\\\\ 1

\
V.Vhen you only have D
time for the answers" :~
24 proven one-hour lessons o
=y
—
_
’/m

SAMS
Teach Yourself

Apache 2

Daniel Lépez Ridruejo
lan Kallen

murself
Apache 2
in 24 Hours

800 East 96th St., Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Apache 2
in 24 Hours
Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-67232-355-9
Library of Congress Catalog Card Number: 2001096489
Printed in the United States of America

First Printing: June 2002

05 04 03 02 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author(s) and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

AcquisiTions EDITOR
Shelley Johnston

DEVELOPMENT EDITOR
Heather Goodell

MANAGING EDITOR
Charlotte Clapp

ProOJECT EDITOR
Elizabeth Finney

Cory EDITOR
Michael Henry

INDEXER
Mandie Frank

PROOFREADER
Bob LaRoche

TEcHNICAL EDITOR
Patrik Grip-Jansson
Allan Liska

TeaM COORDINATOR
Amy Patton

INTERIOR DESIGNER
Gary Adair

CoVER DESIGNER
Aren Howell

PAGE LAYouT
Susan Geiselman

Contents at a Glance

Foreword XX

Introduction 1

PArT | Basic Apache

Hour 1 Apache and the Web 7
2 Understanding Apache Internals 23

3 Installing and Building Apache 37

4 Getting Started with Apache 53

5 Using Apache to Serve Static Conten 71

6 Serving Dynamic Content with CGI 87

7 Restricting Access 107

8 Logging and Monitoring 125

9 Content Negotiation and Environment Variables 143

10 Apache GUIs 155
PART Il Advanced Apache 171
Hour 11 Multi-Processing Modules 173
12 Filtering Modules 189

13 Publishing Extensions 203

14 Virtual Hosting 217

15 Apache as a Proxy Server 233

16 Tuning Apache 249

17 Setting Up a Secure Server 263
ParT Il Extending Apache 283
Hour 18 Extending Apache 285
19 PHP 301

20 mod_perl 323

21 Tomcat and Apache 347

22 Dynamic URI Resolution with mod_rewrite 371

23 Migrating to Apache 2.0 387

24 Additional Apache Modules and Projects 399
A The Apache Software License 411
Index 413

Contents

Introduction 1

PART | Basic Apache 5

Hour 1

Hour 2

Apache and the Web 7

Internet ProtOCOLSc.oiiiuiieiiieciee ettt et et eaaeeere e 7
TICP/IP ettt ettt e ettt et e ete s 8
DNS

WeD Servers HiSTOTY ...ccueririeririeiieieieietesteee ettt
How It All GOt Startedccooveirierieiricieeieeecee e
ADPACHE et
Apache Software Foundation

Apache CONSIAETatiONSccceeeeieierienienieriesieeiteee ettt sttt ettt
Advantages of APACHEcoeiiiiiiiirie e
DiSAAVANTAZES ...veuvinvieitietieiieiieete ettt ettt sttt ettt

SUMIMATY .ttt ettt et et e et e sttt be bt eae et et et enbenbeee

Understanding Apache Internals 23

Evolution of the WEDcc.coiiiiiiiiiiiiiiiteeccee e
APAChE ATCHILECIUIE ..c..oviiiiiiiiieiiiicicice et
Multi-Processing ModUulesccccocviririniiiiiiniiniiniienieieeeeeeeecvesneniene
Additional MPMScc.ooiiiiiiiiiiiiieinneetcctceeeee ettt
MPM Selection and Compatibility
HOOKS i
Multi-ProtoCol SUPPOTTooueriiiiiiiiiiiiiiiniitietetet ettt
Content-Handling ModUlesc..ccevierinininininiiiiicicicnene e
Connector MOdUIEScoeviriiiiiiiiiic e
FAIEETS ittt s sttt
Access/Authentication/Authorization Modulesccccecvveriniiniinienencncncnnens 30
Apache Portable RUNIMEccoccoeiiiiiiniiniiiiiicccceeeeeccccc 31

vi Sams Teach Yourself Apache 2 in 24 Hours

A Day in the Life of @ REQUESEccocoieriririiiiieieieieeceeeeeeee e 32
Apache Startup

Hour 3 Installing and Building Apache 37
Choosing the Appropriate Installation Methodc.ccccevininininiiincncncncnne 37
Building from SOUICEcccveiiiiiiiiiniininctcctcceeee e
Installing @ BINarycccccecieiiiiiiiiininininnctctctccceeeee e
Apache Version Naming

Installing Apache on UNIXcceoueriiniininininiiiieicecccese e
Checking Whether Apache Is Already Installed in Your System 39
Installing from SOUICEccoeciiiiiiiiiniiriiiictcccceeee e 40
Installing BINariescccevieieiiiiniininininineetctctectccere et 43
Building from CVS o 44

Installing Apache on WINdOWSc..cceviririnininieiiiciccce et 45
Notes About the Windows Installer ... 48

Verifying the Integrity of Downloaded Softwareccccocvveviiniiviiiniencncncnens 48

Commercial Alternatives

SUIMIMATY ettt ettt ettt b ettt e enenesae e

QELA e

QUIZ oottt e e et e ab e e e e tae e ta e e e teeeeabeeeabaeetaeenbaeeareens

QUIZ ANISWETS ..vviiiiiiiiiieetieeeiiee ettt eeite e et eestaeeeaaeeeaeeesaaeeesseeenaeeesssaesnseeessseesssaasnseens

Further Readingcc.cocooiiiiiiiiiiiiiiiese et

Hour 4 Getting Started with Apache 53

Layout of Server Files and Dir€Ctoriescocecvevierierienenenenineeieieienenenens 53
Apache Binary and Support SCIIPLScoeveeeeierienienienineeeeeeeeeeeeiesie e 54
LOG FLES .ttt 54
Configuration Filescccoeieiiiiieiiiririereseeeeeeee e 54
CGI Scripts LOCALON .uvivieiieiieiieieieiesiesiesieee ettt 55
Build Information and Header Filesccceoieiiiineninininieieieeieieieee 55
EITOT MESSAZES .uveiutieniieiieeiieeiteeit ettt ettt ettt sbe ettt e 55
Manual Pagesccccoceeveeieienenne. .55
Modules and Libraries DIir€CtOTYccceevererierierierienienienieniieeeeeeeiesiesie e 55
Web Pages and IMagescccecveieierieniiniiniiiieeeeeee ettt 55

Installation DIfferencesc.ooooiiiiiiiiiiiieiieeeeeeee e 55

Contents vii

Configuration Files StrUCTUIEcccoeveriririeiiiieieieiee et 56
Directives ...
Containers
Conditional Evaluationc.cccoeoeiiiiiiiiniiinicineeieceeeeeeeeeeeeeee 59
SErVErROOT .o 60
Including Additional Configuration Filesccccocervimininiiniiniiniieienieneniee 60
Per-Directory Configuration Filesc.ccooeoieiiiiiiiniinininiiieecieiecieee 60
Merging RUIES oouiiuiiiiiiiiieieieieeeee ettt

Additional Configuration Files
Minimal Apache Configuration
LOG FALES ettt
ACCESS_L0J eeiiuiiiiiiiiiiiiiii i
BITON_L10Q wiiiiiiiiiiiiiiie e
Additional FIlesccooiiiiiiiiiiiceceecee e
Apache-Related Commandscceoevereninininieieeieesese e

Apache Server BINary ...
Controlling Apache on Windowsc.cceceririiienieneninineeeeeeeeeeeeeesie e 65
Apache Control Script
Starting Apache for the First Time
TrOUDIESHOOLING ...uveiviiiiiieniieieeit ettt

Already EXisting Web SEIVETcccooiviririiiiiiieieriesiesieeieeeeee e
No Permission to Bind to Port
ACCESS DEMIEA ..ottt

Hour 5 Using Apache to Serve Static Content 71
Addresses, Ports, and Server Namesc..ccccoceeeeieieiinienineneneneeeeieienenennens 71

The ServerName DIreCtive ..o 72
Customizing the Web SEIVETcccoiririnininiiieicicctesene et 73

EITOT MESSAZES ...eveuvititieiieiiciieieicterte ettt 73
Customizing Server Informationc..cccececeevieriinininininieieiecccsenee 75

Aliasing and Mapping of RESOUICEScccoeriririeiiiiiiiiiniineneeececrcrccnecaee 76

URL REdITECHION ..eeeuiiiiiiiiniiiiieitcicieteetcsttet ettt 77

MIME TYPES ettt ettt ettt sttt 78

Defining MIME TYPES ..ccuveiiiiiiiiiiniirenienieeiteteteteteteere ettt 78

MIME MAIC ..ttt 79
The FOrceType DIr€CtIVEcccvvieeiiieiiieciee ettt 79

viii Sams Teach Yourself Apache 2 in 24 Hours

Content HANAIETScc.oouiviiriiriiiieieieieee et 80
Directory Listingsc..cccoceeene .80
Default Document INAEXccevveriiriirininiiieeeeeee e 80
Directory INAEXINGcc.eeeeieiieiieiiierierieniesieet ettt 81
Forbidding Dir€Ctory ACCESSeoverrerierieriirieiieieieniententesteeteeseeiteeeiesse e see e 82
Trailing SIASh ...oouiiiiiiiee e 82
Icons for BOOKMATKScoeriiiiiiiiieieiees e 83

Listening and HOStNAMEccecueviiriirininiiieieieeesieseeeeeeee e 84
CUSLOMMIZALION ..utintititietieieeit ettt ettt ettt ettt be e bt ettt et e b e saenbe e 85
STLE SIIUCKUIE ..ottt 85
DiIrectory LISHINES .o.eeueeuieieiieieieiesieriestesie sttt 85
MIME and File Handlersccccoooviiininiiiiieieeeeseeeeeeeee e 85
Further Reading
Hour 6 Serving Dynamic Content with CGI 87
Common Gateway INterfaceccccoceveviriniininieiiiiiicnneeeeeececcnce
CGI PIotoCOloviiiiiiiiiiiiiiiccc e
CGI OPETAION ..uiniiiiiieiieiieiietet ettt
CGI Environment Variables
CGI RESPONSE ...ttt ettt
Advantages and Disadvantages of CGI Scriptscccceeeevenienienienienicnicncncnnens 89
POTtabIlity ...oveiiiiiiiiiieieicccc e

SIMPLCILY oottt
Existing Code
Source Hiding

Memory Leaks
Performancecoooieieieiiiiiiiine e
Code and Presentationcccceoerereninininieieieeieneseeeee et 91
Configuring APACHEc..coeviiiiiiiiiii e 91
CGI CONLENL vttt ettt et snesre e 91
CGI SECUIILY ..vvintiiitietieiiee ettt 93
Non Parse Headers (NPH) SCIIPES ..covevviriiriiiiiiiiiiiiniineeeeeeeecreiesiee 94
Debugging CGI EXECUONccoevviviiriiniiniiiiiicicieicictesreeteeie e 94
Unix Configurationc.ccoceeeeieieieniinienininteteteteret ettt
Testing Shell Script CGIs .
Per] INStallationc..coceeieieieiiiiiiiinneneceetetee et

Testing Perl CGI SCIIPLS ..oouveieieiiriiniiriiriinectctctetetctceve ettt

Contents

ix

Hour 7

Windows COnfiguIationcoceeeeieierieniinienieee ettt
Testing Batch File CGIs
Per]l 0n WINAOWS ...eiiviiiiieiieieieeeeeee ettt

Enhancing Your CGI Performancecocceceevienienienieninininieieeeiesieseseniene 100
MOA_PEIL oo
FaStCGI ..ttt

Common CGI Problemsccoeoieriiriirininiiieieieeeeeeeeee e
Forbidden EITOT ...c..cciiuiiiiiiiiiieee e
Internal Server Error

Associating Resources as CGIoooviiiiiiieiienienieneeceeeeeeee 104
Debugging and mod_Cgid ..o 104
Further Reading

Restricting Access

AUNENTICATION ..iiiiiiieiiieiieieecee ettt et e e s e e nee s e saeesseenneenne
Client AUthentiCationccecieriierieerierie et ee sttt e e nesaeeseeesaeenee
USer ManagemeNtcc.eeueeuieiiienienieniinieeieeitetet ettt ettt sne e
Apache Authentication Modules ...
Common FUNCHONALILYccoeiiiiiiinininiiicicecccne et
Module FUnctionalitycccccceerereninininieieictenencsceeeceeeeecreve s
File-Based AUthentiCationccccevieviienieeiieeie e
Database File-Based Access CONtrolocceecveevievienienienieneeeeie e 113
Digest-Based AUthentiCationcocceceeeeierienieneneninineeeeeieereeeeenes 114
Additional Authentication Modulesccceceevieriierienieniereeeee e 116
Access CONroleeeeeeeeeeeiieeieeieseeseene
Access Rules
Access Rules Evaluationccccovieviieiiieienieeie e 117
Combining Access Methodsc..cceviririniniiiiiieicieeeeeeeee e 119
Limiting Access Based on HTTP Methodscccccevivinininiiniiiiiicncncncnene 119
SUMIMATY oottt ettt ettt 120
QELA ettt b e b s e e sttt et et e benseeteerene 120
QUIZ oottt e ettt e e a e e b e e tb e e e aee e te e e tbeeeabeeenteeenaeas 121
QUIZ ANISWETS ..veiiuviieiiieeiee ettt ettt e et e et e e steeeeibeeeaeeeaseessseeesaeeesaeessseesaseesssseennseas 121
Related Directivesc......... 122
Common AUthentiCaAtIONccecieriieriierieeieeieete e see e ee e eeesne e senens 122

File-Based AuthentiCationc.ccccoecevieeiuiieiiieeiieeeiee e 122

X

Sams Teach Yourself Apache 2 in 24 Hours

Hour 8

Hour 9

Database File-Based Authenticationcccceeevereneneneeienienienenieseenenes 122
Digest Authentication
ACCESS CONLIOL ..uintiiiiiiieiieteee ettt
Further REadingcccooeeiriiriiieieeeeeeteete et
Logging and Monitoring 125
Logging HTTP REQUESES ..c.coeruiiiiiiniiriiniiniieiteieteietcrcercere ettt 125
What Do You Want to Log?cccecevenenenene ..126
Where Do You Want to Log the Information?c..ccccecvcevieiinininincnenne. 128
Conditional LOZEING ...cc.covvrieiiiiiiiinininiieeetetectcsescseeeeeeee e 131
EITOT MESSAZES ..eovviniiiiiiniiiiieitctetcterte sttt ettt ettt sae e 132
Logging to @ FIle .c..ooiiiiiiiiiiicicttcc e 132
Logging to @ Programc.ccccoevenininininiiiiiicnicnienceeececeeeteecreee e 133
The syslog Daemon Argumentc..c..cecceceveevienenenineneneeeeneeneenrenennennes 133
The LogLevel Directive
MONItoring APACHEcc.coveruiriiriiiiiiiienereretetete ettt st
Configuring MoAUIEScocveiiviiriinininiiietctcctenee ettt
Additional ConfigUIationcccceceeverrererieienienieneneneneeeeeeeeteresresre e 136
Additional Log Flesccccecieiiiiinininininieieteiccnecseseeeeeeteerere e 136
Managing oGScceoeririniriiicicteener ettt 136
Resolving HOStNAMESc.cocveiiviirienininiinicicicictcntestcsrceeeeeeeeeeere e 137
LOg ROLALION «.ovviniiiiiiiieiieiciccecseeeeetet ettt 137
Merging and SpLthing Logsccccoeriririiiiiiiienieninnecceeecrceeee e 138
Logging to Databases
LOZ ADALYSIS .ottt s
Monitoring Error LOgSccccevirininininiiieieicniencncetceeceeercrereee e 139
COomMON EITOTS ..ottt st 139
Connection Reset by Peercccoviviiiiiiiiiniiniininiccccccee 139
File favico.icon Not Foundcccccocooiiiiiiiiie 139
File robots.txt Not Found ..o 140
httpd.pid Overwritten .
SUMMATY oottt r e sb st ebe ettt a b sne v
QEA et
QUIZ oottt ettt et e e et e e ta e e ab e e e b e e e e e e tbeeebeeetae e tbeeeabeeentaeenaeas
QUIZ ANSWETS ..veiiiviieiiieeieeeite et e eteeeteeesteeeeabeeebeeetaeessseessaeeesaeessseesaseeessneesneas
Related DIreCtiVEScouiviiiiiiiiiiiiiiiiciiiccc e
Further Readingccccoceeeviiiiiiiiiiiininttctcccctcrcere ettt
Content Negotiation and Environment Variables 143
Environment Variablesccccueiierierenineninieieteesiesteteeie ettt 143
Standard Environment Variablesc..ccccocceveriniinienienienienieieieneneneseenn 144
Setting Environment Variables Dynamicallyc..cocecevceriierienenenenenennn. 145

Special Environment Variablesccccecevievierieneninenenenieieienieneseseean 146

Contents Xi

Header Manipulation

Content Negotiation
Content Encoding

CRATACIET SELS ...veuvevitietietieiietetete st st et ete ettt et ettt sbe bt ae et e b et et e b b eaes
INEZOLIALION ..vteuiiniiiitietietteitete ettt ettt ettt st sb ettt et et besbeeaes
SUMIMATY .ttt ettt ettt ettt e be et et e b e be b b eaes
QEA bbbkttt
QUIZ ettt ettt ettt et e st e e b e e beebeeabeeabeeaaeesaeereeseebeenne

Quiz Answers ...

Related DITECHVES ...cc.evueruiriiriieiieieierteste ettt ettt et sbe et
Environment Variablesccccooeririririiieieienieniesieseeeecee e 153
Header Manipulationccccooerereninenieieieieniesiesiesieeeete et 153
Content NegOtIationc.cecvevierieriererinieieteteteste ettt ettt 154

Further REadingccooeeiriiriiiieieieeeeet ettt 154

Hour 10 Apache GUIs 155

GUIs and Text-Based Configurationc..cocceceeveevienieniinenenienenieienenenenenne 155
Using Text Files for Configurationc..ccccecevenenenininnnceneniencnenennenes 155
Using a GUI for Configurationc..cecceceeceeveenienenenineneeeeieienreresneeneenes 156

WEDIMIN . 156
Installing WebmUncccceviriiiiiinininineeeteecee s 157
Managing WebmInccccocueviiviirinininiiieietcceseseee et 158
Configuring Apache Settingscccceveeervieiieiienenenenineeeeeeeeeecreereee e 158

Comanche

Installing Comanche
USINg ComMANCRE ocviiiiiiiiiiiiiicncreteccce e
Extending ComancChecc.cccooeverininininiieieicnicnenceceeeeeeeeeeereere e 167

Additional GUITOOISccccoiiiiiiiiiiiiiiiiiiicicee e 168

SUMMATY c.eeiieiiiieiete ettt ettt et ettt b b sne v 168

QEA s 168

Quiz168

QUIZ ANSWETS ..veiiviieiiieeiieeieeeciieeeteeeteeesteeeeabeeebeeetseessseessseeesseessseesaseeenseeensseas 169

Further Readingc.ccocceiiiiiiiiiiiiiiintctctecccceeee et 169

PARrT Il Advanced Apache 171
Hour 11 Multi-Processing Modules 173

Overview of Apache MPM ArchiteCturec.ccccoeeeeenieineineneinreenenneennens 173

The Prefork MPM ooiiiiiiieeeeeete ettt 174
Prefork MPM Configurationc.cccoeeeeuenieenieinenieineeeeneeeceneeenesnenennens 175

The Worker MPM ooiiiiiiiieieteeeee ettt 179

Worker MPM Configurationcccoeeeeereinenieeneinieneeenieeeeneenesreeenennen 180

Xii Sams Teach Yourself Apache 2 in 24 Hours

Perchild MPM ...ttt 180
Perchild MPM Configuration181
WINAOWS MPM ..ottt 182
Windows MPM Configurationcccceceeeeeeienienieninineeeeieeeesie e 183
Which MPM Is Best fOr ME?cccooiiiiiiieieieieiesieieiteeee e 183
Selecting an MPMco.ooiiiiiiiieeeeee e 184
AddItional MPMScouiiiiiiiiiiiiieiseeeeeeteee ettt 184

Hour 12 Filtering Modules 189
Apache Filtering ATrchiteCtureococveririeienieniiniinineeeeeerereresee e 189
Filter CONfIgUIationcccceirieieiiiiiiniininiree ettt 190

Configuration DIT€CtIVEScc.coueviiriririiiiiciciccneseeeeeeeeeeee e 191
Compressing Content with mod_deflate ... 191
Configuring mod_deflate ... 192
LIMItAtioNS ...ocvoviiiiiiiiiiiiiieiie e 192
Server Side InCludes ... 194
Configuring SSI194
SSTDIIECHIVES ..ot 195
Additional Configuration DIireCtivVesccccoveverenininenereeieienrenreereenenes 196
External FIIETINgGccccoiiiiiiiiiiiiiiiitccccee et 196
Configuring External FIlteringcoccocvveiiiiinininininccccccceee 197
Additional Filtering Modulesccccocviiiiiiiiniiniiiiieeeeceercesenenenee 198
SUIMMATY ettt ettt ettt b e eaes 199

MOA_AETLATE weeeiieiieieee et s 200
MOA_INCLUAE ittt ettt ettt et et enee s e neeens 201
MOA_EXT FALTOI i 201

Further Readingcc.coceoiriiiiiiiiiiictecee et 201

Contents

xiii

Hour 13

Hour 14

Publishing Extensions

The Need for a Publishing Protocolc.cccoceiiiiiiiininiiniiniiiiiicnicncncnee
Windows as a Web Server Platform

Separation Of TASKS eeuiiiiiiiiie e
WED HOSEINE vttt et
The DAV ProtOCOLc.ooiuiiiieiieieeieeie ettt
ApPache and DAVooiiiiieeeeeee e e
Configuring DAV ..ottt
RESIIICHUNZ ACCESS uveeuveeiieeiieeiieitiesieeie ettt sttt sttt ettt esaeeneeens
Advanced Configuration
DAV CIENLS ..eeviiiieiiieeiiesttese ettt sttt ettt setesaee s e saeenseenaeenne
MICTOSOFt CHENES .evveeiieiieeiiesiieeiieicet ettt saeeneneas
UNIX CHENES .evtieiiieiieeiieeieeiieste ettt ettt st st ae et sse e snnesaeesenens
Additional DAV PrOJECtSeevuiiriiriiieieiieeie ettt
SUDVEISION ..ottt ettt et e e e neeens
DAYV File SYSIEIMS .eeeuiiiiieiiiesiieiiieieeieeie ettt st s see e
STAE ettt
Future Enhancements for DAV ..ot
Common Error Messages ...
LOCK Databasecc.eecvivieriiiieiiieieeieeieete ettt
WED FOIALLS vttt

Microsoft FrONtPagecoooviiiiiiiiieeeeeee e
Should I Use DAV or FrontPage EXtensions?ccccceeveverienvieniveneennens 214

Virtual Hosting

The Case for Virtual Hosts
DNS and Virtual HOSHNE ..c..eeueeuieieiiierienierieeiteeeeetereete et
Network Interfaces and IP AHASES cccovcererieieienieienieeieeeeeeeee et
IP-Based Virtual HOSINGccveiiiiriiiieriinieiieteeeeieie e
Name-Based Virtual HOSEScccoeviiiiiiiiiiiiiirciceeceeeeeceeeeeeeae
Mass ViIrtual HOSHNE ..cc.eeverieriieiiiiiienieiesiesieei ettt
Other Virtual Hosting TeChNiqUeSscoccvereririeiiiiienieieeeeeeeeseseee
Security CONSIAEIatiONSc.ceveuerierierieniiniieiietetet ettt

Performance Considerationscoccceverucoieienirenicinenieeeeee e
Running Multiple Apache Instances on a Machine ...
SUMIMATY .ttt ettt ettt ettt besbeeaes

Xiv

Sams Teach Yourself Apache 2 in 24 Hours

Hour 15

Hour 16

QUIZ ettt et e ettt e et e e b e e b e et e eaaeenaeesaeeseenraenaeenne 230
Quiz Answers230
Related DITECHIVES .vvivviicvieiiieiieiieieeieeie ettt et ste et e sae e e e e esaeesaeesaesseessaesaaenns 231

Further REadingccooueiiriiriiieieeeesee ettt 232

Apache as a Proxy Server

Introduction to ProXy SEIVEISccccviririiiiiiiniiniiniiniinieeeeeee e
Enable Proxy Support for Apache
Building Apache from Source

Binary Installationscccecvevieviininininiiieicecictcncs e
Apache as @ Forward ProxXycccccconininiininiiiiiiineececceneneniee
Apache Forward Proxy Configurationccccceevenenenenceieniencnenenenne. 235
Configuring Client SUPPOITocuevieriririiieieieietereseeeeeeeeeeereere s 238
CACRING ettt
Caching Backends
Caching Configuration
Apache as @ Reverse ProXYcccccoviiininiiiiniiiciccececcceneseiee 242
Reverse Proxy Configurationc..cecceceeeeevieieniencnininineeeeeeieerceeenene 243
Related Open Source and Commercial Productsc.coceeveveecveiiincncninicnenne 245
SUIMIMATY .ottt ettt ettt 245
QELA s 245
QUIZ ettt et et e e et e et e e e e e et e e tb e e e aeeeaa e e tbeeeabeeeraeenaeas 246
QUIZ ANISWETS ..veiiuviieiiieeieeeiee ettt e et e et e e eteeeeibeeeaeeeaaeessseeeaseeesaeessseesaseeessseensneas 246
Related Directives246
Forward Proxy DITECHVEScceeiririririiieieicnicneniceieeeeteeeeveeve s 246
Reverse Proxy DITECHVEScc.cceveriririiiiieieicrtcnieniceieeeeeeeeeeresre s 247
Caching DITECIIVES ..c.eeuieuieuieiiiiiienienienieee ettt 247
Further Readingc..cocooviiiiiiiiiiiiiiitccectcceee et 247
Tuning Apache 249
SCALADIIIEY .ot 249
Operating System LIMitScccccereririririeieieieniesesiesieeeecee e 250
APACKE SELLNZS .ottt ettt 251
Load Testing YOur Web Sitecccoeririrenieieieieieieteteeteeieeit et 253
APAChEBENCH ..ot 254
TMBLET .ttt sttt ettt 255
Tuning Apache for Performancec..coceeoeeveeiienienininininieieeeesesesesee 256
Mapping Files t0 MEMOTYcccevueriiriiriiiiieieieiesiesiesiesieeeeeee e 256
Distributing the Load
CACKING vttt ettt ettt
Reduce Transmitted Datacccocceviriririeiieieieieeeceee e 257
INEEWOTK SEHNEZS .onvetitieiieiieieietete ettt 258
Performance Tuning for Specific Apache Modulescccceeeverininnnnnnne. 258

Loadable MOdULESccouvieiiiiieiiieiee et 258

Contents

XV

Hour 17

Robots

Preventing Abuse
Network Settings
Processes Limits

File REIAtedoveiiiiiiiieiieieeeeee ettt
Further REadingcccooeeuiririiiieieeeresee et
Setting Up a Secure Server 263
The Need for SECUTILY ..cceviiiiiiiiiiiiriteeeeeeee et 263

Confldentiality ..c..coeeeeieiiiiiiiieeee s 264

INEEGIILY oot 264

AUthentiCation ccocoiiiiiiiiiiiiii e 264
The SSL Protocolcccciiiiiiiiiiiiiiiii e 264

Confldentialitycoeeeeieiiiiiiieie s 265

INEEZIILY oot 266

AUthentiCation ccociiiiiiiiiiiiiiii e 267
Installing SSL ...

OPEISSL ..t

MOG_SSL ettt ettt et ettt ettt s
Managing Certificatescoceevierieriiririnininteeeietcetete et 271

Creating a Key Paircccociiiiiiiiiiniiccccctcec e 272

Creating a Certificate Signing ReqUestc.ccocevevininininiieiiinicniccneeee, 273

Creating a Self-Signed Certificateccccevemeniniininininiieieiencerceeeee 274
SSL Configurationc..ceceeevevevenenne.

Starting the Server

Configuration DITECtIVEScc.coueviririiriiiiieicicrtcnenteeeeteeeee s 275

The SSLOPtions DIr€CtiVecceeevuiieiiieeiieeiieecie et 277

ACCESS CONLIOL .veiiiiiiiciie e et 277

XVi

Sams Teach Yourself Apache 2 in 24 Hours

SSL PIOtOCOL ..ttt 280
Performance
LOZEING ettt
OLNEIS .ttt ettt ettt ettt ettt be s
REVEISE PrOXY ..eeviiiiiiieiieieeeeee ettt 281
Further REadingcccoeeiiiriiiiiieieeesee e 281
PART lll Extending Apache 283
Hour 18 Extending Apache 285
Modules Included with APachec.ccoceveririiiiiiiniiiieccceseee 285
Enabling or Disabling Modulescocceceeieieneneninenenieeeeeceeeeene 288
Environment Variables
Content Type Decisions
URL Mapping and Manipulationc..ecceceeveereneneneneneneeieeenecreeeenenes 290
Directory Handlingccccecvevieviinininininieiceccenesiesieseecee e 291
Authentication and Access Controlcccoocoiiiiiiiiiiiiiiciicececne 291
HTTP HEAdersccocoiiiiiiiiiiiiiiiciececece e 292
Dynamic CONENL ...ocueruieuieiieiiiiierieetere ettt 292
IMONIEOTINE vttt ettt sttt et sn e 293
LOZZING ittt 294
Proxy Supportcccceceevennne.294
Loadable Module SUppOrtccccoeeiririeieieicnienenieseeeeeeeeeeeeeereee s 295
CACRING vttt 295
Document Authoring and Versioningc.ccccceeveveneneneneeeeneenrennenenennes 296
Sample MOAUIESco.eviiiiiiiiiiiiireeeeeeee e 296
Miscellaneous Modulescccocooiiiiiiiiiiiiiccceeee 296
The Apache Extension Tool APXScocooiiiiiiiiiiiieeeccccnencniee 297
USAZE v
Additional Options
Extending Apache with Third-Party Modulescccecevininiiniiiiiincninincnene 298
SUMIMATY .ttt ettt ettt b e eas 298
QEA ettt 298
QUIZ oottt ettt e et e e e aa e e ab e e e ae e e e e e abeeebeeenaaeenneas 298
QUIZ ANSWETS ..veiiuviieiiieeiee ettt ettt e et e et e e e e e veeetaeesaaeeeaveeeaseeeaseeeaseeessseennneas 299
Further Readingccccoeeiriiiiiiiiicr et 299
Hour 19 PHP 301
Introduction to PHPcc.ociiiiiiiiieeee e 301
PHP HISTOTY .eoiiiiiiiiiecirceee ettt 302
PHP ATCRILECIUIE ..ottt 302
PHP AdVantagescccoecieiiiiiiiiiiniiiiiiicicicieiesestc et 303

PHP Disadvantagesc.ccoceceeeirenieuenieinienieenteteesteie et seeseeseeeaesnenesnens 305

Contents Xvii

INSEALLALION ..etiiieiieieteteet ettt ettt st
Installation on Windows
INStalling On UNIX .oveetiiiieiieieieieiesteeieeeee ettt

PHP EXIENSIONS ..eoutintiiiiiitiitieiieteiesteste ettt sb ettt s sbe e
General Options
Graphics Support
Flash Animation
PDF Generation
Database Support
XIML SUPPOTL ittt ettt besbeebe s
SESSION SUPPOTE ettt sbesaeas

PHP COnfigurationccceeeeieieieiienieniesiesieeiteeete ettt

PHP Books

Web Sites
Commercial VENAOTScc.eoieiiiiiiiinieniinieeieet et
Open SoUurce SOIULIONSeeveieriiriiniinierieeeet ettt
Hour 20 mod_perl 323
What IS MOA_PEIL7 oottt ae e 323
The mod_perl API
Building and Installing mod_perlc.cciiieeereenenenene 327
Installing mod_perl from CPAN ... 328
Installing from CVS .ot 329
Both CPAN and CVS Installationscc.cccecvevenininininiineeeieccereenene 329
Hello World with mOd_Perl ..ot 330
CGI ACCEIETALIONeuvinviiiiiiiieiictctetestest ettt 331
Page Components and Templatingccccoceeeevienieniinininininieecrcreenenenene 334
Access, Authentication, and Authorization339
Architecting a Scalable mod_perl Infrastructurec.coceceeevecvevencnicnicnenne 342
SUIMMATY oottt 343

Xviii

Sams Teach Yourself Apache 2 in 24 Hours

Hour 21

Hour 22

Hour 23

QUIZ ettt ettt s e et e et et e e b e e b e e b e e b e enaaenaeesaeeaeenseeaeenne
Quiz Answers

Further Reading

Tomcat and Apache 347
A Little History of Java ServIetscccovveieiieniiniininininieieeeecicnieneneniene 347
Servlet Container Integration with Apachecccocvininininiinincnicneee, 348

Installing and Running Tomcat
Installing Apache on Unix

Installing on WINAOWSccoeoiiiiiiiinininiiieicecccresecee e
Connecting the Apache Web Server to Tomcatcccceceeieivivciiiienencnincnenne 353
Java Web APPLICALIONScoueriiiiiiiiiiiiniiniriteteeeteeetee ettt 355
Build Your Own Webappccccccveieiiniininiiiiicieicicccceeeeetcercese e 356
Accessing SSL Variablescocoeoveviirininininieieieicicceceeee e 364
Building mod_jk
SUIMIMATY oottt ettt ettt b e
QELA et
QUIZ oottt ettt e et e et e e e e aa e e tb e e e aeeeaaeeetbeeeareeeaeeenneas
QUIZ ANSWETS ..veiiuviieiiieeiie ettt ettt e tee et e e et e e et e e eaeeeaeeesabeeesseeesaeessseesaseesssneennneas
Related DIrECIVESc.oiuiiiiiiiiiiiiiiiiicie e 368
Further Readingc.ccoceoiviiiiiiiiiiiitccccceee et 368
Dynamic URI Resolution with mod_rewrite 371
Basic Redirects and Aliases REVIEWccccoceiieiiriiiieiiiniiiieieeeeeeseee 371
Rules-Driven Content Mapping and Redirectioncoceeceeeeieiienienencnicnenne 372
Zen and the Art of MOA_FeWrite ... 374
Super-Charge YOur REdireCtsccovereriririeieieieniesiesiesieececeeie e 375
RANAOM ACES ittt ettt 377

Migrating to Apache 2.0 387
ADPACKE 1.3 oot 387
Migrating to APache 2.0ccooiviirinininieicicceeeeeeeee e 388

Migration Help: Apache 1.3 to Apache 2.0cccccooiiiiiiiiiiiiiiiiice 389

Contents XiX

Microsoft Internet Information SErVercccccoevieriereeniesie e 390
Migration to Apache 2.0c..cccc.c..
Migration Help: IIS to Apache 2.0
TPLANCE ..ottt ettt ae et e b e e eenaeenaeeneeeraans

Hour 24 Additional Apache Modules and Projects 399
ApPAChe 2.0 MOAUIES ..c..ooviriiriiiiiiiiiiiinterer ettt 399
LDAP o 400
POP3400
Mailing List ATChIVING ..cc.ooiiiiiiiiiiniiiiiiiictceccrtcncceceee s 400
Bandwidth Managementccccoeeeriririnieienienienencneeeeeeeeeerere e 401
Extending Apache With CH+ ..ot 401
[1[o Yo T 4 F- 1 - PSSO UURRSUSPR 401
TCL e 401
XSLT MOGUIE ..ottt e 402
SECUTILY wevveuteitetenterte ettt ettt ettt sae sttt ettt saeene s
MOG_ MY @ ettt ettt ettt et e et e e bt e st e et e e it e sabeeeineas
mod_bakery
MOT_ V2N ettt ettt ettt e
Commercial Modules ..o 402
ASE PIOJECES vttt ettt s 404
Java and APaChecccoieiiiiiiiiiii s 404
The Apache XML Projectcc.ccovivimiiiiiiiniinicnieninieneeeccccccreeveee e 405
Apache Resources
Apache Support ...
ADPACKE NEWS ..ottt
APACKECON ..ottt
Commercial SUPPOTLeoveieiiriiitiniiiineet ettt 407
Additional Modules ... 407
SUMIMATY ettt ettt ettt b e 408
QELA e 408

ArpENDIX A The Apache Software License 41

Foreword

When I started working on mod_perl back in early 1996, Apache was at version 1.1 or so
and Perl at 5.002-ish. At the time, members of the Apache Group' were already talking
about Apache version 2.0, and Robert Thau, main architect of the original Apache mod-
ule API, had a prototype in the works. It wasn’t until six years later that the first GA
release of Apache 2.0 (2.0.35) hit the streets. Why did it take so long? One possible
explanation can be found in mod_ss1.h:

/* "The Apache Group: a collection of talented individuals who are trying
to perfect the art of never finishing something."— Rob Hartill

*/

Whatever the real reasons are, if you are already familiar with Apache 1.3, this book will
illustrate the many reasons why Apache 2.0 was worth the wait.

Over the years, Apache has evolved into the dominant Web server platform thanks to its
open source license and modular architecture. Apache 2.0, which was finally released in
April 2002, brings increased performance and a number of exciting new features. Among
those features are filters, which allow modules to process content produced by other
modules before delivering it to clients; a multi-protocol architecture that allows Apache
to serve other protocols, such as FTP and POP3; and improved support for non-Unix
platforms, such as Windows, using the Apache Portable Runtime and platform-specific
multi-processing modules.

All these new features come at a price because module authors must modify their soft-
ware to work with the new internal APIs and support threaded operation. Similarly, sys-
tem administrators who upgrade to the new version must update their knowledge of the
server and how to configure popular third-party modules to work with Apache 2.0. This
book makes that transition easier by providing you with a solid foundation on how to
manage, extend, and fine-tune Apache 2.0 servers.

As you know, there are many developers who contribute to the Apache httpd and subpro-
jects such as mod_perl, Jakarta, Tcl, XML, and PHP. Beyond those, an endless number
of third-party modules extend Apache in various ways. Most developers have experience
with only a small subset of these. Through his work with Comanche, Daniel’s knowledge
of the server and its extensions covers far more area than the average developer. I'm sure
you’ll find that Daniel’s experience is apparent throughout the book, and the many years
he’s spent building his knowledge is presented in a way that will be apparent to you in a
matter of hours.

[1] As it was called at the time before the Apache Software Foundation came to be

I’'m very excited that Apache 2.0 is finally here. If you’re not already excited also, this
book will certainly change that quickly!

—Doug MacEachern

Doug MacEachern is a developer at Covalent Technologies, Inc. He is the lead developer
of the mod_ perl Apache module, an Apache Software Foundation member, and coauthor
of the book Writing Apache Modules with Perl and C.

Lead Author

Daniel Lépez Ridruejo is a senior developer with Covalent Technologies, Inc., which
provides Apache software, support, and services for the enterprise. He is the author of
several popular Apache and Linux guides and of Comanche, a GUI configuration tool for
Apache. Daniel is a regular speaker at open source conferences such as LinuxWorld,
ApacheCon, and the O’Reilly Open Source Convention. He holds a Master of Science
degree in telecommunications from the Escuela Superior de Ingenieros de Sevilla and
Danmarks Tekniske Universitet. Daniel is a member of the Apache Software Foundation.

Contributing Author

Ian Kallen is a senior software engineer and product team lead with Covalent
Technologies developing enterprise-class management tools for the Apache Web server.
Prior to joining Covalent, lan managed the software and network operations at
Salon.com and GameSpot.com. Ian is an instructor at San Francisco State University’s
Multimedia Studies program, and has been an invited speaker at the O’Reilly Open
Source Convention, ApacheCon, and other technology events. In his spare time, lan plays
blues guitar and softball, but he hasn’t had any spare time, so the strings are rusty and
the mitt is dusty.

Dedication

To my father.

Acknowledgments

I would like to thank my parents, Francisco and Marisol; my brother, Angel; and my sis-
ter, Reyes for their support and encouragement while writing this book. My family in
Madrid, el abuelo y tio Angel, Olga, Alvaro, Maria, tia Mari, Gregorio, and Veronica who
take good care of me during my flights back and forth to the United States.

Special thanks go to the team at Sams that gave me the opportunity to write this book
and patiently helped me through the process: Shelley Johnston, Elizabeth Finney,
Jennifer Kost, and Heather Goodell. Vicki Harding and Craig Wiley, from Studio B, took
care of all the paperwork so that I could concentrate on writing.

I am grateful to Patrik Grip-Jansson and Allan Liska for reviewing early drafts and pro-
viding valuable feedback, and to Mike Henry for great copy editing work.

Tan Kallen is the contributing author for the hours on Tomcat, mod_perl, mod_rewrite,
and virtual hosting. Ian is a talented and experienced developer, and I enjoyed working
with him on this project.

Covalent has given me the opportunity to work with great engineers, many of them core
Apache developers, from whom I have learned a great deal and had a lot of fun making
Apache enterprise-ready. I would like to thank especially Cody Sherr, Costin Manolache,
Doug MacEachern, Jon Travis, Will Rowe, and Ryan Bloom for reviewing my work and
answering Apache-related questions. Scott Albro, Mark Douglas, and Fung Yang are
some of the other great individuals at Covalent I enjoy working with.

While I am at it, I would like to say hello to my kickboxing buddies, and thank them for
providing me with a much-needed physical challenge after long hours in front of my lap-
top: Jochen, Lars, Mike, and Ken and to my friends in Sevilla, especially Juanpa, Javi,
Pablo y Paco. A big hello to Jests Blanco, wherever in the world you are right now! My
friends in Denmark—Finnbjorn, Marco, Kristian, and Leo (yes, you are Danish by now,
Leo!)—always encouraged me to “write a book or something” so that I would stop talk-
ing about Linux. Here is the result, I hope you like it! I am also grateful to professors
Lars Dittman, Jorge Chavez, and Alfredo Navarro, who always encouraged me and pro-
vided support to pursue my ideas.

Todd Andersen, Eduardo de Castro, Simon Barber, Roy Petruchska, and Ziv Kimbhi are
some of the people who will be happy that the book is finally done.

And, of course, kudos to the Apache developers who have created the best Web server in
the world! Even if they sometimes take a little too much time in doing so, the result is
worth waiting for. I hope this book will contribute to the further success of Apache.

—Daniel Lopez Ridruejo

I would like to extend a big helping of gratitude to Daniel for inviting me to contribute to
this book. Over the years, Daniel’s efforts at bringing Apache to the people have really
been an inspiration. At last, I have a text to accompany the Apache course I teach at
SESU!

My hat is off to many of the same folks that Daniel mentioned. To the unparalleled group
who are my colleagues at Covalent, their talent, patience, and dedication is truly awe-
some. To the gang at Sams, their guidance, fortitude, and generally putting up with me
has been very gracious. To the Apache developers, for making me look good when I've
had to operate stable, flexible, and economical high-volume Web sites: You make it all
possible.

Special thanks go to my wife, Heidi, and our children, Jessica and Jonah, for their love,
inspiration, and support. I don’t know if I can ever adequately give what I get, but I'll
keep trying.

—lan Kallen

We Want to Hear from Youl!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can e-mail or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name, e-mail address, and phone number. I will carefully review your comments and
share them with the author and editors who worked on the book.

E-mail: opensource@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams title, visit our Web site at
www . samspublishing.com. Type the ISBN (excluding hyphens) or the title of a book in
the Search field to find the page you’re looking for.

Introduction

You don’t write because you want to say something, you write because you've got some-
thing to say.

—F. Scott Fitzgerald

So, What Does This Book Have to Say?

This book explains in simple, clear terms how to configure, manage, and extend version
2.0 of Apache, the most popular Web server on the Internet.

The main goal of writing this book is to show that Apache is not hard to use or adminis-
ter', at least not as hard as many people seem to think. One of the reasons Apache is so
popular with experienced system administrators is because it allows for a great deal of
flexibility in how it is built and configured. But that flexibility also means that the server
can be intimidating and complex for beginner users. The default Apache distribution has
several hundred configuration options. Which of those options are essential and which
are used only in obscure situations? How do I perform simple tasks such as password
protecting a certain part of my Web site or running CGI scripts?

Although the Apache server documentation has improved greatly over time, it is still
mostly a reference for the server configuration options. This book will guide you through
those options and take away much of the complexity with simple, easy-to-understand
explanations. We will take a practical, hands-on approach and concentrate on how to
configure the most popular features and troubleshoot common problems.

For some special cases or truly advanced functionality, the book gives pointers to where
you can find additional information.

By the time you finish this book, you will be able to build a custom Apache server, cre-
ate server-side dynamic pages with PHP and mod_perl, build a secure server with
mod_ss1 and run Java servlets with Tomcat. You will also learn how to monitor the
server, tune Apache for performance and scalability, run a proxy server, and restrict
access to certain parts of your Web site.

'Because it didn’t take me much to figure out that a technical book is not going to make me rich or
get me any hot dates!

Sams Teach Yourself Apache 2 in 24 Hours

Who Should Read This Book?

This book is intended for beginning and intermediate users of Apache 2.0, such as the
following:

* Administrators who are already familiar with Apache 1.3, but want a better under-
standing of the new 2.0 features. They will find information about the new multi-
processing and multiprotocol architecture, the filtering framework, how to
configure popular modules such as mod_perl and PHP to work with 2.0, and
advice on how to migrate from 1.3 servers.

¢ Administrators who are familiar with another Web server, such as Microsoft IIS or
Netscape/IPlanet, and want to migrate to Apache.

* Unix and Windows administrators who have set up servers in the past for mail or
file access, and want to learn how to set up a Web server.

e Web developers who want to gain a better understanding of how Web servers work
or to gain valuable Web administration skills.

e Linux users who are curious about Web servers and want to know how to configure
the Apache server included in their distribution.

What Is Required to Read This Book?

You must be familiar with Unix or Windows basic shell operation, such as creating and
navigating directories, editing files, and executing programs. Previous experience with
Web servers is valuable but not required. You will need Internet access for downloading
the Apache software, third-party modules, and documentation.

Why Is This Book Better than Other Apache
Books?

This book’s focus is on providing a practical guide to Apache running on Windows and
Unix platforms such as Solaris and Linux. To achieve that goal, I draw on my experience
over the years working with Apache-related projects. Being the author of the Comanche
GUI configuration tool, which is downloaded several thousands of times a month, gets
me in contact with people new to Apache and the problems they face trying to get started
with the server. On the other end of the spectrum, working for Covalent, which provides
commercial Apache software and services, enables me to gain valuable insights and
understanding about how Apache is used in enterprise environments. It also gives me the
opportunity to work with, and learn from, some of the most talented Apache developers
out there, such as Ryan Bloom, Doug MacEachern, and Costin Manolache.

Introduction

I have been a speaker at several open source conferences, such as ApacheCon and
LinuxWorld, and authored several how-to guides on Linux and Apache that have been
translated to more than ten languages. This has taught me that it is not only important to
know a particular subject, but you must also be able to effectively communicate that
experience to your audience. That often means spending a large amount of time of the
writing process making sure that the material is well structured, clear, and easy to under-
stand.

This book covers both Windows and Unix. This is important because the 2.0 version of
Apache for Windows has reached a level of quality and maturity similar to the Unix ver-
sions. This, coupled with the continuous security problems associated with Microsoft IIS,
will likely mean an increase in the number of Apache servers deployed on the Windows
platform.

Structure of This Book

This book is divided into three parts. The first part (Hours 1 through 10) helps you build,
configure, and get started with Apache. After completing the chapters, you will be able to
start, stop, and monitor your Web server. You will also be able to serve both static con-
tent and dynamic content (via CGIs), customize the logs, and restrict access to certain
parts of your Web server.

The second part (Hours 11 through 17) covers advanced administration topics, such as
the role of multi-processing modules, filtering, performance tuning, publishing exten-
sions, and secure servers.

The third part (Hours 18 through 24) explains how to build and configure popular
Apache modules and related software, such as PHP, mod_perl, and Tomcat.

Each hour includes a “Further Reading” section that provides pointers to additional doc-
umentation on that hour’s topics. The “Related Directives” section provides a summary
of the configuration directives discussed in the hour, and you can use this list to look up
detailed descriptions in the Apache reference documentation.

Code listings can be found at http://apacheworld.org/ty24/.

Conventions Used in This Book

This book uses different typefaces to differentiate between code and regular English.
Therefore, code lines, commands, directives, variables, and text you type or see onscreen
appear in a computer typeface.

Do not type any line numbers that appear at the beginning of lines in code listings. The
line numbers are used to reference lines of code during the explanation of the listing.

Sams Teach Yourself Apache 2 in 24 Hours

(
N
N

/)

N
A}W
\)

,
B
&

ff

A Note presents interesting pieces of information related to the surrounding
discussion.

S

A Tip offers advice or teaches an easier way to do something.

)

)

.

S

A Caution advises you about potential problems and helps you steer clear of
disaster.

PART |
Basic Apache

Hour
1

W 0 N o U1 o W N

—_
o

Apache and the Web

Understanding Apache Internals
Installing and Building Apache
Getting Started with Apache

Using Apache to Serve Static Content
Serving Dynamic Content with CGI
Restricting Access

Logging and Monitoring

Content Negotiation and Environment
Variables

Apache GUIs

HouRr 1

Apache and the Web

In this hour, you will learn

* Web architecture, understanding the inner workings of the protocols
necessary for browser and server communication

* The evolution of the role and capabilities of Web servers over time

» The strengths and weaknesses of the Apache Web server and its his-
tory

Internet Protocols

The Web has become part of our everyday life. People use the Internet to get
weather reports, buy books, read news, and keep in contact with friends via
Web e-mail. Web browsers provide a friendly interface to access the infor-
mation and to hide the complexity of the underlying protocols. Web servers
are the programs that provide the information to the Web browsers.

This section describes a number of protocols used by browsers and servers
to communicate, such as TCP/IP (Transmission Control Protocol/Internet
Protocol), DNS (Domain Name System), and HTTP (Hypertext Transfer

Hour 1

Protocol). This will provide you with the basic foundation on which later topics such as
access control and request information logging will build. Even if you are already famil-
iar with these protocols, you might want to skim through this section for a quick
refresher.

TCP/IP

TCP/IP is the basic family of protocols of the Internet. Other protocols, such as those for
transmission of mail or Web pages, work on top of TCP/IP.

The Internet started as a military network before it evolved into an academic and com-
mercial network. It was built during the Cold War, and the protocols were designed so
that they could keep working even in the event that parts of the network were destroyed
by a nuclear attack. TCP/IP is used to transmit packets between machines in a distributed
network. Each machine is assigned a unique number (an IP address), and messages are
passed from one machine to another (routed) until they reach their destination. An IP
address is usually represented in dotted notation, with four numbers between 0 and 255.
The Internet is a hierarchical network, as the addressing structure reflects. The initial part
of the address identifies the network and the rest identifies the node, as you can see in
Figure 1.1. IP addresses are assigned by ICANN (Internet Corporation for Assigned
Names and Numbers; http://www.icann.org) via the IANA (Internet Assigned Number
Authority; http://www.iana.org). Certain address ranges, marked as private, are not
connected to the Internet and can safely be used by organizations in their internal net-

works.
FiIGURre 1.1 192.168.0.1
W—l
IP address structure. Network
Machine

Similar to how IP addresses identify uniquely a machine in the network, port numbers
uniquely identify services in the machine. Each of the standard protocols has a number
assigned by ICANN. HTTP uses port 80 by default. HTTP is the protocol Web browsers
and servers use to communicate and is described later in this hour.

You could think of the Internet as a giant telephone network that connects computers
instead of people. IP addresses represent the main phone number of an office. IP ports
represent the extension of a particular department within that office.

An IP protocol packet is the basic transmission unit. It contains the destination IP
address, the origin IP address, and some data. IP packets can be lost or duplicated due to
congestion or network failure. TCP works on top of IP and takes care of discarding

Apache and the Web 9 |

duplicated packets and retransmitting lost ones, offering a reliable transmission protocol
to the application developer.

DNS

IP addresses are difficult to remember. In addition, it would be nice to be able to refer to
a particular service or machine without worrying about changes in the underlying IP
addressing scheme. This can be accomplished by assigning a name to each machine.
Originally the number of machines in the Internet was very limited and the relationship
between IP addresses and names was kept in a file that was distributed to system admin-
istrators.

As the Internet grew, the system became unpractical and the DNS (Domain Name
System) protocol was born. In this system, identifiers are made of a machine name and a
domain name (see Figure 1.2). Name servers answer requests for machine names and
return the associated IP addresses.

FIGURE 1.2 web.somedomain.com
D . -

omain name Machine
structure. name

Domain name

Domain names have different components, and the first one is called the fop-level
domain. Some of the traditional top-level domains are .org for nonprofit organizations,
.com for commercial entities, and .net for network-related sites. Additionally, each
country is assigned a top-level domain.

The domain name system is hierarchical. Name servers communicate with each other
and cache answers. The root name servers know about only the top-level domains. For
example, if you are looking for the IP address of www.apache.org, you ask your local
name server. If your local name server does not have that name in its cache, it asks an
upstream DNS server. The upstream DNS server repeats the process until one of the
DNS servers in the hierarchy knows the address of the DNS server for the apache.org
domain. The name server for the apache.org domain will eventually be reached and it
will reply with the IP address or addresses associated with that particular name.

You can experiment typing the nslookup command in your Unix shell or windows com-
mand prompt:

nslookup www.apache.org
Server: ns2.mindspring.com
Address: 207.69.188.186

Non-authoritative answer:

|1O

Hour 1

Name: www.apache.org
Address: 64.125.133.20

Your computer must be connected to the Internet for the nslookup command to work.

Thanks to DNS, a Web site that moves from one colocation facility to another can
change its IP address while the name typed by the users in their browsers remains the
same.

ICANN administers top-level domains via InterNIC (Internet Network Information
Center; http://www.internic.net), which in turn delegates to commercial registers.

There is much more to Internet addressing than what is covered here. Please refer to the
“Further Reading” section at the end of this hour for further information.

HTTP

HTTP (Hypertext Transfer Protocol) is used by servers and browsers to communicate
with each other. It is a request response protocol based on TCP. The browser sends a
request to the server for a particular resource, together with some information (headers)
about the browser version, language preferences, and so on.

The server answers with a status code, several headers, and the requested data. The status
code indicates whether the request has been processed correctly, the resource has moved
to a new location, the access is forbidden, and so on. Headers provide information about
the requested resource, such as the content type, last modification time, and more. The
data for the requested resource is usually a Web page or an image.

URL

The browser reads the data returned in the response and displays it to the user. Web
pages are written in HTML, a text-based language that enables pages to link to other
pages, images, and so on. If the data retrieved by the browser contains links, the user can
click these links to retrieve new documents. The linked documents can live in the same
server or in a different one thousands of miles away. The process of navigating from one
server to the other is simple and transparent to the user. The links identify unique
resources in the Web via URLs (Uniform Resource Locators). A URL is made of individ-
ual components, as shown in Figure 1.3.

FIGURE 1.3 <schemes://<user>:<password> @ <host>:<port>/<url-path>
URL structure.

http://www.apache.org/index.html

Scheme Host URL path

Apache and the Web 11 |

The first component of the URL is the scheme, or protocol, that will be used to access
the URL. HTTP and FTP are examples of valid URL schemes. An optional username
and password component might be included to access resources that require it. The host
component identifies the machine that provides the resource. The port component identi-
fies the specific port the server is listening at. If the port does not appear, the default port
for the HTTP scheme (port number 80) is assumed. The final component specifies the
resource to be accessed; in Figure 1.3, the resource is the index file for the Web site.

SSL

SSL stands for Secure Sockets Layer and is a protocol to secure communications
between clients and servers. The secure version of HTTP is called HTTPS and provides
support for encryption and authentication. Encryption is used to prevent an attacker from
eavesdropping on requests containing sensitive data (for example, credit card informa-
tion). Authentication is used to validate that the other end is truly who he claims to be.
(When you buy online, you want to make sure the business at the other end is who it
claims to be.) The default port for the HTTPS scheme is 443. SSL is covered in Hour 17,
“Setting Up a Secure Server.”

HTTP Internals

Let’s have a closer look at the HTTP protocol. Listings 1.1 and 1.2 show an example of
an HTTP request/response pair. The request is made by Internet Explorer 5 running on
Windows 2000, and the response is provided by an Apache Web server running on
FreeBSD. The user typed http://www.apache.org in the browser. The browser exam-
ined the URL and decided to make a request to the www.apache.org Web site. To do so,
it first resolved the name to the corresponding IP address (64.125.133.20) using the DNS
system. No port was specified in the URL, so the default port for HTTP (port 80) was
assumed. After the TCP connection was opened, the browser sent the request and
received the response.

The numbers appearing in the listings have been added to make it easy to refer to indi-
vidual request lines in the text, and are not part of the HTTP protocol.

Listing 1.1 HTTP Request

1: GET / HTTP/1.1

2:Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

= application/vnd.ms-powerpoint, application/vnd.ms-excel, application/msword,
-k [k

3:Accept-Language: en-us

4:Accept-Encoding: gzip, deflate

5:User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

|12

Hour 1

Listing 1.1 continued

6:Host: www.apache.org
7:Connection: Keep-Alive

Listing 1.2 HTTP Response

0N OB WD =

HTTP/1.1 200 OK

Date: Sat, 09 Feb 2002 17:17:23 GMT
Server: Apache/2.0.32-dev (Unix)
Cache-Control: max-age=86400

Expires: Sun, 10 Feb 2002 17:17:23 GMT
Accept-Ranges: bytes

Content-Length: 8667

Keep-Alive: timeout=5, max=100
Connection: Keep-Alive

: Content-Type: text/html

: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

: <html>

<head>
(...)

Figure 1.4 shows how a browser displays the information received in Figure 1.3.

FIGURE 1.4
Page rendered in

browser.

9 Welcome! - The Apache Software Foundation - Microsoft Internet Explorer
| Fie Edt View Favortes Toos Help

| ek - 5 - QB A Qoewch GFeones Frvoy [A-SE-BY 58

| avdecess [betp:jjvnn.pache.org) =l #e “Lhk“'»
Wpache Software Foundation
% http://www.apache.org/

The Apache Softwars Foundabion prowndes support for the Apache community of

HTTF Server P e software projects. The Apache projects are characterized by a

.

+ 22E collaberative, consensus based development process, an open and pragmanc

* lokeariz software license, and a desire to create high quality seftware that leads the way mits —

+ Ped field. We consider ourselves not simply a group of projects sharing a server, but

. % rather a community of developers and uzers.

« TC

" :9'11 Yeou are mwted to participate in The Apache Software Foundation We welcome

. M conmbuhons mmany forms. Our memberslup consists of these mdisnduals who have

+ Eoundation d trated a cornm ta collabarative ops ce software development

. throngh ined participation and ibuticns within the Foundation's projects.
Foundation
- (Apache News by Email
« FEAO
T you would like to keep up with news and its from the foundation and

s Manapement

all itz projects, you can subscribe to the new Apache Announcements List,

Featured Projects
Below we feature a few of the many Apache projects. Jhd
2] [8 Intemet

Apache and the Web

13|

The first line of the request is made of the following components: first, an HTTP method
name; in this case, GET, for retrieving a document. Other methods include POST, for post-
ing information to the Web server (in that case, the request contains data that is passed to
the server for processing); and HEAD, for retrieving headers without any data (useful to
detect whether a document has changed). The next element in the first line is the
resource location. A single / indicates to the Web server that you are requesting the front
page for the Web site. Finally, the HTTP protocol version number that the client speaks
is provided.

Other interesting headers in the request (Listing 1.1):
* Host: Indicates the particular host you are making the request to. This is useful
when a single instance of the server is hosting different Web sites.

e Connection: Keep-alive (line 7) indicates that the client desires to leave the con-
nection open to transmit further requests.

* Accept-Language: en-us (line 3) indicates the client preferred language is
English, U.S. variant.

The response (Listing 1.2) starts with a status line. The first component identifies the
protocol version the server will speak. The second and third components represent the
status code of the response in numeric and text modes.

The following are common HTTP status codes returned by Web servers, where xx is a
placeholder that stands for the particular response number. For example, 401 means the
request was not authorized and 403 means the resource could not be found. They are dif-
ferent status codes, but because both refer to client error codes, they belong to the 4xx
group.

e 2xx codes mean the request was successful.

e 3xx codes mean the resource has moved to a new location.

* 4xx client error: The request could not be fulfilled because the resource does not
exist, access is forbidden, and so on.

e Sxx server error: The server encountered an error. This can happen because the
server malfunctioned, the method is not implemented, and so on.

After the status code, several headers add information about the resource being served:

* Server (line 3) identifies the server name and version serving the request.
e Content-length (line 7) specifies the size in bytes of the resource being returned.

e Content-type (line 10) identifies the MIME-type of the request; in this case,
text/html. MIME stands for Multipurpose Internet Mail Extensions, and is a

|14

Hour 1

mechanism used to identify the content type of a certain resource. This allows the
browser to display the information correctly.

Other headers (Cache-control, Expires, ETag, and so on) are used, among other things,
to control the validity in time of the document and avoid unnecessary network traffic.

After the headers, a blank line precedes the contents of the resource being transmitted.
After the resource has been transmitted, the server may decide to leave open the connec-
tion to accept further requests from the client. This depends on the protocol version
being used and the connection type negotiated by client and server.

Do It Yourself HTTP

HTTP is a simple, text-based protocol. You do not need a browser to issue HTTP
requests. You can use a telnet client, a program that allows you to connect directly to the
server and port you specify. Most UNIX versions come with a version of telnet prein-
stalled. Some Windows versions include a telnet client, but it might not be appropriate
because it will not echo some of the characters. Echo means that the characters will
appear in your screen as you type them in addition to being transmitted to the remote
end. You can use the free EasyTerm package instead. You can download it from
http://www.arachnoid.com/easyterm. Make sure to enable the local echo in the prop-
erties configuration.

Connect via telnet to www. apache.org (or your favorite Web site) at port 80, and type
GET / HTTP/1.0. Press the Enter key twice. You will get the response shown in Listing
1.3.

Listing 1.3 Manual HTTP Request

bash-2.04$ telnet www.apache.org 80
Trying 64.125.133.20...

Connected to www.apache.org.

Escape character is '"]"'.

: GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Sun, 10 Feb 2002 17:53:31 GMT

9: Server: Apache/2.0.32-dev (Unix)

10: Cache-Control: max-age=86400

11: Expires: Mon, 11 Feb 2002 17:53:31 GMT
12: Accept-Ranges: bytes

13: Content-Length: 8667

14: Connection: close

15: Content-Type: text/html

00N O~ WN =

Apache and the Web 15 |

Listing 1.3 continued

17: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

18: "http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
19: <html>

20: <head>

21:

If the request is not transmitted by the client before a certain amount of time (timeout),
the server will close the connection.

By using telnet, you can get a better understanding of the underlying HTTP
@ protocol. A lot of the directives in later hours refer to the configuration of
Z specific HTTP headers. It is very common to use telnet or another command-
line tool to debug the settings and see whether the headers are being sent
correctly.

If you have the lynx command-line browser installed in your Unix system, you can get a
similar result by issuing the command

lynx -head -dump http://www.apache.org

Web Servers History

Previous sections provided you with an understanding of the underlying Web protocols.
This section provides you with an historical perspective on the evolution of Web servers.

How It All Got Started

What we know as the World Wide Web started originally in the CERN research center in
Switzerland, although the ideas of hypertext (documents with embedded links to other
documents) and markup languages date back to the 1950s and 1960s.

In 1990, Tim Berners-Lee wrote the first prototype of a GUI-based hypertext system.
One year later, he made the programs available in the Internet via FTP. In November
1992, there were 26 Web servers. NCSA Mosaic, a popular Web browser, was released
in 1993 for Unix and was quickly ported to Windows and Macintosh. In 1994, the
authors of NCSA Mosaic and the NCSA Web server, who at the time were working for
the University of Illinois at Urbana-Champaign, left their work to join a startup called
Netscape.

|16

Hour 1

Apache

The NCSA Web server software was very popular. Because many of the original devel-
opers of the server left their work to join Netscape, development slowed and eventually
halted. The NCSA server was open source, and users of the software started exchanging
software patches to fix bugs and improve the functionality of the Web server. Eventually
they got together and created The Apache Group, a group of developers working on “a
patchy server,” hence the name. The first official release of Apache, version 0.6.2, hap-
pened in April 1995. Version 1.0, a major rewrite with a modular architecture, was
released in November 1995. Three major revisions happened in the 1.x series. Version
1.1 was released in July 1996, 1.2 in June 1997, and 1.3 in June 1998. 1.3 was the first
version of Apache to add support for the Windows platform. In the meantime, several
Apache-based servers appeared, mainly to incorporate SSL support. Due to patents and
encryption regulations in the United States, SSL software could not be freely distributed
with Apache. The first alpha release of Apache 2.0, a major rewrite, happened in March
2000. The first general availability release of Apache 2.0 happened in May 2002.

Apache currently powers more than 60% of all the active sites in the Internet
(http://www.netcraft.com/survey), as seen in Figure 1.5.

FIGURE 1.5

Evolution of Web
server market share.

A detcraft Web Server Survey - Microsoft Internet Explorer

| Fle Edt View Fevorites Toos Help

[ok QD@ Queh Growes @rsy B SW-BY 4R

| address [&] bip: v, raterat.comjsurvey] =l P ||k »

etcraft Web Server Survey is a survey of Web Server software usage on Intemet connected computers. We collect and
2 a5 many hostnames previdmg an hitp service as we can find, and systematically poll each one with an HTTP reguest for
IVET name.

January 2002 survey we received responses from 36,689,008 stes.

Market Share for Top Servers Across All Domains August 1995 - January 2002

Z/J s f

New1935 Feb1997 Hayl9ss fugl%ag NewZ0oo Jar2ooz

<l

=]

— fpache
— Hicrasoit

Planet.

ntrer

&1 T Intemnet

Apache and the Web 17 |

Apache Software Foundation

In 1999, The Apache Group incorporated as the Apache Software Foundation (ASF), a
not-for-profit corporation. From the Apache Web site:

The Apache Software Foundation will provide organizational, legal, and financial sup-
port for the Apache open-source software projects. The Foundation ensures the conti-
nuity of Apache projects beyond the participation of individual volunteers, enables
contributions of intellectual property and financial support on a sound basis, and pro-
vides a vehicle for limiting legal exposure while participating in open-source projects.

The Apache Software Foundation provides a common umbrella for a variety of Apache
and Web-related technologies. Particularly successful projects are the PHP HTML-
embedded language and the Jakarta projects for server-side Java.

Web servers have evolved over time, and Apache and related projects have pioneered
many of those advances. Initially the Web server provided only static content. Over time,
standards such as CGI (Common Gateway Interface) and Java servlets allowed content to
be dynamically generated. Other server-side improvements and languages allowed code
to be embedded in HTML pages, which is processed before being sent to the client.
Several Apache projects provide support and reference implementations for many of
these technologies. The future of the Web seems to be data oriented and will build on
technologies such as XML and Web services. Most likely, Apache developers will play
an important role in defining those technologies.

Apache Considerations

Like any software product, Apache has advantages and disadvantages. Bear in mind that
what makes Apache successful is not so much excelling at one or more specific features,
but the right combination of flexibility, performance, and security.

Advantages of Apache

The following are some of the advantages that have contributed to the success of Apache.

Open Source

The Apache license allows for both commercial and noncommercial distribution, modifi-
cation, and usage. The code is developed by a large, distributed group of talented devel-
opers. The open source nature of Apache allows for many other advantages, such as
improved stability, security, and customization. You will see how this is so in the follow-
ing sections.

|18

Hour 1

Stability and Scalability

Apache powers many of the busiest Web sites in the world, such as Amazon.com and
MP3.com. These Web sites have strict requirements for uptime and scalability.

Because Apache code is available, and Apache is used widely, the server has been contin-
uously improved and tuned over the years. The underlying operating system is important
when running mission-critical Web servers. Apache runs on many flavors of Unix, which
is regarded as a stable, dependable OS platform.

Apache 2.0 can be configured as a threaded server, a process-based server, or a mixture
of the two. This allows the administrator to balance the performance and stability needs
in a particular setup. Process-based servers are stable but scale worse than threaded
servers. Well-designed threaded servers can be faster but less stable if a thread misbe-
haves. Hour 2, “Understanding Apache Internals,” explains in detail the differences
between threads and processes, and different Web server architectures.

Security

The open source nature of Apache makes it possible for an attacker to analyze the code,
searching for possible vulnerabilities or denial-of-services attacks. Fortunately, it also
allows developers to do the same. Changes to the source code are watched for insecuri-
ties and are subject to extensive peer review. This encourages high coding standards, and
security issues are usually detected before they go into the code and become problems.

No serious remote vulnerabilities have been discovered in Apache for years. When prob-
lems arise in Apache or one of its modules, fixes are available within hours or days.

If a critical problem or bug is encountered, the availability of source code enables the
organization to fix it or hire an expert to fix it. With proprietary servers, depending on
the relationship with the vendor, the number of customers affected by the bug, and so on,
usually the problem is either solved in future releases of the product, which could be
months away, or not solved at all.

Flexibility

Apache can be configured and built in a variety of ways to accommodate different needs.
It is possible to create custom builds of Apache that include only the modules needed,
reducing server size and increasing security. Additionally Apache allows for dynamic
loading of modules, so modules can be compiled as shared libraries and added or
removed without the need to recompile the server. It is possible to have several sets of
configuration files that can be enabled depending on the role of the server and the load
on the network. For example, you can have configuration files for staging and produc-
tion, and you can control the number of server processes independently.

Apache and the Web 19 |

Performance

Raw performance considerations are relevant in the design of a Web server, but its
importance needs to be put in context. An old Pentium machine running Apache and
Linux can saturate a ten-megabit network serving static content. Today the bottlenecks
are usually in dynamic page generation, application design, and database access. Having
said that, Apache performs pretty well even without detailed performance tuning. You
can always use Apache for dynamic content generation, and use specific-purpose Web
servers for serving the static content such as images.

Multiplatform

Apache runs on nearly every flavor of Unix and Windows, and other operating systems
such as OS/390 and BeOS. This allows enterprises and service providers to standardize
on a common Web serving platform across a heterogeneous collection of machines, oper-
ating systems, and application servers.

Extensible

Apache has a powerful modular API that allows the server to be extended in a variety of
ways. Apache 2.0 allows developers to create their own protocol handlers (like FTP or
POP3), thus allowing Apache to become a general server framework.

Other modules offer template frameworks, authentication, XML processing, and inter-
faces to enterprise data sources such as directories and relational databases.

Organizations can leverage the Apache API to build custom modules to interface to their
existing infrastructure and legacy systems.

Works with Multiple Languages

Apache works with a variety of development languages, including C, C++, Perl, Python,
PHP, Tcl, and Java. It provides a shared, common framework between the languages.
Apache 2.0 incorporates the concept of filters, allowing the content generated by a mod-
ule to be further processed by another before being returned to the browser.

Service Providers

Apache is very popular with Internet and Application Service Providers. This is because
Apache provides extensive support for massive virtual hosting, including security fea-
tures to isolate hosted clients from each other. The text-based configuration and cus-
tomization make Apache suitable for automated setup and deployment.

Popular; It Is Easy to Get Expertise

Administrative costs are an important part of any software solution. The scarcer certain
knowledge and skill sets are, the more expensive it is to hire people with that expertise.

|20

Hour 1

Apache is the most popular server on the Internet. Many Web masters and system admin-
istrators are familiar with it. In addition, Apache is commonly used in university projects
and research because source code is available. This makes it easy to hire experienced
developers and administrators familiar with Apache.

Standards Compliance

One of the goals of Apache is to be standards-compliant, and it has become a reference
implementation of the HTTP protocol specification. But the real world is full of buggy
browser implementations, incomplete implementations of specification, and so on.
Because many Apache developers and users run real-world ISPs and Web sites, Apache
has incorporated mechanisms to provide workarounds. The server can behave differently
based, for example, on the version of the client browser.

Disadvantages

Apache has its own sets of disadvantages and drawbacks. The following are some of
them.

Not a Company

Apache was created by a group of open source developers because they needed a reliable
Web server to run their sites. The ASF is a not-for-profit corporation. It does not have
support, professional services, or marketing departments. Commercial backing is an
important consideration for companies of a certain size that decide to embrace and
deploy Apache as their platform of choice across their organization.

Fortunately, companies such as IBM, Red Hat, and Covalent provide the necessary prod-
ucts and services to make Apache ready for the enterprise.

Open Source

Because Apache is open source, the server and related projects are in a continuous state
of development. It is difficult to track all libraries and their dependencies. Development
pace itself varies greatly over time and there is no product roadmap. Releases of Apache
happen only when the server is ready.

Configuration

The learning curve for Apache can be steep. Correct configuration of Apache requires
time and skill. There are plenty of Apache books published, several GUI tools are avail-
able for configuring Apache, and the Apache reference documentation is quite good.

Apache and the Web 21 |

However, especially for novice users, Apache is still hard to configure and lags behind
some of its competitors in ease of use. But as users become experienced with the Apache
configuration, they appreciate the ease in which configuration can be replicated and auto-
mated.

Performance

There are Web servers that are more lightweight and faster than Apache. The trade-off is
usually flexibility and features. Although Apache scales well and can handle high loads,
other Web servers might be more appropriate for serving pure static content.

Summary

In this hour, you were introduced to the protocols that enable the World Wide Web, with
a special focus on HTTP. You learned a little bit of Internet history and the role of the
Apache server. Finally, the advantages and drawbacks of the Apache server were
explained. Hour 2 explains the internal architecture of Apache, and provides you with a
foundation for your first Apache installation in Hour 3, “Installing and Building Apache.

Et)

Q&A

Q Why is it necessary to have timeouts in HTTP?

A The number of simultaneous connections is limited by the operating system
resources (process-based servers require one server instance per request). Timeouts
are necessary to close inactive connections and avoid denial-of-service scenarios.

(e

Can my Web server run on a port other than 80?

A Yes. As an example, in Unix systems, only privileged users can bind to port 80.
Ordinary users need to run their Web server on port numbers greater than 1024.
This leads to URLSs that are a little bit more difficult to remember, such as
http://www.example.com:8080.

Q Does HTTP need to make a connection for each request?

A HTTP provides mechanisms so that multiple requests can be transmitted via a sin-
gle TCP connection. This speeds up the process because setting up and closing

connections is expensive. In HTTP 1.0, this is done via the Connection: Keep-
Alive header; in HTTP 1.1, it is the default.

|22 Hour 1

Further Reading

If you want to learn more about the history of the Internet:
http://www.isoc.org/internet/history

Two classics to gain a better understanding of the protocols and the design principles
behind the Internet:

Interconnections, Second Edition, by Radia Perlman. ISBN 0201634481

Internetworking with TCP/IP Volume I: Principles, Protocols, and Architecture, by
Douglas Comer. ISBN 0130183806

The Linux Network Administrator’s Guide provides a hands-on introduction to TCP/IP
networking:

http://www.linuxdoc.org/LDP/nag2/index.html
Making the Web:
http://www.w3.org/History.html

The Apache software Foundation:
http://www.apache.org

Request For Comments are technical documents describing the various protocols. They
can be obtained at http://www.rfc-editor.org.

HTTP: 1954, 2068, 2616, 2145
URL: 1738, 1808, 2396

SSL/TLS: 2246

HoOUR 2

Understanding Apache
Internals

Hour 1, “Apache and the Web,” explained how Web servers and browsers
communicate with each other. This hour explains how a Web server works
internally, with a focus on Apache architecture. Other hours will build on
this knowledge. You can find additional information about Apache architec-
ture in Hour 11, “Multi-Processing Modules.”

In this hour, you will learn

* How the evolution of the Web affected the design of Web servers

* The modular architecture of the Apache Web server and the benefits
that each component provides

* How Apache processes a request internally

Evolution of the Web

Initial Web servers were simple programs. They served only static content,
such as images and text. The content of the pages was updated manually or

|24

Hour 2

by scripts run periodically. As the popularity of the Web grew, some Web sites found it
useful to generate the content dynamically. Dynamic content generation means that the
resource being accessed (such as a Web page or an image) is generated on-the-fly, when
someone requests it. The generated content usually depends on input provided by the
user requesting the page. This enables you to use Web sites to check stock quotes, search
for information, buy a book, and send electronic mail via your browser. Dynamic content
was generated at first via external programs using the Common Gateway Interface (CGI)
protocol. A CGI program accepts requests via its standard input and returns the result via
its standard output, which is then transmitted back to the browser. Scripting languages
such as Perl quickly emerged as the best choice for CGI development due to their string
manipulation and rapid development capabilities. CGI requires starting and stopping a
program (for example, a Perl language interpreter) for every request. This overhead can
be significant in high-traffic sites, and affects both the load of the server and the speed
with which the request can be served.

The next step in Web content generation was to integrate a scripting language as part of
the Web server itself. Instead of creating an interpreter every time a request is received
(as CGI requires), an interpreter that processes the requests could be embedded in the
Web server. The interpreter is persistent between requests, allowing it to keep database
connections open, cache frequently requested data, preload required libraries, and so on.

Additionally, an embedded interpreter can process HTML pages before transmitting them
back to the client. Scripting code can be embedded directly in the HTML page and exe-
cuted when the page is requested; the results are then substituted and the final HTML
page is returned to the browser.

Java has emerged in the past few years as the preferred Web development language in
corporate environments. Servlets are Java programs that can process HTTP requests via a
standard API. A Java servlet engine waits for requests, executes the appropriate Java
code, and returns the result. Java has its own standard way of embedding code in HTML
pages, called JavaServer Pages. In production systems, a Java servlet engine does not
usually serve HTTP requests directly, mainly for performance reasons. Servlet engines
work in conjunction with Apache. Apache can be configured to serve the static content
and forward dynamic content to the servlet engine via a special Apache module called a
connector.

Apache Architecture

This hour explains how the Apache Web server is internally organized to allow for all the
different kinds of Web development approaches mentioned earlier. Apache is not a

Understanding Apache Internals 25 |

monolithic server. It is composed of several pieces or modules. New modules can be
added to provide enhanced functionality, and existing modules can be removed to reduce
the size of the server and improve performance.

Figure 2.1 describes the general architecture of Apache 2.0. The different components
are explained in detail in their own sections. The figure is only an outline, but should
give you a good idea of the server structure.

Multi-Processing Modules (MPMs) define the basic processing model of Apache (that
is, process-based or threaded) and take care of the initial connection setup. Protocol
modules implement different protocols like HTTP or FTP. Different extension modules
can manipulate the request via filters and hooks. Both mechanisms are explained in
detail later on in this hour. Finally, other modules provide the content or relay the
request to an external program (such as a CGI or an application server).

Multi-Processing Modules

Multi-Processing Modules (MPMs) specify the execution model of the Apache Web
server. They allow Apache to act as a process-based server, a thread-based server, or a
combination of both. Performance, scalability, stability, and platform support considera-
tions drive the choice of an MPM. Figure 2.2 shows a comparison of the three server
architectures mentioned.

Process-Based Server

In a process-based server, a server forks several children. Forking means that a parent
process makes identical copies of itself, called children.

Each one of the children can serve a request independent of the others. This approach
has the advantage of improved stability: If one of the children misbehaves, it can be
killed without affecting the rest of the server. For example, if one of the children leaks
memory with every request, it can be destroyed after n requests have been served and a
new child can be spawned. The increased stability comes with a performance penalty:
Each one of the children occupies additional memory and there is a certain amount of
time spent in context switching. Context switching is a procedure that the operating sys-
tem must carry out to assign processor time to each of the children. Context switching
can be an expensive operation in terms of performance, especially in heavily loaded
servers with limited memory. Another disadvantage of processes is that they are isolated
from each other, making interprocess communication and data sharing difficult.

Apache provides a prefork MPM that allows it to perform as a process-based server.
Prefork means that children can be forked at startup, instead of when a request comes.
The administrator can configure several parameters, such as the number of children to
fork at startup and the maximum number of possible children.

|26

Hour 2

FIGURE 2.1

Apache 2.0
architecture.

mod_alias

mod_rewrite

mod_header

mod_auth

Connection Translation | M :?a?etrion Authentication
Hook ansia anipu'a Hook o—
Hook Hook
Q
g
HTTP INPUT FILTER CHAIN ——» S50 e
z
w 3
'} (0]
=) m
8 % REVERSE
Sl Fp | G| & ,:EO PROXY
e 515 =
@B u_ [(@]
9] b4
i} =1 Ll T
8 8| & o)
Q 3 MoD cGl H [
g POP3 h 9() OD CG CG
H [a)
=)
=
TOMCAT
NNTP Qconnector[TOMCAT
< OUTPUT FILTER CHAIN—>»_|
— ——
Protocol Hook
Modules Framework

Understanding Apache Internals 27 |

FIGURE 2.2 Process Based Threaded Hybrid
7 o 0 o o 0 o o 0 o
Server qrchltecture D D D o o o SR B N B R
comparison. o o0 o 0 o0 o| |lo o o] |]o oo
O O O

Threaded Server

Threads are similar to processes, but they can share memory and data with other threads.
This has the advantage that there is no context switching (threads are part of the same
process), and the disadvantage that poorly written code can take the whole server down
with it. This is possible because a misbehaving thread can overwrite and corrupt data and
code that belongs to other threads.

The Apache MPM for the Windows platform is an example of a threaded server MPM.

Hybrid Server

Both threaded and process-based servers have their own sets of advantages and disadvan-
tages. The Apache developers created a threaded MPM that allows for a mixed approach.
A server can spawn different processes, each one of them containing a number of
threads.

Additional MPMs
It is possible to create other MPMs, such as the Perchild MPM.

The Perchild MPM maintains several processes running under different user IDs. Each of
the processes will serve requests for specific virtual hosts. This allows ISPs to serve dif-
ferent customers with the same server, yet be able to keep their processes and data
isolated from each other, mainly for security reasons.

There are additional MPMs to support specific platforms, such as BeOS and OS/2. From
time to time, Apache developers create experimental MPMs to test new ideas, such as the
leader-follower MPM.

MPM Selection and Compatibility

Although MPM selection depends on many factors, including support for specific third-
party modules and functionality, some MPMs perform better in certain platforms.
Threaded MPM is preferred in most Unix platforms including Linux and Solaris.
Windows has its own MPM.

As a general rule of thumb, third-party modules should run in a similar way, independent
of the MPM in place. However, some of the modules being ported from Apache 1.3
might not work well under a threaded MPM. Other modules specifically designed for
Apache 2.0 that take advantage of threads might have less functionality when running

|28 Hour 2

with a process-based MPM. You can find more information about MPMs in Hours 3,
“Installing and Building Apache,” and 11.

Hooks

A hook is a mechanism that enables Apache modules to modify the behavior of the
server or other modules. The server or a module can declare hooks, and other modules
can then register interest in them. When the server reaches that point, the registered mod-
ules are called one after another until one of them signals successful completion. Hooks
correspond to events or phases in the processing of the request.

Some of the hooks that Apache provides are

e Connection phase: Client establishing a connection. This can be useful to imple-
ment additional protocols in Apache.

* Authorization: Protecting access to resources. Different authorization modules can
register for this hook. One module can base the authorization decision on network
information (such as the IP address of the client). Another module can make the
decision based on the type of resource being accessed, and so on.

* Header modification: Certain modules might want to analyze or change headers
provided by the client or add new headers to the response.

e Content handling: The default behavior in Apache is to return the document
requested, if it exists on disk. A module can use this hook to provide dynamically
generated content.

Each of the modules that registered for a certain hook can return different status codes
when it is called. The status code indicates whether everything went okay, there was an
error, or the module does not want to handle the request. If a module declines the
request, it allows the next module that expressed interest in that hook to be executed. For
example, a translation module might want to perform on-the-fly translation of documents
stored in disk. If the document is, say, in Spanish, the translation module reads and trans-
lates the document to English, returning a success status. If the document is in English,
and thus does not need translation, the module can return a declined status code and let
the default content handler return the file on disk.

Multi-Protocol Support

Apache 2.0 can be extended to process protocols other than HTTP. Apache provides
hooks so that module authors can take over the connection phase. This means that

Understanding Apache Internals 29 |

Apache, since version 2.0, is more than a Web server—it is a generic server framework.
By building a server on top of Apache, a developer can take advantage of a solid,
portable infrastructure, an extension mechanism, and the possibility of using many other
third-party modules that exist for Apache.

mod_ftp and mod_pop3 are two examples of protocol modules currently available for
Apache. mod_ftp is a proprietary module developed by Covalent technologies that
provides the functionality of an FTP server.

mod_pop3 is an open source implementation of the Post Office Protocol version 3, an
Internet protocol used for retrieving mail from a central server.

Please refer to Hour 24 for additional information.

Content-Handling Modules

Content handlers and generators are modules that provide the content that will be
returned to the browser. Apache includes a default content handler that returns the con-
tent of files on disk. PHP and mod_perl are examples of content handler modules. They
allow pages to be dynamically generated by embedded scripting engines. In the case of
mod_perl, applications can be written in the Perl scripting language.

mod_perl is discussed in Hour 20. PHP allows HTML pages to contain embedded code.
That embedded PHP code is executed and the results are substituted in the page. PHP is
described in Hour 19.

PHP and mod_perl are not only content-handling modules. mod_perl exposes the full
Apache API, and full-featured Apache modules can be written entirely in Perl.

PHP can also filter content produced by other modules looking for and executing embed-
ded PHP code, as explained in the “Filters” section later in this hour.

Connector Modules

Sometimes the content is produced not by an Apache module but by an external pro-
gram, such as an application server or servlet engine. In such cases, a need exists to
transfer the request information from Apache to the external application. The external
application will process the request and return a response to Apache.

If that external application is in a different machine, there might be additional require-
ments for encryption or load balancing.

The BEA WebLogic application server and the Tomcat servlet engine are two examples
of applications that need a connector module.

|3O

Hour 2

Filters

You can think of the filtering architecture in Apache as a factory assembly line. Filters
are workers in the factory, and requests and responses are the items traveling in the line.

Each filter processes the content and passes the result to the next filter. Filters can
process the information in a variety of ways:

Encryption: Secure Sockets Layer (SSL) is a protocol used to encrypt and secure
communications between browsers and servers. The SSL protocol is described in
detail in Hour 17, “Setting Up a Secure Server.” SSL for Apache 2.0 is imple-
mented as a filter. It is possible to add SSL support to other protocols simply by
inserting the SSL filter before information is read from or written to the network.

Compression: If the server detects that the browser supports compressed content,
it can compress the data before sending it to the browser, reducing network band-
width. Compression can be optional, to avoid processing already compressed con-
tent such as certain image files.

Watermarking: A module could be developed to process word processor docu-
ments and add a serial identification number that contains information about the
user who downloaded it.

Virus scanning: Documents served by Apache can be scanned for viruses or mali-
cious code. With the multi-protocol nature of Apache, it is possible to use the same
code to scan HTML pages served via HTTP and mail messages downloaded via a
POP3 module.

Session tracking: A session tracking filter could rewrite URLs on-the-fly to add
session information. This can be done independently of how the content was gener-
ated (a Java servlet, PHP, CGI program, and so on).

Access/Authentication/Authorization
Modules

Access, authentication, and authorization form an important module category.

These modules provide mechanisms to authenticate the identity of a user and to restrict
access to specific resources. Modules can restrict access based on the identity of the user,
network information (such as the client IP address or protocol used), the type of resource
being accessed, or many other parameters.

There are Apache authentication modules for different back ends, including Unix-style
password files, LDAP, Berkeley-style databases, Oracle, Network Information Service
(NIS), and many others.

Understanding Apache Internals 31 |

You can learn more about access, authentication, and authorization modules in Apache in
Hour 7, “Restricting Access.” Additional modules can be found in Hour 24, “Apache
Software Foundation Projects.”

Apache Portable Runtime

Apache runs on a great variety of platforms, ranging from Unix-like operating systems to
the latest Windows versions and anything in between, including BeOS and Mac OS X.

Most operating systems offer a similar set of capabilities for networking, interprocess
communication, shared memory access, and so on, but they are implemented in different
ways. Even in the Unix world, the APIs (Application Programming Interfaces) that are
supposed to be common vary in subtle and incompatible ways from vendor to vendor
and even between releases of the same operating system.

Previous versions of Apache had to deal with this explicitly. Programmers needed to pro-
vide different code depending on the platform. This code was surrounded by preproces-
sor directives so that when Apache was compiled for a specific platform, the right code
would be selected and included. This proved not to be the best solution. Code was not as
clear as it could be, and changes for one platform tended to break things in another.

Apache developers changed the way they approached the problem with version 2.0 of the
server. They abstracted all the platform-dependent functionality into a common library,
the Apache Portable Runtime (APR).

Apache programmers can write software using this library, which runs the same regard-
less of the underlying platform.

This makes the code clearer and easier to maintain. Platform-specific optimizations can
be encapsulated into the library. Developers can port Apache to new platforms simply by
adding support for APR.

APR is divided into core libraries (fundamental portable functions) and APR util (other
code that needs to be portable).

APR core covers the following, among many other areas:

¢ File creation and manipulation
* Socket programming

e Threads and processes

¢ String management

e Shared memory

|32 Hour 2

APR util covers these areas:
* DBM database abstraction layer
e XML library
e Digest
* Base64 encoding

APR is used in projects other than Apache, such as the Subversion control system, which
can be found in http://subversion.tigris.org.

The Apache developers considered existing portability toolkits before decid-

Y
/ ing to write their own. The main candidates were the Netscape Portable
== Runtime (NSPR) and the Adaptive Communication Environment (ACE)

toolkit. NSPR could not be used because of license conflicts that were not
resolved until it was too late. Additionally, NSPR covered many other topics
Apache developers were not interested in. ACE is C++-centric and Apache is
written in C.

A Day in the Life of a Request

You have seen in previous sections how Apache can act as an FTP server or POP3 server.
This section deals with the case in which Apache acts as a pure Web server.

It covers step-by-step what occurs from the time Apache is started until a request is suc-
cessfully fulfilled. Figure 2.3 shows a diagram of the request cycle.

FIGURE 2.3 —
Apache request Translation »| Access Control
lifecycle. >
Y
| Authentication |
Startup Request comes
Y
| Authorization |

| Listening |
Y
T—l Cleanup | |MIME-TypeChecking|

A

Y
| Logging |(—| Content Handling |

Understanding Apache Internals 33 |

Apache Startup

Apache reads its configuration and loads the specified modules and required libraries. At
configuration time, modules register their interest with Apache to act as filters, use cer-
tain hooks, and so on. Apache keeps tracks of this information for later use.

Request Process

Apache starts listening for requests on the specified port. At some point in time, a client
sends an HTTP request to the Apache server. The Apache MPM module in place selects
the thread or process that is going to handle the request and passes the request to it. The
HTTP protocol module checks that the request is compliant with the protocol and
processes it.

Apache examines the URL being accessed and—based on its configuration—decides on
the filters and modules that will process the request.

Checking for Hooks

The request goes through several phases in Apache, each one with associated hooks.
Some of these phases and hooks are described in the following list.

e URI translation phase: The URI translation phase translates the request from the
URI to a server resource. For example, when serving static content, Apache uses
that information to determine which file to return. Other modules, such as
mod_rewrite, can manipulate the URL in complex ways, as described in Hour 22.

* Access control phase: The access control phase determines access to the resource
based on network information of the client, such as the remote IP address.

* Authentication: The identity of the remote user can be verified against a variety of
backend authorization systems such as an LDAP directory or a password file.

¢ Authorization: Determines whether the user is authorized to access the resource.

* MIME-type checking: Determines the content type of the resource being
accessed. This can usually be determined from the file extension, but is not always
the case. This phase is important because other filters or modules can be config-
ured to process all resources of a certain type (such as images or XML files).

* Filters: Filters can be inserted to process the incoming request or the outgoing
response. For example, an SSL filter could be inserted in the connection phase and
at the end of the response phase to provide encryption. Filters can be automatically
inserted by modules or explicitly by the system administrator using the configura-
tion file.

|34

Hour 2

Content handler: In this step, a response is constructed and returned to the client.
The default behavior in Apache is to look for the requested content on disk.
Apache returns the file contents or an error if the file could not be found.

Logging: After the request has been served, logging modules can store information
about the request.

Cleanup: In this phase, Apache frees resources used to process the current request
and prepares to serve the next one.

Summary

In this hour, you learned about the internal architecture of Apache and its extension
mechanisms: filter and hooks. This understanding will be necessary in the hours that
cover building Apache, tuning server performance, and filter configuration.

Q&A

Q
A

(e

What are the advantages and disadvantages of using hooks and filters?

Filters can slow down the processing of the request, but allow modules to process
the content created by each other. Hooks allow modules to modify the request
URL, headers, and so on, but not the actual content. Certain modules (compression
modules) must be implemented as filters, others (authorization modules) need only
hooks, and some of them (scripting language engines such as PHP) need both.

Do threaded servers scale better than process-based servers?

In general, yes, but this depends largely on the design of the server architecture, the
underlying OS platform, and the specific machine. Threaded servers do not spend
time in context switching, but they need to use locking mechanisms. Locking
mechanisms are software procedures used to synchronize threads and protect them
from simultaneously accessing certain resources. A thread will lock a certain
resource until it finishes working with it, avoiding another thread interrupting it in
mid-process. A well-designed threaded server will minimize the number of locks
necessary and its duration. The underlying OS libraries might have better support
for processes or threads, influencing the server model choice. Finally, a machine
running a process-based server might perform okay, but if that machine runs out of
memory it might need to use disk space (swap) to perform context switching. Disk
access is several orders of magnitude slower than memory access and should be
avoided at all costs.

Understanding Apache Internals 35 |

Q How does Apache architecture compare to other Web servers?

A Both iPlanet (formerly Netscape) and Microsoft provide server-side APIs to build
modules, called NSAPI (Netscape Server API) and ISAPI (Internet Information
Server API). Both servers provide a mechanism similar to hooks this way.

Other frameworks, such as the Tomcat servlet engine, provide filtering mechanisms
so that the output of one servlet can be processed by another one.

Quiz
1. What are the advantages and disadvantages of using CGI versus an embedded
interpreter?

2. What are the main processing models available for Apache?

3. What are the extension mechanisms for Apache?

Quiz Answers

1. They are mainly related to performance. Embedded interpreters do not have startup
and initialization costs for every request. Data can be cached between requests. In
threaded Web servers, resources such as database connections can be shared
between scripts. CGI scripts have the advantage that they do not leak resources
because they are destroyed after every request and the resources are freed.

2. Process-based server, threaded server, and hybrid server. An additional MPM, per-
child, is described in Hour 11.

3. Apache modules can extend the server via hooks and filters. Hooks are well-
defined points in the life of a request (such as authorization hook and connection
hook). Filters allow modules to modify the content submitted by the client (input
filters) or produced by other modules (output filters).

Further Reading

Most technologies mentioned in this hour are covered later in this book: CGIs in Hour 6,
Tomcat in Hour 7, PHP in Hour 19, mod_perl in Hour 20, SSL in Hour 17, and so on.

Multi-processing modules are explained in detail in Hour 11. Hour 24 covers multi-
protocol modules such as those for FTP and POP3.

Additional information about Apache request cycle:

http://httpd.apache.org/docs-2.0/developer/request.html

|36 Hour 2

Apache Portable Runtime home page:
http://apr.apache.org

Netscape Portable Runtime:
http://www.mozilla.org/projects/nspr
Adaptive Communication Environment:
http://www.cs.wustl.edu/~schmidt/ACE.html
Apache modules repository:

http://modules.apache.org

HoOUR 3

Installing and Building
Apache

Previous hours introduced you to the architecture of the Web and Apache. At
this point, you are ready to install Apache and get to work. In this hour, you
will learn
* How to download, compile, and install a basic Apache server on Unix
* How to download and install a basic Apache server on Windows oper-

ating systems

This hour also covers binary, source, and prepackaged installations.

Choosing the Appropriate Installation
Method

Several options are available to get a basic Apache installation in place.
Apache is open source, meaning that you can have access to the full source
code of the software, which in turn enables you to build your own custom

|38

Hour 3

sever. Additionally, pre-built Apache binary distributions are available for most modern
Unix platforms. Finally, Apache comes already bundled with a variety of Linux distribu-
tions, and commercial versions can be purchased from software vendors such as
Covalent Technologies and IBM.

Building from Source

Building from source gives you the greatest flexibility, enabling you to build a custom
server, remove modules you do not need, and extend the server with third-party modules.
Building Apache from source code enables you to easily upgrade to the latest versions
and quickly apply security patches. Updated versions from vendors usually take days or
weeks to appear.

Building Apache from the source code is not that difficult for simple installations, but
can grow in complexity when third-party modules and libraries are involved. Hour 18,
“Extending Apache,” explains how to extend Apache.

Installing a Binary

Unix binary installations are available from vendors and can also be downloaded from
the Apache Software Foundation Web site. They provide a convenient way to install
Apache for first-time users.

Third-party commercial vendors provide prepackaged Apache installations together with
an application server, additional modules, support, and so on.

The ASF provides an installer for Windows systems—a platform where a compiler is not
as commonly available as in Unix systems.

Apache Version Naming

Starting with Apache 2.0, Apache server releases are named with three digits and an
optional qualifier (alpha or beta). The first digit refers to the main Apache release ver-
sion, the second digit to the major revision, and the third digit to the minor revision. A
qualifier of alpha means that the code has not reached production-level quality and the
feature set is subject to change. In general, only developers working on the Apache code
base or advanced users curious about the latest features should run alpha code. A beta
version means that although the code is still not production-ready, the feature set is more
or less complete and the server is considered stable enough for general testing. A sample
Apache release name is 2.0.28-beta.

Installing and Building Apache 39|

) As a side note, Apache developers take great pride in the quality of their
code. As a result, beta versions of Apache are much more stable and
== feature-rich than commercial product beta software. The drawback is that
sometimes the development cycle takes way too long.

Installing Apache on Unix

This section explains how to install Apache on Unix and Unix-like systems such as
Solaris, Linux, and FreeBSD.

Checking Whether Apache Is Already Installed in Your
System

If you are running a modern Linux distribution, chances are that Apache is already
installed in your system. Try the following at the command-line prompt:

httpd -v

Because some distributions name the Apache binary httpd2, you can also try the follow-
ing:

httpd2 -v

If Apache is installed and the binary is in your path, you will get a message with the ver-
sion and build time:

Server version: Apache/2.0.28
Server built: Dec 29 2001 10:32:01

Otherwise, you will get command not found or a similar message. It might be that
Apache is already installed but is in a different path or with a different binary name, such
as httpd2. Check whether /usr/local/apache2/ or /etc/httpd2 exists and contains a
valid Apache 2.0 installation.

This books covers Apache 2.0, so you must make sure that this is the version installed in
your server. An existing 1.3 Apache installation is likely to interfere with your new
Apache if the older installation runs at startup. Make sure that either the package is
removed from the operating system or the startup script, if any, is disabled. For example,
in most Linux distributions, this means modifying the startup scripts at /etc/rc.d/.
Apache 1.3 and 2.0 can coexist and run simultaneously if they use different IP address
and port combinations, as explained in Hour 4.

If Apache 2.0 is already installed in your system, you can skip the following sections and
go directly to Hour 4, “Getting Started with Apache.” You can always read this hour later
if you decide to build your own server.

|40 Hour 3

Installing from Source

The steps necessary to successfully install Apache from source are

1. Downloading the software
2. Running the configuration script

3. Compiling the code and installing it

These steps are described now in detail.

Downloading the Apache Source Code

The official Apache download site is located at http://www.apache.org/dist/httpd.
You can find several Apache versions, packaged with different compression methods.
The distribution files are first packed with the Unix tar utility and then compressed
either with the gzip tool or the compress utility. Download the .tar.gz version if you
have the gunzip utility installed in your system. This utility comes installed by default in
open source operating systems such as FreeBSD and Linux. Download the tar.Zz file if
gunzip is not present in your system, such as in the default installation of many commer-
cial Unix operating systems.

W The gzip, gunzip, and gtar programs are useful tools. The Gzip Web site at
http://www.gzip.org provides you with links to the source code and bina-
ries for Unix platforms such as Solaris, AIX, and HP-UX. If gunzip is not
installed but gzip is available in your system, you can use gzip -d instead.

’i\
£

&

The file you want to download will be named something similar to httpd-2_0_ver-
sion.tar.Zor httpd-2_0_version.tar.gz where version is the most recent release
version of Apache.

Uncompressing the Source Code

If you downloaded the tarball compressed with gzip (tar.gz suffix), you can uncom-
press it using the gunzip utility (part of the gzip distribution).

Tarball is a commonly used nickname for software packed using the tar
IS5 / utility.

Installing and Building Apache

41|

You can uncompress and unpack the software by typing the following command:
gunzip < httpd-2_0*.tar.gz | tar xvf -

If you downloaded the tarball compressed with compress (tar.Zz suffix), you can issue
the following command:

cat httpd-2_0*.tar.Z | uncompress | tar xvf -

Uncompressing the tarball creates a structure of directories, with the top-level directory
named httpd-2.0_version. Change your current directory to the top-level directory.

Configuring the Software

You can specify which features the resulting binary will have by using the configure
script, in the top-level distribution directory. By default, Apache will be compiled with a
set of standard modules compiled statically and will be installed in the
/usr/local/apache2 directory. If you are happy with these settings, you can issue the
following command to configure Apache:

#./configure

For the remainder of the book, it is assumed that you compiled Apache with loadable
module support and built most of the modules as such. This, combined with the Apache
extension utility (apxs), will enable you to extend the server later with third-party mod-
ules without the need to recompile, as described in Hour 18.

To configure Apache this way, issue the following command:
#./configure --enable-so --enable-mods-shared=most

If you are installing Apache as a normal user and you don’t have write permissions on
/usr/local/, or you simply want to install Apache on a different location, you can spec-
ify an alternative location using the - -prefix option. For example, the following line:

#./configure --enable-so --enable-mods-shared=most
= - -prefix=/home/username/apache2

will compile Apache to be installed in the home directory of the username user.

The purpose of the configure script is to figure out everything related to finding
libraries, compile time options, platform-specific differences, and so on, and to create a
set of special files called makefiles. Makefiles contain instructions to perform different
tasks, called fargets, such as building Apache. These files will then be read by the Unix
make utility, which will carry on those tasks. If everything goes well, after executing con -
figure, you will see a set of messages related to the different checks just performed and
you will be ready to compile the software.

|42

Hour 3

Compiling and Installing Apache

The make utility reads the information stored in the makefiles and builds the server and
modules. Type make at the command line to build Apache. You will see several messages
indicating the compilation progress. After compilation is finished, you can install Apache
by typing make install. The Apache distribution files will be copied to
/usr/local/apache2 or the target directory specified with the - -prefix switch.

Apache Compilation Options

The Apache configuration script, configure, can take additional options. Many of them
are irrelevant for most users, either because they are rarely used or they relate to building
Apache distribution packages. A number of them deal with enabling or disabling specific
modules, and those are explained in detail in Hour 18. Table 3.1 describes the most use-
ful configuration options. You can get a complete listing by issuing the

./configure --help command.

TasLe 3.1 Configuration Options

- -with -mpm=mpm Specifies the Apache Multi-Processing Module. If this option is
not specified, the default MPM for the platform will be compiled
in. In Unix, the value for mpm can be either worker, perchild, or
prefork. MPMs are discussed in Hour 11, “Multi-Processing

Modules.”
--enable-so Enables loadable module support.
--prefix=path Apache will be installed relative to the value of the path direc-
tory. By default, Apache will be installed in
/usr/local/apache2.
- -enable-module Enables or disables the specified module. Check Hour 18 for a
--disable-module complete module listing and descriptions.
--enable-modules=1ist Another way of specifying which modules to build, either
--enable-mods-shared=1ist compiled into the server or as shared libraries. Both switches can

take either a list of modules, all (all modules bundled with
Apache), or most (includes the majority of the modules you will
need).

Selecting the Appropriate MPM

Hour 11 explains the role of Multi-Processing Modules. Table 3.2 shows the relationship
between platforms and MPMs.

Installing and Building Apache 43 |

TaBLE 3.2 MPMs and Platforms

Platform Available MPMs

Windows NT/2000/XP winnt

BeOS Beos

0S/2 mpmt_os2

Linux worker, prefork (default), perchild
Solaris worker, prefork (default), perchild
HP-UX worker, prefork (default), perchild
AIX worker (recommended), prefork (default), perchild
Mac OS X worker, prefork (default), perchild
FreeBSD worker, prefork (default), perchild
Cygwin prefork (default)

In the Windows, BeOS, and OS/2 platforms, there is no choice of MPM and the appro-
priate one will be selected. In Unix platforms, the default is the prefork MPM, although
the worker MPM is probably a better choice, except for some platforms such as
FreeBSD. The Cygwin platform supported only the prefork MPM at the time this book
was being written. Table 3.2 gives you information about which MPM modules are avail-
able for a specific platform. Further information on which MPM to choose, their advan-
tages and disadvantages can be found in Hour 11.

Installing Binaries

This section explains how to install a pre-built Apache server on Unix platforms.

Binaries from the Apache Web Site

You can download binaries for different platforms from the Apache Web site at
http://www.apache.org/dist/httpd/binaries. Check whether binaries for your plat-
form are available. You can download and uncompress the tarball as described in the pre-
vious section. In this case, the configuration and compilation steps are not necessary. You
can install the software by executing the install-bindist script. You can pass an
optional argument, the target installation directory. Otherwise, the software will be
installed in /usr/local/apache2.

Distribution-Specific Packages

Operating system vendors recognize that Apache is an important server software compo-
nent and either include it by default or make it available in a distribution-specific format.

|44

Hour 3

For Linux distributions based on the RPM format, you can query whether Apache 2.0 is
already installed by issuing this command:

#rpm -q apache2

If Apache 2.0 is not available, you can go to the distribution vendor Web site, download
the Apache 2.0 RPM, and install it executing the following command as root:

#rpm -1 apache2*.rpm

Apache 2.0 is part of the FreeBSD and other BSD flavors ports collection. Just change to
the appropriate directory and type make install. That command will download the
source code, and build and install the server.

You can get Apache binaries and packages for Solaris platforms at
http://www.sunfreeware.com. Solaris 8 already bundles an Apache 1.3 version,
and future releases will likely include Apache 2.0.

Building from CVS

CVS stands for concurrent versioning system and is a popular software development tool
that enables programmers to simultaneously work on the same code base, keeping track
of changes and revisions and helping to resolve conflicts in the code. Apache is an open
source project and makes the source code available via a public CVS server. You can
check out any particular release of the code or the latest, unreleased version this way.
Compiling and building from CVS is an advanced topic and not recommended for begin-
ners. The following sections comprise a step-by-step guide to compiling Apache from
CVS.

The CVS Client

You need the cvs command-line utility to connect to the Apache CVS repository. It is
available by default in most Linux distributions and other open source operating systems
such as FreeBSD. If cvs is not available for your system, check your vendor package
repository or download and compile the source from http://www.cvshome.org.
Checking Out the Source

The main Apache CVS repository is at cvs.apache.org. The first step will be to log in
to that server:

cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic login
You will be prompted for a password; use anoncvs.

To retrieve the Apache source code (check out the code in the jargon), issue the following
command:

Installing and Building Apache 45|

cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co httpd-2.0

The httpd-2.0 directory that contains the Apache source code will be created. The pack-
aged source tarball for Apache includes a couple of libraries that are not present in CVS
apr and apr-util. Change your directory to httpd-2.0/srclib/ and execute the follow-
ing commands:

cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co apr

cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co apr-util

Building the configure Script

You need to change your current directory to httpd-2.0 and execute the . /buildconf
command. That will create a configure script. From this step on, you can follow the
instructions in the “Building Apache from Source” section earlier in the hour. The
buildconf script requires the autoconf utility, which is either already included with
your system or can be downloaded from http://www.gnu.org/software/autoconf.

Check Out a Specific Version of Apache

You can check out a specific version of Apache by using the -r tag option to the cvs
command-line utility. For example, this line

cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic
= co -r APACHE_2 0 28 httpd-2.0

will check out the source code for Apache 2.0.28.

Installing Apache on Windows

Apache 2.0 runs on most Windows platforms and offers increased performance and sta-
bility over previous 1.3 Windows versions. You can build Apache from source, but
because not many Windows users have compilers, this section deals with the binary
installer.

Before installing Apache, you probably want to make sure that you are not currently run-
ning a Web server in that machine, such as a previous version of Apache, Microsoft
Internet Information Server, or Microsoft Personal Web Server. You might want to unin-
stall or otherwise disable existing servers. You can run several Web servers but they will
need to run in different address and port combinations.

You can download an installer in the MSI format from
http://www.apache.org/dist/httpd/binaries/win32.

After you download the installer, double-click on the file to start the installation process.
You will get a welcome screen, as shown in Figure 3.1, and you will be prompted to

|46

Hour 3

FIGURE 3.1 i Apache HTTP Server 2.0 - Installation Wizard

Windows installer
welcome screen.

accept the Apache license. You can also find a copy of the license in the Apache
Software Foundation Web site (http://www.apache.org) and in Appendix A, “Apache
License,” of this book. Basically the license says that you can do whatever you want with
the software—including proprietary modifications— except claim that you wrote it.

Welcome to the Installation Wizard for
Apache HTTP Server 2.0.28 (No Encryption)

The Instaletion Wizerd wil instal Apache HTTF Server 2,028
(M2 Ercryption) on yaur computer, To continue, cick Mest,

WARNING: This program is probected by copyright lew ard
international reaties,

After you accept the license, you are presented with a brief introduction to Apache.
Following that, you are asked to provide the installation process with basic information
about your computer, as shown in Figure 3.2. This includes the network domain name,
the fully qualified domain name (FQDN) for the server, and the administrator’s e-mail
address. The server name will be the name that your clients will use to access your
server, and the administrator e-mail address will be added to error messages so that visi-
tors know how to contact you when something goes wrong. Additionally, you can install
Apache as a service or require it to be started manually. Installing Apache as a service
will cause it to run every time Windows is started, and you can control it through the
usual Windows service administration tools. Choose this option if you plan to run
Apache in a production environment or otherwise require Apache to run continuously.
Installing Apache for the current user will require you to start Apache manually and set
the default port Apache listens to requests to 8080. Choose this option if you use Apache
for testing or if you already have a Web server running on port 80. Hour 4 provides fur-
ther information on the different ways of controlling Apache in Windows.

The following screen enables you to choose the type of installation, as shown in Figure
3.3. Typical installation means that Apache binaries and documentation will be installed,
but headers and libraries will not. This is the best option to choose unless you plan to
compile your own modules.

A custom installation enables you to choose whether to install header files or documen-
tation. After selecting the target installation directory, which defaults to c:\Program

Installing and Building Apache 47|

Files\Apache Group, the program will proceed with the installation process. If every-
thing goes well, you will be presented with the final screen shown in Figure 3.4.

FIGURE 3.2 i Apache HTTP Server 2.0 - Installation Wizard

P . Server Information

Basic mformatlon Please enter your server's informatian,

Screen.

Network Domain (e.g. somenst.com)
I

Server Mame (8.0, W somenet.com)

s Emal Adr 0. com):

Inszal Apache HTTP Server 2.0 programs and shoetcuts for:

& for Al Usars, on Part 80, a5 a Sarvics — Recommended.
" pely Far the Current Usar, on Peet 3030, when started Manusly,

Instal Shield
= Back. Mak = Cancel
FIGURE 3.3 i Apache HTTP Server 2.0 - Installation Wizard
Installation type selec- setup Type I
R Chosse tie ssbug bype that best suits yaur reeds,

tion screen.

Please select a sehup bype.

 [ypical

Typical pragram Festurss wil be installed, (Headsrs and Librariss
For compiing modules wil not be instaled.)

" Custom

Choose which program featuras you wank nstalled and whare they
wil be nstaled. Racommeanded For advanced usars,

Instal Shield

= Back. Mak = Cancel

FIGURE 3.4

Successful installation
screen.

Installation Wizard Completed

The Instaletion Wizerd has successfully insteled Apache HTTP
Serwer 2.0,28 [No Encryption). Jick Finigh to exit the wizard,

= Beck I Einish I Carce|

|48

Hour 3

Notes About the Windows Installer

At the time this book was written, Apache 2.0 did not support Windows consumer plat-
forms such as Windows 95 and Windows 98. The Apache developers will concentrate on
the server platforms such as Windows 2000 and Windows XP, and when Apache has
been optimized for these platforms, they might attempt to support consumer versions of
Windows.

Additionally, the current releases of the installer at the time of writing did not contain
support for encryption, although future releases will likely include the OpenSSL libraries
by default. Hour 17, “Setting Up a Secure Server,” explains the SSL protocol.

Verifying the Integrity of Downloaded
Software

When downloading binaries from the Internet, you must make sure that the software is
indeed what you expect it to be. If the Web site has been compromised, the software
could have been replaced by one containing viruses or backdoors. Apache Software
Foundation members digitally sign the released software, so you can check that an
attacker has not modified it. The signatures are contained in the files with asc extensions.
You can find instructions on how to check the validity of the signatures at
http://httpd.apache.org/docs-2.0/install.html#download.

If you are installing Apache from an RPM provided by your vendor, there is a similar
mechanism to check its integrity and authenticity with the -K option, as shown here:

rpm -v -K package.rpm

Commercial Alternatives

In addition to the operating-system-vendor-supplied Apache versions, a number of com-
panies offer servers based on Apache.

e IBM: The latest IBM HTTP server is based on Apache 2.0 with additional mod-
ules added (such as encryption). The IBM HTTP server is also part of the
Websphere Application Server suite. You can find more about this server at
http://www-4.ibm.com/software/webservers/httpservers.

* Covalent: Covalent offers Enterprise Ready Server (ERS), based on Apache 2.0.
ERS includes support for SSL, FTP, and LDAP, and includes a graphical

Installing and Building Apache 49|

management interface component. You can find more about ERS at
http://www.covalent.net.

* Red Hat: Although at the time this book was written, Red Hat did not offer a 2.0-
based Web server, it is likely to do so in the future as part of its secure and com-
merce servers. More information about Red Hat’s Apache products can be found at
http://www.redhat.com/software/apache/index.html.

Summary

This hour explained different ways of getting an Apache 2.0 server installed on your
Unix or Windows machine. It covered both binary and source installation and explained
the basic build time options. Hour 16, “Tuning Apache,” covers additional build configu-
ration options and tools. The lesson in Hour 4 will guide you through the different steps
necessary to get the Apache server you just installed up and running so that you can start
serving pages.

Q&A

Q Are there any tools available to help with Apache compilation?

A Several programs, usually referred to as compilation kits, are designed to make it
easier to compile Apache and additional modules. They present a text interface
from which you can specify the desired options and modules to enable. The compi-
lation tool takes care of downloading and patching the necessary software, and
configuring and building it. You can find one of these tools at
http://www.apachetoolbox.com, although it only supports 1.3 at the time of
writing this book.

(e

Why do some Apache releases seem to be missing?

A When Apache developers agree it is time to make a new release of the server, they
mark the sources with the release name and number and proceed to create the
source and binary distribution packages, test them, place them in the Web site, and
announce it to the world. If a severe problem is found in that testing, the release
process is stopped until the problems are fixed. To avoid confusion, a new release
name and number will be applied to the next release attempt that includes the new
fixes. That is the reason why, for example, there were no public releases between
Apache 2.0.16 and 2.0.28. You can always access any version using the CVS
repository, as explained earlier in this hour.

Q How can I start a clean build?

If you need to build a new Apache from source and do not want the result of earlier
builds to affect the new one, it is always a good idea to run the make clean

|50

Hour 3

command. That will take care of cleaning up any existing binaries, intermediate
object files, and so on.

Quiz

1. Why is it important to make sure that an existing Apache server is not enabled?

2. How can you specify the location to install Apache?

Quiz Answers

1. Only one server can be listening at the same [P and port combination at any given
moment. Having previous versions of Apache running will prevent new ones from
running and will likely confuse you.

2. You can use the - -prefix option of the configure script. If an existing installation
is present at that location, the configuration files will be preserved but the binaries
will be replaced.

Further Reading

By far the easiest way to get started with Apache is to use the Apache server included
with your operating system (if possible). As you become more experienced with Apache
and you need to customize or extend it in particular ways, it is useful to build your own
version from source. Hour 18 deals with extending Apache and describes several utilities
that can help you do so.

The OpenPKG project provides a consistent way to install server software, including
Apache, across a variety of platforms. It is a nice alternative to building Apache from
source or using the Apache versions provided by your vendor. The OpenPKG project is
open source, supports different operating systems such as Solaris, Linux, and FreeBSD,
and it was started by Ralf S. Engelschall, author of several popular Apache modules. You
can learn more about OpenPKG at http://www.openpkg.org.

The document at this URL describes how to get started compiling and installing Apache
on Unix:

http://httpd.apache.org/docs-2.0/install.html

Installing and Building Apache 51 |

In the following URLSs, you will find the equivalent information for Windows-based plat-
forms, including compilation from source:

http://httpd.apache.org/docs-2.0/platform/windows.html
http://httpd.apache.org/docs-2.0/platform/win_compiling.html

For advanced Apache users, or if you want to become involved in development, the
Apache developers’ site includes information on CVS access, applying patches, and so
on:

http://httpd.apache.org/dev/

HouRr 4

Getting Started with
Apache

This hour describes the directory layout of Apache installations, the struc-
ture of configuration files, and the location and format of error and log files.

In this hour, you will learn

» The steps necessary to have a minimal Apache installation up and run-
ning; for example, changing basic server properties such as name and
port information

* How to start and stop Apache and how to troubleshoot basic problems

Layout of Server Files and Directories

This section details the location of important Apache server files and pro-
grams. The exact location varies depending on the underlying operating sys-
tem or distribution and how Apache was installed, but they are quite similar.
Table 4.1 summarizes the location for different platforms. The rest of the
hour provides detailed information about many of the files and programs

mentioned here.

|54

Hour 4

Log files

Proxy
Configuration files

CGI scripts

Build information
and header files

Error messages

Modules and libraries

HTML documents
Icons

Manual

log/error.log
log/access.log
log/httpd.pid

proxy/
conf/httpd.conf
cgi-bin/test-cgi.bat
cgi-bin/printenv.pl

Does not apply in binary installation

error/
modules/
bin/
htdocs/
icons/

manual/

TaBLE 4.1 Default Locations for Files
Section Windows Unix
Default install path C:\Program Files\Apache Group\Apache2 /usr/local/apache2
Binaries and bin/apache.exe bin/httpd
support scripts bin/ bin/

log/error_log
log/access_log
log/httpd.pid
proxy/
conf/httpd.conf
cgi-bin/test-cgi
cgi-bin/printenv

include/
build/

error/
modules/
lib/
htdocs/
icons/

manual/

Apache Binary and Support Scripts

The Apache program executable is called httpd on Unix and apache.exe on Windows.
In the same directory you can find support scripts to easily start and stop the server,
manipulate password files, and perform benchmarking and log file processing.

Log Files

Apache keeps a log of the requests served, error messages, and so on. You can customize
in several ways what gets logged and where it is saved. Apache provides you with two
log files by default: access_log and error_log on Unix and access.log and error.log
on Windows.

Configuration Files

Apache keeps its configuration in text files. The main file is called httpd.conf. The con-
figuration language enables you to include additional files to better organize and struc-
ture your configuration information.

Getting Started with Apache 55 |

CGI Scripts Location

This directory is the default location for CGI scripts, first introduced in Hour 1, “Apache
and the Web.” It contains sample scripts, but they are not enabled by default. This is so
because CGI scripts can contain security holes or expose information about the server or
files. An attacker could exploit these scripts to run arbitrary commands on the server, dis-
play the contents of files, and so on. You can learn more about running CGI scripts in
Apache in Hour 6, “Serving Dynamic Content with CGI.”

Build Information and Header Files

The build and include directories contain header files and information gathered during
the build process. These files are necessary for building additional loadable modules out-
side the normal Apache build process.

Error Messages

The error messages directory contains information needed to display customizable error
messages, as explained in detail in Hour 5, “Using Apache to Serve Static Content.”

Manual Pages

The manual directory includes HTML documentation and directive descriptions. The man
directory contains manual pages for Apache commands in the Unix man page format.

Modules and Libraries Directory

Dynamic loadable modules, located in the modules directory, provide much of the func-
tionality of Apache. Apart from the modules, Apache requires several libraries that are
loaded by the server at runtime (as opposed to being compiled in). This includes the
expat XML library and the Apache Portable Runtime library, 1ibapr.

Web Pages and Images

The directory htdocs contains the documents that will be accessible through the Web
site. This directory is also called the document root. The icons directory contains images
that are used in the Apache documentation and icons that are used in directory listings.

Installation Differences

The directory names and locations vary depending on the operating system or distribu-
tion vendor. Table 4.1 describes where you can find the files in Unix and Windows. The
table should have included the location of Apache 2 files in major Linux distributions
such as Red Hat, but at the time of writing this book there were no RPM packages avail-
able.

|56 Hour 4

Configuration Files Structure

Apache is configured via text files. The main configuration file is httpd.conf.

Please refer to the previous section to learn where this file is located in your system.
Apache configuration files contain directives and containers. Directives configure spe-
cific settings of Apache, such as authorization, performance, and network parameters.
Containers specify the context to which those settings refer. For example, authorization
configuration can refer to the server as a whole, a directory, or a single file.

Directives

Apache directives have a simple syntax: the directive name followed by the directive
arguments. The directive arguments are separated by spaces. The number and type of
arguments vary from directive to directive. Some of the directives do not have any argu-
ments.

Each directive occupies a single line. Directives can be continued in a different line by
ending the previous line with a backslash character \.

You can insert comments by preceding them with #. A comment must appear on its own
line. It is not possible to append comments at the end of a directive; they will be con-
fused with an argument.

Although Apache end user documentation could be improved (probably one of the rea-
sons you are reading this book!), the reference documentation is comprehensive and
accurate. Rather than reproduce it here, you can browse it online at
http://httpd.apache.org/docs-2.0/.

In the documentation, you can browse the directives by alphabetical order or by the mod-
ule to which they belong. An entire listing of all the directives would add little or no
value to this book. Instead you will find a discussion of the most useful directives
because this book concentrates on a practical, task-oriented approach to Apache rather
than a simple enumeration of directives.

Figure 4.1 shows an entry from the documentation for the ServerName directive descrip-
tion. You can find this entry online at http://httpd.apache.org/docs-
2.0/mod/core.html#servername.

The schema, as detailed in the documentation at http://httpd.apache.org/docs-
2.0/mod/directive-dict.html, is the same for all directives:

e Syntax: This entry explains the format of the directive options. Compulsory para-
meters appear in italics, optional parameters appear in italics and brackets.

Getting Started with Apache

57|

FIGURE 4.1 } Apache module mod_a - Microsoft Internet Explorer
K i L. | Fie Edt View Fevoites Toos Hep
Directive desCrlpthn | cnek v = - @ | @seach rsvormes sy |[R- S B
example. | addvess [titpefihitnd.apachearaldocs- _scesss.tml =] @e

Order directive

Syntax: Order ardering
Default: order Deny, Allow
Comtext: directory, htaccess
Override: Limit

Status: Base

Module: mod_access

The Order directve controls the default access state and the order in which Allow and Deny directives are evaluated.
Crdlaring 12 one of

Deny, Allow
The Deny directves are evalated before the 4110w directives. Access is allowed by default Any client which does not
match a beny directve or does match an AL Low directive will be allowed access to the server.

Allow, Deny
The Allow directives are evaliated before the Deny directives, Access iz denied by default. Any client which does not
match an AL Low directive or does match a Deny directive will be denied access to the server.

Mumsal-failure
Cmly those hosts which appear on the a11owbst and do not appear on the Deny Lst are granted access. This ordermg
has the same effect az Order Allew, Deny and iz deprecated in favor of that configuration.

Eeywords may only be separatzd by a comma; ne whitespace i3 allowed between them. Mote that in all cases every Allow
and Deny stalement is evaluated. =

&3] D Internet

Default: If there is a default value of the directive, it will appear here.

Context: This entry details the containers or sections in which the directive can
appear. Containers are explained in the next section. The possible values are
server config, virtual host, directory, and .htaccess.

Status: This entry refers to whether the directive is built in Apache (core), belongs
to one of the bundled modules (base or extension, depending on whether they are
compiled by default), part of a Multi-Processing Module (MPM), or is bundled with
Apache but not ready for use in a production server (experimental) .

Module: This entry indicates the module to which the directive belongs.
Compatibility: This entry contains information about which versions of Apache
support the directive.

Override: Apache directives belong to different categories. The override field is
used in specifying which directive categories can appear in .htaccess per-direc-
tory configuration files. These configuration files are covered in detail in a later
section.

A brief explanation of the directive follows these entries in the documentation and finally
a reference to related directives or documentation may appear.

|58 Hour 4

Containers

Directive containers, also called sections, limit the scope to which directives apply. If
directives are not inside a container, they belong to the default server scope (server
config), applying to the server as a whole.

These are the default Apache directive containers:

e <virtualHost>: A VirtualHost directive specifies a virtual server. Apache enables
you to host different Web sites with a single Apache installation. Directives inside
this container apply to that particular Web site. This directive accepts a domain
name or IP address and an optional port as arguments. Virtual hosts are explained
in detail in Hour 14.

* <Directory>, <DirectoryMatch>: These containers allow directives to apply to a
certain directory or group of directories in the filesystem. Directory containers
take a directory or directory pattern argument. Enclosed directives apply to the
specified directories and their subdirectories. The DirectoryMatch container
allows regular expression patterns to be specified as an argument. You can learn
more about regular expressions in the “Further Reading” section of Hour 22,
“mod_rewrite.”

* <Location>, <LocationMatch>: Allow directives to apply to certain requested
URLs or URL patterns. They are similar to their Directory counterparts.
LocationMatch takes a regular expression as an argument.

e <Files>, <FilesMatch>: Similar to Directory and Location containers, Files
sections allow directives to apply to certain files or file patterns.

o Directory, Files, and Location sections can also take regular expression
éf arguments by preceding them with a ~, as in <Files ~ "\.(gif|jpg)">.

However, the DirectoryMatch, LocationMatch, and FilesMatch directives are
preferred for clarity.

&
g,

Containers surround directives, as shown in Listing 4.1.

Listing 4.1 Sample Container Directives

1: <Directory "/some/directory">
2: SomeDirectivet
3: SomeDirective2

Getting Started with Apache 59 |

LisTinG 4.1 continued

</Directory>

<Location "/downloads/*.html">
SomeDirective3

</Location>

<Files "\.(gif|jpg)">
SomeDirective4

</Files>

S © 0o ~NO OB

Sample directives SomeDirective? and SomeDirective2 will apply to the directory
/www/docs and its subdirectories. SomeDirective3 will apply to URLSs referring to pages
with the .html extension under the /download/ URL. SomeDirective4 will apply to all
files with .gif or . jpg extensions.

Conditional Evaluation

Apache provides support for conditional containers. Directives enclosed in these contain-
ers will be processed only if certain conditions are met.

e <IfDefine>: Directives in this container will be processed if a specific command
command-line switch is passed to the Apache executable. The directive in Listing
4.2 will be processed only if the -DMyModule switch was passed to the Apache
binary being executed. You can do this directly or by modifying the apachectl
script, as described in the “Apache Related Commands” section.

LisTiNG 4.2 IfDefine Example

1: <IfDefine MyModule>
2: LoadModule my module modules/libmymodule.so
3: </IfDefine>

IfDefine containers allow the argument to be negated. That is, directives inside a
<IfDefine !MyModule> section will be processed only if no -DMyModule parameter
was passed as a command-line argument.

e <IfModule>: Directives in an IfModule section will be processed only if the mod-
ule passed as an argument is present in the Web server. For example, Apache ships
with a default httpd.conf configuration file that provides support for different
MPMs. Only the configuration belonging to the MPM compiled in will be
processed, as can be seen in Listing 4.3. The meaning of the individual directives
will be explained in Hour 11, “Multi-Processing Modules.” The purpose of the
example is to illustrate that only one of the directive groups will be evaluated.

|60

Hour 4

Listing 4.3 IfModule Example

1: <IfModule prefork.c>
2: StartServers 5
3: MinSpareServers 5
4: MaxSpareServers 10
5: MaxClients 20
6: MaxRequestsPerChild 0
7: </IfModule>

8:

9: <IfModule worker.c>
10: StartServers 3
11: MaxClients 8
12: MinSpareThreads 5
13: MaxSpareThreads 10
14: ThreadsPerChild 25
15: MaxRequestsPerChild 0
16: </IfModule>
ServerRoot

The ServerRoot directive takes a single argument: a directory path pointing to the direc-
tory where the server lives. All relative path references in other directives are relative to
the value of ServerRoot. The default value for this directive, assuming that you installed
Apache from source as described in the previous hour, is /usr/local/apache2.

Including Additional Configuration Files

Apache provides an Include directive that can be used to process additional files con-
taining Apache configuration directives. Include accepts a file or a directory as an argu-
ment. If a directory is specified, all files in that directory are read and processed as
configuration files. If the file or directory is a relative path, it is assumed it is relative to
the value of the ServerRoot directive, as described previously. An example:

Include conf/ssl.conf

Per-Directory Configuration Files

Apache uses per-directory configuration files to allow directives to exist outside the main
configuration file httpd.conf. These special files can be placed in the filesystem.
Apache will process the content of these files if a document is requested in a directory
containing one of these files or any subdirectories under it. The contents of all the applic-
able per-directory configuration files are merged and processed. For example, if Apache
receives a request for the /usr/local/apache2/htdocs/index.html file, it will look for
per-directory configuration files in the /, /usr, /usr/local, /usr/local/apache2, and
/usr/local/apache2/htdocs directories, in that order.

Getting Started with Apache 61 |

Enabling per-directory configuration files has a performance penalty. Apache must per-
form expensive disk operations looking for these files in every request, even if the files
do not exist.

Per-directory configuration files are called .htaccess by default. This is for historical
reasons; they were used to protect access to directories containing HTML files.

The directive AccessFileName enables you to change the name of the per-directory con-
figuration files from .htaccess to something else. It accepts a list of filenames that
Apache will look for when looking for per-directory configuration files.

If .htaccess is present in the Context: directive syntax field of a directive definition,
that directive can be placed in per-directory configuration files.

Apache directives belong to different groups, specified in the Override: field in the
directive syntax description. Possible values are

e AuthConfig: Authorization directives

* FileInfo: Directives controlling document types

e Indexes: Directives controlling directory indexing

e Limit: Directives controlling host access

* Options: Directives controlling specific directory features
You can control which of these directive groups can appear in per-directory configuration
files by using the AllowOverride directive. ALlowOverride also can take an All or a
None argument. AL1 means directives belonging to all groups can appear in the configura-
tion file. None disables per-directory files in that directory and any of its subdirectories.

Listing 4.4 shows how to disable per-directory configuration files for the server as a
whole. This improves performance and is the default Apache configuration.

Listing 4.4 Disabling Per-Directory Configuration Files

1: <Directory />
2: AllowOverride none
3: </Directory>

Merging Rules
When different configuration directives can apply to the same resource, they are
processed in the following priority order:

1. <Directory> sections and per-directory files processed simultaneously

2. <DirectoryMatch> and <Directory> sections containing regular expression argu-
ments

|62

Hour 4

3. <Location> and <LocationMatch> sections

4. <Files> and <FilesMatch> sections

Directory sections are evaluated starting with the ones with the shortest path (directory
components) first. The rest of the sections are evaluated in the order in which they appear
in the configuration file. <virtualHost> contents are processed after global scope direc-
tives, so they can override their values.

Additional Configuration Files

The mime. types configuration file contains information associating file extensions with
certain content types. This list is necessary so Apache can set the right HTTP headers
when a certain file is requested. MIME type configuration is explained in detail in
Hour 5.

Minimal Apache Configuration

You can edit the Apache httpd.conf file with your favorite text editor. In Unix, this
probably means vi or emacs. In Windows, you could use Notepad or WordPad. You must
remember to save the configuration file in plain text format, which is the only one
Apache will understand.

If your machine is properly configured, and you installed Apache from source or are
using the Apache that came with your system, you probably do not need to change the
default configuration file. There are only two parameters that you might need to change
to be able to start Apache for the first time: the name of the server and the address and
port to which it is listening. The name of the server is the one Apache will use when it
needs to refer to itself; for example, when redirecting requests. Apache usually can figure
out its server name from the IP address of the machine, but this is not always the case. If
the server does not have a valid DNS entry, you might need to specify one of the IP
addresses of the machine. If the server is not connected to a network (you might want to
test Apache on a standalone machine), you can use the value 127.0.0.1, the loopback
address. The default port value is 80. You might need to change this value if there is
already a server running in the machine at port 80, or if you do not have administrator
permissions because on Unix systems only the root user can bind to port numbers less
than 1024 (privileged ports).

Both listening address and port values can be changed with the Listen directive. The
Listen directive takes either a port number or an IP address and a port, separated by a
semicolon. If only the port is specified, Apache will listen at that port in all available IP
addresses in the machine. If an additional IP address is provided, Apache will listen at
only that address and port combination. For example, Listen 80 tells Apache to listen

Getting Started with Apache 63 |

for requests at all IP addresses at port 80. Listen 10.0.0.1:443 tells Apache to listen
only at 10.0.0.1 at port 443.

The ServerName directive, described in detail in the next hour, enables you to define the
name the server will report in any self-referencing URLSs. The directive accepts a DNS
name and an optional port, separated by a colon. Make sure that ServerName has a valid
value. Otherwise, the server will not function properly; for example, it will issue incor-
rect redirects.

On Unix platforms, you can specify which user and group IDs the server will run as with
the User and Group directives. The nobody user is a good choice for most platforms.
There are problems in the HP-UX platform with this user ID, so you must create and use
a different user ID, such as www.

Log Files
Apache includes two log files by default. The access_1log file is used to track client
requests. The error_log is used to record important events, such as errors or server
restarts. These files won’t exist until Apache is started for the first time. The files are
named access.log and error.log in Windows platforms.

access_log

When a client requests a file from the server, Apache records several parameters associ-

ated with the request, including the IP address of the client, the document requested, the
HTTP status code, the current time, and so on. Figure 4.2 describes a sample log entry in
detail. Hour 8, “Logging and Monitoring,” will teach you how to modify which parame-
ters get logged.

FIGURE 4.2 Client IP address HTTP status code

Sample log entry.
10.0.0.1 — — [17/NOV/2001:13:57:31 —0800] GET /HTTP/1.1 200 1456

J \ J

Time and date Original request

Remote user Number of
(not present in this case) bytes transmitted

error_log

This file includes error messages, startup messages, and any other significant events in
the life cycle of the server. This is the first place to look when you have a problem with
Apache. Listing 4.5 shows a sample entry.

|64 Hour 4

Listing 4.5 Sample Error Log Entry

[Thu Feb 28 20:57:16 2002] [crit] (48)Address already in use:

. =make_sock: could not bind to address 10.0.0.2:80

[Thu Feb 28 20:57:16 2002] [alert] no listening sockets available,
= shutting down

A O =

Additional Files

The pid file contains the process ID of the running Apache server. You can use this num-
ber to send signals to Apache manually, as described in the next section.

The scoreboard file, present on Unix Apache, is used by the process-based MPMs to
communicate with their children.

In general, you do not need to worry about these files.

Apache-Related Commands

The Apache distribution includes several executables. This section covers only the server
binary and related scripts. Hours 7, “Restricting Access,” 8, and 16, “Tuning Apache,”
cover user management, log management, and benchmarking utilities, respectively.

Apache Server Binary

The Apache executable is named httpd in Unix and apache.exe in Windows. It accepts
several command-line options, which are described in Table 4.2. You can get a complete
listing of options by typing /usr/local/apache2/bin/httpd -h on Unix or apache.exe
-h on Windows.

TaBLE 4.2 httpd Options

Option Meaning

-D Allows you to pass a parameter that can be used for <IfDefine> section processing
-1 Lists compiled-in modules

-V Shows version number and server compilation time

-f Allows you to pass the location of httpd.conf if it is different from the compile-

time default

-d Allows you to specify an alternate initial ServerRoot

Getting Started with Apache 65 |

After Apache is running, you can use the Unix kill command to send signals to the par-
ent Apache process. Signals are a mechanism to send commands to a process. To send a
signal, you execute the following command:

kill -SIGNAL pid
where pid is the process ID and SIGNAL is one of the following:

* HUP: Stop the server

* USR1 or WINCH: Graceful restart; which signal to use depends on the underlying
operating system
* SIGHUP: Restart

If you make some changes to the configuration files and you want them to take effect, it
is necessary to signal Apache that the configuration has changed. You can do this by
stopping and starting the server or by sending a restart signal. This tells Apache to reread
its configuration.

A normal restart can result in a momentary pause of service. A graceful restart takes a
different approach. Each thread or process serving a client will keep processing the cur-
rent request, but when it is finished, it will be killed and replaced by a new thread or
process with the new configuration. This allows seamless operation of the Web server
with no downtime.

Controlling Apache on Windows

On Windows, you can signal Apache using the apache.exe executable:

* Apache.exe -k restart: Tells Apache to restart
* Apache.exe -k graceful: Tells Apache to do a graceful restart

e Apache.exe -k stop: Tells Apache to stop

You can access shortcuts to these commands in the Start menu entries that the Apache
installer created. If you installed Apache as a service, you can start or stop Apache by

using the Windows service interface: In Control Panel, select Administrative Tasks and
then click on the Services icon.

Additionally, Apache 2.0 can place a program, Apache Monitor, in the system tray. It is a
simple GUI that you can use to start and stop the server directly or as a service. It is
either installed at startup or you can launch it from the Apache entry in the Start menu.

|66

Hour 4

Apache Control Script

Although it is possible to control Apache on Unix using the httpd binary it is recom-
mended that you use the apachectl tool. The apachectl support program wraps com-
mon functionality in an easy-to-use script. To use apachectl, type

. /apachectl command

where command is stop, start, restart, or graceful. You can also edit the contents of
the apachectl script to add extra command-line options.

Some OS distributions might provide you with additional scripts to control Apache.

Starting Apache for the First Time

To start Apache on Unix, change to the directory containing the apachectl script and
execute the following command:

./apachectl start

To start Apache on Windows, click on the Start Apache link in the Control Apache sec-
tion in the Start menu. If you installed Apache as a service, you must start the Apache
service instead (as described in the previous section).

If everything goes well, you can access Apache using a browser. The default installation
page will be displayed, as shown in Figure 4.3. If you cannot start the Web server or an
error page appears instead, please consult the “Troubleshooting” section later in this
hour. Make sure that you are accessing Apache in one of the ports specified in the
Listen directive—usually 80 or 8080. If you do not have a browser handy, you can also
use the telnet command-line tool as explained in Hour 1 and displayed in Listing 4.6.

LisTinG 4.6 Testing Apache Manually

bash-2.04$ telnet 127.0.0.1 80
Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '"]"'.

GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 22 Oct 2001 05:40:44 GMT
Server: Apache/2.0.18 (Unix)

©oOoONOO O WN =

Getting Started with Apache 67 |

FIGURE 4.3 2§ Test Page for Apache Installation - Microsoft Internet Explorer
| Fie Edt View Favortes Toos Help
Apache default instal- s[5 - © B (] @each Gorevaress Srizery B & - B @
lation page. | address [trap:fjsame.domain com =] Pee

I you can ses this, it means that the mstallahon of the Apachs web server software on this system was successbil. You may
now add content to this directory and replace this page,

Seeing this instead of the website you expected?

Thris page is here because the site administrator has changed the confignration of this web server. Fleaze contact the person
responsible for maintaining this server with questions. The Apache Software Foundation, which wrote the web server
software this site adminstrator is vemg, has nothing to do with maintaming this site and cannet help resolve confipuranon issues.

The Apache documentahon has been included swath this distnbuhon.

Ten are free to uge the image below on an Apache-powered web server. Thanks for using Apache!

WKF'ADHE

|21 _ i meemet

You can now check the log files. If the server started successfully, the error log file will
contain a message noting the event:

[Thu Feb 28 20:56:44 2002] [notice] Apache/2.0.27 (Unix) configured
= -- resuming normal operations

The access log will contain a log of the request you just made to make sure that Apache
was running.

Troubleshooting

There are several common problems that you might encounter the first time you start
Apache.

Existing Web Server

If there is already a server running in the machine and listening to the same IP address
and port combination, Apache will not be able to start successfully. You will get an entry
in the error log file indicating that Apache cannot bind to the port:

[crit] (48)Address already in use: make_sock: could not bind to

=address 10.0.0.2:80
[alert] no listening sockets available, shutting down

|68

Hour 4

To solve this problem, you need to stop the running server or change the Apache config-
uration to listen in a different port.

No Permission to Bind to Port

You will get an error if you do not have administrator permissions and you try to bind to
a privileged port (between 0 and 1024):

[crit] (13)Permission denied: make_sock: could not bind to address 10.0.0.2:80
[alert] no listening sockets available, shutting down

To solve this problem, you must either become administrator before starting Apache or
change the port number (8080 is a commonly used non-privileged port).

Access Denied

You might not be able to start Apache if you do not have permissions to read the config-
uration files or to write to the log files. You will get an error similar to the following:

(13)Permission denied: httpd: could not open error log file
= /usr/local/apache2/logs/error_log.

This problem can happen if Apache was built and installed by a different user than the
one trying to run it.

Wrong Group Settings

You can configure Apache to run under a certain username and group. Apache has
default values for the running server username and group. Sometimes the default value is
not valid, and you will get an error containing setgid: unable to set group id.

To solve this problem, you must change the value of the Group directive in the configura-
tion file to a valid value. Check the /etc/groups file for existing groups.

Summary

This hour provided you with enough understanding of Apache configuration and server
control to have a basic server installation up and running. The following hours will build
on that knowledge, providing further information on configuration and monitoring of the
server.

Getting Started with Apache 69 |

Q&A

Q Why are per-directory configuration files useful?

A Although per-directory configuration files have an impact on server performance,
they can be useful for delegated administration.
Because per-directory configuration files are read every time a request is made,
there is no need to restart the server when a change is made to the configuration.

You can allow users of your Web site to add configuration on their own without
granting them administrator privileges. In this way, they can password protect sec-
tions of their home pages, for example.

Q What do you mean by a valid ServerName directive?

A As explained in Hour 1, the DNS system is used to associate IP addresses with
domain names. The value of ServerName is returned when the server generates a
URL. If you are using a certain domain name, you must make sure that it is
included in your DNS system and will be available to clients visiting your site.

Quiz
1. What is the main difference between Location and Directory sections?

2. What is the difference between a restart and a graceful restart?

Quiz Answers

1. Directory sections refer to file system objects; Location sections refer to elements
in the request URIL.

2. During a normal restart, the server is stopped and then started, causing some
requests to be lost. A graceful restart allows Apache children to continue to serve
their current requests until they can be replaced with children running the new con-
figuration.

Related Directives

This section contains directives mentioned in this hour or that are related to topics dis-
cussed in this hour. You can consult the Apache reference documentation for comprehen-
sive syntax information and usage.

* PidFile, ScoreBoardFile: Change default name and location of pid and
scoreboard files.

|7O

Hour 4

e Listen: Specify IP addresses and ports the server will listen at.

* ServerName: Specify the DNS name and port the server will use for self-referential
URLs.

* AccessFilename: Change the name of the per-directory configuration files.

* ErrorLog, AccessLog: Change the default name and location of error and access
log files. Logging is covered in detail in Hour 8.

e <VirtualHost>, <Directory>, <Location>, <Files>: Container directives.
Directives included in these sections will apply only to the specified scope.

e <IfDefine>, <IfModule>: Process files included in this section if a certain parame-
ter is present or a module has been compiled in.

e Include: Include external files containing configuration directives.
e User, Group: Specify the Unix user and group ID Apache will run as.

e AllowOverride: Specify which options can be present in per-directory configura-
tion files.

Further Reading

The Apache documentation project can be found at
http://httpd.apache.org/docs-2.0/

Information on starting and stopping Apache can be found at
http://httpd.apache.org/docs-2.0/invoking.html

http://httpd.apache.org/docs-2.0/stopping.html

HoOUR 5

Using Apache to Serve
Static Content

This hour covers directives and modules that are commonly used to adminis-
ter static content in Apache installations.

In this hour, you will learn

* How to configure Apache to listen on different IP addresses and ports
* How to organize the URL space with directory aliasing and redirection

* How to customize the server information and error messages

Addresses, Ports, and Server Names

Apache needs to know which IP addresses and ports to listen to while wait-
ing for incoming requests. You can use the Listen directive for that purpose.
The general syntax is Listen ipaddress:port. The IP address is optional.
If it is not present, it means Apache should listen on all IP addresses avail-
able in the machine. For example, Listen 80 means listen at port 80 at all

|72

Hour 5

available IP addresses. Listen 10.0.0.1:8080 means listen at address 10.0.0.1 and port
8080. In Unix systems, only users with administrator privileges can bind to privileged
ports (ports below 1024). Because port 80 is a privileged port, if you are using Apache as
a normal user, you must bind to a different port, such as 8080.

You can use multiple Listen directives to specify multiple IP addresses and ports to lis-
ten to. This directive is usually placed at the beginning of the httpd.conf file.

The ServerName Directive

The ServerName directive accepts a fully qualified domain name and an optional port. If
the port is not specified, it is assumed to be 80 for HTTP and 443 for HTTPS connec-
tions. (The HTTPS protocol is described in Hour 17, “Setting Up a Secure Server.”) The
value of the ServerName directive will be used when Apache needs to construct URLs
that refer to themselves; for example, when issuing certain HTTP redirects, as explained
later in the hour.

) The HTTP/1.1 protocol allows different Web sites to be associated with a sin-
;1:’ gle IP address. The browser specifies which particular site it is addressing by

1l

ol using the Host: HTTP header.

In certain situations, this might not be the preferred behavior, and you will want to con-
struct the URL based on the Host: header provided by the HTTP/1.1 protocol. You can
use the UseCanonicalName directive for this purpose. It accepts one argument, which can
be on, off, or dns. UseCanonicalName on instructs Apache to use ServerName, which is
the default behavior. Setting the value to off tells Apache to look at the Host: header
provided by the client. If this header is not present—for example, because of an older
browser—Apache will use the value of ServerName. Setting the argument to dns will
make Apache try to infer the valid server name by a reverse lookup from the IP address
of the request. This is useful in certain virtual hosting setups. Virtual hosts are described
in detail in Hour 14, “Virtual Hosting.” However, you need to take into account that
DNS lookups can be expensive in terms of performance, and can slow down the server
response.

If ServerName is not present, Apache will try to infer a valid server name by performing
a reverse DNS lookup on the server’s IP address.

Using Apache to Serve Static Content 73 |

Usually you make queries to a DNS server to find the IP associated with a
hostname. A reverse DNS lookup means that you query the DNS server for
the names associated with a particular IP address.

Customizing the Web Server

Apache is used in a great variety of environments. One of the reasons for its success in
so many different scenarios is that nearly every aspect of the server can be customized.
This section covers customization of error messages and information related to the
server.

Error Messages

Apache returns an error response when it can’t find a requested document, finds out the
user does not have permission to read it, encounters an error in processing, and so on.
These responses are technically accurate, including mentions of HTTP error codes, but
are not necessarily very useful to the end user visiting your Web site. An example of a
default Apache error message is shown in Figure 5.1.

FIGURE 5 1 7§ 104 Mot Found - Microsoft Internet Explorer
| Fle Edt View Fevorites Toos el
Sample ApaChe error I @mH-b @A R D mFsanes SBrsey (B S E-H @
message. | address [bl zpachewerid. argiadud ~] @ee

Not Found

Tae recuested TEL fbachi] was not found on this server,

Apachai2 0,28 Server at www.apackeworld.org Pore 50

|@Tnene _ i meemet

The standard Apache responses can be replaced with custom pages that have the same
look and feel of your Web site, are written in the preferred language of the visitor, or

|74 Hour 5

present him with a search or feedback form. To do this, you can use the ErrorDocument
directive.

The ErrorbDocument Directive

ErrorDocument accepts a three-digit HTTP status code as described in Hour 1, “Apache
and the Web,” and allows you to replace the default error message with one of the fol-
lowing options:

* Customized Message: You can provide a string to display in the error document to
replace the default message:

ErrorDocument 500 "Our server encountered an internal problem, \
please wait a few minutes and try again®
ErrorDocument 404 "Oops, we couldn't find your document!"

e Internal URL: You can redirect the user to another page in the same Web server.
The destination can be a static page or can be generated dynamically, for instance,
via a CGI script. The internal URL must be absolute and start with a /. For exam-
ple, the following directive instructs Apache to send all failed requests to a CGI
program that provides the search page for the Web site:

ErrorDocument 404 /cgi-bin/search.cgi

Apache creates new environment variables that contain the information about the
original request that otherwise would be lost, such as the URL that caused the
problem. These variables are prefixed with REDIRECT, REDIRECT_URL,
REDIRECT_QUERY_STRING, and so on. The destination program generating the page
can use this information to determine what went wrong with the original request.

e External URL: You can provide a fully qualified URL pointing to another Web
site:
ErrorDocument 404 http://search.example.com

In this case, Apache will issue a redirect to the client (HTTP code 302) to point to
the new URL (http://search.example.com). As a side effect, the client will not
get the original 404 Document Not Found error code.

Recent versions of the Internet Explorer browser won’t display error docu-
ments with size less than 512 bytes, and will substitute its own error mes-
sages. You can disable this behavior by selecting Tools, Internet Options,
Advanced, and deselecting the Show Friendly HTTP Error Messages option.
You cannot rely on your users turning off this feature, so if you want to
make sure that your users can read your error messages, you must make
them bigger than 512 bytes.

S

Using Apache to Serve Static Content

International Error Messages

Apache 2.0 offers a predefined mechanism to provide error documents in different lan-
guages, depending on the configuration of the browser. It uses Server Side Includes
(SSIs) from mod_include and the content negotiation features from mod_negotiation.
You can find more information at http://httpd.apache.org/docs-
2.0/misc/custom_errordocs.html.

Handling URL Errors: mod_speling

mod_speling is a useful Apache module that recognizes misspelled URLs and redirects
the user to the correct location for the document. mod_speling is able to correct URLs
with the wrong capitalization or with one letter missing or incorrect. Capitalization prob-
lems usually arise when serving content that has been generated in a case-insensitive
environment such as Windows through a Web server on a case-sensitive platform such as
Unix. Users misspelling the URL while typing it in the browser usually cause letters to
be missing or incorrect.

For example, if a user requests the file file.html and it is not present, mod_speling will
see whether there is a similar document such as FILE.HTML, file.htm, and so on, and
will return it, if present.

To enable spelling checks, you can add CheckSpelling onto your Apache configuration.
The mod_speling module is included with Apache but is not compiled by default if you
installed Apache from source. Hour 18, “Extending Apache,” explains how to enable
modules for compilation. Before using this module, you must bear in mind that searching
for the appropriate misspelled file has performance implications.

o If there are several documents that can match the misspelling, the module
/=] 4 will return a list of these documents. This could have security implications
== because you might not want to make some of those files visible.

Customizing Server Information

Responses generated by Apache may include information about the server and its com-
piled modules. You can configure the amount of information included because revealing
too much information about your server is probably not a good idea.

Server ldentification

Apache returns a Server: header with every request. By default, this header includes
information about the server name, version, and platform. Other modules present in the

|76

Hour 5

server, such as SSL, PHP, or mod_perl, may add additional entries to the server string
containing the module name and version:

Server: Apache/2.0.28-dev (Unix) SSL/2.0.0

You can use the ServerTokens directive to restrict the information included in this
header. Table 5.1 presents each one of the possible settings and sample output, together
with a directive description and sample output. The default value is ServerTokens Full.

TaBLE 5.1 ServerTokens Options

Settings Output

ServerTokens ProductOnly Apache

ServerTokens Minimal Apache/2.0.28

ServerTokens 0S Apache/2.0.28 (Unix)
ServerTokens Full Apache/2.0.28 (Unix) SSL/2.0. 0

Contact Information

When Apache returns a self-generated document, such as a directory listing or an error
page, it adds a trailing footer including server information and, optionally, a contact
e-mail address.

ServerSignature On/Off enables or disables generation of this footer.
ServerAdmin admin@email.example.com sets the e-mail address included in the footer.

Figure 5.2 shows a sample ServerSignature footer.

FIGURE 5.2

Sample Apache Apache/2.0.28 Server af www.apacheworld.erg Part 50 —
ServerSignature @i‘n D Internet o
footer.

Aliasing and Mapping of Resources

The structure of your Web site might not necessarily match the layout of your files on
disk. You can use the Alias and AliasMatch directives to map directories on disk to spe-
cific URLs. For example, the following directive:

Alias /icons/ /usr/local/apache2/icons/

Using Apache to Serve Static Content 77 |

will cause a request for http://www.example.com/icons/image.gif to make Apache
look for the /usr/local/apache2/icons/image.gif file.

The trailing slashes in the Alias directive are significant. If you include them, the client
request must include the slash as well or the Alias directive won’t take effect. For exam-
ple, if you use the following directive:

Alias /icons /usr/local/apache2/icons

and request http://www.example.com/icons, the server will return a 404 Document Not
Found error response.

The AliasMatch directive provides a similar behavior, but enables you to specify a regu-
lar expression for the URL. The matches can be substituted in the destination path. For
example, the directive

AliasMatch ~/help(.*) /usr/local/apache/htdocs/manual$1

will match any URL under help to filesystem paths under the manual directory.

URL Redirection

The structure of a typical Web site keeps changing over time. You might not be able to
control other sites that link to you, such as search engines with stale links. People access-
ing your Web site through such links will receive an error. To avoid that, you can config-
ure Apache with the Redirect directive to redirect those requests to the correct resource,
whether it is in the current server or a different one.

The Redirect directive takes several arguments: an optional status parameter containing
the redirect code, the origin URL location, and the destination URL. The status can be a
numeric HTTP status code, but for common cases it is also possible to use one of the fol-
lowing labels:

¢ permanent: Permanent redirect status (301)
e temp: Temporary redirect status (302)
* seeother: The document has been replaced (303)
e gone: The document has been permanently removed (401)
A 302 temporary redirect is probably all you need in practice and that is the default value

if no status code is provided. If the status code is not a redirect, such as 401, the destina-
tion URL can be omitted. Redirect codes are 300 to 399.

|78

Hour 5

A sample Redirect directive is
Redirect temp /news/ http://example.com/latest/news/

A request for http://example.com/news/index.html will be redirected to
http://example.com/latest/news/index.html.

The RedirectMatch directive is similar to Redirect, but allows the origin URL path to
be a regular expression.

The RedirectTemp and RedirectPermanent directives have the same effect as Redirect
with a temp or permanent status code.

The mod_rewrite module allows complex redirection rules and is explained in Hour 22,
“mod_rewrite.”

MIME Types

MIME stands for Multipurpose Internet Mail Extensions. MIME is a set of standards that
defines, among other things, a way to indicate the content type of a document, its MIME
type. Examples of MIME types are text/html and audio/mpeg.

The first component of the MIME type is the main category of the content (text, audio,
image, video) and the second component is the specific type.

Apache uses MIME types to determine which modules or filters will process certain con-
tent, and to add HTTP headers to the response to identify its content type. These headers
will be used by the client application to identify and correctly display the contents to the
end user.

This section explains how to associate files with their MIME type.

Defining MIME Types

Apache has a file called mime. types that includes the most common media types and
their associated file extensions. Listing 5.1 shows sample entries from this file.

Listing 5.1 Sample mime.types Entries

audio/mpeg mpga mp2 mp3
video/mpeg mpeg mpg mpe
text/html html htm

text/plain asc txt

Using Apache to Serve Static Content 79 |

Each entry contains a MIME type and, optionally, associated file extensions.

The TypesConfig directive allows you to specify alternate files containing MIME type
definitions.

You can add new MIME type extensions by editing this file or by using the AddType
directive. AddType accepts a MIME type and a list of file extensions.

For example, AddType text/xml xml will associate the text/xml MIME type with files
ending with the xml extension.

The DefaultType directive defines the MIME type for files whose MIME type could not
be determined from the configured mappings. The default value for this setting is
text/plain.

The official MIME type list is maintained by IANA (Internet Assigned Numbers
Authority) and can be found at the following URL: http://www.isi.edu/
in-notes/iana/assignments/media-types/media-types.

MIME Magic

Most Unix operating systems include a file command-line utility that determines the
type of a file by peeking at its first few bytes.

The Apache module mod_mime_magic emulates that behavior and can determine the
MIME type of a file on-the-fly.

The MimeMagicFile directive enables this behavior and specifies the location of the con-
figuration file containing the information necessary to make the MIME type determina-
tion. Apache includes the magic configuration file in the conf directory. You need to be
aware that enabling mod_mime_magic can affect the performance of your server.
mod_mime_magic is included with Apache, but is not compiled by default.

The ForceType Directive
You can use the ForceType directive to establish the MIME types for all files in a partic-
ular directory or location, overriding any other settings. For example, the directive

<Location /images/>
ForceType image/gif
</Location>

will force Apache to treat all files in that directory as GIF image files, independent of
their name or extension.

|80

Hour 5

Content Handlers

Handlers are a way Apache determines which actions to perform on the requested con-
tent. Modules provide handlers and you configure Apache to associate certain content
with specific handlers. For example, a language translation module might provide a
translation handler. You could then associate this handler with the files you want to trans-
late before sending them back to the browser. This section explains the common mecha-
nism for configuring handlers in Apache. This information will be useful in other hours
that deal with dynamic content generation.

The AddHandler directive associates a certain handler with filename extensions.
RemoveHandler can be used to remove previous associations. For example, AddHandler
cgi-script .cgi .pl will tell Apache to treat all documents with cgi or pl extensions
as CGI scripts.

The SetHandler directive enables you to associate a handler with all files in a particular
directory or location. The Action directive enables you to associate a particular MIME
type or handler with a CGI script. Both directives are explained further in Hour 6,
“Serving Dynamic Content with CGIL.”

Apache includes a number of built-in and default handlers, including
e default-handler: The default behavior by Apache is to send the file back to the
client, adding additional headers.

* send-as-is: This handler is provided by the mod_asis module. Apache will send
the contents directly to the client, without adding headers of its own. The file thus
must include HTTP headers of its own, and you must be careful to ensure that they
are correct.

e cgi-script: Process the file as a CGI script, as described in Hour 6.

e server-info: Get the server’s configuration information or the server’s status
report, as described in Hour 8, “Logging and Monitoring.”

Directory Listings

When Apache receives a request that translates into a directory on disk, you can config-
ure the server to act in different ways.

Default Document Index

Apache can look for a special document, called the directory index, and return it. You
can use the DirectoryIndex directive to specify a list of possible index files:

DirectoryIndex index.html index.htm

Using Apache to Serve Static Content

81|

The directory index can live in a different directory. For example, you could use a CGI

script that generates a different index depending on the directory requested:

DirectoryIndex /cgi-bin/index.cgi

Directory Indexing

If no directory index document is present, a default page containing the directory listing
will be presented. The listing is automatically generated by the mod_autoindex module,

which is compiled in by default.

Figure 5.3 shows a sample directory listing.

FIGURE 5.3
Sample Apache direc-
tory listing.

X Index of /icons - Microsoft Internet Explorer
| Fie Edt View Favortes Toos Help

| e[| - @ B G Boewch Grsons Grsey |[B- G W - B 2

| Address |€| it} fwsvan. zpachewodd.orglicons)

Index of /icons

Home Lost modified Size Description
- -
23-Aug-1999 22:33 246
E—: &.png 30-May-2001 00:54 2893
slect.black.gif 23-Aug-1999 22:33 242
alerc.black.png 30-May-2001 00:54 279
slect.red.gif 23-Aug-1999 22:32 247
E—: alerc.red.png 30-May-2001 00:54 298
spoache pb.gif 23-Aug-1999 22:33 2.3K
apache_pb.png 30-May-2001 00:54 1.4K
mpache pbe.gif 02-May-2001 21:30 2.49K
E—: apache phz.png 30-May-2001 00:54 1.4K
mpeche phi ani.gif 02-May-2001 21:30 2.1K
E: back.gif 23-hug-18989 Z2:33 Z16
B
|@Tnene D Ttermet

You can modify the icon and text associated with specific files depending on file exten-
sions, MIME encoding, and MIME types. You can add images via the AddIcon,
AddIconByEncoding, and AddIconByType directives. Similar directives exist to add text

in place of images for text-based browsers: AddAlt, AddAltByEncoding, and

AddAltByType. The AddDescription directive adds a text description for a specific file.

The IndexOption directive allows you fine-grained control over the layout and display
of the files: whether to include date and size information, display ordering, and other for-

matting options.

|82

Hour 5

The IndexOrderDefault directive allows you to control the order of directory listing. It
takes two arguments: The first is either Ascending or Descending, and the other is the
criterion, one of Name, Date, Size, or Description.

You can learn more about these directives in the mod_autoindex module documentation
page.

You can designate header and footer files to be added to the directory listings via the
HeaderName and ReadmeName directives.

S All these options and directives for directory listings are probably useful only
if you have a download area or otherwise need to distribute a collection of
SN 4

~ files. That is the reason this section covers only the basic mechanism and

refers you to the Apache documentation for the specific options. The icons
and description texts can ease the navigation of the tree structure.

Forbidding Directory Access

You might want to prevent access to directory listings, mainly for security reasons. As a
general rule, the less information you give to a possible attacker, the better.

You might also have other files you are working on and you are not ready yet to link
from the main site.

To disable directory listings, you can either disable the mod_autoindex module or use
the Options -Indexes directive. You can disable listings for the server as a whole or for
specific directories. The Options directive controls which server features are available in
a particular directory, such as directory indexing or, as you will see in Hour 6, CGI pro-
gram execution. Please refer to the Apache documentation for additional details.

If you do not want specific files to show up in the directory listing, you can use the
IndexIgnore directive. The IndexIgnore directive takes a list of filenames or wildcard
expressions that will not be shown. For example, IndexIgnore .htaccess *~ will hide
.htaccess per-directory configuration files and backup files created by Unix editors,
which usually end on ~.

Trailing Slash

When you are referring to a directory, you need to make sure that the URL contains a
trailing slash because that is the correct syntax. It is a common mistake for the user to
forget it while typing the URL (http://example.com/downloads instead of
http://example.com/downloads/), which in normal circumstances will result in an

Using Apache to Serve Static Content 83 |

error page and a confused user. The mod_dir Apache module provides functionality that
addresses this common problem. If mod_dir is present in the server, and a request for a
directory missing the trailing slash is received, the server will send a redirect back to the
browser with the correct URL. That is, if the user requests http://example.com/
downloads, and the directory downloads exists in the document root, a redirect response
will be returned pointing to http://example.com/downloads/. Make sure that
ServerName is set correctly because the redirect response will use that value.

Icons for Bookmarks

Many modern browsers, such Internet Explorer, Mozilla, and Konqueror, allow you to
associate an icon with a Web site. You can see an example in Figure 5.4. When you access
a Web site for the first time, the browser sends a request for a favicon.ico file. Older
browser versions may send a request whenever you bookmark a page to the same location
containing the bookmarked document. The favicon.ico file is an icon in the Windows
icon format. You can use the AliasMatch directive described in this hour to redirect all
requests for a favicon.ico to a single location containing the icon for your site:
AliasMatch /favicon.ico /usr/local/apache2/icons/site.ico

This avoids placing one file in each subdirectory that the user bookmarks.

Icon

FlGURE 5.4 2 Welcome! - The Apache Software Founda|
Favorites icon in | File Edf Wiew Favorites Tools Help

browser. | @Bk | = - @ [6} Qsearch

J.Address r\ hittp:f v, apache .orgf

htt

Summary

This hour explained how to use Apache as a traditional Web server serving static content
such as HTML pages and images. You learned how to customize Web server responses,
and how to use redirects and aliasing to present a consistent URL namespace even when
the site structure changes over time. You have also learned how to configure Apache to
listen to specific IP addresses and ports.

|84

Hour 5

Q&A

Q Why would I want to remove information from the Server: header?

A The main reason is security. The less information you provide to a potential

attacker regarding specific server versions or the Apache modules you are running,
the better off you are.

What makes a good error document?

Good additions for an error page are a site map, a search form, and a link to con-
tact the system administrator.

You can visit http://www.plinko.net/404/custom.asp#good for other ideas on
creating good error documents.

When are trailing slashes in a URL important?
Can you name some of the handlers included with Apache?

Which HTTP codes do you use to indicate that a document has moved to a differ-
ent location?

Quiz Answers

1.

3.

When creating a URL mapping with the Alias directive or accessing a URL that
references a directory in disk.

The content handlers described in this hour are default-handler, send-as-is,
cgi-bin, and server-info.

The 3xx family of HTTP codes, such as 301, 302, 303, and so on.

Related Directives

This section contains directives mentioned in this hour or that are related to topics dis-
cussed in this hour. You can consult the Apache reference documentation for comprehen-
sive syntax information and usage.

Listening and Hostname

e Listen: Addresses and ports to listen to.

¢ ServerName, UseCanonicalName: How to determine the server name to use for

redirects and other self-referential URLs.

Using Apache to Serve Static Content 85 |

Customization

¢ ServerTokens, ServerSignature: Customization of server headers and footers on
generated pages.

* ErrorMessage: Custom error messages.

Site Structure
* Alias, AliasMatch: Associate directory or file on disk with URL.

e CheckSpelling: Enable checking of request for URL for simple errors and correct-
ing them when possible.

* Redirect, RedirectMatch, RedirectTemp, RedirectPermanent: Redirection of
URLs.

Directory Listings
e IndexOptions: Fine-grained directory listing control.
* IndexIgnore: Ignore certain files.
e DirectoryIndex: Index files.
* HeaderName, ReadmeName: Descriptions to display in directory listings.
e AddIcon, AddIconByEncoding, AddIconByType: Associate icons with files.

* AddAlt, AddAltByEncoding, AddALtByType: Associate files with text to display
instead of icons.

e AddDescription: Add a description to a file.

* Options: Controls which server features are available in a particular directory.

MIME and File Handlers

* TypesConfig: Point to a file containing MIME type definition.

* MimeMagicFile: File containing magic MIME types.

¢ AddHandler, RemoveHandler, SetHandler: Associate or remove handlers with
resources.

* ForceType: Associate a MIME type with all files in a directory or location.

* AddType: Associate MIME type with file extensions.

Further Reading

The following URL covers Apache handlers in depth:

http://httpd.apache.org/docs-2.0/handler.html

|86 Hour 5

You can find additional information on the Apache URL mapping directives mentioned
in this hour at

http://httpd.apache.org/docs-2.0/urlmapping.html

HoOUR 6

Serving Dynamic
Content with CGI

This hour’s lesson covers the configuration of Apache to allow execution of
CGI scripts. CGI is a simple and well-understood protocol for generating
dynamic content.

In this hour, you will learn

* How the CGI protocol works

* How to configure Apache to run CGI scripts, on both Unix and
Windows

¢ How to troubleshoot common errors

Common Gateway Interface

CGI stands for Common Gateway Interface. It is a standard protocol used by
Web servers to communicate with external programs. The Web server
provides all the necessary information about the request to the external

|88

Hour 6

program, which processes it and returns a response. The response is then transmitted
back to the client.

CGl Protocol

The creation of the CGI protocol can be traced back to two of the original Web servers:
the CERN and NCSA HTTP servers. Both servers provided mechanisms to invoke exter-
nal programs and scripts to create dynamic content. These two solutions were incompati-
ble, so the developers agreed on a common protocol to allow programs to work with any
Web server that implemented this protocol.

The CGI 1.1 specification can be found at http://hoohoo.ncsa.uiuc.edu/cgi.

CGI Operation

The basic process by which an external CGI program serves a request is the following:

1. Apache receives a request and determines that it needs to be served by the CGI
program.

2. Apache starts an instance of the CGI program.
3. Apache passes information about the request to the CGIL.

4. Apache receives the response from the CGI, optionally processes its headers and
contents, and sends it to the client.

5. The CGI program finishes and all resources associated with it are recalled by the

operating system.

Apache communicates with the CGI script via a pipe. A pipe is a mechanism that con-
nects two programs. The programs can send and receive data to and from each other by
writing and reading from the pipe.

CGI Environment Variables

Apache passes additional information about the request and the server to the CGI pro-
gram via environment variables.

Table 6.1 shows some of the environment variables. A complete listing can be obtained
at http://hoohoo.ncsa.uiuc.edu/cgi/env.html.

TaBLE 6.1 CGI Environment Variables

Variable Name Variable Description

SERVER_NAME Hostname or IP address of the server

REQUEST_METHOD HTTP request method: HEAD, GET, POST, and so on

Serving Dynamic Content with CGI 89 |

TABLE 6.1 continued

Variable Name Variable Description

REMOTE_ADDR Client IP address

CONTENT_TYPE MIME type of any client data being passed by a POST or PUT request
CONTENT_LENGTH Size of the client data

If the client is using SSL to connect to the server, additional environment variables are
available, as described in Hour 17, “Setting Up a Secure Server.”

CGI Response

The CGI response includes optional HTTP headers separated from the response body by
an additional carriage return. Any valid HTTP header can be returned by the CGI,
including the following:

e Location: Instructs Apache that the CGI is not going to answer the request and
that the client should be redirected to the specified URL.

o Status: This is not a valid HTTP header and it is not transmitted back to the client,
but it indicates the HTTP status code for the request to Apache.

¢ Content-Type: Specifies the type of data returned in the request. For example, if
you are returning a Web page, the header value should be text/html.

Advantages and Disadvantages of CGI
Scripts

This section describes some of the advantages and drawbacks of using CGI programs to
provide dynamic content. Advantages of CGI development include portability, simplicity
of the protocol, available code, ability to distribute CGI programs as binaries, and robust-
ness against memory leaks. The main disadvantages of CGI development are related to
performance and the mixing of code and presentation.

Portability

CGI programs can be written in any language and will work with Web servers that sup-
port the CGI interface (which is virtually all of them). Perl is the language of choice for
CGI development because of its string processing capabilities and cross-platform
support.

|9O

Hour 6

Simplicity

Programming CGls is extremely simple. There is no need to learn a new language or
specific APIs: Everything that is written to the standard output will be sent to the
browser. Several libraries are available for Perl, C, and other languages that provide sup-
port for argument parsing, HTML formatting, and so on. These libraries make CGI
development even easier.

Existing Code

The CGI protocol has been around for a long time and there are plenty of books, tutori-
als, and Web sites providing information about CGI programming. There are many com-
mercial and freely available scripts that provide shopping carts, credit card processing,
template systems, discussion forums, and so on.

Source Hiding

CGI supports many development languages, including those that can be compiled to exe-
cutable code. This is important for companies that need to distribute software applica-
tions for the Web, but do not want to distribute their source code.

Memory Leaks

Programmers need to be careful with memory allocation and management when pro-
gramming processes that will be running continuously for a long time. This is not usually
an issue with CGI programs because they have a limited lifetime, and resources such as
memory are freed when the process is eliminated.

Performance

Apache needs to start and stop a process for each CGI request (either the CGI binary or
an interpreter, in the case of scripts). This has several drawbacks.

* If the number of requests increases, the number of process creation and destruction
operations also increases and can impact performance. If the number of processes
grows to occupy the available memory, the operating system will need to swap
some of them to disk, slowing down the response time significantly.

e CGI programs usually need to load additional libraries and establish connections to
remote resources such as databases. These steps must be repeated over and over
because a process is created and destroyed for every request and the connections to
the database are lost.

e There is no way of caching frequently accessed data. CGI scripts need to use data-
bases or other external means to store any kind of information.

Serving Dynamic Content with CGI 91 |

Code and Presentation

CGI favors a style of development in which code and presentation are tied to each other.
Print statements in the CGI program generate the HTML output.

This makes it difficult to change the look and feel or structure of the Web site and
requires designers to understand CGI programming. If the development language is com-
piled and not interpreted, even a simple change such as correcting a typo will require a
new compilation of the application, slowing down the development cycle.

Configuring Apache
Apache provides support for executing CGI scripts through two modules: mod_cgi and
mod_cgid. Although they are very similar from the point of view of the server adminis-
trator, they vary in their internal operation. mod_cgi is used with process-based MPMs
and mod_cgid is used with threaded MPMs. mod_cgid works around some limitations in
forking new processes from threaded applications by creating a CGI daemon. This
process is created at startup time and is in charge of accepting requests for CGlIs, pro-
cessing them, and returning the results to the main Apache server. The differences
between the architectures are illustrated in Figure 6.1.

FIGURE 6.1 mod-cgi mod-cgid
mod_cgi and mod_cgid
architectures. cGl CGl
Apache Daemon
Threaded CGlI
Apache Program

The appropriate Apache CGI module for your particular platform is compiled by default
when you build Apache. The only difference from the administrator’s point of view is
that mod_cgid has an extra directive, ScriptSock, to specify a socket to connect to the
CGI daemon. You do not need to modify the value for this directive; the default is usu-
ally okay.

CGI Content

You can use several Apache directives to mark specific files or directories as containing
CGI scripts.

|92

Hour 6

ScriptAlias

This directive is similar to the Alias directive explained in Hour 5, “Using Apache to
Serve Static Content.” It associates a directory on disk with a certain URL. Apache will
treat any file requested in that directory as a CGI.

ScriptAlias /usr/local/apache2/cgi-bin/ /cgi-bin/

A request for the /cgi-bin/example.cgi URL will make Apache look for the
/usr/local/apache2/cgi-bin/example.cgi file and execute it as a CGI. You can use
the ScriptAliasMatch directive to match directories using regular expressions.

Remember that all files in the target directory will be treated as CGl scripts,
regardless of their extensions or contents.

Fine-Grained Control

The Apache CGI processing modules provide the content handler cgi-script. You can
associate specific files or directory contents with this handler. When one of those files is
requested, Apache processes it as a CGI script.

You can use <Files>, <Directory>, or <Location> sections and use the SetHandler
directive, as described in Listing 6.1. You can associate specific file extensions as
described in Listing 6.2. In all cases, you need to provide additional configuration to
specify that CGI execution is allowed. This is done via the ExecCGI parameter to the
Options directive. That is, a file must be both marked as a CGI and placed in a directory
that allows CGI execution for it to be processed as a CGI script.

LisTing 6.1 SetHandler Directive

1: # Any files accessed thru the /cgi-bin/ url will execute as CGI scripts.
2: <Location "/cgi-bin/">

3: Options +ExecCGI

4: SetHandler cgi-script

5: <Location>

LisTING 6.2 Associating CGI Processing with File Extensions

1: # Any files ending in .pl will be executed as CGI scripts
2: <Files *.pl>

3: Options +ExecCGI

4: SetHandler cgi-script

Serving Dynamic Content with CGI 93 |

LISTING 6.2 continued

5: </Files>

7: # Any files ending in .cgi in the /usr/local/apache2/htdocs/scripts
8: # will be executed as CGI scripts
9: AddHandler cgi-script .cgi

11: <Directory "/usr/local/apache2/htdocs/scripts">
12: Options +ExecCGI
13: </Directory>

Action and Script

Apache provides additional directives that simplify associating specific MIME types, file
extensions, or even specific HTTP methods with a particular CGI. The mod_actions
module, included in the base distribution and compiled by default, provides the Action
and Script directives:

* The Action directive accepts two arguments. The first argument is a handler or a
MIME content type; the second points to the CGI program to handle the request.

e The Script directive associates certain HTTP request methods with a CGI pro-
gram.

Listing 6.3 shows how to use the Action directive to process all GIF images via the
process.cgi script, and the Script directive to process all uploads to the Web server.
The information about the original requested document is passed to the CGI via the
PATH_INFO (document URL) and PATH_TRANSLATED (document path) environment vari-
ables.

LisTiNnG 6.3 Action and Script Directives

Action image/gif /cgi-bin/process.cgi

Script PUT /cgi-bin/upload.cgi

The directory containing the destination CGI must be marked as allowing CGI scripts
execution. You can do this with the ScriptAlias directive or the ExecCGI parameter to
the Options directive.

CGlI Security

The ability to execute CGI programs in the Web server poses a security risk. An attacker
could exploit poorly written scripts to gain access to the Web server. By restricting the

|94

Hour 6

execution to certain directories and files, the administrator can have tighter control over
the code that is executed in the server. In some cases, it might be necessary to allow
users to execute their own CGI programs in a safe manner. Hour 14, “Virtual Hosting,”
covers this topic.

Non Parse Headers (NPH) Scripts

When the CGI returns its content, the Web server can process the headers returned and
add some of its own. Apache provides a mechanism to bypass this processing and to
send the output of the CGI directly to the client. These CGIs are called Non Parse
Headers (NPH) CGIs. There are no Apache configuration directives dealing with this;
you just need to prefix the name of the CGI with nph- (for example, nph-example.cgi),
and Apache will treat it as an NPH CGI program.

Debugging CGI Execution

Apache provides several directives to aid in debugging CGI programs. The ScriptLog
directive allows you to define a special file that contains debugging information, includ-
ing the headers and data received and the output of the CGI. The size of the file can grow
quickly, so two additional directives are provided: ScriptLogLength limits the maximum
size of the file and ScriptLogBuffer limits the maximum number of bytes saved for
POST request logging. As noted in the Apache documentation, CGI debugging is off by
default and should be enabled only when troubleshooting specific problems because it
can slow the execution speed significantly.

Unix Configuration

Apache includes two sample CGI scripts that you can use to test that CGI support in
Apache is working properly. The exact location of the files in your system is described in
Hour 4, “Getting Started with Apache.” One of the examples is a shell script, which can
run with the default system shell. The other is written in Perl.

Testing Shell Script CGls

The Apache distribution includes a simple shell script CGI, test-cgi. The first step is to
make the script executable. You can do this with the chmod a+x test-cgi command.

You can now use your browser to access the /cgi-bin/test-cgi URL. Figure 6.2 shows
the resulting page.

Serving Dynamic Content with CGI 95 |

FIGURE 6 2 3 http:/ 'www.apacheworld.org/ cgl-bin, test-cgl - Microsoft Internet Explorer
: | Fie Edt View Fovorites Tods Hep
test-cgi sample CGL | wsak -+ o - @ B Q| Bioeach oravores Gy |[F- S W - H 9

| Address |€'| bt fwaviwi. epacheworid, argfogHbin test-col 3 >as

CGIf1.0 tesSt Script report:
arge is 0. argv 18 .

SERVER_SOFTWARE = Apache/2.0.2B (Unix)
SERVER KAME = wyw.apachevorld.org
GATEWAY INTERFACE = CGI/1.1
SERVER_PROTOCOL = HITP/1.1
SERVER_PORT = BO

REQUEST METHOD = GET

HTTP_ACCEPT = image/gif, image/x-xDitmap, image/Iiped, image/pipeq, application/vnd.m3-poverpoint
PATHE_INFO =

PATH TRANSLATED =

SCRIPT_NAME = (cgi-binfcesc-col
QUERY_STRING =

REMOTE HOST =

REMOTE ADDR = §4.84.39.182

REMOTE USER =

AUTH_TYPE =

CONTENT_TYPE =

CONTENT LENGTH =

<l | _'l;,

Dene U inemet
]

If you have problems running the CGI script, refer to the troubleshooting section.

Perl Installation

You need to follow certain steps to run CGI scripts with Perl on Unix. Perl is the lan-
guage of choice for CGI development. The following sections explain how to get Perl
installed in your Unix operating system.

Preinstalled Perl

If you are using a recent Linux, FreeBSD distribution or any other Open Source Unix
OS, chances are good that Perl came already installed with your system. You can test so
by typing which perl at the command prompt. You can check the Perl interpreter ver-
sion installed by issuing the perl -v command. The Perl interpreter is usually placed in
the /usr/bin or /usr/local/bin directory.

Installing Binaries

Installing a Perl binary distribution varies from system to system.

Linux

You need to use the package management tools included with your distribution to check
whether the Perl package has already been installed or to install it otherwise. If you are
running Red Hat Linux or another RPM-based distribution such as SuSE or Mandrake,

|96

Hour 6

you can use the rpm command-line tool to install the appropriate RPM after you have
downloaded it:

rpm -i perl*.rpm

Other Linux distributions, such as Debian, use different package management utilities,
but the procedures are similar. In any case, so many scripts and utilities depend on Perl
that most modern Linux distributions already come with it preinstalled.

Solaris Packages

Newer versions of Solaris come with Perl preinstalled by default in /usr/bin.

You can download binary packages of Perl at http://www.perl.com/CPAN-
local/ports/index.html#solaris. Some of the packages are in the standard Solaris
pkg format. You can find information on Solaris package installation at
http://www.sunfreeware.com/pkgadd.html.

Installing from Source

If you want to install Perl from source, you can download it from
http://www.perl.com/pub/a/language/info/software.html#sourcecode

Perl includes its own build environment. You can configure the build with the following
commands:

rm -f config.sh Policy.sh
sh Configure -de

You will be prompted for several questions and afterwards the appropriate building files
will be created. You can then issue the following commands:
make

make test
make install

This process will install Perl in the default location for the platform, usually
/usr/local/.

Testing Perl CGI Scripts

The Apache distribution includes a simple Perl script, printenv, that you can use for
testing purposes. You need to make sure that the script allows execution. You can do this
with the chmod a+x printenv command. You might need to change the first line of the
script (it will look something like #!/usr/local/bin/perl) to point to the exact location
of your Perl interpreter.

Serving Dynamic Content with CGI 97 |

You can now use your browser to access the /cgi-bin/printenv URL. Figure 6.3 shows
the resulting page.

FlGURE 6_3 w.apacheword.org, ogl-bin/printeny - Microsoft Internet Explorer
. I} Fie Edt View Favortes Toos Help
printenv sample CGL | ek - 5 - OB @] Qenth Grerenss Sty | B & B - H D
| Address |€| hip: | fvaviw. zpachewiorld,orafoghbin printern: E >as
=

DOCUMENT_ROOT="/ust(local/apachez/hcdocs”

GATEWARY INTERFACE="CGI/1.1"

HTTP_RCCEFT="image/gif, image/x-xbitmap, image/ipeg, image/piped, application/vnd.ms-powsrpoint,
TTF_ACCEFT_ENCODING="gzip, deflace”

TTP_ACCEPT_LANGUAGE="en-us"

HTTP CONNECTION="Keep-Alive"

HTTP_HOST="www.apacheworld.ocg”

SER_AGENT="Mozilla/4.0 (compacible; MSIE 5.01; Windows NT 5.00"
{=bin:/usr/sbin:/bin:/usc/bin:/usr/local/bin: fusc/ local/sbin”

¥_STRING=""

«B4.39.162"

RIPT NAME="/cgi-bin/princenv”

RVER_ADMIN="youByour.address"

BVER_NAME="www.apacheworld.ocg”

BVER_PORT="80

RVER_PROTOCOL="HTTP/1.1"

RVER_SIGNATURE="<address>Apache/2.0.28 Server at www.apacheworld.org Port 80</address=in"

E

E

Kl

Kl

C

c =
ERVER_ADDR="54.173.1B8.259"
E

E

E

E

ERVER SOFTWARE="Apache/Z.0.268 (Unix)"

M=
|
|

Windows Configuration

The Apache distribution includes two sample CGI scripts for Windows. One of them is a
batch file and the other is a Perl script; they are counterparts of the Unix script described
in the previous section.

Testing Batch File CGls

You can access the test-cgi.bat example by requesting the /cgi-bin/test-cgi.bat
URL through your browser. Figure 6.4 shows the resulting page.

The test-cgi.bat program is a simple text file that you can edit with Notepad or any
other Windows text editor.

Perl on Windows

Windows does not come with a version of Perl preinstalled, so you must install it first,
and then configure Apache to recognize and execute Perl scripts.

The easiest way to install Perl on Windows is by downloading the free ActivePerl distrib-
ution from the ActiveState Web site at http://www.activestate.com.

|98 Hour 6

When the installer is launched, you will be presented with the software license, followed
by a screen that enables you to choose which packages to install (see Figure 6.5).

F|GURE 6_4 £ 2/ 0.0.1,/cgl-bin/test-cgl.bat - Microsoft Internet Explorer

i | Fle Edt View Favorites Toos Help |
test-cgi.bat sample [vok ~ = - O B @] Doeetr Gairowres Grooy | B B W D% B R
CGI' | Address |E] betpef{127.0.0,1 {cgl-binjtest-cglbat ‘,J 6’50

CGIf1.0 tesSt Script report:
ergs are ""C:/Progrem Files/Apache Group/hpachez/cgi-bin/cesc-cgi.pac™ ™.
OFTWARE = Apache/Z.0.26 (Win3z)

5] = www.exemple.com
CGATEWAY INTERFACE = CGIf1.1

. PROTOCOL = HTTP/1.1
_PORT = BO

T = GET

ACCEPT = "image/gif, image/x-xbitmap, image/Iipeq, image/pipeg, applicationdvad.m3-powerpoin
TRANSLATED = "

"fcgi-bin/cesc-cgl.bac"

STRING = "

127.0.0.1

CONTENT LENGTH =

4 o

&7 Done T intemet

FIGURE 6.5

. Custom Setup
Perl installer paCkage Select the way you want features to be installed.

selection.

Click on the icans in the bres below to change the way featurss will be installed,

ActiveState ActivePer is a
perl quality-assured distribution af

PEM 2.0 Perl.

PPM 3.0 beks 3 This feature requires OKEB on

Examples your hard drive. 1t has 4 of 4
subfeatures selected. The
subfestures require 29MB an
your hard drive.

Lacation: ChPerly Browse
Resst Disk Lisage <meck [memt> | concel |

By default, the software will be installed in C: \Perl. Then you will be presented with
the options of adding an environment variable that contains the path to the Perl installa-
tion, and associating Perl script extensions (such as .pl) with the Perl interpreter, as
shown in Figure 6.6.

Serving Dynamic Content with CGI 99 |

FIGURE 6 6 15 ActivePerl 5.6.1 Build 631 Setup

. . Choose Setup dptions
Perl lnslaller environ- Choose opional sefup actions.

ment variable cre-
ation.

¥ Add Parl to the PATH enviranment variable
¥ Craate Perl fils extansion assaciation
IT| Sreats (15 script mepping for; Perl

IF Creats (IS script mapping for Perd [SARL

= Back I: Next = I Cancel |

If everything goes well, you will see the Installation Complete screen shown in

Figure 6.7.
FIGURE 6.7 ¥ ActivePer] 5.6.1 Build 631 Setup =]
7 - I C: leting the ActvePerl 5.6.1 Build 631
Final installation om0 e ui
screen.
Serious about Programming in Perl? L

(Get ASPH Perl, the eszentisl package for Perd
Frogrammers. ASPM Perl combines everything you
e in & sngle, figh-vaius bunde, noludng sdvancad

Perl programmng ard ir-tepk
infoermation.

o Fii e

Testing Perl Scripts

There are two ways that you can configure a Perl script to run under Windows. The first
one is to modify the first line of the script to point to your Perl interpreter; in this case,
C:\Perl\bin\perl.exe.

Alternatively, you can let Apache select the interpreter from the file extension by using
the Windows registry. You can do so with the ScriptInterpreterSource directive. A
setting of ScriptInterpreterSource registry makes Apache use the registry.
ScriptInterpreterSource script tells Apache to take a look at the first line of the
script.

You can then access the /cgi-bin/printenv.pl URL to run the script and see the
results, as shown in Figure 6.8.

|100 Hour 6

FlGURE 6_8 ‘ 1/cgl-bin/printeny.pl - Microsoft Internet Explorer

. | Fle Edt View Favorites Toos Help |
Sample Perl script out- | smak » = - (@ 2] A} | Dseach Crevares (BHsory - S E W 5 B
put on Windows. | address [hopegiizz.0.0. 1 cakbinpringer ol =] P

PEC="C:)\ WINNT\syscensz) cud. exe”
DOCUMENT_ROOT="C:/Program Files/hpache Group/Apachez/hcdocs”
GATEWARY INTERFACE="CGI/1.1"

HTTP_RCCEPT=""#/#"

HTTP_ACCEFT_ENCODING="gzip, deflace"
P_ACCEPT_LANGUAGE="en-us"

L1
"Mpzillae/d.0 (compacibler MSIE 5.01; Windows NT 5.0; .NET CLR 1.0.3705)"
Files\Microsofc.NET\FrameworkSDK, Bin ;C:\Program Files\Nicrosofc Visual Studio
XE:.BAT:;.CMD;.VBS:.VBE:.J5:.J5E: .WSF;.WSH"

. 127.0.0.1"
REMOTE_PORT="4358"

RE fegi-bin/princenv.pl”

sC ENAME="C:/Program Files/Apache Group/Apachez/cgi-bin/princenv.pl®
sC cgi-bin/princenv.pl”

SE 127.0.0.1"

SE MIK="webmascerBexample.com”

SERVER N P . e Le . com

SERVER_P o

SERVER_PROTOCOL="HTTP/1.1"

SERVER SIGMNATURE="<address»Apache/Z.0.268 Server at www.example.com Port 80</addresa>in®
SERVE FTWARE="Apache/2.0.26 (Win3z)"

5YE

i

=
&

wt

&7 Done T intemet

Enhancing Your CGI Performance

One of the main drawbacks of CGI development is the performance impact associated
with the requirement to start and stop programs per every request.

mod_perl and FastCGI are two possible solutions for this problem. Both require careful
examination of existing code because you can no longer assume in your CGIs that all
resources will be automatically freed by the operating system after the request is served.

mod_perl

mod_perl is a module that embeds a Perl interpreter inside the Apache Web server. In
addition to a powerful API to Apache internals, mod_perl includes a CGI compatibility
mode that provides an environment that allows existing CGIs to run with little or no
modification. mod_perl is covered in detail in Hour 20.

FastCGl

FastCGI is a standard that allows the same instance of the CGI program to answer sev-
eral requests over time. You can read the specs and download software development kits
at http://www.fastcgi.com.

Serving Dynamic Content with CGI 101 |

At the time of this writing, there is no support for the FastCGI protocol on Apache 2.0.
The authors of the previous version mention that a 2.0 version is under development and
might have already released by the time you are reading this. Refer to the Fast CGI Web
site mentioned earlier for more information.

Common CGI Problems

This section describes common problems you might face when developing with CGI and
how to troubleshoot them.

Forbidden Error

If you get a 403 Forbidden error page when trying to access the CGI, the problem is
likely due to filesystem permissions or execute permissions.

Filesystem Permissions

This error occurs because Apache has insufficient permissions to read or execute the pro-
gram. You will find an error log entry similar to the following:

[error] [client 10.0.0.3] (13)Permission denied:
= access to /cgi-bin/test-cgi denied

To fix this, make sure that the user Apache runs as (normally user nobody) has read and
execute permissions in the directory containing the CGI and its parent directories.

CGI Execute Permissions

If the directory containing the CGI program has not been marked as allowing CGI execu-
tion, you will get an entry like the following in your error log file:

[client 10.0.0.2] Options ExecCGI is off in this directory:
= /usr/local/apache2/cgi-bin/testcgi

To fix this error, use any of the directives described in this hour, such as ScriptAlias,
Action, Script, Options, and so on. For example:

Scriptalias /cgi-bin/ /usr/local/apache2/cgi-bin

Internal Server Error

If you get a 500 Internal Server Error message, it means that Apache found an error
while trying to execute the CGI script. This can be due to program permissions, inter-
preter location, or malformed headers, among other reasons.

|102

Hour 6

Program Permissions
The error might be caused because the CGI is not executable by the user Apache is run-
ning as. You will get an entry in the error log similar to the following:

[error] [client 10.0.0.3] Premature end of script headers:
= /usr/local/apache2/cgi-bin/test-cgi

You can fix this issuing the following command:
chmod a+x program.cgi

program.cgi is the name of your CGI script.

Interpreter Location

If your CGI program is a script and Apache cannot find the appropriate interpreter, you
will get an error log entry similar to the following:

[error] [client 10.0.0.3] Premature end of script headers:
= /usr/local/apache2/cgi-bin/printenv

To fix this problem, you must edit the source code for the script and make sure that the
first line points to the correct interpreter. For example, the sample script might point to
/usr/local/bin/perl, but the Perl interpreter in that system might be located in
/usr/bin/perl.

Malformed Headers

The server expects the response from the script as zero or more headers, followed by an
empty line, followed by the data requested. If the headers are not in the appropriate for-
mat (usually because of an error in the CGI programming logic), you will get an entry
like the following in your error log:

[error] [client 10.0.0.3] malformed header from script.
= Bad header=xxx: /usr/local/apache2/cgi-bin/example.cgi

Other Causes

In general, if you get a “premature end of headers” entry in the error log, it is due to an
abnormal program termination. The program failure could be caused by a variety of rea-
sons, such as errors in your code, missing libraries that the program is linked to, or the
reasons described in the previous sections. In some cases, the operating system or
Apache might terminate the process if its resource usage (memory, CPU time) exceeds a
certain limit. Hour 16, “Tuning Apache,” deals with some of these issues.

Serving Dynamic Content with CGI 103 |

Source Code in the Browser

If you see the source code of your script instead of the intended output, it means that
Apache did not identify the file as a CGI program. Use a directive explained in this hour,
such as ScriptAlias or AddHandler, to make the association.

Summary

This hour introduced the CGI protocol and the steps necessary to use CGIs with Apache.
It has given you an overview of CGI development advantages and disadvantages. In gen-
eral, you should use CGIs only if you are maintaining existing CGI code or are using
existing commercial or open source ready-to-run CGI applications such as user forums,
poll systems, shopping carts, and so on. There are plenty of other technologies for gener-
ating dynamic content with Apache, such as mod_perl and PHP, which are described in
later hours. These other technologies provide similar or superior functionality and do not
suffer the performance problems associated with CGI.

Q How do I enable CGI in home directories?

A In a Unix system, you can use the <Directory> directive to enable CGI execution
in the home directory of your users:

<Directory /home/*/public_html/cgi-bin>
Options +ExecCGI
SetHandler cgi-script

</Directory>

Users will be able to execute CGI scripts placed in the public_html/cgi-bin/
subdirectory of their home directory. Allowing users to run CGI scripts has security
implications.

Q Can I process the output of my CGI script?

A Yes, the filtering mechanism in Apache 2.0 allows you to process both the headers
and the data generated by the CGI script before sending it back to the client. This
allows the inclusion of dynamic headers, URL rewriting for user tracking, and so
on. Hour 12, “Filtering Modules,” introduces filter configuration.

|104

Hour 6

Quiz
1. What are the most common causes of “premature end of headers” errors?

2. Where can you look for error messages related to CGI scripts?

Quiz Answers

1. The most frequent causes are related to permissions in the files or parent directo-
ries leading to the file, or the path to the interpreter being incorrectly provided in
the first line of the script.

2. The normal Apache error log will contain those error messages. Additionally, the
ScriptLog directive enables you to specify an additional file that will contain
extensive debugging information.

Related Directives

This section contains directives mentioned in this hour or that are related to topics dis-
cussed in this hour. You can consult the Apache reference documentation for comprehen-
sive syntax information and usage.

Associating Resources as CGl

* Script, Action: Associate MIME types, handlers, and HTTP methods with a
specific CGI for processing

* AddHandler: Associate file extensions with a specific content type

* ScriptAlias, ScriptAliasMatch: Associate directory with URL and mark its con-
tents as containing CGI programs

e Options: The ExecCGI option allows CGI execution in a specific container

Debugging and mod_cgid
e ScriptLog: Location of the CGI error log
* ScriptLogBuffer, ScriptLogLength: Control size of the logged data

¢ ScriptSock: Location of the socket used to communicate with CGI daemon if
using mod_cgid module

Serving Dynamic Content with CGI 105 |

Further Reading

This section contains additional resources covering CGI programming and Apache con-
figuration.

Apache CGI howto:
http://httpd.apache.org/docs-2.0/howto/cgi.html

Perl is the most popular CGI development language. The base Perl distribution already
includes a powerful CGI library: http://stein.cshl.org/Www/software/CGI.

CGI category in the Comprehensive Perl Archive Network (CPAN):

http://www.cpan.org/modules/by -
category/15 World Wide_Web HTML_HTTP_CGI/CGI

Comprehensive CGI resource index, including ready-to-run scripts:
http://www.cgi-resources.com

CGI Programming with Perl, by Scott Guelich, Shishir Gundavaram, and Gunther
Birznieks, is a good written reference.

HouRr 7

Restricting Access

This hour explains how to restrict access to parts of a Web site based on the
identity of the user or on information about the request.

In this hour, you will learn

¢ How to restrict access based on the user, client IP address, domain
name, and browser version

* How to enable and configure Apache authentication modules

* How to use the user management tools provided with Apache

Authentication

Authorization and authentication are common requirements for many Web
sites. Authentication establishes the identity of parties in a communication.
You can authenticate yourself by something you know (a password, a
cookie), something you have (an ID card, a key), something you are (your
fingerprint, your retina), or a combination of these elements. In the context
of the Web, authentication is usually restricted to the use of passwords and
certificates. Certificates are explained in Hour 17, “Setting Up a Secure
Server.”

|108

Hour 7

Authorization deals with protecting access to resources. You can authorize based on sev-
eral factors, such as the IP address the user is coming from, the user’s browser, the con-
tent the user is trying to access, or who the user is (which is previously determined via
authentication).

Apache includes several modules that provide authentication and access control and that
can be used to protect both dynamic and static content.

You can either use one of these modules or implement your own access control at the
application level and provide customized login screens, single sign-on, and other
advanced functionality. Those topics are application- and development language—specific
and are not covered in this book, which only deals with authentication and authorization
at the Web server level.

Client Authentication

You authenticate users of your Web site for tracking or authorization purposes. The
HTTP specification provides two authentication mechanisms: basic and digest. In both
cases, the process is the following:

1. A client tries to access restricted content in the Web server.

2. Apache checks whether the client is providing a username and password. If not,
Apache returns an HTTP 401 status code, indicating user authentication is
required.

3. The client reads the response and prompts the user for the required username and
password (usually with a pop-up window).

4. The client retries accessing the Web page, this time transmitting the username and
password as part of the HTTP request. The client remembers the username and
password and transmits them in later requests to the same site, so the user does not
need to retype them for every request.

5. Apache checks the validity of the credentials and grants or denies access based on
the user identity and other access rules.

In basic authentication, the username and password are transmitted in clear text, as part
of the HTTP request headers. This poses a security risk because an attacker could easily
peek at the conversation between server and browser, learn the username and password,
and reuse them freely afterwards.

Digest authentication provides increased security because it transmits a digest instead of
the clear text password. The digest is based on a combination of several parameters,
including the username, password, and request method. The server can calculate the

Restricting Access 109 |

digest on its own and check that the client knows the password, even when the password
itself is not transmitted over the network.

A digest algorithm is a mathematical operation that takes a text and returns
another text, a digest, which uniquely identifies the original one. A good

~ digest algorithm should make sure that, at least for practical purposes, dif-
ferent input texts produce different digests and that the original input text
cannot be derived from the digest. MD5 is the name of a commonly used
digest algorithm.

N
{
B .l\%

il
¢

Unfortunately, although the specification has been available for quite some time, only
very recent browsers (Internet Explorer 5, Opera 4.0, Konqueror) support digest authen-
tication. This means that for practical purposes, digest authentication is restricted to sce-
narios in which you have control over the browser software of your clients, such as in a
company intranet.

In any case, for both digest and basic authentication, the requested information itself is
transmitted unprotected over the network. A better choice to secure access to your Web
site involves using the HTTP over SSL protocol, as described in Hour 17, “Setting Up a
Secure Server.”

User Management

When the authentication module receives the username and password from the client, it
needs to verify that they are valid against an existing repository of users. The usernames
and passwords can be stored in a variety of backends. Apache bundles support for file-
and database-based authentication mechanisms. Third-party modules provide support for
additional mechanisms such as LDAP (Lightweight Directory Access Protocol) and NIS
(Network Information Services) .

Apache Authentication Modules

This section describes three authentication modules bundled with Apache: mod_auth,
mod_auth_dbm, and mod_auth_digest. A fourth module, mod_auth_anon, is also men-
tioned. You can refer to Hour 18, “Extending Apache,” for details on how to enable
these modules.

Common Functionality

Apache provides the basic framework and directives to perform authentication and
access control. The authentication modules provide support for validating passwords

|110

Hour 7

against a specific backend. Users can optionally be organized in groups, easing manage-
ment of access control rules.

Apache provides three built-in directives related to authentication that will be used with
any of the authentication modules: AuthName, AuthType, and Require.

AuthName accepts a string argument, the name for the authentication realm. A realm is a
logical area of the Web server that you are asking the password for. It will be displayed
in the browser pop-up window.

AuthType specifies the type of browser authentication: basic or digest.

Require enables you to specify a list of users or groups that will be allowed access. The
syntax is Require user followed by one or more usernames, or Require group fol-
lowed by one or more group names. For example:

Require user joe bob
or
Require group employee contractor

If you want to grant access to anyone who provides a valid username and password, you
can do so with

Require valid-user

With the preceding directives, you can control who has access to specific virtual hosts,
directories, files, and so on. Although authentication and authorization are separate con-
cepts, in practice they are tied together in Apache. Access is granted based on specific
user identity or group membership. Some third-party modules, such as certain LDAP-
based modules, allow for clearer separation between authentication and authorization.

o Apache 1.3 offers file-owner and group-owner arguments for the
Require directive. In those cases, the username or group must be valid and
o be the same as the file being accessed in order to gain access to it.

Module Functionality

The authentication modules included with Apache provide

* Backend storage: Provide text or database files containing the username and
groups information

Restricting Access 111 |

» User management: Supply tools for creating and managing users and groups in
the backend storage

e Authoritative information: Specify whether the results of the module are authori-

tative
o Sometimes a user will not be allowed access because it is not found in the
/=T / user database provided by the module or because no authentication rules
SIS
ol matched it. In that case, one of two situations will occur:

¢ If the module specifies its results as authoritative, the user will be
denied access and Apache will return an error.

¢ If the module specifies its results as not authoritative, other modules
can have a chance of authenticating the user.

This enables you to have a main authorization module that knows about
most users, and to be able to have additional modules that can authenticate
the rest of the users.

File-Based Authentication

The mod_auth Apache module provides basic authentication via text files containing
usernames and passwords, similar to how traditional Unix authentication works with the
/etc/passwd and /etc/groups files.

Backend Storage

You need to specify the file containing the list of usernames and passwords and, option-
ally, the file containing the list of groups.

The users file is a Unix-style password file, containing names of users and encrypted
passwords. The entries look like the following, on Unix, using the crypt algorithm:

admin:iFrlxqg0Q6RQ6
and on Windows, using the MDS5 algorithm:
admin:$apr1$ugs..... $jVTedbQWBKTFXsn5jK6UX/

The groups file contains a list of groups and the users that belong to each one of them,
separated by spaces, such as in the following entry:

web: admin joe daniel

The AuthUserFile and the AuthGroupFile directives take a path argument, pointing to
the users file and the groups file. The groups file is optional.

|112

Hour 7

User Management

Apache includes the htpasswd utility on Unix and htpasswd.exe on Windows; they are
designed to help you manage user password files. Both versions are functionally identi-
cal, but the Windows version uses a different method to encrypt the password. The
encryption is transparent to the user and administrator. The first time you add a user, you
need to type the following:

htpasswd -c file userid

where file is the password file that will contain the list of usernames and passwords,
and userid is the username you want to add. You will be prompted for a password and
the file will be created. For example:

htpasswd -c /usr/local/apache2/conf/htusers admin

will create the password file /usr/local/apache2/conf/htusers and add the admin
user.

The -c¢ command-line option tells htpasswd that it should create the file. When you want
to add users to an existing password file, do not use the -c option or the file will be over-
written.

It is important that you store the password file outside the document root and thus make
it inaccessible via a Web browser. Otherwise, an attacker could download the file and get
a list of your usernames and passwords. Although the passwords are encrypted, once you
have the file, it is possible to perform a brute force or dictionary attack to try to guess
them.

Authoritative

The AuthAuthoritative directive takes a value of on or off. By default it is on, meaning
that the module authentication results are authoritative. That is, if the user is not found or
does not match any rules, access will be denied.

Using mod_auth

Listing 7.1 shows a sample configuration, restricting access to the private directory in
the document root to authenticated users present in the htusers password file. Note that
the optional AuthGroupFile directive is not present.

Listing 7.1 File-Based Authentication Example

<directory /usr/local/apache2/htdocs/private>
AuthType Basic

AuthName "Private Area"

AuthUserFile /usr/local/apache2/conf/htusers

SO =

Restricting Access 113 |

Listing 7.1 continued

5: AuthAuthoritative on
6: Require valid-user
7: </directory>

Database File-Based Access Control

Storing usernames and passwords in plain text files is convenient, but it does not scale
well. Apache needs to open and read the file sequentially to look for a particular user.
When the number of users grows, this becomes a very time-consuming operation. The
mod_auth_dbm module enables you to replace the text-based files with indexed database
files, which can handle a much greater number of users without performance degrada-
tion. mod_auth_dbm is included with Apache, but is not enabled by default.

Backend Storage

The mod_auth_dbm module provides two directives, AuthDBMUserFile and
AuthDBMGroupFile, that point to the database files containing the usernames and groups.
Unlike plain text files, both directives can point to the same file, which combines both
users and groups.

User Management

Apache provides a Perl script (dommanage on Unix and dbmmanage.pl on Windows) that
allows you to create and manage users and groups stored in a database file. Under Unix,
you might need to edit the first line of the script to point to the location of the Perl inter-
preter in your system. If you do not have Perl installed, Hour 6, “Serving Dynamic
Content with CGI,” covers Perl installation on both Unix and Windows. On Windows,
you need to install the additional MD5 password package. If you are using ActiveState
Perl, start the Perl package manager and type

install Crypt-PasswdMD5

To add a user to a database on Unix, type

. /dbmmanage dbfile adduser userid

On Windows, type

perl ./dbmmanage.pl dbfile adduser userid

You will be prompted for the password, and the user will be added to the existing data-
base file or a new file will be created if one does not exist.

|114

Hour 7

When adding a user, you can optionally specify the groups it belongs to as comma-
separated arguments. The following command adds the user daniel to the database file
/usr/local/apache2/conf/dbmusers and makes it a member of the groups employee
and engineering:

dbmmanage /usr/local/apache2/conf/dbmusers adduser daniel employee,engineering
If you ever need to delete the user daniel, you can issue the following command:
dbmmanage dbfile delete daniel

The dbmmanage program supports additional options. You can get complete syntax infor-
mation in the dbmmanage manual page or by invoking dbmmanage without any arguments.

Recent versions of Apache 2.0 provide an additional utility, htdbm, that does
\/ not depend on Perl and provides all the functionality that dbmmanage does.
Authoritative

The AuthDBMAuthoritative directive takes an argument of on or off. By default it is on,
meaning that the module authentication results are authoritative and if the user is not
found or does not match any rules, access will be denied.

Using mod_auth_dbm

Listing 7.2 shows a sample configuration, restricting access to Unix home directories to
members of the student and faculty groups. As you can see, both users and groups are
stored in the same database file.

LisTing 7.2 Database File-Based Authentication Example

<directory /home/*/public_html>

AuthType Basic

AuthName "Private Area"

AuthDBMUserFile /usr/local/apache2/conf/dbmusers
AuthDBMGroupFile /usr/local/apache2/conf/dbmusers
AuthDBMAuthoritative on

Require group student faculty

</directory>

0N O~ WD =

Digest-Based Authentication

The mod_auth_digest Apache module is an experimental module that provides support
for digest authentication. Only part of its functionality is implemented.

Restricting Access 115 |

Backend Storage

The mod_auth_digest module provides two directives, AuthDigestFile and
AuthDigestGroupFile that point to the files containing the usernames and groups.

User Management

Apache provides a utility, htdigest on Unix and htdigest.exe on Windows, which pro-
vides equivalent functionality to that of htpasswd, but with an additional argument: the
realm to which the user belongs.

Authoritative

The AuthDigestAuthoritative directive takes a value of on or of f. By default it is on,
meaning that the module authentication results are authoritative and if the user is not
found or does not match any rules, access will be denied.

Additional Directives

AuthDigestDomain takes a list of URLs that share the same realm and username pass-
word protection. This directive is not mandatory, but it helps speed up the internal work-
ing of mod_auth_digest. The URLs can be absolute (indicating scheme, port, and so on)
or relative.

The mod_auth_digest module is considered experimental code. This means it is still in
development and some of the functionality is not implemented, at least at the time this
book was written. The missing functionality deals with the inner workings of the proto-
col and is not required for normal operation.

Using mod_auth_digest
Listing 7.3 shows an example similar in purpose to Listing 7.1, this time using digest
authentication. This example uses a <Location> container, the value of the AuthType

directive is Digest, and the optional AuthDigestDomain directive is present, specifying
additional URLs.

Listing 7.3 Database File-Based Authentication Example

<Location /private>

: AuthType Digest

: AuthName "Private Area"

: AuthDigestFile /usr/local/apache2/conf/digestusers
: AuthDigestDomain /private /private2 /private3

: AuthDigestAuthoritative on

Require valid-user

</Location>

ONOO O WD =

|116

Hour 7

Additional Authentication Modules

Apache provides an additional authentication module, mod_auth_anon, that allows
anonymous user logins. The user provides his e-mail address as authentication creden-
tials. This does not provide any security, but allows a convenient user tracking mecha-
nism.

Access Control

The mod_access module, enabled by default, enables you to restrict access to resources
based on parameters of the client request, such as the presence of a specific header or the
IP address or hostname of the client.

Access Rules

You can specify access rules using the Allow and Deny directives. Each of these direc-
tives takes a list of arguments such as IP addresses, environment variables, and domain
names.

IP Addresses
You can deny or grant access to a client based on its IP address:
Allow from 10.0.0.1 10.0.0.2 10.0.0.3

You can also specify IP address ranges, with a partial IP address or a network/mask pair.

A Partial IP Address

You can specify the first one, two, or three bytes of an IP address. Any IP address con-
taining those will match this rule. For example, the rule

Deny from 10.0

will match any address starting with 10.0, such as 10.0.1.0 and 10.0.0.1.

A Network/Mask Pair

The IP address specifies the network and the mask specifies which bits belong to the net-
work prefix and which ones belong to the nodes.

Allow from 10.0.0.0/255.255.255.0

will match IP addresses 10.0.0.1, 10.0.0.2, and so on, to 10.0.0.254.

You can also specify the network mask via high-order bits. For example, the previous
rule could be written as

Allow from 10.0.0.0/24

Restricting Access 117 |

Domain Name

You can control access based on specific hostnames or partial domain names. For exam-
ple, Allow from example.com will match www.example.com, foo.example.com, and

SO on.

Enabling access rules based on domain names will force Apache to do a
reverse DNS lookup on the client address, bypassing the settings of the
HostNameLookups directive. The HostNameLookups directive is described
in Hour 8, “Logging and Monitoring.” This has performance implications.

Environment Variables

You can specify access rules based on the presence of a certain environment variable,

prefixing the name of the variable with env=. You can use this feature to grant or deny
access to certain browsers or browser versions, to prevent specific sites from linking to
your resources, and so on. Listing 7.4 shows you how to implement browser blocking.

Listing 7.4 Using Environment Variables to Restrict Access

BrowserMatch MSIE iexplorer
Deny from env=iexplorer

Note that, for this example to work as intended, the client needs to transmit the User -
Agent header. Because the client sends this header, it could be omitted or manipulated,
but most users will not do so and the technique will work in most cases.

How to set environment variables is explained in Hour 9, “Content Negotiation and
Environment Variables.”

All Clients

The keyword all matches all clients. You can specify Allow from all or Deny from
all to grant or deny access to all clients.

Access Rules Evaluation

You can have several Allow and Deny access rules. You can choose the order in which
the rules are evaluated by using the Order directive. Rules that are evaluated later have
higher precedence. Order accepts one argument, which can be Deny,Allow, Allow,Deny,
or Mutual-Failure. Deny,Allow is the default value for the Order directive. Note that
there is no space in the value.

|118

Hour 7

Deny,Allow

Deny,Allow specifies that Deny directives are evaluated before Allow directives. With
Deny,Allow, the client is granted access by default if there are no Allow or Deny direc-
tives or the client does not match any of the rules. If the client matches a Deny rule, it
will be denied access unless it also matches an Allow rule, which will take precedence
because Allow directives are evaluated last and have greater priority.

Listing 7.5 shows how to configure Apache to allow access to the /private location to
clients coming from the internal network or the domain example.com and deny access to
everyone else.

LisTing 7.5 Sample Access Control Configuration

: <location /private>
Order Deny,Allow
Allow from 10.0.0.0/255.255.255.0 example.com
Deny from all

</location>

g~ wnNn =

Allow,Deny

Allow,Deny specifies that Allow directives are evaluated before Deny directives. With
Allow,Deny, the client is denied access by default if there are no Allow or Deny direc-
tives or if the client does not match any of the rules. If the client matches an Allow rule,
it will be granted access unless it also matches a Deny rule, which will take precedence.

Note that the presence of Order Allow,Deny without any Allow or Deny rules will cause
all requests to the specified resource to be denied because the default behavior is to deny
access.

Listing 7.6 allows access to everyone except a specific host.

LisTiNG 7.6 Sample Access Control Configuration

1: <location /some/location/>
2 Order Allow,Deny

3: Allow from all

4 Deny from host.example.com
5: </location>

Mutual-Failure

In this case, the host will be granted access only if it matches an Allow directive and
does not match any Deny directive.

Restricting Access 119 |

Combining Access Methods

In previous sections, you learned how to restrict access based on user identity or request
information. The Satisfy directive enables you to determine whether both types of
access restrictions must be satisfied in order to grant access. Satisfy accepts one para-
meter, which can be either all or any.

Satisfy all means that the client will be granted access if it provides a valid username
and password and passes the access restrictions. Satisfy any means the client will be
granted access if it provides a valid username and password or passes the access restric-
tions.

Why is this useful? For example, you might want to provide free access to your Web site
to users coming from an internal, trusted network address, but require users coming from
the Internet to provide a valid username and password. Listing 7.7 demonstrates just that.

Listing 7.7 Mixing Authentication and Access Control Rules

1: <Location /restricted>

2: Allow from 10.0.0.0/255.255.255.0

3: AuthType Basic

4: AuthName "Intranet"

5: AuthUserFile /usr/local/apache2/conf/htusers
6: AuthAuthoritative on

7: Require valid-user

8: Satisfy any

9: </Location>

o // Access control based on connection or request information is not completely
/ secure. Although it provides an appropriate level of protection for most
== cases, the rules rely on the integrity of your DNS servers and your network

infrastructure. If an attacker gains control of your DNS servers, or your
routers or firewalls are incorrectly configured, he can easily change autho-
rized domain name records to point to his machine or pretend he is coming
from an authorized IP address.

Limiting Access Based on HTTP Methods

In general, you want your access control directives to apply to all types of client requests
and this is the default behavior. In some cases, however, you want to apply authentica-
tion and access rules to only certain HTTP methods such as GET and HEAD.

|120

Hour 7

The <Limit> container takes a list of methods and contains the directives that apply to
requests containing those methods. The complete list of methods that can be used is GET,
POST, PUT, DELETE, CONNECT, OPTIONS, TRACE, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY,
MOVE, LOCK, and UNLOCK.

Many of these methods are WebDAV methods. WebDAV is a publishing protocol that is
based on and extends HTTP. It is covered in Hour 13, “Publishing Extensions.”

The <LimitExcept> section provides complementary functionality, containing directives
that will apply to requests not containing the listed methods.

Listing 7.8 shows an example from the default Apache configuration file. The <Limit>
and <LimitExcept> sections allow read-only methods, but deny requests to any other
methods that can modify the content of the file system, such as PUT.

Listing 7.8 Restricting Access Based on Rule

1: <Directory /home/*/public_html>

2 AllowOverride FileInfo AuthConfig Limit
3 Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
4: <Limit GET POST OPTIONS PROPFIND>

5: Order allow,deny

6: Allow from all

7 </Limit>

8: <LimitExcept GET POST OPTIONS PROPFIND>
9: Order deny,allow

10: Deny from all

11: </LimitExcept>

12: </Directory>

Summary

This hour explained how to restrict access to your Web site based on the identity of the

remote user and information from the HTTP request or network connection. It also cov-
ered the authentication modules included with Apache and additional tools that you can
use to create and manage your user and group databases.

Q&A

Q I have a Unix system. Can I use /etc/passwd as my user database?

A Although it might seem convenient, it is advisable that you do not use the existing
/etc/passwd file for authenticating users of your Web site. Otherwise, an attacker

Restricting Access 121 |

Quiz

who gains access to a user of your Web site will also gain access to the system.
Keep separate databases and encourage users to choose different passwords for
their system accounts and Web access. Periodically run password checkers that
scan for weak passwords and accounts in which the username is also the password.

Why am I asked for my password twice in some Web sites?

Your browser keeps track of your password so that you do not have to type it for
every request. The stored password is based on the realm (AuthName directive) and
the hostname of the Web site. Sometimes you can access a Web site via different
names, such as domain.com and www.domain.com. If you are authorized to access a
certain restricted area of domain.com but you are redirected or follow a link to
www . domain.com, you will be asked again to provide the username and password
because your browser thinks it is a completely different Web site.

. Can you configure Apache to prevent a certain Web site from linking to yours?

(Hint: You can use the Referer: HTTP header for this.)

What are the advantages of database files over plain text files?

3. Can you name some disadvantages of HTTP basic authentication?

Quiz Answers

1.

For example, if you want to deny the example.org Web site access to your site, you
can add the following to your configuration file:

SetEnvIfNoCase Referer "“http://www.example.org/" evil site=1
Order Allow,Deny

Allow from all

Deny from env=evil_site

They are much more scalable because they can be indexed. This means that
Apache does not need to read the file sequentially until a match is found for a par-
ticular user, but rather can jump to the exact location.

. One disadvantage is that it is transmitted in clear text over the network. This means

that unless you are using SSL (explained in Hour 17), it is possible for an attacker
to read the packets your browser sends to the server and steal your password.
Another disadvantage is that HTTP authentication does not provide a means for
customizing the login (except the realm name). It is very common for Web sites to
implement custom login mechanisms using HTML forms and cookies.

|122 Hour 7

Related Directives

This section contains directives mentioned in this hour or that are related to topics dis-
cussed in this hour. You can consult the Apache reference documentation for comprehen-
sive syntax information and usage.

Common Authentication
e AuthName: Name for authentication realm
* AuthType: Basic or digest authentication
* Require: Users or groups that are allowed access

e <Limit>, <LimitExcept>: Limit access control and authentication based on the
request method

e Satisfy: Require both authentication and access control

File-Based Authentication
e AuthAuthoritative: Whether authentication results are authoritative
* AuthUserFile: File containing users

* AuthGroupFile: File containing groups

Database File-Based Authentication
e AuthDBMAuthoritative: Whether authentication results are authoritative
* AuthDBMUserFile: File containing users

* AuthDBMGroupFile: File containing groups

Digest Authentication
e AuthDigestAuthoritative: Whether authentication results are authoritative
* AuthDigestFile: File containing users
* AuthDigestGroupFile: File containing groups

* AuthDigestDomain: List of URLs that share the same realm and username pass-
word protection

Access Control

* Allow, Deny: Allow or deny access based on IP, hostname, and environment vari-
able

e Order: Access rules

Restricting Access 123 |

Further Reading

Hour 17 covers access control based on certificates and parameters of an SSL connec-
tion.

A great number of modules provide access control against various databases, NT
domains, Pluggable Authentication Modules (PAMs), and so on. Most of the modules
run on Apache 1.3, but they are being ported to work with Apache 2.0. Hour 24,
“Additional Apache Modules and Projects,” mentions some of them, such as
mod_auth_1ldap.

Digest authentication is described in RFC 2617. The MD5 algorithm is described in RFC
1321. You can download both RFCs at http://www.rfc-editor.org.

HoOUR 8

Logging and Monitoring

This hour describes how the logging system in Apache works and how to
customize it—which information to store and where to do it. In this hour,
you will learn how to

* Understand log formats and logging levels

* Rotate and analyze logs

 Interpret common errors that might appear in your logs

* Monitor Apache resource usage and performance using mod_status

Logging HTTP Requests

You can keep track of who visits your Web sites by logging accesses to the
servers hosting them. You can log every aspect of the requests and
responses, including the IP address of the client, the user, and the resource
accessed. You need to take three steps to create a request log:

1. Define what you want to log; your log format

2. Define where you want to log it; your log files, a database, an external
program

3. Define whether or not to log; conditional logging rules

|126

Hour 8

What Do You Want to Log?

You can log nearly every aspect associated with the request. You can define how your log
entries look by creating a log format. A log format is a string that contains text mixed
with log formatting directives. Log formatting directives start with a % and are followed
by a directive name, usually a letter indicating the piece of information to be logged.
When Apache logs a request, it scans the string and substitutes the value for each direc-
tive. For example, if the log format was This is the client address %a, the log entry
will be something like This is the client address 10.0.0.2. That is, the logging
directive %a was replaced by the IP address of the client making the request. You can get
a comprehensive list of all formatting directives in Table 8.1.

TaBLe 8.1 Log Formatting Directives

Formatting Options Explanation

Data from the Client
%a Remote IP address, from the client.

%h Hostname or IP address of the client making the request. Whether the
hostname is logged depends on two factors: The IP address of the
client must be able to resolve to a hostname using a reverse DNS
lookup, and Apache must be configured to do that lookup using the
HostNameLookups directive, explained later in this hour. If these condi-
tions are not met, the IP address of the client will be logged instead.

%1 Remote user, obtained via the identd protocol. This option is not very
useful because this protocol is not supported on the majority of the
client machines, and the results can’t be trusted anyway because the
client provides them.

%u Remote user from the HTTP basic authentication protocol.

Data from the Server

%A Local IP address, from the server.

%D Time it took to serve the request in microseconds.

%{env_variable}e Value for an environment variable named env_variable.
%{time_format}t Current time. If {time_format} is present, it will be interpreted as an

argument to the Unix strftime function. See the logresolve Apache
manual page for details.

%T Time it took to serve the request, in seconds.

%V Canonical name of server that answered the request.

Logging and Monitoring 127 |

TaBLE 8.1 continued

Formatting Options Explanation
%V Server name according to the UseCanonicalName directive.
%X Status of the connection in the server. A value of 'x' means the con-

nection was aborted before the server could send the data. A '+’
means the connection will be kept alive for further requests from the
same client. A ' -' means the connection will be closed.

Data from the Request

%{cookie_name}C Value for a cookie named cookie name.

%H Request protocol, such as HTTP or HTTPS.

%M Request method such as GET, POST, PUT, and so on.

%{header_name}i Value for a header named header_name in the request from the client.

This can be useful, for example, to log the names and versions of your
visitors’ browsers.

%r Text of the original HTTP request.
%q Query parameters, if any, prefixed by a ?.
%U Requested URL, without query parameters.

Data from the Response

%b, %B Size, in bytes, of the body of the response sent back to the client
(excluding headers). The only difference between the options is that if
no data was sent, %b will log a ' -' and %B will log '0".

%f Path of the file served, if any.

%t Time when the request was served.

%{header_name}o Value for a header named header_name in the response to the client.

%>s Final status code. Apache can process several times the same request

(internal redirects). This is the status code of the final response.

Common Log Format (CLF) is a standard log format. Most Web sites can log requests
using this format and the format is understood by many log processing and reporting
tools. Its format is the following: "%h %1 %u %t \"%r\" %>s %b". That is, hostname or
IP address of the client, remote user via identd, remote user via HTTP authentication,
time when the request was served, text of the request, status code, and size in bytes of
the content served.

|128 Hour 8

3 You can read the common log format documentation of the original W3C
IS== server at http://www.w3.org/Daemon/User/Config/Logging.html.

The following is a sample CLF entry:
10.0.0.1 - - [19/Nov/2001:11:34:56 -0800] "GET / HTTP/1.1" 200 1456

Note that you cannot trust the value of the username for HTTP authentication if the sta-
tus code is 401, which means the user needs to authenticate itself.

Each of the formatting directives accepts extra options based on the status

of the response. Check the “Conditional Logging” section later in the hour
= . .

ol for a detailed explanation.

You are now ready to learn how to define log formats using the LogFormat directive.
This directive takes two arguments: The first argument is a logging string, and the sec-
ond is a nickname that will be associated with that logging string.

For example, the following directive from the default Apache configuration file defines
the Common Log Format and assigns it the nickname common:

LogFormat "Sh %1 %u %t \"%r\" %>s %b" common

You can also use the LogFormat directive with only one argument, either a log format
string or a nickname. This will have the effect of setting the default value for the logging
format used by the TransferLog directive, explained in the following section.
Additional Logging Parameters

Other modules can add additional log formatting directives to the LogFormat directive.
One example is the SSL module for Apache, described in Hour 17, “Setting Up a Secure
Server.”

Where Do You Want to Log the Information?

You can log request data to different places, including files, databases, and arbitrary pro-
grams for further processing.

Logging to Files

Logging to files is the default way of logging requests in Apache. You can define the
name of the file using the TransferLog and CustomLog directives.

Logging and Monitoring

129|

The TransferLog directive takes a file argument and will use the latest log format
defined by a LogFormat directive with a single argument (the nickname or the format
string). If no log format is present, it defaults to the Common Log Format.

The following example shows how to use the LogFormat and TransferLog directives to
define a log format that is based on the CLF but that also includes the browser name:

LogFormat "%h %1 %u %t \"%r\" %>s %b \"%{User-agent}i\""
TransferLog logs/access_log

The CustomLog directive enables you to specify the logging format explicitly. It takes at
least two arguments: a logging format and a destination file. The logging format can be
specified as a nickname or as a logging string directly.

For example, the directives

LogFormat "%h %1 %u %t \"sr\" %>s %b \"%{User-agent}i\"" myformat
CustomLog logs/access_log myformat

and

CustomLog logs/access_log "%h %1 %u %t \"sr\" %>s %b \"%{User-agent}i\""

are equivalent.

The CustomLog format can take an optional environment variable as a third argument, as
explained in the “Environment Variables” section later in the hour.

Logging to a Program

Both TransferLog and CustomLog directives can accept a program, prefixed by a pipe
sign |, as an argument. Apache will write the log entries to the standard input of the pro-
gram. The program will, in turn, process them by either logging the entries to a database,
transmitting them to another system, and so on.

If the program dies for some reason, the server makes sure that it is restarted. If the
server stops, the program is stopped as well.

The rotatelogs utility, bundled with Apache and explained later in this hour, is an
example of a logging program.

As a general rule, unless you have a specific requirement for using a particular program,
it is easier and more reliable to log to a file on disk and do the processing, merging,
analysis of logs, and so on, at a later time, possibly on a different machine.

You need to make sure that the program you use for logging requests is
secure because it runs as the user Apache was started with. On Unix, this

|130 Hour 8

usually means root because the external program will be started before the
server changes its user ID to the value of the User directive, typically nobody.

Logging to Databases

Apache provides modules that can log requests directly to a backend database such as
MySQL, PostgreSQL, or Oracle. Unfortunately, at the time I am writing this book, those
modules are available only for the 1.3 version of the server.

Additionally, instead of an Apache module, it is possible to use a command-line program
as explained in the previous section. The command-line utility will, in turn, insert the
logs into the database. See the pglogd utility in the “Logging to Databases” section later
in the hour.

Cluster Logging

You can run into scalability and management problems when administering logs from a
great number of machines or a single server receiving a lot of requests. The simple act of
logging to a file on disk can have a significant performance impact on a heavily loaded
server.

There is an Apache module called mod_log_spread that can facilitate cluster logging.
mod_log_spread is based on the Open Source Spread library for reliable distributed com-
munication.

mod_log_spread does not store logs to disk but transmits them over the network using
the spread protocol. The logs are multicasted to multiple log receivers and logging agents
can be added or removed on the fly. The resulting system is highly reliable and can scale
to hundreds of Web servers.

You can find more about mod_log_spread at
http://www.lethargy.org/mod_log_spread/, and about the spread library and protocol
at http://www.spread.org.

At the time of this writing, there is only an Apache 1.3 module, but a version for Apache
2.0 will likely be available soon.

Covalent Technologies (http://www.covalent.net) provides a proprietary logging
framework for Apache 2.0 as part of its enterprise Apache offering.

Logging and Monitoring 131 |

Conditional Logging

In certain situations, you might want to avoid logging a certain request. For example, you
could configure Apache to log requests for only HTML pages, not icons or images, thus
easing the load on a busy server. Or you could configure Apache not to log requests from
the internal network, so they do not affect the statistics of the site.

The HostNameLookups Directive

When a client makes a request, Apache knows only the IP address of the client. Apache
must perform what is called a reverse DNS lookup to find out the hostname associated
with the IP address. This can be a time-consuming operation and can introduce a notice-
able lag in the request processing. The HostNameLookups directive allows you to control
whether to perform the reverse DNS lookup.

HostNamelLookups can take one of the following arguments: on, off, or double.

The default is off. The double lookup argument means that Apache will find out the
hostname from the IP and then will try to find the IP from the hostname. This is neces-
sary if you are really concerned with security, as described in
http://httpd.apache.org/docs-2.0/dns-caveats.html. If you are using hostnames as
part of your Allow and Deny rules (described in Hour 7, “Restricting Access”), a double
DNS lookup is performed regardless of the HostNameLookups settings.

If HostNameLookups is enabled (on or double), Apache will log the hostname; otherwise,
it will log only the associated IP address. There are plenty of tools to resolve the IP
addresses in the logs later. Refer to the Managing Logs section later in the hour.
Additionally, the result will be passed to CGI scripts via the environment variable
REMOTE_HOST.

The IdentityCheck Directive

At the beginning of the hour, it is explained how to log the remote username via the
identd protocol using the %1 log formatting directive. The IdentityCheck directive
takes a value of on or off to enable or disable checking for that value and making it
available for inclusion in the logs. Since the information is not reliable and takes a long
time to check, it is switched off by default and should probably never be enabled. The
only reason that %1 is mentioned is because it is part of the Common Log Format.

Environment Variables

The CustomLog directive, described previously, accepts an environment variable as a third
argument. If the environment variable is present, the entry will be logged; otherwise, it
will not. If the environment variable is negated by prefixing an ! to it, the entry will be
logged if the variable is not present.

|132

Hour 8

The following example shows how to avoid logging images in GIF and JPEG format in
your logs:

SetEnvIf Request_URI "(\.gif|\.jpg)$" image
CustomLog logs/access_log common env=!image

Status Code

You can specify whether to log specific elements in a log entry. At the beginning of the
hour, you learned that log directives start with a %, followed by a directive identifier. In
between, you can insert a list of status codes, separated by commas. If the request status
is one of the listed codes, the parameter will be logged; otherwise, a - will be logged.

For example, the directive identifier %400,501{User-agent}i will log the browser name
and version for malformed requests (status code 400) and requests with methods not
implemented (status code 501). This can be useful for tracking which clients can be
causing problems.

You can precede the method list with an ! to log the parameter if the methods are imple-
mented:

%1400,501{User-agent}i

Error Messages

Apache can be configured to log error messages and debug information. In addition to
errors generated by Apache itself, CGI errors also will be logged.

Each error log entry is prefixed by the time the error occurred and the client IP address
or hostname, if available. As with HTTP request logging, you can log error information
to a file or a program. On Unix systems, you can also log to the syslog daemon. There
are modules for Apache 1.3 that allow you to log to the Windows event log and will
likely be ported to Apache 2.0 over time.

You can use the ErrorLog directive to define where you want your logs to go. It takes
one argument, which can be a file, a program, or the syslog daemon.

Logging to a File

A file argument indicates the path to the error log file. If the path is relative, it is
assumed to be relative to the server root. By default, the error log file will be located in
the logs directory and will be named error_log on Unix and error.log on Windows.
The following is an example:

ErrorLog logs/my_error_log

Logging and Monitoring 133 |

Logging to a Program

You can specify the path to a program, prefixed by a pipe |. Apache will log errors to the
standard input of the program and the program will further process them. The following
is an example:

ErrorLog "|/usr/local/bin/someprogram"

The syslog Daemon Argument

On a Unix system, if you specify syslog as an argument, you can log error messages to
the Unix system log daemon syslogd. By default, log errors are logged to the syslog
facility local7. The facility is the part of the system generating the error. You can specify
a facility by providing syslog:facility as an argument. Examples of syslog facilities
are mail, uucp, local@, localil, and so on. For a complete list, you need to have a look
at the documentation for syslog included with your system (try man syslogd or man
syslogd.conf at the command line). The following is an example of logging to syslog:

ErrorLog syslog:local6

The LogLevel Directive

The error information provided by Apache has several degrees of importance. You can
choose to log only important messages and disregard informational or trivial warning
messages. The LogLevel directive takes an error level argument. Only errors of that level
of importance or higher will be logged.

Table 8.2 specifies the valid values for the LogLevel directive, as specified by the Apache
documentation. By default, the LogLevel value is warn. That should be enough for most
Apache installations. If you are trying to troubleshoot a specific configuration, you can
lower the level to debug.

TaBLE 8.2 LogLevel Options as Described in the Apache Documentation

Setting Description Example

emerg Emergencies—system is unusable Child cannot open lock file. Exiting.

alert Action must be taken immediately getpwuid: couldn't determine user name
from uid.

crit Critical conditions socket: Failed to get a socket, exiting
child.

error Error conditions Premature end of script headers.

warn Warning conditions Child process 1234 did not exit, sending

another SIGHUP.

|134 Hour 8

TaBLE 8.2 Continued

Setting Description Example

notice Normal but significant condition httpd: caught SIGBUS, attempting to dump
core in...

info Informational Server seems busy, (You may need to

increase StartServers, or
Min/MaxSpareServers)...

debug Debug-level messages Opening config file...

Monitoring Apache

The Apache distribution contains two modules that allow you to monitor its configura-
tion and real-time behavior and performance.

The mod_info module provides information about the configuration of the server and
modules installed. Figure 8.1 shows a sample report page. This module is included with
Apache, but is not compiled by default.

FIGURE 8.1) server Information - Microsoft Internet Explorer
s, i d inf Fie Edt View Favortes Toos Help | =
ampie moa_into M = =
D — | ceek|-| 0 - @ B @ Boach Mo Grsoy |[B-SE-EH Y 9
page. | Address |E’l hitpe)10.0.0. -ria ﬂ @ee
XBicHack - O0Fff, On, or Full B
SS5IErrorMsg - 2 string
S8ITimeFormar - 2 steftime(3) formatted steing
Cwrrent Configuration:
Module Name: mod_auth.c
Content handlers: none
Confi ion Phase Participation: Creace Direccory Config
Reguest Phase Participation: verity User ID, Verify User ioccess
Module Directives:
& TserFile - taxt Fils containing user IDs and passwords
EL roupFile - text file containing group names and member user IDs
huthhuthoritative - Sat to 'no' to allow access control to be passed along to lower
modules if the UserID is not known to this module
Current Configuration: _
Maodule Name: mod_access. o
Content handlers: none
Configuration Phase Participation: creace Direccocy Config
Request Phase Participation: Check kocess =
3 ILIJ
|21 | et

Logging and Monitoring 135 |

The mod_status module provides real-time information about Apache, as shown in
Figure 8.2. The page shows the number of current children, how many of them are idle,
which requests are being answered, the traffic served by Apache so far, the server
uptime, and so on.

FIGURE 8-2) Apache Status - Microsoft Internet Explorer
| Fie Edt View Favortes Toos Help
Sample mod_status |0 OB @ o Girewtss Grivy B S0 -B Y D
page. | adevess [] hepegiio.nn ee-status =] P

Apache Server Status for localhost.localdomain

Server Version: Apache/2 0 28 (Tnox)
Server Budt: Dec 2 2001 12:53:59

Current Time: Wednesday, 12-Dec-2001 16:3526 FST
Restart Tine: Wednesday, 12-Dec-2001 163125 PST
Parent Server Ceneration: 0

Server uptims: 4 minutes 1 second

1 requests currently being processed, 8 idle workers

Scorsboard Eey:

" " Waiting for Connection, "s" Starting up, "R" Reading Eequest,
W' Sending Reply, "K' Keepalive (read), "p" TS Lookup,

*¢" Closing connection, 'L" Logzng, "6" Gracefully finishing,

"1 Idle cleanup of worker, "." Open slot wath no current process

e I=

|@Tnene _ i meemet

Configuring Modules

Both mod_info and mod_status provide Apache handlers. You must run the handler in a
<Location> block to access the content provided by the modules. Because the informa-
tion contains sensitive data, it is a good idea to protect the access to that location by
using a password or IP-based access control, as explained in Hour 7.

Listings 8.1 and 8.2 show sample settings for enabling mod_info and mod_status and
restricting access to them, as included in the default Apache configuration file. You must
replace .example.com with the domain name for your particular network.

Listing 8.1 Enabling mod_status

<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from .example.com
</Location>

| 136 Hour 8
Listing 8.2 Enabling mod_info

<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Allow from .example.com

</Location>

. After the modules are compiled into the server (or loaded as shared mod-

’17\
\ 2
~

¥,

ules), the capability to display the information is available across all configu-
ol ration files, including per-directory configuration files. This can pose a
security risk because the information provided by the modules, such as the
complete configuration for the server, contains sensitive data.

1

Additional Configuration

You can use the AddModuleInfo directive to provide a snippet of additional information
for a specific module. It takes two arguments: The first argument is a module name, and
the second is an HTML string that will be added to the mod_info page.

The ExtendedStatus directive can be used to provide additional information in the
mod_status information page. It is set to off by default.

The log_status Perl script in the support subdirectory of the Apache distribution can
be used to periodically monitor the status of the server.

Additional Log Files

Other modules, such as mod_rewrite (Hour 22), SSL (Hour 17), and mod_cgi (Hour 6),
have their own log files. You can learn more about them in their respective hours.

Managing Logs

Apache provides several tools for managing your logs. Other Apache-specific third-party
tools are available and are mentioned here. Because Apache can log requests in the
Common Log Format, most generic log processing tools can be used with Apache as
well.

Logging and Monitoring 137|

Resolving Hostnames

Earlier in the hour, you learned how to use the HostNameLookups directive to enable or
disable hostname resolution at the time the request is made. If HostNameLookups is set to
of f (the default), the log file will contain only IP addresses. Later, you can use the
command-line logresolve utility on Unix or logresolve.exe on Windows to process
the log file and convert the IP addresses to hostnames.

logresolve reads log entries from standard input and outputs the result to its standard
output. To read to and from a file, you can use redirection, on both Unix and Windows:

logresolve < access.log > resolved.log

Log resolving tools are efficient because they can cache results and they do not cause
any delay when serving requests to clients.

Fastresolve is an alternative, freely available log resolving utility that can be found at
http://www.pix.net/staff/djm/sw/fastresolve/.

Log Rotation

In Web sites with high traffic, the log files can quickly grow in size. It is necessary to
have a mechanism to rotate logs periodically, archiving and compressing older logs at
well-defined intervals.

Log files cannot be removed directly while Apache is running because the server is writ-
ing directly to them. The solution is to use an intermediate program to log the requests.
The program will, in turn, take care of rotating the logs.

Apache provides the rotatelogs program on Unix and rotatelogs.exe on Windows for
this purpose. It accepts three arguments: a filename, a rotate interval in seconds, and an
optional offset in minutes against UTC (Coordinated Universal Time).

For example,
TransferLog "|bin/rotatelogs /var/logs/apachelog 86400"

will create a new log file and move the current log to the /var/logs directory daily.
(86400 is the number of seconds in one day.)

o If the path to the program includes spaces, you might need to escape them
:2' by prefixing them with a \ (backslash). This is especially common in the

— Windows platform.

|138

Hour 8

If the name of the file includes % prefixed options, the name will be treated as input to
the strftime function that converts the % options to time values. The manual page for
rotatelogs contains a complete listing of options, but just as an example:

TransferLog "|bin/rotatelogs /var/logs/apachelog%m %d_S%y 86400"
will add the current month, day, and year to the log filename.

If the name does not include any %-formatted options, the current time in seconds is
added to the name of the archived file.

cronolog and httplog are additional log rotating programs. httplog adds support for addi-
tional compression of log files. You can find them at http://www.cronolog.org/ and
http://nutbar.chemlab.org/downloads/.

Merging and Splitting Logs

When you have a cluster of Web servers serving similar content, maybe behind a load
balancer, it is often necessary to merge the logs from all the servers in a unique log
stream before passing it to analysis tools.

Similarly, if a single Apache server instance handles several virtual hosts, sometimes it is
useful to split a single log file into different files, one per each virtual host.

Logtools is a collection of log manipulation tools that can be found at
http://www.coker.com.au/logtools/.

Apache includes the split-file Perl script for splitting logs. It can be found in the
support subdirectory of the Apache distribution.

Logging to Databases

Apache itself does not include tools for logging to databases, but a few third-party scripts
and programs are available.

pglogd collects logs and stores them in a PostgreSQL database. It can be found at
http://www.digitalstratum.com/pglogd/.

The Eureka tool allows you to import existing log files into a database and do interactive,
on-the-fly querying. It can be found at http://sourceforge.net/projects/eureka/.
Log Analysis

After you have collected the logs, you can analyze them and gain information about traf-
fic and visitor behavior.

Logging and Monitoring 139 |

There are many commercial and freely available applications for log analysis and report-
ing. Two of the most popular open source applications are Webalizer
(http://www.mrunix.net/webalizer/) and awstats
(http://awstats.sourceforge.net).

Wausage is a nice, inexpensive commercial alternative and can be found at
http://www.boutell.com/wusage/.

Monitoring Error Logs
If you run Apache on a Unix system, you can use the tail command-line utility to moni-
tor, in real time, log entries both to your access and error logs. The syntax is

tail -f logname

logname is the path to the Apache log file. It will print on screen the last few lines of the
log file and will continue to print entries as they are added to the file.

There are additional programs that enable you to quickly identify problems by scanning
your error log files for specific errors, malformed requests, and so on, and reporting on
them:

e Logscan can be found at http://www.garandnet.net/security.php

e ScanErrLog can be found at http://www.librelogiciel.com/software/

Common Errors

As you run your Web site day to day, you might find several common kinds of errors,
some of which are described in this section. Most of them can be safely ignored.

Connection Reset by Peer

This is a harmless error that appears when a client disconnects before completing the
request, usually because the user closed the browser or pressed the Back button while a
request was in process.

File favico.icon Not Found

When a user bookmarks a page using a browser such as Internet Explorer or Konqueror,
the program requests a file, favico.icon, that contains an icon to be displayed next to
the bookmark entry. If that file does not exist, you will get this error. You can learn more
about this icon in Hour 5, “Using Apache to Serve Static Content.”

|140

Hour 8

File robots.txt Not Found

Another harmless error. This file is requested by Web crawlers, also known as Web spi-
ders. They are programs, usually associated with search engines, that scan the Internet
searching and indexing content. Well-behaved Web spiders will request this file and use
its contents to learn which parts of the Web site they are allowed to connect to and which
parts they should stay away from. You can learn more about this file in Hour 16, “Tuning
Apache.”

httpd.pid Overwritten

This message appears if the previous Apache did not have a clean shutdown. This means
that it had to be killed manually or crashed before it had time to remove its pid file, as
occurs during a normal shutdown.

In addition to the errors detailed in this section, you might find common CGI errors in
the error logs, usually related to script permissions, abnormal termination, and buggy
scripts. They are described in Hour 6, “Serving Dynamic Content with CGL.” You might
also see errors related to the multi-processing modules (MPMs).

These are errors related to Apache reaching the maximum number of possible connec-
tions, processes, threads, and so on. They are explained in Hour 11, “Multi-Processing
Modules.”

Summary

This hour’s lesson explained how to log specific information about the requests and
errors generated by Apache. You can store the logs in files or databases, or pass them to
external programs.

You learned about the different utilities available for managing, processing, and analyz-
ing logs, both the ones included with Apache and those available from third parties.

Finally, the hour introduced two Apache modules commonly used to monitor the state
and configuration of the server.

Q&A

Q Why wouldn’t I want to log images?

A In this hour, you learned how to avoid logging certain types of files, such as
images. But why would you like to do that? In heavily loaded servers, logging can
become a bottleneck. If the purpose of logging is to count the number of visitors

Logging and Monitoring 141 |

and analyze their usage of the Web site, this can be achieved by logging only the
HTML pages, not the images contained in them. This reduces the number of hits
stored in the logs and the time spent writing them.

Q What are those weird log entries?

A From time to time, you might find a multitude of requests looking for cmd.exe,
root.exe, or similar programs. They are usually preceded by a long string of char-
acter and path components. They probably belong to an Internet worm, such as
Red Code. A worm is a malicious program that exploits vulnerabilities of Web
servers such as Microsoft IIS. After the program gains control of the server, it uses
your server to launch attacks on other servers. At the time of writing this book,
Apache is not vulnerable to any of those attacks and you can safely ignore those
entries.

Quiz
1. How would you avoid logging hits from a client accessing your Web site from a
particular network?

2. How can you log images to a different file?

Quiz Answers

1. How would you avoid logging hits from a client accessing your Web site from a
particular network?

In some situations, it is desirable to ignore requests coming from a particular net-
work, such as your own, so that they do not skew the results. This can be done
either by post-processing the logs and removing them or by using the SetEnvIf
directive:

SetEnvIf Remote_ Addr 10\.0\.0\. intranet
CustomLog logs/access_log "%h %1 %u %t \"%r\" %>s %b" !intranet

2. How can you log images to a different file?

Earlier in the hour, you learned how to avoid logging images. Instead of ignoring
images altogether, you can easily log them to a separate file, using the same envi-
ronment variable mechanism:

SetEnvIf Request_URI "(\.gif|\.jpeg)$" image

CustomLog logs/access_log common env=!image
CustomLog logs/images_log common env=image

|142

Hour 8

Related Directives

This section contains directives mentioned in this hour or that are related to topics dis-
cussed in this hour. You can consult the Apache reference documentation for comprehen-
sive syntax information and usage.

TransferLog: Log requests to a file or program.

CookieLog: Deprecated directive included for compatibility purposes. You should
use CustomLog instead.

LogFormat: Define a log format for use with other directives such as TransferLog
or CustomLog.

CustomLog: Log to a file or program with a custom log format.
ErrorLog: File or program where to log errors.

LogLevel: Establish error-reporting threshold.

AddModuleInfo: Add additional information to mod_info reports.
ExtendedStatus: Provide additional information in mod_status reports.

SetEnvIf: Set environment variables based on the request.

Further Reading

This hour mentions a variety of tools for processing and managing logs. You can find
additional tools at two popular open source Web sites: http://freshmeat.net and
http://sourceforge.net.

Several tutorials on logging are available from http://httpd.apache.org/docs-
2.0/misc/tutorials.html.

Additional Apache documentation on logging can be found at
http://httpd.apache.org/docs-2.0/1ogs.html.

HoOUR 9

Content Negotiation and
Environment Variables

This hour will show you how to configure Apache so that it can serve differ-
ent versions of a Web site’s content based on the client settings. It will also
cover what environment variables are and how to use them, for example, to
work around browser bugs. In this hour, you will learn

* What content negotiation is and how to configure Apache to provide
support for it

* How to use environment variables to modify Apache behavior

Environment Variables

Environment variables are variables that can be shared between modules and
are also available to external processes such as CGIs and server side include
(SSI) documents. (See Hour 12, “Filtering Modules,” for more information

|144

Hour 9

about SSI documents.) Environment variables also can be used for inter-module commu-
nication and to flag certain requests for special processing.

You can set environment variables with the SetEnv directive. This variable will be avail-
able to CGI scripts and SSI pages, and can be logged or added to a header. For example,

SetEnv foo bar

will create the environment variable foo and assign it the value bar. You can then access
this variable from a Perl script with

print $ENV(foo)
or from a SSI page with

<!--#echo var="foo" -->

You can log its value with the %{foo}e formatting option, as explained in Hour 8,
“Logging and Monitoring.” Or you can add it to a header, as explained later in this hour,
with

Header set X-Foo "%{foo}e"

You can remove specific variables using the UnsetEnv directive. For example,
UnsetEnv foo

will remove the environment variable foo so that it is not available to scripts or SSI
pages.

The PassEnv directive enables you to expose variables from the server process environ-
ment. The server process environment contains information about the operating system
version, the location of important files and libraries, the current path, and so on. For
example,

PassEnv LD_LIBRARY_PATH

will make the environment variable LD_LIBRARY_PATH available to CGI scripts and SSI
pages. This variable contains the path to loadable dynamic libraries in some Unix sys-
tems, such as Linux.

Standard Environment Variables

A set of environment variables is available for every request and passed to CGI scripts.
This set is defined at http://hoohoo.ncsa.uiuc.edu/cgi/env.html. Table 9.1 provides
a listing of their names and meaning.

Content Negotiation and Environment Variables 145|

TaBLE 9.1 Standard Environment Variables

Environment Variable Meaning

SERVER_SOFTWARE Name of the server (Apache, in this case) and version number.
SERVER_NAME Hostname or IP address of the Apache server.

GATEWAY_INTERFACE Version of the CGI specification, such as CGI/1.1.
SERVER_PROTOCOL Request protocol, such as HTTP/1.1.

SERVER_PORT Port that the request was addressed to.

REQUEST_METHOD HTTP request method, such as GET or POST.

PATH_INFO Additional path information in the URL, after the path to the script.
PATH_TRANSLATED Resultant path from adding PATH_INFO to the document root path.
SCRIPT_NAME Location path to the CGI script; for example, /cgi-bin/script.pl.
QUERY_STRING Any query parameters passed in the URL.

REMOTE_ADDR Client IP address.

REMOTE_HOST Client hostname, if available; otherwise, the client IP address.
AUTH_TYPE HTTP authentication method, such as basic authentication, as

explained in Hour 7, “Restricting Access.”

REMOTE_USER HTTP authentication username.

REMOTE_IDENT Username according to the identd protocol. Not used for a variety
of reasons explained in Hour 8.

CONTENT_TYPE Content type of requests with attached data, such as POST requests.

CONTENT_LENGTH Size of the attached data, if any.

The value of an HTTP header can be accessed via an environment variable by prefixing
the header name with HTTP_ and converting any dashes to underscores. For example, the
User-Agent: header can be accessed via the HTTP_USER_AGENT environment variable.

Certain modules, such as SSL, which is described in Hour 17, “Setting Up a Secure
Server,” provide additional environment variables.

The directives described in this hour cannot overwrite the values of standard
environment variables.

Setting Environment Variables Dynamically

The SetEnvIf directive enables you to set environment variables based on request infor-
mation, such as the username, the file being requested, or a specific HTTP header value.

|146 Hour 9

This directive takes a request parameter, a regular expression, and a set of variables that
will be modified if the parameter matches the expression.

For example, you can match Internet Explorer browsers with this line:
SetEnvIf HTTP_USER_AGENT MSIE iexplorer

This line will set the environment variable iexplorer to the value 1. You can also set the
variable to an arbitrary value:

SetEnvIf HTTP_USER_AGENT MSIE iexplorer=true
or even use a negated expression:
SetEnvIf HTTP_USER_AGENT MSIE !javascript

Later, you can check the existence and value of this variable to perform a variety of
actions:

* You can provide different content based on the browser. For example, simplified
HTML pages for text browsers such as Lynx, or for PDA and cell phone browsers.

* Decide whether to log a specific request, as explained in Hour 8.

e Rewrite the URL request with mod_rewrite, which is explained in Hour 22,

“Dynamic URI Resolution with mod_rewrite.”

In fact, checking for the client user agent is so common that mod_setenvif provides the
BrowserMatch directive. The previous directive could be rewritten as

BrowserMatch MSIE iexplorer=1

o Both SetEnvIf and BrowserMatch have case-insensitive versions,
/ SetEnvIfNoCase and BrowserMatchNoCase, that can be used to simplify the
= regular expressions in certain situations.

Special Environment Variables

Apache provides a set of special environment variables. If one of those variables is set,
Apache will modify its behavior. They are commonly used to work around buggy clients.
Table 9.2 provides a list of those environment variables and the meaning of each one.

Content Negotiation and Environment Variables

147|

TaBLE 9.2 Special Environment Variables

Environment Variable

Meaning

downgrade-1.0

force-no-vary

force-response-1.0

nokeepalive

redirect-carefully

ssl-unclean-shutdown, ssl-accurate-shutdown

no-gzip

The client request will be interpreted as an
HTTP/1.0 request.

The vary: header, explained later in the hour,
is not correctly interpreted by some browsers
and the presence of this environment variable
will remove them from the served requests.

Some clients do not behave correctly when an
HTTP/1.1 response is returned. When this
variable is set, Apache will return an
HTTP/1.0 response.

Certain clients have problems with keep-
alives; setting this variable disables support
for them.

Certain clients have problems handling redi-
rects, and setting this variable works around
those problems. This is the case for DAV
clients, as explained in Hour 13, “Publishing
Extensions.”

These environment variables are used to work
around buggy client-side SSL protocol imple-
mentations. SSL is covered in Hour 17.

You can use this environment variable to

indicate to mod_deflate not to perform con-
tent compression.

Header Manipulation

The Header and RequestHeader directives, provided by the mod_headers module, can be
used to add and remove arbitrary headers in HTTP requests and responses.

You can add a response HTTP header, deleting any other HTTP headers with the same

name that might be present by using

Header set header-name header-value

If you want to add a new header instead of replacing an existing one, you can use

Header add header-name header-value

|148

Hour 9

If you want to append the value to an existing header, you can use

Header append header-name header-value

You can remove certain headers by using the following directive:

Header unset header-name

You can modify the request headers by using RequestHeader instead of Header.

You can add the content of environment variables to the header-value argument by
using the format string %{variable-name}e; this is similar to how the LoggingFormat
directive works, as explained in Hour 8. This could be useful when you are using Apache
as a reverse proxy so that you can pass client information to the backend server.
Information such as client address and hostname is lost because from the point of view
of the backend server, the request seems to be coming from the reverse proxy. Hour 15,
“Apache as a Proxy Server,” covers using Apache as a reverse proxy.

Content Negotiation

Users accessing your Web site do so using a variety of browsers, and each one has differ-
ent capabilities. The HTTP protocol provides mechanisms that enable you to maintain
different versions of a certain resource and return the appropriate content. For example,
you might want to maintain photo images with different resolutions and formats, and
deliver the lower-resolution images to browsers with limited display capabilities and the
higher-resolution images to more-capable browsers. Content negotiation is also com-
monly used to maintain multilingual sites. Before moving into the details of how content
negotiation works, the following two sections explain the concepts of encoding and char-
acter sets.

Content Encoding

Hour 5, “Using Apache to Serve Static Content,” introduced the concept of MIME types,
which can be used to specify the content type of a resource such as text, video, image,
and so on.

Encoding is the format in which a resource is stored or represented. You can think of it as
a wrapper around the resource. Encoding usually relates to compression (such as files
compressed with gzip), encryption, and UUencode (Unix-to-Unix encode, which is used
to represent binary content using ASCII characters). The encoding information will
appear in the Content-Encoding: header.

Encoding can usually be determined from the file extension. For example,
listing.txt.gz has a MIME type of text/plain and a gzip encoding. You can use the

Content Negotiation and Environment Variables 149|

AddEncoding directive to associate file extensions with specific encodings. For example,
AddEncoding gzip .gz .gzip adds the gzip encoding to the gz and gzip file exten-
sions.

o To support older browsers, it is recommended that you use
/=T A AddEncoding x-gzip .gz .gzip instead. Consult the AddEncoding Apache
ol manual page for additional information.

You can use RemoveEncoding to remove any MIME type association from specific file
extensions.

Character Sets

In addition to the encoding, it is important to specify the language and character set for a
resource. The language will be specified in the Content-Language: HTTP header and
the character set appended to the Content-Type: header, together with the MIME type.
For example:

Content-Language: en
Content-Type: text/plain; charset=IS0-8859-1

You can use AddCharset to associate character sets with specific file extensions, and
RemoveCharset to remove those associations. For example:

AddCharset UTF-8 .utf8

Similarly, you can use AddLanguage and RemovelLanguage to associate languages with
file extensions, as in

AddLanguage en .en

You can specify a default language with the DefaultLanguage directive. For a Web site
in English, that would be

DefaultLanguage en

You can specify a default character set for documents without one associated by using
the AddDefaultCharset directive:

e AddDefaultCharset On will add the iso-8859-1 character set, which is the
default.
e AddDefaultCharset Off will disable this behavior.

* AddDefaultCharset charset enables you to set a specific default character set.

|150

Hour 9

You can find additional information about character sets and language codes at
http://www.w3.org/International/0-charset.html.

Negotiation

This section explains how HTTP negotiation works from the perspective of both the
client and the server.

Client Negotiation

Clients express their preferences using a variety of headers, and it is Apache’s job to pro-
vide the resource that best matches those preferences for languages, file formats, and
SO on.

The Accept-Encoding: header specifies the encodings that the browser understands,
such as compressed content. The Accept-Language: header specifies the preferred lan-
guages. The Accept-Charset: header allows the client to specify the character sets that
the client supports.

Finally, with the Accept: header, the client lists the MIME types it understands and its
preferences. The following line is a sample Accept: header from an Internet Explorer
browser:

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
= application/vnd.ms-powerpoint, application/vnd.ms-excel,
= application/msword, */*

The client can provide a quality factor for each MIME type, language, character set, and
so on that it supports. This is a number between 0 and 1 that can be used to establish a
preference. For example,

Accept-Language: en; g=1.0, fr; ¢=0.8

tells the server the client prefers documents written in English, but also will accept docu-
ments written in French.

Server Configuration

There are two main ways to configure content negotiation in Apache: multiviews and
type maps.

Multiviews
You can turn on the multiviews negotiation mechanism by adding an
Options +Multiviews

directive to your configuration. Whenever a document is requested, Apache will look for
similar documents with additional extensions. For example, if a document named index

Content Negotiation and Environment Variables 151 |

is requested, Apache will look for files such as index.en.html and index.txt in that
directory. It will construct a list of such files and use the extensions to determine the con-
tent encoding and character set, and deliver the appropriate content to the client.

If the client does not provide a language preference, you can use LanguagePriority to
determine the preferred language order. For example,

LanguagePriority en fr de

means that if a document in English is found, it will be served. Otherwise, Apache will
look for a document in French, and if that is not found, Apache will look for a document
in German.

The MultiviewsMatch directive enables you to fine-tune the behavior of Apache. It can
take several options: NegotiatedOnly means that only those extensions associated with a
MIME type will be taken into account in the negotiation process. You can also add the
Handlers and Filters options to include extensions associated with handlers and filters.
Finally, you can specify Any to include any extension. This is not recommended because
it could allow unintended access to, for example, backup files ending in .bak.

Type Maps

Type maps are special files that contain a mapping between filenames and metadata
about those files, such as their MIME type and language. You can configure a type map
for a certain resource by creating a file with the same name and the .var extension, and
adding AddHandler type-map .var to your configuration file. The final step is to tell
Apache about the .var extension with

AddHandler type-map .var

The file can contain several entries. Each entry starts with a URI: that is the name of the
document, followed by several attributes such as Content-Type:, Content-Language:,
and Content-Encoding:. Listing 9.1 shows a sample type map file.

Listing 9.1 Sample Type Map page.var File

URI: page.html.en
Content-type: text/html
Content-language: en

URI: page.html.fr
Content-type: text/html; charset=iso-8859-2
Content-language: fr

|152 Hour 9

Whenever a document is requested, Apache will look for a type map file and try to match
the resource, taking into account the following factors, in this order: media type, lan-
guage, media type level, character set, content encoding, and the smallest content length.
If a single document cannot be selected, the user will be presented with a page contain-
ing a choice of the available documents.

The vary: Header

The vary: response header is set automatically by the server to specify the factors
(dimensions) that were taken into account when negotiating the document that was
finally delivered. The vary: header also will be provided when no acceptable variant was
found. Browsers and proxies can use this information to make caching decisions.

Summary

This hour explained how to configure Apache so that it can serve different content based
on the language or file format preferences of your client’s browsers. You learned what
environment variables are and how they can be used to modify Apache behavior, usually
to work around specific browser bugs. This hour also explained how to use Apache con-
figuration directives to alter the content of request and response headers.

Q&A

Q What are valid names for environment variables?

A Environment variables can contain only letters of the English alphabet, numbers,
and underscores and cannot begin with a number. Any other characters, such as
dashes in HTTP headers, will be converted to underscores.

Which content negotiation configuration method is better?

> O

The multiviews method is easier to configure, but could affect performance
because Apache must access the disk for every request to look for available files.
Type maps require more effort, but the performance and flexibility are greater.

Q Does the order of the elements in Accept:, Accept-language:, and other nego-
tiation headers imply preference?

A No, preferences are specified using quality factors. However, not that many
browsers report quality factors, so in those cases, Apache applies an algorithm that
assigns a greater preference to more specific MIME types. For example, text/html
will be assigned a quality factor of 1.0, and */* a factor of 0.01. You can refer to
the Apache documentation for further information.

Content Negotiation and Environment Variables 153|

1. What directive would you use to add a request header with the protocol used to
serve the request?

2. Which special environment variable is used to request that the content being served
not be compressed?

Quiz Answers

1. You can do so with the following directive:
RequestHeader set X-Protocol "${SERVER_PROTOCOL}e"

This type of configuration directive is particularly useful when you need to pass
client information to a backend server in a reverse proxy situation, as explained in
Hour 15.

2. You can use the no-gzip environment variable. You can refer to Hour 12 for addi-
tional information about compression.

Related Directives

This section contains directives related to topics discussed in this hour. You can consult
the Apache reference documentation for comprehensive syntax information and usage.

Environment Variables
e SetEnv: Set an environment variable.
e UnsetEnv: Unset an environment variable.
* PassEnv: Make available a variable of the server’s own environment.

* BrowserMatch, BrowserMatchNoCase: Set an environment variable if the browser
user agent matches a special pattern.

e SetEnvIf, SetEnvIfNoCase: Set an environment variable based on client informa-
tion.

Header Manipulation
* Header: Set, unset, or manipulate response headers.

* RequestHeader: Set, unset, or manipulate request headers.

|154 Hour 9

Content Negotiation

e AddCharset, RemoveCharset: Establish or remove associations between character
sets and file extensions.

¢ AddLanguage, RemoveLanguage: Establish or remove associations between lan-
guage codes and file extensions.

* LanguagePriority: Specify a language priority in case the client did not provide
one.

e DefaultLanguage: Default language for documents.

* AddDefaultCharset: Specify whether to add a default character set when serving
documents without one specified.

* Options +Multiviews: Enable multiviews negotiation method.
* MultiviewsMatch: Fine-tuning of multiviews negotiation method.

e AddEncoding, RemoveEncoding: Establish or remove associations between lan-
guage codes and file extensions.

* AddType, RemoveType, ForceType, TypesConfig: Manipulate MIME type associa-
tions. These directives are covered in Hour 6, “Serving Dynamic Content with
CGI”

Further Reading

You can find additional information about content negotiation and Apache at
http://httpd.apache.org/docs-2.0/content-negotiation.html

The mod_charset_lite module enables you to perform character set conversions. This is
an experimental module included with Apache.

RFC 1766 specifies tags for identification of languages.

HOUR 1 O

Apache GUIs

This hour presents several graphical configuration tools that you can use to
manage the configuration of your Apache server. In this hour, you will learn

* The advantages and disadvantages of using GUIs and how they com-
pare to text-based configuration

¢ How to install and use the Comanche and Webmin GUI tools for con-
figuring Apache

GUIs and Text-Based Configuration

There seems to be a never-ending debate about which is a better method for
configuring a server: editing text files or using a GUI?

Well, it depends. And, in many cases, these approaches don’t exclude each

other.

Using Text Files for Configuration

Configuring Apache via text-based configuration files has several advan-
tages. You don’t need special software to make configuration changes, just a

|156

Hour 10

simple text editor. This enables remote configuration in Unix systems, via telnet or ssh
(a secure version of the Unix remote shell command). These tools don’t require much
bandwidth, and remote configuration can occur over slow links such as modem connec-
tions. Configuration files can be easily backed up or put under a source control system.

The Apache configuration file allows comments to be inserted next to directives. You can
document specific settings, either as a reminder for the next time you edit the file or to
help other system administrators.

If you must administer a great number of Web sites, you can benefit greatly from a text-
based configuration system. You can keep a configuration file template and populate it
with the appropriate values for each new Web site.

Using a GUI for Configuration

Although text-file-based configuration is useful in many situations, there are other situa-
tions in which GUIs could be appropriate. Well-designed GUIs can provide significant
ease of use. It seems each Unix program has its own different configuration file format
and directives. Each time you need to configure a new type of server, there’s a significant
learning curve, especially with the great number of configuration options possible in
Apache. What’s more, with a configuration system based on text files, there’s no easy
way to distinguish which of the options are really important and which ones are acces-
sory. A well-designed GUI can provide a consistent and well-organized interface to a
variety of programs. The interface can help the user distinguish which features are
important, provide context-sensitive help, and guide the user with task wizards.

Badly designed GUIs can provide confusing configuration screens, a limited set of func-
tionality, and not play nicely with the underlying configuration files; for example, by not
preserving comments introduced by hand.

The following sections explain how to install two popular GUI applications: Comanche
and Webmin. Before installing any of the applications, it’s important to take the time to
back up your httpd.conf file and any other files referenced via the Include directive.

Webmin

Webmin is a Web-based administration system for Unix-like servers, including Linux
and Mac OS X. It can configure nearly every aspect of the operating system and a vari-
ety of servers, such as file servers, mail servers, and, of course, Apache. Webmin is writ-
ten in Perl, has an open source license, and is extensible via modules. The Webmin Web
site can be found at http://www.webmin.com/webmin/.

Apache GUIs 157|

In this section, you will learn how to download, install, and configure Webmin. You will
also learn how the Webmin interface works and how to perform basic tasks.

Installing Webmin

Most modern Linux distributions include a Webmin package. If your system is rpm-
based, such as the Red Hat, SuSE, and Mandrake distributions, you can check whether
Webmin is installed by issuing the rpm -q webmin command. If Webmin isn’t installed,
you can use the package from your distribution, the rpm available at
http://www.webmin.com, or install from source as explained in this section.

o Because Webmin is written in Perl, you need a Perl interpreter in the system.
Refer to Hour 6, “Serving Dynamic Content with CGI,” for instructions on
— 4 .

how to install Perl.

You can download the Webmin sources from http: //www.webmin.com/webmin/
download.html. In addition to finding the download rpm packages for Linux there, you
can also find pkg packages for Solaris. The downloaded package will be named
webmin-version.tar.gz.

To uncompress the sources and start the installation process, type the following:

gunzip < webmin-version.targ.gz | tar xvf -
cd webmin-version
./setup.sh

Make sure to substitute version for the appropriate Webmin version. You will then be
prompted for the following information:

* Config file directory: This is where Webmin will store the configuration informa-
tion for all the programs it can configure and for Webmin itself. The default loca-
tion is /etc/webmin. The rest of the hour assumes that Webmin is installed there.

* Log file directory: This is where Webmin will store its log files; the default loca-
tion is /var/webmin.

* Full path to Perl: This is the path to the Perl interpreter. The default location is
/usr/bin/perl. Webmin will test to make sure that the Perl interpreter version is
appropriate.

¢ Operating system: You must provide the specific vendor name and version for
your operating system. This is necessary because each operating system distribu-
tion places configuration files in a different place. Webmin will present you with a
list of operating systems that you can choose from.

|158

Hour 10

* Web server settings: You provide values for the Webmin server such as the listen-
ing ports and the username and password required to protect the pages. You will
also be prompted as to whether you want Webmin to run at startup. Webmin listens
on port 10000 by default. The Web server will additionally allow for secure access
via SSL if the appropriate libraries are installed. You can learn more about SSL in
Hour 17, “Setting Up a Secure Server.” You might want to change this port number
if you are concerned about people scanning your computer for services at specific
ports. This information will be stored in /etc/webmin/miniserv.conf by default.

To change the password later, you need to use the changepass.pl script in the base
directory of the distribution:

./changepass.pl /etc/Webmin/ admin newpassword

If you are using the Webmin that came with your distribution, the script may be
placed in an alternative location, such as /usr/share/webmin/changepass.pl.

Managing Webmin

You can start or stop Webmin with the following commands:

/etc/webmin/start

/etc/webmin/stop

After you start Webmin, you can access it by typing the following URL in your browser:
http://example.com:port

Substitute example.com for your machine hostname and port for the port you specified
in the installation process (the default port is 10000).

You will be presented with a login page. After providing your username and password,
you will access the main Webmin page, as shown in Figure 10.1.

Configuring Apache Settings

Webmin can configure a variety of programs. You can get to the Apache section by click-
ing first on Servers and then on Apache Server.

Because Webmin knows your operating system version, if an Apache server is already
present, Webmin will automatically detect it and you will be able to configure it.
Otherwise, you will be presented with the screen shown in Figure 10.2. You must fill in
the appropriate paths. If you installed Apache from source as explained in Hour 3,
“Installing and Building Apache,” the server root is /usr/local/apache2, the Apache
binary is /usr/local/apache2/bin/httpd, and the path to the apachectl script is
/usr/local/apache2/bin/apachectl.

Apache GUIs 159 |

FiIGURe 10.1
The main Webmin
page.

FiGure 10.2
The initial Apache
configuration screen.

a d -1 E3
Fie Edt View Favortes Tods Help |
soack - & - @ E 4| Dsewch Gireverees Frsmay [ES- S EH Y B B
addeess [E] piiioz e Laelooy =l @e

|Webmini system Servers. Hordware CGlusfern Ofhers

TWebmin Actions Log

T ebmin Confipuration

TWebmin Servers Index

Version 0.93 on localhost.localdomain (Mandrake Linux 8.1)

|t1 admn lopged into

(Mandrake Unis< 8.1) [@ intemat

0 -1 E3
Fie Edt View Favortes Tods Help |
soack - & - @ E 4| Dsewch Gireverees Frsmay [ES- S EH Y B B
Address [2] rep:/]L92. 169.1,102: LO00Djconfia.coPapache =] @ee

srflocalfapache?
Jusiflocalispache?hin/tipd
L v [apache?/binfapachact

|t1 admn lopged into

{Mandrake Unis< 8.1) [@ intemat

After Webmin knows where Apache is located, you can configure it. Figure 10.3 shows
the main Apache configuration screen. One of the tabs in the upper zone of the screen

|160 Hour 10

enables you to start the server. If Apache is running, another tab will appear that enables
you to stop the server.

FlGURE 1 0.3 #} Apache Webserver - Microsoft Internet Explorer

. | Fle Edt View Favoitss Tods Help | =
The main Apache con- [e - > - @ B O Ot s ey B G E- D% &R
ﬁguration Screen. | adecess [@] hopejjiaz. 1ea.1. 102 ~] @ee

Apache Webserver
Global Configuration
7] ——— [T
- ‘ | e Mg
B pEge | Erideen el
Processes and Limts Metworlong and Apache Modules MIME Tyoes Miscellaneous
Addresses
L= e K |-DSSI
Emod st |
CGl |:= Cleare ;-Dph;
CGI Programs Per-Directory Re-Confiure Edit Defined
Options Files Enown Modules Farameters

|€1 admn lapged into Webmin 0.93 on locahost Jocaldomain (Mandrale Linws: 8,1)

The icons on the screen enable you to configure settings that affect the server as a whole.
The default settings are usually appropriate for most situations. In the Processes and
Limits section, you can configure the number of Apache processes and the number of
requests these servers will process. You can define which modules the Web server will
load in the Apache Modules section.

If you scroll down the page, you will see the screen shown in Figure 10.4, which enables
you to add a new virtual host. You need to provide the IP address to listen to, the port,
the document root, and the name.

The virtual host will be added to the screen and you can configure it by following its
link. If you need to delete the server, you can select Server Configuration and press the
Delete button.

Configuring Virtual Hosts

When configuring a virtual host, you will be presented with several icons, each one lead-
ing to a section that enables you to configure a set of related options. If certain modules
are enabled, such as PHP or SSL, new icons will be added that enable you to configure

Apache GUIs 161 |

their settings. The options relate to topics covered in previous hours. For example, the
Error Handling section covers how to customize error responses and the Aliases and
Redirects section explains how to redirect certain URLs to other locations and to map
directories in disk to URLSs, as explained in Hour 5, “Using Apache to Serve Static
Content.” The Log Files section enables you to specify files for logging Web requests
and server errors, as shown in Hour 6. The CGI section allows you to configure Apache
to run CGI scripts, as explained in Hour 8, “Logging and Monitoring.”

FIGURE 10-4 J Apache Webserver - Microsoft Internet Explorer
. . | Fle Edt View Favoitss Tods Help | T
Adding a virtual host. | wmek - » - @ B | Dseach Giravorres Grimay B S -2 Y AR
| niddress |E‘| htp:!/192.163. 1. 102: Z| @G
Virmal Servers

Diefines the default settings for all other virtual servers, and processes any unhandled requests.

Address fny Server Name Automatic
Port Any D Root "fusrflecal’apache 2htdocs

\»\w

Default Server

|21 e e ket .93 on ocahst sceldomin (Marraks Lus< 1) [8 Intemet

Editing Configuration Files Directly

Webmin lets you have a look at the underlying native configuration, edit the configura-
tion directives by hand, and even add new directives that Webmin does not know how to
configure. This is useful to configure in-house modules or modules not supported by
Apache. Figure 10.5 shows an example.

Configuring Containers

You can create directory, location, and file sections in each of the virtual servers. When
each is created, a new link will appear in the page. By following that link, you will be
presented with a page covering that section’s configuration. Figure 10.6 shows the access
control screen for a directory section called protected.

|162

Hour 10

FiGure 10.5 : NE1E

.. . Fle Edt View Favorites Toos Help |
Editing configuration oot - > - @ B Q| Do Girovors Gy [S W EE AR
files directly. nddess [B] frapf{192.185.0 o T ow

D)

Seryerss Hardwarne Glugfer: Ofhers

Edit Directivas in File: | [fusrflocalfspacheiconyhtipd cont =]

-
Baged upon the NCSA server conflguratlon filed originally by Rob HoCool. ﬂ

This 13 the waln Apache server confilguration Iile. It containd the
configuration directives that give the server 1ts ilnstructlons.

See <URL:http://httpod,apache,org/doca-2.0/> for detalled inforwation about
the directives.

Do NOT simply read the instrustions in here without understanding
vhat they do. They're here only as hints or reminders. If you are unsure
consult the online doos. You have been warned.

The configuration directlves are grouped into three basle sectilons:
1. Directives that control the operation of the Apache Server process as & 1d

|t1adnhhmnd.m 1,53 on locahost. {Mandrake Linws: 8,1) 1 % Intemet

EEEEEEEE T

FIGURE 10.6 ' =lgls

Fie Edt View Favortes Tods Help |
An access control - - @ B @] Qeth Grots: Friowy | SWEE AR
screen. ndvess [B] frapf{192.185.0 g " S

€] admn lopged into 0,93 an locahost. (Mardrate Linus 8,1) T @ nemet

Delegated Administration

Webmin supports delegated administration for Apache. This means that you can restrict
certain configuration tasks to a selected user or group of users. You can restrict the ability

Apache GUIs 163 |

of the users to start or stop the server, change addresses, pipe logs to programs, or man-
age only a certain virtual Web server, as shown in Figure 10.7.

FIGURE 10.7 ' Bl ES
L. Fle Edt View Favorites Toos Help |

Restricting configura- ok - = - @ 2 4| Dhsereh @Fm,,, Gy B S H % 2R

tion on a per-user nddress [€] g1z, 1251 —sdnn 5 @

basis. Module Access Control
For admin in Apache Webserver

[@ intemat

In previous sections, you logged in to the server as a system administrator. To create a
user with restricted access, go to the main Webmin screen, select Webmin Users, and
choose Create a new Webmin user. As part of the creation process, you can select the
modules this user will have access to, such as Apache. After the user is created, clicking
on his link will take you to a screen from which you can configure fine-grained access
permissions.

Comanche

Comanche stands for Configuration Manager for Apache, and is an open source GUI for
configuring Apache. Comanche is cross-platform and runs on most Unix, Windows, and
Mac operating systems. Comanche has a modular architecture and can be easily
extended to configure other types of servers.

Installing Comanche

You can download Comanche from http: //www.comanche.org. Binaries for both Unix
and Windows are available. Alternatively, you can download the source and run it using
a Tcl/Tk interpreter with the [incr Tcl] object-oriented extension. ActiveState
(http://www.activestate.com) provides an ActiveTcl distribution that you can use.

|164

Hour 10

[y
“\

Installing on Windows

Comanche runs on most Windows operating systems, including Windows 95, 98, NT,
ME, 2000, and XP. Comanche comes compressed in a ZIP file, and you must uncom-
press it using a tool such as WinZip (http://www.winzip.com). Windows XP supports
ZIP folders, so no external tool is required.

Although running Apache on a desktop machine is possible and useful for
testing and development, it is recommended that you run production Web
sites only on server versions of the operating system.

il
SN

f
&

After you have extracted the files, you need only double-click on the Comanche icon to
launch the program. Comanche will read the location of your Apache installation from
the registry and automatically show it to you so that you can start configuring the server.

Installing on Unix

When you have downloaded the Comanche software package, named comanche -
version.tar.gz, you must uncompress it, change your working directory, and launch
Comanche, as shown in the following commands. You will need to substitute version
for the specific Comanche version you downloaded.

gunzip < comanche-version.tar.gz | tar xvz -

cd comanche-version
./comanche-version

Because Comanche is a desktop GUI, you need to be running an X-Window based
graphical environment, such as KDE or GNOME, to successfully start and use
Comanche.

Because Unix does not have a central registry where the location of Apache installations
can be stored, you must indicate the location of your Apache servers to Comanche. The
first time you start Comanche, you will be presented with a screen telling you that no
Apache installations have been found and that you can add a new one by following the
New Apache Installation link. You will be prompted for a name to identify the installa-
tion and then you will be presented with several options, as shown in Figure 10.8.

You can choose to configure an Apache server installed from source, the Apache bundled
with your OS, or a custom Apache installation with files in nonstandard locations. After
the new server has been added, you will be able to configure it as explained in the next
section.

Apache GUIs 165|

FiGURe 10.8
Adding a new Apache ADD APACHE
. . B L R iceici5 aE S 40 AW e 13001 0/ TS B s
installation. i . configuration file (Wtpd.Cont) and binanes.
-1 By defaull these files are located under fusrlocalfapache.
This lncation may vary among systems that already nclude Apache bundied.
Please choose the one thal applies:
+ | Installed Apache under fustncaliapachs gj
~- Use the one bundied with my system |00
~ The files are in non-standard locations
Prew Mext Cancel
. Comanche supports configuration of several Apache installations simultane-
=14\
/ ously. You can add new ones by repeating the procedure described in this
= section

Using Comanche

The Comanche interface is divided in two main areas, as shown in Figure 10.9. The left
side of the interface is a tree structure that allows easy access to the server functionality.

Ficure 10.9 : Comanche —
The Comanche user ot st coutnan
interface.

L 88 cove maron d

—@ Module manapemenl

—Q Irformation Apache

B Logs This phagin condigures the Apacha web sarver,
ematlog F—
arcesslog

EJ—[VEJ Configuration fies confiure the mainweb site
(S

hitpd conf
@ Detaul Wb Server)
—Q f Create a maw virteal host
0 CPragrom Fiesitpacte Bn | |ty thars s mo visnual hosts dsdined
&3~ he

|166

Hour 10

The nodes are organized hierarchically and logically. Each Apache installation node has
children nodes that provide information about the server, allow access to error logs, and
represent virtual hosts belonging to that server. Each of the virtual host nodes has in turn
children nodes that represent directory containers, location containers, and so on. When
you click on one of the nodes, the GUI will display an HTML-like page with information
and links to access other nodes and perform actions on the current node. If you right-
click on a given node, a pop-up menu will appear and enable you to add new children
nodes, delete the current node, and perform other actions.

The rest of the section explains several Comanche features and how to access them.

Server Information

Several nodes provide you information about the server or related files:

* Module management: This node enables you to set the modules that Comanche
will configure in the current Apache installation, as shown in Figure 10.10.
Enabling a module here means that Comanche will present you with configuration
options related to that module. Disabling a module means that although the module
might be active and working in the Apache server, Comanche will not make any
attempt to configure it, preserving the settings already present.

¢ Information: This node provides information about the server, such as its version,
when it was built, and which modules are compiled in.

* Logs: This node offers access to the error and access log files through Comanche.

* Configuration files: Comanche reads and writes to the Apache httpd.conf file
and any files referenced using the Include directive. This node can display the
contents of this file. It can be useful for learning how changes made through the
GUI translate into changes in the configuration file.

Server Configuration

Comanche provides a node for default server configuration for each virtual host. Virtual
hosts will inherit the settings in the default server. You can launch the configuration
pages either by right-clicking on the server node and selecting Properties, or by clicking
the configuration link in the right-side HTML display. Figure 10.11 shows how to con-
figure basic settings that correspond to the DocumentRoot, ServerName, and ServerAdmin
directives described earlier in the book.

You can add container nodes to each server. Those nodes correspond to <Directory>,
<Location>, and <Files> sections in the configuration file. After container nodes are
created, you can configure the associated settings, such as access control. Figure 10.12
shows the server access configuration screen.

Apache GUIs

167|

FiGure 10.10
Apache module man-) Module management |
agement. Enable/disable Comanche module corlig

™ Prosy -

@ Jserv

@ Alias

¥ Browser

@ Dir =l

ok | comcel | e |

FiGure 10.11
Basic server settings.

B Madls management
Leadable madules

L3 Server idertlication

|05 secver options Document root drecton lmgl
BF—&3 Ervrcnment
E Indesirg
Deleuk dacument
[P, - Wweh server denti
By lype
By encadng Hame of the senvar W
Alleinale descriptions
B0 Prowe
4% Apache JSer Sellings
E]—Q Aliaz ‘wWebmaster e-mal addisss | admind@iocahostlocaldor
L% CBI Settngs
4l
Ok | Cancel | Hely |
FiGure 10.12
Achon |Dery Access 7]
Configuring directory -~ Basedon
. Hostnams o IP addess
access configuration.
& | T Alhost
& Cetanhosfs] [badawecod
© Existerce of arwicnment varisl —

coe |

Extending Comanche

The Comanche user interface and directive definition is stored in XML-based files. It’s
possible to add support for new Apache modules by writing an XML module definition,
as explained at the Comanche Web site. It’s also possible to write plug-in modules to
configure programs other than Apache.

|168

Hour 10

Additional GUI Tools

Comanche and Webmin are popular GUI configuration tools, but are by no means the
only ones. The following are some other GUI tools for Apache:

e Linuxconf: This is a general configuration tool like Webmin, and includes an
Apache configuration module. It provides textual, graphical, and Web-based inter-
faces. You can find more information about Linuxconf at
http://www.solucorp.qc.ca/linuxconf/.

¢ Covalent management portal: Covalent Technologies
(http://www.covalent.net) provides a commercial Web-based configuration tool
that enables you to manage multiple Apache servers remotely.

* ApacheOnHand: This is a Windows-specific tool for configuring and monitoring

Apache servers, both 1.3- and 2.0-based. You can learn more about ApacheOnHand
at http://apache.mappingsoft.com.

Summary

In this hour, you learned some of the advantages and disadvantages of using a GUI for
configuring Apache. You were introduced to two popular GUI configuration tools:
Webmin and Comanche. Webmin runs on Unix platforms and can configure a variety of
servers. Comanche runs on Windows and Unix, but focuses on Apache configuration.

Q Will I still be able to edit the configuration files by hand?

A Yes, both Comanche and Webmin use the underlying Apache configuration files,

preserving comments and recognizing any configuration changes you introduce by
editing the files directly.

Q What are the advantages of Webmin and Comanche being open source and

extensible?

A You can extend Webmin using Perl and Comanche using Tcl. In this way, you can

Quiz

add support for new Apache modules or integrate these configuration tools with
other parts of your infrastructure, such as a customer database.

. Are GUI configuration tools such as Webmin more secure than editing the configu-
ration file directly?

Apache GUIs 169 |

2. Can you mention some advantages of editing the configuration files directly as
opposed to using a GUI?

3. What are some advantages of using a GUI as opposed to editing the configuration
files directly?

Quiz Answers

1. Webmin can offer increased security, especially in shared hosting or administration
scenarios. Apache provides delegation of administration tasks via per-directory
configuration files, but this approach has performance problems and is not very
flexible. Webmin allows delegation so that you can restrict other administrators’
access to specific parts of the configuration. However, because Webmin also allows
for remote access, it increases the risk of a remote compromise, which can be miti-
gated by using SSL and a good password.

2. The following are some of the benefits: remote administration, inline comments,
revision control, and easy automation.

3. Some of the advantages of using a GUI configuration tool include an easier learn-
ing curve, delegated administration, and context-sensitive help. GUIs can also pro-
vide sanity checks and validation for your configuration information.

Further Reading

The Web sites for each of the tools described here provide additional information, docu-
mentation, and the latest releases of the software. The http://gui.apache.org Web site
provides a listing of Apache GUIs. You can find additional projects at
http://freshmeat.net and http://sourceforge.net.

PART I
Advanced Apache

Hour
11
12
13
14
15
16
17

Multi-Processing Modules
Filtering Modules
Publishing Extensions
Virtual Hosting

Apache as a Proxy Server
Tuning Apache

Setting Up a Secure Server

HOUR 1 1

Multi-Processing
Modules

This hour provides an in-depth explanation of multi-processing modules
(MPMs) that allow Apache to run as a process-based, threaded, or hybrid
server. It analyzes the architecture and goals of the modules and covers their
advantages and disadvantages as well as their configuration. This hour pro-
vides a necessary foundation for later hours dealing with performance and
scalability. In this hour, you will learn

e The available Apache MPM modules, and the advantages and disad-
vantages of each

* How to configure each of the MPM modules

Overview of Apache MIPM Architecture

Hour 2, “Understanding Apache Internals,” describes the overall Apache
architecture. This hour explains in detail how multi-processing modules
define the way Apache serves requests. An MPM is responsible for taking

|174

Hour 11

incoming requests and assigning them to the Apache components for further processing.
These components can be processes or threads. As explained in Hour 2, processes are
isolated from each other. This makes them more robust in case of misbehavior due to a
bug in Apache or in the user’s code, but they are heavy in terms of space and processing
time. That is, they take more space because every process keeps its own memory and
data independent of the other processes, and more processing time because the operating
system takes a certain amount of time to switch execution from one process to the next
one (context switching).

Threads are lighter because they can share memory and data with other threads and there
is no context switching because threads live inside the same process. Threads are more
fragile, however, because a misbehaving thread can easily corrupt data or code belonging
to other threads. Additionally, because threads share resources, they need synchronization
mechanisms (such as software locks) to arbitrate access to those resources. Threaded
servers tend to be faster than process-based ones. However, a badly designed threaded
server, where threads are continuously waiting around for other threads to release their
locks, can be slower than a well-designed process-based server.

Apache offers you a wide range of options, and it can be configured as a threaded server,
a process-based server, or a mixture of both so that you can balance your own needs for
speed and reliability.

The following sections offer you a description of the three main MPMs provided with
Apache, including their configuration. Three of them, Prefork, Worker, and Perchild, are
Unix MPMs, and the fourth one is specific to the Windows platform.

The Prefork MPM

The Prefork MPM implements a process-based Web server. Process-based servers are
typically used in Unix environments because of their reliability. In this model, a parent
process listens for incoming requests. When a new request arrives, the server forks itself
and creates a new child that will service that request. The forking mechanism allows a
process to create an identical copy of itself, including code and data. The original process
is called the parent process and the newly created process is named the child process.
Typical Web servers answer requests simultaneously and thus require several children to
be running at the same time. If a new child process has to be spawned every time a
request comes, the client will experience a delay. The delay might be minimal if the orig-
inal process is lightweight (does not take up much memory) or the server is not very
loaded, but it could be significant if the processes are heavy, the server is under load, or
many requests arrive simultaneously. This can be avoided if, on startup, the server forks

Multi-Processing Modules 175 |

several children and keeps them around. Every time a request comes, the server will look
to see whether any of the existing children are free and can service the request.
Otherwise, the server will create a new child and add it to the pool. Because the children
have been created before the requests arrive, this MPM model is named Prefork.

The Prefork MPM enables you to specify the number of children the server creates at
startup, the maximum number of children that can be created, and so on. You can learn
more in the “Prefork MPM Configuration” section later in this hour.

Because each of the processes keeps its own data and code, if a process starts growing
out of control or taking too much CPU time, it can be killed. This will affect the request
that child was processing, but will leave all other clients and processes unaffected. You
can also limit the number of requests that a particular child will service until a new one
replaces it. This is useful, if for example, a third-party module leaks a little bit of mem-
ory per every request, which can add up over time. By creating a new, fresh child every
certain number of requests, you can keep the memory used by the server under control.
This is particularly useful if you do not have access to the source code of the Apache
module causing the problem.

The increased stability comes with a performance and memory penalty. If the processes
include a scripting engine or cache frequently accessed data, the size of an individual
process can be significant. Because most of this information is replicated for each of the
children, it adds up quickly. If the size of the processes exceeds that of the physically
available memory, the processes are swapped temporarily to disk, slowing down signifi-
cantly the responsiveness of the Web server.

Prefork MPM Configuration

This section describes the different configuration options for the Prefork module. Many
of these configuration options are shared by other MPMs.

Controlling the Number of Processes

You can control the number of processes that will be created at startup by using the
StartServers directive. It takes a single argument, indicating the amount of servers to
fork when the server starts. The default value is 5 (StartServers 5) and is appropriate
for most Web sites. You should change this setting only if you run a very busy Web site.

Apache and the operating system limit the maximum number of processes. The operating
system setting varies for each operating system version, vendor, and platform. You can
learn more about these settings in Hour 16, “Tuning Apache.” Apache has two directives
for limiting the number of children. The ServerLimit directive restricts the maximum
number of processes that can be created. This directive affects all MPMs; it is set by

|176

Hour 11

default to a very high number, and cannot be changed between server restarts. You
should usually leave ServerLimit unchanged and change MaxClients instead. The
default setting for the Prefork MPM is ServerLimit 256.

MaxClients enables you to control the maximum number of processes spawned, but can
be changed between restarts. This limit will be necessarily equal or lower than the oper-
ating system limits or the value of the ServerLimit directive. The default value for the
MaxClients directive in the Prefork MPM is MaxClients 256, which should be enough
for most Web sites. This is the maximum number of client requests that can be served
simultaneously. Additional requests will be queued, and will be served as the children
finish processing the current ones. You can modify the length of the pending connection
queue by using the ListenBacklog directive. It accepts a single argument, the size of the
queue. The default value for ListenBacklog is appropriate for most cases. Refer to Hour
16 for additional details and tuning information.

7= = / " " H H
Please refer to the “Q&A" section to learn the differences between
%;@ ServerLimit and MaxClients and the reason both are needed.

So far, you have learned how to control the number of processes at startup and the maxi-
mum number of simultaneous processes. Two additional directives allow you fine-
grained control over the number of processes at runtime.

The MinSpareServers directive defines the minimum number of processes that can be
idle (not serving any request) at any time. If the number of idle servers goes below the
setting of MinSpareServers, Apache will spawn additional servers at the rate of one per
second until this limit is reached. The default value is MinSpareServers 5, and should
be appropriate for most systems. Conversely, MaxSpareServers sets the maximum num-
ber of idle processes allowed. If the number of idle servers grows beyond this setting,
some of them will be killed. The default value is MaxSpareServers 10.

o A decreasing number of idle servers means that the number of simultaneous
/ requests is growing. By increasing the number of processes when this occurs,
z= Apache adapts to the load and improves the response time of the server. An

increasing number of idle servers means that the number of simultaneous
users is diminishing, and as a result, not as many processes are necessary
anymore and can be eliminated to preserve system resources.

Multi-Processing Modules

177|

Finally, you can limit the number of requests that a specific process will serve using the
MaxRequestsPerchild directive. It does not count multiple requests reusing the same
connection. As explained earlier in the hour, this is useful to prevent memory leaks from
becoming an issue with processes running for a long time. The server will kill the
process and replace it with a new one after the specified number of requests. The default
value is MaxRequestsPerChild 10000, and is appropriate for most Web sites. You can set
MaxRequestsPerchild to @ if you do not want processes to be killed after a specific
number of requests.

Server Identity

You can specify the Unix user and group that the server runs as by using the User and
Group directives, as explained in Hour 4, “Getting Started with Apache.” They can take
either a numeric value prefixed by a #, indicating the user ID or group ID, or a name
indicating the username or group name. The default value is User #-1 and a common
value is User nobody.

The User and Group directives are necessary for security purposes. If Apache is started as
root, it performs only a few operations, such as binding to a privileged port and opening
logs, and then changes its user ID and group ID.

This way, processes created by the server, such as CGI scripts and embedded inter-
preters, will not run with administrator privileges. Additionally, if an attacker compro-
mises the server, he will not automatically gain root access in the machine.

By now, you probably have figured out that running a Web server on Unix
as a system administrator is a bad idea. In fact, it is so bad that to enable
~ this behavior, you need to rebuild the server passing the
-DBIG_SECURITY_HOLE flag to the compiler.

A
I

i
“\ 2

[

Network-Related Directives

The Listen directive specifies the IP addresses and ports Apache will listen to for
incoming HTTP requests. It is described in detail in Hour 4.

The SendBufferSize directive sets the size in bytes of the TCP buffer. The default set-
tings vary from operating system to operating system. It is a good idea to increase this
setting for high-speed, high-latency networks. Latency is the time it takes for a packet to
reach the client and the acknowledgement response to reach the server.

The ListenBackLog directive allows you to specify the maximum length of the queue of
pending connections. The default value is okay for most cases. Check the Apache docu-
mentation for additional information.

The ListenBackLog directive allows you to specify the maximum length of the queue of
pending connections. The default value is okay for most cases. Check the Apache docu-
mentation for additional information.

|178

Hour 11

Coordinating Children
Apache can use several mechanisms to control how Apache children accept requests. The
AcceptMutex directive takes one argument, which can be one of the following:

e default: Uses the default compiled-in method

e flock: Uses the flock system call

e fentl: Uses the fnctl system call

* sysvsem: Uses semaphores

* proc_pthread: Uses POSIX mutexes

platform and whether you have multiple processors. Please refer to Hour 16

@ The best locking mechanism is dependent on your operating system and
E4 for pointers to documentation on tuning this parameter.

The first two options, flock and fcntl, require a special file for coordination and
process locking. By default, this file is called accept.lock and is placed in the logs/
directory. The LockFile directive enables you to specify an alternative location for this
file. It takes a single argument, the path to the locking file. The scoreboard file is a
mechanism used in some architectures for communication between a parent process and
its children. Its default location is logs/apache_status, and it can be changed using the
ScoreBoardFile directive.

The default values for LockFile and ScoreBoardFile are usually okay, unless
they reside on a file system mounted via the NFS (Network File System) pro-
tocol. These files must be placed in a local directory; otherwise, Apache will
not perform correctly and will hang.

Keeping Track of Processes

When Apache starts on Unix, it records the process ID into a file, the so-called pid file.
The process ID is a numeric identifier of the process that can be used to send signals to
it, either directly on the command line or with the help of scripts, as seen in Hour 4. The
default value for the PidFile directive is logs/httpd.pid.

Multi-Processing Modules 179 |

Apache is usually started as root, performs a few critical operations, such as
binding to the appropriate port, opening log files, and so on. Afterward, it
switches to the user and group specified in the configuration file. It is
important that the files Apache modifies or executes and the directories
that contain them are owned by root and cannot be overwritten or modi-
fied by other users. Otherwise, an attacker could exploit this to gain control
of the system. This applies to directives such as PidFile, LockFile,
ScoreBoardFile, and CoreDumpDirectory.

The corebDumpDirectory Directive

When an Apache process misbehaves, such as trying to write in memory space belonging
to other processes or some other serious problem, the operating system will kill the
process. It will usually “dump core,” writing a snapshot of the running program just as it
died, into a binary file named core. This file can be used later to find out what went
wrong. Please refer to Hour 16 for details on how to extract information from a core file.

The CoreDumpDirectory directive takes one argument: the directory where to store the
core file. If the directive is not present, the default behavior is to store the file in the
directory specified by ServerRoot, but it is usually not a good idea to give write permis-
sions for this directory to the user that Apache runs as.

The Worker MPM

The Worker MPM implements a hybrid server. At startup, Apache creates a number of
processes, each one of them in turn containing several threads. You can even create a
pure threaded server by restricting the MPM to a single process with multiple threads.
Threaded servers tend to scale better and be faster than process-based servers because the
overhead of creating and managing threads is much lower. As explained earlier in the
hour, this comes at a price of reduced robustness because threads are not protected from
each other and a programming mistake in one thread can corrupt data or code of other
threads.

On the other hand, the ability to have easy access to common data and code is useful for
modules that embed language engines into Apache, such as mod_perl. The latest version
of mod_perl takes extensive advantage of the new threaded architecture of Apache 2.0 to
create efficient, lightweight processes with embedded Perl interpreters. Hour 20 covers
mod_perl for Apache 2.0.

|180

Hour 11

Worker MPM Configuration

This section covers the configuration of the Worker MPM.

Processes and Threads

You can specify the number of processes that will be created at startup by using the
StartServers directive, as with the Prefork MPM. Each of the processes will have sev-
eral threads, its number specified by the ThreadsPerChild directive. The default settings
are 5 initial processes and 50 threads per process.

The number of threads in each process is fixed, but processes are created or destroyed to
maintain the total number of threads between specified limits. Those limits can be con-
figured using MinSpareThreads and MaxSpareThreads. These directives are the counter-
parts of the MaxSpareServers and MinSpareServers directives in process-based servers.
Apache monitors the total number of threads across all processes and creates or destroys
processes accordingly.

As in Prefork, MaxClients specifies the maximum number of processes. In the Worker
MPM, each process has several threads in turn, so the maximum number of simultaneous
clients is MaxClients times the setting of ThreadsPerChild. That is, in the default con-
figuration for the worker MPM.

MaxClients equals 5 and ThreadsPercChild is 50, so the maximum number of simultane-
ous connections in the default configuration is 250.

MaxThreadsPerChild specifies the maximum number of threads per process and can be
changed between restarts. ThreadLimit specifies an upper limit that cannot be changed
between restarts. The default value for ThreadLimit is 64 and should be appropriate for
most servers. Please refer to the “Q&A” section to learn the difference between these
directives. Both directives are also constrained by the underlying operating system set-
tings, as described in Hour 16.

Common Directives

The StartServers, MaxClients, User, Group, Listen, ListenBacklog, LockFile,
PidFile, CoreDumpDirectory, ScoreBoardFile, MaxRequestsPerChild, and
SendBufferSize directives are identical to the ones described in the Prefork module sec-
tion.

Perchild MPM

In some situations, such as in shared hosting scenarios, it is desirable to run Apache
processes under different user identities for security and performance reasons. The

Multi-Processing Modules

181|

Perchild MPM provides an efficient method for achieving this with a single Apache
server.

An obvious method is to run different server installations, each with its own IP addresses
and user identity. This quickly becomes impractical in terms of management and
resources for a large number of servers, and simply is not possible for name-based vir-
tual hosts, covered in Hour 14, “Virtual Hosting.”

The Perchild MPM creates different processes, each one under a specific user ID and
containing a predefined number of threads. The parent process listens for incoming
requests, and passes them to the appropriate process, which then takes over from there.

Perchild MPM Configuration

The Perchild MPM regulates the number of children with a mechanism that is the oppo-
site of the Worker MPM. The Worker MPM has a fixed number of threads per process
and creates or destroys processes. The Perchild MPM starts a fixed number of processes
and varies the number of threads within them to adapt to the server load. Thus, many of
the Worker MPM directives for controlling the number of processes have thread-related
counterparts in the Perchild MPM.

The NumServers directive specifies the number of processes, and StartThreads specifies
the initial number of threads in each process. The number of threads will be increased if
the number of idle threads is less than specified by MinSpareServers or decreased if it is
greater than the MaxSpareThreads setting.

MaxThreadsPerChild specifies the maximum number of threads that can be created in a
process, although this number may be limited too by the settings of the operating system
or by the ThreadLimit directive discussed earlier in the Worker MPM section.

Assigning Requests to Processes

Currently, the only way of mapping requests to processes is by virtual host assignments.
You can configure processes to run under specific IDs and then associate virtual hosts
with those IDs. When a request comes for a virtual host, it will be mapped to the right
process.

As mentioned earlier, the Perchild MPM creates a fixed number of children processes.
Apache assigns a server ID to each of the processes. So, if NumServers is set to 5, the
available children are 1, 2, 3, 4, and 5. You can assign specific user and group IDs to
each child process with the ChildPerUserId directive. This directive takes three argu-
ments: the user name or ID, the group name or ID, and the process ID. For example:

ChildPerUserId 501 501 1

|182

Hour 11

will run the process number 1 with user ID 501 and group ID 501. Processes without an
associated ChildPerUserId directive will use the settings of the User and Group direc-
tives.

The AssignUserlId directive associates a <VirtualHost> section with a certain user and
group ID. Requests for this virtual host will be mapped to the process running the same
user ID. Listing 11.1 shows a sample Perchild configuration, with two different servers,
each one running under a different user and group ID.

Listing 11.1 Sample Perchild Configuration

NumServers 2
ChildperUserID 501 501 1
ChildperUserID 502 502 2

<VirtualHost www.domaini.com>
AssignUserID 501 501

Other directives here...
</VirtualHost>

<VirtualHost www.domain2.com>
AssignUserID 502 502

Other directives here...
</VirtualHost>

If a <virtualHost> does not contain an AssignUserId specific user and group ID, the
ones Apache is running as will be used instead.

Common Directives

The User, Group, Listen, ListenBacklog, LockFile, PidFile, CoreDumpDirectory,
ScoreBoardFile, MaxRequestsPerChild, and SendBufferSize directives are identical to
the ones described in the “Prefork MPM” section.

Windows MPM

The mpm_winnt module is the MPM for the Windows family of operating systems. It uses
a control process that launches a single child process that, in turn, creates threads to han-
dle requests. This MPM, together with the underlying Apache Portable Runtime library,
makes Apache run better on Windows operating systems such as Windows NT, Windows
2000, and Windows XP. Desktop versions of Windows will likely be supported in the
future as was done in the past with Apache 1.3 versions. Although running production
servers in desktop platforms is not encouraged, they are very useful for developers, who
can develop and test their code locally.

Multi-Processing Modules 183 |

Windows MPM Configuration

The ThreadsPerChild directive sets the number of threads. This number will be constant
through the life of Apache, so it is desirable to change it to a value high enough to han-
dle the expected load and any peaks that might occur. By default, ThreadsPerChild is
set to 50.

The Windows MPM lacks many of the directives of its Unix counterparts, such as those
related to users and groups and process management. The following directives are sup-
ported and are identical to the ones described for previous MPMs: CoreDumpDirectory,
PidFile, Listen, ListenBacklog, and SendBufferSize. The MaxRequestsPerChild
directive has a greater impact because there is only one process. After this limit is
reached, the process will be replaced; in the meantime, the clients might experience a
delay. Setting MaxRequestsPerChild to @ means the process will never be replaced.

A current side effect of restarting the server when the MaxRequestsPerchild
is reached is that Apache on Windows will reread the configuration file. If
you have made changes in the configuration file, you might find problems.
That may change in future versions of the server.

Which MPM Is Best for Me?

Certain MPMs, such as Perchild, are complex and less tested, if only because the target
audience is smaller than for other MPMs. Threaded MPMs, such as the one for Windows
and the Worker MPM, require modules to be thread safe. Many of the Apache modules
were originally designed for Apache 1.3, which is a process-based server. As the mod-
ules are ported to work with Apache 2.0 threaded MPMs, they must account for thread
safety and could possibly require a rewrite of parts of the code. This will take some time
to implement and debug and, at least initially, some modules will be available only for
the Prefork MPM or will be more stable in that platform. This might limit your choices.

However, there are big performance gains and feature advantages for modules designed
to work with threaded MPMs, like mod_per1l 2.0, described in Hour 20.

Choosing an MPM also depends on the quality of the operating system support for
threads and processes, which varies among different Unix flavors. For example,
processes in Linux are lightweight and processes on AIX are rather heavy. A process-
based Web server does not scale as well on AIX. This is one of the reasons that IBM was
one of the first commercial vendors to migrate from Apache 1.3 to Apache 2.0. The

|184

Hour 11

FreeBSD platform didn’t have good threading support for a long time and the Prefork
MPM was the only MPM available.

In any case, the best approach might be just to try different MPMs and see which one
performs better for a specific scenario. Hour 16 introduces you to several tools that you
can use to perform the comparison. Bear in mind that MPMs cannot be loaded at runtime
and must be compiled in, so you might need to implement several Apache installations
for your tests. Modules need to be compiled for a specific MPM as well.

Selecting an MPM

You can select the MPM at compile time with the - -with-mpm switch to the configure
script. MPMs cannot be selected at runtime; they must be compiled into the server.

In certain platforms, such as in Windows and OS/2, only one MPM is available. Check
Hour 3 to learn the available options and the default MPM for each platform.

Additional MPMs

There are additional OS-specific MPMs distributed with Apache, such as those for OS/2,
BeOS, and NetWare. There are also experimental MPMs that developers create from
time to time to explore different ideas, such as the leader-follower MPM. Their configu-
ration is very similar to the modules described in this hour. Check the Apache reference
documentation for additional information.

Configuration Limits

If you reach the maximum number of children processes or threads, Apache will leave an
informative note in the log file, such as Server reached MaxClients setting, con-
sider raising the MaxClients setting. You might want to check what caused the
increase in connections and increase the settings as indicated. In some situations, for
example, the increase might be due to a misbehaving Web crawling program from a
search engine, in which case you should restrict access to the Web site for that particular
program.

Summary

This hour introduced you to different Apache MPMs. You learned their strengths and
weaknesses and the different configuration options, including those related to perfor-
mance and scalability. It described the different scenarios in which a particular MPM is
preferred over others, depending on factors such as module availability and operating
system support.

Multi-Processing Modules

185|

Q&A

Q Why do I need a MaxClients and a ServerLimit directive?

A The problem lies in the way Apache currently handles graceful restarts. It requires

that the size of the scoreboard file remains constant. The size of this file also limits
the maximum number of simultaneous clients.

Let’s suppose there is only a single directive, MaxClients, and that you want to
increase its value in a running server because of a sudden load spike. The preferred
method is to perform a graceful restart, which keeps the server answering requests
while replacing children with the new configuration. You would not be able to do
so because the size of the scoreboard depends on the original value of the
MaxClients directive. Your only alternative is to stop and start the server or per-
form a normal restart. But you would be doing that in the worst possible moment,
when your load is at the highest, causing many requests to fail.

By having two directives, you can solve this problem. ServerLimit sets the hard

limit in the number of processes and fixes the size of the scoreboard. MaxClients
varies the number of processes and can be changed during a restart, but cannot be
greater than ServerLimit. In most cases, the value of ServerLimit is appropriate
and you should have to change only the MaxClients settings.

In any case, having two directives with apparently the same purpose and that limit
each other is confusing. Their syntax or naming might change over time to solve
the issue. The reasoning for ThreadLimit and MaxThreadsPerChild is the same.

Are there additional benefits to a threaded architecture?

Yes. Slow clients, such as modem users downloading big files, can tie up a child
for a long period of time, and during that time the child cannot answer other
requests. In process-based servers delivering dynamic content, each process has an
embedded interpreter whether or not a particular request requires it. Having many
such heavy processes serving slow clients is expensive. Threaded servers allow for
a shared pool of interpreters that will be used only if the request requires them.
Lightweight threads can serve pure static content.

Threaded MPMs offer additional benefits for scalability in the backend. Most Web
applications developed with PHP or mod_perl require connections to databases.
These databases might have license restrictions on the number of simultaneous
clients, and have scalability and performance problems when the number of open
connections grows. In process-based servers, each child had to open a database
connection, which could be reused by later requests in the same child, but not
across children. The number of possible connections to the backend server limits
the number of server processes.

|186

Hour 11

Quiz

A threaded MPM allows a pool of database connections that can be shared across
all threads, thus allowing for a more scalable architecture.

. In a working configuration, reorder the values that will have the following configu-

ration directives from smaller to greater: MaxServers, MaxSpareServers,
MinSpareServers, StartServers, ServerLimit.

What directive do you use to specify the number of processes to be created at
startup? Why is this useful?

. Which MPM enables you to assign different user IDs to different Apache

processes? Why is this useful?

Quiz Answers

1.

MinSpareServers < StartServers < MaxSpareServers < MaxServers <
ServerLimit

. The directive is StartServers. This can be useful for very busy Web sites because

you want the server to start ready to serve many requests simultaneously.

The Perchild MPM. This is useful in hosting situations so that you can isolate vir-
tual hosts belonging to different customers from each other.

Related Directives

This section contains directives mentioned in this hour or that are related to topics dis-
cussed in this hour. You can consult the Apache reference documentation for comprehen-
sive syntax information and usage.

AcceptMutex: Define locking mechanism.
AssignUserId: Associate a virtual host with a process ID.
ChildPerUserId: User and group for a specific child process.

CoreDumpDirectory: Directory where to store debugging information when
Apache crashes.

Group: Operating system group ID or name the Apache processes run as.

Listen: Specify IP addresses and ports Apache will listen for requests.

Multi-Processing Modules 187 |

e ListenBacklog: Length of the queue of requests waiting to be served.

* LockFile: Location of the file required for two of the locking mechanisms speci-
fied by AcceptMutex.

* MaxClients: Maximum number of requests that can be served simultaneously. It
equals the number of processes in the Prefork MPM and number of processes
times the number of threads in threaded or hybrid MPMs.

* MaxRequestsPerChild: Maximum number of requests a child will serve before
being replaced.

* MaxSpareServers: Maximum number of spare processes to keep around in case of
a sudden load spike.

* MaxSpareThreads: Maximum number of spare threads to keep around in case of a
sudden load spike.

* MaxThreadsPerChild: Maximum number of threads allowed in a process.

* MinSpareServers: Minimum number of spare processes to keep around in case of
a sudden load spike.

* MinSpareThreads: Minimum number of spare threads to keep around in case of a
sudden load spike.

* NumServers: Number of processes to start in the Perchild MPM.

e PidFile: Location of the file where the process ID of the main Apache process is
stored.

* ScoreBoardFile: Location of the scoreboard file used for inter-process communi-
cation in some architectures.

* SendBufferSize: Size of the TCP buffer in bytes.

e ServerLimit: Hard limit for number of processes.

e StartServers: Number of processes to create at startup.

* StartThreads: Number of threads to create at startup.

* ThreadLimit: Hard limit for number of threads per process.
* ThreadsPerChild: Number of threads per process.

* User: Operating system user ID or name the Apache processes run as.

Further Reading

This hour introduced several topics that will be explained in detail in later hours. Tuning
Apache for optimal performance involves configuration of the right MPM parameters

|188

Hour 11

and is covered in Hour 16. Hour 14 covers configuration of Apache for multiple hosts,
and the Perchild MPM is an interesting option for hosting companies with security con-
cerns. Hour 20 covers installation and configuration of mod_per1l, one of the modules
that better takes advantage of the new capabilities of Apache 2.0.

The Apache 2.0 reference documentation covers in detail the syntax of the different
MPMs and can be found at http://httpd.apache.org/docs-2.0/mpm.html.

HOUR 1 2

Filtering Modules

This hour describes the available filtering modules for Apache and how to
configure them. Filters are Apache modules that take input content, modify
it, and return it for further processing or delivery to the client. In this hour,
you will learn how to

* Configure mod_deflate to speed up page downloads from your Web
site
» Configure mod_include to add dynamic content easily

» Configure mod_ext_filter to use external programs as filters

Apache Filtering Architecture

Hour 2, “Understanding Apache Internals,” introduced the extension mecha-
nisms of the Apache server, hooks, and filters.

Hooks are appropriate for making decisions based on the request informa-
tion or manipulating headers. Filters, on the other hand, are appropriate for
manipulating content being served or accepted by Apache in a streaming

|190

Hour 12

manner. Filters are organized in filter chains. The content of HTTP requests or responses
is split in discrete pieces, buckets, which are grouped in bucket brigades.

Buckets are passed through the filter chain like materials in a factory assembly line.
Filters process the content; modifying, removing, or inserting buckets in the brigade. The
output of one filter is fed to the input of the next filter. The diagram in Figure 12.1 shows
how filters work.

FiGure 12.1 FILTER CHAIN
Filters in Apache. I | 1
FILTER CASE FILTER FILTER
Hs[o[m[eHt]e[x]tH Hs[o[M[EHT[E[X]TH
%’_/
bucket
bucketLrigade

Apache has two filter chains: an input chain and an output chain. Input filters process
incoming content (requests) from the client, and output filters process outgoing content
(responses) generated by the server.

S The proxy module, described in Hour 15, “Apache as a Proxy Server,” might
/ add additional filter chains for processing requests to and from a remote
= site. At the time this book was written, this feature was not yet imple-

mented in the proxy code. But requests and responses can still be processed,
via the input and output filter chains just described, in the browser side of
the connection.

Filter Configuration

Filters can be automatically added by modules at runtime or set up in the configuration
file. This can be illustrated with the example of the PHP module described in Hour 19.
The PHP module for Apache 2.0 is implemented as a filter that processes Web pages
containing a mixture of HTML and code, which then executes the code and replaces the
result.

You can associate certain file extensions or content types with the PHP module by using
the AddHandler directive. When this content is being served, the PHP module will auto-
matically insert the filter that will process that content. Alternatively, you could explicitly

Filtering Modules 191 |

associate the filter with specific files, file extensions, and so on. This section explains
how to do the latter.

Configuration Directives

You can use the SetOutputFilter directive inside any container directive or per-
directory access file to configure the chain of filters that will process requests for that
location.

The SetOutputFilter directive takes one or more filter names, separated by semicolons
(;)- The order in which the filters appear is the order in which they will process the con-
tent.

For example, Listing 12.1 shows how to configure all content in the /some/path location
to be processed by mod_include and the PHP module. mod_include is explained in a
later section in this hour.

LisTiNnG 12.1 SetOutputFilter Example

1: <Location /some/path/>
2: SetOutputFilter INCLUDES;PHP
3: </Location>

The AddOutputFilter directive can be used to associate one or more filters with a set of
extensions. The AddOutputFilter directive takes one or more filters, separated by semi-
colons and a list of file extensions to which those filters will apply. For example,

AddOutputFilter INCLUDES .inc .shtml

tells Apache to process any files ending in inc or shtml extensions using mod_include.
If both an AddOutputFilter and a SetOutputFilter directive apply to the same file, the
filter lists from both directives will be merged.

Input filters can be configured via the AddInputFilter and SetInputFilter directives,
which have identical syntax to their output filter counterparts.

Compressing Content with mod_deflate

The mod_deflate filtering module provides a new filter, DEFLATE, that can compress out-
going data. Compressing can be expensive in terms of CPU, but has the advantage of
minimizing the amount of data that will be transferred to the client. This is useful when
clients connect to the Internet via slow links and the content can be compressed signifi-
cantly, such as with HTML pages.

|192

Hour 12

Other content that is already compressed, such as ZIP files or JPEG images, will benefit
very little (if at all) from additional compression.

Of course, for content compression to work, the client must support the opposite func-
tionality: decompression. This is true for most modern browsers, with certain restrictions
mentioned in the “Limitations” section later in this hour.

Configuring mod_deflate

If you compile Apache from source, you can enable mod_deflate by using
--enable-module=mod_deflate, as explained in Hour 18, “Extending Apache.” If the
module is compiled as a dynamic extension, you must make sure that the module is
loaded using the following directive:

LoadModule deflate_module modules/mod_deflate.so

This module provides the DEFLATE filter that you can use with the SetOutputFilter and
AddoutputFilter directives described at the beginning of the hour. For example, to com-
press by default all HTML documents in a site, you could add the following configura-
tion line to the main server:

SetOutputFilter DEFLATE
mod_deflate provides three configuration directives:

e DeflateFilterNote: Internally sets a note that can be read by other modules, indi-
cating the compression ratio; that is, the percentage of the file that was compressed
before being sent to the browser. A note is an attribute associated with a particular
request. For example
DeflateFilterNote comp_ratio
will create the comp_ratio note. You can then log this value in your log files by
using the %{comp_ratio}n format option, as explained in Hour 8, “Logging and
Monitoring.”

* DeflateWindowSize: A smaller window size means that the compression process
will consume less memory, but the level of compression will be less. The accept-
able values can range from 0O to 15, with the default being 15.

e DeflateMemLevel: A smaller memory level means that the compression process
will consume less memory, but the level of compression will be less. The accept-
able values are 1 to 9, with the default being 9.

Limitations

Even if the DEFLATE filter is enabled for the current request using SetOutputFilter or
AddOutputFilter, mod_deflate will deliver compressed content to a client only if two

Filtering Modules

193|

conditions are met. The first condition is that the browser provides an Accept-encoding:
gzip header, indicating that it can understand compressed content. The second condition
is that the content being transmitted is of the type text/html. This is because current
browsers and browser plug-ins do not work correctly with other compressed content

types.

Many problems with browser support have been reported on the Apache developer’s list.
For example, Netscape browsers have trouble understanding compressed JavaScript or
Cascading Style Sheets (application/x-javascript and text/css content types).
Macromedia Flash players, depending on the platform and the content requested, have
trouble with text/plain, text/xml, and application/x-shockwave-flash. Microsoft
browsers can correctly understand compressed Office document formats such as appli-
cation/msword, application/vnd.ms-excel, and application/vnd.ms-powerpoint,
but Netscape has problems. As you can see, figuring out which browser supports what
content can be quite difficult. With so many issues, the practical solution to guarantee
compatibility with all browsers is to support compression of text/html content only.

Additionally, if you know that a specific client has trouble processing compressed con-
tent, you can set up the environment variable no-gzip by using the SetEnvIf or
BrowserMatch directive, as explained in Hour 9, “Content Negotiation and Environment
Variables.” This will prevent mod_deflate from compressing the content delivered to the
client.

For example, most proxies do not handle compressed content correctly. Proxies are pro-
grams that perform HTTP requests on behalf of other browsers, as explained in Hour 15.
Problems arise when clients use a proxy and the proxy caches the compressed version of
the content, and serves it to browsers that might or might not support compression.

The following example disables compression for proxy requests, identified as those
requests that include a Via: header:

SetEnvIf Via .* no-gzip

mod_deflate is an experimental module. At the time this book was written,
there were talks among the Apache developers about providing extra con-
figuration options so that it can compress content types in addition to
text/html if the client supports it. For example, this is needed for the
Subversion project (http://subversion.tigris.org), which uses the DAV
protocol to transmit revision control information and benefits greatly from
compression when transmitting large files.

|194 Hour 12

Server Side Includes

Hour 6, “Serving Dynamic Content with CGI,” explained how to provide dynamic con-
tent using CGI programs. Server Side Includes (SSI) provides an alternative solution by
embedding processing instructions into HTML pages. Those instructions will be parsed
by the SSI filter and the results substituted in the content. Like CGI, SSI is an “old
school” Web technology and a predecessor to other HTML embedded languages such as
PHP. SSI provides a simple and effective mechanism for adding pieces of dynamic con-
tent with very little overhead; for example, a common footer for each page that includes
the date and time the page was served. As another example, the Apache 2.0 distribution
uses SSI to provide a custom look and feel for error messages.

SSI is implemented by the filtering module mod_include. If you compile Apache from
source, you can enable this module by using - -enable-module=mod_include, as
explained in Hour 18. If the module is compiled as a dynamic extension, you need to
make sure that the module is loaded using the following directive:

LoadModule include_module modules/mod_include.so

Configuring SSI

As you learned in Hour 6, CGI execution permissions can be granted in a particular con-
text using the Option +ExecCGI directive. Similarly, you can allow SSI parsing with an
Option +Includes directive.

The next step is to specify which files the SSI engine will parse. Parsing every single
HTML page will have an unnecessary performance impact on the server, so it is better to
explicitly differentiate which files need to be parsed for SSI content. Traditionally, the
.shtml extension has been used for this purpose. This behavior can be enabled with the
configuration options in Listing 12.2 or the ones in Listing 12.3, depending on whether
you want to set up the filter manually or let the module set it up automatically.

LisTing 12.2 Associating SSI to Files with the .shtml Extension

1: AddType text/html .shtml

2: <FilesMatch "\.shtml(\..+)?$">
3: SetOutputFilter INCLUDES
4: </FilesMatch>

Listing 12.3 Alternative Configuration for SSI Association

1: AddType text/html .shtml
2: AddHandler server-parsed .shtml

Filtering Modules 195|

An alternative way of specifying which files to process is with the XBitHack directive
and by setting the execute permission bit in Unix. If the directive XBitHack on is present
in the configuration file, Apache will parse any file with the execute bit set. You can set
that bit with the following command:

chmod +x filename

In this case, there is no filter to configure, as mod_include will automatically add it to
the filter chain. This is not a very clean solution, but rather a “hack,” as the name of the
directive indicates. I recommend that you explicitly set the files to be parsed via file
extensions, as explained previously.

The XBitHack directive affects only files with the MIME type text/html.
\/

ot

As you will see in the following section, SSI allows execution of external programs. You
can restrict execution privileges with the IncludesNoExec argument to the Options
directive: Options -IncludesNoExec prevents the use of the SSI #exec command.

SSI Directives

The general syntax for an SSI directive is the following:
<!--#directive argumenti=valueil argument2=value2 ... -->

directive is the name of the SSI command, and is followed by pairs of arguments and
values. The arguments allowed vary depending on the SSI directive.

To test that SSI is working correctly, create an example.shtml file that contains the fol-

lowing:

This document, <!--#echo var="DOCUMENT_NAME" -->,

was last modified <!--#echo var="LAST_MODIFIED" -->

Configure SSI support as explained earlier, either explicitly setting the filter or using the
server-parsed handler. Restart Apache and request the file. The result will be some-
thing similar to

This document, example.shtml,
was last modified Sunday, 24-Feb-2002 22:06:16 PST

|196 Hour 12

The following are some of the available SSI commands:

e config: The config command enables you to specify various SSI-related settings,
such as the error message to show to the user when Apache finds an error process-
ing SSI directives.

* echo: The echo command enables you to output the value of an environment vari-
able. The normal CGI environment variables are available to SSI-parsed files.

e exec: This command enables you to execute CGI scripts or commands and include
the result in the document.

e include: The include command enables you to include the content of other files
or URLs in the current document.

Additional commands enable you to set variables and even provide primitive if/else
control flow statements. You can find a complete description of SSI commands, and their
syntax and options, at http://httpd.apache.org/docs-2.0/mod/mod_include.html.

Additional Configuration Directives

If you do not want SSI commands to be delimited using HTML comment tags
(<!-- -->), you can change those tags using the SSIStartTag and SSIEndTag directives.

When an SSI directive cannot be executed successfully, an error message is presented
instead. You can change that error message using the SSIErrorMsg directive. If you do
not want users to see the error in their browsers, you can do so with one of the following
directives: SSIErrorMsg "" or SSIErrorMsg "<!-- -->".

External Filtering

Apache includes a module, mod_ext_filter, that allows filtering of response content
using an external program. It starts an external program, feeds the content to the pro-
gram, reads the response, and inserts it back in the filter chain. The external program
reads data from its standard input and writes the result to standard output. This is a com-
mon model to many Unix utilities and enables you to use them unmodified. External fil-
ters have a performance impact, so they are not recommended for busy sites, but they do
allow for interesting possibilities of integration with existing programs.

If you are compiling Apache from source, you can enable this filter with the
--enable-mod-ext-filter option to the configure command, or by using the apxs util-
ity, as explained in Hour 18.

Filtering Modules 197 |

If the module was compiled dynamically, you need to make sure that the appropriate
LoadModule directive is present:

LoadModule ext_filter_module modules/mod_ext_filter.so

Configuring External Filtering

The first step is to define (by using the ExtFilterDefine directive) the program that will
be used as a filter, the type of content the filter will process, and any additional
command-line options that might be required. The complete syntax for the directive is
the following:

ExtFilterDefine filtername argumenti=valuel argument2=value2 ...

filtername is the name of the filter that can be used later on by the SetOutputFilter or
AddOutputFilter directive.

The arguments are the following:

e cmd: External program to execute. You can include any necessary arguments to the
program, but in that case, you must enclose the whole command line in quotation
marks.

* mode: Can be output for output filters and input for input filters. Currently,
mod_ext_filter supports only output filters and that is the default value.

* intype: By default, the filter will process all requests. The intype argument
enables you to specify a MIME type. If intype is present, only requests for that
MIME type will be processed.

e outtype: If the output content from the filter has a different MIME type than the
input content, you can specify it here. Otherwise, the MIME type of the input con-
tent will be used for the output content. For example, if the filter takes XML (input
MIME type text/xml) and outputs HTML, you must set intype=text/xml and
outtype=text/html.

If the filter preserves the content length (the amount of input data matches the amount of
output data), you must add an additional PreservesContentLength argument.

Listing 12.4 shows a sample configuration of an external filter with the Unix sort utility.
This program takes input text and outputs the sorted result. The filter is defined and then
applied to all text files in the /usr/local/apache2/htdocs directory and subdirectory.

|198 Hour 12

Listing 12.4 Associating SSI to Files with .shtml Extension

1: ExtFilterDefine sort cmd=/usr/bin/sort intype=text/plain
=PreservesContentLength

2: <Directory "/usr/local/apache2/htdocs/">

3: SetOuputFilter sort

4: </Directory>

To test that it is working, create a file called /usr/local/apache2/htdocs/example.txt
with the following content:

red

blue

green

yellow

black
white

When you request the file, you should get the following in return, with the content
ordered alphabetically:

black

blue

green

red

white
yellow

The ExtFilterOptions configuration directive enables you to specify debugging options
for mod_ext_filter. It can take two arguments: DebuglLevel and either LogStderr or
NoLogStderr. DebugLevel=n specifies the level of debug messages generated by
mod_ext_filter and has a default value of DebugLevel=0. LogStderr tells Apache to
save error output from the external command, and NoLogStderr (the default) tells
Apache not to do it.

DebugLevel specifies the level of debug messages emitted. You must configure the
LogLevel setting as well, as described in Hour 8.

Additional Filtering Modules

Other Apache modules are implemented as filters, such as SSL and PHP, which are
described in Hour 17, “Setting Up a Secure Server,” and Hour 19. Filters can be shared
between protocols, so the SSL module can be reused easily when Apache is used as a
POP3 or FTP server, as described in Hour 24, “Additional Apache Modules and
Projects.”

Filtering Modules 199 |

Apache includes two additional filtering modules: mod_charset_lite allows charset
translations, and mod_case_filter is a sample module intended to be an example for
module developers.

There are commercial modules that take advantage of the Apache filtering architecture.
Covalent’s mod_usertrack allows tracking of users with cookies and URL rewriting.
URL rewriting means that the content is scanned as it is served and tracking information
is embedded in the HTML links.

Filtering is a feature introduced for the first time in Apache 2.0, and it opens new possi-
bilities for module development: A watermarking module could introduce unique identi-
fiers, an antiviral module could scan downloads for viruses, XML content can be
processed and converted to other formats on the fly, and so on.

Scripting modules such as mod_snake and mod_perl provide support at the script level,
exposing the filter API in Python and Perl. Doing so allows a whole new level of flexibil-
ity in filter development.

Filtering is also common in other Web technologies, such as Java servlets. The latest
servlet specification supports chaining of servlets, a concept of filtering similar to the
one explained in this hour.

Summary

This hour explained the filtering infrastructure of Apache and how to configure three of
the filter modules included with Apache: mod_deflate, mod_include, and
mod_ext_filter.

Q&A

Q Does filtering impact performance?

A Filters increase the functionality of Apache, but they have an impact on the perfor-
mance of the server, depending on the type of filter and the content being filtered.
Having said that, the filter framework has been designed and optimized for perfor-
mance and minimizes the duplication of the data being filtered.

Q How much compression can I expect from mod_deflate for HTML pages?

A Around 50% on average. Actual values vary between 20% and 70%, depending on
the size of the document.

| 200

Hour 12

Quiz

. mod_deflate is a processor-intensive filtering module. What are the factors that

determine whether it can increase performance?

Why is compression not enabled for content types other than HTML?

3. How does the XBitHack directive determine whether to process a file?

Quiz Answers

1.

Performance gains are achieved if the time to compress the content and transmit
the compressed content is less than the time to transmit the original uncompressed
content. The bigger the files and the slower the user connections, the more attrac-
tive using mod_deflate becomes.

Compression is not enabled for content types other than HTML for compatibility
reasons because of the problems many browsers have with specific content-types.
HTML is the only content-type that most browsers understand correctly when
compressed.

. The XBitHack directive takes a look at the execution permission bit of the file, and

works only on Unix.

Related Directives

This section contains directives mentioned in this hour or that are related to topics dis-
cussed in this hour. You can consult the Apache reference documentation for comprehen-
sive syntax information and usage.

General Directives

° AddOutputFilter: Associate output filters with file extensions

* SetOutputFilter: Set response output filters

e AddInputFilter: Associate input filters with file extensions

e SetInputFilter: Set request input filters

mod_deflate

* DeflateFilterNote: Save compression ratio achieved on request note

* DeflateWindowSize: Modify compression algorithm window’s size to balance

memory usage and performance

* DeflateMemLevel: Specify memory usage in compression algorithm

Filtering Modules 201 |

mod_include
e SSIStartTag, SSIEndTag: Modify tags for SSI command
e SSIErrorMsg: Error message when SSI directives cannot execute correctly
e SSITimeFormat: Specify how to display dates
e XBitHack: Alternative way of identifying SSI files by using the execute bit

mod_ext_filter
e ExtFilterDefine: Define filter name and associated external program

* ExtFilterOptions: Debugging settings

Further Reading

You can learn more about the compression protocol used by mod_deflate here:
http://www.gzip.org/zlib/z1lib_tech.html

Apache 2.0 documentation on filtering can be found at
http://httpd.apache.org/docs-2.0/filter.html

Server Side Includes are covered in the following addresses:
http://www.wdvl.com/Authoring/SSI/

http://httpd.apache.org/docs-2.0/howto/ssi.html

HOUR 1 3

Publishing Extensions

Authors of Web content require a means of managing that content and
uploading it to the server. One of the protocols used for this purpose is DAV
(Document Authoring and Versioning). DAV enables users and applications
to publish and modify Web content. In this hour, you will learn

* What publishing solutions are available
* How to build and configure the DAV extension for Apache
* How to configure DAV clients to work with Apache

The Need for a Publishing Protocol

In the early days of the Web, the Webmaster or system administrator tradi-
tionally edited the content of Web pages directly in the system hosting the
Web site. The Webmaster logged in to the system remotely, via the telnet or
rsh protocol, and used conventional text editors to edit the HTML code.

As the Web became more popular, several factors described in the following
sections made this approach impractical in many situations.

| 204

Hour 13

Windows as a Web Server Platform

A number of Windows-based Web servers appeared, such as Microsoft Internet
Information Server. Although not necessarily more robust or secure than their Unix coun-
terparts, these Web servers were definitely easier to use and set up and quickly grew in
popularity. However, Windows servers lacked extensive remote access capabilities, and
content was copied by hand or by sharing folders in the same local area network.

Separation of Tasks

As Web sites grew in complexity and refinement, a series of new roles emerged. The
Webmaster was in charge of administering the Web server, analyzing the logs for errors,
updating the software, and so on. Web programmers dealt with providing dynamic fea-
tures in the Web site, such as personalization, processing forms, and content searching.
Designers and editors provided content and graphics for the Web site. This separation of
tasks required access restriction policies and easy-to-use methods for updating the Web
site content by nontechnical individuals. The tools for generating Web content evolved
from simple text editors to sophisticated publishing tools, closer to word processors in
features and ease of use.

These tools run on the desktop machine and need a way to upload their content to the
Web server.

Web Hosting

Eventually, third-party companies started providing Web-hosting services to corporate
customers. Internet service providers and Internet portals provided personal home pages
to their users. This increased even more the need for a secure, standard, easy-to-use
mechanism for transferring and updating Web pages.

Earlier solutions to this problem were based on different protocols and were not entirely
satisfactory. These solutions included:

* FTP protocol: Files could be uploaded and deleted using the File Transfer
Protocol (FTP) protocol. This was cumbersome for system administrators, who
needed to maintain and configure a separate server and user database, and for
users, who required an additional tool to upload their changes. The software
providers started integrating FTP clients with their publishing products to make it
easier for the end user.

* File uploads via forms: Some hosting providers allowed clients to upload pages
via a form interface. This allowed upload of only one file at a time, and thus was
suitable only for simple Web sites such as home pages.

Publishing Extensions 205 |

¢ File mirroring software: Tools such as rsync and custom mirroring scripts can
compare a local repository with a remote one and make the necessary changes to
synchronize them. These are command-line tools commonly used by administrators
and advanced developers.

e HTTP puT: This method was eventually introduced in the HTTP specification and
allowed clients, such as Netscape Composer, to upload files directly to the server.

* Proprietary protocols: This includes protocols such as those from the Microsoft
FrontPage publishing tool. They required modifications to the server to support
these protocols.

In summary, the existing solutions were difficult to use and administer, nonstandard, and
usually required setting up a special, separate server. A new protocol based on HTTP was
developed to address these shortcomings: Document Authoring and Versioning, also
known as DAV or WebDAV. This hour covers the installation and configuration of the
DAV protocol and mentions Microsoft FrontPage server extensions because of their pop-
ularity.

The DAV Protocol

The DAV protocol extends HTTP with new methods that allow a DAV client to create,
modify, and update files and directories in the server. The client can also access metadata
about the resource, such as the author and the date of creation, and lock resources for
editing. The integration with HTTP allows DAV to take advantage of existing features,
such as SSL for encryption and certificate-based authentication, HTTP basic authentica-
tion, proxy servers, and so on. Integration with Apache allows many other possibilities,
such as sharing access control mechanisms and interaction with scripting engines such as
mod_perl and PHP.

The DAV protocol itself is extensible. Although the resources accessed via DAV usually
live in the file system, DAV can act as a standards-based front end to a variety of back-
end repositories such as databases, version control systems, and proprietary document
management frameworks.

For example, DAV has the concept of collections, which are groups of files. This usually
translates to a directory in the server, but it might have a completely different meaning
for other backends.

The DAV protocol defines the following new HTTP methods:

» coPY: Copy files or collections (equivalent to file system directories). Additional
headers enable you to specify the recursive copy of nested collections.

| 206

Hour 13

e MOVE: Move files and collections.

e MKcoOL: Creates a new collection. If parent collections do not exist, an error is
raised. Parent collections must be explicitly created using the PUT method.

e PROPFIND: You learned earlier that DAV resources could have metadata informa-
tion associated with them. The PROPFIND method enables you to query this infor-
mation.

* PROPPATCH: This method enables you to delete, create, and modify resource meta-
data.

e LocK and UNLOCK: These methods allow you to lock a resource. This is useful, for
example, for preventing modification to a resource while you are editing it.

The DAV protocol extends existing HTTP methods such as GET and PUT, mainly to make
them aware of the new locking features. The OPTIONS method is extended to report DAV
capabilities.

Apache and DAV

Apache 2 provides DAV support via the mod_dav module. This module is included with
the standard Apache distribution, but it is not compiled by default. You can enable DAV
support by using the - -with-dav option at compile time, and add support for the file sys-
tem backend with the - -enable-dav-fs option.

If you are using Windows or a Unix binary installation that has loadable module support,
you need to add or uncomment the appropriate lines that load the DAV module and the
file system backend:

LoadModule dav_module modules/mod_dav.so
LoadModule dav_fs_module modules/mod_dav_fs.so

Configuring DAV

The first step is defining a lock database using the DavLockDB directive. This directive
takes one argument: the path to the database file that will be used to coordinate lock
acquisition and release when multiple clients are working on the same resources. A sam-
ple setting is

DavLockDB logs/dav_lock_db

The path to the file can be absolute or relative to your Apache installation (as in the
example). The DavLockDB directive must be placed either at the top level of the configu-
ration file or in a <virtualHost> container.

Publishing Extensions 207 |

The next configuration step is to specify the directories and locations you want to make
available via the DAV protocol by using the DAV directive. DAV on enables the DAV pro-
tocol in a given container and DAV off disables it.

Listing 13.1 shows how simple it is to add DAV support for a specific directory.

Listing 13.1 Enabling DAV Support

<Directory /usr/local/apache2/htdocs/davdocs>
Dav On
</Directory>

A Dav directive placed in a <Directory> section enables or disables DAV support for
that directory and its subdirectories. Placing a Dav directive inside a <Location> section
enables or disables DAV support for URLs prefixed with that location.

Finally, if your DAV server will be accessed via Windows Web folders, you need to add
the following configuration file to work around some buggy Microsoft behavior:

BrowserMatch "Microsoft Data Access Internet Publishing Provider"
= redirect-carefully

This directive is already included commented out in the configuration file, so you need
only to uncomment it.

Restricting Access

Because mod_dav is an Apache module, it can take advantage of the access control mech-
anisms of Apache. As Hour 7, “Restricting Access,” explained, you can control access
based on IP address or hostname, the request method, whether the user has successfully
been authenticated, and so on.

In addition, the DAV protocol adds new HTTP method protocols that can be used for
fine-grained access control. For example, you can allow read access for most users but
restrict updating of information to a few authenticated users.

You can use the <Limit> and <LimitExcept> containers to restrict access based on the
HTTP method. Listing 13.2 enables read-only DAV access to the
/usr/local/apache2/htdocs/davdocs directory.

Listing 13.2 Enable Read-Only DAV Access

<Directory /usr/local/apache2/htdocs/davdocs>
Dav On
<LimitExcept GET POST OPTIONS PROPFIND>

| 208 Hour 13

Listing 13.2 continued

Order allow,deny
Deny from all
</LimitExcept>
</Directory>

Advanced Configuration

The DAV module for Apache provides additional directives for some advanced configu-
ration tuning.

DAVMinTimeout

This DAVMinTimeout directive specifies the minimum time in seconds before a lock
expires. This setting overrides the lock timeout value requested by a client if it is less
than the specified value. This is useful in certain situations to reduce the network traffic
or reduce the possibility of clients being dropped out constantly because the timeout set-
ting is not big enough. For example, DAVMinTimeout 120 will set the timeout value to
two minutes.

You can disable this feature by setting its value to 0, which is the default.

LimitXMLRequestBody

This directive is built in to Apache and enables you to specify a maximum allowed size
for an XML body request, such as the ones used by mod_dav. By default, it is set to a
value of LimitXMLRequestBody 1000000 (1 million bytes). You can disable the size limit
by setting the value of LimitXMLRequestBody to ©. This directive can appear in the top
level of the configuration file, virtual hosts, and directory and location containers.

The main reason you want to limit the size of requests is to avoid denial of service
attacks because the server needs to parse and process the submitted XML. You might
also want to have a look at LimitRequestBody and similar directives, which will be
described in Hour 16, “Tuning Apache.”

DavDepthInfinity

The DAV protocol allows clients to request meta information about all objects in a DAV
repository, recursively. If the number of objects is big enough, this can cause perfor-
mance problems and could be used as a denial of service attack. To avoid this, mod_dav
disables this feature by default. You can enable it with the following configuration direc-
tive:

DavDepthInfinity On

Publishing Extensions 209 |

DAV Clients

Setting up a DAV server is of little use if you do not have clients to connect to it. This
section provides you with information on how to configure different DAV clients to con-
nect to your DAV server.

It assumes that the directory davdocs exists under the document root
(/usr/local/apache2/htdocs for a default Unix installation), has write permissions for
the user Apache runs as, and has been configured for DAV access:

DavLockDB logs/dav_lock_db

BrowserMatch "Microsoft Data Access Internet Publishing Provider"

= redirect-carefully

<Location /davdocs/>

Dav On
</Location>

Microsoft Clients

Recent versions of Microsoft operating systems, such as Windows 2000 and Windows
XP, provide support for DAV via Web folders. Web folders allow transparent access to
DAV-enabled servers, by presenting them as Windows desktop folders. Windows users
can then drag and drop files into the folders, double-click to edit them, and so on.

You can access davdocs as a Web folder on a Windows 2000 machine directly from
Explorer or by using a wizard.

Adding a Web Folder from Explorer

Click on the File menu entry and select Open. A pop-up window will appear, as shown in
Figure 13.1.

Type the following URL, http://hostname/davdocs/, where hostname is the name of
your server. Check the Open as Web Folder option and click OK. Explorer will connect
to the resource, and you should now be able to create directories, drag and drop files, and
edit them as shown in Figure 13.2.

The location will be added automatically to the My Network Places folder. You can
access this folder by clicking the desktop icon with the same name.

Adding a Web Folder Using a Wizard

To add a Web folder using a wizard, you can go to the My Network Places folder men-
tioned in the previous section and click on the Add Network Place icon. You will be
prompted to provide a URL to the Web folder, and then a description for it, as shown in
Figure 13.3.

|210

Hour 13

FiGURe 13.1
Opening a Web folder
from Explorer.

FiIGURE 13.2

Newly created Web
folder.

st Page for Apache Installation - Microsoft Internet Explorer
Edit View

Favorites

| ek v > - @ () O] Disemch [ravones Frimoy B S - DY A

| avdevess [@] horpejjiaz. 16a.1. 102:6080)

=] P [

L O e e S - veh server soffware on this system was successBil You may
now
{9y Tups the ntemet adcress of a documert o fokder. and
Initernet Exploeer wil apsn & lor you,

Dpere | by 4152 1661, 102 B0V davedozsd| |
¥ Open as Web Faker
This 0K I Camcel I Brawse. . | | configuration of this web server, Flease contact the person

resp ke Apache Soffware Foundation, which wrote the web server
software this site adminstrator is vemg, has nothing to do with maintaming this site and cannet help resolve confipuranon issues.

e website you expected?

The Apache documentahon has been included swath this distnbuhon.

Ten are free to uge the image below on an Apache-powered web server. Thanks for using Apache!

wz PaAaCHE

8] Done T intemet

B davdocs on

2 - Microsoft Internet Explorer

e Edit View Favorites Took Help |

| wmak - 9 - (5] | Dhoesch [hFoders CfHetey |08 0 X o | -
| avdevess [l davdocs on 152.168.1.102 =] @eo [|unks
| Name [ntermet acdress | Seeltype [modifed
"; L @lindee.himl httpsjf152.168.1. 102:8080 davcocsfinde. b, 10 Bytes Miroso..,
B - https/f152. 168, 1. 102:8000/dsvcocs Mews. . weh ...
davdocs on
192.168.1.102
Tell me mare zbout Web Folders,
4| | i
€] 1 abject(s) salected

If everything goes well, you can access the Web folder as explained in the previous

section.

Publishing Extensions 211 |

Add Network Place Wizard E

FIGURE 13.3

Opening a Web folder
using the Add Network
Place Wizard.

Welcome to the Add Network
Place Wizard

This wizard hefps you add a ink to a Netwark Mace whare
you can store your documenks. & Neswark Flace can be o
sharad Folder, & Web Fokder on the Inkarnet, or an FTP.
ste,

Type the locakion of the Network Place:

hittpe 192, 168, 1, 1028080 |davdocs) Browse., .

Here are soms sramples,

To continwe, dick Mext,

= Beck Maxk > Cancel

Editing a File Directly from Office

Recent versions of Microsoft Office, such as Office 2000, enable you to open and edit
documents directly from DAV-enabled servers. You can simply specify a URL in the
Open dialog of the application.

Unix Clients

Several Unix applications are available to connect to a DAV server, as described in the
resource section at the end of this hour. This section covers installation of the cadaver
command-line utility, which was chosen because it provides an interface similar to an
FTP client and is easy to use.

Installation

You can download the latest version of Cadaver from
http://www.webdav.org/cadaver/.

Uncompress the tarball by typing the following command:

gunzip < cadaver*.tar.gz | tar xvf -

Change to the newly created directory, and run the configure script.
./configure

Then build and install the software:

make
make install

You should be able now to use the cadaver command-line utility.
Usage
To connect initially to the DAV server, type the following command:

cadaver URL

|212

Hour 13

where URL is the identifier of the server to access, such as http://hostname/davdocs/.
If cadaver was compiled with SSL support, it can open URLSs starting with https://.

You will be able now to explore the DAV file system by using commands similar to
those of an FTP client, as shown in Table 13.1.

TasLe 13.1 Partial List of FTP-Like Commands

Command Description

cd directory Change the current remote directory

lcd directory Change the current local directory

get file Download a remote file

put file Upload a file

1s path List the contents of the path directory, or the current directory if path is not
specified

In addition, cadaver provides additional commands to manipulate connections, check
and modify resource properties, manipulate locks, and so on. Check the manual page for
a complete listing of all the options.

Additional DAV Projects

DAV is getting deployed widely, both in commercial products from vendors such as
Microsoft, Apple, Adobe, and Xerox, and in a variety of open source projects. You can
find a comprehensive list at http://www.webdav.org/projects/.

The following sections describe some interesting DAV projects.

Subversion

In previous sections, it was mentioned how mod_dav allows backend abstraction. The
bundled Apache module provides access to the file system, but the Subversion project
provides a front end to a source control system. It provides a CVS replacement using
DAV as the transport protocol. You can learn more about Subversion at
http://subversion.tigris.org.

DAV File Systems

Similar to Microsoft Web folders, Mac OS X provides support for DAV-mounted file sys-
tems, as described in http://www.apple.com/creative/webpro/technology/webdav/.

Publishing Extensions 213 |

A Linux kernel module enables you to mount a DAV server as a local drive. It can be
found at http://dav.sourceforge.net.

Slide

Slide is a project from the Apache Software Foundation that provides a Java-based con-
tent management framework that uses DAV extensively. You can learn more about Slide
at http://jakarta.apache.org/slide/index.html.

Future Enhancements for DAV
Development of the mod_dav Apache module for Apache is currently targeting two areas:

support for version control and access control lists.

The official Web DAV site is http://www.webdav.org, and the mod_dav-specific portion
can be found at http://www.webdav.org/mod_dav/.

Common Error Messages

This section describes common error messages that you might find in the error log dur-
ing mod_dav installation:

Lock Database
If you find a message similar to the following:

(2)No such file or directory: A lock database was not specified with the
=DAVLOCkDB directive. One must be specified to use the locking functionality.
- [500, #401]

The message means that, as the text says, you need to provide a DavLockDB directive in
the configuration file. If the directive is specified, but the directory containing the lock
file cannot be written to; you will get a message like the following:

The lock database could not be opened, preventing access to the various
lock properties for the PROPFIND. [500, #0]

Fix the permissions so the path of the DavLockDB directive has write permission for the
user Apache runs as.

Web Folders

If you can’t connect to your DAV server via a Microsoft Web folder and you find some-
thing similar to

"OPTIONS /davdocs HTTP/1.1" 301

|214

Hour 13

in the access log, it means that Apache is sending a redirect (HTTP code 301) to the
Microsoft client, but the client is getting confused. Apache provides a workaround
against this buggy behavior, as explained in earlier sections. Make sure that the following
line is present in your configuration file:

BrowserMatch "Microsoft Data Access Internet Publishing Provider"
= redirect-carefully

Microsoft FrontPage

The Microsoft FrontPage publishing tool uses a proprietary protocol. Microsoft provides
a set of CGIs and an Apache module (FrontPage extensions) that allow Apache Web
servers running on Unix to work with FrontPage clients. At the time this book was writ-
ten, there was no version of FrontPage extensions for Apache 2.0. You can find more
information about FrontPage on Apache at the following Web site:

http://www.rtr.com/Ready-to-Run_Software/frontpage_server_extensions.htm

Should | Use DAV or FrontPage Extensions?

Microsoft itself seems to be moving away from the FrontPage protocol and favoring the
DAV protocol. In addition, FrontPage extensions for Unix are regarded as highly inse-
cure because they require running certain parts with root user privileges. This means that
if the Web server is compromised, the attacker automatically gains complete control over
the machine. Even with those drawbacks, FrontPage remains one of the most popular
Apache modules, running in nearly 20% of all Apache 1.3 servers.

DAV enables you to take advantage of all the other Apache and HTTP protocol features,
such as SSL, caching, authentication mechanisms, and so on.

So, unless you need to support older clients that understand only the FrontPage protocol,
using mod_dav is likely the better choice.

Summary

This hour explained how to install and configure the mod_dav module, which provides
Apache with support for the DAV protocol. This protocol enables publishing and file
sharing over the Web. The DAV protocol can take advantage of other Apache features,
such as SSL and authentication, to provide secure content access and modification. The
DAV protocol is quickly evolving and being embedded in a variety of programs and
servers and being extended to support versioning and access control lists.

Publishing Extensions 215 |

Q Should I use <Limit> or <LimitExcept> sections?

A Both are equivalent for practical purposes. The <Limit> directive requires an
explicit enumeration of all the methods being restricted, but a <LimitExcept>
directive will automatically restrict methods that are added in the future.

Q What are these strange entries in the error log?

A When Microsoft clients, such as Web folders, connect to your DAV server, they
might initially look to see whether it supports FrontPage extensions. They do so by
asking for specific files such as _vti_inf/shtml.exe and _vti_inf.html. You can
safely ignore these entries.

Q Does DAV support symbolic links?

A No, because they are not supported by all underlying platforms. There is a working
group on WebDAV bindings, which will provide that functionality at the DAV pro-
tocol level. It can be found at http://www.webdav.org/specs/.

1. How do you limit DAV write access to a DAV-enabled location to only authenti-
cated users?

2. What is the DAVMinTimeout directive used for?

3. Name some of the features of Apache that mod_dav can take advantage of.

Quiz Answers

1. Response:

<Directory /usr/local/apache2/htdocs/davdocs>
Dav On

<LimitExcept GET POST OPTIONS PROPFIND>
Authtype basic

Authname "DAV write access"
AuthUserFile/usr/local/apache2/conf/htusers
Require valid-user

</LimitExcept>

</Directory>

2. The DAVMinTimeout directive is used to specify minimum timeouts after which
locks will expire. This is useful if the client specifies a timeout that is too low, or if
your clients access the server via modem and require additional time to reconnect
if their connections fail.

|216 Hour 13

3. Some of the advantages include
* SSL for secure access
 Authentication modules for access control
e Logging modules
* Filtering modules for processing content as it is retrieved or uploaded

* High-performance HTTP server framework

Related Directives

This section contains directives mentioned in this hour or that are related to topics dis-
cussed in this hour. You can consult the Apache reference documentation for comprehen-
sive syntax information and usage.

* DAV: Enable or disable the DAV protocol in a specific container

* DAVLockDB: Specify a database file for locking

* DAVMinTimeout: Specify a minimum timeout setting for lock expiration

e DavDepthInfinity: Enable or disable recursive metadata requests

* LimitXMLRequestBody: Limit the size of certain requests to avoid denial of service
attacks

Further Reading

RFC 2518, HTTP standards for distributed authoring, is the main DAV specification. A
number of other specifications deal with revision control, access control lists, bindings
(similar to symbolic links), searching of metadata, and so on. A comprehensive list can
be found at http://www.webdav.org/specs/.

Several papers and talks by Greg Stein, the original author of mod_dav, and Jim
Whitehead, chairman of the DAV standardization effort, can be found at
http://www.webdav.org/papers/.

HOUR 1 4

Virtual Hosting

Apache allows Web administrators the possibility of hosting multiple
domains with a single physical installation of Apache. This is called virtual
hosting and it is the focus of this hour. The lesson covers name-based, IP-
based virtual hosting, and DNS and client issues. It explains different mech-
anisms that can be used to isolate clients from each other and the associated
security tradeoffs. When multiple users share a single Web server installation
(personal homepages, virtual hosting), there is a need to provide security
and user isolation. In this hour, you will learn

* How to configure name-based virtual hosts, IP-based virtual hosts, and
the difference between the two
* About the dependencies virtual hosting has on DNS

* How to set up scaled-up cookie-cutter virtual hosts

The Case for Virtual Hosts

Early Web servers were designed to handle the contents of a single site. The
standard way of hosting several Web sites in the same machine was to install

|218

Hour 14

and configure different, and separate, Web server instances. As the Internet grew, so did
the need for hosting multiple Web sites and a more efficient solution was developed: vir-
tual hosting. Virtual hosting allows a single instance of Apache to serve different Web
sites, identified by their domain names. IP-based virtual hosting means that each of the
domains is assigned a different IP address; name-based virtual hosting means that several
domains share a single IP address. As is explained later in the hour, name-based virtual
hosting requires HTTP/1.1 support.

DNS and Virtual Hosting

Web clients use the domain name server system (DNS) to translate hostnames into IP
addresses, and vice versa. Several mappings are possible:

* One to one: Means that each hostname is assigned a single, unique IP address.
This is the foundation for IP-based virtual hosting.

* One to many: Means that a single hostname is assigned to several IP addresses.
This is useful for having several Apache instances serving the same Web site. If
each of the servers is installed in a different machine, it is possible to balance the
Web traffic among them, improving scalability.

e Many to one: Means that you can assign the same IP address to several host-

names. The client will specify the Web site it is accessing by using the Host:
header in the request. This is the foundation for name-based virtual hosting.

When a many-to-one mapping is in place, a DNS server usually can be con-
figured to respond with a different IP address for each DNS query, which
ol helps to distribute the load. This is known as round robin DNS.

A
N

N

ﬁ‘

0“,
S

1l

Network Interfaces and IP Aliases

A network interface is a device that a machine’s operating system can use to transmit
and receive data over a network with a low-level wire protocol such as TCP. I'm using
the term device generically, but it’s generally a card (such as an Ethernet card) that fits in
a computer’s expansion slot; thus, the term network interface card or NIC is commonly
used. Attaching a network address to a device is referred to as a network binding.
Similarly, processes running inside an operating system can bind to network addresses.

Virtual Hosting 219|

This section explains how you can assign one or multiple IP addresses to network inter-
faces. The examples are Linux-based, so check your operating system documentation for
details on how to do the same on your system. You need system administrator privileges
to run the examples. Let’s take a simple example first: a machine with one network inter-
face, say ethO, with one address (192.168.128.10) bound to it. The syntax used by Linux
for binding the IP address to the device is shown in this example:

ifconfig eth@ inet 192.168.128.10 netmask 255.255.255.0 up
If you subsequently typed
ifconfig etho

you would see output similar to Listing 14.1.

Listing 14.1 Output from the ifconfig Command

etho Link encap:Ethernet HWaddr 00:50:56:C0:00:C0
inet addr:192.168.128.10 Bcast:192.168.128.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:478 errors:0 dropped:0 overruns:@ frame:0
TX packets:175 errors:0 dropped:@ overruns:Q carrier:0
collisions:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

An Apache server can now bind to any port associated with the IP address by specifying
an [P:port combination with the Listen directive:

Listen 192.169.128.10:80

The Listen directive in this example is bound to the only ethernet device that the system
has. Most modern operating systems support binding multiple IP addresses to one device,
a practice referred to as IP aliasing. The syntax for defining IP aliases varies with each
operating system. For example, Linux systems accomplish this with options to the
ifconfig command:

ifconfig eth0:0 192.168.128.11

The Linux syntax for bringing up an additional address bound to the same device is
shown here. Now, if you type

ifconfig -a

the output will include bindings for all network devices, including the real device ethO as
well as our new virtual device eth0:0, as shown in Listing 14.2.

| 220 Hour 14

Listing 14.2 Output of ifconfig After Adding an IP Alias

etho Link encap:Ethernet HWaddr 00:50:56:C0:00:C0
inet addr:192.168.128.10 Bcast:192.168.128.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:478 errors:0 dropped:@ overruns:@ frame:0
TX packets:175 errors:0 dropped:@ overruns:Q carrier:Q
collisions:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

eth0:0 Link encap:Ethernet HWaddr 00:50:56:C0:00:C0
inet addr:192.168.128.11 Bcast:192.255.255.255 Mask:255.0.0.0
UP BROADCAST NOTRAILERS RUNNING MTU:1500 Metric:1

Additional routing configuration might be necessary (with the route command), depend-
ing on the operating system. Windows systems use the network Control Panel to define
additional IP address bindings; the panels are laid out and are accessed differently
depending on whether you are using Windows NT 4.0, 2000, or XP.

The same technique used to add a second IP address can generally be applied to add
more. The limitations on how many IP aliases can be defined are operating system—
specific, but it’s not uncommon for Unix systems to support hundreds of IP aliases.

Another way to give a machine multiple IP addresses is to install additional network
interfaces. Suppose that a machine has two network interfaces. To configure the second
NIC, the ifconfig command can be used as we did with the first:

ifconfig eth1 inet 192.168.129.10 netmask 255.255.255.0 up
If we configure the second interface as shown here:
ifconfig -a

our output will look like Listing 14.3, which doesn’t show any IP aliases.

Listing 14.3 Output of ifconfig After Configuring an Additional Interface

etho Link encap:Ethernet HWaddr 00:50:56:C0:00:C0
inet addr:192.168.128.10 Bcast:192.168.128.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:478 errors:0 dropped:@ overruns:@ frame:0
TX packets:175 errors:0 dropped:@ overruns:@ carrier:0
collisions:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Virtual Hosting 221 |

Listing 14.3 continued

etht Link encap:Ethernet HWaddr 00:50:56:C0:00:C1
inet addr:192.168.129.10 Bcast:192.168.129.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:@ overruns:Q frame:0Q
TX packets:0 errors:0 dropped:@ overruns:@ carrier:0
collisions:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Listing 14.3 shows the two NICs on separate networks. Putting them on the same net-
work is generally done only for specialized applications such as NIC failover in a load-
balancing configuration.

IP-Based Virtual Hosting

The simplest virtual host configuration is when each host is assigned a unique IP
address. Each IP address maps the HTTP requests that Apache handles to separate con-
tent trees in their own VirtualHost containers, as shown in the following snippet:
Listen 192.168.128.10:80
Listen 192.168.129.10:80
<VirtualHost 192.168.128.10:80>

DocumentRoot /usr/local/www-docs/host1
</VirtualHost>
<VirtualHost 192.168.129.10:80>

DocumentRoot /usr/local/www-docs/host2
</VirtualHost>

If a DocumentRoot is not specified for a given virtual host, the global setting, specified
outside any <VirtualHost> section, will be used. In the previous example, each virtual
host has its own DocumentRoot. When a request arrives, Apache will use the destination
IP address to direct the request to the appropriate host. For example, if a request comes
for IP 192.168.128.10, Apache will return the documents from /usr/local/www-
docs/host1. If the host operating system cannot resolve an IP address used as the
VirtualHost container’s name and there’s no ServerName directive, Apache will com-
plain at server startup time that it can’t map the IP addresses to hostnames. This com-
plaint is not a fatal error. Apache will still run, but the error indicates that there might be
some work to be done with the DNS configuration so that Web browsers can find your
server. A fully qualified domain name (FQDN) can be used instead of an IP address as
the VirtualHost container name and the Listen directive binding if the domain name
resolves in DNS to an IP address configured on the machine and Apache can bind to it.

| 222

Hour 14

Name-Based Virtual Hosts

As a way to mitigate the consumption of IP addresses for virtual hosts, the HTTP/1.1
protocol version introduced the Host: header, which allows a browser to specify the
exact host that the request is intended for. This allows several hostnames to share a single
IP address. Most browsers nowadays provide HTTP/1.1 support.

e o L
- 4 Although Host: usage was standardized in the HTTP/1.1 specification, some
%\A}Z

older HTTP/1.0 browsers also provided support for this header.

A typical set of request headers from Microsoft Internet Explorer is shown in Listing
14.4. If the URL were entered with a port number, it would be part of the Host header
contents as well.

Listing 14.4 Request Headers

GET / HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

-k *

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Host: hosti.example.com

Connection: Keep-Alive

Apache uses the Host: header for configurations in which multiple hostnames can be
shared by a single IP address—the many to one scenario outlined earlier this hour—thus,
the description name-based virtual hosts.

The NameVirtualHost directive enables you to specify IP address and port combinations
on which the server will receive requests for name-based virtual hosts. This is a required
directive for name-based virtual hosts. Listing 14.5 has Apache dispatch all connections
to 192.168.128.10 based on the Host header contents.

Listing 14.5 Name-Based Virtual Hosts

NameVirtualHost 192.168.128.10
Listen 192.168.128.10:80
<VirtualHost 192.168.128.10>

Virtual Hosting 223 |

LisTing 14.5 continued

ServerName hosti.example.com
DocumentRoot /usr/local/www-docs/host1
</VirtualHost>
<VirtualHost 192.168.128.10>
ServerName host2.example.com
DocumentRoot /usr/local/www-docs/host2
</VirtualHost>

For every hostname that resolves in DNS to 192.168.128.10, Apache can support another
name-based virtual host. If a request comes for that IP address for a hostname that is not
included in the configuration file, say host3.example.com, Apache will simply associate
the request to the first container in the configuration file; in this case,
host1.example.com. The same behavior is applied to requests that are not accompanied
by a Host header; whichever container is first in the configuration file is the one that gets
the request.

An end user from the example.com domain might have his machine set up with
example.com as his default domain. In that case, he might direct his browser to
http://host1/ instead of the fully qualified http://host1.example.com/. The Host
header would simply have host1 in it instead of host1.example.com. To make sure that
the correct virtual host container gets the request, you can use the ServerAlias directive
as shown in Listing 14.6.

LisTinG 14.6 The ServerAlias Directive

NameVirtualHost 192.168.128.10
Listen 192.168.128.10:80
<VirtualHost 192.168.128.10>
ServerName hosti.example.com
ServerAlias host1
DocumentRoot /usr/local/www-docs/host1
</VirtualHost>
<VirtualHost 192.168.128.10>
ServerName host2.example.com
ServerAlias host2
DocumentRoot /usr/local/www-docs/host2
</VirtualHost>

In fact, you can give ServerAlias a space-separated list of other names that might show
up in the Host header so that you don’t need a separate VirtualHost container with a
bunch of common directives just to handle all the name variants.

| 224

Hour 14

HTTP 1.1 forces the use of the Host header. If the protocol version is identified as 1.1 in
the HTTP request line (that is, GET / HTTP/1.1), the request must be accompanied by a
Host header. In the early days of name-based virtual hosts, Host headers were considered
a tradeoff: Fewer IP resources were required, but legacy browsers that did not send Host
headers were still in use and therefore could not access all of the server’s virtual hosts.
Today, that is not a consideration; there is no statistically significant number of such
legacy browsers in use.

The only reason to opt for IP-based and not use name-based virtual hosts is if there are
virtual hosts that must use SSL. You can learn more about SSL and this limitation in
Hour 17, “Setting Up a Secure Server.”

Mass Virtual Hosting

In Listing 14.5, the DocumentRoots follow a simple pattern:
DocumentRoot /usr/local/www-docs/hostname

where hostname is the hostname portion of the fully qualified domain name used in the
virtual host’s ServerName. For just a few virtual hosts, this configuration is fine. But
what if there are dozens, hundreds, or even thousands of these virtual hosts? The config-
uration file can become difficult to maintain. Apache provides a good solution for
cookie-cutter virtual hosts with mod_vhost_alias. You can configure Apache to map the
virtual host requests to separate content trees with pattern-matching rules in the
VirtualDocumentRoot directive. This functionality is especially useful for ISPs that want
to provide a virtual host for each one of their users. The following example provides a
simple mass virtual host configuration:

NameVirtualHost 192.168.128.10

Listen 192.168.128.10:80
VirtualDocumentRoot /usr/local/www-docs/%1

The %1 token used in this example’s VirtualDocumentRoot directive will be substituted
for the first portion of the FQDN. mod_vhost_alias directives have a language for map-
ping FQDN components to filesystem locations. Even characters within the FQDN can
be accessed.

If we eliminated all the VirtualHost containers and simplified our configuration to the
one shown here, the server would serve requests for any subdirectories created in the
/usr/local/www-docs directory. If the hostname portion of the FQDN is matched as a
subdirectory, that’s where Apache will look for content when it translates the request to a
filesystem location.

Virtual Hosting 225 |

Note that although virtual hosts normally inherit directives from the main server context,
some of them, such as Alias directives, do not get propagated. For instance, the virtual
hosts will not inherit this filesystem mapping:

Alias /icons /usr/local/apache2/icons

The FollowSymLinks flag for the Options directive is also disabled in this context.
However, a variant of the ScriptAlias directive is supported.

The VirtualScriptAlias directive shown in the following snippet treats requests for any
resources under /cgi-bin as containing CGI scripts:

NameVirtualHost 192.168.128.10

Listen 192.168.128.10:80

VirtualDocumentRoot /usr/local/vhosts/%1/docs
VirtualScriptAlias /usr/local/vhosts/%1/cgi-bin

Note that cgi-bin is a special token for that directive; calling the directory just cgi
won’t work; it must be cgi-bin.

For IP-based virtual hosting needs, there are variants of these directives:
VirtualDocumentRootIP and VirtualScriptAliasIP. However, because the primary
motivation of IP-based virtual hosts is for SSL and there’s no pattern-matched path sup-
port for SSL resources such as certificates and keys, the uses are fairly limited.

Other Virtual Hosting Techniques

If you don’t have access to the DNS configuration for the domains you want to host Web
sites for, you still can have multiple independently maintained Web sites off of one
Apache instance. This is a frequent occurrence in intranet Web server deployments. We
can simply assign each VirtualHost its own TCP port, as shown in Listing 14.7.

Listing 14.7 Assigning TCP Ports

Listen 192.168.128.10:8000
Listen 192.168.128.10:8001
Listen 192.168.128.10:8002

ServerName intranet.example.com
<VirtualHost 192.168.128.10:8000>
DocumentRoot /usr/local/www-docs/host-8000
</VirtualHost>
<VirtualHost 192.168.128.10:8001>
DocumentRoot /usr/local/www-docs/host-8001

| 226 Hour 14

Listing 14.7 continued

</VirtualHost>
<VirtualHost 192.168.128.10:8002>

DocumentRoot /usr/local/www-docs/host-8002
</VirtualHost>

For this configuration, requests for http://intranet.example.com:8000/,
http://intranet.example.com:8001/, and http://intranet.example.com:8002/ are
dispatched to their respective VirtualHost containers.

ServerPath enables the server to dispatch requests to VirtualHost containers by match-
ing the leading path of the request, as shown in Listing 14.8. Because most browsers
these days support the Host header, the ServerPath directive is seldom used.

Listing 14.8 ServerPath Example

NameVirtualHost 192.168.128.10
Listen 192.168.128.10:80
<VirtualHost 192.168.128.10>
ServerName hosti1.example.com
ServerPath /host1
DocumentRoot /usr/local/www-docs/host1
</VirtualHost>
<VirtualHost 192.168.128.10>
ServerName host2.example.com
ServerPath /host2
DocumentRoot /usr/local/www-docs/host2
</VirtualHost>

With the configuration shown in Listing 14.8, requests that are not accompanied by a
Host header are dispatched according to the request’s URI path. For instance,

GET /host1/ga/doc.html HTTP/1.0
will be dispatched to the host1.example.com container. Apache will look for
/usr/local/www-docs/host1/host1/qa/doc.html

to fulfill the request. This imposes a requirement on each virtual host; all content for
host1.example.com must be deployed underneath its DocumentRoot in the subdirectory
host1. The same holds true for host2 and so on.

Virtual Hosting 227 |

Security Considerations

Because each virtual host runs within the Apache process pool, all the CGIs that run
within each virtual host run as the same operating system user. So, although the content
might be independently maintained, a malicious user could conceivably access or inter-
fere with another user’s Web resources.

Apache 2.0 has a facility, suExec (for set user-id execution), and a companion module,
mod_suexec, that enable safe setuid execution of CGI scripts. This means that scripts can
be run under a different user than Apache itself is running as. However, this facility lim-
its the directories in which setuid execution is permitted. New in Apache 2.0 is the
Perchild MPM, which allows groups of processes in the Apache process pool to run as
different users (as you learned in Hour 11, “Multi-Processing Modules”). At the time of
this writing, the Perchild MPM is still experimental, but it is a promising development
for the future of secure virtual host CGI execution.

Performance Considerations

The examples we’ve seen so far have had virtual hosts with only different ServerNames,
DocumentRoots, and so forth. However, other directives such as CustomLog and ErrorLog
(that you learned about in Hour 8, “Logging and Monitoring™) can also be defined on a
per virtual host basis. As the number of virtual hosts grows, the resources consumed by
Apache grow considerably if each virtual host opens up two log files. Nonetheless, most
virtual hosts usually require independent traffic analysis, so having all their traffic data
mingled might be considered undesirable. mod_log_config enables you to use the %v for-
matting option to add the name of the host to the log entry, as shown in Listing 14.9.

Listing 14.9 Using the %v Option

LogFormat "%h %1 %u %t \"sr\" %>s %b %v" common
CustomLog logs/access_log
NameVirtualHost 192.168.128.10
Listen 192.168.128.10:80
<VirtualHost 192.168.128.10>
ServerName hosti1.example.com
ServerAlias hosti
DocumentRoot /usr/local/www-docs/host1
</VirtualHost>
<VirtualHost 192.168.128.10>
ServerName host2.example.com
ServerAlias host2
DocumentRoot /usr/local/www-docs/host2
</VirtualHost>

| 228

Hour 14

Whether requested as http://host1.example.com/ or http://host1/ and
http://host2.example.com/ or http://host2/, the access_log in Listing 14.9 will log
requests for the root resource of host1 and then host2 as shown here:

10.0.0.120 - - [08/May/2002:03:28:21 -0800] "GET /
=»HTTP/1.0" 200 806 host1.example.com
10.0.0.120 - - [08/May/2002:03:28:22 -0800] "GET /

=HTTP/1.0" 200 672 host2.example.com

A trivial Perl script can process the access_log prior to log analysis so that each Web
site’s traffic can be independently analyzed. Nonetheless, if CGIs are run in the individ-
ual virtual hosts, it might be advantageous to separate the ErrorLogs for each virtual
host. When a CGI encounters a runtime error and emits messages to stderr, Apache
writes the error message to the ErrorLog; often, this is the best debugging resource that a
CGI developer has. In Listing 14.10, each virtual host gets its own error log.

Listing 14.10 Per Virtual Host Error Log Configuration

LogFormat "%h %1 %u %t \"%r\" %>s %b %v" common
CustomLog logs/access_log
NameVirtualHost 192.168.128.10
Listen 192.168.128.10:80
<VirtualHost 192.168.128.10>
ServerName hosti.example.com
ServerAlias host1
DocumentRoot /usr/local/www-docs/host1
ErrorLog logs/host1-error_log
</VirtualHost>
<VirtualHost 192.168.128.10>
ServerName host2.example.com
ServerAlias host2
DocumentRoot /usr/local/www-docs/host2
ErrorLog logs/host2-error_log
</VirtualHost>

Although this is convenient for the CGI developer, it could potentially tax the system
resources if the number of virtual hosts is high. Apache opens a number of file handles
for its internal operations; increasing the burden by opening a bunch of separate log files
and having log file writes going to a number of different log files simultaneously will
impede Apache’s performance.

Because the process pool is shared—in addition to consuming log file resources—it is
possible for one virtual host to be greedy with operating system resources such as
memory and CPU time that have been allocated to Apache but which other virtual hosts

Virtual Hosting 229 |

must also use. For high-traffic Web sites or Web sites that produce a lot of dynamic con-
tent through CGIs, it might turn out that running all the Web sites as virtual hosts in one
Apache instance is not a good idea.

Running Multiple Apache Instances on a
Machine

Given the security and performance considerations, it might be desirable not to run vir-
tual hosts at all. If an application environment such as mod_perl or PHP is maintaining
persistent database connections or has conflicting security requirements, it might be
preferable to run entirely separate Apache instances. These applications often have differ-
ent process pool requirements than the static content server processes.

Some caveats to running multiple instances are

1. The configuration file, log file, and content directories are usually maintained sepa-
rately. If you are running multiple instances, you definitely don’t want the PidFile
directive writing the parent process ID for each instance to the same file!

2. The operating system memory must be sufficient to run multiple instances’ process
pools.

3. Applications running in separate instances might still be able to access each other’s
filesystem resources. The only surefire way to prevent that is to configure your
operating system with chrooted or jailed resources, which is a fairly advanced
operating system configuration.

Summary

Apache can be configured to handle virtual hosts in a variety of ways. Whether you need
a large number of cookie-cutter virtual hosts, a varied set of different virtual host config-
urations, or the number of IP addresses you can use is limited, there’s a way to configure
Apache for your application. Name-based virtual hosting is a common technique for
deploying virtual hosts without using up IP addresses. IP-based virtual hosting is still
necessary when a virtual host is used for SSL. If you cannot change your DNS configu-
ration, your only recourse is to use separate port numbers for your virtual hosts.

| 230

Hour 14

Q&A
Q

A

(@)

How can I migrate an existing name-based virtual host to its own machine
while maintaining continuous service?

If a virtual host is destined to move to a neighboring machine, which by definition
cannot have the same IP address, there are some extra measures to take. A common
practice is to do the following:

1. Set the time-to-live of the DNS mapping to a very low number. This
increases the frequency of client lookups of the hostname.
2. Configure an IP alias on the old host with the new IP address.

3. Configure the virtual host’s content to be served by both name- and IP-
address-based virtual hosts.

4. After all the requests for the virtual host at the old IP address diminish (due
to DNS caches expiring their old lookups), the server can be migrated.

Can I mix IP- and name-based virtual hosting?

Yes. If multiple IP addresses are bound, you can allocate their usage a number of
different ways. A family of name-based virtual hosts may be associated with each;
just use a separate NameVirtualHost directive for each IP. One IP might be dedi-
cated as an [P-based virtual host for SSL, for instance, whereas another might be
dedicated to a family of name-based virtual hosts.

. Which virtualHost container gets a request if the connection uses

NameVirtualHost but no Host header is sent?

Is the ServerName directive necessary in a VirtualHost container?

3. When is the Host header required?

When can a hostname be used instead of an IP address to bind a VirtualHost
container?

Quiz Answers

l.

Reading the configuration top-to-bottom, the first virtualHost container is
favored. The same behavior occurs if there is a Host header but no VirtualHost
container that matches it.

Virtual Hosting

231 |

2.

Only when name-based virtual hosts are used. The Host header contents are com-
pared to the contents of the ServerName directive. If a match isn’t satisfied, the
VirtualHost containers’ ServerAlias directive value(s) are checked for matches.

. If the request is sent with HTTP/1.1, the Host header must be sent. Apache sends a

400 Bad Request response if it gets a request that identifies itself as an HTTP/1.1
request without a Host header.

A hostname can be used for the VirtualHost container if it resolves in DNS to an
IP address that Apache is bound to. If the DNS resolution does not match any of
the server’s IP address bindings, that VirtualHost won’t get any requests.
Although it is possible to use hostnames, it is recommended that you use IP
addresses instead.

Related Directives

This section contains new directives introduced in this hour. You can consult the Apache
reference documentation for comprehensive syntax information and usage.

NameVirtualHost: Used to make Apache examine connections for its Host head-
ers. This directive is required for name-based virtual hosting.

ServerName: Required for name-based virtual hosts for matching against Host
headers. Otherwise, the only significance is for server-generated self-referential
URLSs, such as those in error messages.

ServerAlias: Used inside VirtualHost containers that are using name-based vir-
tual hosts. A ServerAlias provides alternative names by which a virtual host can
be accessed.

serverPath: Used to make Apache examine the URL paths match requests to
VirtualHost containers.

VirtualDocumentRoot: Used to map requests to a content tree with the hostname
on a pattern-matching basis using mod_vhost_alias. There is an alternative direc-
tive, VirtualDocumentRootIP, that performs the pattern matching against the IP
address for IP-based virtual hosting.

VirtualScriptAlias: Used to map requests for cgi-bin to a content tree where
CGI scripts can run. The directory path can be specified on a pattern-matching
basis, similar to VirtualDocumentRoot. Also has an alternative,
VirtualScriptAliasIP, that matches against the server’s bound IP address.

| 232 Hour 14

Further Reading

The Apache Web site has a number of configuration examples for virtual hosting:
http://httpd.apache.org/docs-2.0/vhosts/

Configuring IP aliasing on Linux is explained at
http://www.linuxdoc.org/HOWTO/mini/IP-Alias/

For Solaris, you can find additional information at
http://www.science.uva.nl/pub/solaris/solaris2.html#q4.10
Documentation for the popular BIND DNS server is at

http://www.isc.org/products/BIND/

HOUR 1 5

Apache as a Proxy Server

This hour explains how to configure Apache as a forward proxy and a
reverse proxy. You can use a forward proxy to allow multiple clients to
access the Internet through a single, controlled point. You can use a reverse
proxy to protect or load balance backend servers containing sensitive data.
The caching filter in Apache allows for faster access for clients and reduced
load on the servers. In this hour, you will learn how to

» Configure Apache as a forward proxy

* Configure Apache as a reverse proxy

* Add caching support to Apache

Introduction to Proxy Servers

Apache can be configured as a proxy server. A proxy is a program that per-
forms requests on behalf of another.

There are different kinds of Web proxies. A traditional HTTP proxy, also
called a forward proxy, accepts requests from clients (usually Web
browsers), contacts the remote server, and returns the responses. Figure 15.1
shows how a forward proxy works.

| 234

Hour 15

FIGURE 15.1 CLIENT
Forward proxy. 1

CLIENT LOCAL FORWARD REMOTE
2 NETWORK PROXY SITE

CLIENT
3

A reverse proxy is a Web server that is placed in front of other servers, providing a uni-
fied front end and offloading certain tasks, such as SSL processing, from the backend
Web servers. Figure 15.2 shows how a reverse proxy works.

FiGURe 15.2 SERVER
Reverse proxy. 1
CLIENT w
1 @ > SERVER
55 2
> [
CLIENT wa
2 SERVER
3

The proxy architecture in Apache is flexible and can be extended. Retrieved content can
be cached, scanned for viruses, compressed, altered, and so on.

Enable Proxy Support for Apache

To enable proxy support in Apache, you need to enable the main proxy module and
some or all of the three supported backends: HTTP, CONNECT, and FTP. The CONNECT
option allows SSL connections to pass untouched via the proxy and is explained later in
this hour. The FTP backend allows the proxy server to act as a gateway to access remote
FTP servers via a normal HTTP browser.

Building Apache from Source

You can specify the following options at build time:

* --enable-proxy: Enable main proxy module

* --enable-proxy-connect: Enable CONNECT passthrough method

Apache as a Proxy Server 235 |

e --enable-proxy-ftp: Enable FTP backend support
e --enable-proxy-http: Enable HTTP backend support

Binary Installations

Most binary or vendor-supplied Apache servers already include support for mod_proxy.
To enable it, you need to edit the configuration file and uncomment or add the appropri-
ate LoadModule directives, as shown in Listing 15.1.

Listing 15.1 Enabling Proxy Modules in the Apache Configuration File

LoadModule proxy_module modules/mod_proxy.so

LoadModule proxy_connect_module modules/proxy_connect.so
LoadModule proxy_http_module modules/proxy _http.so
LoadModule proxy_ftp_module modules/proxy_ftp.so

Apache as a Forward Proxy

Apache provides a standards-compliant forward proxy server that can proxy content from
HTTP and FTP servers.

One advantage of a forward proxy is that it is a central place to control access to the
Internet and log HTTP requests. A proxy server also can isolate the internal network
from external machines. If the proxy server is combined with caching functionality, it
can help speed up Internet access when several clients access the same resources.

Forward proxies became very popular years ago when most Internet connections hap-
pened over slow links and organizations wanted specific control over who had Internet
access, but forward proxies are not widely used anymore.

Apache Forward Proxy Configuration

This section details how to configure Apache to act as a forward proxy.

Enabling Proxy Functionality

The ProxyRequests directive enables or disables the forward proxy functionality in
Apache and takes an on or an off argument. This directive does not affect the reverse
proxy functionality in Apache, which is explained later in the hour.

You generally do not want to provide access to your proxy to people outside your net-
work because doing so is a potential security risk. That is, an attacker could use the

| 236

Hour 15

proxy to retrieve documents from internal servers or to attack third-party servers, making
the requests look as though they are coming from your network.

You can configure who has access to your forward proxy by using the following contain-
ers: <Directory proxy:pattern>, <Proxy pattern>, and <ProxyMatch pattern>. The
pattern parameter specifies the resources that will be protected. You probably want to
restrict access to all proxy functionality to unauthorized users, and you can do so using *
as the pattern. Listing 15.2 shows you how to configure Apache to act as a forward proxy
server and restrict proxy access to clients coming from the internal network.

Listing 15.2 Enable Proxy Requests

ProxyRequests on

<Proxy *>

Order deny,allow

Deny from all

Allow from 10.0.0.0/255.255.255.0
</Proxy>

You can use the rest of access control directives explained in Hour 7, “Restricting
Access.”

The A11owCONNECT directive enables you to specify a list of ports that the proxy CONNECT
method will be allowed to access, assuming that you enabled CONNECT support for your
proxy server, either at build time or when loading the appropriate shared object.

The CONNECT method is a special HTTP method used to proxy SSL requests transparently
through a proxy server. This is known as tunneling.

URL Blocking

The ProxyBlock directive enables you to block certain domains and URLs, preventing
them from being accessed through the proxy. It takes a space-separated list of words,
hosts, or domains. The proxy will block any URL containing them. The special value of
ProxyBlock * will block access to all sites.

Proxy Hierarchy

Proxy servers can be arranged in hierarchies. This is especially useful for caching prox-
ies. (Caching is covered later in the hour.)

Apache as a Proxy Server 237 |

ProxyRemote

You can specify which URLs to forward to a specific remote proxy server by using the
ProxyRemote directive. Each ProxyRemote directive takes two arguments. The first argu-
ment is a URL scheme that the remote server supports, or a partial URL pattern that, if
matched, means the current request should be forwarded to the remote server. The sec-
ond argument is the URL for the remote server. For example, the directive

ProxyRemote http://some.example.com http://10.0.1.1:8000

means that proxy requests for some.example.com should in turn be handed over to the
remote proxy server listening at address 10.0.1.1 and port 8000.

The special value of * for the first argument means the specified remote server should be
contacted for all requests.

NoProxy

The NoProxy directive specifies which machines the proxy server should connect to
directly, bypassing the remote proxy server specified by a ProxyRemote directive. The
NoProxy directive takes a space-separated list of domains, hostnames, IP addresses,
and/or subnets.

ProxyDomain

In certain situations, local clients will try to connect to resources using unqualified
domain names. That is, users will type myserver in their browsers to access the
myserver.example.com Web site. The ProxyDomain directive enables you to specify the
default domain that should be appended to local names. The proxy server will then send
a redirect to the client with the fully qualified domain name.

ProxyMaxForwards

The ProxyMaxForwards directive specifies the maximum number of chained proxies a
request may travel before being discarded. This is useful to avoid infinite loops due to a
faulty configuration.

ProxyVia

Usually, when a proxy server relays a request to the destination server or to another
remote proxy server, it adds a via: header containing information about itself. The
ProxyVia directive enables you to configure this behavior.

| 238 Hour 15

ProxyVia can take one of four values:

e On: A via: header with the proxy hostname will be added.
* Full: Same as On, but includes information about the Apache version.

e off: The default behavior. It will not add its own Via: header, but will not modify
any Via: header if already present.

* Block: No Via: header will be added and existing Via: headers will be removed.

Tuning

The ProxyReceiveBufferSize directive enables you to specify the size of the buffer, in
bytes, for HTTP and FTP connections in order to increase throughput in large down-
loads. If you set this value to 0, the default system buffer size will be used.

The ProxyTimeout directive enables you to specify the time in seconds that the proxy
will wait for a request to a remote server to be successful. This directive can be used
both for forward proxies and reverse proxies.

Configuring Client Support

This section describes how to add proxy support to the Internet Explorer and Mozilla
browsers. This step is necessary to tell the browsers that instead of accessing the Web
sites directly, they must use the proxy server instead. Most modern browsers have built-
in proxy support and can be configured in a similar way.

Configuring Internet Explorer

Open the Internet Options dialog. You can get there from the Control Panel icon or by
selecting Tools, Internet Options in the Internet Explorer menu bar.

You can then select the Connections tab and click on the LAN Settings button. A dialog
will pop up. Click on the Use a Proxy Server for Your LAN check box and specify the
address and port of your proxy server. This proxy server will be used to access all con-
tent. If you want to access servers in your same network directly, select the Bypass Proxy
Server for Local Addresses check box. If you want to access specific remote servers
directly, you can click on the Advanced button and enter the remote servers in the
Exceptions text box. Figure 15.3 shows the steps involved.

Configuring Mozilla

You can configure your proxy settings on Mozilla by clicking on the Edit menu bar entry
and selecting Preferences. You can access the proxy settings by clicking on Advanced
and then on Proxies, as shown in Figure 15.4.

Apache as a Proxy Server 239 |

FIGURE 15.3 oco Area Network (LA ettngs 2]
. (- Aomatc ¢ eneral | security | Cantert Connedtions | ragrams | Advenced |
PrOXy conﬁgumtlon Aukamatic corifi avarride | To ensure the
use of marual settings, disable automatic configueation, B e the K Cornestion Wizard bo
or Internet Lxplorer. (= LT Sekup..,
™ Autcmatically debact settings) corneck your computer bo the Tnternet,
[e automatic configuration soript Didl-up sedtings
FAdpress Add....
Frazey server Remove:
[V Lie apraxy server 5 :
Addrass: | 10.0.0.1 Part: | 5300 Acvanced,., I :
P Bypass prosy server for kacal LR - e —path Conmetion I fo preser:
o
Servers Set Defaik I
| Typs. Proey address to use Port
iz
5= e i0.0.0.9] + | B e
Secure: 10,0.0,1 + | 8000 LAN Settr I
FTF: 10,0.0.1 + | 5100 |
Gapher: 10,0.0.1 1| 8200
Foundation Sacks: B QK I Cancel I Azl |
| F7 Usethe same proy sarve for et |
» Fiu .
o I t ents from the foundation and
o Wews & Status L, Do not usa prosy sorver for adchessas begrangthy | [2UCEMEnts List
o Press Eir =5 -
+ Contacr | | 4 —
Use semicolors { ;) bo ssparabe etries. —r— =
Done | © D Intemet
FIGURE 15.4 | Welcomet - The Apache Software Foundation - Moazilla {Build ID: 2001122106}

(| Fie Edt liew Search Go Bockmars Iasks Hep Debug 04

=
Bﬁ - mr%m - M\%ad f\;}l; |\ anache.org) 'I &2 Search a -
| “hrome | bBockmarks _# The Meoile Craaniza,.. . Latest Buids

h (EBPE, | Proxies o i
B

Proxy configuration
for Mozilla.

Farks ~ Corfigure Prosies to Access the Intermet
Colors
Themes (™ Diract conneckion to the Internet _
Apache Project: . Conkerk Packs % Mznual prosy canfiguration
Spache JIOREE s
Ravizator ETP Prosy: for: |
¥ Comansar ity of
3] Frivacy & Seouricy Gepher Proxy: Fort: | ||
=] Avamced HITR Pray: [10.0.0.1 Fart; [acod
Scripts B Windows -
Cathe S5L Proxy: Pot: I oy ks
Praiies SOCKS Host: oty | ut
Gaftyare Instaliafion [S0Ois v SOCKS WS
Mouse Wheel
System s Prozyfar: | bine
[+ Defug Example: .mozlla.crg, .nat.re o have
QFFine & Disk Space " Autamatic praxy configuration URL: hent
| Rielnad bops.

o | | caxa |

& Conzact =]
% & | Document: Done (0451 secs)

¥
I

You can then select Manual Proxy Configuration and enter the address and port of the
proxy server. If you want to contact certain servers directly, and bypass the proxy, you
can enter those servers in the No Proxy For section.

| 240 Hour 15

Caching

Accessing or generating certain content can be very expensive in terms of server
resources or network delay. You can configure Apache to save some of that data locally,
in memory or disk, to speed up future access. Doing so is known as caching. In previous
versions of Apache, cache control was tightly integrated with the proxy. In Apache 2.0,
the cache functionality has been abstracted as a filter module (mod_cache) and can be
used to cache not only content retrieved by the proxy, but also content generated by
Apache itself.

Caching has several advantages, depending on the scenario. If several clients access the
Internet through the same forward proxy, caching frequently accessed content can
improve the speed of Web access and save bandwidth. This is useful when the link to the
Internet is a slow one.

In a reverse proxy situation or when mod_cache is used in a Web server, caching can be
used to speed up access to semi-static content, such as weather maps, delayed stock
quotes, and movie schedules. This information has to be dynamically generated, but typi-
cally does not change for several minutes. Caching this type of content will reduce the
load of the backend systems, decreasing response time and improving scalability.

Although caching can also be implemented at the application level, the caching modules
in Apache provide additional flexibility that is particularly useful when the content gen-
eration code cannot be modified.

= At the time this book was written, caching support in Apache 2.0 was still in

N alpha state, and the caching modules were considered experimental. That
“‘@Ej means the directives and behavior discussed in this section might have
changed by the time you read this.

Caching Backends

The mod_cache module enables two caching backend mechanisms: memory and disk. A
memory-based cache is faster, but does not survive a server restart and is limited by the
physical memory of the server. A disk cache is slower, but persists even if the server is
stopped and restarted. The operating system disk-caching algorithm will also speed up
disk accesses.

Apache as a Proxy Server 241 |

Building Apache from Source

If you are building Apache from source, you must pass the following arguments to the
Apache configure script to add support for caching:

e --enable-cache: Enable dynamic caching main module

e --enable-disk-cache: Enable the disk caching backend

e --enable-mem-cache: Enable the memory caching backend

Binary Installations

Most binary or vendor-supplied Apache servers include support for caching. To enable it,
you must edit the configuration file and uncomment or add the appropriate LoadModule
directives, as shown in Listing 15.3.

Listing 15.3 Enabling Caching Modules in the Apache Configuration File

LoadModule cache_module modules/mod_cache.so
LoadModule disk_cache modules/mod_disk_cache.so
LoadModule memory_cache_module modules/mod_mem_cache.so

Caching Configuration

You can use the CacheOn directive to enable or disable caching functionality globally by
setting it to on or off. You can specify which URLs to cache with the CacheEnable and
the CacheDisable directives, explained in the next section.

What to Cache

The CacheEnable directive accepts two parameters. The first parameter specifies the
cache type, which is one of the currently available cache storage methods: mem for mem-
ory or disk for disk. The second parameter provides a partial URL prefix. Resources
matching this prefix will be cached. The CacheDisable directive takes a single argument:
a partial URL prefix specifying resources that will not be cached.

You can have fine-grained caching behavior control using these two directives.

How Long to Cache

This section explains several directives that can be used to control the lifetime of cache
objects.

| 242

Hour 15

CacheMaxExpire

The CacheMaxExpire directive enables you to specify the maximum time in hours to
cache a document, under any circumstance, before checking again to see whether the
document has been updated. If an expiration value is not specified, it will default to a
value of 24 hours. The CacheMaxExpireMin directive enables you to specify the value in
minutes.

CacheLastModifiedFactor

If an object does not provide an expiry value, Apache takes a simple approach to esti-
mate it. CacheLastModifiedFactor takes a numeric argument. The expiry value for the
resource will be calculated multiplying that number by the value of the last-modified
header provided by the remote server. That is, if the resource was modified 10 hours ago
and the value of the directive is 0.5, the expiry value will be 5 hours.

CacheForceCompletion

This directive takes a percentage of download completion. If a client cancels a request
(for example, the user presses the stop button in the browser) and this percentage has
been reached, Apache will download and cache the response anyway.

CacheDefaultExpire

This directive takes a default expiry time in hours that will be used in a proxy environ-
ment when retrieving objects via protocols that do not support the concept of expiration
time. It defaults to one hour.

Apache as a Reverse Proxy

A reverse proxy is a Web server that sits in front of other Web servers, known as backend
servers. The reverse proxy Web server can be configured to pass certain requests to the
backend servers and return the result to the clients as if it were the reverse proxy that
generated the content. A reverse proxy is useful for several reasons:

¢ Performance: A reverse proxy can be used to ease the load on the backend
servers. A reverse proxy can handle SSL requests for the backend servers, load bal-
ance requests, or cache frequently accessed content. Another common configura-
tion scenario is to have the reverse proxy directly serve static content, such as
images, and retrieve the dynamic content from the backend servers. This is espe-
cially useful when the backend servers are Java application servers not optimized
for static content Web serving.

 Security: If the backend servers contain sensitive information, or have security
problems, the reverse proxy can act as an HTTP-level firewall, isolating these

Apache as a Proxy Server 243 |

servers from direct Internet exposure. For example, versions of Microsoft Internet
Information Server have had serious and widely publicized security flaws. A
reverse proxy based on Apache, set up in front of servers running IIS, can block
malicious attacks and provide a migration path to a fully Apache-based installation.

 Unified front end: A reverse proxy can provide a unified URL space to a variety
of backend resources. This can be used to have unified logging, user management,
and session tracking for a variety of backend architectures and servers.

Reverse Proxy Configuration

Reverse proxy support is included as part of the core mod_proxy module. Refer to the
“Apache as a Forward Proxy” section of this hour for information on how to add proxy
support to an Apache installation.

For the remainder of this section, rproxy.example.com will designate the machine run-
ning the reverse proxy and backend.example.com will refer to the backend machine pro-
viding the content.

Specifying Reverse Proxy URLs

You can use the ProxyPass and ProxyPassReverse directives to map URLSs in the
reverse proxy to URLs in the backend servers.

The ProxyPass directive has two syntaxes. If the directive is placed outside of a
<Location> container, it takes two arguments. The first argument is the prefix to match.
The second is the corresponding URL for a resource in the backend to retrieve whenever
a request matches the first argument. The remaining part of the matched prefix will be
added to the backend URL.

For example, the directive
ProxyPass /dynamic/ http://backend.example.com/

will cause a request for http://rproxy.example.com/dynamic/content/index.html to
return the content from http://backend.example.com/content/index.html

If the ProxyPass directive is placed inside a <Location> container, it takes a single argu-
ment: the remote URL. The matching prefix will be taken from the value of the
<Location> directive. The previous example could be rewritten as the following:
<Location /dynamic/>

ProxyPass http://backend.example.com/
</Location>

In certain situations, the backend server might issue redirects. These redirects will
include a Location: header that contains a reference to the backend server

| 244

Hour 15

(backend.example.com). The ProxyPassReverse directive will intercept these headers
and rewrite them so that they include a reference to the reverse proxy (rproxy.exam-
ple.com) instead.

The previous examples could be rewritten as follows:

ProxyPass /dynamic/ http://backend.example.com/
ProxyPassReverse /dynamic/ http://backend.example.com/

level. It will not inspect or rewrite links inside HTML documents.

Ny N
Note that the ProxyPassReverse directive operates only at the HTTP header

Preventing URLs from Being Reverse Proxied

It is possible to prevent certain URLs from not being proxied by specifying an exclama-
tion sign (!) as the remote site URL in ProxyPass directives. It is important that those
directives are placed before other ProxyPass directives. For example, the following con-
figuration will pass all requests to a backend site, except requests for images, which will
be served locally:

ProxyPass /images/ !
ProxyPass / http://backend.example.com

The ProxyErroroverride Directive

This directive takes a setting of on or off and enables you to intercept error messages
from backend machines and replace them with the equivalent reverse proxy server error
messages. This enables you to further hide the existence of the backend server and pro-
vide a consistent front end to different backend servers, even for error messages.

The ProxyPreserveHost Directive

When Apache is acting as a reverse proxy, the Host: header is modified in the proxy
request to match the hostname specified in the ProxyPass directive. The original Host :
header is placed in another header, X-Forwarded-Host, as will be explained in the next
section. In certain situations, it is desirable to preserve the original value of the header.
This can be done by setting ProxyPreserveHost on in the configuration file.

Additional Headers

Certain information about the request gets lost with a reverse proxy in place. The reverse
proxy records some of that information in new headers that are added to the request to
the backend server:

Apache as a Proxy Server 245 |

¢ X-Forwarded-For: IP address or hostname of the client
* X-Forwarded-Host: Original host requested

* X-Forwarded-Server: Hostname for the proxy server

Related Open Source and Commercial
Products

The Squid proxy is another popular open source proxy that can be found at
http://www.squid-cache.org.

The mod_backhand module (http://www.backhand.org/mod_backhand/) provides simi-
lar functionality to a reverse proxy, although at the time of this writing, it has not yet
been ported to work with Apache 2.0.

Covalent Technologies (http://www.covalent.net) provides several modules for
Apache 2.0 as part of its Enterprise Ready Server. Some of the modules allow passing
arbitrary information to the backend server (such as SSL client certificate information)
and others allow on-the-fly URL rewriting of the content served by the reverse proxy.

Netegrity (http://www.netegrity.com) has a secure reverse proxy product based on
Apache that allows for additional nice features such as single sign on.

Summary

This hour explained configuration of Apache as a forward and reverse proxy and how to
use Apache’s built-in caching filter mechanism. It explained the benefits of using a proxy
in different situations and provided detailed information of the available configuration
directives. Advanced reverse proxy functionality can be achieved in combination with
mod_rewrite, which is described in Hour 22. The filtering architecture of Apache allows
additional compression or translation modules to be used in conjunction with the proxy
functionality.

Q&A

Q Can I use absolute links in the backend server content?

A You can, but because HTML links will not be affected by ProxyPassReverse rules,
you must make sure that equivalent links exist in the reverse proxy or that the
reverse proxy has been configured to retrieve them from the backend server.

| 246

Hour 15

Quiz
1.
2.

What kind of information is lost due to the existence of the reverse proxy server?

How can you configure a reverse proxy so that all requests are passed to the back-
end server?

Quiz Answers

1.

The protocol used, either HTTP or HTTPS. In the case of HTTPS, all information
related to certificates, algorithms, key lengths, and so on, is lost.

The remote IP address, hostname, and port, and the reverse proxy host, address,
and port are also lost.

Some of the lost information is recorded in headers added by the reverse proxy
server.

Answer:

ProxyPass / http://backend.example.com
ProxyPassReverse / http://backend.example.com

Related Directives

This section contains directives mentioned in this hour or that are related to topics dis-
cussed in this hour. You can consult the Apache reference documentation for comprehen-
sive syntax information and usage.

Forward Proxy Directives

L]

ProxyRequests: Enable or disable forward-proxy engine
ProxyRemote: Specify remote proxy server

ProxyBlock: Restrict access to certain domains

A11owCONNECT: Allow CONNECT method for SSL tunneling
ProxyReceiveBufferSize: Tuning of buffer size for higher throughput
ProxyMaxForwards: Prevent infinite loops due to faulty configurations
NoProxy: Bypass remote proxy

ProxyDomain: Domain to add to local names

ProxyTimeout: Specify a timeout in seconds

ProxyVia: Handling of the vVia: header

Apache as a Proxy Server 247 |

Reverse Proxy Directives
* ProxyPass: Specify URLSs to associate with backend servers
* ProxyPassReverse: Modify redirect requests from the backend server

* ProxyPreserveHost: Preserve the original Host: header in request to backend
servers

* ProxyErroroOverride: Replace backend error messages

Caching Directives
* CacheOn: Enable caching functionality
e CacheEnable: Enable caching of specific URLs
e CacheDisable: Disable caching of specific URLs
e CacheMaxExpire, CacheMaxExpireMin: Maximum expiration time
e CachelLastModifiedFactor: Factor to determine the expiry time for resources

e CacheForceCompletion: Percentage of download before proxy will complete
request even if client connection is aborted

* CacheDefaultExpire: Expiration time for protocols that do not support the con-
cept

Further Reading

You can find a variety of resources related to proxy servers and caching at
http://directory.google.com/Top/Computers/Software/Internet/Servers/Proxy/.

Hour 22 deals with mod_rewrite, a module commonly used with the Apache reverse
proxy. For example, the following article explains how to use both modules to provide a
load balancing solution:
http://www.webtechniques.com/archives/1998/05/engelschall/.

The article refers to Apache 1.3, but the architecture can be applied to Apache 2.0 as
well.

HOUR 1 6

Tuning Apache

You might encounter scalability and performance problems if the number of
visitors to your Web site increases significantly. Although most bottlenecks
in Web performance nowadays are tied to dynamic page generation and
database access, some relate to the Web server. In this hour, you will learn

* Which operating system and Apache-related settings can limit the
server scalability or degrade performance

¢ About several tools for load testing Apache

* How to fine-tune Apache for optimum performance

* How to configure Apache to detect and prevent abusive behavior from
clients

Scalability

This section covers scalability problems and how to prevent them. This is
more of a “don’t do this” list, explaining limiting factors that can degrade
performance or prevent the server from scaling. Later sections deal with
proactive tuning of Apache for optimal performance.

| 250

Hour 16

Operating System Limits
Several operating system factors can prevent Apache from scaling. These factors are

related to process creation, memory limits, and maximum simultaneous number of open
files or connections.

) The Unix ulimit command enables you to set several of the limits covered in
et - .) .
/ this section on a per-process basis. Please refer to your operating system
SN . . .
~ documentation for details on ulimit's syntax.
Processes

Apache provides settings for preventing the number of server processes and threads from
exceeding certain limits. These settings affect scalability because they limit the number
of simultaneous connections to the Web server, which in turn affects the number of visi-
tors that you can service simultaneously. These settings vary from MPM to MPM and are
described in detail in Hour 11, “Multi-Processing Modules.”

The Apache MPM settings are in turn constrained by OS settings limiting the number of
processes and threads. How to change those limits varies from operating system to oper-
ating system. In Linux 2.0.x and 2.2.x kernels, it requires changing the NR_TASKS defined
in /usr/src/linux/include/linux/tasks.h and recompiling the kernel. In the 2.4.x
series, the limit can be accessed at runtime from the /proc/sys/kernel/threads-max
file. You can read the contents of the file with

cat /proc/sys/kernel/threads-max
and write to it using
echo value > /proc/sys/kernel/threads-max

In Linux (unlike most other Unix versions), there is a mapping between threads and
processes and they are similar from the point of view of the OS.

In Solaris, those parameters can be changed in the /etc/system file. Those changes
don’t require rebuilding the kernel, but might require a reboot to take effect. You can
change the total number of processes by changing the max_nprocs entry and the number
of processes allowed for a given user with maxuproc.

File Descriptors

Whenever a process opens a file (or a socket), a structure called a file descriptor is
assigned until the file is closed. The OS limits the number of file descriptors that a given

Tuning Apache 251 |

process can open, thus limiting the number of simultaneous connections the Web server
can have. How those settings are changed depends on the operating system. On Linux
systems, you can read or modify /proc/sys/fs/file-max (using echo and cat as
explained in the previous section). On Solaris systems, you must edit the value for
rlim_fd_max in the /etc/systenm file. This change will require a reboot to take effect.

You can find additional information at
http://httpd.apache.org/docs/misc/descriptors.html

Controlling External Processes

Apache provides several directives to control the amount of resources external processes
use. This applies to CGI scripts spawned from the server and programs executed via
Server Side Includes. Support for the following directives is available only on Unix and
varies from system to system:

* RLimitCPU: Accepts two parameters: the soft limit and the hard limit for the
amount of CPU time in seconds that a process is allowed. If the max keyword is
used, it indicates the maximum setting allowed by the operating system. The hard
limit is optional. The soft limit can be changed between restarts, and the hard limit
specifies the maximum allowed value for that setting. If you are confused, check
Hour 11 for a similar discussion with ServerLimit and MaxClients.

e RLimitMem: The syntax is identical to RLimitCPU but this directive specifies the
amount (in bytes) of memory used per process.
e RLimitNProc: The syntax is identical to RLimitCPU but this directive specifies the

number of processes.

These three directives are useful to prevent malicious or poorly written programs from
running out of control.

Apache Settings

This section presents you with different Apache settings that affect performance.

File System Access

Accessing files on disk is expensive. You should try to minimize the number of disk
accesses required for serving a request. Symbolic links, per-directory configuration files,
and content negotiation are some of factors that affect the number of disk accesses:

e Symbolic links: In Unix, a symbolic link (or symlink) is a special kind of file that
points to another file. It is created with the Unix 1n command, and is useful for
making a certain file appear in different places.

| 252

Hour 16

Two of the parameters that the Options directive allows are FollowSymLinks and
SymLinksIfOwnerMatch.

By default, Apache won’t follow symbolic links because they can be used to
bypass security settings. For example, you can create a symbolic link from a public
part of the Web site to a restricted file or directory not otherwise accessible via the
Web. So, also by default, Apache needs to perform a check to verify that the file
isn’t a symbolic link. If SymLinksIfOwnerMatch is present, it will follow a sym-
bolic link if the target file is owned by the same user that created the symbolic link.
Because those tests must be performed for every path element and for every path
that refers to a filesystem object, they can be expensive. If you control the content
creation, you should add an Options +FollowSymLinks directive to your configu-
ration and avoid the SymLinksIfOwnerMatch argument. In this way, the tests won’t
take place and performance isn’t affected.

Per-directory configuration files: As explained in Hour 4, “Getting Started with
Apache,” it is possible to have per-directory configuration files. These files, nor-
mally named .htaccess, provide a convenient way of configuring the server and
allow for some degree of delegated administration. However, if this feature is
enabled, Apache has to look for these files in each directory in the path leading to
the file being requested, resulting in expensive filesystem accesses. If you don’t
have a need for per-directory configuration files, you can disable this feature by
adding AllowOverride none to your configuration. Doing so will avoid the perfor-
mance penalty associated with accessing the filesystem looking for .htaccess
files.

Content negotiation: As explained in Hour 9, “Content Negotiation and
Environment Variables,” Apache can serve different versions of a file depending on
client language or preferences. This can be accomplished with file extensions, but
for every request, Apache must access the filesystem repeatedly looking for files
with appropriate extensions. If you need to use content negotiation, make sure that
you at least use a type-map file, minimizing accesses to disk.

Scoreboard file: This is a special file that the main Apache process uses to com-
municate with its children in certain older operating systems. You can specify its
location with ScoreBoardFile, but most modern platforms do not require this
directive. If this file is required, you might find improved performance if you place
it on a RAM disk. A RAM disk is a mechanism that allows a portion of the system
memory to be accessed as a filesystem. The details on creating a RAM disk vary
from system to system.

Tuning Apache 253 |

Additionally, take a look at the optimizing performance section to see how
mod_file_cache can be used to improve performance by mapping certain
files into memory.

N
\l
5
TN
NN

I’
o
&

Network and Status Settings

A number of network-related Apache settings can degrade performance:

* HostnameLookups: When HostnameLookups is set to on or double, Apache will
perform a DNS lookup to capture the hostname of the client, introducing a delay.
The default setting is HostnameLookups off. If you need to use the hostnames,
you can always process the request logs with a log resolver later, as explained in
Hour 8, “Logging and Monitoring.”

Certain other settings can trigger a DNS lookup, even if HostnameLookups is set to
off, such as when a hostname is used in Allow or Deny rules, as covered in Hour 7,
“Restricting Access.”

e Accept mechanism: As explained in Hour 11, Apache can use different mecha-
nisms to control how Apache children arbitrate requests. The optimal mechanism
depends on the specific platform and number of processors. You can find detailed
tests and performance analysis at
http://research.covalent.net/projects/osdl1.html. Additional information
can be found at http://httpd.apache.org/docs-2.0/misc/perf-tuning.html

* mod_status: This module, explained in Hour 8, collects statistics about the server,
connections, and requests, which slows down Apache. For optimal performance,
disable this module, or at least make sure that ExtendedStatus is set to off, which
is the default.

Load Testing Your Web Site

You can test the scalability and performance of your site with benchmarking and traffic
generation tools. There are many commercial and open source tools, with varying
degrees of sophistication. It is difficult to accurately simulate real-world request traffic
because visitors have different navigation patterns, access the Internet using connections
with different speeds, stop a download if it is taking too long, press the reload button
repeatedly if they get impatient, and so on. That is why some tools record actual network
traffic for later replay.

This section describes several tools that will help you discover performance problems
and determine how your program handles high-traffic situations.

| 254 Hour 16

ApacheBench

The Apache server comes with a simple but useful load-testing tool, called
ApacheBench, or ab. You can find it in the bin/ directory of the Apache distribution.

This tool enables you to request a certain URL a number of times and display a summary
of the result.

The following command requests the main page of the www.example.com server 1000
times, with 10 simultaneous clients at any given time:

$/usr/local/apache2/bin/ab -n 1000 -c¢ 10 http://www.example.com/

1 . . . -
ﬁ If you invoke ab without any arguments, you will get a complete listing of
\/

command-line options and syntax.

The result will look similar to the following:

This is ApacheBench, Version 2.0.32 <$Revision: 1.87 $>

Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd,
http://www.zeustech.net/org/

Copyright (c) 1998-2001 The Apache Software Foundation, http://www.apache.org/

Benchmarking www.example.com (be patient)
Completed 100 requests
Completed 200 requests
Completed 300 requests
Completed 400 requests
Completed 500 requests
Completed 600 requests
Completed 700 requests
Completed 800 requests
Completed 900 requests
Finished 1000 requests

Server Software: Apache/2.0.32
Server Hostname: www.example.com
Server Port: 80

Document Path: /

Document Length: 8667 bytes
Concurrency Level: 10

Time taken for tests: 64.525026 seconds
Complete requests: 1000

Failed requests: 0

Tuning Apache 255 |

Write errors: 0

Total transferred: 8911000 bytes

HTML transferred: 8667000 bytes

Requests per second: 15.50 [#/sec] (mean)

Time per request: 0.645 - (mean)

Time per request: 0.065 - (mean, across all concurrent requests)
Transfer rate: 134.86 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 19 62 59.7 45 727
Processing: 178 572 362.8 478 3151
Waiting: 18 114 176.9 74 1906
Total: 255 634 390.3 536 3301

Percentage of the requests served within a certain time (ms)

50% 536
66% 611
75% 662
80% 693
90% 872
95% 1436
98% 2162
99% 2461

100% 3301 (longest request)

These requests were made over the Internet to a sample server. You should get many
more requests per second if you conduct the test against a server in the same machine or
over a local network.

The output of the tool is self-explanatory. Some of the relevant results are the number of
requests per second and the average time it takes to service a request. You can also see
how more than 90% of the requests were served in less than one second.

You can play with different settings for the number of requests and with the number of
simultaneous clients to find the point at which your server slows down significantly.

JMeter

JMeter is a complete Web testing solution written in Java and is part of the Apache
Software Foundation projects. It enables you to load test different URLs and to script the
requests programmatically.

Figure 16.1 shows a sample JMeter test run. You can find more information at
http://jakarta.apache.org/jmeter/.

| 256 Hour 16

FIGURE 16.1 P apache ™eter M ES
file Edit Run Report Options Help
run. o

Test P GraphFull Results

" Thread Groug
T Geussian Rendom |
) TR Fequest
4 Reaussts overti.,
5 WorkBanch

Haiio: [Requests over time

Total time - hitpzfwavwapache.ong’
Rt i, apache.or)

RIE

There are many additional Web performance tools, such as Siege

http://www.joedog.org/siege/index.shtml. You can find many others at sites such as
http://freshmeat.net and http://sf.net.

Tuning Apache for Performance

Although previous sections explained which settings might prevent Apache from scaling,

the following are some techniques for proactively increasing the performance of your
server.

Mapping Files to Memory

As explained previously, accesses to disk affect performance significantly. Although most
modern operating systems keep a cache of the most frequently accessed files, Apache
also enables you to explicitly map a file into memory so that access to disk isn’t neces-
sary. The module that performs this mapping is mod_file_cache. You can specify a list
of files to memory map by using the MMapFile directive, which applies to the server as a
whole. An additional directive, CacheFile, takes a list of files, caches the file descriptors
at startup, and keeps them around between requests, saving time and resources for fre-
quently requested files.

Tuning Apache 257 |

Distributing the Load

Another way to increase performance is to distribute the load among several servers. This
can be done in a variety of ways:

* A hardware load balancer directing network and HTTP traffic across several
servers, making it look like a single server from the outside.

* A software load balancer solution using a reverse proxy with mod_rewrite.
Running Apache as a reverse proxy is covered in Hour 15, “Apache as a Proxy
Server,” and mod_rewrite is discussed in Hour 22.

» Separate servers providing images, large download files and other static material.
For example, you can place your images in a server called images.example.com
and link to them from your main server.

Caching

The fastest way to serve content is not to serve it! This can be achieved by using appro-
priate HTTP headers that instruct clients and proxies of the validity in time of the
requested resources. In this way, some resources that appear in multiple pages but don’t
change frequently, such as logos or navigation buttons, are transmitted only once for a
certain period of time.

Additionally, you can use mod_cache (described in Hour 15) to cache dynamic content so
that it doesn’t need to be created for every request. This is potentially a big performance
boost because dynamic content usually requires accessing databases, processing tem-
plates, and so on, which can take significant resources.

Reduce Transmitted Data

Another way to reduce the load on the servers is to reduce the amount of data being
transferred to the client. This in turn makes your clients’ Web site access faster, espe-
cially for those over slow links. You can do a number of things to achieve this:

* Reduce the number of images.

e Reduce the size of your images.

e Compress big downloadable files.

e Pre-compress static HTML and use content negotiation, as explained in Hour 9.

e Use mod_deflate to compress HTML content, as described in Hour 12, “Filtering
Modules.” This can be useful if CPU power is available and clients are connecting
over slow links. The content will be delivered quicker and the process will be free
sooner to answer additional requests.

| 258

Hour 16

Network Settings

HTTP 1.1 allows multiple requests to be served over a single connection. HTTP 1.0
allows the same thing with keep-alive extensions. The KeepAliveTimeout directive
enables you to specify the maximum time in seconds that the server will wait before
closing an inactive connection. Increasing the timeout means that you will increase the
chance of the connection being reused. On the other hand, it also ties up the connection
and Apache process during the waiting time, which can prevent scalability, as discussed
earlier in the hour.

The SendBufferSize directive, mentioned in Hour 11, can be useful to improve perfor-
mance in specific situations.

Performance Tuning for Specific Apache Modules

You can take a number of steps to optimize content generation with specific Apache
modules such as mod_perl, and you will need to consult your specific module documen-
tation. You can find a mod_perl performance guide at
http://perl.apache.org/guide/performance.html.

Loadable Modules

Using shared modules has a certain performance penalty associated with it—around 5%.
If you want to improve performance further in your server, you might want to consider
compiling all required modules statically into the server. In most cases, the flexibility
that comes with loadable module support offsets the performance loss.

Preventing Abuse

Denial of service (DoS) attacks work by swamping your server with a great number of
simultaneous requests, slowing down the server or preventing access altogether to legiti-
mate clients. DoS attacks are difficult to prevent in general, and usually the most effec-
tive way to address them is at the network or operating system level. One example is
blocking specific addresses from making requests to the server; although you can block
those addresses at the Web server level, it is more efficient to block them at the network
firewall/router or with the operating system network filters.

Other kinds of abuse include posting extremely big requests or opening a great number
of simultaneous connections. You can limit the size of requests and timeouts to minimize
the effect of attacks. The default request timeout is 300 seconds, but you can change it

Tuning Apache 259 |

with the TimeOut directive. A number of directives enable you to control the size of the
request body and headers: LimitRequestBody, LimitRequestFields,
LimitRequestFieldSize, LimitRequestLine, and LimitXMLRequestBody.

To prevent abuse, the mod_bwshare module (referenced in Hour 24, “Additional Apache
Modules and Projects”) enables you to limit the number of files or bytes that a given
client can download from the server.

Robots

Robots, Web spiders, and Web crawlers are names that define a category of programs that
download pages from your Web site, recursively following your site’s links. Web search
engines use these programs to scan the Internet for Web servers, download their content,
and index it. Normal users use them to download an entire Web site or portion of a Web
site for later offline browsing. Normally these programs are well behaved, but sometimes
they can be very aggressive and swamp your Web site with too many simultaneous con-
nections or become caught in cyclic loops.

Well-behaved spiders will request a special file, called robots.txt, that contains instruc-
tions about how to access your Web site and which parts of the Web site won’t be avail-
able to them.

The syntax for the file can be found at http://www.robotstxt.org/.

But sometimes Web spiders don’t honor the robots. txt file. In those cases, you can use
the Robotcop Apache 2.0 module, which enables you to stop misbehaving robots. The
module can be found at http://www.robotcop.org/.

Troubleshooting

In certain occasions, you might need to troubleshoot your Apache installation. Although
it occurs rarely, certain combinations of modules or development versions of Apache can
cause some of the children to crash and core dump. You can specify where the core file is
written with the CoreDumpDirectory directive. You can analyze the contents of this file
to investigate what the cause of the crash is or to report a bug. This is an advanced topic
and you can find information at http://httpd.apache.org/dev/debugging.html.

In other situations, you might need to troubleshoot the interaction of Apache with certain
clients. The previous URL contains some links for tools that will help you achieve that.
You can also find the TCPWatch GUI tool at
http://hathaway.freezope.org/Software/TCPWatch.

| 260

Hour 16

Summary

This hour provided you with information on Apache and operating system settings that
can affect scalability and performance. In most cases, however, the problems in Web site

scalability relate to dynamic content generation and database access. Hardware-related
improvements, such as high-quality network cards and drivers, increased memory, and
disk arrays can also provide enhanced performance.

Q&A

Q
A

(=)

How can I measure whether my site is fast enough?

Many developers test their sites locally or over an internal network, but if you run a
public Web site, chances are good that many of your users will access it over slow
links. Try navigating your Web site from a dialup account and make sure that your
pages load fast enough, with the rule of thumb being that pages should load in less
than three seconds.

Is optimization always the best solution for scalability?

It depends on the situation. If you adequately designed your Web infrastructure,
you might be able to handle increased demand by simply adding a new machine
behind a load balancer. This might be more cost-effective than spending the time to
fine-tune your server or application code.

. Name some Apache settings that might limit scalability or affect Apache perfor-

mance.

Name some operating system settings that might limit scalability.

3. Name some approaches to improve performance.

Quiz Answers

l.

Some of the Apache settings that might affect scalability include the
FollowSymLinks, SymLinksIfOwnerMatch arguments to the Options directive,
enabling per-directory configuration files, hostname lookups, having a scoreboard
file, and statistics collection with mod_status.

Some operating system settings that might affect scalability include limits for num-
ber of processes, open file descriptors, and memory allowed per process.

Tuning Apache 261 |

The following are some suggestions for improving performance: load distribution
via a hardware load balancer or reverse proxy, data compression, caching, mapping
files to memory, and compiling modules statically.

Related Directives

This section contains new directives introduced in this hour. You can consult the Apache
reference documentation for comprehensive syntax information and usage.

Preventing Abuse
* LimitRequestBody: Limit the request body size

e LimitRequestFields: Limit the number of HTTP headers in the request
* LimitRequestFieldSize: Limit the size of the request headers
* LimitRequestLine: Limit the size of the first line of the request

e LimitXMLRequestBody: Limit the size of DAV requests

Network Settings
* KeepAliveTimeout: Time in seconds to wait before closing an inactive connection
e Timeout: Timeout for HTTP requests

* SendBufferSize: Size in bytes of the transmission buffer

Processes Limits
* RLimitCPU: Limit processing time
e RLimitMem: Limit memory

e RLimitNProc: Limit number of processes

File Related

* MMapFile: Map frequently used files to memory

» cacheFile: Cache file descriptors for frequently accessed files

Further Reading

The Scalable mailing list covers Web-related scalability issues including servers, disk
arrays, and network interfaces. You can find archives of the list at
http://archive.develooper.com/scalable@arctic.org/.

| 262

Hour 16

An additional bandwidth control module can be found at
http://www.snert.com/Software/Throttle/, and an article explaining it can be found
at http://www.webtechniques.com/archives/2001/11/serv/. Unfortunately, at the
time this book was written, this module was available only for Apache 1.3.

You can find additional information about effective Web caching at
http://www.mnot.net/cache_docs/ and
http://linux.oreillynet.com/pub/a/linux/2002/02/28/cachefriendly.html.

HOUR 1 7

Setting Up a Secure
Server

This hour explains how to set up an Apache server capable of secure trans-
actions. In this hour, you will learn

* The installation and configuration of the mod_ss1 Apache module

e The SSL/TLS family of protocols and the underlying cryptography
concepts

* What certificates are and how to create and manage them

The Need for Security

As the Internet became mainstream and the number of companies, individu-
als, and government agencies using it grew, so did the number and type of
transactions that needed protection. Those include financial transactions,
such as banking operations and electronic commerce, as well as exchange of
sensitive information, such as medical records and corporate documents.

| 264

Hour 17

There are three requirements to carry on secure communications on the Internet: confi-
dentiality, integrity, and authentication.

Confidentiality

Confidentiality is the most obvious requirement for secure communications. If you are
transmitting or accessing sensitive information such as your credit card number or your
personal medical history, you certainly do not want a stranger to get hold of it.

Integrity

The information contained in the exchanged messages must be protected from external
manipulation. That is, if you place an order online to buy 100 shares of stock, you do not
want to allow anyone to intercept the message, change it to an order to buy 1000 shares,
or replace the original message. Additionally, you want to prevent an attacker from per-
forming replay attacks, which, instead of modifying the original message, simply resend
it several times to achieve a cumulative effect.

Authentication

You need to decide whether to trust the organization or individual you are communicat-
ing with. To achieve this, you must authenticate the identity of the other party in the
communication.

The science of cryptography studies the algorithms and methods used to securely trans-
mit messages, ensuring the goals of confidentiality, integrity, and authenticity.
Cryptanalysis is the science of breaking cryptographic systems.

The SSL Protocol

SSL stands for Secure Sockets Layer and TLS stands for Transport Layer Security. They
are a family of protocols that were originally designed to provide security for HTTP
transactions, but that also can be used for a variety of other Internet protocols such as
IMAP and NNTP. HTTP running over SSL is referred to as secure HTTP.

Netscape released SSL version 2 in 1994 and SSL version 3 in 1995. TLS is an IETF
standard designed to standardize SSL as an Internet protocol. It is just a modification of
SSL version 3 with a small number of added features and minor cleanups. The TLS
acronym is the result of arguments between Microsoft and Netscape over the naming of
the protocol because each company proposed its own name. However, the name has not
stuck and most people refer to these protocols simply as SSL. Unless otherwise speci-
fied, the rest of this hour refers to SSL/TLS as SSL.

Setting Up a Secure Server

265 |

You specify that you want to connect to a server using SSL by replacing http with https
in the protocol component of a URI. The default port for HTTP over SSL is 443.

The following sections explain how SSL addresses the confidentiality, integrity, and
authentication requirements outlined in the previous section. In doing so, it explains, in a
simplified manner, the underlying mathematical and cryptographic principles SSL is
based on.

Confidentiality

The SSL protocol protects data from eavesdropping by encrypting it. Encryption is the
process of converting a message, the plaintext, into a new encrypted message, the cipher-
text. Although the plaintext is readable by everyone, the ciphertext will be completely
unintelligible to an eavesdropper. Decryption is the reverse process, which transforms the
ciphertext into the original plaintext.

Usually encryption and decryption processes involve an additional piece of information:
a key. If both sender and receiver share the same key, the process is referred to as sym-
metric cryptography. If sender and receiver have different, complementary keys, the
process is called asymmetric or public key cryptography.

Symmetric Cryptography

If the key used to both encrypt and decrypt the message is the same, the process is
known as symmetric cryptography. DES, Triple-DES, RC4, and RC2 are algorithms used
for symmetric key cryptography. Many of these algorithms can have different key sizes,
measured in bits. In general, given an algorithm, the greater the number of bits in the
key, the more secure the algorithm is and the slower it will run because of the increased
computational needs of performing the algorithm.

Symmetric cryptography is relatively fast compared to public key cryptography, which is
explained in the next section. Symmetric cryptography has two main drawbacks, how-
ever. One drawback is that keys should be changed periodically, to avoid providing an
eavesdropper with access to large amounts of material encrypted with the same key. The
other drawback is the key distribution problem: How to get the keys to each one of the
parties in a safe manner? This was one of the original limiting factors, and before the
invention of public key cryptography, the problem was solved by periodically having
people traveling around with suitcases full of keys.

Public Key Cryptography
Public key cryptography takes a different approach. Instead of both parties sharing the

same key, there is a pair of keys: one public and the other private. The public key can be
widely distributed, whereas the owner keeps the private key secret. These two keys are

| 266

Hour 17

complementary; a message encrypted with one of the keys can be decrypted only by the
other key.

Anyone wanting to transmit a secure message to you can encrypt the message using your
public key, assured that only the owner of the private key—you—can decrypt it. Even if
the attacker has access to the public key, he cannot decrypt the communication. In fact,
you want the public key to be as widely available as possible. Public key cryptography
can also be used to provide message integrity and authentication. RSA is the most popu-
lar public key algorithm.

The assertion that only the owner of the private key can decrypt it means that with the
current knowledge of cryptography and availability of computing power, an attacker will
not be able to break the encryption by brute force alone in a reasonable timeframe. If the
algorithm or its implementation is flawed, realistic attacks are possible.

o Public key cryptography is similar to giving away many identical lockpads
/ and retaining the key that opens them all. Anybody who wants to send you
= a message privately can do so by putting it in a safe and locking it with one

of those lockpads (public keys) before sending it to you. Only you have the
appropriate key (private key) to open that lockpad (decrypt the message).

The SSL protocol uses public key cryptography in an initial handshake phase to securely
exchange symmetric keys that can then be used to encrypt the communication.

Integrity

Data integrity can be preserved by performing a special calculation on the contents of
the message and storing the result with the message itself. When the message arrives at
its destination, the recipient can perform the same calculation and compare the results. If
the contents of the message changed, the results of the calculation will be different.

Digest algorithms perform just that process, creating message digests. A message digest
is a method of creating a fixed-length representation of an arbitrary message that
uniquely identifies it. You can think of it as the fingerprint of the message. A good mes-
sage digest algorithm should be irreversible and collision resistant, at least for practical
purposes. Irreversible means that the original message cannot be obtained from the
digest and collision resistant means that no two different messages should have the same
digest. Examples of digest algorithms are MD5 and SHA.

Setting Up a Secure Server 267 |

Message digests alone, however, do not guarantee the integrity of the message because
an attacker could change the text and the message digest. Message authentication codes,
or MAC:s, are similar to message digests, but incorporate a shared secret key in the
process. The result of the algorithm depends both on the message and the key used.
Because the attacker has no access to the key, he cannot modify both the message and
the digest. HMAC is an example of a message authentication code algorithm.

The SSL protocol uses MAC codes to avoid replay attacks and to assure integrity of the
transmitted information.

Authentication

SSL uses certificates to authenticate parties in a communication. Public key cryptogra-
phy can be used to digitally sign messages. In fact, just by encrypting a message with
your secret key, the receiver can guarantee it came from you. Other digital signature
algorithms involve first calculating a digest of the message and then signing the digest.

You can tell that the person who created that public and private key pair is the one send-
ing the message. But how can you tie that key to a person or organization that you can
trust in the real world? Otherwise, an attacker could impersonate his identity and distrib-
ute a different public key, claiming it is the legitimate one. Trust can be achieved by
using digital certificates. Digital certificates are electronic documents that contain a pub-
lic key and information about its owner (name, address, and so on). To be useful, the cer-
tificate must be signed by a trusted third party (certification authority, or CA) who
certifies that the information is correct. There are many different kinds of CAs, as

described later in the hour. Some of them are commercial entities, providing certification
services to companies conducting business over the Internet. Other CAs are created by
companies providing internal certification services.

The CA guarantees that the information in the certificate is correct and that the key
belongs to that individual or organization. Certificates have a period of validity and can
expire or be revoked. Certificates can be chained so that the certification process can be
delegated. For example, a trusted entity can certify companies, which in turn can take
care of certifying its own employees.

If this whole process is to be effective and trusted, the certificate authority must require
appropriate proof of identity from individuals and organizations before it issues a certifi-
cate.

By default, browsers include a collection of root certificates for trusted certificate author-
ities.

| 268

Hour 17

SSL and Certificates

The main standard defining certificates is X.509, adapted for Internet usage. An X.509
certificate contains the following information:

 Issuer: The name of the signer of the certificate

e Subject: The person holding the key being certified

e Subject public key: The public key of the subject

* Control information: Data such as the dates in which the certificate is valid

 Signature: The signature that covers the previous data

You can check a real-life certificate by connecting to a secure server with your browser.
If the connection has been successful, a little padlock icon or another visual clue will be
added to the status bar of your browser. With Internet Explorer, you can click the locked
padlock icon to open a page containing information on the SSL connection and the
remote server certificate. You can access the same information by selecting Properties,
and then Certificates from the File menu. Other browsers, such as Netscape, Mozilla, and
Konqueror provide a similar interface.

Open the https://www.ibm.com URL in your browser and analyze the certificate, fol-
lowing the steps outlined in the preceding paragraph. You can see how the issuer of the
certificate is the Equifax Secure E-Business Certification Authority-2, which, in turn, has
been certified by the Thawte CA. The page downloaded seamlessly because Thawte is a
trusted CA that has its own certificates bundled with Internet Explorer and Netscape
Navigator.

To check which certificates are bundled with your Internet Explorer browser, select
Tools, Internet Options, Content, Certificates, Trusted Root Certification Authorities.

You can see that both issuer and subject are provided as distinguished names (DN), a
structured way of providing a unique identifier for every element on the network. In the
case of the IBM certificate, the DN is C=US, S=New York, L=Armonk, O=IBM,
CN=www. ibm.com.

C stands for country, S for state, L for locality, O for organization, and CN for common
name. In the case of a Web site certificate, the common name identifies the fully quali-
fied domain name of the Web site (FQDN). This is the server name part of the URL; in
this case, www.ibm.com. If this does not match what you typed in the top bar, the browser
will issue an error.

Figure 17.1 shows the certificate information described earlier.

Setting Up a Secure Server

269 |

FIGURE 17.1 “ibr.com - Microsoft Internet Explarer EEE
Fie Edt Yew Favorites Toos Help | uiE
Certificate informa- | Ghek - o - @ B (| Qoeerch (mireverres oy A S W -H ¥ & B
tion. I S E
G Gt | onticanea | B
E”d] show: [<al> =
iom.com
| Feld [value =
[Fversion v3
[P serial nurber 1836
Pralocok HypeiTest Transfer Protocl with Piivacy [Elsianatura ageritm mdsR5A
) [Eltssuer Ecufae Secure E-Busness Che,,, —
Type: ot Available (=] velid from Fridsy, aprl 06, 2001 10:16:1...
Comnection: S5L.3.0, DES with 56 ki enceyptice Medium]: RS& [Elvaiito Seturday, April 20, 2002 10:1...
with 1024 bil skchange [SETT v Jom, com, TEM, Atmon, ...
i/ bmcoens Elpsic key RSA (1024 Bits) |
IUAL]
= v, ibm,com
Siza: Mol Avalabie =IEM
= Armonk
= Hlews Yerk
- =15
Crested Mot Available
Modfied: Mot Available:
Laitificates Analyze Edt Propetties | Copy toFle.., |
L T e o |
R =|
8] Rttp: e, lbm, com/busnessoenter © D Intemet

SSL Protocol Summary
You have seen how SSL achieves confidentiality via encryption, integrity via message
authentication codes, and authentication via certificates and digital signatures.

The process to establish an SSL connection is the following:

1. The user uses his browser to connect to the remote Apache server.

2. The handshake phase starts, and the browser and server exchange keys and certifi-
cate information.

3. The browser checks the validity of the server certificate, including that it has not
expired, that it has been issued by a trusted CA, and so on.

4. Optionally, the server can require the client to present a valid certificate as well.
5. Server and client use each other’s public key to securely agree on a symmetric key.

6. The handshake phase concludes and transmission continues using symmetric cryp-
tography.

Installing SSL

Now that you’ve learned all about SSL, you need to install SLL support for Apache. SSL
support is provided by mod_ss1, a module that is included with Apache but is not enabled

| 270

Hour 17

by default. mod_ss1, in turn, requires the OpenSSL library—an open source implementa-
tion of the SSL/TLS protocols and a variety of other cryptographic algorithms. OpenSSL
is based on the SSLeay library developed by Eric A. Young and Tim J. Hudson. You can
learn more about mod_ss1 and OpenSSL in the Web sites noted in the reference section
at the end of the hour.

OpenSSL

This section explains how to download and install the OpenSSL toolkit for both
Windows and Unix variants.

Windows

At the time of writing this book, the Apache Software Foundation does not provide an
SSL-enabled binary installer for Windows due to legal restrictions. That situation is
likely to change soon, and you will be able to access precompiled SSL module and
libraries. Check the Apache site for up-to-date information. The rest of the hour assumes
that you have access to the openssl.exe command line utility, which will be included in
the bin/ directory of the SSL-enabled Apache distribution. It is a utility for generating
certificates, keys, signing requests, and so on.

Unix
If you are running a recent Linux or FreeBSD distribution, OpenSSL might already be

installed in your system. Use the package management tools bundled with your distribu-
tion to determine whether that is the case or, otherwise, to install it.

If you need to install OpenSSL from source, you can download OpenSSL from
http://www.openssl.org. After you have downloaded the software, you need to uncom-
press it and cd into the created directory:

gunzip < openssl*.tar.gz | tar xvf -
cd openssl*

OpenSSL contains a config script to help you build the software. You must provide the
path to which the software will install. The path used in this hour is
/usr/local/ssl/install, and you probably need to have root privileges to install the
software there. You can install the software as a regular user, but to do so, you will need
to change the path. Then you must build and install the software:

./config --prefix=/usr/local/ssl/install \
--openssldir=/usr/local/ssl/install/openssl
make

make install

If everything went well, you have now successfully installed the OpenSSL toolkit. The
openssl command-line tool will be located in /usr/local/ssl/install/bin/.

This tool is used to create and manipulate certificates and keys and its usage is described
in a later section on certificates.

Setting Up a Secure Server 271 |

mod_ssl

In the past, SSL extensions for Apache had to be distributed separately because of export
restrictions. Although there are limitations in redistribution of binaries that need to be
solved and clarified, these restrictions no longer exist for distribution of source code, and
mod_ssl is bundled and integrated with Apache 2.0. This section describes the steps nec-
essary to build and install this module. mod_ss1 depends on the OpenSSL library, so a
valid OpenSSL installation is required.

Unix
If you are using the Apache 2.0 server that came installed with your operating system,

chances are that it already includes mod_ss1. Use the package management tools bundled
with your distribution to install mod_ss1 if it is not present in your system.

When you build Apache 2.0 from source, you must pass the following options to enable
and build mod_ss1 at compile time.

--enable-ssl --with-ssl=/usr/local/ssl/install/openssl

This assumes that you installed OpenSSL in the location described in previous sections.

If you compiled mod_ss1 statically into Apache, you can check whether it is present by
issuing the following command, which provides a list of compiled-in modules:

/usr/local/apache2/bin/httpd -1
The command assumes that you installed Apache in the /usr/local/apache2 directory.

If mod_ss1 was compiled as a dynamic loadable module, the following line must be
added or uncommented to the configuration file:

LoadModule ssl_module modules/libmodssl.so

Managing Certificates

To have a working SSL server implementation, the first step is to create a server certifi-
cate. This section explains in detail how to create and manage certificates and keys by
using the openssl command-line tool. For example, if you are using SSL for an

| 272

Hour 17

]\
£

e-commerce site, encryption prevents customer data from eavesdroppers and the certifi-
cate enables customers to verify that you are who you claim to be.

. _ 1 The examples refer to the Unix version of the command-line program

openssl. If you are running under Windows, you need to use openssl.exe

~ instead and change the paths of the examples to use backslashes instead of
forward slashes. The examples also assume that OpenSSL was installed in the
path described earlier in the OpenSSL installation section.

Creating a Key Pair

You must have a public/private key pair before you can create a certificate request.
Assume that the FQDN for the certificate you want to create is www.example.com. (You
will need to substitute this name for the FQDN of the machine you have installed Apache
on.) You can create the keys by issuing the following command:

./usr/local/ssl/install/bin/openssl genrsa -des3 -rand file7:file2:file3 \
-out www.example.com.key 1024

genrsa indicates to OpenSSL that you want to generate a key pair.
des3 indicates that the private key should be encrypted and protected by a pass phrase.

The rand switch is used to provide OpenSSL with random data to ensure that the gener-
ated keys are unique and unpredictable. Substitute file?, file2, and so on, for the path
to several large, relatively random files for this purpose (such as a kernel image, com-
pressed log files, and so on). This switch is not necessary on Windows because the ran-
dom data is automatically generated by other means.

The out switch indicates where to store the results.
1024 indicates the number of bits of the generated key.

The result of invoking this command looks like this:

625152 semi-random bytes loaded

Generating RSA private key, 1024 bit long modulus
,,,,, ++++++

......................... e+ttt

e is 65537 (0x10001)

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

Setting Up a Secure Server 273 |

As you can see, you will be asked to provide a pass phrase. Choose a secure one. The
pass phrase is necessary to protect the private key and you will be asked for it whenever
you want to start the server. You can choose not to protect the key. This is convenient
because you will not need to enter the pass phrase during reboots, but it is highly inse-
cure and a compromise of the server means a compromise of the key as well. In any
case, you can choose to unprotect the key either by leaving out the -des3 switch in the
generation phase or by issuing the following command:

./usr/local/ssl/install/bin/openssl rsa -in www.example.com.key \
-out www.example.com.key.unsecure

It is a good idea to back up the www.example.com.key file. You can learn about the con-
tents of the key file by issuing the following command:

./usr/local/ssl/bin/openssl rsa -noout -text -in www.example.com.key

Creating a Certificate Signing Request

To get a certificate issued by a CA, you must submit what is called a certificate signing
request. To create a request, issue the following command:

./usr/local/ssl/install/bin/openssl req -new -key www.example.com.key
-out www.example.com.csr

You will be prompted for the certificate information:

Using configuration from /usr/local/ssl/install/openssl/openssl.cnf
Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:CA

Locality Name (eg, city) []: San Francisco

Organization Name (eg, company) [Internet Widgits Pty Ltd]:.
Organizational Unit Name (eg, section) []:.

Common Name (eg, YOUR name) []:www.example.com

Email Address []:administrator@example.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

It is important that the Common Name field entry matches the address that visitors to your
Web site will type in their browsers. This is one of the checks that the browser will

| 274

Hour 17

perform for the remote server certificate. If the names differ, a warning indicating the
mismatch will be issued to the user.

The certificate is now stored in www.example.com.csr. You can learn about the contents
of the certificate via the following command:

./usr/local/ssl/install/bin/openssl req -noout -text \
-in www.example.com.csr

You can submit the certificate signing request file to a CA for processing. VeriSign and
Thawte are two of those CAs. You can learn more about their particular submission pro-
cedures at their Web sites:

e VeriSign: http://digitalid.verisign.com/server/apacheNotice.htm

e Thawte: http://www.thawte.com/certs/server/request.html

Creating a Self-Signed Certificate

You can also create a self-signed certificate. That is, you can be both the issuer and the
subject of the certificate. Although this is not very useful for a commercial Web site, it
will enable you to test your installation of mod_ss1 or to have a secure Web server while
you wait for the official certificate from the CA.

./usr/local/ssl/install/bin/openssl x509 -req -days 30 \

-in www.example.com.csr -signkey www.example.com.key \
-out www.example.com.cert

You need to copy your certificate www.example.com.cert (either the one returned by the
CA or your self-signed one) to /usr/local/ssl/install/openssl/certs/ and your key
to /usr/local/ssl/install/openssl/private/.

Protect your key file by issuing the following command:

chmod 400 www.example.com.key

SSL Configuration

The previous sections introduced the (not-so-basic) concepts behind SSL and you have
learned how to generate keys and certificates. Now, finally, you can configure Apache to
support SSL. mod_ss1 must either be compiled statically or, if you have compiled as a
loadable module, the appropriate LoadModule directive must be present in the file.

If you compiled Apache yourself, a new Apache configuration file, named ssl.conf,
should be present in the conf/ directory. That file contains a sample Apache SSL config-
uration and is referenced from the main httpd.conf file via an Include directive.

Setting Up a Secure Server 275 |

If you want to start your configuration from scratch, you can add the following configu-
ration snippet to your Apache configuration file:

Listen 80

Listen 443

<VirtualHost _default_:443>

ServerName www.example.com

SSLEngine on

SSLCertificateFile \
/usr/local/ssl/install/openssl/certs/www.example.com.cert
SSLCertificateKeyFile \
/usr/loca/ssl/install/openssl/certs/www.example.com.key
</VirtualHost>

With the previous configuration, you set up a new virtual host that will listen to port 443
(the default port for HTTPS) and you enable SSL on that virtual host with the SSLEngine
directive.

You need to indicate where to find the server’s certificate and the file containing the
associated key. You do so by using SSLCertificateFile and SSLCertificateKeyfile
directives.

Starting the Server

Now you can stop the server if it is running, and start it again. If your key is protected by
a pass phrase, you will be prompted for it. After this, Apache will start and you should be
able to connect securely to it via the https://www.example.com/ URL.

If you compiled and installed Apache yourself, in many of the vendor configuration files,
you can see that the SSL directives are surrounded by an <IfDefine SSL> block. That
allows for conditional starting of the server in SSL mode. If you start the httpd server
binary directly, you can pass it the -DSSL flag at startup. You can also use the apachectl
script by issuing the apachectl startssl command. Finally, if you always want to start
Apache with SSL support, you can just remove the <ifDefine> section and start Apache
in the usual way.

If you are unable to successfully start your server, check the Apache error log for clues
about what might have gone wrong. For example, if you cannot bind to the port, make
sure that another Apache is not running already. You must have administrator privileges
to bind to port 443; otherwise, you can change the port to 8443 and access the URL via
https://www.example.com:8443.

Configuration Directives

mod_ss1 provides comprehensive technical reference documentation. This information
will not be reproduced here; rather, I will explain what is possible and which

| 276

Hour 17

configuration directives you need to use. You can then refer to the online SSL. documen-
tation bundled with Apache for the specific syntax or options.

Algorithms

You can control which ciphers and protocols are used via the SSLCipherSuite and
SSLProtocol commands. For example, you can configure the server to use only strong
encryption with the following configuration:

SSLProtocol all
SSLCipherSuite HIGH:MEDIUM

See the Apache documentation for a detailed description of all available ciphers and pro-
tocols.

Client Certificates

Similarly to how clients can verify the identity of servers using server certificates, servers
can verify the identity of clients by requiring a client certificate and making sure that it is
valid.

SSLCACertificateFile and SSLCACertificatePath are two Apache directives used to
specify trusted Certificate Authorities. Only clients presenting certificates signed by these
CAs will be allowed access to the server.

The SSLCACertificateFile directive takes a file containing a list of CAs as an argu-
ment. Alternatively, you could use the SSLCACertificatePath directive to specify a
directory containing trusted CA files. Those files must have a specific format, described
in the documentation. SSLVerifyClient enables or disables client certificate verification.
SSLVerifyDepth controls the number of delegation levels allowed for a client certificate.
The SSLCARevocationFile and SSLCARevocationPath directives enable you to specify
certificate revocation lists to invalidate certificates.

Performance

SSLis a protocol that requires intensive calculations. mod_ss1 and OpenSSL allow sev-
eral ways to speed up the protocol by caching some of the information about the connec-
tion. You can cache certain settings using the SSLSessionCache and
SSLSessionCacheTimeout directives. There is also built-in support for specialized cryp-
tographic hardware that will perform the CPU-intensive computations and offload the
main processor. The SSLMutex directive enables you to control the internal locking
mechanism of the SSL engine. The SSLRandomSeed directive enables you to specify the
mechanism to seed the random-number generator required for certain operations. The
settings of both directives can have an impact on performance.

Setting Up a Secure Server 277 |

Logging

mod_ss1 hooks into Apache’s logging system and provides support for logging any SSL-
related aspect of the request, ranging from the protocol used to the information contained
in specific elements of a client certificate. This information can also be passed to CGI
scripts via environment variables by using the StdEnvvars argument to the Options
directive. SSLLog and SSLLogLevel enable you to specify where to store SSL-specific
errors and which kind of errors to log. You can get a listing of the available SSL vari-
ables at http://httpd.apache.org/docs-2.0/ssl/ssl_compat.html.

The SSLOptions Directive

Many of these options can be applied in a per-directory or per-location basis. The SSL
parameters might be renegotiated for those URLs. This can be controlled via the
SSLOptions directive.

The SSLPassprase directive can be used to avoid having to enter a pass phrase at startup
by designating an external program that will be invoked to provide it.

Access Control

The SSLRequireSSL directive enables you to force clients to access the server using SSL.
The SSLRequire directive enables you to specify a set of rules that have to be met before
the client is allowed access. SSLRequire syntax can be very complex, but itallows an
incredible amount of flexibility. Listing 17.1 shows a sample configuration from the
mod_ss1 documentation that restricts access based on the client certificate and the net-
work the request came from. Access will be granted if one of the following is met:

e The SSL connection does not use an export (weak) cipher or a NULL cipher, the
certificate has been issued by a particular CA and for a particular group, and the
access takes place during workdays (Monday to Friday) and working hours (8:00
a.m. to 8:00 p.m.).

¢ The client comes from an internal, trusted network.

You can check the documentation for SSLRequire for a complete syntax reference.

Listing 17.1 SSLRequire Example

SSLRequire (%{SSL_CIPHER} !~ m/~(EXP|NULL)-/ \
and %{SSL_CLIENT S DN O} eq "Snake 0il, Ltd." \
and %{SSL_CLIENT S DN_OU} in {"Staff", "CA", "Dev"} \
and %{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5 \
and %{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 20)\
or %{REMOTE_ADDR} =~ m/"192\.76\.162\.[0-9]+$/

| 278

Hour 17

Reverse Proxy with SSL

Although at the time this book was written the SSL reverse proxy functionality was not
included in mod_ss1 for Apache 2.0, it is likely to be included in the future. That func-
tionality enables you to encrypt the reverse proxy connection to backend servers and to
perform client and server certificate authentication on that connection. The related direc-
tives are SSLProxyMachineCertificatePath, SSLProxyMachineCertificateFile,
SSLProxyVerify, SSLProxyVerifyDepth, SSLProxyCACertificatePath,
SSLProxyEngine, and SSLProxyCACertificateFile. Their syntax is similar to their
regular counterparts. You can find more information about the Apache reverse proxy in
Hour 15.

Problems with Specific Browser Versions

Some browsers have known problems with specific versions of the SSL protocol or cer-
tain features. Certain environment variables can be set to force specific behaviors. The
following example, included in the default configuration file, is a workaround for bugs in
the SSL implementation of Internet Explorer browsers.

SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0

Summary

This hour explained the fundamentals of the SSL protocol and mod_ss1, the Apache
module that implements support for SSL. You learned how to install and configure
mod_ss1 and the OpenSSL libraries, and how to use the openssl command-line tool for
certificate and key generation and management. You can access the mod_ss1 reference
documentation for in-depth syntax explanation and additional configuration information.
Bear in mind also that SSL is just part of maintaining a secure server, which includes
applying security patches, OS configuration, access control, physical security, and so on.

Q&A

Q Can I have SSL with name-based virtual hosting?

A A question that comes up frequently is how to make name-based virtual hosts work
with SSL. The answer is that you can’t, at least currently. Name-based virtual hosts
depend on the Host header of the HTTP request, but the certificate verification
happens when the SSL connection is being established and no HTTP request can
be sent. There is a protocol for upgrading an existing HTTP connection to TLS, but
it is mostly unsupported by current browsers (see RFC 2817).

Setting Up a Secure Server 279 |

Q Can I use SSL with other protocols?

A mod_ssl implements the SSL protocol as a filter. Other protocols using the same
Apache server can easily take advantage of the SSL.

Quiz
1. How can you prevent the prompting for a password at startup?
2. How can you use the openssl command-line tool to connect to an SSL-enabled

server?

The openssl command-line tool enables you to connect to SSL-enabled servers.
Read the documentation and figure out how to do it. You can use the Unix man
page for openssl or read the documentation at http://www.openssl.org.

Quiz Answers

1. You can use the SSLPassPhrase method to point to a program that will provide the
pass phrase. The program should make the appropriate checks to make sure that it
reveals the pass phrase only to Apache.

Additionally, you could simply remove the password protection from the file con-
taining the key, as described earlier in the hour. This has severe security implica-
tions, but it can be very convenient.

openssl s_client -connect www.ibm.com:443

You will see information related to the connection, certificates, ciphers, and so on.
Then you can type

GET / HTTP/1.0

to get the contents of the index HTML page, similar to the way you learned in
Hour 2, “Understanding Apache Internals,” with telnet.

You can configure many aspects of the connection, as explained in the documenta-
tion.

Related Directives

This section contains directives mentioned in this hour or that are related to topics dis-
cussed in this hour. You can consult the Apache reference documentation for comprehen-
sive syntax information and usage.

| 280

Hour 17

Keys and Certificates

SSLPassPhraseDialog: Alternative ways of specifying a pass phrase to decrypt key
SSLCertificateFile: File containing server certificate
sSLcertificateKeyFile: File containing server key

sSLCertificateChainFile: File containing chain of certificates used to sign the
server certificate

SSLCACertificatePath: Path to a directory containing CA certificates for client
authentication

SSLCACertificateFile: Path to a file containing CA certificates for client authen-
tication

SSLCARevocationPath: Path to a directory containing CA for revoking client cer-
tificates

SSLCARevocationFile: Path to a file containing CA for revoking client certificates
SSLVerifyClient: Enable client certificate verification

SSLVerifyDepth: Establish maximum depth to verify client certificates to

SSL Protocol

SSLProtocol: Versions of SSL supported

sSLCciphersuite: Ciphers supported

SSLEngine: Enable SSL protocol engine

SSLRequireSSL: Require client to connect to server using SSL

SSLRequire: Require specific rules for client to connect

Performance

sSLMutex: Locking mechanism
SSLRandomSeed: Initialize random number generator
SSLSessionCache: Specify an SSL-caching mechanism

sSLSessionCacheTimeout: Caching sessions expiry time

Setting Up a Secure Server 281 |

Others

» ssLoptions: Control various aspects of SSL operation

Reverse Proxy

* SSLProxyMachineCertificatePath, SSLProxyMachineCertificateFile,
SSLProxyVerify, SSLProxyVerifyDepth, SSLProxyCACertificatePath,
SSLProxyCACertificateFile: Equivalent to their regular server counterparts, but
related to the reverse proxy connection

Further Reading

An excellent, highly readable cryptography reference book is Applied Cryptography:
Protocols, Algorithms, and Source Code in C, Second Edition, by Bruce Schneier; ISBN
0471117099.

A great book on the SSL protocol, and especially useful if you are programming with
SSL libraries, is SSL and TLS: Designing and Building Secure Systems, by Eric Rescorla;
ISBN 0201615983.

OpenSSL project: http://www.openssl.org
ModSSL project: http://www.openssl.org

OpenBSD, a free Unix server operating system with a focus on security:
http://www.openbsd.com

Apache reference, by the original author of mod_ss1: http://www.apacheref.com
SSLv2 specification: http://home.netscape.com/eng/security/SSL_2.html

SSLv3 specification: http://home.netscape.com/eng/ssl3/draft302.txt

The following SSL-related RFCs can be obtained from http://www.rfc-editor.org/:

e Internet X.509 PKI: RFC 2459
* Transport Layer Security: RFC 2246
» Upgrading to TLS Within HTTP/1.1: RFC 2817

PART llI
Extending Apache

Hour
18
19
20
21
22

23
24

Extending Apache
PHP

mod_perl

Tomcat and Apache

Dynamic URI Resolution with
mod_rewrite

Migrating to Apache 2.0
Additional Apache Modules and Projects

HOUR 1 8

Extending Apache

Apache modules enable you to extend and add new functionality to Apache,
such as access control, CGI processing, and encryption. Many of these mod-
ules have been described in previous hours, but this hour summarizes and
categorizes all the available modules. Modules are compiled into the Apache
server or you can build them as shared extensions. In this hour, you will
learn about

» The Apache modules included in the distribution and their function-
ality
» The apxs tool for building modules as shared extensions

* The necessary command-line options to enable or disable compilation
of specific modules

Modules Included with Apache

Modules, as you know by now, are pieces of code that extend the function-
ality of Apache. Apache comes with several standard modules. Many of
them are compiled by default when building Apache as shown in Hour 3,

| 286

Hour 18

“Installing and Building Apache.” You could also build a custom Apache server with only
the modules you need. The configure script for Apache enables you to enable or disable
specific modules. Table 18.1 provides you with a list of all modules shipped with
Apache, whether they are compiled by default, and a brief description. The purpose of
each module is explained in later sections.

o Binary Apache distributions from some vendors might not include some of
i E these modules, and might include extra modules that are not part of the
SN 4 _ N .

ol official Apache distribution.

TaBLE 18.1 Apache Modules

Enabled by Default? = Module Name Brief Description
Environment Variables
Yes mod_env Environment variables
Yes mod_setenvif Environment variables based on client informa-
tion
No mod_unique_id Unique identifier creation

Content Type Decisions

Yes mod_mime Associate file extensions with MIME types
No mod_mime_magic Associate MIME types based on file contents
Yes mod_negotiation Negotiation of document versions

No mod_charset_lite Character set translation

URL Mapping and Manipulation

Yes mod_alias Mapping of requests to filesystem resources
and URL redirection

No mod_rewrite Advanced URL manipulation

Yes mod_userdir User homepages

No mod_speling Correct common URL typographical errors

No mod_vhost_alias Massive virtual hosting based on URL manipu-
lation

Directory Handling
Yes mod_dir Directory requests

Yes mod_autoindex Directory listings

Extending Apache

287 |

TaBLe 18.1 continued

Enabled by Default? = Module Name Brief Description
Authentication and Access Control
Yes mod_access Access control
Yes mod_auth Flat file user authentication
No mod_auth_dbm Database file user authentication
No mod_auth_anon Anonymous user authentication
No mod_auth_digest Digest authentication
HTTP Headers
No mod_headers Header manipulation
No mod_cern_meta Legacy CERN support
No mod_expires Expiry header control
Yes mod_asis Send files without processing
Dynamic Content
Yes mod_include Server-side includes
Yes mod_cgi CGI execution
Yes mod_cgid CGI execution for threaded MPMs
Yes mod_actions Associate requests with server processing
No mod_suexec Execute CGIs under different user IDs
No mod_isapi ISAPI extension support
No mod_ext_filter Allow external programs to act as filters
Monitoring
Yes mod_status Status of the server
No mod_info Information about the server configuration
Logging
Yes mod_log_config Logging configuration
No mod_usertrack User tracking via cookies
Proxy Support
No mod_proxy Main proxy module
No mod_proxy_connect Support for SSL passthrough
No mod_proxy_ftp FTP proxy support
No mod_proxy_http HTTP proxy support

| 288

Hour 18

TaBLE 18.1 continued

Enabled by Default? Module Name Brief Description
Loadable Module Support
No mod_so Support for loadable module support
Caching

No mod_file_cache Caching frequently accessed files
No mod_cache Caching filter
No mod_disk_cache Caching filter disk backend
No mod_mem_cache Caching filter memory backend

Document Authoring and Versioning
No mod_dav DAV support
No mod_dav_fs DAV filesystem backend

Sample Modules
No mod_example Sample module
No mod_case_filter Sample output filter
No mod_case_filter_in Sample input filter
Protocol Modules
No mod_echo Sample echo protocol module
Yes mod_http HTTP support
Miscellaneous

Yes mod_imap Server-side image maps
No mod_ssl SSL support
No mod_deflate Compression filter

Enabling or Disabling Modules

Modules that are enabled by default can be disabled at compilation time by using a
configure switch like the following: - -disable-module, with module being the name of
the module without the mod_ prefix and replacing the underscore (_) with a dash (-). For
example: - -disable-cgi and - -disable-asis.

Similarly, modules that are disabled by default can be enabled by using
--enable-module script. For example:

digest.

--enable-ext-filter and --enable-auth-

Extending Apache 289 |

If the server is compiled with shared module support, you can choose to build modules
as shared extensions, as explained in Hour 3. You can then enable or disable specific
modules by adding or removing LoadModule directives.

Environment Variables

Environment variables can be created or read by modules and passed to CGI scripts.
These variables provide a simple but powerful mechanism to access data about the
request and for module communication. For example, you could configure one module to
set up a specific environment variable whenever a certain client accesses the server.
Other modules can change their behavior, such as serving different content, depending on
whether that environment variable exists and contains a specific value.

mod_env

This module allows setting or removing environment variables. Those variables are then
available to CGI scripts, server-side includes, and other Apache modules such as PHP.
You can learn more about mod_env in Hour 9, “Content Negotiation and Environment
Variables.”

mod_setenvif

Similar to mod_env, but the environment variables can be set or unset based on client
information, such as the remote address or request headers. mod_setenvif is described in
Hour 9.

mod_unique_id

Certain applications require a unique identifier for each request. When this module is
present on the server, an environment variable containing that unique identifier will be
created, which can in turn be used by other Apache modules or CGI programs.

Content Type Decisions

These modules enable you to determine the content type of different resources and to
perform actions based on content type being requested. For example, you might want to
process all image files through a certain filter or identify files ending in .pl extensions as
CGI scripts.

mod_mime

This module determines the MIME type of a document by examining its file extension.
This information will be added to the response headers, and can be used to associate that
resource with Apache modules that can process it before sending the content to the
client. You can learn more about this module in Hour 5, “Using Apache to Serve Static
Content.”

| 290

Hour 18

mod_mime_magic

The purpose of this module is similar to mod_mime, but instead of relying on a file exten-
sion, it tries to guess the MIME type by peeking at the first bytes of the file. This has a
performance impact but can be useful in certain situations. Refer to Hour 5 for further
information.

mod_negotiation

This module allows Apache to serve different versions of the same file based on file
extensions, server settings, and client preferences. This is useful for maintaining a multi-
lingual Web site, for example.

mod_charset_lite

This module tells Apache to translate the character set of a document to a different one;
for example, from legacy EBCDIC to ASCII. In most cases, this is not necessary because
the content is usually in ASCII. At the time of writing this book, this module is experi-
mental, meaning that it is still in a development stage.

URL Mapping and Manipulation

URLSs are used to access your Web site. The following modules enable you to perform
actions based on the URL requested or even to modify it before passing it to other mod-
ules.

mod_alias

This module enables you to customize how the URLSs of your Web site look. This mod-
ule enables you to associate (map) directories in disk to certain URLSs, redirect requests
for nonexistent or obsolete content to the correct URL, and so on. Hour 5 covers this
module configuration in detail.

mod_rewrite

This is a complex but powerful module that enables you to manipulate and rewrite the
request URL. Hour 22 describes mod_rewrite and some of its applications, with sample
configurations.

mod_userdir

This module allows Unix users to have their own homepages that can be accessed
through a URL of the type: http://www.example.com/~user, with user being the user’s
Unix username. This module is explained in Hour 14, “Virtual Hosting.”

Extending Apache 291 |

mod_speling
This module can correct minor typos in URLS, such as links pointing to files with differ-
ent cases, missing or transposed letters, and so on. Hour 5 covers this module.

mod_vhost_alias

This module provides support for dynamically configured mass virtual hosting.
mod_vhost_alias is useful in situations in which you have to host and configure a great
number of simple Web sites, as is common with some popular ISPs. This module is
described in Hour 14.

Directory Handling

These modules enable you to specify the Apache behavior when a directory is requested,
such as providing an HTML directory listing.

mod_dir

This module enables you to specify index files for directories and it handles common
redirection problems associated with the trailing slash in directory names. This module is
mentioned in Hour 5.

mod_autoindex

This module enables you to display directory listings in directories that do not have an
index file. You can control every aspect of the listings, such as the ordering, icons, exclu-
sion of certain files, and so on. Hour 5 covers this module.

Authentication and Access Control

The following modules enable you to restrict access to your Web site based on the iden-
tity of the user, the resource being accessed, or certain attributes of the request.

mod_access

This module can deny or grant access to resources based on the IP address, network, or
hostname of a client, and on the existence of certain environment variables. Access con-
trol rules can be combined with the authentication modules described later in this hour.

This module is explained in detail in Hour 7, “Restricting Access.”

mod_auth

This module enables you to perform basic authentication, storing the username and
group information in text files. This module is covered in Hour 7.

| 292

Hour 18

mod_auth_dbm

This module performs basic authentication, storing username and group information in
database files, which allows the handling of a large number of users without significantly
affecting performance. See Hour 7 for further information.

mod_auth_anon

This module allows anonymous user access to authenticated areas. This module is men-
tioned in Hour 7.

mod_auth_digest

This module supports digest authentication using the MDS5 algorithm. This method of
authentication is more secure than basic authentication, but is unsupported by most
browsers. Check Hour 7 for more information.

HTTP Headers

The following modules enable you to add, remove, or modify headers of HTTP requests
and responses. This can be useful for specifying content expiration, adding custom head-
ers, and working around a specific browser limitation.

mod_headers
This module is able to add or remove arbitrary HTTP headers in both the request and
response.

mod_cern_meta
Support for HTTP header metafiles, a legacy feature from the CERN Web server.

mod_expires
This module enables you to control the expiration time of resources, used for caching
purposes. This is done via Expires: headers.

mod_asis

This module enables you to send files unprocessed directly to the client. This means that
the files must contain their own HTTP headers. This is advanced functionality that is not
required in normal scenarios and should be used with care.

Dynamic Content

The following modules enable you to create or modify content dynamically, either by
inserting specific tags in the documents being served or by executing external programs.

Extending Apache 293 |

mod_include

This module provides support for SSI (Server Side Includes), which allows the content of
documents to be inserted inside others and provide basic dynamic processing capabili-
ties. This makes it easy to provide a consistent look and feel across a Web site by using
footer and header documents, for example. This module is explained in Hour 12,
“Filtering Modules.”

mod_cgi
This module implements the Common Gateway Protocol and allows content to be

dynamically generated by external programs, such as Perl scripts. This module is covered
in Hour 6, “Serving Dynamic Content with CGI.”

mod_cgid

Provides equivalent functionality to mod_cgi, but for threaded MPMs. Apache creates an
external daemon at startup, which in turn is in charge of spawning the CGI programs.
Hour 6 explains this module.

mod_actions

This module enables you to associate HTTP request methods or resources of a particular
MIME type with certain Apache modules or CGI scripts. The modules or programs can
then process the content before sending it to the client. Check Hour 6 for additional
information.

mod_isapi
This module provides ISAPI extension support. ISAPI is an API to extend the capabili-
ties of the Microsoft IIS Web server.

mod_ext_filter
This module enables you to filter content served by Apache by using external programs,
as explained in Hour 12.

mod_suexec

This module enables you to run CGI requests as a specified user and group. This can be
useful in a server shared between different customers, but it has security implications..

Monitoring

The following modules are useful for monitoring the status of the server and accessing
detailed configuration information.

| 294

Hour 18

mod_status

This module provides information about the runtime status of the server, such as the
number of children, requests, uptime, and so on. This module is described in Hour 8,
“Logging and Monitoring.”

mod_info

This module provides information about the server, its modules, and their configuration.
Hour 8 explains this module.

Logging
Logging modules enable you to save data about who accesses your Web sites and which
resources they request, as well as recording errors.

mod_log_config
This module enables you to customize all aspects related to request logging. Everything

related to the request, connection, authentication module, environment variables, and so
on, can be logged. This module is explained in Hour 8.

mod_usertrack

This module allows basic user session tracking by using cookies. This is useful for find-
ing out patterns of usage of the Web site for individual users. This is not as relevant as it
used to be because most modern Web applications have their own session management.

Proxy Support

The Apache proxy module allows the server to act as a gateway for accessing other Web
servers. The proxy module itself is modular and can be extended to support different
backends, such as FTP.

mod_proxy

This module provides Apache with proxy capabilities. It is modular and extensible,
allowing backends for protocols other than HTTP and being able to take advantage of
Apache 2.0 filtering architecture for compressing and caching proxy data, for example.
The following sections comprise a list of related modules. Apache proxy capabilities are
covered in Hour 15, “Apache as a Proxy Server.”

mod_proxy_connect

This module provides support for the SSL. CONNECT method, which allows an HTTP
proxy to tunnel SSL connections.

Extending Apache 295 |

mod_proxy_ftp

This proxy module enables Apache to act as a proxy for FTP resources, allowing them to
be accessed via a regular HTTP browser.

mod_proxy_http
This module provides an HTTP backend for the Apache proxy.

Loadable Module Support

Modules can be either compiled in or loaded dynamically, at runtime. The mod_so mod-
ule enables dynamic loading of other modules.

mod_so

This module allows modules to be compiled as shared objects and be loaded dynamically
by the Web server. This allows Apache to be extended without the need for recompila-
tion.

Caching

Caching means saving the results of a request, usually for a dynamically generated
resource. Future requests can use the cached response without incurring the penalty of
generating the content over and over. The following modules provide different caching
mechanisms for Apache.

mod_file_cache

This module enables you to cache frequently requested files in memory to increase per-
formance of the Web server. This module is covered in Hour 16, “Tuning Apache.”
mod_cache

This is a filtering module that is capable of caching any resource served or proxied by
Apache. You can configure via rules whether to cache specific URLs. Several modules,
described in the following sections, allow for storage of the cached objects. Hour 15
explains mod_cache and related modules.

mod_disk_cache

This module provides a disk-based caching storage mechanism for mod_cache.

mod_mem_cache

This module provides a memory-based caching storage mechanism for mod_cache.

| 296

Hour 18

Document Authoring and Versioning

The following modules provide support for the DAV publishing protocol. This protocol
allows a client to access and manipulate content resources located on the server.

mod_dav

This module provides support for the HTTP-based WebDAV protocol, which is com-
monly used for sharing, editing, and publishing documents via a Web server. This mod-
ule and the DAV protocol are covered in Hour 13, “Publishing Extensions.”
mod_dav_fs

The mod_dav module can have different backends. This module is the default,
filesystem—based backend.

Sample Modules

The purpose of the following modules is to serve as examples to other module authors,
and they should not be enabled in a production server.

mod_example

This is a simple module that demonstrates the Apache API and should not be run for any
other purpose.

mod_case_filter, mod_case_filter_in

Simple input filter and output filter sample modules that change the case of served con-
tent.

Miscellaneous Modules

The following are additional modules that do not fit in any of the previous categories.

mod_imap

This is a module that provides server-side image map support. That is, you click on a
certain part of an image, the browser transmits the coordinates of the click to the server,
and the server sends you to the correct URL. It works without requiring any CGI or
dynamic component by defining the destination URLs in a file.

mod_ssl

This module provides Apache with support for the SSL/TLS protocol, which provides a
security layer for the HTTP protocol. Hour 17 covers SSL module configuration.

Extending Apache 297 |

mod_deflate

This module is a filter that can compress content on the fly, thus trading CPU usage for
bandwidth reduction. This module is covered in Hour 12.

The Apache Extension Tool APXS

APXS stands for APache eXtenSion tool and is a useful script for compiling Apache
modules. If Apache has been compiled with loadable module support, as explained in
Hour 3, it is possible to add new functionality without the need to recompile the server.
The apxs script is created at build time and contains information about how Apache was
built, including server defaults and compiler flags. If you installed Apache from source in
/usr/local/apache2, the apxs tool will be found at /usr/local/apache2/bin/apxs.

The apxs tool can be used with several options, but only a subset of them is important in
most situations.

Usage
To compile and install a module with apxs, you just need to change your current direc-
tory to the one containing the module and type the following:

apxs -c mod_example.c

The mod_example.so shared object will be created and you can then add it to your con-
figuration file via the LoadModule directive. You can automate this step using the -i
option, which will copy the shared object into the server modules directory, and the -a
option, which will add the appropriate LoadModule directive into the configuration file.

o Depending on your system and the tools installed, the mod_example.so file
{/ might be created in the .1ibs/ subdirectory and/or have a different exten-

sion. The -a -i switches take care of this transparently.

If the module depends on additional object or source files, you can specify them in the
command line and apxs will recognize and use them in the compilation process.

Additional Options

The apxs tool enables you to create a module template, change the output name of the
resulting shared module, pass additional compiler flags, and so on. Check the apxs man-
ual page for a detailed description.

| 298

Hour 18

Extending Apache with Third-Party Modules

In addition to the modules included in the Apache distribution, a variety of third-party
modules, both commercial and open source, can be used to extend Apache. The build
instructions vary with each module, and some of the most popular ones are covered in
later hours.

Most operating system distributions that include Apache have packages for many of
these third-party modules, and you can install them using the package manager for your
operating system.

Summary

This hour’s lesson explained how Apache can be extended using bundled modules, either
by compiling them into the server or by using the apxs tool to build them as shared
objects. The following hours will tell you how to extend Apache with other popular
third-party modules such as PHP and mod_perl.

Q&A

Q I can’t find the apxs utility mentioned in this hour. Where is it?

A If you are using the Apache that came installed with your Linux distribution, you
might need to install a separate RPM package, apache2-dev, that includes the apxs
utility. In addition, some Linux distributions rename it to apxs2, so users do not
confuse it with the Apache 1.3 version.

Q Are there any benefits of compiling in modules instead of loading them
dynamically with LoadModule?

A There are certain performance benefits, depending on the architecture, but they are
usually offset by the flexibility that a shared module installation offers.

1. Why is the apxs tool useful?

2. When is mod_cgid used instead of mod_cgi?

Extending Apache 299 |

Quiz Answers

1. It enables you to add new modules to Apache without having to recompile the
server. The only requirement is that the server is already compiled with loadable
module support.

2. The mod_cgid module is used with threaded MPMs, such as the worker MPM.

Further Reading

The APXS manual page bundled with Apache provides extensive information.
Hour 3 provides information on MPM modules and basic compilation options.

For information on a particular module, you can refer to the hours mentioned in the
directive descriptions of earlier sections. A complete module listing can be found at
http://httpd.apache.org/docs-2.0/mod/index-bytype.html.

HOUR 1 9

PHP

PHP is a popular Web development language that works with a variety of
Web servers, including Apache. This hour introduces the main features of
PHP, helping you to determine whether it can be useful for your develop-
ment needs. One of the strengths of PHP is the great number of extensions
available for database connectivity, graphic creation, XML processing, and
so on. This hour explains in detail how to build and integrate those exten-
sions with PHP. In this hour, you will learn

e What PHP is and how it works
* How to download and configure PHP

¢ What PHP modules are available and how to enable them

Introduction to PHP

PHP is a server-side scripting language that can be embedded in HTML
pages, similar to JSP (JavaServer Pages) and Microsoft ASP (Active Server
Pages). The PHP engine is implemented as an Apache 2.0 filter, which
processes pages containing PHP code before they are served to the client.
PHP pages usually end with the .php extension.

| 302

Hour 19

A simple PHP page looks like the following:
<h1>Hello <?php $what="World!"; echo $what; ?>!</h1>

When a client requests this page from the Web server, it is processed by the PHP mod-
ule, the embedded code is executed, and the result is substituted, as shown here:

<h1>Hello World!</h1>

This was just a simple example. A typical Web application might need to connect to
databases, LDAP directories, or perform complex operations before returning a page.
PHP provides an impressive number of extensions to ease these tasks. It is important to
realize that PHP processing occurs in the server; the client gets to see only the final
HTML.

PHP History

The inventor of PHP is Rasmus Lerdorf. He originally designed the language as a
replacement for typical CGI development so that users could add dynamic features to
their pages without having to know too much about programming. The current version of
PHP is PHP 4, which is built on top of the Zend scripting engine, described later in the
hour. Today, PHP is an incredible success by all measures: It runs on more than 7 million
sites and is installed on more than 45% of all Apache Web servers, making it the most
popular Apache module. More than 50 books in many languages cover PHP. The devel-
oper and user community grows daily.

PHP Architecture

PHP is a modular, extensible language. Figure 19.1 describes the PHP architecture.

PHP is implemented on top of the Zend scripting engine. The Zend engine is open
source under the Q Public License (QPL), and is designed to be embedded and used in a
variety of scenarios.

@ You can learn more about the QPL at

? http://www.trolltech.com/products/download/freelicense/license.html.

Extension writers have access to PHP and Zend via well-defined APIs. Many of those
extensions are wrappers around existing C libraries, which make the features provided
by these libraries available to PHP developers. Database and directory connectivity,
SNMP, and graphic generation and manipulation are some extension feature examples.
This hour covers how to build and integrate many of them into your PHP installation.

PHP 303 |

FIGURE 19.1 Web Server
PHP architecture.
SAPI
PHP API
PHP CORE T
T mysql [Idap snmp a
s M
R
M

ZEND API ZEND extension API
ZEND Engine

Run-time Executor
compiler

The SAPI (Server API) provides an abstraction layer that enables PHP to be embedded in
a variety of Web servers, not only Apache.

The TSRM (Thread Safe Resource Manager) is a layer that provides thread-safe access
to global data structures. This is necessary to integrate PHP into threaded Web servers.

PHP Advantages

Like any programming language, PHP has both advantages and disadvantages. We’ll
look at the advantages first.

Easy to Learn

PHP is really easy to learn. The short learning curve is especially appealing for Web
designers and HTML coders who need to add dynamic content generation to their sites,
but do not have a strong programming background. PHP enables them to easily and grad-
ually add dynamic page generation features to their Web sites by mixing existing HTML
with new PHP code.

Open Source

PHP is distributed under an Apache-style license that allows for both commercial and
noncommercial use and development. A worldwide network of talented developers is
continuously improving and enhancing PHP. You can fix bugs or customize the software
to your specific needs (or pay someone to do so) because the source code is available.
This is not possible with commercial, off-the-shelf products.

Community

PHP has a large base of users and developers. It is easy to find programmers fluent in the
language. There are many online resources dedicated to PHP (Web sites, mailing lists,

| 304

Hour 19

and so on) that provide valuable information and support. Some of them are mentioned
in the “Further Reading” section at the end of this hour.

Database Support

PHP provides extensive database support. It supports ODBC, open source databases such
as MySQL and PostgreSQL, and commercial ones such as Microsoft SQL Server,
Oracle, and DB2.

Multiplatform Support

PHP runs on a variety of operating systems and Web servers. PHP runs in most flavors of
Unix and Windows as well as on Mac OS X, OS/2, and a variety of other operating sys-
tems. PHP supports different Web servers, ranging from the popular Apache, Microsoft
IIS, and Netscape servers to less-known ones such as thttpd and AOLserver. This allows
you to standardize on a common development language across a heterogeneous environ-
ment of systems and servers. You can build a solution with PHP on a specific
platform/server/database combination, and then migrate to a different combination gradu-
ally, replacing one component at a time. You can develop your code on a Windows work-
station running IIS and deploy it in on a Unix server running Apache with few or no
changes.

Extensions

PHP has a great number of extensions and code samples for everything from XML
manipulation to directory access. Programmers can leverage this body of existing code to
put together advanced applications quickly.

Safe Mode

PHP allows execution of code in restricted environments. This option is very attractive to
ISP and Application Server Providers, which can offer PHP to their clients without com-
promising security. These providers often want to serve multiple customers using a
shared infrastructure.

Session Support

Most Web applications require keeping and managing state information between
requests. PHP 4 offers native session management and an extension API so that users can
provide their own backend storage mechanisms.

Rapid Development

PHP is compiled to a special byte code format before it is executed. That step is com-
pletely transparent to programmers and users, who can make changes to a PHP page and

PHP 305 |

see the results immediately in their browsers. In comparison, Java servlet development
requires longer compile/deployment cycles.

Commercial Support

Several companies provide support and services around PHP or bundle PHP as part of
their server solution. Please refer to the resources at the end of this hour to learn more
about these companies. You should consider their services if you use PHP in an enter-
prise environment, a mission-critical Web site, or need custom features added to the lan-

guage.
It's Fun!

PHP is an exciting language to program in. You can leverage existing extensions and
code to put together great Web sites quickly and easily.

PHP Disadvantages

You have learned about some of PHP’s strong points, such as its open source nature, its
ease of use, and the availability of a great number of extensions. However, PHP also has
some weak points that you should keep in mind.

Code Maintenance

Web developers like the quick development cycle and the ability to mix PHP and HTML
code. The short learning curve attracts people without a previous programming back-
ground. The result is that, as the functionality of a Web site expands, its architecture can
grow organically into a mess of code and HTML, and its maintenance can become a
nightmare.

Advanced Features

Language-wise, PHP lacks strong typing, full object-oriented support (such as multiple
inheritance and private variables), and other capabilities present in other languages. On
the other hand, many of these features are not needed in most of the Web applications for
which PHP is used.

Dependency Tracking

Although PHP has a great number of extensions, they are in different stages of develop-
ment and maturity. Even if these extensions are distributed with PHP and kept up to date
with PHP releases, they depend on external libraries for database connectivity, and so
forth. Hunting down which library version goes with which extension and making sure
that different extensions work together can be time-consuming tasks. That is the reason
several commercial vendors offer ready-to-run PHP distributions, often in conjunction
with open source databases and the Apache Web server.

| 306

Hour 19

Corporate Acceptance

PHP is quite popular in the open source world and is technically superior to many of its
commercial counterparts. However, it still lacks important momentum and mind share in
corporate and enterprise environments. That means that if you work in a corporation and
want to use PHP, you might be unable to do so, or might need to do significantly more
explanation than if you chose to go with Java or C++. Zend Technologies and other PHP-
centric companies are working hard evangelizing PHP. They are building the support and
products necessary to make PHP a viable choice for enterprise customers.

Installation

This section will teach you the steps necessary to get a basic installation of PHP version
4 up and running on Apache 2.0 and how to test that it works.

Installation on Windows

At the time of this writing, there is no release of a PHP module for the Windows plat-
form that runs on Apache 2.0. You will be able to download a Windows installer from
http://www.php.net after one has been released. The steps will probably be be similar
to the following:

1. Create a directory that will contain the PHP and related extension DLLs. Let’s
assume this directory is C: \PHP.

2. Modify the httpd.conf configuration file to load the Apache 2 SAPI module,
using the LoadModule directive. For example, in Windows, the line will look some-
thing like this:

LoadModule php4_module c:/php/sapi/apache2filter.dll

3. Copy the PHP.INI configuration file into the C:\windows or C:\winnt directory,
depending on your Windows operating system. Edit it and change the settings of
extension_dir to C:\PHP or wherever the extensions DLLs live.

4. Tell Apache which files must be processed by the PHP engine. To process all files
ending with . php, you must place the following line in your httpd.conf file:

AddType application/x-httpd-php .php

L The PHPConfig utility enables you to configure different PHP.INI parameters
/ on Windows. You can find it at http://www.analogx.com/contents/down-
== load/network/phpconf.htm.

PHP 307 |

PHP as a CGI Script

PHP can be run as a CGI script under Windows. This is not recommended for perfor-
mance reasons, but it is the only alternative if the module for the Web server is not avail-
able. The following are the steps, assuming that you placed the PHP distribution files in
C:\PHP:

ScriptAlias /php/ "c:/php/"

AddType application/x-httpd-php .php

Action application/x-httpd-php "/php/php.exe "

The first line allows Apache to execute CGI scripts on that directory. The second line
associates an application type with the php file extension, and the last one associates that
application type with the PHP executable. Notice that the paths contain forward slashes,
as required by the Apache configuration file rules.

Running PHP as a CGI program has several security issues that you need to be aware of.
You can find more information at http://www.php.net/manual/en/security.cgi-
bin.php.

Testing That Installation Was Successful

You can test whether the installation was correct by creating a simple file with a php
extension (such as example.php) and placing it in the htdocs directory. Include the fol-
lowing code in that file:

<? phpinfo() ?>

If PHP was installed successfully, either as a module or CGI program, you will see
something similar to the page shown in Figure 19.2.

Installing on Unix

This section explains you how to install PHP 4 on Unix as an Apache 2 module.
Installation of PHP as a CGI script is not covered in this hour because it is similar to the
Windows CGI configuration and running PHP as a module is the preferred configuration.

Binary Installation

Most Linux and Unix distributions that come preinstalled with Apache already include a
PHP module. Additionally, the PHP Web site provides binaries for Mac OS X. Use your
package manager to find out whether the PHP package is already installed in your sys-
tem; otherwise, download and install it. You can also check your distribution Web site
and download the package from there. If you are using an RPM-based distribution (such

| 308

Hour 19

as Red Hat, SuSE, or Mandrake) you can install the downloaded package with the
command-line rpm tool:

rpm -I mod_php*.rpm

You will need to become root to install the package. In most distributions, installing the
package simply copies the binary libraries to the appropriate directory. So, you might
still need to edit the configuration files to fully configure PHP.

FIGURE 19.2 AipheunlaQ HEl
K | Fle Edt MVew Favoitss Tods Help | g

Testing that the PHP | sk - > - @ B 0| Dsemch [Gravonss @rsoy By S % & R

installation was suc- | deless [&] tp:1{127.0.0.1 evzmpls.che =] @ee

cessful. ___ . =

System ‘Windows MT 5.0 build 2155
Build Date Dec 30 2001

Server AP| el

Vinual Directory Support enabled

Configuration File (php.ini} Path covwinnt

ZEND_DEBUG disabled

Thread Safety enabled

This program rmakes use of the Zend Scripting Language Engine;

Zend Engine v1.1.1, Copyright (2] 1998-2001 Zend Technolagies

PHP 4.0 Credits

& Done T % Intemet

Source Code Installation

This section explains how to download, build, and install the PHP module.

Getting PHP

The PHP source code can be downloaded from the main PHP Web site at
http://www.php.net. The file you need is called php-4.x.y.tar.gz, where x.y is the
particular version of PHP. After you have downloaded the tarball, uncompress it and
change to the newly created directory:

gunzip < php-4*.tar.gz | tar xvf -

cd php-4*

The PHP directory structure contains the following important directories, as shown in
Table 19.1.

PHP 309 |

TaBLe 19.1 PHP Directory Structure

Directory Description

TSRM/ The Thread Safe Resource Manager.

Zend/ The code for the Zend scripting engine.

build/ The build-related scripts and Makefiles.

ext/ The extensions bundled with PHP for database access, XML manipulation, and so

on. Each of the subdirectories contains a Makefile, and most of them have a
READMEE file that explains the purpose of the extension.

libs/ The directory where the PHP Apache module shared library will be placed when it
is built.

main/ The core of the PHP code.

modules/ The directory where additional modules shared libraries will be placed.

pear/ The PEAR (PHP Extension and Application Repository) contains a collection of
reusable library code similar to Perl’s CPAN (http://www.cpan.org).

regex/ The regular expression library code.

sapi/ The server extension abstraction layer. Here you can find modules to interface PHP

to Microsoft IIS, Netscape, and, of course, Apache.

scripts/ The miscellaneous scripts used by PHP developers.
rests/ The test suite.

Wwin32/ The Windows platform-specific code.

Compiling PHP

PHP, like many other open source projects, uses autoconf and automake tools to ease
portability. The build scripts are able to find out by themselves most of the information
they need to compile PHP, but you must pass certain parameters explicitly. PHP will be
built as a loadable module, with the help of the Apache apxs tool, as explained in Hour
18, “Extending Apache.”

The rest of this section assumes that you have installed Apache 2.0 in
/usr/local/apache2 and that you have root privileges. Apache must have been com-
piled with loadable module support enabled (- -enable-so option). PHP will be installed
under /usr/local/php4. If you want to build Apache and PHP as a regular user, you
must change the paths provided later to paths that you have write permissions to.

Type the following in the directory created when you uncompressed the PHP 4 sources:

./configure --with-apxs2=/usr/local/apache2/bin/apxs --prefix=/usr/local/php4

|310

Hour 19

You will see a rapid succession of messages while the configure script checks for the
libraries it needs in your system and creates the Makefiles necessary for the build system.
If everything goes well and the configure script finishes without throwing any errors, you
can type the following to build PHP:

make
After the build finishes, you will have a 1ibphp4.so file in the 1ibs/ directory.
To install the files, type
make install
This will perform the following tasks:
e Installs the shared library 1ibphp4.so into the /usr/local/apache2/modules
directory
¢ Adds a LoadModule directive into /usr/local/apache2/conf/httpd.conf
¢ Installs PHP header files, binaries, and the PEAR libraries into /usr/local/php4
The PHP module for Apache 2 is built as an Apache filter. To test that it works, you must

enable PHP processing for the files containing the PHP code. Add the following to the
httpd.conf file:

<Files *.php>
SetOutputFilter PHP
SetInputFilter PHP
</Files>

An alternative, traditional way of configuring PHP is the following:

AddType application/x-httpd-php .php

To test whether PHP is working correctly, create a file called example.php in the
/usr/local/apache2/htdocs directory with the following contents:

<?php phpinfo(); ?>

Restart Apache and access the URL http://127.0.0.1/example.php. If PHP was
installed correctly, you should see something similar to the page shown in Figure 19.2.

The Apache error file /usr/local/apache2/logs/error_log is the first place to look if
you get an error or empty page. It will provide you with valuable information about what
might have gone wrong. By far the most common issue is permissions: Make sure that
the file example.php is readable by the user which Apache is running as.

PHP 311 |

Also make sure that Apache was built with loadable module support, as explained in
Hour 3, “Installing and Building Apache.” You can do so by issuing the following com-
mand:

/usr/local/apache2/bin/httpd -1

and looking for mod_so.c in the output. Make sure that PHP is being loaded by checking
for the appropriate LoadModule directive in httpd.conf.

PHP Extensions

In the previous section, you learned how to build PHP as an Apache module and how to
configure it to work with your Apache server. That was a basic installation. The PHP
configure command allows many more flags to be passed to enable different language
features and extensions. The following sections provide a selection of those flags. You
can get a complete list by typing:

./configure --help | more

General Options

The following are general options that you can pass to the configure script.
--prefix=/some/path

Allows you to specify the path where PHP will be installed.
--with-apxs2=/path/to/apache2/bin/apxs

Builds shared Apache 2.0 module using the specified apxs utility.
--enable-debug

Enables debug symbols; useful for troubleshooting.

--without-pear
Does not install PEAR.
--enable-safe-mode

Enables the restricted safe mode by default. If you use this option, you will also be inter-
ested in - -with-exec-dir, which specifies the executables allowed in safe mode.

--with-openssl

Includes OpenSSL support. OpenSSL is a library that provides SSL support, as explained
in Hour 17, “Setting Up a Secure Server.”

--with-curl

|312

Hour 19

Includes curl support. Libcurl is a library that provides client-side support for a variety of
protocols, including HTTP/HTTPS, FTP, Telnet, and more. You can learn more about
curl at http://curl.sourceforge.net/.

--enable-ftp

Enables FTP support.

Graphics Support

The following commands are options that you can pass to the configure script to config-
ure PHP graphics-related libraries.

--with-gd=/path/to/gd/install/dir

GD is a library that allows programmatic image creation and manipulation. It is useful
for generating on-the-fly images and logos. You can learn more about GD at
http://www.boutell.com/gd/.

The previous command line will build GD as part of PHP. If you want to create a shared
library, you must pass the command line as

--with-gd=shared, /path/to/gd/install/dir

GD depends on additional libraries to support certain graphic formats. Associated config-
ure options are

--with-jpeg-dir=/path/to/jpeg/install/dir
For libjpeg support.
--with-png-dir=/path/to/libpng/install/dir
For libpng support.
--with-xpm-dir=/path/to/libxpm/install/dir
For 1ibXpm support.
--with-t1lib=/path/to/t1lib/install/dir
For t1lib, Adobe Type 1 fonts support.

GD allows the use of TTF (TrueType Fonts) to add text to images:
--enable-gd-native-ttf

Enables TrueType string function in GD.

--with-freetype-dir=/path/to/freetype2/install/dir

PHP 313|

FreeType 2 support.
--with-ttf=/path/to/freetype/install/dir
Includes FreeType 1.x support.

An additional PHP module provides improved graphic manipulation using the imlib
graphics library. You can find more information at http://mmcc.cx/php_imlib/.

Flash Animation

PHP provides Shockwave Flash support via two libraries: SWF and Ming. To install the
SWEF library:

--with-swf=/path/to/swf/install/dir

The SWF library can be found at http://reality.sgi.com/grafica/flash/.
To install the Ming library:

--with-ming=/path/to/ming/install/dir

The Ming library provides support for Flash generation and includes a PHP binding. It
can be found at http://opaque.net/ming.

PDF Generation

PHP supports on-the-fly generation of PDF documents using the clibpdf and pdflib
libraries:

--with-pdflib=/path/to/pdflib/install/dir

PDF support via the pdflib library requires a license for commercial usage. You can learn
more about pdflib at http://www.pdflib.com/pdflib/index.html.

--with-cpdf=/path/to/clibpdf/install/dir

PDF generation support via the clibpdf library. You can learn more at
http://www.fastio.com/.

Database Support

PHP supports a variety of database backends.
--with-mysql=/path/to/mysql/dir

Support for the MySQL (http://www.mysqgl.com) database. MySQL is a popular open
source database. If the path is not specified, PHP includes built-in support and will use it
instead.

|314 Hour 19

--with-pgsql=/path/to/pgsql/dir

Support for the PostgreSQL database (http://www.posgresql.org).

XML Support

The following are options that you can pass to the configure script to configure PHP’s
XML-related libraries.

--with-dom=/path/to/libxml/install/dir

Includes DOM support via the libxml library, a C-based XML processing library distrib-
uted under the LGPL and the W3C IPR licenses. You can learn more about libxml at
http://xmlsoft.org/.

--disable-xml

Disables built-in expat XML support (it is on by default).
--enable-xslt

Enables XSLT support.
--with-sablot=/path/to/sablotron/install/dir

Provides support for the Sablotron XSLT transformation engine. You can learn more
about Sablotron at http://www.gingerall.com/.

--with-expat-dir=/path/to/expat/install/dir

Expat library required by Sablotron. You can find expat at
http://www.jclark.com/xml/expat.html.

--with-qtdom

XML DOM support via the qt library that can be found at
http://www.trolltech.com/products/qt/.

--enable-wddx

Enables wddx support, which is used when programming Web services.

Session Support

The following are options that you can pass to the configure script to configure PHP
session support. This enables PHP scripts to keep track of user data between requests.

--enable-trans-id
Enables transparent ID propagation of session information (this can be done via cookies).

--with-mm

PHP 315|

Enables shared memory support for session storage via the mm library. You can learn
more about the mm library at http://www.engelschall.com/sw/mm/.

This section presented you with several configuration options to give you an idea of the
capabilities of PHP. There are many more that provide support for additional databases,
SNMP, CORBA, calendar functions, IMAP, Unicode, Java, LDAP, encryption, and more.
You can get a comprehensive description of supported language features at
http://www.php.net/manual/en/.

You can find additional extensions and PHP Web applications in Freshmeat at
http://freshmeat.net and in the SourceForge PHP foundry at
http://sourceforge.net/foundry/php-foundry/.

For example, the Vagrant charting extension http://vagrant.sourceforge.net pro-
vides support for programmatic generation of graphic charts.

Examples of Web applications based on PHP are Phorum (http://phorum.org/) for
Web discussion boards and IMP (http://www.horde.org/imp/) for Web mail. Nuke
(http://phpnuke.org/) and Midgard (http://www.midgard-project.org/) are content
management/Web portal systems.

PHP Configuration

PHP can be configured either via the php.ini file located in /usr/local/php4/lib/
(C:\Windows\ on Windows platforms) or from inside the Apache configuration file. You
can copy the file php.ini-dist from the build directory to
/usr/local/php4/lib/php.ini. The php.ini consists of key/value pairs. The same set-
tings can be specified in the Apache configuration file with the use of these directives:

php_value name value

Sets the value of the name variable to value.
php_flag name on|off
Sets a Boolean configuration option.

There are certain options, called admin options, that must be specified in the main
Apache configuration file. They can be set using php_admin_value and php_admin_flag.
These options are usually security related, such as open_basedir or
safe_mode_exec_dir.

Some of the configuration options are relevant to PHP and others are for configuring spe-
cific PHP modules. The following is a selection of the available configuration options.

|316

Hour 19

PHP Language

You can modify the way PHP can be mixed with HTML tags with the following options.
short_open_tag boolean

To include PHP code, you usually need to surround it with <?php or <script> tags. The
short_open_tag directive enables you to use <? ?> tags in your code, although PEAR
coding practices encourage you to use the <?php format.

asp_tags boolean

Allows use of ASP-style tags <% %> and constructs (<%=$varname %> to include the value
of a variable.

memory_limit integer
max_execution_time integer

These two directives set the maximum amount of memory in bytes that a script is
allowed to allocate, and the maximum time in seconds that a script is allowed to run
before the script is terminated by the PHP engine, respectively. This helps to protect
server resources from poorly written scripts.

include_path string

Specifies a list of directories where certain PHP functions (for including other files and
so on) look for files.

Error Manipulation

display_errors boolean
Determines whether errors should be printed to the screen as part of the HTML output.
error_log string

Specifies the name of the file to which script errors should be logged. If the special value
syslog is used, the errors are sent to the Unix system logger instead.

Output Manipulation

Apache transmits to the network the content created by the PHP script as it is being gen-
erated. You might want to add specific headers to a response, but are unable to do so
because you have already sent part of the content. If you enable output buffering, PHP
will cache the page, enabling you to set headers at any point on the page. PHP also

PHP 317|

provides hooks so that the content generated can be filtered or changed. As an example,
PHP supports compression of the output of a script if the browser can understand com-
pressed content, thus minimizing download time. PHP also provides the ability to append
or prepend headers or footers to all generated pages, thus easing the task of creating a
consistent, sitewide look and feel.

auto_append_file string
auto_prepend_file string

PHP makes it possible to append or prepend files to every page served. These files are
parsed and interpreted as PHP scripts. If the name of the file is none, auto-prepending or
appending is disabled.

output_buffering boolean
Enables or disables output buffering.
output_handler handler

Allows the specification of an output handler, such as ob_gzhandler for compression.

Security

It is possible to configure PHP to enhance the security of the installation, especially in
environments with multiple or not fully trusted users. PHP allows a safe mode operation,
which restricts the PHP/system functionality that the scripts can access, such as limiting
access to only certain files or directories. It is possible to configure PHP to run as a CGIL.
This has advantages and risks from a security standpoint, such as the ability to use the
Apache suexec wrapper. Many of the security issues need to be handled or comple-
mented at the PHP level with safe coding practices. You can learn more at
http://www.php.net/manual/en/security.php.

safe_mode boolean
Specifies whether to enable PHP’s safe mode.
safe_mode_exec_dir string

Specifies that system calls executing external programs will work only with binaries in
this directory.

open_basedir string

If present, this directive limits the files that can be opened by PHP to the ones contained
under the specified directory path.

|318

Hour 19

Dynamic Extension Support

You can either compile PHP extensions into the PHP executable, or you can choose to
compile the extensions themselves as shared objects and load them from within the PHP
engine.

enable_dl boolean

Enabled by default, this directive restricts the ability to load shared library code into
PHP. The main reason to disable dynamic loading is security. Dynamic loading is not
available when using PHP in safe mode.

extension_dir string
Specifies the directory in which PHP should look for dynamically loadable extensions.
extension string

Specifies which dynamically loadable extensions to load when PHP starts.

Summary

PHP, as are most other open source projects, is driven by the needs of the users and
developers, who program PHP on a daily basis for their own projects. These projects
range from personal home pages to high-profile financial sites.

PHP usage and number of extensions keep on growing. The language itself continues to
evolve, and is starting to find applications outside the Web development field as a gen-
eral-purpose scripting and embeddable language.

This hour explained how to install and configure PHP with Apache 2.0 and gave you an
overview of the language’s capabilities. Together with the hours on Tomcat and
mod_perl, this hour will give you a good overview of the different development options
for the Apache platform.

Q&A

Q How does PHP compare to other popular Web development languages such as
Java and Perl?

A Although the three languages can provide similar functionality, Java is probably
better suited for complex, transaction-oriented Web sites that need to interface with
other enterprise systems. PHP is more oriented toward the creation of dynamic,

PHP 319|

publishing-oriented Web sites. It is not uncommon to find Web sites based on PHP
in the front end and Java in the backend. Perl offers a set of features similar to
PHP, but the learning curve is greater, although Perl has the advantage that it can
be applied in other areas such as system administration.

Q What does PHP stand for?

A The original meaning of PHP was Personal Home Page because it was designed to
provide users with a way of enhancing their home pages. The current meaning is
PHP: Hypertext Processor, in the tradition of Unix recursive acronyms.

1. What is the main advantage of running PHP as a module instead of as a CGI
script?

2. What are the two ways of configuring PHP?

Quiz Answers

1. The main advantage is increased performance because PHP is loaded into the
server and does not need to be launched as an external process for every request.

2. You can either use the php.ini file or add the configuration settings to Apache
using the php_value and php_flag directives.

Related Directives

The only PHP-related directives that can appear in the httpd.conf file are php_value
and php_flag. This hour describes many of the options available for these directives, and
a comprehensive list can be found in the PHP manual.

Further Reading

The official PHP Web site can be found at http: //www.php.net. There you will be able
to download PHP and find related documentation. The PHP User Guide provides instal-
lation and configuration instructions as well as a comprehensive language reference
guide.

Netcraft (http://www.netcraft.com) and SecuritySpace
(http://www.securityspace.com/s_survey/data/index.html) provide figures on
Apache and PHP usage.

| 320

Hour 19

Support

You can access PHP development and user mailing lists at http://www.php.net/
support.php. Before asking your question, research the existing documentation and the
Frequently Asked Question document. If you still cannot find an answer, consider post-
ing to the mailing list, including as much detail as possible about your problem, what
you tried and which errors you got, your operating system, and your server and PHP ver-
sions. This information will greatly increase the chances of getting a response and will
help reduce the noise in the mailing list.

PHP Books

A comprehensive book list can be found at the PHP Web site
http://www.php.net/books.php. The following books provide a good companion for
learning the language:

e PHP Fast & Easy Web Development, by Julie C. Meloni, is a good introduction to
the language.

e PHP Developer’s Cookbook, by Sterling Hughes and Andrei Zmievski, is packed
with useful practical examples.

e PHP and MySQL Web Development, by Luke Welling and Laura Thomson, is
another good language tutorial that explains PHP alongside MySQL, a popular
open source database commonly used together with PHP.

Web Sites

The following are popular Web sites that provide information on PHP:

* http://www.phpbuilder.com

* http://www.zend.com

e http://www.phpwizard.net

e http://www.devshed.com/Server_Side/PHP/

Commercial Vendors

Several vendors provide products based around PHP or include PHP as part of their
server offering:

e Zend (http://www.zend.com) Founded by members of the core PHP team, Zend
provides enterprise support and services around PHP. It also provides a develop-
ment IDE and useful add-ons to the Zend engine for improved performance, source
hiding, and script caching.

PHP 321 |

e Covalent Technologies (http://www.covalent.net) offers PHP as part of its
Apache server solutions.

e Synop (http://www.synop.com/) provides products around PHP, including a
development IDE and content management and site development solutions.

* Nusphere (http://www.nusphere.com/) provides Internet server solutions that
include PHP, Perl, MySQL, and Apache.

Open Source Solutions
In addition to commercial companies, several open source projects provide bundles of
Apache, PHP, databases, and so on. The following are some of them:
e PHP4WIN (http://www.php4win.com/) provides a PHP distribution for the
Windows platform.
e FoxServ (http://sourceforge.net/projects/foxserv/) provides an installer for
Linux and Windows.

e PHPTriad (http://sourceforge.net/projects/phptriad/) provides a packaged
solution of PHP, MySQL, and several admin tools for the Windows platform.

HOUR 20

mod perl

The mod_perl module embeds a Perl interpreter inside the Apache Web
server. This enables access to the Apache API from the Perl scripting lan-
guage. In this hour, you will

¢ Learn how to download, build, and configure mod_perl

 Discover the capabilities of mod_perl 2.0 and compare it to previous
versions based on Apache 1.3

e Learn how mod_perl extension modules such as Apache: : ASP work,
and how to run sample code that uses them

What Is mod_perl?

This commercial ran in the 1980s: Two dorks are walking opposing paths,
each engrossed in his treat-eating endeavor. One is eating a chocolate candy
bar; the other, a jar of peanut butter. They collide and are incensed that one’s
chocolate bar is in the jar of peanut butter, and peanut butter is smeared on
the other’s chocolate bar. “You got peanut butter on my chocolate!” said the
one. “No, you got chocolate in my peanut butter!” replied the other. Then

| 324

Hour 20

the voiceover comes on as they both smile with recognition that their collision was actu-
ally fortuitous: “It’s two great tastes in one candy bar! Reese’s Peanut Butter Cups.”

In the 1990s, Perl and Apache enjoyed a similar collision. Perl’s popularity was high due
to its facilities for rapid development, object orientation, and powerful text processing.
Perl was the de facto language of choice for Web application development, even though
the only Web application framework in use at the time was CGI. The Apache Web server
was also enjoying swelling popularity with its open APIs for extensibility. However, one
problem with the API was that it was accessible only for C programmers.

One of the things that Perl is good at is taking a C API and wrapping it to expose the
interfaces in the Perl language. This is exactly what mod_perl does. As a Perl interpreter
embedded in Apache, it takes the request processing API that module programmers writ-
ing in C use and exposes it in Perl.

mod_perl l.x versions have matured over the years and target the stable Apache 1.3.x
API. mod_perl 2.0 is a complete redesign and works only with Apache 2.0 . This means
that features a mod_perl 1.x user takes for granted might still be under development in
mod_perl 2.0.

The mod_perl API

The mod_perl 1.x releases gave Perl programmers access to various aspects of the
Apache 1.3 APL. The entire request processing and server process lifecycles were
exposed as various handler types that could be implemented in Perl. Joining these APIs
in mod_perl 2.0 are filter and protocol handlers. In all, the process lifecycle, and request
hooks and filters provide Perl programmers with access to much of the internals of
Apache, making it possible to extend Apache functionality at well-defined points.

The complete list of mod_perl handlers covers the process model and API for Apache
2.0; for each request and process lifecycle event, there is a type of handler that can be
run. These handlers are

* PerlChildInitHandler: With preforking process model, this type of handler can
perform duties as child processes are created.

* PerlOpenLogsHandler: This type of handler is run as a process is created, and
attempts to create a resource to record request handling events.

* PerlPostConfigHandler: After Apache parses its configuration files, this type of
handler can operate on what was read.

* PerlPreConnectionHandler: This type of handler runs prior to Apache actually
accepting a connection.

mod_perl

325|

PerlProcessConnectionHandler: This type of handler can implement protocols
other than HTTP to handle a request, while still leveraging the Apache framework
for access controls, content generation, logging, and so forth.

PerlInitHandler: This is the first handler to run after the server has read a
request’s data and headers, but before anything is done with what was read. Inside
a Location, Directory, or Files section, this acts as a
PerlPostReadRequestHandler. Otherwise, it acts as a PerlHeaderParserHandler.
So, the general usage is just PerlInitHandler, but the different configuration con-
texts allow for special uses.

PerlInputFilterHandler: This type of handler can process request data and head-
ers prior to other handlers using Apache’s filter API.

PerlAccessHandler: This type of handler gates access to the requested resource
based on intrinsic characteristics of the connection, such as the host or network that
the connection is coming from or the hour of the day in which the connection is
received.

PerlAuthenHandler: When a resource is password-protected, this type of handler
can determine whether the user is who he claims to be.

PerlAuthzHandler: This type of handler gates access to the requested resource by
examining criteria of the authenticated user’s attributes. The criteria can be any-
thing about the user, such as group membership, the type of car she drives, or the
letter of the alphabet that her username starts with.

PerlTypeHandler: A type-checking handler that can set the MIME-type for the
response. Apache’s default type-checking is performed by mod_mime, and it uses
filename extensions to set what ultimately ends up in the Content -type response
header.

PerlFixupHandler: This type of handler can perform any last-stop operation
before response data is accessed or calculated.

PerlOutputFilterHandler: This type of handler can use Apache’s filtering API to
process response data that another module has produced.

PerlResponseHandler: In mod_perl 1.x, this was just PerlHandler, a handler that
programmatically generated response data. This is the most common type of han-
dler; this type of handler would, for instance, format data from a database query or
rewrite a file’s contents to produce output.

PerlLogHandler: After a request has been served, the request and response attrib-
utes can be logged. This type of handler performs the recording of the event.

PerlTransHandler: This type of handler takes the URI from the read request and
maps it to a resource. A PerlTransHandler can also alter the URI; it can decide to

| 326

Hour 20

apply other handlers and it can run a subrequest with the modified request attrib-
utes.

Some of these handlers are new to mod_perl 2.0, and the way they are enabled in the
server has also been updated. Under mod_perl 1.x, you had to decide at compile time
whether you wanted certain types of handlers disabled or enabled. With mod_perl 2.0,
there is a new directive, Per10Options, that provides a finer level of granularity for
whether a specific type of handler can be active. For instance,

PerlOptions -PerlProcessConnectionHandler
disables PerlProcessConnectionHandlers from being active.

mod_perl 2.0 has also been updated to take advantage of new Apache features, such as
threaded multi-processing modules (MPMs) and the Apache Portable Runtime (APR).
Many of the performance constraints that mod_perl 1.x had to work under can be
addressed by using a threaded MPM, which allows sharing of expensive resources such
as database connections and Perl interpreters. Taking advantage of the threading features
will definitely require the latest and greatest version of Perl; support for multithreading
has been one of the most active areas of Perl development in recent years.

The Perl build itself requires you to have threading options selected at compile time.
Although compiling and installing Perl is outside the scope of this hour, you should be
aware that before Perl is compiled, the sources are configured with a script in the distrib-
ution called Configure. To enable threads in Perl 5.6.x, you will need to use the -
Dusethreads precompile configuration option to the Configure script. However, at the
time this book is being written, no released version of Perl has all the threading facilities
working reliably in a cross-platform fashion. In addition to threads, APR functions, such
as those provided to Apache (and discussed in Hour 2, “Understanding Apache
Internals™) are accessible to mod_perl 2.0 application developers. Between threading and
APR, a lot of new programming territory is opened up by mod_perl 2.0!

A variety of mod_perl-specific Perl modules, which provide page templating, authentica-
tion, logging, and session management, are available on the Comprehensive Perl Archive
Network (CPAN). Taken together, these modules provide the framework for a highly
functional application server. Many of them require updating to run under mod_perl 2.0;
it might be a long time before the majority of them are compatible with both mod_perl
1.x and 2.0. For instance, at the time this book is being written, two popular templating
packages, HTML: :Mason and AxKit, are not compatible with mod_perl 2.0.

HTML: :Mason is a templating system that emphasizes breaking up application logic and
page layout into reusable components. It bears some similarity to JSP in that it exposes
the programming language to the component author and provides caching. In addition, it

mod_perl 327|

provides a rich framework for cascading templates. AxKit is an XML/XSLT page genera-
tion system that emphasizes presentation flexibility through XSLT transformation. Both
these packages are good reasons to use mod_perl. Check with the module author or, if
the module has a help resource, check it for compatibility updates.

CPAN is found at http://www.cpan.org/.

You can find more information about HTML: :Mason at
http://www.masonhq.com/.

You can find more information about AxKit at http://www.axkit.org/.

The most common use of mod_perl is CGI acceleration, and this facility is compatible
with mod_perl 2.0 so long as the Apache: : compat module is used as well.

Apache: :compat provides mod_perl 2.0 with compatibility with the mod_perl 1.x APIs.
If you adhere to some programming practices, a Perl CGI can enjoy a tenfold or even
hundredfold performance improvement running under mod_perl as compared to the per-
formance running the same code by mod_cgi. We’ll provide examples of CGI accelera-
tion later in the hour.

Although space constraints don’t permit us to cover everything that can be done with
mod_perl (recall the length of the handler list earlier in the hour), we’ll get you started
by getting mod_perl installed and working through some illustrative examples. mod_perl
is such a rich and powerful tool that we’ll be able to touch on only a fraction of its capa-
bilities. At the end of the hour, we’ll provide resources for delving deeper into
mod_perl’s vast facilities.

Building and Installing mod_perl

The mod_perl distribution is available on CPAN, from CVS, or from the mod_perl Web
site at http://perl.apache.org/.

The mod_perl 2.0 release requires

* Perl 5.6 or higher
* The Apache 2.0 source distribution
* The CGIL.pm and LWP Perl modules distributions

< These instructions assume that you have an Apache 2.0 installation as well as
=< the latest Perl 5.6.x and CGl.pm distributions installed.

| 328

Hour 20

Installing mod_perl from CPAN
One of the useful tools that comes with Perl is the CPAN module, a library that provides
programmatic access to the CPAN repository.

This is what we will do to install mod_perl from CPAN:

1. Start the CPAN shell:
perl -MCPAN -e shell

If this is your first time using CPAN, the CPAN shell will ask for some initializa-
tion parameters. When that’s done, it drops down to a prompt that takes commands
for querying the archive contents, and getting and even installing Perl modules.

2. Give the CPAN shell the arguments it needs to build mod_perl:

cpan> o conf makepl_arg "MP_APXS=/usr/local/apache2/bin/apxs
= MP_INST_APACHE2=1"

3. Install the module:

cpan> install Apache2
The CPAN shell performs the following tasks:

* Downloads the distribution

e Untars it

e Compiles mod_perl

e Installs the mod_perl Perl code to your Perl library

e Installs the mod_perl Apache module to your Apache distribution’s modules direc-

tory
e You’ll need root privileges to install libraries to Perl’s system library. If you
; need the CPAN shell to install the libraries to an alternative location, consult
= the online documentation for the CPAN module by typing perldoc CPAN
from your login shell.

That is the minimal default installation procedure.

o An easy way to express build options, such as those in step 2, is to create the
k/ file makepl_args.mod_perl in your home directory or in the parent directory

ol of the Apache and mod_perl source trees. This file can parameterize the

mod_perl 329|

options desired for mod_perl (which includes options that can be passed to
the Apache build itself, if you're doing a static compile). The INSTALL file in
the mod_perl distribution provides details about driving options to mod_perl
and Apache with makepl_args.mod_perl.

We’ll be making other references to installing Perl modules off of the CPAN. When we
do, the process will be just like the one for installing mod_perl, except that step 2 won’t
be required—it was a special step needed specifically for installing mod_perl. You can
skip the next section, “Installing from CVS,” to continue your installation from the
CPAN.

Installing from CVS

Because Apache and mod_perl are undergoing a lot of change, it might be desirable (for
instance, to pick up the latest bug fixes) to build from CVS. Review Hour 3, “Installing
and Building Apache,” for details of the Apache build process and accessing CVS. The
following discussion assumes that there is an Apache built from the CVS tree installed in
/usr/local/apache2.

In the parent directory of your checked-out httpd-2.0 tree, check out the mod_perl tree
to a directory right next to it.
1. Get the CVS tree:
cvs co -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co modperl-2.0

2. Prepare the build:

cd modperl-2.0
perl Makefile.PL MP_APXS=/usr/local/apache2/bin/apxs MP_INST_APACHE2=1

3. Do the build:

make

4. Install into the Perl library:

make install

To pick up the latest fixes to mod_perl at a later time, you’ll only need to type

cvs up -PAd

at the top of your CVS tree and re-do steps 2 through 4.

Both CPAN and CVS Installations

Whether using a CPAN release or CVS, you’ll need to configure Apache to actually use
mod_perl. This means loading the Apache module binary itself and specifying Perl

| 330 Hour 20

libraries that hook into the Apache API. Configure Apache to load the mod_perl module
by adding the following line to your server’s httpd.conf:

LoadModule perl module modules/mod_perl.so

You’ll know that this modification is successful when something like this is in the
error_log:

[Fri Apr 26 20:29:49 2002] [notice] Apache/2.0.36
= (Unix) mod_perl/2.0.0 Perl/v5.6.1 configured -- resuming normal operations

Hello World with mod_perl

Now that Apache is successfully loading mod_perl, the next step is to get mod_perl to
load its Perl modules. Add the following to httpd.conf:
PerlRequire /usr/local/apache2/conf/startup.pl
<Location /hello-world>
SetHandler modperl

PerlResponseHandler Apache::HelloWorld
</Location>

The file /usr/local/apache2/conf/startup.pl referred in the PerlRequire line can
contain any Perl code that is useful for initialization; going forward, we’ll refer to it as
just startup.pl. We’ll use it to extend mod_perl’s search path—it is in that path that
mod_perl looks for Perl modules to load as applications. After it can find the libraries we
need, we’ll load them as well. For instance, simply put the following in that file:

use lib qw(/usr/local/apache2/apps);

use Apache2 ();

use Apache::compat;

13

The Location directive in the previous example configures Apache to have mod_perl
handle requests for /hello-world and to have it use a Perl module called

Apache: :HelloWorld perform the logic.

Create the directory /usr/local/apache2/apps/Apache and put a file in there named
HelloWorld.pm (shown in Listing 20.1).

LisTiNnG 20.1 HelloWorld.pm

package Apache::HelloWorld;

use strict;
use Apache::RequestRec (); #for $r->content_type
use Apache::RequestIO (); #for $r->puts

o O~ WD =

mod_perl 331 |

Listing 20.1 continued

7: sub handler {

8: my $r = shift;

9: $r->content_type('text/plain');

10: $r->puts("Hello World, this is the " . _ PACKAGE__ . " application');
11: 0;

12: }

13:

14: 1;

Restart your server and request that URL; for instance,
http://modperl.example.com/hello-world (substitute your host for
modperl.example.com). The response you should expect is

Hello World, this is the Apache::HelloWorld application

Congratulations, you’ve deployed your first mod_perl application! Notice the directory
hierarchy for the mod_perl handlers corresponds to their Perl packages. Because the
apps subdirectory we made for our mod_perl applications is in Perl’s search path
(@INC)—we saw to that in line 1 of startup.pl—Apache: :HelloWorld goes in the
directory /usr/local/apache2/apps/Apache. If we had a handler called
Calc::Graph::PieChart::ThreeDee, we would put the code in a file called
ThreeDee.pmin /usr/local/apache2/apps/Calc/Graph/PieChart with

package Calc::Graph::PieChart;

as the package declaration.

CGI Acceleration

Traditionally, one of the popular motivations for using mod_perl is to overcome the per-
formance limitations of running Perl Web applications using the CGI API, instead of
writing to the Apache API as our HelloWorld example did.

mod_perl l.x users have long enjoyed using a PerlHandler module, Apache: :Registry,
that loads a CGI script and wraps a subroutine around it for persistent execution. The
benefit comes from doing away with the startup/shutdown penalty that CGIs normally
suffer from. The Perl interpreter is persistent because it’s running in the Apache process.
The Perl interpreter, in turn, doesn’t need to rerun the parsing and compilation phases of
CGI execution—that becomes merely a first-hit penalty. Finally, connections to databases
can be persistent if the Perl interpreter is persistent, which significantly speeds up
database-driven Web applications.

| 332

Hour 20

Over the years, variants of Apache: :Registry and utility modules that work with them
have been developed. For mod_perl 2.0, a new generation of modules is under develop-
ment. ModPerl: :Registry and other modules that relate to it are similar to the way
Apache: :Registry relatives relate to it. However, at the time of this writing, these mod-
ules are not fully operational. Fortunately, the compatibility module that we’ve previ-
ously mentioned, Apache: : compat, allows most of the modules from the mod_perl 1.x
generation to run under mod_perl 2.0, and that’s what we’ll use for these examples.

o These examples require having mod_perl 1.x installed, which in turn depends
/ on building against an Apache 1.3.x source tree. Eventually, as mod_perl 2
= matures, this requirement will go away. Fortunately, the build steps are very

similar to the build steps you followed in the earlier discussion of building
mod_perl 2.0. The examples in this section assume that the mod_perl 1.x
libraries are installed in Perl’s system library and therefore do not require
you to manipulate Perl’s search path. Look for updates to
ModPerl::Registry and its relatives that will obviate this requirement.

The first step is to add the things we need to the startup.pl we created when we first
set up mod_perl:

use lib qw(/usr/local/apache2/apps);
use Apache::compat ();

use Apache ();

use Apache::SubRequest ();

13

Our examples will go in the cgi-bin directory that comes in the Apache distribution.
We’ll mod_perl-enable it by adding the handler directives, turning on the ExecCGI
option, and flagging Apache that our scripts will generate their HTTP headers (as con-
ventional CGIs do, at least for the MIME type). So, now the entry looks like this:

PerlModule Apache::Registry
<Directory "/usr/local/apache2/cgi-bin">
AllowOverride None
Options +ExecCGI
Order allow,deny
Allow from all
SetHandler perl-script
PerlHandler Apache::Registry
PerlSendHeader On
</Directory>

Restart the server to make the changes effective. Set the Unix file system permissions on
the printenv script that comes with Apache so that it is executable (by default, it’s not

mod_perl 333|

executable when you install Apache). Just as with running CGIs under mod_cgi, as
described in Hour 6, “Serving Dynamic Content with CGI,” Apache: :Registry and its
related modules expect the script to have the executable bit set.

chmod +x /usr/local/apache2/cgi-bin/printenv

The code for printenv (see Listing 20.2) is a straightforward iteration through all the
environment key-value pairs.

Listing 20.2 printenv

1: #!/usr/bin/perl

2: ##

3: ## printenv -- demo CGI program which just prints its environment
4: ##

5:

6: use strict;

7:

8: print "Content-type: text/plain\n\n";
9: foreach my $var (sort(keys(%ENV))) {
10: my $val = SENV{$var};

11: $val =~ s|\n|\\n|g;
12: $val =~ s|"|\\"|g;
13: print "${var}=\"${val}\"\n";
14: }

Note that we’ve modified this slightly so that it is strict safe, which we’ll discuss shortly.

Now access the CGI, for instance by navigating to http://modperl.example.com/cgi-
bin/printenv (substitute your host for modperl.example.com).

This will display a dump of all the environment variables. The environment is identical
to a standard CGI environment except that there’s an additional variable, MOD_PERL. You
know the script has been served by mod_perl’s Apache: :Registry script and not
Apache’s built-in mod_cgi when you see an environment entry that looks like this:

MOD_PERL="mod_perl/2.0.0"
This demonstrates the simplest case for running a CGI under mod_perl. More complex

examples that use CPAN libraries, handle form input, and so forth run similarly.
Howeyver, there are a number of caveats:

e Clean up resources: Be sure to close database connections and file handles that
are opened in the script. Relying on Perl to clean up is a safe shortcut under a con-
ventional CGI, but it’s a dangerous practice under persistent mod_perl execution,
so do your own tidying up.

| 334

Hour 20

* Be strict safe: All variables should be lexically scoped. Variables that are not
declared lexically scoped by being initialized with Perl’s my operator might leak
values from one request to another. This is due to the code that is cached by
mod_perl. An easy way to enforce lexical scoping is to begin all
Apache: :Registry scripts with the strict pragma.

e Use strict;: The Perl compiler won’t operate on the script if the strict pragma is
in effect and there are variables that aren’t scoped properly.

One of the Perl online documents that is installed when you install mod_perl discusses
this in further detail. Type

perldoc mod_perl_traps
to review the issues relating to running CGIs under mod_perl.

There are times when code that was never meant to run as anything other than a CGI
must be put under mod_perl execution. If the amount of work required to make a CGI
strict safe is high, Apache: :PerlRun provides a nice alternative. This request handler
uses the persistent Perl interpreter that’s running in the Apache process, but it makes no
effort to cache the compilation of the script; every request goes through a full compile,
run, and data-flush cycle. It’s still significantly faster than running a straight CGI; the
Perl interpreter does not need to be started and shut down with every request.

To enable Apache: :PerlRun, change the Directory entry slightly, so that instead of the
handling being performed by Apache: :Registry, it’s Apache: :Per1Run. Change the
entry to the following:

PerlModule Apache::PerlRun
<Directory "/usr/local/apache2/cgi-bin">
AllowOverride None
Options +ExecCGI
Order allow,deny
Allow from all
SetHandler perl-script
PerlHandler Apache::PerlRun
PerlSendHeader On
</Directory>

The output is identical, but it removes the requirement that the code be strict safe; “dirty”
CGlIs are okay under Apache: :PerlRun.

Page Components and Templating

In the last few years, CGI-style Web application has all but disappeared; it has largely
been replaced by page component and templating systems. A component system uses

mod_perl

335|

page fragments to assemble a complete HTML document for the browser to render. The
browsers don’t see the code that links the components together—all the processing is
done on the server. Page templating provides not only boilerplating of the formatting and
layout code in the HTML, but also provides placeholders for programmatic data display.
Usually, these two concepts go together to provide page-centric Web application develop-
ment.

The most basic component system for Apache is mod_include and its support for server
side includes (SSI), which is covered in Hour 12, “Filtering Modules.” Although SSIs are
fine for composing a page of fragments and dealing with environment variables, they are
severely deficient as far providing a programmatic framework for handling data. PHP is
another component and templating system. PHP has its own language implemented,
which has proven to be a mixed blessing; PHP is discussed in detail in Hour 19. For
those who want to architect a component system in Perl, mod_perl has been a godsend.
In fact, it is so easy to build a component system to run under mod_perl that there are
arguably too many of them on the CPAN. In this section, we’ll focus on one of the more
popular ones.

For flexibility and power, Apache: :ASP is difficult to beat. Apache: : ASP provides an
implementation of Microsoft’s Active Server Pages (ASP). Be aware that although
Microsoft ASP logic is typically developed with VBScript, Apache: : ASP logic is imple-
mented in Perl. Although this isn’t necessarily a good portability solution, if you like the
ASP API but dislike VBScript and like serving your pages with Apache, Apache: :ASP
might be just what you’re looking for. It provides access to all the Apache request object
data and all of Perl’s built in functions, and is easily extended with more modules off of
the CPAN.

We’ll set up a simple Apache: :ASP application by loading it in the httpd.conf, creating
a directory to hold our Apache: : ASP documents (mkdir /usr/local/apache2/asp),
another directory for its internal application state maintenance (mkdir
/usr/local/apache2/asp_statedir), and setting up a Directory container for it. This
application simply echoes back any form variables that are submitted to it.

This is how you specify that you want content in this directory to accessed under the
/asp namespace and that it should be handled by the Apache: : ASP module:

PerlModule Apache::ASP
Alias /asp /usr/local/apache2/asp
<Directory /usr/local/apache2/asp>
Options Indexes FollowSymLinks
Order allow,deny
Allow from all
<Files ~ (\.asp)>

| 336 Hour 20

SetHandler perl-script
PerlHandler Apache::ASP
PerlSetVar Global .
PerlSetVar StateDir /usr/local/apache2/asp_statedir
</Files>
</Directory>

Now deploy the following page in the asp directory in a file called form.asp (see
Listing 20.3).

Listing 20.3 form.asp

1: <IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
2: <html>

3 <head>

4 <title>Apache::ASP form dump</title>

5: </head>
6:
7

8

<body bgcolor="#ffffff">
<h1>Apache::ASP form dump</h1>

9: <form method="POST">
10: <table border="1" cellpadding="3">
11: <tr><td colspan="4" bgcolor="lightgrey">Text Fields</td></tr>
12: <tr>
13: <td>
14: Username:
<input type="text" name="username" size="15">
15: </td>
16: <td>
17: Password:
<input type="password" name="password" size="15">
18: </td>
19: <td>
20: Biography

21: <textarea name="biography" rows="3" cols="14"></textarea>
22: </td>
23: <td> </td>
24: </tr>
25: <tr><td colspan="4" bgcolor="lightgrey">Selectors</td></tr>
26: <tr>
27: <td>Your Computer Peripherals:
(Check All That Apply)

28: <input type="checkbox" name="peripherals" value="wifi">
= Wireless 802.11b

29: <input type="checkbox" name="peripherals" value="dvd">
=DVD Drive

30: <input type="checkbox" name="peripherals" value="cdburner">
= CD Burner
31: </td>
32: <td>Your Preferred Web Browser:
(Pick One)

33: <input type="radio" name="browser" value="netscape">

= Netscape Navigator

34: <input type="radio" name="browser" value="mozilla">Mozilla

mod_perl

337 |

ListinG 20.3 continued

35:

36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:

60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:

<input type="radio" name="browser" value="msie">
=Internet Explorer

<input type="radio" name="browser" value="other">Other
</td>
<td>Your Hobbies:
(Check All That Apply)

<select multiple name="hobbies" size="4">
<option value="apache">Hacking Apache
<option value="surfing">Surfing
<option value="mosh">Moshing
<option value="gliding">Hang Gliding
</select>
</td>
<td>My Favorite Programming Language:
(Pick One)

<select name="language">
<option value="perl">Perl
<option value="tcl">Tcl
<option value="java">Java
<option value="python">Python
<option value="php">PHP
<option value="ruby">Ruby
</select>
</td>
</tr>
<tr>
<td colspan="4" align="left">
<input type=button value="Clear" name="clearbutton"
= onClick="alert('Clear Clicked')">
<input type=submit name="submitbutton" value="Submit">
<input type=reset name="resetbutton" value="Reset">
</td>
</[tr>
</table>
</form>
<% if (%{$Request->{Form}}) { %>

<hr size=1>

Your username is <tt><%=$Request->Form('username')%></tt>

Your password is <tt><%=$Request->Form('password')%></tt>

Your biography is <tt><%=$Request->Form('biography')%></tt>

Your computer peripherals are <tt>

<% for my $p ($Request->Form('peripherals')) { %>

<%= $p %>

<% } %>

</tt>

Your web browser is <tt><%=$Request->Form('browser')%></tt>

Your computer peripherals are <tt>

<% for my $i ($Request->Form('hobbies')) { %>

| 338 Hour 20

Listing 20.3 continued

81: <%= $i %>

82: <% } %>

83: </tt>

84: Your programming language is <tt><%=$Request->Form('language')%></tt>

85: <% } %>

86:

87: <hr>

88: <address>Example</address>
89: </body>

90: </html>

Now access this from your Web browser: http://modperl.example.com/asp/form.asp
(substitute your host for modperl.example.com).

Apache: :ASP also supports XML-like tags that map to Perl functions for request process-
ing and producing output, similar to the taglibs that JSP developers are accustomed to.
Because Perl modules can be accessed directly in your ASP code, you can take advan-
tage of CGI.pm’s facilities for programmatic form widget generation.

Before installing Apache: :ASP, you must install some CPAN modules such as MLDBM,
MLDBM: :Sync, and Digest: :MD5.

Other modules, such as Time: :HiRes (for debugging), HTML: :FillInForm (for filling val-
ues on form widgets), and XML: :Sablotron (for XSLT transformations), can enhance
your Apache: :ASP installation’s capabilities.

To install these modules, refer to the CPAN installation process we used earlier to install
mod_perl. You won’t have to recompile Apache or mod_perl, but acquiring, compiling,
and installing the modules is greatly streamlined by the CPAN module.

A number of other page component assembly and templating systems are available for
mod_perl. Some other popular component and template systems include

® HTML::Mason

* HTML::Embperl

e HTML::Template

e Template Toolkit
There are others, and each one has strengths and weaknesses in terms of how much sim-
plicity or power it exposes to the page developer. Sometimes it is advantageous to sand-

box the page developer to limit the amount of trouble he can get into; other times, it’s
preferable to expose the full power of the underlying programming language to the page

mod_perl 339|

developer. Although many of these modules have been in use for a long time under
mod_perl 1.x, their level of compatibility with mod_perl 2.0 varies considerably (even
with Apache: :compat) .

Access, Authentication, and Authorization

Some of the other problems that mod_perl can solve easily are complex authentication
and authorization requirements. Hour 7, “Restricting Access,” covers the basics of
authentication and authorization.

Suppose that you have resources that are accessible to a user larry only during the hours
of 9 am. to 5 p.m., curly only from 5 p.m. to 1 a.m., and to moe on the graveyard shift
from 1 a.m. to 9 a.m.

Our module, StoogeAuthz, will handle authenticating our three stooges and these crazy
authorization requirements for us. First, we’ll configure httpd.conf:

PerlModule Apache::StoogeAuthz

<Location /stooges>
AuthName "stooge stuff"
AuthType Basic
PerlAuthenHandler Apache::StoogeAuthz
PerlSetVar StoogeAuthz_passwd_file /usr/local/apache2/conf/stooge_passwd
PerlSetVar StoogeAuthz_day_user larry
PerlSetVar StoogeAuthz_swing user curly
PerlSetVar StoogeAuthz_graveyard_user moe
require user larry curly moe

</Location>

Then we’ll create the password file /usr/local/apache2/conf/stooge_passwd by using
the htpasswd utility that comes with Apache:

htpasswd -c -s /usr/local/apache2/conf/stooge_passwd larry
htpasswd -s /usr/local/apache2/conf/stooge_passwd curly

htpasswd -s /usr/local/apache2/conf/stooge_passwd moe

We want the -c option only the first time—to create the password file.
Further, we're using SHA1 encryption, so we need the -s option.

Remember to create the stooges directory (mkdir
/usr/local/apache2/htdocs/stooges) so that we don’t get a 404 error.

| 340 Hour 20

Finally, we’ll deploy our Apache: : StoogeAuthz module by placing a file
StoogeAuthz.pm with the code in Listing 20.4 in /usr/local/apache2/apps/Apache.

LisTinG 20.4 StoogeAuthz.pm

package Apache::StoogeAuthz;

standard Perl stuff
use strict;

use FileHandle;

use constant DEBUG => 1;

ONOO O~ WD =

mod_perl libraries

9: use Apache::Log ();

10: use Apache::Const -compile => qw(OK AUTH_REQUIRED FORBIDDEN SERVER_ERROR
11: DECLINED);

13: # other CPAN modules
14: use MIME::Base64;
15: use Digest::SHAT;

17: # uses SHA1 encrypted passwords to authenticate
18: # and the time of day to authorize

20: # these are the parameters that configure this module
21: my S$param = {

22: StoogeAuthz_passwd_file => undef,
23: StoogeAuthz_day_user => undef,

24: StoogeAuthz_swing_user => undef,
25: StoogeAuthz_graveyard_user => undef
26: };

27:

28: # this is the actual request handler, Apache gives it a
29: # request object as an argument
30: sub handler {

31: # get our request object

32: my $r=shift;

33: # populate our parameters with what was configured in
34: # httpd.conf

35: while(my($key, $val) = each %$param) {

36: $val = $r->dir_config($key) || $val;

37: $key =~ s/~StoogeAuthz_//;

38: $param->{$key} = $val;

39: }

40: # if not configured don't handle the request
41: if (! $param->{passwd_file}) {

42: return Apache::DECLINED;

43: }

44: my ($passwd_lookup,$user_found);

mod_perl 341 |

LisTing 20.4 continued

45: # here the dialog pops up and asks you for username and password

46: my ($res, $passwd_sent) = $r->get_basic_auth_pw;

47: return $res if $res; # e.g. HTTP_UNAUTHORIZED

48: # mod_perl 1.x programmers are accustomed to $r->connection->user

49: my $user_sent = $r->user;

50: # open our password file

51: my $pwfile = new FileHandle $param->{passwd_file}, "r";

52: if (defined $pwfile) {

53: while (my $entry = <$pwfile>) {

54: chomp $entry;

55: if ($entry =~ /~${user_sent}:(.*)/) {

56: $passwd_lookup = $1;

57: $user_found += 1;

58: last;

59: }

60: }

61: if (! $user_found) {

62: $r->log_reason("No such user found: $user_sent");

63: $r->note_basic_auth_failure;

64: return Apache::AUTH_REQUIRED;

65: }

66: undef $pwfile; # close the password file

67: } else {

68: $r->log_reason("Couldn't open password file:
w$param->{passwd_file}");

69: return Apache::SERVER_ERROR;

70: }

71: # SHA1 encrypt the password the user gave

72: my $passwd_sent_sha='{SHA}"

73: encode_base64(Digest::SHA1::shal($passwd_sent));

74: chomp ($passwd_sent_sha);

75: if ($passwd_sent_sha ne $passwd_lookup) { # passwords don't match

76: $r->log_reason("Password doesn't match for user: $user sent, "

77: "$passwd_sent_sha ne $passwd_lookup");

78: $r->note_basic_auth_failure;

79: return Apache::AUTH_REQUIRED;

80: }

81: # ok, we're authenticated but not yet authorized

82: print STDERR "User authenticated: $user_sent\n" if DEBUG;

83: # get the time local to the machine hosting Apache,
84: # not the browser!

85: my ($sec,$min,$hour) = localtime();

86: if ($hour >= 9 && $hour < 17) {

87: if ($param->{day_user} eq $user_sent) {

88: return Apache::0K;

89: } else {

90: $r->log_reason("user $user_sent is denied access during "
91: "the day shift, you must be "

92: "$param->{day_user} to access");

| 342 Hour 20

Listing 20.4 continued

93: return Apache::FORBIDDEN;

94: }

95: }

96: if ($hour >= 17 || S$hour < 1) {

97: if ($param->{swing_user} eq $user_sent) {

98: return Apache::0K;

99: } else {

100: $r->log_reason("user $user_sent is denied access during "
101: "the swing shift, you must be "
102: "$param->{swing_user} to access");
103: return Apache::FORBIDDEN;

104: }

105: }

106: if ($hour >= 1 && S$hour < 9) {

107: if ($param->{graveyard_user} eq $user_sent) {

108: return Apache::0K;

109: } else {

110: $r->log_reason("user $user_sent is denied access during "
111: "the graveyard shift, you must be "
112: "$param->{graveyard_user} to access");
113: return Apache::FORBIDDEN;

114: }

115: }

116: return Apache::0K;

117: } # handler

118:

119:

120: 1,

mod_perl 2.0 has a nicer API for adding new directives to the Apache vocabulary than
mod_perl l.x (which required compiling XS binary extensions for your Perl code). This
should obviate the need for PerlSetvar directives in httpd.conf and accessing
$r->dir_config() in the module code. However, at the time of this writing, some com-
ponents of mod_perl 2.0’s are unimplemented, such as Apache: :ModuleConfig.
Therefore, using Per1SetVar and dir_config() from the mod_perl 1.x API and leverag-
ing Apache: :compat is an easy way to start using established and stable mod_perl 1.x
APIs under mod_perl 2.0.

Architecting a Scalable mod_perl
Infrastructure

Under mod_perl 1.x, servers often suffered from performance constraints that stemmed
from the preforked process model of Apache. For instance, applications that required a

mod_perl 343 |

database connection and wanted to enjoy the benefits provided by Apache: :DBI’S persis-
tent database connections had to have a database connection per Apache process per
database resource. Additionally, much of the time for an Apache process handling a
request is spent sending data over high-latency networks, which further ties up resources
that might be better spent performing templating logic. In essence, “‘smart” Apache
processes that know how to talk to databases and perform complex operations are
bogged down by dumb jobs, such as bleeding data down to the browser. For busy Web
sites with a large process pool, this is a big problem.

For mod_perl 2.0 installations using the preforked MPM, these issues remain. However,
threaded MPM installations can at least mitigate the resource connection issue. Several
new directives allow mod_perl 2.0 to manage the number of Perl interpreters active
within an Apache instance. The Perl interpreters can be maintained in a pool that
mod_perl can check out, make use of, and then return to the pool, much as you would
check out, use, and return materials from a public library. These directives include

* PerlInterpStart: Number of Perl interpreters to start

* PerlInterpMax: Maximum number of running Perl interpreters

* PerlInterpMaxSpare: Maximum number of spare Perl interpreters

* PerlInterpMinSpare: Minimum number of spare Perl interpreters

* PerlInterpMaxRequests: Maximum number of requests per Perl interpreter

* PerlInterpScope: Scope for which the selected interpreter should be held; one of
request, connection, handler, subrequest

The pool management API itself has been abstracted for programmatic manipulation of
the number of thread items using the Apache: :TIPool module. An experimental Perl
module for handling database connection pools, Apache: :DBIPool, is distributed with
mod_perl 2.0 as a minimal reference implementation. However, at the time of this writ-
ing, there are no production-quality modules on the CPAN that implement the

Apache: : TIPool API for database connection management.

The interim solution to the database connection problem, as well as the high-latency
client resource consumption problem, is to put a proxy tier in front of the mod_perl
server. The proxy tier can have a large process pool to handle high traffic, but can be
connected to the mod_perl applications via a high-speed network to minimize the
resources that that more constrained process pool must consume.

Summary

Writing Web applications as logic that runs inside the Web server process offers many
performance benefits. The standard APIs that Apache exposes for C programmers are

| 344

Hour 20

nice, but lack the rapid development characteristics of a scripting language. mod_perl
wraps the C API and exposes it to Perl programmers for a variety of application uses.
You can write your own Apache modules in Perl, and can even perform the same duties
as most of the modules written in C that are distributed with Apache. You can leverage
existing modules available on the CPAN to provide templating, logging, session manage-
ment, and authentication functionality. Although mod_perl is not an application server
per se, it provides all the raw materials of one. Many Web sites are running on cobbled-
together application frameworks built on top of mod_perl and CPAN modules. You can
dramatically accelerate your CGIs with a few simple changes to your httpd.conf.
Finally, mod_perl’s new thread item API provides many interesting possibilities for
resource pooling. Although there are other scripting language modules that hook into the
Apache API, none provides the rich set of tools and mature code base that mod_perl
does. Chocolate and peanut butter taste pretty good together!

Q&A

Q Does the Perl interpreter run in the Apache process or does it run externally
under mod_perl?

A Running the Perl process externally is a model used by FastCGI. There’s a similar
API, SpeedyCGI, (see http://sourceforge.net/projects/speedycgi/) that per-
forms similar duties. In contrast, mod_perl runs in process and therefore enables
intimate access to Apache’s internals; mod_perl’s rich API then is dependent upon
running inside the Apache instance.

(e

Are there other language modules that do what mod_perl does?

A Various modules have been developed over the years for similarly exposing
Apache’s C API for Python, Tcl, and even Java. However, none of these projects
has ever enjoyed the popularity of mod_perl. An interesting development in
Apache 2.0 is having access to mod_perl objects from inside PHP. For instance, in

a PHP page, you can get mod_perl’s Apache request object like so
<?
$perl = new Perl;

$r = $perl->call("Apache::request");
7>

and then perform operations on it as you would from with a Perl handler!

Can I use mod_perl applications with my Java servlets?

> O

Traditionally, these have been separate realms of application development.
However, with Apache 2.0’s filtering API, it is conceivable that your mod_perl
application could represent HTTP responses to mod_jk or vice versa. For instance,

mod_perl 345 |

a mod_perl response in XML can be filtered through a Java servlet that performs
XSLT styling with the Apache filtering API.

Q How do I set up mod_perl on Windows?

A This is a thorny issue because it requires compiling mod_perl for Windows, usually
with Microsoft Visual Studio, and having that compile match the compile of
Apache. There are mod_perl hackers who regularly post compiled distributions of
mod_perl; you’ll need to use the same version of Apache that they compiled
against to use their distributions. One place to get mod_perl, as well as a number
of mod_perl-related CPAN modules, compiled to work with Apache binaries
posted by the Apache Software Foundation (see http://httpd.apache.org) and
the Perl distribution from ActiveState (http://www.activestate.com/) is
http://theoryx5.uwinnipeg.ca/. Check there for the latest developments regard-
ing running mod_perl on Windows.

Quiz
1. Why is using the strict pragma important for mod_perl development?
2. Is it necessary to use all the CPAN modules like AxKit and Apache: :ASP to benefit
from mod_perl?

3. Can Apache be configured to handle other network protocols besides HTTP with
mod_perl?

Quiz Answers

1. When you have use strict; in your Perl code, you ensure that you don’t have
any undeclared or accidental global variables in your code. These might not be a
problem in a CGI, but they can wreak havoc in mod_perl’s persistent execution
model.

2. Nope. If your Web site is burdened with a lot of CGI requests, you can get imme-
diate benefit just by using Apache: :Registry or one of the other modules that
come with the mod_perl distribution and enable CGI acceleration.

3. Yes. The PerlProcessConnectionHandler component of the API allows Perl to do
all the protocol-level handling. For instance, you could write a Perl module to han-
dle mail server duties such as SMTP or POP3. You could even invent your own
network protocol and leverage Apache for its other server framework APIs and
enjoy the rapid development benefits of Perl!

| 346 Hour 20

Further Reading

Writing Apache Modules with Perl and C, Lincoln Stein and Doug MacEachern, 1999,
O’Reilly and Associates.

This book has not been updated to include all the new APIs in Apache 2.0 and mod_perl
2.0. However, it provides a rich discussion of the APIs as they existed in Apache 1.3.x
and mod_perl l.x that still has some applicability to the next generation.

mod_perl Developer’s Cookbook, Geoffrey Young, Paul Lindner, and Randy Kobes,
2002, Sams

Although not updated for mod_perl 2.0, this book provides a rich set of solution-oriented
examples of using mod_perl 1.x APIs.

http://perl.apache.org/

The home for all things mod_perl. Watch this site for news and updated releases of
mod_perl. This site also provides searchable archives of mailing lists as well as subscrip-
tion information, so use it as your gateway to the vast mod_perl community.

http://perl.apache.org/~dougm/

Doug MacEachern, the author of mod_perl, often posts items of special interest to
mod_perl developers here. Bleeding-edge build patches, examples, and technical notes
can be found here, but you’ll need to snoop around—there’s no table of contents for
Doug’s stealth Web site.

HOUR 21

Tomcat and Apache

This hour gives an introduction to the Tomcat Java servlet and JavaServer
Pages (JSPs) container reference implementation. Servlets and JSPs are used
to run Java-based Web applications.

In this hour, you will learn

* How server-side Java works
* How to configure Tomcat to work with Apache

* How to run basic servlets and JSPs using Tomcat

A Little History of Java Servlets

Although some Web content is static, in that it doesn’t change much if at all
from one request to another, there are few software applications under devel-
opment these days that aren’t Web-enabled. The earliest Web applications
were common gateway interface (CGI) programs whose application logic
was typically coded in a scripting language, as described in Hour 6,
“Serving Dynamic Content with CGI.” However, as needs grew from simply
providing a Web-based user interface to existing applications to entirely
Web-based applications, so also grew the need for programming

| 348

Hour 21

environments suitable for developing these applications. When Sun Microsystems intro-
duced the Java programming language in 1995, it focused on providing a richer browser-
based interface using embedded graphical applications or applets. However, applets
never really seemed to solve the richer-interface-needed problem very well. Nonetheless,
Java’s strengths as a language drove its popularity, much to the chagrin of its early pro-
ponents, for server-based applications. Java offers a fully object-oriented programming
construct that lends itself to sophisticated design patterns, while avoiding the platform-
specific concerns of older OO languages such as C++.

The Java Servlet API was developed to provide an environment for server-based Web
applications. The early implementations of this API included the Apache JServ project as
well as Sun’s Java Web Server. As the API underwent revision and was joined with the
JavaServer Pages API specification in 1999, Sun donated the Java Web Server code to
the Apache Software Foundation and JServ development was retired. That donation even-
tually bore fruit as Tomcat 3.0, the reference implementation for Servlet API version 2.2
and JSP API version 1.1. At the time this book is being written, the latest version of the
API’s are Servlet API version 2.3 and JSP version 1.2, and Tomcat 4.0 is the reference
implementation for these specifications.

Servlets are Java programs that run on the server side, waiting for requests, processing
them, and providing responses. Compare this to CGIs, which are launched, marshal any
resources they need, perform their processing, and then cease execution. Servlets are
launched either when the servlet engine starts up or when the first request for the servlet
arrives. When they are running, servlets can remain loaded for the lifetime of the servlet
engine, thereby avoiding the startup and shutdown penalty of CGI execution.

JSPs are Java’s answer to other page-oriented application environments such as
Microsoft’s Active Server Pages and PHP. A JSP is authored like an HTML page with
embedded Java code and special tags that are processed by the JSP container. However, a
JSP is not parsed and processed with each request. Upon first request, a JSP is converted
on the fly to Java servlet source code and compiled into Java virtual machine (JVM)
bytecode that is cached for efficient future execution cycles.

Servlet Container Integration with Apache

Servlet engines run their applications within a Java process or Java virtual machine. Java
is compiled to bytecode that is portable among JVMs; code compiled for a JVM running
on Windows will execute equally well on a JVM running on Linux. A servlet engine is
referred to as a servlet container. A container provides Java objects that represent HTTP
requests and responses that will be passed to the running servlets for processing.
Although it is possible for Tomcat to run standalone and serve HTTP requests directly,

Tomcat and Apache 349 |

Apache does a better job at tasks such as handling static content and SSL connections,
and Tomcat is commonly used alongside an Apache server. Unlike mod_perl and PHP,
which run as modules inside the Apache process, a JVM is external and requires a mech-
anism to connect to the Web server. That’s where the JServ protocol helps out.

Tomcat inherited the Apache JServ protocol (AJP) from the JServ project. AJP is a proto-
col for connecting an external process to a servlet container. It is the responsibility of an
Apache module, mod_jk, to speak this protocol to the servlet container. We’ll cover
downloading mod_jk and setting it up later in this hour. The protocol has undergone a
number of revisions; Tomcat 4.0 and the current version of mod_jk use AJP 1.3, which is
typically referred to as ajp13.

Figure 21.1 shows a typical setup, with the Apache Web server listening on port 80 for
HTTP requests and Tomcat running in another process listening for ajpl3 connections on
port 8009. The Web server need not listen on port 80; we’ll shortly configure mod_jk and
Tomcat to use another port to illustrate how the ajp13 protocol connection is configured.

FIGURE 21.1
Apache Web Server Tomcat Serviet
The Apache Web Container
server and Tomcat
communicate request HTTP Serviet
and response data Request o Request o
. Listening on > Listening on

over the ajpl3 proto- http () Portgofor mod_k ()| _ apt3 Port 8009 for

D E—— HTTP protocol < ajp13 protocol
col. HTTP P Serviet wiep

Response Response

HTTP Request Handling Process Servlet execution

Installing and Running Tomcat

Tomcat 4.0 requires Java 2 Standard Edition (J2SE) 1.2 or higher. If you have only an
older Java Development Kit (JDK 1.1.8 is still widely deployed), you must upgrade. The
J2SE runtime for Windows, Linux, and Solaris can be downloaded from Sun; support for
these and other platforms might be available from other vendors. The Tomcat 4.0 distrib-
ution can be downloaded from the Apache Jakarta project (see the “Further Reading”
section at the end of this hour for download URLSs). The source code for Tomcat is freely
available from the Jakarta project Web site. However, most users don’t need to compile
Tomcat; it is written entirely in Java, so if you have the required Java runtime, the pre-
compiled binaries will run.

In addition to using ajp13 to connect Tomcat to Apache, it also can be run as a stand-
alone Web server. The HTTP support built into Tomcat is not especially robust,

| 350

Hour 21

particularly in comparison to the Apache Web server, but for simple development pur-
poses or lightweight Web server demands, it’s perfectly adequate. After Tomcat is
installed, we’ll use its HTTP support to verify that it is running.

At the time of this writing, Tomcat 4.0.4 is the most recent release. There are different
packages available for the newest J2SE distribution (1.4), but the installation and startup
are similar. The Tomcat startup script expects the environment variable JAVA_HOME to be
set to the directory where the Java runtime is installed.

Installing on Unix

For Unix and Linux users, you can simply set the environment variable in your shell,
download the latest binary distribution (Listing 21.1 assumes that you’ve downloaded
jakarta-tomcat-4.0.4.tar.gz), uncompress and unpack it in the directory you want it
installed in, and run the startup script.

Listing 21.1 Steps to Install Tomcat

export JAVA HOME=/usr/local/j2sel.3

export CATALINA_HOME=/usr/local/jakarta-tomcat-4.0.4
cd /usr/local

gunzip < jakarta-tomcat-4.0.4.tar.gz | tar xvf -

cd jakarta-tomcat-4.0.4/bin

./catalina.sh start

o The version of tar included in Solaris and other Unix systems does not cor-
/ rectly handle tarballs with paths that exceed a certain length. That is the
= case with the Tomcat tarball, so you might need to download and use gtar

instead. gtar is an equivalent utility that can be found at ftp://gate-
keeper.dec.com/pub/GNU/tar/.

Now you should be able to access the Tomcat HTTP server on port 8080, for instance,
by navigating to http://localhost:8080/ (if not accessing from localhost, change the
hostname accordingly) as shown in Figure 21.2.

—% . .
To make sure that the JAVA_HOME and CATALINA_HOME environment variables
=1 4

are set the next time you log in, set them in your login script. For example,
if you are using the bash shell, you can put the export commands shown
earlier in the .bash_profile file in your home directory.

Tomcat and Apache 351 |

~+ Jakarta Project - Tomeat {v4.0.4) - Mozilla {Build ID: 2001032020}
FIGURE 21.2 i (] { }
.| Eile Edit Miew Search Go Bookmarks Tasks Help
The Tomcat splash S P o
screen. ez i o by [tig:tnocaihost 5060/ ndex himi =] 22 searcn| S @
(|
Tomcat B
Version 4.04

The Jakarta Project

htop://jakarta.apache.org

If you're seeing this page via a web browser, it means

JSP Exarnples you've setup Tomcat successiully. Congratulations! —

Senvlet Examples

WebDAY capabilities As you may have guessed by now, this is the default Tomeat
home page. It can be found on the local filesystermn at:

FCATALINA_HOME/webapps,/ROOT/ index . html

where "BCATALINA_HOME" is the root of the Tomcat
installation directory. If you're seeing this page, and you dor't
thirk. you should be, then either you're sither a user who has
arrtved at new installation of Tameat, or you're an administrator
who hasm't got hisfher setup quite right, Froviding the latter is
the case, please rafer to the Tomeat Documentation for more

Sun's Java Server Pages Site - -
Suds Serviet St detailed setup and administration information than is found in

the INSTALL file.

1 | »
& &b 2 Fa) | Document Done (0438 secs) | |'4P4ﬁl

Installing on Windows

Windows users must go into the properties for the My Computer icon, select the
Advanced tab, and click Environment Variables. Click New and set the JAVA_HOME envi-
ronment variable’s value to the path in which the Java runtime is installed. In Figure
21.3, JAVA_HOME is set to C:\j2sdk1.4.0.

Environment Variables

FIGURE 21.3
Setting JAVA_HOME in
Windows.

System variables

Varizhle [el [=]

ComSpac CAWINNT system3Ziomd. exe.

NUMBER_OF_FR... 1

o5 Wndows_NT

Os2libPath CAWINT systerniZias2idl;

Pah COWINNT s ystem3Z S WINNT SN, ;l
Mow.. | Edt. | oewte |

0K I Cancel |

| 352

Hour 21

at this stage makes compiling and running Java code from the Windows

@ Although doing so is not necessary, setting Path to %Path%;%JAVA_HOME%\bin
Z command shell much more convenient.

Assuming that you’ve downloaded jakarta-tomcat-4.0.4.exe, double-click it to
launch the Windows installer. After an informational message about detecting the
JAVA_HOME setting and agreeing to the Apache license, you will see a software compo-
nent selection menu as shown in Figure 21.4.

FIGURE 21.4 3, Apache Tomcat 4.0: Installation Dplions
E\ This will mskall thes Apache Tomeat 4 0 sendet containes on your computer

Tomcat component =3

selection menu. Select the e o el Noma El
0r, zelect the cplional Tomeat &0 [recui=d| -

15y wish 1o inetalt
sttt CINT Service [NT/26/4F ariy)
[F] 5P Development Shell Estensions
Tameal 4,0 Stait Meru Gioup
[7] Tomeat 4.0 Documerkziicn
[] Example web Apalications -
Space tequisct 22MB 1 Tameat 4.0 Source Code =l

1,56 <Back || News |

Cancel Fullscft I natall Suster

On Windows NT, 2000, or XP, you will probably want your Tomcat server to run as a
Windows service, so click the second check box from the top to enable this feature.
After selecting the path in which Tomcat should be deployed, the files are installed and a
Start Menu folder is created as shown in Figure 21.5.

FIGURE 21 5 & €\ Documents and Settings'Tan Kallen!Start Menu)Programs) Apache Tomes =T
The i lled T | Fie Edt View Favorites Tocks Help !n
e installea fomcat | =Bk - > - Qoeerch ChyFoders HHsory |0 08 X o | EE-
fOZdETZ | teddees | i and I tenuf \ipache Tomcat 4.0 ENGES
l.-..— el - Name ¢ | sze [Type
y=ze L [Hcorfiguration Fie Foidar
—— 1 Stert Tomeat ZKB Shorteut
Apache Tomcat 4.0 §i|step Tameat ZKE Shartout
Ly Tomeat 4.0 Progr.., 1KE Shartout
Selct an kem ko viow its ﬁTuﬂ:atDo:umn:... 1KE Shortout
deseriptian, Tomeak Home Pags 1K Shartout
See ako AFUninstal Tomcat 4.0 LKEB Shartout
My Dacumsrks
by Bobuserk Places
My Compater 1] |
[7 abject{s) Eesks = My compuier P

To start your server, click the Start Tomcat icon. Windows NT, 2000, and XP users can
also start their server from the Windows Service Manager, provided the option shown in

Tomcat and Apache 353 |

Figure 21.4 was selected. Just as in the Linux case shown in Figure 21.2, you should be
able to access Tomcat’s HTTP server on port 8080.

Connecting the Apache Web Server to
Tomcat

In addition to the Tomcat distribution, the Jakarta project has a separate distribution that
you can download, jakarta-tomcat-connector, which has the full source code for
mod_jk and other connectors. Precompiled binaries of Apache 2.0 mod_jk for Windows
and Linux are available as well from the Jakarta Web site. On Linux and Unix systems,
the module binary is typically a file named mod_jk.so; on Windows, it’s usually named

mod_jk.d1l.

S The packaging for mod_jk binaries varies greatly, sometimes on a month-to-
/ month basis. Consult the Jakarta Web site for the latest news about what
= H

packages are available.

After you have the module binary, put it in the modules subdirectory of your Apache
installation’s server root. On a typical Unix installation, the httpd.conf configuration
addition shown in Listing 21.2 loads and enables mod_jk.

LisTiNG 21.2 Apache Directives to Configure mod_jk

LoadModule jk_module modules/mod_jk.so
JkWorkersFile conf/workers.properties

JkMount /examples/*.jsp ajpi3

JkMount /examples/servlet/* ajp13

Alias /examples /usr/local/jakarta-tomcat-4.0.4/webapps/examples

<Directory /usr/local/jakarta-tomcat-4.0.4/webapps/examples>
Order allow,deny
allow from all
Options indexes

</Directory>

<Directory /usr/local/jakarta-tomcat-4.0.4/webapps/examples/WEB-INF>
deny from all

</Directory>

| 354

Hour 21

The JkWorkersFile directive refers to a separate file that configures the ajp13 protocol
communication parameters; an example called workers.properties is distributed with
mod_jk. For a basic setup, the default values shown in Listing 21.3 for workers.proper-
ties are typically fine. The file format uses name/value pairs, in which the name and
value are separated by an equal sign. workers.tomcat_home might be the only value that
you have to set; it should agree with the value you previously set for CATALINA_HOME. If
you need to set up more than one installation of Tomcat on your machine, you’ll need to
adjust the worker.ajp.port parameter in workers.properties to make sure that mod_jk
is connecting to the correct Tomcat installation; your Tomcat installations will not be
able to start up sharing port numbers.

Listing 21.3 workers.properties

workers.tomcat_home=/usr/local/jakarta-tomcat-4.0.4
workers. java_home=$ (JAVA_HOME)

ps=/

worker.list=ajp13

worker.ajp13.port=8009

worker.ajpi13.host=1localhost

worker.ajp13.type=ajpi13

Should you need to alter the values from their defaults, the workers.properties file in
the mod_jk distribution is annotated with comments that explain the values’ use.

The JkMount directives in Listing 21.2 make all HTTP requests that Apache receives
with a URL that begins with /examples/servlet, or has a . jsp file extension and begins
with /examples, go through mod_jk to Tomcat. It would not be sufficient simply to have

JkMount /examples/* ajp13

and be done with it. Any inline links to binary files such as images would be subject to
mod_jk’s handling, which we do not want to do. The JkMount directive must specify con-
tent that Tomcat is to actually process: JSPs and servlets. The reason you need the Alias
directive and Directory container is to enable Apache to serve images or other non-
servlet and non-JSP content.

You typically won’t need to change anything in the Tomcat configuration file, but it is a
critical third component in getting Tomcat and Apache to work together.

Tomcat and Apache 355 |

You can find the server.xml Tomcat configuration file in the Tomcat distribution’s
conf subdirectory. Inside server.xml, you should see the XML container shown in
Listing 21.4.

Listing 21.4 Portion of server.xml That Configures AJP 1.3

<!-- Define an AJP 1.3 Connector on port 8009 -->

<Connector className="org.apache.ajp.tomcat4.Ajp13Connector"
port="8009" minProcessors="5" maxProcessors="75"
acceptCount="10" debug="0"/>

The critical thing to notice is that the port attribute in Listing 21.4 agrees with the
worker.ajp13.port in Listing 21.3. After the httpd.conf, workers.properties, and
server.xml files are configured and activated, start up Tomcat and Apache. You should
be able to access your Tomcat content not only by using Tomcat’s HTTP listener on port
8080, but also by using Apache’s HTTP listener on its regular port. For instance,
http://localhost/examples/jsp/ (change your hostname accordingly if not installing
to localhost) should serve the Tomcat JSP examples from Apache.

Java Web Applications

One of the key concepts in the servlet and JSP specifications is that of a Web application
or Webapp. A Webapp is a path under which an application and its content are accessible.
The /examples path that comes with Tomcat is a Webapp. It consists of application com-
ponents such as JSPs and servlets, static content such as HTML and images, metadata
that can configure how the application components operate, and other resources such as
tag library descriptors.

A Webapp follows a specific directory layout structure and has metadata descriptions that
follow standard formats. Webapp directory layouts and metadata descriptors are not pro-
prietary to Tomcat, but are part of the servlet and JSP specifications. The directory layout
follows the form shown in Figure 21.6.

Because the WEB- INF directory contains application data, it is crucial that it be secured
against malice and mischief. The contents of the WEB - INF directory must not be exposed
by the Apache server’s Alias directive that maps the Webapp context path to the physical
filesystem path. The final Directory container shown in Listing 21.2 accomplishes this
with its deny directive.

| 356 Hour 21
FIGURE 21.6 (webapp name)
Webapp directory The webapp name is the
structure. path used to access the
application

JSPs and Static Content

Y

Any JSPs, HTML and images go in this directory
or any sub-directory except WEB-INF

WEB-INF

Nothing in the WEB-INF
directory is served as
content. The primary
metadata file is web.xml
but other resources such
as java.util.Properties files
can go in this directory.

Y

lib
Libraries packaged as java
jar files that the webapp

depends on to operate are
placed in the lib directory.

Y

classes

Servlets, beans and other
application logic classes
are placed in the classes
directory.

Y

Build Your Own Webapp

Now that you know the anatomy of a Webapp, you can build one for yourself. Although
the servlet and JSP APIs enable a number of powerful application concepts that are
beyond the scope of this book, the resources at the end of this hour should provide a
good starting point for further exploration. Start with a servlet in a bare bones Webapp
that simply dumps the context, request, and system parameters when requested.

In the Tomcat webapps directory, create a subdirectory for your Webapp and make that
your current directory. Type the following in your shell:

mkdir sams-webapp
cd sams-webapp

Tomcat and Apache 357 |

Create the metadata directory and make that your current directory. Type the following in
your shell:

mkdir WEB-INF
cd WEB-INF

Now create the source code and binary directories for your servlet code and make the
source directory your current directory. Type the following in your shell:

mkdir classes src
cd src

Windows users can create the same directory structure using the Windows Explorer inter-
face.

To create the PropertiesDump example Java servlet, save the code in Listing 21.5 in a file
called PropertiesDump.java. You can download this and other code listings from the
book at http://apacheworld.org.

Listing 21.5 PropertiesDump Servlet

1: import java.io.IOException;
2: import java.io.PrintWriter;
3: import java.util.Enumeration;
4: import javax.servlet.*;

5: import javax.servlet.http.*;
6-

7

8

/**

* The PropertiesDump servlet displays JVM, servlet container and
9: * webapp properties and parameters in an HTML page.

10: */

11:

12: public class PropertiesDump extends HttpServlet {

13:

14: public void doGet(HttpServletRequest request,
=HttpServletResponse response)

15: throws ServletException, IOException

16: {

17: PrintWriter out = response.getWriter();

18: HttpSession session = request.getSession();

19: response.setContentType("text/html");

20:

21: out.println("<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML//EN\">");
22: out.println("<html>");

23: out.println("<head>");

24: out.println("<title>Properties Dump Servlet</title>");
25: out.println("</head>");

26: out.println("<body bgcolor=\"white\">");

27: out.println("<hi1>Properties Dump Servlet</h1>");

28:

| 358

Hour 21

LisTING 21.5

continued

29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:

// web-app/servlet/init-param
out.println("Servlet init parameters:
");
out.println("<blockquote>");
Enumeration e = getInitParameterNames();
while (e.hasMoreElements()) {
String key = (String)e.nextElement();
String value = getInitParameter(key);
out.println(key + " = " + value + "
");
}
out.println("</blockquote>");

// web-app/context-param
out.println("Context init parameters:
");
out.println("<blockquote>");
ServletContext context = getServletContext();
Enumeration enum = context.getInitParameterNames();
while (enum.hasMoreElements()) {
String key = (String)enum.nextElement();
Object value = context.getInitParameter(key);
out.println(key + " = " + value + "
");
}
out.println("</blockquote>");

// attribute values set by the servlet container

out.println("Context attributes:
");

out.println("<blockquote>");

enum = context.getAttributeNames();

while (enum.hasMoreElements()) {
String key = (String)enum.nextElement();
Object value = context.getAttribute(key);
out.println(key + " =" + value + "
");

}

out.println("</blockquote>");

/] extra attributes that might be set elsewhere in the
// request if more than one servlet has handled the request
out.println("Request attributes:
");
out.println("<blockquote>");
e = request.getAttributeNames();
while (e.hasMoreElements()) {
String key = (String)e.nextElement();
Object value = request.getAttribute(key);
out.println(key + " =" + value + "
");
}
out.println("</blockquote>");

// browser and server software and deployment metadata
out.println("Request properties:
");
out.println("<blockquote>");

Tomcat and Apache 359 |

LisTing 21.5 continued

78: out.println("Servlet Name: " + getServletName() + "
");

79: out.println("Protocol: " + request.getProtocol() + "
");

80: out.println("Scheme: " + request.getScheme() + "
");

81: out.println("Server Name: " + request.getServerName() + "
");
82: out.println("Server Port: " + request.getServerPort() + "
");
83: out.println("Server Info: " + context.getServerInfo() + "
");
84: out.println("Remote Addr: " + request.getRemoteAddr() + "
");
85: out.println("Remote Host: " + request.getRemoteHost() + "
");
86: out.println("Character Encoding: " +

= request.getCharacterEncoding() + "
");

87: out.println("Content Length: " +

= request.getContentLength() + "
");

88: out.println("Content Type: "+ request.getContentType() + "
");
89: out.println("Locale: "+ request.getLocale() + "
");

90: out.println("Default Response Buffer: " +

= response.getBufferSize() + "
");

91: out.println("Request Is Secure: " + request.isSecure() + "
");
92: out.println("Auth Type: " + request.getAuthType() + "
");

93: out.println("HTTP Method: " + request.getMethod() + "
");

94: out.println("Remote User: " + request.getRemoteUser() + "
");
95: out.println("Request URI: " + request.getRequestURI() + "
");
96: out.println("Context Path: " + request.getContextPath() + "
");
97: out.println("Servlet Path: " + request.getServletPath() + "
");
98: out.println("Path Info: " + request.getPathInfo() + "
");

99: out.println("Path Trans: " + request.getPathTranslated() + "
");
100: out.println("Query String: " + request.getQueryString() + "
");
101: out.println("</blockquote>");

102:

103: /] form data submitted

104: out.println("Parameter names in this request:
");

105: out.println("<blockquote>");

106: e = request.getParameterNames();

107: while (e.hasMoreElements()) {

108: String key = (String)e.nextElement();

109: String[] values = request.getParameterValues(key);

110: out.print(key + " = ");

111: for (int 1 = 0; i < values.length; i++) {

112: out.print(values[i] + " ");

113: }

114: out.println("
");

115: }

116: out.println("</blockquote>");

117:

118: // HTTP request header names and values

119: out.println("Headers in this request:
");

120: out.println("<blockquote>");

121: e = request.getHeaderNames();

122: while (e.hasMoreElements()) {

| 360 Hour 21

Listing 21.5 continued

123: String key = (String)e.nextElement();

124: String value = request.getHeader(key);

125: out.println(key + ": " + value + "
");

126: }

127: out.println("</blockquote>");

128:

129: // HTTP cookie names and values

130: out.println("Cookies in this request:
");

131: out.println("<blockquote>");

132: Cookie[] cookies = request.getCookies();

133: if (cookies != null) {

134: for (int i = 0; i < cookies.length; i++) {

135: Cookie cookie = cookies[i];

136: out.println(cookie.getName() + " ="

137: + cookie.getValue() + "
");

138: }

139: }

140: out.println("</blockquote>");

141:

142: // data stored in the HttpSession

143: out.println("Session data in this request:
");
144: out.println("<blockquote>");

145: out.println("Requested Session Id: " +

146: request.getRequestedSessionId() + "
");
147: out.println("Current Session Id: " + session.getId() + "
");
148: out.println("Session Created Time: " +

= session.getCreationTime() + "
");

149: out.println("Session Last Accessed Time: " +

150: session.getlLastAccessedTime() + "
");
151: out.println("Session Max Inactive Interval Seconds: " +
152: session.getMaxInactivelInterval() + "
");
153: out.println("Session values: ");

154: Enumeration names = session.getAttributeNames();

155: out.println("<blockquote>");

156: while (names.hasMoreElements()) {

157: String name = (String) names.nextElement();

158: out.println(name + " = " + session.getAttribute(name) +
- '<pr>");

159: }

160: out.println("</blockquote>");

161: out.println("</blockquote>");

162:

163: /1 JVM System properties

164: out.println("Java Virtual Machine Properties:
");
165: out.println("<blockquote>");

166: Enumeration sysProps = System.getProperties().propertyNames();
167: while (sysProps.hasMoreElements()) {

168: String name = (String)sysProps.nextElement();

169: out.println(name + "= " + System.getProperty(name) + "
");

Tomcat and Apache 361 |

LisTing 21.5 continued

170:

171: }

172: out.println("</blockquote>");
173:

174: out.println("</body>");

175: out.println("</html>");

176:

177: }

The PropertiesDump servlet has one method, doGet (), that handles an HTTP get request
by overriding the default doGet () method inherited from the parent class, HttpServlet.
The doGet () method’s two arguments are the HttpServletRequest and
HttpServletResponse objects supplied to it when the servlet container invokes it. Lines
17 and 18 access those objects first. Line 17 creates a PrintWriter, out; all the servlet’s
output goes through out. Line 18 gets an HttpSession object, session, from the request.
Lines 29 through 38 access any initialization parameters for the servlet that are defined
in the Web app’s configuration file, web.xml. The format and contents of this file will be
explained shortly. Lines 40 through 50 access any initialization parameters for the entire
Web app, which are also configured in web.xml. Lines 63 through 73 access any extra
attributes that are set within the request. The servlet API allows one servlet to hand off a
request to another servlet (or JSP); attributes can be set to provide communication
between the different points in the handling sequence. Lines 75 through 101 call various
HttpServletRequest object methods that access server and browser software character-
istics and intrinsic request attributes. Lines 103 through 115 access any HTML form data
submitted to the servlet; if you compose an HTML form that uses the GET method, you
can set the form’s action attribute to link to the servlet’s URL to see all the form’s
names and values displayed. Lines 118 through 127 display all the request headers that
the browser sent to the Web server. Lines 129 through 140 display all the HTTP cookie
name/value pairs sent by the browser. Lines 142 through 161 display the HTTP session
metadata and the session data that is stored. Finally, 163 through 172 display all the JVM
System properties.

The next step is to compile the servlet into Java bytecode from the source directory’s
parent directory. Windows users should open a command shell and type

cd C:\Program Files\Apache Tomcat 4.0\webapps\sams-webapp\WEB-INF
Or, on Unix:
cd /usr/local/jakarta-tomcat-4.0.4/webapps/sams-webapp/WEB-INF

Then compile the servlet by typing

javac -classpath "c:\Program Files\Apache Tomcat 4.0\common\lib\servlet.jar";
= "c:\Program Files\Apache Tomcat 4.0\webapps\sams-webapp\WEB-INF\src" -d
= classes src\PropertiesDump.java

| 362

Hour 21

Or, on Unix:

javac -classpath

/usr/local/jakarta-tomcat-
=4.0.4/common/lib/servlet.jar:/usr/local/jakarta-tomcat-
=4.0.4/webapps/sams-webapp/WEB-INF/src

-d classes src/PropertiesDump.java

Next, you want to make the servlet accessible via the URL /sams-web/servlet/
properties so that the user doesn’t need to see the class name used for the code and the
servlet container knows where to find the class. To do this, you need to create a simple
web.xml in the WEB - INF directory as shown in Listing 21.6.

LisTinG 21.6 Sample web.xml

<?xml version="1.0" encoding="IS0-8859-1"?7>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
<servlet>
<servlet-name>PropertiesDump</servlet-name>
<servlet-class>PropertiesDump</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>PropertiesDump</servlet-name>
<url-pattern>/servlet/properties</url-pattern>
</servlet-mapping>
</web-app>

The servlet container tag associates a servlet-name to a servlet-class; the servlet-
mapping container tag associates the url-pattern to the servlet-name.

Next, restart Tomcat, either in the Windows service manager or using the catalina.bat
command with the stop argument, depending on whether you’re running Tomcat as a
Windows service.

The output from a request for the PropertiesDump servlet might look something like the
output shown in Figure 21.7.

Note that Servlet init parameters and Context init parameters are empty. You
can modify the web.xml and make parameters available to just the configured servlet or
to any servlet in the Webapp, as shown in Listing 21.7. You will need to restart Tomcat
again for the changes to take effect.

Tomcat and Apache 363 |

Listing 21.7 Modified web.xml

<?xml version="1.0" encoding="IS0-8859-1"?>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
<context-param>
<param-name>example-context-param</param-name>
<param-value>Some Context Value</param-value>
</context-param>
<servlet>
<servlet-name>PropertiesDump</servlet-name>
<servlet-class>PropertiesDump</servlet-class>
<init-param>
<param-name>example-servlet-param</param-name>
<param-value>Some Servlet Value</param-value>
</init-param>
</servlet>
<servlet-mapping>
<servlet-name>PropertiesDump</servlet-name>
<url-pattern>/servlet/properties</url-pattern>
</servlet-mapping>
</web-app>

[H properties Dump Servlet - Netscape &
o Bl Edt Mew Search Go Gookmarks Tasks Hep

a’@ @ @ IQ . hittpifflocahcstlsams-webappiservlat/praparties =1F| ‘igo i

4 Home Q) Search | Slgockmarks |

FIGURE 21.7
PropertiesDump
servlet output.

Properties Dump Servlet

Servlet init parameters:

Context init parameters:

Context attributes:

javae servlet context tempdir = C\Program Files\Apache Tomeat 4 Dwrorklocalhost\sams-webapp
org apache catalina resources = org apache naming resource s ProsxyDirC ontest(@ 18:56d
otg apache. catalina WELCCME_FILES = [Ljava lang String,i@497934
org apache cataling jsp_classpath = C/Program Fles/Apache Tomeat
4 Ofwebappsfzams-webapp/ WEB-INFE (classes, CiProgram Fil=s/Apache Tomcat
4 Ofclaszes/, C«Frogram Files/Apache Tomeat 4 0/lib/jasper-compiler jar,C/Frogram Files/Apache
Temcat 4 0flkfasper-runsme. jar, C/Frogram Files/Apache Tomeat
4. O0ib/namine-factery. far. CPreevam FilesfAoache Tomeat 4.0/ fel O Prosram
i

el
B & & 25 F@ Document Done (1182 secs) == |

The servlet now has values to display for itself and the Webapp context, as shown in
Figure 21.8.

The PropertiesDump servlet is a complete walkthrough of the data available to servlet
and JSP authors. The full scope of the servlet and JSP APIs is a huge topic, but this
should provide a good starting point.

| 364

Hour 21

FIGURE 21.8 |51 Properties Dump Serviet - Netscape & _ol=
P tiesD o Hle Edt Mew Search Go fookmarks Tasks Hep
ropertiespump =
servlet with context @0 O @ Q © [ttpiiocahzstisems nebzppiserviatiorapartis Elo
—| J

and servlet parameter

values.

. 4 Home G, Search | ZJBookmarks

Properties Dump Servlet

Servlet init parameters:
example-servlet-param = Some Servlet Value
| Context init parameters:
example-context-param = Some Conbext Value
Context attributes:
javas servlet context tempdir = C\Program Files\Apache Tomeat 4. Ovworldlocalhostisams-webapp
org apache. catalina resources = org apache naming resources ProxyDirContext@2da3d

org apache catalna WELCOME FILES = [Ljava lang Stnng @4 5E743
org apache catalina jsp_classpath = C/Frogram Files/Apache Tomcat

W
B E A QF FEE Document Done (4727 :ec)

Accessing SSL Variables

If you’ve built your server with SSL support, there are security parameters that the
Apache Web server is aware of for the HTTPS requests it handles. Because Tomcat runs
in a separate process, however, it doesn’t have direct access to this data that something
in-process—such as an Apache module, mod_perl, or PHP application—has. mod_jk can
make that data available with the following directives:

JkExtractSSL: Can be set to of f or on; it enables or prevents mod_jk from sending
SSL information to Tomcat. The default is on.

JKHTTPSIndicator: Sets an HttpServletRequest attribute name that indicates
whether SSL is on. The default attribute name is HTTPS.

JKSESSIONIndicator: Sets an HttpServletRequest attribute name by which the
SSL session ID can be accessed. The default attribute name is SSL_SESSION_ID.

JKCIPHERIndicator: Sets an HttpServletRequest attribute name by which the
type of SSL cipher used in the request can be accessed. The default attribute name
is SSL_CIPHER.

JKCERTSIndicator: Sets an HttpServletRequest attribute name by which the type
of SSL client certificate used in the request can be accessed. This may be useful,
for instance, for certificate-based authentication within the Web app. The default
attribute name is SSL_CLIENT_ CERT.

Although Tomcat’s standalone HTTP listener can be set up to use SSL, Apache’s supe-
rior performance as an HTTP server makes using it for SSL the more common choice for
production Web servers.

Tomcat and Apache 365 |

Building mod_jk
If for whatever reason you can’t use one of the mod_jk binaries available at the Jakarta
Web site, you will have to download the jakarta-tomcat-connectors source distribu-
tion yourself to build it. At the time of this writing, there were no less than three different
ways to build mod_jk. Although the shell script and autoconf-generated Makefile meth-
ods should work, they’ve fallen into disrepair from time to time. So, the method used
here will use Jakarta Ant to build mod_jk.

Ant is a Java build tool from the Jakarta group that performs compilation, packaging, and
other tasks for software development projects. It uses XML files that describe what tasks
it should perform for a project. Ant can be compared to make except that it’s especially
well suited for Java development, whereas make is not. The default name for the XML
file is build.xml; we’ll use a build.xml shortly to perform some builds. Values that Ant
depends on, such as the location of certain libraries, can be defined in the build.xml or
in external file parameters, typically called build.properties. Now that you know what
Ant is, download and unpack the binary distribution and set the ANT_HOME environment
variable to the directory where you unpacked Ant, as shown in Listing 21.8.

Listing 21.8 Unpacking the jakarta-ant Distribution

cd /usr/local
gunzip < jakarta-ant-1.4.1-bin.tar.gz | tar xvf -

Unix users can use the ant shell script in ANT_HOME’s bin subdirectory to run Ant.
Unfortunately, the Ant distribution doesn’t have quite everything we need. We’ll have to
supplement our Ant distribution with an extra library, jkant, to build mod_jk. Sources for
jkant come with the connectors installed in Ant’s 1ib directory. First, we’ll need to
unpack the jakarta-tomcat-connectors distribution with the commands shown in
Listing 21.9.

Listing 21.9 Unpacking the jakarta-tomcat-connectors Distribution

cd /usr/local
gunzip < jakarta-tomcat-connectors-4.0.4-src.tar.gz | tar xvf -

You need to build first the required library:

cd jakarta-tomcat-connectors-4.0.4-src/util
$ANT_HOME /bin/ant

| 366 Hour 21

Then you’ll need to edit the build.xml file found in jakarta-tomcat-connectors-
4.0.4-src/jk/ to set the locations for where Tomcat is installed by setting the value for
tomcat4@.home. Then you can type

cd jakarta-tomcat-connectors-4.0.4-src/jk/
$ANT_HOME /bin/ant

to build the jkant jar. Copy it to your Ant distributions by typing
cp ../jk/build/WEB-INF/1ib/jkant.jar $SANT_HOME/lib

At last, you’re ready to build mod_jk itself! Type

cd /usr/local/jakarta-connectors-4.0.4-src/jk/native

Edit the build.xml so that the apache2.home and apxs20 properties point to where
Apache 2.0 and its apxs script are installed. Next, invoke Ant again by typing

$ANT_HOME /bin/ant

This will build mod_jk.so. Presuming that your Apache 2.0 installation is in
/usr/local/apache2, you can install mod_jk by typing

cp ../build/WEB-INF/jk/apache2/mod_jk.so /usr/local/apache2/modules

o The build systems for mod_jk change frequently. The preceding procedure
) seemed to be the most reliable method at the time this book was written.
== Building mod_jk for Windows requires Microsoft Visual Studio. At the time

of this writing, the procedure for building mod_jk on Windows is not docu-
mented. However, you should consult the Jakarta Tomcat site for the latest
information. Remember that you can always download a Windows binary
from the Jakarta Web site.

Summary

Java servlets and JSPs provide a rich programming framework for running server-side
Java applications. These applications, or Webapps, run inside a servlet container, Tomcat,
outside of the Apache process. Hooking up Tomcat and Apache requires setting up a
connector module, mod_jk, to turn an HTTP request that Apache sees and turn them into
an HttpServletRequest Java object that Tomcat uses for input. Conversely, the
HttpServletResponse Java object that Tomcat produces is purveyed as an HTTP
response by Apache. The communication between mod_jk and Tomcat happens over a
protocol, AJP 1.3. mod_jk knows what requests to route to Tomcat by how the JkMount

Tomcat and Apache 367 |

directives are specified. Hour 24, “Additional Apache Modules and Projects,” introduces
several other useful Apache Java projects that can be useful in server-side Web develop-
ment.

Q&A

Q When I try to access a Webapp context with mod_jk set up in my server, I get
an error that says handler "jakarta-servlet" not found for:. What does
that mean?

A This error is most commonly caused by mod_jk being unable to connect to Tomcat.
Check that

e Tomcat is running.

e The value for worker.ajp13.port in workers.properties agrees with the
port attribute specified in Tomcat’s server.xml. Look for the Connector
with the className attribute to set
org.apache.ajp.tomcat4.Ajpi3Connector.

Q How can I debug my mod_jk configuration?

A Add the following lines to your httpd.conf:

JkLogFile logs/jk.log
JkLogLevel debug

When activated in your server configuration, these directives will make mod_jk
write extensive messages to jk.log, including any ajp13 connection failures and
other error conditions.

(e

Is there an easier way to reload a Webapp than restarting Tomcat?

A Yes, Tomcat comes with a manager Webapp that can load, unload, disable, and re-
enable other Web apps. The manager’s usage is detailed in the Tomcat documenta-
tion, and in the comments found in the Tomcat conf directory’s web.xm1.

1. Must you create an Alias and <Directory> container for the Webapp directories?

2. Can you define attribute names/values that are shared by all servlets and JSPs in a
Webapp?

3. What is the primary advantage of running an application as a Java Webapp as com-
pared other methods such as mod_perl and PHP?

| 368

Hour 21

Quiz Answers

1.

No, this is necessary only if there is content in the Webapp that Apache is to serve
that is not generated by Java.

Yes, use the context-param container in the Webapp’s web.xml as shown in
Listing 21.7.

Because the Java code is executed in a separate process space, it can be scaled
independently of the HTTP work that the Apache Web server is performing. In
contrast, PHP and mod_perl run in-process with Apache and cannot be scaled inde-
pendently of Apache itself.

Related Directives

This section contains new directives introduced in this hour. You can consult the Jakarta
Tomcat reference documentation for comprehensive syntax information and usage.

L]

JkMount: Takes a URL pattern and a protocol (for example, ajp13).

JkWorkersFile: Takes a path (absolute or server root-relative) to the properties file
(typically named workers.properties) that configures mod_jk’s communication
with Tomcat.

JkExtractSSL: Enables/prevents mod_jk from sending SSL information to Tomcat.

JKHTTPSIndicator: Sets an HttpServletRequest attribute name that indicates
whether SSL is on.

JKSESSIONIndicator: Sets an HttpServletRequest attribute name by which the
SSL session ID can be accessed.

JKCIPHERIndicator: Sets an HttpServletRequest attribute name by which the
type of SSL cipher used in the request can be accessed.

JKCERTSIndicator: Sets an HttpServletRequest attribute name by which the type
of SSL client certificate used in the request can be accessed.

JkLogFile, JkLogLevel: Sets up debug file and debug level.

Further Reading

The Jakarta Web site has links for the Tomcat and Ant software distributions, documenta-
tion and mailing lists:

http://jakarta.apache.org/index.html

Tomcat and Apache 369 |

The full servlet API is available online and can be downloaded in Java’s javadoc format
from

http://java.sun.com/products/servlet/index.html

The full JSP 1.2 and servlet 2.3 specifications are available online and may be down-
loaded in PDF format from

http://jcp.org/aboutdava/communityprocess/final/jsr053/index.html

The full JSP API javadocs and news about other JSP API related developments are found
at http://java.sun.com/products/jsp/index.html

Java Tools for Extreme Programming: Mastering Open Source Tools, including Ant,
JUnit, and Cactus by Richard Hightower and Nicholas Lesiecki provides a good intro-
duction to using Ant and other tools for effective Java software development practice.

HOUR 22

Dynamic URI Resolution
with mod_rewrite

This hour introduces a unique Apache module: mod_rewrite. mod_rewrite
provides the Apache administrator with a variety of tools for content deliv-
ery and redirection needs that in other circumstances would require a dedi-
cated module, a CGI, or some other additional application code. In this hour,
you will learn

e What mod_rewrite is

* How to use mod_rewrite’s directives to transform requests using regu-
lar expressions

¢ When to use mod_rewrite instead of mod_alias

Basic Redirects and Aliases Review

Although most modern Web servers have at least some facility for extending
the server’s capabilities—either through an application programming inter-
face (API) such as Apache’s module API or at a minimum with common

| 372

Hour 22

gateway interface (CGI) applications—Apache has a unique additional facility with
mod_rewrite.

mod_rewrite enables you to alter the processing of incoming requests based on a collec-
tion of rules that can take into account elements such as the request URL and the exis-
tence of a certain environment variable. Additionally, the syntax used in the configuration
examples relies on regular expressions. The hour’s end has pointers to further reading;
regular expression pattern matching is a tremendous topic on its own!

Rules-Driven Content Mapping and
Redirection

Hour 5, “Using Apache to Serve Static Content,” discussed URL mapping with
mod_alias. You saw that if you want to make content in /usr/local/qa-documents
accessible with the URI path /qa-docs, you could do so using the Alias directive:

Alias /qa-docs /usr/local/qga-documents

When the Web server reads a request line with a matching leading URI path, such as
GET /ga-docs/schedules/milestone_1.html HTTP/1.0

The translation phase resolves the URI path to the file system location:
/usr/local/qa-documents/schedules/milestone_1.html

Figure 22.1 illustrates the basic URI resolution process.

FIGURE 22.1 _
The URI resolution I /ga-docs/schedules/milestone_f.html
process. /

Resolved file

Incoming GET —_—
T reauest system location

request

Alias /qa-docs /usr/local/qa_documents

N S

| /usr/local/qa_documents/schedules/milestone_f. htm>

mod_alias’ Redirect directives are composed similarly to its Alias directives. In a local
redirect case, when content is reorganized, there will be significant visitors to the old
URL and it is not desirable for them to get 404 responses. For instance, if content is
moved around in such a way that documents previously accessible as /qa-docs move to
http://qa.example.com/docs, the redirect would be expressed like this:

Redirect /qa-docs http://qa.example.com/docs

Dynamic URI Resolution with mod_rewrite 373 |

The preceding line performs an external redirect and Apache will send a 302 Moved
Temporarily response. You will see later in the hour how mod_rewrite supports internal
redirects. In that case, Apache will retrieve the updated content and return it to the user
transparently.

Figure 22.2 shows the browser/server HTTP exchange in a redirect case.

FIGURE 22.2 www.example.com

Redirection.

GET /qa-docs/schedules/milestone-f.html

Status 302
Location: http://qa.example.com/docs/schedules/milestone_|.html

GET /docs/schedules/milestone_l.html

Status 200
[content returned]

\

ga.example.com

Variations of the mod_alias directive syntax, AliasMatch and RedirectMatch, support
regular expressions for the source URI path argument.

Links to other Web sites are easily logged by using the RedirectMatch syntax. Although
most clickthrough tracking systems use a CGI or Java servlet to keep track of the naviga-
tion, we’ll rely on log analysis with this directive syntax:

RedirectMatch *~/redirect/(.+) http://$1

Suppose that a link to MyYahoo! must be tracked. Simply linking directly to
http://my.yahoo.com/ is not an option. Use the RedirectMatch facility; when the
browser requests

http://www.example.com/redirect/my.yahoo.com/

the server will log a 302 response that can be counted when the log file is processed.
From the browser’s perspective, the redirect to http://my.yahoo.com/ is followed.

To summarize, with standard content aliases and redirects, the only request parameter
used to resolve the URI is the request line itself. In contrast, mod_rewrite enables us to
access server configuration and HTTP request variables for sophisticated rule sets to
drive URI resolution.

| 374 Hour 22

Zen and the Art of mod_rewrite

Just about all Web servers provide tools for mounting various physical file system
resources to a Web server’s virtual file system. They all work the same way, more or less.
A map is maintained of URI paths that point to physical file system locations.
mod_rewrite takes this to a new extreme. The full range request header, and environment
and server configuration variables are exposed to the configuration file instrumentation for
handling request resolution. This information can be accessed to manipulate how URIs are
translated to resources, rewriting paths along the way using pattern matching as a basic
text manipulation. This rewriting behavior is what the module is named for. A number of
built-in functions and conditional logic constructs are provided as well. mod_rewrite
stops short of providing a complete programming language, but nonetheless provides a
rich toolset for controlling how URIs are transformed into delivered resources.

Figure 22.3 shows a mod_rewrite-driven URI resolution logic flow.

FIGURE 22.3 RewriteRule »| Regular Expression > Substitution
mod_rewrite URI res-
olution. — More processing CorrectURL Applied OS Match J
RewriteCond Test String > Condition R_egular
Expression
—>»| RewriteRule »| Regular Expression Substitution
~ If there are more rules to process Rewrites URL Applied if condition is trueJ
and rule matched
—>»| RewriteRule »| Regular Expression »{ Substitution
o The pattern-matching directives provided by mod_alias and the logical con-
/ structs provided by mod_rewrite are two features that are often overlooked
== when comparing other Web servers to Apache. These features are among

the things that distinguish Apache’s flexible and powerful configuration lan-
guage from those of the others.

Although all the details of regular expression usage are beyond the scope of this text,
we’ll refer to resources in the “Further Reading” section of this hour that provide lots of
regular expression learning tools. It’s worth noting that there are different flavors of reg-
ular expressions. Through Apache 1.3, the Web server’s pattern matching was limited to
simple regular expressions. Apache 2.0 uses the Perl Compatible Regular Expression

Dynamic URI Resolution with mod_rewrite 375 |

(PCRE) library, which provides the full power of Perl 5—style regular expressions to the
Web server configuration.

o The PCRE library implements extensions to conventional regular expressions;
the same extensions implemented by Perl 5 itself. NFA-style regular expres-
~ sions, the type used in Apache 1.3, and Perl 5 regular expressions are dis-

cussed in detail by Jeffrey Friedl's book, Mastering Regular Expressions. See
the “Further Reading” section at the end of this hour.

Super-Charge Your Redirects

Regular expression—driven URI resolution to file system resources using AliasMatch is a
powerful feature. However, it might be desirable to have attributes of a request, in addi-
tion to the request line itself, dictate how the URI is resolved to an HTTP response.
We’ll start with a fairly simple illustration. Suppose that your Web site is using Server
Side Includes (SSI) and it’s been configured to use the .shtml extension for SSI process-
ing. You don’t want your content to have .shtml extensions anymore so that all your
URLs can standardize on .html instead. You could rename all your files, but you would
also have to go into each file and change

<!--#include virtual="/includes/footer.shtml" -->
to
<!--#include virtual="/includes/footer.html" -->

in all the content. Changing all the content might be very painstaking. A faster solution
would be to use mod_rewrite’s RewriteRule directive set with something like this:

1: RewriteEngine on
2: RewriteRule (/.*)\.shtml$ $1.html

Line 1 turns on mod_rewrite processing. Line 2 captures any requests that end with
.shtml and rewrites them as such that /docs/qa/milestone_1.shtml ends in html.
Well, that’s fine if that’s the page you’re accessing from a browser, but what about the
includes? The RewriteRule will be applied to subrequests as well. When mod_include
looks for /includes/footer.shtml, mod_rewrite will step in and ensure that
/includes/footer.html is found.

Suppose now that a Web site was developed using Microsoft ASP to look up document
data in a database, but the records have a low modification rate. It is therefore highly
inefficient to access the data with URLs like

http://www.example.com/poordesign.d11?PAGEDB: : PAGENAME: : DISPLAY

| 376

Hour 22

where the arguments after question mark are used to dynamically access data. It’s much
more efficient to materialize the data as pages that can be statically accessed (and incre-
mentally updated as data changes). However, it’s not acceptable to have users who have
bookmarked URLSs to get 404s. The solution is to export the pages to static files and con-
figure Apache with mod_rewrite to resolve the URLSs to those files. Listing 22.1 shows a
few mod_rewrite directives that rewrite the request data according to the original
request’s QUERY_STRING data.

Listing 22.1 Directives to Map QUERY_STRING Data to File Names

RewriteEngine On

RewriteMap downcase int:tolower

RewriteCond %{QUERY_STRING} PAGEDB::([A-Z]+)::DISPLAY
RewriteRule ~/poordesign\.dl1l$ /${downcase:%1.html} [L]

B~ WD =

The first line in Listing 22.1 turns on mod_rewrite. Later examples won’t explicitly turn
it on like this, but it’s important to note that even if mod_rewrite is loaded in the server,
it is not activated unless this directive precedes the actual rewriting configuration direc-
tives. The RewriteEngine directive is needed only once in the configuration file. The
second line uses the RewriteMap directive to associate mod_rewrite’s internal tolower
function to the logical name downcase. The name choice is arbitrary; using pepperoni
instead of downcase would work equivalently, it would just be less descriptive.

The third line uses the RewriteCond directive to look at the QUERY_STRING portion of the
request (all the stuff after the question mark) and regular expression pattern match it
against the pattern that follows. The RewriteCond directive gates further execution of
mod_rewrite directives; if the condition evaluates to false, the subsequent mod_rewrite
directives are not processed. The pattern has a set of parentheses around a portion of it;
the captured text is available in the RewriteRule that follows on the fourth line as the
variable %1. If there had been more captured patterns, they would have been available as
%2, %3, and so on, for each set of parentheses. The fourth line is where it all comes
together. If /poordesign.dll is matched, the downcase function is applied to the URI of
the request, and appended with the .html suffix. The square brackets at the end are for
flags; in this case, we give the L flag to indicate that this is the last rule to process. If the
document were on the file system as /spinnaker.html, it could be accessed as

http://www.example.com/poordesign.d11?PAGEDB: : SPINNAKER: :DISPLAY

The prior example manipulated the request characteristics to parameterize the resolution
of the request to local content. We could easily extend the example to perform a full redi-
rect, and force the browser to issue a new request for the target content, by adding R to
the flag part of the RewriteRule.

Dynamic URI Resolution with mod_rewrite 377 |

To add this flag, you need to modify the fourth line of Listing 22.1 to read
RewriteRule "/poordesign\.dll$ /${downcase:%1.html}? [L,R]
The browser is redirected to http://www.example.com/spinnaker.html.

Note also the question mark at the end of the destination URL. If that were absent, the
browser would have redirected to

http://www.example.com/spinnaker.html1?PAGEDB: : SPINNAKER: :DISPLAY

which would work with static content. But freed of the QUERY_STRING, the URL looks
much better.

Random Acts

One of the interesting features of RewriteMap is the built-in randomizer. Instead of writ-
ing a CGI or Java servlet to handle random URL redirection, mod_rewrite provides a
very simple facility for doing this. You can use RewriteMap’s randomizer with its build
rnd function and then, by having your RewriteRule reference it, the syntax would look
like this:

RewriteMap surprise rnd:/usr/local/apache2/conf/random_url.txt
RewriteRule /random http://${suprise:url}.apache.org/ [R,L]

The RewriteMap directive associates surprise with the rnd function and the function’s
output is used to construct the destination URL.

Suppose that the contents of the map file, /usr/local/apache2/conf/random_url.txt,
are simply this:

url httpd|jakarta|perl|xml

When the browser requests http: //www.example.com/random, the server will look up
the line that begins with url in the map file and randomly return one of the
pipe-delimited options. The redirection will ultimately point to
http://httpd.apache.org/, http://jakarta.apache.org/,
http://perl.apache.org/, or http://xml.apache.org/.

Dynamic Content

The same principle can be applied to content that is included in a page as a Server-Side
Include (SSI). Perhaps it is desirable to have a rotating SSI component. This is often
accomplished with banner ad management software by using a CGI or Java servlet.
However, the low-budget solution is to use mod_rewrite in conjunction with

| 378

Hour 22

mod_include, explained in Hour 12, “Filtering Modules.” On the page with the rotating
component, use the normal SSI syntax:

<!--#include virtual="/surprise-component" -->

When Apache performs its subrequest to handle the URI /surprise-component,
mod_rewrite can step in to do its magic with this syntax:

RewriteMap surprise rnd:/usr/local/apache2/conf/random_component.txt
RewriteRule "/surprise-component /${surprise:component} [PT,L]

The contents of the map file /usr/local/apache2/conf/random_component.txt are
simply

component componenti.inc|component2.inc|component3.inc

As the page is reloaded, the contents of /componenti.inc, /component2.inc and /com-
ponent3.inc are randomly included where the SSI tag appears.

Using mod_rewrite for Authorization

Apache has a rich set of modules that provide a wide variety of options for authenticat-
ing users, that is, determining who they are, as described in Hour 7, “Restricting Access.”
However, the facilities for authorizing users and determining what they can access are
comparatively limited. Besides connection characteristics such as the connection IP
address or domain name, the only other options are the Require directive’s group specifi-
cation.

Suppose that a directory structure designed to have a common area available to all users
as well as a set of private user-specific directories is set up like this:

* /users/ is accessible to all logged in users.

* /users/jones is accessible only to the user logged in as jones.

e /user/smith is accessible only to the user logged in as smith.

* /user/foo is accessible only to the user logged in as foo.

To accomplish this for only three users, it’s relatively straightforward to configure, as
shown in Listing 22.2.

Listing 22.2 Configuration of Three User-Specific Access Controlled Directories
Without Using mod_rewrite

1: <Directory "/usr/local/apache2/htdocs/users/">
2: AuthUserFile /usr/local/apache2/etc/passwd
3: AuthType Basic

Dynamic URI Resolution with mod_rewrite

379 |

LisTING 22.2 continued

4 AuthName "Secret Stuff"

5 require valid-user

6: </Directory>

7: <Directory "/usr/local/apache2/htdocs/users/smith">
8: AuthUserFile /usr/local/apache2/etc/passwd

9: AuthType Basic

10: AuthName "Secret Stuff"
11: require user smith
12: satisfy all

13: </Directory>
14: <Directory "/usr/local/apache2/htdocs/users/jones">

15: AuthUserFile /usr/local/apache2/etc/passwd
16: AuthType Basic

17: AuthName "Secret Stuff"

18: require user jones

19: satisfy all

20: </Directory>

21: <Directory "/usr/local/apache2/htdocs/users/foo">
22: AuthUserFile /usr/local/apache2/etc/passwd

23: AuthType Basic

24: AuthName "Secret Stuff"

25: require user foo

26: satisfy all

27: </Directory>

The common directory permits access to all users in the password file, whereas the
smith user is the only user who can access the smith directory, jones the jones direc-
tory, and foo the foo directory. Simple, right? Well, if the user population is undergoing
a lot of change, has grown very large, or both, this would be an unwieldy configuration
file!

As you can see, this would be difficult to scale to dozens or hundreds of users.
Programmatically matching the logged-in usernames to directory names would be prefer-
able. The password file should be the only piece that has to grow or withstand a high rate
of change. Fortunately, we can fulfill these requirements with mod_rewrite. The example
in Listing 22.3 doesn’t access a RewriteMap that uses internal functions; it runs an exter-
nal program, a Perl script named auth-check to handle the directory to username match-
ing.

LisTing 22.3 mod_rewrite Directives to Provide User-Specific Access Controls

1: RewriteMap auth prg:/usr/local/apache2/bin/auth-check
2: <Directory "/usr/local/apache2/htdocs/users">
3: AuthUserFile /usr/local/apache2/etc/passwd

| 380 Hour 22

LisTiNnG 22.3 continued

4 AuthType Basic

5: AuthName "Secret Stuff"
6: require valid-user

7: satisfy all

8: </Directory>

10: # look ahead in the request process for the REMOTE_USER

11: RewriteCond %{LA-U:REMOTE_USER} (.+)

12: # send the URI's that look like /foo/something to our mapping
13: # program and who we've logged in as

14: RewriteRule ~/users/(["/]+)/.* ${auth:$1:%1}

15: # if the mapping program said OK, go to our original REQUEST_URI
16: RewriteRule OK S%{REQUEST_URI} [S]

17: # otherwise, treat it as forbidden

18: RewriteRule NOT - [F]

The auth-check program is a simple Perl script, as shown in Listing 22.4.

LisTiNG 22.4 The auth-check Program

1: #!/usr/bin/perl

21 §|++;

3: while (<STDIN>) {

4: chomp;

5: my ($dir,$user)=split(':', $_);
6: my $return = ($user eq $dir) ? "OK\n" : "NOT\n";
7 print $return;

8

There’s a lot going on in Listing 22.3, so hold on to your seats. The RewriteMap (line 1)
defines an auth “function” that mod_rewrite will keep running as a co-process. The
Directory container (line 2) ensures that Apache will require authentication for the par-
ent directory, /users, and that all authorization conditions must be met to permit access.
The RewriteCond directive (line 11) enables capture of the name the user logged in as.
The first RewriteRule captures the directory the user is accessing, and inputs it and the
username into the auth function. The next rules get the output of the auth function,
either OK or NOT, and either rewrite the URL back to the original REQUEST_URI value or
forbid access, respectively.

The Perl script in Listing 22.4 simply turns off output buffering (line 2) and gets lines of
input from standard input (line 3). Then it splits the line of input on the colon character
into the $dir and $user variables (line 5), and finally returns either OK or NOT depending

Dynamic URI Resolution with mod_rewrite

381 |

on a simple text equality test of $dir and $user. It runs continuously, waiting for input

from Apache.

) Recent versions of Apache 1.3 provide some facilities, by using the Require
/ directive, for allowing access only if the logged-in username matches the
== owner of the file. That functionality might be ported to Apache 2.0 eventu-

ally. In that case, the preceding mod_rewrite code would not be necessary,
although it is still a good example of mod_rewrite’s capabilities.

Flexible Proxying

The semantics and issues of forward versus reverse HTTP proxying were discussed in
Hour 15, “Apache as a Proxy Server,” but it’s worth noting mod_rewrite’s solutions for
complex proxying problems as well. Maybe this is reminiscent of an aptitude test, but
here it goes: What mod_alias is to mapping URIs to file system resources, mod_proxy is
to mapping URIs to remote HTTP resources. However, as you saw, mod_alias provides
some pattern matching features with AliasMatch and RedirectMatch, whereas
mod_proxy does not.

To set up a reverse proxy on www.example.com with mod_proxy, the typical directives
would look like the following:

ProxyPass /qa-docs http://qa-host.example.com/docs
ProxyPassReverse /ga-docs http://qa-host.example.com/docs

The same behavior can be generated with mod_rewrite by using the RewriteRule direc-
tive:

RewriteRule /ga-docs http://qa-host.example.com/docs [P]

The P flag tells mod_rewrite not to redirect, but to pass-through the request back to the
origin server, ga-host.example.com. To the browser, the appearance is maintained of the
response coming from www.example.com.

Note that mod_rewrite has no proxying facility of its own. mod_rewrite must be present
for the P flag to have any effect. But it provides a clearer definition of the expected
behavior in only one directive, instead of two.

Dynamic Proxying and Load Balancing

The reverse proxying and random rotation capabilities can be combined for traffic distri-
bution in a large infrastructure environment. Suppose that the architecture is like the one

| 382 Hour 22

in Figure 22.4. The front end server doesn’t handle any file system access or CGI execu-
tion; it simply passes the traffic through.

FIGURE 22.4
Server architecture
with a front end
reverse proxy and

Content
Server
| Back End 1

backend content
servers. [T TICE I T]
-Request > c
S— ontent
HTTP PR E\ Server
—RGSW”SG 2| Back End 2
— Front End g

Randomizer

Content
Server
&®| Back End N

Why is this valuable? Typically, a Web server’s process resources are tied up by network
I/0 handling high-latency end users. To continue handling requests as fast as they’re
coming in, a Web server can be tuned to have a larger process pool, but the more each
process resource is tied up, the more that process is unavailable to handle more requests.

By dividing up the duties between front end and backend Web servers, the infrastructure
can distribute the burden among more machines. In this architecture, the backend Web
servers are freed to access filesystem resources, run CGls, and perform other local
resource-demanding tasks. The front end Web server is dedicated to handling the high
network latency end users. A high-speed connection between the front and back ends
makes the whole system perform with a very high utilization threshold. The backend
configurations are configured as normal. However, the front end, with mod_proxy and
mod_rewrite, is configured with directives like

RewriteMap backends rnd:/usr/local/apache2/conf/backend_servers.txt
RewriteRule (.*) http://${backends:server|backend1}.example.com/$1 [P]

where /usr/local/apache2/conf/backend_servers.txt is a text file that looks like
this:

server backend1|backend2|backend3|backend4|backend5|backend6

Virtual Hosting

Perhaps the server must have a set of cookie-cutter virtual hosts, with paths that resolve
with a fixed pattern. Maintaining a lengthy configuration file with repeated

Dynamic URI Resolution with mod_rewrite 383 |

<VirtualHost> sections might be error prone. Suppose that foo.example.com,
bar.example.com, and so on, all resolve in DNS to 192.168.100.10. (We could use other
domains, but we’ll stick to example.com for a generic reference to different hostnames.)
Depending on how your operating system is configured, it might suffice to put the host-
name IP mappings in your /etc/hosts file. Listing 22.5 shows how mod_rewrite can
perform our cookie cutter virtual hosting.

Listing 22.5 Virtual Hosting with mod_rewrite

1: <VirtualHost 192.168.100.10:80>

2 <Directory /usr/local/apache2/docs>

3 Options Indexes FollowSymLinks

4 </Directory>

5: RewriteEngine On

6: RewriteMap downcase int:tolower

7 RewriteMap vhost txt:/usr/local/apache2/conf/vhost_map.txt
8: # the /icons alias is shared by all virtual hosts

9: RewriteCond %{REQUEST_URI} !~/icons/

10: # make sure the Host: header wasn't empty

11: RewriteCond %{HTTP_HOST} !"$

12: # make sure FOO.EXAMPLE.COM is handled the same as foo.example.com
13: RewriteCond ${downcase:%{HTTP_HOST}} ~(.+)$

14: RewriteCond ${vhost:%1} ~(/.*)$

15: </VirtualHost>

The contents of the map file (/usr/local/apache2/conf/vhost_map.txt) that is read on
line 7 are simply

foo.example.com:80 /usr/local/apache20/docs/foo

bar.example.com:80 /usr/local/apache20/docs/bar

foo.example.com /usr/local/apache20/docs/foo
bar.example.com /usr/local/apache20/docs/bar

For port 80 virtual hosts, it’s important that the map file keys have both the plain version
of the hostname and the port-number-appended version. If the first map file key had been
simply foo.example.com, lookup on it could have failed because the HTTP Host:
request header might have the full hostname and port number in it. For virtual hosts on
different ports, this is not an issue: The plain hostname is never sent; the hostname with
the port number appended always is.

Note that when the number of keys to look up in a map file is high, mod_rewrite sup-
ports looking them up in a dbm database. This is advantageous because looking up
records in a dbm database is faster with negligible slowdowns as the data set grows,
whereas looking up records in a text file linearly degrades performance as the number of
records grows. Simply specify

| 384

Hour 22

RewriteMap vhost dbm:/usr/local/apache2/conf/vhost_map
instead of
RewriteMap vhost txt:/usr/local/apache2/conf/vhost _map.txt

However, you will be required to programmatically maintain the database in
/usr/local/apache2/conf/vhost_map. There are libraries for a number of different lan-
guages to support this, so check the Apache URL Rewrite Guide resource in the “Further
Reading” section at the end of the hour for sample code to generate a dbm from a text
file.

Virtual hosting environments can be complicated to operate and maintain. Typically there
are a variety of content maintainers, and there might be more complex content serving
requirements than the one outlined earlier, which only supports static file system content.

For more information about mass virtual hosting applications, refer to Hour 14, “Virtual
Hosting,” for a discussion of mod_vhost_alias.

Summary

As you have seen, mod_rewrite offers a lot of power and flexibility! If you are familiar
with regular expressions, you have seen the range of URI-to-resource resolution possibil-
ities broaden. If regular expressions are new to you, we hope this will motivate you to
learn more about using them so that you can make full use of mod_rewrite.

Q&A

Q Does mod_rewrite provide conditional application of URI transformation?

A Yes, the RewriteCond directive enables you to test for textual patterns in a variety
of request and server configuration parameters. These tests can control the flow of
rewrite rule application and can be additive to provide complex conditions under
which rewrite rules should be applied.

(@)

How do I debug my rewrite rules?

A After the RewriteEngine On declaration, use these additional directives:

RewriteLog /path/to/logfile
RewriteLoglLevel X

where X is a number in the range inclusive of 1 through 9. The higher the number,
the “noisier” the log’s verbosity. The RewritelLog is really the best insight to
what’s happening; it can provide traces of pattern matches and rule application
decisions.

Dynamic URI Resolution with mod_rewrite 385 |

Q When should mod_rewrite be used and when should mod_alias be used?

A Alias and ScriptAlias directives are essential to provide the basic
URI-to-filesystem-resource resolution. You can make mod_rewrite look up how to
do the resolution, but that’s relatively consumptive of CPU and other operating sys-
tem resources.

Quiz

1. Which Web servers have a configuration-driven dynamic request-rewriting mod-

ule?
2. Which RewriteMap function provides a randomizer?

3. How many times is the RewriteEngine directive needed in the configuration file?

Quiz Answers

1. Although other Web servers might have APIs for manipulating request attributes,
only Apache 1.3.x and Apache 2.0 have mod_rewrite, a module for putting the
logic for that manipulation in the server configuration.

2. The RewriteCond’s rnd function allows a RewriteRule to pick a bit of text out
randomly.

3. For mod_rewrite’s other directives to be put into effect, the RewriteEngine need
appear only once with its value set to on.

Related Directives

This section contains directives mentioned in this hour or that are related to topics dis-
cussed in this hour. You can consult the Apache reference documentation for comprehen-
sive syntax information and usage.

* Redirect: Matches the leading part of a path to redirect the browser to a destina-
tion URL.

* RedirectMatch: Similar to Redirect, but can use other parts of the requested path
on a pattern-matching basis to calculate a destination URL for a redirect.

* RewriteEngine: Enables mod_rewrite. Without this directive, other mod_rewrite
directives are not acted on.

e RewriteCond: Sets up a true or false condition to check whether a request or server
variable has a successful pattern match. If RewriteCond returns true, subsequent
mod_rewrite directives are processed.

| 386 Hour 22

* RewriteMap: Provides a lookup resource to perform a function on input text. The
function might be looking up a value in a text or dbm file, modifying text with an
internal function such as changing case, or running an external program to perform
processing.

* RewriteRule: Substitutes request text with pattern matching and applies substitu-
tions from input matches, RewriteCond matches, and RewriteMap results.

* RewriteLog: Enables logging of the mod_rewrite processing. Typically used only
for debugging purposes.

* RewriteLoglLevel: Adjusts the verbosity of the RewriteLog log file. With many
RewriteRule, RewriteCond, and RewriteMap directives, setting RewriteLoglLevel
to the noisiest level, debug, mod_rewrite’s debugging is voluminous.

Further Reading

Mastering Regular Expressions, Jeffrey E.F. Friedl, 1997, O’Reilly & Associates, Inc.
Apache Module mod_rewrite at
http://httpd.apache.org/docs-2.0/mod/mod_rewrite.html

Apache 1.3 URL Rewriting Guide at
http://httpd.apache.org/docs-2.0/misc/rewriteguide.html

Additional information about regular expressions can be found at

http://directory.google.com/Top/Computers/Programming/Languages/
Regular_Expressions/FAQs,_ Help, and_Tutorials/

HOUR 23

Migrating to Apache 2.0

The majority of the current Web servers are Apache 1.3 servers, followed at
a distance by Microsoft IIS and IPlanet servers. It is likely that Apache 2.0
will replace many of them in the future, but the transition will happen gradu-
ally and in the meantime, Apache 2.0 will have to coexist with them.

In this hour, you will learn
* How to determine when it makes sense to migrate to Apache 2.0,
maintain a mixed environment, or preserve the existing servers

* How to migrate to Apache 2.0 from previous versions of Apache, and
what the main differences with those versions are

* How to migrate to Apache 2.0 from commercial servers such as
Microsoft IIS and IPlanet

Apache 1.3

Apache 1.3 is the predecessor of Apache 2.0 and is the most popular server
on the Internet at the time this book was written. Some versions, such as
Apache 1.3.12 and 1.3.20, have been found more stable than others, and thus
are more widely deployed. This section describes the architecture of Apache

| 388

Hour 23

1.3 and how it compares to Apache 2.0, and provides you with advice on how to transi-
tion to Apache 2.0.

Apache 1.3 runs both on Unix and Windows. Like Apache 2.0, the server is open source
and extensible via modules, and that is one of the reasons of its success. However,
Apache 1.3 lacks features of Apache 2.0 such as MPMs, filtering, and protocol modules.

The only available Apache 1.3 process model on Unix is Prefork. As mentioned in Hour
11, “Multi-Processing Modules,” this makes the server robust, but it does not scale as
well as a threaded server. Apache 1.3 runs as a threaded server on Windows, but support
for this operating system is inferior to Windows support in 2.0 because, at the time, there
was no Apache Portable Runtime abstraction layer and the integration with the Unix
code left a lot to be desired.

Migrating to Apache 2.0

Before you migrate a given Apache 1.3 installation to Apache 2.0, you must consider the
pros and cons of migrating. These issues include performance, functionality, Windows
support, and protocol modules.

Performance

In most Unix systems, the Worker MPM available with Apache 2.0 can provide greater
scalability than a process-based server. This is especially true for platforms that have
heavy processes, such as AIX, and for high-traffic sites that serve static content.

Improved Functionality

Apache 2.0 offers major new functionality such as filtering and new options for existing
directives. Modules that in the past had to be downloaded separately, such as mod_dav
and mod_ss1, are now bundled with the server, which eases installation.

Most third-party modules for Apache 2.0 have improved greatly from their 1.3 counter-
parts. For example, mod_perl 2.0 offers significant advantages in terms of functionality
and memory footprint, as described in Hour 20, “mod_perl.”

Improved Windows Support

If you are running Apache 1.3 on Windows, you are strongly encouraged to upgrade.
Apache 2.0 offers significantly increased performance and stability thanks to the Apache
Portable Runtime. For the first time, this version of the server is considered as stable as
its Unix counterparts.

Protocol Modules

Hour 24, “Additional Apache Modules and Projects,” mentions two protocol modules:
mod_pop3 for remote mail access and mod_ftp for implementing an FTP server. The

Migrating to Apache 2.0 389 |

number of available protocol modules will increase over time as Apache 2.0 matures.
This capability is especially interesting for system administrators who need to maintain
different servers because they can consolidate the administration of services and users.

Reasons Not to Migrate to Apache 2.0

Although Apache 2.0 has many exciting features, there are some scenarios in which
migrating from an existing Apache 1.3 installation might not be the best option. If your
current Apache 1.3 servers are working just fine, don’t have performance issues, and pro-
vide the desired functionality, it is probably not a good idea to rush to Apache 2.0 or any
other server.

Many more modules have been developed for Apache 1.3 than currently exist for Apache
2.0, and unsupported modules can be a migration obstacle. Those modules can either be
in-house modules designed for 1.3 or third-party modules that have yet to be ported.
Possible solutions for this problem are explained in the following section.

Migration Help: Apache 1.3 to Apache 2.0

The following is some advice on how to migrate existing Apache 1.3 installations to
Apache 2.0.

Configuration Changes

The Apache 2.0 configuration format is the same as in Apache 1.3, but some directives
are no longer relevant and the syntax of others has changed. Covalent Technologies pro-
vides a free Perl script that can be used to help with the migration of existing Apache 1.3
configuration files. The script, named confconv.pl, can be downloaded from

http://apache.covalent.net/tools/index.php

The script takes care of several configuration changes, such as commenting out the fol-
lowing deprecated directives:

ServerType: Apache 1.3 offered the option of not running the server continuously and
instead starting and terminating it for every request by the inetd Unix daemon. This
is no longer an option in Apache 2.0.

ClearList, AddModule: In Apache 1.3, the module order was important to determine
how certain requests would be processed. These two directives enabled you to explic-
itly determine that order, but are no longer necessary because in Apache 2.0 the
modules can organize themselves.

Port: The Port directive no longer exists and has been replaced by the Listen direc-
tive.

| 390

Hour 23

The following directives have a different meaning depending on the MPM and their set-
tings must be carefully examined: StartServers, MaxClients, MaxRequestsPerChild,
MinSpareServers, and MaxSpareServers.

For example, the number of start servers is less in the Worker MPM than in Prefork
because each Worker process has, in turn, several threads.

Apache Modules

Many popular Apache modules have versions for both Apache 1.3 and 2.0 and can thus
ease the transition. These include third-party modules (such as PHP, mod_perl, and con-
nector modules for Tomcat), bundled modules (such as mod_cgi, mod_dav, and mod_ss1),
and commercial modules (such as the BEA WebLogic connector module and the
Covalent SNMP module).

Running Both

Sometimes it is necessary to maintain a mixed 1.3/2.0 environment, usually because of
the need to run modules that are not yet ported to 2.0.

It is possible to run Apache in a reverse proxy configuration. Apache 2.0 can serve the
static content and content generated by supported modules and pass other requests to a
backend Apache 1.3 running unsupported modules.

Microsoft Internet Information Server

Microsoft Internet Information Server (IIS) is the dominant Web server for the Windows
family of operating systems. The reasons for the success are multiple, primarily based
around ease of use and integration with other Microsoft products. MS IIS comes prein-
stalled with the operating system or is available as an option at installation time. It pro-
vides an easy-to-use GUI for configuring the server and an SNMP interface for
monitoring.

IIS is tightly integrated with other Microsoft technologies, such as the Microsoft
FrontPage Web publishing tool, Microsoft Active Server Pages (ASP) for server-side
development, and more recently, the .NET Framework. In addition to being an HTTP
server, IIS also includes an FTP server that can be controlled from the same GUI inter-
face as the Web server.

Third-party developers can extend Microsoft IIS via modules using the Internet Server
Application Programming Interface (ISAPI). This is similar to the Apache API, but is not
as comprehensive.

The following sections provide you some advice on whether it makes sense to migrate
from IIS to Apache 2.0.

Migrating to Apache 2.0 391 |

Migration to Apache 2.0

Several good reasons exist for migrating from IIS to Apache 2.0 running on Windows or
Unix, but the two main reasons are increased security and stability.

Security

For the past few years, serious vulnerabilities affecting Microsoft IIS have been discov-
ered periodically. These security flaws allow remote attackers to gain full control of the
machine. Several Internet worms, such as Nimda and Code Red, have been developed
that exploit these bugs, take over the server, and use it to scan other networks looking for
additional vulnerable servers to infect. Those worms do not affect Apache, but their
attack attempts will appear in your logs, as described in Hour 8, “Logging and
Monitoring.”

In contrast, although Apache is not guaranteed to be bug-free, the number of security
flaws found in Apache over the years has been much lower and the flaws relatively
minor, such as not being remotely exploitable. If you are processing sensitive informa-
tion, such as credit card information, in your Web site, this can be a major incentive to
migrate to a more secure server platform.

Stability

Although it has improved over the years, IIS has traditionally endured memory leaking
and stability problems under high Web traffic. This has forced administrators to reboot
the machines periodically.

Part of the problem is not with the Web server software, but with the underlying
Windows operating system, which is not as robust as Unix server platforms. Apache can-
not solve this problem, but its cross-platform nature gives you a migration path in case
you need it.

Standardization

Many companies have in place a mixture of machines, operating systems, and server
software. This drives up the costs of management, support, and administrator’s training.
Because Apache 2.0 supports both Unix and Windows, one way to simplify your server
infrastructure would be to adopt Apache across all your platforms.

Development

Even if your main hosting infrastructure is Unix-based, having a Windows version of
Apache 2.0 can be beneficial for programmers using Windows-based development envi-
ronments. Because many Apache modules such as PHP and mod_perl and Java-based
projects have been ported to Windows, developers can develop and test locally on their
machines and deploy on a Unix server.

| 392

Hour 23

Features

The great number of third-party Apache modules available and the built-in functionality
provide a number of features not available in other servers, such as IIS. Extensive URL
rewriting and page redirection capabilities are good examples.

Reasons Not to Migrate from IIS

The following are several reasons why you might want to stick with an IIS-based solu-
tion. Many of these problems are addressed in the “Migration Help: IIS to Apache 2.0”
section later this hour.

The main reason is expertise. System administrators and programmers who are familiar
with IIS and related technologies, such as ASP, will need to overcome a learning curve
that can be quite steep in some cases. This is due to the fact that many people go all the
way, and migrate not just the Web server but also move to a different platform altogether,
such as Solaris or Linux.

If you have a significant amount of legacy code, you might not be able to migrate easily
and you will need to keep up separate servers, as described in the “Migration Help: IIS
to Apache 2.0” section.

Finally, if you are satisfied with your current IIS installation, don’t experience perfor-
mance or stability problems, and keep up to date with security patches, there is no reason
to change to Apache or any other Web server.

Migration Help: IIS to Apache 2.0

In case you decide to migrate from IIS to an Apache solution running on Windows or
Unix, there are some tips you need to remember. One of the big advantages of Apache
and many other open source technologies described here is that they run both on Unix
and Windows. They can work and interoperate with a variety of other Windows technolo-
gies, including IIS, so the transition can be staged as opposed to an all-or-nothing
approach.

GUI Configuration

The first thing that people coming from a Windows background notice about Apache is
that it does not come with a GUI. Third-party GUI configuration tools are available for
Apache as described in Hour 10, “Apache GUIs.” Some of these tools, such as
Comanche, work on both Unix and Windows.

Development

Most Web development in the Windows platform is based on Active Server Pages tech-
nology. You can consider a number of alternatives, ranging from environments that

Migrating to Apache 2.0 393 |

enable you to host your ASP pages unchanged to functionally equivalent open source
technologies such as PHP.

ASP Engines

A number of products provide support for ASP on both Unix and Windows platforms,
although with some limitations that might or might not affect you.

Instant ASP from Halcyon Software and Sun Chili!Soft ASP are two such products. You
can learn more about them at http://www.halcyonsoft.com and
http://www.chilisoft.com. They are Java-based and run on both Windows and a vari-
ety of Unix platforms.

Although most ASP developers use VBScript, ASP itself is language-independent and
you can write ASP pages using Perl. Hour 20 covered Perl: :ASP, an Apache mod_perl
module for doing just that.

PHP

PHP is the open source equivalent to Active Server Pages, and was introduced in Hour
19. PHP has the added advantage of running on both Apache and IIS, enabling you to
provide a flexible, staged migration plan or to standardize on a common development
language across different Web servers.

PHP on Windows supports access to COM objects, Active Data Objects, connection to
Microsoft SQL Server, and many other Windows technologies. These can be used to eas-
ily interoperate with existing code from PHP projects.

Java

If your development framework is Java-based, the migration from one platform to
another is relatively easy. The Apache Tomcat servlet and JSP container and most appli-
cation servers such as WebLogic can work with either Apache or IIS and with either
Windows or Unix. Tomecat is described in Hour 21, “Tomcat and Apache.”

Additional Software

When developing on Windows, Microsoft SQL Server is commonly used. There are a
number of open source alternatives, such as MySQL (http://www.mysql.org) and
PostgreSQL (http://www.postgresql.org). These databases have ODBC, JDBC dri-
vers, and provide connection libraries for most languages.

Extending the Server

If you have developed proprietary IIS modules, you will be glad to know that mod_isapi
provides an ISAPI compatibility layer for 2.0 to ease migration of your extensions. The
module is included in the standard Apache 2.0 distribution.

| 394

Hour 23

Consolidated Server

IIS bundles other servers, such as an FTP server. This comes up every so often on com-
parative reviews as a checkbox that Apache does not fulfill. This is kind of silly because
Apache is just a Web server, and a number of other FTP servers are available both for
Unix and Windows.

However, this changes with Apache 2.0 because a commercial FTP protocol module inte-
grates and takes advantage of the Apache framework, as explained in Hour 24.

Reverse Proxy

Even if you need to keep running IIS servers, you will benefit from placing an Apache
reverse proxy in front of them. The proxy can be configured to block malicious requests
and attacks directed to the backend IIS servers. You can then gradually migrate function-
ality from those IIS servers to Apache.

S Many companies have policies in place standardizing on certain software
/=T) packages or vendors, such as Microsoft IS, regardless of whether they make
b ~ sense for a given project. In response, some developers have gone so far as

to tweak Apache so that the Server: headers, error responses, and so on,
are identical to what MS IS would answer, thus misleading the “standard-
ization police” into thinking they are running IIS. | am not suggesting here
that you go to these extremes, but sometimes advocating open source
Apache over other servers from Microsoft or IPlanet can be an uphill battle.
In those situations, companies with Apache-based products such as IBM and
Covalent can provide the commercial support and services that would make
Apache acceptable for your management.

IPlanet

IPlanet servers run on a variety of Unix-based and Windows operating systems. [Planet is
the new name for the Netscape server division after its acquisition by Sun. Although the
installed base of IPlanet servers has been decreasing steadily over the past years, it is still
popular with certain segments of the market, such as financial services companies. The
IPlanet Web server is based on a threaded architecture and provides functionality found
in other servers such as SSL, flexible logging, authentication, and so on. The IPlanet
Web server is part of an integrated family of servers including directory, calendaring, and
application servers.

Migrating to Apache 2.0 395 |

Similar to the IIS ISAPI and the Apache API, IPlanet Web servers can be extended via
modules using NSAPI (Netscape Server API) .

IPlanet provides GUI management tools, although they are somewhat difficult to use and
some people resort to configuring the server using text files directly.

Migrating to Apache 2.0 from IPlanet

The two main reasons people mention for migrating from IPlanet servers are the lack of
a clear product roadmap and the fact that IPlanet has dropped support of older, but
widely deployed, server versions. When facing a new upgrade cycle, IT managers are
looking for less costly and less risky alternatives, such as Apache. Even if commercial
backing is a requirement, [Planet servers tend to be considerably more expensive than
Apache-based commercial servers.

IPlanet servers integrate and work nicely with other IPlanet products, such as the IPlanet
Application Server. However, [Planet has failed to grow a substantial developer commu-
nity and thus lacks a solid base of third-party modules. Apache is an open,
vendor-neutral platform that supports many more modules than IPlanet does, both com-
mercial and open source; for example, to connect to competitive application servers.
Finally, Apache runs in more operating systems than IPlanet.

Reasons Not to Migrate from IPlanet

There are not many reasons, either technical or business-wise, not to jump on the Apache
2.0 bandwagon. One of them is if you are using the [Planet Web server as part of a larger
IPlanet solution, including application servers and directory services. Another one is if
you have an existing working setup that meets your needs, based on IPlanet. You might
want to test drive an Apache-based solution in case you need to migrate in the future, but
there is no reason to migrate to Apache or any other server if you have a working system.

Migration Help: IPlanet to Apache 2.0

Apache can match most IPlanet features—you just need to map IPlanet configuration to
the equivalent Apache directives. Covalent provides a migration guide that can help you
with the process.

Apache can integrate with IPlanet directory servers via the LDAP module described in
Hour 24. PHP has been ported to the NSAPI architecture and is available for IPlanet
servers, so as with the IIS case, it can be used to ease the transition.

Most of the development in IPlanet environments is based on CGI or Java. Both tech-
nologies are available for Apache and the transition should be straightforward.

| 396

Hour 23

General Migration Advice

To summarize, the main advantages of choosing Apache 2.0 as your Web server platform
are that it is an open, vendor-neutral platform that is scalable and secure. All these fea-
tures have made Apache the de facto standard in Web servers, with all major application
server and Web development vendors providing modules that work with Apache.

Probably the best migration advice is to introduce Apache 2.0 gradually in your environ-
ment, and move forward as you gain experience with the server. You can start by config-
uring Apache 2.0 to serve parts of your Web site. For example, you could set up an
Apache 2.0 server in charge of delivering images, and change your links to point to it. Or
you could set up a reverse proxy for more fine-grained control.

Summary

This hour compared Apache 2.0 to a variety of other Web servers, taking into account
both technical and business considerations. The hour provided advice in migrating to the
Apache 2.0 platform, with an emphasis on gradual, phased approaches.

Q&A

Q
A

(=)

Why do you insist in a gradual approach to migration?

Most Web servers are not an end in themselves, but rather exist to provide a ser-
vice. Stability and availability are the most important qualities for a successful Web
site. When migrating to a new, better platform, you need to integrate with the exist-
ing functionality or port it. A gradual approach, substituting one server or service
at a time, in a controlled manner, minimizes the chances of downtime. If something
goes wrong, you can easily revert to the previous configuration.

How can Apache integrate in the Microsoft .NET Framework?

Although .NET runs traditionally with IIS, the interface to the Web Server has
been abstracted. It is entirely possible to write an Apache module that integrates
Apache as the Web server component in .NET, although no such module exists at
the time of this writing. Combined with projects such as Mono (http://go-
mono.com), an open source implementation of .NET, Apache could provide an
entire .NET environment in Unix systems.

Halcyon Software, mentioned earlier in the hour, also provides a cross-platform
runtime environment for the .NET Framework.

Migrating to Apache 2.0 397 |

Further Reading

Covalent (http://www.covalent.net) provides several white papers on migrating from
IIS and IPlanet to Apache 2.0.

The following is a link to the “Migration of Linux-Apache-MySQL-PHP Platform to
Windows 2000 guide from Microsoft (although I have never met anyone who has
migrated an Apache server to a Microsoft solution):

http://www.microsoft.com/TechNet/prodtechnol/iis/deploy/depovg/miglamp.asp

Seriously.

HOUR 24

Additional Apache
Modules and Projects

Apache’s architecture and its open source license allow it to be extended via
commercial and open source modules, different from the ones included in
the distribution. In addition, the Apache Software Foundation is the home of
a variety of other Web-related projects that you will find useful.

In this hour, you will learn about

» Additional Apache 2.0 modules
¢ Other Apache Software Foundation projects

* Web resources covering the Apache server

Apache 2.0 Modules

Apache’s modular architecture is one of its strengths. A great number of
modules exist for previous versions of Apache. Many of them have already
been ported to Apache 2.0 and take advantage of its new architecture, such

| 400

Hour 24

as mod_perl, PHP, and the connector modules for Tomcat. Those modules have already
been covered in this book, so this section covers only additional modules currently avail-
able for Apache 2.0. At the time of this writing, the number of available Apache 1.3
modules is much greater, but this will likely change as Apache 2.0 is widely adopted.

LDAP

The mod_auth_ldap module provides authentication services against an LDAP server.
LDAP stands for Lightweight Directory Access Protocol, a protocol used to access data
stored in directory servers. Companies keep a variety of information, usually employee-
related, in directories so that it can be accessed and reused by a variety of applications
such as e-mail clients and Web servers. This module can authenticate and authorize
users, and can also interoperate with the FrontPage Extensions module. You can grant or
deny access based on a specific combination of user and group attributes and a variety of
other filters. You can find documentation about this module at
http://httpd.apache.org/docs-2.0/mod/mod_auth_ldap.html.

The mod_auth_ldap module works in conjunction with the mod_ldap module, which pro-
vides connection pooling and caching services for other LDAP modules, such as the pre-
viously mentioned mod_auth_ldap. You can find documentation about the mod_1ldap
module at http://httpd.apache.org/docs-2.0/mod/mod_ldap.html.

The code for both modules can be obtained via CVS. The repository can be browsed
here: http://cvs.apache.org/viewcvs.cgi/httpd-1dap.

POP3

One of the advantages of Apache 2.0 is its multi-protocol architecture, which allows dif-
ferent protocols to be implemented as plug-ins of the main server.

The mod_pop3 module implements POP3 (Post Office Protocol version 3), a client proto-
col used to retrieve mail from a central server. This allows Apache to act as a mail server
for most mail clients. The mod_pop3 module can take advantage of the Apache layered
architecture and offer secure access using the SSL protocol, which can be inserted as a
filter. You can find this protocol module at
http://cvs.apache.org/viewcvs.cgi/httpd-pop3/.

Mailing List Archiving
The mod_mbox module provides a Web interface to Unix mailbox files. This is particu-
larly useful for archiving mailing lists. Unlike other archiving software, mod_mbox does

Additional Apache Modules and Projects 401 |

not create a myriad of smaller files, but keeps a single file and generates the listings on
the fly. You can find this protocol module at
http://cvs.apache.org/viewcvs.cgi/httpd-mbox/.

Bandwidth Management

The mod_bwshare module enables you to control how individual clients access your Web
site. It monitors the amount of bandwidth used by clients, number of files downloaded,
and other parameters, and enables you to slow them down or disconnect them if they
exceed certain limits. You can use mod_bwshare to prevent faulty or malicious clients
from slowing down your server or making it unavailable for other clients. The
mod_bwshare module can be found at http://www.topology.org/src/bwshare/.

Extending Apache with C++

The Apache Web server is written in C, and extending it with C++ code can be tricky.
The mod_cplusplus module makes it easy to extend Apache with modules coded in C++.
It exposes the server’s internal structures and request and filtering phases through an
object-oriented API. This module can be found at
http://modcplusplus.sourceforge.net.

mod_snake

The mod_snake module enables you to extend Apache with modules written in the
Python language, in a similar way to what mod_perl does for Perl. It enables you to
write filters, accelerate existing CGI scripts, and even build new protocol handlers using
Python. mod_snake works both with 2.0 and 1.3 versions of Apache.

You can find more information about this module at
http://modsnake.sourceforge.net.

You can learn more about Python at http://www.python.org.

Tcl

The Tcl Apache project provides several modules to extend Apache with the Tcl scripting
language, in a similar way to mod_snake and mod_perl. It also provides support for
embedding Tcl in HTML pages, in a similar way to how PHP works.

The advantages of using Tcl as a development language are that it is lightweight, extensi-
ble, and easy to learn. You can learn more about the Tcl Apache project at
http://tcl.apache.org and about Tcl at http://tcl.activestate.com.

Another Tcl module that works with Apache 2.0, together with a well-documented appli-
cation development framework, can be found at http: //www.websh.com.

| 402

Hour 24

XSLT Module

This Apache 2.0 module allows XML stylesheet processing of documents using the
libxml and libxslt libraries. XML stylesheets enable you to transform XML docu-
ments into other formats. mod_xs1t enables you to transform a source XML document
into different HTML documents, depending on the stylesheet applied. This allows you to
support browsers with different capabilities, or easily change the look and feel of your
Web site. You can download the mod_xs1t module from http://www.mod-xslt.com/.

mod_mya

This module provides basic authentication services, in a similar way to how the modules
described in Hour 7, “Restricting Access,” do. However, this module stores its user and
group information in a MySQL database. This enables you to share authentication infor-
mation across a variety of servers. You can find more information about this module at
http://www.fractal.net/mod_mya.tm.

mod_bakery

This is an authorization module that works using encrypted cookies. Once a client has
successfully authenticated, a secure cookie (that cannot be tampered with) is issued and
will be transmitted by the client browser with every request. The session information is
stored in a common MySQL backend database and can thus be shared by different Web
servers, CGI programs, Apache modules, and so on. You can find this module at
http://www.fractal.net/mod_bakery.tm.

mod_v2h

This is a mass virtual hosting module that uses the MySQL database as its backend. It is
similar in functionality to Apache’s mod_mass_vhost, described in Hour 14, “Virtual
Hosting.” You can find more information about this module at
http://www.fractal.net/mod_v2h.tm.

Commercial Modules

A number of vendors provide commercial modules for the Apache 2.0 platform, mostly
targeted for enterprise environments.

Additional Apache Modules and Projects 403 |

BEA

BEA WebLogic is a Java application server commonly used in enterprise environments.
Although WebLogic can answer HTTP requests on its own, that is not usually how it is
deployed. Instead, a Web server such as Apache is placed in front of the application
server and connects to it using a special connector module. Requests for static content
are served directly by the Web server, and requests for dynamic content are relayed to the
backend application server.

BEA bundles an Apache 2.0 connector module with WebLogic that provides that func-
tionality. It can talk to a cluster of backend application servers and even load-balance
requests among them. The module is aware of sessions and can redirect requests to the
backend server that created a specific session, and failover to other servers if that server
is unavailable. You can specify request patterns and locations that will be sent to the
application server and even modify the request URLSs.

The threaded architecture of Apache allows the module to keep a pool of connections to
the application server, increasing performance and responsiveness.

The Apache connector module is part of the WebLogic distribution, which you can
download at http://www.bea.com.

Enterprise Ready Server

The Apache 2.0-based server offering from Covalent includes several proprietary mod-
ules, which are described in the list that follows. You can find more information about
these modules at http://www.covalent.net.

e mod_snmp: This module adds Simple Network Management Protocol (SNMP)
capabilities to the Apache Web server. This protocol is commonly used to manage
network servers and equipment from a central console such as HP OpenView or
Tivoli. With this module, you can easily monitor Apache performance in real time,
including server uptime, load average, number of errors in a certain period of time,
number of bytes and requests served, and many other metrics.

* mod_covalent_auth: This module provides a common framework for authentica-
tion and authorization against LDAP directories, NIS, databases, and a variety of
other backends.

e mod_ftp: This module is built on top of the Apache multi-protocol framework and
provides support for the File Transfer Protocol (FTP). It integrates and takes advan-
tage of other Apache modules capabilities, such as authorization, logging, and SSL
support.

|404 Hour 24

ASF Projects

This section covers a selection of Apache Software Foundation projects that are not
directly related to the Apache HTTP server, but are useful Web development tools. Many
other projects can be found at http://www.apache.org.

Java and Apache

The Jakarta community (http://jakarta.apache.org) is the home of several Java-
based projects. The goal of the Jakarta Project is to provide and maintain commercial-
quality server solutions based on the Java platform that are developed in an open and
cooperative fashion.

Most of these server solutions relate to Web technologies. The Apache Java community
is a dynamic and active one, and has produced a great number of projects covering many
different areas, from XML processing to database connectivity. This section will show
you some of the most interesting ones.

Tomcat

Tomcat, described in Hour 21, “Tomcat and Apache,” is the reference implementation for
the servlet and JavaServer Pages specifications. This is the most widely known Jakarta
project and is used as the basis for a variety of commercial and open source projects. You
can find it at http://jakarta.apache.org/tomcat/.

Ant

Ant is a build tool, similar to the Unix tool make, which was used in previous hours to
compile Apache and its modules. Instead of using Makefiles, Ant reads XML descrip-
tions of the tasks to carry out. Ant can be extended via Java, and many other Jakarta pro-
jects use it for their building system. You can find out more about Ant at
http://jakarta.apache.org/ant/index.html.

Taglibs
The JavaServer Pages technology enables developers to provide extra functionality by

adding custom tags. The Taglibs project intends to be a common repository for these
extensions. You can find this project at http://jakarta.apache.org/taglibs/.

Struts

Struts provides a Model-View-Controller (MVC) framework for development of large
JSP- and servlet-based applications. The Model of the framework is composed of server
objects, maintaining the internal state of the application. The JSPs represent the View
part. Struts servlets are the Controller component, taking requests from the client,

Additional Apache Modules and Projects 405 |

changing the state of the application, and updating the view by delivering the appropriate
JSP. You can find more about Struts at http://jakarta.apache.org/struts/.

James

James (Java Apache Mail Enterprise Server) provides a mail solution based on the
JavaMail API and supports a variety of protocols such as SMTP, POP3, and IMAP. The
James homepage can be found at http://jakarta.apache.org/james.

Avalon

The Avalon project provides a common framework for developing and maintaining Java
server-side applications. It hosts a set of components and practices that can be reused for
a variety of projects. It contains a variety of subprojects that provide support for logging,
pooling, data access, management extensions, and other commonly needed functionality
in server-side development. You can find more information at
http://jakarta.apache.org/avalon/.

Jakarta Commons

Although the aim of the Commons project is code reuse, it approaches the problem dif-
ferently than the Avalon project. Its goal is to create a collection of small, stable, mostly
self-contained components (as opposed to a framework) that are useful for a variety of
tasks, such as database access, HTTP client, Bean manipulation, and XML processing.
This project can be found at http://jakarta.apache.org/commons/.

The Apache XML Project

The Apache XML Project provides a variety of tools for creating, parsing, and manipu-
lating XML documents. The following are several well-known and useful XML projects.

XML Parsers

The Xerces project provides XML parsers for Java and C++, and bindings for a variety
of scripting languages. It provides support for XML standards such as the Simple API for
XML (SAX), Document Object Model (DOM), XML namespaces, XML schemas, and
others. It keeps track of W3C standards and drafts and aims for full compliance. You can
find Xerces at http://xml.apache.org/xerces-j/.

The Crimson project provides support for XML parsing via the JAXP interface
http://xml.apache.org/crimson/index.html.

XML Manipulation

Xalan is an XSLT processor available for Java and C++. XSL is a stylesheet language for
XML, and the T stands for transformation. Xalan enables you to define stylesheets to

| 406

Hour 24

describe how an XML document will be transformed in a different document (XML-
based or not). You can find more information about Xalan at
http://xml.apache.org/xalan/.

The Jakarta Formatting Object Processor project is a more publishing-oriented solution
and enables you to take an XML document and provide output documents in PDF,
PostScript, and a variety of other formats. It can be found at
http://xml.apache.org/fop/.

Cocoon is a complete publishing framework that integrates many other Apache technolo-
gies and can run in many open source and commercial servlet containers and application
servers. You can find more information about Cocoon at
http://xml.apache.org/cocoon/.

Apache Resources

This section presents you with a variety of Apache resources that can help you improve
your Apache knowledge and keep you informed of the latest Apache developments.

Apache Support

Before using any of these forums, make sure that you read the relevant Apache documen-
tation, such as the Frequently Asked Questions (FAQ) document, and search the mailing
list archives for similar questions. If, after doing that, you still have not found an answer,
you might want to post or mail your question. Provide details on the Apache version you
are using, operating system information, and a detailed explanation of the problem.
Include any entries you get in the error_log file and any relevant configuration file snip-
pets. List all the previous steps you took to solve the problem and how they failed. This
will help you get an answer quicker and avoid wasting everyone’s time.

Mailing Lists
There are several mailing lists related to the Apache HTTP server.

The announce@httpd.apache.org mailing list is used for news of server releases, secu-
rity issues, and other important releases. It is a very low-traffic list and you certainly
want to be subscribed to it to keep up to date with Apache.

The users@httpd.apache.org mailing list is a user support forum.

The deve@nhttpd.apache.org is the developer’s mailing list. Do not post user-related
questions to this list.

You can find information about how to subscribe to these mailing list and pointers to the
archives at http://httpd.apache.org/lists.html.

Additional Apache Modules and Projects 407 |

Apache Bug Database

You can report bugs online at the following address:
http://httpd.apache.org/bug_report.html.

Before doing so, make sure that you follow the instructions described in that page so that
bug reports are not duplicated or invalid.
Apache Newsgroups

The newsgroups comp.infosystems.www.servers.unix and
comp.infosystems.www.servers.ms-windows cover different servers, among them
Apache. A popular way of accessing newsgroups is through the Google groups Web
interface at http://groups.google.com.

Apache News

These are the main news Web sites covering Apache:

¢ Apache Today: http://www.apachetoday.com

e Apache Week: http://www.apacheweek.com
* Slashdot Apache section: http://slashdot.org/index.pl?section=apache

Finally, you can find information related to Apache and this book at
http://apacheworld.org.

ApacheCon

The Apache Software Foundation holds annual or semiannual conferences. These events
are a great opportunity to find out about the latest developments in the Apache world,
and provide a forum where developers and users can exchange experiences. The official
Apache conferences Web site can be found at http://www.apachecon.com.

Commercial Support

Apache is an open source project and there is a great amount of freely available informa-
tion and peer-based support. However, in certain situations, such as in enterprise deploy-
ments, you might require commercial support. You can usually obtain commercial
support from your server software or operating system vendor. Third-party commercial
support, consulting, and training services are available from Covalent Technologies
(http://www.covalent.net) and Red Hat (http://www.redhat.com).

Additional Modules

There is no central repository for Apache modules. You can find most Apache modules in
one of the Web sites mentioned in this section.

| 408

Hour 24

The Apache module repository is the closest to a central directory of modules. It can be
found at http://modules.apache.org.

Freshmeat (http://freshmeat.net) is a news site and project catalog of free software
projects. A number of Apache modules and Apache-related projects can be found there.

Several Apache-related projects are hosted in the SourceForge Web site, which provides
mailing lists, documentation, bug tracking, and many other services. You can find it at
http://sourceforge.net.

The Apache Overview Howto, by one of the authors of this book, provides a comprehen-
sive list of Apache projects and modules: http://www.linuxdoc.org/HOWTO/Apache-
Overview-HOWTO.html.

Summary

This hour provided you with an overview of additional modules and programs that
extend or work with Apache. Hopefully, the software described here and included with
Apache itself will address most of your Web server—related needs. If not, remember that
Apache is open source, so you can always build your own module!

By now, you should have a pretty good understanding of the capabilities of Apache and
how to configure the server to meet your specific needs. In addition to the information
presented in this book, Apache includes an excellent reference documentation that you
can use to learn about specific syntax details. Apache, like many other successful open
source projects, is continuously being improved and the resources mentioned in this hour
will help you keep up to date with new Apache developments.

Q&A

Q Will my Apache 1.3 modules work with Apache 2.0?

A No, the APIs have changed considerably between versions. You will need to wait
until the module authors release an Apache 2.0 version. You can, however, apply an
intermediate solution: Run Apache 2.0 as a reverse proxy server, forwarding
requests that require processing by 1.3 modules to an Apache 1.3 server in the
backend. Reverse proxies are covered in Hour 15, “Apache as a Proxy Server.”

Q Why do most of the third-party Apache modules run only on Unix?

A Although previous versions of Apache did run on Windows, they were not consid-
ered of the same quality as their Unix counterparts. This means that most people
involved with Apache, either as users or developers, were running the server on

Additional Apache Modules and Projects 409 |

Unix. Although that is still the case, the new MPM architecture in Apache 2.0 and
the Apache Portable Runtime make it possible to have a great Web server for Unix
and Windows. This, together with the constant security problems of IIS, will trans-
late into more and more people considering migrating to Apache on the Windows
platform, and encourage development or porting of Windows modules.

APPENDIX A

The Apache Software
License

The following is the Apache Software License, under which the Apache server is
released.

The Apache Software License, Version 1.1
Copyright © 2000-2001 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment:

|412 Appendix A

“This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).”

Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear.

4. The names “Apache” and “Apache Software Foundation” must not be used to endorse or
promote products derived from this software without prior written permission. For writ-
ten permission, please contact apache @apache.org.

5. Products derived from this software may not be called “Apache,” nor may “Apache”
appear in their name, without prior written permission of the Apache Software
Foundation.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation,
please see http://www.apache.org/.

Portions of this software are based upon public domain software originally written at the
National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign.

INDEX

Symbols

(pound signs), 56

% (percent signs), 126
(\) backslash, 56

* (asterisks), 236

/ (trailing slashes), 82
; (semicolons), 62

~ (tildes), 58

Numbers

302 Moved Temporarily
response, 373

\\
—
gy
==
|
=

_»

A

ab, ApacheBench
(performance tool), 254

absolute paths, lock
databases (DAV configura-
tions), 206

abuse, preventing, 258-259

Accept mechanism, network
setting (scalability), 253

Accept-Charset: header
(client negotiation), 150

Accept-Encoding: header
(client negotiation), 150

Accept-Language: header
(client negotiation), 150

AcceptMutex directive,
children (Prefork MPMs),
178

Accept: header (client
negotiation), 150

\\\\\ W

D

access

denied, troubleshooting,
68
file system access, settings
(scalability), 251
forward proxy, 235
granting, 110
limiting, HTTP methods,
119-120
methods, combining, 119
mod_perl module,
339-342
read-only, DAV, 207
remote access, Web
servers (Windows), 204
restricting
access control, 116-118
authentication, 107-116
client authentication,
108-109
DAV, 207
users (creating), 163
Web, caching, 240

| 414 access control

access control
lists, DAV (future project),
213
modules, 291-292
phase, requests, hooks
(checking), 33
restricting, 116-118
rules, 116-117
SSL configurations, 277
access log
log file, 63
Unix, log file, 54
access modules, Apache
organization, 30
access.log, Windows (log
files), 54
AccessFileName directive,
per-directory configura-
tion files, 61
accessing
Apache, 66
DAV servers, 207
directory listings, 82
LDAP server, 400
metadata, resources (DAV
clients), 205
SSL variables, 364
Tomcat, 350, 355
‘Web sites, mod_bwshare
module, 401
‘Webmin, 158
Action directive
CGI content, 93
content handlers, 80
activating mod_rewrite
directive, 376
Active Server Pages (ASP),
IIS (Internet Information
Server), 390
ActiveState Web site, 97

ActiveTcl, Comanche instal-
lations, 163
Add Network Place icon,
209
AddCharset directive,
character sets, 149
AddDefaultCharset
directive, character sets,
149
AddEncoding directive,
content encoding, 149
AddHandler directive,
content handlers, 80
AddLanguage directive,
character sets, 149
AddModulelnfo directives,
modules (configuring), 136
AddOutputFilter directive
(filter configurations), 191
AddOutputFilter directive
(filtername filter), 197
addresses
IP addresses
control access rules,
116
DNS (Domain Name
System), 9
network interfaces, 219
partial, control access
rules, 116
reverse DNS lookups,
131
static content, 71
TCP/IP (Transmission
Control
Protocol/Internet
Protocol), 8
listening addresses (Listen
directive), 62

admin options, PHP config-
urations, 315
Advanced tab, 351
AJP (Apache JServ proto-
col), 349
alert, LogLevel directive
option, 133
algorithms
digest algorithms, 109,
266
directives, SSL configura-
tions, 276
public key cryptography,
266
symmetric cryptography,
265
Alias directive, 76, 372
aliases, IP aliases (virtual
hosting), 218-221
aliasing, resources (static
content), 76
AliasMatch directive, 76,
373
all clients, access control
rules, 117
Allow directive, access
control rules, 116
Allow,Deny argument
(Order directive), 118
AllowCONNECT directive,
forward proxy ports
(accessing), 236
AllowOverride directive,
per-directory configura-
tion files, 61
alpha, Apache versions
(naming), 38
analyzing
digital certificates, 268
logs, 138

arguments 415 |

announce @http.apache.org

mailing list, support
resource, 406

Ant, Jakarta project (ASF),

404
Ant. See Jakarta Ant
Apache
advantages, 17-20
disadvantages, 20
request, life cycle, 32-34
versions, naming, 38
Web servers, history, 16
Web site, 11, 14, 40, 43
Apache 1.3, 387-390
Apache 2.0
Apache 1.3 migration,
388-390
IIS (Internet Information
Server) migration
development, 391
features, 392
Help, 392-394
IPlanet, 394-395
limitations, 392
security, 391
stability, 391
standardization, 391
running with Apache 1.3,
390
APache eXtenSion (APXS)
tool, 297
Apache JServ, 348
Apache JServ protocol
(AJP), 349
Apache Monitor, 65
Apache Overview Howto
Web site, 408
Apache Portable Runtime.
See APR
Apache Portable Runtime
(libapr) library, 55

Apache Software
Foundation. See ASF
Apache Today Web site, 407
Apache Week Web site, 407
apache.exe
commands, 65
server binary command
(Windows), 64
Windows, support script,
54
ApacheBench, performance
tool (Web site), 254-255
ApacheCon (Apache
Software Foundation con-
ference), resources, 407
apachectl script, 59, 158
apachectl tool, control script
command (Unix), 66
ApacheOnHand (GUI tool),
168
Apache::PerlRun (CGI
security), 334
Apache::ASP, 335
Apache::DBIPool, 343
Apache::Registry module,
331
Apache::TIPool, 343
APIs
mod_perl module,
324-327
modules, 19
servers, 19
applets, 348
applying directives, 58
APR (Apache Portable
Runtime)
Apache organization,
31-32
core libraries, 31
mod_perl module, 326

programming, 31
util, 31
APXS (APache eXtenSion)
tool, 297
apxs script, Apache building
information, 297
architecture, PHP, 302
archiving, mail list archiv-
ing (modules), 400
arguments
AcceptMutex directive,
178
Action directive, 93
Allow,Deny argument,
Order directive, 118
AllowOverride directive,
61
caching, 241
ChildPerUserld directive,
181
CoreDumpDirectory direc-
tive, 179
CustomLog directive, 129
DavLockDB directive, 206
Deny,Allow argument, 118
directives, 56
doGet() method, 361
ExtFilterDefine directive,
197
ExtFilterOptions directive,
198
HostNameLookups
directive, 131
<Location> containers,
243
LogFormat directive, 128
logging (Unix), 133
logs, rotating, 137
Mutual-Failure argument,
Order directive, 118
PreservesContentLength,
197

How can we make this index more useful? Email us at indexes@samspublishing.com

| 416 arguments

ProxyPass directive, 243
ProxyRemote directive,
237
ProxyRequests directive,
235
ServerRoot directive, 60
StdEnv Vars, Options
directive, 277
ASF (Apache Software
Foundation)
downloaded software,
integrity (verifying), 48
projects, 404-406
Web servers, history, 17
ASP (Active Server Pages),
IIS (Internet Information
Server), 390, 393
assigning requests to
process, Perchild MPM
configurations, 181-182
AssignUserld directive
(Perchild MPMs), 182
associating filters
(extensions), 191
asterisks (*), 236
asymmetric cryptography
(public key cryptography),
265
attacks, preventing abuse
(performance), 258
AUTH_TYPE (environment
variable), 145
auth-check program (syn-
tax), 380
AuthAuthoritative direc-
tives, file-based authenti-
cation, 112
AuthConfig, directive value,
61

AuthDBMAuthoritative
directive, 114
AuthDBMGroupFile
directive, 113
AuthDBMUserFile direc-
tive, 113
AuthDigestAuthoritative
directive, digest-based
authentication, 115
AuthDigestDomain
directive, digest-based
authentication, 115
AuthDigestFile directive,
digest-based authentica-
tion, 115
AuthDigestGroupFile
directive, digest-based
authentication, 115
authentication
access, resticting, 107
basic, 108
browsers, AuthType
directive, 110
restricting, 108-109
communications, security,
264
database file-based access
control, 113-114
digest, 108
digest-based, mod_auth_
digest module, 114-115
encrypted cookies (mod-
ules), 402
file-based, 111-112
LDAP server, 400
modules, 108
access (restricting),
109-116
directives, 109-110

functions, 110
mod_auth_anon, 116
mod_perl, 339-342
realm, AuthName direc-
tive, 110
requests, hooks (check-
ing), 33
sharing, MySQL databases
(modules), 402
SSL (Secure Sockets
Layer), 11, 267-269
authentication modules,
Apache organization, 30
AuthGroupFile directive,
users file (backend stor-
age), 111
AuthName directive,
authentication modules,
110
authoritative information,
functions (authentication
modules), 111
authorization
backends (modules), 403
configurations (syntax),
378
hook, 28
mod_per]l module,
339-342
mod_rewrite directive,
378-381
modules, Apache
organization, 30
requests, hooks
(checking), 33
AuthType directive, authen-
tication modules, 110
AuthUserFile directive,
users file (backend stor-
age), 111

building 417|

autoconf tool, compiling
PHP (Unix), 309

automake tool, compiling
PHP (Unix), 309

Avalon, Jakarta project
(ASF), 405

awstats, log analysis, 139

AxKit, 327

backend servers, 242-244
backend storage
database file-based access
control authentication,
113
digest-based authentica-
tion, 115
file-based authentication,
111
functions, authentication
modules, 110
backends
authorization (modules),
403
caching, 240
proxy servers, enabling,
234
backslash (\), 56
balancing, load balancing
(mod_rewrite directive),
381-382
bandwidth, managing,
modules, 401
basic authentication, 108
batch file CGIs, testing
(Windows configurations),
97

BEA WebLogic, 29, 403
BeOS, MPMs, 184
beta, Apache versions
(naming), 38
binaries, 158
Comanche, 163
downloading (Apache
installations), 43
installing
Apache installtions
(Unix), 43-44
caching, 241
installation methods
(selecting), 38
Linux, 95
Perl installations, 95
PHP, Unix, 307
proxy servers, 235
Solaris, 96
scripts, 54
server binary, commands,
64
Unix, 40
binary installer, 45
bind to port, troubleshoot-
ing, 68
Block value, ProxyVia
directive, 238
blocks, <IfDefine SSL>
(SSL directives), 275
bookmarks, icons (static
content), 83
BOS MPM (Multi-
Processing Module), 27
boxes. See also check boxes
dialog boxes, Internet
Options, 238
text boxes, Exceptions,
238
browser authentication,
AuthType directive, 110

BrowserMatch directive
(environment variables),
146

browsers

access, environment
variables, 117

Apache, accessing, 66

digest authentication, 109

mod_deflate limitation,
193

SSL protocols (secure
servers), 278

Vary: header (content
negotiation), 152

browsing, directives, 56

buckets, 190

buffers, TCP buffers
(Prefork MPMs), 177

bug databases, support
resource, 407

build directories, 55

build scripts, compiling
PHP (Unix), 309

build.xml file (Jakarta Ant),
365-366

build/ (PHP directory), 309

building

Apache
CVS (concurrent ver-
sioning system),
44-45
source, 234, 241
configure script (CVS), 45
loadable modules, 55
mod_jk module, 365-366
mod_per]l module,
328-329
source code, installation
methods (selecting), 38

How can we make this index more useful? Email us at indexes@samspublishing.com

|418 building

URLs, ServerName
directive, 72
Webapp, 356-363
bundled digital certificates,
268
buttons, LAN Settings, 238
Bypass Proxy Server for
Local Addresses check
box, 238

C

C++, Apache (module), 401
CA (certification authority)
certificate signing
requests, 274
digital certificates, 267
CacheDefaultExpire
directive, cache expira-
tions, 242
CacheDisable directive,
caching functionaltity, 241
CacheEnable directive,
caching functionaltity, 241
CacheFile directive,
mapping files (memory),
256
CacheForceCompletion
directive, cache expira-
tions, 242
CacheLastModifiedFactor
directive, cache expira-
tions, 242
CacheMaxExpire directive,
cache expirations, 242
CacheMaxExpireMin
directive, cache expira-
tions, 242

CacheOn directive, caching
functionality, 241
caching
Apache, buiding (source),
241
backends, 240
benefits, 240
binary installations, 241
configuations, 241-242
LDAP, 400
mod_cache, 240
modules, 295
performance, 257
proxy servers, 240-242
types, 241
URLs, 241
cadaver command-line
utility, 211
Cascading Style Sheets
(CSS), mod_deflate
limitation, 193
CATALINA_HOME vari-
able, 350
CERN
CGI protocols, 88
Web servers, history, 15
certificate signning requests,
creating (managing
certificates), 273-274
certificates
creating, 272-274
digital, 267-268
managing (secure servers),
271-274
self-signed (managing
certificates), 274
SSL
configurations, 276
protocols, 267

certification authority (CA)
certificate signing
requests, 274
digital certificates, 267
CGI (Common Gateway
Interface), 87, 327
advantages, 89
batch file, testing
(Windows configura-
tions), 97
configurations, 91-94
content, 90-94
disadvantages, 90
environment variables,
88-89
errors, logging, 132
execute permissions,
troubleshooting, 101
executing, 94, 196
generating, 24
1IS (Internet Information
Server) migration, 395
IPlanet, Apache 2.0
languages, 89
libraries, 90
mod_per]l module,
331-334
performances, enhancing,
100
Perl, 89
processing, associating,
file extensions, 92
protocol, 88
request operations, 88
responses, 89
scripts, 91
environment variables,
144
locations, 55

commands 419|

security, 55
‘Windows, PHP
installations, 307
security, 93, 334
shell script, testing, 94
troubleshooting, 101-103
Unix configurations, 94-97
Windows configurations,
97-99
cgi-bin directory, 332
cgi-script, content handler,
80, 92
chained proxies, requests,
237
chaining digital certificates,
267
character sets, default, 149
charset translations, 199
check boxes
Bypass Proxy Server for
Local Addresses, 238
Use a Proxy Server for
Your LAN, 238
checking
Apache
installations (Unix), 39
versions (CVS), 45
digital certificates, 268
CheckSpelling on, configu-
rations, 75
ChildPerUserld directive
(Perchild MPMs), 181
children
controlling, Perchild
MPM, 181
coordinating, Prefork
MPM configurations,
178
limiting (Prefork MPMs),
175

Prefork MPMs, 174-175
process-based servers, 25
chmod a+x printenv com-
mand, Perl CGI scripts
(testing), 96
chmod a+x test-cgi
command, shell script
CGI (testing), 94
ciphertext, message
(encryption), 265
cleanup, requests (check-
ing), 34
CLF (Common Log
Format), log format, 127
clibpdf library, PDF
support (PHP extensions),
313
client authentication,
108-109
client certificates, directives
(SSL configurations), 276
client negotiation, 150
client requests, tracking
(access log), 63
client support, configuring
(forward proxy), 238-239
clients
accessing metadata, 205
all clients, access control
rules, 117
CVS (concurrent version
system), 44
DAV, 209-212
managing files, 205,
211-212
mod_deflate limitation,
193
telnet clients, 14
tracking, troubleshooting,
132

cluster logging, HTTP
requests, 130
cmd argument
(ExtFilterDefine directive),
197
Cocoon project (XML pro-
ject), 406
code. See also source code;
syntax
disadvantages, CGI, 91
existing code, CGI advan-
tage, 90
legacy code, IIS (Internet
Information Server)
migration limitation, 392
maintenance, PHP limita-
tion, 305
Redirect directive, 28, 77
status code
conditional looping,
132
HTTP (Hypertext
Transfer Protocol), 10
HTTP response, 13
labels, 77
collections, DAV protocols,
205
collision resistant, message
digests (digest algorithms),
266
Comanche (Configuration
Manager for Apache),
163-166
command-line programs,
databases (HTTP
requests), 130
command-line tools, openssl
(certificates), 271
command-line utilities, 211
commands
certificates signing
requests, creating, 273

How can we make this index more useful? Email us at indexes@samspublishing.com

| 420 commands

chmod a+x printenv, Perl
CGI scripts (testing), 96
chmod a+x test-cgi, shell
script CGI (testing), 94
configure command, PHP
extensions, 311-315
control script, 66
DAV servers, 212
File menu
Open, 209
Properties, Certificates,
268
ifconfig command, syntax,
219-220
key pairs, creating (certifi-
cates), 272
kill, signals (sending), 65
In commands, symbolic
links (symlink), 251
nslookup command, DNS
(Domain Name
System), 9
perl —v, Perl interpreter
(checking), 95
rpm —q webmin, Webmin
installations, 157
server binary, 64
SSI (Server Side
Includes), 196
SSLCipherSuite,
algorithms (SSL direc-
tives), 276
SSLProtocol, algorithms
(SSL directives), 276
Start menu, Control
Apache, 66
Tools menu
Internet Options, 238
Internet Options,
Advanced, 74

ulimit command, operat-
ing systems (scalability),
250
Windows, Apache
(controlling), 65
comments
directives, 56
text-based configurations,
156
commerical support, PHP
benefit, 305
commerical modules,
402-403
Common Gateway
Interface. See CGI
Common Log Format
(CLF), log format, 127
Common Name field,
certificate signing
requests, 273
Commons, Jakarta project
(ASF), 405
communications, security,
263-264
comp ratio note, 192
comparing GUIs and text-
based configurations,
155-156
compatibility
MPMs (Multi-Processing
Modules), 27
schemas, directives, 57
compiling
Ant project (Jakarta), 404
Apache, 41-42
modules, 285, 297
options (Apache installa-
tions), 42-43
PHP, source code installa-
tions (Unix), 309-311

components
MIME types, 78
page components,
mod_perl module, 334,
337-339
rotating components, 378
URL (Uniform Resource
Locator), 11
Comprehensive Perl Archive
Network (CPAN), 327-329
compressing content,
mod_deflate module (fil-
tering), 191-193
compression. See also
uncompressing
filters, Apache organiza-
tion, 30
ratios, notes, 192
reduced transmitted data
(performance), 257
uncompressing source
code (Apache installa-
tions), 40
windows, 192
concurrent versioning
system. See CVS
conditional containers,
configuration files, 59-60
conditional logging, 131-132
conditional looping, 131-132
confidentiality, 264-266
config
file directory, Webmin,
157
script, OpenSSL library
(installing), 270
SSI command, 196
configuration directives, SSI
(Server Side Includes), 196

containers 421 |

Configuration file node,
Comanche server, 166
configuration files, 54
Apache, starting, 62
conditional containers,
59-60
directives, 56-58
Include directive, 60
Listen directive, 62
merging rules, 61-62
mime.type, 62
modifying, 65
modules, information, 136
parameters, 62
per-directory, 60-61, 252
processing, MPMs, 59
ServerName directive, 63

reverse proxy, 243-244
server configuration
(content negotiation),
150-152
SSL, 277
text-based, versus GUISs,
155-156
Unix, CGI, 94-97
testing, 94-96
Windows, 97-99
configure command, PHP
extensions, 311-315
configure scripts
building (CVS), 45
makefiles, 41
modules, enabling, 286
software, configuring, 41

servers, 18

settings, 158-163

software (Apache installa-
tions), 41

SSI (Server Side
Includes), 194-195,
274-278

starting, 275

tracking, 177-178

Windows MPM, 183

Worker MPM, 180

CONNECT, backends

(proxy servers), 234

connecting

DAV servers (cadaver
command-line utility),
211

ServerRoot directive, 60 targets, 41 telnet clients, 14
Configuration Manager for configure switch, modules connection phase, hook, 28
Apache (Comanche), (disabling), 288 Connection Reset By Peer,
163-166 configuring error (Web sites), 139

configuration screens, 159 assigning to processes, connections

configurations 181-182 proxy servers, 237

Apache 1.3 migration
(Help), 389-390

authorization (syntax), 378

caching, 241-242

CGI, 91-94

CheckSpelling on, 75

filters, 190-191

forward proxy, 235-238

enabling, 235-238

GUIL, IIS (Internet
Information Server)
migrations (Help), 392

mod_perl module, 329

Non Parse Headers (NPH)
scripts, 94

PHP, 315-318

remote, 156

client support, forward
proxy, 238-239
Comanche servers, 166
controlling, 175-177
coordinating, 177-179
DAV, 206-208
disadvantages, Apache, 20
external filtering, 197-198
filter chains, 191
handlers, 80
mod_deflate module, 192
mod_jk module, 353
modules (monitoring), 135
MPMs, limitations, 184
Perchild MPM, 181-182
Prefork MPM, 175
proxy server requests, 237

SSL protocols, 269
Tomcat, 353-355
Connections tab, 238
connector modules, Apache
organization, 29
consolidated servers, IIS
(Internet Information
Server) migration
development, 394
constructs, logical con-
structs, 374
contact information, server
information (customizing),
76
containers
Comanche server configu-
rations, 166
conditional containers,
configuration files, 59-60

How can we make this index more useful? Email us at indexes@samspublishing.com

| 422 containers

configuration settings
(Webmin), 161
directives, 58-59
<Directory proxy:pattern>,
forward proxy access,
236
<Location>, 243
<Proxy pattern>, forward
proxy access, 236
<ProxyMatch pattern>,
forward proxy access,
236
restricting, 120, 207
servlet containers, 348
VirtualHost container,
IP-based virtual hosting,
221, 226
content. See also static con-
tent
CGI content, 91-94
compressing, mod_deflate
module (filtering),
191-193
dynamic content
adding (SSI), 194
managing (modules),
292-293
mod_rewrite directive,
371
‘Web servers, 24,
Tomcat content, accessing,
355
content encoding, 148
content handling
cgi-script, CGI content, 92
configuring, 80
hook, 28
modules, Apache organi-
zation, 29

requests, hooks
(checking), 34
static content, 80
CONTENT_LENGTH
(environment variable),
145
content negotiation
character sets, 149
client negotiation, 150
content encoding, 148
file system access
(scalability), 252
server configuration,
150-152
Vary: header, 152
content type, modules, 289
CONTENT_TYPE (envi-
ronment variable), 145
Content-Language: HTTP
header (character sets),
149
Content-Type: header
(character sets), 149
context, schemas
(directives), 57
context switching, process-
based servers, 25
control access, 116-118
Control Apache command
(Start menu), 66
Control Panel icon, 238
control script, commands,
66
controlling
access
modules, 291-292
SSL configurations,
277

Apache, Windows (com-
mands), 65
children, Perchild MPMs,
181
processes
Perchild MPMs, 181
Prefork MPM configu-
rations, 175-177
threads, 180-181
cookies, encrypted cookies
(authentication), 402
coordinating children,
Prefork MPM configura-
tions, 178
COPY, HTTP method (DAV
protocol), 205
core libraries, APR (Apache
Portable Runtime), 31
CoreDumpDirectory
directive
Perchild MPM, 182
Prefork MPM configura-
tions, 179
troubleshooting installa-
tions, 259
Windows MPM, 183
Worker MPM, 180
Covalent
Apache-based servers, 48
management portal (GUI
tool), 168
Web site, 49, 403, 407
Covalent Technologies
Apache 1.3, migration
Help, 389
Web site, 130, 168, 245
CPAN (Comprehensive Perl
Archive Network), 326-329

default 423 |

Crimson project (XML
project), 405
crit, LogLevel directive
option, 133
cryptography, public key or
symmetric, 265
CSS (Cascading Style
Sheets), mod_deflate
limitation, 193
curl support (PHP
extensions), 312
custom installation, Apache
(Windows), 46
customized messages, error
message replacement, 74
CustomLog directive,
129-131, 227
CVS (concurrent versioning
system)
building, 44-45
clients, 44
configurations (mod_perl
module), 329
mod_perl module, 329
Web site, 44, 400

D

-D, httpd option, server
binary, 64

data, transmitted data (per-
formance), 257

database file-based access
control authentication,
113-114

database support (PHP
extensions), 313

databases
bug databases, support
resource, 407
dbm database, keys
(mod_rewrite directive),
383
HTTP requests, logging,
130
lock databases
DAV configurations,
206
error messages (mod_
dav installations), 213
paths, 206
logging to, 138
MySQL, sharing authenti-
cation (modules), 402
PHP benefit, 304
storing, 138
DAV (Document Authoring
and Versioning)
access, restricting, 207
clients
Microsoft, 209-211
resources, accessing
metadata, 205
servers, managing files,
205
Unix, 211-212
configuring, 206-208
directives, 207
error messages, 213
extensions, choosing, 214
Microsoft FrontPage, 214
modules, 296
projects, 212-213
protocols, HTTP methods,
205
read-only access, 207

repositories, meta
information, 208
servers, 207, 211
support, Web folders, 209
DavDepthlnfinity directive,
advanced DAV configura-
tions, 208
DavLockDB, lock databases
(DAV configurations), 206
DAVMinTimeout directive,
advanced DAV configura-
tions, 208
dbm databases, keys
(mod_rewrite directive),
383
dbmmanage, user mange-
ment (database file-
based access control
authentication), 113
dbmmanage.pl, user mange-
ment (database file-based
access control authentica-
tion), 113
debug, LogLevel directive
option, 134
debugging
CGI executions, configu-
rations, 94
mod_ext filter module,
198
symbols (PHP extensions),
311
DebugLevel argument
(ExtFilterOptions
directive), 198
default
arguments, AcceptMutex
directive, 178
schemas, directives, 57

How can we make this index more useful? Email us at indexes@samspublishing.com

| 424 default document index, directory listings

default document index,
directory listings, 80
default-handler (content
handler), 80
DefaultCharset directive,
character sets, 149
defaults, file locations, 53-54
DefaultType directive,
MIME type (defining), 79
defining
filenames (logging), 128
log formats, 128
MIME types, 78-79
DEFLATE filter, 191
DeflateFilterNote directive
(mod_deflate module), 192
DeflateMemLevel directive
(mod_deflate module), 192
DeflateWindowSize direc-
tive (mod_deflate module),
192
delegated administration,
configuration settings
(Webmin), 162
Denial of Service (DoS),
preventing abuse, 258
Deny directives, access con-
trol rules, 116
Deny,Allow argument
(Order directive), 118
DES, symmetric cryptogra-
phy, 265
dev@httpd.apache.org mail-
ing list, support resource,
406
development
Apache 2.0, IIS (Internet
Information Server)
migration, 391
IIS (Internet Information
Server) migrations, Help,
392-394

dialog boxes, Internet
Options, 238
digest, message digests
(digest algorithms), 266
digest algorithm, 109, 226
digest authentication, 108,
114-115
digital certificates, 267-268
directive containers, 58-59
directive identifiers, status
codes, 132
directives
AccessFileName, per-
directory configuration
files, 61
accessing, 236
Action directive, 80, 93
AddCharset directive,
character sets, 149
AddDefaultCharset direc-
tive, character sets, 149
AddEncoding directive,
content encoding, 149
AddHandler directive,
content handlers, 80
AddLanguage directive,
character sets, 149
AddOutputFilter directive,
191, 197
admin option (PHP
configurations), 316
Alias directive, 76, 372
AliasMatch, 76, 373
Allow directive, access
control rules, 116
AllowOverride, per-
directory configuration
files, 61
Apache 1.3, migration
Help, 389

applying, 58
arguments, 56
AssignUserld (Perchild
MPMs), 182
AuthAuthoritative direc-
tive, file-based authenti-
cation, 112
AuthDBMAuthoritative,
database file-based
access control authenti-
cation, 114
AuthDBMGroupFile
directive, database
file-based access control
authentication, 113
AuthDBMUserFile direc-
tive, database file-based
access control authenti-
cation, 113
AuthDigestAuthoritative
directive, digest-based
authentication, 115
AuthDigestDomain direc-
tive, digest-based
authentication, 115
AuthDigestFile directive,
digest-based authentica-
tion, 115
AuthDigestGroupFile
directive, digest-based
authentication, 115
authentication modules,
109-110
AuthGroupFile directive,
users file (backend stor-
age), 111
AuthName directive,
authentication modules,
110

directives 425 |

AuthType directive,
authentication modules,
110

AuthUserFile directive,
users file (backend stor-
age), 111

BrowserMatch (environ-
ment variables), 146

browsing, 56

building, 72

CacheDefaultExpire,
cache expirations, 242

CacheDisable, caching
functionality, 241

CacheEnable, caching
functionality, 241

CacheFile directive, map-
ping files (memory), 256

CacheForceCompletion,
cache expirations, 242

CacheLastModifiedFactor,
cache expirations, 242

CacheMaxExpire, cache
expirations, 242

CacheMaxExpireMin,
cache expirations, 242

CacheOn, caching func-
tionality, 241

ChildPerUserld (Perchild
MPMs), 181

comments, 56

configuration files, 56-57

configuring, 136

controlling

Perchild MPMs, 181

Prefork MPMs,
176-178

‘Windows MPMs, 183

‘Worker MPMs, 180

CoreDumpDirectory,
179-183, 259

CustomLog directive,
129-131, 227

DAV, 207

DavDepthlInfinity,
advanced DAV configu-
rations, 208

DAVMinTimeout,
advanced DAV configu-
rations, 208

DefaultCharset directive,
character sets, 149

DefaultType directive,
MIME type (defining),
79

Deny directive, access
control rules, 116

DirectoryIndex directive
(directory listings), 80

enabling, 235

ErrorDocument directive,
error messages, 74

ErrorLog, 227

external processes, operat-
ing systems (scalability),
251

ExtFilterDefine directive,
external filtering con-
figuations, 197

filter configurations, 191

ForceType directive,
MIME type, 79

formatting directives,
126-128

Group, 177, 180-182

Header directive, headers
(managing), 147

HostNameLookups direc-
tive, conditional logging,
131

IdentityCheck directive,
conditional logging, 131
Include, configuration
files, 60
IndexOption directive,
directory listings, 81
IndexOrderDefault
directive, directory list-
ings, 82
JKCERTSIndicator
directive, 364
JkCIPHERIndicator
directive, 364
JkExtractSSL directive,
364
JKHTTPSIndicator
directive, 364
JkMount, 354
JKSESSIONIndicator
directive, 364
JkWorkersFile, 354
KeepAliveTimeout
directive, network set-
tings (performance), 258
LanguagePriority directive
(content negotiation),
151
limiting (Prefork MPMs),
177, 180
LimitRequestBody direc-
tive, preventing abuse
(performance), 259
LimitRequestFields
directive, preventing
abuse (performance),
259
LimitRequestFieldSize
directive, preventing
abuse (performance),
259

How can we make this index more useful? Email us at indexes@samspublishing.com

| 426 directives

LimitRequestLine direc-
tive, preventing abuse
(performance), 259

LimitXMLRequestBody
directive, 208, 259

Listen directives, static
content, 62, 71, 177,
180-183, 219

ListenBacklog, 180-183

loading, 274, 297, 306

Location, 330

LockFile (Perchild MPM),
182

log directives, status
codes, 132

LogFormat directive,
arguments, 128

logging, 132-134

MaxClients, limiting
children (Prefork
MPMs), 176

MaxRequestsPerChild,
182-183

MimeMagicFile directive,
MIME type, 79

MMapkFile directive,
mapping files (memo-
ry), 256

mod_alias, 373

mod_deflate modules, 192

mod_jk module, 364

mod_proxy, reverse proxy,
381

mod_rewrite directive

authorization, 378-381

dynamic content, 377

dynamic proxying,
381-382

flexible proxying, 381

load balancing,
381-382
mapping, 372-373
randomizers, 377
redirection, 372-377
virtual hosting,
382-384
mod_vhost_alias directive
(mass virtual hosting),
224
MultiviewsMatch directive
(content negotiation),
151
NameVirtualHost direc-
tive, 222
network-related, Prefork
MPM configurations,
177
NoProxy, forward proxy
hierarchies, 237
Option +Include directive,
SSI parsing, 194
Options +Multiview direc-
tive (content negotia-
tion), 150
Options directive (mass
virtual hosting), 225
Options —Indexes direc-
tive, directory listings
(disabling), 82
Options, 252, 277
Order directive, 117-118
parent processing (Prefork
MPMs), 178
PassEnv directive, envi-
ronment variables, 144
pattern-matching, 374
PerlInterpMax directive,
343

PerlInterpMaxRequests
directive, 343
PerlInterpMaxSpare
directive, 343
PerlInterpMinSpare
directive, 343
PerlInterpScope directive,
343
PerlInterpStart directive,
343
PerlOptions, 326
PidFile, 182-183, 229
process locking (Prefork
MPMs), 178-180
processing, 59
ProxyBlock, forward
proxy (URL blocking),
236
ProxyDomain, forward
proxy hierarchies, 237
ProxyErrorOverride,
reverse proxy, 244
ProxyMaxForwards,
forward proxy hierar-
chies, 237
ProxyPreserveHost,
reverse proxy, 244
ProxyReceiveBufferSize,
tuning (forward proxy
configurations), 238
ProxyRemote, forward
proxy hierarchies, 237
ProxyRequests, forward
proxy functionality
(enabling), 235
ProxyTimeout, tuning
(forward proxy configu-
rations), 238
ProxyVia, forward proxy
hierarchies, 237

directives 427 |

recording, 178-180

Redirect directive, static
content (URL redirec-
tion), 77

Redirect, 372

RedirectMatch, 373

RemoveCharset directive,
character sets, 149

RemoveEncoding direc-
tive, content encoding,
149

RemoveHandler directive,
content handlers, 80

RequestHeader directive,
headers (managing), 147

Require directive, 110,
378, 381

reverse proxy, SSL config-
urations, 278

RewriteCond, 376

RewriteEngine, 376

RewriteMap, 376-377

RewriteRule directive,
375-376, 381

Satisfy all directive, access
methods (combining),
119

Satisfy any directive,
access methods (combin-
ing), 119

Satisfy directive, access
methods (combining),
119

schemas, 56

ScoreBoardFile directive,
180-182, 252

Script directive, CGI con-
tent, 93

ScriptAlias directive, 92,
225

ScriptLog directive, CGI
executions (debugging),
94

ScriptLogBuffer directive,
CGI executions (debug-
ging), 94

ScriptLogLength directive,
CGI executions (debug-
ging), 94

ScriptSock directive,
mod_cgid module, 91

SendBufferSize directive

network settings (per-
formance), 258
Perchild MPM, 182
TCP buffers (Prefork
MPMs), 177
Windows MPM, 183
Worker MPM, 180
ServePath directive, 226
ServerAlias directive
(syntax), 223

ServerLimit, limiting chil-
dren (Prefork MPMs),
175

ServerName directive, 56,
72-73, 83

ServerRoot, configuration
files, 60

ServerTokens directive,
server identification, 76

SetEnv directive, environ-
ment variables, 144

SetEnvIf directive, envi-
ronment variables
(setting dynamically),
145

SetHandlers directive, 80,
92

SetOutputFilter directive,
191, 197
SSI (Server Side Includes)
configurations, 196,
275-277
filtering, 195-196
SSLCACertificateFile,
client certificates (SSL),
276
SSLCACertificatePath,
client certificates (SSL),
276
SSLCARevocationFile,
client certificate, 276
SSLCARevocationPath,
client certificate, 276
SSLCertificateFile, SSL
configurations (certifi-
cates and keys), 275
SSLCertificateKeyfile,
SSL configurations
(certificates and keys),
275
SSLLog, logging (SSL),
277
SSLLoglLevel, logging
(SSL), 277
SSLMutex, performance
(SSL), 276
SSLOptions, SSL configu-
rations, 277
SSLPassphrase, pass
phrases (SSL), 277
SSLRandomSeed, perfor-
mance (SSL), 276
SSLRequire, controling
access (SSL), 277
SSLRequireSSL, control-
ing access (SSL), 277

How can we make this index more useful? Email us at indexes@samspublishing.com

| 428 directives

SSLSessionCache, perfor-
mance (SSL), 276

SSLSessionCacheTimeout,
performance (SSL), 276

SSLVerifyClient, client
certificate verification,
276

SSLVerifyDepth, client
certificate, 276

StartServers, 175, 180

structure, 56

syntax, 56

ThreadsPerChild, process-
es (Worker MPMs), 180

TimeOut directive,
preventing abuse (perfor-
mance), 259

TransferLog directive, 129

TypesConfig directive,
MIME types (defini-
tions), 79

URLs, 243-244

User, 177, 180-182

values, 61

VirtualDocumentRoot
directive (mass virtual
hosting), 224

VirtualDocumentRootIP
directive (mass virtual
hosting), 225

VirtualScriptAlias direc-
tive (mass virtual host-
ing), 225

VirtualScriptAliasIP direc-
tive (mass virtual host-
ing), 225

Windows MPM, 183

XbitHack directive, SSI
parsing, 195

XbitHack on directive, SSI
parsing, 195

directories
build, 55
CGI scripts, locations, 55
cgi-bin directory, 332
config file directory,
‘Webmin, 157
directives, applying, 58
document root, 55
error messages, 55
handling, modules, 291
htdocs, 55
testing (Windows), 307
httpd-2.0 directory,
Apache source code, 45
icons, 55
include, 55
layout, 53-55
listings, 80-82
log file directory, Webmin,
157
man, 55
manual, 55
MIME types, 79
modules, 55
PHP, 308-309
target directories, files, 92
URLSs, ScriptAlias direc-
tive, 92
WEB-INF, 355
webapps directory, 356
<Directory proxy:pattern>,
forward proxy access, 236
<Directory>, directive con-
tainer, 58
DirectoryIndex directive
(directory listings), 80
<DirectoryMatch>, directive
container, 58
--disable-module, configure
switch (disabling), 288

disabling
modules, 288
per-directory configuration
files, 61
disks
caching backend, 240
RAM disks, scoreboard
files (file system access),
252
displaying error messages,
55
distributing loads (perfor-
mance), 257
distribution-specific for-
mats, Apache installations,
43
distributions
downloading, 353
Jakarta Ant, 365
-DMyModule switch, 59
DNS (domain name server)
Internet, 9-10
lookups, 72
name-based virtual
hosting, 223
virtual hosting, 218
Document Authoring and
Versioning. See DAV
document root directory, 55
documentations, directives,
56
DocumentRoot, virtual
hosting, 221
doGet() method, 361
DOM, XML support (PHP
extensions), 314
domain name server.
See DNS

error messages 429 |

domain names
access control rules, 117
DNS (Domain Name
System), 9
ServerName Directive, 72
DoS (Denial of Service),
preventing abuse, 258
downcase function, 376
downgrade-1.0 (environ-
ment variable), 147
downloaded software,
integrity (verifying), 48
downloading
binaries, 43-45
Cadaver, 211
distributions, 353
EasyTerm, 14
J2SE (Java 2 Standard
Edition), 349
Perl build environments,
96
PHP, source code installa-
tions (Unix), 308-309
source code (Apache
installations), 40
Tomcat, 349
dynamic content
adding, SSI (Server Side
Includes), 194
managing, modules,
292-293
mod_rewrite directive, 377
‘Web servers, 24
dynamic extensions, admin
options (PHP configura-
tions), 318
dynamic loadable modules,
locations, 55
dynamic proxying,
mod_rewrite directive,
381-382

E

EasyTerm, downloading, 14
echo (SSI command), 196
echoing telnet clients, 14
editors, text editors (text-
based configurations), 156
embedded interpreters, Web
servers, 24
emerg, LogLevel directive
option, 133
--enable module script,
modules (enabling), 288
--enable-cache, caching
argument, 241
--enable-dav-fs, DAV sup-
port, 206
--enable-disk-cache, caching
argument, 241
--enable-mem-cache,
caching argument, 241
enabling
binary installations,
caching, 241
functionality, forward
proxy (forward proxy
configurations), 235-236
mod_ext filter module,
196
mod_proxy, 235
modules, 288
per-directory configuration
files, 61
proxy support, 234
encoding content encoding,
148
encrypted cookies, authenti-
cation (modules), 402
encrypting passwords, user
management (file-based
authentication), 112

encryption
filters, Apache organiza-
tion, 30
keys, 265
SSL (Secure Sockets
Layer), 11, 265
Windows installer, 48
engines, ASP, IIS (Internet
Information Server)
migration development,
393
environment variables, 143
access control rules, 117
browsers, SSL protocols,
278
CGl, 88-89
conditional logging, 131
CustomLog directive, 129
managing, modules, 289
Perl, 98
setting, 144-146
special, 146-147
SSI (Server Side
Includes), 196
standard, 144-145
environments, build
environment (Perl), 96
error, LogLevel directive
option, 133
error log
log file, 63
Unix, log file, 54
error manipulation, admin
options (PHP configura-
tions), 316
error messages
backend servers, reverse
proxy, 244
DAV, 213
directory, 55
displaying, 55

How can we make this index more useful? Email us at indexes@samspublishing.com

| 430 error messages

ErrorDocument directive,
74
international, 75
Internet Explorer, 74
replacements, 74
URLs, 75
Web servers, customizing,
73-75
error.log, Unix (log files), 54
ErrorDocument directive,
error messages, 74
ErrorLog
directive, 132, 227
syntax (virtual hosting),
228
errors
CGlI, 101
logging
files, 132
LogLevel directive,
133-134
monitoring, 139
programs, 133
syslog daemon (Unix),
133
Logs node, Comanche
server, 166
PHP source code installa-
tions (Unix), 310
‘Web sites, 139
Eureka tool, logs (databas-
es), 138
evaluating control access
rules, 117-118
events, recording (error
log), 63
Exceptions text box, 238
exec (SSI command), 196
executing CGI, 196

expat
library, DOM (PHP exten-
sions), 314
XML library, 55, 314
Explorer. See Internet
Explorer
expressions, regular expres-
sions, 374
ext/ (PHP directory), 309
ExtendedStatus directives,
modules (configuring), 136
extending
Apache, 401
Comanche, 167
extensible advantages,
Apache, 19
extensions
choosing, 214
file extensions
CGI processing (asso-
ciating), 92
content encoding, 148
media types (MIME
types), 78
filters, associating, 191
IIS (Internet Information
Server) migration devel-
opment (Help), 393
IPlanet Web server, 395
MIME type, 79
PHP, 301, 304-305,
311-315
.shtml, SSI parsing, 194
external filtering, 196-198
external processes, operat-
ing systems (scalability),
251
external programs, 379
external URL, error mes-
sage replacement, 74

ExtFilterDefine directive,
external filtering configu-
rations, 197

ExtFilterOptions directive,
mod_ext filter (debug-
ging), 198

F

-f, httpd option, server
binary, 64
FastCGI, 100
Fastresolve, hostname
resolving utility, 137
fentl, arguments
(AcceptMutex directive),
178
features, Apache 2.0 (IIS),
392
fields, Common Name
(certificate signing
requests), 273
file descriptors, operating
systems (scalability), 250
file extensions
CGI processing, associat-
ing, 92
content encoding, 148
media types, MIME types,
78
File favico.icon Not Found
error, Web sites, 139
File menu commands
Open, 209
Properties, Certificates,
268
file mirroring software, Web
hosting (publishing proto-
cols), 205

flexible proxying, mod_rewrite directive 431 |

File robots.txt Not Found
error, Web sites, 140
file system access, settings
(scalability), 251
file systems project, DAYV,
212
File Transfer Protocol.
See FTP
file uploads, publishing
protocols, 204
file-based authentication,
111-112
FileInfo, directive value, 61
<Files>, directive container,
58
<FilesMatch>, directive
container, 58
files
build.xml (Jakarta Ant),
365-366
collections, DAV proto-
cols, 205
configuration files, 54,
63-65
conditional containers,
59-60
directive containers, 58
directives, 56-57
Listen directive, 62
merging rules, 61-62
mime.type, 62
default locations, 53-54
directives, applying, 58
errors, logging, 132
form.asp (syntax),
336-338
groups file, backend stor-
age (file-based authenti-
cation), 111

header files, 55

hiding, directory listings,
82

HTTP requests, logging,
128-129

httpd.conf file, modifying,
62

information, 59, 62-63,
136

log files, 54, 63-64

managing, servers (DAV
clients), 205

mapping, memory (perfor-
mance), 256

modifying, Microsoft
Office (DAV Microsoft
clients), 211

names, defining (logging),
128

password files, storing
(file-based authentica-
tion), 112

per-directory configuration
files, 60-61, 252

php.ini, PHP configura-
tions, 315

pid files, log files, 64

recording (Prefork
MPMs), 178

robots.txt, Web spiders
(preventing abuse), 259

scalability, 64, 252

scoreboard (Prefork
MPMs), 178

server files, layout, 53-55

starting, 62, 67

error log, 63
mod_rewrite module,
136

paths (logname), 139
pid file, 64
scoreboard file, 64
StoogeAuthz.pm (syntax),
340-342
target directories, 92
text (directory listings), 81
users file, backend storage
(file-based authentica-
tion), 111
XML files, Jakarta Ant,
365
filesystem permissions, trou-
bleshooting (CGI), 101
filter chains, 190-191
filtering, 189-190
external filtering, 196-198
mod_deflate module, com-
pressing content,
191-193
modules, 198
SSI (Server Side
Includes), 194-196
filters, 189
Apache organiztion, 30
associating (extensions),
191
configurations, 190-191
DEFLATE, 191
requests, hooks (check-
ing), 33
sharing, 198
flags
P flag, 381
RewriteRule directive, 376
Flash (PHP extensions), 313
flexibility, advantages
(Apache), 18
flexible proxying,
mod_rewrite directive, 381

How can we make this index more useful? Email us at indexes@samspublishing.com

| 432 flock, arguments

flock, arguments
(AcceptMutex directive),
178
folders, Web folders
adding (DAV Microsoft
clients), 209
DAV support, 209
error messages (mod_dav
installations), 213
FollowSymLinks parameter,
Options directive, 252
fonts, GD libraries (PHP
extensions), 312
foo environment variable,
144
footers
directory listings, 82
trailing footers, contact
information, 76
forbidden errors, trou-
bleshooting (CGI), 101
force-no-vary (environment
variable), 147
force-response-1.0 (environ-
ment variable), 147
ForceType directive, MIME
types, 79
forking, process-based
servers, 25
form.asp file (syntax),
336-338
formats
distribution-specific
(Apache installations),
43
log formats, 126-128
formatting directives,
126-128
forms, file uploads (publish-
ing protocols), 204
forward proxy, 235-239

forwarding URLSs, proxy
servers, 237
FQDN (fully qualified
domain name), 221
frameworks, server frame-
works, 29
Freshmeat Web site, 315,
408
FrontPage, 214
FTP (File Transfer
Protocol)
backends, proxy servers,
234
IIS (Internet Information
Server), 390
modules, 403
protocols, Web hosting,
publishing protocols,
204
proxy content, forward
proxy, 235
support (PHP extensions),
312
Full value, ProxyVia direc-
tive, 238
fully qualified domain name
(FQDN), 221
functionality
Apache 1.3 migration, 388
forward proxy, enabling
(forward proxy configu-
rations), 235-236
functions, 376-377

G

GD library, graphics (PHP
extensions), 312
GIF, images (logging), 132

GNOME, Comanche instal-
lations (Unix), 164
gone label, Redirect
directive, 77
granting access, 110
graphics
logging, 132
PHP extensions, 312
reduced transmitted data
(performance), 257
Group directive, 177,
180-182
group settings, trou-
bleshooting, 68
groups file, backend storage
(file-based authentication),
111
GUISs (graphical user
interfaces)
ApacheOnHand, 168
configurations, IIS
(Internet Information
Server) migrations
(Help), 392
Comancne, 163-166
Covalent management
portal, 168
Linuxconf, 168
versus text-based configu-
rations, 155-156
Webmin, 156-160, 163
Gzip, Web site, 40
gzip utility, Apache source
code (uncompressing), 40

HTTP 433 |

H

Halcyon Software, Instant
ASP (ASP engine), 393
handlers
cgi-script content handler,
CGI content, 92
configuring, 80
content handlers, static
content, 80
mod_perl module,
324-326
handling directories, mod-
ules, 291
hardware load balancer
(performance), 257
Header directive, headers
(managing), 147
header modification, hook,
28
headers
Accept: (client negotia-
tion), 150
Accept-Charset:
(client negotiation), 150
Accept-Encoding:
(client negotiation), 150
Accept-Language:
(client negotiation), 150
CGI (Common Gateway
Interface), 94, 102
Content-Language: HTTP
header (character sets),

149
Content-Type: (character
sets), 149

directory listings, 82

files, 55

Host: (name-based virual
hosting), 222-223

Host:, ProxyPreserveHost,
244
HTTP (Hypertext Transfer
Protocol), 10
environment variables,
145
headers, 78, 89, 257
managing (modules),
292
request, 13
response, 13
manging, 147
request headers,
name-based virtual host-
ing (syntax), 222
reverse proxy configura-
tions, 244
Server header, server iden-
tification, 75
Hello World, Perl modules
(loading), 330-331
Help
Apache 1.3 migrations,
389-390
Apache 2.0, IIS (Internet
Information Server)
migration, 392-394
hiding files, directory list-
ings, 82
hierarchies, proxy (forward
proxy configurations),
236-238
hooks, 28, 33, 189
Host header, name-based
virtual hosting, 223
hosting, Web hosting, 204.
See also virtual hosting
HostnameLookups, network
setting (scalability), 253

HostNameLookups
directive, conditional
logging, 131

hostnames, resolving (man-
aging logs), 137

hosts, virtual hosts, 160, 166

Host: header,
ProxyPreserveHost direc-
tive, 244

Host: header (name-based
virtual hosting), 222

.htaccess, per-directory
configuration files, 61, 252

htdocs directory, 55, 307

HTML::Mason, 326

HTML::Embperl, page
component and templating
system, 338

HTML::Mason, page com-
ponent and templating
system, 338

HTML::Template, page
component and templating
system, 338

htpasswd utility

authentication, 339
user password files
(managing), 112
HTTP (Hypertext Transfer
Protocol)
backends, proxy servers,
234
basic authentication, DAV
protocols, 205
forward proxy, 235-239
headers, 257, 292
accessing (environment
variables), 145
CGI reponses, 89
MIME types, 78

How can we make this index more useful? Email us at indexes@samspublishing.com

| 434 HTTP

Internet, 10
methods, 119-120,
205-207
proxy content, forward
proxy, 235
request and response,
11-14
requests, 11-13, 177, 190
cluster logging, 130
conditional logging,
131-132
logging, 125-132
methods, Script
directives, 93
response, 12-13
secure HTTP, 264
telnet clients, 14
HTTP PUT, Web hosting,
publishing protocols, 205
httpd
server binary command
(Unix), 64
Unix, support script, 54
httpd-2.0 directory, Apache
source code, 45
httpd.conf, configuration
file, 54, 62
httpd.pid Overwritten error,
Web site, 140
HTTPS, SSL (Secure
Sockets Layer), 11
HttpServletRequest argu-
ment, doGet() method, 361
HttpServletResponse argu-
ment, doGet() method, 361
HUP signals, sending, 65
hybrid servers
MPMs (Multi-Processing
Modules), 27
‘Worker MPMs, 179
Hypertext Transfer
Protocol. See HTTP

IANA (Internet Assigned
Numbers Authority)
MIME type list, 79
Web site, 8
IBM, 48
ICANN (Internet
Corporation for Assigned
Names and Numbers),
Web site, 8
icons
Add Network Place, 209
bookmarks, static content,
83
Comanche, 164
configuration screens, 160
Control Panel, 238
My Computer, 351
padlock, 268
Service, 65
Start Tomcat, 352
virtual host configuations,
160
icons directory, 55
identification, servers, 75-76
identifiers, directive identi-
fiers (status codes), 132
identities, servers (Prefork
MPM configurations), 177
IdentityCheck directive,
conditional logging, 131
IDs, pid files (Prefork
MPMs), 178
ifconfig command, syntax,
219-220
<IfDefine>, conditional con-
tainer, 59
<IfDefine SSL> block, SSL
directives, 275

<IfModule>, conditional
container, 59
1IS (Internet Information
Server), migrating,
390-395
images. See graphics
implementing protocols
(plug-ins), 400
Include directive, configura-
tion files, 60
includes
directories, 55
mod_include (international
error messages), 75
SSI command, 196
indexes, default document
index (directory listings),
80
Indexes, directive value, 61
IndexOption directive,
directory listings, 81
IndexOrderDefault direc-
tive, directory listings, 82
info, LogLevel directive
option, 134
information
contact information, server
information (customiz-
ing), 76
digital certificates, 268
server information, contact
information, 76
Information node,
Comanche server, 166
input chains, filter chains,
190
installations
Apache installations,
checking (Unix), 39
binary installations, 235,
241, 307

IP addresses 435 |

custom installation,
Apache (Windows), 46
mod_dav, error messages,
213
PEAR (PHP extensions),
311
Perl, 95-96
PHP, 306-311
selecting methods, 37-39
source code installations,
PHP (Unix), 308-311
troubleshooting, 259
typical installation,
Apache (Windows), 46
installers
binary installer, 45
‘Windows installer, 48, 352
installing
Apache
binaries (installing),
43-44
installations, 42
locations, 41
source (Unix), 40-43
Unix, 39-45
Windows, 45-48
binaries
Apache installations
(Unix), 43-44
installation methods
(selecting), 38
Linux, 95
Perl installations, 95
Solaris, 96
cadaver command-line
utility, 211
Comanche, 163-165
mod_perl module,
328-329
modules (APXS tool), 297
OpenSSL library, 270

Perl, Windows configura-
tions, 97
SSL (Secure Sockets
Layer), 269-271
Tomcat, 349-353
Webmin, 157-158
instances, multiple instances
(running), 229
Instant ASP (Halcyon
Software), ASP engine,
393
integrity
communications, security,
264
SSL protocols, 266
interfaces
Comanche, 165
network interfaces, virtual
hosting, 218-221
internal server errors, trou-
bleshooting (CGI), 101
internal URL, error mes-
sage replacement, 74
international error
messages, 75
Internet protocols, 7
DNS (Domain Name
System), 9-10
HTTP (Hypertext Transfer
Protocol), 10
SSL (Secure Sockets
Layer), 11
TCP/IP (Transmission
Control Protocol/Internet
Protocol), 8
URL (Uniform Resource
Locators), 10
Internet Assigned Number
Authority (IANA)
MIME type list, 79
Web site, 8

Internet Corporation for
Assigned Names and
Numbers (ICANN), Web
site, 8

Internet Explorer

error messages, 74
proxy support, adding, 238
Web folders, 209

Internet Information Server
(IIS), migrating, 390-395

Internet Network
Information Center
(InterNIC), Web site, 10

Internet Options

Advanced command
(Tools menu), 74

command (Tools menu),
238

dialog box, 238

Internet Server Application
Programming Interface
(ISAPI), IIS (Internet
Information Server), 390

Internet worms, security
I18), 391

InterNIC (Internet Network
Information Center), Web
site, 10

interpreters

location, troubleshooting,
CGlI, 102

Perl, 99-100

Tcl/Tk, Comanche instal-
lations, 163

Web servers, 24

intype argument
(ExtFilterDefine directive),
197

IP addresses

control access rules, 116
DNS (Domain Name
System), 9

How can we make this index more useful? Email us at indexes@samspublishing.com

| 436 IP addresses

network interfaces, 219
partial, control access
rules, 116
reverse DNS lookups, 131
static content, 71
TCP/IP (Transmission
Control Protocol/Internet
Protocol), 8
IP aliases, virtual hosting,
218-221
IP protocol packet, 8
IP-based virtual hosting,
221
IPlanet, 394-395
irreversible message digests,
digest algorithms, 266
ISAPI (Internet Server
Application Programming
Interface), IIS (Internet
Information Server), 390

J2SE (Java 2 Standard
Edition), Tomcat, 349
Jakarta, 349
distributions, download-
ing, 353
Java, ASF (Apache
Software Foundation)
projects, 404-405
Web site, 404
Jakarta Ant
distributions, 365
mod_jk module, buidling,
365
running (Unix), 365

Jakarta Formatting Object
Processor project (XML
project), 406

JAMES (Java Apache Mail
Enterprise Server),
Jakarta project, 405

Java

ASF (Apache Software
Foundation) projects,
404-405

IIS (Internet Information
Server) migration devel-
opment (Help), 393-395

‘Web servers, 24

Java 2 Standard Edition
(J2SE), Tomcat, 349

Java Apache Mail
Enterprise Server
(JAMES), Jakarta project,
405

JAVA_HOME variable, 350

Java Servlet API, 348

Java virtual machine
(JVM), 348

Java Web Server, 348

JavaScript, mod_deflate
limitation, 193

jkant library, 365

JKCERTSIndicator direc-
tive, 364

JKCIPHERIndicator
directive, 364

JKExtractSSL directive, 364

JKHTTPSIndicator direc-
tive, 364

JkMount directive, 354

JKSESSIONIndicator
directive, 364

JkWorkersFile directive,
354

JMeter, performance tool
(Web site), 255

JPEG images, logging, 132

JSPs, 348

JVM (Java virtual
machine), 348

K

KDE, Comanche installa-
tions (Unix), 164
KeepAliveTimeout directive,
network settings (perfor-
mance), 258
key pairs, creating (manag-
ing certificates), 272
keys
CA (certification authori-
ty), 267
dbm databases
(mod_rewrite directive),
383
digital certificates, authen-
tication (SSL protocols),
267
encryption, 265
kill command, signals (send-
ing), 65
killing processes, 175-179

L

-1, httpd option, server bina-
ry, 64

labels, status codes,
Redirect directive, 77

LimitXMLRequestBody directive 437 |

LAN Settings button, 238
LanguagePriority directive
(content negotiation), 151
languages. See also Perl;
PHP
advantages, Apache, 19
CGI, 89
scripting languages, Web
servers, 24
latency, TCP buffers
(Prefork MPMs), 177
launching Tomcat servers,
352
layouts
directories, 53-55
server files, 53-55
Webapp, 355
LDAP (Lightweight
Directory Access Protocol)
module, 400
user management, client
authentication, 109
learning PHP, 303
legacy code, limitations
(II8), 392
levels, errors (LogLevel
directive), 133
libapr (Apache Portable
Runtime) library, 55
Libcurl library, curl sup-
port (PHP extensions), 312
libjpeg support, GD library
(PHP extension), 312
libpng support, GD library
(PHP extension), 312
libraries
Apache Portable Runtime
(libapr), 55
CGI, 90

clibpdf library, PDF sup-
port (PHP extensions),
313
expat library, DOM (XML
support), 314
expat XML, 55
GD library, graphics (PHP
extensions), 312
jkant, 365
Libcurl library, curl sup-
port (PHP extensions),
312
Ming, Flash (PHP exten-
sions), 313
mm library, shared mem-
ory (session support),
315
Open Source Spread, 130
OpenSSL, 270
pdflib library, PDF support
(PHP extensions), 313
qt library, DOM (XML
support), 314
SSLeay, 270
SWE, Flash (PHP exten-
sions), 313
Unix, 270
Windows, installing (SSL
installations), 270
libs/ (PHP directory), 309
libXpm support, GD library
(PHP extension), 312
licenses, Apache, 46
Lightweight Directory
Access Protocol. See
LDAP
Limit, directive value, 61

limitations
Apache 2.0, IIS (Internet
Information Server)
migration, 392
MPM configurations, 184
symmetric cryptography,
265
limiting
access, HTTP methods,
119-120
children (Prefork MPMs),
175
<Limit> container
DAV access, restricting,
207
HTTP methods, access
(limiting), 120
<LimitExcept> container
DAV access, restricting,
207
HTTP methods, access
(limiting), 120
LimitRequestBody direc-
tive, preventing abuse
(performance), 259
LimitRequestFields direc-
tive, preventing abuse
(performance), 259
LimitRequestFieldSize
directive, preventing abuse
(performance), 259
LimitRequestLine directive,
preventing abuse (perfor-
mance), 259
LimitXMLRequestBody
directive
abuse, preventing (perfor-
mance), 259
advanced DAV configura-
tions, 208

How can we make this index more useful? Email us at indexes@samspublishing.com

|438 links

links
New Apache Installation,
164
Start Apache, 66
Linux
binaries, installing, 95
file descriptors, operating
systems (scalability),
251
server processes, operating
systems (scalability),
250
Linuxconf (GUI tool), 168
Listen directive
configuration files, 62
HTTP requests (Prefork
MPMs), 177
IP aliases, 219
Perchild MPM, 182
static content, 71
Windows MPM, 183
Worker MPM, 180
ListenBacklog directive,
180-183
listening addresses (Listen
directive), 62
listings, directories, 80-83
lists
mailing lists, support
resource, 406
user lists, Require direc-
tive, 110
In command, symbolic links
(symlink), 251
load balancing,
mod_rewrite directive,
381-382
loadable modules, 55, 258

loading
modules, 295
Perl modules (mod_perl
module), 330-331
LoadModule directive
mod_proxy, enabling, 235
modules, loading, 297
PHP installations
(Windows), 306
SSL configurations, 274
loads, distributing (perfor-
mance), 257
local names, domains (proxy
servers), 237
local7, syslog daemon (log-
ging errors), 133
locating
APXS (APache
eXtenSion) tool, 297
error log files, 132
<Location>
block, content, accessing,
135
directive container, 58
container, 243
<LocationMatch>, directive
container, 58
Location directive, 330
locations
Apache installations, 41
CGI scripts, 55
dynamic loadable mod-
ules, 55
files, defaults, 53-54
LOCK, HTTP method
(DAY protocol), 206
lock databases
DAV, configuring, 206
error messages, mod_dav
installations, 213
paths, 206

lock timeouts settings, 208
LockFile directive
children, process locking
(Prefork MPMs), 178
Perchild MPM, 182
Worker MPM, 180
locking, process locking
(Prefork MPMs), 178
log directives, status codes,
132
log files, 54
access log, 63
Apache, starting, 67
directory, Webmin, 157
error log, 63
mod_rewrite module, 136
paths, logname, 139
pid file, 64
scoreboard file, 64
log formats, 126-128
LogFormat directive,
arguments, 128
logging
cluster logging, HTTP
requests, 130
conditional logging,
131-132
to databases, 138
directives, SSL configura-
tions, 277
errors, 132-134
formatting directives
(HTTP requests),
126-128
HTTP requests, 125-132
images, 132
modules, 294
parameters (formatting
directives), 128
requests, 34, 228

memory 439 |

logical constructs, 374

LogLevel directive, 133-134

logname, paths (log files),
139

logresolve utility, hostnames
(resolving), 137

logresolve.exe utility, host-
names (resolving), 137

logs, 136-139

Logs node, Comanche serv-
er, 166

Logscan, programs, moni-
toring error logs, 139

LogStderr argument
(ExtFilterOptions
directive), 198

Logtools, log manipulation
tools, 138

log_status Perl script, mod-
ules, configuring, 136

looping, conditional looping,
131-132

M

Mac OS X, PHP, 304

Mac OS/2, PHP, 304

machine names, DNS
(Domain Name System), 9

Macromedia Flash,
mod_deflate limitation,
193

MAC:s (message authentica-
tion codes), SSL protocols,
267

mail list archiving, modules,
400

mailing lists, support
resource, 406

main/ (PHP directory), 309
make program, 42
Makefiles, compiling PHP
(Unix), 310
makefiles, configure script,
41
malformed headers, trou-
bleshooting (CGI), 102
man directory, 55
management, user manage-
ment
database file-based access
control authentication,
113-114
digest-based authentica-
tion, 115
file-based authentication,
112
managing
bandwidth, modules, 401
certificates (secure
servers), 271, 273-274
dynamic content, modules,
292-293
files, servers (DAV
clients), 205
headers, 147
logs, 136-139
URLSs, modules, 290
Webmin, 158
manual directory, 55
Many to one mapping, DNS
(domain name server),
virtual hosting, 218
mapping
DNS (domain name serv-
er), virtual hosting, 218
files, memory (perfor-
mance), 256

mod_rewrite directive,
372-373
resources, static content,
76
maps, type maps (content
negotiation), 151
mass virtual hosting, 224
MaxClients directive
children, limiting (Prefork
MPMs), 176
processes, controlling
(Worker MPMs), 180
Worker MPM, 180
MaxRequestsPerChild
directive
Perchild MPM, 182
requests, limiting (Prefork
MPMs), 177
Windows MPM, 183
Worker MPM, 180
MaxSpareServers directive,
processes (Prefork
MPMs), 176
MaxSpareThreads directive,
threads, 180-181
MaxThreadsPerChild direc-
tive, 180-181
MDS, digest algorithms, 266
media types, MIME types,
78
memory
advantages, CGI, 90
caching backend, 240
files, mapping (perfor-
mance), 256
shared memory, session
support (PHP exten-
sions), 315
stability, IIS (Internet
Information Server)
migration, 391

How can we make this index more useful? Email us at indexes@samspublishing.com

| 440 merging

merging
logs, 138
rules, configuration files,
61-62
message, integrity (SSL
protocols), 266
message authentication
codes (MACs), integrity,
267
message digests, digest
algorithms, 266
messages, 73-75. See also
error messages
meta information, DAV
respositories, 208
metadata
accessing, resources (DAV
clients), 205
Webapp, 355
methods
access, combining, 119
doGet() method, 361
HTTP
access (limiting),
119-120
DAY, 205-207
Microsoft, DAV clients,
209-211
Microsoft FrontPage, 214
Microsoft Office, modifying
files (DAV Microsoft
clients), 211
Microsoft SQL Server, Java,
IIS (Internet Information
Server) migration, 393
Microsoft Visual Studio, 366
Migard Web site, 315

migrating, 396
Apache 1.3, 387-390
IIS (Internet Information
Server), 390-395
MIME (Multipurpose
Internet Mail Extensions)
client negotiation, 150
componenets, 78
defining, 78-79
extensions, 79
ForceType directive, 79
MimeMagicFile directive,
79
mod_mime magic module,
79
static content, 78
MIME-type checking,
requests (hooks), 33
mime.types, configuration
files, 62
MimeMagicFile directive,
MIME type, 79
Ming library, Flash (PHP
extensions), 313
MinSpareServers
directive, processes
(Prefork MPM), 176
threads (Perchild MPMs),
181
MinSpareThreads directive,
threads (Worker MPMs),
180
MKCOL, HTTP method
(DAY protocol), 206
mm library, shared memory
(PHP extensions), 315
MMapFile directive,
mapping files (memory),
256
mod_access module, access
control, 116-117, 291

mod_actions module, 93,
293
modalias
directive, 373
module, 290-292
mod_auth_anon module
access control, 292
authentication module,
116
mod_auth_dbm module
access control, 292
database file-based access
control authentication,
113-114
sample configuration, 114
mod_auth_digest module
access control, 292
digest-based authentica-
tion, 114-115
sample configuration, 115
mod_auth module
access control, 291
file-based authentication,
111-112
sample configuration, 112
mod_autoindex module
directories, handling, 291
directory indexing, 81
directory listings, dis-
abling, 82
mod_bwshare module,
abuse (performance), 259
mod_cache module, 257,
295
mod_case_filter_in module,
sample module, 296
mod_case_filter module,
199, 296
mod_cern_meta modules,
HTTP header manage-
ment, 292

mod_proxy 441 |

mod_cgi module
CGI scripts, executing, 91
dynamic content manage-
ment, 293
mod_cgid module
CGI scripts, executing, 91
dynamic content manage-
ment, 293
mod_charset_lite module,
199, 290
mod_dav_fs module, DAV,
296
mod_dav installations, error
messages, 213
mod_dav module, DAYV, 206,
296
mod_deflate module
configuring, 192
content, compressing
(filtering), 191-193
directives, 192
filter (compressing con-
tent), 297
limitations, 192-193
reduced transmitted data
(performance), 257
mod_dir module
directories, handling, 291
trailing slashes (/), directo-
ry listings, 83
mod_disk_cache module,
caching module, 295
mod_env module, environ-
ment variable (managing),
289
mod_example module, sam-
ple module, 296
mod_example.so shared
object, modules (loading),
297

mod_expires modules,
HTTP header manage-
ment, 292
mod_ext_filter module
debugging, 198
dynamic content manage-
ment, 293
external filtering, 196
mod_file_cache module,
295-296
mod_ftp module, 29
mod_headers module,
HTTP header manage-
ment, 292
mod_imap module, image
maps, 296
mod_include module
dynamic content manage-
ment, 293
international error mes-
sages, 75
page component system,
335
SSI (Server Side
Includes), 194
mod_info module, servers
(monitoring), 294
mod_isapi module, dynamic
content management, 293
mod_jk module
building, 365-366
configuring, 353
directives, 364
mod_log_config module,
logging, 294
mod_log_usertrack module,
logging, 294
mod_mem_cache module,
caching module, 295
mod_mime_magic module,
MIME type (content type),
79, 290

mod_mime module, MIME
type (content type), 289
mod_negotiation module,
content type, 290
mod_perl module, 323
access, 339-342
APIs, 324-327
APR (Apache Portable
Runtime), 326
authentication, 339-342
authorization, 339-342
AxKit, 327
building, 328-329
CGI, 100, 327, 331-334
configurations, 329
content handler modules,
29
filtering, 199
handlers, 324-326
HTML::Mason, 326
installing, 328-329
MPMs (multi-processing
modules), 326
page components, 334,
337-339
performance, 258,
342-343
Perl modules loading,
330-331
templating, 334, 337-339
mod_pop3, modules, 29
mod_proxy
directive, reverse proxy,
381
enabling, 235
mod_proxy_connect mod-
ule, proxy servers, 294
mod_proxy_ftp module,
proxy servers, 295
mod_proxy_http module,
proxy servers, 295
module, proxy servers,
294

How can we make this index more useful? Email us at indexes@samspublishing.com

| 442 mod_rewrite directive

mod_rewrite directive
authorization, 378-381
dynamic content, 377
dynamic proxying,
381-382
flexible proxying, 381
load balancing, 381-382
mapping, 372-373
randomizers, 377
redirection, 372-377
URI resolution, 374
virtual hosting, 382-384
mod_rewrite module, URL
management, 290
mod_setenvif module, envi-
ronment variable (manag-
ing), 289
mod_snake module (filter-
ing), 199
mod_so module, loading
modules, 295
mod_speling module, 75,
291
mod_ssl module, SSL
configurations, 274
installing, 269-271
protocols, 296
mod_status module
network setting (scalabili-
ty), 253
servers, monitoring, 294
mod_suexec module
dynamic content manage-

ment, 293
security, virtual hosting,
227

mod_unique_id module,
environment variable
(managing), 289

mod_userdir module, URL
management, 290

mod_usertrack, filtering
module (URL rewriting),
199
mod_vhost alias module,
224, 291
mode argument
(ExtFilterDefine directive),
197
Model-View-Controller
(MVC) framework, Struts
project, 404
modes, safe mode (PHP
extensions), 311
modifying
configuration files, 65
files, Microsoft Office
(DAV Microsoft clients),
211
httpd.conf file, 62
ModPerl::Registry module,
332
Module management node,
Comanche servers, 166
modules, 18, 399
access control, 291-292
access modules, Apache
organization, 30
Apache 1.3 migration,
388-390
Apache API, 19
Apache compiles, 41
Apache::ASP, 335
Apache::DBIPool, 343
Apache::PerlRun (CGI
security), 334
Apache::Registry, 331
Apache:: TIPool, 343
authentication, 30,
108-116
authorization modules,
Apache organization, 30

caching, 295

commercial, 402-403

compiling, 285, 297

configuring (monitoring),
135

connector modules,
Apache organization, 29

content handlers, Apache
organization, 29

content type, 289

databases, HTTP requests
(logging), 130

DAV (Document
Authoring and
Versioning), 296

directories, handling, 291

directory listings, 83

disabling, 288

dynamic content, manag-
ing, 292-293

dynamic loadable
modules, locations, 55

enabling, 288

environment variables,
managing, 289

filtering, 198

handling, 291

hooks, 28

HTML::Embperl, page
component and templat-
ing systems, 338

HTML::Mason, page
component and templat-
ing systems, 338

HTML::Template, page
component and templat-
ing systems, 338

HTTP headers, managing,
292

information, configuration
files, 136

modules 443 |

installing, 269-271, 274,
296-297

loadable modules, 55, 258

loading, 295

logging, 294

mod_access module,
116-117, 291

mod_actions module, 93,
293

mod_alias, URL manage-
ment, 290

mod_asis, HTTP header
management, 292

mod_auth, 111-112, 291

mod_auth_anon, 116, 292

mod_auth_dbm, 113-114,
292

mod_auth_digest,
114-115, 292

mod_auth_ldap module
(LDAP), 400

mod_autoindex module,
81-82

mod_backhand, proxy
servers, 245

mod_bakery (encrypted
cookies), 402

mod_bwshare module,
259, 401

mod_cache, 240, 257, 295

mod_case_filter, sample
module, 296

mod_case_filter_in,
sample module, 296

mod_cern_meta, HTTP
header management, 292

mod_cgi module, CGI
scripts, 91, 293

mod_cgid module, 91, 293

mod_charset_lite, charac-
ter sets (content type),
290
mod_covalent_auth (back-
end authorization), 403
mod_cplusplus (extending
Apache), 401
mod_dav (DAV), 206, 296
mod_dav_fs (DAV), 296
mod_deflate module,
191-193, 257, 297
mod_disk_cache, caching
module, 295
mod_env, environment
variable (managing), 289
mod_example, sample
module, 296
mod_expires, HTTP head-
er management, 292
mod_ext_filter module,
196-198, 293
mod_file_cache, 256, 295
mod_fsc (security), 402
mod_ftp (FTP), 403
mod_ftp, 29
mod_headers, 147, 292
mod_imap, image maps,
296
mod_include module, 194,
293, 335
mod_info, 134-135
mod_isapi, dynamic con-
tent management, 293
mod_jk module, 353,
364-366
mod_log_config, logging,
294
mod_log_spread, cluster
logging, 130

mod_log_usertrack,
logging, 294
mod_mbox (mail list
archiving), 400
mod_mem_cache, caching
module, 295
mod_mime, MIME type
(content type), 289
mod_mime_magic, MIME
type (content type), 79,
290
mod_mya (sharing authen-
tication), 402
mod_negotiation, content
type, 290
mod_perl module, 258,
323
access, 339-342
APIs, 324-327
authentication, 339-342
authorization, 339-342
AxKit, 327
building, 328-329
CGl, 100, 331-334
handlers, 324-326
HTML::Mason, 326
installing, 328-329
page components, 326,
334, 337-339
performance, 342-343
Perl modules (loading),
330-331
templating, 334,
337-339
mod_pop3, 29, 400
mod_proxy, 243, 294
mod_proxy_connect,
proxy servers, 294
mod_proxy_ftp, proxy
servers, 295

How can we make this index more useful? Email us at indexes@samspublishing.com

| 444 modules

mod_proxy_http, proxy
servers, 295

mod_rewrite, 136, 290

mod_setenvif, environ-
ment variable (manag-
ing), 289

mod_snake (extending
Apache), 401

mod_snmp (SNMP), 403

mod_so, loading modules,
295

mod_speling, 75, 291

mod_status, 135

mod_suexec, dynamic
content management,
293

mod_unique_id, environ-
ment variable (manag-
ing), 289

mod_userdir, URL man-
agement, 290

mod_v2h (virtual hosting),
402

mod_vhost_alias, URL
management, 291

mod_xslt (XML stylesheet
processing), 402

ModPerl::Registry, 332

monitoring, 253, 294

mpm_winnt, Windows
MPM, 182

protocol modules, Apache
organization, 25

proxy modules, filter
chains, 190

proxy servers, 234, 245,
294

respository, 408

samples, 296

schemas, directives, 57

server identification, 75
servers, monitoring, 293
SNMP (Simple Network
Management Protocol),
403
status code (hooks), 28
suexec module, virtual
hosting security, 227
Tcl (extending Apache),
401
URL management, 290
modules directory, 55
modules/ (PHP directory),
309
mod_auth_ldap module
(LDAP), 400
mod_backhand module,
proxy servers, 245
mod_bakery module
(encrypted cookies), 402
mod_bwshare module
(bandwidth management),
401
mod_cache module,
caching, 240
mod_covalent_auth module
(backend authorization),
403
mod_cplusplus module
(extending Apache), 401
mod_fsc module (security),
402
mod_ftp module (FTP), 403
mod_headers module, 147
mod_info module, 134-135
mod_log_spread module,
cluster logging, 130
mod_mbox module (mail
list archiving), 400
mod_mod module, back-
ends, 240

mod_mya module (sharing
authentication), 402
mod_pop3 module (POP3),
400
mod_proxy module, reverse
proxy configurations, 243
mod_rewrite module, log
file, 136
mod_snake module (extend-
ing Apache), 401
mod_snmp module (SNMP),
403
mod_status module, 135
mod_v2h module (virtual
hosting), 402
mod_xslt module (XML
stylesheet processing), 402
monitoring, 134-136
error logs, 139
modules (configuring),
135
servers, modules, 293
MOVE, HTTP method
(DAV protocol), 206
Motzilla, proxy support
(adding), 238
mpm_winnt module,
Windows MPM, 182
MPMs (Multi-Processing
Modules)
Apache organization,
25-27
architecture, 173
BeOS, 27, 184
choosing, 183-184
compatibility, 27
configuration files, pro-
cessing, 59
configuration limits, 184
hybrid servers, 27

notice, LogLevel directive option 445 |

mod_cgi, 91
mod_cgid, 91
mod_perl module, 326,
343
NetWare, 184
08/2, 27, 184
per-child, 27
Perchild MPM, 180-182
prefork, 25
Prefork MPM, 174-179
process-based servers, 25
relating, platforms
(compiling option), 42
requests, 173-174
selecting, 27, 184
server processes, operating
systems (scalability),
250
threaded servers, 27
‘Windows MPM, 182
Worker MPM, 179-180
Multi-Processing Modules.
See MPMs
multi-protocols, Apache
organization, 28-29
multiplatform advantages,
Apache, 19
multiple instances, running,
229
Multipurpose Internet Mail
Extensions. See MIME
multiviews, server configu-
ration (content negotia-
tion), 150
MultiviewsMatch directive
(content negotiation), 151
Mutual-Failure argument,
Order directive, 118
My Computer icon, 351

MySQL, Java, IIS (Internet
Information Server)
migration, 393

MySQL databases

authentication, sharing
(modules), 402
PHP extensions, 313

N

name-based virtual hosting,
222-224
names
defining, files (logging),
128
domain names
access control rules,
117
DNS (Domain Name
System), 9
ServerName Directive,
72
proxy servers, 237
machine names, DNS
(Domain Name
System), 9
server names, static con-
tent, 71
NameVirtualHost directive,
222
naming
Apache version, 38
error log files, 132
NCSA
HTTP, CGI protocols, 88
Web servers, history, 15
.NET Framework, IIS
(Internet Information
Server), 390

Netegrity, reverse proxy,
245

Netscape, mod_deflate limi-
tation, 193

NetWare, MPMs, 184

network binding, 218

network interfaces, 218-221

network-related directives,
Prefork MPM configura-
tions, 177

network/mask pair, control
access rules, 116

networks, settings

performance, 258
scalability, 253

New Apache Installation
link, 164

news Web sites, Apache
resource, 407

newsgroups, support
resource, 407

NIS (Network Information
Services), user mange-
ment, 109

no-gzip (environment
variable), 147

nodes, 166

nokeepalive (environment
variable), 147

NoLogStderr argument
(ExtFilterOptions direc-
tive), 198

Non Parse Headers (NPH)
scripts, security, 94

NoProxy directive, forward
proxy hierarchies, 237

notes, compression ratios,
192

notice, LogLevel directive
option, 134

How can we make this index more useful? Email us at indexes@samspublishing.com

|446 NPH (Non Parse Headers)

NPH (Non Parse Headers)
scripts, configurations, 94

nslookup command, DNS
(Domain Name System), 9

Nuke Web site, 315

numbers, port numbers
(TCP/1P), 8

NumServers directive,
processes (Perchild
MPMs), 181

(0

Off value, ProxyVia
directive, 238
On value, ProxyVia
directive, 238
One to many mapping, DNS
(domain name server), 218
One to one mapping, DNS
(domain name server), 218
Open command (File
menu), 209
open source
advantages, Apache, 17
disadvantages, Apache, 20
PHP benefit, 303
Open Source Spread
library, 130
OpenSSL
PHP extensions, 311
Web site, 270
openssl command-line tool
(certificates), 271
OpenSSL library, installing,
270
openssl.exe utility, OpenSSL
library, 270

operating systems (OS)
MPMs, choosing, 183
proccesses, controlling
(Prefork MPMs), 175
scalability, 250-251
‘Webmin, 157
Option +Include directive,
SSI parsing, 194
Option as Web Folder
option, 209
Option directive, parame-
ters, 252
optional ports, ServerName
directive, 72
options
apache.exe, server binary
(Windows), 64
APXS (APache
eXtenSion) tool, 297
compiling (Apache instal-
lations), 42-43
Options, directive value, 61
options
httpd, server binary
(Unix), 64
Option as Web Folder, 209
Options +Multiview direc-
tive (content negotiation),
150
Options —Indexes directive,
directory listings, 82
Options directive, 225, 277
Order directives, 117-118
organization, 24
access modules, 30
Apache, 31-32
authentication modules, 30
authorization modules, 30
connector modules, 29

content handler modules,
29
filters, 30
hooks, 28
MPMs (Multi-Processing
Modules), 25-27
multi-protocols, 28-29
protocol modules, 25
OS (operating systems)
MPMs, choosing, 183
proccesses, controlling
(Prefork MPMs), 175
scalability, 250-251
Webmin, 157
0S/2 MPM (Multi-
Processing Module), 27,
184
output chains, filter chains,
190
output manipulation, admin
options (PHP configura-
tions), 316
outtype argument
(ExtFilterDefine directive),
197
override, schemas, direc-
tives, 57

P

P flags, 381

packets, IP protocol pack-
ets, 8

padlock icon, 268

page components, mod_perl
module, 334, 337-339

pages, SSI pages (environ-
ment variables), 144

PerlinitHandler (mod_perl module) 447 |

parameters
CacheDisable directive,
241
CacheEnable directive,
241
configuration files, 62
logging (formatting direc-
tives), 128
Options directive, 252
workers.properties, 354
parents, Prefork MPMs, 174
parsers, XML, 405
parsing, SSI
Option +Include directive,
194
.shtml extensions, 194
XBitHack directive, 195
XBitHack on directive,
195
pass phrases, key pairs
(certificates), 273
PassEnv directive, environ-
ment variables, 144
password files, storing (file-
based authentication), 112
passwords
basic authentication, 108
client authentication, 109
digest authentication, 108
encrypting, user manage-
ment (file-based authen-
tication), 112
‘Webmin, 158
PATH_INFO (environment
variable), 145
PATH_TRANSLATED
(environment variable),
145

paths
apachectl script, 158
lock databases (DAV con-
figurations), 206
log files, logname, 139
Perl, Webmin, 157
PHP (PHP extensions),
311
pattern-matching directives,
374
PCRE (Perl Compatible
Regular Expression), 375
PDF support (PHP exten-
sions), 313
pdflib library, PDF support
(PHP extensions), 313
pdlogd, logs (databases),
138
PEAR installations (PHP
extensions), 311
pear/ (PHP directory), 309
per-directory configuration
files, 60-61, 252
percent signs (%), 126
Perchild MPM, 27, 180-182
performance
abuse, preventing, 258
advantages, Apache, 19
Apache 1.3 migration, 388
caching, 257
CGI, enhancing, 100
directives, SSL configura-
tions, 276
disadvantages, 21, 90
loadable modules, 258
loads, distributing, 257
memory, 256
mod_perl module, 258,
342-343

network settings, 258
reduced transmitted data,
257
reverse proxy, 242
virtual hosting, 227
Web sites, tools, 253
Perl
build environment, 96
Cdl, 89, 96
environment variables, 98
installations, 95-96
interpreters, 99-100
modules, loading
(mod_perl module),
330-331
paths, Webmin, 157
scripts, testing (Windows
configurations), 99
threading, 326
Webmin, 156
Web site, 258
Windows configurations,
97, 99
perl —-v command, Perl
interpreter, checking, 95
Perl Compatible Regular
Expression (PCRE), 375
PerlAccessHandler
(mod_perl module), 325
PerlAuthenHandler
(mod_perl module), 325
PerlAuthzHandler
(mod_perl module), 325
PerlChildInitHanlder
(mod_perl module), 324
PerlFixupHandler
(mod_perl module), 325
PerlInitHandler (mod_perl
module), 325

How can we make this index more useful? Email us at indexes@samspublishing.com

| 448 PerlinputFilterHandler (mod_perl module)

PerlInputFilterHandler
(mod_perl module), 325
PerlInterpMax directive,
343
PerlInterpMaxRequests
directive, 343
PerlInterpMaxSpare direc-
tive, 343
PerlInterpMinSpare direc-
tive, 343
PerlInterpScope directive,
343
PerlInterpStart directive,
343
PerlLogHandler (mod_perl
module), 325
PerlOpenLogsHandler
(mod_perl module), 324
PerlOptions directive, 326
PerlOutputFilterHandler
(mod_perl module), 325
PerlPostConfigHandler
(mod_perl module), 324
PerlPreConnectionHandler
(mod_perl module), 324
PerlProcessConnectionHan
dler (mod_perl module),
325
PerlResponseHanlder
(mod_perl module), 325
PerlTransHandler
(mod_perl module), 325
PerlTypeHandler (mod_perl
module), 325
permanent label, Redirect
directive, 77
permissions, CGI, 101-102
Phorum Web site, 315

PHP
architecture, 302
benefits, 303-305
compiling, source code
installations (Unix),
309-311
configurations, 31-318
content handler modules,
29
directories, 308-309
downloading, source code
installations (Unix),
308-309
extensions, 301, 311-315
history, 302
IIS (Internet Information
Server) migration devel-
opment (Help), 393
installations, 306-311
language, admin options
(PHP configurations),
316
learning, 303
limitations, 305-306
page component system,
335
paths (PHP extensions),
311
templating system, 335
Web site, 306-308
PHP 4, 302
.php (PHP extension), 301
php.ini file, PHP configura-
tions, 315
PHPConfig utility, PHP
installations (Windows),
306
pid files
log files, 64
process IDs, recording
(Prefork MPMs), 178

PidFile directive, 229
process IDs, recording,
178
Worker MPM, 180
PidFile directive, 182-183
plaintext, message (encryp-
tion), 265
platforms
Apache, 19
MPMs, relating (compil-
ing option), 42
PHP benefit, 304
Web servers, Windows
(publishing protocols),
204
Windows installer, 48
plug-ins, protocols (imple-
menting), 400
pooling, LDAP, 400
POP3, module, 400
port 80 virtual hosting,
mod_rewrite directive, 383
port numbers, TCP/IP
(Transfer Control
Protocol/Internet
Protocol), 8
port values (Listen direc-
tive), 62
portability, advantages
(CGI), 89
ports
bind to port, troubleshoot-
ing, 68
ServerName directive, 72
static content, 71
TCP ports, virtual hosting,
225

protocols 449 |

PostgreSQL
database, logs, storing,
138
Java, IIS (Internet
Information Server)
migration, 393
pound signs (#), 56
Prefork, process model
(Apache 1.3), 388
Prefork MPM (Multi-
Processing Modules), 25
children, 174-175
configuring, 175
coordinating, 177-179
controlling, 175, 177
tracking, 177-178
parents, 174
processes, 174
premature end of headers,
troubleshooting (CGI), 102
presentation, disadvantages,
CGI, 91
PreservesContentLength
argument, 197
preventing abuse, 258-259
printenv script (syntax), 333
privileged ports, static con-
tent, 72
proc pthread, arguments
(AcceptMutex directive),
178
procceses, requsts, MPMs,
174
process, Killing (Prefork
MPMs), 179
process IDs, recording
(Prefork MPMs), 178
process locking, children
(Prefork MPMs), 178

process-based servers
children, 25
configurations, 18
context switching, 25
forking, 25
MPMs (Multi-Processing
Modules), 25
Prefork MPM, 174
processes
assigned from requests,
Perchild MPM configu-
rations, 181-182
controlling, 175-177, 181
external processes, operat-
ing systems (scalability),
251
killing, Prefork MPMs,
175
Prefork MPMs, 174
server processes, operating
systems (scalability),
250
tracking, Prefork MPM
configurations, 178
Windows MPM, 182
Worker MPM, 179-180
processing
Action directives, 93
CGI processing, associat-
ing (file extensions), 92
configuration files, MPMs,
59
directives, 59
per-directory configuration
files, 60
requests, 33
Script directive, 93
XML stylesheets (mod-
ules), 402
program permissions, trou-
bleshooting (CGI), 102

programmers (Web), tasks,
204
programming, APR
(Apache Portable
Runtime), 31
programs
auth-check program (syn-
tax), 380
command-line, databases
(logging HTTP
requests), 130
errors, logging, 133
external programs, 379
HTTP requests, logging,
129-130
rotating (Unix), 137
projects
ASF (Apache Software
Foundation), 404-406
DAV, 212-213
Properties, Certificates
command (File menu), 268
PropertiesDump servlet
(syntax), 357-361
PROPFIND, HTTP method
(DAV protocol), 206
PROPPATCH, HTTP
method (DAV protocol),
206
proprietary protocols
Microsoft FrontPage,
DAV, 214
Web hosting, publishing
protocols, 205
protocols
AJP (Apache JServ proto-
col), 349
CGI (Common Gateway
Interface), 24, 88

How can we make this index more useful? Email us at indexes@samspublishing.com

| 450 protocols

DAV, 205, 214
FTP protocols, Web host-
ing (publishing proto-
cols), 204
implementing (plug-ins),
400
Internet, 7-11
modules, Apache organi-
zation, 25
multi-protocols, Apache
organzation, 28-29
proprietary protocols, Web
hosting (publishing
protocols), 205
publishing protocols,
203-205
separating, Web hosting,
204
spread protocol, logs
(transmitting), 130
SSL, 265-269
‘Windows, 204
proxies
chained proxies, requests,
237
dynamic proxying, mod
rewrite directive,
381-382
flexible proxying, mod
rewrite directive, 381
mod_deflate limitation,
193
reverse proxy, 381, 394
Vary: header (content
negotiation), 152
<Proxy pattern>, forward
proxy access, 236
<ProxyMatch pattern>,
forward proxy access, 236

proxy hierarchies, forward
proxy configurations,
236-238
proxy modules, filter chains,
190
proxy servers, 233
Apache, building (source),
234
architecture, 234
binary installations, 235
caching, 240-242
connections, 237
DAV protocols, 205
domains, local names, 237
forward proxy, 235-239
modules, 294
requests, configuring, 237
reverse proxy, 242-244
Squid, 245
URLs, forwarding, 237
proxy support, enabling,
234
ProxyBlock directive, for-
ward proxy (URL block-
ing), 236
ProxyDomain directive,
forward proxy hierarchies,
237
ProxyErrorOverride direc-
tive, reverse proxy, 244
ProxyMaxForwards direc-
tive, forward proxy hierar-
chies, 237
ProxyPass directive, reverse
proxy (URLs), 243
ProxyPassReverse directive,
reverse proxy (URLs), 244
ProxyPreserveHost direc-
tive, reverse proxy, 244

ProxyReceiveBufferSize
directive, tuning (forward
proxy configurations), 238

ProxyRemote directive,
forward proxy hierarchies,
237

ProxyRequests directive,
forward proxy functionali-
ty (enabling), 235

ProxyTimeout directive,
tuning (forward proxy
configurations), 238

ProxyVia directive, forward
proxy hierarchies, 237

public key cryptography,
confidentiality (SSL proto-
cols), 265

publishing protocols,
203-205

Python, 401

Q-R

Q Public License (QPL),
Zend scripting engine, 302

qt library, DOM, XML sup-
port (PHP extensions), 314

QUERY_STRING (environ-
ment variable), 145

RAM disks, scoreboard files
(scalability), 252

rand switch, key pairs (cer-
tificates), 272

randomizers, mod_rewrite
directive, 377

Rasmus Lerdorf, 302

restricting access 451 |

ratios, compression ratios
(notes), 192

RC2, symmetric cryptogra-
phy, 265

RC4, symmetric cryptogra-
phy, 265

read-only access, DAYV, 207

realms, authentication
(AuthName directive), 110

recording

events, error log, 63
process IDs, pid files
(Prefork MPMs), 178

Red Hat, 49, 407

Redirect directive, 77, 372

redirect-carefully (environ-
ment variable), 147

redirection, mod_rewrite
directive, 372-377

RedirectMatch directive,
373

redirects, DAV Microsoft
clients (error messages),
214

reducing transmitted data
(performance), 257

reference documentation
(directives), 56

regex/ (PHP directory), 309

registering hooks (modules),
28

regular expressions, 374

relative paths, lock databas-
es (DAV configurations),
206

remote access, Web servers
(Windows), 204

REMOTE_ADDR (environ-
ment variable), 145

remote configurations, 156
REMOTE_HOST
(environment variable),
145
REMOTE_IDENT
(environment variable),
145
REMOTE_USER
(environment variable),
145
RemoveCharset directive,
character sets, 149
RemoveEncoding directive,
content encoding, 149
RemoveHandler directive,
content handlers, 80
repositories, DAV (meta
information), 208
request headers,
name-based virtual host-
ing (syntax), 222
request logs, creating, 125
REQUEST_METHOD
(environment variable),
145
RequestHeader directive,
headers (managing), 147
requests. See also HTTP,
requests
assigning to processes,
Perchild MPM configu-
rations, 181-182
chained proxies, 237
client requests, tracking
(access log), 63
hooks, 33
life cycle, Apache, 32-34
logging (virtual hosting),
228

MPMs, 173-174
process-based servers,
Prefork MPMs, 174
processing, 33
proxy servers, configuring,
237
reverse proxy, 242
SSL, tunneling (forward
proxy), 236
XML body requests, size,
208
Require directive, 381
authentication modules,
110
authorization, 378
resolutions, URI, 374-375
resolving hostnames (man-
aging logs), 137
resource, ApacheCon
(Apache Software
Foundation conference),
407
resources, 408
commercial support, 407
metadata, accessing (DAV
clients), 205
modules, 407
news Web sites, 407
static content, 76
support, 406
responses
302 Moved Temporarily,
373
CGl, 89
restricted access, users
(creating), 163
restricting access
authentication modules,
107-116
client authentication,
108-109

How can we make this index more useful? Email us at indexes@samspublishing.com

| 452 restricting access

control, 116-118
DAV, 207
rests/ (PHP directory), 309
reverse DNS lookup, 72, 131
reverse proxy
benefits, 242
configurations, 243-244
IIS (Internet Information
Server) migration devel-
opment (Help), 394
mod_proxy, 381
Netegrity, 245
performance, 242
ProxyErrorOverride
directive, 244
ProxyPreserveHost
directive, 244
RewriteRule, 381
security, 242
SSL configurations, 278
unified front end, 243
URLs, specifying,
243-244
RewriteCond directive, 376
RewriteEngine directive,
376
RewriteMap directive,
376-377
RewriteRule directive,
375-376, 381
RLimitCPU directive, exter-
nal processes, operating
systems (scalability), 251
RLimitMem directive,
external processes, operat-
ing systems (scalability),
251
RLimitNProc directive,
external processes, operat-
ing systems (scalability),
251

rnd function, 377
robots, abuse (preventing),
259
robots.txt file, Web spiders
(preventing abuse), 259
roots, server roots, 158
rotatelogs program, 129,
137
rotating logs, 137-138
rotating components, 378
routing IP aliases, 220
RPM, downloaded software
(verifying), 48
rpm —q webmin command,
Webmin installations, 157
rpm command-line, Linux
(installing binaries), 96
RSA, public key cryptogra-
phy, 266
rules, merging (configura-
tion files), 61-62
running
Apache 1.3 and Apache
2.0, 390
Jakarta Ant (Unix), 365
multiple instances, 229
Tomcat, 349-353
Web servers, Unix, 177

S

Sablotron, XML support
(PHP extensions), 314
Safe Mode, PHP benefit,

304, 311
sample modules, 296
SAPI (Server API), PHP
architecture, 303

sapi/ (PHP directory), 309

Satisfy all directive, access
methods (combining), 119

Satisfy any directive, access
methods (combining), 119

Satisfy directive, access
methods (combining), 119

scalability, 18, 249-253

ScanErrLog, programs
(monitoring error logs),
139

schemas, directives, 56

schemes, URL (Uniform
Resource Locator), 11

scoreboard files, 64, 178,
182, 252

ScoreBoardFile directive,
178-180, 252

screens, configuration
screens, 159

Script directive, CGI con-
tent, 93

SCRIPT NAME (environ-
ment variable), 145

ScriptAlias directive, 92,
225

scripting languages, Web
servers, 24

ScriptLog directive, CGI
executions (debugging), 94

ScriptLogBuffer directive,
CGI executions (debug-
ging), 94

ScriptLogLength directive,
CGI executions (debug-
ging), 94

scripts

apachectl, 59
apxs, Apache building
information, 297

ServerRoot directive, configuration files

453 |

binary, 54
CGI scripts, 55, 91, 144,
307
configure scripts, 41, 45
configuring, 136
control, commands, 66
--enable-module, modules
(enabling), 288
enabling, 286
installing, 270
Non Parse Headers (NPH),
configurations, 94
Perl, 96, 99
printenv script (syntax),
333
source code installations,
309
splitting, 138
support, 54
scripts/ (PHP directory),
309
ScriptSock directive,
mod_cgid module, 91
sections. See containers
secure HTTP, 264
secure servers
certificates, managing,
271-274
communications, 263
SSL
configuring, 274-278
protocols, 264-269,
278
Secure Sockets Layer.
See SSL
security
access control, 119
admin options (PHP con-
figurations), 317
advantages, Apache, 18

Apache 2.0, IIS (Internet
Information Server)
migration, 391

basic authentication, 108

CGl, 55, 93, 307, 334

communciations, 264

digest authentication, 108

directories, 179

directory listings, access-
ing, 82

files, 179

forward proxy, 235-236

Group directives (Prefork
MPMs), 177

modules, 402

reverse DNS lookups, 131

reverse proxy, 242

source code, 18

symbolic links (symlinks),
252

threads, choosing MPMs,
183

User directives (Prefork
MPMs), 177

virtual hosting, 227

seeother label, Redirect
directive, 77
self-signed certificates
(managing certificates),
274
semi-static content, caching,
240
semicolons (;), 62
send-as-is, content handler,
80
SendBufferSize directive
network settings (perfor-
mance), 258
Perchild MPM, 182

TCP buffers (Prefork
MPMs), 177
Windows MPM, 183
Worker MPM, 180
sending signals, kill com-
mand, 65
separating tasks (publishing
protocols), 204
Server API (SAPI), PHP
architecture, 303
Server headers, server iden-
tification, 75
SERVER_INTERFACE
(environment variable),
145
SERVER_NAME (environ-
ment variable), 145
SERVER_PORT (environ-
ment variable), 145
SERVER_PROTOCOL
(environment variable),
145
Server Side Includes. See
SSI
SERVER_SOFTWARE
(environment variable),
145
server-info, content handler,
80
ServerAlias directive (syn-
tax), 223
ServerLimit directive,
children, limiting (Prefork
MPMs), 175
ServerName directive, 56,
63, 72-73
ServerPath directive, 226
ServerRoot directive,
configuration files, 60

How can we make this index more useful? Email us at indexes@samspublishing.com

| 454 servers

servers. See also proxy
Servers; secure servers
Apache-based, IBM,
48-49
backend, 242-244
binary, commands, 64
Comanche, 164-166
configuring, 18, 150-152,
237
consolidated, IIS (Internet
Information Server)
migration development,
394
DAY, 207, 211
DNS (Domain Name
System), 9
existing, troubleshooting,
67
files, 53-55, 205
forwarding, 237
frameworks, 29
hybrid servers, 27, 179
identification, 75-76
identity, Prefork MPM
configurations, 177
information, 75-76
IPlanet, 394
LDAP, authentication, 400
loads, distributing (perfor-
mance), 257
local names, 237
monitoring, modules, 293
names, static content, 71
Perchild MPMs, 181
platforms, Windows (pub-
lishing protocols), 204
process-based, 25, 174
processes, operating sys-
tems (scalability), 250

remote access, Windows,
204
roots, 158
running, Unix, 177
starting (SSL configura-
tions), 275
threaded servers, 27, 179
Tomcat, 349-352
virtual servers, specifying
(<VirtualHost> directive
container), 58
Web servers
Apache installations
(Windows), 45
customizing, 73-76
dynamic content, 24
history, 15-17
interpreters, 24
Java, 24
scripting languages, 24
settings (Webmin), 158
ServerSignature footer,
contact information, 76
ServerTokens directive,
server identification, 76
Service icon, 65
service providers, advan-
tages (Apache), 19
services, Apache (installing),
46
servlets
containers, 348
history, 347
PropertiesDump servlet
(syntax), 357-361
session management, PHP
benefit, 304
session support (PHP exten-
sions), 314

session tracking, filters
(Apache organization), 30
SetEnv directive, environ-
ment variables, 144
SetEnvlIf directive, environ-
ment variables (setting
dynamically), 145
SetHandler directive, 80, 92
SetOutputFilter directive,
191, 197
sets, character sets, 149
setting environment vari-
ables, 144-146
settings
configuring, 158, 161-163
containers, configuring
(Webmin), 161
delegated administration,
configuring, 162
group settings, trou-
bleshooting, 68
lock timeouts, 208
network settings, 253, 258
scalability, 251-253
SSI (Server Side Include)
settings, specifying, 196
status settings (scalabili-
ty), 253
virtual hosts, configuring
(Webmin), 160
Web servers, Webmin, 158
SHA, digest algorithms, 266
shared libaries, GB libraries
(PHP extensions), 312
shared memory, session sup-
port (PHP extensions), 315
sharing
authentication, MySQL
databases (modules), 402
filters, 198

SSL 455 |

shell script CGIs, testing, 94
shortcuts, commands
(apache.exe), 65
short_open_tag directive,
PHP language (PHP con-
figurations), 316
.shtml extensions (SSI pars-
ing), 194
Siege, performance tool
(Web site), 256
SIGHUP, signals (sending),
65
signals, sending (kill com-
mand), 65
simplicitiy, advantages
(CGI), 90
sites. See Web sites
size, XML body requests,
208
Slashdot Apache section
Web site, 407
slashes, trailing slashes (/)
Alias directive, 77
directory listings, 82
Slide project, DAYV, 213
SNMP, modules, 403
software
configuring (Apache
installations), 41
downloading software,
integrity (verifying), 48
file mirroring, Web host-
ing (publishing proto-
cols), 205
IIS (Internet Information
Server) migration devel-
opment (Help), 393
software load balancer
(performance), 257

Solaris
binaries, installing, 96
file descriptors, operating
systems (scalability),
251
server processes, operating
systems (scalability),
250
sort utility, external filtering
configurations, 197
source
Apache, 20
building, 234, 241
installing (Unix), 40-43
Perl installations, 96
source code
browsers, troubleshooting
(CGI), 103
building, installation meth-
ods (selecting), 38
checking (CVS), 44
CVS (concurrent version-
ing system), 44
downloading (Apache
installations), 40
installation, PHP, Unix,
308-311
security, 18
uncompressing (Apache
installations), 40
Unix, 40
source hiding, advantages
(CGD), 90
SourceForge Web site, 315,
408
specifying
reverse proxy URLs,
243-244
SSI (Server Side Includes)
settings, 196
virtual servers
(<VirtualHost> directive
container), 58

split-file Perl script, logs
(splitting), 138
splitting logs, 138
spread protocol, logs (trans-
mitting), 130
Squid, 245
SSI (Server Side Includes)
commands, 196
configuring, 194-196
directives (filtering),
195-196
environment variables, 196
filtering, 194-195
international error mes-
sages, 75
mod_include module, 194,
335
mod_rewrite directive, 377
pages, environment vari-
ables, 144
parsing, .shtml extensions,
194-195
settings, specifying, 196
testing, 195
SSIErrorMsg directive, SSI
(Server Side Includes)
configuration directive,
196
SSIErrorMsg "<!-- -->"
directive, SSI (Server Side
Includes), 196
SSIErrorMsg “” directive,
SSI (Server Side Includes),
196
SSL (Secure Sockets Layer),
264
configurations, 274-278
DAV protocols, 205
digital certificates, 268
encryption filter, Apache
organization, 30

How can we make this index more useful? Email us at indexes@samspublishing.com

| 456 SSL

environment variables,
CGl, 89
installing, 269, 271
Internet, 11
protocols, 265-269
requests, tunneling (for-
ward proxy), 236
starting, 275
variables, accessing, 364
ssl-accurate-shutdown
(environment variable),
147
ssl-unclean-shutdown
(environment variable),
147
SSLCACertificateFile direc-
tive, client certificates
(SSL), 276
SSLCACertificatePath
directive, client certificates
(SSL), 276
SSLCARevocationFile
directive, client certificate,
276
SSLCARevocationPath
directive, client certificate,
276
SSLCertificateFile directive,
SSL configurations (cer-
tificates and keys), 275
SSLCertificateKeyfile
directive, SSL configua-
tions (certificates and
keys), 275
SSLCipherSuite command,
algorithms (SSL direc-
tives), 276
SSLeay library, 270

SSLLog directive, logging
(SSL), 277
SSLLogLevel directive,
logging (SSL), 277
SSLMutex directive, perfor-
mance (SSL), 276
SSLOptions directive, SSL
configurations, 277
SSLPassphrase directive,
pass phrases (SSL), 277
SSLProtocol command,
algorithms (SSL direc-
tives), 276
SSLProxyCACertificateFile,
reverse proxy (SSL config-
urations), 278
SSLProxyCACertificate-
Path, reverse proxy (SSL
configurations), 278
SSLProxyMachineCertif-
icateFile, reverse proxy
(SSL configurations), 278
SSLProxyMachineCertif-
icatePath, reverse proxy
(SSL configurations), 278
SSLProxy Verify, reverse
proxy (SSL configura-
tions), 278
SSLProxy VerifyDepth,
reverse proxy (SSL config-
urations), 278
SSLRandomSeed directive,
performance (SSL), 276
SSLRequire directive, con-
trolling access (SSL), 277
SSLRequireSSL directive,
controlling access (SSL),
277
SSLSessionCache directive,
performance (SSL), 276

SSLSessionCacheTimeout
directive, performance
(SSL), 276

SSLVerifyClient directive,
client certificate verifica-
tion, 276

SSLVerifyDepth directive,
client certificate, 276

stability

advantages, Apache, 18

Apache 2.0, IIS (Internet
Information Server)
migration, 391

process-based servers,
children, 25

threaded servers, 27

standardization, Apache 2.0
(I1S), 391

standards compliance,
advantages (Apache), 20

Start Apache link, 66

Start menu commands,
Control Apache, 66

Start Tomcat icon, 352

starting

Apache, 46, 62, 65-67

servers (SSL configura-
tions), 275

Webmin, 158

StartServers directive, 175,
180

StartThreads directive,
threads (Perchild MPMs),
181

startup, 33

static content

content handlers, 80
directory listings, 80-83
icons, bookmarks, 83
IP addresses, 71

syntax 457 |

Listen directive, 71
MIME types, 78
ports, 71
Redirect directive (URL
redirection), 77
resources, 76
server names, 71
ServerName directive,
72-73
Web servers, customizing,
73-76
status, schemas (directives),
57
status code
conditional logging, 132
HTTP (Hypertext Transfer
Protocol), 10, 13
labels, Redirect directive,
77
modules (hooks), 28
status settings, scalability,
253
StdEnvVars argument,
Options directive, 277
StoogeAuthz.pm file (syn-
tax), 340-342
storage, backend storage
database file-based access
control authentication,
113
digest-based authentica-
tion, 115
file-based authentication,
111
functions (authentication
modules), 110

storing
certificate signing
requests, 274
client authentication, 109
password files (file-based
authentication), 112
strings, log formats, 126
Struts, Jakarta project
(ASF), 404
stylesheets, XML stylesheets
(modules), 402
Subversion project, DAYV, 32,
212
suExec, virtual hosting
security, 227
Sun Chili!Soft ASP (ASP
engine), 393
support scripts, 54
SWEF library, Flash (PHP
extensions), 313
switches
creating (certificates), 272
disabling, 288
-DMyModule, 59
selecting, 184
symbolic links (symlink),
file system access, 251
symbols, debugging (PHP
extensions), 311
symlink (system links), file
system access, 251
SymLinksIfOwnerMatch
parameter, Options direc-
tive, 252
symmetric cryptography,
265
syntax
Apache, accessing (telnet
command-line tool), 66
auth-check program, 380

authorization configura-
tions, 378

binary installations,
caching, 241

container directives, 58-59

DAV, 207

directives, 56, 278

error log, 64

ErrorLog (virtual hosting),
228

ExtFilterDefine directive,
197

form.asp file, 336-338

ifconfig command,
219-220

<IfDefine> conditional
container, 59

<IfModule> conditional
container, 60

mod_jk module, configur-
ing, 353

mod_rewrite directive,
authorization, 379

Perchild MPM example,
182

per-directory configuration
files, disabling, 61

PHP sample page, 302

printenv script, 333

PropertiesDump servlet,
357-361

ProxyPass directive, 243

request headers, name-
based virtual hosting,
222

schemas, directives, 56

ServerAlias directive, 223

SSI (Server Side Includes)
directives, 195

SSLRequire directive, 277

How can we make this index more useful? Email us at indexes@samspublishing.com

| 458 syntax

StoogeAuthz.pm file,
340-342
TCP ports (virtual host-
ing), 225
type maps, 151
v option (virtual host-
ing), 227
virutal hosting,
mod_rewrite directive,
383
web.xml, 363
workers.properties para-
meter, 354
syslog daemon
argument, errors (Unix),
133
errors, logging (Unix), 132
systems. See operating sys-
tems (OS)
sysvsem, arguments
(AcceptMutex directive),
178

T

tabs
Advanced, 351
configuration screens, 160
Connection, 238
Taglibs, Jakarta project
(ASF), 404
tail command-line utility,
error logs (Unix), 139
tarball
Apache source code
(uncompressing), 40
Tomcat, 350
target directories, files, 92
targets, configure script, 41
tasks, separating (publish-
ing protocols), 204

Tecl, Apache (module), 401
Tcl/Tk interpreters,
Comanche installations,
163
TCP
buffers, Prefork MPMs,
177
ports, virtual hosting, 225
TCP/IP (Transmission
Control Protocol/Internet
Protocol), Internet, 8
telnet clients, 14
telnet command-line tool,
Apache (accessing), 66
temp label, Redirect direc-
tive, 77
Template Toolkit, page com-
ponent and templating
system, 338
templates, text-based config-
urations, 156
templating, mod_perl mod-
ule, 334, 337-339
test-cgi, shell script CGI, 94
testing
batch file CGIs (Windows
configurations), 97
Perl
CGI scripts, 96
installations, Windows,
307
scripts (Windows
configurations), 99
source code installa-
tions (Unix), 310
shell script CGlIs, 94
SSI (Server Side
Includes), 195
text, files (directory listings),
81

text boxes, Exceptions, 238
text editors
httpd.conf file, modifying,
62
text-based configurations,
156
text-based configurations,
versus GUIs, 155-156
Thawte, CA (certifcation
authority), 274
Thread Safe Resource
Manager (TSRM), PHP
architecture, 303
threaded servers
configurations, 18
MPMs (Multi-Processing
Modules), 27
Worker MPMs, 179
threading, Perl, 326
threads
controlling, 180-181
MPMs, 174, 183
requests, MPMs, 174
Windows MPM, 182
Worker MPMs, 179-180
ThreadsPerChild directive,
180, 183
tildes (~), 58
TimeOut directive, prevent-
ing abuse (performance),
259
TLS (Transport Layer
Security). See SSL
tolower function, 376
Tomcat
Apache JServ protocol
(AJP), 349
connections, 353-355
connector modules, 29
content, accesssing, 355

Unix 459 |

downloading, 349
HTTP server, accessing,
350
installing, 349-353
J2SE (Java 2 Standard
Edition), 349
Jakarta project, Java
(ASF), 404
Java, IIS (Internet
Information Server)
migration, 393
launching, 352
mod_jk module, building,
365-366
running, 349-353
servers, 349
SSL variables, accessing,
364
tarballs, 350
Webapp, building,
356-363
tools
accessing, 66
apachectl, control script
command (Unix), 66
APXS (APache
eXtenSion), 297
command-line, openssl
(certificates), 271
performance, Web sites,
253
source code installations,
309
Tools menu commands
Internet Options, 238
Internet Options,
Advanced, 74
top-level domain, DNS
(Domain Name System), 9

tracking
client requests, access log,
63
clients, troubleshooting,
132
processes, Prefork MPM
configurations, 178
trailing footers, contact
information, 76
trailing slashes (/)
Alias directive, 77
directory listings, 82
TransferLog directive, 129
translations, charset trans-
lations, 199
Transmission Control
Protocol/Internet Protocol
(TCP/IP), Internet, 8
transmitted data, reducing
(performance), 257
transparent ID propagation,
session support (PHP
extensions), 314
Transport Layer Security
(TLS). See SSL
trees, Comanche, 165
Triple-Des, symmetric cryp-
tography, 265
troubleshooting
bind to port, 68
CGI, 101-103
clients, tracking, 132
denied access, 68
group settings, 68
installations, 259
MPM configurations, 184
servers, starting (SSL con-
figurations), 275
Web servers (existing), 67

TSRM (Thread Safe
Resource Manager), 303,
309

tuning, 238, 256

tunneling, SSL requests
(forward proxy), 236

type, content type (mod-
ules), 289

type maps, server configu-
ration (content negotia-
tion), 151

types, caching, 241

TypesConfig directive,
MIME types (definitions),
79

typical installation, Apache
(Windows), 46

U

ulimit command, operating
systems (scalability), 250
uncompressing
Comanche, 164
source code (Apache
installations), 40
Webmin sources, 157
unified front end, reverse
proxy, 243
Uniform Resource Locators.
See URLs
Unix, 18
Apache, 40-43, 66, 388
apachectl tool, 66
binaries, 40
Comanche installations,
164-165

How can we make this index more useful? Email us at indexes@samspublishing.com

| 460 Unix

configurations, CGI, 94-97
DAV clients, 211-212
defaults, file locations,
53-54
installing Apache, 39-45
Jakarta Ant (running), 365
logging, 54, 132-133
mail box archiving, mod-
ules, 400
mod_ssl module, installing
SSL, 271
monitoring, 139
multiplatform, 19
OpenSSL library,
installing, 270
PHP, 304, 307-311
resolving, 137
rotatelogs programs, logs
(rotating), 137
source code, 40
support script, httpd, 54
testing, 94-96
Tomcat, installing, 350
Web servers, running, 177
UNLOCK, HTTP method,
DAV protocol, 206
URI
resolution, 374-375
translation phase, requests,
hooks (checking), 33
URL (Uniform Resource
Locators)
blocking, forward proxy
configurations, 236
building, ServerName
directive, 72
caching, 241
digest-based authentica-
tion, 115

directives, appplying, 58
directories, ScriptAlias
directive, 92
error messages, 75
external URLs, error mes-
sage replacement, 74
forwarding, proxy servers,
237
internal URLS, error mes-
sage replacement, 74
Internet, 10
managing, modules, 290
misspelled, correcting
(mod_speling), 75
Redirect directive (static
content), 77
reverse proxy, 243-244
rewriting, 199
trailing slashes (/), directo-
ry listings, 82
Use a Proxy Server for Your
LAN check box, 238
UseCanonicalName direc-
tives, URLSs, building, 72
User directive, 177, 180-182
user management
database file-based access
control authentication,
113-114
digest-based authentica-
tion, 115
file-based authentication,
112
functions, authentication
modules, 111
usernames
basic authentication, 108
client authentication, 109
URL (Uniform Resource
Locator), 11

users
adding, database file-based
access control authenti-
cation, 113-114
creating (restricted
access), 163
deleting, database file-
based access control
authentication, 114
lists, Require directive,
110
management, client
authentication, 109
users file, backend storage
(file-based authentication),
111
users@http.apache.org
mailing list, support
resource, 406
USRI, signals (sending), 65
util, APR (Apache Portable
Runtime), 31
utilities
building, 42
command-line, cadaver,
211
DAV servers, connecting,
211
htpasswd utility (authenti-
cation), 339
installing, 211
managing, 112
monitoring (Unix), 139
openssl.exe, OpenSSL
library, 270
PHPContfig utility, PHP
installations (Windows),
306
resolving, 137

Web servers 461 |

rotatelogs utility, logging
program, 129

sort utility, external filter-
ing configurations, 197

uncompressing, 40

\'

% v option, syntax (virtual
hosting), 227
-v, httpd option, server
binary, 64
Vagrant Web site, 315
values
directives, 61
Jakarta Ant, 365
port values (Listen direc-
tive), 62
ProxyVia directive, 238
ServerName directive, 72
variables. See also environ-
ment variables
CATALINA_HOME, 350
JAVA_HOME, 350
SSL protocols, 278, 289
SSL variables, accessing,
364
Vary: header, content nego-
tiation, 152
VeriSign, CA (certifcation
authority), 274
version control, DAV (future
project), 213
versions, Apache versions
checking (CVS), 45
naming, 38
<VirtualHost>, directive
container, 58

virtual hosting, 217
Comanche server configu-
rations, 166
configuration settings
(Webmin), 160
DNS (domain name serv-
er), 218
DocumentRoot, 221
IP aliases, 218-221
IP-based, 221
mass virtual hosting, 224
mod_rewrite directive,
382-384
modules, 402
name-based, 222-224
network interfaces,
218-221
performance, 227
security, 227
TCP ports, 225
virtual servers, specifying
(<VirtualHost> directive
container), 58
VirtualDocumentRoot
directive (mass virtual
hosting), 224
VirtualDocumentRootIP
directive (mass virtual
hosting), 225
VirtualHost containers, 221,
226
VirtualScriptAlias directive
(mass virtual hosting), 225
VirtualScriptAliasIP direc-
tive (mass virtual hosting),
225
virus scanning, filters
(Apache organization), 30

w

warn, LogLevel directive
option, 133
watermarking, filters
(Apache organization), 30
wddx, XML support (PHP
extensions), 314
Web access, caching, 240
Web applications. See
Webapp
Web crawlers. See Web spi-
ders
Web designers, tasks (pub-
lishing protocols), 204
Web editors, tasks (publish-
ing protocols), 204
Web folders, 209, 213
Web hosting, publishing
protocols, 204
Web programmers, tasks
(publishing protocols), 204
Web servers
Apache, installing
(Windows), 45
customizing, 73-76
dynamic content, 24
existing, troubleshooting,
67
history, 15-17
interpreters, 24
IPlanet, 394
Java, 24
platforms, Windows (pub-
lishing protocols), 204
remote access, Windows,
204
running, Unix, 177
scripting languages, 24
settings, Webmin, 158

How can we make this index more useful? Email us at indexes@samspublishing.com

| 462 Web sites

Web sites

accessing (mod_bwshare
module), 401

ActiveState, 97

Apache Overview Howto,
408

Apache Today, 407

Apache Week, 407

Apache, 11, 14, 40, 43,
168

awstats, 139

AxKit, 327

BEA, 403

Chili!Soft, 393

Comanche, 163

Covalent Technologies,
130, 168, 245

Covalent, 49, 403, 407

CPAN (Comprehensible
Perl Archive Network),
327

CVS, 44, 400

errors, 139

FastCGI, 100

Freshmeat, 315, 408

Gzip, 40

Halcyon Software, 393

hosting. See virtual host-
ing

IANA (Internet Assigned
Number Authority), 8

IBM, 48

ICANN (Internet
Corporation for Assigned
Names and Numbers), 8

InterNIC (Internet
Network Information
Center), 10

Jakarta, 404

Linuxconf, 168

Logscan, 139
Midgard, 315
MySQL, 393
Netegrity, 245
news (Apache resource),
407
Nuke, 315
OpenSSL, 270
pdflib, 313
performance tools, 253
Perl, 258
Phorum, 315
PHP, 306-308
PostgreSQL, 393
Python, 401
QPL (Q Public License),
302
Red Hat, 49, 407
ScanErrLog, 139
Slashdot Apache section,
407
SourceForge, 315, 408
Squid, 245
Subversion, 32, 212
Tcl, 401
Thawte, 274
Vagrant, 315
VeriSign, 274
Webalizer, 139
WebDAY, 212
Webmin, 156
WinZip, 164
Web spiders
abuse, preventing, 259
File robots.txt Not Found
error, 140
WEB-INF directory, 355
web.xml, syntax, 363
Webalizer, log analysis, 139

Webapp (Web applications)
building, 356-363
layouts, 355
metadata, 355

webapps directory, 356

WebDAY, Web site, 212. See

also DAV

WebLogic, Java (IIS), 393

Webmasters, tasks (publish-

ing protocols), 204
Webmin, 156, 158, 160, 163
Apache settings, configur-
ing, 158-163
installing, 157-158
managing, 158
sources, 157
Web site, 156
Win32/ (PHP directory),
309
WINCH, signals (sending),
65

Windows
Apache 1.3, 388
Apache, 65-66
Comanche installations,

164
configurations, 97-99
defaults, file locations,
53-54
errors, logging, 132
installer, 48, 352
installing Apache, 45-48
log files, 54
mod_jk module, building,
366
mod_ssl module, installing
SSL, 271
multiplatform, 19
OpenSSL library,
installing, 270

Zend/

463 |

PHP, 304-307
resolving, 137
rotatelogs.exe programs,
logs (rotating), 137
support scripts,
apache.exe, 54
Tomcat, installing,
351-353
‘Web servers, 204
windows, compression, 192
Windows MPM, 182-183
WinZip, Web site, 164
wizards, Web folders (DAV
Microsoft clients), 209
--with-dav option, DAV sup-
port (enabling), 206
--with-mpm switch, MPMs
(selecting), 184
Worker MPM, 179-180
workers.properties parame-
ter, 354
worms, security (IIS), 391

X-Z

X-Forwarded-For, headers
(reverse proxy), 245

X-Forwarded-Host, headers
(reverse proxy), 245

X-Forwarded-Server, head-
ers (reverse proxy), 245

X.509, digital certificates,
268

Xalan project (XML pro-
ject), 405

XBitHack directive, SSI
parsing, 195

XBitHack on directive, SSI

How can we make this index more useful? Email us at indexes@samspublishing.com

parsing, 195
Xerces project (XML pro-
ject), 405
XML
body requests, size, 208
files, Jakarta Ant, 365
parsers, 405
stylesheets, processing
(modules), 402
support (PHP extensions),
314
tags, Apache::ASP mod-
ule, 338
XML Project, ASF (Apache
Software Foundation), 405
XSLT, XML support (PHP
extensions), 314

Zend scripting engine, PHP,
302
Zend/ (PHP directory), 309

	cover.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_r15.pdf
	page_r16.pdf
	page_r17.pdf
	page_r18.pdf
	page_r19.pdf
	page_r20.pdf
	page_r21.pdf
	page_r22.pdf
	page_r23.pdf
	page_r24.pdf
	page_r25.pdf
	page_r26.pdf
	page_1.pdf
	page_2.pdf
	page_3.pdf
	page_4.pdf
	page_5.pdf
	page_6.pdf
	page_7.pdf
	page_8.pdf
	page_9.pdf
	page_10.pdf
	page_11.pdf
	page_12.pdf
	page_13.pdf
	page_14.pdf
	page_15.pdf
	page_16.pdf
	page_17.pdf
	page_18.pdf
	page_19.pdf
	page_20.pdf
	page_21.pdf
	page_22.pdf
	page_23.pdf
	page_24.pdf
	page_25.pdf
	page_26.pdf
	page_27.pdf
	page_28.pdf
	page_29.pdf
	page_30.pdf
	page_31.pdf
	page_32.pdf
	page_33.pdf
	page_34.pdf
	page_35.pdf
	page_36.pdf
	page_37.pdf
	page_38.pdf
	page_39.pdf
	page_40.pdf
	page_41.pdf
	page_42.pdf
	page_43.pdf
	page_44.pdf
	page_45.pdf
	page_46.pdf
	page_47.pdf
	page_48.pdf
	page_49.pdf
	page_50.pdf
	page_51.pdf
	page_52.pdf
	page_53.pdf
	page_54.pdf
	page_55.pdf
	page_56.pdf
	page_57.pdf
	page_58.pdf
	page_59.pdf
	page_60.pdf
	page_61.pdf
	page_62.pdf
	page_63.pdf
	page_64.pdf
	page_65.pdf
	page_66.pdf
	page_67.pdf
	page_68.pdf
	page_69.pdf
	page_70.pdf
	page_71.pdf
	page_72.pdf
	page_73.pdf
	page_74.pdf
	page_75.pdf
	page_76.pdf
	page_77.pdf
	page_78.pdf
	page_79.pdf
	page_80.pdf
	page_81.pdf
	page_82.pdf
	page_83.pdf
	page_84.pdf
	page_85.pdf
	page_86.pdf
	page_87.pdf
	page_88.pdf
	page_89.pdf
	page_90.pdf
	page_91.pdf
	page_92.pdf
	page_93.pdf
	page_94.pdf
	page_95.pdf
	page_96.pdf
	page_97.pdf
	page_98.pdf
	page_99.pdf
	page_100.pdf
	page_101.pdf
	page_102.pdf
	page_103.pdf
	page_104.pdf
	page_105.pdf
	page_106.pdf
	page_107.pdf
	page_108.pdf
	page_109.pdf
	page_110.pdf
	page_111.pdf
	page_112.pdf
	page_113.pdf
	page_114.pdf
	page_115.pdf
	page_116.pdf
	page_117.pdf
	page_118.pdf
	page_119.pdf
	page_120.pdf
	page_121.pdf
	page_122.pdf
	page_123.pdf
	page_124.pdf
	page_125.pdf
	page_126.pdf
	page_127.pdf
	page_128.pdf
	page_129.pdf
	page_130.pdf
	page_131.pdf
	page_132.pdf
	page_133.pdf
	page_134.pdf
	page_135.pdf
	page_136.pdf
	page_137.pdf
	page_138.pdf
	page_139.pdf
	page_140.pdf
	page_141.pdf
	page_142.pdf
	page_143.pdf
	page_144.pdf
	page_145.pdf
	page_146.pdf
	page_147.pdf
	page_148.pdf
	page_149.pdf
	page_150.pdf
	page_151.pdf
	page_152.pdf
	page_153.pdf
	page_154.pdf
	page_155.pdf
	page_156.pdf
	page_157.pdf
	page_158.pdf
	page_159.pdf
	page_160.pdf
	page_161.pdf
	page_162.pdf
	page_163.pdf
	page_164.pdf
	page_165.pdf
	page_166.pdf
	page_167.pdf
	page_168.pdf
	page_169.pdf
	page_170.pdf
	page_171.pdf
	page_172.pdf
	page_173.pdf
	page_174.pdf
	page_175.pdf
	page_176.pdf
	page_177.pdf
	page_178.pdf
	page_179.pdf
	page_180.pdf
	page_181.pdf
	page_182.pdf
	page_183.pdf
	page_184.pdf
	page_185.pdf
	page_186.pdf
	page_187.pdf
	page_188.pdf
	page_189.pdf
	page_190.pdf
	page_191.pdf
	page_192.pdf
	page_193.pdf
	page_194.pdf
	page_195.pdf
	page_196.pdf
	page_197.pdf
	page_198.pdf
	page_199.pdf
	page_200.pdf
	page_201.pdf
	page_202.pdf
	page_203.pdf
	page_204.pdf
	page_205.pdf
	page_206.pdf
	page_207.pdf
	page_208.pdf
	page_209.pdf
	page_210.pdf
	page_211.pdf
	page_212.pdf
	page_213.pdf
	page_214.pdf
	page_215.pdf
	page_216.pdf
	page_217.pdf
	page_218.pdf
	page_219.pdf
	page_220.pdf
	page_221.pdf
	page_222.pdf
	page_223.pdf
	page_224.pdf
	page_225.pdf
	page_226.pdf
	page_227.pdf
	page_228.pdf
	page_229.pdf
	page_230.pdf
	page_231.pdf
	page_232.pdf
	page_233.pdf
	page_234.pdf
	page_235.pdf
	page_236.pdf
	page_237.pdf
	page_238.pdf
	page_239.pdf
	page_240.pdf
	page_241.pdf
	page_242.pdf
	page_243.pdf
	page_244.pdf
	page_245.pdf
	page_246.pdf
	page_247.pdf
	page_248.pdf
	page_249.pdf
	page_250.pdf
	page_251.pdf
	page_252.pdf
	page_253.pdf
	page_254.pdf
	page_255.pdf
	page_256.pdf
	page_257.pdf
	page_258.pdf
	page_259.pdf
	page_260.pdf
	page_261.pdf
	page_262.pdf
	page_263.pdf
	page_264.pdf
	page_265.pdf
	page_266.pdf
	page_267.pdf
	page_268.pdf
	page_269.pdf
	page_270.pdf
	page_271.pdf
	page_272.pdf
	page_273.pdf
	page_274.pdf
	page_275.pdf
	page_276.pdf
	page_277.pdf
	page_278.pdf
	page_279.pdf
	page_280.pdf
	page_281.pdf
	page_282.pdf
	page_283.pdf
	page_284.pdf
	page_285.pdf
	page_286.pdf
	page_287.pdf
	page_288.pdf
	page_289.pdf
	page_290.pdf
	page_291.pdf
	page_292.pdf
	page_293.pdf
	page_294.pdf
	page_295.pdf
	page_296.pdf
	page_297.pdf
	page_298.pdf
	page_299.pdf
	page_300.pdf
	page_301.pdf
	page_302.pdf
	page_303.pdf
	page_304.pdf
	page_305.pdf
	page_306.pdf
	page_307.pdf
	page_308.pdf
	page_309.pdf
	page_310.pdf
	page_311.pdf
	page_312.pdf
	page_313.pdf
	page_314.pdf
	page_315.pdf
	page_316.pdf
	page_317.pdf
	page_318.pdf
	page_319.pdf
	page_320.pdf
	page_321.pdf
	page_322.pdf
	page_323.pdf
	page_324.pdf
	page_325.pdf
	page_326.pdf
	page_327.pdf
	page_328.pdf
	page_329.pdf
	page_330.pdf
	page_331.pdf
	page_332.pdf
	page_333.pdf
	page_334.pdf
	page_335.pdf
	page_336.pdf
	page_337.pdf
	page_338.pdf
	page_339.pdf
	page_340.pdf
	page_341.pdf
	page_342.pdf
	page_343.pdf
	page_344.pdf
	page_345.pdf
	page_346.pdf
	page_347.pdf
	page_348.pdf
	page_349.pdf
	page_350.pdf
	page_351.pdf
	page_352.pdf
	page_353.pdf
	page_354.pdf
	page_355.pdf
	page_356.pdf
	page_357.pdf
	page_358.pdf
	page_359.pdf
	page_360.pdf
	page_361.pdf
	page_362.pdf
	page_363.pdf
	page_364.pdf
	page_365.pdf
	page_366.pdf
	page_367.pdf
	page_368.pdf
	page_369.pdf
	page_370.pdf
	page_371.pdf
	page_372.pdf
	page_373.pdf
	page_374.pdf
	page_375.pdf
	page_376.pdf
	page_377.pdf
	page_378.pdf
	page_379.pdf
	page_380.pdf
	page_381.pdf
	page_382.pdf
	page_383.pdf
	page_384.pdf
	page_385.pdf
	page_386.pdf
	page_387.pdf
	page_388.pdf
	page_389.pdf
	page_390.pdf
	page_391.pdf
	page_392.pdf
	page_393.pdf
	page_394.pdf
	page_395.pdf
	page_396.pdf
	page_397.pdf
	page_398.pdf
	page_399.pdf
	page_400.pdf
	page_401.pdf
	page_402.pdf
	page_403.pdf
	page_404.pdf
	page_405.pdf
	page_406.pdf
	page_407.pdf
	page_408.pdf
	page_409.pdf
	page_410.pdf
	page_411.pdf
	page_412.pdf
	page_413.pdf
	page_414.pdf
	page_415.pdf
	page_416.pdf
	page_417.pdf
	page_418.pdf
	page_419.pdf
	page_420.pdf
	page_421.pdf
	page_422.pdf
	page_423.pdf
	page_424.pdf
	page_425.pdf
	page_426.pdf
	page_427.pdf
	page_428.pdf
	page_429.pdf
	page_430.pdf
	page_431.pdf
	page_432.pdf
	page_433.pdf
	page_434.pdf
	page_435.pdf
	page_436.pdf
	page_437.pdf
	page_438.pdf
	page_439.pdf
	page_440.pdf
	page_441.pdf
	page_442.pdf
	page_443.pdf
	page_444.pdf
	page_445.pdf
	page_446.pdf
	page_447.pdf
	page_448.pdf
	page_449.pdf
	page_450.pdf
	page_451.pdf
	page_452.pdf
	page_453.pdf
	page_454.pdf
	page_455.pdf
	page_456.pdf
	page_457.pdf
	page_458.pdf
	page_459.pdf
	page_460.pdf
	page_461.pdf
	page_462.pdf
	page_463.pdf

