

Squid configuration manual

Disclaimer: This manual is NOT a Squid tutorial. It does not, for example, take the reader through step-by-step details of Squid installation and configuration. The objective of this manual is to explain, in as much detail as possible, every configuration parameter available in Squid. As such, the reader is required to have prior knowledge of basic Squid installation and configuration. The details presented in this manual are in the nature of reference material. For a complete tutorial on Squid, please visit http://www.squid-cache.org/

Table of Contents

I. Network

This section explains ALL the network address parameters relevant to a Squid installation. Generally speaking, a Squid instance will need to communicate with:

- ◆ Local or remote web servers
- ◆ Other Cache servers
- Clients (desktop browsers or gateways)

Squid configuration needs to define the addresses (IP address + port) for every relevant server and gateway This section focuses on communication with clients and web servers. The next section will detail the parameters required for communication with other cache servers in the network.

A quick note on inter–server communication. Squid listens for TCP or ICP communication on specific ports. It uses TCP to communicate with web servers and clients, and ICP to talk to other cache servers. For every such server (or client), Squid configuration needs to assign a unique port number over which Squid would send requests (TCP or ICP) and listen for responses. An IP address is simply the network address at which the server is running. In short, the complete address for any server–to–server communication is determined by an IP–address+port combination. The following network parameters are relevant to Squid configuration:

- http port
- icp port
- htcp port
- mcast groups
- tcp outgoing address
- udp incoming address
- udp outgoing address

II Peer cache servers and Squid hierarchy

The parameters described in this section are relevant when there is a Squid hierarchy in the network (i.e. more than one Squid instance running in the network with well–defined rules regarding which instance talks to which other instance, and so forth). Parameters of interest here are: number of cache servers, type of configuration (which instance communicates with which instance(s)), defining the primary cache server, mapping of specific domains to specific cache server instances, Timeouts, specification of objects that should not be cached locally etc. Relevant parameters covered by this section are:

- cache peer
- cache peer domain
- neighbor type domain
- icp query timeout (msec)
- maximum icp query timeout (msec)
- mcast icp query timeout (msec)
- dead peer timeout (seconds)
- hierarchy stoplist
- no cache

III Cache size

This section describes parameters related to Cache Memory Size (real memory) as well as Cache Replacement Policy. Squid supports more than one Cache replacement policy. This section also touches briefly on cache interaction with disk, but that subject is covered in greater detail in the next section. Relevant parameters for this section are

- Cache mem (bytes)
- cache swap low (percent, 0-100)
- cache swap high (percent, 0-100)
- maximum object size (bytes)
- minimum object size (bytes)
- maximum object size in memory (bytes)
- ipcache size (number of entries)
- ipcache low (percent)
- ipcache high (percent)
- fqdncache size (number of entries)
- cache replacement policy
- memory replacement policy

IV. Log file path names and cache directories

This section describes parameters for the configuration of cache directories (placement of caches in specific files and directories) AND Log file placement on disk (size, name, path, activity). Log files contain runtime information (relevant "successful" events as well as errors). Log files are used for system level debugging and runtime activity.

Certain log file management issues, e.g. backups, restore, recycling etc. are not described here. For more information on controlling the log file size, see <u>logfile rotate</u> directive, Squid command line option (–k rotate) and man page on logrotate in Linux.

- Cache dir
- cache access log
- cache log
- cache store log
- cache swap log
- emulate httpd log on|off
- log ip on direct
- mime table
- log mime hdrs onloff
- user agent log
- referer loa
- pid filename
- debug options
- log fqdn on|off
- client netmask

V. Support for External functions

Squid has the ability to invoke certain "externally defined' functions that are NOT part of the Squid binary. Such "external" executables (programs) are usually placed in a contrib directory for source code distribution. The most common "external" programs are FTPUser, DNS, Redirectors and Authenticators, and are usually contributed by sources other than Squid.

External programs are invoked by Squid through the standard fork() and exec(). The number of such fork—able child processes for specific "external" processes can also be defined. Relevant parameters for this section are:

- ftp user
- ftp list width
- ftp passive
- cache dns program

- dns children
- dns retransmit interval
- dns_timeout
- dns defnames onloff
- dns nameservers
- unlinkd program
- pinger program
- redirect program
- redirect children
- redirect rewrites host header
- redirector access
- authenticate program
- authenticate children
- authenticate ttl
- authenticate ip ttl
- authenticate ip ttl is strict

VI Tuning the Squid Cache

This section describes the important parameters that determine Squid cache performance. Notable among them are: Object refresh algorithm, size of the header and body for both reply and request, policy for aborting (server) connections when client closes connection etc. Relevant parameters are described below:

- wais relay host
- wais relay port
- request header max size (KB)
- request body max size (KB)
- reply body max size (KB)
- refresh pattern
- reference age
- quick abort min (KB)
- quick abort max (KB)
- quick abort pct (percent)
- negative ttl time-units
- positive dns ttl time-units
- negative dns ttl time-units
- range offset limit (bytes)

VII. Timeouts

Timeout parameters in Squid can be based on overall connection timeouts, peer–specific timeouts, site/domain–specific timeouts, request–specific timeouts etc. Proper setting of timeout values is critical to optimal Squid performance. Relevant parameters for timeout settings are listed here.

- connect timeout time-units
- peer connect timeout time-units
- site select timeout time-units
- read timeout time-units
- request timeout
- client lifetime time-units
- half closed clients
- pconn timeout
- ident timeout
- shutdown lifetime time-units

VIII. Access controls

Access control settings are among the most important features of Squid. You can configure Squid to set filters for various entities and at different granularities (e.g. filters for specific protocols, filters for certain types of commands, filters for specific routers, filters for specified domains, etc). The relevant parameters are described below:

- acl
- http access
- icp access
- miss access
- cache peer access
- proxy auth realm
- ident lookup access

IX. Administrative parameters

The parameters in this section allow the Squid admin to specify, for example, which users and groups have the right to run Squid, what host name should be displayed while displaying errors, which users have the authority to view Cache activity details, etc.

- Cache mgr
- cache effective user
- cache effective group
- visible hostname
- unique hostname
- hostname aliases

X. Options for the cache registration service

Squid administrators have the option of registering their cache server with http://ircache.nlanr.net/Cache/Tracker/, a service that helps cache sites locate each other in order to create cache hierarchies. Relevant registration parameters are described by:

- announce period
- announce host
- announce file
- announce port

XI Httpd-accelerator options

Squid can act as a load balancer or load reducer for a particular webserver. Generally squid not only keeps clients happy but also the web servers by reducing load on server side. Some cache servers can act as web servers (or vice versa). These servers accept requests in both the standard web-request format (where only the path and filename are given), and in the proxy-specific format (where the entire URL is given). The Squid designers have decided not to let Squid to be configured in this way. This avoids various complicated issues, and reduces code complexity, making Squid more reliable. All in all, Squid is a web cache, not a web server.

By adding a *translation* layer into Squid, we can accept (and understand) web requests, since the format is essentially the same. The additional layer can re–write incoming web requests, changing the destination server and port. This re–written request is then treated as a normal request: the remote server is contacted, the data requested and the results cached. This lets Squid to pretend to be a web server, rewriting requests so that, they are passed on to some other web server.

For Transparent caching, Squid can be configured to *magically* intercept outgoing web requests and cache them. Since the outgoing requests are in web–server format, it needs to translate them to cache–format requests. Transparent redirection is prohibited by internet standard #5 "Internet Protocol". And HTTP assumes no transparent redirection is taking place.

This section allows various configurations related to the accelerator mode and the transparent mode.

- httpd accel host
- httpd accel port
- httpd accel single host
- httpd accel with proxy on off
- httpd accel uses host header on off

XII Miscellaneous

As the title suggests, this section covers parameters that could not be explicitly bundled in with any of the previous categories. Examples of features covered here are:

- ◆ Limiting the growth of log fils.
- Displaying customized information to clients upon error conditions or access denial.
- ♦ Defining memory pools for Squid.
- ♦ Network management by enabling SNMP.
- ♦ Co-ordination with neighbor caches by enabling WCCP and
- Directing the requests either to the origin server or to the neighbor cache.

The relevant parameters are:

- dns test names
- logfile rotate
- append domain
- tcp recv bufsize (bytes)
- err html text
- deny info
- memory pools on off
- memory pools limit (bytes)
- forwarded for onloff
- log icp queries on off
- icp hit stale onloff
- minimum direct hops
- minimum direct rtt
- cachemgr passwd
- store avg object size (kbytes)
- store objects per bucket
- client db onloff
- netdb low
- netdb high
- netdb ping period
- query icmp on off
- test_reachability_on|off
- buffered logs onloff
- reload into ims on off
- always direct
- never direct
- anonymize headers
- fake user agent
- icon directory
- error directory
- minimum retry timeout (seconds)
- maximum single addr tries
- snmp port
- snmp access
- snmp incoming address
- snmp outgoing address
- as whois server
- wccp_router
- wccp version
- wccp incoming address
- wccp outgoing address

XIII. Delaypool parameters (all require delay pools compilation options)

Conceptually, Delay pools are bandwidth limitations – "pools" of bandwidth that drain out as people browse the Web, and fill up at a rate we specify – this can be thought of as a leaky bucket that is continually being filled. This is useful when bandwidth charges are in place, if we want to reduce bandwidth usage for web traffic.

Delay Pools can do wonders when combined with ACLs. These tags permit us to limit the bandwidth of

certain requests, based on any criteria. Delay behavior is selected by ACLs (low and high priority traffic, staff Vs students or student Vs authenticated student or so on). In ISPs, delay pools can be implemented in a particular network to improve the quality of service. To enable this, Squid needs to be configured with the —enable—delay—pools option.

Relevant parameters are described below:

- delay pools
- delay class
- delay access
- delay parameters
- delay initial bucket level (percent, 0–100)
- incoming icp average
- incoming http average
- incoming dns average
- min icp poll cnt
- min dns poll cnt
- min http poll cnt
- max open disk fds
- offline mode
- uri whitespace
- broken posts
- mcast miss addr
- mcast miss ttl
- mcast miss port
- mcast miss encode key
- nonhierarchical direct
- prefer direct
- strip query terms
- coredump dir
- redirector bypass
- ignore unknown nameservers
- digest generation
- digest bits per entry
- digest rebuild period (seconds)
- digest rewrite period (seconds)
- digest swapout chunk size (bytes)
- digest rebuild chunk percentage (percent, 0-100)
- chroot
- client persistent connections
- server persistent connections
- pipeline prefetch
- extension methods
- high response time warning
- high page fault warning
- high memory warning
- store dir select algorithm
- ie refresh

XIV. Glossary

The Glossary provides a general explanation for various terms used in this guide.

NETWORK OPTIONS

Tag Name http_port
Usage http port port

hostname: port 1.2.3.4 : port

Description

This tag name is used to specify the socket addresses where Squid will listen for HTTP client requests. Multiple socket addresses can be specified. There are three forms: port alone, hostname with port, and IP address with port. If hostname or IP address is specified, then Squid binds the socket to that specific address. This replaces the old "tcp_incoming_address" option. Most likely, there is no need to bind to a specific address, so the port number alone can be used. If Squid is to be run in accelerator mode, then it should listen on port 80 also, or instead.

Default http_port 3128

Example

Give the port number in which you want squid to listen to http client requests. Like...

http_port 8080

We can override the default port number by '-a ' command line option.

#/usr/local/squid/bin/squid -a 8080

This will start squid with port 8080, which overrides the port number in squid.conf. However this option cannot be used to override IP address

Caution

Before changing the port number, make sure no application in your box is running in the same port.

Note

http_port can be used to specify the tcp_incoming_address through which the cache listens to requests from other remote servers. http_port can be listed multiple times.

Tag Name icp_port
Usage icp_port port

Description

This specifies the port number from which Squid sends and receives ICP queries to and from neighbor caches. To disable "0" is used.

ICP is a protocol used for communication among squid caches. ICP is primarily used within a cache hierarchy to locate specific objects in sibling caches. If a squid cache does not have a requested document, it sends an ICP query to its siblings, and the siblings respond with ICP replies indicating a ``HIT" or a ``MISS." The cache then uses the replies to choose from which cache to resolve its own MISS. ICP is currently implemented on top of UDP. Squid also supports ICP via multicast.

Default icp_port 3130

Example

The port number is given in which squid has to send and receive ICP queries from neighbor caches. Like...

icp port 5050

May be overridden by -u command line option.

#/usr/local/squid/bin/squid -u 5050

This will start squid with port 5050, which overrides the port number in squid.conf

Caution

Before changing this port number, make sure no application in the box is running in the same port.

Tag Name htcp_port
Usage htcp_port port

Description

Used to specify the port number through which Squid sends and receives HTCP queries to and from neighbor caches. To disable "0" is used.

Default htcp_port 4827

Example

htcp_port 5089

Caution

To enable this option, you must use --enable-htcp with the configure script.

Tag Name mcast_groups

Usage mcast_groups IPAddress

Description

This tag specifies a list of multicast groups, with which your server should join to receive multicasted ICP queries.

<u>Multicast</u> is essentially the ability to send one IP packet to multiple receivers. Multicast is often used for audio and video conferencing systems. If you are unsure about multicast, please read the Multicast chapter in the Squid FAQ (http://squid.nlanr.net/Squid/FAQ/).

This option is to be set only if you want to RECEIVE multicast queries.

ICP replies are always sent via <u>unicast</u>, so this option does not affect whether or not you will receive replies from multicast group members.

Be sure you understand the difference between an ICP _query_ and an ICP _reply_.

Use cache peer Directive for sending ICP gueries.

Default none

By default, Squid doesn't listen on any multicast groups

Example

mcast_groups 239.128.16.128 224.0.1.20

Caution

Should not use a multicast address, which is already in use by another group of caches. We should not set this option to SEND multicast ICP.

Tag Name tcp_outgoing_address

Usage tcp_outgoing_address IPAddress

Description

It is used for connections made to remote servers. It is also used to communicate with other caches while using HTCP or CARP. Normally tcp_outgoing_address should not be specified. It is better to let the OS select a suitable address. There are some very specific network configurations where tcp_outgoing_address needs to be specified

Default tcp_outgoing_address 255.255.255.255

Example

The tcp_incoming_address can be specified using http_port.

Tag Name udp_incoming_address

Usage udp_incoming_address IPAddress

Description

It is used for the ICP socket receiving packets from other caches.

Default udp_incoming_address 0.0.0.0

Caution

Cannot have the same value, since they both (udp_incoming_address and udp_outgoing_address) use the port 3130.

Tag Name udp_outgoing_address

Usage udp_outgoing_address IPAddress

Description

It is used for the ICP packets sent out to the caches.

Default udp_outgoing_address 255.255.255.255

Caution

Cannot have the same value, since they both (udp_incoming_address and udp_outgoing_address) use the port 3130.

PEER CACHE SERVERS AND SQUID HIERARCHY

Tag Name cache_peer

Usage cache_peer hostname type http_port icp_port options

Description

This tag is used to specify the other caches in the hierarchy. The cache_peer option is split into five fields. The first field is the hostname or IP of the cache that is to be queried. The second field indicates the type of relationship. The third field sets the HTTP port of the destination server, while the fourth sets the ICP (UDP) query port. The fifth field can contain zero or more keywords. Here are the detailed explanations on each field. See <u>cache_peer_access</u> also.

Hostname

Hostname (FQDN) or IP address of the cache to be queried should be mentioned.

For ex,

cache_peer sib1.visolve.com sibling 3128 3130 [proxy-only] cache_peer 172.16.1.100 sibling 3128 3130 [proxy-only]

Type

Here cache hierarchy should be specified. This option plays an important role in deciding neighbor selection.

- parent
- sibling
- multicast

Http port

The port number where the cache listens for proxy requests. See also http port

lcp_port

Used for querying neighbor caches about objects. To have a non–ICP neighbor specify '7' for the ICP port and make sure the neighbor machine has the UDP echo port enabled in its /etc/inetd.conf file. See also icp_port

OPTIONS:

proxy-only

To specify that objects fetched from this cache should not be saved locally.

Weight=n

To specify a weighted parent. The weight must be an integer. The default weight is 1, larger weights are favoured more.

ttl=n

To specify a IP multicast Time To Live (ttl) value when sending ICP queries to multicast groups. We do not accept ICP replies from random hosts. So you must configure other group members as peers with the multicast–responder option below.

no-query

This option is set for those peers, which do not support ICP queries. It is obvious to have doubt about the ICP port specified in, while using this option. Squid does not care what digit has been given in the ICP port when no–query is specified. Using any number is fine. It is recommended to use 0 to emphasis the fact that ICP is not used in any way (not even to UDP echo port 7).

This might be the typical example for this option:

cache_peer hostname sibling 8080 0 proxy-only no-query

By default, Port 3130 is typically where an ICP-aware proxy listens for ICP packets. Port 7 is the "echo" port (see /etc/services). It is typically handled by inetd as an internal process and simply "echoes" back what has been sent it. Since option "no-query" specified, port "7" is there so that if peer is gueried, Squid gets an answer and not declares peer as dead and therefore stop using it.

Port 7 is used when Squid has a non–ICP peer but still want to query it before sending requests there (no–query not specified). In such case, Squid will send the ICP queries to port 7 which is the UDP echo port.

default

If this is a parent cache which can be used as a "last–resort." and not ICP enabled then "default" would be the appropriate option. Simply adding default to a parent does not force all requests to be sent to that parent. The term default is perhaps a poor choice of words. If the cache is able to make direct connections, direct will be preferred over default. If needed to force all requests to parent cache(s), use the <u>never_direct</u> option.

round-robin

To define a set of parents which should be used in a round–robin fashion in the absence of any ICP queries.

multicast-responder

Indicates that the named peer is a member of a multicast group. ICP queries will not be sent directly to the peer, but ICP replies will be accepted from it.

closest-only

Indicates that, for ICP_OP_MISS replies, we'll only forward CLOSEST_PARENT_MISSes and never FIRST_PARENT_MISSes.

no-digest

To NOT request cache digests from this neighbor.

no-netdb-exchange

It disables requesting ICMP RTT database (NetDB) from the neighbor.

no-delay

To prevent access to this neighbor from influencing the delay pools.

login=user:password

If this is a personal/workgroup proxy and your parent requires proxy authentication.

connect-timeout=nn

To specify a peer specific connect timeout (also see the peer_connect_timeout directive).

digest-url=url

To tell Squid to fetch the cache digest (if digests are enabled) for this host from the specified URL rather than the Squid default location.

No cache peer is defined

Default none

Example

cache_peer proxy.visolve.com parent 3128 3130 default

cache_peer 172.16.1.100 sibling 3128 3130 proxy-only

cache_peer 172.16.1.123 sibling 3129 5500 weight=2

Caution

If you compiled Squid to support HTCP, your cache will automatically attempt to connect to TCP port 4827 (there is currently no option to change this port value). Cache digests are transferred via the HTTP port specified on the cache peer line. Non–ICP neighbors must be specified as 'parent'.

Tag Name cache_peer_domain

Usage cache_peer_domain cache_host domain [domain ...]

Description

This tag is used to limit the domains for which the neighbor caches will be queried. It is used to communicate with different caches depending on the domain that the request is destined for

- Prefixing the domain name with '!' means that the cache will be gueried for objects NOT in that domain.
- Any number of domains may be given for a cache-host, either on the same or separate lines.
- When multiple domains are given for a particular cache-host, the first matched domain is applied.
- Cache hosts with no domain restrictions are queried for all requests.
- There is also a 'cache peer access' tag in the ACL section .

Default none

Example

cache_peer_domain parent.foo.net .edu

It has the effect such that UDP query packets are sent to 'bigserver' only when the requested object exists on a server in the .edu domain.

Tag Name neighbor_type_domain

Usage neighbor_type_domain parent|sibling domain domain ...

Description

Modifying the neighbor type for specific domains is now possible. You can treat some domains differently than the default neighbor type specified on the 'cache_peer' line. Normally it should only be necessary to list domains, which should be treated differently because the default neighbor type applies for hostnames, which do not match domains listed here.

Default none

Example

cache_peer proxy.visolve.com parent 3128 3130 neighbor_type_domain proxy.visolve.com sibling .com .net

Tag Name icp_query_timeout (msecs)
Usage icp_query_timeout milliseconds

Description

Normally Squid will automatically determine an optimal ICP query timeout value based on the <u>round-trip-time</u> of recent ICP queries. If you want to override the value determined by Squid, set this 'icp_query_timeout' to a non-zero value.

Default icp_query_timeout 0

Example

This value is specified in MILLISECONDS, so, to use a 2–second timeout (the old default), you would write: icp_query_timeout 2000.

Tag Name maximum_icp_query_timeout (msecs)
Usage maximum_icp_query_timeout milliseconds

Description

Normally the ICP query timeout is determined dynamically. But sometimes it can lead to very large values (say 5 seconds). Use this option to put an upper limit on the dynamic timeout value. If 'icp_query_timeout' is set to zero, then this value is ignored.

Default maximum_icp_query_timeout 2000

Caution

Do NOT use this option to always use a fixed (instead of a dynamic) timeout value.

Tag Name mcast_icp_query_timeout (msecs)
Usage mcast_icp_query_timeout milliseconds

Description

For Multicast peers, Squid regularly sends out ICP "probes" to count how many other peers are listening on the given multicast address. This value specifies how long Squid should wait to count all the replies.

When Squid sends out a multicast query, it will wait at most mcast_icp_query_timeout seconds (it's perfectly possible that one day a peer will be on the moon: and it would probably be a bad idea to peer with that cache seriously, unless it was a parent for the Mars top—level domain.) It's unlikely that you will want to increase this value, but you may wish to drop it, so that only reasonably speedy replies are considered.

Default mcast_icp_query_timeout 2000

Caution

Do NOT use this option to always use a fixed (instead of a dynamic) timeout value.

Tag Name dead peer timeout (secs) Usage dead_peer_timeout seconds

Description

This controls how long Squid waits to declare a peer cache as "dead." If there are no ICP replies received in this amount of time, Squid will declare the peer dead and not expect to receive any further ICP replies. However, it continues to send ICP gueries, and will mark the peer as alive upon receipt of the first subsequent ICP reply.

Default dead_peer_timeout 10 seconds

Caution

This timeout also affects when Squid expects to receive ICP replies from peers. If more than 'dead_peer' seconds have passed since the last ICP reply was received, Squid will not expect to receive an ICP reply on the next query. Thus, if your time between requests is greater than this timeout, you will see a lot of requests sent DIRECT to origin servers instead of to your parents.

Tag Name hierarchy_stoplist Usage hierarchy stoplist words

Description

A list of words which, if found in a URL, cause the object to be handled directly by this cache. In other words, use this when to guery neighbor caches for certain objects. This option can be listed multiple times. As some times this functionality is affected by the directive never direct, See also never direct.

Default hierarchy_stoplist cgi-bin?

> Squid will fetch URL's containing 'cgi-bin' or '?' from the origin servers directly without communicating with cache peers.

Example

hierarchy_stoplist jsp asp

If the URL contains the words jsp and asp, which indicate dynamic pages, then Squid will not query peers for the pages and will directly request the origin server.

Note

It is recommended to include all dynamic pages in this tag.

Tag Name no cache

Usage no_cache deny|allow aclname

Description

A list of ACL elements, which, if matched, cause the reply to be immediately, removed from the cache. In other words, use this to force certain objects to never be cached.

Default acl QUERY urlpath regex cgi-bin \?

no cache denv QUERY

The word 'DENY' is to indicate the ACL names, which should NOT be cached

Example

acl DENYPAGE urlpath_regex Servlet no_cache deny DENYPAGE

The DENYPAGE acl assures that the url containing Servlet will NOT be cached.

Caution

It is recommended to use this directive effectively.

CACHE SIZE

Tag Name cache_mem
Usage cache_mem bytes

Description

'cache_mem' specifies the ideal amount of memory to be used for :

- In-Transit objects
- Hot Objects
- Negative-Cached objects

Data for these objects are stored in 4 KB blocks. This parameter specifies the ideal upper limit on the total size of 4 KB blocks allocated. In–transit objects have priority over the others. When additional space is needed for incoming data, negative–cached and hot objects will be released. In other words, the negative–cached and hot objects will fill up any unused space not needed for in–transit objects. If circumstances require, this limit will be exceeded. Specifically, if your incoming request rate requires more than 'cache_mem' of memory to hold in–transit objects, Squid will exceed this limit to satisfy the new requests. When the load decreases, blocks will be freed until the high–water mark is reached. Thereafter, blocks will be used to store hot objects.

Default cache_mem 8 MB

Example

cache_mem 1 GB

Caution

This parameter does not specify the maximum process size. It places a limit on one aspect of squid's memory usage. Squid uses memory for other things as well. Process will probably become twice or three times bigger than the value put here.

Tag Name cache_swap_low (percent, 0–100)
Usage cache_swap_low percentage

Description

This tag is used to specify the low-water mark for cache object replacement. Replacement begins when the swap (disk) usage is above the low-water mark and attempts to maintain utilization near the low-water mark. If utilization is close to the low-water mark, less replacement is done each time.

Default cache_swap_low 90

Example

cache_swap_low 95

Caution

If you have a large cache, 5% could be hundreds of MB. If this is the case, you may wish to set this number closer together.

Tag Name cache_swap_high (percent, 0–100)

Usage cache swap high percentage

Description

This tag is used to specify the high–water mark for cache object aggressive replacement. As swap utilization gets close to high–water mark, object eviction becomes more aggressive.

Default cache_swap_high 95

Example

cache swap high 98

Caution

If you have a large cache, 5% could be hundreds of MB. If this is the case, you may wish to set this number closer together.

Tag Name maximum_object_size (bytes)
Usage maximum_object_size (bytes)

Description

Objects larger than this size will NOT be saved on disk. The value is specified in kilobytes, and the default is 4 MB. If you wish to get a high BYTES hit ratio, you should probably increase this (one 32 MB object hit counts for 3200 10 KB hits). If you wish to increase speed more than your want to save bandwidth, you should leave this low. During the initial downloading of a file, the downloading time seems to be a normal one, but if you download the same file again, the time it takes for download will be very minimum. This indicates that, the file comes from the Cache.

Default maximum_object_size 4096 KB

Example

maximum object size 2000 KB

Caution

If using the <u>LFUDA</u> replacement policy you should increase this value to maximize the byte hit rate improvement of LFUDA. See <u>replacement policy</u> for a discussion of this policy.

Tag Name minimum_object_size (bytes)
Usage minimum_object_size (bytes)

Description

Objects smaller than this size will NOT be saved on disk. The value is specified in kilobytes, and the default is 0 KB, which means there is no minimum. See <u>maximum object size</u> for more information.

Default minimum_object_size 0 KB

Example

minimum_object_size 2000 KB

Note

See maximum object size, which is reversibly applicable.

Tag Name maximum_object_size_in_memory (bytes)
Usage maximum_object_size_in_memory (bytes)

Description

Objects greater than this size will not be attempted to be kept in the memory cache. This should be set high enough to keep objects accessed frequently in memory to improve performance while, low enough to keep larger objects from hoarding cache_mem.

Default maximum_object_size_in_memory 8 KB

Example

maximum_object_size_in_memory 20 KB

Tag Name ipcache_size (number of entries)
Usage ipcache_size (number of entries)

Description

This tag is used to specify the size of the ipcache.

Default ipcache_size 1024

Tag Name ipcache_low (percent)
Usage ipcache_low percentage

Description

This specifies the low water mark for caching IP addresses.

Default ipcache_low 90

Tag Name ipcache_high (percent)
Usage ipcache_high percentage

Description

This specifies the high water mark for caching IP addresses.

Default ipcache_high 95

Tag Name fqdncache_size

Usage fqdncache_size (number of entries)

Description

This specifies the maximum number of FQDN cache entries.

Default fqdncache_size 1024

Tag Name cache_replacement_policy
Usage cache_replacement_policy policy

Description

The cache replacement policy parameter decides which objects will remain in cache and which objects are evicted (replaced) to create space for the new objects.

LRU: Squid's original list based LRU policy
heap GDSF: Greedy-Dual Size Frequency

• heap LFUDA: Least Frequently Used with Dynamic Aging

• heap LRU: LRU policy implemented using a heap

This applies to any cache_dir lines listed below this.

The LRU policies keep recently referenced objects. i.e., it replaces the object that has not been accessed for the longest time.

The heap GDSF policy optimizes object—hit rate by keeping smaller popular objects in cache. So it has a better chance of getting a hit. It achieves a lower byte hit rate than LFUDA though, since it evicts larger (possibly popular) objects.

The heap LFUDA (Least Frequently Used with Dynamic Aging) policy keeps popular objects in cache regardless of their size and thus optimizes byte hit rate at the expense of hit rate since one large, popular object will prevent many smaller, slightly less popular objects from being cached.

Both policies utilize a dynamic aging mechanism that prevents cache pollution that can otherwise occur with frequency–based replacement policies.

For more information about the GDSF and LFUDA cache replacement policies see http://www.hpl.hp.com/techreports/1999/HPL-1999-69.html and http://fog.hpl.external.hp.com/techreports/98/HPL-98-173.html .

Default cache_replacement_policy lru

Example

cache_replacement_policy heap LFUDA

To use this policy, Squid should be built with configure option —enable—removal—policy=heap or simply —enable—removal—policy.

Caution

If using the LFUDA replacement policy, the value of maximum_object_size should be increased above its default of 4096 KB to maximize the potential byte hit rate improvement of LFUDA. If needed to use other policies than default, squid should be built with configure option —enable_removal_policies.

Tag Name memory_replacement_policy
Usage memory_replacement_policy policy

Description

The memory replacement policy parameter determines which objects are purged from memory, when memory space is needed.

See cache replacement policy for details

Default memory replacement policy lru

LOG FILE PATH NAMES AND CACHE DIRECTORIES

Tag Name cache_dir

Usage cache_dir Type Maxobjsize Directory–Name Mbytes Level–1 Level2 [..]

DISKD:

cache_dir diskd Maxobisize Directory-Name MB L1 L2 Q1 Q2

Description

Type specifies the kind of storage system to use. Most everyone will want to use "ufs" as the type. If you are using Async I/O (—enable async–io) on Linux or Solaris, then you may want to try "aufs" as the type. Async IO support may be buggy, however, so beware.

Maxobjsize refers to the max object size this storedir supports. It is used to initially choose the storedir to dump the object. –1 means 'any size'.

'Directory' is a top-level directory where cache swap files will be stored. If you want to use an entire disk for caching, then this can be the mount-point directory. The directory must exist and be writable by the Squid process. Squid will NOT create any directory.

'Mbytes' is the amount of disk space (MB) to use under this directory.

'Level-1' is the number of first-level subdirectories, which will be created under the 'Directory'.

'Level-2' is the number of second-level subdirectories, which will be created under each first-level directory. To create swap directory use /usr/local/squid/bin/squid -z option.

For the diskd type, Q1 specifies the number of unacknowledged I/O requests when Squid stops opening new files. If this many messages are in the queues, Squid won't open new files. Q2 specifies the number of unacknowledged messages when Squid starts blocking. If this many messages are in the queues, Squid blocks until it receives some replies.

Default cache_dir ufs /usr/local/squid/cache 100 16 256

Example

cache_dir ufs /cache1 5000 16 256 cache_dir ufs /cache2 7000 16 256

Note

Can specify multiple cache_dir lines to spread the cache among different disk partitions. <u>Click Here</u> to find more informations on file systems and cache_dir.

Tag Name cache_access_log

Usage cache_access_log Directory-path/filename

Description

This tag is used to specify the path of the access.log file, which logs the client request activity. It contains an entry for every HTTP and ICP queries received. Log Details can be customized using log mime hdrs_log fqdn_client netmask and emulate httpd log.

See for Detailed information about this log file. See also log icp queries.

Default cache_access_log /usr/local/squid/logs/access.log

Example

cache_access_log /var/log/squid_access.log

Caution

It is safe to set log mime hdrs off.

Tag Name cache log

Usage cache_log Directory-path/filename

Description

This tag is used to set the path of the Cache logging file. This is where general information about the cache's behaviour goes. Amount of data logged to this file can be increased with the <u>debug options</u> tag below.

Default cache_log /usr/local/squid/logs/cache.log

Example

cache_log /var/log/squid_cache.log

Caution

Do not change the default value of <u>debug</u> options unless otherwise needed. Because if debug_options value is high, then logging information goes high. This leads to undesirable growth in log file.

Tag Name cache_store_log

Usage cache_store_log Directory-path/filename

Description

This tag is used to specify the location of the store.log, the file that logs the activities of the storage manager. The file shows which objects are ejected from the cache, and which objects are saved and for how long.

Default cache_store_log /usr/local/squid/logs/store.log

Example

cache_store_log /var/log/squid_store.log

Caution

There are no real utilities to analyze this data. So it is recommended to disable this tag

Note

To disable, enter "none" instead of the filename.

Tag Name cache_swap_log

Usage cache_ swap _log Directory-path/filename

Description

This tag specifies the location for the cache "swap.log." This log file holds the metadata of objects saved on disk. It is used to rebuild the cache during startup. Normally this file resides in the first 'cache_dir' directory, but you may specify an alternate pathname here. Note, you must give a full filename, not just a directory. Since this is the index for the whole object list you CANNOT periodically rotate it.

If you have more than one 'cache_dir', these swap logs will have names such as:

- cache_swap_log.00
- cache_swap_log.01
- cache_swap_log.02

The numbered extension (which is added automatically) corresponds to the order of the 'cache_dir' lines in this configuration file.

Default cache_ swap _log /usr/local/squid/logs/ swap.log

Example

cache_ swap _log /var/log/squid_ swap.log

Caution

If you change the order of the 'cache_dir' lines in this file, then these log files will NOT correspond to the correct 'cache_dir' entry (unless you manually rename them). We recommend that you do NOT use this option. It is better to keep these log files in each 'cache_dir' directory.

Tag Name emulate_httpd_log
Usage emulate_httpd_log on|off

Description

The Cache can emulate the log file format, which many 'httpd' programs use. To disable/enable this emulation, set emulate httpd_log to 'off' or 'on'.

Default emulate_httpd_log off

(By Default Squid Native Log format is used. Since it includes useful information that

Squid-specific log analyzers use).

Example

emulate_httpd_log on

Caution

Before setting this to ON, make sure you have httpd_log file analyzers which will analyze log files and give us useful information.

Tag Name log_ip_on_direct

Usage log_ip_on_direct on|off

Description

This tag is used to enable/disable logging of the destination IP address in the hierarchy log tag when the cache directs the request to the origin server.

Default log_ip_on_direct on

Example

log_ip_on_direct off

Note

Earlier Squid versions logged the hostname here. If you prefer the old way, set this to off.

Tag Name mime_table

Usage mime_table Directory-Path/filename

Description

This tag is used to set the pathname to Squid's MIME table. This file contains Squid's supported mime types.

Default mime_table /usr/local/squid/etc/mime.conf

Caution

Shouldn't need to change this, but the default file contains examples and formatting information if done.

Tag Name log_mime_hdrs
Usage log_mime_hdrs on|off

Description

The Cache can record both the request and the response MIME headers for each HTTP transaction. The headers are encoded safely and will appear as two bracketed fields at the end of the access log (for either the native or httpd-emulated log formats). To enable this logging, set log_mime_hdrs to 'on'.

Default log_mime_hdrs off

Tag Name useragent_log

Usage useragent_log Directory-path/filename

Description

If configured with the "--enable-useragent_log" configure option, Squid will write the User-Agent field from HTTP requests to the filename specified here.

Default useragent_log none (By default useragent_log is disabled.)

Example

useragent_log /var/log/useragent.log

Tag Name referer_log

Usage referer_log Directory-path/filename

Description

If configured with the "--enable-referer_log" configure option, Squid will write the Referer field from HTTP requests to the filename specified here.

Default referer_log none (By default referer_log is disabled.)

Example

referer_log /var/log/referer.log

Tag Name pid_filename

Usage pid filename Directory-path/filename

Description

This tag specifies the location of the file in which Squid writes its process-ids.

Default pid_filename /usr/local/squid/logs/squid.pid

Example

pid_filename /var/lock/squid.pid

Caution

To disable, enter "none".

Tag Name debug options

Usage debug_options section, level

Description

Logging options are set as section, level, where each source file is assigned a unique section. Lower levels result in less output. The magic word "ALL" sets debugging levels for all sections. We recommend normally running with "ALL, 1".

Default debug_options ALL, 1

Example

debug_options ALL, 9

Caution

Full debugging (level 9) can result in a very large log file, so be careful. Normally, running with "ALL, 1" is recommended.

Tag Name log_fqdn Usage log_fqdn on|off

Description

This tag can be set to ON, if you wish to log fully qualified domain names in the access.log.

Default log_fqdn off

Example

log_fqdn on

Caution

To do this, Squid does a DNS lookup of all IP's connecting to it. This can (in some situations) increase latency, which makes your cache seem slower for interactive browsing.

Tag Name client_netmask

Usage client_netmask NETMASK

Description

A netmask for client addresses in log files and cachemgr output. Change this to protect the privacy of your cache clients. A netmask of 255.255.255.0 will log all IP's in that range with the last digit set to '0'.

Default client_netmask 255.255.255.255

Example

client_netmask 255.255.255.0

Caution

When you enable this tag, then the client's visit pages cannot be identified.

SUPPORT FOR EXTERNAL FUNCTIONS

Tag Name ftp_user

Usage ftp_user username

Description

This tag can be used if you want the anonymous login password to be more informative. You can set this to something reasonable for your domain, like squid@squid.visolve.com. The reason why this is domain less by default is that the request can be made on the behalf of a user in any domain, depending on how the cache is used. Some ftp servers also validate the email address. For detailed explanation Click Here

Default ftp_user Squid@

Example

ftp_user squid@squid.visolve.com

Tag Name ftp_list_width

Usage ftp_list_width number

Description

This tag is used to set the width of ftp listings. This should be set to fit in the width of a standard browser. Setting this too small can cut off long filenames when browsing ftp sites.

Default ftp_list_width 32

Example

ftp list width 64

Tag Name ftp_passive
Usage ftp_passive on|off

Description

If your firewall does not allow Squid to use passive connections, then turn off this option.

Default ftp_passive on

Tag Name cache_dns_program

Usage cache_dns_program program

Description

This tag is used to specify the location of the executable for dns lookup process. This option is only available if Squid is rebuilt with the --disable-internal-dns option.

The external dns program uses the normal resolver libraries which is a much more mature DNS client. The internal DNS client still has some problems with special cases in the DNS protocol. However, things has gotten a lot better compared to the early version so any of these issues are not likely to be noticed, and is heavily out weighted by the improved performance and reliability. But drawbacks of the external DNS helper are likely to be noticed when using external DNS. If DNS lookups are slow then the external DNS helper will hit the roof and no further DNS lookups can complete (some Squid versions even abort in such case).

Recommendation: Use the internal DNS client unless an experience problem which forces to use the external one until a fix is provided.

Default cache_dns_program /usr/local/squid/libexec/squid/

Example

cache_dns_program /usr/local/squid/bin/dnsserver

Tag Name dns_children

Usage dns_children number (1 to 32)

Description

The number of processes spawn to service DNS name lookups are specified here. For heavily loaded caches on large servers, There is probably need to increase this value to at least 10. The maximum is 32. The default is 5. This option is only available if Squid is rebuilt with the —disable—internal—dns option. The number of processes increases, the performance of DNS lookups also increases. It is recommended to use maximum child processes (32).

The limitation that the external dnsserver helper can only handle one DNS lookup at a time and cannot be aborted prior to the 2 minutes DNS lookup time—out. The internal DNS client does not have this limitation and can handle any number of concurrent lookups. See the description of cache_dns_program.

Default dns_children 5

Example

dns_children 10

Caution

You must have at least one dosserver process

Tag Name dns_retransmit_interval

Usage dns retransmit interval time-units

Description

This tag is used to set the initial retransmit interval for DNS queries. The interval is doubled each time all configured DNS servers have been tried

Default dns_retransmit_interval 5 seconds

Tag Name dns_timeout

Usage dns_timeout time-units

Description

This tag is used to set the DNS Query time-out. If no response is received to a DNS query within this time then all DNS servers for the gueried domain is assumed to be unavailable

Default dns_timeout 5 minutes

Tag Name dns_defnames
Usage dns_defnames on|off

Description

Normally the 'dnsserver' disables the RES_DEFNAMES resolver option (see res_init(3)). This prevents caches in a hierarchy from interpreting single component hostnames locally. To allow dnsserver handle single component names, enable this option. This option is only available if Squid is rebuilt with the —disable—internal—dnsoption.

Default dns_defnames off

Tag Name dns_nameservers

Usage dns_nameservers IPaddress

Description

This tag can be used if you want to specify a list of DNS name servers (IP addresses) to use instead of those given in your /etc/resolv.conf file

Default dns_nameservers none

Example

dns_nameservers 172.16.1.102 204.54.6.20

Tag Name diskd_program

Usage diskd_program path/to/diskdfile

Description

To specify the location of the diskd executable. Note that this is only useful if you have compiled in diskd as one of the store io modules.

Default diskd_program /usr/local/squid/libexec/squid/diskd

Example

diskd_program /local/squid/bin/diskd

Tag Name unlinkd_program

Usage unlinkd_program path/to/unlinkedfile

Description

This tag specifies the location of the <u>unlinkd program</u>. This isn't needed if you are using async-io since it's handled by a thread

Default unlinkd_program /usr/local/squid/libexec/squid/unlinkd

Example

unlinkd_program /usr/local/squid/bin/unlinkd

Tag Name pinger_program

Usage pinger_program path/to/pingerfile

Description

This tag is used to specify the location of the executable for the <u>pinger process</u>. This is only useful if you configured Squid (during compilation) with the '--enable-icmp' option

Default pinger_program /usr/local/squid/libexec/squid/

Example

pinger_program /usr/local/squid/bin/pinger

Tag Name redirect_program

Usage redirect_program path/to/redirector

Description

This tag is used to specify the location of the executable for the URL redirector. Since they can perform almost any function there isn't one included. <u>Click here</u> for information on how to write one. By default, a redirector is not used

Default redirect_program none

Example

redirect_program /usr/local/squirm/bin/squirm

Tag Name redirect_children

Usage redirect_children number

Description

This tag is used to set the number of redirect processes to spawn

Default redirect_children 5

Example

redirect children 10

Caution

If you start too few Squid will have to wait for them to process a back log of URLs, slowing it down. If you start too many they will use RAM and other system resources.

Tag Name redirect_rewrites_host_header
Usage redirect_rewrites_host_header on|off

Description

By default Squid rewrites any Host: header in redirected requests. If you are running a accelerator then this may not be a wanted effect of a redirector

Default redirect_rewrites_host_header on

Tag Name redirect_access

Usage redirector_access allow|deny

Description

If defined, this access list specifies which requests are sent to the redirector processes

Default All requests are sent

Example

redirector_access allow aclname

Tag Name authenticate_program

Usage authenticate_program path/to/program path/to/passwdfile

Description

This tag is used to specify the command for the external authenticator. Such a program reads a line containing "username password" and replies "OK" or "ERR" in an endless loop. If you use an authenticator, make sure you have 1 acl of type_proxy_auth. If you want to use the traditional proxy authentication, jump over to the ../auth_modules/NCSA directory and give

make

make install

The source for this program is included in the source distribution, in the auth_modules/NCSA directory. You should now have an ncsa_authprogram in the same directory where your squid binary lives. You may need to create a password file. If you have been using proxy authentication before, you probably already have such a file. You can get apache's <a href="https://

Default authenticate_program none By default, the authenticator_program is not used

Example

authenticate_program /usr/local/squid/bin/ncsa_auth /usr/local/squid/etc/passwd

Tag Name authenticate_children

Usage authenticate_children number

Description

The number of authenticator processes to spawn (default 5).

Default authenticate_children 5

Caution

If you start too few Squid will have to wait for them to process aback log of usercode/password verifications, slowing it down. When password verifications are done via a (slow) network you are likely to need lots of authenticator processes.

Tag Name authenticate_ttl

Usage authenticate_ttl seconds

Description

This tag is used to specify the time a checked username/password combination remains cached (default 3600). If a wrong password is given for a cached user, the user gets removed from the username/password cache forcing a revalidation.

Default authenticate_ttl 3600

Tag Name authenticate_ip_ttl

Usage authenticate_ip_ttl number

Description

With this option you control how long a proxy authentication will be bound to a specific IP address. If a request using the same user name is received during this time then access will be denied and both users are required to reauthenticate them selves. The idea behind this is to make it annoying for people to share their password to their friends, but yet allow a dialup user to reconnect on a different dialup port. The default is 0 to disable the check. Recommended values if you have dialup users are no more than 60 (seconds). If all your users are stationary then higher values may be used.

Default authenticate_ip_ttl 0

Example

authenticate_ip_ttl 3600

Tag Name authenticate_ip_ttl_is_strict
Usage authenticate_ip_ttl_is_strict on|off

Description

This option makes authenticate_ip_ttl a bit stricter. With this enabled authenticate_ip_ttl will deny all access from other IPaddresses until the TTL has expired, and the IP address "owning" the userid will not be forced to reauthenticate.

Default authenticate ip ttl is strict on

OPTIONS FOR TUNING THE CACHE

Tag Name wais_relay_host
wais_relay_port

Usage wais_relay_host
wais_relay_port

Description

Relay WAIS request to host (1st arg) at port (2 arg).

Default wais_relay_port 0

Example

wais_relay_host localhost

Tag Name request_header_max_size
Usage request_header_max_size (KB)

Description

This specifies the maximum size for HTTP headers in a request. Request headers are usually relatively small (about 512 bytes). Placing a limit on the request header size will catch certain bugs (for example with persistent connections) and possibly buffer–overflow or denial–of–service attacks.

Default request_header_max_size 10 KB

Tag Name request_body_max_size
Usage request_body_max_size (KB)

Description

This specifies the maximum size for an HTTP request body. In other words, the maximum size of a PUT/POST request. A user, who attempts to send a request with a body larger than this limit receives an "Invalid Request" error message. If you set this parameter to a zero, there will be no limit imposed.

Default request_body_max_size 1 MB

Tag Namereply_body_max_sizeUsagereply_body_max_size (KB)

Description

This option specifies the maximum size of a reply body. It can be used to prevent users from downloading very large files, such as MP3's and movies. The reply size is checked twice. First when we get the reply headers, we check the content–length value. If the content length value exists and is larger than this parameter, the request is denied and the user receives an error message that says "the request or reply is too large." If there is no content–length, and the reply size exceeds this limit, the client's connection is just closed and they will receive a partial reply.

Default reply_body_max_size 0

If this parameter is set to zero (the default), there will be no limit imposed.

Caution

Downstream caches probably cannot detect a partial reply if there is no content-length header, so they will cache partial responses and give them out as hits. You should NOT use this option, if you have downstream caches.

Tag Name refresh_pattern

Usage refresh_pattern [-i] regex min percent max [options]

Description

'Min' is the time (in minutes) an object without an explicit expiry time should be considered fresh. The recommended value is 0; any higher values may cause dynamic applications to be erraneously cached unless the application designer has taken the appropriate actions.

'Percent' is a percentage of the objects age (time since last modification age) an object without explicit expiry time will be considered fresh.

'Max' is an upper limit on how long objects without an explicit expiry time will be considered fresh.

Options:

override-expire override-lastmod reload-into-ims ignore-reload

override—**expire** enforces min age even if the server sent a Expires: header. Doing this VIOLATES the HTTP standard. Enabling this feature could make you liable for problems, which it causes.

override-lastmod enforces min age even on objects that was modified recently.

reload-into-ims changes client no-cache or ``reload" to If-Modified-Since requests. Doing this VIOLATES the HTTP standard. Enabling this feature could make you liable for problems, which it causes.

ignore-reload ignores a client no-cache or ``reload" header. Doing this VIOLATES the HTTP standard. Enabling this feature could make you liable for problems, which it causes.

Basically a cached object is: (the order is changed from 1.1.X)

FRESH if expires br>STALE if age >max FRESH if Im-factor br>STALE FRESH if age else STALE

The refresh_pattern lines are checked in the order listed here. The first entry which matches is used. If none of the entries match, then the default will be used.

Default refresh_pattern ^ftp: 1440 20% 10080

refresh_pattern ^gopher: 1440 0% 1440

refresh_pattern . 0 20% 4320

Tag Name reference_age

Usage reference_age time-units

Description

As a part of normal operation, Squid performs Least Recently Used removal of cached objects. The LRU age for removal is computed dynamically, based on the amount of disk space in use. The dynamic value can be seen in the Cache Manager 'info' output.

The 'reference_age' parameter defines the maximum LRU age

Default reference_age 1 year

Example

For example, setting reference_age to '1 week' will cause objects to be removed, if they have not been accessed for a week or more. The default value is one year.

Specify a number here, followed by units of time. For example:

1 week

3.5 days

4 months

2.2 hours

Caution

This parameter is not used when using the enhanced replacement policies, GDSH or LFUDA.

quick_abort_min
quick_abort_max

quick_abort_pct

Usage quick_abort_min (KB)

quick_abort_max (KB)
quick_abort_pct (percent)

Description

The cache can be configured to continue downloading aborted requests. This may be undesirable on slow (e.g. SLIP) links and/or very busy caches. Impatient users may tie up file descriptors and bandwidth by repeatedly requesting and immediately aborting downloads.

When the user aborts a request, Squid will check the quick_abort values to the amount of data transferred until then.

If the transfer has less than 'quick_abort_min' KB remaining, it will finish the retrieval. Setting 'quick_abort_min' to -1 will disable the quick_abort feature.

If the transfer has more than 'quick abort max' KB remaining, it will abort the retrieval.

If more than 'quick_abort_pct' of the transfer has completed, it will finish the retrieval.

Default quick_abort_min 16 KB

quick_abort_max 16 KB quick_abort_pct 95

Caution

This may be undesirable on slow (e.g. SLIP) links and/or very busy caches.

Tag Name negative_ttl

Usage negative_ttl time-units

Description

Time-to-Live (TTL) for failed requests. Certain types of failures (such as "connection refused" and "404 Not Found") are negatively-cached for a configurable amount of time. Note that, this is different from negative caching of DNS lookups.

Default The default is 5 minutes.

negative_ttl 5 minutes

Tag Name positive_dns_ttl

Usage positive_dns_ttl time-units

Description

Time-to-Live (TTL) for positive caching of successful DNS lookups. If you want to minimize the use of Squid's ipcache, set this to 1, not 0.

Default Default is 6 hours (360 minutes).

positive_dns_ttl 6 hours

Tag Name negative_dns_ttl

Usage negative_dns_ttl time-units

Description

Time-to-Live (TTL) for negative caching of failed DNS lookups

Default negative_dns_ttl 5 minutes

Tag Name range_offset_limit

Usage range_offset_limit (bytes)

Description

Sets an upper limit on how far into the file a Range request may be to cause Squid to prefetch the whole file. If beyond this limit, then Squid forwards the Range request as it is and the result is NOT cached.

This is to stop a far ahead range request (lets say start at 17MB) from making Squid fetch the whole object up to that point before sending anything to the client.

A value of -1 causes Squid to always fetch the object from the beginning so that it may cache the result. (2.0 style).

A value of 0 causes Squid to never fetch more than the client requested. (default) .

Default range_offset_limit 0 KB

TIMEOUTS

Tag Name connect_timeout

Usage connect_timeout seconds

Description

The time duration until which squid waits for the reply from the origin server. If it exceeds this squid will respond with the error message "Connection timed out" to the client

Default connect_timeout 120 seconds

Example

connect_timeout 180 seconds

Caution

Increasing the time here will lead to annoying of browser user.

Tag Name peer_connect_timeout

Usage peer connect timeout time-units

Description

This parameter specifies how long to wait for a pending TCP connection to a peer cache. The default is 30 seconds. You may also set different timeout values for individual neighbors with the 'connect-timeout' option on a 'cache_peer' line

Default peer_connect_timeout 30 seconds

Example

peer_connect_timeout 45 seconds

Caution

Setting of peer_connect_timeout to more than 30 seconds will be a performance issue.

Tag Name siteselect_timeout

Usage siteselect_timeout time-units

Description

Site select timeout is the timeout for URN to the multiple URLs selection. URN is a protocol designed for location–independent name resolution, specified in RFC 2169. This option configures the siteselect_timeout directive and defaults to 4 seconds. You do not need to change this.

Default siteselect_timeout 4 seconds

Example

siteselect_timeout 6 seconds

Tag Name read timeout

Usage read_timeout time-units

Description

The read_timeout is applied on server–side connections. After each successful read(), the timeout will be extended by this amount. If no data is read again after this amount of time, the request is aborted and logged with ERR READ TIMEOUT. The default is 15 minutes.

Default read_timeout 15 minutes

Example

read timeout 10 minutes

Tag Name request_timeout

Usage request_timeout seconds

Description

This tag specifies Squid the time in seconds to wait for an HTTP request after connection establishment. For persistent connections, Squid will wait this long after the previous request completes

Default request_timeout 30 seconds

Example

request_timeout 20 seconds

Tag Name client lifetime

Usage client_lifetime time-units

Description

The maximum amount of time that a client (browser) is allowed to remain connected to the cache process. This protects the Cache from having a lot of sockets (and hence file descriptors) tied up in a CLOSE_WAIT state from remote clients that go away without properly shutting down (either because of a network failure or because of a poor client implementation). The default is one day, 1440 minutes

Default client_lifetime 1 day

Example

client_lifetime 1000 minutes

Caution

The default value is intended to be much larger than any client would ever need to be connected to your cache. You should probably change client_lifetime only as a last resort. If you seem to have many client connections tying up filedescriptors, we recommend first tuning the <u>read_timeout</u>, <u>request_timeout</u>, <u>pconn_timeout</u> and <u>quick_abort</u> values. If the more file descriptors are in use then the memory in use will also increase, which is also a performance issue.

Tag Name half_closed_clients
Usage half_closed_clients on|off

Description

Some clients may shutdown the sending side of their TCP connections, while leaving their receiving sides open. Sometimes, Squid cannot tell the difference between a <u>half-closed</u> and a <u>fully-closed</u> TCP connection. By default, half-closed client connections are kept open until a read(2) or write(2) on the socket returns an error. Change this option to 'off' and Squid will immediately close client connections when read (2) returns "no more data to read

Default half_closed_clients on

Example

half_closed_clients off

Tag Name pconn_timeout

Usage pconn_timeout seconds

Description

<u>Persistent timeout</u> is the timeout value for persistent connections. Squid closes persistent connections if they are idle for this amount of time. Persistent connections are disabled entirely if this option is set to a value less than 10 seconds. The default is 120 seconds and likely does not need to be changed.

Default pconn_timeout 120 seconds

Example

pconn_timeout 60 seconds

Tag Name ident_timeout

Usage ident_timeout seconds

Description

Maximum time to wait for IDENT requests. If this is too high, and you enabled 'ident_lookup', then you might be susceptible to denial-of-service by having many ident requests going at once. Only src type ACL checks are fully supported. An src domainACL might work at times, but it will not always provide the correct result. This option may be disabled by using --disable-ident with the configure script

Default ident_timeout 10 seconds

Example

ident timeout 5 seconds

Tag Name shutdown_lifetime

Usage shutdown_lifetime time-units

Description

When <u>SIGTERM</u> or <u>SIGHUP</u> is received, the cache is put into "shutdown pending" mode until all active sockets are closed. This value is the lifetime to set for all open descriptors during shutdown mode. Any active clients after this many seconds will receive a 'timeout' message

Default shutdown_lifetime 30 seconds

Example

shutdown_lifetime 45 seconds

Caution

If this time is set to be too low then some file descriptors may remain open which will be a performance issue in memory usage.

ACCESS CONTROLS

Tag Name acl

Usage acl aclname acltype string1 ... | "file"

Description

This tag is used for defining an access List. When using "file" the file should contain one item per line By default, regular expressions are CASE-SENSITIVE. To make them case-insensitive, use the -i option.

Acl Type: src

Description

This will look client IP Address.

Usage acl aclname src ip-address/netmask.

Example

- 1. This refers to the whole Network with address 172.16.1.0 acl aclname src 172.16.1.0/24
- 2. This refers specific single IP Address acl aclname src 172.16.1.25/32
- 3.This refers range of IP Addresses from 172.16.1.25–172.16.1.35 acl aclname src 172.16.1.25–172.16.1.35/32

Note

While giving Netmask caution must be exerted in what value is given

Acl Type: dst

Description

This is same as src with only difference refers Server IPaddress. First Squid will dns–lookup for IPAddress from the domain–name, which is in request header. Then this acl is interpreted.

Usage acl aclname dst ip-address/netmask.

Acl Type: srcdomain

Description

Since squid needs to reverse dns lookup (from client ip-address to client domain-name) before this acl is interpreted, it can cause processing delays. This lookup adds some delay to the request.

Usage acl aclname srcdomain domain-name

Example

acl aclname srcdomain .kovaiteam.com

Note

Here "." is more important.

Acl Type: dstdomain

Description

This is the effective method to control specific domain

Usage acl aclname dstdomain domain–name

Example

acl aclname dstdomain .kovaiteam.com Hence this looks for *.kovaiteam.com from URL Hence this looks for *.kovaiteam.com from URL

Note

Here "." is more important.

Acl Type: srcdom_regex

Description

Since squid needs to reverse dns lookup (from client ip-address to client domain-name) before this acl is interpreted, it can cause processing delays. This lookup adds some delay to the request

Usage acl aclname srcdom_regex pattern

Example

acl aclname srcdom_regex kovai

Hence this looks for the word kovai from the client domain name

Note

Better avoid using this acl type to be away from latency.

Acl Type: dstdom_regex

Description

This is also an effective method as dstdomain

Usage acl aclname dstdom_regex pattern

Example

acl aclname dstdom_regex kovai

Hence this looks for the word kovai from the client domain name

Acl Type: time

Description

Time of day, and day of week

Usage acl aclname time [day-abbreviations] [h1:m1-h2:m2]

day-abbreviations:

S – Sunday M – Monday

T – Tuesday
W – Wednesday
H – Thursday

F – Friday A – Saturday

h1:m1 must be less than h2:m2

Example

acl ACLTIME time M 9:00-17:00

ACLTIME refers day of Monday from 9:00 to 17:00.

Acl Type: url_regex

Description

The url_regex means to search the entire URL for the regular expression you specify. Note that these regular expressions are case-sensitive. To make them case-insensitive, use the -i option.

Usage acl aclname url_regex pattern

Example

acl ACLREG url_regex cooking

ACLREG refers to the url containing "cooking" not "Cooking"

Acl Type: urpath_regex

Description

The urpath_regex regular expression pattern matching from URL but without protocol and hostname. Note that these regular expressions are case—sensitive

Usage acl aclname urlpath_regex pattern

Example

acl ACLPATHREG urlpath_regex cooking

ACLPATHREG refers only containing "cooking" not "Cooking"; and without referring protocol and hostname. If URL is http://www.visolve.com/folder/subdir/cooking/first.html then this acltype only looks after http://www.visolve.com/ .

Acl Type: port

Description

Access can be controlled by destination (server) port address

Usage acl aclname port port-no

Example

This example allows http_access only to the destination 172.16.1.115:80 from network 172.16.1.0

acl acceleratedhost dst 172.16.1.115/255.255.255.255 acl acceleratedport port 80 acl mynet src 172.16.1.0/255.255.255.0 http_access allow acceleratedhost acceleratedport mynet http_access deny all

Acl Type: proto

Description

This specifies the transfer protocol

Usage acl aclname proto protocol

Example

acl aclname proto HTTP FTP

This refers protocols HTTP and FTP

Acl Type: method

Description

This specifies the type of the method of the request

Usage acl aclname method method-type

Example

acl aclname method GET POST

This refers get and post methods only

Acl Type: browser

Description

Regular expression pattern matching on the request's user-agent header

Usage acl aclname browser pattern

Example

acl aclname browser MOZILLA

This refers to the requests, which are coming from the browsers who have "MOZILLA" keyword in the user-agent header.

Acl Type: ident

Description

String matching on the user's name

Usage acl aclname ident username ...

Example

You can use ident to allow specific users access to your cache. This requires that an ident server process runs on the user's machine(s). In your squid.conf configuration file you would write something like this:

ident_lookup on acl friends ident kim lisa frank joe http_access allow friends http_access deny all

Acl Type: ident_regex

Description

Regular expression pattern matching on the user's name. String match on ident output. Use REQUIRED to accept any non–null ident

Usage acl aclname ident_regex pattern

Example

You can use ident to allow specific users access to your cache. This requires that an ident server process run on the user's machine(s). In your squid.conf configuration file you would write something like this:

ident_lookup on acl friends ident_regex joe This looks for the pattern "joe" in username

Acl Type: src_as

Description

source (client) Autonomous System number

Acl Type: dst_as

Description

destination (server) Autonomous System number

Acl Type: proxy_auth

Description

User authentication via external processes. proxy_auth requires an EXTERNAL authentication program to check username/password combinations (see <u>authenticate_program</u>).

Usage acl aclname proxy_auth username...

use REQUIRED instead of username to accept any valid username

Example

acl ACLAUTH proxy_auth usha venkatesh balu deepa

This acl is for authenticating users usha, venkatesh, balu and deepa by external programs.

Warning

proxy_auth can't be used in a transparent proxy. It collides with any authentication done by origin servers. It may seem like it works at first, but it doesn't. When a Proxy–Authentication header is sent but it is not needed during ACL checking the username is NOT logged in access.log.

Acl Type: proxy_auth_regex

Description

This is same as proxy_auth with a difference. That is it matches the pattern with usernames, which are given in authenticate_program

Usage acl aclname proxy_auth_regex [-i] pattern...

Acl Type: snmp_community

Description

SNMP community string matching

Example

acl aclname snmp_community public snmp_access aclname

Acl Type: maxconn

Description

A limit on the maximum number of connections from a single client IP address. It is an ACL that will be true if the user has more than maxconn connections open. It is used in http_access to allow/deny the request just like all the other acl types.

Example

acl someuser src 1.2.3.4 acl twoconn maxconn 5 http_access deny someuser twoconn http_access allow !twoconn

Note

maxconn acl requires client_db feature, so if you disabled that (client_db off) maxconn won't work.

Acl Type: req_mime_type

Usage acl aclname req_mime_type pattern

Description

Regular expression pattern matching on the request content-type header

Example

acl aclname req_mime_type text

This acl looks for the pattern "text" in request mime header

Acl Type: arp

Usage acl aclname arp ARP-ADDRESS

Description

Ethernet (MAC) address matching This acl is supported on Linux, Solaris, and probably BSD variants.

To use ARP (MAC) access controls, you first need to compile in the optional code.

Do this with the --enable-arp-acl configure option:

% ./configure --enable-arp-acl ...

% make clean

% make

If everything compiles, then you can add some ARP ACL lines to your squid.conf

Default acl all src 0.0.0.0/0.0.0.0

acl manager proto cache_object

acl localhost src 127.0.0.1/255.255.255.255

acl SSL_ports port 443 563

acl Safe_ports port 80 21 443 563 70 210 1025-65535

acl Safe_ports port 280 # http-mgmt acl Safe_ports port 488 # gss-http acl Safe_ports port 591 # filemaker acl Safe_ports port 777 # multiling http acl CONNECT method CONNECT

Example

acl ACLARP arp 11:12:13:14:15:16

ACLARP refers MACADDRESS of the ethernet 11:12:13:14:15:16

Note

Squid can only determine the MAC address for clients that are on the same subnet. If the client is on a different subnet, then Squid cannot find out its MAC address.

Tag Name http access

Usage http_access allow|deny [!]aclname ...

Description

Allowing or denying http access based on defined access lists

If none of the "access" lines cause a match, the default is the opposite of the last line in the list. If the last line was deny, then the default is allow. Conversely, if the last line is allow, the default will be deny. For these reasons, it is a good idea to have a "deny all" or "allow all" entry at the end of your access lists to avoid potential confusion

Default http_access allow manager localhost

http_access deny manager http_access deny !Safe_ports

http_access deny CONNECT !SSL_ports

http_access deny all

If there are no "access" lines present, the default is to allow the request

Example

- 1. To allow http access for only one machine with MAC Address 00:08:c7:9f:34:41
- 2. To restrict access to work hours (9am 5pm, Monday to Friday) from IP 192.168.2/24
- 3. Can i use multitime access control list for different users for different timing
- 4. Rules are read from top to bottom

Caution

The deny all line is very important. After all the http_access rules, if access isn't denied, it's ALLOWED!! So, specifying a LOT of http_access allow rules, and forget the deny all after them, is the same of NOTHING. If access isn't allowed by one of your rules, the default action (ALLOW) will be triggered. So, don't forget the deny all rule AFTER all the rules.

And, finally, don't forget rules are read from top to bottom. The first rule matched will be used. Other rules won't be applied. Click here to See examples.

Tag Name icp_access

Usage icp_access allow|deny [!]aclname ...

Description

icp_access allow|deny [!]aclname ...

Default icp_access deny all

Example

icp_access allow all - Allow ICP queries from everyone

Tag Name miss_access

Usage miss_access allow|deny [!]aclname...

Description

Used to force your neighbors to use you as a sibling instead of a parent. For example:

acl localclients src 172.16.0.0/16 miss_access allow localclients miss_access deny !localclients

This means that only your local clients are allowed to fetch MISSES and all other clients can only fetch HITS.

Default By default, allow all clients who passed the http_access rules to fetch MISSES from us.

miss_access allow all

Tag Name cache_peer access

Usage cache_peer_access cache-host allow|deny [!]aclname ...

Description

Similar to 'cache peer domain' but provides more flexibility by using ACL elements.

The syntax is identical to 'http_access' and the other lists of ACL elements. See 'http_access' for further reference.

Default none

Example

The following example could be used, if we want all requests from a specific IP address range to go to a specific cache server (for accounting purposes, for example). Here, all the requests from the 10.0.1.* range are passed to proxy.visolve.com, but all other requests are handled directly.

Using acls to select peers,

acl myNet src 10.0.0.0/255.255.255.0 acl cusNet src 10.0.1.0/255.255.255.0 acl all src 0.0.0.0/0.0.0.0 cache_peer proxy.visolve.com parent 3128 3130 cache_peer_access proxy.visolve.com allow custNet cache_peer_access proxy.visolve.com deny all

Tag Name proxy_auth_realm
Usage proxy_auth_realm string

Description

Specifies the realm name, which is to be reported to the client for proxy authentication (part of the text the user will see when prompted for the username and password).

Default proxy_auth_realm Squid proxy_caching web server

Example

proxy_auth_realm My Caching Server

Tag Name ident_lookup_access

Usage ident_lookup_access allow|deny aclname...

Description

A list of ACL elements, which, if matched, cause an ident (RFC 931) lookup to be performed for this request. For example, you might choose to always perform ident lookups for your main multi–user Unix boxes, but not for your Macs and PCs

Default By default, ident lookups are not performed for any requests

ident_lookup_access deny all

Example

To enable ident lookups for specific client addresses, you can follow this example:

acl ident_aware_hosts src 198.168.1.0/255.255.255.0 ident_lookup_access allow ident_aware_hosts ident_lookup_access deny all

Caution

This option may be disabled by using —disable—ident with the configure script.

Examples:

(1) To allow http_access for only one machine with MAC Address 00:08:c7:9f:34:41

To use MAC address in ACL rules. Configure with option -enable-arp-acl.

acl all src 0.0.0.0/0.0.0.0 acl pl800_arp arp 00:08:c7:9f:34:41 http_access allow pl800_arp http_access deny all

(2) To restrict access to work hours (9am - 5pm, Monday to Friday) from IP 192.168.2/24

acl ip_acl src 192.168.2.0/24 acl time_acl time M T W H F 9:00–17:00 http_access allow ip_acl time_acl http_access deny all

(3) Can i use multitime access control list for different users for different timing.

AcIDefnitions

acl abc src 172.161.163.85 acl xyz src 172.161.163.86 acl asd src 172.161.163.87 acl morning time 06:00–11:00 acl lunch time 14:00–14:30 acl evening time 16:25–23:59

Access Controls http_access allow abc morning http_access allow xyz morning lunch http_access allow asd lunch

This is wrong. The description follows:

Here access line "http access allow xyz morning lunch" will not work. So ACLs are interpreted like this ...

http_access RULE statement1 AND statement2 AND statement3 OR http_access ACTION statement1 AND statement2 AND statement3 OR

.....

So, the ACL "http_access allow xyz morning lunch" will never work, as pointed, because at any given time, morning AND lunch will ALWAYS be false, because both morning and lunch will NEVER be true at the same time. As one of them is false, and acl uses AND logical statement, 0/1 AND 0 will always be 0 (false).

That's because this line is in two. If now read:

http_access allow xyz AND morning OR http_access allow xyz lunch

If request comes from xyz, and we're in one of the allowed time, one of the rules will match TRUE. The other will obviously match FALSE. TRUE OR FALSE will be TRUE, and access will be permitted.

Finally Access Control looks...

http_access allow abc morning http_access allow xyz morning http_access allow xyz lunch http_access allow asd lunch http_access deny all

(4) Rules are read from top to bottom. The first rule matched will be used. Other rules won't be applied.

Example:

http_access allow xyz morning

http_access deny xyz http_access allow xyz lunch

If xyz tries to access something in the morning, access will be granted. But if he tries to access something at lunchtime, access will be denied. It will be denied by the deny xyz rule, that was matched before the 'xyz lunch' rule.

ADMINISTRATIVE PARAMETERS

Tag Name cache_mgr

Usage cache_mgr Administrator mailid

Description

Using this tag, we can specify the email–address of the local cache manager who will receive mail, if the cache dies. The default is "webmaster." In case squid dies, the mail will be sent to the given mailid.

Default cache_mgr webmaster

Example

cache_mgr balu

Tag Name cache_effective_user

Usage cache_effective_user userid

Description

If the cache is run as root, it will change its effective/real UID to the UID specified below. The default is to change the UID to nobody. If Squid is not started as root, the default is to keep the current UID. Note that, if Squid is not started as root, then you cannot set http_port to a value lower than 1024.

If Squid is started with the userid squid, then the <u>cache_effective_user</u> will be given as squid. If it is started as root then the default value will be taken

Default cache effective user nobody

Example

cache_effective_user squid

Caution

If the above directive is not configured properly then Squid will have problems in starting.

Tag Name cache_effective_group

Usage cache_effective_group groupid

Description

If the cache is run as root, it will change its effective/real GID to the GID specified below. The default is to change the GID to nogroup. If Squid is not started as root, the default is to keep the current GID. Note that if Squid is not started as root then you cannot set http_port to a value lower than 1024.

If the squid started with the groupid squid then the cache_effective_group will be given as squid. If it is started as root, then the default value will be taken. For further info on the above two tags, see Effective user and group

Default cache_effective_group nogroup

Example

cache effective group squid

Caution

If it is not configured properly, then squid may run in to problem.

Tag Name visible_hostname

Usage visible_hostname anyhostname

Description

If you want to present a special hostname in error messages, etc then define this. Otherwise, the return value of gethostname () will be used. If you have multiple caches in a cluster and get errors about IP–forwarding, you must set them to have individual names with this setting. When the error message appears in the browser, it will show as it is generated from the visible hostname.

Default none

Example

visible_hostname www.visolve.com

Tag Name unique_hostname

Usage unique_hostname hostname

Description

If you want to have multiple machines with the same 'visible_hostname' then you must give each machine a different unique_hostname' so that forwarding loops can be detected. In brief, Just set visible_hostname to the address the clients connects to, and unique_hostname to the externally visible address of each proxy. (address == registered domain name)

Default none

Example

unique_hostname www.kovaiteam.com

Tag Name hostname_aliases
Usage hostname_aliases

Description

A list of other DNS names that your cache has. This option is used to detect internal requests (Cache Digests), when a cache has more than one hostname in use.

Default none

Example

hostname aliases

OPTIONS FOR THE CACHE REGISTRATION SERVICE

This section contains parameters for the (optional) cache announcement service. This service is provided to help cache administrators locate one another in order to join or create cache hierarchies.

An 'announcement' message is sent (via UDP) to the registration service by Squid. By default, the announcement message is NOT SENT unless you enable it with 'announce_period' below.

The announcement message includes your hostname, plus the following information from this configuration file:

• http port

- icp port
- cache mgr

All current information is processed regularly and made available on the Web at http://ircache.nlanr.net/Cache/Tracker/

Tag Name announce_period

Usage announce_period time units

Description

This is how frequently to send cache announcements. To announce your cache, enable this tag.

Default The default is '0' which disables sending the announcement messages.

announce_period 0

Example

To send cache announcements every day, use this line

announce_period 1 day

Tag Name announce_host announce_port

Usage announce_host hostname

announce_port port

Description

announce host and announce port set the hostname and port number where the registration message will be sent.

Default Hostname will default to 'tracker.ircache.net' and port will default to 3131.

announce_host tracker.ircache.net

announce_port 3131

Example

announce_host cache.kovaiteam.com

announce_port 3131

Tag Name announce_file

Usage announce_file filename

Description

If the 'filename' argument is given, the contents of that file will be included in the announce message. See also announce_host and announce_port.

Default none

HTTPD-ACCELERATOR OPTIONS

Tag Name httpd_accel_host

Usage httpd_accel_host hostname(IP)|virtual

Description

This tag is used to set the hostname of the accelerated server. It is possible to have only one destination server and

hence there can be only one occurrence of this line. If you are going to accelerate more than one server, or transparently cache traffic, you will have to use the word virtual instead of a hostname here

Default none

Example

httpd_accel_host 172.16.1.115 httpd_accel_host virtual httpd_accel_host CACHE

Caution

Enabling httpd_accel_host disables proxy-caching and ICP. If you want these features enabled also, then set the httpd_accel_with_proxy' option.

Tag Name httpd_accel_port
Usage httpd_accel_port port

Description

Accelerated requests can only be forwarded to one port: There is no table that associates accelerated hosts and a destination port. Squid will connect to the port that you set the httpd_accel_port value to. When acting as a front-end for a web server on the local machine, you will set up the web server to listen for connections on a different port (8000, for example), and set this squid.conf option to match the same value. If, on the other hand, you are forwarding requests to a set of slow backend servers, they will almost certainly be listening to port 80 (the default web-server port), and this option will need to be set to 80. If you want virtual port support then specify the port as "0"

Default none

Example

httpd_accel_port 80 httpd_accel_port 8000

Tag Name httpd_accel_single_host
Usage httpd_accel_single_host on|off

Description

If you are running Squid as an accelerator and have a single backend server then set this to on. This causes Squid to forward the request to this server regardless of what any redirectors or Host headers says.

Leave this at off if you have multiple backend servers, and use a redirector (or host table or private DNS) to map the requests to the appropriate backend servers. See also redirect rewrites host header

Default httpd_accel_single_host off

Caution

Note that the mapping needs to be a 1–1 mapping between requested and backend (from redirector) domain names or caching will fail, as caching is performed using the URL returned from the redirector.

Tag Name httpd_accel_with_proxy

Usage httpd_accel_with_proxy on|off

Description

If you use the httpd accel host option, Squid will stop recognizing cache requests. So that your cache can function both as an accelerator and as a web cache, you will need to set the httpd_accel_with_proxy option to on.

Default httpd_accel_with_proxy off

Tag Name httpd_accel_uses_host_header
Usage httpd_accel_uses_host_header on|off

Description

HTTP/1.1 requests include a Host: header, which is basically the hostname from the URL. Squid can be an accelerator for different HTTP servers by looking at this header. However, Squid does NOT check the value of the Host header, so it opens a big security hole. It is recommended that this option remain disabled unless having good understanding.

However, It is needed to enable this option if Squid run as a transparent proxy. Otherwise, virtual servers, which require the Host: header will not be properly cached. For detailed information, Click here

Default httpd_accel_uses_host_header off

Caution

If Squid runs as a transparent proxy, It is needed to enable this option.

MISCELLANEOUS

Tag Name dns_testnames URL

Description

The DNS tests exit as soon as the first site is successfully looked up This test can be disabled with the -D command line option.

Default dns testnames netscape.com internic.net nlanr.net microsoft.com

Example

dns testnames visolve.com

Tag Name logfile_rotate

Usage logfile_rotate NUMBER

Description

Specifies the number of logfile rotations to make when you type 'squid –k rotate'. The default is 10, which will rotate with extensions 0 through 9. Setting logfile_rotate to 0 will disable the rotation, but the logfiles are still closed and re–opened. This will enable you to rename the logfiles yourself just before sending the rotate signal.

Default logfile_rotate 10

Example

logfile rotate 5

Caution

Note, the 'squid –k rotate' command normally sends a USR1 signal to the running squid process. In certain situations (e.g. on Linux with Async I/O), USR1 is used for other purposes; so –k rotate uses another signal. It is best to get in the habit of using 'squid –k rotate' instead of 'kill –USR1'

Tag Name append_domain

Usage append_domain domainname

Description

Appends local domain name to hostnames without any dots in them. append_domain must begin with a period

Default none

Example

append_domain.domain.com

Tag Name tcp_recv_bufsize

Usage tcp_recv_bufsize (bytes)

Description

Size of receive buffer to set for TCP sockets. Probably just as easy to change your kernel's default.

Default Set to zero to use the default buffer size. By default, if this is set to zero, then it means it is

using kernel's default.

tcp_recv_bufsize 0 bytes

Tag Name err_html_text
Usage err_html_text text

Description

This is used to specify the HTML text, which is to be included in error messages. Make this a "mailto" URL to your administrator address, or may be just a link to your organizations Web page.

To include this in your error messages, you must rewrite the error template files (found in the "\$prefix/etc/errors" directory). Wherever you want the 'err_html_text' line to appear, insert a %L tag in the error template file

Default none

Example

err_html_text venkatesh@visolve.com

Consider you want to display this mail Id when access denied error occurs, then edit the corresponding file (ERR_ACCESS_DENIED in '\$prefix/etc/errors' directory) with %L where this mail Id should be displayed.

Tag Name deny_info

Usage deny_info err_page_name acl

Description

This can be used to return an ERR_ page for requests, which do not pass the 'http_access' rules. A single ACL will cause the http_access check to fail. If a 'deny_info' line exists for that ACL then Squid returns a corresponding error page.

You may use ERR_ pages that come with Squid or create your own pages and put them into the configured errors/ directory

Default none

Example

If you want to deny domain 'deny.com' and want to display access denied message specifically, add these lines in conf. And add the file called ERR_CUSTOM_ACCESS_DENIED in \$prefix/etc/errors/ directory with your own format.

acl DSTDOMAIN dstdomain .deny.com
http_access deny DSTDOMAIN
http_access allow all
deny_info ERR_CUSTOM_ACCESS_DENIED DSTDOMAIN
So now if users try to browse 'deny.com' they will get your defined error message

Tag Name memory_pools
Usage memory_pools on|off

Description

If set, Squid will keep pools of allocated (but unused) memory available for future use. If memory is a premium on your system and you believe your malloc library outperforms Squid routines, disable this.

Default memory_pools on

Tag Name memory_pools_limit
Usage memory_pools_limit (bytes)

Description

If set to a non–zero value, Squid will keep at most the specified limit of allocated (but unused) memory in memory pools. All free() requests that exceed this limit will be handled by your malloc library. Squid does not pre–allocate any memory, just safe–keeps objects that otherwise would be free()d. Thus, it is safe to set memory_pools_limit to a reasonably high value even if your configuration will use less memory.

If not set (default) or set to zero, Squid will keep all memory it can. That is, there will be no limit on the total amount of memory used for safe-keeping.

Default none

By default, memory_pools is not set. So there is no default value for memory_pools_limit

Caution

Used only with <u>memory pools</u> on: To disable memory allocation optimization, do not set memory_pools_limit to 0. Set memory_pools to "off" instead. An overhead for maintaining memory pools is not taken into account when the limit is checked. This overhead is close to four bytes per object kept. However, pools may actually _save_ memory because of reduced memory thrashing in your malloc library.

Tag Name forwarded_for Usage forwarded_for on|off

Description

Current HTTP/1.1 does not provide any standard way of indicating the client address in the request. Since a number of people missed having the originating client address in the request, Squid now adds its own request header called "X–Forwarded–For" which looks like this: X–Forwarded–For: 192.1.2.3|unknown

If set, Squid will include your system's IP address or name in the HTTP requests it forwards. By default it looks like this: X–Forwarded–For: 192.1.2.3

If you disable this, it will appear as X-Forwarded-For: unknown

Default forwarded_for on

Tag Name log_icp_queries
Usage log_icp_queries on|off

Description

If set, ICP queries are logged to <u>access.log</u>. You may wish to disable this if your ICP load is very high to speed things up or to simplify log analysis

Default log_icp_queries on

Tag Name icp_hit_stale
Usage icp_hit_stale on|off

Description

If you want to return ICP_HIT for stale cache objects, set this option to 'on'. If you have sibling relationships with caches in other administrative domains, this should be 'off'. If you only have sibling relationships with caches under your control, then it is probably okay to set this to 'on'

Default icp_hit_stale off

Tag Name minimum direct hops

Usage minimum_direct_hops NUMBER

Description

If using the ICMP pinging stuff, do direct fetches for sites which are no more than this many hops away. This parameter plays a role in deciding latency

Default minimum_direct_hops 4

Tag Name minimum_direct_rtt

Usage minimum direct rtt time-units

Description

If using the ICMP pinging stuff, do direct fetches for sites which are no more than this many rtt milliseconds away.

Default minimum_direct_rtt 400

Tag Name cachemgr_passwd

Usage cachemgr_passwd password action action ...

Description

This tag is used to specify passwords for cachemgr operations. Some valid actions are (see cache manager menu for a full list):

5min

60min

asndb

authenticator

cbdata

client list

comm_incoming

config *

counters delay

digest_stats

dns

events

filedescriptors

fqdncache

histograms

http_headers

info

io

ipcache

mem menu

netdb

non_peers

objects

pconn

peer_select

redirector

refresh

server list

shutdown *

store_digest

storedir

utilization

via headers

vm objects

To disable an action, set the password to "disable".

To allow performing an action without a password, set the password to "none".

Use the keyword "all" to set the same password for all actions.

^{*} Indicates actions which will not be performed without a valid password, others can be performed if not listed here.

cachemgr_passwd secret shutdown cachemgr_passwd lesssssssecret info stats/objects cachemgr_passwd disable all

Default none

 Tag Name
 store_avg_object_size

Description

Average object size, used to estimate number of objects your cache can hold. To Estimate the number of objects your cache can hold: NUM_OBJ = cache_swap / store_avg_object_size Cache_swap is the size of the cache

Default The default is 13 KB.

store_avg_object_size 13 KB

Tag Name store_objects_per_bucket

Description

Target number of objects per bucket in the store hash table. Lowering this value increases the total number of buckets and also the storage maintenance rate. Then we estimate the number of hash buckets needed: NUM_BUCKETS = NUM_OBJ / store_objects_per_bucket NUM_OBJ is the number of objects your cache can hold, estimated by store avg object size.

Default store_objects_per_bucket 20

Example

store_objects_per_bucket 50

Tag Name client_db
Usage client db on|off

Description

If you want to disable collecting per-client statistics, then turn off client db here

Default client_db on

Tag Name netdb_low netdb_high
Usage netdb low entries

netdb_high entries

Description

The low and high water marks for the ICMP measurement database. These are counts, not percents. The defaults are 900 and 1000. When the high water mark is reached, database entries will be deleted until the low mark is reached

Default netdb_low 900

netdb_high 1000

Tag Name netdb_ping_period

Usage netdb_ping_period time-units

Description

The minimum period for measuring a site. There will be at least this much delay between successive pings to the same network

Default netdb_ping_period 5 minutes

Tag Name query_icmp
Usage query_icmp on|off

Description

If you want to ask your peers to include ICMP data in their ICP replies, enable this option. If your peer has configured Squid (during compilation) with '--enable-icmp' then that peer will send ICMP pings to origin server sites of the URLs it receives. If you enable this option then the ICP replies from that peer will include the ICMP data (if available). Then, when choosing a parent cache, Squid will choose the parent with the minimal RTT to the origin server. When this happens, the hierarchy field of the access.log will be "CLOSEST PARENT MISS".

Default query_icmp off

Tag Name test_reachability
Usage test_reachability on|off

Description

Description

When this is 'on', ICP MISS replies will be ICP_MISS_NOFETCH instead of ICP_MISS if the target host is NOT in the ICMP database, or has a zero RTT

Default test_reachability off

Tag Name buffered_logs
Usage buffered_logs onloff

Description

Some log files (<u>cache.log useragent.log</u>) are written with stdio functions, and as such they can be buffered or unbuffered. By default they will be unbuffered. Buffering them can speed up the writing slightly (though you are unlikely to need to worry).

Default buffered_logs off

Tag Name reload_into_ims
Usage reload_into_ims on|off

Description

When you enable this option, client no-cache or "reload" requests will be changed to If-Modified-Since requests. Doing this VIOLATES the HTTP standard. Enabling this feature could make you liable for problems, which it causes.

See also refresh pattern for a more selective approach.

This option may be disabled by using --disable-http-violations with the configure script. reload_into_ims off

Default reload_into_ims off

Tag Name always direct

Usage always_direct allow|deny [!]aclname ...

Description

Here you can use ACL elements to specify requests, which should ALWAYS be forwarded directly to origin servers. This is mostly used while using <u>cache peer</u>. See also <u>never direct</u>. For Further reference on always_direct, please click <u>here.</u>

Default always_direct is by default deny.

Example

For example, to always directly forward requests for local servers use something like: acl local–servers dstdomain .my.domain.net always_direct allow local–servers

To always forward FTP requests directly, use acl FTP proto FTP always_direct allow FTP

Example for denying specific domain acl local-external dstdomain .external.foo.net acl local-servers dstdomain .foo.net always_direct deny local-external always_direct allow local-servers

Caution

There is a similar, but opposite option named 'never_direct'. You need to be aware that "always_direct deny foo" is NOT the same thing as "never_direct allow foo". You may need to use a deny rule to exclude a more–specific case of some other rule.

Tag Name never_direct

Usage never_direct allow|deny [!]aclname ...

Description

never_direct is the opposite of always_direct. Please read the description for always_direct if you have not already.

With 'never_direct' you can use ACL elements to specify requests, which should NEVER be forwarded directly to origin servers

When always_direct and never_direct are deny (By default), Squid selects based on the request type and a number of other factors if a parent should be used or not, and if a parent could not be reached it will always fallback on direct.

If always_direct is allow then Squid will always go direct to the source without considering any peers.

If never_direct is allow then Squid will never attempt to go direct to the source. Instead it tries very hard to find a parent to send the request to. If no parent can be found then an error is returned. For Further reference on never_direct, please click_here.

Default never_direct is by default deny.

Example

For example, to force the use of a proxy for all requests, except those in your local domain use something like:

acl local-servers dstdomain foo.net acl all src 0.0.0.0/0.0.0.0 never_direct deny local-servers never_direct allow all

or if squid is inside a firewall and there are local intranet servers inside the firewall then use something like:

acl local-intranet dstdomain .foo.net acl local-external dstdomain .external.foo.net always_direct deny local-external always_direct allow local-intranet never_direct allow all

Caution

It will be better to understand always_direct before enabling this tag

Tag Name anonymize_headers

Usage anonymize_headers allow|deny header_name ...

Description

This option replaces the old 'http_anonymizer' option with something that is much more configurable. You may now specify exactly which headers are to be allowed, or which are to be removed from outgoing requests.

There are two methods of using this option. You may either allow specific headers (thus denying all others), or you may deny specific headers (thus allowing all others).

For example, to achieve the same behavior as the old 'http_ anonymizer standard' option, you should use:

anonymize_headers deny From Referer Server anonymize_headers deny User-Agent WWW-Authenticate Link

Or, to reproduce the old 'http_anonymizer paranoid' feature you should use:

anonymize_headers allow Allow Authorization Cache-Control anonymize_headers allow Content-Encoding Content-Length anonymize_headers allow Content-Type Date Expires Host anonymize_headers allow If-Modified-Since Last-Modified anonymize_headers allow Location Pragma Accept anonymize_headers allow Accept-Encoding Accept-Language anonymize_headers allow Content-Language Mime-Version anonymize_headers allow Retry-After Title Connection anonymize_headers allow Proxy-Connection

Default By default, all headers are allowed (no anonymizing is performed).

Example

anonymize_headers deny Proxy-Connection

Caution

You cannot mix "allow" and "deny". All 'anonymize_headers' lines must have the same second argument.

Tag Namefake_user_agentUsagefake_user_agent String

Description

If you filter the User–Agent header with 'anonymize headers' it may cause some Web servers to refuse your request. Use this to fake one up.

Default none

Example

fake_user_agent Nutscrape/1.0 (CP/M; 8-bit)

Tag Name icon_directory

Usage icon_directory directorypath/directoryname

Description

This tag is to specify the location where the icons are stored

Default These are normally kept in /usr/local/squid/etc/icons

Example

icon_directory /etc/icons

Tag Name error_directory

Usage error_directory directorypath/directoryname

Description

If you wish to create your own versions of the default (English) error files, either to customize them to suit your language or company, copy the template English files to another directory and point this tag at them

Default These are normally kept in /usr/local/squid/etc/errors

Example

icon_directory /etc/errors

Tag Name minimum_retry_timeout

Usage minimum_retry_timeout (seconds)

Description

This specifies the minimum connect timeout, when the connect timeout is reduced to compensate for the availability of multiple IP addresses. When a connection to a host is initiated, and that host has several IP addresses, the default connection timeout is reduced by dividing it by the number of addresses. So, a site with15 addresses would then have a timeout of 8 seconds for each address attempted. To avoid having the timeout reduced to the point where even a working host would not have a chance to respond, this setting is provided.

Default The default, and the minimum value, is five seconds, and the maximum value is sixty seconds, or half

of connect_timeout, which ever is greater and less than connect_timeout.

minimum_retry_timeout 5 seconds

Tag Name maximum_single_addr_tries

Usage maximum_single_addr_tries NUMBER

Description

This sets the maximum number of connection attempts for a host that only has one address (for multiple–address hosts, each address is tried once)

Default The default value is three tries, the (not recommended) maximum is 255 tries.

maximum_single_addr_tries 3

Caution

A warning message will be generated if it is set to a value greater than ten

Tag Name snmp_port
Usage snmp_port port

Description

Squid can now serve statistics and status information via SNMP. If you don't wish to use SNMP, set this to "0".

The snmpd daemon is a server that supports both the Simple Network Management Protocol v2 and v1. It receives and responds to SNMP messages sent to the SNMP port on the local machine. snmpd.conf is the configuration file which defines how the ucd–smnp SNMP agent operates.

Default By default it listens to port 3401 on the machine. snmp_port 3401

Caution

SNMP support requires use of the --enable-snmp configure command line option

Tag Name snmp_access

Usage snmp_access allow|deny [!]aclname ...

Description

Allowing or denying access to the SNMP port. This option is only available if Squid is rebuilt with the --enable-snmp option

Default All access to the agent is denied by default.

Example

snmp_access allow snmppublic localhost snmp_access deny all

Tag Name snmp_incoming_address snmp_outgoing_address

Usage snmp_incoming_address IPAddress snmp_outgoing_address IPAddress

Description

Just like 'udp_incoming_address' above, but for the SNMP port. This option is only available if Squid is rebuilt with the—enable–snmp option

snmp_incoming_address is used for the SNMP socket receiving messages from SNMP agents. snmp_outgoing_address is used for SNMP packets returned to SNMP agents.

Default The default behavior is to not bind to any specific address. snmp_incoming_address 0.0.0.0

snmp_outgoing_address 255.255.255.255

Example

snmp_incoming_address 172.16.1.115 snmp_outgoing_address 172.16.1.114

Caution

snmp_incoming_address and snmp_outgoing_address cannot have the same value since they both use port 3130.

Tag Name as whois server

Usage as_whois_server Server-Name

Description

WHOIS server to query for AS numbers. NOTE: AS numbers are queried only when Squid starts up, not for every request.

Default as whois server whois ra.net

Tag Name wccp_router

Usage wccp_router Router-IPAddress

Description

This option is used to define the WCCP ``home" router for Squid. Setting the 'wccp_router' to 0.0.0.0 (the default) disables WCCP

Default wccp_router 0.0.0.0

Tag Name wccp_version

Usage wccp_version Version

Description

According to some users, Cisco IOS 11.2 only supports WCCP version 3. If you're using that version of IOS, change this value to 3.

Default wccp_version 4

Tag Name wccp_incoming_address

Usage wccp_incoming_address IPAddress

Description

Use this option if you require WCCP messages to be received on only one interface. Do NOT use this option if you're unsure how many interfaces you have, or if you know you have only one interface

Default

The default behavior is to not bind to any specific address wccp_incoming_address 0.0.0.0

Caution

wccp_incoming_address and wccp_outgoing_address cannot have the same value since they both use port 2048.

Tag Name wccp_outgoing_address

Description

Use this option if you require WCCP messages to be sent out on only one interface. Do NOT use this option if you're unsure how many interfaces you have, or if you know you have only one interface

Default wccp_outgoing_address 255.255.255.255

(The default behavior is to not bind to any specific address)

Caution

wccp_incoming_address and wccp_outgoing_address cannot have the same value since they both use port 2048.

DELAYPOOL PARAMETERS

Tag Name delay_pools

Usage delay_pools numbers

Description

This represents the number of delay pools to be used. For example, if you have one— class 2 delay pool and one— class 3 delay pool, you have a total of 2 delay pools. Delay pools allow you to limit traffic for clients or client groups, with various features. Objects retrieved from the cache will not be delayed. Only the object from the server will be delayed.

Default delay_pools 0

Example

delay_pools 2 # 2 Delay pools

Caution

To enable this option, you must use --enable-delay-pools with the # configure script.

Tag Name delay_class

Usage delay_class number (delay-pool number), number (delay class)

Description

This defines the class of each delay pool. There must be exactly one delay_class line for each delay pool. For example, to define two delay pools, one of class 2 and one of class 3, the settings will be like as given in the example. For details on the delay_pool classes see Glossary.

Default none

Example

delay_pools 2 # 2 delay pools

delay_class 1 2 # pool 1 is a class 2 pool delay_class 2 3 # pool 2 is a class 3 pool

Caution

To enable this option, you must use --enable-delay-pools with the # configure script.

Tag Name delay_access

Usage delay_access allow acl name|deny acl name

Description

This is used to determine which delay pool a request falls into. The first matched delay pool is always used, i.e., if a request falls into delay pool number one, no more delay are checked, otherwise the rest are checked in order of their delay pool number until they have all been checked. For example, if you want pool_1_acl in delay pool 1 and pool_2_acl in delay pool 2, then look at the example below.

Default none

Example

To specify which pool a client falls into, create ACLs which specifies the ip ranges for each pool, and use the following:

delay_access 1 allow pool_1_acl delay_access 1 deny all delay_access 2 allow pool_2_acl delay_access 2 deny all

Caution

To enable this option, you must use --enable-delay-pools with the # configure script.

Tag Name delay_parameters

Usage delay_parameters pool aggregate (for delay_class 1 networks)
delay_parameters pool aggregate individual (for delay_class 2 networks)
delay_parameters pool aggregate network individual (for delay_class 3 networks)

Description

This defines the parameters for a delay pool. Each delay pool has number of "buckets" associated with it, as explained in the description of delay_class. For a class 1,2 and 3 delay pool, the syntax is given in the usage. For a Glossary of term related to delay pool see Glossary.

Default none

Example 1:

acl tech src 192.168.0.1–192.168.0.20/32 acl no_hotmail url_regex –i hotmail acl all src 0.0.0.0/0.0.0.0 delay_pools 1 #Number of delay_pool 1 delay_class 1 1 #pool 1 is a delay_class 1 delay_parameters 1 100/100 delay_access 1 allow no_hotmail !tech

In the above example, hotmail users are limited to the speed specified in the delay_class. IP's in the ACL tech are allowed in the normal bandwidth. You can see the usage of bandwidth through cachemgr.cgi.

Example 2:

acl all src 0.0.0.0/0.0.0.0 # might already be defined delay_pools 1 delay_class 1 1 delay_access 1 allow all delay_parameters 1 64000/64000 # 512 kbits == 64 kbytes per second

The above example tells that the squid is limited to the bandwidth of 512k. For ACL you can go here

Caution

To enable this option, you must use --enable-delay-pools with the # configure script.

Tag Name delay_initial_bucket_level(percent, 0-100)

Usage delay_initial_bucket_level bytes

Description

The initial bucket percentage is used to determine how much is put in each bucket when squid starts, is reconfigured, or first notices a host accessing it (in class 2 and class 3, individual hosts and networks only have buckets associated with them once they have been "seen" by squid).

Default delay_initial_bucket_level 50(bytes)

Caution

This option is only available if Squid is rebuilt with the --enable-delaypools option.

incoming_icp_average

incoming_http_average incoming_dns_average

Tag Name min_icp_poll_cnt

min_lcp_poll_cnt min_dns_poll_cnt min_http_poll_cnt

Usage TagName Number

Description

This describes the algorithms used for the above tags.

INCOMING sockets are the ICP and HTTP ports. We need to check these fairly regularly, but how often? When the load increases, we want to check the incoming sockets more often. If we have a lot of incoming ICP, then we need to check these sockets more than if we just have HTTP. The variables 'incoming_icp_interval' and 'incoming_http_interval'determine how many normal I/O events to process before checking incoming sockets again. Note we store the incoming_interval multiplied by a factor of (2^INCOMING_FACTOR) to have some pseudo-floating point precision.

The variable 'icp_io_events' and 'http_io_events' counts how many normal I/O events have been processed since the last check on the incoming sockets. When io_events >incoming_interval, its time to check incoming sockets.

Every time we check incoming sockets, we count how many new messages or connections were processed. This is used to adjust the incoming_interval for the next iteration. The new incoming_interval is calculated as the current incoming_interval plus what we would like to see as an average number of events minus the number of events just processed.

incoming_interval = incoming_interval + target_average - number_of_events_processed.

There are separate incoming_interval counters for both HTTP and ICP events. You can see the current values of the incoming_interval, as well as a histogram of 'incoming_events' by asking the cache manager for 'comm_incoming', e.g.:

% ./client mgr:comm_incoming

Default incoming_icp_average 6

incoming_http_average 4 incoming_dns_average 4 min_icp_poll_cnt 8 min_dns_poll_cnt 8 min_http_poll_cnt 8

Caution

- -We have MAX_INCOMING_INTEGER as a magic upper limit on incoming_interval for both types of sockets. At the largest value the cache will effectively be idling.
- -The higher the INCOMING_FACTOR, the slower the algorithm will respond to load spikes/increases/decreases in demand. A value between 3 and 8 is recommended.

Tag Name max_open_disk_fds

Usage max_open_disk_fds number

Description

This specifies the maximum file descriptor squid can use to open files. To avoid having disk as the I/O bottleneck, Squid can optionally bypass the on–disk cache if more than this amount of disk file descriptors are open.

A value of 0 indicates no limit

Default max_open_disk_fds 0

Tag Name offline_mode

Usage offline_mode on|off

Description

Enable this option and Squid will never try to validate cached objects. offline_mode gives access to more cached information than the proposed feature would allow (stale cached versions, where the origin server should have been contacted).

Default offline_mode off

Tag Name uri_whitespace

Usage uri_whitespace options

Description

The action to be done on the requests that have whitespace characters in the URI is decided with this tag. Available options:

strip:

The whitespace characters are stripped out of the URL. This is the behavior recommended by RFC2616.

deny:

The request is denied. The user receives an "Invalid Request" message.

allow:

The request is allowed and the URI is not changed. The whitespace characters remain in the URI. Note the whitespace is passed to redirector processes if they are in use.

Encode:

The request is allowed and the whitespace characters are encoded according to RFC1738. This could be considered a violation of the HTTP/1.1 RFC because proxies are not allowed to rewrite URI's.

chop:

The request is allowed and the URI is chopped at the first whitespace. This might also be considered as a violation.

Default uri_whitespace strip

Example

uri_whitespace chop

Tag Name broken_posts

Usage broken_posts allow|deny acl name

Description

A list of ACL elements which, if matched, causes Squid to send a extra CRLF pair after the body of a PUT/POST request. Some HTTP servers have broken implementations of PUT/POST, and rely on an extra CRLF pair sent by some WWW clients.

Default none

Example

acl buggy_server url_regex ^http://....broken_posts allow buggy_server

Tag Name mcast_miss_addr

Usage mcast_miss_addr_enable|disable

Description

If you enable this option, every "cache miss" URL will be sent out on the specified multicast address. This option is only available if Squid is rebuilt with the -DMULTICAST_MISS_STREAM option.

Default mcast_miss_addr 255.255.255.255

Caution

This option should be enabled only after a careful understanding. See multicast

Tag Name mcast_miss_ttl

Usage mcast_miss_ttl time-units

Description

This is the time-to-live value for packets multicasted when multicasting off cache miss URLs is enabled. This option is only available if Squid is rebuilt with the -DMULTICAST_MISS_TTL option.

Default mcast_miss_ttl 16

Tag Name mcast_miss_port

Usage mcast_miss_port port no

Description

This is the port number to be used in conjunction with 'mcast_miss_addr'. This option is only available if Squid is rebuilt with the -DMULTICAST_MISS_TTL option.

Default mcast_miss_port 3135

Caution

This tag is used only when you enable mcast_miss_addr

Tag Name mcast_miss_encode_key

Usage mcast_miss_encode_key_enable|disable

Description

The URLs that are sent in the multicast miss stream are encrypted. This is the encryption key. This option is only available if Squid is rebuilt with the -DMULTICAST_MISS_STREAM option.

Default mcast_miss_encode_key XXXXXXXXXXXXXXXX

Tag Name nonhierarchical_direct
Usage nonhierarchical_direct on|off

Description

By default, Squid will send any non-hierarchical requests (matching hierarchy_stoplist or not cacheable request type) direct to origin servers. If you set this to off, then Squid will prefer to send these requests to parents. Note that in most configurations, by turning this off you will only add latency to this request without any improvement in global hit ratio. If you are inside a firewall then see never direct instead of this directive.

Default nonhierarchical_direct on

Tag Name prefer_direct
Usage prefer_direct on|off

Description

Normally Squid tries to use parents for most requests. If you by some reason like it to first try going direct and only use a parent if going direct fails then set this to off.

By combining non hierarchical_direct off and prefer_direct on you can set up Squid to use a parent as a backup path if going direct fails.

Default prefer_direct off

Tag Name strip_query_terms
Usage strip_query_terms on|off

Description

Squid by default does not log query parameters. These parameters are however forwarded to the server verbatim. If we want to enable logging of query parameters, the strip_query_terms directive can be used .

By default, Squid strips query terms from requested URLs before logging. This protects your user's privacy

Default strip_query_terms on

Tag Name coredump_dir

Usage coredump_dir directory

Description

By default Squid leaves core files in the first cache_dir directory. If you set 'coredump_dir' to a directory that exists, Squid will chdir() to that directory at startup and coredump files will be left there.

Default none

Example

coredump_dir /usr/local

Tag Name redirector_bypass
Usage redirector_bypass on|off

Description

When this is 'on', a request will not go through the redirector if all redirectors are busy. If this is 'off' and the redirector queue grows too large, Squid will exit with a FATAL error and ask you to increase the number of redirectors. You should only enable this if the redirectors are not critical to your caching system. If you use redirectors for access control, and you enable this option, then users may have access to pages that they should not be allowed to request.

Default redirector_bypass off

Tag Namedigest_generationUsagedigest_generation on|off

Description

This controls whether the server will generate a Cache Digest of its contents. By default, Cache Digest generation is enabled if Squid is compiled with USE_CACHE_DIGESTS defined. This option is only available if Squid is rebuilt with the --enable-cache-digests option.

Default digest_generation on

Tag Name ignore_unknown_nameservers
Usage ignore_unknown_nameservers on|off

Description

By default Squid checks that DNS responses are received from the same IP addresses that they are sent to. If they don't match, Squid ignores the response and writes a warning message to cache.log. You can allow responses from unknown nameservers by setting this option to 'off'.

Default ignore_unknown_nameservers on

Tag Name digest_bits_per_entry

Usage digest_bits_per_entry number

Description

This is the number of bits of the server's Cache Digest, which will be associated with the Digest entry for a given HTTP Method and URL (public key) combination. The default is 5. This option is only available if Squid is rebuilt with the —enable—cache—digests option.

Default digest_bits_per_entry 5

Tag Name digest_rebuild_period

Usage digest_rebuild_period time-units

Description

This is the number of seconds between Cache Digest rebuilds. By default the server's Digest is rebuilt every hour. This option is only available if Squid is rebuilt with the —enable—cache—digests option.

Default digest_rebuild_period 1 hour

Tag Name digest_rewrite_period

Usage digest_rewrite_period time-units

Description

This is the number of seconds between Cache Digest writes to disk. By default the server's Digest is written to disk every hour. This option is only available if Squid is rebuilt with the—enable—cache—digests option.

Default digest_rewrite_period 1 hour

Tag Name digest_swapout_chunk_size Usage digest swapout chunk size bytes

Description

This is the number of bytes of the Cache Digest to write to disk at a time. It defaults to 4096 bytes (4KB), the Squid default swap page. This option is only available if Squid is rebuilt with the --enable-cache-digests option.

Default digest_swapout_chunk_size 4096 bytes

Tag Name digest rebuild chunk percentage

Usage digest rebuild chunk percentage %(0 to 100)

Description

This is the percentage of the Cache Digest to be scanned at a time. By default it is set to 10% of the Cache Digest. This option is only available if Squid is rebuilt with the --enable-cache-digests option.

Default digest_rebuild_chunk_percentage 10

Tag Name chroot

Usage chroot enable|disable

Description

Squid by default does not fully drop root privileges because it may be required during reconfigure. So use this directive to have Squid do a chroot() while initializing. This also causes Squid to fully drop root privileges after initializing. Squid only drops all root privilegies when chroot dir is used. Without chroot dir it runs as root with effective user nobody. This means, for example, that if you use a HTTP port less than 1024 and try to reconfigure, you will get an error .

Default none

Tag Name server_persistent_connections Usage server_persistent_connections on|off

Description

Persistent connection support for clients and servers. By default, Squid uses persistent connections (when allowed) with its clients and servers. You can use these options to disable persistent connections with clients and/or servers.

Default server_persistent_connections on Tag Name client_persistent_connections

Usage client persistent connections on off

Description

Persistent connection support for clients and servers. By default, Squid uses persistent connections (when allowed) with its clients and servers. You can use these options to disable persistent connections with clients and/or server.

Related information:

If the browser is talking to web server directly, socket can be closed after it is done using keep-alive directive in apache configuration file. The same thing can be done in Squid using these directives client_persistent_connections and server_persistent_connections.

Default client_persistent_connections on

Tag Name pipeline_prefetch

Usage pipeline_prefetch on|off

Description

To boost the performance of pipelined requests to closer match that of a non–proxied environment Squid tries to fetch up to two requests in parallell from a pipeline.

Default pipeline_prefetch on

Tag Name extension_methods

Usage extension_methods request method

Description

Squid only knows about standard HTTP request methods. Unknown methods are denied, unless you add them to this list. You can add up to 20 additional "extension" methods here.

Default none

Tag Name high_response_time_warning Usage high_response_time_warning msec

Description

If the one–minute median response time exceeds this value, Squid prints a WARNING with debug level 0 to get the administrators attention. The value is in milliseconds.

Default high_response_time_warning 0

Tag Name high_page_fault_warning

Usage high_page_fault_warning time-units

Description

If the one–minute average page fault rate exceeds this value, Squid prints a WARNING with debug level 0 to get the administrators attention. The value is in page faults per second.

Default high_page_fault_warning 0

Tag Name high_memory_warning

Usage high_memory_warning number

Description

If the memory usage (as determined by mallinfo) exceeds value, Squid prints a WARNING with debug level 0 to get the administrators attention.

Default high_memory_warning 0

Tag Name store dir select algorithm

Usage store dir select algorithm algorithm type

Description

Squid currently supports two algorithms for selecting cache directories for new objects: least–load and round–robin. Set this to 'round–robin' as an alternative.

Default store_dir_select_algorithm least_load

Tag Name ie_refresh
Usage ie_refresh on|off

Description

Microsoft Internet Explorer up until version 5.5 Service Pack 1 has an issue with transparent proxies, where in it is impossible to force a refresh. Turning this on provides a partial fix to the problem, by causing all IMS-REFRESH requests from older IE versions to check the origin server for fresh content. This reduces hit ratio by some amount (~10%), but allows users to actually get fresh content when they want it. Note that because Squid cannot tell if the user is using 5.5 or 5.5SP1, the behavior of 5.5 is unchanged from old versions of Squid (i.e. a forced refresh is impossible). Newer versions of IE will, hopefully, continue to have the new behavior and will be handled based on that assumption. This option defaults to the old Squid behavior, which is better for hit ratios but worse for clients using IE, if they need to be able to force fresh content.

Default ie_refresh off

GLOSSARY

parent

In a parent relationship, the child cache will forward requests to its parent cache. If the parent does not hold a requested object, it will forward the request on behalf of the child. A cache hierarchy should closely follow the underlying network topology. Parent caches should be located along the network paths towards the greater Internet. For example, if your Internet Service Provider (ISP) operates a cache, it should probably be a parent to yours, since your Web traffic will have to travel along your ISP's infra structure anyway.

sibling

In a sibling relationship, a peer may only request objects already held in the cache; a sibling can not forward cache misses on behalf of the peer. The sibling relationship should be used for caches ``nearby" but not in the direction of your route to the Internet. For example, it may make sense for a number of department–specific caches within an organization to have sibling relationships among them. This approach is even more compelling when there is no parent cache available for the organization as a whole.

Multicast and Unicast

A unicast packet is the complete opposite: one machine is talking to only one other machine. All TCP connections are unicast, since they can only have one destination host for each source host. UDP packets are almost always unicast too, though they can be sent to the broadcast address so that they reach every single machine in some cases.

A multicast packet is from one machine to one or more. The difference between a multicast packet and a broadcast packet is that hosts receiving multicast packets can be on different lans, and that each multicast data-stream is only transmitted between networks once, not once per machine on the remote network. Rather than each machine connecting to a video server, the multicast data is streamed per–network, and multiple machines just listen–in on the multicast data once it's on the network.

Netmask

An IP address has two components, the network address and the host address. For example, consider the IP address 172.16.1.25. Assuming this is part of a Class B network, the first two numbers (172.16) represent the Class B network address, and the second two numbers (1.25) identify a particular host on this network.

Subnetting enables the network administrator to further divide the host part of the address into two or more subnets. In this case, a part of the host address is reserved to identify the particular subnet. This is easier to see if we show the IP address in binary format. The full address is:

11111000.00001000.00000001.00011001 The Class B network part is:

11111000.00001000

and the host address is

00000001.00011001

If the subnetmask for this IP Address is 255.255.255.0,1111111111111111111111111100000000 (binary).

The resultant Subnet Address is got by bitwise AND operations.

If this network is divided into 255 subnets, then the first 8 bits of the host address (00000000) are reserved for identifying the subnet.

11111000.00001000.00000001.00000000 Hence, resultant is 172.16.1.0. It refers IPAddress from 172.16.1.1 to172.16.1.255.

FileSystems in Squid

The cache_dir type in Squid has nothing to do with the underlying filesystem type, it defines the storage method / implementation.

Currently Squid has 4 different implementations:

ufs: - On top of a normal filesystem supporting directories and files.

aufs :- As "ufs", but using threads to implement non-blocking disk I/O

diskd :- As "ufs", but using a separate process to implement non-blocking disk I/O

coss: - An experimental "raw" filesystem, where all objects are stored in one big file.

Other storage methods are being worked upon

Kind of diskd is designed to work around the problem of blocking IO in a unix process. async ufs gets around this by using threads to complete disk IO. diskd uses external processes to complete disk IO.

Asyncufs works just that little bit faster, but only works on systems where threads can do async disk IO without blocking the main process. Systems with user–threads (eg FreeBSD) can not use this effectively. Diskd, being implemented as an external process, gets around this. If cache is slightly active, then the difference cannot be noticed. diskd/aufs are only useful when the cache is under high load.

In case it was not clear, asyncronous I/O (diskd/aufs) is beneficial for single drive configurations with "higher" request loads, in many cases allowing you to push about 100% more I/O thru the drive before latency creeps up too high.

For multiple drive configurations, it is almost a requirement to be able to use the I/O capacity of the extra drives. Without it, a multiple disk configuration is effectively limited to almost the speed of a single disk configuration. With asyncronous I/O, the disk I/O scales quite well (at least for the first few drives, other limits gets very apparent when you have more than ~3 drives).

Cache peer Options

proxy-only

Data retrieved from this remote cache will not be stored locally, but retrieved again on any subsequent request. By default, Squid will store objects it retrieves from other caches: by having the object available locally it can return the object fast, if it is requested again. This feature is often useful in a cluster of sibling caches to prevent each cache from holding every object. When the caches are close to each other (e.g. on the same ethernet segment), then it costs relatively little to transfer an object from one to the other. While this is good for latency, it can be a waste of bandwidth, especially if the other cache is on the same piece of ethernet. In the examples section of this chapter, we use this option when load–balancing between two cache servers.

Weight

If more than one cache server has an object (based on the result of an ICP query), Squid decides which cache to get the data from the cache that responded fastest. If you want to prefer one cache over another, you can add a weight value to the preferred cache's config line. Larger values are preferred. Squid times how long each ICP request takes (in milliseconds), and divides the time by the weight value, using the cache with the smallest result. A higher weight will artificially lower the calculated RTT between peers, thereby favoring it in the selection algorithm. Your weight value should thus not be an unreasonable value.

ttl

An outgoing multicast packet has a ttl (Time To Live) value, which is used to ensure that loops are not created. Each time a packet passes through a router, the router decrements this ttl value, and the value is then checked. Once the value reaches zero, the packet is dropped. If you want multicast packets to stay on your local network, you would set

the ttl value to 1. The first router to see the packet would decrement the packet, discover the ttl was zero and discard it. This value gives you a level of control on how many multicast routers will see the packet. You should set this value carefully, so that you limit packets to your local network or immediate multicast peers (larger multicast groups are seldom of any use: they generate too many responses, and when geographically dispersed, may simply add latency. You also don't want crackers picking up all your ICP requests by joining the appropriate multicast group.)

no- query

Squid will send ICP requests to all configured caches. The response time is measured, and used to decide which parent to send the HTTP request to. There is another function of these requests: if there is no response to a request, the cache is marked down. If you are communicating with a cache that does not support ICP, you must use the no–query option: if you don't, Squid will consider that cache down, and attempt to go directly to the destination server. (If you want, you can set the ICP port on the config line to point to the echo port, port 7. Squid will then use this port to check if the machine is available. Note that you will have to configure inetd.conf to support the UDP echo port.) This option is normally used in conjunction with the default option and round–robin option.

cache_peer proxy.visolve.com1 parent 3128 3130 no-query default

Default

This sets the host to be the proxy of last resort. If no other cache matches a rule (due to acl or domain filtering), this cache is used. If you have only one way of reaching the outside world, and it doesn't support ICP, you can use the default and no–query options to ensure that, all queries are passed through it. If this cache is then down, the client will see an error message (without these options, Squid would attempt to route around the problem.)

round-robin

This option must be used on more than one cache_peer line to be useful. Connections to caches configured with this options are spread evenly (round-robined) among the caches. This can be used by client caches to communicate with a group of loaded parents, so that load is spread evenly. If you have multiple Internet connections, with a parent cache on each side, you can use this option to do some basic load-balancing of the connections.

In other words, the round–robin option is similar to default, except that Squid forwards the request to the parent with the lowest use count. The cache_peer_domain restrictions still apply, of course. A typical configuration might look like:

cache_peer proxy.visolve.com1 parent 3128 3130 round-robin no-query cache_peer proxy.visolve.com2 parent 3128 3130 round-robin no-query cache_peer proxy.visolve.com3 parent 3128 3130 round-robin no-query Squid treats all round-robin parents equally. It is not currently possible to, e.g., forward 25% of the requests to one parent and 75% to another.

no-net-dbexchange

If your cache was configured to keep ICMP (ping) timing information with the —enable—icmp configure option, your cache will attempt to retrieve the remote machine's ICMP timing information from any peers. If you don't want this to happen (or the remote cache doesn't support it), you can use the no–netdb–exchange option to stop Squid from requesting this information from the cache

no-delay

Hits from other caches will normally be included into a client's delay–pool information. If you have two caches load–balancing, you don't want the hits from the other cache to be limited. You may also want hits from caches in a nearby hierarchy to come down at full speed, not to be limited as if they were misses. Use the no–delay option to ensure that requests come down at their full speed.

login

Caches can be configured to use usernames and passwords on accesses. To authenticate with a parent cache, you can enter a username and password using this tag. Note that, the HTTP protocol makes authenticating to multiple cache servers impossible: you cannot chain together a string of proxies, each one requiring authentication. You should only use this option if this is a personal proxy.

Round Trip time

It is the time interval between the sending of the first byte of an HTTP request for the request, until the last bytes of the server response has arrived at the requesting web client.

Probe

Squid will wait for up to dead_peer_timeout seconds after sending out an ICP request before deciding to ignore a peer. With a multicast group, peers can leave and join at will, and it should make no difference to a client. This presents a problem for Squid: it can't wait for a number of seconds each time (whatif thecaches are on the same network, and responses come back in milliseconds: the waiting just adds latency.) Squid gets around this problem by sending ICP probes to the multicast address occasionally. Each host in the group responds to the probe, and Squid will know how many machines are currently in the group. When sending a real request, Squid will wait until it gets atleast as many responses as were returned in the last probe: if more arrive, great. If less arrive, though, Squid will wait until the dead_peer_timeout_value is reached. If there is still no reply, Squid marks that peer as down, so that all connections are not held up by one peer.

What is the httpd-accelerator mode?

An accelerator caches incoming requests for outgoing data (i.e., that which you publish to the world). It takes load away from your HTTP server and internal network. You move the server away from port 80 (or whatever your published port is), and substitute the accelerator, which then pulls the HTTP data from the ``real" HTTP server (only the accelerator needs to know where the real server is). The outside world sees no difference (apart from an increase in speed, with luck).

The httpd_accel_uses_host_header Option

The httpd_accel_uses_host_header option. A normal HTTP request consists of three values: the type of transfer (normally a GET, which is used for downloads); the path and filename to be retrieved (or executed, in the case of a cgi program); and the HTTP version.

This layout is fine if you only have one web site on a machine. On systems where you have more than one site, though, it makes life difficult: the request does not contain enough information, since it doesn't include information about the destination domain. Most operating systems allow you to have IP aliases, where you have more than one IP address per network card. By allocating one IP per hosted site, you could run one web server per IP address. Once the programs were made more efficient, one running program could act as a server for many sites: the only requirement was that you had one IP address per domain. Server programs would find out which of the IP addresses clients were connected to, and would serve data from different directories for each IP.

There are a limited number of IP addresses, and they are fast running out. Some systems also have a limited number of IP aliases, which means that you cannot host more than a (fairly arbitrary) number of web sites on machine. If the client were to pass the destination host name along with the path and filename, the web server could listen to only one IP address, and would find the right destination directores by looking in a simple hostname table.

From version 1.1 on, the HTTP standard supports a special Host header, which is passed along with every outgoing request. This header also makes transparent caching and acceleration easier: by pulling the host value out of the headers, Squid can translate a standard HTTP request to a cache–specific HTTP request, which can then be handled by the standard Squid code. Turning on the httpd_accel_uses_host_header option enables this translation. You will need to use this option when doing transparent caching.

It's important to note that acls are checked before this translation. You must combine this option with strict source–address checks, so you cannot use this option to accelerate multiple backend servers (this is certain to change in a later version of Squid).

The "always direct" and "never direct" tags

Squid checks all always_direct tags before it checks any never_direct tags. If a matching 'always_direct tag' is found, Squid will not check the never_direct tags, but decides which cache to talk to immediately. This behavior is demonstrated by the following example here, Squid will attempt to go the machine intranet, even though the same host is also matched by all acl.

Bypassing a parent for a local machine

cache_peer proxy.visolve.com parent 3128 3130 acl all src 0.0.0.0/0.0.0 acl localmachines dstdomain intranet.mydomain.example never_direct allow all always_direct allow localmachines

i.e.,

Let's consider a request destined for the web server intranet.mydomain.example. Squid first works through all the always_direct lines; the request is matched by the first (and only) line. The never_direct and always_direct tags are acl-operators, which means that the first match is considered. In this illustration, the matching line instructs Squid to go directly when the acl matches, so all neighboring peers are ignored for this request. If the line used the deny keyword instead of allow, Squid would have simply skipped on to checking of the former never_direct lines.

Now, suppose, a request arrives for an external host. Squid works through the always_direct lines, and finds that none of them match. The never_direct lines are then checked. The all acl matches the connection, so Squid marks the connection as never to be forwarded directly to the origin server.

Access.log details

The native access.log has ten (10) fields. There is one entry here for each HTTP (client) request and each ICP Query. HTTP requests are logged when the client socket is closed. A singledash (–) indicates unavailable data.

1. Timestamp

The time when the client socket is closed. The format is 'Unix time' (seconds since Jan 1, 1970) with millisecond resolution. This can be modified to visible format by 'cat access.log | perl –nwe 's/^(\d+)/localtime(\$1)/e; print';.

2. Elapsed Time

The elapsed time of the request, in milliseconds. This is time between the accept() and close() of the client socket.

3. Client Address

The IP address of the connecting client, or the FQDN if the 'log_fqdn' option is enabled in the config file.

4. Log Tag / HTTP Code

The Log Tag describes how the request was treated locally (hit, miss, etc). All the tags are described below. The HTTP code is the reply code taken from the first line of the HTTP reply header. Non–HTTP requests may have zero reply codes.

5. Size

The number of bytes written to the client.

6. Request Method

The HTTP request method, or ICP_QUERY for ICP requests.

7. URL

The requested URL.

8. Ident

If ident_lookup is on, this field may contain the username associated with the client connection as derived from the ident service.

9. Hierarchy Data / Hostname

A description of how and where the requested object was fetched.

10. Content Type

The Content-type field from the HTTP reply.

Access Log Tag / HTTP Code

"TCP_" refers to requests on the HTTP port.

TCP HIT

A valid copy of the requested object was in the cache.

TCP MISS

The requested object was not in the cache.

TCP REFRESH HIT

The object was in the cache, but STALE. An If-Modified-Since request was made and a '304 Not Modified' reply was received.

TCP_REF_FAIL_HIT

The object was in the cache, but STALE. The request to validate the object failed, so the old (stale) object was returned.

TCP REFRESH MISS

The object was in the cache, but STALE. An If-Modified-Since request was made and the reply contained new content.

TCP CLIENT REFRESH

The client issued a request with the 'no-cache' pragma.

TCP_CLIENT_REFRESH_MISS

The client issued a "no-cache" pragma, or some analogous cache control command along with the request. Thus, the cache has to refetch the object from origin server. It is users pushing that reload-button forcing the proxy to check for a new copy (also triggered by selecting a bookmark in some browser versions). In short, the browser forced the proxy to check for a new version

TCP IMS HIT

The client issued an If-Modified-Since request and the object was in the cache and still fresh. TCP_HIT and TCP_IMS_HIT are hits, the only difference is that in the TCP_IMS_HIT case, the browser already had an up to date version, so there was no need to send the Squid cached copy to the requestor.

TCP IMS MISS

The client issued an If-Modified-Since request for a stale object.

TCP_SWAPFAIL

The object was believed to be in the cache, but could not be accessed.

TCP_DENIED

Access was denied for this request

"UDP_" refers to requests on the ICP port

UDP HIT

A valid copy of the requested object was in the cache.

UDP_HIT_OBJ

Same as UDP_HIT, but the object data was small enough to be sent in the UDP reply packet. Saves the following TCP request.

UDP_MISS

The requested object was not in the cache.

UDP_DENIED

Access was denied for this request.

UDP INVALID

An invalid request was received.

UDP_RELOADING

The ICP request was "refused" because the cache is busy, reloading its metadata.

SIBLING_HIT

The object was fetched from a sibling cache which replied with UDP_HIT.

PARENT HIT

The object was requested from a parent cache which replied with UDP_HIT.

DEFAULT PARENT

No ICP queries were sent. This parent was chosen because it was marked "default" in the config file.

FIRST UP PARENT

The object was fetched from the first parent in the list of parents.

NO_PARENT_DIRECT

The object was fetched from the origin server, because no parents existed for the given URL.

FIRST PARENT MISS

The object was fetched from the parent with the fastest (possibly weighted) round trip time.

CLOSEST PARENT MISS

This parent was chosen, because it included the the lowest RTT measurement to the origin server. See also the closests–only peer configuration option.

CLOSEST_PARENT

The Parent selection was based on our own RTT measurements.

Refresh Pattern

Squid switched from a Time-To-Live based expiration model to a Refresh-Rate model. Objects are no longer purged from the cache when they expire. Instead of assigning TTL's when the object enters the cache, we now check freshness requirements when objects are requested. If an object is 'fresh' it is given directly to the client. If it is 'stale' then we make an If-Modified-Since request for it.

Terms in delay pool

Pool:

A collection of bucket groups as appropriate to a given class.

bucket Pool:

a group of buckets within a pool, such as the per-host bucket group, the per-network bucket group or the aggregate bucket group (the aggregate bucket group is actually a single bucket).

bucket:

an individual delay bucket represents a traffic allocation, which is replenished at a given rate (up to a given limit) and causes traffic to be delayed when empty.

Classes:

There are 3 classes of delay pools – class 1 is a single aggregate bucket, class 2 is an aggregate bucket with an individual bucket for each host in the class C, and class 3 is an aggregate bucket, with a network bucket (for each class B) and an individual bucket for each host.

class:-

Class of a delay pool determines how the delay is applied, ie, whether the different client IPs are treated separately or as a group (or both).

class1:-

Class 1 delay pool contains a single unified bucket, which is used for all requests from hosts subject to the pool.

calss2:-

Class 2 delay pool contains one unified bucket and 255 buckets, one for each host on an 8-bit network

class3:-

It contains 255 buckets for the subnets in a 16-bit network, and individual buckets for every host on these networks (IPv4 class B)

Setting the parameters for each pool is done by :

delay_parameters pool aggregate network individual.

The variables here are:

where pool is a pool number , i.e., a number between 1 and the number specified in delay_pools as used in delay_class lines, aggregate is the parameter for the aggregate bucket, network for the network bucket, and individual for the individual bucket. Aggregate is only useful for classes 1, 2 and 3, individual for classes 2 and 3, and network for class 3. Each of these parameters is specified as restore / maximum – restore being the bytes per second restored to the bucket, and maximum being the amount of bytes that can be in the bucket at any time. It is important to remember that they are in bytes per second, not bits. To specify that a parameter is unlimited, use a -1.

If we wish to limit any parameter in bits per second, divide this amount by 8, and use the value for both the restore and the maximum. For example, to restrict the entire proxy to 64kbps, use:

delay_parameters 1 8000/8000

Ftp Login Information

Squid can act as a proxy server for various Internet protocols. The most commonly used protocol is HTTP, but the File Transfer Protocol (FTP) is still alive and well.

FTP was written for authenticated file transfer (it requires a username and password). To provide public access, a special account is created: the anonymous user. When you log into an FTP server you use this as your username. As a password, you generally use your email address. Most browsers these days automatically enter a useless email address.

It's polite to give an address that works, though. If one of your users abuses a site, it allows the site admin get hold of you easily.

Squid allows you to set the email address that is used with the ftp_user tag. You should probably create a squid@yourdomain.example email address specifically for people to contact you on.

There is another reason to enter a proper address here: some servers require a real email address. For your proxy to log into these ftp servers, you will have to enter a real email address here.

Effective User and Group ID

Squid can only bind to low numbered ports (such as port 80) if it is started as root. Squid is normally started by your system's rc scripts when the machine boots. Since these scripts run as root, Squid is started as root at bootup time.

Once Squid has been started, however, there is no need to run it as root. Good security practice is to run programs as root only when it's absolutely necessary, and for this reason Squid changes user and group ID's once it has bound to the incoming network port.

The cache_effective_user and cache_effective_group tags tell Squid what ID's to change to. The Unix security system would be useless if it allowed all users to change their ID's will, so Squid only attempts to change ID's if the main program is started as root.

If you do not have root access to the machine, and are thus not starting Squid as root, you can simply leave this option commented out. Squid will then run with whatever user ID starts the actual Squid binary.

Now let us assume that, you have created both a squid user and a squid group on your cache machine. The above tags should thus both be set to 'squid' .

Timeouts

Half closed clients:

The clients that shutsdown the sending side of their TCP connections, while leaving their receiving sides open, we term it as halfclosed clients. ie., the clients closes while the handshaking is in progress.

Fully closed clients:

The clients and servers have shared their acknowledgements(request and responses) before closing.

Persistent Connection:

Persistent Connection (keep alive) feature allows the same Connection to remain open for multiple requests. Obviously the drawback is that, the next request processing cannot start before the previous response has been sent by the server.

IDENT:

Squid will make an RFC931/ident request for client connections if 'ident_lookup' is enabled in the config file. Currently, the ident value is only logged with the request in the access.log. It is not currently possible to use the ident return value for access control purposes.

URN:

The URI architecture requires that a resource be named by a URN (Uniform Resource Name) and be retrieved by a URL (Uniform Resource Locator). A URC (Uniform Resource Characterstitic) binds the URN of a resource to one or more URLs. Once this system is activated, URNs will be used to "reference" information resources. World Wide Web clients will then send the URN for a desired resource to an international network of URN to URL resolvers (the URC service) that will return to the client one or more URLs that can be used to access the resource.

SIGHUP or SIGTERM:

The system signal sent to processes running in linux OS to shutdown.

External Programs

Htpasswd:

It is apache type passwd, You can use this to create passwd for squid also.

The Syntax is:

htpasswd [-c] passwdfile username.

Redirector:

Squid now has the ability to rewrite requested URLs. Implemented as an external process (similar to a dns server), Squid can be configured to pass every incoming URL through a 'redirector' process that returns either a new URL, or a blank line to indicate no change.

The redirector program is NOT a standard part of the Squid package. However there are a couple of user–contributed redirectors in the "contrib/" directory. Since everyone has different needs, it is up to the individual administrators to

write their own implementation. For testing, and a place to start, this very simple Perl script can be used:

#!/usr/local/bin/perl
\$|=1;
print while (<>);

The redirector program must read URLs (one per line) on standard input, and write rewritten URLs or blank lines on standard output. Note that the redirector program can not use buffered I/O.

Ftp Passive Connections:

Ftp uses two data streams, one for passing commands around, the other for moving data. The command channel is handled by the ftpd listening on port 21.

The data channel varies depending on whether you ask for passive ftp or not. When you request data in a non–passive environment, you client tells the server ``I am listening on ." The server then connects FROM port 20 to the ip address and port specified by your client. This requires your "security device" to permit any host outside from port 20 to any host inside on any port >1023. Somewhat of a hole.

In passive mode, when you request a data transfer, the server tells the client ``I am listening on ." Your client then connects to the server on that IP and port and data flows.

Unlinkd Program:

Unlinkd is an external process used for unlinking old files in the cache to make room for newer object.

Pinger Process:

Squid ping program is an external program that provides Squid with icmp RTT information so that, it can more effectively choose between multiple remote parent caches for request fulfillment. There are special cases when this option is required, and your Squid must have been compiled with the —enable—icmp configure option for it to work. This option should only be used on caches with multiple parent caches on different networks that it must choose between. The default program to use for this task is called pinger. This option configures the pinger_program directive.

BYTES-hit ratio

The byte-hit ratio measures the ratio of total bytes from cached objects over the total bytes of objects requested.

All rights reserved.

All trademarks used in this document are owned by their respective companies. This document makes no ownership claim of any trademark(s). If you wish to have your trademark removed from this document, please contact the copyright holder. No disrespect is meant by any use of other companies' trademarks in this document.

Note: The pages on this website cannot be duplicated on to another site. Copying and usage of the contents for personal and corporate purposes is acceptable. In near future, it will be released under the GNU Free Documentation License.

© ViSolve.com 2002

Created By: squid@visolve.com Date: May 15,200

Revision No:0.0

Modified By Date