as graphi-
cal user interfaces.

In Chapter 6, “Watching,” you are fi nally ready to get into the nitty-gritty of watching
systems, which includes specifi c examples of Nagios plugin confi guration syntax and how
to solve real-world problems. I begin with a section on watching Microsoft Windows boxes,
followed by a section on UNIX, and fi nally the “Other Stuff” section, which encompasses
networking gear and environmental sensors.

Chapter 7, “Visualization,” covers one of my favorite topics: data visualization. Good
data visualization solves problems that cannot be solved otherwise, and I’m excited about
the options that exist now, as well as what’s on the horizon. With fantastic visualization tools
such as RRDTool and no fewer than 12 different glue layers to choose from, graphing time
series data from Nagios is getting easier every day, but this chapter doesn’t stop at mere line
graphs.

And fi nally, now that you know the rules, it’s time to teach you how to break them. At
the time of writing Chapter 8, “The Nagios Event Broker Interface,” it was the only docu-
mentation I’m aware of to cover the new Nagios Event Broker interface. The Event Broker
is the most powerful Nagios interface available. Mastering it rewards you with nothing less
than the ability to rewrite Chapter 2 for yourself by fundamentally changing any aspect of
how Nagios operates or extending it to meet any need you might have. I describe how the
Event Broker works and walk you through building an NEB module.

xxiiiIntroduction

Who Should Read This Book?

If you are a systems administrator with a closet full of UNIX systems, Windows systems, and
assorted network gadgetry, and you need a world-class monitoring system on the cheap, this
book is for you. Contrary to what you might expect, building monitoring systems is not a
trivial undertaking. Constructing the system that potentially interacts with every TCP-based
device in your environment requires a bit of knowledge on your part. But don’t let that give
you pause; systems monitoring has taught me more than anything else I’ve done in my career
and, in my experience, no matter what your level of knowledge, working with monitoring
systems has a tendency to constantly challenge your assumptions, deepen your understand-
ing, and keep you right on the edge of what you know.

To get the most out of this book, you should have a good handle on the text-based Inter-
net protocols that you use regularly, such as SMTP and HTTP. Although it interacts with
Windows servers very well, Nagios is meant to run on Linux, which makes the text Linux-
heavy, so a passing familiarity with Linux or UNIX-like systems is helpful. Although not
strictly required, you should also have some programming skills. The book has a fair number
of code listings, but I’ve tried to keep them as straightforward and easy-to-follow as possible.
With the exception of Chapter 8, which is exclusively C, the code listings are written in either
UNIX shell or Perl.

Perhaps the only strict requirement is that you approach the subject matter with a healthy
dose of open curiosity. If something seems unclear, don’t be discouraged; check out the online
documentation, ask on the lists, or even shoot me an email; I’d be glad to help if I can.

For more information, as well as full-color diagrams and code listings, visit http://www.
skeptech.org/nagiosbook.

xxiv Introduction

http://www.skeptech.org/nagiosbook
http://www.skeptech.org/nagiosbook

1

C H A P T E R 1

Best Practices

Building a monitoring infrastructure is a complex undertaking. The system can potentially
interact with every system in the environment, and its users range from the layman to the
highly technical. Building the monitoring infrastructure well requires not only considerable
systems know-how, but also a global perspective and good people skills.

Most importantly, building monitoring systems also requires a light touch. The most
important distinction between good monitoring systems and bad ones is the amount of
impact they have on the network environment, in areas such as resource utilization, band-
width utilization, and security. This fi rst chapter contains a collection of advice gleaned from
mailing lists such as nagios-users@lists.sourceforge.net, other systems administrators, and
hard-won experience. My hope is that this chapter helps you to make some important design
decisions up front, to avoid some common pitfalls, and to ensure that the monitoring system
you build becomes a huge asset instead of a huge burden.

A Procedural Approach to Systems Monitoring

Good monitoring systems are not built one script at a time by administrators (admins) in
separate silos. Admins create them methodically with the support of their management teams
and a clear understanding of the environment—both procedural and computational—within
which they operate.

Without a clear understanding of which systems are considered critical, the monitoring
initiative is doomed to failure. It’s a simple question of context and usually plays out some-
thing like this:

Manager: “I need to be added to all the monitoring system alerts.”

Admin: “All of them?”

Manager: “Well yes, all of them.”

2 Chapter 1 Best Practices

Admin: “Er, ok.”

The next day:

Manager: “My pager kept me up all night. What does this all mean?”

Admin: “Well, /var fi lled up on Server1, and the VPN tunnel to site5 was up and down.”

Manager: “Can’t you just notify me of the stuff that’s an actual problem?”

Admin: “Those are actual problems.”

Certifi cations such as HIPAA, Sarbanes-Oxley, and SAS70 require institutions such as
universities, hospitals, and corporations to master the procedural aspects of their IT. This has
had good consequences, as most organizations of any size today have contingency plans in
place, in the event that something bad happens. Disaster recovery, business continuity, and
crisis planning ensure that the people in the trenches know what systems are critical to their
business, understand the steps to take to protect those systems in times of crisis, or recover
them should they be destroyed. These certifi cations also ensure that management has done
due diligence to prevent failures to critical systems; for example, by installing redundant sys-
tems or moving tape backups offsite.

For whatever reason, monitoring systems seem to have been left out of this procedural
approach to contingency planning. Most monitoring systems come in to the network as a
pet project of one or two small tech teams who have a very specifi c need for them. Often
many different teams will employ their own monitoring tools independent of, and oblivious
of, other monitoring initiatives going on within the organization. There seems to be no need
to involve anyone else. Although this single-purpose approach to systems monitoring may
solve an individual’s or small group’s immediate need, the organization as a whole suffers,
and fragile monitoring systems always grow from it.

To understand why, consider that in the absence of a procedurally implemented monitor-
ing framework, hundreds of critically important questions are nearly impossible to answer.
For example, consider the following questions.

■ What amount of overall bandwidth is used for systems monitoring?

■ What routers or other systems are the monitoring tools dependent on?

■ Is sensitive information being transmitted in clear text between hosts and the moni-
toring system?

If it was important enough to write a script to monitor a process, then it’s important
enough to consider what happens when the system running the script goes down, or when
the person who wrote the script leaves and his user ID is disabled. The piecemeal approach
is by far the most common way monitoring systems are created, yet the problems that arise
from it are too many to be counted.

The core issue in our previous example is that there are no criteria that coherently defi ne
what a “problem” is, because these criteria don’t exist when the monitoring system has been
installed in a vacuum. Our manager felt that he had no visibility into system problems and

3

when provided with detailed information, still gained nothing of signifi cance. This is why a
procedural approach is so important. Before they do anything at all, the people undertak-
ing the monitoring project should understand which systems in the organization are critical
to the organization’s operational well-being, and what management’s expectation is regard-
ing the uptime of those systems.

Given these two things, policy can be formulated that details support and escalation
plans. Critical systems should be given priority and their requisite pieces defi ned. That’s not
to say that the admin in the example should not be notifi ed when /var is full on Server1;only
that when he is notifi ed of it, he has a clear idea of what it means in an organizational con-
text. Does management expect him to fi x it now or in the morning? Who else was notifi ed
in parallel? What happens if he doesn’t respond? This helps the manager, as well. By clearly
defi ning what constitutes a problem, management has some perspective on what types of
alerts to ask for and more importantly...when they can go back to sleep.

Smaller organizations, where there may be only a single part-time system administra-
tor (sysadmin), are especially susceptible to piece-meal monitoring pitfalls. Thinking about
operational policy in a four-person organization may seem silly, but in small environments,
critical system awareness is even more important. When building monitoring systems, always
maintain a big-picture outlook. If the monitoring endeavor is successful, it will grow quickly
and the well-being of the organization will come to depend on it.

Ideally, a monitoring system should enforce organizational policy rather than merely
refl ect it. If management expects all problems on Server1 to be looked at within 10 minutes,
then the monitoring system should provide the admin with a clear indicator in the message
(such as a priority number), a mechanism to acknowledge the alert, and an automatic escala-
tion to someone else at the end of the 10-minute window.

So how do we fi nd out what the critical systems are? Senior management is ultimately
responsible for the overall well-being of the organization, so they should be the ones making
the call. This is why management buy-in is so vitally important. If you think this is begin-
ning to sound like disaster recovery planning, you’re ahead of the curve. Disaster recovery
works toward identifying critical systems for the purpose of prioritizing their recovery, and
therefore, it is a methodologically identical process to planning a monitoring infrastructure.
In fact, if a disaster recovery plan already exists, that’s the place to begin. The critical systems
have already been identifi ed.

Critical systems, as outlined by senior management, will not be along the lines of “all
problems with Server1 should be looked at within 10 minutes.” They’ll probably be defi ned
as logical entities. For example “Email is critical.” So after the critical systems have been
identifi ed, the implementers will dissect them one by one, into the parts of which they are
composed. Don’t just stay at the top; be sure to involve all interested parties. Email adminis-
trators will have a good idea of what “email” is composed of and criteria, which, if not met,
will mean them rolling their own monitoring tools.

A Procedural Approach to Systems Monitoring

4 Chapter 1 Best Practices

Work with all interested parties to get a solution that works for everyone. Great monitor-
ing systems are grown from collaboration. Where custom monitoring scripts already exist,
don’t dismiss them; instead, try to incorporate them. Groups tend to trust the tools they’re
already using, so co-opting those tools usually buys you some support. Nagios is excellent at
using external monitoring logic along with its own scheduling and escalation rules.

Processing and Overhead

Monitoring systems necessarily introduce some overhead in the form of network traffi c and
resource utilization on the monitored hosts. Most monitoring systems typically have a few
specifi c modes of operation, so the capabilities of the system, along with implementation
choices, dictate how much, and where, overhead is introduced.

Remote Versus Local Processing

Nagios exports service checking logic into tiny single-purpose programs called plugins. This
makes it possible to add checks for new types of services quickly and easily, as well as co-opt
existing monitoring scripts. This modular approach makes it possible to execute the plugins
themselves, either locally on the monitoring server or remotely on the monitored hosts.

Centralized execution is generally preferable whenever possible because the monitored
hosts bear less of a resource burden. However, remote processing may be unavoidable, or
even preferred, in some situations. For large environments with tens of thousands of hosts,
centralized execution may be too much for a single monitoring server to handle. In this case,
the monitoring system may need to rely on the clients to run their own service checks and
report back the results. Some types of checks may be impossible to run from the central
server. For example, plugins that check the amount of free memory may require remote
execution.

As a third option, several Nagios servers may be combined to form a single distributed
monitoring system. Distributed monitoring enables centralized execution in large environ-
ments by distributing the monitoring load across several Nagios servers. Distributed monitor-
ing is also good for situations in which the network is geographically disperse, or otherwise
inconveniently segmented.

Bandwidth Considerations

Plugins usually generate some IP traffi c. Each network device that this traffi c must traverse
introduces network overhead, as well as a dependency into the system. In Figure 1.1, there is
a router between the Nagios Server and Server1. Because Nagios must traverse the router to
connect to Server1, Server1 is said to be a child of the router. It is always desirable to do as
little layer 3 routing between the monitoring system and its target hosts as possible, especially

5

where devices such as fi rewalls and WAN links are concerned. So the location of the monitor-
ing system within the network topology becomes an important implementation detail.

Processing and Overhead

Nagios

Router 1

Server 1

Host A

Figure 1.1 The router between Nagios and Server1 introduces a dependency and some network overhead
in the form of layer 3 routing decisions.

In addition to minimizing layer 3 routing of traffi c from the monitoring host, you also
want to make sure that the monitoring host is sending as little traffi c as possible. This means
paying attention to things such as polling intervals and plugin redundancy. Plugin redun-
dancy is when two or more plugins effectively monitor the same service.

Redundant plugins may not be obvious. They usually take the form of two plugins that
measure the same service, but at different depths. Take, for example, an imaginary Web ser-
vice running on Server1. The monitoring system may initially be set up to connect to port 80
of the Web service to see if it is available. Then some months later, when the Web site running
on Server1 has some problems with users being able to authenticate, a plugin may be cre-
ated that verifi es authentication works correctly. All that is actually needed in this example
is the second plugin. If it can log in to the Web site, then port 80 is obviously available and
the fi rst plugin does nothing but waste resources. Plugin redundancy may not be a problem
for smaller sites with less than a thousand or so servers. For large sites, however, eliminating
plugin redundancy (or better, ensuring it never occurs in the fi rst place) can greatly reduce the
burden on the monitoring system and the network.

Minimizing the overhead incurred on the environment as a whole means maintaining
a global perspective on its resources. Hosts connected by slow WAN links that are heav-
ily utilized, or are otherwise sensitive to resource utilization, should be grouped logically.
Nagios provides hostgroups for this purpose. These allow confi guration settings to be
optimized to meet the needs of the group. For example, plugins may be set to a higher
timeout for the Remote-Offi ce hostgroup, ensuring that network latency doesn’t cause
a false alarm for hosts on slower networks. Special consideration should be given to the
location of the monitoring system to reduce its impact on the network, as well as to mini-
mize its dependency on other devices. Finally, make sure that your confi guration changes
don’t needlessly increase the burden on the systems and network you monitor, as with
redundant plugins. The last thing a monitoring system should do is cause problems of
its own.

6 Chapter 1 Best Practices

Network Location and Dependencies

The location of the monitoring system within the network topology has wide-ranging archi-
tectural ramifi cations, so you should take some time to consider its placement within your
network. Your implementation goals are threefold.

 1. Maintain existing security measures.

 2. Minimize impact on the network.

 3. Minimize the number of dependencies between the monitoring system and the most
critical systems.

No single ideal solution exists, so these three goals need to be weighed against each other
for each environment. The end result is always a compromise, so it’s important to spend
some time diagramming out a few different architectures and considering the consequences
of each.

The network topology shown in Figure 1.2 is a simple example of a network that should
be familiar to any sysadmin. Today, most private networks that provide Internet-facing ser-
vices have at least three segments: the inside, the outside, and the demilitarized zone (DMZ).
In our example network, the greatest number of hosts exists on the inside segment. Most of
the critically important hosts (they are important because these are Web servers), however,
exist on the DMZ.

Acme Web Hosting Company

SAN

DMZ
Network

WebServers

Firewall

Firewall

Firewall

Core Router

Border Router

Host B
Database

Internal
Network

DHCPServer FileServer Host A Mail Exchanger

Figure 1.2 A typical two-tiered network .

7

Following the implementation rules at the beginning of this section, our fi rst priority is
to maintain the security of the network. Creating a monitoring framework necessitates that
some ports on the fi rewalls be opened, so that, for example, the monitoring host can connect
to port 80 on hosts in other network segments. If the monitoring system were placed in the
DMZ, many more ports on the fi rewalls would need to be opened than if the monitoring
system were placed on the inside segment, simply because there are more hosts on the inter-
nal segment. For most organizations, placing the monitoring server in the DMZ would be
unacceptable for this reason. More information on security is discussed later in this chapter,
but for this example, it’s simple arithmetic.

There are many ways to reduce the impact of the monitoring system on the network. For
example, the use of a modem to send messages via the Public Switched Telephone Network
(PSTN) reduces network traffi c and removes dependencies. The best way to minimize net-
work impact in this example, however, is by placing the monitoring system on the segment
with the largest number of hosts, because this ensures that less traffi c must traverse the fi re-
walls and router. This, once again, points to the internal network.

Finally, placing our monitoring system in a separate network segment from most of the
critical systems is not ideal, because if one of the network devices becomes unavailable, the
monitoring system loses visibility to the hosts behind it. Nagios refers to this as a network-
blocking outage. The hosts on the DMZ are children of their fi rewall, and when confi gured
as such, Nagios is aware of the dependency. If the fi rewall goes down, Nagios does not have
to send notifi cations for all of the hosts behind it (but it can if you want it to), and the status
of those hosts will be fl agged unknown in availability reports for the amount of time that
they were not visible. Every network will have some amount of dependency, so this needs to
be considered in the context of the other two goals. In the example, despite the dependency,
the inside segment is probably the best place for the monitoring host.

Security

The ease with which large monitoring systems can become large root kits makes it imperative
that security is considered sooner, rather than later.

Because monitoring systems usually need remote execution rights to the hosts it moni-
tors, it’s easy to introduce backdoors and vulnerabilities into otherwise secure systems. Worse,
because they’re installed as part of a legitimate system, these vulnerabilities may be over-
looked by penetration testers and auditing tools. The fi rst, and most important, thing to look
for when building secure monitoring systems is how remote execution is accomplished.

Historically, commercial monitoring tools have included huge monolithic agents, which
must be installed on every client to enable even basic functionality. These agents usually
include remote shell functionality and proprietary byte code interpreters, which allow the
monitoring host carte blanche to execute anything on the client, via its agent. This implemen-
tation makes it diffi cult, at best, to adhere to basic security principles, such as least privilege.

Security

8 Chapter 1 Best Practices

Anyone with control over the monitoring system has complete control over every box it
monitors.

Nagios, by comparison, follows the UNIX adage: “Do one thing and do it well.” It is
really nothing but a task optimized scheduler and notifi cation framework. It doesn’t have an
intrinsic ability to connect to other computers and contains no agent software at all. These
functions exist as separate, single-purpose programs that Nagios must be confi gured to use.
By outsourcing remote execution to external programs, Nagios maintains an off-by-default
policy and doesn’t attempt to reinvent things like encryption protocols, which are critically
important and diffi cult to implement. With Nagios, it’s simple to limit the monitoring server’s
access to its clients, but poor security practices on the part of admin can still create insecure
systems; so in the end, it’s up to you.

The monitoring system should have only the access it needs to remotely execute the
specifi c plugins required. Avoid rexec style plugins that take arbitrary strings and execute
them on the remote host. Ideally, every remotely executed plugin should be a single-purpose
program, which the monitoring system has specifi c access to execute. Some useful plugins
provide lots of functionality in a single binary. NSCLIENT++ for Windows, for example,
can query any perfmon counter. These multipurpose plugins are fi ne, if they limit access to a
small subset of query-only functionality.

The communication channel between the remotely executed plugin and the monitoring
system should be encrypted. Though it’s a common mistake among commercial-monitoring
applications, avoid nonstandard, or proprietary, encryption protocols. Encryption protocols
are notoriously diffi cult to implement, let alone create. The popular remote execution plugins
for Nagios use the industry-standard OpenSSL library, which is peer reviewed constantly by
smart people. Even if none of the information passed is considered sensitive, the implementa-
tion should include encrypted channels from the get-go as an enabling step. If the system is
implemented well, it will grow fast, and it’s far more diffi cult to add encrypted channels after
the fact than it is to include them in the initial build.

Simple Network Management Protocol (SNMP) , a mainstay of systems monitoring that
is supported on nearly every computing device in existence today, should not be used on
public networks, and avoided, if possible, on private ones. For most purposes involving
general-purpose workstations and servers, alternatives to SNMP can be found. If SNMP
must be used for network equipment, try to use SNMPv3, which includes encryption, and no
matter what version you use, be sure it’s confi gured in a read-only capacity and only accepts
connections from specifi c hosts. For whatever reason, sysadmins seem chronically incapable
of changing SNMP community string names. This simple implementation fl aw accounts for
most of SNMP’s bad rap. Look for more information on SNMP in Chapter 6, “Watching.”

Many organizations have network segments that are physically separated, or otherwise
inaccessible, from the rest of the network. In this case, monitoring hosts on the isolated sub-
net means adding a Network Interface Card (NIC) to the monitoring server and connecting
it to the private segment. Isolated network segments are usually isolated for a reason, so at
a minimum, the monitoring system should be confi gured with strict local fi rewall rules so
that they don’t forward traffi c from one subnet to the other. Consideration should be paid to
building separate monitoring systems for nonaccessible networks.

9

When holes must be opened in the fi rewall for the monitoring server to check the status
of hosts on a different segment, consider using remote execution to minimize the number of
ports required. For example, the Nagios Box in Figure 1.3 must monitor the Web server and
SMTP daemon on Server1. Instead of opening three ports on the fi rewall, the same outcome
may be reached by running a service checker plugin remotely on Server1 to check that the
apache and qmail daemons are running. By opening only one port instead of three, there is
less opportunity for abuse by a malicious party.

Silence Is Golden

Figure 1.3 When used correctly, remote execution can enhance security by minimizing fi rewall ACLs.

A good monitoring system does its job without creating fl aws for intruders to exploit;
Nagios makes it simple to build secure monitoring systems if the implementers are commit-
ted to building them that way.

Silence Is Golden

With any monitoring system, a balance must be struck between too much granularity
and too little. Technical folks, such as sysadmins, usually err on the side of offering too much.
Given 20 services on 5 boxes, many sysadmins monitor everything and get notifi ed on every-
thing, whether the notifi cations might represent a problem.

For sysadmins, this is not a big deal; they generally develop an organic understanding
of their environments, and the notifi cations serve as an additional point of visibility or as an
event correlation aid. For example, a notifi cation from workstation1 that its network traf-
fi c is high, combined with a CPU spike on router 12, and abnormal disk usage on Server3,
may indicate to a sysadmin that Ted from accounting has come back early from vacation. A

Nagios

Nagios

Run_remote_checks

Firewall

Firewall

Server 1

Server 1

Check_qmail
Check_apache

Check Port 25

Check Port 443

Check Port 80

Scenario 2: Nagios uses remote execution to check if
the services are running. One firewall rule is required.

Scenario 1: Nagios runs local plugins to check port
availability. Three firewall rules are required.

10 Chapter 1 Best Practices

diligent sysadmin might follow up on that hunch to verify that it really is Ted and not a teen-
ager at the University of Hackgrandistan owning Ted’s workstation. It happens more often
than you’d think. For the non-sysadmin, however, the most accurate phrase to describe these
notifi cations is false alarm.

Typically, monitoring systems use static thresholds to determine the state of a service. The
CPU on Server1, for example, may have a threshold of 95 percent. When the CPU goes above
that, the monitoring system sends notifi cations or performs an automatic break/fi x. One of
the biggest mistakes an implementer can make when introducing a monitoring system into an
environment is simply not taking the time to fi nd out what the normal operating parameters
on the servers are. If Server1 typically has 98 percent CPU utilization from 12 a.m. to 2 a.m.
because it does batch processing during these hours, then a false alarm is sent.

False alarms should be methodically hunted down and eradicated. Nothing can under-
mine the credibility of, and erode the support for, a fl edgling monitoring system such as
people getting notifi cations that they think are silly or useless. Before the monitoring system
is confi gured to send notifi cations, it should be run for a few weeks to collect data on at least
the critical hosts to determine what their normal operational parameters are. This data, col-
lectively referred to as a baseline, is the only reasonably responsible way to determine static
thresholds for your servers.

That’s not to say our sysadmin should be prevented from getting the most out of his
cell phone’s unlimited data plan. I’m merely suggesting that some fi ltering be put in place to
ensure no one else need share his unfortunate fascination. One great thing about following
the procedural approach outlined earlier in this chapter is that it makes it possible to think
about the organization’s requirements for a particular service on a specifi c host before the
thresholds and contacts are confi gured. If Alice, the DBA, doesn’t need to react to high CPU
on Server1, then she should not get paged about it.

Nagios provides plenty of functionality to enable sysadmins to be notifi ed of “interest-
ing events” without alerting management or other noninterested parties. With two threshold
levels (warning and critical) and a myriad of escalation and polling options, it is relatively
simple to get early-and-often style notifi cations for control freaks, while keeping others
abreast of just the problems. It is highly recommended that a layered approach to notifi ca-
tion be a design goal of the system from the beginning.

Good monitoring systems tend to be focused, rather than chatty. They may monitor
many services for the purpose of historical trending, but they send fewer notifi cations than
one would expect, and when they do, it’s to the group of people who want to know. For the
intellectually curious, who don’t want their pager going off at all hours of the day and night,
consider sending summary reports every 24 hours or so. Nagios has some excellent reporting
built in.

11

Watching Ports Versus Watching Applications

In the “Processing and Overhead” section, earlier in the chapter, we briefl y discussed redun-
dant plugins that monitored a Web server. One plugin simply connected to port 80 on the
Web server, while the other attempted to login to the Web site hosted by the server. The latter
plugin is an example of what is increasingly being referred to as End to End (E2E) Monitor-
ing, which makes use of the monitored services in the same way a user might. Instead of
monitoring port 25 on a mail server, the E2E approach would be to send an email through
the system. Instead of monitoring the processes required for CIFS, an E2E plugin would
attempt to mount a shared drive, and so on.

While introducing more overhead individually, E2E plugins can actually lighten the load
when used to replace several of their conventional counterparts. A set of plugins that moni-
tors a Web application by checking the Web ports, database services, and application server
availability might be replaced by a single plugin that logs into the Web site and makes a
query. E2E plugins tend to be “smarter.” That is, they catch more problems by virtue of
detecting the outcome of an attempted use of a service, rather than watching single points of
likely failure. For example, an E2E plugin that parses the content of a Web site can fi nd and
alert on a permissions problem, where a simple port watcher cannot.

Sometimes that’s a good thing and sometimes it isn’t. What E2E gains in rate of detec-
tion, it loses in resolution. What I mean by that is, with E2E, you often know that there is
a problem but not where the problem actually resides, which can be bad when the problem
is actually in a completely unrelated system. For example, an E2E plugin that watches an
email system can detect failure and send notifi cations in the event of a DNS outage, because
the mail servers cannot perform MX lookups and, therefore, cannot send mail. This makes
E2E plugins susceptible to what some may consider false alarms, so they should be used
sparingly.

A problem in some unrelated infrastructure, which affects a system responsible for trans-
ferring funds, is something bank management needs to know about, regardless of the root
cause. E2E is great at catching failures in unexpected places and can be a real lifesaver when
used on systems for which problem detection is absolutely critical.

Adoption of E2E is slow among the commercial monitoring systems, because it’s diffi cult
to predict what customers’ needs are, which makes it hard to write agent software. On the
other hand, Nagios excels at this sort of application-layer monitoring because it makes no
assumptions about how you want to monitor stuff, so extending Nagios’ functionality is usu-
ally trivial. More on plugins and how they work is in Chapter 2, “Theory of Operations.”

Who’s Watching the Watchers?

If there is a fatal fl aw in the concept of systems monitoring, it is the use of untrustworthy
systems to watch other untrustworthy systems. If your monitoring system fails, it’s important
you are at least informed of it. A failover system to pick up where the failed system left off
is even better.

Who’s Watching the Watchers?

12 Chapter 1 Best Practices

The specifi cs of your network dictate what needs to happen when the monitoring system
fails. If you are bound by strict SLAs, then uptime reports are a critical part of your business,
and a failover system should be implemented. Often, it’s enough to simply know that the
monitoring system is down.

Failure-proofi ng monitoring systems is a messy business. Unless you work at a tier1 ISP,
you’ll always hit some upstream dependency that you have no control over, if you go high
enough into the topology of your network. This does not negate the necessity of a plan.

Small shops should at least have a secondary system, such as a syslog box, or some other
piece of infrastructure that can heartbeat the monitoring system and send an alert if things go
wrong. Large shops may want to consider global monitoring infrastructure, either provided
by a company that sells such solutions or by maintaining a mesh topology of hosted Nagios
boxes in geographically dispersed locations.

Nagios makes it easy to mirror state and confi guration information across separate boxes.
Confi guration and state are stored as terse, clear text fi les by default. Confi guration syntax
hooks make event mirroring a snap, and Nagios can be confi gured in distributed monitoring
scenarios with multiple Nagios servers. The monitoring system may be the system most in
need of monitoring; don’t forget to include it in the list of critical systems.

13

C H A P T E R 2

Theory of Operations

Because the job of the monitoring server is to verify the availability of other systems, and
every environment runs a subtly different combination of systems, the monitoring server has
to be fl exible. It needs to give input to, and understand, the output of every protocol spoken
by every system in your specifi c environment.

Most monitoring programs attempt to provide this fl exibility by guessing in advance
every possible thing you could ever want to monitor and including it as a software feature.
Designing a monolithic piece of software that knows how to monitor everything makes
it necessary to modify that piece of software when you want to monitor something new.
Unfortunately, this is usually not possible, given the licensing restrictions of most commercial
packages. In practice, when you want to monitor something that isn’t provided, you’re usu-
ally stuck implementing it yourself in a proprietary scripting language that runs in a propri-
etary interpreter, embedded in the monolithic monitoring software. The reasoning goes that,
because the program is directly designed for a specifi c feature set, a special purpose language
must be used to extend its functionality.

As you can imagine, this approach presents a few problems. The complexity of the soft-
ware may be the single largest impact. Many large monitoring packages have GUIs with
menus 10 to 15 selections deep. The agent software becomes bloated fairly quickly, often
larger than 500Mb per server. Security is diffi cult to manage because the monitoring program
assumes you want the entire feature set available on every monitored host, and this makes it
diffi cult to limit the monitoring server’s access to its clients. The package, as a whole, is only
as good as the predictions of the vendor’s development group. Finally, the unfortunate con-
sequence that comes from using proprietary scripting languages is that it’s diffi cult to move
to a different monitoring system because a good amount of your customizations will need to
be translated into a general purpose language, or worse, into a different vendor’s proprietary
language.

14 Chapter 2 Theory of Operations

Nagios, by comparison, takes the opposite approach. It has no internal monitoring logic,
assumes next to nothing about what, or how, you might want to watch, neither requires nor
provides agent software, and contains no built-in proprietary interpreters. In fact, Nagios
isn’t really a “monitoring application” at all, in the sense that it doesn’t actually know how
to monitor anything. So what is Nagios exactly, and how does it work?

This chapter provides some insight into what Nagios does, how it goes about doing it,
and why. Various confi guration options that are available in Nagios are discussed in this
chapter, in the context of subject matter, but this chapter is actually meant to provide you
with a conceptual understanding of the mechanics of Nagios as a program. Chapter 4, “Con-
fi guring Nagios,” covers the confi guration options in detail.

The Host and Service Paradigm

Nagios is an elegant program that is quite simple to understand. It does exactly what you
would want, in a way that you would expect, and can be extended to do some amazing
things. After you grasp a few fundamental concepts, you will feel completely empowered to
go forth and build the monitoring system your Openview friends can only dream about.

Starting from Scratch

The easiest way to understand what Nagios is and what it does is to go back to our descrip-
tion of the piece-meal approach to systems monitoring in Chapter 1, “Best Practices.” The
piece-meal approach usually happens when a sysadmin has just been burned by an impor-
tant service or application. The service in question has gone down, and the admin found out
about it from his customers or manager, creating the perception that he’s not aware of what’s
happening with his systems. Sysadmins are a proactive bunch, so before too long, our admin
has a group of scripts that he runs against his servers. These scripts check the availability of
various things. At least one of them looks something like this:

ping –qc 5 server1 || (echo "server1 is down" | mail dude@domain.org)

This shell script sends fi ve Internet Message Control Protocol (ICMP) echo packets to
Server1, and if Server1 doesn’t reply, it emails the sysadmin to notify him. This is a good
thing. The script is easy to understand, can be run from a central location, and answers an
important question. But, soon, bad things start to happen.

One day, the router between our admin’s workstation and servers 1 through 40 go down.
Suddenly, the network segment is no longer visible to the system running the scripts. This
causes 40 emails to be needlessly sent to our admin, one for each server that is no longer

15

pinging. Later, another administrator and a few managers want to get different subsets of
these notifi cations, so our sysadmin creates a group of mailing lists. But some people soon
get duplicate emails because they belong to more than one list, and each of those lists has
received the same notifi cation. Some weeks later, our admin gets a noncritical notifi cation at
3 a.m. He decides to fi x it in the morning and goes back to sleep. But when morning arrives,
he forgets all about it. The service remains unavailable until a customer notices it and calls
on the phone.

Our admin doesn’t need better scripts, just a smarter way to run them. He needs a
task-effi cient scheduling and notifi cation system, which tracks the status of a group of little
monitoring programs, manages dependencies between groups of monitored objects, provides
escalation, and ensures people don’t get duplicate pages, regardless of their memberships.
This sums up Nagios’ intended purpose.

Nagios is a framework that allows you to intelligently schedule little monitoring pro-
grams written in any language you choose. Each little monitoring program, or plugin, reports
its status back to Nagios, and Nagios tracks the status of the plugins to make sure the right
people get notifi ed and to provide escalations, if necessary. It also keeps track of the dates
and times that various plugins changed states and has nice built-in historical reporting capa-
bilities. Nagios has lots of hooks that make it easy to get data in and out, so it can provide
real-time data to graphing programs, such as RRDTool and MRTG, and can easily cooperate
with other monitoring systems, either by feeding them or by being fed by them.

One of the things about Nagios is that it leverages what you’re already good at (individu-
ally and organizationally) and doesn’t throw your hard work into the “bit bucket.” If you
are a TCL “Jedi” and your organization values you because of your skills, then it shouldn’t
be forced to trash the fi ve months you spent on a TCL-based monitoring infrastructure in
an effort to better centralize their monitoring tools. Because Nagios has no desire to control
your monitoring methodology, it won’t attempt to drive your organization’s use of tool sets
and, therefore, will never force you to re-invent the wheel.

Hosts and Services

As mentioned earlier, Nagios makes few assumptions about what and how you want to
monitor. It allows you to defi ne everything. Defi nitions are the bread and butter of how Nag-
ios works. Every element Nagios operates with is user-defi ned. For example, Nagios knows
that in the event a plugin returns a critical state, it should send a notifi cation, but Nagios
doesn’t know what it means to send one. You defi ne the literal command syntax Nagios uses
to notify contacts, and you may do this on a contact-by-contact basis, a service-by-service
basis, or both. Most people use email notifi cations, and you’ll fi nd existing defi nitions for
most of the things you want Nagios to do, so you don’t really have to defi ne everything, but
little of how Nagios works is actually written in stone.

The Host and Service Paradigm

16 Chapter 2 Theory of Operations

The most important assumption Nagios makes about your environment is that there are
hosts and services. The defi nitions of these two objects are the basis by which all others are
defi ned. You may think of a host in terms of a physical entity. Servers and network appliances
are the most common types of hosts, but really, a host is anything that speaks TCP. Certain
types of environmental sensors and my friend Chris’s refrigerator are also examples of hosts.
Services are the logical entities that hosts provide. The Web server daemon that runs on the
server sitting in the rack is a service.

Typically, a single host runs multiple applications or at least has multiple elements that
bear watching, but the host will either be up or down, available or not. Therefore, Nagios
allows you to defi ne a single host check mechanism and multiple service checks for each host.
These host and service check defi nitions are what tell Nagios which plugins to call to obtain
the status of a host or service. For example, the check_ping plugin may be defi ned as the host
check for Server1. If the host check fails, then the host is not available. If the host is down,
then all of the services on that host are also not available, so it would be silly to send a page
for each individual service. It would be silly, in fact, to run the service checks at all, until the
host itself becomes available again.

The hosts/services assumption makes it easy for Nagios to track which services are
dependent on what hosts. When Nagios runs a plugin on a service provided by a host and
that plugin returns an error state, the fi rst thing Nagios will do is run the host check for that
host. If the host check also returns an error state, then the host is unavailable and Nagios
will only notify you of the host outage, postponing the service checks until the host becomes
available again.

Interdependence

This idea of interdependence is pervasive throughout Nagios, which tends to be smart about
not wasting resources by running checks on, and sending notifi cations about, hosts and
services that are obviously unavailable. Nagios tracks dependencies between services on dif-
ferent hosts two different ways.

The fi rst is child/parent relationships, which may be defi ned only for hosts. Every host
defi nition may optionally specify a parent using the parents directive. This works well for
hosts behind network gear such as fi rewalls and even virtualized servers. If the parent of
host1 goes down, Nagios considers host1 unreachable, instead of down, which is an impor-
tant distinction for people with a service level agreement (SLA) to live up to. While a host is
in an unreachable state, Nagios won’t bother to run host or service checks for it. However,
Nagios can be confi gured to send notifi cations for unreachable hosts if you want it to.

The second way Nagios can track dependencies between hosts is with dependency defi ni-
tions. These defi nitions work for both hosts and services and are used to track more subtle

17

dependency relationships between different hosts, or services running on different hosts. A
good example of this type of dependency tracking is a web proxy. In Figure 2.1, the fi rewalls
are confi gured such that only one host on the secure network is allowed to connect to the
Web server’s port 80. All other servers must proxy their Web requests through the proxy ser-
vice on this server. Nagios is no exception; if it wants to check the status of the Web server’s
port 80, it must do so through the proxy server. Because Nagios doesn’t rely on the Web
proxy for any other type of network access, a parent/child relationship is not appropriate.
What is needed is a way to make the Web server’s port 80 dependent on the Web proxy’s port
8080. If the Web proxy service goes down, Nagios should not check on, or notify, the Web
service. This is exactly what dependency relationships do.

The Host and Service Paradigm

Port 80

Port 8080

Nagios

Firewall Firewall WebServer

Router

ProxyServer

Secure
Network

Figure 2.1 Nagios uses dependency defi nitions to track interdependent services.

The Down Side of Hosts and Services

In my opinion, the manner in which Nagios naturally handles the host and services paradigm
is genius. It is simple to understand, always does what you would expect, and makes things
generally easy to manage. However, the hosts and services assumption also limits Nagios’
functionality, to some degree.

To understand why, consider a large corporate or university email system. Such a system
is composed of MXs and border mail systems, internal relay servers, and user-facing group-
ware. Outages of various services and hosts within the email system affect the entity as a
whole but don’t necessarily make it completely unavailable. An MX outage (can be multiple
MXs), for example, might do nothing at all to affect the fl ow of mail, whereas a groupware
outage might mean that mail is still being delivered to the MXs, but that users cannot interact
with it.

Business processes and higher-level entities, such as email, are diffi cult to capture on a
host and service scale, because they are actually an aggregation of many services on many

18 Chapter 2 Theory of Operations

hosts. Nagios provides host and service groups, which can contain individual services from
different hosts. So a service group called email can be created, which would summarize the
status of each service that corporate email depends upon. But given that post offi ce protocol
(POP) on Server1 is unavailable, it is not obvious what effect this outage has on the overall
email entity to the uninitiated.

Given that Nagios plugins are user-defi ned, and in many cases, user-created, an enterpris-
ing admin could write a single plugin to check the overall status of the email system piece
by piece. But within the hosts and services paradigm, to which host would the service that
plugin checks belong? The hosts and services assumption simply makes it a bit diffi cult to
model larger entities, but that’s not necessarily game over for those who need to do so. Chap-
ter 7, “Visualization,” discusses ways to aggregate service states in ways that help managers
to visualize what a given problem means.

Plugins

As discussed, Nagios is a scheduling and notifi cation framework that calls small monitoring
programs (plugins). The next section looks at what these plugins are and how they interact
with Nagios to provide a fully featured monitoring system.

Exit Codes

The fi rst thing you should probably know is that you don’t have to write your own monitor-
ing system from scratch. The Nagios-Plugins project (http://nagiosplug.sourceforge.net) is a
collection of user-contributed plugins that contains the functionality you would expect from
any monitoring system. These include plugins that run on the monitoring system, such as
port scanners and ICMP and SNMP query tools, as well as those designed to be executed
remotely, such as CPU and memory utilization checkers. In addition to those included in the
plugins project, hundreds of plugins are available from the Nagios Exchange at http://www.
nagiosexchange.com.

Eventually, you will want either to write your own plugin or to reuse some existing
scripts as Nagios plugins, and doing so couldn’t be easier. A Nagios plugin is a program that
provides a specifi c exit code, as defi ned in Table 2.1.

Table 2.1 Nagios Plugin Exit Codes
Code Meaning

0 Ok

1 Warning

2 Critical

3 Unknown

http://www.nagiosexchange.com
http://www.nagiosexchange.com
http://nagiosplug.sourceforge.net

19

Providing an exit code is, literally, the sole requirement by which a plugin must abide.
Any programming or scripting language that provides an exit code (every programming and
scripting language can provide exit codes) can be used to write a Nagios plugin. Typically, a
plugin’s job is to

■ Grab some bit of information from a host, such as its current load, or its index.html
page

■ Compare that bit of information against an expected state or threshold

■ Provide an exit code describing the outcome of that comparison

Plugins are specifi ed in service defi nitions, along with other details, such as the name of
the service and how often to execute a check. Nagios handles the scheduling and execution
of the plugin per the service defi nition and optionally provides it with thresholds to com-
pare against. After the plugin does its thing, it returns one of four exit codes: 0 for ok, 1 for
warning, 2 for critical, or 3 for unknown. Nagios parses the plugin’s exit code and responds
accordingly. In the event Nagios receives a bad code, it updates the service state and may or
may not contact people. This is covered later.

Listing 2.1 shows the ping shell script from the starting from scratch section, rewritten
as a Nagios plugin.

Listing 2.1 A ping plugin.
#!/bin/sh
if ping –qc 5 server1
then
 exit 0
else
 exit 2
fi

Our ping command still sends fi ve ICMP packets to Server1, but this time, it exits 0 if the
command is successful and 2 if it is not.

In addition to the exit code, plugins may also provide a single line of text on standard
out, and Nagios will interpret this as a human-readable summary. This text is made avail-
able, verbatim, to the Web interface, which displays it in a status fi eld where appropriate.
This is handy for passing back information about the service to humans, who aren’t big

Plugins

20 Chapter 2 Theory of Operations

on parsing exit codes. Listing 2.2 is our ping plugin, now modifi ed to give Nagios some
summary text.

Listing 2.2 Ping with summary output.
#!/bin/sh

OUTPUT='ping –c5 server1 | tail –n2'
If [$? –gt 0]
then
 echo "CRITICAL!! $OUTPUT"
 exit 2
else
 echo "OK! $OUTPUT"
 exit0
fi

The $OUTPUT variable is used, combined with the tail command, to capture the last
two lines of the ping command. Now, when the service is viewed in Nagios’ spiffy Web inter-
face, something such as the following text will appear in the Status Information fi eld:

5 packets transmitted, 5 packets received, 0% packet loss round-
 trip min/avg/max = 0.1/0.8/3.9 ms

One of the many nice things about the way Nagios’ plugin architecture works is that,
because every plugin is a little self-contained program, it is possible to launch them from the
command line. The plugin development guidelines specify that every plugin should have an
-h, or help switch, so if you need to fi nd out how a plugin works, you can usually call it from
the command line with -h. This also makes troubleshooting plugin problems a snap. If Nag-
ios is having trouble with a plugin, you can just execute the plugin directly from a prompt
with the same arguments and see what’s happening.

That is all you need to know to modify your existing scripts for use with Nagios. Of
course, if you really want to get serious about writing plugins that other people might want
to use, you should check out the plugin development guidelines available from the plugin
development team at http://nagiosplug.sourceforge.net/developer-guidelines.html.

Remote Execution

As noted earlier, some plugins either run locally on the Nagios server or remotely on
the monitored hosts. Given that Nagios has no means of carrying out remote execution,
it’s important to understand some of the various methods by which it is accomplished
in practice.

http://nagiosplug.sourceforge.net/developer-guidelines.html

21

The easiest way to understand how Nagios launches plugins on remote servers is to
revisit sysadmin, now familiar from the previous examples. When he has a need to do remote
execution, he turns to SSH. Let’s say, for example, that he wants to query the load average of
a remote system. This is accomplished easily enough:

$ ssh server1 "uptime | cut –d: -f4"

The SSH client launches the command uptime | cut –d: -f4 on the remote server and passes
back the output to the local client (in our example, this would be something like 0.08, 0.02,
0.01). This is fi ne, but our sysadmin wants something that will page him if the 15-minute aver-
age is above 3, so he writes the script in Listing 2.3 and places it on the remote server.

Listing 2.3 A remote load average checker.
#!/bin/sh

LOAD='uptime | awk '{print $12}'
if [$LOAD –gt 1]
then
 echo "high load on 'hostname' | mail dude@domain.org"
fi

In this script, the output of uptime is fi ltered through awk, which extracts the last num-
ber from uptime’s output. This number happens to be the 15-minute load average. This num-
ber is compared against 1, and if it is greater, our admin receives an email. After this script
is saved as load_checker.sh and placed in /usr/local/bin on the remote server, our admin can
execute it with SSH remotely, like so:

ssh server1 "/usr/local/bin/load_checker.sh"

Well, in reality, he’d probably just schedule it in cron on the remote box, but bear with
me for a second. An interesting thing about executing scripts remotely with SSH is that not
only does SSH capture and pass back the output from the remote script, but also its exit
code.

The upshot, of course, is that if our sysadmin were to re-write his script to look like the
one in Listing 2.4, he would have a Nagios plugin.

Listing 2.4 A remote load average checker with exit codes.
#!/bin/sh

LOAD='uptime | awk '{print $12}'

Plugins

(continues)

22 Chapter 2 Theory of Operations

Listing 2.4 A remote load average checker with exit codes. (Continued)

if [$LOAD –gt 1]
then
 echo "Critical! load on 'hostname' is $LOAD"
 exit 2
else
 echo "OK! Load on 'hostname' is $LOAD"
 exit 0
fi

But how does Nagios execute the remote command, and capture its output and
code, when it can only execute programs on the local hard drive? It’s simple. Just write a
local plugin around the sysadmin’s SSH command. This script might look something like
Listing 2.5.

Listing 2.5 A script that calls load_checker and parrots its output and exit code.
#!/bin/sh

#get the ouput from the remote load_checker script
OUTPUT='ssh server1 "/usr/local/bin/load_checker.sh"'

#get the exit code
CODE=$?

echo $OUTPUT
exit $CODE

fi

The script in Listing 2.5 doesn’t have any conditional logic. Its only job is to execute the
remote script, and parrot back its output and exit code to the local terminal. But because it
does exit with the proper code and passes back a single line of text, it’s good enough for Nag-
ios. It’s a plugin that calls another plugin via Secure Shell (SSH), but Nagios doesn’t know
about this, or care, as long as an exit code and some text are returned.

This methodology is the basis for how any remote execution works in Nagios. Instead of
building network protocols into Nagios, the Nagios daemon simply offl oads all of that func-
tionality into single purpose plugins, which, in turn, communicate to other plugins through
the protocols of their choosing.

The arrangement previously outlined with SSH is not ideal, however. For starters, our
remote plugin has a static threshold. It will always check the load average against 1, so if Server2
needs a different threshold because it normally works harder, then Server2 also needs a different
plugin. Obviously, this won’t scale; you need a way to centrally manage thresholds securely.

23

The second big problem is SSH authentication. For Nagios to call the remote execution
plugin without being prompted for a password, a key is required. Unless some careful con-
fi guration is done, this key can be used to execute anything at all on the remote server, which
breaks the principle of least privilege. You need to specify exactly what the Nagios server has
access to execute on each host.

These problems, and more, are solved by NRPE, the Nagios Remote Plugin Executor.
NRPE has two parts: a plugin called check_nrpe, which is executed locally by Nagios, and
a daemon, which runs on the monitored hosts. The daemon, run via a super-server, such as
xinetd, or as a service in Windows, has a local confi guration fi le, which defi nes the com-
mands check_nrpe is allowed to ask for. The check_nrpe plugin is confi gured to simply ask
the daemon to execute one of these predefi ned commands, optionally passing it thresholds.
The daemon does so, providing the client output and an exit code, which the client, in turn,
passes to Nagios. Any program can be securely executed on the remote server by NRPE, if it’s
defi ned in the daemon’s confi guration fi le. X509 certifi cates can be used to authenticate the
client to the daemon and encrypt the transmission. NRPE is completely cross platform, so it
can handle remote execution for Windows and UNIX clients of all fl avors. The installation
and confi guration of NRPE is covered in Chapter 6, “Watching.”

Scheduling

Now that you have a good understanding of what plugins are and how they work, you need
to know how Nagios goes about scheduling them. The core of Nagios is a smart scheduler
with many user-defi ned options that allow you to infl uence the way it goes about its task.
Understanding how the scheduler works is imperative to confi guring these settings to work
with your environment.

Check Interval and States

All internal Nagios processes, including host checks and service checks, are placed in a global
event queue. The scheduling of check events is user-defi ned, but not by using absolute date/
time in the way cron or the Windows Task Scheduler would. Strictly scheduling dates and
times for given services is not possible because Nagios cannot control how long it takes a
given plugin to execute. Instead, you tell Nagios how long to wait when a plugin has exited
before it is executed again. Two options combine to defi ne this time interval.

The interval length defi nes a block of time in seconds, and the normal check interval is
the number of interval lengths to wait. It should be noted that normal check interval applies
only to service defi nitions. Although it is possible to specify a check interval for hosts, it is
not required for Nagios to work properly. In general, host checks are carried out as they are
needed, usually after a service check on that host fails, so the use of explicit host checks is

Scheduling

24 Chapter 2 Theory of Operations

discouraged. Because the interval length is usually set to 60 seconds, you may think of the
normal check interval as the number of minutes to wait between checks.

As depicted in Figure 2.2, events are scheduled by inserting them into the event queue,
stamped with the time with which they should be run. After Nagios executes a plugin, it
waits for the plugin to return and then adds the check_interval to the last scheduled run time,
to decide when the plugin should be run next. It’s important to stress that Nagios always uses
the time the plugin was originally scheduled to calculate the next execution time, because
there are two scenarios where Nagios may need to reschedule a check as a result.

First, if Nagios gets busy and is unable to execute a check at the time it was supposed
to, the plugin’s schedule is said to have “slipped.” Even if slippage occurs, Nagios uses the
initially scheduled time to calculate the next execution time, rather than the time the plugin
was actually run. If the schedule has slipped so badly that the current time is already past the
normal check interval, Nagios reschedules the plugin.

Second, the plugin sometimes takes longer to return than expected, due to network
delays or high utilization. In the event that the plugin execution time exceeds the normal
check interval, Nagios will reschedule the plugin.

Figure 2.2 Event scheduling.

If you thought the phrase normal check interval implied the existence of an abnormal
check interval, you’re on the right track. If a service check returns a code other than 0 (OK),
Nagios reschedules the check using a different interval. This setting, called the retry check
interval, is used to do a double take on the service. In fact, Nagios can be confi gured to do
multiple retries of a service, to make absolutely sure the service is down or to ensure the ser-
vice is down for a certain amount of time, before contacts are notifi ed.

Nagios schedules
the first service check.

Service check
completes; Nagios
uses normal check
interval to schedule
next check.

Uh-oh, the check
took a long time to
execute.

Rather than using the
normal check interval
that would result in
the check being
scheduled in the past,
Nagios reschedules the
plugin a short time later.

Check
Execution
Time
-~30 sec)

Normal Check Interval
(60 sec)

Time Line

25

The max check attempts option defi nes how many times Nagios will retry a service. The
fi rst normal check event counts as an attempt, so a max check attempts setting of 1 will cause
Nagios not to retry the service check at all. Figure 2.3 depicts the event timeline for a max
check attempts setting of 3.

Figure 2.3 Event scheduling during problems.

The time between the service fi rst being detected as down and the time Nagios decides to
send notifi cations can be calculated in minutes as follows:

(('retry check interval'*'interval length')*'max check
 attempts')/60

In English, that’s the number of retries times the number of minutes to wait between
retries. Nagios places the service in a soft state while it carries out these retries. After the ser-
vice is verifi ed as down, Nagios places it in a hard state. Soft states can be one of two types:
soft error states, which occur when a service or host changes from okay to something worse,
and soft recovery states, when a service or host changes from something bad to something
not as bad. Soft states are useful for providing a buffer of time within which to take auto-
matic break-fi x steps and because they are logged, they can be useful in detecting services
with a tendency to go up and down (or fl ap) without alerting anyone unnecessarily. The
manner in which automatic break-fi x is accomplished in Nagios is called an event handler.
Event handlers are simply commands that are executed when state changes occur in hosts or
services. As usual, the command syntax is, literally, defi ned by you, so they can do just about
anything you want them to do. There are global event handlers, which are executed for every
state change, program-wide, as well as event handlers you can defi ne on a host-by-host or

Scheduling

Nagios schedules
the first service check.

Service check returns
ʻWarning ̓status. After
checking to make sure
the host is available,
Nagios places the service
in a soft warning state
and uses the retry check
interval to schedule the
next check.

The plugin returns
warning after two
retries (3 total checks).

Satisfied that the problem
persists, Nagios places the
service in a hard warning
state, notifies the contacts,
and goes back to the normal
check interval.

Check
Execution
Time
(~30 sec)

Normal Check
Interval (60 sec)

Time Line

Retry Check
Interval (40 sec)

26 Chapter 2 Theory of Operations

service-by-service basis. In addition to break-fi x, they are a popular place to hook in custom
logging or to communicate changes to other monitoring systems.

Distributing the Load

My description of service scheduling in Nagios presents a problem. Because scheduling is
determined based on the last time a service completed, the entire scheduling algorithm is
dependent on when the services started. If all services started at the same time Nagios did,
then all services with the same normal check interval would be scheduled at exactly the same
time. If this were to happen, Nagios would quickly become unusable in large environments,
so Nagios attempts to protect the monitoring server and its clients from heavy loads by dis-
tributing the burden as widely as possible within the time constraints provided and across
remote hosts. Nagios does this through a combination of intelligent scheduling methodolo-
gies such as service interleaving and inter-check delay.

When Nagios fi rst starts, it usually does so with a long list of hosts and services. Nagios’
job is to establish the status of each element on that list as quickly as possible so, in theory,
it could just go down the list item by item until it came to the bottom and then begin again
from the top. This methodology is not optimal, however, because working the list from top
to bottom puts a lot of load on individual remote hosts. If Server1, at the top of the list, were
confi gured with 18 services, for example, Nagios would demand the status of all 18 immedi-
ately. Instead, Nagios uses an interleave factor, as depicted in Figure 2.4.

Interleave Factor

Nagios wakes up with
quite a lot of servers to
talk to.

To avoid being
a burden, it uses an
interleave factor to space
the conversations out.

ping
server 1

ping
server 2

ping
server 3

ping
server 4

ping
server 5

ping
server 6

Pass 1

Pass 2

Figure 2.4 With an interleave factor of 3, Nagios checks every third service.

27

With an interleave factor of 2, Nagios would ask for every other item in the list until it
got to the bottom: 1, 3, 5, and so on. Then, beginning from the second to the top, it would
ask for every other again: 2, 4, 6, and so on. In this manner, the load is distributed across
different servers, yet the overall state of the network takes no longer to discover than with
the top down method. The interleave factor is user-defi nable, but Nagios, by default, will
calculate one for you using the following formula, which is optimal in nearly all cases:

interleave factor = (total number of services / total number of
 hosts)

Reducing the load on the remote hosts, however, does nothing for the Nagios server,
which still needs to process the sending and receiving of large numbers of checks upon
startup. To alleviate the intensive burden of the fi rst few minutes after startup and to ensure
that cycles are available for important tasks, such as log rotation, Nagios inserts a small
amount of time between checks that would otherwise be executed in parallel. This time
period, called the inter-check delay, is user-defi nable, but if set too high, may cause the sched-
ule to slip. Nagios will calculate one for you if the inter-check delay method is set to smart
(which it is, by default) using the following formula:

inter-check delay = (average check interval for all services) /
 (total number of services)

You should be aware that many other options exist to infl uence the scheduler, especially
during startup. For example, a max check spread can be imposed, which limits the amount of
time Nagios may take to initially glean the status of each host. Obviously, this option, if set,
affects the preceeding inter-check delay formula. To help you sort out some of these settings,
execute the Nagios binary with an -s switch to provide scheduling information based on the
current confi guration.

Reapers and Parallel Execution

The events that are processed in the queue break down into one of two types: those that can
be run in parallel and those that cannot. Service checks in Nagios can be run in parallel, so
when a service check event is found in the queue, it is forked and Nagios continues on to
process the next event in the queue. The service check that was forked will execute a plugin
and place its error code and output in a message queue until an event called a reaper comes
along to collect it.

Reaper events are the heartbeat of Nagios. Their frequency of occurrence in the event
queue is a user-defi ned option and it’s an important one. No matter how fast the plugin
fi nishes its work and reports back its status, Nagios will not process it until a service reaper
comes along and discovers it in the message queue.

Scheduling

28 Chapter 2 Theory of Operations

The number of service events Nagios is allowed to execute in parallel is defi ned by the
max concurrent checks option. This variable is also an important one; if set too high, the
Monitoring server’s resources will be completely consumed by service checks. On the other
hand, set it too low, and service check schedules may slip. The Nagios documentation pro-
vides a primer about how to optimize the concurrent checks variable, based on the average
amount of time it takes for your plugins to execute, at: http://nagios.sourceforge.net/docs/2_
0/checkscheduling.html#max_concurrent_checks.

The Nagios Web interface includes tools to quantify the number of checks not meeting
their schedules. In practice, users are usually needlessly concerned. Some number of events
will inevitably miss their initially scheduled windows because they’ve been preempted by
retry checks for other services that have gone into soft error states, because some checks take
longer than others, or because of a plethora of other reasons. So don’t worry too much if you
see some schedules slip now and again; the Nagios scheduler, in my experience, always does
the right thing, given the chaotic nature of its task.

Notifi cation

If you haven’t confi gured it to do otherwise, Nagios will send notifi cations every time a
hard state change occurs or whenever a host or service stays in a bad state long enough
for a follow-up notifi cation to be sent. So many options in various object defi nitions can
affect whether notifi cations are sent that it can be diffi cult to maintain a mental picture of
the overall notifi cation logic. Nagios’ notifi cation framework is a welcome surprise to most
sysadmins for the robust fl exibility it provides, but it is also an often misunderstood subject
among neophytes because it is so confi gurable. See the “Check Interval and States” section
for a description of hard states.

Describing the notifi cation logic is a great way to introduce many fundamental concepts.
If you can understand how notifi cations work within Nagios, then you will understand about
Nagios. The following sections start from the top and then explain the various levels for
which notifi cation options can be confi gured. It also points out some potential “gotchas”
along the way.

Global Gotchas

Nagios, like countless UNIX programs before it, is confi gured by way of text fi les. So gener-
ally, the defi nitions in the text fi les will determine Nagios’ state while it’s running. However,
certain settings can be changed at runtime, so the confi g fi le defi nitions don’t necessarily
refl ect what Nagios is actually doing for a few specifi c settings. One important example is the
global enable notifi cations setting. This option enables or disables notifi cations programwide,
and it’s probably the most dangerous of the runtime changeable confi guration options.

http://nagios.sourceforge.net/docs/2_0/checkscheduling.html#max_concurrent_checks
http://nagios.sourceforge.net/docs/2_0/checkscheduling.html#max_concurrent_checks

29

It is especially important to be aware of the actual state of enable notifi cations because
Nagios can be confi gured to use a persistent program state. That is, when Nagios is shut-
down, it will write its currently-running confi guration state to a fi le, so when it is started
again, it will start right where it left off. When Nagios is started in a persistent program
state, via the use retained program option, the settings in the state fi le override those in the
confi guration fi les. This means that if the enable notifi cations option is set to enable in the
confi g fi le, but then reset to disable while Nagios is running, it’s possible that this setting will
persist across application restarts, and someone looking in the confi gs will believe that it is,
in fact, enabled, when it is not.

Always make sure to check the “Tactical Overview” CGI from the Nagios GUI if you
have notifi cation problems, to be sure that notifi cations are globally enabled. If you feel that
restarting Nagios may resolve your problem, be sure to disable program state persistence
and/or delete the state fi le before you start Nagios back up. Deleting the state fi le while Nag-
ios is running is no good; Nagios will simply write a new one when it is shut down. So shut
down fi rst, then delete, and then start back up.

Notifi cation Options

Hosts and services each have several options that affect the behavior of notifi cations in Nag-
ios. The fi rst to be aware of is the notifi cation options setting. Each host or service can be
confi gured to send notifi cations (or not) for every possible state that Nagios tracks. These
states are slightly different for hosts and services, because hosts and services are different in
reality. Table 2.2 summarizes the possible host and service states.

Table 2.2 Host and Service Notifi cation States
Host States Service States

Unreachable (u) Unknown (u)

Down (d) Critical (c)

Recovered (r) Warning (w)

Flapping (f) Recovered (r)

Flapping (f)

Flapping is the term Nagios coined to describe services that go up and down repeatedly.
Nagios can be confi gured to detect fl apping services as a notifi cation convenience, because ser-
vice fl apping can cause many unwanted notifi cations. The notifi cation options setting should
list each state you want Nagios to send a notifi cation for. If critical CPU notifi cations are
wanted, but not warnings, the notifi cation options setting should list only c. If you want to be
notifi ed when a service recovers from a bad state, then r must be explicitly listed, as well.

In addition to service and host defi nitions, contact defi nitions also have a notifi cation
options setting. Contact defi nitions are used to describe a person who Nagios may send a

Notifi cation

30 Chapter 2 Theory of Operations

notifi cation to. In addition to obvious options, such as the contacts’ name and email address,
each contact defi nition may contain a host notifi cation options setting, as well as a service
notifi cation options setting. Together these options provide you the ability to fi lter the type
of notifi cations any single contact receives. A programmer, for example, might always want
problem notifi cations for the applications he’s responsible for, but never want recovery pages
because he knows when the problem is fi xed because he’s the one fi xing it.

Templates

A potential gotcha, with defi nitions in general, is the concept of defi nition templates. Because
there is a lot to defi ne, Nagios allows you to create generic defi nitions that list options that
certain types of systems have in common. The Web servers may all have common notifi cation
contacts and thresholds, for example, so when you go about creating the service defi nitions
for the Web servers, you might create a generic service defi nition called web-servers fi rst, and
refer the individual service defi nitions to it. This way, you only have to defi ne thresholds and
notifi cation contacts once, instead of once per service. These generic defi nitions are called
templates, and they save you a substantial amount of typing.

Options explicitly defi ned in a service defi nition take precedence over those set in the
template that the defi nition refers to. However, when the defi nition inherits its notifi cation
options setting from a template, it isn’t immediately obvious what states the service is set to
notify on. I recommend you always try to explicitly set the notifi cation options. It’s common
to cut and paste when dealing with Nagios confi gs, so at least be aware of the notifi cation
options setting and know which template it inherits from, if it’s not explicitly set. More infor-
mation on templates can be found in Chapter 4.

Time Periods

Something else that affects Nagios’ notifi cation behavior is the confi guration setting for time
periods. Like many other things in Nagios, time periods are user-defi ned. They are used to
specify a block of time, such as Monday through Friday, 9 a.m. to 6 p.m., which service
and host defi nitions refer to, to derive their hours of operation. Service defi nitions refer to
time periods in two ways. The notifi cation period defi nes the hours within which Nagios is
allowed to send notifi cations for the service, and the check period defi nes the period of time
Nagios may schedule checks of the service.

Nagios isn’t just a monitoring system; it’s also an information collection program. Nag-
ios can collect utilization and status information from anything it monitors and pass this
information along to other programs for graphing or data mining. Services such as CPU
utilization are good candidates for 24 x 7 data collection, but you may not want to send
notifi cations all the time, because CPU intensive things, such as backups, tend to happen
at night. This is a perfect example of why you might want to have different settings for the
notifi cation period and check period.

31

If the service breaches its thresholds outside of either of these time periods, Nagios will
not send a notifi cation. If the threshold breach occurs outside of the notifi cation period,
Nagios tracks the state change from OK into Soft Error and into Hard Error, but it will not
send notifi cations because it has been explicitly told not to do so. Alternatively, if the thresh-
old is breached outside the check period, Nagios will simply not notice, because it has been
explicitly told not to schedule checks of the service. Like almost every other option within the
service defi nition, the time periods may be inherited from a template, if not explicitly set, so
be aware of what time periods are being inherited if you have notifi cation trouble.

As with the notifi cation options setting, time periods may be confi gured on a contact-
by-contact basis, so even if a threshold breach occurs within the time period specifi ed by the
service defi nition, the contact might still fi lter out notifi cations.

Scheduled Downtime, Acknowledgments, and Escalations

The last few variables that could affect Nagios’ notifi cation decision are escalations, acknowl-
edgments, and scheduled downtime. If planned maintenance must take place on one or more
hosts, it is possible to schedule a period of downtime for the host or hosts from the Nagios
Web UI. While a host is in a period of scheduled downtime, Nagios will schedule checks as
normal and continue to track the host’s state, but no notifi cations will be sent for that host or
its services. Further, Nagios distinguishes between actual downtime and scheduled downtime
in its various Web reports.

Escalations exist as a means to notify additional contacts if a host or service is down for
too long. For example, if Server1 goes down, you may want Nagios to notify the sysadmin,
but if Server1 is down for 7 hours, you may want to notify the sysadmin and his manager.
Escalations are defi ned independently, so they are not part of the service defi nition itself.
When Nagios decides the time is right to send a notifi cation, it fi rst checks to make sure there
isn’t an escalation defi nition that matches the notifi cation Nagios is about to send. If Nagios
fi nds a matching escalation, it will send it instead of the original notifi cation.

It’s important to realize that Nagios will either send the notifi cation as defi ned in the
service, or the notifi cation defi ned in the escalation. Normally, this is fi ne because the escala-
tion and the notifi cation in the service are the same thing, except the escalation has a few
extra contacts. However, it is possible to defi ne the escalation with a completely different set
of contacts and even a completely different notifi cation command. Be sure to list the original
contacts in the escalation defi nition, along with the upper tier contacts, if you intend for both
the sysadmin and his manager to be notifi ed.

Acknowledgments are used to silence the re-occurring follow-up pages while you work
on fi xing the problem. If escalations are confi gured, it’s especially important to tell Nagios
that you’re aware of, and working on, the problem, so it doesn’t get your manager involved.

Notifi cation

32 Chapter 2 Theory of Operations

Acknowledgments can be sent to Nagios by way of the Web interface, along with an optional
comment. When an Acknowledgment is sent, Nagios notifi es the original recipient list that
the problem has been acknowledged and by whom. Follow-up notifi cations are then disabled
until the service goes back into an OK state.

I/O Interfaces Summarized

Nagios is a great monitoring tool, but the area in which it is head and shoulders above any
of its commercial brethren is its capability to interact with other external monitoring and
visualization tools. Nagios is good at interacting with other systems because this was a design
goal of its creators, but also because, as repeatedly stated in this chapter, it has little function-
ality built into it besides scheduling and notifi cation. Nagios is good at making it easy to get
data in and out because it has to be good at it, by virtue of its simple, yet elegant, design. This
section describes a few of the most common ways to get data into and out of Nagios.

The Web Interface

When you build Nagios, you may also choose to build its Web interface, and I recommend
that you do. The main purpose of the Web GUI is to provide you with a window into the
current state of the hosts you are monitoring, but it has a lot of functionality beyond that,
such as

■ Historical reporting and trending tools

■ Interfaces for scheduling downtime and providing comments to specifi c hosts and
services

■ Interfaces for enabling or disabling service checks and notifi cations

■ Interfaces for examining the current confi guration

■ Tools for drawing graphical maps of the environment

■ Tools for getting information about the Nagios daemon’s status

The Web GUI is CGI-based, and the CGI programs are written in C, so they run fast. In
general, the CGIs glean their information from several log and state fi les that Nagios main-
tains in its var directory. The complete functionality of the GUI is a subject that could fi ll an
entire book, so I’m going to summarize its elements and how they tie together, and I’ll also
show you some of my personal favorite displays; the ones I fi nd myself revisiting often. With
the top-level summary that follows, you should be able to explore the GUI on your own and
glean the information you need in no time.

Figure 2.5 shows the Nagios Navigation Bar. The bar is organized into four sections:
General, Monitoring, Reporting, and Confi guration. The general section has a link to the full

33

Nagios documentation in HTML. You can use the Confi guration section to look at online
versions of the confi guration fi les. The two more interesting sections are Monitoring and
Reporting.

I/O Interfaces Summarized

Figure 2.5 The Nagios Navigation bar.

Monitoring

The monitoring section is intended to provide real-time status displays of the machines you
monitor with Nagios. With the exception of the tactical overview, the status map, and the
3-D status map, every display available under the monitoring section is provided by a single
CGI: status.cgi. In fact, 90 percent of what you will probably do with the Web interface is
interaction with status.cgi and this is a good thing, because status.cgi provides a uniform
interface. In general, each screen displayed by status.cgi has four elements in common across
the top of the display: a context-sensitive menu of links, the host status table, the service
status table, and the display area, as shown in Figure 2.6.

34 Chapter 2 Theory of Operations

Figure 2.6 The status.cgi display.

The link menu in the upper-left provides shortcut links, which change based on what
type of display you look at, and the service and host status tables on the upper-middle por-
tion and the upper-right portion summarize the state of the hosts and services in the display
area. It’s important to note that the host and service status tables are context-sensitive; that
is, they display a summary of the subset of hosts and services you are currently viewing in the
display area and not the overall status of every host and service in Nagios. Generally, click-
ing on links in the display area gives you more detailed views. Clicking on a hostgroup gets
you a summary display of all the hosts in that group. Clicking on a host gets you the detail
display of that host.

Figure 2.7 is a screenshot of the detail display for a host. As you can see, the host and
service status displays are gone and the display area contains a table listing the current status
of the host, as well as a menu of commands. These commands alter the status of this host.
From here, you can schedule downtime for the host, tell Nagios to stop checking it, stop
sending notifi cations about it, acknowledge problems, and so on. If Nagios is confi gured to
use a persistent state, via the retained state option, then these changes will persist even after
Nagios is restarted.

35

Figure 2.7 Status detail display for a host.

Figure 2.8 is a screenshot of the hostgroup summary display. This is my favorite display;
it shows, on a single screen, the state of the entire monitored environment, broken down by
hostgroup. No matter how large your environment, you can usually fi t the entire summary
screen within a 1024 x 768 window. The hostgroup summary is where I go in the morning
to see the status of the environment at a glance, and it’s also the screen I keep up to glance at
throughout the day. From here, you can drill down into any hostgroup, and on down to the
host, and because it includes every host and service in the entire environment, the host and
service status tables show the current status of the environment as a whole.

I/O Interfaces Summarized

Figure 2.8 Hostgroup summary: my favorite screen.

36 Chapter 2 Theory of Operations

Reporting

Nagios has some excellent reporting capabilities built in. The Reporting CGIs break down
into one of three types: those that just provide log dumps, those that draw graphs, and those
that output formatted reports. Alert History, Notifi cations, and Event Log simply dump the
log lines that correspond to their type. Alert Histogram and Trends use the GD library to
generate graphs. Availability and Alert Summary generate formatted reports.

All the reporting types that aren’t just log dumpers follow the same pregeneration pro-
cedure. Click on the report type, and you will be prompted to specify which type of object
you want to run the report on. You may run most reports on one or more hosts, services,
hostgroups, and service groups. After you choose the type of object, you are prompted to
select the specifi c object you want to run the report on, so if you choose host(s) in the fi rst
step, you can specify Server1 in the second. Lastly, you are asked to provide some options,
such as the report time period and which state types (hard or soft, error or non-error) you
want it to include.

The main difference between a trend graph and a histogram graph is the X-axis. For a
period of fi ve days, a trend graph displays each of those fi ve days on the X-axis and plots the
service state (unknown, critical, warning, okay) on Y-axis. The trend graph is a straightfor-
ward historical representation of the state of the service as a function of time.

The histogram, on the other hand, displays a user-defi ned breakdown of time intervals
(referred to as the breakdown type) on the X-axis, such as hours per day, or days per week. It
then plots the number of error states on the Y-axis. For example, a histogram with a period
of Last 7 days and a breakdown type of hours per day will plot 24 hours on the X-axis and
then plot the number of occurrences of each problem state in the last seven days on the
Y-axis, based on the hour it occurred. This is handy for visualizing trends in service outages.
A trend graph shows you that the CPU was High on Server1 last Monday at 1 p.m., but the
histogram shows you that the CPU is high on Server1 every Monday at 1 p.m.

Both the Availability and Alert Summary formatted reports are well done. They are used
often. The Availability report is what you look for if you need to prove you’re meeting your
SLA. Availability reports are color-coded tables that specify the exact amount of availability
(as a percentage of three sig-fi gs for “fi ve nines” people) for any host, service, or collection.
The Alert Summary report is great for people who don’t want to get paged, but still want a
summary of what went on in the last 24 hours or any other user-defi ned time period. The
Alert Summary report can be fi ltered to exclude soft events, show only host events or service
events or both, or display just problem states, just recovery states, and so on. Both the Avail-
ability report and Alert Summary report can be easily imported into Excel spreadsheets by
saving the report straight out of the HTML frame as nameoffi le.xls.

37

The External Command File

The fact that the Web CGIs are able to do things, such as schedule downtime for hosts and
turn off notifi cations, implies that there is more to the Web interface than a simple CGI
wrapper to the log and state fi les. In fact, the CGIs accomplish command execution by way
of the external command fi le. The command fi le is a FIFO (or named pipe), which Nagios
periodically checks for commands. It can be thought of as a fi le system entry point to the
event queue. The command fi le isn’t just for the Web interface; it can be used by any process
with the permissions to do so.

The format for commands is

[time] command_id;command_arguments

The Time is a timestamp in UNIX seconds since epoch format. To get the current time
in seconds on a Unix box, do

date '+%s'

The command ID is the name of the command you want to execute and each one takes
different arguments. As of this writing, there are 131 different commands you can send
to the Nagios daemon, by way of the command fi le, to do things such as turn on and off
notifi cations, acknowledge problems, and provide comments. A listing of these commands,
along with their options and sample shell scripts for each one, is available from www.nagios.
org/developerinfo/externalcommands/.

Performance Data

Earlier, a plugin was defi ned as a little program that provides an exit code and optionally
some text on stdout. If the optional text contains a pipe character (|), Nagios will treat any-
thing before the pipe as normal summary text and everything after the pipe as performance
data. Nagios has specifi c defi nitions around what to do with performance data if it exists.
Performance data was originally meant to track the performance of the plugin itself. For
example, if you wanted to know how long a plugin took to do its job, the plugin could time
itself and provide that data back, embedded in the summary text. You could then confi gure
Nagios to do whatever you want with the performance data separately, such as log it to a fi le
or database, for example.

In practice, performance data has become the defacto means to export data from Nagios
into graphing programs, such as RRDTool. Most plugins, however, do not support perfor-
mance data; that is, they have no pipe character in their summary text. This is easy enough
to rectify, however, with the check_ wrapper_generic in Listing 2.6.

I/O Interfaces Summarized

www.nagios.org/developerinfo/externalcommands/
www.nagios.org/developerinfo/externalcommands/

38 Chapter 2 Theory of Operations

Listing 2.6 A performance data wrapper for all plugins.
#!/bin/sh
#a wrapper which adds perfdata functionality to any nagios plugin
#link pluginName_wrapper to this script for it to work
#for example, if you want to enable perfdata for check_mem
#you would 'ln -s check_wrapper_generic check_mem_wrapper'

#get rid of the 'wrapper' on the end of the name
NAME=`echo $0 | sed -e 's/_wrapper//''

#call the plugin and capture it's output
OUTPUT='${NAME} $@`
#capture it’s return code too
CODE=$?

#parrot the plugin's output back to stdout twice, seperated with a
pipe
echo "${OUTPUT}|${OUTPUT}"

#exit with the same code that plugin would have exited with
exit ${CODE}

This wrapper script is similar to the SSH remote execution plugin in Listing 2.5. It calls
another plugin by proxy and parrots back the other plugin’s output, this time adding a pipe
in the output, thereby adding support for performance data. Chapter 7 discusses perfor-
mance data and how it can be used to feed visualization programs.

The Event Broker

New to Nagios 2.0 is the Event Broker. The Event Broker is a process that watches the event
queue for certain types of events to occur and then notifi es one or more Event Broker mod-
ules, passing relevent details about the event to the module.

The NEB modules are written in C and linked to the Nagios core process at runtime, at
which point they ask the event broker to send them the events they are interested in. These
events can be any type that Nagios deals within the event queue. After an interesting event
occurs and the module has the relevant details, it may do almost anything it wants, including
modifying events in the queue, passing information to other programs, and generally chang-
ing the way Nagios operates.

The Event Broker interface is absolutely the most powerful interface to Nagios, for those
with some C skills and the inclination to get their hands dirty. In Chapter 8, “Nagios Event
Broker Interface,” event broker is used to add a fi le system status interface to Nagios.

39

C H A P T E R 3

Installing Nagios

Nagios is composed of three big chunks: the daemon, the Web interface, and the plugins.
The daemon and Web interface make up the tarball available from www.nagios.com, and the
plugins must be downloaded and installed separately. (Some distributions include the plugins
in their Nagios packages.) Although the Nagios daemon comes with the Web interface, the
daemon may be installed alone. Nagios does not require the Web interface to effectively
monitor the environment and to send notifi cations.

After the daemon is installed, most people download and install the plugins tarball.
Installing the plugins is technically an optional step; it’s entirely possible to run Nagios with
nothing but custom plugins, but most people consider that to be a reinvention of the wheel.
The plugins provided by the Nagios Plugin Project are well written and contain what you
need to monitor an enterprise network. This chapter covers the installation of all three chunks
and provides a handy reference to the available confi guration options.

OS Support and the FHS

The Nagios daemon was designed for and on Linux , but it is capable of being run by any
 UNIX-like operating system, including Solaris, BSD, AIX, and even Mac OS X. There are
even rumors on the mailing lists of success running the daemon under Cygwin on Microsoft
Windows, but I haven’t personally seen it done. If you’re going to attempt a Cygwin build, be
sure to include –enable-cygwin in your confi gure options. Also note that I run Nagios mostly
on Linux, so this discussion is aimed more at Linux.

The main difference between various UNIX environments running Nagios is the fi le sys-
tem hierarchy standards associated with each. Unfortunately, different UNIX variants place
the same fi le in different locations, which makes it diffi cult to predict where particular fi les

www.nagios.com

40 Chapter 3 Installing Nagios

might end up. It’s a problem that dates back to the BSD split, and no one has come up with
a good solution. Even within different distributions of Linux, there may be differences in the
fi le system hierarchy implementation. The only real way to know where all the fi les will wind
up is if you manually install from source.

Aside from some odd constructs, such as the AIX convention of installing everything open
source into /opt/freeware, most systems install Nagios in one of two ways: using either FHS
or installing into /usr/local. The File System Hierarchy Standard (FHS) , is a Free Standards
Group proposed standard and describes where fi les should go in UNIX-like fi le systems. Most
binary Linux distributions I’m aware of, such as Red Hat, Mandrivia, and SuSE, as well as
some source-based distributions, such as Sourcemage, use the FHS to some degree. I’d like
to place emphasis on the fact that, although the FHS is a good standard, there is still a lot of
disagreement and confusion as to how it actually works in practice. So Table 3.1, which shows
the FHS Standard fi le locations for Nagios, should be considered a rough guide.

Table 3.1 Nagios File Locations in the FHS
File Type Location

Confi guration fi les /etc/nagios

HTML /usr/share/nagios

CGIs /usr/share/nagios or /usr/lib/nagios

Program Daemon and other executables /usr/bin/nagios

LockFiles and FIFOs /var/lib/nagios or /var/log/nagios

Logs /var/log/nagios/

Plugins /usr/libexec/nagios or /usr/lib/nagios

If you use a source-based distribution such as gentoo or manually install Nagios from
source on Linux, Solaris, or the BSDs, expect to fi nd everything under /usr/local/nagios or
/usr/nagios, unless you specify different locations with options to the confi gure script. Tech-
nically, /usr/local/nagios is consistent with the FHS, which states that locally installed soft-
ware—that is, software not installed via the system’s package manager—should be installed
to /usr/local. Table 3.2 lists the fi le locations for a local installation.

Table 3.2 Nagios File locations for Local Installs
File Type Location

Confi guration fi les /usr/local/nagios/etc

HTML /usr/local/nagios/share

CGIs /usr/local/nagios/share

Program daemon and other executables /usr/local/nagios/bin

LockFiles and FIFO’s /usr/local/nagios/var

Logs /usr/local/nagios/var

Plugins /usr/local/nagios/libexec

41

Installation Steps and Prerequisites

Let’s get this show on the road. The high-level steps to install Nagios are

 1. Obtain and install Nagios’ dependencies.

 2. Obtain and install Nagios.

 3. Obtain and install the plugins’ dependencies.

 4. Obtain and install the plugins.

Nagios has only a few dependencies , and most of them are optional. If you want to use
the Web front-end, which is the only interactive interface available, you need a Web server
with CGI support, such as Apache (see www.apache.org for more information). Three graph-
ics libraries are needed if you want Nagios to display pretty pictures and graphs: libpng,
libjpeg, and the gd library. The only required dependency is zlib, and chances are you already
have that.

The plugins’ dependencies are more of a moving target. You need a ping program, some
BIND tools, such as host, dig, or nslookup, the OpenSSL library, and Perl. If you plan on
querying network objects with SNMP, you need net-snmp and possibly perl-snmp. Depend-
ing on what you need to monitor, packages such as OpenLDAP, Kerberos, and MySQL/pgsql
may be needed for special purpose plugins.

On most OSs, the confi gure script in the plugins package is good at fi guring out what
packages you have and automatically building plugins for them. If you lack a package, such
as OpenLDAP, confi gure will simply not attempt to build the ldap plugins, rather than gen-
erate an error. Solaris has an adept technical reviewer, Kate Harris, who says that she had
to comment out the SNMP specifi c portions of the makefi le to get the plugins to compile.
The base directory of the plugins tarball contains a REQUIREMENTS fi le, which lists the
requirements of specifi c plugins, so be sure to check it out before you build.

Installing Nagios

There are currently two branches of Nagios: the 1.x branch and the 2.x branch. This book
deals exclusively with the 2.x branch and, at the time of this writing, the current 2.x branch
version is 2.5. In this book, I used Nagios 2.1, 2.3, and 2.5 to verify the various commands
throughout the chapter.

Most UNIX operating systems I’m aware of ship with prepackaged versions of Nagios
or otherwise have them available. In the Linux realm, Red Hat, SuSE, and Mandrivia users
fi nd Nagios RPMs on their installation media, Debian and Ubuntu types may apt-get install

Installing Nagios

www.apache.org

42 Chapter 3 Installing Nagios

nagios-text, gentoo pundits can emerge nagios, and even sourcemage...wizards(?) may cast
nagios. Red Hat-specifi c Nagios RPMs are also available straight from www.nagios.com.
BSD people can fi nd Nagios in ports, and Solaris folks can pkg-get install Nagios from blast-
wave.org. No packages currently exist for AIX. Although manually compiling Nagios on
Linux, BSD, and Solaris is straightforward, building it on AIX is not for the faint of heart. If
you’re going to attempt a local install on AIX, I recommend picking up gcc from bull free-
ware rather than using AIX’s compiler. If you are an AIX 5L user, the affi nity program has
made building Nagios on AIX much easier. Consult your local package manager documenta-
tion for more information on installing the Nagios package available for your system.

I recommend that you build Nagios from source rather than use packages, unless you
plan on making your own packages. Simply put, you know what you get when you take the
time to build from source. Further, although I mention that Nagios runs on many different
systems, it was written to be run on Linux, so for production systems, I recommend that
Linux is what you use.

For manual builds from source, the Nagios tarball may be obtained directly from www.
nagios.com. The installation process is a typical confi gure, make, and make install. Nagios
requires a user and group to run, so these must be created fi rst. For the impatient person,
Listing 3.1 should be enough to get you up and running.

Listing 3.1 Iinstalling Nagios for the impatient person.
groupadd nagios
useradd –s /bin/false –g nagios nagios
tar –zxvf nagios-version.tgz
cd nagios-version
./confi gure
make all
sudo make install

As with many great open source applications, confi gure and build options abound. Let’s
take a closer look at the three main steps: confi gure, make, and make install.

Confi gure

The defaults are sensible and you aren’t required to specify anything, but there are a few
options you should be aware of. Launch confi gure with a -h switch for a full list of options.
In my experience, you either need to change nearly all of them or few to none. Table 3.3
shows some options you should be aware of, upfront.

www.nagios.com
www.nagios.com
www.nagios.com

43

Table 3.3 Important Compile-Time Options

Option Description

--enable-embedded-perl This enables Nagios’ embedded Perl interpreter.
It is intended to speed up execution of Perl scripts
for people who use a lot of Perl-based plugins. I
bring it up because it has a reputation for causing
segfaults, so turn it on at your own risk. The default
is disabled and most people keep it that way.

--with-nagios-user=<usr> This is the user that Nagios runs as. It should be
created before running confi gure. The default is
nagios.

--with-nagios-group=<grp> This is the group that the Nagios user belongs to.
It should be created before running confi gure. The
default is nagios.

--with-command-user=<usr> The username used to segment access to the Nagios
command fi le, which is described at the end of
Chapter 2, “Theory of Operations.” It defaults to the
nagios-user option.

--with-command-group=<grp> This specifi es the group used to segment access to
the Nagios command fi le, which is described at the
end of Chapter 2. It defaults to the nagios-group
option.

--with-init-dir=<path> This sets the location that the init script will be
installed in, if you use the install-init make target.
The default is /etc/rc.d/.

--with-htmurl=<path> The CGIs that make up the Web front-end are
written in C, so the URL paths in the HTML they
generate must be set at compile time. This defaults
to /nagios/ meaning that the HTML generated by the
CGIs will reference http://localhost/nagios/.

--with-cgiurl=<path> Similarly, any CGI URL paths referenced by the
HTML that the Web front-end generates must be set
at compile time. This defaults to /nagios/cgi-bin/,
meaning that the HTML generated by the CGIs will
reference http://localhost/nagios/cgi-bin/.

The previous options are good litmus tests for whether you have to specify options to
confi gure. A ./confi gure with no options at all will get most people a working Nagios imple-
mentation, but chances are, if you need to change more than two of the above defaults, you’ll
have to change something that I haven’t listed. Appendix A, “Confi gure Options,” contains
a complete list of options for the confi gure script.

Installing Nagios

44 Chapter 3 Installing Nagios

Make

There are, in fact, fi ve make targets to build various pieces of Nagios. A simple make
all will build Nagios and the Web front-end. Table 3.4 lists the other build-related make
targets.

Table 3.4 Build-Related Make Targets

Target Description

make nagios Just makes the Nagios Daemon, without the Web
interface.

make cgis Makes only the Web interface, without the daemon.

make modules Makes the Event Broker Modules. As of this
writing, there’s only one, helloworld.o, which is
really only useful for people who want to learn how
to program NEB Modules.

make contrib Makes various user contributed programs. There
are fi ve of these. The more useful ones include a
traceroute CGI, a sample apache confi g fi le, and a
stand-alone version of the embedded Perl interpreter
for testing Perl plugins.

Make Install

Executing make install installs the daemon, CGIs, and HTML fi les. Eight other install-related
make targets exist, as defi ned in Table 3.5.

Table 3.5 Install-Related Make Targets

Target Description

make install-base Installs only the Nagios Daemon without the Web
front-end

make install-cgis Installs the CGI programs

make install-html Installs only the static HTML pages

make install-init Installs the init fi le (to the directory specifi ed by the
–with-init-dir confi gure option)

make install-confi g Installs sample confi guration fi les

make install-commandmode Creates the external command fi le (as described at
the end of Chapter 2)

make uninstall Uninstalls Nagios

make fullinstall Installs the kitchen sink (everything)

45

Putting it all together, a real Nagios build may look more like Listing 3.2.

Listing 3.2 A realistic Nagios installation.
groupadd nagios
useradd –s /bin/false –g nagios nagios
useradd –s /bin/false –g nagios nagioscmd
tar –zxvf nagios-version.tgz
cd nagios-version
./confi gure –with-command-user=nagioscmd
make all
sudo make install install-init install-confi g install-commandmode

After confi gure fi nishes running, it provides you a handy summary of what happens
if you decide to build. For example, running confi gure on my Linux workstation with the
options in Listing 3.2 gives the summary in Listing 3.3.

Listing 3.3 Output from confi gure.
*** Confi guration summary for nagios 2.1 03-27-2006 ***:

 General Options:

 Nagios executable: nagios
 Nagios user/group: nagios,nagios
 Command user/group: nagioscmd,nagios
 Embedded Perl: no
 Event Broker: yes
 Install ${prefi x}: /usr/local/nagios
 Lock fi le: ${prefi x}/var/nagios.lock
 Init directory: /etc/rc.d
 Host OS: linux-gnu

 Web Interface Options:

 HTML URL: http://localhost/nagios/
 CGI URL: http://localhost/nagios/cgi-bin/
 Traceroute (used by WAP): /usr/sbin/traceroute

Review the options above for accuracy. If they look okay,
type 'make all' to compile the main program and CGIs.

Patches

As of this writing, there are three patches to the Nagios core that you might be interested
in. Two of them add new attributes to host defi nitions, and one makes the “status map” cgi
prettier. All patches are available from the Nagios Exchange, which is a Web site dedicated

Patches

46 Chapter 3 Installing Nagios

to user-created add-ons and scripts: www.nagiosexchange.org. Specifi cally, the patches are in
the patches section of the Nagios Exchange, under development.

Secondary IP Patch

The fi rst patch, usually referred to as the secondary IP patch, adds a secondary address attri-
bute to the defi nition, for host objects. The secondary address is intended to provide for
hosts with two IP addresses. The specifi c syntax for object defi nitions is covered in the next
chapter, but I want to mention here that it is not necessary to use this patch to get multiple
IP support. You may simply provide a space-separated list of addresses to the built-in address
attribute in the host defi nition, and the check_ping plugin will check each address listed. It
is a common misconception that the secondary IP patch is required for multiple IP support.
The only real reason to use the second IP patch is when you want to reference the second
IP specifi cally by a macro. Macros are discussed more in Chapter 4, “Confi guring Nagios.”
They can be thought of as variables that are internal to Nagios and used by object defi nitions.
For example, the host defi nitions built-in address attribute may be referenced by way of the
$HOSTADDRESS$ macro. When checks are defi ned, they point to $HOSTADDRESS$ rather
than the hard-coded address of the host. This way, one check defi nition may be used for any
host. If more than one address is defi ned, then $HOSTADDRESS$ will resolve to more than
one IP. The secondary address patch is only required if you want to specifi cally refer to the
two addresses individually, by separate macros. This is not a common requirement.

SNMP Community String Patch

The SNMP community string patch is similar to the secondary IP patch, in that it adds an
attribute and macro to the host defi nition. The attribute—which as you might guess, is the
SNMP community string for the host in question—is useful in cases in which you have many
different hosts in different SNMP communities. Again, it is possible to support hosts in dif-
ferent SNMP communities without patching Nagios by defi ning separate checks for each
community. The patch makes it possible to use a single check defi nition for any host by add-
ing the capability to query each host’s SNMP community, via a macro. If you use multiple
SNMP community strings, I recommend applying this patch.

Colored Statusmap Patch

Finally, the colored statusmap patch adds colors to the status map cgi (the graphical map
drawn by the Web front-end), which correspond to the status of hosts therein. Hosts in
healthy states show up in green, whereas hosts in degraded or down states show yellow or
red, respectively.

All three patches may be applied from inside the source directory with the –p1 switch to
patch. Listing 3.4 shows a complete Nagios install, including the application of the patches
listed previously.

www.nagiosexchange.org

47

Listing 3.4 Installing Nagios with patches.
groupadd nagios
useradd –s /bin/false –g nagios nagios
useradd –s /bin/false –g nagios nagioscmd
tar –zxvf nagios-version.tgz
cd nagios-version
patch –p1 </path/to/second_ip.patch
patch –p1 </path/to/snmp_string.patch
patch –p1 </path/to/statusmap.patch
./confi gure –with-command-user=nagioscmd
make all
sudo make install install-init install-confi g install-commandmode

Installing the Plugins

After Nagios is installed, it’s time to install the plugins tarball so that Nagios can actually run
some checks. The plugins tarball, as well as RPMs, are available from the downloads section
of www.nagios.com. Typically, UNIX distributions that have a Nagios package also have a
Nagios-plugins package of some description.

Manual installation from source code of the plugins is easier than Nagios itself. The con-
fi gure script fi gures out the paths to important binaries such as ping and Perl. If it can’t fi nd
something, you may have to specify the location, but this is unlikely. If you specifi ed custom
options to Nagios, you may also have to specify them to the plugins. These include any of the
default install directories you may have changed, as well as those listed in Table 3.6.

Table 3.6 Confi gure Options for the Nagios Plugins

Option Description

--with-cgiurl=<path> If you specifi ed a custom cgiurl in the Nagios build,
you need to tell the plugins about it here.

--with-nagios-user=<user> If you are running Nagios with a nonstandard
username, specify it to the confi gure script for the
plugins.

--with-nagios-group=<group> Likewise, if you changed the group away from the
default during the Nagios build, change it for the
plugins as well.

--with-trusted-path=<colon:delimited:list:of:paths> This very cool option lets you specify a custom
PATH for the environment the plugins run in.
This increases the security of the system by
limiting where the plugins may go to execute other
programs.

Installing the Plugins

www.nagios.com

48 Chapter 3 Installing Nagios

Call confi gure with a -h to get a full list of options if, for example, you need to specify
the location of the ping command because confi gure was unable to fi nd it. For most environ-
ments, confi gure can be run with default settings. Similar to the main program, the plugins
confi gure script generates a handy summary like the one in Listing 3.5, which was the result
of calling confi gure on my Linux workstation with no options specifi ed.

Listing 3.5 Output from plugins confi gure.
 --with-perl: /usr/bin/perl
 --with-cgiurl: /nagios/cgi-bin
 --with-nagios-user: nagios
 --with-nagios-group: nagios
 --with-trusted-path: /bin:/sbin:/usr/bin:/usr/sbin
 --with-ping-command: /bin/ping -n -c %d %s
 --with-ping6-command:
 --with-lwres: no
 --with-ipv6: yes
 --with-openssl: yes
 --enable-emulate-getaddrinfo: no

If the summary looks good, a simple make && make install will build and install the
plugins to the appropriate place. Not installed, however, are the contents of the contrib direc-
tory in the base directory of the plugins tarball. The contrib directory is a gold mine of spe-
cial purpose and architecture specifi c plugins. It contains checks for everything from netapp
appliances to Sybase databases and everything in between. I highly recommend that you take
a look in contrib before developing anything on your own, even if you don’t fi nd what you’re
looking for; it’s a great place to go for code to repurpose.

Installing NRPE

After Nagios and the plugin tarball are installed, you probably want to skip ahead to Chapter
4 and get them confi gured. After you have a fully functional Nagios server, however, the next
step is remote execution. As described at the end of Chapter 2, the Nagios Remote Plugin
Executor (NRPE) provides Nagios with the capability to execute plugins located remotely on
the monitored hosts. As shown in Figure 3.1, NRPE consists of two pieces: a plugin, which
resides on the Nagios server, and a daemon, which runs remotely on each monitored host.
Nagios uses the check_nrpe plugin to ask the NRPE daemon to run a check on the remote
host. If NRPE on the remote host is confi gured to allow this, it runs the plugin and passes the
results back to check_nrpe on the Nagios server.

49

Figure 3.1 Remote execution with NRPE.

The NRPE daemon can run under a superserver, such as inetd/xinetd, or it can be run
as a stand-alone daemon. It is confi gured by way of a confi g fi le, called nrpe.cfg, which is
usually located in /etc/. The nrpe.cfg defi nes a list of the plugins that the check_nrpe client
is allowed to request. There is also a version of the NRPE daemon available for Microsoft
Windows. Check Chapter 6, “Watching,” for more information about how to use NRPE to
check services on remote hosts.

To install the Linux version of the daemon, fi rst obtain it from

http://prdownloads.sourceforge.net/nagios/nrpe-2.5.1.tar.
gz?download

Then, untar it and do ./confi gure followed by make all. For the Nagios server, simply
copy check_nrpe to the plugins directory and you’re done. For the monitored hosts, copy
nrpe to somewhere like /usr/sbin and then grab the sample confi g fi le from the sample-confi gs
directory and put it in /etc/. Modify the confi g fi le to suit your needs; it’s heavily commented,
so it should be self-explanatory. Finally, nrpe –c /etc/nrpe.cfg –d will launch the NRPE dae-
mon in stand-alone mode. The sample-confi gs directory also contains inetd/xinetd confi gs, if
you want to use a superserver instead.

For Microsoft Windows users, grab the binary NRPE-NT package from

www.miwi-dv.com/nrpent/

After unzipping it, edit the nrpe.cfg fi le and type nrpe.exe –i to install. The NRPE dae-
mon then appears as a service in the services.msc. I’ve always had a hard time dealing with
version mismatches between NRPE-NT daemon and the UNIX check_nrpe client. Depend-
ing on how far off the versions are, you may experience trouble getting SSL to run or getting
them to work at all. I recommend you check the NRPE-NT forums for information about
which versions of check_nrpe are compatible with the current NT daemon.

Installing NRPE

check_nrpe: please run "check_uptime"

NRPE: up 177 days, 1 user, 0.03 0.03 0.00

www.miwi-dv.com/nrpent/
http://prdownloads.sourceforge.net/nagios/nrpe-2.5.1.tar.gz?download
http://prdownloads.sourceforge.net/nagios/nrpe-2.5.1.tar.gz?download

This page intentionally left blank

51

C H A P T E R 4

Confi guring Nagios

After installation, you need to confi gure Nagios before it can start. Nagios is confi gured

by way of text fi les that contain directives and defi nitions. It can be a beast to confi gure for
the fi rst time because the defi nitions are self-referential and there’s a lot to defi ne.

To get started, Nagios needs to call plugins during a time period against hosts and ser-
vices and send notifi cations to contacts if a check returns a bad status, so you need to defi ne
the checks, time periods, hosts, services, notifi cation commands, and contacts (and that’s all
mandatory). Because so many objects refer to so many other objects, it can be hard to know
where to begin to explain it all. Don’t be discouraged; Nagios comes with options to generate
sample confi guration fi les, and further, there are a few shortcuts you can take to bootstrap
the confi guration process (see Chapter 5, “Bookstrap the Confi gs”), but fi rst you need a good
understanding of what a confi guration looks like.

Hosts and services are the core objects. They are the objects that refer to most others, so
most of the documentation that has been written about Nagios begins with them. I’m going
to take more of a bottom up approach. I’ll start by describing the daemon confi guration fi les
and then work my way up from commands and time periods, through services and hosts to
groups, and then, fi nally, to optional defi nitions such as escalations and extended informa-
tion. Each group of objects is referred to by the objects above them, so by explaining things
this way, whenever you come to an attribute in a defi nition that references another object,
you will have already looked at what that object consists of. I fi nd that it’s easier to get a
grasp of the whole picture by explaining it this way.

52 Chapter 4 Confi guring Nagios

Objects and Defi nitions

In Nagios, there are two types of confi guration fi les: those that contain directives and those
that contain defi nitions. Technically, only two confi guration fi les are needed: nagios.cfg and
an object confi guration fi le. The nagios.cfg fi le contains directives that affect the operation
of the Nagios daemon, for instance, where and how to write logs and the name of the object
confi g fi le, global settings, and things of that nature. The object confi guration fi le defi nes the
various objects that Nagios deals with.

There are quite a few different types of objects (as outlined in Table 4.1), so, although
it’s possible to just lump all their defi nitions into a single fi le, most people prefer to group the
object defi nitions by type and to keep a different fi le for each type. Because this makes writing
about and learning about object confi guration easier, that is the convention I follow through-
out this chapter. While nagios.cfg will always be named nagios.cfg, the object confi guration
fi lenames are user-defi ned, so the fi lenames I use throughout the chapter are not written in
stone. It’s entirely possible that you might inherit a Nagios implementation that groups object
defi nitions by network subnet, OS, or even physical proximity to the Pepsi machine.

Table 4.1 A Brief Summary of Nagios Objects

Object Name Description Recommended Filename

timeperiod This is the defi ned block of time
that other objects use to determine
their operational hours and
blackout periods.

timeperiods.cfg

command Command defi nitions map
macros to external programs.
Other objects use commands for
many things, such as sending
notifi cations and running service
checks.

misccommands.cfg and
checkcommands.cfg

contact This defi nes a notifi cation target,
which is usually a human being.

contacts.cfg

contactgroup Contacts are organized into
groups called contactgroups.
Objects that send notifi cations
always reference contactgroups
and never individual contacts. A
contact can be a member of any
number of groups.

contactgroups.cfg

host Hosts are physical entities (or the
virtual representation of physical
entities if you use virtualizations,
such as Xen or VMware), such as
servers, routers, or tape drives.

hosts.cfg

53

Object Name Description Recommended Filename

service Hosts provide one or more
services. For a web server, httpd
or IIS would be a service. The
majority of Nagios confi guration
is made up of service defi nitions.

services.cfg

hostgroup Hosts may belong to any number
of user-defi ned hostgroups.
Names and methodology are up
to you, for example: servers-with-
blue-LEDs or routers-my-boss-
refuses-to-upgrade.

hostgroups.cfg

servicegroup Like hosts, services may belong
to any number of user-defi ned
groups. Servicegroups are a
feature unique to Nagios 2.0 and
above.

servicegroups.cfg

hostdependency Dependencies fi lter out checks
and notifi cations for objects, based
on the status of other objects. Be
sure you read and understand the
section, “Servicegroups,” before
using these.

dependencies.cfg

servicedependency This works the same way the
hostdependency does.

dependencies.cfg

hostescalation Escalations provide Nagios the
capability to notify additional
contacts, such as managers, if a
problem persists without being
acknowledged past a given
number of notifi cations.

escalation.cfg

serviceescalation These work the same as
hostescalations.

escalation.cfg

hostextendedinfo Extendedinfo objects map titles
and graphics to host and service
objects for the Web interface.
These defi nitions are entirely
optional and cosmetic in nature.

hostextinfo.cfg

serviceextendedinfo This works the same way the
hostextendedinfo does.

serviceextinfo.cfg

The nagios.cfg fi le is required. If you use the Web interface, another confi guration fi le,
cgi.cfg, is also required. The cgi.cfg fi le contains confi guration directives for the CGIs and
is where most of the UI security is confi gured. The cgi.cfg and the nagios.cfg fi les contain
confi guration directives rather than object defi nitions. The directive syntax should be

Objects and Defi nitions

Table 4.1 A Brief Summary of Nagios Objects (continued)

54 Chapter 4 Confi guring Nagios

familiar to anyone who has confi gured software on a UNIX system. There is one directive
per line, followed by an =, followed by the value of the directive. Whitespace is optional and
comments begin with a pound (#).

Defi nitions, no matter the type, use a common syntax that resembles a function in C or
Perl. The defi nition is composed of a block of directives surrounded by curly braces ({}) and
beginning with a defi ne keyword, followed by the object type. Directives within the defi ni-
tion block are whitespace-separated, unlike their nagios.cfg counterparts, which use an =. All
object defi nitions have one directive in common: <objecttype>_name. For example, a host
object has a host_name directive, whereas a servicegroup has a servicegroup_name direc-
tive. Most also have an alias directive. Comments begin with a pound (#). Listing 4.1 is an
example host defi nition, to give you a feel for the syntax.

In Nagios 2.0 and above, it is possible to use regex syntax in place of static text in any
directive that accepts a comma-separated list of values. (This option is disabled by default
and must be enabled by setting the use_regexp_matching directive to 1 in the nagios.cfg.) For
example, specifying simply * in the host_name directive of a service defi nition causes that
defi nition to apply to all hosts.

Listing 4.1 A sample host defi nition.
#A comment about myHost
defi ne host{
 host_name myHost
 alias My Favorite Host
 address 192.168.1.254
 parents myotherhost
 check_command check-host-alive
 max_check_attempts 5
 contact_groups admins
 notifi cation_interval 30
 notifi cation_period 24x7
 notifi cation_options d,u,r
}

nagios.cfg

Required for daemon start
Refers to: everything
Referred to by: cgi.cf

If you run install-confi g during installation, a nagios.cfg-sample fi le is written for you. It’s
specifi c to the confi guration directives you provided, so it should already have the correct
locations for lock fi les, log fi les, and the sort. In fact, for fi rst time installs, there is usually
little you have to change in the nagios.cfg. I recommend you start with an existing nagios.cfg
and modify it to suit your needs.

55

Two things you want to change in the nagios.cfg are the location of your object confi g
fi les and the check_external_commands directive. There are two ways to specify the location
of your object confi gs. You may either list each object defi nition fi le specifi cally with a cfg_fi le
directive, as shown in Listing 4.2, or you may specify a directory with the cfg_dir directive,
as shown in Listing 4.3. If you specify a directory, Nagios parses every fi le that ends in .cfg
in the specifi ed directory.

Listing 4.2 Specifying object confi g fi les individually.
cfg_fi le=/usr/local/nagios/etc/contactgroups.cfg
cfg_fi le=/usr/local/nagios/etc/contacts.cfg
cfg_fi le=/usr/local/nagios/etc/dependencies.cfg
cfg_fi le=/usr/local/nagios/etc/escalations.cfg
cfg_fi le=/usr/local/nagios/etc/hostgroups.cfg
cfg_fi le=/usr/local/nagios/etc/hosts.cfg
cfg_fi le=/usr/local/nagios/etc/servicegroups.cfg

Listing 4.3 Specifying object confi g fi les by directory.
cfg_dir=/usr/local/nagios/etc/

Next, if you wish the CGI commands in the web interface to work, or you want to
use external commands in general (as described in Chapter 2, “Theory of Operations”),
you should tell Nagios to accept external commands from the command fi le with the follow-
ing line:

check_external_commands=1

For external commands to work, the command fi le must exist in the location specifi ed in
the nagios.cfg, and its permissions must be set correctly. This is all taken care of by make if
you run make install-commandmode at install time.

Although those two changes get you up and running, there are a few directives in nagios.
cfg you should be aware of. These break down into two types: global enablers and global
time-outs . Table 4.2 describes the global enablers. You should remember these because they
enable or disable important features, programwide.

Table 4.2 Global Enablers in the nagios.cfg

Name Description

execute_service_checks Setting this to 0 turns off service checks program-
wide. Defaults to 1 (on).

accept_passive_service_checks Setting this to 0 turns off passive service checks.
Defaults to 1 (on). For a detailed discussion of
passive checks, refer to Chapter 2.

nagios.cfg

(continues)

56 Chapter 4 Confi guring Nagios

Name Description

execute_host_checks This enables/disables host checks. Defaults to 1
(on).

accept_passive_host_checks This enables/disables checks of hosts. Defaults to 1
(on).

enable_notifi cations This setting controls whether Nagios will send
notifi cations. Defaults to 1 (on).

enable_event_handlers Event handlers may be globally enabled or disabled.
Defaults to 1 (on).

process_performance_data This determines whether Nagios will check for and
handle performance data from plugins. Defaults to
0 (off).

Table 4.3 describes the time-outs, which control how long Nagios allows various com-
mands to execute. When a command in the queue is executed, Nagios allows it to run for
a user-defi ned period of seconds. Commands that take longer than that amount of time are
killed, so it’s important to remember these timeouts if you have a problem with custom
checks or event handlers unexpectedly dying. When Nagios kills a command due to a time-
out, it logs a warning message.

Table 4.3 Global Time-Out Values

Objective Name Description

service_check_timeout The length of time Nagios waits for a service check
plugin to return its status. Defaults to 60 seconds.

host_check_timeout The length of time Nagios waits for a host check
plugin to return its status. Defaults to 60 seconds.

event_handler_timeout The length of time Nagios waits for an event handler
to fi nish execution. Defaults to 30 seconds.

notifi cation_timeout The length of time Nagios allows a notifi cation
command to run. Defaults to 30 seconds

perfdata_timeout The length of time Nagios allows a perfdata handler
to run. Defaults to 5 seconds.

There’s a lot of stuff in nagios.cfg that I didn’t mention here, including many of the
directives referred to by Chapter 2, which tweak various operational parameters used by the
scheduler. Appendix B contains a comprehensive list of the confi guration options available in
the nagios .cfg and cgi.cfg fi les.

Table 4.2 Global Enablers in the nagios.cfg (continued)

57

The CGI Confi g

Not required for daemon start

Refers to: nagios.cfg

Referred to by: nagios.cfg

The cgi.cfg fi le is the only fi le, other than nagios.cfg, that contains directives instead of defi ni-
tions, and unless you are using the Web interface, it is optional. The Nagios Web interface is
very much a separate entity from the Nagios daemon. The daemon has no real knowledge of
the existence of the Web interface, so it communicates with the daemon via the same mecha-
nisms any other program would: It sends commands to the command fi le and parses logs and
state fi les for the current state of hosts and services. Therefore, a large part of the directives
in the cgi.cfg are there to give the CGI programs that make up the Web interface the informa-
tion they need to send commands to and get information from the Nagios daemon.

Like the nagios.cfg, most of the directives in cgi.cfg shouldn’t need to change if you speci-
fi ed them correctly at compile time and built the sample confi g with make install-confi g. The
directives you want to modify center around the Web interface security model, which is quite
simple. The CGI’s rely on the Web server to handle authentication, so any Web server can be
used to serve up the Web interface, and there is no confi guration required for specifi c users
outside of the Web server confi gs.

When a user successfully authenticates, the Web interface attempts to correlate the user-
name passed from the Web server with a contact in the contacts.cfg. After contacts.cfg is
set up, and the Web server is confi gured to authenticate users, the CGIs allow you to get
information about the hosts and services for which you are a contact. This works well for
large sites that want least-privilege style security. If you get paged when it goes down, you are
allowed to see it in the Web interface, without touching anything whatsoever in the cgi.cfg.

For smaller sites, however, it may be preferable to let everyone see everything; nearly all
sites will want to have a few users, such as the Nagios administrator, who can see everything,
whether they are confi gured as a contact for the host or service in question. Table 4.4 shows
the directives in the cgi.cfg that make these confi gurations possible. Most directives take
a comma-separated list of users. Each directive that supports a comma-separated list also
supports the use of an asterisk (*) to mean all users.

The CGI Confi g

58 Chapter 4 Confi guring Nagios

Table 4.4 Security-Related cgi.cfg Directives

Object Name Description

use_authentication This directive, set to 1 (on) by default, tells the CGIs
to use authentication information from the Web
server. Because the Web interface can control how
Nagios operates, turning authentication off is a bad
idea. If you want everyone to see everything, use
default_user_name instead.

default_user_name Usually set to guest, the default_user_name can be
granted permissions that will be inherited by all
other users. For example, if jdoe doesn’t explicitly
have access to see information on a service, but the
default user does, jdoe can see the service because
all users can see what the default user can. If you
want everyone to see all hosts, uncomment this
directive and list the default user in authorized_for_
all_hosts.

authorized_for_system_information A comma-separated list of users who are allowed to
see information related to the Nagios daemon.

authorized_for_confi guration_information A comma-separated list of users who are allowed
to see the contents of the confi guration fi les via the
Web interface.

authorized_for_system_commands A comma-separated list of users who are allowed to
execute commands relating to the Nagios daemon,
such as shutdown and restart.

authorized_for_all_services A comma-separated list of users who are allowed to
see information related to any service that Nagios is
monitoring.

authorized_for_all_hosts Like the preceding defi nition, except for hosts.

authorized_for_all_service_commands A comma-separated list of users who are allowed
to execute commands related to services, such as
rescheduling checks and disabling notifi cations.

authorized_for_all_host_commands Like the preceding defi nition, except for hosts.

Templates

The brunt of Nagios confi guration consists of object defi nitions as described in the “Objects
and Defi nitions” section. Object defi nitions come in varying degrees of complexity. Com-
mand defi nitions, for example, are normally composed of no more than two or three lines
of text. Service defi nitions, on the other hand, may contain 31 directives, 11 of which are
mandatory. For 100 hosts with 1 service each, that’s 1,100 lines of confi guration just for ser-
vice defi nitions, most of which are redundant. Thankfully, Nagios has a few built-in features

59

that mitigate the need for most of the typing. For example, any of the defi nitions that refer to
hosts may refer to a list of comma-separated hosts instead. Nagios 2.x allows you to specify a
hostgroup instead of a host for some defi nitions that refer to hosts. These two features alone
bring our 1,100 lines back to 11.

Another wrist-saving feature is template-based confi guration. Templates capture redun-
dant directives inside special defi nitions. Normal objects can then refer to the template and
inherit directives instead of specifying them explicitly. Template defi nitions look and act
exactly like their counterparts with two exceptions: the register directive and the name direc-
tive. Listing 4.4 is a template version of the host defi nition from Listing 4.1.

Listing 4.4 A host template and consumer defi nition.
This is my template
defi ne host{
 name hostTemplate
 check_command check-host-alive
 max_check_attempts 5
 contact_groups admins
 notifi cation_interval 30
 notifi cation_period 24x7
 notifi cation_options d,u,r
 register 0
}

myHost is shorter now that it inherits from hostTemplate
defi ne host{
 host_name myHost
 alias My Favorite Host
 address 192.168.1.254
 parents myotherhost
 use hostTemplate
}

As you can see, both defi nitions defi ne objects of type host. The host template, however,
has a name directive (instead of a host_name directive) and a register directive, which is set
to 0. Both name and register are specifi c to templates despite the object type, so any other
type of template (like a service template) is defi ned the same way. The name directive is self-
explanatory; it gives the template a name other objects can refer to. Setting the register direc-
tive to zero tells Nagios not to treat the object as a host object (don’t register it), but rather
let other objects inherit settings from it (make it a template).

Templates

60 Chapter 4 Confi guring Nagios

By adding a use directive to myHost’s defi nition, I instructed Nagios to let myHost inherit
settings from the template. The host object inherits anything that is specifi ed in the template.
The host object overrides any directives it has in common with the template. Templates may,
in turn, inherit properties from other templates, so it’s quite common practice with host defi -
nitions to defi ne a global host template, then several OS-specifi c templates, and then hosts
that refer to them. Technically, any object can inherit properties from any other object of the
same type, registered or not (I don’t recommend having normal objects inherit from other
normal objects. Stick to dedicated templates or things can get muddled), to an infi nite degree
via the use directive. I highly recommend the template-based confi guration; it’s very fl exible,
saves lots of redundant confi guration, and makes for readable confi g fi les.

Timeperiods

Required for daemon start

Refers to: none

Referred to by: host, service, contact, hostescalation, serviceescalation

Listing 4.5 Timeperiod example.
defi ne timeperiod{
 timeperiod_name nonworkhours
 alias Non-Work Hours
 sunday 00:00-24:00
 monday 00:00-09:00,17:00-24:00
 tuesday 00:00-09:00,17:00-24:00
 wednesday 00:00-09:00,17:00-24:00
 thursday 00:00-09:00,17:00-24:00
 friday 00:00-09:00,17:00-24:00
 saturday 00:00-24:00
}

Timeperiods defi ne blocks of time that many other objects reference in the context of opera-
tional hours or blackout periods. The timeperiod defi nition is agnostic; the period of time
it defi nes is not specifi c to any particular purpose, so two different objects may refer to the
same time period for completely different reasons.

Time periods have one directive for each day of the week. Omitting a day altogether
means the entire day is not included in the time period. Like all other objects, time periods
may inherit directives from other time periods or timeperiod templates. Multiple blocks of
time in the same day may be specifi ed by separating them with commas.

Commands

Required for daemon start

Refers to: none

Referred to by: host, service, contact

Listing 4.6 Command example.
defi ne command{
 command_name check_ping
 command_line $USER1$/check_ping –H $HOSTADDRESS$ -w $ARG1$ -c
$ARG2$ -p 5

Though composed of only two directives, command defi nitions are central to the function-
ality of Nagios. Commands are the solitary means by which Nagios may call external pro-
grams, and as we’ll see in other defi nitions throughout the chapter, Nagios calls external
programs often.

The most common use of the command object is for calling plugins. As previously
mentioned, there are only two directives: command_name, which gives the object a name
that other objects can reference, and command_line, which defi nes the shell syntax of the
command.

Command objects don’t just refer to external programs; they capture the command
syntax of external programs. The uppercase words surrounded by dollar signs are called
macros. Macros are context-specifi c internal variables that Nagios replaces at runtime. The
HOSTADDRESS macro, for example, refers to the host address of whatever host Nagios
happens to be running this plugin on. See the “Services” section for a description of the ARG
macros. This makes it possible to use one command defi nition for any host. Nagios forks an
exec of command_line exactly as it’s written in the defi nition; but just before executing the
command, Nagios replaces all of the macros with their actual values.

To avoid unintended shell interpretation and injection attacks, Nagios strips certain
characters out of the actual values before it replaces the macro keywords in the commands
in some contexts (host and service notifi cations and escalations, but not host and service
checks). For the same reasons, Nagios also prevents you from using special characters in host
and service names. These characters are user-defi nable via directives in the nagios.cfg, and

Commands 61

62 Chapter 4 Confi guring Nagios

you should be aware of them so that you avoid using them in your defi nitions. As of the time
of this writing, the illegal name characters are

 ' ~ ! $ % ^ & * | ' " < > ? , () =

...and the illegal macro output commands are

 ' ~ $ & | ' " < >

Different macros are available in different contexts, so it can be hard to know what
macros you can use in every situation. For example, email-related macros, such as CON-
TACTNAME, are available to commands being run for notifi cations but not commands
being run for service checks. Check the online documentation at http://nagios.sourceforge.
net/docs/2_0/macros.html for a complete matrix of available macros and the contexts they
are available in.

In the nagios.cfg fi le, there is a directive called resource_fi le, which allows you to specify
a fi le to create your own macros. This fi le is usually called resources.cfg or resource.cfg,
and within it, you may defi ne up to 32 macros. The resources.cfg usually contains at
least one macro, USER1, which resolves to the location of the installed plugins. Because
resources.cfg is owned by root and read-only, it’s a better place to defi ne any usernames
or passwords than the checkcommands.cfg, which is world-readable. When set up in
resources.cfg, your command objects can refer to the passwords by macro, thereby keeping
them safe from prying eyes.

In Nagios 2.0, Macros are exported as environment variables, so any macro available to
a command defi nition is also available to the program called by that defi nition.

Contacts

Required for daemon start

Refers to: command, timeperiod, contactgroup

Referred to by: contactgroup

Listing 4.7 Contact example.
defi ne contact{
 contact_name dave
 alias dave josephsen
 host_notifi cation_period 24x7 (continues)

http://nagios.sourceforge.net/docs/2_0/macros.html
http://nagios.sourceforge.net/docs/2_0/macros.html

 service_notifi cation_period work-hours
 host_notifi cation_options d,u,r,f
 service_notifi cation_options w,u,c,r,f
 host_notifi cation_commands host-email, send-sms
 service_notifi cation_commands service-email
 email dave@skeptech.org
 pager 555-1024
 address1 dave_josephsen@gmail.com
 address2 cn=djosephs,ou=foo,dc=bar,dc=
com
}

The contact object defi nes everything Nagios needs to know about a person. The name and
alias directives provide the usual. Two timeperiod objects may be specifi ed: the hours during
which the contact wants to be notifi ed of host problems and those during which the contact
wants to be notifi ed of service problems. Each contact can fi lter the types of alerts it receives
for host and service problems (as discussed in Chapter 2) with the notifi cation_options direc-
tives. The notifi cation_commands refer to command defi nitions that perform notifi cation
actions, such as sending emails or controlling armies of semi-autonomous messenger robots.
Notifi cation commands usually look something like the ones in Listing 4.8. Several addresses
can be defi ned, all of them optional. These include an email address, a pager address, and
any number of addressX directives.

Listing 4.8 A notifi cation command defi nition.
defi ne command{
 command_name host-notify-by-email
 command_line /usr/bin/printf "%b" "***** Nagios *****\n
 nNotifi cation Type: $NOTIFICATIONTYPE$\nHost: $HOSTNAME$\
 nState: $HOSTSTATE$\nAddress: $HOSTADDRESS$\nInfo:
 $HOSTOUTPUT$\n\nDate/Time: $LONGDATETIME$\n" | /usr/bin/mail
-s
 "Host $HOSTSTATE$ alert for $HOSTNAME$!" $CONTACTEMAIL$
 }

Nagios has no real concept of what these addresses mean; it simply makes them avail-
able to the notifi cation commands via Macros, as shown in Listing 4.8. It’s up to the notifi -
cation command defi nition to do something useful with them.

63Contacts

Listing 4.7 Contact example. (Continued)

64 Chapter 4 Confi guring Nagios

Contactgroup

Required for daemon start

Refers to: contact

Referred to by: host, service, contact, hostescalation serviceescalation

Listing 4.9 Contact example.
defi ne contactgroup{
 contactgroup_name admins
 alias The Administrators
 members chris,dave,jason,jer,kelly
}

Contacts are organized into groups, and host and service checks refer to the groups rather
than individual contacts. The only objects that refer directly to contacts are contactgroups.
The group defi nition is straightforward, containing the usual name and alias directives, as
well as the members directive. In Nagios 2.0 and above, you may specify contactgroup mem-
bership by adding a contactgroups directive to a contact defi nition. If you use both a mem-
bers directive in the contactgroup defi nition and a contactgroups directive in the contact
defi nition, Nagios merges the two; however, I recommend you pick one or the other and
stick with it.

Hosts

Required for daemon start

Refers to: timeperiod, contactgroup, command

Refered to by: service, hostgroup, hostdependency, hostescalation, hostextinfo

Listing 4.10 Host example.
defi ne host{
 host_name myHost
 alias My Favorite Host
 address 192.168.1.254
 parents myotherhost
 event_handler ups-reboot
 check_command check-host-alive
 max_check_attempts 3
 contact_groups admins
 notifi cation_interval 30
 notifi cation_period 24x7
 notifi cation_options d,u,r
}

Because hosts and services are the central objects in Nagios, their defi nitions are more
involved than most. You may specify 28 different directives within a host defi nition, but only
nine of them are mandatory. (All of the directives in Listing 4.10 are mandatory, except for
event_handler and parents.) See the Nagios documentation at http://nagios.sourceforge.net/
docs/2_0/xodtemplate.html#host for a complete list of the available directives. The directives
in Listing 4.9 are probably all you’ll need.

The address directive tells Nagios how to fi nd the host. You may specify either an IP
address or a hostname for the address directive, and this is an important decision. If you
specify hostnames, DNS problems will cause host failures, because Nagios cannot resolve the
hostname. On the other hand, if you specify an IP address, you have to remember to change
the defi nition if the IP of the host changes. In large environments, this may happen quite
often and without your knowledge. I prefer to specify hostnames and to run a local DNS
name server service, such as tinydns (see www.tinydns.org for more information), locally on
the Nagios box. Using a local name cache solves most DNS-related issues because Nagios
uses itself as a nameserver, but it also necessitates some type of replication with the real
nameservers.

The parents directive tells Nagios where in the network topology the host resides. Par-
ents are defi ned from the perspective of the Nagios server. If the Nagios server is connected
to a router, which also connects to a separate subnet containing 4 hosts, then each of those
hosts should be defi ned with a parents directive listing the router. The router does not need a
parents directive, because it is on the same subnet as the Nagios server. Each host may list one
or more parents. As described in Chapter 2, Nagios uses parent/child relationships to treat
outages on remote subnets differently than those on local subnets. If a host with children,
such as a router or switch, goes down, Nagios considers the router down and its children
unavailable. This is an important distinction for reporting and notifi cations. As shown in the
section, “Contacts,” the contact may fi lter out the unavailable notifi cations via its notifi ca-
tion options directives.

The event_handler and check_command directives both specify command objects. Event
handlers, as described in Chapter 2, are usually commands that launch scripts in an attempt
to rectify simple problems automatically. When a host changes state, Nagios executes the
host’s event_handler before sending notifi cations. The check_command is the command
Nagios uses to check that the host is available. Nagios does not wait for the event handler
to return before it sends notifi cations. However, because event handlers are executed at soft
state changes, they usually have a window of time to do their work before notifi cations are
sent, while Nagios retries the checks. See Chapter 2 for a discussion of hard versus soft states.
The command defi nition usually points to the check_ping plugin. As described in Chapter
2, Nagios runs only the check_command if a service check fails on the host, so while direc-
tives exist to enable regularly scheduled checks of the host, these are discouraged. By design,
Nagios runs check_command automatically as needed. Check Appendix C, “Command-Line
Options,” for a complete list of command-line switches available to the Nagios binary.

65Hosts

www.tinydns.org
http://nagios.sourceforge.net/docs/2_0/xodtemplate.html#
http://nagios.sourceforge.net/docs/2_0/xodtemplate.html#

66 Chapter 4 Confi guring Nagios

If Nagios runs the check_command and it fails, then it will place the host in a soft down
state, and retry the check_command as many times as specifi ed by max_check_attempts. If
the check_command fails each time, then the host is placed in a hard down state, notifi ca-
tions are performed, services on the host are assumed down, and service-related checks and
notifi cations on the host are postponed until the host check_command returns an okay state.
Setting max_check_attempts to effectively disables soft states for the host. If the check_com-
mand fails once, it is immediately placed in a hard down state and notifi cations are sent.

The last four directives are notifi cation-related and answer the questions “Who?,”
“What?,” “When?,” and “How often?” If the host changes into one of the hard states speci-
fi ed by the notifi cation_options directive, and that change occurs during the time period
specifi ed by the notifi cation_period, then notifi cations will be sent to the groups specifi ed by
the contact_groups directive. For problem states, follow-up notifi cations will be sent every
so often until the host recovers. Exactly how often is specifi ed by the notifi cation_interval.
Technically, the notifi cation_interval specifi es the number of time units to wait between noti-
fi cations. The interval_length directive in the nagios.cfg specifi es the number of seconds in a
time unit. The default is one minute, so a notifi cation_interval of 30 equates to 30 minutes,
unless you’ve changed it.

Services

Required for daemon start

Refers to: host, timeperiod, contactgroup, command

Referred to by: servicegroup, servicedependency, serviceescalation, serviceextendedinfo

Listing 4.11 Service example.
defi ne service{
 host_name myServer
 service_description check-disk-sda1
 check_command check-disk!/dev/sda1
 max_check_attempts 5
 normal_check_interval 5
 retry_check_interval 3
 check_period 24x7
 notifi cation_interval 30
 notifi cation_period 24x7
 notifi cation_options w,c,r
 contact_groups admins
 }

Service objects glue it all together. They refer to every mandatory object that ties together
the specifi cs of how you want to run a given plugin, where you want to run it, how often,
and whom to call when things go wrong. A whopping 31 directives may be specifi ed in a
service defi nition. The 11 shown in Listing 4.11 are mandatory. The remaining 20 can be
found in the online documentation at http://nagios.sourceforge.net/docs/2_0/xodtemplate.
html#service.

The host_name directive specifi es a comma-separated list of hosts on which this service
runs. The service defi nition breaks with the name/alias convention in favor of a single ser-
vice_description directive. This is because, unlike the other objects, services aren’t required
to have unique names; they need to only specify a unique set of hosts. So it’s perfectly fi ne
to create multiple service objects with the same name but completely different settings, if
they don’t share a reference to the same host object. This is handy, for example, when more
than one host needs the same service except for a different retry interval. In this situation,
the service can be copied en masse and only the host_name and interval need to differ from
the original.

Like host objects, the check_command directive specifi es the command object used to
check the service. It’s common for plugins to provide a subset of functionality (it’s also com-
mon for command objects to provide a subset of functionality); for example, instead of hav-
ing two plugins called check_sda1 and check_sda2, the plugins tarball has a single plugin
called check_disk, which is capable of checking any disk. The check_disk plugin simply takes
the name of the disk as an argument on the command line and checks it.

Service objects, on the other hand, tend to be single purpose and the service in Listing
4.10 is no exception. It uses the check_disk command to check a single disk, namely /dev/
sda1. Because command syntax may contain whitespace, an exclamation mark is used to
separate the command name from the arguments you want to pass to it. Each argument is
made available to the command object via a numbered ARG macro. In the previous example,
when Nagios dereferences the check_disk command, it replaces the command defi nition’s
$ARG1$ macro with /dev/sda1, and exec the resulting command. Any number of exclama-
tion mark-separated arguments are supported.

Service notifi cations are a bit more straightforward than host notifi cations, but they
follow the same basic pattern. Service checks that return bad statuses are retried a number
of times to ensure they are down and remain down. While Nagios is verifying the state of
a service with retries, the service is placed in a soft state. When the service is verifi ed to be
down, it is placed in a hard state and notifi cations are sent. Follow-up notifi cations are sent
every so often until the service recovers.

67Services

http://nagios.sourceforge.net/docs/2_0/xodtemplate.html#service
http://nagios.sourceforge.net/docs/2_0/xodtemplate.html#service

68 Chapter 4 Confi guring Nagios

All _interval type directives in Nagios refer to a number of time units to wait before
doing something. A time unit means is user-defi nable via the interval_length directive in the
nagios.cfg. By default, this directive is set to 60 seconds, so, in general, any interval defi nition
is going to refer to the number of minutes to wait before doing something.

max_check_attempts is the number of times Nagios will retry a service. normal_check_
interval is the number of minutes to wait between service checks. retry_check_interval is the
number of minutes to wait between checks when the service is in a soft state and Nagios is
trying to verify the service state. The timeperiod within which checks may be scheduled is
given by the check_period. The notifi cation_interval specifi es the number of minutes to wait
between follow-up notifi cations. notifi cation_period defi nes the timeperiod within which
notifi cations may be sent. notifi cation_options fi lters the type of notifi cations this service will
send and, fi nally, contact_groups specifi es to whom the notifi cations should go.

Based on the preceding information, it should be obvious that the amount of time a ser-
vice spends (the possible states are: warning, unknown, critical, recovered, and fl apping for
services) in a soft state is a function of max_check_attempts and retry_check_interval. If you
aren’t getting notifi cations quickly enough, you can either retry less or lessen the amount of
time between retries.

Hostgroups

Required for daemon start

Refers to: host

Refered to by: host, hostescalation

Listing 4.12 Hostgroup example.
defi ne hostgroup{
 hostgroup_name oracle-servers
 alias Servers Running Oracle
 members server1,server2
 }

Identical in syntax to contactgroups, hostgroup objects exist to ease administration and
reporting. Hosts may belong to multiple hostgroups. Membership may be defi ned in the host
objects via the hostgroup directive instead of using members in this object. A unique feature
of hostgroups is that multiple members' directives may be defi ned.

Servicegroups

Not required for daemon start

Refers to: service

Referred to by: service

Listing 4.13 Servicegroup example.
defi ne servicegroup{
 servicegroup_name disks
 alias Disks
 members myServer,chk-disk,server1,chk-disk
 }

Completely optional and very similar to hostgroup defi nitions, servicegroups are new to
Nagios 2.0 and are mostly used by the CGIs of the Web interface. The syntax of the members
directive is different than the other group types, listing fi rst a host object followed by the cor-
responding service object, separated by commas.

Escalations

Not required for daemon start

Refers to: host, service, hostgroup, contactgroup, timeperiod

Referred to by:

Listing 4.14 Serviceescalation example.
defi ne serviceescalation{
 host_name myServer
 service_description check-disk-sda1
 fi rst_notifi cation 4
 last_notifi cation 0
 notifi cation_interval 30
 contact_groups admins,themanagers
 }

Listing 4.15 Hostescalation example.
defi ne hostescalation{
 host_name router-34
 fi rst_notifi cation 5
 last_notifi cation 0
 notifi cation_interval 60
 contact_groups routeradmins,admins
 }

69Escalations

70 Chapter 4 Confi guring Nagios

It’s possible to confi gure Nagios to involve managers or other technicians, if a problem per-
sists beyond a certain number of notifi cations without being acknowledged. Nagios does this
by way of escalation defi nitions. Escalations can be confi gured for hosts or services, and the
defi nition syntax is nearly identical for each. The two main differences are that host escala-
tions may specify hostgroups instead of hosts, and service escalations must specify the host
and the service.

Each time Nagios decides to send a notifi cation, it fi rst checks to see if any escalation
defi nitions match the notifi cation it is about to send. If an escalation defi nition matches the
notifi cation Nagios wants to send, then Nagios sends the escalation instead. It’s important to
note that it is an either/or proposition, meaning that if the service defi nition specifi es that the
admins contactgroup be notifi ed and the escalation specifi es that the managers be notifi ed,
the escalation will win and the admins contactgroup will get nothing, so be sure to include
everyone that needs to be notifi ed in the escalation defi nition. The fi rst_notifi cation directive
specifi es the notifi cation number for which the escalation is fi rst enabled. For example, List-
ing 4.14 will match the fi fth notifi cation of a host down alert for router 34. The fi rst four
notifi cations will be sent as normal, but the fi fth will be an escalation. Escalation notifi ca-
tions continue to be sent until the number specifi ed by last_notifi cation. If the last_notifi ca-
tion directive is set to 0, escalations continue until the host becomes available again.

It is possible to have multiple escalations that match the same notifi cation. If this hap-
pens, Nagios sends both escalations, so if two escalations match the same notifi cation and
have different contact_groups directives, all the contacts are notifi ed.

Escalations may specify a custom notifi cation_interval, which defi nes the amount of time
to wait between notifi cations. This interval takes precedence over the interval originally spec-
ifi ed in the service defi nition. If two escalations match one notifi cation and the escalations
contain different notifi cation_interval settings, Nagios picks the smallest interval and use it.

Dependencies

Not required for daemon start

Refers to: host, service

Referred to by:

Listing 4.16 Hostdependency example.
defi ne hostdependency{
 host_name myHost
 dependent_host_name server1
 notifi cation_failure_criteria d,u
 }

Lisiting 4.17 Servic dependency example.
defi ne servicedependency{
 host_name NAS1
 service_description PING
 dependent_host_name myServer
 dependent_service_description check_httpd
 execution_failure_criteria w,u,c
 notifi cation_failure_criteria w,u,c
 }

Dependencies exist to capture services and hosts that rely on each other. If, for example, you
have some Web servers using a network-attached shared storage back-end, you can make
the Web server services dependent on the NAS server’s ping service. If the NAS box becomes
unavailable, Nagios handles the notifi cations accordingly and reports refl ects the outage in
the context of the Web servers. Whereas host and service dependencies may be defi ned, it
is almost always preferable to use parent/child relationships to capture interdependencies
between hosts. Only host defi nitions may contain parents directives, so defi ning interdepen-
dent services requires a service dependency object.

Host dependencies require only host_name, which specifi es the host that is depended
upon, and dependent_host_name, which is self-explanatory. Service dependencies obviously
must specify the hosts and services in question. The services are specifi ed by way of the ser-
vice_name and dependent_service_name directives.

Before Nagios checks the state of a service, it fi rst checks the state of all the services that
the service depends upon (its parents). If all of those services are okay, Nagios proceeds to
check the child service. If any of the parent services are down, Nagios assumes the child service
is down as well and stops checks and notifi cations on the child. It’s possible to modify this
behavior by way of the execution_failure_criteria and notifi cation_failure_criteria directives.
These directives can be confusing because they specify when something should not happen.

The execution_failure_criteria directive specifi es the situations in which the child service
should not be checked. For example, specifying a w for warning here means Nagios should
not schedule checks of the child service when the parent is in a warning state, which is prob-
ably what you want. Setting this to n for none would mean that active checks always take
place, no matter the state of the parent service. Setting an o for okay here would mean that
active checks would not take place, even if the parent is in an okay state.

Similarly, the execution_failure_criteria directive specifi es the situations for which noti-
fi cations should not be sent out for the child service. Like execution_failure_criteria, the
options specify states of the parent host. Setting c, for example, means that notifi cations for
the child should not be sent if the parent is in a critical state. The same options are available
to both directives: okay, warning, critical, unknown, pending, and none, for services; okay,
down, unreachable, pending, and none, for hosts.

71Dependencies

72 Chapter 4 Confi guring Nagios

Extended Information

Not required for daemon start

Refers to: host, service

Referred to by:

Listing 4.18 Hostextendedinfo example.
defi ne hostextinfo{
 host_name myServer
 notes this is my server.. many like it.. yadda yadda
 notes_url http://foo.com/hostinfo.pl?host=myServer
 icon_image linux40.png
}

Extended information can be defi ned for hosts and services. This is optional information
that is used by the CGIs of the Web interface to do things, such as draw pretty icons. All
directives are optional, except for host_name, which can be a comma-separated list of hosts.
The notes_url provides an easy way to link from the Web interface to external sites for host
information. The icon_image directive specifi es a 40x40 pixel image to use to represent this
host whenever it appears in the Web interface. Icon sets for this purpose can be downloaded
from the Nagios Exchange (see www.nagiosexchange.org for more information). The icons
are expected to be in the webroot/images/icons directory.

Apache Confi guration

After Nagios has been confi gured, the Web server must be confi gured to serve up the Web
interface’s content. The majority of Nagios installations use the Apache Web server to serve
up the interface, so the confi gs in Listing 4.17, shamelessly stolen from the offi cial Nagios
documentation, are for the Apache Web server.

Listing 4.19 Apache sample VirtualHost confi g.
ScriptAlias /nagios/cgi-bin /usr/local/nagios/sbin

<Directory "/usr/local/nagios/sbin">
 Options ExecCGI
 AllowOverride None
 Order allow,deny
 Allow from all
 AuthName "Nagios Access"
 AuthType Basic
 AuthUserFile /usr/local/nagios/etc/htpasswd.users
 Require valid-user
</Directory> (continues)

www.nagiosexchange.org

Alias /nagios /usr/local/nagios/share

<Directory "/usr/local/nagios/share">
 Options None
 AllowOverride None
 Order allow,deny
 Allow from all
 AuthName "Nagios Access"
 AuthType Basic
 AuthUserFile /usr/local/nagios/etc/htpasswd.users
 Require valid-user
</Directory>

The directives beginning in Auth provide simple login functionality via a text fi le called
htpasswd.users, which resides in /usr/local/nagios/etc/. The htpasswd program, provided
with Apache, can be used to create the htpasswd.users fi le like so:

htpasswd –c /usr/local/nagios/etc/htpasswd.users dave

After the fi le is created (the specifi c init syntax for your system may vary but it will be
something similar to /etc/init.d/nagios start), more users can be added in the same manner,
but be sure to drop the –c switch after the fi rst user, as it is used to create the fi le and will
overwrite any fi les that already exist. As described in section, “The CGI Confi g,” users who
authenticate through the Web server via the htpasswd.users fi le are matched with contacts in
the contacts.cfg that have the same name.

It’s very common for people to get the Web interface working but then to have trouble
with the CGI commands. For the CGI commands to work, the user ID used by Apache must
be a member of the group used for Nagios commands. This group is specifi ed to the confi g-
ure script at compile time and defaults to nagios. An excellent primer on confi guring Apache
with Nagios can be found at http://nagios.sourceforge.net/docs/2_0/cgiauth.html.

GO!

At this point, Nagios is ready to start. You can call Nagios with a -v switch to check the
confi g fi les for errors like so:

/usr/local/nagios/bin/nagios –v /usr/local/nagios/etc/nagios.cfg

The Nagios daemon will start in interactive mode, check the confi g fi les for errors, and
provide a helpful summary screen. If no errors are present, Nagios may be started via its init
script. Congratulations! That wasn’t such a chore, now was it?

73GO!

Listing 4.19 Apache sample VirtualHost confi g. (Continued)

http://nagios.sourceforge.net/docs/2_0/cgiauth.html

This page intentionally left blank

75

C H A P T E R 5

Bootstrapping the
Confi gs

Everyone seems to have a different idea of what makes for ease of use when it comes to
confi guration, but most seem to agree that Nagios isn’t it. Although I’ve yet to meet anyone
who enjoys confi guring Nagios from scratch, it’s also surprising to me what people think will
rectify the situation. Many people on the Nagios-Users list, for example, believe that placing
the confi guration information in databases will make Nagios easier to confi gure, whereas
others swear by PHP-based graphical user interfaces. The nice thing about this difference of
opinion is that many people have acted upon it, producing a wealth of tools to make con-
fi guration easier. So many so, in fact, that I would be remiss if I didn’t include a chapter on
making confi guration easier.

Depending on the size of your environment, there is a point of diminishing returns where
learning and confi guring the confi guration tool are more trouble than it would be to just
manually edit the Nagios confi g fi les. In this chapter, I cover three increasingly complex
methodologies to help you bootstrap the confi guration process. I start with simple script-
ing templates, then move on to automatic discovery and confi guration generation tools, and
fi nally cover two graphical confi guration frontends.

The tools all have their good sides and bad; for example, some might feel the shell scripts
lack user friendliness, but on the other hand, PHP raises the vulnerability footprint of the
Nagios server. I don’t cover database back-ends, because I personally haven’t dealt with
them, but I do talk about two PHP-based confi guration tools that I’ve grown rather fond of,
as well as some old-fashioned shell techniques. None of these tools are mutually exclusive,
and it’s common practice to mix and match them to get what you want.

76 Chapter 5 Bootstraping the Confi gs

Scripting Templates

Many Nagios admins I know (myself included) maintain a set of what some refer to as boot-
strap templates. These aren’t object templates of the type discussed in Chapter 2, “Theory of
Operations,” and Chapter 4, “Confi guring Nagios.” They are skeleton confi g fi les that can
easily be combined with lists of hosts to create valid Nagios confi gurations. To avoid confu-
sion with object templates, I refer to them as skeletons for the remainder of the chapter.

With this methodology, all that’s needed in practice is a plaintext list of hosts. After the
skeletons are created, we simply loop through the host list, using sed to inject the hostnames
into the skeletons, thereby creating valid defi nitions.

There are usually two skeletons for each type of object: an object template skeleton and
an object defi nition skeleton. The template skeleton is a Nagios object template that encom-
passes as much general information as possible. The defi nition skeleton has just enough
information to defi ne an object and relies on the template for everything else. We can then
specify more information, on a per object basis, to override the overly general template as
necessary. Listing 5.1 is an example of a host template for use with a defi nition skeleton.

Listing 5.1 A host template skeleton.
defi ne host{
name generic_host
max_check_attempts 2
notifi cation_interval 60
check_period 24x7
notifi cation_options d,u,r
check_command check-host-alive
contact_groups admin
register 0
}

As you can see, the host template skeleton is just a normal object template in Nagios. The
only arguably odd thing about it is that contact_groups is a directive people usually assign on
a per host basis. Take this template and put it in a fi le called hosts.cfg. Listing 5.2 shows the
second half of the equation, the defi nition skeleton.

Listing 5.2 The host defi nition skeleton.
defi ne host{
use generic_host
host_name NAME
alias NAME
address NAME.DOMAIN
}

77

So, given those listings, you probably have a pretty good idea of how this is going to
shake out. The skeleton host object will inherit everything it needs from the generic_host
template, except for the name and address of the host. Save the object skeleton in a fi le such
as hosts.skel. All that’s missing is a hostname and domain name. We can easily fi ll this in with
a list of hosts, such as the one in Listing 5.3.

Listing 5.3 A list of hosts.
Host1.mydomain.com
Host2.mydomain.com
Host3.mydomain.com

Finally, the shell script in Listing 5.4 ties it all together. It’s little more than a one-liner
while loop that takes a list of hosts from standard input. Lines 5 and 6 extract the host and
domain names from each element of the list, and line 7 simply replaces the keywords NAME
and DOMAIN in the skeleton fi le with their actual equivalents.

Listing 5.4 A shell script to create a hosts.cfg from the skeletons and host list.
#!/bin/sh

while read i
do
 NAME='echo ${i} | cut -d. -f1'
 DOMAIN='echo ${i} | cut -d. -f2-'
 cat hosts.skel | sed -e "s/NAME/$NAME/" -e "s/DOMAIN/$DOMAIN/"
>> hosts.cfg
done

You can do the same thing with the services.cfg and hostgroups.cfg. Services.cfg will
probably specify little other than a ping service. The template would look something like the
one in Listing 5.5.

Listing 5.5 A services template for use with a defi nition skeleton.
defi ne service{
 name generic-service
 active_checks_enabled 1
 passive_checks_enabled 1
 parallelize_check 1
 obsess_over_service 0
 check_freshness 0
 notifi cations_enabled 1
 event_handler_enabled 1
 fl ap_detection_enabled 0
 process_perf_data 1
 retain_status_information 1 (continues)

Scripting Templates

78 Chapter 5 Bootstraping the Confi gs

 retain_nonstatus_information 1
 check_period 24x7
 max_check_attempts 2
 normal_check_interval 5
 retry_check_interval 1
 notifi cation_interval 60
 notifi cation_period 24x7
 notifi cation_options w,u,c,r
 contact_groups admin
 register 0
}

With so much defi ned in the template, the same shell script in Listing 5.4 can be used
with the defi nition skeleton in Listing 5.6 to create valid ping services for each host.

Listing 5.6 A services defi nition skeleton.
defi ne service{
 use generic-service
 host_name NAME
 service_description PING
 notifi cation_options c,r
 check_command check_ping!500.0,20%!1000.0,60%
 }

Hosts and service defi nitions are the hard part. After you are done with those, you can
defi ne the admin group in contactgroups.cfg, defi ne the members of the group in contacts.
cfg, create a hostgroup with all the hosts, and you’re ready to go. Of course, each of those
fi les can be scripted with skeletons in much the same way for larger installs.

I once worked with someone who told me that I was the type of person who liked to “cut
metal.” What he meant by that was that I wanted to begin implementing before the planning
was done. Although I’m familiar with several ways to bootstrap the Nagios confi gs, I always
seem to come back to using skeletons, because they allow me to get some work done and
adhere to the “Procedural Approach to Systems Monitoring” I describe in Chapter 1, “Best
Practices,” at the same time.

In fact, I use Nagios templates and skeletons to document business requirements during
the planning process. By the time implementation time rolls around, I usually have some
complex confi guration out of the way and just need a list of hosts and a few shell scripts. I
fi nd this makes implementation a breeze, gets everyone what they expect from the beginning,
and most importantly, allows me to at least “put chalk lines on the metal.” So, if you have
itchy tin-snip fi ngers, like me, and you’re taking Chapter 1 seriously, you can’t go wrong with
scripting skeletons.

 Listing 5.5 A services template for use with a defi nition skeleton. (Continued)

79

Auto-Discovery

Skeletons are all well and good if you have a list of hosts upfront; however, what if your net-
work is so large, or changes so often, that getting a list of hosts is a problem in itself? Enter
auto-discovery. In this section, I present a couple tools I use to automatically detect and write
confi guration fi les for hosts and services on the network.

Be careful! Nothing can give your monitoring system a bad rap more quickly than over-
zealous, automated scanning and discovery tools. The traffi c generated from these sorts of
tools may appear malicious in nature to intrusion detection systems or rude to people who
are unaware of your effort. Before you use any of these tools, make sure you’ve read their
documentation and understand how they work, so you don’t generate more traffi c than nec-
essary. Also, be sure that you’ve notifi ed the relevant people at your organization before you
set these loose on your network.

Nmap and NACE

My personal favorite auto-discovery tool is the Nagios Automated Confi guration Engine , or
NACE. Written by Russell Adams , one of this book’s technical reviewers, NACE is a set of slick
Perl scripts that work together to detect hosts and write confi guration fi les for them. NACE
uses input from SNMP queries and the network scanner Nmap, and is capable of writing con-
fi guration fi les for hosts, hostgroups, and services. The current release consists of 11 scripts and
a library. The scripts are designed to be tied together by UNIX pipes and understand a com-
mon, colon separated input syntax. I won’t document all 11 commands here. Instead, I’ll give
you a rough idea of how NACE might be used in the real world, and if you like what you see,
you can grab a copy from www.adamsinfoserv.com/AISTWiki/bin/view/AIS/NACE.

Like scripting skeletons, NACE needs a list of hosts to get started. To do this, the ever-
popular network scanner, Nmap, may be employed. For example, the following command
generates host defi nitions for every host that responds to a ping on the 192.168.5.0 net-
work:

nmap –sP –oG – 192.168.5.0/24 | grep ’Status: Up’ | cut –d\ -f2
 | WriteHosts.pl

Nmap is a great tool. By way of a description, here’s a quote from its author, Fyodor.

“Nmap (“Network Mapper”) is a free open source utility for network exploration or security
auditing. It was designed to rapidly scan large networks, although it works fi ne against single
hosts. Nmap uses raw IP packets in novel ways to determine what hosts are available on the
network, what services (application name and version) those hosts are offering, what operating
systems (and OS versions) they are running, what type of packet fi lters/fi rewalls are in use, and

dozens of other characteristics.”

Auto-Discovery

www.adamsinfoserv.com/AISTWiki/bin/view/AIS/NACE

80 Chapter 5 Bootstraping the Confi gs

Let’s break the syntax down, in case you aren’t familiar with Nmap. The sP switch tells
Nmap which type of scan to run. In our case, an ordinary ping scan will suffi ce. In this mode,
Nmap will go no further than simply noting whether the host is up. The oG switch speci-
fi es that Nmap should use a grepable output style, which is perfect for the way we use it.
Example output from the Nmap scan appears in Listing 5.7.

Listing 5.7 Grepable Nmap output.
Host: 192.168.5.1 () Status: Up
Host: 192.168.5.2 () Status: Up
Host: 192.168.5.31 (host.foo.com) Status: Up
Host: 192.168.5.32 (host1.foo.com) Status: Up
Host: 192.168.5.33 (host2.foo.com) Status: Up
Host: 192.168.5.34 (host3.foo.com) Status: Up

We grep this output for lines that contain Status: Up, fi lter everything but the IP address,
and pipe the IPs to NACE’s WriteHosts.pl script. WriteHosts writes a cfg fi le for each host
using the IP as its name, alias, and address. You can use –d to add directives to the defi nition;
for example, –d HT=generic_host adds a use directive, which points the defi nition at a host
template. This is certainly easier on the wrists than writing your own skeletons. But wait,
that’s not all: WriteHosts.pl is only one script. NACE has 10 more where that came from.

Let’s say we want to use something more descriptive than an IP address for the host_
name directive. Here’s a command that uses the DNS name of the host for the host_name
directive and the IP address for the address directive:

Nmap -sP -oG - 192.168.5.0/24 | grep 'Status: Up' | sed -e
 's/.*(\([^)]\+\)).*/\1/' | NormalizeHostNames.pl –s .foo.com |
 WriteHosts.pl

This time, instead of extracting the IP addresses from the Nmap command, we’ve used
sed to extract the hostname, which we then pass on to the NormalizeHostNames.pl script
from NACE. NormalizeHostNames.pl takes a domain suffi x as an argument. It uses this
suffi x, which is actually a regular expression, to distinguish the hostname from the domain.
NormalizeHostNames.pl will do DNS lookups, if necessary, to determine the IP address of
the host. It passes the correctly formatted hostname and IP address of the host to WriteHosts.
pl, which, in turn, writes the confi guration fi les.

All manner of specifi c information can be extracted from network queries and formalized
into Nagios confi guration fi les with NACE, which even contains several of its own SNMP
query tools, which can be used to assign hosts to hostgroups and write services confi gs. Other
tools exist for extracting info from existing Nagios confi gs.

81

NACE, in my opinion, is a category killer for scripted, automatic Nagios confi guration;
whether you want to bootstrap a large number of hosts quickly or you have a need for ongo-
ing systematic auto-discovery and confi guration, I highly recommend you give it a look.

Namespace

Namespace is probably the easiest to use command-line auto-discovery and confi guration
tool for Nagios that I have come across. Given a range of IP addresses, Namespace simply
queries the information it needs from DNS and writes a host confi g defi nition for each host
it encounters to standard out. Because it uses DNS to get its information, you need to have
a reverse-lookup capable DNS infrastructure in place. Namespace can generate host and
hostgroup entries and is mostly useful for initial installs rather than ongoing scripting or
maintenance. Namespace is a C program and is available in source and binary from www.
uni-hohenheim.de/~genzel/.

The following command creates the host defi nition in Listing 5.8.

namespace -h -d1 -c admin -G boxen -x "use generic-template"
192.168.5.1 192.168.5.254

Listing 5.8 Output from the namespace command.
defi ne host{
 use generic-host

 host_name myhost

 alias myhost

 hostgroups boxen

 contact_groups admin

 address 192.168.5.201

 check_command check-host-alive

 max_check_attempts 10

 notifi cation_interval 60

 notifi cation_period 24x7

 notifi cation_options d,u,r

 use generic-template
}

Auto-Discovery

www.uni-hohenheim.de/~genzel/
www.uni-hohenheim.de/~genzel/

82 Chapter 5 Bootstraping the Confi gs

Contact and host group directives can be added with –c and –G, as you can see. The
–h switch tells Namespace to create a host entry, as opposed to a hostgroup entry or simply
dumping domain names. The –x switch can be used to add any number of custom directives.
In the preceding example, I use it to add a host template. The fi nal argument is a range of
IPs given by the beginning and ending address. Namespace creates a host defi nition for every
host it comes across in the IP range and dumps them all to standard out. It’s a lightweight and
straightforward tool, especially useful to people working with Nagios for the fi rst time.

Namespace and NACE work well together. For example, Namespace could be used to
create the initial host confi g fi le, and then NACE’s ReturnHostsFromConfi g.pl script could
read out the hosts and use SNMPServiceQueryKey.pl to create a services fi le for them.

GUI Confi guration Tools

There is a dizzying array of graphical confi guration front-ends for Nagios. The two most
promising are open source projects managed by a company called Groundwork. Ground-
work has spent the last few years extending Nagios into a commercial monitoring applica-
tion, called Groundwork Foundation, which directly competes with the big four monitoring
applications: Openview, Patrol, Unicenter, and Tivoli. Fruity and Monarch are both free,
open-sourced GUI front-ends to Nagios, which are managed by folks at Groundwork. Both
tools have a polished look and work well.

It should be noted that GUI confi guration tools, in general, don’t necessarily make things
easier for people who haven’t dealt with Nagios before. For example, prompting someone
with a check box labeled enable fl ap detection won’t be any more meaningful than the same
thing in a text fi le. So don’t make the mistake of substituting a GUI for training; it won’t get
you what you expect.

Fruity

Fruity was written by Taylor Dondich, who works for Groundwork full time and was very
helpful as a technical reviewer of this book. Fruity is a PHP application, accessible via a Web
browser, and uses MySQL to store its own copy of the Nagios confi guration. Fruity is writ-
ten for Nagios 2.x and is quite simple to install. Just untar it into your Nagios base directory
and edit the includes/confi g.inc fi le. Of course, as Fruity is a PHP/MySQL application, you’ll
need PHP on your Web server with MySQL support and MySQL. After all that is installed,
you have to manually create a database for Fruity and import the tables from a fi le included
in the tarball.

83

Figure 5.1 is a screenshot of a host in the Fruity interface. Fruity is a pretty straight-
forward GUI; the interface design, however, hides some powerful functionality, such as the
ability to set up templates that inherit other objects. Fruity is a good tool for bringing junior
admins up to speed and distributing the confi guration load amongst people who are other-
wise textfi le challenged. Fruity can import existing confi gs and doesn’t write the changes to
the confi gs until you tell it to. When it does write fi les, it backs up the existing confi guration
fi rst.

GUI Confi guration Tools

Figure 5.1 More on SNMP in Chapter 6, "Watching." A host defi nition in the Fruity GUI.

Monarch

Monarch, short for “Groundwork Monitor Architect,” is a Perl/CGI/AJAX7 Application. It
is the same confi guration engine used by the commercial Groundwork Foundation program.
Monarch runs from a web browser and supports both Nagios 2.x and 1.x. Monarch also
stores Nagios confi gs in a MySQL database and includes an installer script that confi gures
the database and puts everything where it needs to go. Monarch is a bit more of a handful
than Fruity in the installation department. It has some prerequisites that must be installed
before the setup script can be run, including 11 Perl modules.

Figure 5.2 is a screenshot of the same host in Monarch. Note the Profi le tab. Monarch
adds the concept of profi les to Nagios confi guration, and this is a welcome addition in my
opinion. Monarch profi les are like super templates; they capture hosts in terms of a role. By
way of an example, a Web server can be thought of as a collection of services, hostgroup
memberships, contacts, and escalations. A Monarch profi le gives a name to a particular

84 Chapter 5 Bootstraping the Confi gs

combination of services, group memberships, contacts, and pretty much anything else. The
profi le is then assigned to one or more hosts. This role-based approach to Nagios confi gura-
tion is very cool and can save a lot of time for those with large environments. Confi guring a
new host becomes as simple as telling Monarch its name, alias, and address, and assigning
the host to a pre-existing profi le.

Figure 5.2 More on SNMP in Chapter 6. A host defi nition in the Monarch GUI.

Like Fruity, Monarch can import existing confi gs and won’t modify the Nagios confi gs
until you tell it to. It’s also possible to kick off a backup of the Nagios confi gs on command,
via Monarch, which is helpful.

This chapter was by no means an exhaustive list of automated confi guration tools. Many
other excellent tools exist, which may play into your particular skill-set quite well. For exam-
ple, if you are adept at Perl, I’d suggest that you take a look at the confi guration modules
for Nagios available at CPAN (www.cpan.org). Perhaps the best thing about Nagios is the
wealth of great tools surrounding it. Check out the confi guration section on the Nagios
Exchange (www.nagiosexchange.org) for more information.

www.cpan.org
www.nagiosexchange.org

85

C H A P T E R 6

Watching

Welcome to where the rubber meets the road. Until now, I’ve talked a lot about how
Nagios works and how it is installed and confi gured. This chapter ties together the theo-
retical work of the previous chapters and the details of performing systems monitoring. As
pointed out throughout this book, Nagios is a scheduling and notifi cation framework. Small,
single-purpose programs called plugins do the monitoring. So an in-depth discussion about
monitoring is mostly a discussion about plugins.

Nagios is limited only by the availability of plugins for a given task. Writing your own
plugins, as described in Chapter 2, “Theory of Operations,” is trivial and highly encouraged,
so hundreds of them are available. This chapter gives you a good basis to understand what
types of plugins are available, how to use them, and where to begin when you need to start
making your own. The chapter is broken into four parts, along architectural lines, with a
section about local queries, Microsoft Windows, UNIX, and “other stuff,” which includes
networking gear and environmental sensors.

Local Queries

There are three primary ways to monitor hosts and services with Nagios. Nagios can use
various remote execution techniques to connect to remote hosts and to run plugins. Nagios
can wait in a passive mode for remote hosts to notify it of trouble by defi ning passive checks.
Finally, Nagios can launch plugins locally to query the availability of various hosts and
services from afar. Let’s start by checking some of the things Nagios can do without leaving
home.

86 Chapter 6 Watching

Pings

By far, the most common service check in any monitoring program is the classic ICMP echo
request, more commonly known as the ping. Although pings are easy to set up in Nagios,
they can be somewhat confusing to fi rst-time users because, at fi rst glance, they appear to be
overused or redundant.

At a minimum, Nagios requires that there be at least one service per host. The most com-
mon service to set up fi rst is a ping service because it is a simple defi nition, and if you’re using
the example confi gs, there is already a ping check defi ned for you. As discussed in Chapter
4, “Confi guring Nagios,” each host defi nition also contains a check_command directive that
specifi es the command to use to verify that the host is operational. This usually defaults to
the check_host_alive command, which, in turn, uses ping. So why have two ping checks per
host? It’s important to remember that, as described in the “Scheduling” section in Chapter 2,
host check commands are not scheduled unless they are needed. In practice, the host check
command is not run until a service check has already failed. Thus, although the defi nitions
may seem redundant, the checks exist for different purposes.

Let’s walk through setting up a simple ping check. Assuming the hosts and contacts are
already defi ned, the fi rst step is to defi ne the command in the check_commands fi le. Com-
mand defi nitions, as described in Chapter 4, glue service defi nitions to external monitoring
programs. The purpose of the check command is to tell Nagios what external command to
launch and how. A command defi nition for ping might look like Listing 6.1.

Listing 6.1 Check_ping command defi nition.
defi ne command{
 command_name check_ping
 command_line $USER1$/check_ping -H $HOSTADDRESS$ -w $ARG1$ -c
$ARG2$ -p 5
 }

Listing 6.1 is a classic example of a Nagios command defi nition. They do get simpler
than this, but not by much. The –H switch is nearly always used to specify the hostname or
IP of the box against which to run the plugin. Likewise, -w and -c nearly always specify the
warning and critical thresholds. The check_ping plugin uses the -p switch to specify how
many ping packets to send.

The words surrounded by dollar signs are macros. Macros are described fully in Chap-
ter 4. When Nagios actually calls check_ping, it fi rst replaces the macro names with real
values from various places. For example, the numbered ARG macros will be replaced with
values from arguments in the service defi nition. Speaking of which, a service defi nition such
as the one in Listing 6.2 is the next step in setting up your ping check.

87

Listing 6.2 Check_ping service defi nition.
defi ne service{
 host_name Server
 service_description check_ping
 check_command check_ping!500.0,20%!1000.0,60%
 max_check_attempts 5
 normal_check_interval 5
 retry_check_interval 3
 check_period 24x7
 notifi cation_interval 30
 notifi cation_period 24x7
 notifi cation_options w,c,r
 contact_groups admins
 }

This service defi nes that the check_ping command is run against the server every 5 min-
utes, for 24 hours a day, 7 days a week. If something goes wrong, Nagios verifi es that the
problem persists by rechecking the service four more times, 3 minutes apart. After verifi ed,
Nagios begins notifying the admins group every 30 minutes, for 24 hours a day, 7 days a
week, until the service comes back online.

Many of the options in Listing 6.2 are better specifi ed inside a template, so in the interest
of brevity, the rest of the service defi nitions in this chapter assume that you use a template,
such as the one in Listing 6.3. See the “Templates” section in Chapter 4 for a discussion of
 templates and how to use them.

Listing 6.3 The template used by the rest of the examples in this chapter.
defi ne service{
 name chapter6template
 max_check_attempts 5
 normal_check_interval 5
 retry_check_interval 3
 check_period 24x7
 notifi cation_interval 30
 notifi cation_period 24x7
 contact_groups admins
 register 0
}

What comes after check_ping in Listing 6.2’s check_command directive is a list of argu-
ments. Arguments in service defi nitions usually specify thresholds and are separated by excla-
mation points, so there are two arguments here. The fi rst, 500, 20 percent, says that Nagios
should generate a warning if the ping packets round-trip time is greater than 500 millisec-
onds, or if the packet loss is greater than 20 percent. (The argument doesn’t explicitly state
that it is the warning threshold but, because the $ARG1$ macro is the argument to the -w

Local Queries

88 Chapter 6 Watching

switch in the check_ping command defi nition, the fi rst argument listed in the service defi ni-
tion defi nes the warning threshold.) I know this because I ran the command /usr/local/nagios/
libexec/check_ping –h on the command line and read the helpful syntax description. Check
Appendix C, “Command-Line Options,” for a list of command-line options for common
plugins.

Port Queries

After ICMP echoes, port queries are the next most common service check performed by most
monitoring servers. These plugins attempt to open a TCP or UDP connection to a given port
on a given host. Port queries are performed by either the check_tcp or check_udp plugins.
The command defi nition looks like the one in Listing 6.4.

Listing 6.4 The generic check_tcp defi nition.
defi ne command{
 command_name check_tcp
 command_line $USER1$/check_tcp -H $HOSTADDRESS$ -p $ARG1$
}

Unlike ping commands, where a warning may be generated, the result of a port query is
usually an XOR. Either the port is available or it isn’t. Because there just isn’t much room
for ambiguity, no -w or -c is necessary. All that needs to be specifi ed are the hostname and
port number. The “all or nothing” nature of the port check effects the notifi cation options,
as well. There is no point in specifying that Nagios should send notifi cations on warnings
when warnings cannot occur. Accordingly, the accompanying service description in Listing
6.5 is different from the check_ping service defi nition in Listing 6.2 in that it specifi es differ-
ent notifi cation options and contains no threshold options.

Listing 6.5 Check_http service defi nition.
defi ne service{
 host_name jkwebServer
 service_description check_http
 check_command check_tcp!80
 notifi cation_options c,r
 use chapter6template
 }

Note also that the service description in Listing 6.5 is check_http, rather than check_tcp.
This is because the service description will appear as the name of the service in the Nagios
Web UI, and check_tcp is not that useful a description of what is actually being monitored.

89

There are two ways people commonly use check_tcp in practice. The fi rst is to use a
single check_tcp command defi nition and to specify the port and service description in the
service defi nition, as we did in Listings 6.4 and 6.5. The other way is to write a specifi c com-
mand defi nition for the service you want to monitor. This way, you can add some protocol-
specifi c options to check_tcp, you don’t have to specify the port in the service check, and the
service description name can match with the check command name.

Redo the check_http service in Listings 6.4 and 6.5; it will give you an idea of what
protocol-specifi c command defi nitions mean. Listing 6.6 is a check_http command defi nition
that uses check_tcp but is hard-coded to check the HTTP port.

Listing 6.6 A protocol-specifi c check_tcp command defi nition.
defi ne command{
 command_name check_http
 command_line $USER1$/check_tcp \
 -H $HOSTADDRESS$ -p 80 -s 'GET / HTTP/1.0
' –e 'HTTP/1.0 200 OK'
 }

Our new command defi nition makes use of -s (send) to actually send some text to the
specifi ed port on the given host. The line wrap is there because the HTTP protocol expects
this. The command then uses -e (expect) to specify what we expect to get back from the
server. Obviously, the text is protocol-specifi c and won’t work with anything other than
HTTP or HTTPS services, and, although these options might have been specifi ed as argu-
ments to a generic service defi nition, doing so would mean that every service you checked
with the generic defi nition would need to specify send and expect options. So the moral is,
when you really must do protocol specifi c stuff, it’s often cleaner to do so with a new com-
mand defi nition.

An interesting side effect of doing protocol-specifi c queries such as this is that warnings
can creep back in. For example, if the service was available, but replied with HTTP/1.0 302
(an HTTP redirect), then check_tcp considers this “unexpected output” and generates a
warning. Listing 6.7 is a service defi nition to go with the shiny new check_http command.

Listing 6.7 Shiny new check_http service defi nition.
defi ne service{
 host_name webServer
 service_description check_http
 check_command check_http
 notifi cation_options c,w,r
 use chapter6template
}

Local Queries

90 Chapter 6 Watching

Although the new check_http has more functionality, the service defi nition in Listing 6.7
is even simpler than that in Listing 6.5. The second methodology is preferred because when
you fi nd a specifi c check_command with a simple service defi nition, it scales better than the
other way around. It’s also easier to get exactly what you want this way. Reusing command
defi nitions tempts you to compromise functionality that you consider nifty, but that is extra-
neous. This is bad because services have a tendency to fail in ways you don’t expect.

An HTTP 404 or 500 error would have been overlooked by the defi nitions in List-
ings 6.4 and 6.5, but not by the more specifi c command in 6.6. Usually, when unexpected
failures happen, they are subtler, but they are accounted for more often if you make a habit
of writing a specifi c command defi nition instead of reusing an existing generic one.

Querying Multiple Ports

As was implied in Listing 6.6, check_tcp has a lot of cool functionality, but one thing that it
cannot do is scan multiple ports. Many applications listen on more than one port, and hav-
ing a single service check to query them all is a common requirement. Whenever I run into a
limitation in a plugin, the fi rst question I ask myself is whether a wrapper might help.

Writing shell wrappers around Nagios plugins is a long and honored tradition. The term
wrapper, in this context, refers to a program that calls another program or collection of pro-
grams to accomplish its intended purpose. Since there have been Nagios plugins, administra-
tors have been extending their functionality with shell wrappers. For more information about
how plugins work and a walkthrough of the process of creating wrappers, see the “Plugins”
section in Chapter 2. Listing 6.8 is a shell wrapper around check_tcp and check_udp that
allows you to query the availability of multiple ports in a single command defi nition.

Listing 6.8 A check_tcp wrapper.
#!/bin/bash
#call check_tcp once for each port; aggregate the result

HOME='/usr/local/nagios/libexec' #path to the plugins
PROTO='Nullz0r' #default protocol to use

a function for printing the help info
printusage ()
{
echo "this plugin calls check_tcp once for each port"
echo "usage:"
echo "check_multi_tcp -H host -u|-t -p \"port [port] ...\""
echo "-h : print this message"
echo "-H hostname: The hostname of the box you want to query
 (default localhost)"

91

echo "-p port number: A space separated list of port numbers"
echo "-t wrap around check_tcp"
echo "-u wrap around check_udp"
exit ${EXITPROB}
}

#parse the arguments
while getopts ":hH:utp:" opt
do
 case $opt in
 h) printusage;;
 H) HOST=${OPTARG};;
 p) PORT=${OPTARG};;
 u) PROTO='udp';;
 t) PROTO='tcp';;
 ?) printusage;;
 esac
done

#sanity check
if echo "${PROTO}" | fgrep -q 'Nullz0r'
then
 echo "ERROR: either -u or -t required"
 echo
 printusage
fi

################### Work starts here ####################

#for each port they give us
for i in 'echo ${PORT}'
do
 #call the real plugin
 ${HOME}/check_${PROTO} -H ${HOST} -p ${i}>/dev/null
 #did it exit happy?
 if ["$?" -ne 0]
 then
 #no it's not a happy camper
 echo "port ${PROTO}/$i is not available"
 exit 2
 fi
done

#everything's okay, mon
echo "all ports are open"
exit 0

Local Queries

Listing 6.8 A check_tcp wrapper. (Continued)

92 Chapter 6 Watching

Housekeeping aside, this is a simple shell script. It calls the real check_tcp plugin on each
port you give to it in a list, and if any of them are not available, it exits with a critical code.
If it gets through all of the ports without any errors, then it exits with the okay code. Shell
wrappers are utterly ubiquitous among Nagios administrators. If you can’t fi nd the function-
ality you need in the plugins directory, before you reinvent the wheel, fi rst check the contrib.
directory of the plugins tarball, and then ask yourself whether you might be able to coopt a
few existing plugins in a wrapper to get what you need.

(More) Complex Service Checks

The examples to this point have probably inspired little more than a yawn from you, so this
section branches out and gives you a couple of examples of real-world monitoring scenarios.
Hopefully, these will give you a better feel for the capabilities of plugins.

In my fi rst example, Company B uses a rather unreliable combination of fi lters to block
unwanted email on its public MXes. The problem is that its business partner, Company A,
seems to be particularly disliked by the fi lters for some reason, so every few weeks, the fi lters
arbitrarily decide to block all email originating from Company A. Various meetings have
taken place to resolve the problem, but the combination of fi lters is so complex and Com-
pany B is so large that Company B just cannot seem to get it together. Every time the people
who meet think the problem is fi xed, it happens again; and worse, every time it happens, it
takes up to a day to fi gure out that it’s happening because the fi lters at Company B don’t
bounce the mail. Instead, they answer, “250 not Okay,” and then they silently drop the mail
on the fl oor. (A security consultant told them this was the best thing to do.)

To at least provide timely detection of the problem, the system administrator at Com-
pany A defi nes a command that uses the check_smtp plugin to periodically perform an SMTP
handshake with Company B’s mail server. This defi nition is shown in Listing 6.9.

Listing 6.9 A command to perform an SMTP handshake.
defi ne command{
 command_name check_spam_block
 command_line $USER1$/check_smtp -H $HOSTADDRESS$ \
 -C 'hello companyA.com' –R '250 OK' \
 –C 'mail from: <alice@companya.com>'\
 –R '250 OK' \
 –C 'rcpt to: <bob@companyb.com>' \
 –R '250 OK'
 }

93

This works well; if Company B answers anything other than “250 okay” to any part
of the handshake, then the administrators at Company A are immediately notifi ed. Further,
there’s no reason this defi nition cannot be expanded to include the data portion of the SMTP
conversation, if it were required.

For the record, you should get permission from someone before you do things such as
this. Monitoring things you don’t own can get you into trouble. Another thing to keep in
mind is that service checks that actually interact with the services they are watching affect
things such as logs and connection statistics. If the data portion were included, Bob at Com-
pany B would actually get an email message; it’s usually advisable to stop short of doing
something that directly affects a human being. On the other hand, poorly written daemons
might actually have problems with service checks that sever the connection at unexpected
times. Finally, administrators on the other end might use fi lters to block access to your moni-
toring tools if they think the traffi c might be malicious in nature. As I said in Chapter 1, “Best
Practices,” always put some thought into the things you monitor, especially if those things
don’t belong to your company or group.

The next example centers on Ted, who is a systems administrator for a moderately sized
health care company. Ted is responsible for obtaining SSL certifi cates from the company’s
rather shady PKI vendor, VeriSure. Ted is also responsible for registering new domain names,
but the company doesn’t use VeriSure for this. Recently, Ted’s mailbox has been fi lling up
with email from VeriSure. Most of them are marketing emails, offering Ted discounts to
move his company’s domain registry to VeriSure. Because his company owns a few domains
and SSL certifi cates, Ted is receiving about 20 of these message per day, so he has a dilemma.
Ted wants to /dev/null all email from VeriSure, but he also needs to get SSL expiry notifi ca-
tions. Guess what the command in Listing 6.10 does.

Listing 6.10 A solution for Ted.
defi ne command{
 command_name check_ssl
 command_line $USER1$/check_http $ARG1$ -C 10
 }

Check_http is a great plugin that can do all sorts of useful things. The job of the -C
switch is to check the expiry date of a given Web site’s SSL certifi cate. If the certifi cate on the
Web site expires in less than the number of days given (ten, in this case), the plugin generates
a critical error. This solves Ted’s problem and is probably a bit more reliable than VeriSure
notifi cations.

Local Queries

94 Chapter 6 Watching

This defi nition is the fi rst we’ve seen that doesn’t use the $HOSTADDRESS$ macro. This
is because we’re specifying a URL, as opposed to a server address. The URL is passed via an
ARG macro, as shown in the service description in Listing 6.11.

An interesting digression is that, because the $HOSTADDRESS$ macro is normally the
macro that decides which host the plugin will run on; the host_name directive in the service
defi nition can be whatever you want when that macro isn’t used. That is, you can specify
an unrelated accounting database server for host_name in Listing 6.11, and the check will
work in this example. The only place the host_name directive is used, in the absence of
the $HOSTADDRESS$ macro in the command defi nition, is in the Web UI, which lists the
check_ssl service as belonging to whatever host_name references.

Listing 6.11 The check_ssl service defi nition.
defi ne service{
 host_name webServer
 service_description check_ssl
 check_command check_ssl!www.myweb.org
 notifi cation_options c,w,r
 use chapter6template
 }

E2E Monitoring with WebInject

Hopefully, you are excited about the types of solutions you can build with the built-in plugins.
The next example is of “end-to-end” monitoring. Currently, end-to-end, or e2e, is all the rage
with the monitoring systems vendors. As discussed in Chapter 1, e2e means that the moni-
toring system makes use of the service in question in the same way that a user might. This
means different things in different contexts; for example, instead of the classic methodology
of monitoring port 25 for SMTP, an e2e system attempts to send an email to itself through
the mail system.

A favorite Nagios plugins is WebInject, which is a Perl program for performing Web site
regression testing. With WebInject, you create test cases in XML, which describe a list of
sites to visit. When visiting each site in turn, WebInject can do many useful things, such as
parse out and save strings for later use and verify the presence or absence of particular text.
Perhaps the best thing about WebInject is the way it seamlessly handles session states and
authentication. For example, WebInject handles cookies automatically in the same manner
as your Web browser. It saves cookies received from each test case and presents them in the
HTTP header of the following test case. For embedded session ID-based (or, if you prefer,
cookieless) authentication schemes, WebInject can parse session IDs out of the response text
or header of a site and provide it in a variable for later use.

95

Actually, the best thing about WebInject is that it has a Nagios plugin mode. With a
simple confi guration parameter in its confi g.xml, WebInject becomes a Nagios plugin, carry-
ing out its test cases and returning with a Nagios-compatible exit code and output string. It
even provides performance data.

All of this combines to make WebInject the perfect end-to-end Web site monitoring plu-
gin. For example, assume you run a Web site with a search entry fi eld and a database back-
end. For example, you are probably familiar with www.google.com. In this example, you
want to be sure that your Web site operates as expected; that is, not only is it alive, but it’s
also functional.

In Listings 6.4 and 6.5, you saw that you could monitor port 80 with check_tcp, but
this wouldn’t catch HTTP errors, such as 404. This was improved in Listings 6.6 and 6.7 by
sending an HTTP GET and by parsing the response code. However, an error in the database
back-end could still render the Web site useless. Although the HTTP server might run fl aw-
lessly, users wouldn’t get useful information from the queries. This example uses WebInject
to do an e2e check of www.google.com. The new check_http service basically reinvents the
feeling lucky button. It goes to the Web site, performs a query, parses the query results to fi nd
the fi rst link, proceeds to that link, and verifi es that the search text appears. If you can do all
that, you know you have a working Web daemon and a working Web site.

The fi rst step is, of course, installing WebInject. It can be obtained from www.webinject.
org. Because it’s a Perl script, there’s not much installing that needs to happen beyond acquir-
ing the various modules it depends upon. By default, WebInject will look for a confi g.xml fi le
in the present working directory.

As you can see in Listing 6.12, there isn’t much to the confi g.xml used in this example.
The reporttype directive specifi es what kind of output WebInject provides. I set it to nagios,
so that WebInject would operate in Nagios plugin mode. The testcasefi le directive specifi es
the location of the XML fi le containing the test cases. Finally, the globalhttplog directive
enables logging for the tests. By default, logging information goes into http.log in the present
working directory. You can set this option to yes to log everything, but here, it is set to onfail,
so that it only logs when there are failures in the test.

Listing 6.12 The confi g.xml for WebInject.
<reporttype>nagios</reporttype>
<testcasefi le>testcases.xml</testcasefi le>
<globalhttplog>onfail</globalhttplog>

Local Queries

www.google.com
www.google.com
www.webinject.org
www.webinject.org

96 Chapter 6 Watching

There are two test cases in the testcases.xml fi le in Listing 6.13. The fi rst test case per-
forms a Google search for the word foo and parses the output to fi nd the fi rst link in the
list. The parsing syntax, specifed by the parseresponse directive, is unusual but adequate for
the task. It uses a single pipe character (|) to separate everything before the desired text from
everything after the desired text. So, to capture the word bar in the string foo bar biz, the
parseresponse syntax is be foo | biz.

After the URL of the fi rst hit has been extracted by parseresponse, it is placed in the
WebInject variable {PARSEDRESULT}. You can then refer to this variable in test case 2,
which is done in the url directive. Test case 2 then proceeds to the Web site pointed to by
the results of test case1 and verifi es that the word foo exists on that site with the verifyposi-
tive directive. Verifypositive supports regex syntax, but you don’t need that for this simple
example.

Listing 6.13 The test case fi le for WebInject.
<testcases repeat="1">

<case
 id="1"
 description1="goto google. search for foo."
 method="get"
 url=http://www.google.com/search?hl=en&q=foo&btnG=Google+Sear
ch
 parseresponse='\<a class=l href="|"'
/>

<case
 id="2"
 description1="goto {PARSEDRESULT} check for foo"
 method="get"
 url="{PARSEDRESULT}"
 verifypositive='foo'
/>

</testcases>

You can test the plugin by calling webinject.pl from the command line. If everything goes
according to plan, you should get some output such as this:

WebInject OK - All tests passed successfully in 0.704 seconds
|time=0.704;;;0

97

If you delete the reporttype directive from the confi g.xml, WebInject provides more ver-
bose output, as shown in Listing 6.14. The fi rst match from Google was the Offi cial Foo
Fighters Web site. This can be helpful for debugging or for the intellectually curious.

Listing 6.14 Verbose output from WebInject.
Starting WebInject Engine...

Test: testcases.xml - 1
goto google. search for foo
Passed HTTP Response Code Verifi cation (not in error range)
TEST CASE PASSED
Response Time = 0.372 sec

Test: testcases.xml - 2
goto http://www.foofi ghters.com/ make sure it says foo there
Verify : "foo"
Passed Positive Verifi cation
Passed HTTP Response Code Verifi cation (not in error range)
TEST CASE PASSED
Response Time = 0.267 sec

Start Time: Sat Aug 12 21:49:57 2006
Total Run Time: 0.718 seconds

Test Cases Run: 2
Test Cases Passed: 2
Test Cases Failed: 0
Verifi cations Passed: 3
Verifi cations Failed: 0

All that’s left to do now is to create a command and service defi nitions, such as those in
Listing 6.15 and 6.16. Because the query logic is entirely specifi ed within the testcases.xml,
there isn’t a lot left to defi ne in the command and service defi nitions. It is possible to give
WebInject command-line arguments, telling it where to fi nd alternate confi g fi les, but the
test cases themselves must be read from fi les. If you thought to yourself that you could write
a shell wrapper to create testcase.xmls on-the-fl y from Nagios macros, then you’re well on
your way to becoming a Nagios administrator.

Listing 6.15 A WebInject command defi nition.
defi ne command{
 command_name check_google
 command_line $USER1$/webinject.pl
 }

Local Queries

98 Chapter 6 Watching

Listing 6.16 A WebInject service defi nition.
defi ne service{
 host_name webServer
 service_description check_google
 check_command check_google
 notifi cation_options c,w,r
 use chapter6template
 }

Hopefully, you now feel good about the remote-querying capability of Nagios. Now it’s
 time to move on to remote execution.

Watching Windows

Windows can be a challenge for administrator-building monitoring systems using Nagios or
otherwise because it is a bit more of a black box than most UNIX environments. NSClient,
a Windows-specifi c plugin for Nagios, provides almost all of the functionality you could
want, but even it presupposes a knowledge of the current Microsoft scripting environment,
especially WMI. In fact, understanding the Windows scripting environment is probably the
largest barrier to entry for someone who wants to monitor Windows, so let’s tackle that fi rst.
If you’re already adept at programming and scripting in Windows, feel free to skip ahead to
 the subsection entitled “Getting Down to Business.”

The Windows Scripting Environment

Google “Microsoft Scripting” and you’ll get back a dizzying array of acronyms and product
names: WSH, OLE, Cscript, WMI, ADSI, JScript, VBScript, and PowerShell to name just a
few. If you’re wondering, “Whatever happened to batch?”, then this section is for you.

Beginning with DOS and OS/2, batch scripts were used to automate tasks. These scripts
were little more than lists of DOS commands in a fi le, which the command.com program
could execute. Although they possessed rudimentary functionality and cumbersome syntax,
batch scripts managed to scale well for many systems administration tasks. (See Tim Hill’s
excellent book Windows NT Shell Scripting.)

However, something more robust was needed, so around the time Windows 98 was
introduced, so was WSH. WSH, or Windows Script Host, is a language-independent execu-
tion environment for scripts. For most purposes, you can think of it in the same terms as any
interpreter you are familiar with, such as Perl or Python. What makes WSH different is its
use of modular engines to provide syntax, so while you speak Perl to the Perl interpreter and

99

Python to the Python interpreter, WSH has no native syntax. In fact, it’s possible to speak
both Perl and Python to WSH in the same script. WSH provides the execution environment,
some common data structures, and I/O hooks, and it leaves the specifi c syntax up to the
language engine.

WSH, as installed by Microsoft, includes only language engines for VBScript and Jscript
and in practice, most people use the VBScript syntax. Because of this, many people refer to
scripts executed by WSH, in general, as VBScripts or Visual Basic Scripts.

VBScript, or Microsoft Visual Basic, Script Edition, is a subset of Microsoft Visual
Basic programming language, which, in turn, owes its lineage to the original Beginner’s All-
Purpose Symbolic Instruction Code developed at Dartmouth College. The vbscript.dll script
engine interprets code written in VBScript, and it can be used by either the ASP engine in
Internet Explorer for Web applications or WSH for systems programming and automation.
So, VBScript wears two hats: it is both a Web application language and a general purpose
scripting language. In its Web application role, VBScript is embedded into HTML (similar to
Javascript) to be interpreted by the Web browser. In its stand-alone or WSH role, VBScript is
executed by WSH from a fi le, usually possessing a .vbs extension. (This is not a requirement.
The PATHTEXT environment variable contains a list of extensions to which the script name
is appended if the extension is omitted.)

To muddle things further, WSH is composed of two separate execution environments:
Wscript and Cscript. These environments, implemented as two separate programs, are iden-
tical except that Wscript is GUI-based and Cscript is command-line driven. For example, the
following snippet when executed by Wscript opens a new window that contains the words
Hello World:

Wscript.Echo "Hello World"

The same code, executed by Cscript, simply prints Hello World to standard out at the
command prompt.

WSH scripts are self-contained fi les with extensions that denote their syntax. VBScript
WSH scripts usually end in .vbs and can be executed with either Cscript or Wscript in the
following manner:

cscript foo.vbs

wscript foo.vbs

Watching Windows

100 Chapter 6 Watching

When the execution environment (or host, in Microsoft parlance) is not specifi ed, the
default host is chosen. The default host, out of the box, is (of course) Wscript, which is
probably not what you want. There are a few other annoyances built into WSH, such as its
habit to output a banner that informs you that your script was run by Microsoft’s WSH.
In Cscript, this banner is actually injected into the output of your program (STDOUT, not
STDERR). This is bad if you’re writing Nagios plugins because Nagios will only parse the
fi rst line of text output by the plugin. Switches exist to change the default behavior. The fol-
lowing is what most people use:

cscript //I //nologo //H:cscript //S

The I switch specifi es interactive mode as opposed to batch mode. Nologo removes the
banner. The H switch specifi es that Cscript should be the default script host, making it pos-
sible to launch foo.vbs without fi rst specifying Cscript. Finally, the S switch saves these set-
tings to the registry, making them permanent.

COM and OLE

Although UNIX relies on small, text-based, single-purpose programs that work together
toward accomplishing tasks, Windows, as an environment, tends toward large, monolithic,
graphical programs. This poses a dilemma to would-be automators: How do you script
a GUI? Enter Component Object Model (COM). Since 1993, COM and related technol-
ogy have attempted to provide a language-agnostic interface to software that is otherwise
immune to automated integration.

Software developers using COM build their applications using COM-aware components.
If implemented correctly, these components provide interfaces to the applications’ function-
ality via any other program that speaks COM. These interfaces can be used for any number
of purposes, such as interprocess communication or even automation. OLE is COM’s object
model. OLE gives COM objects their names and specifi es things such as object inheritance.
Most people associate OLE with embedding an Excel spreadsheet within a word document
(the purpose it was originally designed for in 1991), but it is now much more powerful than
that.

Because most important applications in Windows expose their functionality via COM,
and WSH provides access to any COM object, it is possible to use scripting languages such as
Perl and VBScript to automate applications in Windows, including everything from program-
matically creating Excel documents to driving Microsoft Management Consoles (MMC).
OLE and COM provide the glue with which Nagios may be tied to any application that

101

exports its functionality via COM, which is most applications out there. Scripts that use
COM to query information from Windows systems and then exit with the appropriate exit
codes are, by defi nition, Nagios plugins.

WMI

One piece of software that doesn’t export its functionality via COM is the kernel. Various
fl avors of UNIX have their proc or sysfs fi lesystems, but until recently, this critically impor-
tant system information was largely unavailable to scripting languages in Windows. The
closest thing was perfmon, which is a real-time performance statistics program that didn’t
lend itself to being driven from scripting languages or the command line. Products such as
SNMP Informant could export perfmon information via SNMP, but this is more kludge than
solution. Windows Management Instrumentation fi lls this gap nicely. WMI is like a COM
interface to the runtime environment. It can be thought of as another COM interface, but
one that provides access to things such as disk and network utilization.

WMI is derived from the Distributed Management Taskforce’s CIM concept. CIM, or
Common Information Model, is a large database (called a CIM Repository) of objects that
represent manageable entities, such as hard drives, entire computer systems, and software
packages. WMI is Microsoft’s implementation of CIM. The CIM concept encompasses more
than what you’d fi nd in /proc. It is a collection of information about computer systems that
includes the current memory utilization, as well as things such as the system’s serial number
and PowerPoint version. As such, many current Windows applications extend the CIM data-
base with their own information. Applications and drivers that provide information to the
CIM are called providers.

Because the CIM repository contains a lot of information, it is broken down into
namespaces specifi c to provider types, such as Root\SNMP or Root\MicrosoftIISv2. The
built-in OS providers use Root\CIMv2. These namespaces are further broken down into
classes, which are functionality-specifi c objects, such as Win32-Process or DiskObject.
Additionally, WMI implements a SQL-like query language called WQL to help you fi nd
the specifi c pieces of information you need. Few people programmatically explore the CIM
repository using WQL, however. Most use a GUI browser, such as wbemtest.exe, located in
system32/wbem on most Windows systems. WQL is still necessary, however, to instantiate
specifi c class objects in a script.

To give you a feel for the capabilities of WMI/OLE, as well as what a Nagios plugin that
uses WMI looks like, look at Listing 6.17, which is a Nagios plugin called check_dllHost. Its
purpose is to make sure that no single dllHost process consumes more than a user-specifi ed
amount of RAM. It is written in Perl and uses the Win32_Process WMI Class.

Watching Windows

102 Chapter 6 Watching

Listing 6.17 Check_dllHost.
#!/usr/bin/perl
#a plugin to check whether any dllHost processes are
#eating too much ram
#Blame Dave Josephsen --> Wed Apr 20 13:23:10 CST 2005

#########variable init#########
#we use the win32::ole module to connect to wmi
use Win32::OLE;
use Win32::OLE qw (in);

#our warning and critical thresholds are passed via arguments
$warn=$ARGV[0];
$warn='200000000' unless ($warn);
$crit=$ARGV[1];
$crit='250000000' unless ($crit);

$counter=0;

#########real work begins here#########
#spawn a wmi object
$oWmi = Win32::OLE->GetObject(„WinMgmts://./root/cimv2")
 or die „no wmi object";

#this wql query gets all the processes running on the box
$oProcessEnumObj=$oWmi->
 ExecQuery(„Select * from Win32_Process „);

#iterate through the process list. Retrieve 'dllHost' procs
foreach $oProcess (in($oProcessEnumObj)){

 if($oProcess->Name =~/dllHost.*/i){
 $counter += 1 ; #keep track of how many there are for later

 #are you using up my ram?
 if ($oProcess->WorkingSetSize >= $crit){

 #you sure are
 print „CRITICAL „. $oProcess->WorkingSetSize .
 „kb in use by „. $oProcess->Name . "\n";
 exit 2;

 } elsif ($oProcess->WorkingSetSize >= $warn){
 print "WARNING ". $oProcess->WorkingSetSize .
 "kb in use by ". $oProcess->Name . "\n";
 exit 1;
 }
 }
}

#if we made it this far, then everything's all right, mon
if($counter >= 0){
 (continues)

103

 print "OK ". $counter . " dllHosts running,
 none over the limit \n";
 exit 0;

}else{

 print "OK no dllHost processes running\n";
 exit 0;
}

Scripts that use WMI almost invariably follow the same pattern. Spawn a WMI object,
use WQL to query some subset of information from the object, check the status of that
information against thresholds or expected results, and exit. The WMI URL, or class path,
if you prefer—WinMgmts://./root/cimv2—is important. It specifi es from where in the CIM
the WMI object is derived, which limits the kind of information you can use WQL to query.
Also important is the WQL query:

$oProcessEnumObj=$oWmi->ExecQuery("Select * from Win32_Process ");

The syntax “Select * from Win32_Process” is WQL. Its purpose is self-explanatory: it
returns all of the currently running processes. The result of a WQL query is always a collec-
tion object. A collection object is a fancy sort of array that doesn’t behave in the usual Perl
manner. To ease iteration across collection objects, the Win32::OLE module provides the in
function. The in function makes constructs such as the following two possible:

foreach $oProcess (in($oProcessEnumObj)){

@oProcesses=in($oProcessEnumObj)

Python treats collection objects as enumerations. The dot (//./) in the URI specifi es that
the WMI object in question is spawned on the local system. If you replace the dot with the
hostname of a remote host, you can consume WMI information from a remote host via RPC
over the network. This assumes you had the privileges that you needed on the remote host.

Listing 6.18 is another WMI/Perl Nagios plugin. Although its purpose—to determine if
any services in a cluster are not currently online—is different from Listing 6.17, the pattern
is nearly identical.

Watching Windows

Listing 6.17 Check_dllHost. (Continued)

104 Chapter 6 Watching

Listing 6.18 A check_cluster plugin in Perl/WMI.
#!/usr/bin/perl
#check_cluster a perl script/nagios plugin to check if any cluster
#resources are in a state other than online.
#blame Dave Josephsen --> Sat Jan 22 17:03:34 CST 2005

#########variable init#########
use Win32;
use Win32::OLE qw (in);

#swap these if you want to take the servername as an arg
$server=".";
#$server="$ARGV[0]";

#unlike most WMI classes, MSCluster is derived from
#/Root/MSCluster, so we have to specify that
#in the class path.
$class = "WinMgmts://"."$server"."/Root/MSCluster";

#the MSCluster provider classes are just barely documented here:
#http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
mscs/mscs/server_cluster_provider_reference.asp
$object_class='MSCluster_Resource';

#possible resource states, from;
#http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
mscs/mscs/clusresource_state.asp
$state{-1}='Unknown';
$state{0}='Inherited';
$state{1}='Initializing';
$state{2}='Online';
$state{3}='Offl ine';
$state{4}='Failed';
$state{128}='Pending';
$state{129}='Online_Pending';
$state{139}='Offl ine_Pending';

#########real work begins here#########

#get a wmi object
$wmi = Win32::OLE->GetObject ($class);

#get a collection of resources off the cluster
$resource_collection=$wmi->
 ExecQuery("Select * FROM $object_class");

#how many resources are there?
$max=$resource_collection->{Count};

#the 'in' function comes from Win32::OLE
#it's the same thing as: Win32::OLE::Enum->All(foo)
@collection=in($resource_collection); (continues)

105

#are any resources in any state other than online?
for ($i=0;$i<$max; ++$i){
 if($collection[$i]->{State}!='2'){
 push(@broken,$collection[$i]);
 }
}

#if so, do bad things
if(scalar(@broken)>0){
 foreach $j (@broken){
 print("$j->{Name} is $state{$j->{State}}, ");
 }
 exit(2);
}else{
 #otherwise, do good things
 print "$max resources online\n";
 exit(0);
}

To WSH or not to WSH

Although the scripts in my examples run on Windows and consume information from WMI
objects, they don’t, in fact, use WSH. If you choose to script in any language other than
VBScript, you’ll have to install the language engine, which means you’ll also have a choice
of interpreters. ActiveState Perl, for example, installs both the Perl interpreter and the Perl
WSH language engine. Scripts with Perl syntax, executed via Cscript and possessing a .pls
extension, are executed by WSH, while those with a .pl and called without a script host are
executed by the native Perl interpreter, perl.exe.

Within WSH, things are a bit different. For example, you can’t use modules and Perl
switches, such as -w, don’t work. The ARGV array is absent as well, because perl.exe, in
one way or another, provides all of these things. The WSH environment instead provides a
$Wscript object with which you can parse arguments and make connections to OLE objects.
In WSH, $Wscript even supersedes print(), such that

print("foo $bar");

becomes

$Wscript->Echo("foo",$bar);

Watching Windows

Listing 6.18 A check_cluster plugin in Perl/WMI. (Continued)

106 Chapter 6 Watching

In Listing 6.17, Win32::OLE CPAN module connects to WMI via COM. Within WSH,
this becomes easier.

use Win32::OLE;
use Win32::OLE qw (in);
$oWmi = Win32::OLE->GetObject("WinMgmts://./root/cimv2")
 or die "no wmi object";

becomes

$oWmi = $Wscript->GetObject("WinMgmts://./root/cimv2");

The choice is yours. WSH doesn’t provide anything that native Perl with Win32::
OLE doesn’t, and if you’re adept at Perl, you would probably rather use @ARGV than
$Wscript->Arguments. The situation is the same for Python and Ruby. If alternate language
engines were installed out of the box, then WSH might be a compelling alternative. As it is,
most people who don’t use VBScript use the native interpreter for their language of choice.
For more information on programming with WSH in Perl, Python, Ruby, or even Object
REXX, check out Brian Knittel’s book, Windows XP, Under the Hood.

To VB or Not to VB

The fact that the VBScript language engine is installed by default on all current versions of
Microsoft Windows makes it the prevalent scripting language for the platform. The extent to
which this is true is diffi cult to express. VBScript is so popular that it’s nearly impossible to
fi nd a problem for which three or four scripts have not already been posted on the Internet.
So prevalent is sample code that it’s not even necessary to know the language at this point.
In fact, I’ve yet to actually meet a Windows administrator who knows the language well
enough to write a script from scratch. It’s as if every Visual Basic Script currently in existence
is a modifi cation of a modifi cation of an original Visual Basic Script that was written from
scratch 12 years ago. Microsoft technet boasts a tool it is particularly fond of, called the
scriptomatic, that will generate VBScript for you from pull-down menus. Microsoft-hosted
courses on the subject of automation, at this point, teach only enough of the syntax to enable
students to download and modify existing code. A good friend of mine, while attending such
a course, went so far as to temporarily sabotage the instructor’s network connection to see
what the instructor would do if sample code on the Internet was unavailable. (The instructor
quickly reverted to searching his local hard drive for a suitable script to modify.)

Getting back to the point, VBScript is a supportable choice for system automation and
monitoring on Microsoft Windows. If you are familiar with Java, you can probably pick up

107

the syntax in a weekend, but its only real advantage is that it is available on all Windows
servers out of the box. Its lack of case-sensitivity, unwieldy regex syntax, and strange habit of
using list context in inappropriate situations make it unpopular among people who actually
enjoy programming, but administrators who might otherwise use another language choose
VBScript, so they don’t have to install an interpreter on every machine.

For that reason, tools exist for most of the popular scripting languages that make it
possible to package scripts in a stand-alone manner. PAR for Perl, py2exe for Python, and
rubyscript2exe for Ruby create .exe programs out of scripts. The .exe programs can then
be run on Windows machines without the interpreter. The binaries created by these tools
can be large (usually between 1–3 megabytes, depending on how many libraries the scripts
include), and they don’t run any faster in their compiled form than they do in the interpreter.
However, they enable you to write scripts and Nagios plugins in the language of your choice
and run them on any Windows machine in your environment, without having to install the
interpreter on each Windows host.

The Future of Windows Scripting

Currently, in the world of Microsoft, .Net is all the rage. The .Net framework is a large class
library of solutions to commonly occurring programming problems. It is meant to eventu-
ally supercede many existing Microsoft technologies, including COM and OLE. There is no
plan, however, to stop development or support of COM at Microsoft, and .NET does little
to address the needs of systems people, so the VBScript/COM/OLE combination will likely
remain the systems scripting environment of choice for the foreseeable future.

PowerShell, formerly known as MSH, or Mondad, will probably have a larger impact on
scripting on the platform going forward than .Net. PowerShell is a scriptable CLI that is cur-
rently available as a download. PowerShell is capable of doing anything WSH can do, while
providing a much friendlier interface to systems administrators. Where COM and VBScript
provide a scriptable interface to existing GUI tools that support COM, Microsoft claims that
future versions of system confi guration utilities will actually be written in PowerShell with
GUI wrappers, thus ensuring a scriptable interface to the OS going forward.

Although the PowerShell implementation borrows concepts from UNIX, such as passing
information between small distinct programs via pipes, PowerShell does this in a much more
object-oriented manner. For example, PowerShell programs (called cmdlets) give output to
the shell in text, but when the same output is piped to another PowerShell cmdlet, data
objects are exchanged instead. Microsoft is fond of saying that this completely eliminates the
need for text processing tools such as awk, sed, and grep. To see what they mean by that,
consider the list of servers in Listing 6.20.

Watching Windows

108 Chapter 6 Watching

Listing 6.20 A list of servers.
Name,Department,IP
frogslime,R&D,12.4.4.17
tequilasunrise,Finance,12.4.5.23
151&coke,R&D,12.4.4.151
theangrygerman,MIS,12.0.0.2
7&7,Finance,12.4.5.77

Say you want to extract and print only the machines in the fi nance department. In UNIX,
you’d probably do something such as this:

cat list.csv | grep Finance

Or if you wanted to be specifi c, you would use

cat list.csv | awk –F, '$2 ~ /Finance/ {print}'

In these examples, grep and awk are given the comma-separated list as a text input
stream, and they fi lter their output of the text according to the options given to them. Grep
was told to print the lines containing Finance, and awk was told to print the lines with
Finance in the second fi eld, where fi elds were separated by a comma.

PowerShell cmdlets don’t receive text input from each other, so while the semantics of
the following line of code is similar to the UNIX examples, it operates in an altogether dif-
ferent manner.

Import-csv list.csv | Where-Object {$_.department -eq "Finance"}

The PowerShell cmdlet Import-csv reads in the contents of list.csv and creates an object
of type csvlist (or something similar). This csvlist object is then passed to the Where-Object
cmdlet, which uses the department property of the object to extract the records matching
Finance. Because the pipeline ends here, the Where-Object cmdlet dumps its fi ndings in plain
text to the shell. If the pipeline had continued, however, the Where-Object cmdlet would
have provided the modifi ed csvlist object to the next cmdlet in line. The Perl-like $_ object
(which represents the current iterator), curly braces, and pipes combine to give the command
a very UNIX-ish feel. The syntax is far more appealing to systems-type scripting people than
VBScript, which is why PowerShell has a good chance of catching on.

Microsoft has also made the statement that the UNIX pipes model has made sysadmins
into expert text manipulators, and this is undoubtedly true. To that point I would add: Along

109

with being expert text manipulators comes the expectation that data will be manipulated and
formatted in the manner specifi ed by the person performing the manipulation. Given this,
many administrators might hear PowerShell’s message as, “Give us your data and we’ll tell
you what you can do with it.” So I see where Microsoft is going when it says that the object
model will eliminate the need for text processing, but I humbly predict that the most popular
PowerShell site on the Internet, other than Microsoft’s, will be the site providing text process-
ing cmdlets for use alongside the offi cial Microsoft ones.

PowerShell is a promising technology whose time is far overdue, and although I’m skep-
tical that the object model makes a compelling case for the wholesale abandonment of text
processing tools, I’m glad that Microsoft is headed in this direction. PowerShell is certainly
a net gain, and it will greatly expand the use of scripting and automation among systems
professionals on the Windows platform. Although the current VBScript/WSH/COM combi-
nation will probably remain the de facto scripting standard for a while because of its over-
whelming mindshare and default availability, there’s no real reason you can’t use PowerShell
to get work done right now.

Getting Down to Business

Now that you have a good understanding of the environment and where the good informa-
tion is, you can check out ways to extract the stats you need and provide them to Nagios.
There are two popular ways to glue Windows plugins to Nagios: NRPE_NT and NSCPlus.

NRPE

NRPE, as described in Chapter 2 and Chapter 3, “Installing Nagios,” is a lightweight client
and server that enables the Nagios server to remotely execute plugins stored on the moni-
tored hosts. NRPE is great when you have existing monitoring scripts that you want to use
with Nagios or you have a need for custom monitoring logic. Any scripts you may have writ-
ten (or downloaded) to monitor your Windows boxes can be defi ned as a service in Nagios
and called via NRPE_NT, the Windows port of NRPE.

For example, to run the check_dllhost plugin from Listing 6.16 with NRPE-NT, fi rst
obtain and install NRPE-NT, as described in Chapter 3. After the NRPE service is installed
on the Windows host, add the following line to the bottom of the nrpe.cfg fi le.

Command[check_dllhost]=c:\path\to\check_dllhost.pl 200000000
250000000

This line tells the NRPE daemon on the Windows host what to do if someone asks it to
run check_dllhost. The Nagios server must then be confi gured to run the check. The fi rst step
is to defi ne the command in the commands.cfg, as in Listing 6.21.

Watching Windows

110 Chapter 6 Watching

Listing 6.21 Check_dllhost command defi nition.
defi ne command{
 command_name check_dllhost
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ \
 -c check_dllhost
 }

The command defi nition in Listing 6.21 makes use of the check_nrpe plugin. As men-
tioned in previous descriptions of NRPE, check_nrpe is the client portion of the NRPE pack-
age. In the previous defi nition, it is given two arguments: -H, with the hostname of the
Windows server, and -c, with the name of the command to be executed on the remote server.
After the command has been defi ned, Nagios can schedule it for execution. This is done
with a service check command, so the next step is to defi ne the service, such as the one in
Listing 6.22.

Listing 6.22 Check_dllhost service defi nition.
defi ne service{
 host_name windowsServer
 service_description check_dllhost
 use chapter6template
 notifi cation_options w,c,r
 }

After this is done and the Nagios daemon is restarted, Nagios will poll the check_dllhost
program on a regular basis. NRPE may be used to execute any script on any Windows host
in this manner.

So now that you know how to schedule plugins, the question becomes what to schedule.
One popular answer to this question is the basic NRPE plugins for Windows, available at the
NagiosExchange here:

www.nagiosexchange.org/NRPE_Plugins.66.0.html?&tx_netnagext_pi1
 [p_view]=62

This package includes plugins to check the usual metrics: CPU, memory utilization, and
disk space. It also contains a plugin to query the state of arbitrary services and an eventlog
parser. The basic plugins are DOS programs written in C and satisfy the basic monitoring
needs most people have. This has the added bonus of being the closest, methodologically, to
 remote execution in UNIX, so if you like standardized methodologies, this may be for you.

111

NSClient/NSCPlus

Another popular Windows plugin is NSClient, which is a monolithic standalone Nagios
plugin that comes with its own client. In other words, NSClient is not executed by way of
NRPE, but by its own client software on the Nagios server, check_nt. NSClient contains all
of the functionality previously mentioned, plus the capability to query any perfmon counter,
which makes it a very attractive alternative to NRPE with the basic pack for people who
don’t have any custom plugins. Running check-nt –h on the Nagios server gives a rundown
of NSClients features and use.

NSClient is the plugin used by the majority of people who watch Windows hosts with
Nagios. It’s very simple to install and contains just about all the functionality that most peo-
ple want starting out. NSClient cannot run external scripts; it provides only the functionality
built into it. This means that if you want to run NSClient and a few custom scripts, such as
the ones in Listings 6.16 and 6.17, you need to install two services on each Windows host:
the NSClient service as well as NRPE.

Another problem with NSClient is that it doesn’t seem to be actively maintained any-
more. Many people (myself included) have been using it for years without any problems,
but it’s understandable that some may shy away from it because of its current (apparently)
abandoned status.

NSCPlus aims to replace both NSClient and NRPE by combining their functionality into
a single monolithic program. NSCPlus contains all of the query functionality of NSClient,
plus a built-in implementation of the NRPE protocol. This means that a single Windows
service provides the functionality of both NSClient and NRPE. NSCPlus also has the ability
to make WMI queries, though this functionality is currently experimental.

Installing NSCPlus and NSClient is very similar. The package comes with source and
binaries for the UNIX and Windows pieces. To install the Windows service, execute the
binary with a /i. Then start the service from services.msc or from the command line with a
net start command.

To use NSClient or NSCPlus to check the CPU load of a Windows box, defi ne the com-
mand in checkcommands.cfg, as in Listing 6.23.

Listing 6.23 Check_nt_cpuload command defi nition.
defi ne command{
 command_name check_nt_cpuload
 command_line $USER1$/check_nt_wrapper -H $HOSTADDRESS$ \
 -p 4242 -v CPULOAD -l $ARG1$
}

Watching Windows

112 Chapter 6 Watching

In the preceding example command, the -p switch specifi es an alternate listening port.
The default NSClient port (1284) confl icts with Microsoft Exchange RPC, so you might
want to change it. The -v switch specifi es which variable to check. Valid variables include
CLIENTVERSION, UPTIME, USEDDISKSPACE, MEMUSE, SERVICESTATE, PROC-
STATE, and COUNTER. Each type of variable may take options. These options are specifi ed
by the -l. The CPULOAD variable takes a comma-separated triplet in the form <minutes
range>,<warning threshold>,<critical threshold>. If I wanted to take a 5-minute CPU average
and warn on 80 and alarm on 90, I would specify 5,80,90. Multiple triplets can be specifi ed,
so if I wanted a 5-minute average and a 10-minute average with slightly lower thresholds, I
could use 5,80,90,10,70,80. The command defi nition in Listing 6.23 uses the triplet specifi ed
by argument macros in the service defi nition in Listing 6.12.

Listing 6.23 Check_nt_cpuload service defi nition.
defi ne service{
 host_name windowsServer
 service_description check_nt_cpuload
 check_command check_nt_cpuload!5,80,90,10,70,80
 use chapter6template
 notifi cation_options w,c,r
 }

NSCPlus packs a good deal of functionality into a very small package and, going for-
ward, I don’t see many reasons to use anything else. It is an arguably more complex install
than NRPE alone, but the install is worth it, for the functionality NSCPlus provides.

Watching UNIX

Compared to Windows, the systems programming and automation scene for UNIX users is
straightforward. Most sysadmin tend to use some combination of C, Perl, Python, or shell
programming to write automation and glue code and, while these tools continue to evolve
and get better, the overall systems programming scene doesn’t change a lot from year to
year. Further, in contrast to Windows, where using any language other than VBScript means
downloading and installing an interpreter, UNIX administrators are far more likely to have
more interpreters and compilers installed by default than they have a need for.

Combine a rich assortment of available tools with the fact that Nagios was written to run
on Linux and what you get is a plethora of UNIX-based Nagios plugins to monitor all man-
ner of things written in all sorts of languages. In fact, when posting a question, such as”How
do I monitor X on my freebsd box?” to the nagios-users list, it’s not uncommon for over half
of the responses to be written in code of one type or another. This section should give you
a good feel for the plugins people frequently use. I’ll setup checks for the “big three:” CPU,
Disk, and Memory. I’ll also cover some of the details of what these metrics mean.

113

NRPE

By now it should be no surprise that NRPE is the remote execution tool of choice for Nag-
ios plugins on UNIX boxes. Unlike Windows, where some multipurpose plugins, such as
NSClient, have implemented their own daemons and protocols, plugins on the UNIX side
have stayed single-purpose and assume the use of a remote execution program, such as NRPE
or check_ssh. As for the plugins, most people start out with the offi cial plugins tarball that
the Nagios daemon uses.

Different hosts will build different plugins from the tarball based on the libraries they
have installed. So it’s not particularly wasteful to have a single set of plugins for both the
Nagios daemon and the hosts it monitors. For example, check_snmp will only compile if the
host in question has the net-snmp libraries installed. This is true for quite a few of the plugins
in the tarball. Check out Chapter 3 for details on getting and installing the offi cial plugins
tarball and NRPE.

CPU

While measuring CPU utilization may seem a relatively straightforward task at fi rst glance,
it is, in fact, an intricate and complex problem with no easy solutions. There are two CPU-
related metrics that are normally used to summarize CPU utilization. The fi rst is the classic
percentage-based metric. This is a number representing the percentage of CPU utilization
occurring now. For example, “The CPU is currently 42 percent utilized.” This number is how
most people who aren’t UNIX administrators understand things, so let’s look at it fi rst.

If you ask embedded systems or computer engineers, they will tell you that processors in
the real world are either utilized or not. There is, in fact, no such thing as 42 percent utiliza-
tion on a micro-processor. At any given instant, the CPU is computing some bit of machine
code or it is idle. So if the only two numbers that exist are 0 percent and 100 percent, what
can this percentage number actually mean?

In fact, the CPU is never actually idle; “idle” is just one of many states that the proces-
sor spends its time computing. Idle happens to be the lowest priority state, so when the CPU
spends its time looping in the idle state, it’s still doing work, just low priority, preemptable
work.

Therefore, to be meaningful, the utilization percentage must be something akin to an
average of processor state versus time. Exactly what is being averaged, and for how long, is
a question that is answered in software, so even on the same OS, two separate performance
applications can measure it differently. Because all processors have a lowest priority state,
a popular methodology for providing a single percentage number is that of measuring the
percentage of time that the CPU spends in its lowest priority state and then subtracting this
number from 100 to obtain the actual utilization percentage. In other words, the utilization

Watching UNIX

114 Chapter 6 Watching

percentage is the percentage of time between two polling intervals that the CPU spends in any
state other than idle. There are many other ways. For example, some processors have built-
in performance counters that may be queried with system calls, so using these is a popular
alternative.

The bottom line is that the classic CPU percentage metric presents all sorts of problems
from a monitoring perspective. It is an overly volatile and ambiguous metric that doesn’t
necessarily refl ect the load on a system and, therefore, isn’t a good indicator of problems.
Even in a capacity-planning context, the number has questionable value. For example,
100 percent CPU utilization can be a good thing if you are trying to optimize system perfor-
mance for an application that is bandwidth- or Disk I/O- intensive. My advice is to avoid this
metric in systems monitoring when you can.

The second metric is that of UNIX load averages. This is a set of three numbers that
represent the system load averaged over three different time periods: 1, 5, and 15 minutes.
You may recognize them from the output of several different shell utilities, including top and
uptime. These load average numbers are exponentially damped and computed by the kernel,
so they tend to be less volatile than the CPU percentage metric, and they are always com-
puted the same, no matter whom you ask. Exactly what these numbers represent is a ques-
tion that is diffi cult to express without using math. In fact, the deeper one delves, the harder
the math becomes, until fi rst order derivative calculus becomes involved. If you’re in to that
sort of thing, I’ll refer you to Dr Neil Gunther’s paper here: www.teamquest.com/resources/
gunther/display/5/index.htm.

For the rest of us, I’ll attempt an explanation in English. The current load average is the
load average from 5 seconds ago, plus the run-queue length, which is the sum of the number
of processes waiting in the run-queue plus the number of processes that are currently execut-
ing. To save on kernel overhead, the kernel doesn’t actually compute three separate load
average numbers. The three numbers in the triplet are actually computed from a common
base number. When computing the load average for each time period in the triplet, a differ-
ent exponential factor is applied to both the 5-second-old average and the current run-queue
length to dampen or weigh the values accordingly. The ratio used by the dampening/weighing
factor is somewhat controversial, at least in Linux, but the load triplet, in my experience, is
a useful metric despite disagreement over exponential dampening ratios.

The load average metric is directly tied to the number of processes waiting for execu-
tion. Each new process waiting for execution adds a 1 to the run-queue length, which affects
the load average in the manner previously described. This is a much more practical metric
of server utilization because it effectively captures how capable the system is of keeping up
with the work it is being given. For a single-CPU system, a load of 1 would effectively be 100
percent utilization, but a better way of thinking about it is that the system has exactly enough

www.teamquest.com/resources/gunther/display/5/index.htm
www.teamquest.com/resources/gunther/display/5/index.htm

115

capacity to handle the current load. A load average of .5 would mean that the system has
twice the capacity it needs to handle the current load, and 3 means the system would need
three times the capacity it currently has to handle the load. For multi-CPU systems, the load
numbers should be divided by the number of CPUs, so a load average of 3 on a four-CPU
system means the system is 75 percent utilized or it has a quarter more capacity than it needs
to handle the current load.

There are two problems with the utilization triplet that you should be aware of. The
fi rst, and probably worst of the two, is that the triplet is not understood by laymen, such
as managers and execs, and you have no hope of educating them. The second problem with
the triplet is that the run-queue length is not strictly CPU-bound. Bad server problems, such
as EXT3 panics, can also cause processes to back up in the run-queue, at least on Linux. In
practice, this turns out not to be too bad of a problem because anything that is backing up
the run-queue is bad news and bears your attention, anyway.

There are various pearls of wisdom fl oating around in books and on the Web, which
say things such as “load averages above 3 are bad.” I would agree that you probably want
to upgrade a single-CPU system that is perpetually loaded at 3, but in the context of setting
monitoring thresholds, nothing is written in stone. In the real world, I’ve seen systems go as
high as 25 before showing any real signs of latency, and I have several boxes I don’t worry
about until they get at least that high. Figuring out where your thresholds should be is defi -
nitely a job for you, so check out my discussion of baselines in Chapter 1, “Best Practices,”
and decide accordingly.

The fi rst step in setting up a CPU check is to add the check_load command to the nrpe.
cfg fi le on the monitored host. The command at the bottom of the fi le should look something
like this:

command[check_load]=/usr/libexec/check_load -w $ARG1$ -c $ARG2$

Notice the macros in the nrpe.cfg defi nition. In previous examples with the nrpe.cfg fi le,
I’ve used static thresholds. Static thresholds are generally preferable, from a security stand-
point, because potentially dangerous data is not accepted by the NRPE daemon. In practice,
most people use tcpwrappers to control access to the daemon and use argument passing to
centralize the thresholds on the Nagios server. Static thresholds on a per-host basis quickly
become too much for most administrators to manage.

To pass arguments, you must fi rst compile nrpe with enable-command-args, and set
dont_blame_nrpe to 1 in the nrpe.cfg. (Because the feature is doubly disabled by default and
called “Don’t blame us” in the confi g fi le should give you pause. Use it at your own risk.)

Watching UNIX

116 Chapter 6 Watching

After this is done, you can send arguments to the NRPE daemon via the command defi nition
on the Nagios server. Listing 6.24 has an example command defi nition for use with an argu-
ment-accepting NRPE daemon.

This command defi nition picks up the thresholds from the service defi nition via argu-
ment macros and passes them on to the NRPE daemon on the remote host. Newer versions
of check_nrpe support two syntaxes for argument passing. The classic way is the com-
mand name with exclamation-mark-separated arguments, and the new way specifi es space-
separated arguments after an -a switch. Although the new way is more readable, I prefer the
old way because character escaping is cleaner.

Listing 6.24 Check_load command defi nition with argument passing.
defi ne command{
 command_name check_load
 #old way:
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ \
 -c check_load!$ARG1$!$ARG2$
 #new way:

 #command_line $USER1$/check_nrpe -H $HOSTADDRESS$ \
 # -c check_load -a $ARG1$ $ARG2$

}

Listing 6.25 contains the accompanying service defi nition. This is where the thresholds
are actually specifi ed by the administrator. The check_load plugin in our example takes two
arguments: one for the warning threshold and one for the critical threshold. Thresholds are
specifi ed as UNIX load average triplets. In our example, Nagios will generate a warning for
someUnixHost if its 1-minute average goes above 15, its 5-minute average goes above 10, or
its 15-minute average goes above 5.

Listing 6.25 The check_load service defi nition.
defi ne service{
 host_name someUnixHost
 service_description CPU LOAD
 check_command check_load!15,10,5,!30,25,20
 use chapter6template
 notifi cation_options w,c,r
}

Memory

One of the things I like best about UNIX Load Average, as a metric for system perfor-
mance, is that it is common across all UNIX and UNIX-like systems. Be it Linux, Solaris, or

117

FreeBSD, the load average numbers are there and are (probably) derived in much the same
way. Memory utilization, however, is the opposite. (Check out the Solaris section of the Nag-
ios Exchange [www.nagiosexchange.org] for Solaris-specifi c plugins.) Unfortunately, user-
space tools, such as vmstat, don’t provide an insulation layer against the differences in the
various UNIX system virtual memory implementations, and other tools, such as free, might
not exist on particular platforms at all. This makes it hard to write a single Nagios plugin
that accurately tracks memory across all UNIX systems.

Additionally, UNIX systems do a lot of memory caching and buffering, so even if the
virtual memory systems were similar enough across the board to take these measurements,
the results wouldn’t be all that useful. When UNIX systems have X amount of RAM, they’ll
usually use most of it, and this is a good thing.

So for UNIX systems in general, the question becomes not, “How much RAM am I
using?” but, “Is this system running low on RAM?” To answer that question, a much better
indicator of unhealthy memory utilization is the way in which the system is using its swap
space. Tools like sar, vmstat, and iostat are very useful for querying information about swap
space utilization, but again, these tools do not contain common functionality across various
fl avors of UNIX.

For example, vmstat on Solaris provides a page/sr column that details the page scan rate.
This is a great metric for understanding whether a system is out of RAM. No matter how
much memory a machine has, if the page-scanning rate is above 200 or so, you know you
have a problem. Unfortunately, vmstat on Linux provides no such information, so monitor-
ing memory in your UNIX environment depends on what kind of systems you have and what
tools you have available to monitor them.

The offi cial Nagios plugins tarball has a check_swap plugin that can give you informa-
tion on swap utilization for any Linux host. It is also reported to work well on BSD but is
unreliable on Solaris. Check_swap provides basic utilization info, rather than rate informa-
tion, so although it can’t measure things such as pages per second, it can tell you what per-
centage of swap is in use on a given server. To use check_swap, add the following line to your
nrpe.cfg on the monitored host.

command[check_swap]=/usr/libexec/check_swap -w $ARG1$% -c $ARG2$%

This isn’t much different from our check_load command. Check_swap will fi gure out
the total amount of swap space available and then fi gure out how much is used. Thresholds
are expressed as either the percentage of free swap space or the number of bytes of free swap

Watching UNIX

www.nagiosexchange.org

118 Chapter 6 Watching

space. The example specifi es percentages by adding a percent sign after the arguments. List-
ing 6.26 is the command defi nition for the checkcommands.cfg.

Listing 6.26 Check_swap command defi nition.
defi ne command{
 command_name check_swap
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ \
 -c check_swap!$ARG1$!$ARG2$
}

Check_swap barely scratches the surface of what you can do with memory utilization
monitoring in Nagios. I highly recommend that you check the contrib. directory, as well as
the Nagios Exchange, for platform-specifi c swap and memory utilization plugins.

Disk

The check_disk plugin in the offi cal plugins tarball is one of my favorite plugins. It’s well-
designed and easy for lazy people to use. Check_disk can generate warnings or errors based
on the free space measured in percent kilobytes or megabytes of a given device, directory, or
mountpoint. Perhaps best of all, the less information you provide it, the more information
it provides you. For example, here is the output of check_disk –w 10% -c 5% on one of my
servers at the offi ce.

DISK OK - free space: / 1725 MB (90%); /boot 76 MB (82%); /usr
4383 MB (72%); /var 73444 MB (91%); /srv 9439 MB (94%); /opt
1849 MB (92%); /home 9166 MB (92%);| /=198MB;1730;1826;0;1923 /
boot=16MB;82;87;0;92 /usr=1664MB;5442;5744;0;6047 /var=7191MB;725
70;76602;0;80634 /srv=640MB;9071;9575;0;10079 /opt=166MB;1813;191
4;0;2015 /home=787MB;8957;9455;0;9953

If you don’t specify any particular mountpoint directory or block device, check_disk
simply checks all of them. This is, in my opinion, great user interface design. Performance
data is provided, so a pipe splits the output with human readable output fi rst, followed by a
pipe, followed by machine parseable output. Although it’s probably self-explanatory by now,
Listing 6.27 is a check_disk command defi nition for the chkcommand.cfg fi le.

Listing 6.27 Check_swap command defi nition.
defi ne command{
 command_name check_disk
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ \
 -c check_disk!$ARG1$!$ARG2$
 }

119

Watching “Other Stuff”

Our discussion, thus far, has focused on traditional computer systems running some form of
Windows or UNIX. In this section, I’ll take a look at some of the other stuff you can monitor
with Nagios, including networking gear and environmental sensors.

SNMP

SNMP was created by the IETF in 1988 as a way to remotely manage IP-based devices. It
was originally described in RFC 1157 and, since then, has become as ubiquitous as it is
hated by security professionals worldwide, but more on that later. The protocol is actually
very large in scope. The IETF clearly did not intend to describe a communication protocol,
but rather to provide a standardized confi guration instrumentation to all IP-based devices
going forward. In doing so, they not only specifi ed strictly-typed variables for confi guration
settings but also an all-encompassing database for network device confi guration settings and
status information.

Imagine, for a moment, a single hierarchal structure that gives a unique address to every
piece of information and confi guration setting on every IP-enabled device in the world. The
hierarchy you are imagining is called the SNMP MIB tree (Managed Information Base). Each
confi guration setting is given an address, called an Object Identifi er (OID). The OID address
is similar to an IP address, in that it is dot separated and gets more specifi c from left to right.
Each number in the address specifi es a node in the MIB. Let’s dissect an example OID.

.1.3.6.1.2.1.2.2.1.8.1

As you can see, the OID is very much like an overly long IPv4 address. Like DNS records,
the beginning “.” on the left specifi es the root of the tree. The fi rst number, 1, belongs to
the International Standards Organization, therefore, every node specifi ed in this hierarchy is
administered by the ISO. The 3 has been designated by the ISO for use by “other” organi-
zations. The United States Department of Defense owns 6 and its Internet Activities Board
owns 1. Every OID you’ll come into contact with will probably begin with .1.3.6.1. Fig-
ure 6.1 graphically depicts this common hierarchy.

Watching “Other Stuff”

120 Chapter 6 Watching

Figure 6.1 The .1.3.6.1 prefi x.

From here, the Hierarchy continues to become more specifi c. The three children of the
IAB in Figure 6.1 are all commonly used; the children are management (2), experimental (3),
and private (4). The experimental branch is used for nodes that will eventually become IETF
Standards. Because RFCs can take a while to become RFCs, the experimental branch enables
administrators to use experimental OIDs on production gear without causing confl icts with
existing OIDs. The private branch is for private organizations, such as Cisco and Juniper
Networks. Private is where you would fi nd information, such as the 1-minute CPU load
average on a Cisco Router. Our example OID is in the management branch, which contains
IETF Standard nodes. Every node within is described somewhere in an RFC.

The next 1 places our OID within the mib-2 group, meaning that this is an SNMP Ver-
sion 2 node. SNMP version 1, as fi rst described by the IETF, had two main problems. The
fi rst was Moore’s Law. When the IETF set out to specify how data could be stored in the
MIB, they underestimated the size of the data values that the MIB would need to store. As a
result, many of the confi guration settings on the network devices quickly outgrew the IETF’s
strictly typed variables. The second problem, of course, was the lack of security in the SNMP
protocol.

SNMP Version 1 uses a shared secret, called the community string, to authenticate peers.
Unfortunately, this string is transmitted in clear text between SNMP peers, and there is a
nearly universal practice of setting the string to public. This setting is often overlooked by

.1 (STD)

.1 (Inet)

.2 (Mgt) .3 (Exp) .4 (priv)

.1 (ISO)

.3 (Other)

.6 (DOD)

SNMP Hierarchy: .1.3.6.1

121

administrators and, in years past, SNMP was enabled by default on many devices, opening
them up to remote confi guration by possibly malicious entities.

SNMP Version 2 was drafted in 1993 to fi x these problems and add some functionality
to the protocol, but unfortunately, it died an untimely death when its drafters couldn’t agree
on the details of the security enhancements. Three years later, a compromise was struck with
the release of SNMP Version 2c. V2c took the things the IETF could agree on and combined
them with the Version 1 security model. The new standard includes larger data structures,
get-bulk transfers, connection-oriented traps, improved error handling, and the same fl awed
clear-text security model. V2c isn’t as widely adopted as V1, but support for it exists on most
newer network gear, including Cisco routers with IOS 11.2(6)F and above.

The IETF fi nished work on SNMP Version 3 in March of 2002. V3, currently a full
Internet standard, is described in RFC’s 3410-3418. Adoption of V3 seems to be occurring
more quickly than did V2c, with many vendor implementations currently available, includ-
ing Cisco gear running IOS 12.0(3)T and above. V3 supports three security models: no-
authnopriv, which sends cleartext SNMP packets and has trivial authentication, authnopriv,
which sends cleartext SNMP packets and has strong authentication via MD5 or SHA, and
authpriv, which has both encrypted sessions and strong authentication. The use of Version 3,
in at least authnopriv, is highly encouraged when it’s available.

The next portion of our example OID, 2.2.1, translates to interfaces.ifTable.ifEntry. This
means our OID is in reference to a specifi c interface. The second to last digit, 8, translates
to the ifOperStatus node, which is the current operational status of the interface. The very
last digit in our OID specifi es the interface number, so this OID translates to the current
operational status of Interface #1. This value will be one of seven possible values: up, down,
testing, unknown, dormant, notPresent, or lowerLayerDown.

Even though the MIB is hierarchal, devices in practice do not implement the entire tree.
Devices that support SNMP only contain the subset of the MIB tree that they need. So if a
given network device has no confi guration settings in the experimental branch of the MIB,
they do not implement that portion of the MIB tree. An SNMP device can be either a man-
ager or an agent, or, in some cases, both. Agents can be thought of as SNMP servers; they
are devices that implement some subset of the MIB tree and can be queried for confi gura-
tion information or confi gured remotely via SNMP. Devices that poll or confi gure agents
are called managers. The snmpget program from the net-snmp project is a manager and my
Cisco router is an agent.

SNMP agents don’t have to sit by passively and wait to be polled; they can also notify
managers of problems using an SNMP trap. SNMP traps use UDP and are targeted at the
manager’s port 162. Although Nagios has no intrinsic SNMP capabilities (Nagios has few

Watching “Other Stuff”

122 Chapter 6 Watching

intrinsic capabilities of any type and that is a good thing), the check_snmp plugin, combined
with passive alerts and the snmptrapd daemon from the net-snmp project, make it into an
SNMP manager that is capable of both polling SNMP devices for information and collecting
traps from SNMP agents.

Working with SNMP

Let’s get down to business and start monitoring some devices using SNMP. The fi rst step is
to get and to install the net-snmp libraries on the Nagios server. The libraries are freely avail-
able from www.net-snmp.org. When installed, you may have to rebuild the plugins in order
to get check_snmp installed because it won’t build unless the net-snmp libraries exist. After
everything’s installed, you can start poking around your devices with the snmpwalk program
from the net-snmp package.

Of course, these days SNMP is probably disabled on your networking gear, so before
snmpwalk can see anything, you have to enable SNMP somewhere. The commands in Listing
6.28 should get SNMP working in a relatively safe manner on most modern Cisco routers.

Listing 6.28 Enabling SNMP on Cisco routers.
ip access-list standard snmp-fi lter
permit 192.168.42.42
deny any log
end
snmp-server community myCommunity RO snmp-fi lter

############alternatively, if your router supports V3############

snmp-server view myView mib-2 include
snmp-server group ReadGroup v3 auth read myView
snmp-server user dave ReadGroup v3 auth md5 encrypti0nR0cks

Line 1 creates an access list called snmp-fi lter. The permit line specifi es the Nagios server,
allowing it to connect. All other hosts are denied and their attempt logged. Finally, SNMP
is enabled in a read-only capacity, with the community name of myCommunity, to the hosts
allowed in the access list snmp-fi lter. The SNMP v3 confi g is outside the scope of this book.
Check out what the router has to say for itself.

snmpwalk –v2c –c myCommunity 192.168.42.42

The -v switch specifi es the protocol version; -c is the community string. This command,
on my Cisco 2851 router, returns 1,375 lines of output. Most of it looks like Listing 6.29,
which is to say it looks like a bunch of unrecognizable SNMP gobbly-gook.

www.net-snmp.org

123

Listing 6.29 Unrecognizable SNMP gobbly-gook.
SNMPv2-SMI::mib-2.15.3.1.1.4.71.12.23 = IpAddress: 4.68.1.2
SNMPv2-SMI::mib-2.15.3.1.2.4.71.12.23 = INTEGER: 6
SNMPv2-SMI::mib-2.15.3.1.3.4.71.12.23 = INTEGER: 2
SNMPv2-SMI::mib-2.15.3.1.4.4.71.12.23 = INTEGER: 4
SNMPv2-SMI::mib-2.15.3.1.5.4.71.12.23 = IpAddress: 4.71.12.23
SNMPv2-SMI::mib-2.15.3.1.6.4.71.12.23 = INTEGER: 30511
SNMPv2-SMI::mib-2.15.3.1.7.4.71.12.23 = IpAddress: 4.71.12.24
SNMPv2-SMI::mib-2.15.3.1.8.4.71.12.23 = INTEGER: 179
SNMPv2-SMI::mib-2.15.3.1.9.4.71.12.23 = INTEGER: 3356
SNMPv2-SMI::mib-2.15.3.1.10.4.71.12.23 = Counter32: 4
SNMPv2-SMI::mib-2.15.3.1.11.4.71.12.23 = Counter32: 2
SNMPv2-SMI::mib-2.15.3.1.12.4.71.12.23 = Counter32: 147184
SNMPv2-SMI::mib-2.15.3.1.13.4.71.12.23 = Counter32: 147183
SNMPv2-SMI::mib-2.15.3.1.14.4.71.12.23 = Hex-STRING: 00 00

It looks like interesting information, if you could somehow fi gure out what it is in refer-
ence to. The problem is that snmpwalk can only resolve the fi rst bit of the OIDs to their English
names. This is because I lack what is referred to as an MIB fi le, which maps numerical OIDs to
their ASCII counterparts. Net-snmp comes with MIB fi les for most of the management mgmt
branch of the MIB tree, but you may need to download custom MIBs for OIDs in the private
branch, or weirdos in the management mgmt branch, such as the OIDs in Listing 6.28. In
order to make sense of things, I need to install an MIB fi le so that snmpwalk can resolve the
rest of the OID. To fi nd the specifi c MIB fi le I require, I need to make things more numeric.

snmpwalk –v2c –c myCommunity -On 192.168.42.42

Adding the -On switch to the command causes snmpwalk to print the full OID instead
of printing a partial English name followed by the part of the OID it couldn’t resolve. This
gets you the output in Listing 6.30.

Listing 6.30 Even less recognizable SNMP gobbly-gook.
.1.3.6.1.2.1.15.3.1.1.4.71.12.23 = IpAddress: 4.68.1.2
.1.3.6.1.2.1.15.3.1.2.4.71.12.23 = INTEGER: 6
.1.3.6.1.2.1.15.3.1.3.4.71.12.23 = INTEGER: 2
.1.3.6.1.2.1.15.3.1.4.4.71.12.23 = INTEGER: 4
.1.3.6.1.2.1.15.3.1.5.4.71.12.23 = IpAddress: 4.71.12.23
.1.3.6.1.2.1.15.3.1.6.4.71.12.23 = INTEGER: 30511
.1.3.6.1.2.1.15.3.1.7.4.71.12.23 = IpAddress: 4.71.12.24
.1.3.6.1.2.1.15.3.1.8.4.71.12.23 = INTEGER: 179
.1.3.6.1.2.1.15.3.1.9.4.71.12.23 = INTEGER: 3356
.1.3.6.1.2.1.15.3.1.10.4.71.12.23 = Counter32: 4
.1.3.6.1.2.1.15.3.1.11.4.71.12.23 = Counter32: 2
.1.3.6.1.2.1.15.3.1.12.4.71.12.23 = Counter32: 147189
.1.3.6.1.2.1.15.3.1.13.4.71.12.23 = Counter32: 147188
.1.3.6.1.2.1.15.3.1.14.4.71.12.23 = Hex-STRING: 00 00

Watching “Other Stuff”

124 Chapter 6 Watching

Now that you have a full OID, you can proceed to the Cisco OID Navigator at http://
tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en, and paste in one of the OIDs
shown in Figure 6.2.

Figure 6.2 Looking up the OID at the Cisco Object Navigator Web site.

Now, you can see the OID that you are missing: bgpPeerIdentifi er. Clicking on the MIB
name takes you to a page where you can download the MIB as a .my fi le. Installing the MIB
is a snap:

cd /usr/share/snmp/mibs && wget ftp://ftp.cisco.com/pub/mibs/v2/
 BGP4-MIB.my

This path is probably different for you. Check your net-snmp installation packaging.

After installed, you can force snmpwalk to load it with the -m switch. You can give -m
the name of a specifi c MIB to load or specify the keyword all to load them all.

snmpwalk –v2c –c myCommunity –m all 192.168.42.42

This makes the output into something you might actually use, as you can see in Listing
6.31. SNMP can be a challenge to use for the fi rst time. There’s a lot of data, and it can take
some searching to fi nd what you want if you don’t know what you are looking for. If you
have a load balancer, check out http://vegan.net/MRTG/index.php; it’s a sanity-saving col-
lection of often-used SNMP metrics for all types of load balancers. Most administrators go
through the process of tracking down the MIBS for their particular combination of network
devices once or twice before they begin to carry their SNMP MIB collection with them from

http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://vegan.net/MRTG/index.php

125

box to box, along with their vimrc, muttrc, and assorted other hard-won confi guration fi les.
Vendor-specifi c mailing lists are always a good source of OID tips.

Listing 6.31 Fully MIB'd snmpwalk output.
BGP4-MIB::bgpPeerIdentifi er.4.71.12.23 = IpAddress: 4.68.1.2
BGP4-MIB::bgpPeerState.4.71.12.23 = INTEGER: established(6)
BGP4-MIB::bgpPeerAdminStatus.4.71.12.23 = INTEGER: start(2)
BGP4-MIB::bgpPeerNegotiatedVersion.4.71.12.23 = INTEGER: 4
BGP4-MIB::bgpPeerLocalAddr.4.71.12.23 = IpAddress: 4.71.12.23
BGP4-MIB::bgpPeerLocalPort.4.71.12.23 = INTEGER: 30511
BGP4-MIB::bgpPeerRemoteAddr.4.71.12.23 = IpAddress: 4.71.12.24
BGP4-MIB::bgpPeerRemotePort.4.71.12.23 = INTEGER: 179
BGP4-MIB::bgpPeerRemoteAs.4.71.12.23 = INTEGER: 3356
BGP4-MIB::bgpPeerInUpdates.4.71.12.23 = Counter32: 4
BGP4-MIB::bgpPeerOutUpdates.4.71.12.23 = Counter32: 2
BGP4-MIB::bgpPeerInTotalMessages.4.71.12.23 = Counter32: 147205
BGP4-MIB::bgpPeerOutTotalMessages.4.71.12.23 = Counter32: 147204
BGP4-MIB::bgpPeerLastError.4.71.12.23 = Hex-STRING: 00 00

Now that you know what you’re looking for, you can use the snmpget program from the
net-snmp package to query it directly, like so:

snmpget –v2c –c myCommunity –m all 192.168.42.42 BGP4-MIB::bgpPeer
 LastError.4.71.12.23

After you've decided on the things you want Nagios to monitor, take note of their OID
numbers. I recommend that you use the numerical OID number rather than the name. This
is less error-prone because it removes MIB fi le dependencies. The check_snmp plugin in the
offi cial plugins tarball is a reimplementation of the snmpget utility with some output pro-
cessing functionality and Nagios return codes. Check_snmp can be a complex plugin to use,
especially when text comparison becomes involved, but it packs a lot of functionality.

Setup a Nagios check against the SNMP attribute: iso.org.dod.internet.private.enter-
prises.cisco.local.lcpu.avgBusy1. This is the 1-Minute CPU Utilization Average on a Cisco
PIX Firewall. Listing 6.32 is the check_snmp command defi nition.

Listing 6.32 The BgpLastError command defi nition.
defi ne command{
 command_name check_fwCpu
 command_line $USER1$/check_snmp -H $HOSTADDRESS$ \
 -o .1.3.6.1.4.1.9.2.1.57.0 \
 -C $USER5$ -v 2c -w 0:70 -c 0:100
 }

Watching “Other Stuff”

126 Chapter 6 Watching

Most of this is pretty self-explanatory. The community name option, -c, from the snmp-
get command, became -C because check_snmp needed the lowercase version for the critical
threshold. Note the appearance of the $USER5$ macro, which we haven’t seen in any previ-
ous example. $USER5$ is a variable that is specifi ed in the resources.cfg fi le, as described in
Chapter 4. This fi le allows you to defi ne your own Nagios macros and the nice thing about
the fi le is its permissions. It’s owned by root- and read-only, so it’s a safe place to put things,
such as community strings and passwords, when you need to use them in object defi nitions.

The warning and critical thresholds in Listing 6.32 are specifi ed as ranges. This is some-
thing common to a few plugins, but this is the fi rst time it’s popped into one of the examples.
The range is expressed as two numbers separated by a colon. The number on the left side
is the minimum value and the number on the right is the maximum. Every time you see this
threshold syntax used by a plugin, you may also specify the thresholds in pieces. In other
words, it’s possible to just specify the min or the max, so while 0:5 means “0 to 5,” just :5
would mean “5 at the most, with no minimum value.”

Environmental Sensors

In the last few years, environmental sensors have been popping up all over the place. With
the popularity of the low cost lm78 sensor chip from National Semiconductor, just about
anything with a micro-controller or micro-processor in it has some form of onboard envi-
ronmental monitoring available these days. It’s sometimes questionable how sensitive or how
well calibrated these sensors are in low-end hardware, but most server-grade equipment pos-
sessing these sensors is usable in my experience.

The original lm78 was a special purpose micro-controller with an onboard tempera-
ture sensor and inputs for monitoring up to three fans, two voltage sources, and additional
external temperature sensors. It supported two different bus architectures for communica-
tion with external sensors: i2c (pronounced i squared c) and ISA (IBM’s Industry Standard
Architecture). The i2c bus, created in the 1980s by Phillips, proved to be a highly successful
serial bus for sensor networks because 112 i2c devices can communicate via its simple low
cost two-wire interface. Several competing architectures have sprung up since then, includ-
ing Dallas Semiconductors’ 1wire, Motorola’s SPI (Serial Peripheral Interface, pronounced
Spy)—which, because of the need for a ground wire, actually uses two wires—and Intel’s
System Management Bus (SMBus).

There are small differences between these bus architectures, but the choice of bus in
a given system is usually a function of the brand of micro-controller and sensors involved
rather than the inherent superiority of one bus over another. In practice, it’s common for
a single motherboard to have a combination of several buses and sensors from different
vendors. Even when the motherboard only has a single sensor chip, often unexpected com-
ponents contain their own. Examples include video or TV-tuner cards, battery recharging
subsystems, and “backlighting” subsystems for controlling things such as LCD brightness.

127

If you don’t trust the onboard environmental monitoring hardware, the marketplace in
the last few years has exploded with stand-alone environmental sensors designed for data
center use. It’s now possible to spend anywhere from $50 for simple temperature/humidity
sensors all the way up to $5,000 for camera-embedded environmental sensor arrays with
features such as motion, light, smoke and water detection, and cabinet entry alarms. If you’re
short on cash, several Web sites sell stand-alone sensor kits for around $20, and there are a
few sites that will teach you how to build your own for even less. For the ultimate in DIY
hardware-based server monitoring, check out Bob Drzyzgula’s work at www.usenix.org/
publications/library/proceedings/lisa2000/drzyzgula.html.

Nagios can easily interact with stand-alone sensors, as well as their system-embedded
counterparts.

Stand-alone Sensors

Stand-alone sensors are self-contained units that are either dedicated to environmental moni-
toring or are part of some related piece of server-room hardware. I’m personally enamored
with a cool power strip in one of my company’s collocation facilities. The PowerTower XL
has 32 programmable outlets on two internally redundant, 20-amp busses and two external
temperature/humidity probes on 6-foot wires. I especially enjoy telling my friends about how
I periodically SSH into my power strip.

These sensors are usually accurate, and the higher-end models have some advanced func-
tionality, such as the capability to communicate with each other to form sensor networks.
Most sensors of this type, which are designed for data-center work, have Ethernet hardware
and make their data available via some combination of SNMP, SSH, HTTP, and TELNET.
SNMP in read-only mode is usually the preferred methodology for interacting with stand-
alone sensors.

The fi rst sensor that bears mentioning is, of course, the Websensor EM01B. You can’t
beat this sensor on Nagios compatibility; the Nagios home page has been linking to it for
over 6 years now. The EM01B is a stand-alone sensor that includes temperature, humidity,
and illumination levels. It is expandable with external add-ons, such as a cabinet door alarm.
The sensor has a 10/100 Ethernet card and communicates via TCP. It even comes with its
own Nagios plugins: one written in Perl and the other in C. Expect to pay somewhere around
$450.

If you need something more than a single sensor in the rack, you might try APC’s EMU,
which is a network appliance that resembles a rack-mountable eight port Ethernet switch.
Various sensors plug into the EMUs RJ45 jacks, and multiple EMUs can be networked
together to form sensor networks. Available sensors include temperature, humidity, motion,
smoke, and water. The EMU can also control devices that aren’t sensors, such as alarm bea-

Watching “Other Stuff”

www.usenix.org/publications/library/proceedings/lisa2000/drzyzgula.html
www.usenix.org/publications/library/proceedings/lisa2000/drzyzgula.html

128 Chapter 6 Watching

cons (literally, police-car-style lights meant to be mounted on the outside of the rack) and
sirens. The EMU may be interfaced via a Web interface, TELNET, SSH, or SNMP, so Nagios
can monitor it using any of a number of plugins, including check_ssh and check_snmp. The
EMU is a bit pricier than the EM01B.

A great place to do some research on stand-alone environmental sensors is Dan Klein’s
excellent thermd project page. Thermd is a rather complex Perl script intended to collect and
plot data from various environmental sensors in your home. Dan has a lot of hands-on expe-
rience with many different power and environmental sensors, so you can be sure if thermd
supports a given sensor, there’s bound to be a way to integrate it with Nagios. The sensors
page is at www.klein.com/thermd/#devices.

LMSensors

Using the embedded sensors inside Intel-based servers gives you a better idea of what the
temperature is, where it matters the most. The lm-sensors project provides a suite of tools
for detecting and interacting with all sorts of server-embedded monitoring hardware. Lm-
sensors can be downloaded from the project page at www.lm-sensors.org/. While you’re
there, you should visit their outstanding Wiki page, which contains all sorts of great informa-
tion about how to void your PC’s warranty.

Users with a 2.4 series kernel may also want to install the i2c package, which is also
available from the lm-sensors Web site. If lm-sensors is compiled on a machine with a 2.6
series kernel, it will attempt to use the i2c support included in the kernel. Most current Linux
distributions come with a copy of lm-sensors pre-installed, so you might already have it.

After lm-sensors is built, run the sensors-detect program. The sensors-detect program
repeatedly warns you about the terrible things that can happen if you decide to continue and,
after you repeatedly tell it to continue anyway, detects sensor chips on your motherboard and
produces output suitable for appending to your modules.conf fi le. After you have inserted the
drivers that sensors-detect says you need, you can launch the sensors program. The output of
the sensors program will look something like Listing 6.33.

Listing 6.33 Output from the sensors program.
w83627hf-isa-0290
Adapter: ISA adapter
VCore 1: +1.52 V (min = +0.00 V, max = +0.00 V)
VCore 2: +3.36 V (min = +0.00 V, max = +0.00 V)
+3.3V: +3.41 V (min = +3.14 V, max = +3.47 V)
+5V: +5.05 V (min = +4.76 V, max = +5.24 V)
+12V: +12.28 V (min = +10.82 V, max = +13.19 V)
-12V: -11.62 V (min = -13.18 V, max = -10.80 V)
-5V: +0.23 V (min = -5.25 V, max = -4.75 V)

(continues)

www.klein.com/thermd/#devices
www.lm-sensors.org/

129

V5SB: +5.75 V (min = +4.76 V, max = +5.24 V)
VBat: +2.11 V (min = +2.40 V, max = +3.60 V)
fan1: 0 RPM (min = 0 RPM, div = 2)
fan2: 0 RPM (min = 9926 RPM, div = 2)
fan3: 0 RPM (min = 135000 RPM, div = 2)
temp1: +34°C (high = +40°C, hyst = +0°C)sensor=thermistor

temp2: +25.5°C (high = +40°C, hyst =+35°C)sensor=thermistor

temp3: +23.5°C (high = +40°C, hyst =+35°C)sensor=thermistor

alarms: Chassis intrusion detection ALARM

beep_enable:
 Sound alarm disabled

The sensor chip on this server monitors various voltage levels, including both CPUs, the
fan speed of three different fans, and the temperature of three different heat-sensitive resis-
tors. The sensor chip is also tied to a cam-switch to detect when the chassis lid is removed.
This is great information and is easily parsed with everyday shell tools. The offi cial Nagios
plugins tarball comes with a check_sensors shell script for use with lmsensors and the con-
trib. directory contains a pPerl script called check_lmmon for BSD users.

IPMI

Intelligent Platform Management Interface (IPMI) is an Intel specifi cation for a hardware-
based, out-of-band monitoring and management solution for Intel-based server hardware.
Enterprise class servers from the big name vendors ship with integrated IPMI hardware and
proprietary client software. IPMI is sometimes offered as an add-on option for commodity
server hardware. The Dell OpenManage utility, for example, is a proprietary IPMI client.

IPMI operates independently of the operating system software on the system, which
means that IPMI will remain available in the event of a catastrophic system failure or even
while the system is powered off. If power is available to the system, IPMI can perform tasks,
such as providing system and status information to administrators, rebooting the system, and
even blinking LEDs, so that remote-hands personnel can easily fi nd the troubled system in
high-density racks. IPMI implementations maintain a ring-buffer, similar to Linux’s dmesg,
which can provide detailed information about interesting hardware events, such as RAID-
card and memory failures. IPMI implementations can even send alerts about problems to
SNMP managers using SNMP traps.

Watching “Other Stuff”

Listing 6.33 Output from the sensors program. (Continued)

130 Chapter 6 Watching

Network access to the IPMI hardware is usually available via either by an extra, dedi-
cated network card specifi c to the IPMI hardware or by sharing a network card with the
system. Client software interacts to the IPMI hardware either remotely, using the IPMI-over-
LAN interface, or directly, through OS extensions, such as kernel modules.

Many open source tools exist to interact with IPMI hardware including OpenIPMI,
which is a kernel module and userspace library for local interaction. Ipmitool and ipmiutil
are popular userspace IPMI query tools, which both support IPMI-over-LAN and local IPMI
queries via various proprietary and open source drivers. Chris Wilson wrote a check_ipmi
Nagios plugin in Perl, which uses ipmitool. This plugin is available from www.qwirx.com/
check_ipmi.

Systems monitoring is a fascinating undertaking that introduces an administrator to all
kinds of cool technology that, otherwise, would have been overlooked in favor of the more
mundane day-to-day tasks. Nagios is one of the few tools whose functionality scales linearly
with its administrator’s knowledge, so don’t think for a moment that this chapter is an all-
encompassing Nagios feature list; in fact, it is barely an overview of the tool’s capabilities.

www.qwirx.com/check_ipmi
www.qwirx.com/check_ipmi

131

C H A P T E R 7

Visualization

If you want to summarize the intent of systems monitoring in two words, it would be dif-
fi cult to do better than increase visibility. There are too many systems doing too many things
too quickly for humans to maintain any sense of what’s going on at any given moment. The
best we can hope for is to tell when something breaks, but a good monitoring system isn’t
bound by our organic limitations, so it shouldn’t stop there. Good monitoring systems act
like transducers in electronics, converting the incomprehensibly large number of interactions
between systems and networks into an environmental compendium fi t for human consump-
tion. Good monitoring systems provide organic interfaces to the network, which allow us to
see more, and the extent to which they accomplish this determines their usefulness as tools.

Humans are visual animals, so the best way to understand complex information is to
draw us a picture. The importance of data visualization to the success of your implemen-
tation and the well-being of your environment cannot be understated. Good visualization
solves the visibility problem by effectively communicating the status of the environment,
enabling pattern recognition in historical and real-time data, and making propeller-head
metrics into indicators laymen can utilize. Good visualization can aid any number of criti-
cal undertakings such as capacity planning, forensics, and root cause analysis. Visualization
catches problems you didn’t tell the monitoring system to look for. On the other hand, absent
or poor data visualization severely hinders the usefulness of the system and can render your
monitoring system irrelevant altogether.

Out of the box, Nagios doesn’t draw very many pretty pictures. The Web interface has
good low-level data visualization, but, in general, the Web interface is focused on the now.
It lacks long-term or historical data visualization and doesn’t provide much in the way of a
meaningful services-oriented management interface. However, much like its decision not to
build in monitoring logic, the lack of integrated data visualization is to Nagios’s favor. By
focusing on making the data available to external programs, Nagios arms us with what we
need to use the best data visualization software available, rather than forcing us to settle for

132 Chapter 7 Visualization

mediocre built-in functionality. This chapter focuses on bringing your monitoring implemen-
tation to the next level by integrating various popular visualization packages. This chap-
ter begins with the tried and true, MRTG and RRDTool, and eventually moves into more
uncharted waters.

Foundations, MRTG, and RRDTool

Monitoring systems across the board do much the same thing. They periodically poll systems
to retrieve various metrics and compare those metrics with thresholds to determine if there
is a problem. This is fi ne for determining if a service is currently broken, but recording the
metric each time it is polled and graphing it over time can solve an entirely different subset
of problems. These historical graphs are useful for all sorts of things because they allow us
to spot trends over time and tell us what a given service was doing at a particular time in the
past. Take the CPU load graph in Figure 7.1, for example.

Figure 7.1 CPU load graph, last 28 hours.

We can clearly see a CPU spike across all servers at approximately midnight in the graph.
If we change the time interval on the graph so that it displays a longer period of time, such
as Figure 7.2, we can see that this behavior is not typical for these servers; therefore, we may
surmise that this behavior constitutes a problem.

133Foundations, MRTG, and RRDTool

Figure 7.2 CPU load graph, last week.

Time-series graphs are great for visually-stimulated humans; they depict lots of infor-
mation in a small space and in a way that communicates the subject matter instantly. The
simple act of graphing every metric you can helps out in all sorts of situations. You can never
graph too much. For instance, if other graphs are available, we can compare them to spot
relationships that aid troubleshooting. A comparison of Figure 7.1 to the graph of network
utilization on the same servers, in Figure 7.3, shows that the CPU spike coincided with a
6MB/s network spike, implying that the abnormal utilization was somehow related to traffi c
received by the hosts in question.

Figure 7.3 Network utilization graph, last 28 hours.

This time-series data is the fi rst, and most important, data visualization you should add
to your Nagios Web interface. And there are some important considerations to be made
upfront. Because you never know what you might want to compare, how you might want to
compare it, or for how long; the manner in which you collect, store, and visualize this data

134 Chapter 7 Visualization

is immensely important. In every case, you want to choose tools that optimize for fl exibility,
and, unfortunately, the number of tools that actually provide all the fl exibility you might
want is small.

As depicted in Figure 7.4, there are three pieces to the data visualization puzzle: data
collection, data storage, and display. The best way to optimize for fl exibility is to get three
separate packages to handle each of these three jobs, and the mistake made by most of the
software related to graphing time-series data is trying to do too much.

Store the dataGet the data Graph the data

Figure 7.4 Three pieces to the visualization puzzle.

For example, when packages that store data get into the business of collecting data, they
make assumptions about what and how you want to collect. Likewise, when display pack-
ages get into the business of polling or storing data, they make assumptions about where the
data will be and how it will be stored. This makes it diffi cult to bring together a patchwork
of data from all kinds of devices all over the network. Packages that specialize in doing their
singular task make fewer assumptions about what you want to do next.

I’m going to choose two of these puzzle pieces for you, right now. Nagios makes a great
data collection and polling engine, and RRDTool is the best tool out there for monitoring
and performance data storage. You need a glue layer to connect the output of Nagios to
RRDTool’s input, and you need a fl exible front-end to make it easy to draw graphs from data
collected by Nagios or any other tools you might have.

To effectively store data from Nagios with RRDTool, you must fi rst understand how
it will be stored. With RRDTool’s unique storage methodology, this is especially so. Deci-
sions you make about data storage upfront impacts how useful your data is in the long run,

135

because changing the way you store things later is diffi cult, and not storing enough is some-
thing that cannot be remedied after the fact.

MRTG

RRDTool owes its lineage to the ever-popular MRTG. Written by Tobias Oetiker in 1994,
MRTG is now the industry standard for graphing utilization data from network gear. Every
monitoring system I’m aware of claims support for MRTG in one way or another. Nagios,
with two plugins for querying data from MRTG logs and graphs, is no exception. However,
for people building monitoring systems, MRTG’s usefulness is limited because it does its own
polling and data collection.

MRTG, in fact, can really be thought of as a monitoring system. It is a script, run from
cron, which periodically polls your SNMP-enabled devices for interesting statistics. It stores
these stats in something called a round robin database. An RRD is a circular data structure;
a database that, when full, begins overwriting itself. This structure turns out to be perfect for
its intended purpose. When allocated, the RRD never grows in size on the disk and allows
for fast data retrieval and manipulation. MRTG then uses the data from the RRD to create
HTML pages containing time-series graphs.

MRTG is popular because it is a holistic solution. It is easy to implement and, when
confi gured, does everything from the SNMP collection to generate the HTML. Ironically, it
is this property that makes it diffi cult for you to use in a systems-monitoring context. Because
it does data collection via SNMP, it assumes all of your data is going to come from SNMP-
enabled sources.

You already have a polling engine to collect data, and you want somewhere to store it.
Ideally, your storage engine will be fl exible about the kind of data it accepts and MRTG is
not. Technically, you can implement an SNMP agent on your Nagios server and make your
data available to MRTG via SNMP, but this is needlessly complex. The thing that MRTG
gets right, from your perspective, is the RRD. If there was a way to extract the RRD from
MRTG and use it for arbitrary types of data, your needs would be met perfectly.

RRDTool

In 1999, while MRTG’s author Tobias Oetiker was on sabbatical at CAIDA (the Cooperative
Association for Internet Data Analysis), he began work on RRDTool, which is exactly what
the systems-monitoring community needed for time-series data visualization. By extract-
ing the relevant parts of MRTG into separate utilities and by extending their functionality,
Tobias created a category killer for graphing time-series data.

Foundations, MRTG, and RRDTool

136 Chapter 7 Visualization

I don’t say that lightly. It’s diffi cult to express how perfectly round robin databases solve
the problem of storing performance and monitoring metrics. After it is stored in RRDs, the
data is available via command-line tools for whatever shell processing you might want to do,
but it’s the fast and powerful internal processing that makes RRD a net gain.

Storing and graphing time-series data is a more diffi cult problem than it sounds, and
RRDTool is feature-rich, making it one of the most complex and diffi cult to use pieces of
software that systems administrators deal with on a daily basis. It simply isn’t feasible to
commit RRDTool’s command-line syntax to memory, so, in practice, automation is the rule.
Most systems administrators use scripts and glue code to hide RRDTool’s complexity, but it’s
tricky to do this without losing fl exibility. The more you know about RRDTool, the better
off you are in dealing with, and choosing, the scripts you will use to glue RRDTool to other
applications like Nagios.

At its most basic level, RRDTool is a database of metrics. These metrics can be anything
from the temperature of a room to the throughput of a router interface in bits per second.
RRDTool calls these metrics data sources (DS), because that’s what they are. Command-line
tools are provided to create and periodically update the database. Each data source can be
stored in the database as one of several types, including GAUGE and COUNTER, which are
the only two types you’ll use. To understand why different data types are needed, consider
how our example metrics, temperature, and throughput are collected.

RRD Data Types

The temperature measurement comes from some sort of sensor, either inside a server with
IPMI or LMSensors, or from a dedicated external sensor via SNMP. When you poll the sen-
sor, you get back a number, such as 42. This number directly corresponds to the temperature,
usually in degrees Celsius. This number may increase or decrease, depending on the envi-
ronment. In the physical world, a gauge with a needle pointing to a number can be used to
display the temperature.

Router throughput, on the other hand, normally comes via SNMP from a byte counter
on the router. This number is the total number of bytes received by the router. The counter
increments only and never decreases. Depending on the size of the memory buffer used,
the counter will eventually overfl ow and return to 0 and then continue incrementing from
there. In the physical world, this counter is similar to the odometer in a car. To get an actual
throughput measurement, such as 20kb/s, a delta must be taken between the old and new
counter values and divided by the polling interval.

137

For example, let’s say that Nagios measures the octets in an SNMP variable of Router7
every minute. The fi rst time Nagios measures the counter, it reads 653,122, meaning that this
interface has received 653,122 bytes. One minute later, when Nagios polls it a second time,
the counter reads 654,322. At what rate is data fl owing through the interface? First, to fi nd
out how many bytes were transferred since the fi rst measurement, subtract 653,122 from
654,322. This gives you 1,200 bytes. So 1,200 bytes are transferred to the router while Nag-
ios is asleep. Because Nagios polls every minute, this means that the router receives 1,200
bytes per minute. Dividing 1,200 by the number of seconds in a minute gives us the average
number of bytes per second, which in this example is 20 bytes/second.

Deriving rate information from counters is such a common requirement that RRDTool
does this math for you. All you need to do is to specify that the number in question is a
counter, and RRDTool automatically performs the requisite arithmetic to return your rate
information. Of course, if you have something such as a temperature or CPU load, you don’t
want this math to take place; in that case, you use a Gauge.

Heartbeat and Step

In addition to the type of data source, RRDTool also needs to know how often you poll it.
This number is referred to as the step. The step is specifi ed in seconds, so in the previous
example, when Nagios is polling every minute, the step is 60. The step is not specifi c to the
data source; it is specifi ed once for the entire round robin database. So, the RRD expects that
at least once every 60 seconds, someone will come along and use the command-line tool to
give it more data. But what happens when two updates happen in a 60 second window? Or
none at all? In a perfect world, the polling engine would always provide the RRD with the
data it needed, exactly when it was expected, but because this is the real world, you need to
account for oddities. For this reason, you must also specify a heartbeat for the data source.

The heartbeat determines what happens when there is too much or too little data. Lit-
erally, it is the maximum number of seconds that may pass before the data is considered
unknown for a polling interval. The heartbeat can provide a buffer of time for late data to
arrive, if set greater than the step, or it can enforce multiple data samples per polling inter-
val, if set lower than the step. To continue the example, if the router was unreliable for some
reason or Nagios had a lot to do, you could set the heartbeat at twice the polling interval:
120. This would mean that two minutes could pass before the data for that interval was con-
sidered unknown. In practice, it’s common to use a large heartbeat such as this to account
for glitches in the polling engine.

Foundations, MRTG, and RRDTool

138 Chapter 7 Visualization

Every step seconds, RRDTool takes the data it receives during the step and calculates a
primary data point (PDP) from the available data. If the heartbeat is larger than the step and
there is at least one data sample in the heartbeat period, RRDTool uses that data. If there is
more than one sample, RRDTool averages them. Figure 7.5 shows how RRDTool reacts to
glitches when the heartbeat is larger than the step.

Figure 7.5 Data polling glitches with a large heartbeat.

If the heartbeat is smaller than the step, then multiple data samples per step are required
to build the PDP, depending on how much smaller the heartbeat is. When multiple samples
are required to create a PDP and enough samples exist, they are averaged into a PDP. Oth-
erwise, the data set for that step is considered unknown. With a small heartbeat, you need
more data from the polling engine than would otherwise be necessary to account for glitches.
Figure 7.6 depicts a small heartbeat situation.

Figure 7.6 Data polling glitches with a small heartbeat.

Data from
polling engine

Data arrives
early.

No worries, thereʼs
still a sample within the
heartbeat.

Time Line

Step
(60 sec)

Heartbeat
(120 sec)

Data from
polling engine

Data arrives
early.

Uh-oh, this interval
has insufficient data.
It is marked unknown.

Time Line

Step
(60 sec)

Heartbeat
(30 sec)

139

Min and Max

You may defi ne a minimum and maximum range of acceptable values for your data source,
as a sort of sanity check. If the value returned by the polling engine doesn’t make sense as
defi ned by the min and max values, the data source value for that polling interval is con-
sidered unknown. If you do not want to specify a max or min, you may specify a U (for
unknown) instead.

A single round robin database can accept data from any number of data sources. Because
the RRD must allocate all the space it needs upfront, the data sources are defi ned when
the RRD is created with the RRDTool create command. This means that you must decide,
upfront, how much data you want to keep. Because the data inside the RRD might be useful
and disk space is cheap, you should keep as much of it as possible for as long as you think it
might be relevant. Keeping data for over a year is quite common in practice. Long-term data
is useful for important undertakings, such as convincing management to upgrade hardware.

Round Robin Archives

If you were to poll an SNMP counter on a router every 60 seconds for a year, you would
have approximately 525,600 primary data points (PDPs). Storing this much for every metric
you monitor, on every server you monitor, quickly adds up to a lot of disk space and can
slow down the creation of graphs for large data sets, so RRDTool helps you with its built-in
consolidation features. You may tell RRDTool to automatically consolidate your data using
a number of different built-in consolidation functions. These functions include AVERAGE,
MIN, MAX, and LAST.

For example, if you measure the temperature in your cabinet, and you are interested only
in the maximum temperature the cabinet reaches each week, you can tell RRDTool to use
the MAX consolidation function on your data every week. RRDTool then creates an archive
containing just the highest weekly temperature. This archive of consolidated data is called
a Round Robin Archive. You may defi ne as many RRAs as you want, although you must
specify at least one. RRAs allow you to consolidate your data in several ways in the same
database. This turns out to be a great answer to the space and speed problems associated
with keeping large amounts of long-term data.

For example, you might specify three different Round Robin Archives for Router7’s
octetsIn counter. The fi rst might hold thirty days worth of uncompressed data (43,200 PDPs).
The second might store one year’s worth of data by using the AVERAGE consolidation func-
tion to average the primary data points every 10 minutes. This would keep one data point
for every 10 minutes (4,230 averaged PDPs). The third RRA might keep 5 years of data by
averaging the data points every 20 minutes (10,800 averaged PDPs).

Foundations, MRTG, and RRDTool

140 Chapter 7 Visualization

RRDTool automatically returns the highest resolution data possible. When you graph
anything under one month, you get a high-resolution graph because RRDTool returns raw
data. Graphing data older than one month, but more recent than one year, yields a lower
resolution graph, but more than enough data is available for you to draw the conclusions you
need at that scale. Finally, low-resolution graphs are possible on 5 year’s worth of data, while
the total PDP count remains at only 58,320. That’s 5 times as much history, at nearly an
order of magnitude less storage space, than if you had kept one year’s worth of raw data.

When you consolidate data in a Round Robin Archive from multiple primary data points,
it’s possible that some of the PDPs may be unknown. So, such as with the heartbeat, you
need to tell RRDTool how many of the PDPs can be unknown before the consolidated data
point is also considered unknown. This value, called the X-Files Factor, (this does reference
the television program The X-Files) is a ratio, or if you prefer, a percentage (ranging from
0 to 1) of the PDPs that can be unknown before the consolidated value is also considered
unknown.

RRDTool Create Syntax

In concept, it’s simple enough. DS defi nitions describe what and how to store, and RRAs
describe how much data to keep and how often to consolidate or compress it. In practice,
however, creating RRDs confuses the heck out of people. Listing 7.1 is the literal syntax you
might use to create a round robin database to hold a year’s worth of data from the inOctets
counter on router7.

Listing 7.1 Creating a single-counter RRD.
rrdtool create Router7_netCounters.rrd \
--start 1157605000 --step 60 \
DS:inOctets:COUNTER:120:0:4294967296 \
RRA:AVERAGE:.5:1:43200 \
RRA:AVERAGE:.5:5:105120 \
RRA:AVERAGE:.5:10:105120

Yes, that’s a single command, but don’t be intimidated; it becomes easier the more you
use it, and very few people ever bother to commit the syntax to memory. The RRDTool com-
mand works similarly to cvs. There is a single parent command (RRDTool) that operates in a
number of modes (create, update, graph, and so on). So the fi rst line puts RRDTool in create
mode and tells it to name the RRD you are creating, Router7_netCounters.rrd. The second
line gives RRDTool a start date and tells it to expect updates every 60 seconds. The start date
is specifi ed in UNIX’s seconds-since-epoch style. You may also use an N as a shortcut for
now. Specifying a start date is handy if you want to populate an RRD with old data.

141

In UNIX, epoch is considered to be January 1, 1970 00:00:00 UTC. Tracking seconds in
this way makes working with time easier on programmers. You can use the date command
to convert into epoch seconds, like this:

date +%s

You can convert back to a human-readable format, like this:

date –d "Jan 1, 1970 UTC + 1157605000 seconds"

Because I do a lot of this sort of thing, I fi nd it handy to add the following line to my
.bash_profi le.

export EP='Jan 1, 1970 UTC'

That way, I can convert from epoch seconds back to Gregorian, like this:

date –d "${EP} + 1157605000 seconds"

Getting back to our example, line 3 defi nes our data source. DS defi nitions are colon-
separated. The syntax is

DS:<DS NAME>:<DS TYPE>:<HEARTBEAT>:<MIN>:<MAX>

You may name the DS anything you want and, later, you will refer to this name when
you graph or export data from the RRD. The DS TYPE is either COUNTER or GAUGE,
as already discussed. The heartbeat, minimum, and maximum values should all be self-
explanatory by now. I’ve named the data source inOctets and specifi ed it as a counter. The
heartbeat is twice the size of the step, specifi ed in seconds. This means that the polling engine
can be late by an entire step before you consider the data for the polling interval unknown.

When you work with counters, it’s good form to set minimum and maximum values.
These help RRDTool to do some internal sanity checking, thereby ensuring your hard-won
data is accurately stored and depicted. My SNMP client informed me that my inOctets coun-
ter is of type 32-bit INT, so in this example, I set the minimum value to 0 and the maximum
to 4,294,967,295 (2^32-1). For gauges, no math needs to be done, so if I were working with
a gauge metric, I would have specifi ed U:U.

Foundations, MRTG, and RRDTool

142 Chapter 7 Visualization

Even if your gauge has a minimum or maximum value, I recommend that you specify
U:U, so that the data is stored as it was collected. If you specify minimum/maximum for
gauges, you are making a dangerous assumption about your data, namely that it actually
behaves the way you expect it should. You could lose interesting data this way. Mucking
about with the data during import is bad mojo. You can perform math on the data and
enforce limits later during the graphing phase. To paraphrase Kenny Rodgers, there’ll be time
enough for mucking when the data’s stored.

In line 4, you begin to specify Round Robin Archives. These tell RRDTool how much
data you want stored and how you would like it to be consolidated. The syntax is

RRA:<consolidation function>:<x-fi les factor>:<PDPs>:<CDP's>

The consolidation function will be one of MIN, MAX, LAST, or AVERAGE. The subject
of consolidation functions seems to cause a lot of confusion. This is unfortunate and prob-
ably because they are more diffi cult to describe than they are to understand. Simply put, the
job of a consolidation function is to take a bunch of data points and to make them into a
single primary data point. Each CF accomplishes this task in a slightly different but straight-
forward manner. Given a group of data points to consolidate, the MIN CF returns the small-
est data point, the MAX CF returns the largest data point, the LAST CF returns the most
recent data point, and the AVERAGE CF returns the average of all the data points.

For example, let’s say I want to consolidate 10 minutes of data down to a single PDP and
I am polling the data every two minutes. This means I will have 5 total data points, such as
4,2,12,4,8. Given these 5 points, MIN would return 2, MAX would return 12, LAST would
return 8, and AVERAGE would return 6.

As discussed earlier, the X-Files Factor is the number of PDPs that can be unknown
before the consolidation function also returns unknown. Most people use .5 (50%) for this,
but I like to go a bit higher, such as .8. At least in the context of systems monitoring, overly-
averaged data is better than no data at all.

In the RRDTool documentation, the next arguments—the ones I refer to as PDPs and
CDPs—are called steps and rows. I hate to possibly cause confusion by calling them some-
thing else, but in my experience, most people don’t fi nd these names helpful or descriptive, so
forgive me for making up my own. The PDPs (or steps) argument defi nes how many primary
data points make up a single consolidated data point. A 10 here consolidates 10 PDPs into a
single value, using whichever consolidation function you specify. The CDPs (or rows) argu-
ment specifi es how many of these newly created consolidated data points to keep.

143

These two numbers, when combined with the step, work out to the total length of time
your data stays in the RRD before it is overwritten. For example, the step in the example is
1 minute, so a PDP value of 10 consolidates 10 minutes’ worth of data. Therefore, keeping
5 of these consolidated data points gets you 50 minutes’ worth of data. A handy formula for
deriving the number of days from these values is

(step*PDPs*CDP's)/86400 = x days

That’s the number of PDPs to consolidate times the number of CDPs to keep times the
step, all over the number of seconds in a day. In practice, the polling engine usually dictates
the step for you, and you usually know how much you want to consolidate and how many
days you want to keep the data. In other words, most people need a formula for deriving
the number of CDPs to keep. You can derive this from the last formula by solving for CDPs.
This gets you

(86400*days)/(step*PDPs)=CDPs

In Listing 7.1, I create three RRAs. The fi rst effectively keeps raw data for one month.
(The PDPs value of 1 says that I want to average one PDP into a CDP. The average of a single
value is the value over one, so nothing is really consolidated.) I keep 43,200 of these points,
so using the formula, (1*60*43200)/86400=30 days. Using the fi rst formula, you can easily
see what the other two RRAs do. The second consolidates the data into 5-minute chunks and
keeps 1 year’s worth. The third consolidates even more, keeping 2 years of data consolidated
into 10-minute chunks. For homework, create an RRA for Listing 7.1 that keeps 5 years’
worth of 1-hour chunks. (This is the type of problem you’ll be solving when you work with
RRDTool. The second formula makes this problem easy.)

It’s possible to store as many data sources as you want in a single round robin database,
but new ones can’t be added post-creation (easily). In Listing 7.2, I add an additional counter
DS for out Octets, so you can track both the bytes coming in and going out of your router
in the same RRD.

Listing 7.2 Creating a multi-counter RRD.
rrdtool create Router7_netCounters.rrd \
--start 1157605000 --step 60 \
DS:inOctets:COUNTER:120:0:4294967296 \
DS:outOctets:COUNTER:180:0:4294967296 \
RRA:AVERAGE:.5:1:43200 \
RRA:AVERAGE:.5:5:105120 \
RRA:AVERAGE:.5:10:105120

Foundations, MRTG, and RRDTool

144 Chapter 7 Visualization

The step in Listing 7.2 applies to both data sources, meaning that each data source you
store in a round robin database must have the same polling interval. However, because the
heartbeat is specifi ed in the data source defi nition, each DS may have a different heartbeat.
In Listing 7.1, I specifi ed 180 for outOctets’s heartbeat. The RRAs also apply to all data
sources. They will consolidate data for each of the data sources, so each data source you add
to an RRD must be stored in the same manner.

When you create an RRD, updating it is very simple. Just call RRDTool in update mode,
with a fi lename, date stamp, and colon-separated values. RRDTool derives which values go
with which data sources by matching them up in the order they were specifi ed during cre-
ation. For example

rrdtool update netCounters.rrd N:42:15842

The previous updates the netCounters RRD with the current time and a value of 42 for
inOctets and a value of 15,842 for outOctets.

Because I have dealt with RRDTool for a number of years, I tend to be shy about putting
a lot of data sources in a single RRD. There are two main reasons for this. The fi rst is that
I always eventually forget what data is inside an RRD. Although it’s easy to derive what’s
stored inside an RRD by using RRDTool in fetch mode, my problem is that I forget I ever
stored the data in the fi rst place, so when I’m looking for data of type X, I’ll take a cursory
glance at the fi lenames and end up creating a new, redundant RRD with the data I want.

The second reason is that new DSs sometimes pop up that should go in an existing RRD.
For example, if you want to track the utilization of various partitions on your hard drives,
you could create a single RRD called disks.rrd with a DS for each partition. Then a year later,
when /var runs out of space and you add a new disk and mount it to /var, the RRD will have
to be expanded to include an additional DS for the new partition. Adding DSs to an existing
RRD is possible, but not fun.

My advice is to create single-DS RRDs with especially descriptive fi lenames. The fi le-
name of the RRD should, at a minimum, contain the name of the server it refers to. If you
keep single-DS RRDs, it’s also possible to put the name of the DS in the fi lename, which
makes things especially easy if you’re a blockhead like me. For example, I can look at a fi le
called router7_inOctets.rrd and know exactly what I can get and how. The various RRDTool
scripts are good at insulating you from this sort of thing, which is nice. Finding good scripts
can be a problem, however, as you’ll see in the next section.

145

Data Collection and Polling

In the early paragraphs of section, “Foundations, MRTG, and RRDTool,” I said that there
were three pieces to the visualization puzzle: polling engines, data storage back-ends, and
graphing user interfaces. To get the most out of the monitoring system, you want to optimize
each of these pieces for fl exibility, so you can use any piece of data you may have collected
however you want. Because you don’t know upfront how you may want to visualize the data,
keeping things fl exible means that every metric from every server can be made available to
any program that might want to consume it.

You have chosen Nagios for your polling engine and RRDTool for your storage engine.
Now that you have a handle on how RRDTool works, you can talk about the middle ground
between collecting your data and storing it. There are quite a few glue layers to tie RRD-
Tool to Nagios, and all of them automatically create the RRDs for you, so in practice, many
administrators never need to deal with manual RRD creation.

If nothing else, I hope the section impressed upon you the critical importance of RRAs to
your data visualization undertaking. Simply put, if your glue layer doesn’t let you defi ne the
Round Robin Archives, you can’t control how much data you keep, or for how long. I make
this point because I’m not aware of a Nagios-RRDTool glue layer that allows you to specify
custom RRAs in a confi guration fi le. This is a big problem. You have a super-fl exible polling
engine and a perfect data storage back-end for your task, but the fl exibility of both of them
could be severely limited by the capabilities of the glue layer you put between them.

Shopping for Glue

I’m not sure why this RRA problem exists. Either end-user defi nable RRAs are a diffi cult
hack to pull off (I haven’t tried, but it doesn’t seem like they would be diffi cult) or the people
coding the various glue libraries think it’s more important to insulate you from the inner
workings of RRDTool than to provide you the fl exibility to defi ne your own RRAs.

The authors are in the business of insulating you from the inner workings of RRDTool,
so this is an understandable oversight, but one that makes your task more diffi cult. You need
to choose a glue layer that meets your needs and won’t become a liability later. Pick one writ-
ten in a language you understand so that you can change things, such as the RRAs, in code
if you need to or at a minimum, be sure you can, at least, fi gure out what the RRAs are, so
you can plan accordingly.

Data Collection and Polling

146 Chapter 7 Visualization

Another bad habit of the polling and collection scripts is doing too much. Most of the
scripts out there that collect data from Nagios and store it in RRDs also contain Web inter-
faces that actually draw graphs from the data, as well. In concept, it seems like a good idea,
but in my experience, scripts that do both tend to lock you in by doing things such as storing
the data a certain way because that’s what their user interface expects. You should pick a
polling engine glue layer that is good at polling and can be used separately from its user inter-
face. Ideally, you should pick one with the polling code and graphing code in separate fi les.

Some of the glue layers are defi nition-happy. For example, storing data from the inOctets
counter of router6 and router7 requires a separate defi nition for each host. The point of using
the glue layer in the fi rst place is to make things easier. You shouldn’t need to remember to
reconfi gure it when you add new hosts. Choose glue that has services-based confi gurations.
You should only have to defi ne what the output from a particular service check looks like,
and the glue code should auto-detect new hosts using that service check.

Finally, the fancier a glue library is, the further you should stay away from it. For your
purposes, you want a very small, lightweight wrapper around RRDTool so that the glue layer
doesn’t limit how much you can store by virtue of it being heavy and slow. Things such as
GUI confi guration tools, Java, and database back-ends are red fl ags.

NagiosGraph

I’ve used a few of the more promising glue libraries from Nagios Exchange over the years,
and I’ve fi nally settled on a Perl script called Nagios Graph. Simply put, I use Nagios Graph
because it is the closest thing to what I would write if I were going to reinvent the wheel. NG
is a lightweight Perl script that has many of the benefi cial traits previously mentioned.

It comes with two scripts, one for data collection and RRD storage and one for drawing
HTML pages with graphs, so you can use just the polling/storage script if you want (which I
do). NG uses straight Perl regular expression syntax to defi ne service output and auto-detects
new hosts. Alas, you cannot defi ne RRAs in a confi guration fi le, but a simple grep RRA of the
insert.pl program (NG’s data collection script) yields the output in Listing 7.3.

Listing 7.3 Modifying RRAs in Nagios Graph.
$ds .= " RRA:AVERAGE:0.5:1:600";
$ds .= " RRA:AVERAGE:0.5:6:700";
$ds .= " RRA:AVERAGE:0.5:24:775";
$ds .= " RRA:AVERAGE:0.5:288:797";

It’s not a text confi guration fi le, but it’s close enough. Even if you aren’t familiar with
Perl, you can modify those RRAs to get what you want. NagiosGraph is equally easy to

147

install. There are two confi guration fi les, one that sets up NG’s defaults and one that maps
the text parsed from Nagios via regular expressions into RRD variables. Simply copy the
confi guration fi les and insert.pl script to locations that make sense for you. Then edit insert.
pl to point to the confi guration fi les and change the confi gurations according to your tastes.
Most people should only need to change the rrddir, which is the directory into which you
want insert.pl to put its newly created RRDs. I talk more about the map fi le in a moment.

Nagios graph uses the RRDTool default step of 300 seconds (5 minutes) and allows you
to specify the heartbeat in its confi guration fi le. Four RRAs are created by default, as you can
see in Listing 7.3. The default RRDs are a bit conservative, in my opinion. Two days of raw
data are kept and then the average CF is applied to store 14 days of 30-minute chunks, 64
days of two-hour chunks, and two years of one-day chunks.

Nagios sends output and performance data to NG by way of the process_performance_
data directive in the nagios.cfg fi le. This feature is designed to provide performance metrics
to external programs. First, enable it by setting process_performance_data to 1 in the nagios.
cfg and then add the following line, which confi gures a global performance data handler.

service_perfdata_command=process-service-perfdata

Now, when Nagios gets data from a plugin, it executes the process-service-perfdata com-
mand. Listing 7.4 contains process-service-perfdata command defi nition, which belongs in
your commands.cfg or misccommands.cfg. It is this command that effectively ties Nagios to
NG.

Listing 7.4 The process-service-perfdata command for use with NG.
defi ne command{
 command_name process-service-perfdata
 command_line /usr/bin/insert.pl \
 "$LASTSERVICECHECK$||$HOSTNAME$||$SERVICEDESC$||\
 $SERVICEOUTPUT$||$SERVICEPERFDATA$"

NG’s map fi le contains defi nitions in Perl regular expression syntax. Lines passed from
Nagios to NG’s insert.pl script that match the regular expressions in the map fi le are parsed
and made into RRDs. If no RRD for a particular service exists, NG creates it; otherwise, NG
updates the existing RRD. The map fi le may be the thing I like best about NG. If you are
adept at Perl, the fl exibility inherent in this defi nition style is great. Listing 7.5 is a simple
defi nition for the check_ping process. It matches the output of the check_ping plugin and
extracts the round-trip time and loss percentage, adding them both to a single RRD.

Data Collection and Polling

148 Chapter 7 Visualization

Listing 7.5 NG’s check_ping defi nition.
output:PING OK - Packet loss = 0%, RTA = 0.00 ms
/output:PING.*?(\d+)%.+?([.\d]+)\sms/
and push @s, [ping,
 [losspct, GAUGE, $1],
 [rta, GAUGE, $2/1000]];

This is straightforward Perl. The object is to build an aoa, or array of arrays. The fi rst
value in the top level array is the name of the service. This name, along with the Nagios host-
name and service description, will be used in the fi lename of the RRD. The second and third
values in the array are themselves arrays, which house the names, data types, and values of
the DS’s that populate your RRD.

If you are familiar with regular expressions, you should have no problem setting up new
services by simply copying the existing ones. Because the map fi le is Perl, it gives you the fl ex-
ibility to accomplish some pretty neat stuff, programmatically, if you have some Perl chops.
For example, Listing 7.6 is my NG disk defi nition. The problem with disk is that various
boxes have different numbers of partitions, so a single static regular expression won’t capture
them all. The defi nition in Listing 7.6 dynamically detects partitions, creating a new DS for
each, so it is a single defi nition that works with any box using check_disk.

Listing 7.6 A check_disk defi nition for NG.
/perfdata:\/=\d+MB;/ and do {
 my @_perf = /(\/\w*)=(\d+)MB;(\d+);\d+;\d+;\d+/g;
 my @_s;
 my $_sref=\@_s;
 $_s[0]='disk';
 while (my($_name,$_used,$_total) = splice @_perf,0,3) {
 my $_free=$_total-$_used;
 if($_name=~/^\/$/){
 $_name=~s/\//disk_root/;
 }else{
 $_name=~s/\//disk_/;
 }
 push @_s, [${_name}."_total", GAUGE, $_total*1024**2],
 [${_name}."_used", GAUGE, $_used*1024**2],
 [${_name}."_free", GAUGE, $_free*1024**2] ;
 }
 $s[0]=$_sref;
};

With the confi guration fi les and insert.pl in place and Nagios confi gured accordingly,
RRDs should begin appearing in your rrddir. Because the map fi le comes with many pre-
confi gured defi nitions, you’ll probably have RRDs for all sorts of metrics without any map

149

fi le confi guration whatsoever. If you have trouble, check out the debugging options in the
confi guration fi le.

Nagios Graph is the solution I prefer at the moment, but it may not be your cup of tea
(if you do like it, you can get it from http://nagiosgraph.sourceforge.net/), so be sure to check
out Nagios Exchange for something that might suit your environment better. I hope the tips
I’ve provided help you narrow the fi eld.

Front-Ends and Dashboards

Now that you have your data collection and storage squared away, you can busy yourself
with graphing it. Like polling and storage engines, you want to optimize your front-end for
fl exibility. You want to draw any combination of metrics in any RRD, and you don’t want
to lose any of RRDTools functionality along the way. It would also be nice if you didn’t have
to do a large amount of clicking through Web interfaces to confi gure things. Looking around
at front-end tools (check out www.rrdworld.com), you will fi nd many of the same problems
you had with data collection and polling engines. Most of the graphing front-ends try to do
too much or are overly complex, both of which breed infl exibility.

RRDTool Graph Mode

Before you can get into what to look for in a graphing front-end, you need to understand a
bit about RRDTools graphing mode. Like create and update, RRDTool has a special mode
for drawing graphs from the data stored in an RRD. I’ve sometimes quipped that RRDTool
graph is an existence proof of the old adage, “A picture is worth a thousand words,” because
RRDTools graph mode is, by far, the most complex and confusing aspect of the toolset, pos-
sessing a dizzying array of options to specify everything from the height and width of a graph
to its background and foreground colors.

Though graph commands are technically one-liners, it’s not uncommon for them to span
15 to 20 lines. Most appear to be shell scripts. A good front-end makes the complicated
syntax moot, but to get everything you can out of your FE, you need to quickly review a
few important concepts, including DEFs and CDEFs, and brush up on your reverse polish
notation.

DEFs are the core defi nitions in graph mode; they tell RRDTool what to graph. A DEF
is made up of the fi lename of the RRD, a DS within that RRD, and a consolidation function
for the DS. A DEF refers to one, and only one, Data Source. You may specify any number of
DEFs in a graph command. For example

DEF:foo=/usr/nagios/rrd/umbra_load:5min:AVERAGE

Front-Ends and Dashboards

www.rrdworld.com
http://nagiosgraph.sourceforge.net/

150 Chapter 7 Visualization

The DEF is given a name, such as a variable; in this case, foo. The foo DEF refers to the
5-minute Data Source in the /usr/nagios/rrd/umbra_load RRD. The average keyword speci-
fi es that you want the data from RRAs that use the AVERAGE consolidation function (if you
have more than one type).

This DEF can now be graphed with a graph element defi nition. There are several types of
graph elements; the most commonly used ones are AREA and LINE. The LINE graphs look
like the graphs in Figures 7.1 through 7.3. AREA graphs look like the graph in Figure 7.7.

Figure 7.7 Area graph with three data sources.

The only difference between a LINE and an AREA defi nition is the word LINE or AREA.
Lines may be drawn in three thickness levels. LINE1 is the thinnest and LINE3 the thickest.
The graphic element defi nition looks like this:

AREA:foo#0000FF:avg5min

In this example, foo refers to the DEF that you specifi ed earlier. Following the variable
name foo is an RBG Hex color code and then a legend label. The combination of the DEF
with the graphical element defi nition serves to tell RRDTool what and how to graph. Inter-
esting things can be done, however, when CDEFs enter the picture.

A CDEF is a variable, such as a DEF, but instead of being derived directly from a DS in
an existing RRD, the CDEF is derived by performing math on one or more DEFs. This real-
time number crunching works transparently for the entire time-series and is handy. As an
example, check out Figure 7.8, which represents the network throughput of a Web server for
the last 18 hours or so.

151

Figure 7.8 A somewhat cluttered network throughput graph.

As you can see, two data sources, one for bytes in and one for bytes out. Although the
graph is readable, it has a cluttered appearance, and it’s hard to visually correlate the rela-
tionship between in and out. If you multiply the bytes_in data source by negative one, how-
ever, shown in Figure 7.9, the two counters appear on opposite sides of the Xaxis, making
relationships easier to spot.

Figure 7.9 Multiplying in_bytes by negative one.

The CDEF makes this possible by creating a virtual DEF derived from operations on val-
ues from real DEFs. Listing 7.7 shows the relevant defi nitions in the graph mode command I
used to draw the graph in Figure 7.9.

Listing 7.7 CDEF syntax.
DEF:out=/usr/nagios/rrd/webServer_bytes_out.rrd:sum:AVERAGE \
DEF:in=/usr/nagios/rrd/webServer_bytes_in.rrd:sum:AVERAGE \
CDEF:negIn=in,-1,* \
AREA:out#FFA500:butes_out \
AREA:negIn#0000FF:bytes_in \

Front-Ends and Dashboards

152 Chapter 7 Visualization

As you can see, the negIn CDEF is a result of a math operation on the in DEF, but the
expression (in,-1,*) might look odd to you, unless you’ve owned a fancy HP Calculator or
are otherwise familiar with Reverse Polish Notation. For the uninitiated, I’ll provide a brief
summary. Feel free to skip ahead if you are already familiar with RPN.

RPN

Traditional mathematical expressions rely on operator precedence to determine the order of
operations. You may remember this from grade school as PEMDAS: Parenthesis, Exponent,
Multiply, Divide, Add, and Subtract. For example

4+5*2

The product is 14. First, 5 is multiplied to 2, and then 4 is added. This is because the
operator precedence specifi es that multiplication must happen before addition. If you want
to multiply 2 to the sum of 4 and 5, you must override the operator precedence with paren-
theses, like this:

(4+5)*2

In RPN, operator precedence is not necessary because the quantities and operators are
specifi ed in the order they are needed. For example, to specify that 5 should be multiplied to
2 in RPN, use

5,2,*

RPN expressions are never ambiguous about order of operations. They read from left to
right, like English, and can be thought of in terms of a horizontal stack. Values are pushed
onto the stack and popped off as needed. First, you push a 5 onto the stack, then a 2, and
then a multiplication operator. Every time RPN gets a pair of quantities onto the 2 with
an operator, it pops them off in order and performs the equation, saving the product back onto
the top of the stack. To specify that 2 should be multiplied to the sum of 5 and 4, you could say

5,4,+,2,*

Because RPN reads left to right, there is no chance that the multiplication could happen
fi rst. Here, 5, 4, and + are popped off the stack and evaluated. The sum of 5 and 4 is then
pushed back onto the top of the stack. At this point, you can imagine the stack looking like

9,2,*

153

Now, 9, 2, and + are popped off the stack and evaluated, returning 18. RPN never evalu-
ates more than 2 quantities at once, so if you prefer, you may stack up all of your quantities
and then list out all of your operators. For example, another way to write the previous equa-
tion is

5,4,2,+,*

Here, RPN pops 5 and 4, and then, seeing that the next object in the stack is a quantity
instead of an operator, skips over 2 and looks for the next available operator, which is a +.
The 5 and 4 are then added, and the sum is pushed back on the top of the stack. From there,
execution continues in the same manner as in the last example. Some people fi nd stacking
quantities and operators such as this easier to comprehend, especially when the expressions
get large.

Now that you know what RPN is all about, take another look at the CDEF in Listing
7.7.

CDEF:negIn=in,-1,*

Applying what you know about RPN, it’s easy to see that you are creating a CDEF called
‘negIn, which is the product of the values of in and –1. You may create a CDEF from any
number of operations on any number of variables that have been defi ned. Look at a more
complicated CDEF example to give you a feel for what’s possible.

Listing 7.8 contains the defi nitions from a disk utilization graph. The RRDs track the
disk metrics megabytes total and megabytes used. Use data from four different Web servers.
Graphing the raw data would yield eight lines, one line for Total Megabytes and one line for
Used Megabytes, for each of the four Web servers.

In this example, you want to draw a graph for a presentation to management. This graph
should depict the month-long history of a single, easily understandable number that quanti-
fi es the overall disk utilization on all four Web servers. The best way to show a single disk
metric across multiple machines is to show the average disk utilization as a percentage. This
puts all the servers on the same scale, regardless of the size of their disks. To do this, you
must fi rst convert the raw utilization metrics on each server from megabytes to percentages;
then you can average the percentages into a single number. Listing 7.8 shows the RRDTool
syntax to accomplish this.

Front-Ends and Dashboards

154 Chapter 7 Visualization

Listing 7.8 CDEFs for data summarization.
DEF:w1t=/usr/nagios/rrd/web1_disk.rrd:root_total:AVERAGE \
DEF:w1u=/usr/nagios/rrd/web1_disk.rrd:root_used:AVERAGE \
DEF:w2t=/usr/nagios/rrd/web2_disk.rrd:root_total:AVERAGE \
DEF:w2u=/usr/nagios/rrd/web2_disk.rrd:root_used:AVERAGE \
DEF:w3t=/usr/nagios/rrd/web3_disk.rrd:root_total:AVERAGE \
DEF:w3u=/usr/nagios/rrd/web3_disk.rrd:root_used:AVERAGE \
DEF:w4t=/usr/nagios/rrd/web4_disk.rrd:root_total:AVERAGE \
DEF:w4u=/usr/nagios/rrd/web4_disk.rrd:root_used:AVERAGE \
CDEF:pct1=w1u,w1t,/,100,* \
CDEF:pct2=w2u,w2t,/,100,* \
CDEF:pct3=w3u,w3t,/,100,* \
CDEF:pct4=w4u,w4t,/,100,* \
CDEF:M=pct1,pct2,+,pct3,+,pct4,+,4,/ \

First, DEFs are created for the requisite metrics on each server. Next, proceed to create
a utilization percentage for each server. This is done in RPN by dividing the amount of used
space by the amount of total space and multiplying the result by 100, like this:

CDEF:pct1=w1u,w1t,/,100,*

After you have a utilization percentage for each server, you average the percentages into
a single number by adding them up and dividing the result by 4 (the number of servers).

CDEF:M=pct1,pct2,+,pct3,+,pct4,+,4,/

Note that the percentage variables this CDEF operates on are CDEFs, so you can
perform math on CDEF values just like you can on DEFs. If you prefer, you could use
value/operator stacking to make this last CDEF a bit neater, like this:

CDEF:M=pct1,pct2,pct3,pct4,4,+,+,+,/

Shopping for Front-Ends

Because CDEF functionality is so powerful, choosing a graphing engine with fi ne-grained
control over the DEFs and CDEFs is of the utmost importance. There are a lot of graphing
front-ends to choose from, and they are not all created equal. Here are some tips that might
help you narrow the fi eld.

Look for tools that use confi guration templates and fi lters. With a lot of metrics on a lot
of servers, it’s a big timesaver to automate some of the confi guration with templates or at

155

least to narrow the available options with fi lters. If the front-end saves its data in text fi les, all
the better; this implies that you can back-end process the creation of some objects, bypassing
the user interface altogether. Solutions that do this tend to be written in straight CGI instead
of Web application languages, such as PHP, which brings me to my next point....

Look for tools that use straight CGI over tools written in Web application languages,
such as PHP. The PHP applications usually have a more polished look, but the CGI applica-
tions tend to be more fl exible. Linking is critical; you want to link directly to specifi c graphs
or use wget or curl for email reports and custom dashboards. If you choose a PHP applica-
tion, be sure it can generate reusable links to specifi c graphs. Tools that generate static graphs
every so often with random, unique names should be avoided. Additionally, CGI applications
are usually easier to install.

Look for tools that tell you how they created the graph. RRDTools graph mode is tough
on administrators who need to do manual graph creation and processing. But many front-
ends give you the literal syntax they used to create any graph. This can save you a lot of
time.

Beware of graphing tools that do their own polling because they tend to be infl exible.
Some assume that you are using their polling engine and, therefore, that the data was stored
in a certain way. Many cannot graph metrics that aren’t confi gured for polling, as well. Most
of them pay too much attention to either polling or graphing and suffer needless hindrances
as a result.

By far the most popular tool in this genre is Cacti (www.cacti.net), so I would be remiss
in not mentioning it. Cacti is a great tool. It is written in PHP, is highly confi gurable, and has
a very polished user interface. (I’m especially fond of its zoom feature, which allows you to
click-drag to select a portion of a graph to zoom into.) I suspect its user interface has a lot
to do with its widespread success. Cacti can be thought of as an MRTG replacement. It does
everything from polling the data to storing and graphing it. This shouldn’t necessarily pre-
clude its use in your environment, because it remains very fl exible in its data handling, and
the user interface really does make up for any drawbacks it may have. I won’t be covering
Cacti in this book because it’s much more than an RRDTool front-end, but I highly recom-
mend that you take a look.

drraw

The tool I like the best for Web-based, RRDTool-backed data display is drraw (http://web.
taranis.org/drraw/). drraw is the only RRDTool front-end I’ve found that specializes in data
display. In fact, the author clearly states that he feels it is a design fl aw for a graphing engine
to do things like collection and polling, and I couldn’t agree with him more.

Front-Ends and Dashboards

www.cacti.net
http://web.taranis.org/drraw/
http://web.taranis.org/drraw/

156 Chapter 7 Visualization

drraw is composed of a confi guration fi le and a CGI script written in Perl. It installs in a
matter of minutes. Simply copy drraw to your CGI directory and edit it to point it at its con-
fi guration fi le. The only thing you need to change in the confi guration fi le is datadirs, which
is a hash of directories where RRDs may be found. There is a lot to confi gure if you want
to customize drraw’s look and feel for your site. You can also specify things, such as access
rights to various capabilities such as viewing, creating, and deleting graphs.

drraw gets everything right. It is a lightweight wrapper around RRDTool graph, provid-
ing all the functionality in a quick, easy-to-use package. Features, such as regular expres-
sion-enabled fi lters, templates, and graph cloning, save your wrists. Additionally, drraw does
some very sysadmin-friendly things, such as storing saved confi gurations as text fi les, making
possible programmatic creation of graphs and dashboards. It also provides a change log so
you can see who changed what and when.

Figure 7.10 shows drraw’s home page on one of the monitoring systems at my offi ce.
You may create graphs by clicking “Create a new graph” or defi ne dashboards by clicking
“Defi ne a new dashboard.” drraw dashboards are collections of graphs drawn in a user-
defi ned way. For example, you can suppress the graph legends in a dashboard or specify
alternative sizes for the graphs.

Figure 7.10 drraw’s home page.

157

It’s not the prettiest interface out of the box, but just about everything related to aesthet-
ics can be modifi ed in the confi guration fi le. This includes the icons, headers, and footers.
You may even specify a custom style sheet. Figure 7.11 is a screenshot of my Network Traffi c
dashboard.

Figure 7.11 A drraw dashboard.

Finally, Figure 7.12 is a screenshot of the drraw data store confi guration that was used to
create the consolidated disk example in Listing 7.8. You may use regular expression searches
to specify RRDs and DSs for use in your graphs. Note the RRA CDEF column. This is where
you can type in RPN expressions to create CDEFs.

Front-Ends and Dashboards

158 Chapter 7 Visualization

Figure 7.12 The drraw CDEF confi guration interface.

With Nagios, NG, RRDTool, and drraw, you have all the pieces of the puzzle you need
to create great-looking time-series visualization. Now take a look at some other ways to visu-
ally represent information and examine some of the reasons you might need to do so.

Management Interfaces

In systems monitoring circles, terms such as Dashboard and Management Interface are
thrown around quite a bit, and they mean vastly different things to different people. This
section is not here to strictly defi ne what a management interface is or even to teach you how
to build one, but it should help you toward building what you need, using some interesting
tools.

Time-series graphs and the Nagios Web interface are suffi cient to provide systems admin-
istrators the visibility they need, in my experience, but the needs of the organization do
not necessarily end with those of its sysadmin. For this reason, the data consumer should

159

dictate the defi nition of the management interface, be it anything from an emailed report to
an alternative Web interface written in (gasp) Flash. Hopefully, this section will point you
toward some tools that will be useful to you in meeting the specialized needs of your data
consumers.

Know What You’re Doing

Before you start designing custom interfaces and dashboards, I would highly recommend you
read up on what good data visualization is and especially what it isn’t. There are many ways
to get it wrong and only a few to get it right. I highly recommend Edward Tufte’s book, The
Visual Display of Quantitative Information. I’ll give you a few tips to get you started, but I’m
certainly no expert, so be sure to do your homework before you get started.

First, avoid pie charts. Although adored by marketing folks, pie charts are awful for data
visualization for several reasons. Primary among these is that humans are notoriously bad
at interpreting angles. (3D effects on pie charts only make things worse.) Given two similar
values in a pie chart, most people won’t register the difference unless you point it out to
them or publish values in the legend labels. Secondly, pie charts have no frame of reference,
which means that people can glean only the actual value each slice represents by reading it
in a label. Finally, pie charts have no obvious beginning or end, which makes it diffi cult for
people to know where to focus their attention.

Anything you can visualize with a pie chart is better visualized with a bar or point chart.
These provide a frame of reference on two axes and communicate data more effectively to
humans, in general. If you absolutely have to use a pie chart, do not compare more than a
few values and be sure to colorize in such a way that the slices have a high contrast.

Bar charts are especially good at depicting categorical information, so if you have infor-
mation that fi ts nicely into categories, use a bar chart and arrange the data such that the larg-
est values are furthest to the left. Point charts or line charts are better for depicting time-series
data. The time-series data graphed in Figures 7.13 and 7.14 give a good example of how
much clearer point graphs are when information is depicted as a function of time.

Management Interfaces

160 Chapter 7 Visualization

Figure 7.13 Bar charts don’t depict time-series data well.

161

Figure 7.14 Point charts are much cleaner when time is involved.

Management Interfaces

162 Chapter 7 Visualization

Try to think about your graphics in terms of maximizing for information per pixel. You
know you are doing things correctly if you are packing large amounts of data into small
areas. Fancy effects, such as 3D, should be avoided for this reason. 3D effects usually take
up more space and rarely add useful information. They also have a habit of obfuscating the
useful information that remains. Silly widgets, such as thermometers, speedometers, or any
other ‘“ometers,” should be avoided for the same reason. These things take up a lot of space
to communicate a single value.

You should attempt to keep your graphs as uncluttered as possible, so that they stand
on their own without requiring extra explanation. If the graphs are large and there is space,
label the individual points for clarity. Axis labels should convey the units they express, and
titles should be carefully thought out, short, and descriptive.

Of course, all of this highbrow advice goes out the window when your marching orders
are to provide whiz-bang displays with little or no substance. Many a well-built monitoring
system has been scrapped in favor of a kludgy black box with neat-o graphics that impressed
the execs. Because the well-being of your hard-won monitoring solution may one day rest on
your ability to come up with something other than line graphs, my last piece of advice to you
is not to be a visualization elitist. Don’t be afraid to throw a speedometer or two around, if
for no other reason than to prove you can. By all means, guide and educate the people who
will use the dashboard, but always remember that the data consumer defi nes the manage-
ment interface.

Some of the tools that follow can provide the eye-candy so coveted by the upper ech-
elons, but all of them (well, most of them) can also be used to create interesting visual dis-
plays that are very useful in a pragmatic sense. The art, or science, of data visualization is
growing very quickly, especially in the area of IT security, where visualization may be the
only hope for good real-time, enterprise wide event correlation in the absence of true AI. The
tools referenced herein should not be considered a comprehensive list. They represent only
the tip of the iceberg and, by the time you read this, chances are the iceberg will have grown
considerably.

RRDTool Fetch Mode

Just when you thought you were done with RRDTool, you must make one last foray. Because
much of the historical data you need to visualize resides in your RRDs, you need a way to
query and extract it. RRDTool, in fetch mode, can give you raw data dumps for a given
period of time. To use it, provide RRDTool the name of the RRD, the CF you are interested
in, and the time range in epoch seconds. For example, to get the last 10 minutes of data from
the server1_load.rrd, you could type

rrdtool fetch server1_load.rrd AVERAGE –s `date –d "10 minutes ago" +%s`
 –e N

163

Listing 7.9 contains the output from this fetch command. As you can see, the data from
fetch mode requires some processing.

Listing 7.9 Output from RRDTool fetch command.
 avg1min avg5min avg15min
1158207000: 1.9546666667e-01 1.1120000000e-01 3.4666666667e-02
1158207300: 7.8000000000e-02 1.0040000000e-01 4.5066666667e-02
1158207600: nan nan nan

Two polling intervals have happened in the last 10 minutes. Depending on when you
launch the command, the last polling interval (N) may not have happened yet, so these values
are nan’d (Not A Number). The values are in scientifi c notation. You can use the bc math
language in shell to convert these values to numbers that you can use with visualization tools.
Listing 7.10 is the shell script I use to process and extract the data from a fetch command.

Listing 7.10 A shell script to parse the output from the fetch command.
#!/bin/sh

#loop across the lines that actually have values
grep '^[0-9]' | grep -v 'nan' |while read i
do
 #extract each element of the line
 for h in 'echo $i'
 do
 #if this element is data then convert it
 if echo $h | grep -q 'e'
 then
 value='echo "scale=10; $h" \
 | sed -e 's/\([0-9]\)e+*/\1^/' | bc'
 out="$out $value"
 #otherwise if it's a timestamp then reset out
 elif echo $h | grep -q '[0-9]:'
 then
 out=$h
 fi
 done
 echo $out
done

You can pipe the output from a fetch command straight into the shell script in Listing
7.10, and you will get back just the data that matters, converted from scientifi c notation into
real values.

Fetching is fi ne if you need every data point for your intended purpose, but if you plan
to do things like averaging the data, or otherwise munge (perform transformation operations

Management Interfaces

164 Chapter 7 Visualization

on the datasets) it together after you fetch it, you would probably save yourself a lot of time
and CPU cycles by letting RRDTool do it for you. An oft-unspoken detail about RRDTool in
graph mode is that the graph element defi nitions are optional.

In other words, RRDToolgraph doesn’t necessarily have to generate graphs. It can be
used from the command line to derive data for other purposes, such as sending it to external
graphing tools. RRDTool performs math on internal data very quickly, so it will be much
faster at doing the math for you than exporting the data to an external program.

Say, for example, you had a graphical widget, such as a speedometer, and you wanted
it to depict the average system load for the server in Listing 7.9 for the last 10 minutes. You
could use RRDTool fetch, parse the data with the shell script in Listing 7.10, further parse
the data to extract just avg5min, then, add the values up and divide by 2, but that’s far more
crunching than you need to do. Instead, use something similar to Listing 7.11, which is an
RRDTool graph command that simply asks RRDTool to average the metric for you and to
print it to stdout.

Listing 7.10 A shell script to parse the output from the fetch command.
rrdtool graph /dev/null --start=end-600 \
'DEF:foo=server1_load.rrd:avg5min:AVERAGE'\
'PRINT:foo:AVERAGE:%lf' \
| tail -n1

The GD Graphics Library

If you wondered, the bar and point charts in Figure 7.13 and Figure 7.14 were created with
the GD Library. GD is an open source graphics library designed to make it easy to cre-
ate images programmatically. It is implemented as a C library, but wrappers exist for Perl,
Python, Ruby, and most other interpreted languages.

GD is especially good at creating instrumentation widgets, such as speedometers. Fig-
ure 7.15 is a simple gauge created with the Perl GD::Dashboard module.

Figure 7.15 A gauge created with GD::Dashboard.

165

GD also has excellent built-in charting and graphing capabilities. As mentioned previ-
ously, the graphs in Figures 7.11 and 7.12 were created with GD; specifi cally, Perl’s GD::
Graph module. RRDs are good for dynamic data that is constantly streaming in, but GD
is good in data analysis situations in which the data is static, such as one-time log analysis
or creating one-off graphs for presentations. Speaking of presentations, Figure 7.16 shows
off some of the whiz-bang 3D capabilities of GD using the GD::Chart Perl module. The GD
library can be obtained from www.boutell.com/gd/. The various Perl modules are all avail-
able from www.cpan.org.

Figure 7.16 A 3D bar graph depicting execution time per thread from a Web server performance test,
created with GD::Chart.

Management Interfaces

www.boutell.com/gd/
www.cpan.org

166 Chapter 7 Visualization

NagVis

Second to shiny little widgets, interactive maps seem to be the most requested form of man-
agement interface. These are, literally, maps with little blinking lights on them, such as the
kind you see if you’ve ever taken a tour of a power station or water treatment plant. NagVis,
a PHP tool available from www.nagvis.org, can use Nagios status data to animate status
indicators on a graphic, such as a map fl owchart or network diagram.

NagVis is easy to install and has a defi nition syntax similar to Nagios itself. Simply
download NagiVis, untar it, and place the nagvis folder inside your Nagios share folder.
When there, the package should work out of the box. Figure 7.17 is a map of moderately
sized corporate email infrastructure. In the NagVis map fi le, you defi ne which Nagios ser-
vices to map to which status indicators. When the service is okay, according to Nagios, its
status indicator is green. If a service goes into a warning state, NagVis changes its status
indicator appropriately, and so on. With animated GIFs, the status indicators can even be
made to blink.

Mail Architecture
Mail destined for external addresses
Mail destined for employees
Mail destined for listserv
Direct employee access to email

Internet
Internal

Employees

Internal
Applications

ELP03
Stop Spam

ELP04
Mobile.vha.com

ELP05
Internal Relay

ELP02

ELP01

EVS1

E3P04

E3P02

E3P01

E3P06

E3P05

DMZ
WebMail

Regional Servers

ALP02
Listserv

Exchange 2003 Backend

Exchange Front End Cluster

Border Gateways

EBER2P01

EEDN2P01

EES2P01

EIN2P01

EPRF2P01

EPLE2P01

EDN2P01

EBR2P01

E2OKP01

Figure 7.17 NagVis network diagram of email architecture.

www.nagvis.org

167

Each green status indicator links back to the Nagios status detail page for the service to
which it refers. NagVis even provides mouseovers, so when you point at a status indicator,
you get some information about the service from Nagios. In Figure 7.15, all of the hosts are
alive except for E3P01 in the upper-right-hand corner. NagVis works with any static image,
so you can get as creative as you want. Figure 7.18 is a map in the geography sense of the
word.

Figure 7.18 NagVis interactive map.

GraphViz

GraphViz is an open source tool for programmatically creating graphs that represent struc-
tural information such as networks and fl ow charts. It does the same sort of thing Visio
does, only programmatically instead of interactively. GraphViz is implemented as a textual
language called dot. You create a text fi le, similar to source code, in the dot language, and
call one of several GraphViz interpreters to compile it into an image. Each interpreter uses a
different layout algorithm, and because of this, there are subtle differences in the syntax they
each support.

GraphViz diagrams are excellent when you want to show relationships between a large
number of entites. It is already a very popular tool in the sysadmin and security communities
because it works well for log analysis. Figure 7.19 is a very simple GraphViz diagram that
was generated from an NMap scan of three hosts.

Management Interfaces

168 Chapter 7 Visualization

copernicus

kepler

segan

631

3632

22

251680
3389

443

5800

139
80 5900

135

445

873

Figure 7.19 GraphViz diagram of open ports from NMap data.

GraphViz makes up for many of the shortcomings of the Nagios statusmap.cgi, but it is
also good at modeling data from log fi les and RRDs to spot strange behavior, or cliques. For
example, plotting a GraphViz diagram of hosts with CPU, Network, and Memory utilization
statistics causes the boxes that use more CPU than memory to cluster together in a group.

In practice, most people don’t actually type out the dot fi les required to create an image.
Rather, most people use dot fi le creation utilities and GraphViz wrappers to do the dot fi le
and image creation. The previous graph was actually created from a Perl script I wrote using
the GraphViz Perl module.

If writing graphing engines is not your bag, I point you to the excellent shell-based
GraphViz wrapper, Afterglow, which was written by Raffael Marty. Afterglow can be used
from the command line and lets you easily defi ne colorization mappings and fi lters. For
example, it’s possible to tell Afterglow to draw only hosts that have three or more outbound
connections. Afterglow’s syntax allows you to quickly draw and redraw graphs by simply
altering arguments on the command line; even if you do write code, it’s worth checking out.
Figure 7.20 is a GraphViz diagram created with Afterglow.

169

Figure 7.20 Afterglow-generated GraphViz diagram.

Sparklines

Sparklines are a concept introduced by Edward Tufte in his recent book, Beautiful Evi-
dence (fi nd the Sparklines chapter online at www.edwardtufte.com/bboard/q-and-a-fetch-
msg?msg_id=0001OR&topic_id=1). Sparklines, in Tufte’s words, are “intense, simple,
word-sized graphics.” They are drawn in one of two ways: as a miniature line graph or a
miniature bar graph. Sparklines are intended by Tufte to be viewed in the context of some
text, as sort of an inline footnote. Figure 7.21 shows the page hits per day of a Web site for
the last three months.

Management Interfaces

www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001OR&topic_id=1
www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001OR&topic_id=1

170 Chapter 7 Visualization

Figure 7.21 Web-a page hits per day Sparkline.

The beginning and ending points are marked with a red dot and labeled. The highest
and lowest points on the graph are also labeled. Sparklines are a fantastic idea for people
who build monitoring dashboards of any type. I think they make a perfect replacement for
“ometers” because they display much more information in the same amount of space, fi t
perfectly in HTML tables, and have a spiffy EKG-like feel. (For a defi nition of Electrocar-
diogram.) see http://en.wikipedia.org/wiki/Electrocardiogram.) The bar graph Sparklines are
equally interesting for depicting the history of Boolean states. For example, the bar graph
Sparkline in Figure 7.22 is the availability of the HTTP service on a Web server for the past
few months.

Figure 7.22 Web-a service availability Sparkline.

There are a few Sparklines implementations out there. The most popular is the Spark-
line PHP Library, available from www.sparkline.org. Figures 7.21 and 7.22 were created
with a Python script called sparkplot.py, which is available from http://agiletesting.blogspot.
com/2005/04/sparkplot-creating-sparklines-with.html.

As described in Chapter 4, “Confi guring Nagios.” allows you to specify per-service graph-
ics in the Web interface. Sparklines are a perfect fi t for this space, giving you a short history
for each service inline in the user interface. Figure 7.23, for example, has a Sparkline under
the fully qualifi ed domain name of the server in the status detail CGI screen of Nagios.

www.sparkline.org
http://en.wikipedia.org/wiki/Electrocardiogram
http://agiletesting.blogspot.com/2005/04/sparkplot-creating-sparklines-with.html
http://agiletesting.blogspot.com/2005/04/sparkplot-creating-sparklines-with.html

171

Figure 7.23 Sparkline embedded into the Nagios Web interface.

Force Directed Graphs with jsvis

The problem with static graphics is fi tting everything in. Tools such as GraphViz and
LGL (see http://apropos.icmb.utexas.edu/lgl/) use complex layout algorithms that maximize
for the most effi cient use of space while maintaining readability, but large graphs can still
become cluttered, limiting their usefulness. If you’ve ever wished you could interact with a
network graph in real-time, then jsvis might be for you.

Written by Kyle Scholz, jsvis is a freely-available JavaScript applet that implements force
directed graphs in a Web interface. If you’ve ever used the visual thesaurus (www.visualthe-
saurus.com/), you are familiar with the concept. Force directed graphs are very much like
GraphViz diagrams that you can interact with. If the graph contains so many servers that
they are obscuring each other, for example, you can move the nodes you want to examine
into view.

I think force directed graphs have huge potential in a systems monitoring context. Far
less complex and more organic than 3D visualization, they are simply the best way I’ve seen
to model a large number of network nodes in a small space. Kyle’s blog contains the code,
interactive samples, and even a tutorial to get you started coding. I highly recommend a visit:
www.kylescholz.com/blog/2006/06/force_directed_graphs_in_javas.html.

Management Interfaces

www.visualthesaurus.com/
www.visualthesaurus.com/
http://apropos.icmb.utexas.edu/lgl/
www.kylescholz.com/blog/2006/06/force_directed_graphs_in_javas.html

172 Chapter 7 Visualization

Animation is certainly the next step in data visualization for monitoring systems and
intrusion detection and prevention. The integration of NetFlow, data into routers and net-
work gear, has accelerated the use of animated visualization tools. NetFlow is a Cisco stan-
dard to depict network traffi c fl ows as a unidirectional sequence of packets that share the
same source and destination IP address, source and destination port, and IP protocol. Current
open source NetFlow analysis tools exist to visualize these network fl ows in real-time or as
historical data in a forensics context. The gpl cube of potential doom is located at www.kis-
metwireless.net/doomcube/, NvisionIP is located at http://security.ncsa.uiuc.edu/distribution/
NVisionIPDownLoad.html, and xovi is located at http://www.doxpara.com/?q=node/1133.
As the trend toward the animated display of monitoring data continues, I expect to see many
more solutions such as jsvis being integrated into Web interfaces. This is undoubtedly a good
thing for those who struggle for visibility in complex systems. If you are building custom
management interfaces, there’s no reason you can’t get ahead of the power curve today with
jsvis.

www.kismetwireless.net/doomcube/
www.kismetwireless.net/doomcube/
http://security.ncsa.uiuc.edu/distribution/NVisionIPDownLoad.html
http://security.ncsa.uiuc.edu/distribution/NVisionIPDownLoad.html
http://www.doxpara.com/?q=node/1133

173

C H A P T E R 8

Nagios Event Broker
Interface

In this chapter, you delve into the inner workings of Nagios by exploring the Nagios
Event Broker . The Event Broker is new to the 2.0 kernel series, and it is defi nitely the most
powerful interface available to Nagios; however, actually wielding it requires some modest
knowledge of C programming. Don’t let that scare you, however; if you possess even a pass-
ing familiarity of C, the information presented in this chapter should get you well on your
way to extending Nagios’s functionality to your heart’s content.

Function References and Callbacks in C

If C programming isn’t something you do often, you may not have ever used function point-
ers. If you are adept at C, feel free to skip this section. Function pointers are equivalent to
variable pointers, except they point to a memory address that corresponds to a function
instead of a variable of some type. If you understand pointers, they work the exact same way
and their syntax is what you would expect, but they are rarely covered in C programming
books. I think this is because it’s hard to come up with simple examples in which they might
be useful. This is a shame, because they enable some elegant software engineering in larger
C programs, such as Nagios.

Nagios uses function pointers often to implement callbacks. Callbacks are functions that
take pointers to other functions as initialization arguments. When interesting events occur,

174 Chapter 8 Nagios Event Broker Interface

Nagios can use the passed function pointers to call back to event handlers that are interested
in that particular type of event. But before we get into all of that, take a look at Listing 8.1,
which outlines the use of a function pointer.

Listing 8.1 Using a function pointer.
void main(){

/* **
 Here we have two functions, one that converts Celsius
 to Fahrenheit and one that does the opposite.
 ** */

 int c2f(int c) { return (9/5)*c+32; }
 int f2c(int f) { return (5/9)*(f-32);}

/* **
 The convert function acts as an interface to
 the actual math functions. It takes a function
 pointer as one of its init arguments.
 ** */

 int convert(int input, int (*fPointer)(int)){
 return fPointer(input) ;

}

/* **
 Now we can call the convert function
 whenever we want, and we can tell it which
 conversion to do by passing it a pointer to
 either f2c or c2f, like below.
 ** */
void Go(){
 int result=convert(‘72’,&f2c);

}
}

So, you can see why nobody teaches you this in a programming book. Using normal con-
ditional logic, such as a switch or if/else loop, is a much more straightforward way to choose
between f2c and c2f. In this example, and probably any other simple example you can think
of, there are better ways to do things than using function pointers. Function pointers begin
to shine, however, when things get a bit more complicated. The primary magic you need to
understand to write NEB modules is the convert function declaration line:

int convert(int input, int (*fPointer)(int)){

175

The fi rst argument is a normal integer called input, but the second argument is strange
indeed: int (*fPointer)(int). If you try to parse it as a variable argument, it doesn’t make any
sense, but this isn’t a variable argument; it’s actually a minifunction declaration inside the
convert declaration. So, in plain English, the convert function takes two arguments. The fi rst
is an int called input, and the second is a pointer called fPointer, which points to another
function that takes a single int as an argument and returns an int. If the fPointer function
took an int and a fl oat, the declaration would look like the following:

int convert(int input, int (*fPointer)(int,fl oat)){

The convert function just turns around and calls whichever conversion function to which
it is passed a pointer. Passing a function pointer to convert is just like passing any other
pointer. You simply use the & operator to pass the memory address that corresponds to the
conversion function you want to use. In Listing 8.1, the f2c conversion is used, so you pass
&f2c (the address of f2c) to convert. If you don’t understand it, no worries; I recommend
checking out www.newty.de/fpt/intro.html.

The NEB Architecture

As depicted in Figure 8.1, the Event Broker itself is a software layer between Nagios and the
NEB modules. Nagios notifi es the Event Broker of interesting events. The Event Broker’s job
is to fi gure out which modules, if any, are interested in the events and to create and pass out
memory handles to the modules, which the modules can use to get work done.

Function References and Callbacks in C

Nagios Scheduling Queue

Reaper Event

Event Broker

Time

Notify
Ack

Nagios Daemon

Ping
Check

Figure 8.1 The NEB architecture from the perspective of the Event Broker.

www.newty.de/fpt/intro.html

176 Chapter 8 Nagios Event Broker Interface

NEB modules are shared libraries written in either C or C++. The NEB module registers
for the types of events it is interested in and provides function pointers to functions that
presumably do things with the events they receive. Each NEB module is required to have
an entry and exit function and, beyond that, can do anything it wants. The interesting thing
about this architecture is that Nagios globally scopes almost everything (see the Nagios web
site, the source of this information). According to Ethan Galstad, Nagios’ creator, this is by
design. Ethan says, “There are a whole number of things that I would like to see Event Broker
do. Essentially, I would like to allow Event Broker modules to override most of the internal
login the daemon when it comes to host-service checks, notifi cations, fl ap detection, logging,
executing external commands, etc. This will allow people to do a number of neat things that
would otherwise require extensive rewriting of the Nagios daemon.” Thus, from the perspec-
tive of the NEB module, the architecture looks more like the one shown in Figure 8.2.

Figure 8.2 The NEB architecture from the perspective of an NEB module.

Because almost all of the interesting functions and structs are globally scoped—if Nag-
ios’ execution pointer is in the module’s address space—the module has the power to change
anything it wants to change about the entire runtime environment. It can insert and remove
events from the scheduling queue and it can turn on or off notifi cations. In summary, any-
thing that can be changed at runtime can be changed by the module. You might think that
the module would have a limited opportunity to do these things because Nagios runs only its

Nagios Scheduling Queue

Reaper Event

Event Broker

Time

Nagios Daemon

Notify
Ack

Ping
Check

177

callbacks when interesting events to which it subscribes happen, but because the functions
to insert events in the queue are globally available, the module can, conceivably, schedule its
own callback routines in a timed fashion when it is fi rst initialized.

In Nagios 2.3.1, there are 31 total callback types, although some of them are reserved
for future use. These constants are defi ned in nebcallbacks.h, in the includes directory of the
tarball. Table 8.1 lists the callback type constants.

Table 8.1 NEB Callback Types

NEBCALLBACK_RESERVED0 NEBCALLBACK_DOWNTIME_DATA

NEBCALLBACK_RESERVED1 NEBCALLBACK_FLAPPING_DATA

NEBCALLBACK_RESERVED3 NEBCALLBACK_PROGRAM_STATUS_DATA

NEBCALLBACK_RESERVED4 NEBCALLBACK_HOST_STATUS_DATA

NEBCALLBACK_RAW_DATA NEBCALLBACK_SERVICE_STATUS_DATA

NEBCALLBACK_NEB_DATA NEBCALLBACK_ADAPTIVE_PROGRAM_
DATA

NEBCALLBACK_PROCESS_DATA NEBCALLBACK_ADAPTIVE_HOST_DATA

NEBCALLBACK_TIMED_EVENT_DATA NEBCALLBACK_ADAPTIVE_SERVICE_DATA

NEBCALLBACK_LOG_DATA NEBCALLBACK_EXTERNAL_COMMAND_
DATA

NEBCALLBACK_SYSTEM_COMMAND_DATA NEBCALLBACK_AGGREGATED_STATUS_
DATA

NEBCALLBACK_EVENT_HANDLER_DATA NEBCALLBACK_RETENTION_DATA

NEBCALLBACK_NOTIFICATION_DATA NEBCALLBACK_CONTACT_NOTIFICATION_
DATA

NEBCALLBACK_SERVICE_CHECK_DATA NEBCALLBACK_CONTACT_NOTIFICATION_
METHOD_DATA

NEBCALLBACK_HOST_CHECK_DATA NEBCALLBACK_ACKNOWLEDGEMENT_
DATA

NEBCALLBACK_COMMENT_DATA NEBCALLBACK_STATE_CHANGE_DATA

These callback types cover every type of event that can happen in Nagios. An NEB mod-
ule may register to receive information about any or all of these event types. After it initial-
izes all the modules, the Event Broker waits for events matching the type subscribed to by the
module and, upon receiving one, gives the module information about the event and a handle
to the relevant data structures.

For example, if the module registered for EXTERNAL_COMMAND_DATA, the Event
Broker would notify it every time an external command was inserted into the command fi le.
A handle to a struct that defi ned the command would accompany the notifi cation. The mod-
ule can inspect and optionally change any of the information in the command struct or even

The NEB Architecture

178 Chapter 8 Nagios Event Broker Interface

delete it altogether. But enough talk about the architecture; the best way to learn about the
NEB is to see how these modules work in practice.

Implementing a Filesystem Interface Using NEB

This section walks through a simple NEB module, which implements a fi lesystem status
interface to Nagios. The basic idea behind the fi lesystem interface is to provide an interface
that makes it easy to write shell scripts to do things, such as check the status of a particular
service on a certain host, or output a list of all the services that are not okay. Wouldn’t it be
nice if the shell script could grep across a fi lesystem instead of parsing logs or web pages? If
you could tell Nagios to write a fi le for each service containing the service’s current status
code, you could do something such as this:

cat /var/lib/nagios/status/host24/ssh

If you got back a 0, you would know that the SSH service on host24 was okay. This
also makes it trivial to get summaries of the entire environment with commands, such as the
following:

grep –rl 2 /var/lib/nagios/status/

Though the following could be solved with a global event handler, it is a good NEB
example. This command gives a list of all the services that were in a 2 (critical) state. This is
exactly the kind of problem that NEBs were designed for. First, you want Nagios to notify
you of service status events. When you get them, you write them out to fi les. The module in
Listing 8.2 borrows heavily from a blog post by Taylor Dondich from Groundwork, which
no longer appears to be online. It is a fully functional NEB module that implements the fi le-
system interface described previously.

Listing 8.2 A NEB module that implements a fi lesystem interface.
#ifndef NSCORE
#defi ne NSCORE
#endif

/* include the needed Event Broker header fi les */
#include "../include/nebmodules.h"
#include "../include/nebcallbacks.h"
#include "../include/nebstructs.h"
#include "../include/broker.h"

/* include some Nagios stuff as well */
#include "../include/confi g.h" (continues)

179

Listing 8.2 A NEB module that implements a fi lesystem interface. (Continued)

#include "../include/common.h"
#include "../include/nagios.h"
#include "../include/objects.h"

/*declare the handler function to make this example easier to
write about*/
int handle_service_status(int , nebstruct_service_status_data *);

// specify Event Broker API version (required)
NEB_API_VERSION(CURRENT_NEB_API_VERSION);

// our module handle
void *basic_module_handle=NULL;

/* this function gets called when the module gets loaded by
the Event Broker*/
int nebmodule_init(int fl ags, char *args, nebmodule *handle) {

 basic_module_handle = handle;

write_to_logs_and_console("Loading FS Module...",
 NSLOG_INFO_MESSAGE,TRUE);

neb_register_callback(NEBCALLBACK_SERVICE_STATUS_DATA, handle,
 '1', (void *)&handle_service_status);

 write_to_logs_and_console("Done",NSLOG_INFO_MESSAGE,TRUE);

 return 0;
}

// this is our unloading function, which gets called by the neb
int nebmodule_deinit(int fl ags, int reason){

write_to_logs_and_console("Unloading FS Module...",
 NSLOG_INFO_MESSAGE,TRUE);

 return 0;
}

/*this function handles service status updates from the
Event Broker*/
int handle_service_status(int neb_event_type,
 nebstruct_service_status_data *ds){

 //get a handle to the service struct
 service *svc = ds->object_ptr;

 //create some name buffers for various output
 char outbuf[100];
 char host_path[100];
 char service_path[10 0];

The NEB Architecture

(continues)

180 Chapter 8 Nagios Event Broker Interface

Listing 8.2 A NEB module that implements a fi lesystem interface. (Continued)

 //create a logging string and write it out
 sprintf(outbuf,"Caught status code: '%i' from host '%s' for
 service %s", svc->current_state, svc->host_name,
 svc->description);

write_to_logs_and_console(outbuf , NSLOG_INFO_MESSAGE, TRUE);

 //create the host and service path strings
 sprintf(host_path,"/usr/share/nagios/status/%s", svc->host_
name);

sprintf(service_path,"/usr/share/nagios/status/%s/%s",
 svc->host_name, svc->description);

 //create the directory
 mkdir(host_path, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH);

 //write the fi le
 FILE *outfi le=fopen(service_path,"w");
 fprintf(outfi le,"%i:%i",svc->current_state,svc->state_type);
 fclose(outfi le);
 return 0;
}

To compile this, you need access to the headers that come in the include directory of the
Nagios tarball. Grab and extract the current tarball, and then run confi gure and make all.
After this is done, you can create a new directory for your module in the root of the tarball
directory. Place this fi le in there as something such as fs.c and compile it into a shared lib
with the following:

gcc –shared fs.c –o fs.o

Decide on a decent location for NEB modules for your particular distro packaging and
copy the object fi le there. Finally, tell Nagios to load the module. Do this by adding the fol-
lowing line to your nagios.cfg:

broker_module=/path/to/your/modules/fs.o

Of course for Nagios to actually load the module, you need to have compiled Nagios
with Event Broker support. See Chapter 4, “Confi guring Nagios,” for details on how to do
this. If all goes well, you should see something similar to the following in your nagios.log
when you start up Nagios.

[1156799404] Loading FS Module…

181

Next let’s look at the code starting at the top, with the include statements in
Listing 8.3.

Listing 8.3 Includes.
/* include the needed Event Broker header fi les */
#include "../include/nebmodules.h"
#include "../include/nebcallbacks.h"
#include "../include/nebstructs.h"
#include "../include/broker.h"

/* include some Nagios stuff as well */
#include "../include/confi g.h"
#include "../include/common.h"
#include "../include/nagios.h"
#include "../include/objects.h"

The fi rst section of headers includes the data structures and functions necessary to inter-
act with the Event Broker. These encompass functions such as neb_register_callback for
subscribing to interesting events and structs such as nebstruct_service_status_data, which
contains the notifi cation data handed down from the Event Broker for a service status event.
The second section of headers describes core Nagios functions and structs, so things such
as service_struct, which defi ne a Nagios service, and write_to_logs_and_console, which is a
function for...well, writing messages to the logs and console.

If you plan on writing an Event Broker module, you have to poke around in most of
these headers, but even if you don’t plan on writing a module, take a look. Nagios is one of
the most nicely written C programs you can work with. The function and variable names
are self-documenting, the comments are terse, descriptive, and liberally dispersed, and the
application is well engineered.

After the include statements is a declaration for the handler function. I declared it at this
point in the program so that I wouldn’t have to write about it yet, so ignore it for now. The
next relevant section is in Listing 8.4.

Listing 8.4 Some required parts.
/* specify Event Broker API version (required) */
NEB_API_VERSION(CURRENT_NEB_API_VERSION);

// Our module handle
void *basic_module_handle=NULL;

The NEB_API_VERSION macro is designed to ensure that the module runs under the
version of the NEB API that it is compiled to run on. All NEB Modules are required to

The NEB Architecture

182 Chapter 8 Nagios Event Broker Interface

include this line. The void pointer declaration is a globally scoped handle that eventually
refers to the memory address of the module. It’s declared here so that it can be referenced in
a global context. Later, when you start registering for callbacks (as in listing 8.5), you will
use this handle to tell the event broker how to fi nd you.

Listing 8.5 The init function.
/* this function gets called when the module gets
loaded by the Event Broker*/
int nebmodule_init(int fl ags, char *args, nebmodule *handle) {

 basic_module_handle = handle;

write_to_logs_and_console("Loading FS Module...",
 NSLOG_INFO_MESSAGE,TRUE);

neb_register_callback(NEBCALLBACK_SERVICE_STATUS_DATA, handle,
 '1', (void *)&handle_service_status);

 write_to_logs_and_console("Done",NSLOG_INFO_MESSAGE,TRUE);

 return 0;
}

Every NEB module is required to have an entry function and an exit function. Listing 8.5
is the entry function for our module. As you can see, it returns an exit code in the form of
an int and takes three arguments. The fi rst argument, an int called fl ags, is meant to give you
the context in which the module is initialized. The second argument is a string pointer called
args. It is possible to pass arguments to your module in the nagios.cfg fi le by adding them to
the end of the module name in the broker_module directive. For example, our current fi lesys-
tem module hard codes its base directory as /var/lib/nagios/status, but you can pass the direc-
tory name as an argument to the module with the following defi nition in the nagios.cfg.

broker_module=/path/to/your/modules/fs.o \
base=/usr/lib/nagios/status

To keep the example source code simple, I did not do this; but had I specifi ed it as an
argument, I could have parsed it out with the args pointer in the init function. The third
argument is a pointer of type nebmodule that points to a struct, which defi nes the module.
In short, this is a handle that uniquely identifi es the memory address for our module. The
nebmodule struct is defi ned in nebmodule.h. If you are curious about what a module consists
of, Listing 8.6 contains the defi nition.

183

Listing 8.6 The nebmodule struct.
/* NEB module structure */
typedef struct nebmodule_struct{
 char *fi lename;
 char *args;
 char *info[NEBMODULE_MODINFO_NUMITEMS];
 int should_be_loaded;
 int is_currently_loaded;
#ifdef USE_LTDL
 lt_dlhandle module_handle;
 lt_ptr init_func;
 lt_ptr deinit_func;
#else
 void *module_handle;
 void *init_func;
 void *deinit_func;
#endif
#ifdef HAVE_PTHREAD_H
 pthread_t thread_id;
#endif
 struct nebmodule_struct *next;
 }nebmodule;

Like I said, Nagios is a nifty C program. There are many interesting tidbits of informa-
tion you can query about your own module. Other functions may want to know some of
this information. So, the fi rst thing to do in the init function is to cache a copy of your own
memory handle with the following line.

basic_module_handle = handle;

Then, start dereferencing information about yourself, if desired. For example, if you
wanted to know your thread ID, you could do something such as the following:

pthread_t t_id=handle->thread_id

After you have a copy of your handle, write some output to the console and log fi les to let
the outside world know that you are alive and functional. This is done by the write_to_logs_
and_console function, which is defi ned in nagios.h. This function takes three arguments; the
fi rst is a string that points to the message. The second is a constant that defi nes the type of
message; there are several of these, which are also specifi ed in nagios.h. The one I use is for
informational messages. The last argument is a Boolean that toggles console output, so if this
is true, the message goes to the console and the logs.

The NEB Architecture

184 Chapter 8 Nagios Event Broker Interface

With the next line, register with the Event Broker to receive events:

neb_register_callback(NEBCALLBACK_SERVICE_STATUS_DATA, handle,
 '42', (void *)&handle_service_status);

The neb_register_callback function is defi ned in nebcallbacks.h. The defi nition looks like
this:

int neb_register_callback(int callback_type, void *mod_handle,
 int priority, int (*callback_func)
 (int,void *));

The neb_register_callback takes four arguments. The fi rst is the constant describing what
types of events you are interested in. The second is a handle, which the Event Broker may use
to fi nd your module in the event that the broker needs to send you a notifi cation.” The third
is a priority number. In general, when more than one module registers for the same type of
event, they are executed in the order they are loaded and by the Broker on startup. You can
override this behavior by specifying a priority number.

The last argument to neb_register_callback is a function pointer, as described in section
“Function References and Callbacks in C.” The function pointer must point to a subroutine
that returns an exit code in the form of an int and accepts two arguments. The fi rst of these
is a constant specifying the event type; yes, once again, one of the constants specifi ed in
Table 8.1. The second is a void pointer, which is discussed shortly. So, this last argument to
neb_register_callback is the function to which the Event Broker will actually send the event.
It is the event handler.

But why would the event handler need to be passed the event type? The event handler
function should be able to infer the event type, because the events were specifi ed at the same
time that the handler was defi ned. In the example, the event handler was written to specifi -
cally handle the one type of event that it registered for, but this isn’t necessarily a require-
ment. The nice thing about being passed back the event type constant is that it enables the
module to register for more than one type of callback and handle each type it registers for
with a single event handler function.

What is the null pointer? To answer this, look at what the Event Broker does when it
makes the callback. Consider the code in Listing 8.7 from broker.c in the base directory of
the tarball.

Listing 8.7 The Event Broker sending data.
/* sends program data (starts, restarts, stops, etc.)
to broker */
void broker_program_state(int type, int fl ags, int attr,
 struct timeval *timestamp){
 nebstruct_process_data ds;

 if(!(event_broker_options & BROKER_PROGRAM_STATE))
 return;

 /* fi ll struct with relevant data */
 ds.type=type;
 ds.fl ags=fl ags;
 ds.attr=attr;
 ds.timestamp=get_broker_timestamp(timestamp);

 /* make callbacks */
 neb_make_callbacks(NEBCALLBACK_PROCESS_DATA,(void *)&ds);

 return;
 }

/* send timed event data to broker */
void broker_timed_event(int type, int fl ags, int attr,
 timed_event *event,
 struct timeval *timestamp){
 nebstruct_timed_event_data ds;

 if(!(event_broker_options & BROKER_TIMED_EVENTS))
 return;

 if(event==NULL)
 return;

 /* fi ll struct with relevant data */
 ds.type=type;
 ds.fl ags=fl ags;
 ds.attr=attr;
 ds.timestamp=get_broker_timestamp(timestamp);

 ds.event_type=event->event_type;
 ds.recurring=event->recurring;
 ds.run_time=event->run_time;
 ds.event_data=event->event_data;

 /* make callbacks */
 neb_make_callbacks(NEBCALLBACK_TIMED_EVENT_DATA,
 (void *)&ds);

 return;
 }

185The NEB Architecture

186 Chapter 8 Nagios Event Broker Interface

There’s a pattern here. You can see two functions, which represent two different types
of events (again, defi ned by the constants in Table 8.1) being sent out by the Broker. In each
case, the Broker fi rst populates a struct called ds with data relevant to the type of event it is
about to send and then, after the ds struct is populated, it uses the neb_make_callbacks func-
tion to send the event-type constant and a pointer to the ds struct. The Broker does this same
exact thing for every type of event in Table 8.1, so the null pointer the event handler function
receives is the ds struct that the broker populates. This data is specifi c to each type of event;
for example, when the broker makes a callback to the modules interested in timed events, the
ds struct is of type nebstruct_timed_event_data.

After the init function in Listing 8.5 registers for events of type SERVICE_STATUS_
DATA, it writes the word “done” to the logs and exits with a 0, the universal sign that
everything’s okay. The deinit function that follows init in the example in Listing 8.2 is also
required, but it doesn’t bear much of an explanation. It receives some constants that specify
the reason the module is unloaded and provides you an opportunity to do some cleaning up
before the module goes “bye-bye.”

Now look at the event handler function in Listing 8.8. Most of the guts of the program
reside there.

Listing 8.8 The event handler function.
int handle_service_status(int neb_event_type, nebstruct_service_
status_data *ds){

 //get a handle to the service struct
 service *svc = ds->object_ptr;

 //create some name buffers for various output
 char outbuf[100];
 char host_path[100];
 char service_path[100];

 //create a string with some logging info
 sprintf(outbuf,"Caught status code: '%i' from host '%s' for
 service %s", svc->current_state, svc->host_name,
 svc->description);

//write it out to the logs
write_to_logs_and_console(outbuf , NSLOG_INFO_MESSAGE, TRUE);

 //create the host and service path strings
 sprintf(host_path,"/usr/share/nagios/status/%s",
 svc->host_name);
 sprintf(service_path,"/usr/share/nagios/status/%s/%s", svc-
>host_name, svc->description);

 //create the directory (continues)

Listing 8.8 The event handler function. (Continued)

 mkdir(host_path, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH);

 //write the fi le
 FILE *outfi le=fopen(service_path,"w");
 fprintf(outfi le,"%i:%i",svc->current_state,svc->state_type);
 fclose(outfi le);
 return 0;
}

As stated earlier, the event handler is passed by two arguments: the event type constant
and a reference to the ds struct containing information about the specifi c type of argument.
But what will the ds struct contain for events of type SERVICE_STATUS? Let’s take a look at
the relevant code snippet in Listing 8.9, from the broker.c.

Listing 8.9 The broker’s make_callback code for SERVICE_STATUS_DATA.
/* sends service status updates to broker */
void broker_service_status(int type, int fl ags, int attr,
 service *svc,
 struct timeval *timestamp){
 nebstruct_service_status_data ds;

 if(!(event_broker_options & BROKER_STATUS_DATA))
 return;

 /* fi ll struct with relevant data */
 ds.type=type;
 ds.fl ags=fl ags;
 ds.attr=attr;
 ds.timestamp=get_broker_timestamp(timestamp);

 ds.object_ptr=(void *)svc;

 /* make callbacks */
 neb_make_callbacks(NEBCALLBACK_SERVICE_STATUS_DATA,
 (void *)&ds);

 return;
 }

The fi rst thing to note is the following line:

nebstruct_service_status_data ds;

187The NEB Architecture

188 Chapter 8 Nagios Event Broker Interface

This tells us that the ds struct for the event is of type nebstruct_service_status_data. The
struct appears to have fi ve elements: type, fl ags, attr, a timestamp, and a void pointer to svc,
which is a struct describing a Nagios service. Check out nebstructs.h (Listing 8.10) for a
description of the struct.

Listing 8.10 The nebstruct_service_status_data struct.
/* service status structure */
typedef struct nebstruct_service_status_struct{
 int type;
 int fl ags;
 int attr;
 struct timeval timestamp;

 void *object_ptr;
 }nebstruct_service_status_data;

You have three ints, a timeval struct, and a pointer to the service itself. The service
pointer sounds interesting. Considering all the cool stuff the module struct contains, the ser-
vice struct must have several goodies. This leads to Listing 8.11, which is the service_struct
defi nition (formatted into two columns to save space) from objects.h.

Listing 8.11 The service_struct def from nagios.h .

/* SERVICE structure */
typedef struct service_struct{
 char *host_name;
 char *description;
 char *service_check_command;
 char *event_handler;
 int check_interval;
 int retry_interval;
 int max_attempts;
 int parallelize;
 contactgroupsmember *contact_groups;
 int notifi cation_interval;
 int notify_on_unknown;
 int notify_on_warning;
 int notify_on_critical;
 int notify_on_recovery;
 int notify_on_fl apping;
 int stalk_on_ok;
 int stalk_on_warning;
 int stalk_on_unknown;
 int stalk_on_critical;
 int is_volatile;
 char *notifi cation_period;
 char *check_period;

(continues)

Listing 8.11 The service_struct def from nagios.h . (Continued)

 int fl ap_detection_enabled;
 double low_fl ap_threshold;
 double high_fl ap_threshold;
 int process_performance_data;
 int check_freshness;
 int freshness_threshold;
 int accept_passive_service_checks;
 int event_handler_enabled;
 int checks_enabled;
 int retain_status_information;
 int retain_nonstatus_information;
 int notifi cations_enabled;
 int obsess_over_service;
 int failure_prediction_enabled;
 char *failure_prediction_options;
#ifdef NSCORE
 int problem_has_been_acknowledged;
 int acknowledgement_type;
 int host_problem_at_last_check;
#ifdef REMOVED_041403
 int no_recovery_notifi cation;
#endif
 int check_type;
 int current_state;
 int last_state;
 int last_hard_state;
 char *plugin_output;
 char *perf_data;
 int state_type;
 time_t next_check;
 int should_be_scheduled;
 time_t last_check;
 int current_attempt;
 time_t last_notifi cation;
 time_t next_notifi cation;
 int no_more_notifi cations;
 int check_fl apping_recovery_notifi cation;
 time_t last_state_change;
 time_t last_hard_state_change;
 time_t last_time_ok;
 time_t last_time_warning;
 time_t last_time_unknown;
 time_t last_time_critical;
 int has_been_checked;
 int is_being_freshened;
 int notifi ed_on_unknown;
 int notifi ed_on_warning;
 int notifi ed_on_critical;
 int current_notifi cation_number;
 double latency;
 double execution_time;

189The NEB Architecture

(continues)

190 Chapter 8 Nagios Event Broker Interface

Listing 8.11 The service_struct def from nagios.h . (Continued)

 int is_executing;
 int check_options;
 int scheduled_downtime_depth;
 int pending_fl ex_downtime;
 int state_history[MAX_STATE_HISTORY_ENTRIES]; /* fl ap
detection */
 int state_history_index;
 int is_fl apping;
 unsigned long fl apping_comment_id;
 double percent_state_change;
 unsigned long modifi ed_attributes;
#endif
 struct service_struct *next;
 struct service_struct *nexthash;
 }service;

Wow, jackpot! The service struct has everything you might hope to know about a ser-
vice and then some. In addition, the nifty Event Broker hands over a pointer, straight to the
service to which the event is currently in reference. So, getting back to Listing 8.8, the fi rst
thing the event handler function does is grab a type of specifi c handle to the service pointer
for convenient dereferencing:

service *svc = ds->object_ptr;

Then, because you mix and match output from various sources, you can create a few
output buffers. I can’t wait to dereference something from my cool new service handle, so
the next line is

sprintf(outbuf,"Caught status code: '%i' from host '%s' for
service %s", svc->current_state, svc->host_name, svc->description
);

This builds a string suitable to output to the logs. After you write this out, you create two
more strings, which you can use to create the fs interface. The fi rst dereferences the hostname
to which the service refers. Use this to create the directory for the service. The second string
dereferences the service description, which you use for the fi lename:

sprintf(host_path,"/usr/share/nagios/status/%s", svc->host_name);
sprintf(service_path,"/usr/share/nagios/status/%s/%s",
 svc->host_name, svc->description);

After this is done, you can create the directory, write the fi le, and then you are done:

//create the directory
mkdir(host_path, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH);

//write the fi le
FILE *outfi le=fopen(service_path,"w");
fprintf(outfi le,"%i:%i",svc->current_state,svc->state_type);

fclose(outfi le);

Notice that the actual contents of the fi le are two numbers separated by a colon. With
that great service struct, I couldn’t resist pulling out an extra tidbit of information. This is
the state_type, which is an int that specifi es whether the service is in a hard state (0) or a
soft state (1). So, if ping on host15 was in a hard critical state, then the contents of the fi le
/var/lib/nagios/status/host15/ping are 2:0.

Although it compiles and works, this module has some big problems. It doesn’t do things,
such as check whether the directory creations and fi le writes succeed, and it can be far more
effi cient about making system calls. For example, you can dereference last_state and com-
pare it with current_state to determine if it is worth opening the fi le. In fact, subscribing to
state change events is probably more effi cient, but in the interest of keeping the example as
straightforward as possible, a lot of important functionality has been omitted.

The goal of this chapter was to get you excited about the Event Broker interface and its
capabilities. The Nagios community needs creative people to contribute interesting modules.
If you have an idea for a useful module, I hope this chapter gave you a head start. I can’t wait
to use your module when you are done.

191The NEB Architecture

This page intentionally left blank

193

A P P E N D I X A

Confi gure Options

This appendix contains a full list of options for the Nagios 2.5 confi gure script. You can
use these options to customize the Nagios installation as described in Chapter 3, “Confi gur-
ing Nagios.”

Table A.1 Options to the Confi gure Script

Option Long Name Description

-h —help Displays help text and exit.

-V —version Displays version information and
exit.

-q —quiet Do not print checking messages.

-n —no-create Do not create output fi les.

—srcdir=DIR —srcdir=DIR Look for the sources in DIR.

Table A.2 Installation Directories

Option Description Default Location

—prefi x=PREFIX Installs architecture-independent
fi les in PREFIX

/usr/local/nagios

—exec-prefi x=EPREFIX Installs architecture-dependent
fi les in EPREFIX

PREFIX

—bindir=DIR User executables EPREFIX/bin

—sbindir=DIR System admin executables EPREFIX/sbin

—libexecdir=DIR Program executables EPREFIX/libexec

—datadir=DIR Read-only, architecture-
independent data

PREFIX/share

—sysconfdir=DIR Read-only, single-machine data PREFIX/etc

194 Appendix A Confi gure Options

Option Description Default Location

—sharedstatedir=DIR Modifi able architecture-
independent data

PREFIX/com

—localstatedir=DIR Modifi able single-machine data PREFIX/var

—libdir=DIR Object code libraries EPREFIX/lib

—includedir=DIR C header fi les PREFIX/include

—oldincludedir=DIR C header fi les for non-gcc /usr/include

—infodir=DIR Information documentation PREFIX/info

—mandir=DIR Manual documentation PREFIX/man

Table A. 3 Optional Features

Feature Description Default Setting

Statusmap Compilation of statusmap CGI Enabled

Statuswrl Compilation of statuswrl Enabled

DEBUG0 Shows function entry and exit Disabled

DEBUG1 General information messages Disabled

DEBUG2 Shows warning messages Disabled

DEBUG3 Shows scheduled events (service
and host checks, and so on)

Disabled

DEBUG4 Shows service and host
notifi cations

Disabled

DEBUG5 Shows SQL queries Disabled

DEBUGALL Shows all debugging messages Disabled

nanosleep Uses nanosleep (instead of sleep)
in event timing

Disabled

event-broker Integration of event broker
routines

Enabled

embedded-perl Embedded Perl interpreter Disabled

Cygwin Building under the CYGWIN
environment

Disabled

Note: To enable FEATURE, use –enable-FEATURE. To disable FEATURE, use —disable-FEATURE.

Table A.2 Options to the Confi gure Script (continued)

195

Table A.4 Optional Packages

Package Description Default Value

—with-nagios-user=<user> Sets user name to run Nagios Nagios

—with-nagios-group=<grp> Sets group name to run Nagios Nagios

—with-command-user=<user> Sets user name for command
access

Nagios

—with-command-group=<grp> Sets group name for command
access

Nagios

—with-mail=<path_to_mail> Sets path to equivalent program
to mail

Auto-detected

—with-init-dir=<path> Sets directory in which to place
init script

Auto-detected

—with-lockfi le=<path> Sets path and fi lename for lock
fi le

PREFIX/var/nagios.lock

—with-gd-lib=DIR Sets location of the gd library Auto-detected

—with-gd-inc=DIR Sets location of the gd include
fi les

Auto-detected

—with-cgiurl=<local-url> Sets URL for CGI programs
(do not use a trailing slash)

http://localhost/nagios/cgi-bin/

—with-htmurl=<local-url> Sets URL for public html http://localhost/nagios/

—with-perlcache Turns on caching of internally
compiled Perl scripts

Disabled

Appendix A

This page intentionally left blank

197

A P P E N D I X B

nagios.cfg and cgi.cfg

Intended as an addendum to Chapter 4, “Confi guring Nagios,” this appendix contains
complete lists of all the confi guration options in the nagios.cfg and cgi.cfg fi les. Most descrip-
tions are from the sample confi guration fi les. Sample fi les may be built by running the install-
confi g target, as described in Chapter 3, “Installing Nagios.”

Table B.1 nagios.cfg

Option Description

log_fi le The main log fi le where service and host events are
logged.

cfg_fi le Used to specify an object confi guration fi le
containing object defi nitions that Nagios should use
for monitoring.

cfg_dir Used to specify a directory that contains object
confi guration fi les that Nagios should use for
monitoring.

object_cache_fi le Determines where object defi nitions are cached
when Nagios starts or restarts.

resource_fi le An optional resource fi le that contains $USERx$
macro defi nitions.

status_fi le Where the current status of all monitored services
and hosts is stored.

nagios_user Determines the effective user that Nagios should
run as.

nagios_group Determines the effective group that Nagios should
run as.

check_external_commands Specifi es whether or not Nagios should check for
external commands.

(continues)

198 Appendix B nagios.cfg and cgi.cfg

Option Description

command_check_interval Interval at which Nagios should check for external
commands.

command_fi le File that Nagios checks for external command
requests.

comment_fi le File that Nagios uses for storing host and service
comments.

downtime_fi le File that Nagios uses for storing downtime data.

lock_fi le File that Nagios uses for storing its PID number
when it’s running in daemon mode.

temp_fi le Temporary fi le that is used as scratch space when
Nagios updates the status log, cleans the comment
fi le, and so on.

event_broker_options Controls what (if any) data gets sent to the
event broker. Currently either 0 (nothing) or –1
(everything).

broker_module Specifi es an event broker module that should be
loaded by Nagios at startup.

log_rotation_method Log rotation method that Nagios should use to rotate
the main log fi le. Values are as follows:

n = None (don’t rotate the log)

h = Hourly rotation (top of the hour)

d = Daily rotation (midnight every day)

w = Weekly rotation (midnight on Saturday
evening)

m = Monthly rotation (midnight last day of month)

log_archive_path Directory where rotated log fi les should be placed.

use_syslog Specifi es if logs also go to the syslog daemon.
0 = no, 1 = yes.

log_notifi cations Specifi es if notifi cations are logged. 0 = no, 1 = yes.

log_service_retries Specifi es if service check retries are logged. 0 = no,
1 = yes.

log_host_retries Specifi es if host check retries are logged. 0 = no,
1 = yes.

log_event_handlers Specifi es if event handlers are logged. 0 = no,
1 = yes.

Table B.1 nagios.cfg (continued)

(continues)

199Appendix B

Option Description

log_initial_states Specifi es if the result of an initial host or service
check should be logged. (This is helpful for long-
term log analysis.) 0 = no, 1 = yes.

log_external_commands Specifi es if external commands are logged. 0 = no,
1 = yes.

log_passive_checks Specifi es if passive checks are logged. 0 = no,
1 = yes.

global_host_event_handler Specifi es a command to be run for every host state
change.

global_service_event_handler Specifi es a command to be run for every service
state change.

service_inter_check_delay_method Method that Nagios should use when initially
“spreading out” service checks when it starts
monitoring, as described in Chapter 2, “Theory of
Operations.”

max_service_check_spread Specifi es the amount of time (in minutes) from the
start time that an initial check of all services should
be completed.

service_interleave_factor Determines how service checks are interleaved, as
described in Chapter 2.

host_inter_check_delay_method Determines how host checks are interleaved, as
described in Chapter 2.

max_host_check_spread Specifi es the amount of time (in minutes) from the
start time that an initial check of all hosts should be
completed.

max_concurrent_checks Maximum number of service checks that can be run
in parallel at any given time.

service_reaper_frequency Frequency (in seconds!) with which Nagios will
reap check results, as described in Chapter 2.

auto_reschedule_checks Specifi es if Nagios will attempt to automatically
reschedule active host and service checks to
“smooth” them out over time (experimental). 0 = no,
1 = yes.

auto_rescheduling_interval How often (in seconds) Nagios will attempt to
automatically reschedule checks (experimental).

auto_rescheduling_window Defi nes the “window” of time (in seconds)
that Nagios will look at, when automatically
rescheduling checks (experimental).

sleep_time The time (in seconds) to sleep between checking for
system events and service checks that need to
be run.

Table B.1 nagios.cfg (continued)

(continues)

200 Appendix B nagios.cfg and cgi.cfg

Option Description

service_check_timeout Specifi es the length of time (in seconds) Nagios
allows service check commands to execute before
killing them off.

host_check_timeout Specifi es the length of time (in seconds) Nagios
allows host check commands to execute before
killing them off.

event_handler_timeout Specifi es the length of time (in seconds) Nagios
allows event handler commands to execute before
killing them off.

notifi cation_timeout Specifi es the length of time (in seconds) Nagios
allows notifi cation commands to execute before
killing them off.

ocsp_timeout Specifi es the length of time (in seconds) Nagios
allows obsessive-compulsive service processor
commands to execute before killing them off.

perfdata_timeout Specifi es the length of time (in seconds) Nagios
allows perfdata commands to execute before killing
them off.

retain_state_information Specifi es if Nagios saves state information for
services and hosts before it shuts down. 0 = no,
1 = yes.

state_retention_fi le File that Nagios should use to store host and service
state information.

retention_update_interval Determines how often (in minutes) Nagios
automatically saves retention data during normal
operation. 0 = no, 1 = yes.

use_retained_program_state Specifi es if Nagios sets program status variables
based on the values saved in the retention fi le.
0 = no, 1 = yes.

use_retained_scheduling_info Specifi es if Nagios retains the scheduling
information (next check time) for hosts and services
based on the values saved in the retention fi le.
0 = no, 1 = yes.

interval_length Defi nes the interval length used in various other
time-based directives, as described in Chapter 2.

use_aggressive_host_checking Specifi es if to use aggressive host checking.
0 = no, 1 = yes.

execute_service_checks Globally toggles service checking. 0 = no,
1 = yes.

accept_passive_service_checks Specifi es if Nagios accepts passive service checks.
0 = no, 1 = yes.

Table B.1 nagios.cfg (continued)

(continues)

201Appendix B

Option Description

execute_host_checks Specifi es if Nagios actively runs host checks
(normally disabled, as described in Chapter 2).
0 = no, 1 = yes.

accept_passive_host_checks Specifi es if Nagios accepts passive host checks
0 = no, 1 = yes.

enable_notifi cations Globally toggles notifi cations. 0 = off, 1 = on.

enable_event_handlers Globally toggles notifi cations. 0 = off, 1 = on.

process_performance_data Specifi es if Nagios processes performance data
returned from service and host checks. 0 = no,
1 = yes.

host_perfdata_command Specifi es the short name of a command defi nition
that defi nes a program to be run after every host
check for the purpose of handling performance data.

service_perfdata_command Specifi es the short name of a command defi nition
that defi nes a program to be run after every service
check for the purpose of handling performance data.

host_perfdata_fi le Specifi es a fi le used to store host performance data.

service_perfdata_fi le Specifi es a fi le used to store service performance
data.

host_perfdata_fi le_template Template that defi nes what and how data is written
to the host perfdata fi le.

service_perfdata_fi le_template Template that defi nes what and how data is written
to the host perfdata fi le.

host_perfdata_fi le_mode Determines if the host performance data fi le is
opened in write (w) or append (a) mode.

service_perfdata_fi le_mode Determines if the service performance data fi le is
opened in write (w) or append (a) mode.

host_perfdata_fi le_processing_interval Defi nes how often (in seconds) the host performance
data fi les are processed using the commands defi ned
below.

service_perfdata_fi le_processing_interval Defi nes how often (in seconds) the service
performance data fi les are processed using the
commands defi ned below.

host_perfdata_fi le_processing_command Specifi es a command that is used to periodically
process the host performance data fi les.

service_perfdata_fi le_processing_command Specifi es a command that is used to periodically
process the service performance data fi les.

obsess_over_services Toggles if Nagios obsesses over service checks and
run the ocsp_command defi ned below. 0 = no,
1 = yes.

Table B.1 nagios.cfg (continued)

(continues)

202 Appendix B nagios.cfg and cgi.cfg

Option Description

oscp_command Command run for every service check that is
processed by Nagios for various reasons, such as
distributed monitoring scenarios.

check_for_orphaned_services Determines if Nagios periodically checks for
orphaned services. Orphaned service checks are
checks that have been executed and removed from
the scheduling queue for which no status has been
returned. 0 = no, 1 = yes.

check_service_freshness Toggles if Nagios periodically checks the
“freshness” of service results. This is used primarily
for passive checks. 0 = no, 1 = yes.

service_freshness_check_interval Specifi es how often (in seconds) Nagios checks the
“freshness” of service check results.

check_host_freshness Toggles if Nagios periodically checks the
“freshness” of host results. This is used primarily for
passive checks. 0 = no, 1 = yes.

host_freshness_check_interval Specifi es how often (in seconds) Nagios checks the
“freshness” of host check results.

aggregate_status_updates Toggles if Nagios aggregates host service and
program status updates. Updates normally happen
immediately, which can cause high CPU loads in
large environments. 0 = no, 1 = yes.

status_update_interval Defi nes the frequency (in seconds) that Nagios
periodically dumps program, host, and service status
data.

enable_fl ap_detection Toggles if Nagios attempts to detect host and service
“fl apping.” Flapping occurs when a host or service
changes between states too frequently. 0 = no, 1 =
yes.

low_service_fl ap_threshold Defi nes thresholds used by the fl ap detection
algorithm.

high_service_fl ap_threshold Defi nes thresholds used by the fl ap detection
algorithm.

low_host_fl ap_threshold Defi nes thresholds used by the fl ap detection
algorithm.

high_host_fl ap_threshold Defi nes thresholds used by the fl ap detection
algorithm.

date_format Defi nes how dates display.

 us (MM-DD-YYYY HH:MM:SS)

 euro (DD-MM-YYYY HH:MM:SS)

 iso8601 (YYYY-MM-DD HH:MM:SS)

Table B.1 nagios.cfg (continued)

(continues)

203Appendix B

Option Description

 strict-iso8601 (YYYY-MM-DDTHH:MM:SS)

p1_fi le The location of the p1.pl script, which is used by the
embedded Perl interpreter.

illegal_object_name_chars Defi nes the characters that are not allowed to be
used in hostnames, service descriptions, or names of
other object types.

illegal_macro_output_chars Defi nes the characters that will be stripped from
macros before the macros are used in command
defi nitions. The following macros are stripped of the
characters you specify:

$HOSTOUTPUT$

$HOSTPERFDATA$

$HOSTACKAUTHOR$

$HOSTACKCOMMENT$

$SERVICEOUTPUT$

$SERVICEPERFDATA$

$SERVICEACKAUTHOR$

$SERVICEACKCOMMENT$

use_regexp_matching Toggles if regular expression matching takes place
in the object confi guration fi les, as described in
Chapter 4, “Confi guring Nagios.” This option
enables only regex matching for strings that contain
* or ?. 0 = no, 1 = yes.

use_true_regexp_matching Toggles if true regular expression matching takes
place in the object confi guration fi les. 0 = no,
1 = yes.

admin_email The administrator’s email address.

admin_pager The administrator’s pager address/number.

daemon_dumps_core Toggles if Nagios is allowed to generate .core fi les.
0 = no, 1 = yes.

Table B.1 nagios.cfg (continued)

204 Appendix B nagios.cfg and cgi.cfg

Table B.2 cgi.cfg
Option Description

main_confi g_fi le Specifi es the location of nagios.cfg.

physical_html_path Specifi es the path where the HTML fi les reside.

url_html_path Specifi es the portion of the URL that corresponds
to the physical location of the Nagios HTML fi les.
If you access the Nagios pages with a URL like
http://www.localhost.com/nagios, this value should
be /nagios.

show_context_help Toggles if a context-sensitive help icon will be
displayed for most of the CGIs. 0 = no, 1 = yes.

nagios_check_command Specifi es the full path and fi lename of the program
used to check the status of the Nagios process. A
check_nagios command is included in the plugins
tarball for this purpose.

use_authentication Toggles if the CGIs uses authentication when
displaying host and service information. 0 = don’t
use authentication, 1 = use authentication.

default_user_name Specifi es a default username that can access pages
without authentication.

authorized_for_system_information A comma-delimited list of all usernames that have
access to viewing the Nagios process information,
as provided by the Extended Information CGI
(extinfo.cgi) (as described in Chapter 4).

authorized_for_confi guration_information A comma-delimited list of all usernames that can
view all confi guration information (as described in
Chapter 4).

authorized_for_system_commands A comma-delimited list of all usernames that can
issue shutdown and restart commands to Nagios
via the command CGI (cmd.cgi) (as described in
Chapter 4).

authorized_for_all_services A comma-delimited list of all usernames that can
view information for all services that are being
monitored (as described in Chapter 4).

authorized_for_all_hosts A comma-delimited list of all usernames that
can view information for all hosts that are being
monitored (as described in Chapter 4).

authorized_for_all_service_commands A comma-delimited list of all usernames that can
issue service-related commands via the command
CGI (cmd.cgi) for all services that are being
monitored (as described in Chapter 4).

authorized_for_all_host_commands A comma-delimited list of all usernames that can
issue host-related commands via the command CGI
(cmd.cgi) for all hosts that are being monitored (as
described in Chapter 4).

(continues)

205Appendix B

Option Description

statusmap_background_image Specifi es an image to be used as a background in the
statusmap CGI.

default_statusmap_layout Specifi es the default layout method the statusmap
CGI should use for drawing hosts.

0 = User-defi ned coordinates

1 = Depth layers

2 = Collapsed tree

3 = Balanced tree

4 = Circular

5 = Circular (Marked Up)

default_statuswrl_layout Specifi es the default layout method the statuswrl
(VRML) CGI should use for drawing hosts.

0 = User-defi ned coordinates

2 = Collapsed tree

3 = Balanced tree

4 = Circular

statuswrl_include Specifi es additional, user-created objects to include
in the VRML CGI.

ping_syntax Specifi es what syntax should be used when
attempting to ping a host from the WAP interface
(using the statuswml CGI).

refresh_rate Defi nes the refresh rate (in seconds) used by the
CGIs.

host_unreachable_sound Specifi es an optional audio fi le that should be played
in your browser window when a host becomes
unreachable.

host_down_sound Specifi es an optional audio fi le that should be played
in your browser window when a host goes into a
critical state.

service_critical_sound Specifi es an optional audio fi le that should be played
in your browser window when a service goes into a
critical state.

service_warning_sound Specifi es an optional audio fi le that should be played
in your browser window when a service enters a
warning state.

service_unknown_sound Specifi es an optional audio fi le that should be played
in your browser window when a service enters an
unknown state.

normal_sound Specifi es an optional audio fi le that should be played
in your browser window when nothing is broken
and everything is fi ne.

Table B.2 cgi.cfg (continued)

This page intentionally left blank

207

A P P E N D I X C

Command-Line
Options

This appendix contains command-line options for the Nagios binary and as several fre-
quently used plugins in the plugins tarball.

Nagios

Nagios Binary

Syntax

/path/to/nagios [option] <main_confi g_fi le>

Discussion
The Nagios binary normally starts by way of an init script; however, it can be called from the
command line and provides two interesting and useful modes when accessed in this manner.

Table C.1 Nagios Command-Line Options

Option Description

-h Display help text.

-d Daemon mode. Launch Nagios in the background as
a daemon.

(continues)

208 Appendix C Confi gure Options

Option Description

-s Scheduling information mode. Displays projected or
recommended scheduling information, based on the
current data in the confi guration fi le.

-v Verifi cation mode. Reads all data in the
confi guration fi les and performs a sanity check.
(Handy for verifying your confi guration data after
you make a change and before you start Nagios.)

 Plugins

By nature, all plugins may be executed directly from the command line. The fi rst law of
plugins is that they share an -h switch. The -h switch displays information about the plugin
and how it works. All plugins are self-documenting, in this respect.

Most plugins support warning and critical thresholds; these are nearly always specifi ed
by way of -w and -c, respectively. Some thresholds may be specifi ed as a range of numbers.
Where this is true, the range is represented as a pair of colon-separated numbers with the
minimum value on the left and the maximum value on the right (min:max). Some plugins
require both numbers in the range to be specifi ed, whereas others allow you to specify one
half of the pair; for example “4:” to mean “at least 4.”

check_ping

Syntax

Check_ping –H <host_address> -w <wrta>,<wpl>% -c <crta>,<cpl>%
 [-p packets] [-t timeout] [-L] [-4|-6]

Discussion
Use the systems ping command to check connection stats for a remote host. Warning and
critical thresholds are given as a combination of roundtrip time (in milliseconds) and packet
loss (as a percentage).

Table C.2 Check_ping Options

Option Description

-h Displays help text.

-V Displays version information.

Table C.1 Nagios Command-Line Options (continued)

(continues)

209Appendix C

Option Description

-4 Uses Ipv4 pings.

-6 Uses Ipv6 pings.

-H Specifi es the target hostname.

-w Specifi es the warning threshold.

-c Specifi es the critical threshold.

-p Specifi es number of packets to send (default: 5).

-L Generates HTML output 1.30. Copyright (c) 1.

-t Specifi es the timeout limit (in seconds).

Example
check_ping –H bart –w 700,20% -c 1200,50%

check_tcp

Syntax

 check_tcp -H host -p port [-w <warning time>] [-c <critical
 time>][-s <send string>] [-e <expect string>] [-q <quit
 string>][-m <maximum bytes>] [-d <delay>] [-t <timeout seconds>]
 [-r <refuse state>] [-M <mismatch state>] [-v] [-4|-6] [-j]
 [-D <days to cert expiry>] [-S <use SSL>]

Discussion
The check_tcp plugin opens a TCP connection to the specifi ed port on the specifi ed host. It
is capable of interacting with text-based protocols and supports SSL. Check_tcp provides
performance data back to the Nagios daemon.

Table C.3 Check_tcp Options

Option Description

-h Displays help text.

-V Displays version information.

-H Targets hostname or IP address.

-p Targets port number (the default is none).

-4 Uses IPv4.

Table C.2 Check_ping Options (continued)

(continues)

210 Appendix C Confi gure Options

Option Description

-6 Uses IPv6.

-s Specifi es a string to send to the serve.

-e Specifi es a string to expect in server response.

-q Specifi es a string to send server to initiate a clean
close of the connection.

-r Specifi es how to treat TCP refusals (okay, warn, or
crit). This is useful for, as an example, verifying
fi rewall rules. (The default is crit).

-M Specifi es what to do when expected string
mismatches with returned string (okay, warn, or crit
[default: warn]).

-j Hides output from TCP socket. This is useful for
keeping sensitive information out of the Nagios Web
interface.

-m Closes connection once more than this number of
bytes are received.

-d Seconds to wait between sending string and polling
for response.

-D Minimum number of days an SSL certifi cate has to
be valid.

-S Toggles the SSL for the connection.

-w Warning timeout (in seconds).

-c Critical timeout (in seconds).

-t Timeout (in seconds [default: 10]).

-v Prints verbose output.

Examples
Simple port 80 query:

check_tcp –H bart –p 80

SMTP hello:

check_tcp –H bart –p 25 –s 'helo homer.skeptech.org' –e '250 bart.
skeptech.org' –q 'quit'

Table C.3 Check_tcp Options (continued)

211Appendix C

check_http

Syntax

check_http -H <vhost> | -I <IP-address> [-u <uri>] [-p <port>]
 [-w <warn time>] [-c <critical time>] [-t <timeout>] [-L]
 [-a auth] [-f <ok | warn | critcal | follow>] [-e <expect>]
 [-s string] [-l] [-r <regex> | -R <case-insensitive regex>]
 [-P string] [-m <min_pg_size>:<max_pg_size>] [-4|-6] [-N]
 [-M <age>] [-A string] [-k string]

Discussion
Check_http attempts to open an HTTP connection with the host. Successful connections
return okay, refusals and timeouts return critical, and other errors return unknown. Success-
ful connections that return unexpected messages or text result in warning. If you are check-
ing virtual servers that use host headers, you must specify the fully qualifi ed domain name
of the target host.

Table C.4 Check_http Options

Option Description

-h Prints detailed help screen.

-V Prints version information.

-H Hostname argument for servers using host headers
(virtual host). Appends a port to include it in the
header (such as example.com:5000).

-I IP address or name (uses numeric address, if
possible, to bypass DNS lookup).

-p Port number (default: 80).

-4 Uses IPv4 connection.

-6 Uses IPv6 connection.

-S Connects via SSL.

-C Minimum number of days a certifi cate has to be
valid. (When this option is used, the URL is not
checked.)

-e String to expect in fi rst (status) line of server
response (default: HTTP/1.) If specifi ed, skips
all other status line logic (ex: 3xx, 4xx, 5xx
processing).

-s String to expect in the content.

-u URL to GET or POST (default: /).

-P URL encoded HTTP POST data.
(continues)

212 Appendix C Confi gure Options

Option Description

-N Don’t wait for document body: Stop reading after
headers. (Note that this still is an HTTP GET or
POST, not a HEAD).

-M Warn if document is more than SECONDS old. The
number can also be of the form 10m for minutes,
10h for hours, or 10d for days.

-T Specifi es content-type header media type when
POSTing.

-l Allows regex to span newlines (must precede -r or
-R).

-r Searches page for regex STRING.

-R Searches page for case-insensitive regex STRING.

-a Username:password on sites with basic
authentication.

-A String to be sent in HTTP header as User Agent.

-k Any other tags to be sent in HTTP header, separated
by semicolon.

-L Wraps output in HTML link (made obsolete by
urlize).

-f How to handle redirected pages (okay, warn,
critical, or follow).

-m Minimum page size required (bytes): maximum
page size required (bytes). For example, 20:150 for
a page between 20 and 150 byte.

-w Response time to result in warning status (seconds).

-c Response time to result in critical status (seconds).

-t Seconds before connection times out (the default
is 10).

-v Shows details for command-line debugging (Nagios
may truncate output).

Examples

Simple HTTP connect:

check_http www.google.com

SSL-enabled check

check_http –S mail.google.com

Table C.4 Check_http Options (continued)

213Appendix C

Connect via SSL, present a “howdy” cookie, and search the site for the word login.

check_http –S –k 'Cookie: howdy=itsMeDave' –r 'login'
 mail.google.com

check_load

Syntax

check_load -w WLOAD1,WLOAD5,WLOAD15 -c CLOAD1,CLOAD5,CLOAD15

Discussion
The check_load plugin checks the utilization triplet on the local host. For remote hosts, it
is launched via NRPE or check_by_ssh. Critical and warning thresholds are given as utili-
zation triplets separated by commas. For an in-depth discussion of utilization triplets, see
Chapter 6, “Watching.”

Table C.5 Check_load Options

Option Description

-h Print help text.

-V Print version text.

-w Warning threshold triplet.

-c Critical threshold triplet.

Example
check_load –w 15 10 5 –c 30 20 10

check_disk

Syntax

check_disk -w limit -c limit [-p path | -x device] [-t timeout]
 [-m] [-e] [-v] [-q]

Discussion
The check_disk plugin checks the amount of used disk space on a mounted fi le system and
generates an alert if free space is less than one of the threshold values. Thresholds are given

214 Appendix C Confi gure Options

as either percentages or static amounts of disk space. The space units are defi nable to kilo-
byte, megabyte, gigabyte, or terabyte. The default unit is the megabyte. Check_disk works
on device fi les and network fi le systems as well as mount point paths. Checks of network fi le
system mounts may be suppressed with the -l option.

Table C.6 Check_disk Options

Option Description

-h Print detailed help screen.

-V Print version information.

-w Exit with WARNING status if less than
INTEGER—units of disk are free.

-w Exit with WARNING status if less than PERCENT
of disk space is free.

-c Exit with CRITICAL status if less than INTEGER—
units of disk are free.

-c Exit with CRITCAL status if less than PERCENT of
disk space is free.

-C Clear thresholds.

-u Choose bytes, kB, MB, GB, TB (the default is MB).

-k Same as --units kB.

-m Same as --units MB.

-l Only check local fi le systems.

-p Path or partition (may be repeated).

-x Ignore device (only works if -p unspecifi ed).

-X Ignore all fi le systems of indicated type (may be
repeated).

-M Display the mountpoint instead of the partition.

-e Display only devices/mountpoints with errors.

-w Response time to result in warning status (seconds).

-c Response time to result in critical status (seconds).

-t Seconds before connection times out (the default
is 10).

-v Verbose output.

Example:
Check all locally-mounted partitions:

Check_disk –l –w 10% -c 5%

215Appendix C

Check /var and /etc only.

Check_disk –w 10% -c 5% -p /var –p /etc

check_procs

Syntax

check_procs -w <range> -c <range> [-m metric] [-s state] [-p ppid]
 [-u user] [-r rss] [-z vsz] [-P %cpu] [-a argument-array]
 [-C command] [-t timeout] [-v]

Discussion
Check _procs generates WARNING or CRITICAL states if the specifi ed metric is outside the
required threshold ranges. Many metrics are supported, including

■ PROCS—Number of processes (default)

■ VSZ—Virtual memory size

■ RSS—Resident set memory size

■ CPU—Percentage CPU

■ ELAPSED—Time elapsed in seconds

Additionally, fi lters may be applied to the process list to narrow the search results. The
fi lters and metrics combine to enable complex process query functionality. Thresholds are
specifi ed as min:max ranges. Only one half of the range is required.

Table C.7 Check_procs Options

Option Description

-h Display help text.

-w Generate warning state if metric is outside this
range.

-c Generate critical state if metric is outside this range.

-m Specifi es the metric, one of:

PROCS—Number of processes (default)

VSZ—Virtual memory size

RSS—Resident set memory size

CPU—Percentage cpu

(continues)

216 Appendix C Confi gure Options

Option Description

ELAPSED—Time elapsed in seconds

-t Timeout value (the default is 10).

-v Be verbose.

-s Filter for processes possessing the given status fl ag
(see the ps manual page for valid fl ag types for your
OS) (statusfl ag).

-p Filter for children of the given parent process ID
(ppid).

-z Filter for processes using more than the given
virtual memory size (vsz).

-r Filter for processes using more than the given
resident set memory size (rss).

-P Filter for processes using more than the given
percent processor utilization (pcpu).

-u Filter for processes owned by the given username or
UID (user).

-a Filter for processes with args that contain the given
string (arg).

-C Filter for exact matches of the given command
(command).

 Examples
Critical, if not one process with command name Nagios. Critical, if < 2 or > 1024 processes.

check_procs -c 1:1 -C nagios

Warning alert, if > 10 processes with command arguments containing /usr/local/bin/perl
and owned by root.

 check_procs -w 10 -a ‘/usr/local/bin/perl’ -u root

Alert, if the virtual memory size of any processes over 50K or 100K.

 check_procs -w 50000 -c 100000 --metric=VSZ

Alert, if CPU utilization of any processes over 10% or 20%.

 check_procs -w 10 -c 20 --metric=CPU

Table C.7 Check_procs Options (continued)

217

I N D E X

A

accept_passive_host_checks option, 201
accept_passive_service_checks option, 200
acknowledgments, notifi cation, 31–32
Adams, Russell, NACE, 79
admin_email option, 203
admin_pager option, 203
administrators, systems monitoring, 1–4

E2E, 11
failover systems, 11–12
layered notifi cations, 9–10
network locations, 6–7
overhead, 4–5
security, 7–9

aggregate_status_updates option, 202
Apache, confi guration, 72–73
authorized_for_all_host_commands

option, 204
authorized_for_all_hosts option, 204
authorized_for_all_service_commands

option, 204
authorized_for_all_services option, 204
authorized_for_confi guration_information

option, 204
authorized_for_system_commands

option, 204
authorized_for_system_information

option, 204
auto-discovery tools, 79

GUI confi guration, 82
Fruity, 82–83

Monarch, 83–84

NACE, 79–81

auto-discovery tools, GUI confi guration
(continued)

namespace, 81–82
Nmap, 79–81

auto_reschedule_checks option, 199
auto_rescheduling_interval option, 199
auto_rescheduling_window option, 199

B

bandwidth, processing considerations, 4–5
best practices

E2E Monitoring, 11
failover systems, 11–12
layered notifi cations, 9–10
network locations, 6–7
processing

bandwidth considerations, 4–5

remote versus local, 4

security, 7–9
systems monitoring, 1–4

--bindir=DIR option, installation
directories, 193

broker_module option, 198

C

callbacks, function pointers, 173–175
cfg_dir option, 197
cfg_fi le option, 197
cgi.cfg fi les

confi guration, 57–58
option, 204–205

check_disk command, 213–215
check_external_commands option, 197

218 Index

check_for_orphaned_services option, 202
check_host_freshness option, 202
check_http command, 211–213
check_load command, 213
check_ping command, 208–209
check_procs command, 215–216
check_service_freshness option, 202
check_tcp command, 209–210
code listings

Apache Sample VirtualHost Confi g,
72–73

BgpLastError Command Defi nition, 125
Broker’s make_callback code for

SERVICE_STATUS_DATA, 187
Calling Load_Checker, 22
CDEFs Data Summarization, 154
CDEF Syntax, 151
Ceck_Disk Defi nition for

NagioGraph, 148
Check_clust Plugin in Perl/WMI,

104–105
Check_dllhost Command

Defi nition, 110
Check_dllhost Service Defi nition, 110
Check_dll Host, 102–105
Check_http Service Defi nition, 88–89
Check_load Command Defi nition with

Argument Passing, 116
Check_load Service Defi nition, 116
Check_nt_cpuload Command

Defi nition, 111
Check_nt_cpuload Service

Defi nition, 112
Check_ping_service Defi nition, 87
Check_ping Command Defi nition, 86
Check_ssl Service Defi nition, 94
Check_swap Command Defi nition, 118
Check_tcp Wrapper, 90–92, 103–105

code listings (continued)

Command Example, 61
Command to Perform SMTP

Handshake, 92
Confi g.xml for WebInject, 95
Contact Example, 62–64
Creating Multi-Counter RRD, 143
Creating Single-Counter RRD, 140
Enabling SNMP on Cisco Routers, 122
Event Broker Sending Data, 185–186
Event Handler Function, 186–187
Generic Check_tcp Defi nition, 88
Grepable Nmap Output, 80
Hostdependency Example, 70
Hostescalation Example, 69
Hostextendedinfo Example, 72
Hostgroup Example, 68
Host Example, 64
Host Template and Consumer

Defi nition, 59
Host Template Skeleton, 76
Includes, 181
init Functioin, 182
Installing Nagios for the Impatient

Person, 42
Installing Nagios with Patches, 47
List of Hosts, 77
MIB snmpwalk Output, 125
Modifying RRAs in NagiosGraph, 146
NagiosGraph Check_Ping

Defi nition, 148
Nebmodule Struct, 183
nebstruct_service_status_data

struct, 188
NEB Module that Implements

Filesystem Interface, 178–180
Notifi cation Command Defi nition, 63

219Index

code listings (continued)

Output from Confi gure, 45
Output from Namespace Command, 81
Output from Plugins Confi gure, 48
Output from Sensors Program, 128–129
Performance Data Wraper for

Plugins, 38
Ping Plugin, 19
Ping with Summary Output, 20
Process-Service-Perfdata Command, 147
Protocol-Specifi c Check_tcp Command

Defi nition, 89
Realistic Nagios Installation, 45
Remote Load Average Checker, 21
Remote Load Average Checker with

Exit Codes, 21–22
Sample Host Defi nition, 54
Sell Scriptto Create hosts.cfg from

Skeletons and Host List, 77
service_struct def from nagios.h,

188–190
Serviceescalation Example, 69
Servicegroup Example, 69
Services Defi nition Skeleton, 78
Service Dependency Example, 71
Service Example, 66
Service Template to Use with

Defi nition Skeleton, 20–22, 63, 77–78,
91, 103–105, 179–180, 187–190

Specifying Object Confi g Files
Individually, 55

Template, 87
Test Case File for WebInject, 96
Timeperiod Example, 60
Unrecognizable SNMP, 123
Using Function Pointers, 174
Verbose Output from WebInject, 97
WebInject Command Defi nition, 97
WebInject Service Defi nition, 98

code listings (continued)

collection, data visualization, 145
glue layer, 145–146
NagiosGraph, 146–149

colored statusmap patches, 46–47
COM (Component Object Model),

100–101
command-line options

Nagios binary, 207–208
plugins, 208

check_disk, 213–215

check_http, 211–213

check_load, 213

check_ping, 208–209

check_procs, 215–216

check_tcp, 209–210

command_check_interval optin, 198
command_fi le option, 198
commands

confi guration, 61–62
object, 52

comment_fi le optin, 198
Component Object Model (COM),

100–101
confi gurations

Apache, 72–73
cgi.cfg fi le options, 204–205
commands, 61–62
contact group, 64
contact object, 63
dependencies, 71
escalations, 70
extended information, 72
fi les

cgi.cfg, 57–58

nagios.cfg, 54–56

objects, 52–54

220 Index

confi gurations (continued)

hostgroups, 68–69
hosts, 65–66
nagios.cfg fi le options, 197–203
Nagios installation, 42–43
services, 67–68
templates, 58–60
timeperiods, 60

confi gure scripts
installation directories, 193–194
optional features, 194
options, 193
packages, 195

contactgroups
confi guration, 64
object, 52

contact objects, 52, 63
CPAN Web site, 84
CPU, UNIX monitoring, 113–116
Cygwin feature, 194

D

daemon_dumps_core option, 203
data visualization, 132–135

front-end, 149
draw, 155, 158

RPN (Reverse Polish Notation),
152–154

RRDTool Graph Mode, 149–152

selection, 154–155

management interface, 158–159, 162
GD Graphics Library, 164–165

GraphViz, 167–168

jsvis force directed graphs, 171–172

NagVis, 166–167

RRDTool Fetch Mode, 162–164

Sparklines, 169–170

MRTG, 135

data visualization, (continued)

polling and collection, 145
glue layer, 145–146

NagiosGraph, 146–149

RRDTool, 135–136
data types, 136

heartbeat and step, 137–138

minimum and maximum range, 139

Round Robin Archives, 139–140

syntax, 140–144

--datadir=DIR option, installation
directories, 193

date_format option, 202
DEBUG0 feature, 194
DEBUG1 feature, 194
DEBUG2 feature, 194
DEBUG3 feature, 194
DEBUG4 feature, 194
DEBUG5 feature, 194
DEBUGALL feature, 194
default_statusmap_layout option, 205
default_statuswrl_layout option, 205
default_user_name option, 204
defi nitions, confi guration objects, 52–54
dependencies

confi guration, 71
Nagios installation, 41

directives, cgi.cfg fi le, 57–58
directories, installation, 193–194
disks, UNIX monitoring, 118
Dondich, Taylor, Fruity, 82–83
downtime, notifi cation, 31–32
downtime_fi le option, 198
draw, data visualization, 155, 158

E

E2E (End to End) Monitoring, 11
embedded-perl feature, 194

221Index

--enable-embedded-perl option, 43
enable_event_handlers option, 201
enable_fl ap_detection option, 202
enable_notifi cations option, 201
enablers, global, 55–56
End to End (E2E) Monitoring, 11
environment sensors, monitoring, 126–127
escalations

confi guration, 70
notifi cation, 31–32

event-broker feature, 194
event_broker_options option, 198
event_handler_timeout option, 200
events, scheduling

check interval and states, 23–26
load distribution, 26–27
service parallel execution, 27–28

Event Broker
function pointers, 173–175
I/O interface, 38
NEB

architecture, 175–178

fi lesystem interface implementation,
178–191

event handler functions, 186–187
--exec-prefi x=EPREFIX option, installation

directories, 193–194
execute_host_checks option, 201
execute_service_checks option, 200
exit codes, plugins, 18–20
extended information, confi guration, 72
external command fi les, I/O interface, 37

F

failover systems, 11–12
FHS (File System Hierarchy Standard), 40

fi les
cgi.cfg, 57–58
confi guration object, 52–54
FHS (File System Hierarchy

Standard), 40
local installs, 40
nagios.cfg, 54–56

fi lesystems, NEB, 178–191
File System Hierarchy Standard (FHS), 40
front-end data visualization, 149

draw, 155, 158
RPN (Reverse Polish Notation),

152–154
RRDTool Graph Mode, 149–152
selection, 154–155

Fruity, 82–83
function pointers, 173–175

G

Galstad, Ethan, 176
GD Graphics Library, 164–165
global_host_event_handler option, 199
global_service_event_handler option, 199
global enablers, 55–56
global enable settings, notifi cations, 28–29
global time-outs, 55–56
glue layer, data visualization, 145–146
GraphViz, 167–168
GUI, confi guration tools, 82

Fruity, 82–83
Monarch, 83–84

H

-h option, confi gure script, 193
high_host_fl ap_threshold option, 202
high_service_fl ap_threshold option, 202

222 Index

host_check_timeout option, 200
host_freshness_check_interval option, 202
host_inter_check_delay_method

option, 199
host_perfdata_command option, 201
host_perfdata_fi le_mode option, 201
host_perfdata_fi le_processing_command

option, 201
host_perfdata_fi le_processing_interval

option, 201
host_perfdata_fi le_template option, 201
host_perfdata_fi le option, 201
host_unreachable_sound option, 205
hostdependency object, 53
hostescalation object, 53
hostextendedinfo objec, 53
hostgroups, confi guration, 68–69
hostgroup object, 53
hosts

confi guration, 65–66
defi ning, 15–16
limited function, 17–18

Host Defi nition Skeleton, 76
host object, 52

I

I/O interfaces, 32
Event Broker, 38
external command fi le, 37
monitoring, 33–35
performance data, 37–38
reporting, 36
Web interface, 32–33

ICMP (Internet Message Control
Protocol), 14

illegal_macro_output_chars option, 203
illegal_object_name_chars option, 203

--infodir=DIR option, installation
directories, 194

installation, 41–42
confi guration, 42–43
directories, 193–194
make install, 45
make targets, 44
NRPE, 48–49
patches, 45

colored statusmap, 46–47

secondary IP, 46

SNMP community string, 46

plugins, 47–48
steps, 41
supported operating systems, 39–40

Intelligent Platform Management Interface
(IPMI), monitoring, 129–130

interdependence, 16–17
interfaces, management, 158–159, 162

GD Graphics Library, 164–165
GraphViz, 167–168
jsvis force directed graphs, 171–172
NagVis, 166–167
RRDTool Fetch Mode, 162–164
Sparklines, 169–170

Internet Message Control Protocol
(ICMP), 14

interval_length option, 200
IPMI (Intelligent Platform Management

Interface), monitoring, 129–130

J–L

jsvis, force directed graphs, 171–172
--libdir=DIR option, installation directo-

ries, 194
--libexecdir=DIR option, installation

directories, 193
Linux, Nagios support, 39

223Index

listings
Apache Sample VirtualHost Confi g,

72–73
BgpLastError Command Defi nition, 125
Broker’s make_callback code for

SERVICE_STATUS_DATA, 187
Calling Load_Checker, 22
CDEFs Data Summarization, 154
CDEF Syntax, 151
Ceck_Disk Defi nition for

NagioGraph, 148
Check_clust Plugin in Perl/WMI,

104–105
Check_dllhost Command

Defi nition, 110
Check_dllhost Service Defi nition, 110
Check_dll Host, 102–105
Check_http Service Defi nition, 88–89
Check_load Command Defi nition with

Argument Passing, 116
Check_load Service Defi nition, 116
Check_nt_cpuload Command

Defi nition, 111
Check_nt_cpuload Service

Defi nition, 112
Check_ping_service Defi nition, 87
Check_ping Command Defi nition, 86
Check_ssl Service Defi nition, 94
Check_swap Command Defi nition, 118
Check_tcp Wrapper, 90–92, 103–105
Command Example, 61
Command to Perform SMTP

Handshake, 92
Confi g.xml for WebInject, 95
Contact Example, 62–64
Creating Multi-Counter RRD, 143
Creating Single-Counter RRD, 140
Enabling SNMP on Cisco Routers, 122
Event Broker Sending Data, 185–186

listings (continued)

Event Handler Function, 186–187
Generic Check_tcp Defi nition, 88
Grepable Nmap Output, 80
Hostdependency Example, 70
Hostescalation Example, 69
Hostextendedinfo Example, 72
Hostgroup Example, 68
Host Example, 64
Host Template and Consumer

Defi nition, 59
Host Template Skeleton, 76
Includes, 181
init Functioin, 182
Installing Nagios for the Impatient

Person, 42
Installing Nagios with Patches, 47
List of Hosts, 77
MIB snmpwalk Output, 125
Modifying RRAs in NagiosGraph, 146
NagiosGraph Check_Ping

Defi nition, 148
Nebmodule Struct, 183
nebstruct_service_status_data

struct, 188
NEB Module that Implements

Filesystem Interface, 178–180
Notifi cation Command Defi nition, 63
Output from Confi gure, 45
Output from Namespace Command, 81
Output from Plugins Confi gure, 48
Output from Sensors Program, 128–129
Performance Data Wraper for

Plugins, 38
Ping Plugin, 19
Ping with Summary Output, 20
Process-Service-Perfdata Command, 147
Protocol-Specifi c Check_tcp Command

Defi nition, 89

224 Index

listings (continued)

Realistic Nagios Installation, 45
Remote Load Average Checker, 21
Remote Load Average Checker with

Exit Codes, 21–22
Sample Host Defi nition, 54
Sell Scriptto Create hosts.cfg from

Skeletons and Host List, 77
service_struct def from nagios.h,

188–190
Serviceescalation Example, 69
Servicegroup Example, 69
Services Defi nition Skeleton, 78
Service Dependency Example, 71
Service Example, 66
Service Template to Use with Defi nition

Skeleton, 20–22, 63, 77–78, 91,
103–105, 179–180, 187–190

Specifying Object Confi g Files
Individually, 55

Template, 87
Test Case File for WebInject, 96
Timeperiod Example, 60
Unrecognizable SNMP, 123
Using Function Pointers, 174
Verbose Output from WebInject, 97
WebInject Command Defi nition, 97
WebInject Service Defi nition, 98

LMSensors, monitoring, 128–129
local processing versus remote, 4
local queries, monitoring

pings, 86–88
port queries, 88–90
querying multiple ports, 90–92
service checks, 92–94
WebInject, 96–98

--localstatedir=DIR option, installation
directories, 194

lock_fi le option, 198
log_archive_path option, 198
log_event_handlers option, 198
log_external_commands option, 199
log_fi le option, 197
log_host_retries option, 198
log_initial_states option, 199
log_notifi cations option, 198
log_passive_checks option, 199
log_rotation_method option, 198
log_service_retries option, 198
low_host_fl ap_threshold option, 202
low_service_fl ap_threshold option, 202

M

main_confi g_fi le option, 204
make cgis target, 44
make contrib target, 44
make fullinstall target, 44
make install, Nagios installation, 45
make install-base target, 44
make install-cgis target, 44
make install-commandmode target, 44
make install-confi g target, 44
make install-html target, 44
make install-init target, 44
make modules target, 44
make nagios target, 44
make targets, Nagios installation, 44
make uninstall target, 44
management interface (data visualization),

158–159, 162
GD Graphics Library, 164–165
GraphViz, 167–168
jsvis force directed graphs, 171–172
NagVis, 166–167
RRDTool Fetch Mode, 162–164
Sparklines, 169–170

225Index

--mandir=DIR option, installation
directories, 194

max_concurrent_checks option, 199
max_host_check_spread option, 199
max_service_check_spread option, 199
memory, UNIX monitoring, 116–118
Monarch, 83–84
monitoring

data visualization, 132–135
front-end, 149–155, 158

management interface, 158–159,
162–172

MRTG, 135

polling and collection, 145–149

RRDTool, 135–144

environmental sensors, 126–127
hosts

defi ning, 15–16

limited function, 17–18

I/O interface, 33–35
IPMI (Intelligent Platform Management

Interface), 129–130
LMSensors, 128–129
local queries

pings, 86–88
port queries, 88–90

querying multiple ports, 90–92

service checks, 92–94

WebInject, 96–98

scheduling scripts, 15
services

defi ning, 15–16

limited function, 17–18

SNMP, 119–126
stand-alone sensors, 127–128
systems, 1–4

E2E, 11

failover systems, 11–12

layered notifi cations, 9–10

monitoring, systems (continued)

network locations, 6–7

overhead, 4–5

security, 7–9

UNIX, 112
CPU, 113–116

disk, 118

memory, 116–118

NRPE, 113

Windows, 98
COM (Component Model Object), 101

NRPE, 109–110

NSClient, 111–112

PowerShell, 107–109

scripting environment, 98–100

VBScript, 106–107

WMI, 101–105

WSH, 105–106

MRTG, data visualization, 135
multiple ports, local queries, 90–92

N

-n option, confi gure script, 193
NACE (Nagios Automated Confi guration

Engine), 79–81
Nagios-Plugins project, 18
nagios.cfg fi les

confi guration, 54–56
options, 197–203

nagios_check_command option, 204
nagios_group option, 197
nagios_user option, 197
NagiosGraph, data visualization, 146–149
Nagios Automated Confi guration Engine

(NACE), 79–81
Nagios binary, 207–208
Nagios Event Broker

function pointers, 173–175
I/O interface, 38

226 Index

Nagios Event Broker (continued)

NEB
architecture, 175–178

fi lesystem interface implementation,
178–191

Nagios Plugin Project, 39
Nagios Remote Plugin Executor (NRPE), 8

monitoring Windows, 109–110
Nagios installation, 48–49
UNIX monitoring, 113

NagVis, 166–167
namespace, auto-discovery tools, 81–82
nanosleep feature, 194
NEB, Event Broker

architecture, 175–178
fi lesystem interface implementation,

178–191
nebstruct_service_status_data structs, 188
networks, locations, 6–7
Nmap, 79–81
normal_sound option, 205
notifi cations, 28

escalations, acknowledgments, and
scheduled downtime, 31–32

global enable setting, 28–29
layered, 9–10
options, 29–30
templates, 30
time periods, 30–31

notifi cation_timeout option, 200
NRPE (Nagios Remote Plugin

Executor), 48
monitoring Windows, 109–110
Nagios installation, 48–49
UNIX monitoring, 113

NSClient, monitoring Windows, 111–112

O

object_cache_fi le option, 197
objects, confi guration

commands, 61–62
contactgroups, 64
contacts, 63
dependencies, 71
escalations, 70
extended information, 72
fi les, 52–54
hostgroups, 68–69
hosts, 65–66
services, 67–68
templates, 58–60
timeperiods, 60

obsess_over_services option, 201
ocsp_timeout option, 200
--oldincludedir=DIR option, installation

directories, 194
operating systems, Nagios support, 39–40
operation

hosts
defi ning, 15–16

limited function, 17–18

I/O interfaces, 32
Event Broker, 38

external command fi le, 37

monitoring, 33–35

performance data, 37–38

reporting, 36

Web interface, 32–33

interdependence, 16–17
notifi cation, 28

acknowledgments, 31–32

escalations, 31–32

227Index

operation, notifi cation (continued)

global enable setting, 28–29

options, 29–30

scheduled downtime, 31–32

template, 30

time periods, 30–31

plugins
exit codes, 18–20

remote execution, 20–23

scheduling
check interval and states, 23–26

load distribution, 26–27

monitoring scripts, 14–15

service parallel execution, 27–28

services
defi ning, 15–16

limited function, 17–18

options, confi gure script, 193
oscp_command option, 202

P

p1_fi le option, 203
packages, confi gure scripts, 195
patches, Nagios installation, 45

colored statusmap, 46–47
secondary IP, 46
SNMP community string, 46

perfdata_timeout option, 200
performance data, I/O interface, 37–38
physical_html_path option, 204
ping_syntax option, 205
pings, local queries, 86–88
plugins

command-line options, 208
check_disk, 213–215

check_http, 211–213

check_load, 213

plugins, command-line options (continued)

check_ping, 208–209

check_procs, 215–216

check_tcp, 209–210

exit codes, 18–20
monitoring

environmental sensors, 126–127

IPMI (Intelligent Platform
Management Interface), 129–130

LMSensors, 128–129

local queries, 86–98

SNMP, 119–126

stand-alone sensors, 127–128

UNIX, 112–118

Windows, 98–112

Nagios installation, 41, 47–48
remote execution, 20–23

polling data visualization, 145
glue layer, 145–146
NagiosGraph, 146–149

port queries, local queries, 88–90
PowerShell, Windows monitoring,

107–109
--prefi x=PREFIX option, installation

directories, 193
procedural approaches, systems

monitoring, 1–4
process_performance_data option, 201
processing

bandwidth considerations, 4–5
remote versus local, 4

Q

-q option, confi gure script, 193
queries (local), monitoring

pings, 86–88
port queries, 88–90
querying multiple ports, 90–92

228 Index

queries (local), monitoring (continued)

service checks, 92–94
WebInject, 96–98

R

refresh_rate option, 205
remote execution, plugins, 20–23
remote processing versus local, 4
reporting, I/O interface, 36
resource_fi le option, 197
retain_state_information option, 200
retention_update_interval option, 200
Reverse Polish Notation (RPN), 152–154
Round Robin Archives, 139–140
routing, processing bandwidth

considerations, 5
RPN (Reverse Polish Notation), 152–154
RRDTool

data visualization, 135–136
data types, 136

heartbeat and step, 137–138

minimum and maximum range, 139

Round Robin Archives, 139–140

syntax, 140–144

Fetch Mode, 162–164
Graph Mode, 149–152

S

--sbindir=DIR option, installation
directories, 193

scheduling
check intervals and states, 23–26
load distribution, 26–27
service parallel execution, 27–28

scripts
confi gure. See confi gure scripts
scheduling for monitoring, 15

scripts (continued)

templates, 76–78
Windows monitoring, 98–100

secondary IP patches, 46
security

best practices, 7–9
cgi.cfg directives, 58

service_check_timeout option, 200
service_critical_sound option, 205
service_freshness_check_interval

option, 202
service_inter_check_delay_method

option, 199
service_interleave_factor option, 199
service_perfdata_command option, 201
service_perfdata_fi le_mode option, 201
service_perfdata_fi le_processing_command

option, 201
service_perfdata_fi le_processing_interval

option, 201
service_perfdata_fi le_template option, 201
service_perfdata_fi le option, 201
service_reaper_frequency option, 199
service_struct def from nagios.h, 188–190
service_unknown_sound option, 205
service_warning_sound option, 205
servicedependency object, 53
serviceescalation object, 53
serviceextendedinfo object, 53
servicegroup object, 53
services

confi guration, 67–68
defi ning, 15–16
limited function, 17–18
local queries, 92–94
object, 53
parallel execution, 27–28

229Index

--sharedstatedir=DIR option, installation
directories, 194

show_context_help option, 204
Simple Network Management Protocol

(SNMP), 8
community string patches, 46
monitoring, 119–126

sleep_time option, 199
SNMP (Simple Network Management

Protocol), 8
community string patches, 46
monitoring, 119–126

Sparklines, 169–170
--srcdir=DIR option, confi grue script, 193
stand-alone sensors, monitoring, 127–128
state_retention_fi le option, 200
status_fi le option, 197
status_update_interval option, 202
statusmap_background_image option, 205
Statusmap feature, 194
statuswrl_include option, 205
Statuswrl feature, 194
--sysconfdir=DIR option, installation

directories, 193
systems monitoring, 1–4

T

temp_fi le option, 198
templates

confi guration, 58–60
notifi cation, 30
scripts, 76–78

time-outs, global, 55–56
timeperiods

confi guration, 60
notifi cation, 30–31

timeperiod object, 52

tools, auto-discovery, 79
GUI confi guration, 82–84
NACE, 79–81
namespace, 81–82
Nmap, 79–81

Tufte, Edward, The Visual Display of
Quan-titative Information, 159

two-tiered networks, 6

U

UNIX
monitoring, 112

CPU, 113–116

disk, 118

memory, 116–118

NRPE, 113

supported operating systems, 39
url_html_path option, 204
use_aggressive_host_checking option, 200
use_authentication option, 204
use_regexp_matching option, 203
use_retained_program_state option, 200
use_retained_scheduling_info option, 200
use_syslog option, 198
use_true_regexp_matching option, 203

V

-V option, confi gure script, 193
VBScript, Windows monitoring, 106–107
visualization (data), 132–135

front-end, 149
draw, 155, 158

RPN (Reverse Polish Notation),
152–154

RRDTool Graph Mode, 149–152

selection, 154–155

230 Index

visualization (data) (continued)

management interface, 158–159, 162
GD Graphics Library, 164–165

GraphViz, 167–168

jsvis force directed graphs, 171–172

NagVis, 166–167

RRDTool Fetch Mode, 162–164

Sparklines, 169–170

MRTG, 135
polling and collection, 145

glue layer, 145–146

NagiosGraph, 146–149

RRDTool, 135–136
data types, 136

heartbeat and step, 137–138

minimum and maximum range, 139

Round Robin Archives, 139–140

syntax, 140–144

W–Z

WebInject, local queries, 96–98
Web interface, 32–33
Wilson, Chris, 130
Windows, monitoring, 98

COM (Component Object Model), 101
NRPE, 109–110
NSClient, 111–112
PowerShell, 107–109
scripting environment, 98–100
VBScript, 106–107
WMI, 101–105
WSH, 105–106

Windows Management Instrumentation
(WMI), 101–105

--with-cgiurl=<local-url> package, 195
--with-cgiurl=<path> option, 43, 47
--with-command-group=<grp> option, 43
--with-command-group=<grp> package,

195
--with-command-user=<user> package,

195
--with-command-user=<usr> option, 43
--with-gd-inc=DIR package, 195
--with-gd-lib=DIR package, 195
--with-htmurl=<local-url> package, 195
--with-htmurl=<path> option, 43
--with-init-dir=<path> option, 43
--with-init-dir=<path> package, 195
--with-lockfi le=<path> package, 195
--with-mail=<path_to_mail> package, 195
--with-nagios-group=<group> option, 47
--with-nagios-group=<grp> option, 43
--with-nagios-group=<grp> package, 195
--with-nagios-user=<user> option, 47
--with-nagios-user=<user> package, 195
--with-nagios-user=<usr> option, 43
--with-perlcache package, 195
--with-trusted-path=<colon delimited:list:

of:paths> option, 47
WMI (Windows Management Instrumen-

tation), 101–105
WSH, Windows monitoring, 105–106

	Building a Monitoring Infrastructure with Nagios
	Contents
	Acknowledgments
	About the Author
	About the Technical Reviewers
	Introduction
	Do it Right the First Time
	Why Nagios?
	What's in This Book?
	Who Should Read This Book?

	CHAPTER 1 Best Practices
	A Procedural Approach to Systems Monitoring
	Processing and Overhead
	Remote Versus Local Processing
	Bandwidth Considerations

	Network Location and Dependencies
	Security
	Silence Is Golden
	Watching Ports Versus Watching Applications
	Who's Watching the Watchers?

	CHAPTER 2 Theory of Operations
	The Host and Service Paradigm
	Starting from Scratch
	Hosts and Services
	Interdependence
	The Down Side of Hosts and Services

	Plugins
	Exit Codes
	Remote Execution

	Scheduling
	Check Interval and States
	Distributing the Load
	Reapers and Parallel Execution

	Notification
	Global Gotchas
	Notification Options
	Templates
	Time Periods
	Scheduled Downtime, Acknowledgments, and Escalations

	I/O Interfaces Summarized
	The Web Interface
	Monitoring
	Reporting
	The External Command File
	Performance Data
	The Event Broker

	CHAPTER 3 Installing Nagios
	OS Support and the FHS
	Installation Steps and Prerequisites
	Installing Nagios
	Configure
	Make
	Make Install

	Patches
	Secondary IP Patch
	SNMP Community String Patch
	Colored Statusmap Patch

	Installing the Plugins
	Installing NRPE

	CHAPTER 4 Configuring Nagios
	Objects and Definitions
	nagios.cfg
	The CGI Config
	Templates
	Timeperiods
	Commands
	Contacts
	Contactgroup
	Hosts
	Services
	Hostgroups
	Servicegroups
	Escalations
	Dependencies
	Extended Information
	Apache Configuration
	GO!

	CHAPTER 5 Bootstrapping the Configs
	Scripting Templates
	Auto-Discovery
	Nmap and NACE
	Namespace

	GUI Configuration Tools
	Fruity
	Monarch

	CHAPTER 6 Watching
	Local Queries
	Pings
	Port Queries
	Querying Multiple Ports
	(More) Complex Service Checks
	E2E Monitoring with WebInject

	Watching Windows
	The Windows Scripting Environment
	COM and OLE
	WMI
	To WSH or not to WSH
	To VB or Not to VB
	The Future of Windows Scripting
	Getting Down to Business
	NRPE
	NSClient/NSCPlus

	Watching UNIX
	NRPE
	CPU
	Memory
	Disk

	Watching "Other Stuff"
	SNMP
	Working with SNMP
	Environmental Sensors
	Stand-alone Sensors
	LMSensors
	IPMI

	CHAPTER 7 Visualization
	Foundations, MRTG, and RRDTool
	MRTG
	RRDTool
	RRD Data Types
	Heartbeat and Step
	Min and Max
	Round Robin Archives
	RRDTool Create Syntax

	Data Collection and Polling
	Shopping for Glue
	NagiosGraph

	Front-Ends and Dashboards
	RRDTool Graph Mode
	RPN
	Shopping for Front-Ends
	drraw

	Management Interfaces
	Know What You're Doing
	RRDTool Fetch Mode
	The GD Graphics Library
	NagVis
	GraphViz
	Sparklines
	Force Directed Graphs with jsvis

	CHAPTER 8 Nagios Event Broker Interface
	Function References and Callbacks in C
	The NEB Architecture
	Implementing a Filesystem Interface Using NEB

	APPENDIX A: Configure Options
	APPENDIX B: nagios.cfg and cgi.cfg
	APPENDIX C: Command-Line Options
	Nagios
	Nagios Binary

	Plugins
	check_ping
	check_tcp
	check_http
	check_load
	check_disk
	check_procs

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W–Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

